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Abstract 

 
Neuroscience has made a number of advances in the search for the neural correlates of 

consciousness, but our understanding of the neurophysiological markers remains incomplete. 
In this work, we apply deep learning techniques to resting-state electroencephalographic (EEG) 
measures of healthy participants under general anesthesia, for the investigation and estimation 
of altered states of consciousness. Specifically, we focus on states characterized by different 
levels of unconsciousness and anesthetic depths, based on definitions and metrics from 
contemporary clinical practice.  

Our experiments begin by exploring the ability of deep learning to extract relevant 
electrophysiological features, under a cross-subject decoding task. As there is no state-of-the-
art model for EEG analysis, we compare two widely used deep learning architectures – 
convolutional neural networks (cNNs) and multilayer perceptrons (MLPs) – and show that 
cNNs perform effectively, using only one second of the raw EEG signals. Relying on cNNs, 
we derive a novel 3D architecture design and a standard preprocessing pipeline, which allows 
us to exploit the spatio-temporal structure of the EEG, as well as to integrate different 
acquisition systems and datasets under a common methodology. We then focus on the nature 
of different predictive tasks, by investigating classification and regression algorithms under a 
variety of clinical ground-truths, based on behavioral, pharmacological, and psychometrical 
evidence for consciousness. Our findings provide several insights regarding the interaction 
across the anesthetic states, the electrophysiological signatures, and the temporal dynamics of 
the models. We also reveal an optimal training strategy, based on which we can detect 
progressive changes in levels of unconsciousness, with higher granularity than current clinical 
methods. Finally, we test the generalizability of our deep learning-based EEG framework, 
across subjects, experimental designs, and anesthetic agents (propofol, ketamine and xenon). 
Our results highlight the capacity of our model to acquire appropriate, task-related, cross-study 
features, and the potential to discover common cross-drug features of unconsciousness.  

This work has broader significance for discovering generalized electrophysiological 
markers that index states of consciousness, using a data-driven analysis approach. It also 
provides a basis for the development of automated, machine-learning driven, non-invasive 
EEG systems for real-time monitoring of the depth of anesthesia, which can advance patients’ 
comfort and safety. 

 

 

 

 

 



Contents 

 

Contents ................................................................................................................................. viii 

Chapter 1 Introduction........................................................................................................ 1 

1.1 Overview ..................................................................................................................... 1 

1.1.1 The problem of Consciousness ............................................................................ 1 

1.1.2 Neurophysiological Signatures of Levels of Unconsciousness ........................... 1 

1.1.3 Electroencephalography under General Anesthesia ............................................ 2 

1.1.4 Deep Learning for EEG Decoding ...................................................................... 3 

1.1.5 Clinical Anesthesia and Contemporary Problems ............................................... 4 

1.1.6 State-of-the-art and Learning-based EEG ........................................................... 5 

1.2 Thesis Structure........................................................................................................... 6 

Chapter 2 Background Literature ..................................................................................... 8 

2.1 The Problem of Consciousness ................................................................................... 8 

2.1.1 Definition ............................................................................................................. 8 

2.1.2 Scientific Study .................................................................................................... 9 

2.1.3 Behavioral Correlates of Consciousness ........................................................... 10 

2.1.4 Neural Correlates of Consciousness .................................................................. 12 

2.1.5 Neurophysiological Markers of Consciousness ................................................. 14 

2.2 Electroencephalography ............................................................................................ 16 

2.2.1 Mechanism ......................................................................................................... 17 

2.2.2 Methodological Advantages and Limitations .................................................... 18 

2.2.3 Data Acquisition ................................................................................................ 21 

2.2.4 EEG Signals and Pre-processing ....................................................................... 23 

2.2.5 Quantitative Analysis ......................................................................................... 26 

2.3 Deep Learning ........................................................................................................... 26 

2.3.1 Machine Learning .............................................................................................. 27 

2.3.2 Supervised and Unsupervised Learning ............................................................ 27 

2.3.3 Model Training, Assessment and Limitations ................................................... 29 

2.3.4 Artificial Neural Networks ................................................................................ 30 

2.3.5 Deep Learning Architectures ............................................................................. 34 

Chapter 3 Deep Learning for EEG Decoding of Anesthetic-Induced Unconsciousness
 39 

3.1 Introduction ............................................................................................................... 39 



3.1.1 Overview ............................................................................................................ 39 

3.1.2 Background ........................................................................................................ 39 

3.1.3 Related Work ..................................................................................................... 40 

3.2 Methods ..................................................................................................................... 43 

3.2.1 Dataset Collection .............................................................................................. 43 

3.2.2 EEG Pre-processing ........................................................................................... 45 

3.2.3 Deep Learning Architectures ............................................................................. 46 

3.2.4 Experiments........................................................................................................ 48 

3.3 Results ....................................................................................................................... 48 

3.3.1 Architecture Comparison ................................................................................... 48 

3.3.2 Statistical Analysis – ANOVA Model ............................................................... 51 

3.4 Discussion ................................................................................................................. 52 

3.4.1 Cross-subject Generalization ............................................................................. 52 

3.4.2 Architecture Comparison and Representation Efficiency .................................. 52 

3.4.3 Window of Analysis ........................................................................................... 53 

3.4.4 Summary ............................................................................................................ 54 

Chapter 4 Convolutional Neural Networks and EEG Representation ......................... 55 

4.1 Introduction ............................................................................................................... 55 

4.1.1 Overview ............................................................................................................ 55 

4.1.2 Background ........................................................................................................ 56 

4.1.3 Related Work ..................................................................................................... 57 

4.2 Methods ..................................................................................................................... 58 

4.2.1 Dataset Collection .............................................................................................. 58 

4.2.2 EEG Pre-processing ........................................................................................... 59 

4.2.3 Convolutional Neural Network Architectures ................................................... 65 

4.2.4 Model Training and Evaluation ......................................................................... 68 

4.3 Experiment 1 – Reference Montage .......................................................................... 68 

4.3.1 Results ................................................................................................................ 69 

4.3.2 Discussion and Statistical Analysis .................................................................... 70 

4.4 Experiment 2 - Normalization Methods .................................................................... 71 

4.4.1 Results ................................................................................................................ 72 

4.4.2 Discussion and Statistical Analysis .................................................................... 74 

4.5 Experiment 3 - Spatial Resolution and High Frequency Content ............................. 75 

4.5.1 Results ................................................................................................................ 76 

4.5.2 Discussion and Statistical Analysis .................................................................... 82 

4.6 Experiment 4 - Robustness to EEG Artifacts ............................................................ 84 

4.6.1 Results ................................................................................................................ 84 



4.6.2 Discussion and Statistical Analysis ................................................................... 88 

4.7 Discussion ................................................................................................................. 89 

4.7.1 Reference Montage and Normalization Method ................................................ 90 

4.7.2 Spatial Resolution and High-Frequency Content .............................................. 90 

4.7.3 Robustness to EEG Artifacts ............................................................................. 91 

4.7.4 2D vs 3D Convolutional Neural Network Design ............................................. 93 

4.8 3D Convolutional Neural Network ........................................................................... 93 

4.8.1 Input Pre-processing .......................................................................................... 94 

4.8.2 Mesh Representation Design ............................................................................. 94 

4.8.3 Summary ............................................................................................................ 95 

Chapter 5 Predictive Analysis of Behaviorally, Pharmacologically, and 
Psychometrically defined Anesthetic States ........................................................................ 96 

5.1 Introduction ............................................................................................................... 96 

5.1.1 Overview ............................................................................................................ 96 

5.1.2 Background ........................................................................................................ 97 

5.1.3 Related Work ..................................................................................................... 98 

5.2 Methods ................................................................................................................... 100 

5.2.1 Datasets Collection .......................................................................................... 100 

5.2.2 EEG Pre-processing ......................................................................................... 103 

5.2.3 Deep Learning Model ...................................................................................... 104 

5.2.4 Model Training and Evaluation ....................................................................... 104 

5.3 Experiment 1 – Behaviorally-defined Anesthetic States ........................................ 107 

5.3.1 Classification Results ....................................................................................... 108 

5.3.2 Regression-to-Ramsay-Score Results .............................................................. 111 

5.4 Experiment 2 – Pharmacologically-defined Anesthetic States ............................... 116 

5.4.1 Classification Results ....................................................................................... 117 

5.4.2 Regression-to-Target-Concentrations Results ................................................. 120 

5.4.3 Regression-to-Blood-Sample-Concentrations Results .................................... 122 

5.5 Experiment 3 – Psychometrically-defined Anesthetic States ................................. 125 

5.5.1 Classification Results ....................................................................................... 127 

5.5.2 Regression-to-Psychometric-Score Results ..................................................... 131 

5.6 Discussion ............................................................................................................... 134 

5.6.1 Recovery as a State of Mild Sedation .............................................................. 135 

5.6.2 Large-scale Temporal Dynamics of EEG Appear Consistent with the Depth of 
Anesthesia ...................................................................................................................... 136 

5.6.3 Regression vs Classification for Tracking States and Levels of Consciousness
 138 



5.6.4 Behavioral Measures are more Reliable than Pharmacological Measures as a 
Ground-truth for Consciousness .................................................................................... 139 

5.6.5 Limitations of Psychometrical Measures for Investigation and Estimation of 
Altered States of Consciousness .................................................................................... 141 

5.6.6 Deep Learning-based EEG and Comparison to Clinical Practice .................... 143 

5.6.7 Summary .......................................................................................................... 144 

Chapter 6 Cross-study and Cross-drug Generalization of Anesthetic-Induced 
Unconsciousness ................................................................................................................... 145 

6.1 Introduction ............................................................................................................. 145 

6.1.1 Overview .......................................................................................................... 145 

6.1.2 Background ...................................................................................................... 146 

6.1.3 Related Work ................................................................................................... 147 

6.2 Methods ................................................................................................................... 149 

6.2.1 Datasets Collection........................................................................................... 149 

6.2.2 EEG Pre-processing and Deep Learning Model .............................................. 153 

6.2.3 Model Training and Evaluation ....................................................................... 154 

6.3 Experiment 1 – Cross-study Generalization to Propofol Anesthesia ...................... 155 

6.3.1 Results .............................................................................................................. 155 

6.4 Experiment 2 – Cross-drug Generalization to Ketamine and Xenon Anesthesia ... 157 

6.4.1 Results .............................................................................................................. 157 

6.5 Experiment 3 – Cross-study and Cross-drug Training on Propofol and Ketamine 
Anesthesia .......................................................................................................................... 160 

6.5.1 Behavioral-Responsiveness (BR) Scale ........................................................... 160 

6.5.2 Experiment ....................................................................................................... 161 

6.5.3 Results .............................................................................................................. 161 

6.6 Discussion ............................................................................................................... 165 

6.6.1 Cross-study Generalization .............................................................................. 165 

6.6.2 Cross-drug Generalization ............................................................................... 167 

6.6.3 Summary .......................................................................................................... 169 

Chapter 7 General Discussion ......................................................................................... 170 

7.1 Overview of Research ............................................................................................. 170 

7.1.1 Chapter 3 – Deep Learning for EEG Decoding of Anesthetic-Induced 
Unconsciousness ............................................................................................................ 170 

7.1.2 Chapter 4 – Convolutional Neural Networks and EEG Representation .......... 171 

7.1.3 Chapter 5 – Predictive Analysis of Behaviorally, Pharmacologically, and 
Psychometrically defined Anesthetic States .................................................................. 171 

7.1.4 Chapter 6 – Cross-study and Cross-drug Generalization of Anesthetic-induced 
Unconsciousness ............................................................................................................ 172 

7.2 Deep Learning-based EEG – Assessment and Limitations ..................................... 173 



7.2.1 Overview .......................................................................................................... 173 

7.2.2 Datasets ............................................................................................................ 174 

7.2.3 EEG Pre-Preprocessing ................................................................................... 175 

7.2.4 Deep Learning Architecture and Training ....................................................... 176 

7.2.5 Validation and Reproducibility ........................................................................ 178 

7.2.6 Model Inspection and Interpretability ............................................................. 180 

7.3 EEG Methods for Analysis and Estimation of Anesthetic-Induced Unconsciousness
 181 

7.3.1 Overview .......................................................................................................... 181 

7.3.2 Non-Learning-Based Models ........................................................................... 181 

7.3.3 Deep Learning Models .................................................................................... 184 

7.4 Conclusions ............................................................................................................. 186 

Appendix ............................................................................................................................... 188 

References ............................................................................................................................. 189 

 



List of Abbreviations 
 
 

AI – Artificial Intelligence 

cNN – Convolutional Neural Networks 

DL-EEG – Deep Learning-based Electroencephalography 

DoA – Depth of Anesthesia 

DoC – Disorders of Consciousness 

EEG – Electroencephalography 

GA – General Anesthesia 

LOPOCV – Leave-One-Participant-Out Cross-Validation 

PD – Pharmacodynamic 

PK – Pharmacokinetic 

TCI – Target-Controlled Infusion 

 

 

 

 

 

 





 

Chapter 1 Introduction 

1.1 Overview 

In this chapter, we introduce our thesis with an overview of the main themes and fields 
of study that form the basis of our research, namely: the neurophysiological correlates of 
consciousness, human electroencephalography, deep learning, and general anesthesia. In the 
following section, we outline the structure of the thesis and summarize the content of each 
chapter. 

1.1.1 The problem of Consciousness 

Neuroscience has shown a number of advances in the search for the understanding of 
consciousness; a problem that started as one of the biggest mysteries in philosophy, but whose 
physical understanding relates directly to our everyday life, from our perception of reality, to 
the positive and negative experiences we have, to our own sense of self, and ultimately, to an 
essential part of what life and death is. Beyond our daily experiences, understanding 
consciousness can also have a tremendous impact in medicine, as altered states of 
consciousness and unconsciousness are voluntarily induced in patients for therapeutic purposes 
(e.g. under general anesthesia to perform a painful procedure, or as part of a psychiatric 
treatment), or have been involuntarily induced due to a medical condition, such as a disease or 
a brain injury (e.g. in patients with disorders of consciousness under a comatose, vegetative or 
locked-in state). For all these implications, whether philosophical and scientific, or social and 
ethical in nature, a neuroscientific study of consciousness has a great potential to improve the 
quality of life for many people within our society, and particularly for patients, through 
diagnosis, prognosis, and treatment.  

1.1.2 Neurophysiological Signatures of Levels of Unconsciousness 

During the past decades, and given the development of brain imaging technologies, a 
scientific endeavour for consciousness studies has emerged, which may allow us to better grasp 
and influence this reality. Due to the current lack of a scientific theory, many researchers have 
been driven to investigate the neural mechanisms underlying the various states of 
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consciousness, by combining behavioral, clinical, and brain imaging methodologies in humans 
and other animals. One of the main research questions, regards the identification of the full 
neural correlates of consciousness (full NCC) – defined as the neuronal substrates or 
mechanisms that correspond to our irrespective-of-content, general ability to experience 
(alternatively defined as the set of all content-specific NCC). However, while research has 
revealed a number of potentially associated structures and mechanisms responsible for the 
generation of our experiences, various proposed neurophysiological markers of consciousness 
have proved illusory (Koch et al. 2016).  

In this work, we are focusing towards the engineering of a model for the investigation 
and estimation of states of consciousness, that reflect the electrophysiological signatures of the 
full NCC, and which allow the discovery of possible novel markers. Specifically, our 
exploration focuses on states characterized by different levels of unconsciousness, a concept 
aligned closely with the medical definition of consciousness (a continuum of states, from full 
alertness and comprehension, to drowsiness and disorientation, to delirium and loss of 
communication, and finally loss of movement and response to painful stimuli). Using state-
based paradigms, and by incorporating minimal assumptions from clinical ground-truths, our 
research relies on a data-driven explorative study, rather than any prior hypotheses on the 
nature of consciousness and its possible mechanisms. The development of such a model has 
the potential to contribute not only to our theoretical understanding of the phenomenon, but 
also to the production of automated systems for clinical use (e.g. in cases such as monitoring 
the depth of anesthesia (DoA), or in diagnosis and prognosis of patients with disorders of 
consciousness (DoC)). 

1.1.3 Electroencephalography under General Anesthesia 

For such inquiry, experimental designs with electroencephalographic (EEG) measures 
of humans under various states and depths of anesthesia can provide us with a suitable set-up, 
and a reliable ground truth, given the desired association. General anesthesia (GA) provides a 
powerful paradigm to study altered states and levels of consciousness using a variety of 
anesthetics, which albeit having different molecular mechanisms, share many of their 
phenomenological effects (most evidently, the decrease in awareness and responsiveness of an 
individual, up to the eventual absence of any possible experience). While various anesthetic 
states and brain mechanisms are involved in different agents and doses (e.g. dream-like states 
of disconnected consciousness), the collection of data from multiple studies can help us resolve 
a number of open questions in GA research. Some of the major questions relate to our ability 
to sensitively distinguish the different anesthetic depths, the understanding of the dose-
response relationship, the inter-individual variability of clinical outcomes, the transitional 
phases and asymmetries of anesthesia, as well as the discovery of any common cross-drug 
mechanisms of anesthetic-induced unconsciousness (all of which can help us better understand 
the full NCC) (Bonhomme et al. 2019). 
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When it comes to brain imaging, EEG provides a non-invasive way to record and 
analyze the electrophysiological signatures of the brain, of which we have acquired significant 
insights; from the underlying biophysics that generate the electrical fields, to the functional 
interpretation of the respective spatio-temporal dynamics (Buzsáki, Anastassiou and Koch 
2012). It is also a valuable tool that can offer us a high temporal resolution of the brain’s 
function, while being simple, convenient, and widely accessible in hospitals for clinical use 
(Chatelle et al. 2012). Nevertheless, there are several issues and constraints when trying to 
analyze EEG, due to the complex nature of the signals. Specifically, the contamination of the 
EEG with various sources of noise (biological or environmental), the significant intra-subject 
and inter-subject variability of the signals, and the lack of standardized processing 
methodologies, have all created problems of analysis and reproducibility (whilst human 
expertise and manual intervention are often required). Meanwhile, recent research has 
suggested that multivariate pattern analysis techniques can be very effective in detecting subtle 
changes within the otherwise rich electrophysiological signals, which allows for the decoding 
of more complex (and possibly hidden) brain states (Stokes, Wolff and Spaak 2015). 
Particularly during the past years, a need has emerged for the development of more 
sophisticated techniques of EEG analysis, beyond the traditional methodologies that have been 
used throughout research and clinical settings.  

1.1.4 Deep Learning for EEG Decoding 

Neuroscience and artificial intelligence (AI) have long benefited from strong mutual 
interactions. Acquiring knowledge from complex high-dimensional data, such as EEG, is a key 
challenge for biomedicine in general, with traditional approaches of hand-crafted feature 
engineering, alongside expert domain knowledge, reaching a limit (observed in contemporary 
systems’ performance). Recent developments in the field of machine learning have shown its 
significant capabilities for EEG analysis, in all kinds of tasks and datasets (Roy et al. 2019; 
Pedregosa et al. 2012; Kammoun et al. 2022; Heilmeyer et al. 2019). Notably, during the past 
five years, deep learning, and particularly convolutional neural networks, have been 
successfully used for EEG decoding, by offering an end-to-end learning approach and by 
creating state-of-the-art models. These models are derived solely from the EEG data and 
improve their performance progressively with experience, as they discover generalized 
properties of the data. Trained under a specific task, artificial neural networks construct internal 
representations, which despite their predictive power, also open the possibility for a data-driven 
approach in acquiring (neuroscientific) knowledge.  

Despite their strong advantages, there are several difficulties encountered in the 
creation, validation, and interpretability of deep learning models. These relate to their 
underlying mathematical properties and assumptions (through the architectural designs and 
imposed optimization problems), the limitations of collecting large, representative, and 
unbiased datasets, as well as our own cognition and disposition on how we understand and 
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assess complex phenomena. To work towards addressing these issues, different deep learning 
architectures, EEG representations, learning tasks, and anesthesia datasets are investigated 
through a series of research questions and experiments. Specifically, our investigation focuses 
on the appropriateness of the models to extract useful electrophysiological patterns, evaluated 
on their ability to impartially predict anesthetic-induced states and levels of unconsciousness.  

1.1.5 Clinical Anesthesia and Contemporary Problems 

From a clinical perspective, discovering robust neurophysiological markers that predict 
different states and levels of unconsciousness, can significantly improve problems found in 
contemporary anesthesia practice. To date, more than 200 million people around the globe have 
surgery every year, and mostly under GA (Weiser et al. 2008). An optimal anesthetic state for 
GA could be described as the minimum required medications that ensure unconsciousness, 
analgesia (calibrated as a function of noxious stimuli), amnesia, and most often immobility. 
Nevertheless, several problems arise from the significant inter-individual variability for the 
required anesthetic doses, due to a variety of pharmacological and biological factors (patient-
specific characteristics) (Absalom et al. 2009).  

Currently, levels of unconsciousness are assessed by various indirect physiological 
monitoring methods (e.g. ECG, blood pressure, respiratory rate, oxygen saturation, etc.), 
pharmacokinetic/pharmacodynamic (PK/PD) models, and the patient’s ability to interact with 
the environment; none of which allow for an accurate estimation of the drug’s effect in the 
brain. As a result, the administration of lower or higher doses creates several complications 
that emerge during or after the anesthetic procedure. Specifically, about 70% of patients are 
affected by under- and over-sedation in the ICUs (Kaplan and Bailey 2000). Over-sedation has 
been associated to hypo-perfusion of the heart and brain, prolonged ventilation/recovery, and 
rarely, even to induction of coma (Gunaydin and Babacan 1998). Under-sedation has been 
associated to pain, agitation, tachycardia, and arrhythmias. Most importantly, under-dosing can 
result in unintended intraoperative awareness, which occurs in up to 1% of all surgical patients 
(as indicated by implicit or explicit post-operative reports) (Avidan et al. 2011). In such cases, 
consciousness is preserved in a patient who is disconnected from the environment and cannot 
communicate (typically due to a neuromuscular blocking agent), yet still able to experience, 
causing confusion, potential pain, and likely post-traumatic stress disorder (PTSD) (Mashour 
and Avidan 2015). Finally, under- and over-sedation have both been linked to delirium and 
post-operative cognitive decline (which can last up to 6 months) (Eichhorn et al. 2019). For all 
these reasons, it is important to have a reliable measure of the depth of anesthesia (DoA), using 
a direct, non-invasive monitoring of the brain. 

Despite the obvious fact that GA fundamentally modulates neuronal activity, brain 
monitoring is not routine practice in the operating room (3 - 4% usage in clinical settings 
(Pandit et al. 2014)), and is limited to proprietary systems that have produced mixed results 
(Avidan et al. 2011). Meanwhile, contemporary clinical scales are not able to reliably measure 
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states of consciousness (as they require behavior), or to continuously track the patient’s status, 
which can be crucial for real-time management of patients. Ideally, by acquiring a personalized 
continuous brain-based estimate of the DoA, we can guide the anesthetic titration to a 
minimum-but-sufficient administration of the anesthetics, hence minimizing or even 
eliminating the above mentioned problems.  

1.1.6 State-of-the-art and Learning-based EEG 

The absence of a universally accepted methodology or device for tracking the brain 
under anesthesia is, in part of course, due to the lack of robust EEG markers. To date, there are 
several EEG-based devices that can be used to monitor the depth of anesthesia, using near real-
time indices, such as the bispectral index (BIS) (Myles et al. 2004), Narcotrend (Kreuer et al. 
2003), m-entropy (Bruhn et al. 2006), patient state index (PSI) (Drover et al. 2002), and 
WAVCNS (Zikov et al. 2006). Typically, for a given index it is assumed that a particular output 
value (or range of values) corresponds to a particular anesthetic state, independent of the 
administered agent. Nevertheless, there are several limitations with contemporary DoA 
monitors in their sensitivity, specificity, and value as diagnostic tools. For example, the BIS 
monitor – one of the commercial standards in DoA devices – has been shown to be unreliable 
under certain anesthetic agents (e.g. nitrous oxide, ketamine and dexmedetomidine (Barr et al. 
1999)), anesthetic depths (e.g. burst suppression (Kearse et al. 1994)), and patient 
demographics (e.g. children (Khan et al. 2018)). It has also been shown to be significantly 
affected by signatures uncoupled from consciousness, such as the electromyographic (EMG) 
activity (Schuller et al. 2015). In general, there are known differences among these indices, 
and inconclusive studies about the improvement of patient outcomes under their use (Avidan 
et al. 2008; Chan et al. 2013; Wildes et al. 2019). 

In spite of the limits of contemporary DoA systems, recent literature has highlighted 
the potential for improved brain monitoring, as we better understand the electrophysiological 
signatures of anesthetic states, which vary by agents, mechanisms of action and doses (Purdon 
et al. 2015; Brown, Pavone and Naranjo 2018). For example, studies using the isolated forearm 
technique allow us to differentiate signatures reflecting covert awareness from signatures of 
true unconsciousness (Linassi et al. 2018; Gaskell et al. 2017). Meanwhile, an increasing 
number of studies are introducing theoretically and empirically-based EEG metrics for 
discriminating states of consciousness, which have shown adequate generalization across a 
variety of anesthetic conditions (e.g. the perturbational complexity index (PCI) (Casali et al. 
2013), the Lempel-Ziv complexity index (PLCZ) (Bai et al. 2015), entropy indices (Liang et 
al. 2015), slow-wave activity (SWA) (Ní Mhuircheartaigh et al. 2013), and others). However, 
many of the above metrics rely on several theoretical/mathematical assumptions, they have 
high computational requirements, and most often require data curation and manual intervention 
from experts, which makes them unsuitable for automated systems. 
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In this respect, deep learning has shown its strength and potential for improving 
healthcare, throughout a variety of diagnostic problems (and particularly within the area of 
medical imaging), as it offers high predictive accuracies, computational performance, and real-
time automation, which is vital for clinical anesthesia. Of course, the performance of such 
models can be limited by the specific problem under analysis (e.g. the type of anesthetic agents 
used), the reliability of the ground truth (e.g. behavioral, clinical, or pharmacological evidence 
for levels of unconsciousness), and even our ability to interpret these systems for medical 
purposes (in terms of explainability, control, and potential improvement). This is particularly 
important, given the theoretical limitations in acquiring an electrophysiological understanding 
of the markers, under a learning-based approach. Therefore, it is important to consider all of 
these issues throughout our work, while focusing as much as possible on the aspects that our 
tools allow us to study.  

1.2 Thesis Structure 

In the previous section, we presented the conceptual framework of the fields and 
challenges related to our work, our general research goal, and our selected tools of 
investigation. Specifically, we discussed the scientific endeavour towards the identification of 
the neurophysiological signatures of consciousness, the selection of EEG under GA as a study 
paradigm, the rationale behind deep learning for EEG decoding, and finally, clinical anesthesia 
and contemporary problems related to DoA estimation. 
 In Chapter 2, we provide a short summary of the background literature regarding our 
main fields of study, namely: the problem of consciousness, electroencephalography, and deep 
learning. Each section introduces basic concepts that are used throughout our work, as well as 
supporting literature for our methodological underpinnings and prior assumptions (a reader 
familiar with any of the fields can skip the respective sections). 
 In Chapter 3, we begin by exploring whether deep learning is effective in extracting 
relevant electrophysiological features from resting-state EEG of healthy participants under GA. 
As there is no state-of-the-art model for EEG analysis, we compare two widely used deep 
learning architectures – convolutional neural networks (cNNs) and multilayer perceptrons 
(MLPs) – in their ability to discriminate anesthetic states, given a fully automated end-to-end 
learning approach, and under a cross-subject decoding task. We also investigate the effect of 
the models’ input representation, by comparing the raw EEG time courses against a spectral 
representation, which is often used as an effective feature in many EEG decoding tasks. This 
work formed the basis of our publication in the 11th International Conference on Brain 
Informatics 2018 (Patlatzoglou et al. 2018). 
 In Chapter 4, we focus on the development of a cNN architecture and an EEG pre-
processing pipeline, that will allow us to incorporate different EEG systems and datasets, under 
a common and consistent processing methodology (currently missing). For this purpose, we 
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explore several parameters of EEG representation, alongside a network design with the 
capacity to exploit the spatio-temporal structure of the EEG. Specifically, we perform a number 
of experiments and compare the performance of 2D and 3D cNN designs, with respect to some 
of the most influential EEG parameters, namely: the reference montage, the sample 
normalization method, the spatial and spectral resolution of the EEG, and the manipulation of 
EEG artifacts. We then derive a generic 3D cNN and a selected pre-processing pipeline, based 
on which we proceed with our research investigation.  

In Chapter 5, we experiment with a number of optimization tasks undertaken by our 
cNN model, for the electrophysiological investigation and estimation of anesthetic-induced 
states of unconsciousness. Our aim here is to both understand the relationship between the EEG 
signatures and the various anesthetic states, but also to test the predictive power of 
classification and regression algorithms under particular learning tasks. To this end, we exploit 
the acquisition of datasets from experimental designs that control for several clinical variables, 
such as the anesthetic agent (propofol and ketamine) and the administration mode, which are 
used to target a particular behavioral, pharmacological, or psychometrical response. Based on 
this analysis, and in alignment with our research objective, we further derive an optimal 
training strategy that is shown to impartially track the depth of anesthesia. Part of this work 
formed the basis of our publication in the 42nd international conference of the IEEE 
Engineering in Medicine and Biology, 2020 (Patlatzoglou et al. 2020). 

In Chapter 6, we test the generalizability and reproducibility of our findings within the 
framework of deep learning-based EEG, in order to assess the capacity of our model to 
impartially estimate levels of anesthetic-induced unconsciousness. Specifically, we evaluate 
the cross-study and cross-drug generalization performance of the model under two unseen 
experimental setups, that include a novel paradigm for measuring levels of unconsciousness, 
and two distinct anesthetic agents (ketamine and xenon). We also explore a cross-drug training 
strategy, with the potential to uncover common cross-drug features of unconsciousness, which 
have been hypothesized in GA research. Part of this work formed the basis of our publication 
in the 42nd international conference of the IEEE Engineering in Medicine and Biology, 2020 
(Patlatzoglou et al. 2020). 
 Finally, in Chapter 7 we summarize the results and contributions of this thesis, and we 
assess our methodology – its strengths and its limitations – against current state-of-the-art 
models. Our methodological framework and findings are evaluated within the general literature 
of deep learning-based EEG decoding, but also with respect to other non-learning-based EEG 
methods for the analysis and estimation of levels of consciousness (or particularly the depth of 
anesthesia). 
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Chapter 2 Background Literature 

2.1 The Problem of Consciousness 

Throughout the human history, the origin of consciousness has been one of the three 
fundamental questions, along with the origin of life and the universe, which troubled 
philosophers and scientists. Within the last few centuries, the scientific revolutions of 
Newtonian mechanics and Darwinian evolution have led us to a profound understanding of 
how the universe and life emerged, for all practical and meaningful purposes. While these 
theories rely on a materialistic and mechanistic approach for explaining the world, born out of 
simple ideas and mathematical elegance, we are nowhere close to a theory of consciousness 
that fulfils such level of understanding yet; a theory that could explain the complexity of the 
phenomenon from non-complex principles. Nevertheless, during the past decades, there has 
been significant progress in forming and tackling the problem, with scientific models that can 
be tested experimentally, and empirical findings that guide our investigations. Besides the 
philosophical need for a formal explanation, our ability to assess consciousness and all its 
qualities has many implications for science and society, and particularly within the practice of 
medicine, where altered states of consciousness are part of diagnosis, prognosis, and treatment 
of patients. 

2.1.1 Definition 

The problem of consciousness starts with the definition itself. A definition based on the 
Webster’s Third Dictionary states that “consciousness is the quality or state of being aware of 
an external object or something within oneself” (Merriam-Webster 2012). Although the term 
may have various meanings depending on the context, relevant definitions involve concepts 
such as awareness, perception, sensations, wakefulness, volition and thought; the ability to 
experience and feel, a sense of selfhood, and even the executive control of the mind. Despite 
the various definitions and debates around the topic (which remains controversial), most 
philosophers and scientists today agree that there is a shared intuition of what consciousness is 
(Honderich 2008). A simple but operational definition would be that consciousness is 
everything we experience, from images and sounds to emotions and thoughts. It is the most 
familiar and most mysterious aspect of our everyday life, as we lose it every night when we 
fall into dreamless sleep, yet returns when we wake up in the morning. 
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2.1.2 Scientific Study 

For many decades the topic of consciousness was avoided by scientists, as the scientific 
method relies on objective measurements and experimentation, while most of consciousness 
definitions include subjective terms and private experiences. However, we have long known 
that mental processes – many of which characterize consciousness – causally relate to the 
physical processes of the brain. Due to the technological advancements of the past decades, 
and specifically the appearance of brain imaging technologies like EEG and fMRI, we have 
been able to systematically measure the function of the brain in individuals under various 
conditions of consciousness. To that end, an interdisciplinary study has grown within the 
cognitive sciences, with contributions from various fields, most notably psychology, 
neuroscience, and computer science. 

The main objective of such study lies in the understanding of the connection between 
the behaviors (related to responsiveness, volition, and self-report) and perceptions (related to 
experiences and self-awareness) of individuals, with respect to their underlying biological 
mechanisms; namely, the connection between the behavioral/psychological and neural 
correlates of consciousness (Koch et al. 2016). An important clarification here is that the 
information present in consciousness cannot be ascribed directly as an emergent property (or 
epiphenomenon) of the neural states/activity itself, but rather to a specific mechanism or 
structure (notably, one of the earliest distinctions in psychology regard the limited, slow and 
serial conscious processes, against the fast and parallel unconscious ones). In other words, not 
all neuronal processes are part of our conscious experience (e.g. processes of the autonomic 
nervous system), while contemporary lesion studies have indicated particular brain regions that 
either have a direct causal relation to someone’s ability to be conscious (Parvizi 2001), or have 
no effect at all (Lemon and Edgley 2010). Given these facts, the neural correlates of 
consciousness (NCC) can be defined as the minimum neuronal mechanisms jointly sufficient 
for a conscious percept (Koch 2004). This definition can be interpreted in two ways, depending 
on whether we focus on the substrates that support specific contents of experience (content-
specific NCC), or the mechanisms that support an irrespective-of-content general ability to 
experience (full NCC). Typically, studies have been focusing on either of these two conceptual 
aspects, which are empirically separated into contents and levels of consciousness.  

Parallel to these definitions, there are two types of experimental paradigms that have 
been used in research, in order to behaviorally assess contents and levels of consciousness. 
When it comes to identifying content-specific NCC, the majority of studies have relied on 
psychological investigations based upon verbal reports of experience, with no-report 
paradigms more recently developed, which focus on indirect physiological measures. 
Alternatively, the identification of the full NCC has been driven by paradigms employing 
medical definitions of consciousness, where clinicians and neurologists assess states and levels 
of consciousness by observing a patient’s arousal, responsiveness, and volition. In both cases, 
there are various issues and phenomena of interest, including subliminal perception and 
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priming effects, blindsight, denial of impairment, as well as altered states of consciousness 
produced by sleep, meditation, trauma, illnesses, and drugs (altered states can refer to changes 
in thinking, sense of time, emotions, bodily image, or meaning, as in the case of dreaming). 
Overall, while we have several indications that these two aspects of consciousness can be 
partially dissociated from one another, it is important to consider their intertwined nature (i.e. 
contents of experience might change at different levels of consciousness, while a certain level 
of consciousness is required for any phenomenal content) (Mashour and Hudetz 2017). 
 

 
 

Fig. 2.1. Neural correlates of consciousness (Koch 2004). The conscious percept of an external stimulus 
is ascribed to a specific underlying neural mechanism or structure. 

2.1.3 Behavioral Correlates of Consciousness 

Due to the subjective nature of experience and the lack of a universally accepted 
definition, there are special difficulties in assessing the various states of consciousness. We 
normally infer that a person is conscious when they are awake and act purposefully, with 
contents of experience assessed and compared across individuals by the consistency of self-
reports. For these reasons, there is a consensus among scientists regarding the assumptions 
made and the criterions used in experiments, with few approaches and methodologies chosen, 
depending on the suitability of the research interest and the phenomenon under study. 
 
Explicit/Non-Explicit Report Paradigm. One of the most widely used methods to assess 
consciousness in humans is through verbal report. In this method, participants are asked to 
describe their experiences to a stimulus (such as visual or auditory), while the description is 
treated as an observation or measurement of consciousness (e.g. in a Necker cube, a participant 
may report alterations between the two 3D perceived configurations, despite the unchanged 
visual stimulus). Similar approaches have been used with button-press for simple ‘yes’ or ‘no’ 
questions, or other forced-choice procedures that evaluate the awareness of participants 
(responses may vary though, depending on the perceptual thresholds of each participant) 
(Kunimoto, Miller and Pashler 2001). For a more detailed way to characterize experience, 
perceptual awareness scales have been developed, as well as confidence ratings that may be 
used alongside (Sandberg et al. 2010). Response priming is a technique often used within this 
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paradigm, where the behavior or response of an individual is influenced under the presence of 
another (priming) stimulus (Schmidt and Vorberg 2006). All these methods provide a mean to 
access the content of experience, and although they are considered reliable indicators of 
consciousness, they raise a number of issues (Destrebecqz and Peigneux 2005). For example, 
measurements of consciousness could contain errors which are not detectable by the 
participant’s behavior itself, unless third-person evidence have been acquired (such as 
physiological measurements) (Dennett 2003). Moreover, verbal reports are restricted to 
humans and exclude cases of people with language impairment, pre-linguistic children, or other 
animals that may be conscious, while language itself has been widely dissociated from 
consciousness and may mislead research investigation and results. 

More recently, a no-report paradigm has been adopted by many researchers, as an 
alternative to the above mentioned approaches, which also tackles the issue of verbal validity. 
In this method, consciousness is assessed by trials of explicit report, along with trials of non-
explicit report, where indirect physiological measures are used to infer the perception of an 
individual (Koch et al. 2016). For example, eye movements and pupil dilation have been shown 
to correlate highly with conscious reports in visual studies, and could be used as alternative 
measures to explicit behaviors (Frassle et al. 2014). Such approach allows for the 
differentiation of neural activity that is associated to events and processes related to the task 
given (or the report itself), and which may precede or follow conscious experience. As in most 
neuroscientific studies, the complete reduction or control of confounds is a major issue and 
concern for the experimental design, which can significantly influence the results, depending 
on its suitability for the phenomenon under study. 
 
Medical Paradigm. Another way to assess consciousness, which better reflects our general 
and irrespective-of-content ability to experience, is based on the medical perspective of the 
concept. In clinical settings, the behavioral assessment focuses on a patient’s arousal and 
responsiveness, where simple criteria are used to estimate the various states and levels of 
awareness (e.g. the ability of a patient to respond to a command, verbally or with a movement). 
Besides verbal report, a combination of physiological measures of arousal, brain activity and 
purposeful movement complement the clinical evaluation (Giacino and Smart 2007). 
Consciousness here can be thought as a continuum of states, from full alertness and 
comprehension, to drowsiness and disorientation, to delirium and loss of communication, and 
finally loss of movement and response to painful stimuli (Luby 1998). Each state is 
characterized by different levels of consciousness, measured by a standardized behavioral scale 
(most commonly the Glasgow Coma Scale) which typically consists of verbal, ocular, and 
motor response grading tests. Standardized scales have also been developed to assess levels of 
contents of experience, by assigning ratings to a patient’s visual, auditory, verbal or motor 
function (Hoenig and Toakley 1959). Finally, other non-medical ways to assess levels of 
consciousness have been used in research settings, such as measuring the reaction times or the 
performance to a cognitive task.  
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As with self-report paradigms, the medical approach to consciousness also raises a 
number of issues, since arousal and purposeful movements cannot be considered as absolute 
indicators of consciousness. Extensive literature has shown that individuals may be wakeful 
and act purposefully, without reporting awareness of their actions (Schmidt and Vorberg 2006). 
Reports of experience can also be differentiated from actual behaviors in some cases, or even 
from patterns of brain activity (Haggard 2008). On the other hand, there are cases of patients 
with a complete absence of behavior (e.g. patients in vegetative states) which are misclassified 
as non-conscious, contrary to brain imaging evidence (Schnakers et al. 2009). For all these 
reasons we accept a strong dissociation, where consciousness does not require behavior, and 
vice versa. A variety of clinical states defined by the concepts of arousal/vigilance and 
awareness (levels of consciousness) are depicted in Fig. 2.2. 
 

 
 

Fig. 2.2. Clinical states of consciousness, defined by the vigilance and awareness of an individual. The 
levels and contents of consciousness can be dissociated from the physiological arousal, which has been 
commonly used in medical assessment (Boly et al. 2013). 

2.1.4 Neural Correlates of Consciousness 

As already pointed out, science is primarily concerned with an explanation of what it 
means biologically (or physically, in general) for information to be present in consciousness. 
Neuroscientifically, this could either relate to a specific part of the brain, or a specific pattern 
of activity, where consciousness emerges from. The neural correlates of consciousness (NCC) 
are defined as the minimum neuronal mechanisms jointly sufficient for a conscious percept. 
To identify such mechanisms, different approaches and methodologies have been used in 
research (in parallel to the behavioral correlates of consciousness), depending on whether the 
investigation focuses on content-specific experiences, or the overall ability of an individual to 
be conscious. Here, we summarize our current understanding of the NCC, based on a number 
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of brain imaging studies (mostly EEG and fMRI) that have focused on a variety of phenomena 
and conditions. 
 
Content-specific NCC. When it comes to the content-specific NCC, a minimum set of neurons 
(or neuronal mechanisms in general) is assumed to be responsible for the phenomenal 
distinction of a particular experience, such as the perception of a face. The activation or firing 
of such neurons is a necessary and unique condition for the experience of that percept, whether 
this activation is caused by an external stimulus, an internal process (e.g. a thought or a dream), 
or an artificial method (e.g. by electrical, magnetic or optogenetic stimulation) (Koch et al. 
2016). This means that the perceptual experience can appear or disappear as a direct 
consequence of the activity or suppression of this mechanism, irrespective of the presence of a 
stimulus. To identify such neural sets, researchers use a variety of experimental designs that 
allow for the differentiation and comparison of brain activity, under conditions that only vary 
with respect to the conscious presence of a stimulus (the physical stimulus and the overall state 
of the participant are kept constant). For example, in report-based visual paradigms, there are 
several techniques to manipulate the perception of an image, such as binocular rivalry, 
interocular suppression, bi-stable perception and other masking techniques (similar 
psychological phenomena and techniques are used in audition as well). By contrasting the 
activity of perceived and non-perceived stimuli, a broad fronto-parietal network appears to be 
activated during visual-motor tasks (Koch et al. 2016). 
 Since most of these paradigms include events and processes related to the task, and 
which may precede or follow conscious experiences, neural activity which co-varies with the 
NCC is expected (Miller 2014; Jaan Aru et al. 2012; de Graaf, Hsieh and Sack 2012). 
Specifically, such activity may relate to the unconscious stimulus processing, or to a number 
of cognitive functions that appear during the task, such as selective attention, expectation, self-
monitoring, task planning, and reporting. Although some of these functions correlate highly 
with perceptual experience (e.g. we often become conscious of what we attend to), 
consciousness does not require behavior, language, or long-term memory, and it has even been 
dissociated from processes such as attention (Jiang et al. 2006). A solution to this problem 
comes from the use of no-report paradigms (or other techniques such as matching performance 
and manipulating task relevance), which can reveal the NCC from other prerequisite brain 
activity (de Graaf, Hsieh and Sack 2012; J. Aru et al. 2012). These techniques have shifted our 
understanding of the content-specific NCC to a posterior cortical region, contrary to the 
prefrontal cortex, which is heavily involved in task monitoring and reporting (Koch et al. 
2016). 
 
Full NCC. The alternative interpretation of the NCC can be defined as the union of all the 
content-specific neural sets or mechanisms, and for all possible contents of experience; namely 
the full NCC. It is important to clarify here that we are only interested in neural mechanisms 
that contribute directly to contents of experience, rather than other biological factors that allow 



14 

 

these mechanisms to work properly. For example, background conditions such as the levels of 
oxygen and glucose in the blood, a neuromodulatory milieu and an adequate cortical 
excitability, are all necessary for being conscious (Koch et al. 2016). To identify the full NCC, 
state-based paradigms are used by researchers, taking advantage of the fact that altered states 
of consciousness (such as in sleep) change our overall ability to experience. As with the 
content-specific NCC, we want to differentiate and compare brain activity between states of 
consciousness (as seen in healthy wakeful individuals) and states of diminished consciousness, 
that appear in a variety of circumstances (e.g. sleep, general anesthesia, or patients with 
disorders of consciousness). Studies on the full NCC have revealed the role of the fronto-
parietal network, in consistency to the previously mentioned content-specific approaches 
(Koch et al. 2016).  

However, the problem of confounds remains when using between-states paradigms, 
since other cognitive functions also decline along with the levels of consciousness, when the 
physiology of the brain changes (e.g. levels of arousal-promoting neuromodulators will affect 
attention and vigilance). A solution to this problem comes from the use of within-state, no task 
paradigms, where spontaneous fluctuations of activity are expected to eliminate these 
confounds (e.g. same physiological states can be contrasted after a participant is asked whether 
he/she was dreaming or not, during a specific sleep phase). Notably, within-state sleep studies 
(in both NREM and REM states) have indicated that the full NCC appear to be localized within 
a posterior cortical region associated with perceptual experiences, while frontal areas activate 
in thought-like experiences. In addition, some contents of experience have also been associated 
to high-frequency activity from such posterior areas (Siclari et al. 2017).  

 
Overall, both content-specific and full NCC studies provide evidence that converge to 

the same conclusion, namely a union of temporo-parieto-occipital cortical regions (the so called 
“hot zone”) responsible for consciousness. 

2.1.5 Neurophysiological Markers of Consciousness 

In this section, we present several candidate neurophysiological markers of 
consciousness that have been proposed in the literature over the past years. Specifically, we 
focus on markers that have been (or can be easily) detected by EEG, given its wide application 
as a functional neuroimaging method in research and clinical settings. As we further discuss in 
the next sections, the evaluation of EEG typically focuses on qualitative features of either 
event-related potentials (ERPs), or spontaneous recordings of activity (resting-state). 
 
P3b. One of the earliest and well-studied electrophysiological signatures associated to 
consciousness, was the P3b ERP; a positive, fronto-parietal event-related potential that appears 
after the onset of a visual or auditory stimulus (~300 ms after the onset). This ERP component 
had been shown to correlate with the report of the stimulus detection, in several experimental 
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paradigms that incorporate masking, attentional blink and manipulations of stimulus strength 
(Sergent, Baillet and Dehaene 2005; Del Cul, Baillet and Dehaene 2007). However, subsequent 
studies have indicated that the P3b potential can be present without a conscious perception of 
the stimulus, whilst stimuli irrelevant to the task do not elicit a P3b response, even when 
participants are conscious of them (Silverstein et al. 2015). Similar findings have been found 
in vegetative and minimally conscious patients, with the presence of P3b being dissociated 
from their assessed state of consciousness (Sitt et al. 2014; Höller et al. 2011). Therefore, we 
cannot presume that P3b is a robust marker of consciousness (content-specific or general). 
 
Gamma Synchrony. Another early discovered potential marker of consciousness was gamma 
synchrony; initially observed in animal studies as the synchronized neuronal discharges in the 
gamma range (30 – 70 Hz) located at the visual cortex, as a response to a number of visual 
stimuli (e.g. using luminance gratings or moving stimuli) (Gray et al. 1989). Long-distance 
gamma synchrony has also been correlated to visual consciousness in human EEG and MEG 
studies (Melloni et al. 2007), leading to the proposal that consciousness requires the 
synchronization of neural activity for the integration of visual features into a single experience. 
Nevertheless, not all perceived stimuli elicit such response, with several works showing gamma 
activity to be correlated to selective attention, even without the perception of the stimulus 
(attention can be dissociated from visual experience) (Wyart and Tallon-Baudry 2008). In 
addition, gamma synchrony can also persist during NREM sleep and anesthesia, where 
consciousness is absent (Pockett and Holmes 2009). Hence, we can infer that gamma 
synchrony is not a necessary condition for consciousness. 
 
Activated EEG. One of the most useful electrophysiological markers of consciousness has 
been the low-amplitude/high frequency activity observed in EEG during wakefulness states, 
known as ‘desynchronized’ or ‘activated EEG’. This signature has been contrasted to the high-
amplitude/low frequency activity observed mostly in the form of deep slow waves during 
physiological and pharmacological conditions of unconsciousness (i.e. sleep and GA) – also 
known as ‘EEG slowing’. The transition from activated EEG to EEG slowing towards the 
transition to unconsciousness has been further understood in animal studies, where an alteration 
of depolarization and hyperpolarization states of thalamic and cortical neurons, create a 
bursting firing mode in the delta and theta/spindle ranges, respectively (Steriade, Timofeev and 
Grenier 2001) (the detection of slow waves in particular has been used as one of the most 
effective ways to assess loss of consciousness (Ní Mhuircheartaigh et al. 2013)). Nonetheless, 
global patterns of activity are not always reliable for discriminating states of consciousness and 
unconsciousness. For example, slow waves have been observed in cortical regions of epileptic 
patients who are conscious, as well as during sleep stages that have been associated to reports 
of dreaming (Vuilleumier et al. 2000; Nobili et al. 2012). For these reasons, it might be 
important to focus on the role of localized activity changes, when assessing conditions of 
consciousness. 
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Neural Differentiation/Integration. A more recently proposed marker of consciousness is 
based on the notion of spatiotemporal differentiation and integration of cortical activity, as per 
the integrated information theory of consciousness (Oizumi, Albantakis and Tononi 2014). 
Similarly to ‘activated EEG’, this notion suggests that a large variety of activity patterns and 
connectivity configurations appear to be responsible for consciousness, as evident in many 
EEG and fMRI studies (this also explains the application of entropy and complexity measures 
for the assessment of the anesthetic depth, found in (Bai et al. 2015; Liang et al. 2015)). 
Moreover, it suggests that the synchronization of the brain as a single entity is an important 
requirement, given that several studies reveal a decrease in functional connectivity under states 
of unconsciousness, like sleep and anesthesia. On the other hand, indices of integration using 
EEG coherence and Granger causality can be increased in states of unconsciousness, while 
measures of differentiation have not always been useful at the individual level (such as the BIS 
index) (Koch et al. 2016). In general, despite some high-level evidence in favour of the theory, 
we still have mixed results on the ability of these measures to discriminate states of 
consciousness, on the basis of various prior hypothesis and post-hoc evaluations (Yaron et al. 
2022).  
 

Overall, our current understanding of the neurophysiological signatures of the full NCC 
remains incomplete, with previously proposed markers either proved illusory, or lacking the 
predictive power, specificity, and empirical basis for large-scale application. 

2.2 Electroencephalography 

The brain is by far the most remarkable organ within the human body, and the central 
part of our nervous system, which is responsible for a multitude of vital functions; from its 
primary purpose of movement and the regulation of bodily functions, to sensory information 
processing, to a number of complex cognitive functions, including our memories and emotions, 
our language and reasoning, and of course, consciousness itself. A product of millions of years 
of evolution, it is the most complex system that we know of, with a network of more than 86 
billion neurons interconnected by trillions of synapses, alongside several biochemical 
mechanisms that allow its functionality. The modern scientific study of the brain has a history 
of about two centuries, as science and technology provided the means to investigate its structure 
and function. Extensive literature on neuroanatomy and neuroscience has revealed a hierarchy 
of structures and their associated functions, with higher – more complex – functioning  
happening to outer – more recently developed – layers of the brain, where consciousness also 
seems to reside (Koch et al. 2016). Although most neuroscience and cognitive science research 
is focusing on a specific level of analysis, a proper understanding of any complex phenomenon 
may require an understanding of the mechanisms involved over multiple levels (from single 
neurons to large neural networks, and eventually, to behavior). Of course, the brain/mind is far 
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from fully understood yet, with ongoing research on a variety of methodologies and 
spatial/temporal scales. One of such levels of analysis regards the electrophysiological 
signatures of the brain, which were known to exist already from the 19th century. 

Electroencephalography (EEG) is one of the most used techniques in research and 
medicine, which provide access to the brain’s function and its underlying information 
processing. It is a non-invasive neurophysiological monitoring method that allows the 
macroscopic recording of the electrical activity of the brain, as it appears externally on the 
scalp of an individual (electrocorticography-EcoG and intracranial-EEG, are the alternative 
invasive methods). The measurements reflect voltage fluctuations of ionic currents induced by 
neuronal activity, which are captured by multiple electrodes placed along the scalp, resulting 
in a spatio-temporal image of the overall brain activity. In clinical contexts, recordings of 
spontaneous activity take place usually within several minutes (20-30 minutes, plus preparation 
time), with diagnosis traditionally focusing on event-related potentials (ERPs) and the spectral 
content of the signals (Drazkowski 2011). ERPs refer to time-locked averaged fluctuations 
induced by an external event/stimulus (e.g. visual or auditory) or an internal process. The 
spectral content of the EEG refers to specific frequency bands of neural oscillations (brain 
waves), classified into five main rhythms, namely: delta, theta, alpha, beta, and gamma waves. 

EEG has been used in the clinic to diagnose conditions such as epilepsy, sleep disorders, 
encephalopathies, and the depth of anesthesia (DoA). Although more recent imaging 
techniques, such as the magnetic resonance imaging (MRI) and computed tomography (CT), 
have replaced it in several domains due to their high spatial resolution (e.g. in diagnosis of 
tumors or stroke), EEG has been proven very valuable to this day, given its high temporal 
resolution (in the orders of milliseconds), and the ease of access to the required hardware 
equipment. Nevertheless, a number of issues and constraints appear when trying to analyze 
EEG signals (due to the complex nature of the signals and the noise contamination from various 
sources), which in turn have given rise to the appearance of more and more sophisticated 
techniques, including electrophysiological modelling, connectivity/causality analysis, 
Bayesian inference and machine/deep learning techniques. 

2.2.1 Mechanism 

The electrical charge of the brain is maintained by billions of neurons, as the whole 
network exchanges ions through the neurons’ membranes with the extracellular milieu, during 
resting and action potentials. When ions are pushed through a large number of neighboring 
neurons, a wave of ions propagates and reaches the electrodes on the scalp (volume 
conduction), since the brain’s tissue, meninges, skull and skin, act as conductors. The pushing 
and pulling of ions on the metal part of the EEG electrodes, creates voltage differences between 
two electrodes that can be measured over time, resulting in the EEG signal (Tatum 2014). These 
voltage changes are mostly sensitive to activity that reflects the summation of synchronous 
activation of thousands or even millions of neurons, as the activity of a single neuron would be 
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far too weak to be captured. Moreover, they are primarily sensitive to post-synaptic potentials 
rather than action potentials, and to neurons with similar spatial orientation (such as the 
pyramidal neurons), which tend to produce stronger waves and thus, stronger EEG signals. A 
large number of aligned cells can be thought as a dipole that generates an electric field, and 
whose location and angle determines the projected spatial distribution over the scalp surface. 
As the voltage field gradients fall off with the square of the distance, activity in regions located 
deeper within the brain are harder to capture, in contrast to cortical areas. 
 EEG signals show oscillations at various frequencies with characteristic ranges and 
spatial distributions, some of which have been associated to different states of brain functioning 
(e.g. wakefulness vs sleep). Although some of these oscillations are understood in terms of 
their underlying network function (e.g. the sleep spindles due to thalamocortical resonance 
(Piantoni, Halgren and Cash 2016)), the relationship between the two remains generally 
unknown, given the complexity of the spiking networks and the nature of the EEG 
measurements. From a structural perspective, a large variety of functions have been associated 
with one of the four main lobes, which conventionally divide each cerebral hemisphere; namely 
the frontal, parietal, temporal, and occipital lobes (Fig. 2.3). Of course, functional overlap 
between these regions is expected in many cases, as complex cognition emerges from the 
integration of many simpler, but distributed processing mechanisms.  
 
 

 
Fig. 2.3. The four cerebral lobes of the brain (image source: (Lobes of the Brain | Introduction to 
Psychology n.d.)). 

2.2.2 Methodological Advantages and Limitations 

A substantial proportion of studies in neuroscience, cognitive science, and psychology 
research have used EEG for the investigation of all kinds of simple and complex phenomena 
within the brain. Given the variety of the available methods for functional neuroimaging – such  
as magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET) and others – a comparison to EEG is natural in terms of the 
advantages and disadvantages that it offers over the alternatives. Some of the most notable ones 
are mentioned below. 
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Advantages: 
 

 Non-invasive, simple technique 

 Compact, silent, and easy to use 

 Inexpensive hardware 

 EEG systems are portable can be used in many places, without special requirements 
(e.g. it can be used in the presence of metallic implants, or with patients incapable of 
motor response) 

 Widely available for immediate care in hospitals (Schultz 2012), which can be deployed 
at the bedside 

 Better suited for repetitive assessment in patients with fluctuating vigilance (Chatelle 
et al. 2012) 

 Very high temporal resolution, in the order of milliseconds (sampling rates between 
250 and 2000 Hz are common) 

 More resilient to noise artifacts generated by frequent, uncontrollable physical 
movements (which can moreover minimized or eliminated) 

 EEG signals can be physically interpreted with respect to the brain’s neuronal activity 
(in contrast to indirect measures of blood flow and metabolic activity, found in other 
techniques) 

 There is no exposure to intense magnetic fields or radioligands 
 
Disadvantages: 
 

 Preparation time is higher than other methods (in case of a large number of electrode 
placement, use of gels, saline solutions, etc.) 

 Low spatial resolution constrained by the scalp (further localization of current sources 
requires source reconstruction techniques, which are based on hypothesized estimates 
(Nunez 1988)) 

 Brain activity from deep structures below the cortex may be poorly measured 

 Cannot identify specific neurotransmitter-activated regions 

 Poor Signal-to-noise (SNR) ratio, which in turn requires sophisticated and often manual 
analysis, in order to extract useful information 

 
 

EEG has also been combined with other neuroimaging techniques (e.g. MEG, fNIRS, 
fMRI or PET) and brain stimulation techniques (e.g. TMS or tES), taking advantage of the 
various information that each method provides about the brain, albeit there can be technical 
difficulties (e.g. the presence MRI pulse artifacts). For example, simultaneous recordings of 
EEG and MEG allow for the correction of aspects required for EEG analysis (e.g. information 
about skull radius and conductivities), and the improvement of the quality of the signals, due 
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to differentiation of errors exhibited by each method (deep signals from EEG can also be better 
isolated) (Huizenga et al. 2001). Furthermore, EEG has been used alongside fMRI and PET, 
in order to acquire high-spatial resolution data, or to trace a drug’s action in a specific region 
of the brain, respectively (Laufs et al. 2003; Schreckenberger et al. 2006). 

While high-temporal and high-spatial resolutions are usually mutually exclusive for 
most non-invasive neuroimaging techniques, recent research on  EEG and MEG suggests that 
there is adequately rich spatiotemporal information that can be used to discriminate a number 
of complex brain states. Using theoretical modelling and empirical measures, (Stokes, Wolff 
and Spaak 2015) showed that EEG contains information that can differentiate spatially 
overlapping states, as even small differences in the angle of neighbouring dipoles/sources (a 
fair assumption, given the irregular surface of the cortex), can produce statistically separable 
field patterns. In general, the localization of the source of activity given the fields measured at 
the scalp, is a hard and ambiguous inverse problem, without a unique solution (although, 
several techniques have been developed that probabilistically constrain the solutions). 
Nevertheless, if the exact localization of the sources is not a primary purpose of the analysis, 
multivariate pattern analysis (MVPA) has been shown to be very effective in decoding subtle 
changes in neural states, within or across subjects (in parallel to MVPA in fMRI, where subtle 
differences in the distribution of neurons accumulate over a number of voxels, which can be 
used to decode complex activity patterns). 

Overall, EEG alone is a tool with several strong points for functional neuroimaging. Its 
simplicity, portability, low cost and wide availability, makes it particularly effective for clinical 
research and applications, in comparison to all other methods. Although the methodology used 
in research can vary significantly across studies, and have not been standardised sufficiently 
for clinical use, there are several steps conventionally followed when acquiring and analysing 
EEG signals. In the following sections, we discuss some of these steps in detail. 
 

 
 

Fig. 2.4. EEG measurements of brain activity using a net of electrodes (Shen 2020) 
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2.2.3 Data Acquisition 

Electrodes and Amplifier. The first step in conventional EEG recording regards the placement 
of the sensors on the scalp (Fig. 2.4), as individual electrodes or embedded within a net/cap (in 
case of high-density array systems), usually with the help of a conductive gel or paste 
(sometimes light abrasion to reduce impedance on the scalp area may precede). Over the past 
years, a variety of developments in EEG sensing have tried to deal with several limitations, 
such as setup time, maintenance, poor electrode contact, and its use in challenging 
environments, as required in specialized applications (e.g. flexibly dry electrodes, semi-dry, 
hydrogels, conductive EEG sponges, and other technologies). In general, the scalp is covered 
uniformly by a number of electrodes, from a few dozen to a few hundreds, depending on the 
application’s demand in spatial resolution (19 electrodes, plus ground and system reference are 
often used in the clinic (Acharya et al. 2016), with high-density arrays containing up to 256 
mostly found in research settings).  

The exact location and name of each electrode is specified by a standard placement 
method, such as the International 10-20 system (Fig. 2.5), which ensures that the recorded 
activity can be consistently compared across individuals and studies (Towle et al. 1993). The 
name 10-20 derives from the choice of 10% or 20% of the front-to-back or right-to-left distance 
of the skull (e.g. inion – nasion), as the distance between adjacent electrodes. A letter and a 
number are assigned to each electrode, which indicate their position relative to the lobes and 
hemispheres of the brain. Specifically, ‘F’, ‘T’, ‘C’, ‘P’ and ‘O’ refer to frontal, temporal, 
central, parietal and occipital areas (or lobes, with the exception of central), while ‘z’ refers to 
the midline that divides the two hemispheres. Even numbers refer to electrodes of the right 
hemisphere, while odd numbers refer to the left hemisphere. ‘A’, ‘Pg’ and ‘Fp’ refer to the ear 
area, the nasopharynx and the prefrontal areas, respectively. When high-density EEG systems 
are used, extra electrodes are placed in intermediate sites halfway between the existing 
locations of the 10-20 system. 
 
 

 
 

Fig. 2.5. The International 10-20 System (image sources: (Montages n.d.; EEG n.d.)). 
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The next step regards the amplification of the signals, since EEG measurements are 
weak as received from the scalp electrodes (about 10 to 100 μV in amplitude) (Aurlien et al. 
2004). A pair of electrodes is connected to a differential amplifier that amplifies the voltage by 
1,000 to 100,000 times (typically 60-100 dB of voltage gain). Any interference that is present 
on the pair is rejected (e.g. ground noise), while a combination of amplifiers is used to 
accurately measure the signals of interest. Moreover, an anti-aliasing filter is used before the 
analog-to-digital (AD) conversion, as most contemporary systems digitize and store the signals 
in an electronic format, for further visualization and analysis. Typical AD sampling rates range 
from 256 to 512 Hz in clinical settings, and up to 20 kHz within research applications. 
 
Montage. As already mentioned, EEG measures the relative voltage differences between two 
electrodes, the selection of which determines the representation of the EEG signals/channels. 
This selection is known as the ‘montage’, and is important to understand in order to have a 
deeper insight on its effects on the signals, as well as on the interpretation of the EEG. 
Electrodes placed over areas that are expected to show brain activity correspond to online 
positions, while inactive areas correspond to offline positions. Very often, an online position 
is selected for a reference channel, which defines the zero-level voltage and determines the 
amplitude and polarity of all other channels (channel – reference). Depending on the spatial 
distance of an electrode from the reference, the resulting signal could show low amplitudes for 
neighboring electrodes, or high amplitudes for distant electrodes, as neighboring locations 
would normally share more common sources (brain or noise sources) and thus, signals. While 
the relative distribution of the EEG topography is preserved, the temporal structure of the 
signals can vary, depending on the nature of the reference signal. Finally, the selection of the 
montage can be determined by the presence of local noise (which can have global effects), or 
the location of the activity of interest (which can be highlighted or distorted as a function of 
distance), resulting in a resolution trade-off and hence, to no optimal approach. When choosing 
a montage, there are few available approaches: 
 

 Sequential/Bipolar montage: Each channel represents the difference between two 
adjacent online electrodes (e.g. Fp1-F3). This can be achieved either as anterior-
posterior, or transverse chains of electrode pairs. It is a versatile montage, but not the 
best at detecting either focal or diffuse abnormalities. 

 Referential montage: Each channel represents the difference between an online 
electrode and a common reference electrode. In general, a symmetric position of the 
online/offline reference with the respect to the brain areas is preferred, to avoid 
representation bias of voltage distribution. This montage is useful for broadly 
distributed abnormalities, but not for focal discharges. Although there is no standard 
position for the common reference electrode, there are several choices found in clinical 
and research settings: 
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o Midline position: an online electrode placed over the midline, which ensures 
that neither hemisphere is explicitly amplified. Cz is a common reference 
choice. 

o REST reference: offline computational reference at infinity where the potential 
is assumed zero 

o Linked ears: a physical or mathematical average of offline electrodes attached 
to both earlobes or mastoids 

 

 Average reference montage: the average signal of all electrodes is used as a common 
reference channel. Frontal and occipital electrodes may be excluded in summation, due 
to eye and head movement artifacts, respectively. It is a versatile montage, with no 
theoretical bias towards any particular location of the head, but susceptible to reference 
contamination (e.g. in case where one or more electrodes have high amplitude noise). 
A large number of evenly-spaced electrodes is preferred for average reference, for 
better unbiased representation. 

 Laplacian montage: a weighted average of the surrounding electrodes is selected as the 
reference channel. This montage is good for focal discharges, but not for broadly 
distributed abnormalities. Given the assumption that nearby electrode locations share 
activity from common sources, it could improve the spatial SNR of the EEG (Sanei and 
Chambers 2007). Nevertheless, it is the least often used, since it is the hardest to 
physically conceptualize. 

 
While different montages highlight different features, EEG is usually stored and used 

with a referential montage (most systems have a pre-defined reference channel), or an average 
montage (often found in research). However, any particular representation can be 
mathematically constructed subsequently from any other (offline re-referencing). This can be 
easily seen from the subtraction of the new reference, which contains the original reference 
representation, resulting in (channel – online reference) – (new reference – online reference) = 
(channel – new reference). This is important in terms of the comparability and consistency 
across results and studies that use different EEG systems and montages. As there is no optimal 
referencing method, and given that different approaches have been shown to profoundly affect 
further analysis, (e.g. with power spectra, connectivity measures or machine learning analysis 
(Yao et al. 2005; Sanqing Hu et al. 2010; Bastos and Schoffelen 2016; Lopez et al. 2017)), 
methodological experimentation and interpretation of the results can be essential. 

2.2.4 EEG Signals and Pre-processing 

EEG has several advantages compared to other functional neuroimaging methods, but 
there are specific limitations and challenges when it comes to its analysis. As we mentioned, 
one of the main disadvantages regards its low signal-to-noise ratio (SNR), which often creates 



24 

 

the need for data curation and manipulation. During the recording of EEG, signals typically 
exhibit a variety of fluctuations induced by normal and abnormal activity, which is related to 
neuronal or other physiological and non-physiological processes. Activity that is not directly 
induced by neuronal processes contributes to noise (artifacts) that often needs to be handled, 
prior to the analysis and interpretation of EEG (typically by removing or cleaning the 
contaminated signals). EEG is also a non-stationary signal, as its statistical properties vary with 
time. Last but not least, EEG can show significant variability across acquisition systems, 
recording sessions and most importantly, individuals (Melnik et al. 2017). Inter-subject 
variability results from the physiological differences of individuals, which is most evidently 
observed in the distinct electrophysiological signatures of different age groups.  

Of course, many of these challenges can be tackled by appropriate experimental setups 
and methodological approaches. In general, a number of pre-processing steps are applied to the 
data, in order to improve their quality (SNR), before any further processing analysis. 
 
Wave Patterns. EEG signals are generally described in terms of transient features (e.g. vertex 
or spindle waves, seen during sleep) and rhythmic activity. Rhythmic activity is typically 
classified into five frequency bands of neural oscillations, known as delta, theta, alpha, beta 
and gamma waves. Although there is no standard definition for the exact frequency ranges 
(which can vary across the literature), activity within these bands has been roughly associated 
to certain functions and spatial distribution over the scalp. 
 

 Delta Waves (< 4 Hz): delta waves have been associated to conditions such as deep 
sleep and general anesthesia, most prominently exhibited in frontal brain regions 

 Theta Waves (4 – 8 Hz): theta waves have been associated to drowsiness, and 
inhibition of elicited responses 

 Alpha Waves (8 – 12 Hz): alpha waves have been associated to relaxed resting-states, 
most prominently exhibited in the posterior brain regions (increased with eyes closed) 

 Beta Waves (12 – 30 Hz): beta waves have been associated to high alertness, stress 
and active focus 

 Gamma Waves (> 30 Hz): gamma waves have been associated to perceptual sensory 
processing, most prominently exhibited in the parietal lobe 

 
EEG Artifacts. Signals that are produced by sources other than the brain and contribute to 
noise contamination, are referred as EEG artifacts. Artifacts are normally present in all 
recordings, with amplitudes that are significantly larger relative to brain signals (thus, 
contributing to the low SNR). Therefore, artifact handling – either in the form or rejection or 
reconstruction of the signals – can be an important step for EEG analysis and interpretation. 
The morphology, duration and frequency of each artifact can vary depending on its source and 
the recording environment (e.g. the acquisition system). For this reason, their detection has 
traditionally required visual inspection and manual annotation by experts trained in the field.  
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 In general, artifacts can be categorized into biological (physiological) and 
environmental (non-physiological). Some of the most common biological artifacts are induced 
by bodily movements, ocular (e.g. eye movements and blinks), cardiac (ECG), muscle (EMG), 
electrodermal and glossokinetic activity. Common environmental artifacts are produced by 
changes in electrode impedance (e.g. due to bad electrode contact or movement) and grounding 
noise from the power line.  
 
EEG Pre-processing. As we discussed, a number of pre-processing steps can be applied for 
the curation of the data. Although EEG pre-processing pipelines are not as standardized as ones 
found in other neuroimaging techniques, particular processes are typically found in the majority 
of research and clinical setups. We briefly describe some of these processing steps below: 
 

 Channel selection: a number of EEG channels can be selected for further analysis, 
depending on the task or application demands 

 High-pass filtering: high-pass filtering is used to remove slow artifacts, such as 
electrodermal (due to sweating) and movement activity (typical settings: 0.1 – 1 
Hz) 

 Low-pass filtering: low-pass filtering is used to remove high-frequency artifacts, 
such as muscle activity (EMG). Cerebral signals are mostly observed within the 1-
30 Hz range (typical settings: 30 – 70 Hz) 

 Notch filtering: notch filtering is used to remove electrical (power line) noise 
(typical settings: 50/60 Hz, depending on the mains electricity) 

 Epoching: EEG data can be segmented into temporal windows (epochs), allowing 
us to individually process different events and brain states/response 

 Resampling: signals can be down-sampled without information loss (as per the 
Nyquist theorem), usually for storage and computational purposes 

 Re-referencing: re-referencing is used to obtain alternative representations of the 
signals (discussed in the previous section) 

 Artifact Handling: EEG artifacts can be rejected by removing specific segments 
of the signals (bad epochs), or even specific contaminated channels, often by 
applying a peak-to-peak amplitude threshold (activity higher than the threshold is 
considered contaminated). Alternatively, artifacts can be removed by spatial or 
temporal filtering, or more sophisticated techniques like independent component 
analysis (ICA), which attempt to unmix the underlying signal components. During 
the past years, different approaches have been developed for an automated handling 
of artifacts. 

 Frequency band extraction: a Fourier-type method is implemented to obtain the 
spectral representation of the signals, from which the frequency bands can be 
extracted (e.g. Welch method) 
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2.2.5 Quantitative Analysis 

During the past decades, quantitative analysis techniques – such as signal processing 
and pattern recognition algorithms – have transformed our ability to decode and interpret EEG 
signals. These techniques have allowed researchers to better understand the underlying 
processes and mechanisms of the brain, whilst associating them to particular mental processes. 
Besides research, quantitative analysis has also assisted physicians in clinical assessment 
(diagnosis), as prior evaluation involved the subjective interpretation of visually inspected 
signals. Over the years, a large variety of linear and non-linear methods have been developed, 
which can be largely categorized by their domain of analysis; most notably, time domain 
methods (such as autoregressive models), frequency domain methods (such as Fourier 
transforms), and time-frequency domain methods (such as wavelet transforms). In addition, a 
number of nonlinear methods have been explored, given the nature of EEG and mental 
processes, such as entropy and complexity measures. 

More recently, machine learning techniques have shown their increasing strength in 
decoding neural activity, with a variety of algorithms developed for different kinds of tasks, 
such as end-to-end processing, feature extraction, and predictive modelling. These algorithms 
rely on a data-driven investigation of the data, which allows for the identification of novel 
patterns, and the creation of automated systems for clinical use. As we discussed in section 
2.2.2, multivariate pattern analysis techniques have shown their ability to decode complex brain 
states, which would otherwise be hard to assess. Their capacity to find non-linear structure in 
the data, contrary to the constrains and assumptions of previously employed methods, is often 
attributed behind their success (King et al. 2017). More specifically though, artificial neural 
networks are a class of machine learning algorithms that have been largely successful in EEG 
analysis. In the next section, we further dive into the topics of artificial neural networks and 
the advancements of deep learning. 

2.3 Deep Learning 

Despite its short history, computer science has shown an ever-increasing significance 
and improvement of its usability and effectiveness, in every aspect of human activity and for a 
vast variety of problems, over the past decades. In this revolutionary age of digital information, 
its contribution to science and society is fundamental, as the computational sciences and the 
availability of large amounts of data allow for the practical evaluation of processes and 
phenomena of great complexity. By constructing mathematical models, computers have 
enabled us to analyze and solve scientific problems, many of which have advanced our current 
understanding of the human brain.  
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Notably, the applied field of artificial intelligence (AI) has become one of the most 
intriguing and important areas, as we require complex but efficient methods to synthesize goal-
oriented processes such as learning, adaptation, knowledge representation and decision-
making. Although there is no established unified theory or paradigm in AI research, a variety 
of approaches have been explored, from the traditional symbolic AI to the more recent and 
sophisticated advances in statistical learning methods (i.e. machine learning), which do not 
require a semantic understanding/representation of the data under analysis. Within machine 
learning, knowledge and tools from a variety of other fields, such as mathematics (e.g. 
information theory, optimization theory, statistics and probability theory), philosophy, 
electrical engineering (e.g. signal processing techniques), psychology, neurophysiology, and 
others, have been used to tackle the nature of such processes. As a general purpose technology, 
it has been used in a variety of domains, mostly in the form of an embedded component within 
hardware and software (e.g. in medicine, it has been used in cases such as medical imaging 
diagnosis, or for optimization of drugs and dosages). Overall, the automation of evaluative and 
predictive tasks through computational algorithms has been increasingly successful, as a 
substitute for human monitoring and intervention. This is particularly the case for specialized 
domains that involve complex real-world data, an area that machine learning and deep learning 
specifically, have shown prominence (Pennachin and Goertzel 2007). 

2.3.1 Machine Learning 

Machine learning, a subfield of AI and concept following the approach of statistical 
learning principles, regards a family of algorithms used to solve a task by progressively 
improving the performance of a model, as it acquires more experience. This mathematical 
model is derived from a sample of data, with an aim to analyze and discover unknown 
properties of the data (data mining), or most often, to make predictions about new unseen data, 
without being explicitly programmed for the task (we can consider this paradigm as an 
alternative way from the traditional imperative programming, where we manually create an 
algorithm for a given problem). The model can be usually thought as a function approximator 
of an unknown process (usually a non-trivial task), which optimally tries to determine an output 
for each input (Bishop 2006). These input and output data samples (instances) are represented 
by vectors/arrays of values (features), the totality of which determines the distribution of a 
dataset. Some of the most prominent families of machine learning models are regression 
analysis, Bayesian networks, decision trees, support vector machines, genetic algorithms and 
artificial neural networks, the latter of which form the basis of deep learning. 

2.3.2 Supervised and Unsupervised Learning 

Most algorithms can be divided into two main types, depending on the nature of the 
task and the data provided. Supervised learning refers to models where we provide both input 
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data and the corresponding desired outputs (targets), for the purpose of classification or 
regression tasks, depending on whether the output is restricted to a discrete number of values 
(classes), or being a continuous variable, respectively. Unsupervised learning refers to models 
constructed solely on input data, as a way to find patterns and structure within the data, for the 
purpose of knowledge extraction, data compression/denoising, grouping or clustering tasks. In 
general, these models can be predictive, if they make predictions for new data, descriptive, if 
they try to gain knowledge and represent the data, or both. The evaluation of performance for 
each approach is ultimately determined by whether the main goal is to reproduce existing 
knowledge, or to acquire new knowledge. 

Within supervised learning, data can be divided into three main categories, depending 
on their role in creating and evaluating the model, namely: training dataset, validation dataset 
and test dataset (or holdout set). The training dataset is used to optimally fit (train) the 
parameters of the model, given the predictions from the inputs and the desired (labeled) 
outputs. The validation dataset is used to evaluate the performance of the model in an unbiased 
way, in cases where possible hyper-parameters of the model need to be searched and adjusted 
(tuning). Finally, the test dataset is used to provide a final evaluation of the model, with data 
samples that have never been used during training or tuning (generalization test). The division 
into training/validation or training/testing datasets, is often done with a cross-validation 
paradigm, where the data repeatedly split into training/validation or training/testing partitions, 
and the overall performance calculated as the average performance of all validation/test sets, 
for all possible partition configurations. A depiction of the whole supervised learning paradigm 
can be seen in Fig. 2.6. 
 
 

 
 
Fig. 2.6. Supervised Learning Paradigm. The data, with or without feature engineering, are split into 
training, validation, and test sets. Training data are used for model creation, while validation data 
measure its performance, in order to tune its hyper-parameters. Test set is finally used to objectively 
evaluate the performance of the model (image source: (Machine Learning Has Transformed Many 
Aspects of Our Everyday Life, Can It Do the Same for Public Services? – Capgemini Worldwide n.d.)). 
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Some of the most widely used supervised models in cognitive neuroscience and EEG 
analysis for medical diagnosis, are linear discriminant analysis (LDA), logistic regression (LR), 
common spatial filters (CSP), support vector machines (SVM), and artificial neural networks 
(ANN). Unsupervised models are also used in EEG data for compression, denoising and 
representation learning, such as principal component analysis (PCA), independent component 
analysis (ICA), convolutional sparse coding (SCS), and spatio-spectral decomposition (SSD) 
(King et al. 2017). 

2.3.3 Model Training, Assessment and Limitations 

As we mentioned, machine learning models are derived from a sample of data by trying 
to optimally associate specific inputs to outputs. This optimization can be expressed with 
respect to the parameters of the model and an objective function (or cost function, where the 
cost can be thought as the average distance between a predicted and a desired output value), 
while many learning problems can be formulated as the minimization of such function, through 
iteration (model training). Although for some models it is possible to theoretically approximate 
any input-to-output function accurately, time constraints, the nature and the amount of data, do 
not usually allow it in practice.  

Since training data are finite and there is uncertainty about possible future data, a core 
objective of these algorithms is to discover a model that can generalize as much as possible 
(that is to say, to minimize a quantifiable generalization error, or the cost function on unseen 
test samples (Bishop 2006)). Creating a model that is less or more complex than the function 
underlying the data can lead to underfitting or overfitting, which compromise the errors in the 
training and test datasets, respectively (Fig. 2.7). In general, simple models are preferred to 
complex ones, as they are easier to interpret and understand (similarly from a scientific point 
of view, simple theories are preferred to complex ones by Occam’s razor). 
 

 
 
Fig. 2.7. Visualizations of model underfitting and overfitting, resulting in different training and test 
errors. Ideally, we want to restrain the complexity of the model to a point where the validation or test 
error is minimized (‘sweet spot’). One way this is achieved is by pausing the training process after a 
number of iterations (image source: (What Is Overfitting? | IBM n.d.)). 
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In this view, optimization and generalization are not always aligned, as optimization 
adjusts the model to perform well on the training data, while generalization is measured by its 
performance on unseen test data. During training, optimization and generalization are initially 
correlated, with the respective errors decreasing up to the point of overfitting, where training 
and validation/test errors begin to diverge (Fig. 2.7.). Notably, overfitting is more likely to 
occur with noisy, mislabelled, and ambiguous data, as well as by the inclusion of rare features 
and spurious correlations to the task under analysis. 

Given all the above, the performance of a model depends highly on the nature of the 
task and the data itself (whether data are representative enough for the task under analysis), the 
size of the dataset, as well as characteristics such as the input representation (features), 
dimensionality, statistical distribution and noise. For these reasons, various methods can be 
applied to the data, prior to these computational models and as a way to enhance their 
performance, such as feature learning, feature selection and engineering, outlier detection, and 
other preprocessing steps for data curation (Bengio, Courville and Vincent 2013). Beyond the 
task and data, model performance can also depend on the nature of the learning algorithm, as 
different algorithms and learning techniques have different limitations. Other issues related to 
model assessment and their limitations regard the computational complexity of the model (e.g. 
number of trainable parameters) – which reflect memory, time and data requirements for 
training – as well as its relation to the suitability of the data, possible biases, data 
access/resources, etc. (Jordan and Mitchell 2015). Finally, predictive accuracy, speed, 
scalability and interpretability are all issues of interest, which can vary across models.  

2.3.4 Artificial Neural Networks 

Artificial neural networks are computational models that were inspired by the 
architecture of biological neural networks in the brain. A single neuron can be thought as a 
basic computational unit, which – after a number of mathematical approximations – acts as a 
simple function. Similarly to biological neurons, an artificial neuron gets inputs from other 
neurons and produces an output (activation), when the weighted sum of its inputs exceeds a 
certain threshold (bias). These weights and biases determine the sensitivity of a neuron to 
particular patterns of activity (in analogy to biological synapses), which characterize its 
properties. By applying a nonlinear function to the sum of its inputs, the output of a neuron can 
have a wide spectrum of activation values (in analogy to neuronal firing rates). 

Mathematically, this process can be expressed as 𝑦 = 𝑔(𝑤 𝑥 + 𝑏), where x is the input 
data (features), w is the weights vector, b is a bias, g is an activation function, and 𝑦 is the 
output of the neuron (Fig. 2.8). Depending on the task and the underlying data distribution, 
different activation functions might behave more or less appropriately. Some examples of 
activation functions used in neural networks are the sigmoid, tanh, ReLU, ELU, softmax, and 
others. 
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Fig. 2.8. A mathematical depiction of an artificial neuron. The weighted sum of the input features (x 
vector), calculated by multiplying with the weights (w vector) and adding the bias (b), is passed through 
a nonlinear activation function (g), which produces the output (𝑦) (image source: (Artificial Intelligence 
- Accelerate the Power with Neural Networks | Blog n.d.)). 
 

 An assembly of many interconnected neurons creates a neural network (NN) that can 
model complex relationships between the inputs and outputs (Fig. 2.9). Each neuron in the 
network codes for a particular feature in the data, as it connects with other neurons through the 
weights that increase or decrease their connection strengths. The units are organized in layers, 
with neurons in a given layer typically receiving inputs only from neurons of the previous layer. 
Such architecture is characterized as ‘feedforward’, given that the activation signals pass in 
one direction, from the initial input layer to the final output layer. The nonlinearities introduced 
by the activation functions of the units is what allows NNs to approximate a variety of complex 
functions. In fact, given a large enough model, NNs can act as a universal function 
approximator (proven by the universal approximation theorem (Csanád Csáji 2001)). 
 
 

 
Fig. 2.9. A fully-connected neural network architecture with 5 layers (input is excluded). Red nodes 
represent the input features, while yellow and blue nodes represent hidden and output neurons. The 
input vector (input layer) is progressively processed through the subsequent layers of neurons (hidden 
layer), producing the output vector (output layer). Intermediate neurons in the hidden layers of the 
network code for features that are discovered during training (image source: (Deep Learning Made Easy 
with Deep Cognition | by Favio Vázquez | Becoming Human: Artificial Intelligence Magazine n.d.)).  
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During the past years, deep learning architectures – which use several layers of neurons 
between the input and output layers – have been used to accomplish sophisticated models of 
data and predictive tasks across all kinds of application domains (scientific or otherwise). The 
main idea behind deep learning is that the networks extract a hierarchical representation of the 
data, by composing low-level to higher-level features, as layers progress (this idea was inspired 
by architectures of sensory information in the brain, as found in the visual system). This process 
can be alternatively thought as a series of non-linear transformations applied to the original 
data space, towards a more task-relevant feature coding. Empirically, research has shown that 
there are particular types of functions that can be learned from deeper architectures, that 
shallower models could not easily approximate (or would require an exponentially larger 
number of neurons). 
 
Model Training and Evaluation. Training the network requires the adjustment of its 
parameters, so that the performance of the model improves over time – i.e. producing outputs 
increasingly closer to the provided targets (model fitting). This is typically performed by 
gradient descent over the multi-dimensional space provided by the cost function and the 
trainable parameters of the model (weights and biases). More formally, given a training set of 
m samples (instances), with input size nx (no. of features) and output size ny, where: 
 

 x(i)
 is the input vector (features) of the  ith sample 

 y(i) is the target output vector of the ith sample  
 𝑦(i) is the predicted output vector of the ith sample 
 X is the input matrix of all training samples (X ∈ 𝑅  ×  ) 
 Y is the label matrix of all training samples (Y ∈ 𝑅  ×  ) (ground-truth) 

 
and a neural network with L number of layers with nh

[l]
 number of hidden units in the lth layer, 

where: 

 W[l] is the weight matrix in the lth layer (W ∈ 𝑅
[ ]

 × 
[ ]

 ) 

 b[l] is the bias vector in the lth layer (b ∈ 𝑅
[ ]

  ) 
 
the optimization of the model can be expressed as the minimization of a cost function J(X, Y; 
W, b) with respect to W and b. The cost function reflects the average loss across all training 

samples, as 𝐽(𝑊, 𝑏) = ∑ 𝐿(𝑦( ), 𝑦( )), where 𝐿(𝑦, 𝑦) measures the distance between the 

predicted (𝑦 = 𝑃(𝑦|𝑥)) and the desired output vectors (loss). A variety of loss functions can 
be used for classification and regression tasks, such as the categorical cross entropy (CCE) or 
the mean-squared error (MSE). While the cost function is not generally convex and does not 
have a unique optimal solution, model convergence can be affected by the network architecture 
and the selected optimizer. 
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The minimization of the cost function is performed iteratively using the gradient 
descent algorithm, which comprises of the following steps: 

 
1. The weights W and biases b of the model are initialized to random non-zero values, 

often by applying a predefined probability distribution (e.g. normal, uniform, Xavier, 
etc.). For learning to be achieved, it is important for values to be close to, but not zero. 
 

2. For a number of iterations (training epochs): 
a) The activation matrices A for all layers and m training instances are calculated 

as: Z[l] = W[l] A[l-1] + b[l], A[l] = g[l](Z[l]), where A[l] is the activation matrix of the 

lth layer for all training samples (A[0] = X, A[L] = 𝑌) (Forward propagation) 
 

b) The partial derivatives of the cost function with respect to the W, b parameters 
are calculated (gradient), given the loss from the predicted and targeted output 
values (Backpropagation). The following formulas can be derived using the 
chain rule: 

 

[ ] =  [ ]  𝐴[ ]   ,   [ ] =  ∑
[ ]  ,   [ ] =  [ ] 

 [ ] 𝑔[ ]  (𝑍[ ])  

 
c) The weights W and biases b of the network are adjusted using the update rule: 

𝑊[ ]  ← 𝑊[ ] − 𝛼 [ ]  ,  𝑏
[ ]  ← 𝑏[ ] − 𝛼 [ ] 

 
where α is a learning rate (defining the size of the gradient descent steps) 

 
 

 
 
Fig. 2.10. Gradient descent visualization (Amini et al. 2018). At each training step (epoch), the gradient 
of the cost function J is calculated with respect to the W and b parameters. The parameters are adjusted 
by following the direction of the gradient’s steepness, towards a local minimum. 
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The training data are often split into several batches for calculating the average gradient 
across m samples, the size of which can affect the computational speed and nature of 
convergence (typically a batch size of 32 or 64 is used). The training process terminates after 
a number of iterations of processing the whole training dataset, where typically the network 
can no longer learn from the data (the model converges to a loss value – see Fig. 2.7). Several 
variations of the gradient descent algorithm have been devised over the years, in order to 
improve the solutions and the convergence speed, such as the stochastic gradient descent 
(SGD), RMSprop, Adam, Adadelta, and others (Choi et al. 2019). Besides loss, the 
performance of the model can be measured by a selected metric, such as the accuracy in 
classification tasks, or the MSE and MAE (mean-absolute-error) for regression tasks. 

Beyond the trainable parameters of the model, other hyperparameters – such as the 
number of hidden layers, the number of units in each layer, and others – are configured before 
training and remain constant (many of these hyperparameters determine the architecture of the 
network and ultimately, the training process). Of course, there is a large number of settings that 
can be tested and tuned, with respect to model performance. Nevertheless, this requires an 
iterative and empirical process, given that there is no theoretical basis for the design of a 
network, with different architectures and configurations working better for different problems 
and tasks (good hyperparameter configurations do not often transfer to other tasks, even within 
the same domain of applications). 
 Importantly, despite the strengths of neural networks, there are special difficulties in 
deciphering how these models process information, which still remain a significant constrain 
of the algorithms (interpretability problem). The ideas behind neural networks emerged from 
the connectionism theory in cognitive science – which is based on the concept of distributed 
processing of information through communication nodes – as an attempt to explain the 
processes and mental phenomena in the brain. Yet, whether complex biological systems (such 
as the brain) can be understood in terms of simple descriptive models, or whether the inherit 
complexity of a biological and artificial neural network is necessary for the expression and 
generation of robust solutions, is open to debate. 

2.3.5 Deep Learning Architectures 

Within the past decade, deep learning has revolutionized the field of machine learning 
and AI, with many models that have evolved into a broad family of neural network 
architectures. Such models have advanced the state-of-the-art across a large variety of problems 
and applications – including biomedical engineering (e.g. in problems such as drug design and 
medical image analysis). The success behind deep learning can be attributed to two main 
reasons. The first one, concerns the increasing availability of vast amounts of data, alongside 
the computational speed from hardware (e.g. GPUs/TPUs) and algorithmic advances, which 
allow us to train large NN models. The second reason, regards the development of more 
sophisticated processing architectures that resemble and exploit the structure of the data, 
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allowing the models to extract useful, task-relevant information. Contrary to traditional 
machine learning models, which relied more heavily on domain knowledge and manual feature 
engineering, deep learning provided the capacity for an end-to-end learning approach (tackling 
both representation learning and task decoding problems, concurrently). 
 As we already mentioned, the core objective of such models is to maximize their 
generalization power to novel, unseen data. The ability of deep learning to successfully 
generalize in various tasks has been based on the manifold hypothesis, which posits that natural 
data lie on a low-dimensional manifold (latent space), which is encoded within a high-
dimensional original data space. This implies that deep learning fits relatively simple, structure 
subspaces, upon which it interpolates (or generalizes) its input samples. Deep learning 
architectures are suitable to learn such manifolds as they implement smooth, continuous 
functions, whilst constrained in a way that mirrors the information within the data (via 
architecture priors). Given this context, a successful use of the models require the 
understanding of the data under analysis, which can guide model design and the selection of 
an appropriate learning algorithm.  
 
Processing Architectures. A large variety of processing architectures and layers have been 
developed over the past years, with various properties and connectivities across neurons. One 
of the main breakthroughs, regards the convolutional neural networks (cNNs), which although 
were initially designed for tasks within computer vision, have been recently proven to be highly 
suitable in many areas, including EEG analysis (Roy et al. 2019). Some of the most prominent 
layer types are described below. 
 

 Fully-connected Layers. In a fully-connected layer, neurons receive inputs from the 
activations of every neuron in the previous layer. In this setup, layers do not consider 
the structure of the input data, making the network more prone to overfitting. Fully-
connected layers can be impractical for inputs with large dimensionality, as a large 
number of weights is harder to regularize (multilayer perceptrons – MLPs comprise of 
fully-connected layers). 

 

 Convolutional layers. Convolutional layers create a specialized type of network that 
imposes a sparse connectivity, by exploiting the operation of convolution. In this setup, 
neurons receive inputs only from a local subset of neurons in the previous layer – 
typically arranged within a particular structure that mirrors the data (e.g. in image 
processing, the input data can be a 2D array). By using convolutional windows 
(kernels), this layer forces the model to learn invariant representations of the data, as 
kernel weights are shared for all neurons in the layer. This can be interpreted as a sliding 
filter that detects a particular type of activation pattern, convolving across the preceding 
data, and providing translation-equivariant responses (features) (Fig. 2.11). The output 
values of a given kernel/filter create a feature map, whilst the network can implement 
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many feature maps in parallel, the outputs of which can be aggregated into higher layers 
of the model. A general approach to convolutional layers is to explore abstract patterns 
of increasing complexity, by employing layer-wise increasing kernel windows. 
Although, this organization was inspired by the architecture of the visual cortex and the 
concept of the receptive field, it can be useful for any type of data with a grid-like 
topology (e.g. data that have spatially or temporally local relations). Some of the main 
hyperparameters of convolutional layers are: 

 
o Kernel size: the dimensions of the convolution window applied to the preceding 

input layer 
o Stride: the dimensions that control the sliding steps of the convolution window 

(kernels can typically overlap across features) 
o Number of filters: a pre-defined number of filters can be selected for each 

convolutional layer, producing a stack of multiple feature/activation maps 
 

The size of the output map in a given dimension can be determined by the input (W), 

kernel (K) and stride (S) sizes, as + 1. 

 

 
Fig. 2.11. The convolutional layer (output map) performs a dot product (weighted sum) 
between the convolution kernel (filter) and the preceding input layer (input map), before 
applying an activation function. The kernel convolves across the input layer, producing 
different outputs in the activation map (image source: (Yakura et al. 2018)). 

 

 Pooling layers. Pooling layers are used to reduce the dimensionality of the preceding 
inputs by aggregating the activations into a single value for the next layer. This type of 
layer can be used for feature down-sampling, and to a degree, for imposing 
representation invariance to slight translations of the input. Pooling can be performed 
globally, or locally over small clusters, whilst often follows convolutional layers. There 
are two common types of pooling implementation:  

 
o Max pooling:  uses the maximum value of the inputs as the output value 
o Average pooling: uses the average activation across the cluster. 
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 Recurrent layers. In recurrent layers, connections between neurons form a directed or 
undirected graph, typically along a temporal sequence. Most often, neurons are 
connected with others within the same or previous layers, combining both current and 
preceding activations. Recurrent layers are designed to exploit the temporal structure 
of the data, with units that can process sequences of inputs with variable lengths. Two 
main architectures that have been particularly successful over the past years – and often 
used alongside convolutional neural networks – are long short-term memory layers 
(LSTM) and gated recurrent units (GRUs). 

 
 
Model Regularization. Contemporary deep learning architectures have a significant amount 
of trainable parameters – from thousands to millions – which essentially allow them to learn 
any kind of input-to-output mapping. For this reason, deep learning models can be susceptible 
to overfitting, given the many layers of abstraction which allow them to detect rare 
dependencies in the data (high-dimensional coincidences such as noise or confounds). To 
tackle these challenges, several approaches have been recognized and proposed for the 
improvement of model generalization. 

Some of the most impactful strategies for dealing with overfitting are related to the 
acquisition of large, representative training datasets and the application of robust cross-
validation approaches. The choice of training/validation/test sets can have a significant effect 
on the assessment of the model’s performance, and the respective meaning we can acquire from 
it. Over the past years, and as we better understand the limitations of neural networks, an 
increasing trend for using mismatched training and validation/test set distributions is 
commonly found. By separating the training set distribution from the data found in 
validation/test sets, we can assess whether the network has generalized across particular desired 
features of the data. For example, in the case of clinical datasets, these distributions may vary 
across measurement configurations or participants. Nonetheless, it is the validation/test set 
distribution that eventually determines the learning process, and the overall performance of the 
model. 
 Another way to deal with model overfitting is by the employment of regularization 
techniques, which tend to make the model’s function simpler, and more generic. Some of the 
most common regularization techniques are reducing the network size (usually by reducing the 
number of neurons in the hidden layer), early stopping (during training), adding weight 
regularization (e.g. L1/L2 regularization), and applying Dropout layers. Dropout in particular 
has been empirically proven as one of the most effective techniques available. The core idea 
here is that by introducing noise to the network during training (by randomly dropping 
neurons/features with a given probability), we can break up spurious patterns that might 
potentially memorized by the model. Of course, a combination of all of the above techniques 
can be used in parallel, in order to ensure robust training and evaluation. 
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 Overall, beyond the success of deep learning, criticism remains with respect to the 
problem of network interpretability – as models are perceived as black boxes which can be 
empirically, rather than theoretically, evaluated. Over the past few years, researchers have put 
significant effort into developing algorithms and models towards explainable AI, following the 
principles of transparency, interpretability and explainability (Goebel et al. 2018). Of course, 
understanding the basis behind knowledge representation and the decision making of neural 
networks in terms of human appreciation, may not be always possible for many scientific 
problems. Nevertheless, a variety of algorithms have been developed to either provide 
inherently interpretable models, or to allow us to apply post-hoc explanations on existing 
trained models. 
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Chapter 3 Deep Learning for EEG Decoding of 

Anesthetic-Induced Unconsciousness 

3.1 Introduction 

3.1.1 Overview 

In this chapter, we show – as a proof of principle – the ability of deep learning models 
to discriminate multiple levels of unconsciousness, given a fully automated end-to-end learning 
approach, and within a cross-subject decoding task. Deep learning has shown promising results 
in all biomedical domains, and particularly with convolutional neural networks, which use less 
parameters by computing convolutions over small regions of data (Miotto et al. 2018). Despite 
providing the opportunity for real-time applications, deep learning can also extract novel 
patterns and hierarchical representations, opening a data-driven approach for acquiring 
neuroscientific knowledge. As there is no state-of-the-art model or reference dataset for EEG 
classification, we compare the performance of two widely used architectures – multilayer 
perceptrons (MLP) and convolutional neural networks (cNN) – in their ability to discriminate 
three anesthetic states defined by clinical assessments of unconsciousness. Moreover, we 
investigate and compare the effect of the input representation, by using either the raw EEG 
time courses, or a spectral decomposition of the given time window, which has been shown to 
be an effective feature in many EEG decoding tasks (Liu et al. 2019). Using a leave-one-
participant-out-cross-validation paradigm, we show that cNNs achieve 86% accuracy and 
significantly outperform MLPs, using only 1 second segments of the raw signals and with 
minimal preprocessing. We also show that both models perform equally well using the spectral 
feature extraction, which nevertheless is not needed to be relied on or used, given the ability of 
the networks to learn optimal parameters from the original and free-from-constraints data 
space. Finally, we discuss the implications of a cross-subject decoding analysis for model 
robustness, the representation efficiency of the two architectures, and the appropriateness of 
the chosen EEG window of analysis. 

3.1.2 Background 

Our aim here is to investigate the ability of deep learning to perform a classification 
task, in which resting-state EEG measures of healthy participants under anesthesia are used, in 
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order to differentiate and predict the various brain states characterized by decreasing levels of 
consciousness.    

Literature review on EEG under general anesthesia has revealed a variety of 
reproducible findings (e.g. changes in delta power and coherence (Purdon et al. 2013; 
Mhuircheartaigh et al. 2013a), or changes in functional/effective connectivity and complexity 
(Hudetz 2012; Alkire 2008; Casali et al. 2013)), some of which appear to be shared among 
various anesthetics, yet missing to provide a unitary and reliable marker for levels of 
consciousness. Based on these findings, and depending on the nature of investigation, several 
techniques and metrics have been developed, which can be used to either measure states and 
levels of unconsciousness, or particularly the depth of anesthesia (e.g. the PCI index (Casali et 
al. 2013), signal complexity measures (Schartner et al. 2015; Hudetz et al. 2016), SWAS 
(Warnaby et al. 2017), connectivity measures (Juel et al. 2018), and others (Choi, Noh and 
Shin 2020; Colombo et al. 2019)).  

Nevertheless, the majority of these techniques rely on several mathematical and 
theoretical assumptions about the nature of EEG and/or the nature of consciousness. For 
example, the perturbational complexity index (PCI) – one of the most successful indices of the 
past years – is based on approximating a measure of differentiation and integration of cortical 
activity, which is assumed to be required for consciousness. As these assumptions are open, 
with stronger or weaker scientific basis, and given that these techniques can significantly limit 
a data-driven investigation of the otherwise rich neurophysiological signals, machine learning 
offers a potential approach for end-to-end feature learning. Moreover, machine learning allows 
automation for clinical applications (and has a crucial role in many BCI systems), where current 
methodological practices in EEG analysis are constrained from long repeated measurements, 
they require extensive data processing tools, and often intervention from human expertise, 
which is unsuitable for real-time monitoring of patients.  

Deep learning techniques in particular have already revolutionized many domains with 
their performance, including biomedical imaging and engineering (Miotto et al. 2018). Over 
the past years, there is an increased interest to use deep learning, and especially convolutional 
neural networks, as a way to decode the brain for EEG research and applications (Roy et al. 
2019). Of course, as a new field of study, questions related to deep learning architecture, design 
and other methodological concerns are still open for investigation. 

3.1.3 Related Work 

Over the past years, an increasing number of studies appear to use deep learning models 
for EEG decoding, with all kinds of data and tasks, reporting a significant success 
(Schirrmeister et al. 2017; Heilmeyer et al. 2019; Lawhern et al. 2018; Roy et al. 2019). When 
it comes to clinical applications, there are already several efforts towards improving predictive 
models for diagnosis and prognosis, in cases such as epileptic seizures (Korshunova et al. 2017; 
Shamim Hossain et al. 2019), sleep stage classification (Chambon et al. 2018), and many 
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others. Specifically for general anesthesia, a variety of studies have tried to analyze EEG using 
deep learning techniques, for the purpose of discriminating states of unconsciousness.  

Traditionally, such studies have focused on either spontaneous recordings of EEG 
(resting-state EEG) or event-related potentials (ERPs), for monitoring the depth of anesthesia 
and helping clinicians to guide the anesthetic procedure (Robert et al. 2002). For studies 
focusing on ERPs, the mid-latency auditory evoked potentials (MLAEP) have been used 
alongside neural networks, where MLAEP peak latencies have been correlated to the hypnotic 
component of anesthesia (Zhang et al. 2001). In more recent years, researchers have focused 
on different features of spontaneous EEG (e.g. autoregressive parameters, wavelet analysis, 
bispectral analysis, and others), as input to neural networks, while in some cases other 
physiological measures have also been used as additional input features (e.g. drug 
concentrations, electromyography (EMG), electrocardiogram (ECG), electrodermal activity 
(EDA), blood pressure (BP), respiratory rate (RR), hemodynamic parameters, or other signals 
which are traditionally and qualitatively assessed in clinical practice). However, here we focus 
on a number of studies that aim to analyze resting state EEG (rather than ERPs or other 
physiological measures), given that 1) the main action site of general anesthetics and the neural 
correlates of consciousness, reside in the brain and 2) we aim to investigate novel features from 
the rich spatio-temporal signals of the EEG, as traditional monitoring methods have been 
shown to be unreliable in measuring the depth of anesthesia (e.g. due to significant variability 
across drugs, patients, etc. (Lan 2012)). 
 Under this given scope, there is a limited number of works that have tackled this 
problem, with a variety of methodologies in anesthesia and EEG processing. In one of the 
earliest studies we are aware, (Roy and Sharma 1994) used autoregressive modelling and neural 
network analysis of EEG in dogs under halothane, where they predicted 3 depths of anesthesia 
with an accuracy of 85%. (Krkic 1996) reported high performance in humans (15 patients) 
under propofol and desflurane anesthesia using the spectral entropy of EEG as input to a neural 
network, under a 2-state classification problem, with up to 98% accuracy. (Lalitha and Eswaran 
2007) showed almost perfect performance in 5 propofol patients, using non-linear chaotic 
features and multilayer perceptrons in a 3-state classification problem. More recently, (Liu et 
al. 2015) and (Jiang et al. 2015) compared the BIS index (a commercial standard in US 
healthcare for monitoring DoA) with their approach using multivariate empirical mode 
decomposition (MEMD) and sample entropy, alongside neural networks, reporting higher than 
BIS precision in a regression task against expert assessment of conscious levels (EACL). In 
most of these studies, results were encouraging under an intra-subject decoding task, with high 
performances obtained using a small number of electrodes (e.g. in BIS-like systems, 1-3 frontal 
electrodes are often found) and multilayer perceptrons (usually 1-3 layers, with deeper 
architectures being more successful). Table 3.1 references some of the works within this 
framework, albeit not exhaustively. 
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Table 3.1. Studies assessing anesthetic-induced unconsciousness using EEG and Neural Networks 
 

Study Subjects Anesthetic EEG Features Architecture Task Validation Performance 

Roy et al, 
1994 

Dogs 
(10) 

Halothane AR Parameters MLP 3-state 
classification 

Intra-
subject 

85% accuracy 

Krkic et al, 
1996 

Humans 
(15) 

Propofol, 
Desflurane 

NSV, Spectral 
Entropy 

RBF 2-state 
classification 

Intra-
subject 

98% accuracy 

Kangas et 
al, 2000 

Humans 
(7) 

Isoflurane EEG spectra MLP 2-state 
regression 

N/M N/M 

Lalitha et 
al, 2007 

Humans 
(5) 

Propofol Non-linear 
chaotic features 

MLP 3-state 
classification 

Intra-
subject 

99% accuracy 

Liu et al, 
2015 

Humans 
(26) 

Propofol, 
Sevoflurane, 
Desflurane 

MEMD, 
Sample 
Entropy 

MLP regression to 
EACL 

Intra-
subject 

0.83 
correlation 
coef. 

Our study Humans 
(9) 

Propofol Raw EEG/EEG 
spectra 

MLP/CNN 3-state 
classification 

Inter-
subject 

86% accuracy 

 
 In spite of some promising results, the comparison and evaluation of the findings across 
these studies is limited, due to the large variation in methodology. Regarding general 
anesthesia, the subjects under analysis (human/non-human), the type of anesthetic agents and 
procedures (e.g. the co-administration of other substances which might influence brain activity 
in patients or healthy subjects), the definition of anesthetic states and the clinical ground truth 
(e.g. states characterized based on loss of consciousness, recall, or reflex to noxious stimuli) 
are some important factors to consider, as there is no specific clinical/experimental setup and 
standardized way to assess levels of consciousness. Most importantly, the majority of the 
studies have used data from patients in real clinical scenarios, which introduce significant 
limitations for EEG recordings and significant variability due to patient-individualized 
comorbidities and treatments (e.g. a particular selection of medications and doses).  

From an engineering point of view, the EEG preprocessing (e.g. artifact cleaning), the 
deep learning architecture, the optimization task (classification vs regression), the amount of 
data and the validation approach can also be important factors of variation in these findings. In 
general, most of the studies have used EEG with a number of preprocessing steps (e.g. MEMD, 
independent component analysis – ICA, or other cleaning techniques), in conjunction with a 
feature extraction technique as input to the deep learning model, and under a classification task. 
The feature extraction technique is often based on spectral features of the EEG, which have 
been heavily used throughout the literature. The variation of deep learning architecture is also 
important to consider, given the lack of agreement even in basic design principles, which 
heavily affects performance, such as network connectivity and organization, hidden layer 
depth, etc.  

One of the major problems shared among these studies though, is reflected in the 
inconsistency of model evaluation, and most importantly in the lack of predictive 
generalization to unseen subjects (accuracy >90% has been achieved with cross-subject 
validation only for 2-state classification). This is particularly important given the inter-subject 
variability of EEG signals and the vulnerabilities of neural networks, which will be further 
discussed in the next sections. 
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3.2 Methods 

3.2.1 Dataset Collection 

The data used in this work were acquired from a propofol anesthesia study (Murphy et 
al. 2011), in which the experimental design is described in detail. Briefly, the study was 
approved by the Ethics Committee of the Faculty of Medicine of the University of Liege, with 
participants giving written informed consent. Moreover, physical examination and medical 
history were obtained, in order to assure of no potential issues during anesthesia (e.g. 
pregnancy, head trauma, surgery, mental illness, drug addiction, asthma, motion sickness). 

Fifteen-minute spontaneous high-density electroencephalography (hd-EEG, 257 
channel EGI Hydrocel GSN) was recorded from 9 healthy participants (mean age = 22± 2 y; 4 
male, 5 female) during propofol anesthesia, at three different levels of consciousness: from 
fully awake (Wakefulness), to moderate sedation (Sedation), and finally loss of consciousness 
(LOC), as depicted in Fig. 3.1. The levels of consciousness were assessed using a behavioral 
scale (Ramsay score), after two consecutive verbal commands to squeeze the hand of the 
investigator (clear response to command in Wakefulness – Ramsay 2, slow response in Sedation 
– Ramsay 3, and no response in LOC – Ramsay 5-6). Sedation procedure was continuously 
monitored (electrocardiogram, blood pressure, SpO2, etc.) and additional oxygen (5 liters/min) 
was provided to the participants. Computer-controlled intravenous infusion was used to 
estimate effect-site concentrations of propofol (3-compartment pharmacokinetic Marsh 
model), while a 5-minute equilibration period was allowed after reaching the desired Ramsay 
state, to ensure steady-state recordings. Average levels of propofol were 1.91 ± 0.52 for 
Sedation and 3.87 ± 1.39 for LOC, as measured by arterial blood samples before and after each 
anesthetic state (Murphy et al. 2011). 
 
 

 

Fig. 3.1. Experimental design of the propofol anesthesia study. Nine participants underwent anesthetic 
induction into progressively deeper states of unconsciousness, measured by a clinical scale (Ramsay 
score). 
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An illustration of the raw EEG data can be seen in Fig. 3.2. Steady-state recordings 
were acquired after the Ramsay assessment and the drug’s equilibration period, which ensured 
the exclusion of confounding noise and task-related EEG activity from the behavioral scoring 
(auditory/motor activity). 
 

 

Fig. 3.2.  Resting-state EEG recordings of one participant, during the states of Wakefulness, Sedation 
and LOC. Twenty channels are depicted based on the 10-20 system. An example of a prominent 
movement artifact is highlighted in the dashed box (Duration=10 sec, Scale=50 μV). 
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3.2.2 EEG Pre-processing 

Minimal pre-processing steps were applied to the original data, in order to simulate a 
real-world scenario where deep learning could be applied to EEG data in real-time. Although 
raw EEG recordings tend to be noisy, the selection of the workflow was based on the notion of 
an automated feature extraction done by deep learning. Such implementation has a potential 
practical value within a clinical context, as manual intervention and a priori knowledge of the 
signals would be infeasible (albeit often used in preprocessing methods for artifact rejection).  

Two different representations were extracted from the data, to compare the effect of 
using the raw time series versus a spectral representation. The latter has often been used in 
similar studies as a useful feature for EEG classification (Schirrmeister et al. 2017; Stober, 
Cameron and Grahn 2014; Howbert et al. 2014; Park et al. 2011). 
 
Raw Data Representation. To reduce the dimensionality and computational complexity of 
the deep learning pipeline, 20 electrodes were selected from the EEG, located as per the 
standard international 10-20 system, namely: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, 
T5, P3, Pz, P4, T6, O1, Oz, and O2. Data were segmented into 1 second non-overlapping 
epochs (windows) and band-pass filtered between 0.5-40 Hz (as per the original study) using a 
window FIR design (firwin, scipy). The vertex (Cz) electrode was the online reference, with its 
activity replaced by the average activity across all 19 channels. Finally, the time series were 
down-sampled to 100 Hz, resulting in 100 samples per epoch. No artifact or bad channel 
rejection was performed, other than the removal of the first 10 seconds of recording which 
contained large unstable drifts. All pre-processing steps were implemented using the MNE-
python library with default settings (ver. 0.15), unless specified otherwise. 
 
Power Spectral Density Representation. To generate the spectral representation of the EEG, 
the raw data processed as above were submitted to the periodogram function (scipy), in order 
to obtain the power spectral density (PSD) of each channel and epoch. 201 points were used to 
compute the PSD, which resulted in 100 frequency bins (one-sided spectrum, dc coefficient 
removed). Importantly, this ensured that the dimensionality of the data was identical in both 
raw and PSD representations.  
 

In both representations, the resulting dimension of each epoch instance was a 20 x 100 
2D-array (channels x time samples/frequency bins). These data were normalized epoch-wise 
using the StandardScaler (Scikit-learn), before feeding them into the deep learning networks. 
This can be thought as standardizing (z-score) the whole spatio-temporal activity for each 
epoch and participant independently. Although there are many ways to normalize the data (e.g. 
by time sample or by channel), this way can be considered more appropriate in terms of its 
physical interpretation, but also from a practical perspective, as only data from the current 
epoch are required for applying the normalization. 
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3.2.3 Deep Learning Architectures 

Two deep learning architectures were compared, in order to investigate the suitability 
of the algorithms in extracting relevant electrophysiological features. Convolutional neural 
networks (cNN) are a class of feed-forward networks that have shown immense success, 
initially within computer vision problems, but more recently in other fields as well (e.g. natural 
language processing, healthcare, and others). Within EEG research, cNNs are becoming 
particularly attractive during the last few years, with an increasing number of studies that 
employ them in all kinds of tasks (Schirrmeister et al. 2017). Interestingly, there are two basic 
ideas behind their architectural design. The first one relates to the extraction of local patterns 
that are invariant across the data, by using convolutional kernels with shared parameters. As 
with many natural signals, the assumption here is that spatially or temporally nearby features 
are more likely to share mutual information, thus making the sparse connectivity of the 
networks more efficient (this assumption appears to be, for the most part, true for EEG). The 
second idea relates to the composition of local low-level patterns, into more global higher-level 
patterns, through layers of abstraction which create a hierarchical representation of features 
(Krizhevsky, Sutskever and Hinton 2017). Contrary to this architecture, the Multilayer 
perceptron (MLP) network is a naïve implementation of a fully-connected neural network, 
which has been previously used in similar studies and can serve as a baseline for comparison 
(a cNN can be thought as an MLP with a specialized structure).  

Our aim here was not to optimize each network for the given task, but rather to compare 
them fairly, in revealing the computational advantages of each design. Hence the two models 
were compared with respect to their architectural sizes, which can be thought as the number of 
neurons or trainable parameters, within each functional layer. 
 
Convolutional Neural Network. The architecture of the cNN is a sequential model based on 
a simple convolutional design that has been used in many computer vision tasks (e.g. mnist 
classification). The input samples to the network are the EEG epochs structured as a 2D matrix 
(𝑋 ∈ 𝑅   ), where rows correspond to channels (c) and columns correspond to either time 
samples (l), or the spectral coefficients (l), depending on the selected representation. The first 
functional layer (feature extraction/data compression) is a sequence of two convolutional 
layers, followed by a max-pooling and a dropout layer. The second functional layer 
(classification), consists of a fully connected layer, followed by a dropout layer and three 
softmax units (one for each conscious state). As a reference size, the original number of feature 
maps and hidden neurons were used, namely 32 for the 1st convolutional layer, 64 for the 2nd 
convolutional layer and 128 neurons for the 3rd dense layer. The patch window for max pooling 
was 2x2. Dropout rates were 0.25 and 0.5, respectively. Convolution windows were chosen 
with kernels 1x5 and 5x10 (1x1 strides), with the first layer only extracting temporal 
information (no padding used). Finally, all activation functions were ReLU units (except output 
layer). The cNN architecture is summarized in Fig. 3.3. 
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Fig. 3.3. Convolutional neural network architecture (reference size) for the 3-state classification task 
(Wakefulness, Sedation, Loss of Consciousness). The raw EEG or the PSD epochs are used as input 
tensors to the network. 
 
Multilayer Perceptron. The architecture of the MLP is also a sequential model, with the input 
represented as a vector (2D matrix flattening). We employed a model designed to match the 
number of output neurons in each functional layer of the cNN (rather than equalising network 
layers). This ensured that the computational cost of each design was comparable in terms of 
training time. Both layers of the MLP consist of fully connected layers, followed by a dropout 
layer, with the 2nd layer including the three softmax output units. The number of hidden units 
for the 1st layer was based on the number of neurons after the flattening of the 1st functional 
layer of the cNN architecture (22016 for the reference size), while for the 2nd layer was kept 
the same. Activation functions, dropout rates and other model parameters during training were 
also kept similar to the cNN design. The MLP architecture is summarized in Fig. 3.4. 

 
Fig. 3.4. Multilayer perceptron network architecture (reference size) for the 3-state classification task 
(Wakefulness, Sedation, Loss of Consciousness). The raw EEG or the PSD epochs are used as input 
tensors, after flattening the 2D-array into a 2000-dimensional vector. 
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3.2.4 Experiments 

Twelve experiments were performed in total for the 2 x 2 x 3 combinations of input 
data representations (Raw/PSD), deep learning architectures (MLP/cNN) and three different 
network sizes – small, reference and large – in order to compare the performance of the models 
under all possible configurations (network sizes were included to ensure that the observed 
effects were not size-depended). The number of feature maps and the number of neurons for 
each architecture and network size can be seen in detail in Table 3.2. 

Table 3.2. CNN and MLP Network Sizes – Small, Reference, Large 

Network Size cNN MLP 

Small (16, 32, 64) (11008, 64) 

Reference (32, 64, 128) (22016, 128) 

Large (64, 128, 256) (44032, 256) 
                                                                       Number of feature maps are denoted in bold 

 
To evaluate model performance, the EEG data need to be divided into training and test 

sets. Previous studies have used a training/test set split which incorporates EEG data 
proportionally across participants (Juel et al. 2018; Korshunova et al. 2017; Stober, Cameron 
and Grahn 2014). However, a harder but ideal goal would be to generalize the prediction of 
consciousness states in unseen participants. With this goal in mind, a leave-one-participant-out 
cross validation (LOPOCV) paradigm was used for training and testing the models, with each 
participant contributing on average ~2700 instances (9 participants x 3 states x 15x60 1-sec 
epochs ≈ 24300 total instances). Each instance was labeled with one-hot encoding as the target 
vector, indicating one of the three anesthetic states. The model was trained using the categorical 
cross-entropy loss function and the Adadelta optimizer. Initialization of network weights was 
done with the Xavier uniform initializer. A batch size of 100 was used, and for 10 runs of the 
data (training epochs). Models were evaluated by their accuracy, computed as the percentage 
of correctly predicted epochs in the left-out participant. All experiments were implemented in 
Python 3 using the Keras/Tensorflow library and a CUDA NVIDIA GPU (Tesla P100). 

3.3 Results 

3.3.1 Architecture Comparison 

The results of our 2 x 2 experimental design (Raw/PSD X cNN/MLP) were consistent 
for all three network sizes and are summarized below. Reported figures and accuracies are for 
the reference size networks, depicted in Figs. 3.2 and 3.3.  
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Raw Data. Using the raw EEG input, the MLP achieved an average accuracy of 75.45% across 
participants, with the cNN reaching an average of 86.05% (Fig. 3.5). These accuracies are 
significantly higher than the chance level accuracy of 33.33%, expected for the 3-state problem. 
Cross-entropy loss on the test sets did not significantly decrease after the first few epochs for 
both implementations, while it showed an increase after the 5th epoch for the cNN. Despite this, 
the cNN was able to achieve better accuracies for each state of consciousness, as observed from 
the confusion matrices (Fig. 3.5).  
 
 

 
 

Fig. 3.5. MLP vs cNN (reference size) comparison of the raw EEG classification for the 3 anesthetic 
states. Cross-validation accuracies, average model loss, and confusion matrices are shown for each 
architecture. 
 
Power Spectral Density. Using the PSD input, the two architectures were more similarly 
capable in classifying the 3 anesthetic states, with reported accuracies of 83.4% for MLP and 
87.35% for cNN (Fig. 3.6). Notably, we observe a significant accuracy increase for the MLP 
compared to the corresponding raw input configuration (~12% increase), but not for the cNN. 
Moreover, cross-entropy loss curves revealed that the models converged faster using the PSD 
representation. This can be understood under the expectation of the networks to require more 
training iterations (epochs) before an adequate feature learning state is obtained, compared to 
an already compressed representation (such as the PSD). 
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Fig. 3.6. MLP vs cNN (reference size) comparison of EEG classification for the 3 anesthetic states, 
using the PSD representation. Cross-validation accuracies, average model loss, and confusion matrices 
are shown for each architecture. 
 
 

Overall, average model loss shows that the 10 training epochs were adequate for a stable 
convergence of the models, in all configurations. Figures 3.4 and 3.5 reveal that the models 
obtained consistently high performance for six testing participants (S2, S3, S5, S6, S7, S8), 
with the remaining three (S1, S4, S9) resulting in lower performances (65-85% accuracy, for 
cNN). Moreover, confusion matrices show that Wakefulness and LOC were not misclassified 
to one another. On the other hand, the intermediate state of Sedation was the hardest to predict, 
possibly due to a transitional nature of the EEG signature and the imposed classification task. 
Another possibility for such effect could relate to the inter-individual variability in response to 
propofol, which has been documented in (Chennu et al. 2016), and which could manifest in the 
electrophysiological signatures of Sedation. In this regard, the cNN using the raw input data 
had the most balanced performance, with Sedation class reaching 80% accuracy.  

To better understand the changes of the underlying EEG signals that drive these 
accuracies, we visualized the PSDs in each state of consciousness (Fig. 3.7). As previously 
reported, we observe a decrease in alpha oscillations for Sedation, followed by the emergence 
of high-alpha and delta oscillations during LOC (Patrick L. Purdon et al. 2015).  
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Fig. 3.7. Power spectral density representation (uV2 /Hz, dB) of the EEG epochs, for each of the 3 
anesthetic states (Wakefulness, Sedation, LOC). A representative frontal (Fz) and parietal (Pz) electrode 
is shown for one subject. 
 

3.3.2 Statistical Analysis – ANOVA Model 

As a final step to this analysis, a three-way ANOVA (type 2) was performed on the 
accuracies obtained by our 2 x 2 x 3 experimental design (architecture x input representation x 
model size), which is depicted and summarized in Fig. 3.8 and Table 3.3. 

The results of the ANOVA indicate that the network architecture (cNN/MLP) was the 
strongest contributor to model performance (F = 10.6, p=0.0015), with the input representation 
(Raw/PSD) also having a significant but weaker effect (F = 5.34, p=0.0229), driven by the 
improved accuracy of MLPs using the PSD data (p=0.08 interaction effect). As we already 
mentioned, model size had no contribution to overall performance in any configuration. 
 

 
Fig. 3.8. Model accuracies for each configuration of our 2 x 2 x 3 experimental design (architecture x 
input representation x network size). Error bars indicate the 95% confidence interval. 
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Table 3.3. ANOVA Table of Model Comparison  
 Sum_sq df F Pr(>F) 

Architecture 1230.94 1 10.601 0.0015 

Data Representation 620.06 1 5.340 0.0229 

Model Size 14.34 2 0.061 0.9401 

Architecture-Data Representation 351.13 1 3.024 0.0852 

Architecture-Model Size 6.21 2 0.026 0.9735 

Data Representation-Model Size 6.18 2 0.026 0.9737 

Architecture-Data Representation-Model Size 0.85 2 0.003 0.9963 

Residual 11146.71 96   

3.4 Discussion 

3.4.1 Cross-subject Generalization 

Our findings have highlighted the capabilities and potential of deep learning to discover 
and utilize generalizable features from human EEG, given the task of automatic identification 
of multiple anesthetic states characterized by decreasing levels of consciousness. As 
generalization performance is often missed in EEG studies, this work provides a solid 
foundation for further investigation. Training and testing on different participants (with leave-
p-subjects-out CV) can have a profound effect when creating and validating the models, as 
EEG signals can show significant variability across subjects (Melnik et al. 2017), and deep 
learning is particularly vulnerable in identifying false patterns (e.g. within-subject confounds 
or noise). While many previous studies have used an intra-subject decoding methodology, 
which can be useful for certain tasks (although it can require training time for real-time BCI 
applications), there is a general paradigm shift over the past years, and particularly within 
machine learning, for more appropriate and systematic evaluation towards model robustness. 
Besides its relevance for finding universal patterns of neuroscientific value, clinical models are 
most often used and evaluated in new patients, while in particular for anesthetic procedures, 
subject-specific training would be infeasible in clinical settings, given the importance of time 
management and expenses in hospitals (i.e. patient time under GA for surgery). 

3.4.2 Architecture Comparison and Representation Efficiency 

Apart from cross-subject generalization, we have also shown that modern cNN 
architectures significantly outperform fully connected MLPs (in agreement with the current 
literature (Hernandez 2017)), potentially due to their ability to extract more effective spatio-
temporal features from the raw signals. This notion is supported by the fact that MLPs 
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performed as well as cNNs when given the PSD data as an input. Nevertheless, the cNN with 
raw input representation configuration was optimal, as it obtained the most balanced within-
class error, which indicates better generalization. Similar findings have been observed in other 
studies as well, and in particular for cNN analysis of EEG under anesthesia, using raw or 
spectral/band power features, with the raw signal having the best results (Sun et al. 2019a; 
Truong et al. n.d.).  

Using the raw input data is also important for the identification of novel task-relevant 
biomarkers, as feature-engineering based on expert knowledge and prior assumptions on the 
signals, can neglect information of interest. Specifically, the raw input representation is 
preferable to PSD in the sense that the model’s parameter optimization happens within the 
original data space, which is not constrained within a Fourier-type spectral decomposition. 
Although EEG signals show a variety of frequencies (which have already been studied 
extensively and have revealed a variety of signatures for different anesthetics (Patrick L. 
Purdon et al. 2015)), other recurring and shift-invariant waveform patterns might be better 
suited for a cognitive and clinical understanding of the underlying neurophysiology (Jas, La 
Tour, et al. 2017). The distortion of the signals due to the often-used Fourier/Morlet methods, 
has been referred to as a ‘Fourier fallacy’, given the ad hoc assumption of a sinusoidal nature 
of the neuronal activity in the brain (Jasper 1948). 

In terms of resource utilization, the cNN was also better than the MLP, as the latter had 
a significantly larger number of parameters to learn (i.e. 46,872,579 in MLP vs 2,921,219 in 
cNN, for the reference network size), by a factor of 16. CNN was also faster to train by ~35%. 
Furthermore, a repetition of the above experiments with an alternative comparison using the 
same number of trainable parameters (rather than the same number of neurons) in each 
architecture, gave a much more prominent difference in the results, with the MLP performing 
much worse and having higher computational demands. The number of model parameters is 
an important factor for machine learning algorithms, as a large number of trainable parameters 
can easily lead to overfitting, if the model is not provided with enough samples (although there 
is no mathematical relationship between the two, we know empirically that given enough 
parameters a model can learn individualized samples). Nonetheless, several deep learning 
techniques have been developed over the past years to effectively avoid overfitting (e.g. L1/L2 
regularization (Neyshabur, Tomioka and Srebro 2015), dropout (Srivastava et al. 2014), etc.), 
one of which is the dropout layers used in our architectures. 

3.4.3 Window of Analysis 

Further experimentation with the EEG epoch size (2, 5 and 10 sec lengths, with or 
without 50% window overlap) did not show any significant changes in model performance. 
This could be partly justified given that the sizes of the cNN kernels remain fixed, which results 
in specific constrains for feature representation through most of the layers in the network. When 
using a 10 second window, performance showed a minor increase, which is nevertheless 
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expected as a consequence of the decrease in the total number of training instances (error 
averaging).  

Previous studies on deep learning-based assessment of the depth of anesthesia have 
used a variety of input windows, ranging from 1 to 30 sec. From a theoretical standpoint, 
conscious experiences can be thought as either a continuous stream of percepts, or, as most 
experimental evidence support, percepts that are discrete in nature. Even in this latter case, 
experiences range from few milliseconds to few hundreds milliseconds at maximum, 
depending on the modality of the experience (Herzog, Kammer and Scharnowski 2016). Given 
this fact, a window of 1 second can be considered long enough to capture the changes of the 
underlying electrophysiology of interest. This idea is also supported in anesthesia studies 
focusing on EEG microstates, where the observed microstate duration ranges from 20 – 120 
ms (Comsa, Bekinschtein and Chennu 2019; Shi et al. 2020), making our temporal cNN kernel 
sizes, sensible. From a clinical application perspective, a small window size is desirable 
considering that the temporal resolution for a DoA monitor is critical (typically, 
anesthesiologists have to respond rapidly to a change during surgery).  

Beyond the input window of analysis, changes in brain activity that take place over 
several seconds or minutes, can also contribute significantly to the performance of our model. 
As our current analysis is based on a steady-state classification within an experimental 
anesthetic setup, and clinical anesthetic induction/emergence is gradual and rapid (Juel et al. 
2018), the difficulty of classifying intermediate sub-anesthetic states may not present as a 
problem here. This can be further studied and determined, depending on whether the problem 
is posed as a classification problem (assuming a discrete transition to unconsciousness), or a 
regression problem, with a gradual change in levels of consciousness. In any case, our selected 
architecture presumes static vector-based inputs, which do not consider the large-scale 
temporal dynamics. Whether a deep learning architecture (such as the RNN) that allows the 
exploitation of the temporal dynamics of the EEG can be useful in such task, would require 
further research. 

3.4.4 Summary 

Overall, this study aimed to conduct a comparative analysis of the two most widely 
used deep learning architectures, rather than a hyperparameter optimization of the models, 
aiming to maximize their performance. The fact that cNNs were able to perform well given 
only 1 second of raw EEG data suggests that they could find utility both in electrophysiological 
investigation, but also in real-world applications, for assessment and monitoring of 
consciousness. Of course, apart from the choice of deep learning architecture and the non-
necessity for feature engineering, the particular methodology of EEG preprocessing and cNN 
network design can still be a significant aspect of EEG representation, feature learning and 
knowledge discovery. In the next chapter, we investigate these questions, with the goal of 
creating a specialized model for EEG decoding. 
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Chapter 4 Convolutional Neural Networks and 

EEG Representation 

4.1 Introduction 

4.1.1 Overview 

In this chapter, we focus on the development a novel convolutional neural network, 
based on the architectural design described in Chapter 3, which will be able to take full 
advantage of both the spatial and temporal structure of the EEG, irrespective of the system’s 
configuration (no. of channels, channel locations, etc.). Specifically, we combine the 
advantages of the topomap projection and mesh representation, to create a 3D representation 
of the EEG epochs (scalp activity images vs time), and to allow 3D convolutional layers to 
explore possible spatio-temporal relationships in the data (in parallel with the work found in 
(Tan et al. 2017)). Another aim of this chapter, and in accordance with our goal to obtain a 
standard processing pipeline, is to investigate the effect of the EEG preprocessing parameters 
in a systematic way. Choices such as the number of channels and the spatial resolution of the 
EEG, the reference montage, the type of filtering applied, the manipulation of artifacts, as well 
as any type of epoch-wise sample normalization, are independent and specific to each work 
(while often without a given reasoning). As discussed in Chapter 2, the performance of machine 
learning algorithms is strongly dependent on the nature of the data, their representation and 
dimensionality, the number of available samples, and the level of noise. To understand the 
contribution of such factors, we perform a number of experiments and compare the 
performance of 2D and 3D cNN models, with respect to some of the most influential EEG 
parameters, namely: the montage (channel reference), the sample normalization method, the 
number of electrodes and the presence of high-frequency content, as well as the robustness of 
the models to EEG artifacts. The two model designs and the different EEG configurations are 
evaluated under the classification task of the three anesthetic states, as previously described. 
The strengths and weaknesses of each model, alongside the various preprocessing choices, are 
then discussed in detail. Finally, we derive a generic 3D convolutional neural network and a 
selected pipeline, which will help us proceed with our main research question. 
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4.1.2 Background 

Our aim here is to explore the possibility of a convolutional neural network (cNN) with 
a unified architecture that will allow us to incorporate different EEG systems and datasets, 
having two goals in mind. The first goal relates to the consistent analysis of EEG data using a 
common network and overall methodology, which as discussed in the previous chapter, is 
missing and which in turn will support the integration and comparability of our findings. The 
second goal regards the transformation of any EEG channel configuration into a 2D structure, 
which will preserve the spatial properties of the signals, and exploit the strength of the cNN to 
extract potentially meaningful local representations, via the convolution operation.  

The problem of creating a consistent EEG processing methodology starts with the lack 
of a standard preprocessing pipeline, that precedes the analysis of the signals by the neural 
network. To date, we are not aware of any systematic investigation on the effect of the EEG 
preprocessing methods with respect to any particular task or analysis, with the majority of 
researchers using their own techniques and parameters (e.g. regarding the channel selection, 
filtering parameters, or the manipulation of possible artifacts/noise). Beyond this pipeline, a 
feature extraction step is also commonly found among methods of analysis, especially within 
machine learning algorithms (EEG features are often fed into neural networks). Several signal 
processing techniques have been used for feature extraction and across a variety of EEG tasks, 
such as the power spectral density (PSD), wavelet transforms (WT), the Hilbert Transform 
(HT), the autoregressive model (AR), the filter bank common spatial patterns (FBCSP) 
algorithm, and others (often used alongside algorithms such as SVMs, k-nearest neighbours, 
linear discriminant analysis, and shallow NNs, with variable success (Wilaiprasitporn et al. 
2020)). Nonetheless, human-engineered features based on prior assumptions (or expert 
knowledge) are not generalizable across studies or tasks, they can neglect information from the 
raw data, and they often lead to reproducibility problems (as these signals tend to be complex, 
with high inter-subject variability). To make matters worse, many of these techniques rely on 
a channel-wise analysis of the data, which potentially dismisses relevant information about the 
spatial dynamics of the EEG.  

When it comes to the EEG channel configuration, and particularly for anesthesia 
research, there is a variety of studies using a number of channels, ranging from one to few 
hundreds. A large portion of these studies have explored the electrophysiology of the brain 
under clinical settings, with a limited number of EEG electrodes, as entailed by the preparation 
time and cost restrictions (e.g. BIS-like systems use 1-3 frontal electrodes, without full-
coverage of the head). Given that there is no standard methodology for monitoring the depth 
of anesthesia, and since the precise mechanisms of anesthetics are unknown, experimental 
studies using multi-channel EEG systems become more important for neurophysiological 
investigation (Dubost et al. 2019). In addition, the acquisition of EEG recordings with high-
density systems, often found in research, alongside the recognition and willingness from the 
community to share large datasets, opens the possibility for exploring the role of spatial 
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dimension in decoding brain activity. Of course, training large-scale networks with millions of 
parameters, based on the extraction of multivariate spatio-temporal features, is an area where 
deep learning thrives. 

Given all the above, studies using deep learning have not fully explored the capabilities 
of the networks for EEG-based feature extraction, nor their relation to EEG preprocessing 
pipelines. Convolutional neural networks (cNNs) in particular, have shown their strength in 
revealing the spatial structure of the data. Conventionally, cNNs have been used with EEG 
input as a 2D matrix, where rows correspond to channels, and columns to time samples 
(“amplitude vs time” representation, as used in Chapter 3). However, there are two problems 
related to this form: 1) the number of channels might be different for different systems, 
resulting in variable input-matrix shapes, and thus, network parameters, and 2) the channel 
relationship across one dimension cannot be consistent or coherent, as electrodes exist in a 3D 
space, and feature learning is undertaken by kernels with shared parameters. Of course, whether 
cNNs can extract robust spatial EEG features, given the underlying assumptions and constraints 
of cNN kernels (e.g. with respect to spatial homogeneity), is still unclear from the literature. 

4.1.3 Related Work 

During the past few years, a variety of studies have used different EEG representations 
and designs of cNNs, partially investigating the above research question. While most of the 
efforts have been focused around EEG features and cNN input representations (rather than 
EEG preprocessing), there are several findings of interest to consider. 

 (Lai et al. 2019) made a comprehensive analysis on various arrangements of the EEG 
input, to examine their suitability towards a classification task. Six types of input arrangements 
were tested, namely: amplitude vs time, energy vs time (Hilbert Transform), amplitude vs time 
with channel rearrangement (based on Pearson correlation), and three corresponding 
arrangements, with the matrices transformed into images. Based on classification accuracies, 
they found that amplitude vs time performed best (intra-subject validation). Rearranged 
channels based on Pearson correlation showed significant decrease in performance, potentially 
due to the inconsistency of representation, as the arrangement would be subject to the given 
data, and not suitable for cross-subject generalization (moreover, highly correlated features are 
often avoided in several machine learning algorithms). Image representations performed worse 
on average, possibly due to the information loss from the compression of the images, as also 
recognized by the authors. Nevertheless, the above experimental designs did not take advantage 
of the known electrode locations. 

(Alkanhal, Kumar and Savvides 2019) used spectral features over 30-sec windows as a 
series of images, by using a topomap projection (projection from the 3D to 2D space of channel 
locations). Although the window of analysis was large for our own task, the study claimed 
robust feature learning. (Yao, Plested and Gedeon 2018) focused on learning discriminative 
features from short-time EEG signals, using a channel-wise and Image-wise (topomap) 
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autoencoder approach. Again, spectral features (3 independent bands) were used as color 
channels, with Image-wise autoencoder performing better under a cross-subject validation. 
(Wilaiprasitporn et al. 2020) used multiple band-pass filtered EEG by mapping the electrodes 
into a 2D mesh, which preserved the spatial relationships of the sensors similar to the topomap 
projection image, achieving good classification performance (no cross-subject validation). 
These studies with topomap images/mesh used 2D convolutional layers, with kernels extracting 
only spatial information though (shared, or time-distributed 2D-cNNs).  

(Tan et al. 2017) created a 3D architecture with multiple band-pass filtered EEG inputs, 
as video information (topomap image vs time), along with the optical flow information of this 
“EEG video”, which used 3D kernels to extract spatio-temporal features. Results showed state-
of-the-art performance over 1D cNNs, but without cross-subject validation.  

Finally, (Bashivan et al. 2015) used spectral topomap images and compared cNN and 
mixed RcNN (recurrent convolutional neural networks) architectures, by including an LSTM 
layer before the classification layer, as a way to extract the temporal structure of the EEG. A 
similar approach was found in (Zhang et al. 2019). Although architectures could not be directly 
compared (e.g. due to differences in number and types of layers), resulting performances did 
not show any change of improvement for the mixed models. Nevertheless, the inclusion of the 
recurrent network significantly increased the number of trainable parameters (by 2-3 times). In 
addition, RNNs tended to have less stable training (due to the vanishing and exploding gradient 
problem (Pascanu, Mikolov and Bengio 2012)), and could potentially increase the complexity 
and interpretability of the trained model.  

Of course, an accurate evaluation of all the above network architectures is hard, without 
comparing the classification problems, datasets, validation techniques, and overall model 
parameters.  

4.2 Methods 

4.2.1 Dataset Collection 

For this analysis, we used the propofol anesthesia dataset (Murphy et al. 2011), 
described in detail in 3.2.1. Briefly, fifteen-minute spontaneous high-density EEG (EGI 
Hydrocel GSN, 257 channels) was recorded from 9 healthy participants during propofol 
anesthesia, at three different levels of consciousness, defined by the behavioral response of the 
participants (Ramsay score). The experimental design is depicted in Fig. 4.1. As shown in the 
previous chapter, the classification of three distinct anesthetic states (Wakefulness, Sedation 
and Loss of Consciousness (LOC)) provides a robust ground truth, yet a non-trivial problem, 
for testing the two cNN architectures and EEG preprocessing methods. 



 59

 

 
 
Fig. 4.1. Experimental design of the propofol anesthesia study. Nine participants underwent anesthetic 
induction into progressively deeper states of unconsciousness measured by behavior (Ramsay score) 

4.2.2 EEG Pre-processing 

The preprocessing methods are discussed here in detail. The specific choices for each 
parameter were selected during the course of the experiments, based on the performance of the 
models, or other discussed justifications, in cases where no statistically significant change was 
observed. The sequence of the pre-processing pipeline was executed, as presented below. All 
pre-processing steps were implemented using the MNE-python library with default settings 
(ver. 0.18) (Gramfort et al. 2014), unless specified otherwise. 
 

Channel Selection: 

 10-20 System (10-20, 20 channels) 

 High Density (HD, 173 channels) 

 High Density + Peripheral Channels (full HD, 257 channels) 
 

The effect of the spatial density of the EEG has not been studied extensively, with a 
variety of systems used in the literature, which give rise to comparability problems. A 
significant body of results has been reported using a limited number of electrodes (particularly 
in clinical settings) and the international 10-20 system, which usually comprises of a few 
dozens of electrodes (reduced or extended by utilizing intermediate locations). Nevertheless, 
research with high-density systems (hundreds of electrodes, with complete head coverage) 
allows for directly comparing the information gain among different density configurations, by 
selecting subsets of electrodes. Several studies have shown the capability of high-density 
configurations to detect even subcortical neuronal activity from deep structures (in contrast to 
conventional presumptions), by showing statistically significant correlations of the source 
reconstructed signals from the scalp EEG, with intracranial electrode recordings at the 
identified source locations (Krishnaswamy et al. 2017; Seeber et al. 2019). Overall, a limited 
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number of electrodes is not always sufficient for clinically significant EEG signatures, either 
due to sparsity of the head coverage, or due to the lack of electrodes at the relevant locations. 
Given all the above, three different configurations were chosen for the investigation of the 
spatial density of the EEG: 
 

1) 10-20 System: The 10-20 channel selection comprises of 20 channels located as per the 
standard international 10-20 system, namely: F7, T3, T5, Fp1, F3, C3, P3, O1, Fz, Cz, 
Pz, Oz, Fp2, F4, C4, P4, O2, F8, T4, and T6. The given order was preserved in all 
experiments with the 2D representation, for representation consistency. 
 

2) HD set: The high density set (HD) comprises of 173 channels from the EGI system 
(Hydrocel GSN) which cover the scalp densely, yet excluding the underside coverage 
of the head (i.e. below the ears, including the face) 

 
3) Full HD set: The full high density set (full HD) comprises of all 257 channels of the 

EGI system, including the underside peripheral electrodes on the inferior surface of the 
head. These electrodes have also been shown to detect neuronal activity, particularly 
from certain brain regions (e.g. inferior temporal lobes or the ventral aspects of the 
frontal lobe (Luu et al. 2001)) 

 

 
 

Fig. 4.2. EEG channel configurations: 10-20 (left), HD (center), Full HD (right) 
 

Filtering: 

 0.5 – 40 Hz Band-Pass Filter, 50 Hz Notch Filter 

 0.5 – 100 Hz Band-Pass Filter, 50 Hz Notch Filter 
 

The presence of high frequency information in EEG is another debatable aspect, with 
the scalp acting as a low-pass filter, and the high frequency content often attributed as noise 
(e.g. powerline noise, or artifacts from muscle activity, which overlap in the high beta and 
gamma bands >30Hz). In general, the majority of EEG studies using deep learning report the 
use of a band-pass filter, with a low-cut value of 0.1-0.5 Hz and a high-cut value of 30-50 Hz. 
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While using a low-pass filter can be beneficial for increasing the SNR trade-off overall, several 
studies have indicated the possibility of EEG capturing relevant neuronal oscillations at 
frequencies up to 100 Hz (Muthukumaraswamy 2013; Gotman 2013), and in particular within 
consciousness studies (e.g. high gamma synchrony has been correlated with consciousness 
(Koch et al. 2016)). For this reason, we tested 2 filtering settings: 
 

1) 0.5 – 40 Hz: This is a typical range for EEG analysis (also used in the original study 
(Murphy et al. 2011). The low-cut frequency was set at 0.5 Hz, given that the window 
of analysis is 1 sec. A 50 Hz notch filter was also used, to remove the power-line noise. 
 

2) 0.5 – 100 Hz: In order to test the contribution of high-frequency activity, we increased 
the high-cut frequency to 100 Hz. Again, a notch filter was used to remove power-line 
noise, at 50 Hz (including harmonics) 

 
In both settings, other filter parameters were kept same (FIR, zero-phase, Hamming window, 
filter length of 6.6 sec, lower transition bandwidth: 0.5 Hz, -6 dB at 0.25 Hz, upper transition 
bandwidth: 10 Hz, -6 dB at 45/105 Hz, 53 dB stopband attenuation). 
 
Resampling and Epoching: 
 

The sampling rate of the data was set at 100 Hz, unless the experiment included a 
configuration with the high-frequency range (0.5 – 100 Hz), in which case the sampling rate 
was set at 200 Hz. Epoching was performed after resampling, to avoid edge artifacts. In all 
cases, data were segmented into 1 second non-overlapping epochs. 
 

Artifact Cleaning: 

 No Cleaning 

 Automatic Cleaning 

 Manual Cleaning 
 

As already discussed in Chapter 2, one of the most critical limitations of EEG is artifact 
contamination, the detection and cleaning of which can be an important stage of preprocessing, 
for all kinds of subsequent analyses. Although there are several techniques that have been 
developed for such task (e.g. FASTER (Nolan, Whelan and Reilly 2010), PREP (Bigdely-
Shamlo et al. 2015), Riemannian Potato (Barachant, Andreev and Congedo 2013), SNS (de 
Cheveigné and Simon 2008) and others), there is no consensus within the community on how 
to address the problem in a unified way, despite the need for a transparent, automatic and 
common standard. This is due to the fact that the recognition and classification of the different 
types of artifacts is subject to individual expertise and experience, while the intensity and nature 
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of artifacts can change across different EEG systems and participants. Moreover, in terms of 
the available techniques for artifact cleaning using signal reconstruction, there are often 
distortions that may or may not affect the underlying signals of interest (as for example in 
independent component analysis - ICA).  

In general, data are annotated as ‘bad’ at the level of sensor/channel, or within a specific 
segment (epoch/trial) in time, that may contain an artifact (normally by visual inspection). A 
common strategy for the detection of bad segments relies on a simple peak-to-peak threshold 
metric (amplitude differences are compared to a manually set threshold value; if peak-to-peak 
amplitude exceeds a certain threshold, the segment is considered ‘bad’), which can also be used 
to identify bad channels. While rejection of bad segments is often employed, given the 
problems or reconstructing the data (due to physical assumptions, time consumption, etc.), 
fixing whole bad channels is more practical (for retaining information).  

Within the deep learning literature, there are several works which have used the raw 
EEG signals to train the networks (Schirrmeister et al. 2017), as well as works that employ 
some type of automatic or semi-automatic artifact cleaning method (Stober et al. 2015; Stober, 
Cameron and Grahn 2014; Van Putten, Olbrich and Arns 2018; Heilmeyer et al. 2019; 
Wilaiprasitporn et al. 2020). Given that we do not have any indications for their effect on the 
networks, we investigated three popular preprocessing approaches, in order to test the models’ 
robustness to EEG artifacts: 
 

1) No Cleaning: In this case, no artifact rejection or correction was employed. This is the 
simplest preprocessing pipeline, with minimal steps. 
 

2) Automatic Cleaning: For this approach, three successive steps were implemented: 1) a 
peak-to-peak threshold was set, that determined the epoch rejection criterion, 2)  
channels that were flat or had >20% of epochs exceeding the peak-to-peak threshold, 
were considered bad, and were replaced by spatial interpolation (spherical splines, 
MNE), and finally 3) all epochs with a channel exceeding the peak-to-peak threshold, 
were dropped and excluded from further analysis. As there is no threshold value which 
is globally optimal for all EEG data, a large value of 800 μV was chosen as a 
conservative estimate ((Jas, Engemann, et al. 2017) has shown that thresholds can vary 
across different channels or subjects, ranging from 150 to 700 μV). This ensured that 
the rejected signals could not be produced by brain activity (the brain under anesthesia 
produces the strongest EEG signals, which go up to 100 μV) 

 
3) Manual Cleaning: In this case, manual artifact rejection with visual inspection of the 

data was employed by an expert. This is a reliable approach for identifying and cleaning 
EEG artifacts, but nevertheless subject to fluctuation, bias and other factors related to 
experience and training. 
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Reference Channel:  

 Average Reference 

 Cz 

 Frontal Reference (virtual electrode) 
 

We chose to test three of the most common reference montages that have been used in 
anesthesia and EEG research in general, and which highlight different features of the data, 
namely: 1) the average reference, 2) the Cz electrode at the midline position, and 3) a frontal 
reference, chosen as the average of the channels Fp1, F3, Fz, F4 and Fp2.  

The advantages and disadvantages of each representation have been discussed in detail 
in Chapter 2. Briefly, a common-electrode reference is good for broadly distributed 
abnormalities, particularly if the reference location is distant from the area of interest (e.g. the 
frontal reference would highlight the posterior areas). Cz is a common reference choice, and 
the pre-defined reference channel on the EGI system, which was used during the dataset 
collection. The frontal reference was chosen as a virtual average of five electrodes, in order to 
have a symmetric position with respect to the midline, but also to reduce potential facial artifact 
contamination emerging from a single frontal channel. Finally, the average reference is a 
versatile montage, in both capturing focal and broadly distributed abnormalities, although 
susceptible to bias with large amounts of noise or a low number of channels. 
 

Normalization: 

 Standardization 

 Robust Standardization 

 L2 Normalization 

 Exponential Moving Standardization (EMS) 
 

Normalization techniques are often implicitly required in many machine learning 
algorithms, to ensure the stability and predictability of several numerical and optimization 
conditions. For our case study, as the values of a typical EEG recording are in the range of 10-
100 μV, the training of the model could be decelerated or even diverge, given that the activation 
functions, weights, and other parameters of a neural network presume values centered around 
0, with a standard deviation close to 1 (saturation of activation functions, small gradients and 
an asymmetrical cost function can all affect gradient descent and model convergence). Parallel 
to deep learning normalization methods, input data can also be normalized in different ways 
(e.g. by features or by samples), with varying effectiveness on the training process, given that 
these methods can distort or discard information which can be relevant for the given task. For 
these reasons, we tested four different normalization methods of our EEG epoch instances, and 
their effect on model performance: 
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1) Standardization: Standardization is one of the most used methods, which centers the 
data to a mean of 0 and scales them to a standard deviation of 1. While input features 
can have different scales in general, the homogeneous nature of the EEG samples allow 
us to calculate the statistical properties of the signals throughout time and space. By 
concatenating all channels and samples, standardization can be computed for each 
instance (epoch) independently (in parallel to layer-wise normalization, in deep 
learning), offering a simple physical interpretation. Of course, by standardizing the 
scalp activity epoch-wise, large-scale temporal information could be discarded (mostly 
related to energy, as EEG signals are low-cut filtered and thus centered around 0) 
 

2) Robust Standardization: This is a similar to the above technique, where statistical 
properties (mean and std) are computed according to an interquartile range. This is 
useful when data contain outliers, as in the presence of EEG artifacts, which can result 
in values that deviate orders of magnitude. For this method, the RobustScaler (Scikit-
learn) was used (Pedregosa et al. 2012), with the default quantile range (0.25, 0.75). 

 
3) L2 Normalization: L2 Normalization is another often used technique which imposes 

normalization of energy across the EEG samples, by dividing each sample with the L2 
norm. This method is more susceptible to distortions from EEG outliers. 

 
4) Exponential Moving Standardization (EMS): Exponential moving standardization 

(EMS) is a technique found in (Schirrmeister et al. 2017). The idea here is that the 
statistical properties of the signals are calculated and updated recursively throughout 
time, by including past information with a decay factor, instead of relying only on 
epoch-wise estimations. In this case, the calculations are performed channel-wise, using 
the following formulas: 

𝑥 = (𝑥 − 𝜇 )/ 𝜎  

𝜇 = 𝑎𝑙𝑝ℎ𝑎 𝑥 + (1 − 𝑎𝑙𝑝ℎ𝑎)𝜇  
𝜎 = 𝑎𝑙𝑝ℎ𝑎 (𝑥 − 𝜇 ) + (1 − 𝑎𝑙𝑝ℎ𝑎) 𝜎  

  
where xt and x’t are the original and the standardized signals for an electrode at time t, 
provided the exponential moving mean μt and exponential moving variance σt

2 at time 
t. Instead of using a fixed decay factor, as per the original study, we chose the term 1 – 
alpha (where alpha = 0.25 / sampling frequency), in order for the coefficients to 
contribute a weight which is independent of the sampling frequency. The formula was 
made to align with the decay factor in the original study, and which was empirically 
shown to provide a reasonable decay for statistical estimation, without strong 
dependence from potential noise (Fig. 4.3). The calculation of the initial values of μt 
and σt

2 are based upon the first four seconds of the data, as per the original study. 



 65

 

 
 

Fig. 4.3. EMS weight coefficients. The decay factor ensures a robust estimation of the statistical  
properties of EEG within a time-window of 10 seconds. 

 

All of the above-mentioned normalization methods provide the advantage of an automatic 
preprocessing that is subject-independent, and can be used in a real-time scenario, using only 
past or current (online) information. 

4.2.3 Convolutional Neural Network Architectures 

Two convolutional neural network designs were used in the course of the experiments, 
in order to compare the effects of the 2D and 3D representations of the EEG, and the respective 
feature extraction within the spatial dimension. The architecture for both designs was based on 
the model described in 3.2.3. This 2D cNN model was also adjusted to support the input of the 
high-density EEG sets, with minimal changes. For the 3D convolutional neural network, a 
novel architecture was developed by incorporating a transformation of the channel 
representation to a topomap projection, which creates 2D images of the scalp activity for each 
time point. These 2D images, along with the 3rd dimension of time, result in a 3D representation 
of the EEG epochs. We consider this structure to be important for capturing the complex 
interactions of the spatio-temporal dynamics, contrary to a time-distributed 2D cNN found in 
previous studies. The 3D cNN model was designed to support a variety of EEG systems, 
irrespective of the number of channels or their locations. 

In both network designs, the input representation reflects the amplitude of the signals 
vs time. As we showed and discussed in the previous chapter, a spectral representation does 
not offer any advantage over the raw EEG, and thus was not investigated (the limitations of 
Fourier analysis were discussed in detail in section 3.4.2). Moreover, a division of the EEG 
signals into multiple frequency bands (employed in several studies of section 4.1.3) was also 
avoided, to allow the networks to explore multivariate and non-linear representations across 
the whole signals’ spectrum (research on neural oscillations and cross-frequency coupling has 
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also suggested the benefits of wide-band analysis (Cole and Voytek 2017)). In general, the 
design of the networks was prioritized to minimize – to the degree it is possible – the imposed 
computational assumptions/constraints on feature extraction. 
 
2D Input Representation. This refers to the 2D matrix form of channels vs time samples, with 
the order of the channels being kept consistent for all channel selections (as mentioned in 
section 4.2.2 for 10-20, and as enumerated by the EGI system for the high-density sets). While 
this approach could be used in general for a specific set of channels (e.g. 10-20 system), 
different systems would have different sets of electrodes. 
 
Topomap Image Extraction. For creating the 3D representation of the EEG, we implemented 
a topomap image extraction method for every time sample. During this procedure, the 3D 
coordinates of the channel locations are fitted within a unit sphere, after which they are 
projected to a 2D plane, or sensor map (by azimuthal equidistant projection, which preserves 
the relative distance between neighboring electrodes). As different EEG systems have different 
number of electrodes and locations, we center and scale the 2D coordinates based on the xmin, 
xmax, ymin, ymax values of the 10-20 system channels, which are included in most EEG systems 
(centerx,y: 0.5*(maxx,y + minx,y), scaling: 0.75/(maxx,y - minx,y)). This way we make sure that 
the scaling of the 2D topomap image is consistent across different systems, and that the 
corresponding image locations align with same areas on the scalp. Over a 2D mesh, the values 
in-between the electrodes are interpolated with the CloughTocher scheme (cubic interpolation) 
(Renka and Cline 1984), and extrapolated up to the edges of the head circle (by using a mask), 
in order to avoid outlier values at its outlines (masked values are set to 0). After visual 
inspection of the resulting images, we fixed the image resolution to 30x30 pixels, which 
ensured that all local dynamics were essentially captured, even for the highest density sets. An 
example of an image extraction for a given time point can be seen in Fig. 4.4. 
 
 

 

Fig. 4.4. Topomap Image Extraction. The topomap projection of the sensor activity, interpolated and 
extrapolated up to head circle (left), and the respective down-sampled 2D image representation (right). 
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2D Convolutional Neural Network for 10-20 system (cNN). The cNN model for the 2D 
representation of the 10-20 system is the reference size architecture described and depicted in 
3.2.3. Briefly, it comprises of a sequential model with 2 functional layers: a feature extraction 
layer (2 convolutional layers with 32 and 64 feature maps, followed by max-pooling and 
dropout), and a classification layer (fully connected layer of 128 neurons, dropout, and 3 
softmax units). 
 
2D Convolutional Neural Network for High-Density sets (cNN – HD). The adjusted cNN 
model for the high-density sets was designed to share most of the parameters with original 2D 
cNN architecture. Again, two functional layers were used as described above. The convolution 
window of the 1st layer was changed to a kernel of 8x5 with 8x1 strides. Although the temporal 
windows remained the same throughout the network, we adjusted the channel dimensionality 
to compensate for the increased spatial density of electrodes (by ~8 times). Given these values, 
the resulted output tensors for both 10-20 and the HD sets were similar, and thus the rest of the 
architecture. The patch window for the max-pooling layer was 1x2, resulting in a compression 
of only the temporal dimension. This was selected for the network to be comparable to our 3D 
cNN architecture. All other parameters were kept constant to the original design. The adjusted 
architecture is depicted in Fig. 4.5. 
 

 
Fig. 4.5. The adjusted 2D convolutional neural network architecture for the HD set (2D cNN – HD). 
 
 
3D Topomap Convolutional Neural Network (Topomap cNN). The 3D Topomap cNN is a 
sequential model based on the original 2D design. In this case, the topomap images extracted 
over the period of an epoch, create the 3D input samples to the network. The feature extraction 
layer consists again of two 3D convolutional layers (32, 64 feature maps), a max-pooling layer 
(3D) and a dropout layer. The classification layer remains as per the original design (128 
neurons, 3 softmax units). The convolution windows were also kept constant within the 
temporal dimension. For the 1st convolutional layer, a kernel of 6x6x5 was used (6x6x1 strides), 
extracting information from a similar number of channels (based on the scalp region of focus) 
and which resulted in output tensors with similar dimensionality to the 2D design. For the 2nd 
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convolutional layer, a kernel of 2x2x10 (1x1x1 strides) was used, matching the dimensionality 
of the 2D cNN. The patch window for max pooling was 1x1x2, resulting in only temporal 
compression. All other parameters were kept constant as previously. The 3D Topomap cNN is 
depicted in Fig. 4.6. 
 

 

Fig. 4.6. The 3D Topomap Convolutional Neural Network. Topomap projection creates 2D images of 
scalp activity for each time point, which alongside the temporal dimension, results in a 3D 
representation of the EEG input samples. 

4.2.4 Model Training and Evaluation 

Model training and evaluation was based on the methodology presented in Chapter 3, 
and was kept consistent for all subsequent sets of experiments. Similarly to our previous 
analyses, our aim here was not to optimize each network for each experiment, but rather to 
compare the EEG configurations fairly, in order to reveal any computational advantages, under 
the classification task of the 3 anesthetic states - Wakefulness, Sedation and LOC.  

Briefly, the EEG data were divided into training and testing sets, using a leave-one-
participant-out cross validation paradigm, which ensures generalization performance and 
robust feature learning (9 participants, 3 states, 15 x 60 1-sec epochs ≈ 24,300 instances in 
total). One-hot encoding was used for the class target vectors. The models were trained using 
the categorical cross-entropy loss function with the Adadelta optimizer, and evaluated by their 
test accuracy. Initialization of network weights was done using the Xavier uniform initializer. 
A batch size of 100 was used, and for 10 training epochs (runs). All experiments were 
implemented in Python 3 using the Keras/Tensorflow libraries and a CUDA NVIDIA GPU 
(Tesla P100). 

4.3 Experiment 1 – Reference Montage 

In this set of experiments, we investigate the effect of the reference montage on the 
performance of the 2D cNN design, which has already been tested and provided us with a 
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baseline. Two models were used to check consistency across the 10-20 system channel 
selection, and the High Density set, in order to confirm that the observed effects were 
independent from the spatial resolution of the EEG (2 x 3 factorial design, Table 4.1). 
Presumably, the spatial resolution is one of the most influential factors of the EEG 
representation, with regards to the presence of information and noise, as well as the input and 
model parameters dimensionality. For the HD dataset, we used the adjusted model (cNN - HD), 
which ensured that the kernel sizes corrected for the number of incorporated channels. This 
increased the total number of trainable parameters from 2,921,219 to 23,013,219 (almost by 8 
times). 
 

Table 4.1. Experimental design for Reference Montage Comparison 
 
 
 
 
 
 
 

4.3.1 Results 

10-20. The convergence of all models was stable for the 10 runs, as indicated by the average 
categorical cross-entropy loss in Fig. 4.7. Average Reference (AR) performed better in all 
subjects, except two (S7, S8), with an average accuracy of 87.08%, although without a 
significant difference to other montages (Fig. 4.8). This small increase in performance can be 
found within the Sedation class, as depicted in the confusion matrices (Fig. 4.9), which has 
already been shown to be the most challenging state. Also, AR appeared to have the smallest 
variance across subjects. 
 

 
 
Fig. 4.7. Average categorical cross-entropy loss and accuracy history, for the three reference montages. 
Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy. (10-20) 
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X 
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Average Reference 

Cz 
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Fig. 4.8. Categorical cross-entropy loss and accuracy, for the three reference montages (10-20) 
 

 

Fig. 4.9. Confusion matrices (normalized) for the three reference montages (10-20) 
 
 
HD. The results were similar for the model trained with the HD dataset. Model performance 
was worse overall in comparison to 10-20 (79.86% accuracy for AR), but consistent with 
respect to the relative increase of the average reference, which was even more prominent for 
HD. Also, AR had again the smallest variance. This outcome highlights the potential strength 
of the average reference in high density settings, in agreement to the existing literature. 

4.3.2 Discussion and Statistical Analysis 

Overall, given that our EEG data are not significantly noisy (as it happens with 
recordings during general anesthesia), average reference seems to have the optimal 
performance (Fig. 4.10). It is also the most versatile and used option, as well as it is practical 
since it can be applied to any EEG system and channel configuration. Finally, the average 
reference is preferred in many other computational models (e.g. in source reconstruction 
models, due to averaging the distribution errors). 

A statistical analysis using repeated-measures ANOVA (statsmodels) can been seen in 
table 4.2. The statistical significance of the effect from the reference montage was confirmed 
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with p = 0.014, as well as the difference between the two models using the 10-20 and HD 
configurations (p = 0.031). 
 

 

Fig. 4.10. Performance comparison for the ‘reference montage x spatial resolution’ experimental 
design. Error bars indicate the 95% confidence interval. 
 

Table 4.2. Repeated-measures ANOVA for Reference Montage Comparison 

 
Based on our findings here, the average reference (AR) was kept fixed in all subsequent 

experiments, as the selection of the reference montage. 

4.4 Experiment 2 - Normalization Methods 

In this set of experiments, we investigate the effect of the EEG epoch normalization 
methods, using the 2D cNN design. Again, two models were used to check the consistency of 
findings for the 10-20 and HD configurations, resulting in a 2 x 4 factorial design (Table 4.3). 
For the HD dataset, the adjusted model was used (cNN - HD), which ensured that the kernel 
sizes corrected for the number of incorporated channels. This increased the total number of 
trainable parameters from 2,921,219 to 23,013,219 (almost 8 times). 
 

Table 4.3. Experimental design for Normalization Method Comparison 
 
 
 
 
 

 

 
F Value Num DF Den DF Pr > F 

Montage 5.555422 2 16 0.014717 
Spatial_Resolution 6.793104 1 8 0.031307 

Montage:Spatial_Resolution 0.383291 2 16 0.687707 

Spatial Resolution 

X 

Normalization Methods 

10-20 
Standardization 

Robust Standardization 

HD 
L2 Normalization 

EMS 
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4.4.1 Results 

10-20. The convergence of all models was stable for the 10 runs, as indicated by the average 
categorical cross-entropy loss (Fig. 4.11). There was no prevailing accuracy across subjects, 
with a similar average performance for all normalization methods, ranging from ~86% to ~88% 
(Fig. 4.12), albeit Robust Standardization and L2 norm had the smallest standard deviation 
(std=0.1 and std=0.09, respectively). Confusion matrices revealed Robust Standardization as 
the one with the most balanced within-state performance (Fig. 4.13). 
 

 

Fig. 4.11. Average categorical cross-entropy loss and accuracy history, for the four normalization 
methods. Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy. (10-20) 

 

 

Fig. 4.12. Categorical cross-entropy loss and accuracy, for the four normalization methods (10-20). 
 
HD. For the HD model, results showed a different perspective. Again, there was no prevailing 
accuracy across subjects, but Standardization performed significantly worse than the other 
three methods (69.3% for Standardization, 75-76% for Robust Standardization and L2 
Normalization, and 78.18% for EMS, as seen in Fig 4.14). Standardization had also the largest 
variance across subjects (std=0.19). Confusion matrices revealed Robust Standardization and 
EMS as the methods with the most balanced within-state performance (Fig. 4.15). 
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Fig. 4.13. Confusion matrices (normalized) for the four normalization methods (10-20) 
 
 

 

Fig. 4.14. Categorical cross-entropy loss and accuracy, for the four normalization methods (HD). 
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Fig. 4.15. Confusion matrices (Normalized) for the four normalization methods (HD) 
 

4.4.2 Discussion and Statistical Analysis 

Overall, the performance of the models did not reveal any general trend (Fig. 4.16). 
Standardization seems to be the most unstable method with the lowest performance, in contrast 
to Robust Standardization, which has the most robust performance (L2 Normalization 
following closely). For the HD dataset, EMS had a significant advantage over the other three 
normalization techniques.  

A statistical analysis using repeated-measures ANOVA (statsmodels) can been seen in 
Table 4.4. Our results here have not indicated any significant effect for the normalization 
methods. The effect of the spatial resolution of the EEG (10-20 vs HD) was confirmed again, 
with p = 0.015. A small interaction between the two factors (p = 0.17) was driven from the 
results using EMS. 

For the subsequent experiments, all normalization methods except Standardization 
were employed, in order to test how the various spatial resolution configurations, or the 
presence of high frequency content, might affect the performance of these methods, under the 
given classification task. 
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Fig. 4.16. Performance comparison for the ‘normalization method x spatial resolution’ experimental 
design. Error bars indicate 95% confidence interval. 

 
Table 4.4. Repeated-measures ANOVA for Normalization Method Comparison  

F Value Num DF Den DF Pr > F 

Normalization 0.444714 3 24 0.723242 

Spatial_Resolution 9.303622 1 8 0.015817 

Normalization:Spatial_Resolution 1.782355 3 24 0.177409 

 

4.5 Experiment 3 - Spatial Resolution and High Frequency 

Content 

In this set of experiments, we investigate the effect of the spatial resolution of the EEG 
and the presence of high frequency content, using both 2D and 3D cNN architectures, in order 
to test and compare the respective representations and feature extraction approaches. Four 
different configurations were chosen for the channel selection and filtering parameters, namely: 
1) the 10-20 system (10-20), 2) the HD set (HD), 3) the HD set including high-frequency 
content (HD + HF) and 4) the Full HD set. As in the previous experiments, the original cNN 
architecture was used for the 2D representation of the 10-20 system, and the adjusted model 
(cNN – HD) for the 2D representation of the HD configurations. For the 3D topomap 
representations, the same 3D cNN design was used in all four configurations.  

In both designs, we ensured that the cNN kernels incorporated a matching number of 
channels, so that the resulting models were all comparable with respect to trainable parameters. 
Moreover, the temporal dimensions of the convolution kernels were doubled in all models, to 
compensate for the doubling of the sampling rate (200 Hz), which allowed the inclusion of 
high-frequency content up to 100 Hz. The pool size of the max-pooling layer was also doubled 
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in the temporal dimension (pool_size = 4), as a way to acquire an equivalently compressed 
output-vector size. The total number of trainable parameters were 5,841,827, 6,196,323 and 
10,071,139 for the 2D cNN models (for 10-20, HD and full HD, respectively). For the 3D 
Topomap model, the total number of trainable parameters were 5,812,067. Three normalization 
methods, the Robust Standardization, the L2 Normalization, and EMS, were also factors of 
experimentation. This resulted in a 2 x 3 x 4 factorial design (Model design x Normalization 
Method x Spatial/HF Configuration) (Table 4.5). 
 

Table 4.5. Experimental design for Spatial Resolution and High-Frequency Content  
 
 
 
 
 

 

4.5.1 Results 

2D cNN – Robust Standardization. The average categorical cross-entropy loss showed no 
significant change over the 10 runs, indicating a stable convergence for all models (Fig. 4.17). 
The performance of the 10-20 configuration was significantly better in all subjects except one 
(S4 had a small decrease in comparison to HD + HF), with an average accuracy of 88.4%, 
against the high-density configurations (average accuracy ~76%) (Fig. 4.18). 10-20 also 
showed the smallest variance across subjects, along with the full HD (std = 0.09). Confusion 
matrices indicated that the performance decrease in the high density configurations could be 
found mostly within the Sedation class, and with a smaller effect, in LOC (Fig. 4.19). 
 

 

Fig. 4.17. Average categorical cross-entropy loss and accuracy history, for the four EEG resolution 
configurations. Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy.  
(2D – Robust Standardization) 

Model Design 

X 

Normalization Method 

X 
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High-Frequency 

Content 

2D cNN Robust Standardization 
10-20 
HD 

3D Topomap cNN 
L2 Normalization HD + HF 

EMS Full HD 
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Fig. 4.18. Categorical cross-entropy loss and accuracy, for the four EEG resolution configurations (2D 
– Robust Standardization) 
 
 

 

Fig. 4.19. Confusion matrices (normalized) for the four EEG resolution configurations (2D – Robust 
Standardization) 
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2D cNN – L2 Normalization. The results for L2 Normalization were similar. The 10-20 
configuration had the highest accuracy in all subjects, with an average of 87.93%, against the 
HD configurations with an average of ~75% (again, 10-20 and full HD had the smallest 
variance across subjects). Confusion matrices indicated 10-20 to have the most balanced 
performance across the three classes. 
 
2D cNN – EMS. The results using the EMS method were slightly different. As with Robust 
Standardization and L2 Normalization, the 10-20 configuration had the highest accuracy in 
almost all subjects (average accuracy of ~86%), albeit with a significant variance across 
subjects (std = 0.14) (Fig. 4.20, 4.21). Nevertheless, in contrast to the other methods, the high-
density configurations (HD, HD + HF, full HD) alongside EMS achieved an increased average 
of ~82%. This increase was also evident from the confusion matrices, and particularly from the 
significant increase in performance within the Sedation class (Fig. 4.22). 

 

Fig. 4.20. Average categorical cross-entropy loss and accuracy history, for the four EEG resolution 
configurations. Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy.  
(2D – EMS) 
 

 

Fig. 4.21. Categorical cross-entropy loss and accuracy, for the four EEG resolution configurations (2D 
– EMS) 
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Fig. 4.22. Confusion matrices (normalized) for the four EEG resolution configurations (2D – EMS) 
 
3D Topomap cNN – Robust Standardization. For the 3D topomap network design, results 
were moderately improved in Robust Standardization, when compared to the 2D model. The 
performance of the 10-20 configuration was the prevailing in the majority of subjects, reaching 
an average of 87% (std = 0.1), with full HD following with 81.96% (std = 0.12), and 
HD/HD+HF with an average of ~77% (Fig. 4.24). Confusion matrices revealed a more 
balanced performance across classes for the high-density settings, compared to the respective 
2D model (Fig. 4.25). 
 

 

Fig. 4.23. Average categorical cross-entropy loss and accuracy history, for the four EEG resolution 
configurations. Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy  
(3D Topomap – Robust Standardization). 
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Fig. 4.24. Categorical cross-entropy loss and accuracy, for the four EEG resolution configurations (3D 
Topomap – Robust Standardization). 
 

 

Fig. 4.25. Confusion matrices (normalized) for the four EEG resolution configurations (3D Topomap – 
Robust Standardization). 
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3D Topomap cNN – L2 Normalization. The 3D topomap model with the L2 normalization 
performed significantly worse than any other configuration. Categorical cross-entropy loss 
showed that the 10 runs of training did not necessarily reach a stable convergence (Fig. 4.26). 
Fig 4.27 clearly depicts this unstable behavior of the design pair. The per-subject accuracies 
showed no prevailing configuration, while for the 10-20 channels the model performed at 
chance level accuracy (33%) for all subjects, except S8. The HD and full HD configurations 
reached an average accuracy of ~71%, with HD + HF following with 64%. The confusion 
matrix of the 10-20 model showed a classification bias towards the Wakefulness state, revealing 
the failure of model’s training (Fig. 4.28). For the high-density settings, confusion matrices 
revealed a minor instability within the Sedation state. 
 

 

Fig. 4.26. Average categorical cross-entropy loss and accuracy history, for the four EEG resolution 
configurations. Shaded areas correspond to std. Dashed curves correspond to training loss/accuracy. 
(3D Topomap – L2 Normalization) 
 
 

 

Fig. 4.27. Categorical cross-entropy loss and accuracy, for the four EEG resolution configurations (3D 
Topomap – L2 Normalization) 
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Fig. 4.28. Confusion matrices (normalized) for the four EEG resolution configurations (3D Topomap – 
L2 Normalization) 
 
3D Topomap cNN – EMS. The results using the EMS were similar to the results obtained 
from the respective 2D representation model. All models had a stable convergence, based on 
the categorical cross-entropy curves. The 10-20 configuration achieved an average accuracy of 
86%, with high-density configurations following with an average of ~83%, which was 
considerably higher than the one obtained from Robust Standardization and L2 Normalization. 

4.5.2 Discussion and Statistical Analysis 

Overall, the 10-20 channel configuration had the best performance against all other 
high-density configurations, irrespective of the model design and normalization method, 
reaching a peak accuracy of 88.4% with Robust Standardization (Fig. 4.29). The 3D Topomap 
network design showed some minor improvements over the high-density configurations, albeit 
with an unstable behavior for the 10-20 channels and L2 Normalization. Moreover, high-
density configurations were further improved by using the EMS normalization method, as 
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already found from the previous experiment. The inclusion of high-frequency content (HD + 
HF), or the inclusion of the underside peripheral electrodes (full HD), did not seem to affect 
the performance of the HD dataset. 

These findings were supported by the statistical analysis of the repeated-measures 
ANOVA, as seen in Table 4.6. The results using the L2 Normalization were excluded from the 
data as outliers that mislead the analysis, due to the instability of the 3D Topomap model and 
the chance level accuracy of the 10-20 system. The prevalence of the 10-20 configuration was 
confirmed by the significant effect of the spatial resolution, with p = 0.001. A significant 
interaction between the Normalization method and the spatial resolution was also present (p = 
0.04), which was driven by the increased performance of EMS in high-density configurations. 
 

 

Fig. 4.29. Performance comparison for the ‘model design x normalization method x spatial-frequency 
resolution’ experimental design. Error bars indicate the 95% confidence interval. 
 

 
Table 4.6. Repeated-measures ANOVA for Spatial Resolution and High-Frequency Content   

F Value Num DF Den DF Pr > F 
Normalization 0.786068 1 8 0.401158 
Spatial_Freq_Resolution 7.063343 3 24 0.001448 
Architecture 3.235074 1 8 0.109782 
Normalization:Spatial_Freq_Resolution 3.034506 3 24 0.048736 
Normalization:Architecture 3.16E-05 1 8 0.99565 
Spatial_Freq_Resolution:Architecture 1.43632 3 24 0.256857 
Normalization:Spatial_Freq_Resolution:Architecture 0.232566 3 24 0.872781 

 
 

In the subsequent experiments, the comparison between the 10-20 and the HD channel 
configurations, along with the normalization methods of Robust Standardization and EMS, 
were kept under investigation, considering the interactions found here. L2 normalization was 
dismissed due to its instability with the 3D topomap network. The spatial resolution factor is 
particularly relevant for the investigation of the models’ robustness to EEG artifacts, the levels 
of which can highly depend on the EEG sensor density. 
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4.6 Experiment 4 - Robustness to EEG Artifacts 

In this set of experiments, we investigate the models’ robustness to EEG artifacts, using 
the three artifact cleaning approaches described in 4.2.2. Both architecture designs of 2D and 
3D representations were tested, along with the comparison between the two normalization 
methods (Robust Standardization and EMS), and the 10-20 and HD channel configurations, 
given the interactions found in the previous experiments. The original model designs and 
sampling frequency of EEG (100 Hz) were used here, as we excluded the high-frequency 
content. For the high density (HD) set with the 2D representation, the adjusted model (cNN – 
HD) was used. The total number of trainable parameters were 5,739,267 and 6,092,643 for the 
2D representation models (cNN and cNN-HD, respectively), and 5,624,387 for the 3D 
Topomap. All experimental setups were tested under the three preprocessing approaches, 
resulting in a 2 x 2 x 2 x 3 factorial design (Model Design x Normalization Method x Spatial 
Resolution x Cleaning Approach) (Table 4.7).  
 
 

Table 4.7. Experimental design for Model Robustness to EEG Artifacts 
 
 
 
 
 
 
 
 

4.6.1 Results 

During the automatic cleaning approach, a number of epochs were dropped from the 
dataset, based on the peak-to-peak threshold of 800 μV, and after the interpolation of bad 
channels. Bad channel interpolation was limited, and mainly within the high-density datasets. 
Regarding epoch rejection, a small percentage was dropped that varied across participants (as 
expected, given that the peak-to-peak threshold was set to a conservative value), with a minor 
increase for the HD sets. Specifically, the average rejection rate was 0.81% for the 10-20 
system, and 2.98% for the HD set. Given that there were ~24,300 epochs instances in total for 
all participants and anesthetic states, this resulted in a loss of ~196 samples for the 10-20 
system, and ~724 samples for the HD set, which is acceptable for training and testing. 
Importantly, this approach ensured that there were no significant outliers during training. 
 
 

Model Design 

X 

Normalization Method 

X 

Artifact Cleaning 

2D cNN Robust Standardization 
No Cleaning (10-20) 

Automatic Cleaning (10-20) 
Manual Cleaning (10-20) 

3D Topomap cNN EMS 
No Cleaning (HD) 

Automatic Cleaning (HD) 
Manual Cleaning (HD) 
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2D cNN – Robust Standardization. For the 2D architecture with Robust Standardization, 
average categorical cross-entropy showed that all models had a stable convergence within the 
10 runs (Fig. 4.30). The performance of the 10-20 channel selection was similar for all three 
artifact cleaning approaches, with an average of ~88% (Fig. 4.31). In contrast, HD datasets 
showed differences in performance, with manual cleaning having the highest accuracy at 
84.07% (std = 0.11), following with automatic cleaning at 81.55% (std = 0.12) and no cleaning 
at 76.26% (std = 0.12). Confusion matrices further showed the gradual increase and decrease 
in performance for the corresponding 10-20 and HD models (Fig. 4.32). 
 
 

 
 
Fig. 4.30. Average categorical cross-entropy loss and accuracy history, for the 2 x 3 configurations of 
spatial resolution and artifact cleaning. Shaded areas correspond to std. Dashed curves correspond to 
training loss/accuracy. (2D – Robust Standardization) 
 
 
 

 
 
Fig. 4.31. Categorical cross-entropy loss and accuracy, for the 2 x 3 configurations of spatial resolution 
and artifact cleaning (2D – Robust Standardization) 
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Fig. 4.32. Confusion matrices (normalized) for the 2 x 3 configurations of spatial resolution and artifact 
cleaning (2D – Robust Standardization) 
 
2D cNN – EMS. When using EMS as the normalization method, results showed a similar 
picture. Again, all models converged for the 10 runs, as shown by the categorical cross-entropy 
loss (Fig 4.33). The three artifact cleaning approaches did not present significant changes in 
performance, albeit the overall increase for HD models (~85% accuracy for 10-20, ~83% 
accuracy for HD, on average, Fig. 4.34). Although EMS did not reach the peak accuracy 
achieved in the previous experiments, it further showed consistency across the different 
configurations, as well as a balanced performance, indicated by the confusion matrices (Fig. 
7.34). 
 

 
 
Fig. 4.33. Average categorical cross-entropy loss and accuracy history, for the 2 x 3 configurations of 
spatial resolution and artifact cleaning. Shaded areas correspond to std. Dashed curves correspond to 
training loss/accuracy. (2D – EMS) 
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Fig. 4.34. Categorical cross-entropy loss and accuracy, for the 2 x 3 configurations of spatial resolution 
and artifact cleaning (2D – EMS) 
 
 

 
Fig. 4.35. Confusion matrices (normalized) for the 2 x 3 configurations of spatial resolution and artifact 
cleaning (2D – EMS). 
 
 
3D Topomap – Robust Standardization. For the 3D Topomap architecture, the results 
showed a similar trend to the respective 2D model with Robust Standardization. All models 
had a stable convergence, based on the categorical cross entropy loss. For the 10-20 system, no 
artifact cleaning method had any prevailing performance (accuracy of ~86%). In contrast, 
automatic cleaning had the highest performance for the HD datasets (84.76%), following with 
the manual cleaning (82.13%), and finally the no cleaning approach (78.53%). 
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3D Topomap – EMS. The 3D Topomap architecture in combination with EMS had also 
similar results to the 2D model design. All models had a stable convergence, based on the 
categorical cross entropy loss. Average accuracy scores did not have any significant differences 
across the three cleaning approaches, or within the spatial resolution factor. 

4.6.2 Discussion and Statistical Analysis 

Overall, the three preprocessing approaches for artifact cleaning performed similarly 
for the 10-20 configuration (Fig. 4.36). On the contrary, high density configurations revealed 
more clearly the differences in performance and the strengths of each approach. As already 
discussed, EMS and the 3D Topomap representation, are two factors that can improve model 
performance, under the presence of high-density EEG (which is typically more noisy). 

A statistical analysis using repeated-measures ANOVA (statsmodels) can been seen in 
Table 4.8. The interaction among the artifact cleaning approach, the normalization method and 
the 3D Topomap design, driven by the HD sets, can be seen from the results (p = 0.06). 
 
 

 
 
Fig. 4.36. Performance comparison for the ‘model design x normalization method x spatial resolution 
x artifact cleaning’ experimental design. Error bars indicate the 95% confidence interval. 
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Table 4.8. Repeated-measures ANOVA for Model Robustness to EEG Artifacts  
F Value Num DF Den DF Pr > F 

Normalization 0.04382 1 8 0.839422 
Spatial_Resolution 12.85404 1 8 0.007134 
Artifact_Cleaning 0.547377 2 16 0.588921 
Architecture 0.792568 1 8 0.399305 
Normalization: Spatial_Resolution 4.894954 1 8 0.057859 
Normalization: Artifact_Cleaning 0.622216 2 16 0.549248 
Spatial_Resolution: Artifact_Cleaning 1.724536 2 16 0.209782 
Normalization: Architecture 0.00193 1 8 0.966032 
Spatial_Resolution: Architecture 3.573121 1 8 0.095386 
Artifact_Cleaning: Architecture 0.034293 2 16 0.96636 
Normalization: Spatial_Resolution: Artifact_Cleaning 3.345339 2 16 0.06112 
Normalization: Spatial_Resolution: Architecture 1.510882 1 8 0.25393 
Normalization: Artifact_Cleaning: Architecture 1.469079 2 16 0.259572 
Spatial_Resolution: Artifact_Cleaning: Architecture 3.175516 2 16 0.068957 
Normalization: Spatial_Resolution: Artifact_Cleaning: Architecture 0.429352 2 16 0.658213 

4.7 Discussion 

Given our initial goals, we have shown the possibility of creating a novel 3D 
convolutional neural network design that is able to incorporate different EEG systems, and 
exploit the spatial structure of the EEG in a unified way. We have also worked towards the 
acquisition of a standard and automated pre-processing pipeline, by investigating the effects of 
several preprocessing parameters, the nature of which we consider crucial for EEG 
representation. To our current knowledge, we are not aware of any study that has tried to 
systematically investigate the above research questions. Nevertheless, there is a limited number 
of reviews that compare existing deep learning architectures for EEG analysis (Schirrmeister 
et al. 2017; Heilmeyer et al. 2019; Roy et al. 2019), as well as few studies on EEG 
representation comparison, albeit outside the context of machine learning (Yao et al. 2019; Lei 
and Liao 2017; Muthukumaraswamy 2013; Jiang, Bian and Tian 2019).  

As already known and expected, the model, the nature of the data, their dimensionality, 
the presence of noise, and other variables, can be significant factors of machine learning 
performance. Even though the statistical comparisons were limited and restricted to our 
selected course of experiments, we acquired stronger or weaker indications for the advantages 
and disadvantages of the different methods. It is important to notice here that the repeated use 
of our validation data throughout our experiments can act as a ‘weak training set’, which might 
lead to information leakage in the selected processing pipelines. Of course, the selected 
classification task and model configurations used overall, might not be adequate to reveal some 
of the effects under study, in which case we would expect to find subtle differences. For all 
these reasons,  we proceed with skepticism over the importance of the obtained results within 
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our data-limited analysis, alongside our understanding of the underlying processes and 
theoretical presumptions.  

4.7.1 Reference Montage and Normalization Method 

In Experiment 1, we showed that the average reference can be an optimal choice as the 
reference montage, given its high performance in both 10-20 and high density channel settings, 
its versatility in capturing focal and broadly distributed information, and its usability with a 
variety of EEG systems and methods. As our research focuses on anesthesia datasets with full 
head coverage and minimal noise from EEG artifacts, the potential drawbacks of this montage 
are significantly limited.  

Moreover, during Experiment 2 we showed that robust standardization can be a reliable 
normalization method for the input epoch of our cNN model, providing consistent and balanced 
performance across subjects, whilst also being simple and robust to noise. On the other hand, 
the advantage of EMS in high-density settings can most likely be attributed to the use of a 
channel-wise standardization. Empirically, we know that high-density systems often have a 
number of unstable channels (cases of sensors with local or global high-amplitude noise), 
which can distort the information of the remaining ones, under an epoch-wise standardization 
approach. Nevertheless, as our experiments showed no requirement for using high-density sets, 
and a channel-wise standardization introduces significant spatial distortions, robust 
standardization remains a preferable option overall (the minor performance decrease of the 10-
20 configuration could be possibly explained by the spatial information loss of EMS). Of 
course, a combination of the two methods is possible, by applying EMS with estimations 
calculated across all EEG channels (although still vulnerable to channel outliers, this would 
preserve a better statistical estimation of mean and std throughout time).  

4.7.2 Spatial Resolution and High-Frequency Content 

In Experiment 3, we investigated the effect of the spatial resolution and high-frequency 
content of the EEG, alongside the comparison between the 2D and 3D representation designs 
of the cNN. The acquisition of an HD dataset allowed us to do a rudimentary analysis on the 
information across different spatial densities of the EEG under anesthesia, which has not been 
researched in this context. The 10-20 system showed significantly better performance than any 
other HD configuration, giving us an optimal setup which is practical both from a research 
perspective, but also from a clinical one, as the use of HD systems is expensive and time 
consuming for hospitals. Notably, (Schirrmeister et al. 2017) reported similar findings for deep 
learning-based EEG analyses, with HD configurations resulting in decreased performance 
under a variety of classification tasks. However, the potential and theoretical information gain 
obtained with HD sets cannot be disregarded, based solely on the performance of the models.  
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Apart from the overall increase of noise in HD sets, our results could be partly explained 
by the considerable increase of input parameters in the EEG samples, which can be significant 
in the context of machine learning algorithms (20 x 100 = 2,000 input features for 10-20 in 2D, 
173 x 100 = 13,300 for HD in 2D, and 30 x 30 x 100 = 90,000 for the 3D architecture). Given 
that the 3D cNN model was common in all four configurations, we can infer that input 
parameters, rather than model parameters, were the most determinant factor. The 10-20 system 
was able to achieve high performance with the 3D cNN despite the input dimensionality 
increase (as the information content remained low), yet still relatively worse compared to the 
2D network, which preserved the original low dimensionality. In addition, while model 
parameters increased for the HD sets in 2D design (almost doubled for Full HD), performance 
patterns did not change with respect to the common 3D network. Of course, the exact 
relationship among the number of input features, training samples and model parameters is 
unclear, without a scientific or theoretical basis.  

With regards to model parameters and the ability to learn from high-dimensional data, 
contemporary deep learning networks successfully incorporate several mechanisms, to avoid 
overfitting (e.g. dropout, L1/L2 regularization). On the other hand, the number of input features 
can be directly associated to the number of training samples (epochs), as finding patterns in 
high-dimensional spaces requires a sufficient number of examples (an empirical rule suggests 
training instances to be at least ~10 times the number of input parameters (Miotto et al. 2018); 
this is the case for the 10-20 system in 2D networks – 2,000 dimensions, ~21,600 training 
samples). Of course, such problem could be eventually solved with the inclusion of more data, 
or possibly by using a data augmentation technique (e.g. using an EEG-GAN, as found in 
(Hartmann, Schirrmeister and Ball 2018)), given the scarcity of EEG datasets in GA research. 

Despite the amount of training data and the respective dimensionality problem, other 
theoretical reasons could be considered regarding the use of HD sets and the high-frequency 
content of the EEG. For example, deep structures (such as the thalamus) have be shown to be 
relevant in capturing the neural correlates of consciousness, making HD sets more viable for 
investigation. Moreover, high-frequency content has been shown to be relevant to perceptual 
abnormalities (Tekell et al. 2005), and in particular anesthetic agents (e.g. in ketamine 
(Maksimow et al. 2006)), which might not be evident from our results with propofol anesthesia. 
Nonetheless, our current findings suggest that the use of HD-EEG and high-frequency content 
decrease our model performance, most likely due to the increase of noise in HD settings. 

4.7.3 Robustness to EEG Artifacts 

 Finally, in Experiment 4 we showed that deep learning models can be robust to EEG 
artifacts, under certain desired conditions. While different studies have used different 
approaches for training deep learning-based EEG models, with or without artifact cleaning, 
this is a particularly important aspect of methodology. The non-requirement for artifact 
cleaning is an important asset for deep learning, given the significant noise found in EEG 
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signals, as well as the time and expertise needed for manual intervention and data curation. 
This is in contrast to the majority of the conventional EEG methodologies, or other machine 
learning models, which require techniques such as feature selection, feature engineering, 
outlier detection, or other ways to improve data representation and performance.  

More specifically, as we saw in the case of the 10-20 system, the detection and cleaning 
of EEG artifacts, either by an automated algorithm or by a human expert, did not affect model 
performance, which was robust across subjects already by using the raw data. On the other 
hand, artifact cleaning appeared to be more beneficial for HD configurations, which as already 
discussed, are more prone to artifact contamination. The accuracy gap between the 10-20 and 
HD configurations is further understood here, with HD performance significantly increasing 
(and in some cases approaching 10-20) under the suppression of noise, either by artifact 
cleaning or EMS (and to a lesser extent, by the 3D network design). Although we did not 
observe any correlation between subject performance and the rate of artifact 
detection/rejection, the HD performance increase is attributed to particular subjects that 
appeared to benefit from artifact cleaning (for automatic cleaning, an average of 3% epoch 
rejection resulted in ~5% accuracy increase). Based on these results, and given the 
dimensionality of HD configurations, we can infer that significant outliers – even within a 
small percentage of the data – can affect the training and testing of the models.  

Furthermore, our results indicated that automatic cleaning can be as reliable as manual 
cleaning, which gives us the option to apply it globally without significant cost, and particularly 
in cases where high-density channel settings, increased dimensionality and a limitation to 
training samples, constrain model performance. Our approach also allows the preprocessing 
pipeline to remain automated, fast and reproducible. By observing the output of the algorithm 
in detail and by visual inspection of the dropped epochs, a peak-to-peak threshold of 800μV 
ensured that we did not dismiss signals of interest. However, the algorithm appeared sensitive 
in cases where the rejection of an epoch was based on few or even one bad channel (more 
evidently in HD). As data retention is generally important for EEG, and models appear robust 
to EEG artifacts, the epoch rejection requirement could be ideally relaxed (e.g. rejecting only 
epochs with >20% of channels exceeding peak-to-peak threshold). In any case, as our cNN 
model is time-invariant with predictions based solely on the epoch’s time window, the 
preservation of temporal information is not of concern here. Such preprocessing pipeline could 
be used in future work for robust training, while allowing the test data to remain unprocessed 
for real-time prediction and evaluation.  

Alternatively to this pipeline, other algorithms could be used for artifact cleaning, most 
notably based on deep learning techniques, as found in recent studies (e.g. with the employment 
of an independent deep autoencoder trained to denoise EEG signals (Yang et al. 2018)). Of 
course, such approach would require well-structured and standardized datasets for the 
development of systems for EEG denoising, which are currently missing from the research 
community (Zhang et al. 2020). Fine-tuned cleaning of large datasets requires substantial time 
of human expertise annotating artifacts (or artifact types), alongside any ground-truth 
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ambiguities. As the development of such dataset is hard and out of the scope of this work, our 
devised algorithm is a sensible method for implementation. 

4.7.4 2D vs 3D Convolutional Neural Network Design 

 Summarizing our findings, we can infer that the 3D cNN architecture is an overall 
improvement over the 2D cNN design, both for the theoretical reasons discussed, but also for 
its computational efficiency and performance observed in Experiments 3 and 4. The 3D 
architecture showed a moderate performance increase over the 2D architecture, as revealed 
under the use of high-density EEG, where artifact contamination made the extraction of reliable 
features even more challenging. The homogeneous nature of the 3D kernels can be more 
effective in artifact detection and suppression, as noise tends to spread locally into neighboring 
sensors, and the 3D network preserves the topological properties of the signals. Moreover, the 
preservation of the spatial structure of the EEG, and the common network parameters (in 
contrast to the inconsistent representation of the 2D design), allowed for the extraction of 
spatio-temporal features that can be generalizable across different subjects and acquisition 
systems. Both of these reasons can account for the observed performance variation, based on 
the differences between the two architecture designs.  
 In spite of these improvements, the 3D network showed a minor disadvantage compared 
to the 2D network, when employed with the 10-20 system. Although performance changes here 
fall outside statistical significance, we suspect that the dimensionality increase, along with the 
highly correlated features of EEG epoch images, are likely responsive for this effect. While 
spatial filtering could in theory improve SNR, as shown in (Higashi, Tanaka and Tanaka 2014), 
the 90,000 features produced by the 30 x 30 topomap image resolution are significantly higher 
than needed for the 10-20 system. Therefore, the topomap image resolution can be decreased 
depending on the channel density required, or alternatively, replaced by a direct mesh 
representation of channel activity, similar to the approach found in (Wilaiprasitporn et al. 
2020). 

4.8 3D Convolutional Neural Network 

In this section, we derive a generic 3D convolutional neural network and a standard 
pre-processing pipeline, based on the findings of this chapter. As initially discussed, these will 
allow us to fully exploit the spatio-temporal dynamics of the EEG, as well as to integrate a 
variety of EEG systems and datasets consistently, under a common methodology. 
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4.8.1 Input Pre-processing 

The preferred pre-processing pipeline for the EEG input is specified here, following 
our previous discussion. Automatic artifact cleaning (step 5) is applied only on training data, 
as a way to ensure robust learning. The condition for epoch rejection is relaxed, with the 
requirement for more than 20% of channels exceeding the peak-to-peak threshold (as explained 
in section 4.7.3). Testing data remain unprocessed with regards to artifacts, as we want to 
evaluate the models over the continuous raw EEG signals, similarly to a real-time condition 
found in clinical settings. 
 
EEG Pre-processing: 

1. 10-20 System Channel Selection 
2. Band-Pass Filtering (0.5 – 40 Hz, 50/60 Hz Notch Filter) 
3. Resampling at 100 Hz 
4. Epoching (1 sec, non-overlapping) 
5. Automatic Artifact Cleaning (Training Data) 

a. Bad Channel Interpolation (‘bad’ if channel is flat or has >20% epochs exceeding 
peak-to-peak threshold of 800 μV) 

b. Epoch Rejection (if >20% channels exceeding peak-to-peak threshold of 800 μV) 
6. Re-referencing to Average 
7. Epoch-wise Robust Standardization (quantile range: 0.25 – 0.75) 

4.8.2 Mesh Representation Design 

Focusing on the advantages of the 3D network design, and specifically on the use of 
the 10-20 system channel configuration (revealed as the optimal setup), we further investigated 
several parameters of input representation. One of the main drawbacks of our 3D topomap 
model, related to the significant increase of the input dimensionality, as a result of the high-
resolution topomap images. Hence, we naturally tested the use of lower-resolution images (6 x 
6 images), the effect of spatial filtering (10 x 10 images with Average/Max pooling), as well 
as the use of a mesh representation (5 x 5), under our classification task (the mesh 
representation re-arranges the locations of the 10-20 channels into a 2D grid, by largely 
preserving their spatial relationships, as seen in Fig. 4.37). Given the selection of the 10-20 
system, which comprises of 20 electrodes, we ensured that all of the above parameters were 
sufficient to capture the spatial dynamics of the EEG. 

By incorporating a pooling layer for the spatial filtering of the 10 x 10 images, we were 
able to keep the dimensionality of the network’s layers comparable, as a way to fairly assess 
the different input configurations. The results showed a significant improvement of the 2D 
mesh representation over the 6 x 6 topomap images, and to a lesser extent, over the 10 x 10 
images with average pooling (not statistically significant). The difference between the mesh 
and 6 x 6 topomap images could be explained due to interpolation distortions that can occur in 
low resolution settings (in contrast to the mesh, which preserves the original signals). 
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Moreover, we tested a variant of the 2D mesh representation, by excluding epoch 
standardization centering (in order to avoid introducing noise in the ‘empty’ – zero valued – 
cells of the grid), which showed no statistically significant difference in performance. 
Therefore, we retained the original architecture, by replacing the topomap image extraction 
with the mesh representation, as depicted in Fig. 4.37. 
 

 
 
Fig. 4.37. The 3D Convolutional Neural Network architecture. The 10-20 system channels are arranged 
into a 2D mesh/grid, the time courses of which create the 3D representation of the EEG input. 
 
 

This 3D architecture preserves all the advantages found in our analysis, and offers a 
computationally efficient solution for the 10-20 system channel selection (total number of 
trainable parameters: 5,718,529). A minimal number of cells in the grid are ‘empty’ (in this 
case five), whilst any channel can be replaced, depending on the spatial needs of the given EEG 
system (e.g. in several systems alternative electrodes can be found within the 10-20 system). 
While this model is used throughout our subsequent analyses, the 3D topomap cNN design 
remains an alternative robust design, in cases where high-density configurations are needed. 

4.8.3 Summary 

Overall, we have developed a novel cNN architecture and an automated pre-processing 
pipeline that allow us to process different EEG systems and datasets, in a unified and consistent 
way. We have also explored the effect of several parameters of EEG representation, and the 
capacity of 3D convolutions to extract robust spatio-temporal features from the EEG. By 
deriving an optimal processing pipeline, we were able to acquire a 2% performance increase 
within our classification task (up to 88% accuracy). Of course, besides the representation 
parameters focused here (which we consider to be most impactful), other parameters in deeper 
layers of the network can also affect the performance of the model. Setting aside such hyper-
parameter optimization, the nature of the task under training and the respective ground-truth 
are among the most critical aspects of feature learning and performance. Given this premise, 
in the next chapter we focus on a variety of learning tasks, with an aim to better understand the 
EEG under GA, the respective clinical ground-truths, and the limitations of deep learning. 
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Chapter 5 Predictive Analysis of Behaviorally, 

Pharmacologically, and Psychometrically defined 

Anesthetic States 

5.1 Introduction 

5.1.1 Overview 

In this chapter, we explore the capabilities of deep learning for electrophysiological 
investigation and estimation of anesthetic-induced states of unconsciousness. Specifically, we 
exploit the acquisition of data from experimental designs that control for several clinical 
variables, such as the anesthetic agent and the administration mode, which are used to target a 
particular behavioral, pharmacological, or psychometrical response. As none of these 
responses can provide us with an infallible ground-truth for consciousness in the brain, it is 
important to test the consistency of our models’ predictions, and compare them to the respective 
EEG signatures. Moreover, we investigate the effect of the learning algorithm on the dynamics 
of our 3D cNN model (derived in the previous chapter), by conducting classification and 
regression experiments under a targeted ground-truth measure. In Experiment 1, we explore 
the behavior and performance of the model in a propofol study, when trained and tested under 
behaviorally-defined anesthetic states, characterized by the Ramsay scale. In Experiment 2, we 
further explore pharmacologically-defined states of propofol, by incorporating two ground-
truth measures – the targeted plasma concentrations (as estimated by the Marsh PK model) and 
plasma concentrations measured arterially from blood samples. In Experiment 3, we explore 
psychometrically-defined anesthetic states from a ketamine study, which incorporates self-
report measures from an altered-states-of-consciousness (ASC) questionnaire. Our results 
highlight the features and limitations of the models, in relation to each learning task and clinical 
ground-truth. This allows us to make inferences about the nature of our EEG data, as well as 
to derive an optimal training strategy. We further discuss about the nature of recovery, the 
relation of the models to the large-scale temporal dynamics of EEG and the depth of anesthesia, 
and we compare the utility of behavioral, pharmacological, and psychometrical measures. 
Finally, we compare the performance of our model to results from other related studies and 
methods of contemporary clinical practice.  
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5.1.2 Background 

Our aim here is to focus on the nature of the optimization task undertaken by our deep 
learning model, by exploring different learning objectives and anesthetic definitions, based on 
behavioral, pharmacological, and psychometrical evidence for consciousness. One of the goals 
of this analysis is to investigate and understand the EEG data, in relation to the administered 
agent, the various anesthetic depths, and other clinical variables (i.e. pharmacological, 
behavioral and psychometrical measures) that are currently used as ground-truth information 
within GA practice. Another goal of this chapter is to test the predictive power of deep learning 
under different learning tasks, and reveal an optimal training strategy that will enable our model 
to impartially capture the electrophysiological features reflecting states and levels of 
unconsciousness. 

Investigating the neurophysiological changes under anesthesia is a challenging 
problem, given our rudimentary understanding of the anesthetics’ action, and the limitations of 
our tools to explore the underlying brain mechanisms. Specifically with regards to EEG, the 
richness of the electrophysiological signals and the various sources of noise have created the 
need for multivariate pattern analysis techniques, which allow for the decoding of more 
complex (and possibly hidden) brain states. However, while deep learning has shown its 
strength for data-driven analyses, its vulnerabilities to high-dimensional patterns make the 
selection of the objective function and ground-truth, particularly important. In our own study, 
ground-truth is in one sense defined by medical standards, as the information collected and 
used by clinicians to characterize the different anesthetic states. Although we theoretically 
understand the causal chain from the administration of a drug’s dose, to changes in brain 
activity, and eventually to changes in EEG and clinical outcomes (e.g. behavioral 
unresponsiveness), the exact interactions remain unknown (due to the biological and 
pharmacological complexities of pharmacokinetics/pharmacodynamics). Nevertheless, by 
acquiring indirect (to consciousness) pharmacological, behavioral, and psychometrical 
measures, and by observing the model’s behavior under their instantiation, we can better assess 
the nature of the respective EEG signatures. 

At the same time, the employment of different clinical variables as the target of an EEG-
based predictive task, can reveal the learning capacity of our model in relation to these complex 
interactions. Supervised learning is particularly efficient in discovering features directly 
relevant to a given task, while specifically for EEG decoding it has been shown that different 
algorithms can affect the outcomes of feature learning (Stober et al. 2015). Meanwhile, 
literature has shown a variety of studies using classification and regression methodologies in 
similar research tasks, without a systematic investigation on their effectiveness, or their 
theoretical and practical implications (e.g. in relation to definitions of consciousness, or the 
large-scale temporal dynamics of EEG – defined here as the dynamics beyond the model’s 
window of analysis). In this sense, an optimal training strategy can be derived, with respect to 
a supervised learning algorithm and ground-truth encoding, whilst evaluated upon the model’s 



98 

 

ability to make predictions that are accurate and generalizable (or interpretable, based on 
known facts). 

Both above-described goals are connected to several theoretical considerations and 
unsolved problems, recognized within GA research (Bonhomme et al. 2019), which can 
advance clinical practice and consciousness research in general. One of the main unsolved 
problems, regards our ability to sensitively and specifically distinguish across different 
consciousness states that emerge during anesthesia. Notably, a state of disconnected 
consciousness often occurs during GA, which can be assessed by retrospective self-reports. 
Different anesthetic agents and doses can produce a variety of states, including connected 
consciousness (oriented consciousness, with awareness of the environment), disconnected 
consciousness (a dream-like state, without perception of the environment) and unconsciousness 
(no subjective experience) (followed by explicit or implicit memories). Understanding their 
neurophysiological and phenomenological properties can contribute not only to the 
identification of the full NCC, but also to the development of better clinical indices for tracking 
the DoA (dreaming and connectedness occur frequently during surgeries, with incidences 
reported up to 5%). Especially with regards to disconnected consciousness, a significant 
distinction between loss of behavioral response (LOBR) and loss of consciousness (LOC) must 
be made here, as unresponsiveness is not equated to unconsciousness (particularly during light 
anesthesia, where a transition from LOBR to LOC has been hypothesized to take place (Sanders 
et al. 2012)). 
 Finally, our investigation connects to other theoretical considerations and unstudied 
phenomena recognized in (Bonhomme et al. 2019). Notably, the between-studies variations in 
experimental designs, anesthetic agents, doses, and administration modes have led to many 
difficulties in the comparison of findings and reproducibility overall. The majority of research 
studies have focused on specific agents, and mostly during the induction and maintenance 
phases of anesthesia. Nevertheless, questions about the dose-response relation (and the inter-
individual response to a drug), the transitional phases of anesthesia, the direction of transitions, 
and other asymmetries (e.g. recovery compared to induction), remain open. In the next sections, 
we describe how our approach tackles some of these questions by creating predictive models 
of behavior, drug concentrations and psychometrics. 

5.1.3 Related Work 

Literature review of the past few years has shown an increasing number of studies using 
learning-based methods, and especially deep learning methods, for the analysis of EEG under 
anesthesia (Lalitha and Eswaran 2007; Huang et al. 2013; Liu et al. 2015; Jiang et al. 2015; 
Sun et al. 2019a; Saadeh, Khan and Altaf 2019; Gu, Liang and Hagihira 2019; AlMeer and 
Abbod 2019; Liu et al. 2019; Dubost et al. 2019). Almost all of the studies we are aware have 
focused on a methodological investigation of the models, as an EEG-based tool for monitoring 
the depth of anesthesia (DoA) (rather than an explorative tool), whilst evaluated on a behavioral 
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ground truth. Despite the differences in methodology, several observations can be drawn from 
these works, mostly in relation to the selected ground-truths. However, while clinical scales 
are used on the basis of behavior as a reliable marker for consciousness, pharmacological or 
psychometrical variables remain unexplored in the context of machine learning. In addition, 
the majority of the studies have analyzed patient data under clinical settings (with small number 
of electrodes), which although increase the clinical relevance of the findings, are harder to 
control (than research environments) in terms of investigating specific agents and anesthetic 
depths (typically, multiple medications are co-administered and different depths are targeted, 
depending on the patient/operation needs). 

With regards to learning tasks, there are several studies on classification analyses of 
anesthetic states, focusing on 2 to 3-state problems (Lalitha and Eswaran 2007; Saadeh, Khan 
and Altaf 2019; Dubost et al. 2019; Liu et al. 2019; AlMeer and Abbod 2019; Gu, Liang and 
Hagihira 2019), and a few studies on regression analyses, incorporating either discrete 
behavioral assessments (e.g. RASS scores (Sun et al. 2019a)) or continuous representations of 
consciousness levels (e.g. expert assessment curves, found in (Liu et al. 2015; Jiang et al. 
2015)). Notably, (Liu et al. 2019) and (Sun et al. 2019a) achieved high performances using 
cNN models under a 3-state classification task (reaching 93.5%), and a regression-over-RASS-
scores task (reaching MAE of ~1), respectively. However, given the significant variations 
found across tasks, ground-truths and depths of anesthesia, a comparative evaluation cannot be 
made (notably, only 66% of the studies used a cross-subject validation approach). Hence, a 
systematic investigation on the selected algorithm and learning objective can be important, in 
order to understand the behavior of the models, before any other methodological considerations 
(e.g. with respect to model architecture or EEG features). 

When it comes to the characterization of altered states of consciousness (such as 
disconnected consciousness), or subtle changes in anesthetic depth and quality, behavioral 
scales exhibit significant limitations. For example, the assessment of disconnected 
consciousness is often made by retrospective reports, or by controlled experiments of 
intermittent sedation cycles (as found in (Radek et al. 2018)), which are not found in clinical 
datasets. Moreover, the assessment of connected consciousness can also be restricted by the 
administration of neuromuscular blocking agents (typically used in surgeries), unless a 
communication method is established (e.g. using the isolated forearm technique, as in (Tacke 
et al. 2020)). Beyond connected and disconnected states, more subtle changes in anesthetic 
depth and the transitional phases of anesthesia are difficult to assess, unless there is a systematic 
control of drug administration. In this respect, few studies have explicitly analyzed states of 
intermediate sedation (sedation before LOBR or LOC) (Lalitha and Eswaran 2007; Saadeh, 
Khan and Altaf 2019; Gu, Liang and Hagihira 2019), or incorporated data from all transitional 
phases of anesthesia (Liu et al. 2015; Sun et al. 2019a; Dubost et al. 2019). Most importantly 
though, the majority of the works have shown the existence of large-scale temporal dynamics 
throughout the transitions of anesthesia (in both classification and regression analyses), with a 
small subset of the models exhibiting dynamics correlated with the anesthetic depth. 
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 Given all the above, questions related to specific agents, depths, pharmacological and 
psychometrical measures, as well as the algorithmic approach and its effect on the 
uncharacterized dynamics of anesthesia, constitute the focus of our analysis. 

5.2 Methods 

5.2.1 Datasets Collection 

The data used throughout the experiments of this chapter were acquired from three 
independent studies, found in (Murphy et al. 2011), (Chennu et al. 2016), and (Vlisides et al. 
2017; Vlisides et al. 2018), with consent given from the corresponding authors. 
 
Liege Anesthesia Dataset. The dataset acquired in (Murphy et al. 2011) has been described in 
detail in section 3.2.1. For this work, we expanded the dataset to include the 4th state of 
Recovery, which followed the transition from loss of consciousness to wakefulness, as denoted 
by the two consecutive behavioral assessments (clear and strong response to command – 
Ramsay 2). Importantly, all states were determined based upon reaching and sustaining the 
desired Ramsay score, with recordings following a 5-minute equilibration period, after 
reaching the appropriate effect-site concentration (steady-state recordings were ensured by 
adjusting a constant-rate infusion of propofol, alongside the effect-site estimations from the 
Marsh model – Alaris TIVA/TCI mode). Moreover, for 3 out of 9 participants, we were able 
to acquire the EEG recordings during the transitional states, namely: from wakefulness to 
sedation (WS), from sedation to loss of consciousness (SL) and from loss of consciousness to 
recovery (LR). During the transitional states, propofol infusion rates were increased or 
decreased, according to the desired target. The experimental design of the full dataset is shown 
in Fig. 5.1. 
 
 

 

Fig. 5.1. Experimental design of the Liege Anesthesia Study. Anesthetic induction was guided by 
behaviorally-steady states of progressively deeper levels of unconsciousness, defined by the Ramsay 
scale. 
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Cambridge Anesthesia Dataset. The dataset acquired in (Chennu et al. 2016) is also based on 
a propofol study, in which the experimental design is described in detail. Briefly, the study was 
approved by the Cambridgeshire 2 Regional Ethics Committee and in accordance with the 
Declaration of Helsinki. All participants were neurologically healthy and gave written 
informed consent. 

Approximately, seven minutes of spontaneous high-density electroencephalography 
(hd-EEG, 128 channel EGI Hydrocel GSN) was recorded from 20 participants (mean age = 
30.85, SD = 10.98; 9 male, 11 female) during propofol sedation at four different states: Baseline 
Wakefulness, Mild Sedation, Moderate Sedation and Recovery (eyes-closed resting-state). Each 
state was determined by a desired (“target”) plasma concentration, controlled by a 
computerized syringe driver that achieved and maintained the required propofol infusion rate 
for that plasma target (Alaris TCI mode, using the Marsh model). The targeted blood-plasma 
levels were 0.6 μg/ml for Mild Sedation (a relaxed but still behaviourally responsive state) and 
1.2 μg/ml for Moderate Sedation, while a 10-minute equilibration period was allowed before 
recordings, to attain pharmacologically-steady states. For Recovery, EEG was recorded 20 
minutes after the cessation of infusion, to ensure that propofol concentrations would approach 
zero (based on pharmacokinetic simulation). Blood samples were also taken between the 
anesthetic states, in order to characterize the inter-individual variability and to confirm 
similarity to target concentrations. The experimental design of the study is shown in Fig. 5.2. 
 
 

 

Fig. 5.2. Experimental design of the Cambridge Anesthesia Study. Anesthetic induction was guided by 
pharmacologically-steady states of progressively deeper levels of sedation, defined by propofol plasma 
concentrations. 
 
Michigan Anesthesia Dataset. The dataset acquired in (Vlisides et al. 2017) is based on a 
ketamine study, in which the experimental design is described in detail. Briefly, the study was 
approved by the University of Michigan Medical School Institutional Review Board, and 
written informed consent was given by volunteers. Physical examination and medical history 
were obtained from all participants, to avoid exclusion criteria based on the American Society 
of Anesthesiologists physical status class I (e.g. cardiovascular or respiratory problems, 
hypertension, apnea, asthma, neurologic disorders, psychiatric disorders, pregnancy, and 
others.) 
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 Spontaneous high-density electroencephalography (hd-EEG, 128 channel EGI 
Hydrocel GSN) was recorded from 15 healthy participants (age 20-40; 7 male, 8 female) during 
ketamine anesthesia at four different states of consciousness: Wakefulness, Sub-anesthetic 
Sedation, Loss of Behavioral Response (LOBR) and Recovery. After the initial 10-minute 
baseline period (Wakefulness), a continuous intravenous infusion of 0.5 mg/kg racemic 
ketamine was administered over a 40-min period (Sub-anesthetic Sedation, eyes closed), 
followed by a 1.5 mg/kg anesthetic bolus dose that led to loss of behavioral response (LOBR), 
and then a 10-min Recovery period. Before, during and after the anesthetic bolus, participants 
were instructed to squeeze an object on either the right or their left hand, based on a randomized 
auditory loop (one command every 30 sec). LOBR was denoted when participants ceased to 
respond to two consecutive commands. Additional medications were also administered when 
needed, for nausea and vomiting prophylaxis (ondansetron and scopolamine patch).  

In contrast to the previous studies, drug concentrations here were not guided by target-
controlled infusions (effect-site or plasma targeting), but rather on dosing strategies directly 
relevant to clinical care for depression (sub-anesthetic dose) or anesthetic induction (bolus 
dose). For the purpose of our analysis, two steady-states were extracted from the sub-anesthetic 
period and during LOBR, in accordance with the analysis found in the original studies (Vlisides 
et al. 2017; Vlisides et al. 2018). The Sedation steady-state consists of the final block of the 
sub-anesthetic period (25-40 min), which was assumed to have reached a pharmacologically-
steady state (plasma concentration was approximately 180 ng/ml at the end of this phase). 
LOBR consists of a 5 min block after the moment of cessation of response to commands (3.8 
min for one participant). Moreover, for 14 out of 15 participants, we were able to acquire all 
in-between transitional state recordings, namely: from wakefulness to steady-sedation (WS), 
from steady-sedation to the end of the sub-anesthetic state (PS), from the end of the sub-
anesthetic state to LOBR (SL), and from LOBR to recovery (LR). The experimental design of 
the study is shown in detail in Fig. 5.3. 
 
 

 
 
Fig. 5.3. Experimental design of the Michigan Anesthesia Study. The anesthetic states were guided by 
dosing strategies directly relevant to clinical care for either depression (sub-anesthetic dose) or 
anesthetic induction (bolus dose). 
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 Apart from the behavioral paradigm denoting LOBR, self-report measures of altered 
states of consciousness (ASC) were also recorded during and after the study, using a validated 
questionnaire (IRB approved). Besides its anesthetic effects, ketamine is known to have 
psychoactive properties that include perceptual distortions, cognitive impairment, and feelings 
of disconnection from the body and environment. In contrast to other agents (such as propofol), 
states of disconnected consciousness (dream-like states) can be induced by ketamine, even 
under profound behavioral unresponsiveness (as revealed by a significant body of work 
(Bonhomme et al. 2019)). The questionnaire used here consisted of 83 items related to 13 
subscales (perceptual dimensions), namely: experiences of unity, spiritual experience, blissful 
state, insightfulness, disembodiment, impaired control and cognition, anxiety, complex 
imagery, elementary imagery, audio-visual synaesthesia, changed meaning of percepts, 
transcendence of time and space, and ineffability (further definitions can be found in the 
original study and in (Studerus, Gamma and Vollenweider 2010; MacLean et al. 2012)). The 
response for all items was from 0 (no, not more than usual) to 10 (yes, very much more than 
usual), with the subscale score being the average of all items within that scale. These 
psychometrics were assessed twice, once after the sub-anesthetic period and before LOBR 
(study score), and once using an online questionnaire within 48 hours of the study (lifetime 
history score), which reflected the rating of these experiences throughout the whole lifetime of 
the participant. By looking at subscales with good intra-scale reliability (Cronbach’s alpha > 
0.7) and the highest deviation between study and lifetime scores, three subscales were 
identified in the original study as most relevant to ketamine sedation: disembodiment, 
transcendence of time and space, and complex imagery. 

5.2.2 EEG Pre-processing 

All EEG datasets were commonly pre-processed using the pipeline derived in the 
previous chapter (section 4.8.1), which has been shown to be generally optimal. Briefly, 20 
electrodes are selected based on the 10-20 system, which are conventionally present in full-
coverage EEG acquisition systems, namely: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, 
T5, P3, Pz, P4, T6, O1, Oz, and O2. Band-pass filtering is then applied between 0.5 and 40 Hz, 
with an additional notch filter at 50 or 60 Hz, depending on the frequency of the respective 
power line noise. After filtering, the data are resampled at 100 Hz and segmented into 1 sec 
non-overlapping epochs. For training data, an automatic artifact cleaning procedure is 
performed, for bad channel interpolation and bad epoch rejection, based on the 800 μV peak-
to-peak threshold. Finally, the data are re-referenced to the average and epochs are normalized 
with Robust Standardization (scikit-learn), using the 0.25-0.75 quantile range. All of the above 
steps are executed automatically using the mne library and can be applied online. 
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5.2.3 Deep Learning Model 

The deep learning model used in all subsequent experiments was the 3D convolutional 
neural network, described in section 4.8. This architecture is able to explore the spatio-temporal 
structure of the EEG, without strong and explicit priors on the electrophysiological nature of 
the signals and features of interest. Moreover, it allows the integration of our selected datasets 
and the possibility to jointly train the network in a consistent manner, if required by our 
research question. By using a fixed methodology on EEG processing overall, we are able to 
compare our findings irrespective of model design, with a focus on the task under optimization.  

Briefly, the 3D cNN is a sequential model that uses a 3D representation of the EEG 
epoch inputs, by arranging the 10-20 system channels into a 2D mesh structure (time courses 
being the 3rd dimension). The first functional layer comprises of two 3D convolutional layers 
(32 and 64 feature maps, respectively), which perform temporal-only and spatio-temporal 
nonlinear filtering, followed by a MaxPooling and a Dropout layer. The second functional layer 
comprises of a flattened fully-connected layer (128 units), followed by a Dropout layer, and 
finally an output layer. All activation functions in convolutional and dense layers are ReLU 
units, with the exception of the output layer. The output layer consists of either N softmax units 
for N-class classification tasks, or one linear unit for regression tasks. Kernel sizes, strides, 
pooling and dropout rates remain as depicted. All other hyperparameters are set to default 
values in keras, unless specified otherwise. The 3D cNN model design is summarized in Fig. 
5.5. 
 

 
 
Fig. 5.5. The 3D Convolutional Neural Network model. The output layer is replaced by N softmax units 
for classification, or a linear unit for regression, depending on the nature of the learning task. 

5.2.4 Model Training and Evaluation 

Model training and evaluation was kept consistent with the previous analyses in 
Chapters 3 and 4, with several additional parameters that allowed us to include different 
datasets and learning tasks (i.e. regression). For the purpose of predictive analysis of the 
variously defined anesthetic states, we are interested in observing the behavior of the network 
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under different classification and regression tasks, while the main methodology remains fixed. 
The idea here is that any observable differences can be attributed to factors such as the nature 
of the data (e.g. anesthetic agent), the dataset size, the number of states under training, and of 
course, the given ground-truth, alongside its underlying assumptions (the discrete or 
continuous nature of consciousness represented in the various anesthetic states, defined by 
behavior, drug concentration or psychometrics). While these factors cannot be studied 
completely independently, as they heavily depend on the respective dataset and experimental 
design, they determine the optimization process and can significantly affect model training, 
representations and performance. 

Specifically, a leave-one-participant-out cross validation paradigm was used for 
splitting the data intro training and testing sets, for all experiments, ensuring cross-subject 
generalization. For classification tasks, one-hot encoding was used for the target vectors, with 
the categorical cross-entropy (CCE) as the loss function and accuracy as the performance 
metric. For regression tasks, the behavioral (Ramsay scores), pharmacological (plasma 
concentrations) or psychometrical (ASC scores) measures were used as regressands, with the 
mean-squared-error (MSE) as the loss function, and mean-absolute-error (MAE) as the 
performance metric. All models were trained using the Adadelta optimizer, with a batch size 
of 100 and for 10 training epochs. Initialization of network weights was done with the Xavier 
uniform initializer. Model creation, training and evaluation were implemented in Python 3 
using the Tensorflow/Keras library and a CUDA NVIDIA GPU (Tesla P100). 
 
Classification vs Regression. Both main types of supervised learning algorithms were 
investigated throughout the experiments, given that each one reflects the discrete and 
continuous aspects of the different anesthetic states and levels of unconsciousness. As 
mentioned in section 5.1.3., literature review has revealed a number of works using either 
approach, albeit classification was the most prominent. While we briefly discussed some 
theoretical concerns regarding the short-scale analysis window of our input in Chapter 3, large-
scale temporal dynamics of the brain’s activity and its corresponding EEG patterns can be 
directly relevant to the performance of each approach (despite the fact that the cNN model is 
time-invariant across epochs and does not consider large-scale temporal relations). From an 
engineering point of view, this can be due to the underlying assumptions of the respective 
learned function and the imposed restrictions on optimization (either from the loss function or 
the architecture of the model), which ultimately determine the feature learning and the 
predictive behavior of the model. From a theoretical point of view, the question of learning 
algorithm is associated to implicit assumptions about the nature of consciousness, which 
nevertheless remain unclear (e.g. the notion of consciousness levels, EEG signatures, and their 
interaction, as continuous or discrete phase transitions). Despite this fact, we make 
presumptions of steady and transitional states within each anesthetic paradigm, given the 
selected ground-truth measures taken during the experiments. 
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Sample Weighting. In order to account for dataset differences found in the selected 
experimental setups, a sample weighting method was developed and used, particularly having 
in mind cases of unbalanced datasets (e.g. with respect to the size of the states and the 
availability of ground-truth, as prominently appears in the Michigan Anesthesia Dataset), or 
cases of training with multiple heterogeneous datasets, aiming at a cross-study and cross-drug 
analysis approach.  

In general, sample weighting and class weighting are used in machine learning for 
adjusting the cost function, as a way to apply different weights to the independent sample or 
class losses that might be over- or under-represented (and in which case, contribute to a greater 
or lesser extent on model training and optimization). More specifically, a weight vector can be 
applied as coefficients to the per-sample losses during the calculation of the cost function J: 

𝐽(𝑋, 𝑌; 𝑊, 𝑏) =  𝑤  𝐿(ŷ( ), 𝑦( )) 

where wi is a sample weight for the ith sample, and m is the number of samples within the 
current training batch. 

For our own case study, we devised a formula towards an overall unbiased model, that 
takes into consideration several weighting factors, such as the number of epochs per state (w1i), 
the number of states per subject (w2i), the number of subjects per dataset (w3i), the number of 
datasets per agent (w4i), and the number of agents (w5i), based on the identity of the ith sample. 
We also implemented a weighting factor that reflects the number of instances per target (w6i), 
irrespective of other identifiers, for each ith sample belonging to that target (target weighting). 
By multiplying all weighting factors, we calculate sample weights as follows: 

𝑤 =  
1

𝑤  𝑤  𝑤  𝑤  𝑤
 

1

𝑤
  

All weighting factors were applied throughout the experiments, unless specified 
otherwise (target weighting was dismissed during training with unique regressands). 
Importantly, these weights are calculated based on the training data and are used only during 

training. Before feeding the weights to the loss function, we normalized the values by 
∑

, 

which ensures that the sum of all factors is always Ntraining (and thus, the overall cost is 
comparable to the default summation of losses).  

Overall, although it has been suggested that sample weighting is mostly impactful 
during the early stages of training (Byrd and Lipton 2018), we empirically found that the 
inclusion of weighting either improved, or did not affect model performance, and thus was 
retained in our analysis. 
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5.3 Experiment 1 – Behaviorally-defined Anesthetic States 

In this set of experiments, we investigate the effect of learning task and ground-truth in 
the predictive behavior and performance of our model, when trained and tested under 
behaviorally-defined anesthetic states. Specifically, we explore what the model reveals about 
the EEG signatures of steady and transitional behavioral states, and we test the ability of deep 
learning to reasonably generalize across states and participants (which is currently missing).  

Aside from any theoretical understanding, such findings could lead to novel 
electrophysiological markers, which are potentially valuable in clinical practice, either for the 
detection of the moment of LOC, or for the production of a continuous index measuring the 
depth of anesthesia (similarly to many commercial DoA monitors). The assessment of levels 
of unconsciousness in many diagnostic contexts relies heavily on behavioral measures of 
responsiveness, which nevertheless have been shown to be generally unreliable (discussed in 
detail in Chapter 2). On the other hand, and particularly for measuring the DoA, current 
methodological approaches (such as the widely used BIS index) have shown weaknesses in 
application across agents and anesthetic states, when evaluated on patients’ unresponsiveness 
(Kreuzer 2017). Therefore, it is important to evaluate our ground-truth, and assess whether 
EEG provides further information beyond the standard clinical measures, coming either from 
behavior or from current methodological techniques of EEG analysis. 

For this investigation, we used the Liege Anesthesia Dataset that allows us to analyze 
behaviorally-steady states, as well as in-between transitional states, whilst providing us with a 
robust ground-truth and adequate data for training. As mentioned in section 5.2.1, the four main 
states were recorded upon reaching and sustaining the desired Ramsay score for each state 
(Ramsay 2, 3, 5-6, and 2, for Wakefulness, Sedation, LOC and Recovery, respectively). The 
appropriate effect-site concentration that corresponded to the desired behavioral state was 
equilibrated and adjusted independently for each subject by the TCI (target-controlled infusion) 
device, allowing us to consider the recorded states as behaviorally-steady.  

Through our 3D cNN model, we conducted classification and regression experiments 
with differing number of states – starting with the two prominent states of Wakefulness and 
LOC, followed by the inclusion of Sedation, and finally Recovery. This progressive increase in 
the number of states allowed us to introduce more and more subtle changes in levels of 
sedation, during the training and testing of our model. For classification, we used one-hot 
encoding based on the number of trained states, as our target vectors. In case of regression, the 
Ramsay score of each state was used as the trained regressands. The model was then tested on 
unseen steady and transitional states, to reveal the interplay of the various anesthetic states. 
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5.3.1 Classification Results 

The results of the classification analysis are summarized in Table 5.1. The loss and 
accuracy obtained by the model is shown for each of the three experiments, which 
progressively introduce intermediate levels of sedation. All models had a stable convergence 
during the 10 training epochs, indicated by the average categorical cross-entropy loss and 
accuracy curves (Fig. 5.6). 
 

Table 5.1. Behaviorally-steady state classification results 

States under Training Loss (CCE) 
 Accuracy 

Chance Per State Total 
Wakefulness, LOC 0.08 50% (98%, 99%) 98.5% 
Wakefulness, Sedation, LOC 0.66 33% (94%, 79%, 90%) 87.7% 
Wakefulness, Sedation, LOC, Recovery 1.24 25% (74%, 73%, 91%, 61%) 74.8% 

 
 

 
Fig. 5.6. Classification results of the Liege Anesthesia Dataset, for the 4 behaviorally-steady states. A) 
Average categorical cross-entropy loss and accuracy curves (top). Subject-wise losses, accuracies and 
other metrics (bottom). B) Additive confusion matrix (left), and normalized additive confusion matrix 
(right). 
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As already seen in other studies (section 3.1.3), the classification task of the two most 
behaviorally-distinct states (Wakefulness and LOC) is a problem solved easily by contemporary 
algorithms, even under a cross-subject validation approach (in our case with 98.5% accuracy), 
but without offering us significant depth. The 3-state task is a more balanced problem, which 
we have used as a baseline, and which we have analyzed and discussed in detail in Chapter 3. 
Briefly, an accuracy of 87.7% is obtained, essentially due to the difficulty in predicting the 
intermediate state of Sedation, and particularly for 4 out of 9 subjects (S1, S4, S5 and S9). Most 
interesting here though are the results regarding the 4-state classification task, which includes 
the state of Recovery. The detailed cross-validation accuracies, losses, confusion matrices, and 
other class metrics are depicted in Fig. 5.6. 

In this case, an average accuracy of 74.8% is achieved, with three participants showing 
a low accuracy in the range of 50-70% (S1, S3 and S4), and the remaining five showing an 
accuracy close to 80%. Again, subjects ‘S1’ and ‘S4’ were the most difficult test cases, as 
observed similarly in the 3-state task. Notably, all subjects in all experiments showed a 
performance that was significantly higher than chance levels (50%, 33% and 25% accuracy, 
respectively), which indicates the learning capacity of deep learning, even for subtle changes 
in levels of sedation.  

To better understand the behavior of the model, and the resulting decrease in 
performances, we observe the confusion matrices in Fig. 5.6. The normalized confusion matrix 
(additive across all subjects) shows a significant proportion of the EEG misclassified between 
Wakefulness and Recovery, and to a lesser extent, between Recovery and Sedation. While the 
model can clearly identify Recovery as a distinct state from Wakefulness, with higher than 
chance accuracy, it also reveals that the EEG signature of Recovery shares common 
characteristics with Wakefulness and Sedation (possibly indicating a state of an intermediate 
level of sedation). This distinction between Recovery and Wakefulness was also evident by the 
individual class-wise accuracies, with few participants having Recovery over-classified as 
Wakefulness/Sedation. Such findings are contrary to our behavioral ground-truth, where 
Wakefulness is indistinguishable from Recovery. 

Another way to understand these predictions is by visualizing the model’s output over 
time (one prediction per 1-sec epoch). The average predictions of the softmax output, which 
show the probabilities for each of the four states, can be seen in detail in Fig. 5.7. We calculate 
the average values across subjects, by taking the minimum number of epochs per state, and 
aligning them at the beginning of each state. Probabilities here reveal again the shared 
characteristics of Recovery with Wakefulness and Sedation, observed previously in the 
confusion matrices. Moreover, the prominent values of each state show an overall trend of 
decreasing probability for Wakefulness at the end of Wakefulness state, and an increasing 
probability for LOC at the beginning of LOC state, respectively. This observation confirms the 
existence of large-scale temporal dynamics, which have already been hypothesized, as well as 
the transitional nature of EEG, within presumably steady-states. 
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Fig. 5.7. Softmax predictions for the unseen test subjects (average), showing the probabilities of the 4 
trained classes over time (1-sec epochs), for the 4 behaviorally-steady states. 

 
Overall, the 4-state classification task is a challenging problem, due to the similarities 

across Wakefulness and Recovery. 
 

Testing on Transitional States. In order to further test the above observations, we used the 
model trained in all steady-states (4-state classification task) and visualized its predictions over 
a recording period that included both behaviorally-steady and in-between transitional states 
(Wakefulness to Sedation: WS, Sedation to LOC: SL, LOC to Recovery: LR), given the 
availability of intermediate recordings for 3 (out of 9) participants. As these recordings were 
almost consecutive in time (following the anesthetic paradigm in Fig. 5.1), we concatenated 
the states and averaged across the 3 test participants, as previously described (Fig. 5.8). 
 
 

 
Fig. 5.8. Softmax predictions for the unseen test subjects (average), showing the probabilities of the 4 
trained classes over time (1-sec epochs), for all states (behaviorally-steady and transitional states). 
States under training are highlighted with black boxes. 
 
 

Fig. 5.8 shows a similar trend for the prominent probabilities, although with a much 
noisier pattern that can be attributed to the limited number of subjects, and other possible inter-
individual differences reflected in the EEG (e.g. due to variations in the length and timing of 
the events, the individualized response to anesthetic induction and recovery, etc.). In general, 
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we can track the anesthetic paradigm and the participants’ transition from one state to the next, 
both within steady and transitional states, albeit appearing as step-like probability increments 
(mostly within the transitional states). As discussed in section 5.2.4, this shows the limitations 
of classification (and to an extent, of behavioral measures) with respect to the transitional 
dynamics of the EEG, which nevertheless seem to play a significant role (especially during the 
states’ transitions, which theoretically and clinically are the most crucial to understand and 
capture). Additionally, high-probability predictions of Recovery during WS verify again the 
idea of Recovery as a mildly-sedated state, given the initiation of propofol infusion during WS 
(evidence of residual propofol during Recovery can be found in (Chennu et al. 2016)). 

5.3.2 Regression-to-Ramsay-Score Results 

The results of the regression analysis are summarized in Table 5.2. The loss and mean-
absolute-error (MAE) obtained by the model is shown for each of the three experiments, which 
introduce intermediate levels of sedation. As already pointed out, regression enables the 
representation of transitional dynamics, which we have shown to be present and relevant in our 
analysis. Also, in contrast to classification, the regression task allows us to reasonably test the 
model in all states (whether included in training or used for testing), and consistently compare 
the experiments. Overall, all models had a stable convergence during the 10 training epochs, 
indicated by the average mean-squared-error loss and mean-absolute-error curves (Fig. 5.9). 
 

Table 5.2. Regression-to-Ramsay-Score results 

States under Training Loss (MSE) 
Mean Absolute Error (MAE) 

Per State Total 
Wakefulness, LOC 0.58 (0.3, 0.84, 0.69, 0.36) 0.54 
Wakefulness, Sedation, LOC 0.50 (0.29, 0.54, 0.76, 0.41) 0.50 
Wakefulness, Sedation, LOC, Recovery 0.51 (0.31, 0.63, 0.73, 0.41) 0.52 

Unseen test states are underlined. Optimal model is highlighted in bold. 
 

The results obtained here give us some previously observed, and some novel insights, 
regarding the EEG under general anesthesia, and particularly with respect to the Liege 
Anesthesia Dataset. In terms of the difficulty of each experiment, we observe an analogous 
trend of decreasing performance, as we include more states, similarly to the classification 
analysis. However, Table 5.2 reports the model’s evaluation in all four states, given the shared 
ground-truth and uniformity of the behavioral scale. This provides us with a direct comparison 
on the effect of the chosen states under training, in the performance of our model (Total MAE 
refers to the MAE of all 4 states. Underlined values refer to unseen test states).  

Training by regression-to-Ramsay-scores revealed a predictive bias, which was 
affected by several factors, such as the number of samples in each state, the given training 
states, and the assumption of the Ramsay scale to represent changes in levels of consciousness 
linearly. In this case, sample weighting had an observable effect on the results, most evidently 
in the 3rd experiment with the inclusion of Recovery under training, due to the increment of 



112 

 

instances with common targets (Ramsay 2). Specifically, Sedation was significantly 
overestimated by 1.12 MAE in the 2-state experiment, while LOC was significantly 
underestimated by 1.07 MAE in the 4-state experiment. As some of these predictive biases 
were corrected by sample/target weighting, any differences observed here can be attributed to 
the effects of the training states and the Ramsay scale. The detailed cross-validated 
performances and the visualization of the model’s predictions can be seen for the 3-state 
experiment, which had the best overall performance (ΜΑΕ: 0.5, within Ramsay scale), in Fig. 
5.9 and Fig. 5.10, respectively. 
 

 

 
Fig. 5.9. Regression-to-Ramsay-score results of the Liege Anesthesia Dataset, for the model trained 
under the 3-state task (Wakefulness, Sedation, LOC). Average mean-squared-error loss and MAE curves 
(top). Subject-wise losses and mean-absolute-error values (bottom). 
 

Fig. 5.9 shows that the model achieved the lowest MAE at 0.5, as well as the most 
balanced per-state MAE, when trained under Wakefulness, Sedation and LOC. Specifically, 
four participants (S1, S3, S4, S5) obtained an MAE between 0.6 – 0.7, with the rest five 
participants having an MAE lower than 0.5 (0.2 – 0.5). To better understand these results, we 
observe the average-across-participants predictions for each of the 3 experiments (calculated 
by the minimum number of epochs per state, across subjects, as shown in Fig. 5.10). As 
previously described, Sedation and Recovery were the hardest to predict, which is revealed by 
several observations here. The inclusion of Sedation during training significantly lowered the 
MAE of the state and its separation from Wakefulness, which shows its importance in training 
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and the (non-linear) complexity of the electrophysiological transition from Wakefulness to 
LOC. In contrary, the inclusion of Recovery did not seem to affect its minor over-estimation 
by the model (MAE of 0.41), in agreement to our previous evidence of Recovery as a mildly-
sedated state. Finally, the MAE range of LOC, although distinguishable from the other states, 
could be partly explained by the linearity assumption of the Ramsay scale. 
 

 
Fig. 5.10. Ramsay score predictions for the four anesthetic states of the unseen test subjects (average). 
Horizontal dashed lines indicate the Ramsay score ground-truth. States under training are highlighted 
in black boxes. 
 
 
Testing on Transitional States. Similarly to classification, in order to further test the model’s 
behavior under the regression task, we visualized the Ramsay score predictions in both 
behaviorally-steady and transitional states, for the three available participants (S1, S6, S8) from 
which we had access to all intermediate recordings (Fig. 5.11). 
 

 
Fig. 5.11. Ramsay score predictions for the steady and in-between transitional anesthetic states of the 
three available test subjects (average). States under training are highlighted in black boxes. 
 
 
 Due to the continuity of the recordings, the concatenation of the states allow us to track 
the anesthetic paradigm depicted in Fig. 5.1. In contrast to the probabilistic approach of the 
softmax output, the learning task here enables the model to represent the various levels of 
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sedation in a progressive manner, which seems to be more appropriate based on our empirical 
observations, but also in terms of our research goals. As seen from Fig. 5.11, the Ramsay 
predictions show an increasing trend that continues up to the end phase of LOC, followed by a 
more rapid decrease during LR and up to the beginning of Recovery, re-confirming the 
transitional nature of EEG and its large-scale temporal dynamics.  

This trajectory can also be tracked in individual participants, which is one of the most 
important factors of evaluation for our model. In Fig. 5.12, we show the predictions of a test 
subject (S6) among the three with all available transitional states (median performance - MAE 
of 0.38), along with the time-frequency representation of each state (spectrogram), which is 
representative both in terms of EEG signatures and model performance. Overall, predictions 
appear robust and in agreement with the expectations of GA practice (pharmacologically), 
which validates our model’s objective and performance.  
 

 
Fig. 5.12. (Top) Ramsay score predictions for all anesthetic states (steady and transitional) of a median-
performance subject (Moving-average filter applied, kernel_size=5). (Bottom) PSD of the 
corresponding states (Method=Welch, channel_aggregation=mean, window=1 sec, n_fft=256) 
 

Visual inspection of the Ramsay predictions and the mean spectrogram of the 
corresponding epochs does not reveal any clear association between the band-power dynamics 
of the EEG and the depth of anesthesia. As briefly discussed in Chapter 3, the spectrogram 
shows a decrease of alpha (8-12 Hz) and increase of spindle and beta activity (12-25 Hz) during 
Sedation and transition to Recovery (Ramsay 3), while LOC (Ramsay 5-6) seems to be 
accompanied by significant increase in delta (0-4 Hz) and moderate increase in high-alpha and 
theta (4-8 Hz) activity. Moreover, gamma activity (25-40 Hz), which has been reasonably 
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dissociated from possible muscle activity, appears occasionally during Sedation and transition 
to Recovery (Murphy et al. 2011). While these findings have been reported in the original study 
and have been replicated several times in the literature, the nature and interaction of these 
signatures appear to be more complicated to understand and interpret, both in terms of the 
underlying neurophysiology of the brain, but also with regards to model prediction here. 
 
Post-hoc Analysis of ‘Bad’ Subjects. As a final step to this analysis, we performed a post-hoc 
investigation for the three subjects with the lowest performance (S1, S3 and S4 had, in average, 
the lowest performances, in both classification and regression analyses), hoping to better 
understand the data and the trained model. In all three participants, we observed a significant 
underestimation of LOC (MAE > 1), particularly at the beginning phase of the state, that 
strongly affected the resulting performance. Besides the concerns we postulated regarding the 
appropriateness of the Ramsay scale, these findings reflect the inter-individual differences in 
EEG signatures, which naturally appear either inherently (e.g. due to age), or in relation to the 
anesthetic procedure (e.g. due to infusion rate differences and PD impact). By visual inspection 
of the individual spectrograms we observed a strong positive correlation between Ramsay 
predictions, at the levels around LOC (Ramsay > 3), and the power of delta activity, which 
appeared to be present in all participants (see Fig. 5.12 for reference. This hypothesis has been 
studied in detail in (Mhuircheartaigh et al. 2013b)). Of course, whether these predictions (and 
the relative decrease of delta power) show a peculiarity of the model, or reveal possible ground-
truth errors, is unclear from the data. 

Additionally, we observed a peculiar pattern during the Sedation state of S4, which had 
the worst performance in the dataset (Fig. 5.13). By further investigating the procedural details 
during the experiment’s recordings, we acquired evidence (in the form of handwritten notes by 
the clinician at site) of reversed order for the steady-state recordings of Sedation and LOC, in 
4 out of 9 participants (S2, S4, S7, and S9), which were also confirmed by their file timestamps. 
This is explained by the inter-subject variability of the pharmacodynamic impact of propofol, 
which drove several participants directly into unconsciousness, before reaching and sustaining 
a state of Sedation (by lowering the drug’s infusion rate). The pattern observed in Fig. 5.13 can 
now be better understood by reversing the two states, where a more natural transition for the 
levels of sedation is revealed (and in agreement with the infusion rates). While this 
experimental diversion did not have an impact for 3 out of 4 subjects, possibly due to the 5-
minute equilibration period before the steady-state recordings, it highlights several points on 
model evaluation. Most importantly though, it provides novel evidence for the potential of deep 
learning to decode and predict the transitional signatures of individuals. 

Overall, understanding the EEG patterns that emerge during anesthesia, and the 
corresponding predictions from our deep learning model, is a task that critically depends on 
the evaluation of several factors that strongly contribute to the nature of the data, and thus in 
model training. Considering factors related to the anesthetic procedure (e.g. the rate of drug 
administration, the phenomena of neural inertia and hysteresis, the induction and emergence 
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asymmetry, etc.), and other ground-truth considerations, such as the distinction between LOC 
and LOBR, will allow us to better estimate the role of our learning objective and its limitations 
in model optimization. 
 

 
Fig. 5.13. (Top) Ramsay score predictions for the 4 anesthetic states of the worst-performing subject 
(Moving-average filter applied, kernel_size=5). (Bottom) PSD of the corresponding states 
(Method=Welch, channel_aggregation=mean, window=1 sec, n_fft=256) 

5.4 Experiment 2 – Pharmacologically-defined Anesthetic States 

In this set of experiments, we investigate the effect of learning task and ground-truth in 
the predictive behavior and performance of our model, when trained and tested under 
pharmacologically-defined anesthetic states. Similarly to our previous experiment, we explore 
what the model reveals about the EEG signatures of pharmacological steady-states, and we test 
the ability of deep learning to reasonably generalize across states and participants.  

From a clinical perspective, understanding the relationship between drug doses and 
patient response requires the consideration of complex interactions between the administered 
doses and the plasma (or effect-site) concentrations of the drug (pharmacokinetic-PK phase), 
the effect-site concentrations and the clinical effect (pharmacodynamic-PD phase), as well as 
their coupling. The delivery of the drug and its effects over the different tissues in the body is 
determined by a variety of phenomena (such as the observed hysteresis, caused by the temporal 
delay in drug equilibration), which are mathematically described in PK/PD models. 
Nevertheless, the available PK/PD models implemented in current TCI (target-controlled 
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infusion) devices have significant limitations in accurately estimating the required drug 
concentrations, for the specific needs of each patient, due to a variety of pharmacological and 
biological factors. Hence, it is important to evaluate the pharmacological ground-truth used in 
contemporary anesthesia practice, and the possibility for EEG signatures to contain information 
(in this case, related to propofol concentrations), which can potentially help us better 
understand this complex interaction.  
 For this investigation, we used the Cambridge Anesthesia Dataset (section 5.2.1) that 
enables us to analyze pharmacologically-defined anesthetic states, whilst providing us with two 
different ground-truth measures. The first ground-truth relates to the per-state plasma 
concentrations which were targeted by the TCI device, and were common across participants. 
In contrast to Liege Anesthesia Dataset, where states of consciousness were defined based on 
behavioral evidence for consciousness, the ground-truth here was based on states determined 
upon reaching specific drug concentrations (plasma targeting). The 10-minute equilibration 
period before the recording of mild and moderate sedation states is considered adequate to 
avoid any strong pharmacological instabilities (due to infusion rate changes or PK errors from 
the syringe pump), thus allowing us to define them as pharmacologically steady. The second 
ground-truth relates to the plasma concentrations measured from the blood samples (taken 
between states), which can reflect some of the PK properties and clinical outcome of the 
individual participants.  

We used our 3D cNN model to conduct classification and regression experiments with 
differing number of states – starting with the two prominent states of Baseline (Wakefulness) 
and Moderate Sedation, followed by the inclusion of Mild Sedation, and finally Recovery. This 
progressive increase in the number of states allowed us to introduce more and more subtle 
changes in levels of sedation, during the training and testing of our model. For the classification 
task, one-hot encoding was used based on the number of the trained states, as our target vectors. 
In case of regression, the propofol concentrations (ng/ml), as targeted by the TCI device or 
measured by the blood samples, were used as the trained regressands. In the case of blood 
sample measures, the average value of the two samples (taken at the beginning and ending 
phase of the recording) were used to represent the states of Mild Sedation and Moderate 
Sedation, with Recovery measured once at the beginning. This was in accordance with the 
original analysis found in (Chennu et al. 2016), which confirmed that the sample measures 
were similar at the beginning and ending phases. 

5.4.1 Classification Results 

The results of the classification analysis are summarized in Table 5.3. The loss and 
accuracy obtained by the model is shown for each of the three experiments, which 
progressively introduce intermediate levels of sedation during training and prediction. All 
models had a stable convergence during the 10 training epochs, indicated by the average 
categorical cross-entropy loss and accuracy curves (Fig. 5.14). 
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Table 5.3. Pharmacological steady-state classification results 

States under Training 
Loss 

(CCE) 
 Accuracy 

Chance Per State Total 
Baseline, Moderate Sedation 0.90 50% (84%, 83%) 83% 
Baseline, Mild Sedation, Moderate Sedation 2.49 33% (68%, 42%, 64%) 57.6% 
Baseline,Mild Sedation,Moderate Sedation,Recovery 2.79 25% (57%, 30%, 65%, 38%) 47% 

 
 

As seen from the performance of each experiment, the 2-state problem is a balanced 
problem which can be reasonably solved by the model (83% accuracy), in contrast to the 3-
state and 4-state classification tasks, in which accuracy drops significantly due to the inclusion 
of Mild Sedation and Recovery (57.6% and 47% accuracy, respectively). Although the 
anesthetic levels attained in this experimental design were lower in comparison to the Liege 
Anesthesia Dataset analysis in section 8.3 (0.4 and 0.9 μg/ml average arterial concentrations 
in Mild/Moderate Sedation, over 1.9 μg/ml of the Sedation state in Liege Anesthesia Dataset), 
we similarly observe the difficulty in differentiating mildly-sedated states (i.e. Mild Sedation 
and Recovery, with Recovery already indicated as a mildly-sedated state in Experiment 1). 
These observations reveal the distinctive limitations of the model in classifying anesthetic 
states with small differences in levels of drug concentration. By looking at the subject-wise 
accuracies of each experiment, we recognized two participants (S8 and S9) that systematically 
showed low performance. Overall, the pattern of classification accuracies is consistent across 
experiments, with the model trained under all states being the most informative. The detailed 
cross-validation accuracies, losses, confusion matrices, and other class metrics are depicted for 
the 4-state model in Fig. 5.14. 

The results obtained here give us a complementary picture regarding the 
electrophysiological nature of anesthetic states, observed previously in our behavioral 
classification analysis (section 5.3.1). The normalized confusion matrix (Fig. 5.14, B) shows a 
significant proportion of EEG epochs misclassified between Mild Sedation and Moderate 
Sedation or Recovery, as well as between Recovery and Baseline Wakefulness. This reconfirms 
our hypothesis that Recovery is similar to a mildly-sedated state, at least from an 
electrophysiological perspective. These class-wise accuracies also reveal the model’s inability 
in distinguishing mild to moderate changes in drug concentrations, as appear here for 
pharmacologically-neighboring states. An interesting note here is that these classification 
errors appear more prominently in particular subjects, as we can see from the large variance 
across participants’ performances (Fig. 5.14, A). In general, predictions tend to concentrate 
within the most robust classes of Baseline Wakefulness and Moderate Sedation, with the 
electrophysiological effects of Mild Sedation and Recovery becoming more subject-specific. 
While we observe that the model can learn some of the group statistics for the four anesthetic 
states, it is unable to identify all the individualized effects from the drug given the targeted 
concentration changes (0.6 μg/ml increase steps). Of course, this limitation could also reflect 
the lack of strong individual EEG signatures to be picked up by a model trained on targeted 
(rather than actual – effect-site) drug concentrations. 
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Fig. 5.14. Classification results of the Cambridge Anesthesia Dataset, for the four pharmacologically-
steady states. A) Average categorical cross-entropy loss and accuracy curves (top). Subject-wise losses, 
accuracies, and other metrics (bottom). B) Additive confusion matrix (left), and normalized additive 
confusion matrix (right). 
 
 

Some of these observations can also be seen with the visualization of the 4-class 
model’s output over time (one prediction per 1-sec epoch). The average predictions of the 
softmax output, which show the probabilities for each of the four states, can be seen in detail 
in Fig. 5.15. We calculate the average values across subjects, by taking the minimum number 
of epochs per state, and aligning them at the beginning of each state. 

The probabilities here reveal again the shared characteristics of Mild Sedation and 
Recovery, as well as the inability of the model to correctly classify mild changes in drug 
concentration. In addition, by looking at the temporal trajectory of the prominent probabilities, 
we observe relatively stable and consistent large-scale dynamics, with minor deviations, in 
comparison to the strong dynamics observed in our behavioral analysis (Experiment 1). These 
deviations are likely to reflect PK-modelling limitations in achieving real pharmacologically-
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steady states (effect-site concentrations might increase over the period of Moderate Sedation, 
due to the delayed accumulation of the drug). 
 

 
Fig. 5.15. Softmax predictions for the unseen test subjects (average), showing the probabilities of the 
4 trained classes over time (1-sec epochs), for the 4 pharmacological steady-states. 

5.4.2 Regression-to-Target-Concentrations Results 

A complementary analysis based on the shared pharmacological ground truth was 
performed, by training a regression model to predict the targeted plasma concentrations 
(estimated by the Marsh PK model). Specifically, the concentrations used for the states 
of Baseline, Mild Sedation, Moderate Sedation, and Recovery were 0, 0.6, 1.2 and 0 μg/ml, 
respectively.  

The results of the regression analysis are summarized in Table 5.4. The loss and MAE 
obtained by the model is shown for each of the three experiments, which introduce intermediate 
levels of sedation. Importantly, regression enables a continuous representation of the output 
(which is naturally imposed here, as drug concentrations are continuously adapted), allowing 
us to test the model in all states (whether included in training or used for testing), and 
consistently compare the experiments. Overall, all models had a stable convergence during the 
10 training epochs, indicated by the MSE loss and MAE curves (Fig. 5.16). 
 

Table 5.4. Regression-to-Target-Concentrations results 

States under Training Loss (MSE) 
Mean Absolute Error (MAE) 

Per State Total 
Baseline, Moderate Sedation 236324 (295, 366, 407, 440) 378.55 
Baseline, Mild Sedation, Moderate Sedation 204087 (290, 297, 389, 440) 355.09 
Baseline, Mild Sedation, Moderate Sedation, Recovery 210013 (313, 328, 427, 407) 367.45 

Unseen test states are underlined. Optimal model is highlighted in bold. 
 
 

Overall, the experiments showed results consistent with the previous classification 
analysis, while offering us more depth in terms of the model’s predictive behavior with respect 
to propofol concentrations. Table 5.4 indicates the model trained under the 3-state task as 
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optimal (lowest MAE), similarly to our behavioral regression analysis. As already shown in 
section 5.3.2, the inclusion of Recovery appears to mislead model training and decreases the 
total performance, due to the ambiguous nature of Recovery and the incorrect assumption of 
our ground-truth. The detailed cross-validated performances and the visualization of the 
model’s predictions can be seen for the 3-state experiment, in Fig. 5.16 and Fig. 5.17. 
 

 

 
Fig. 5.16. Regression-to-Target-Concentrations results of the Cambridge Anesthesia Dataset, for the 
model trained under the 3-state task (Baseline, Mild Sedation, Moderate Sedation). Average mean-
squared-error loss and MAE curves (top). Subject-wise losses and mean-absolute-error values (bottom). 
 

 
Fig. 5.17. Target concentration predictions for the four anesthetic states of the unseen test subjects 
(average). Horizontal dashed lines indicate the TCI device’s ground-truth. States under training are 
highlighted in black boxes. 
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 As we see from Fig. 5.16, a large variability of performances across participants 
remains here, with two subjects (S4 and S8) acquiring consistently high MAE (S4, S8 and S18 
had an MAE > 500). The average-across-participants predictions (calculated by the minimum 
number of epochs per state) reveal an estimation bias for 3 out of 4 states (Fig. 5.17), which is 
independent of the state length and target (due to sample weighting), and reflects the inability 
of the model to strongly differentiate the selected concentration changes. Once again, we see 
Recovery predictions fitting between the levels of  Baseline (Wakefulness) and Mild Sedation 
states, pointing to its shared electrophysiological characteristics. This is also confirmed by the 
presence of residual propofol, as measured from the blood samples at the beginning of 
Recovery (290 ng/ml, average), and which contrasts our presumed PK ground-truth 
(concentration should approach 0, 20 minutes after the cessation of infusion).  

While predictions appear more cohesive in comparison to our classification task (both 
across states and in terms of temporal trajectories), individual and group level statistics remain 
noisy. This is evident from the per-state MAEs (Fig. 5.17), which show the significant variance 
in individual responses. Interestingly, and despite this variation, model predictions reveal a 
shorter range of concentrations in comparison to our current ground-truth (target 
concentrations), which shows a limitation coming either from the data or/and the model. In this 
regard, a ground-truth limitation can be consistent with these results, given the differences 
between the targeted concentrations and the average arterial concentrations, measured from the 
blood samples (see Table 5.5). Notably, while the Marsh model is optimally used in plasma 
targeting mode (Absalom et al. 2009), literature has suggested a high predictive PK error to be 
introduced in comparison to other models (Glen and White 2014). These observations lead us 
naturally to the analysis of the next section, where we trained our model to predict actual 
concentrations of propofol measured in the blood. 
 

Table 5.5. Targeted Concentrations vs Blood Sample Concentrations 
State Target Concentrations Blood Sample Concentrations (Average) 

Baseline 0 ng/ml 0 ng/ml 
Mild Sedation 600 ng/ml 446 ng/ml 

Moderate Sedation 1200 ng/ml 900 ng/ml 
Recovery 0 ng/ml 290 ng/ml 

5.4.3 Regression-to-Blood-Sample-Concentrations Results 

In the previous section, we showed that the trained model had significant variation and 
noise in its predictions, with respect to our 1st ground truth (Marsh model estimations of the 
targeted plasma concentrations). In this section, we investigate our 2nd pharmacological ground 
truth, consisting of propofol concentrations measured from the blood samples of the 
participants (see Appendix A1). Although plasma targeting may not be proportional to changes 
in EEG and clinical effect, measures from blood samples can reflect some of the PK interplay 
between the drug and the effect-site, which is the brain (currently, there are no methods to 
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directly measure the effect-site concentrations of intravenous anesthetics in the brain (Absalom 
et al. 2009)). However, while we know from the original study that there was significant 
divergence in blood sample concentrations across participants, and that some participants were 
more susceptible to the anesthetic action than others, the two did not seem to be connected 
(Chennu et al. 2016). In this experiment, we investigate whether EEG contains information 
that reflects this PK/PD divergence, by training a regression model to predict the blood sample 
concentration measures (as a surrogate for effect-site concentrations). 

The results of the regression analysis are summarized in Table 5.6. The loss and MAE 
obtained by the model is shown for each of the three experiments, which introduce intermediate 
levels of sedation. Again, we were able to test the model in all states (trained and unseen) and 
consistently compare the experiments. Overall, all models had a stable convergence during the 
10 training epochs, indicated by the MSE loss and MAE curves (Fig. 5.18). Target weighting 
was dismissed, as we had discrete targets for each state and each participant.  
 

Table 5.6. Regression-to-Blood-Sample-Concentrations Results 

States under Training 
Loss 

(MSE) 
Mean Absolute Error (MAE) 

Per State Total 
Baseline, Moderate Sedation 102635 (207, 243, 360, 183) 247.87 
Baseline, Mild Sedation, Moderate Sedation 82229 (227, 199, 317, 148) 222.92 
Baseline, Mild Sedation, Moderate Sedation, Recovery 76956 (212, 187, 319, 120) 209.83 

Unseen test states are underlined. Optimal model is highlighted in bold. 
 

As we see from Table 5.6, the total MAE is considerably lower in all experiments in 
comparison to the MAEs obtained in the previous section. The results are also different from 
our two previous regression analyses, with the 4-state task having the best performance here 
(total MAE of 209). In this case, the ground truth of Recovery was represented more accurately 
by the inclusion of the blood sample measure, which positively contributed to model training 
and overall performance (in contrast to the PK estimation or the behavioral assessment seen in 
Experiment 1). A large variability across individual performances is still present, with one 
participant showing consistently high error (S8). The detailed cross-validated performances 
and the visualization of the model’s predictions can be seen for the 4-state task, in Fig. 5.18 
and Fig. 5.19, respectively. 

By comparing our findings with the 1st pharmacological analysis of the previous 
section, we observe similar patterns, with the individual and group levels statistics improved 
here (resulting in lower MAEs). This can be partly explained by the decrease in the average 
range of drug concentrations, but also by the fact that the EEG better reflects the inter-
individual differences in effect-site concentrations (and thus to a degree, the blood sample 
measures). In Fig. 5.19, we see predictions for Recovery having the lowest MAE, with the 
average concentration levels fitting between Baseline and Mild Sedation (290 ng/ml). On the 
contrary, Moderate Sedation had the highest MAE, as drug concentrations had the highest 
variance in that state, due to the individualized PK/PD impact of propofol (reported in detail in 
(Chennu et al. 2016)). 
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Fig. 5.18. Regression-to-Blood-Sample-Concentrations results of the Cambridge Anesthesia Dataset, 
for the model trained under the 4-state task (Baseline, Mild Sedation, Moderate Sedation, Recovery). 
Average mean-squared-error loss and MAE curves (top). Subject-wise losses and MAE values 
(bottom). 
 

 
Fig. 5.19. Blood-sample-concentration predictions for the four anesthetic states of the unseen test 
subjects (average). Horizontal dashed lines indicate the average blood sample concentrations. 
 
 

Given that these metrics reflect the average-across-participants performance, and we 
want to understand the predictive ability of our model in individual cases, we compare our 
predictions with the respective (unique) blood sample concentrations, for each state and 
participant independently. As previously observed, the variance of the individual predictions 
constrains an objective assessment on the error of concentration changes across states. 
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However, we can observe the relative-to-our-ground-truth estimations within each state of 
sedation (Mild Sedation, Moderate Sedation and Recovery), by computing an average-
concentration prediction. Fig. 5.20 shows the blood sample concentrations and average-
concentration predictions, for each subject and state. Based on the coefficient of determination 
(R2), we can infer the limited capacity of the model for individual predictability (as values close 
to zero indicate an average-based performance). 

 
Fig. 5.20. Blood sample concentrations (ground truth) and model predictions (average), for each subject 
and state of sedation (Mild Sedation, Moderate Sedation and Recovery) 
 
 Overall, the assessment of pharmacologically-defined predictive models, as the ones 
we developed throughout this experiment, requires the consideration of many independent 
factors (e.g. related to the anesthetic procedure, such as the anesthetic doses used and the 
population statistics), especially if we want to compare them with other current models of 
clinical practice (the standardized PK/PD models). Nevertheless, our results still offer us 
significant insights on the understanding of the electrophysiology of anesthesia, by 
incorporating all the parameters and observations from our behavioral and pharmacological 
experimental designs.  

5.5 Experiment 3 – Psychometrically-defined Anesthetic States 

In this set of experiments, we investigate the effect of learning task and ground-truth in 
the predictive behavior and performance of our model, when trained and tested under 
psychometrically-defined anesthetic states. Specifically, we explore what the model reveals 
about the EEG signatures of states characterized by levels of disconnected consciousness, and 
we test the ability of deep learning to adequately generalize across participants.  

As we have mentioned in the Introduction, general anesthesia (GA) is more complex 
than simply a state of unconsciousness, with different brain mechanisms and elements of 
consciousness retained or suppressed, depending on the anesthetic agent and its concentration 
levels. One of the main states produced under GA, is a state of disconnected consciousness (a 
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dream-like state, without awareness of the environment), which is typically assessed by explicit 
reports after recovery from anesthesia. Understanding the electrophysiological changes during 
disconnected consciousness can have significant implications for both research and clinical 
applications. Theoretically, the detection and contrast of altered states of consciousness with 
distinct phenomenological features, coming from different agents and study paradigms, can 
contribute to the identification of the full NCC (as the functional elements that characterize 
these states are unknown). From a clinical perspective, detecting covert awareness in 
unresponsive patients is crucial, given the recent reports of higher incidences of connected and 
disconnected consciousness during surgical procedures (Mashour and Avidan 2015). As 
previously pointed out, contemporary monitors like the BIS are not sensitive enough to 
distinguish among these different states. Hence, it is important to evaluate whether EEG has 
any bearing in decoding disconnected consciousness online. 
 For this investigation, we used the Michigan Anesthesia Dataset that enables us to 
analyze psychometrically-defined anesthetic states, based on the self-report measures from the 
altered states of consciousness (ASC) questionnaires (during and after the study). Contrary to 
our two previous datasets, the anesthetic states here were not determined upon reaching and 
sustaining specific drug concentrations (based on behavioral assessment or plasma targeting, 
as we saw in Experiments 1 and 2), but rather guided by different dosing strategies (continuous 
infusion during Sedation, and bolus dose during LOBR – see section 5.2.1). Nevertheless, here 
we focus on the characterization of the altered nature of consciousness states under ketamine, 
which was evident in all participants by the psychometrics of the study (ketamine is one of the 
most used agents that typically produce feelings of disconnection from the body and the 
environment). Of course, we cannot presume any state as psychometrically-steady, given that 
a retrospective assessment does not allow for the characterization of specific temporal events. 

Using our 3D cNN model, we conducted classification and regression experiments with 
different sets of anesthetic states, depending on the nature of the task. Initially, we performed 
classification with an increasing number of steady-states (defined in section 5.2.1), and we 
tested the model on transitional states, in order to explore the electrophysiological distinction 
across the dose-dependent ketamine-induced brain changes (similarly to our previous 
analyses). In case of regression, we used the steady-states of Wakefulness and Sedation, along 
with the psychometrics recorded during and after the study, in order to create measures of 
disconnected consciousness (DC) that were used as the trained regressands. The choice of the 
Sedation state as the main focus of our analysis was based on the fact that the ASC 
questionnaires took place immediately after the sub-anesthetic period (which was also the 
longest). Hence, a measure of disconnected consciousness was associated to the 
pharmacologically-steady period that preceded these reports (defined here as Sedation). 
Specifically, we used the average scores of the three subscales recognized as most reliable and 
relevant (see section 5.2.1), to create three different DC measures for each participant, namely: 
the study scores (assigned to Sedation), the lifetime + study scores (assigned to Wakefulness 
and Sedation, respectively) and the relative change scores (assigned to Sedation). 
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5.5.1 Classification Results 

The results of the classification analysis are summarized in Table 5.7. The loss and 
accuracy obtained by the model is shown for each of the three experiments, which 
progressively introduce intermediate levels of sedation. All models had a stable convergence 
during the 10 training epochs, indicated by the average categorical cross-entropy and accuracy 
curves (Fig. 5.21). 
 

Table 5.7. Ketamine steady-state classification results 

States under Training Loss (CCE) 
 Accuracy 

Chance Per State Total 
Wakefulness, LOBR 0.30 50% (97%, 90%) 94.6% 
Wakefulness, Sedation, LOBR 1.06 33% (86%, 69%, 83%) 77.6% 
Wakefulness, Sedation, LOBR, Recovery 1.89 25% (74%, 54%, 72%, 64%) 64.2% 

 
As shown in Table 5.7, the results obtained here closely resemble what we have already 

seen in propofol anesthesia (section 5.3.1), albeit there is a significant decrease in performance 
for this dataset. Similarly to propofol, the task of discriminating the two most behaviorally-
distinct states of Wakefulness and LOBR is an easily solved problem, with the total accuracy 
reaching 94.6% (cross-subject validation). The 3-state task is a more balanced problem, due to 
the difficulty in differentiating the intermediate state of Sedation (particularly for S11 and S12), 
resulting in a drop of accuracy at 77.6%. Finally, the 4-state task is the most challenging due 
to the inclusion of Recovery (64.2% accuracy), which again shows characteristics of both 
Wakefulness and Sedation. Importantly, all subjects in all experiments showed a performance 
significantly higher than chance levels. In Fig. 5.21, we depict the detailed cross-validation 
accuracies, losses, confusion matrices, and other class metrics, for the model trained under the 
4-state task, which is the most informative. 

The detailed cross-validated accuracies show a large variance across participants’ 
performance (Fig. 5.21, A), with 3 out of 15 subjects acquiring a low accuracy in the range of 
40-50% (S4, S5, and S15). This performance decrease (and the performance of the 3-state task, 
respectively) can be better understood by looking at the confusion matrices (Fig 5.21, B). 
Specifically, the normalized confusion matrix shows a proportion of the EEG during Sedation 
misclassified as Wakefulness, as well as a proportion of EEG misclassified between Recovery 
and Sedation or (to a lesser extent) Wakefulness. While these biases are more evident in 
particular subjects, they reveal the electrophysiological similarities found across wakefulness 
and low-dose ketamine states (state lengths or target imbalances do not explain these biases, 
which have been corrected by sample/target weighting). Considering Recovery, we have 
already recognized its shared characteristics with mildly-sedated states during propofol 
anesthesia (in Experiments 1 and 2), with similar findings observed here for ketamine.  
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Fig. 5.21. Classification results of the Michigan Anesthesia Dataset, for the four steady-state task. A) 
Average categorical cross-entropy loss and accuracy curves (top). Subject-wise losses, accuracies, and 
other metrics (bottom). B) Additive confusion matrix (left), and normalized additive confusion matric 
(right). 
 
 

To better understand the temporal dynamics of the model, we visualized the model’s 
output over time (one prediction per 1-sec epoch). The average predictions of the softmax 
output, which show the probabilities for each of the four states, can be seen in detail in Fig. 
5.22 (average values are calculated across participants, by taking the minimum number of 
epochs per state, and aligning them at the beginning of each state). By focusing on the 
prominent probabilities of each state, we see that the temporal dynamics of the model are 
overall consistent, with a weak indication of a rapid rise and fall during LOBR (due to the bolus 
dosing strategy). 
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Fig. 5.22. Softmax predictions for the unseen test subjects (average), showing the probabilities of the 
four trained classes over time (1-sec epoch), for the four ketamine steady-states. 
 
 
Testing on Transitional States. In order to further test the above observations, we used the 
model trained in all steady-states (4-state classification task) and visualized its predictions over 
the recording period that included both steady and transitional states. This was possible for 14 
out of 15 participants, for which we had access to all intermediate EEG recordings 
(Wakefulness to Sedation – WS, Post Sedation – PS, Sedation to LOBR – SL and LOBR to 
Recovery – LR). Given the continuity of the recordings (following the anesthetic paradigm in 
Fig. 5.3), we concatenated the states and performed averaging, as previously described (Fig. 
5.23). 
 

 
Fig. 5.23. Softmax predictions for the unseen test subjects (average), showing the probabilities of the 
four trained classes over time (1-sec epochs), for all ketamine states (steady and transitional states). 
 
 

Fig. 5.23 shows the general trend of transitions from Wakefulness to Sedation, and from 
Post-Sedation recovery to LOBR and back, which consistently tracks the anesthetic paradigm 
of the study. The sub-anesthetic period (WS + Sedation) was long enough (~40 minutes) for 
the large-scale dynamics to be captured by the EEG and our model, as depicted by the 
decreasing and increasing probabilities of the Wakefulness and Sedation classes. Even though 
only the last block of the sub-anesthetic period was considered as pharmacologically steady (a 
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rather conservative estimate of the original study, based on which we defined the steady-state 
Sedation), the model showed a predictive convergence several minutes before reaching 
Sedation (ketamine concentration was approximately 180 ng/ml at the end of the state). In 
contrast, the transitions to, during, and from LOBR were too short for the detection of 
transitional dynamics with high granularity. Overall, these data confirm the existence of large-
scale temporal dynamics over our ketamine dataset, with the implications and advantages of 
regression, discussed previously in Experiment 1. 

As a final step to this analysis, we visualize the predictions and the corresponding time-
frequency representation (spectrogram) of the epochs over all anesthetic states (steady and 
transitional), for a single test subject (S6) which was representative both in terms of EEG 
signatures and model performance (median performance – 67% accuracy). Fig. 5.24 shows that 
the prominent probabilities of each state follow the general trajectory of the softmax predictions 
observed previously for the group (Fig. 5.23), with specific peculiarities that are subject-
specific, and which are described below.  
 

 
 
Fig 5.24. (Top) Softmax predictions over all anesthetic states (steady and transitional) for a median-
performance subject. (Bottom) PSD of the corresponding states (Method=Welch, 
channel_aggregation=mean, window=1 sec, n_fft=256). 
 
 

At first sight, visual inspection of the mean spectrogram does not reveal any clear 
associations between the band-power dynamics of the EEG and the dose-dependent ketamine 
states. In the broader context, ketamine is an agent with unique features across all levels of 
analysis (molecular, neural, and behavioral), which is also reflected in its distinct 
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electrophysiological characteristics from other intravenous or inhaled anesthetics. Specifically, 
several studies have reported changes in the band-power dynamics, which generally include a 
decrease of alpha activity during the sub-anesthetic state of Sedation, an increase in delta and 
gamma power during LOBR, as well as a general theta power increase throughout ketamine 
anesthesia (most evidently during LOBR) (Vlisides et al. 2017). Some of these changes appear 
to be shared with propofol, as previously observed in section 5.3.2 (e.g. the decrease of alpha 
activity during Sedation, and the increase of delta during LOBR). Regarding the presence of 
disconnected consciousness, alpha activity has previously been correlated inversely with the 
experience of disembodiment (and has been suggested to play a role in conscious orientation 
to time and space (Vlisides et al. 2018)). Nevertheless, only the delta and gamma signatures 
can be seen in S6, and not consistently throughout the LOBR state. Moreover, while we have 
associated the experience of DC to the steady-state of Sedation (which preceded the reports), a 
significant decrease of alpha activity is not evident from the figure. 

One of the subject-specific peculiarities we observe in Fig. 5.24, is the intermittent 
prediction of LOBR during Sedation (with high confidence/probability ~1), which also seems 
to correlate with the short-lived periods of delta, beta, and gamma activity observed in the 
spectrogram. This could indicate that loss of responsiveness, or even unconsciousness, may 
happen periodically for short periods during ketamine, without our ability to assess these 
phenomenological dynamics. Of course, to better understand these signatures and their relation 
to phenomenology, would require further analysis and ground truth testing. Overall, the 
distinction between states of connected and disconnected consciousness is difficult to make, 
due to their electrophysiological similarities, already demonstrated in the literature (discussed 
in detail section 5.6). 

5.5.2 Regression-to-Psychometric-Score Results 

In this section, we focus on the estimation of specific levels of disconnected 
consciousness (DC), by regression to measures created from the average scores (levels) of the 
three subscales (disembodiment, transcendence of time and space, and complex imagery), 
identified most consistently within and across participants. These scores were based on the 
study and lifetime questionnaires (see section 5.2.1), and represented individual levels of DC 
for each participant (overall, study scores were higher than lifetime history scores; see 
Appendix A2). As briefly mentioned in the experiment description, we created three different 
ground-truth measures, namely: 1) the study scores, 2) the lifetime + study scores, and 3) the 
relative change scores. 

Given that the study scores were recorded after the subanesthetic period of the 
experiment, and the lifetime scores were recorded within 48 hours after the study, we associated 
each group of scores to the steady states of Sedation and Wakefulness, respectively. The state 
of Sedation was chosen as the pharmacologically-steady period that preceded participants’ self-
reports during the study. Wakefulness was associated to lifetime scores, as these scores 
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represented an individual baseline for disconnected consciousness that each participant 
reported to have in their daily life. Based on this association, the 1st ground-truth measure (study 
scores) used only the study scores as a DC measure during Sedation (0 was assigned to 
Wakefulness), the 2nd ground-truth measure (lifetime + study scores) used both lifetime scores 
and study scores for Wakefulness and Sedation, and the 3rd ground-truth measure (relative-
change scores) used a relative change score (study scores – lifetime scores) for Sedation (0 was 
assigned to Wakefulness). The relative change score was created to assess the subjective change 
of the individuals’ DC scores, as a way to normalise inter-individual variability within the 
participants’ self-reports. Given the difficulty in assessing a measure of disconnected 
consciousness in the brain, we trained separate models for all three ground-truth measures, and 
explored whether the EEG signatures predicted any of these, using a cross-subject 
generalization approach. 

The results of the regression analysis are summarized in Table 5.8. The loss and MAE 
obtained by the 3D cNN is shown for each of the three experiments, which introduce a given 
ground-truth for levels of DC. Overall, all models had a stable convergence during the 10 
training epochs, indicated by the MSE loss and MAE curves (Fig. 5.25). Target weighting was 
dismissed, as we had discrete targets (scores) for each participant. 
 
 

Table 5.8. Regression-to-Psychometric-Score results 

Psychometric Ground-Truth Loss (MSE) 
Mean Absolute Error (MAE) 

Per State Total 
Wakefulness (0), Sedation (Study Score) 0.12 (0.14, 0.36) 0.27 
Wakefulness (Lifetime Score), Sedation (Study Score) 0.09 (0.15, 0.30) 0.24 
Wakefulness (0), Sedation (Relative-Change Score) 0.08 (0.13, 0.26) 0.21 

Model with lowest MAE is highlighted in bold. 
 
 

Table 5.8 shows a total MAE ranging from 0.2 to 0.3 (within the scoring scale), which 
is hard to evaluate and compare across the experiments, due to the variable nature of the 
ground-truth measures. By comparing the MAE values between the lowest-error model in the 
3rd experiment, and the models in the 1st and 2nd experiments, we did not find any statistically 
significant difference in performance (with p=0.07 and p=0.27, based on two-sided t-tests). 
Focusing on the per-state MAEs, we observe that the errors stem mainly from the state of 
Sedation, where DC levels had the largest variation in the group. This variation is also likely 
responsible for the large variability across individual performances. Specifically, for 3 out of 
15 subjects (S9, S11, and S12), we consistently acquired a low performance with MAE > 0.3. 
Given the similarity of results across the various ground-truth measures, we depict the task 
trained under the relative-change scores, which had the lowest MAE. The detailed cross-
validated performances and the visualization of the model’s predictions can be seen in Fig. 
5.25 and Fig. 5.26, respectively. 
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Fig. 5.25. Regression-to-Psychometric-Score results of the Michigan Anesthesia Dataset, for the model 
trained under the relative-change score ground-truth. Average mean-squared-error loss and MAE 
curves (top). Subject-wise losses and MAE values (bottom). 
 

 

Fig. 5.26. Psychometric-score (DC) predictions for the states of Wakefulness and Sedation of the unseen 
test subjects (average). Dashed lines indicate the average score of each state (relative-change scores) 
 
 

Due to the significant variation and noise of the model within Sedation (Fig. 5.26), and 
in order to further understand its behavior in individual cases (rather than statistically across 
the group), we compared model predictions with the respective (unique) DC scores, for each 
participant independently. As previously performed (section 5.4.3), we can observe the 
relative-to-our-ground-truth estimations, by computing an average-score prediction within the 
state of Sedation. Fig. 5.27 shows the models' predictions and the DC values for each subject, 
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under all three psychometric ground-truths. The relational plots show no correlation between 
the two values, which indicates the inability of our model to make individualized predictions 
of psychometrically-defined levels of DC, based on the EEG. 
 
 

 
 
Fig. 5.27. Disconnected consciousness measures (ground truth) and model predictions (average), for 
each subject and experiment (predictions are based on the Sedation state). 
 
 

Overall, the task of investigating and estimating states characterized by disconnected 
consciousness is a hard problem, which already appears with the definition and formation of a 
ground-truth for altered states of consciousness (especially for measuring specific levels of DC, 
as attempted here). Of course, such task reflects a number of limitations exhibited by our 
current tools of investigation, which mainly reflect the assessment of covert awareness through 
post-anesthetic explicit reports (which on the one hand require recall, and on the other cannot 
indicate the timing of specific events), as well as the comparison of (subjective) 
phenomenological experiences across participants, using questionnaires. In the next section, 
we discuss in detail all the findings and insights, gathered from our previous experiments. 

5.6 Discussion 

Our experiments focused on the importance of the optimization task undertaken by our 
deep learning model, for the purpose of predictive analysis of various anesthetic states. The 
first aspect of optimization regards the employment of a selected ground-truth, defined by a 
clinical standard. Behavioral, pharmacological, and psychometrical evidence are all used in 
medicine for the assessment of states of consciousness, as we also find during the different 
stages of anesthesia (e.g. behavioral measures are used at the induction and recovery of 
anesthesia, while pharmacological measures are mostly used during its maintenance). While 
any anesthetic agent and dose can be characterized by these measures, our analysis relied on 
the data and tasks allowed by the selected studies/experimental designs, in order to make 
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inferences and compare findings. The choice of propofol (Experiments 1 and 2) and ketamine 
(Experiment 3) can be representative for our research goal, given the distinct properties of the 
two drugs (pharmacologically, electrophysiologically, and phenomenologically), which 
synergistically contribute to the identification of the full NCC. Moreover, both anesthetic 
agents are often used in GA, which enhances the clinical relevance of our findings. 

The second aspect of optimization, which relates to the learning algorithm and ground-
truth encoding, has been shown to strongly affect the performance of machine learning models 
(Korotcov et al. 2017), and particularly in EEG analysis has been shown to determine the 
outcomes of feature learning (Stober et al. 2015). Of course, while the question of features and 
learning objective can be guided by the posed research problem, we have shown throughout 
the experiments that the trained models can enrich or dismiss information relevant to our 
investigation, depending on the optimization strategy. We have also shown that the existence 
of large-scale temporal dynamics (i.e. changes in EEG signatures over the period of several 
epochs) affect the model’s predictive behavior under classification and regression tasks, as 
hypothesized, with findings that sometimes agree with our clinical assumptions, and sometimes 
disagree, are novel, and up to interpretation (e.g. indications for continuous or discrete 
transitions of levels of consciousness). 
 Given that our model training and evaluation methodology was kept consistent across 
experiments (without effects from other processing hyperparameters), we were also able to 
observe differences related to the nature of the data, such as the drug under analysis, the dataset 
sizes, and the various anesthetic states and depths. While some of these factors differed 
significantly among the datasets used (e.g. state lengths varied within and across studies, most 
evidently in the case of Michigan Anesthesia Dataset), sample and target weighting managed 
to correct a number of biases observed in our experimental results. Besides these factors, all 
findings were evaluated upon 1) the cross-subject generalizability of the model, due to the 
susceptibilities and possible biases that arise from EEG and neural networks (discussed further 
in section 3.4.1), and 2) the interpretability of model predictions, or their generalization to 
known facts. Finally, we focused on some of the model’s failures (statistically or in specific 
subjects), rather than the actual performance metrics, which are more important to understand 
the behavior of the models. Below we discuss some of the most relevant findings. 

5.6.1 Recovery as a State of Mild Sedation 

One of the observations that were repeatedly made throughout the experiments, was the 
electrophysiological similarities of Recovery with states of mild sedation, typically appearing 
during the induction to anesthesia. With respect to the literature, we have not found any similar 
studies on EEG analysis under GA, that explicitly investigate Recovery as a distinct state. 
Several studies include post-anesthesia recordings, which use an identical ground-truth to pre-
anesthetic recordings (Wakefulness), either by direct labeling or by some behavioral assessment 
(Liu et al. 2015; Sun et al. 2019a; Dubost et al. 2019), and few have included states of 
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intermediate sedation (Mild/Moderate Sedation) (Lalitha and Eswaran 2007; Saadeh, Khan and 
Altaf 2019; Gu, Liang and Hagihira 2019). Nevertheless, transitional states of sedation can be 
important to understand, as the crucial events towards LOC and Recovery are of significant 
relevance to both research and clinical applications. 

The evidence for this phenomenon were found in both classification and regression 
analyses. In Experiments 1 and 3, we observed a similar pattern of Recovery sharing signatures 
to both Wakefulness and Sedation during classification (as depicted by the confusion matrices 
and model output), for both propofol and ketamine, and an almost identical signature to the 
transition from wakefulness to sedation (WS) in Liege Anesthesia Study (regression-to-
Ramsay-scores model also estimated the state with an intermediate Ramsay score). 
Comparable results were also observed during the analysis of pharmacologically-defined states 
in Experiment 2, by the similarities of Recovery to Mild Sedation (in both classification and 
regression predictions). Also, the blood sample measures of the study showed residual propofol 
during the beginning of Recovery state, contrary to PK estimations (~0.3 μg/ml). As previously 
discussed, blood sample measures are the best surrogate for effect-site concentrations, which 
give us a more reliable indication for electrophysiological change in the brain. 

Most importantly, the model was able to make a distinction between Wakefulness and 
Recovery, which although subtle, contrasts with our assumed behavioral and pharmacological 
ground-truths (both states were originally determined by Ramsay 2 or an absence of drug 
concentrations). The performance of the models also increased or decreased accordingly, with 
the inclusion or exclusion of Recovery during training (except in the case of regression-to-
blood-sample-measures, where a more reliable ground-truth was presented). 

5.6.2 Large-scale Temporal Dynamics of EEG Appear Consistent with the 

Depth of Anesthesia 

In resting-state experiments, a steady state of consciousness is commonly supposed, 
which is also reflected on the ground-truth and evaluation of deep learning studies. However, 
recent research has shown that the resting state is a rather dynamic state, and particularly in 
terms of changes in vigilance, which appear most prominently (Zacharias et al. 2020). In one 
resting-state EEG/fMRI study, the authors found that one third of the subjects exhibited 
unstable wakefulness and loss of wakefulness within 3 minutes. Of course, such changes have 
also been observed under various anesthetics, including propofol and ketamine, which most 
evidently affect levels of vigilance (the effect of sub-anesthetic doses of ketamine have also 
been correlated to light sleep, which in turn has been characterized by unstable dynamics and 
cyclic alternating patterns (CAPs) (Musso et al. 2011)).  

Our observations based on the models’ predictions over time revealed the existence of 
large-scale temporal dynamics - over several seconds or minutes within presumable steady 
states - in agreement with the recent literature. We also showed the transitional nature of EEG 
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under anesthesia in both classification and regression tasks, along with its connection to the 
anesthetic depth, throughout our experiments (most evidently in Experiments 1 and 3). For 
both propofol and ketamine anesthesia, the model was able to track the anesthetic paradigm 
found in Liege Anesthesia Study and Michigan Anesthesia Study, during steady and transitional 
states (especially when using regression – see Fig. 5.11). This was confirmed by two 
independent observations. The first one relates to the changes in drug concentrations that were 
known to take place (in both studies, by independent dosing strategies), and which matched 
model’s predictions. The second observation is based on Experiment 2, where the 
pharmacologically-steady states showed the most consistent model predictions (a reasonable 
expectation, given that the EEG strongly reflects changes in effect-site concentrations). While 
EEG patterns can show significant variability due to various biological factors (e.g. age), the 
drug administration – characterized by the concentration levels and the rate of titration – 
showed the most direct effect on the model’s predictive behavior.  

A number of relevant studies, estimating states and levels of unconsciousness using 
machine learning, have also revealed the existence of temporal dynamics through a variety of 
models, using windows of analysis that span 1 to 10 seconds (Kangas et al. 1997; Lalitha and 
Eswaran 2007; Jiang et al. 2015; Sun et al. 2019a; Saadeh, Khan and Altaf 2019). However, 
the relation of the models’ dynamics to the anesthetic depth is not always clear, with predictions 
that are either unstable/noisy, or lack a sensible interpretation on the basis of our current 
understanding (e.g. transitions from wakefulness to deep anesthesia, and vice versa, as found 
in (Saadeh, Khan and Altaf 2019)). In one of the most successful works, (Sun et al. 2019a) 
used a cNN model which showed large-scale temporal dynamics (over several hours) that 
naturally tracked the depth of anesthesia, as denoted by the Richmond Agitation-Sedation Scale 
(RASS). Although the model used 4-sec epoch windows, it exhibited a delay in response to the 
known ground-truth, with a lag of 0.6 – 6 minutes (the authors attributed this lag to the use of 
ordinal regression, and the addition of an LSTM network, which learned to smoothen the 
model’s output). 

In our own analysis, when looking at individual subjects, changes in model predictions 
appear to take place over several minutes, with transitions that sometimes span seconds. 
Nonetheless, the evaluation of these fine-grained dynamics can be challenging without a 
respective behavioral or pharmacological ground-truth. An interesting finding based on the 
model trained in the 1st experiment, was the predicted changes in anesthetic depth over steady-
defined states, despite the use of effect-site targeting that aimed to sustain a behavioral level of 
consciousness. For example, the general increase of depth observed during LOC (Fig. 5.10) is 
consistent with reports of increasing depths of unresponsiveness after the moment of LOBR 
((Radek et al. 2018) showed different degrees of arousability and probabilities of content of 
experiences, for participants under increasing doses of propofol, within the range of 2-3 μg/ml). 
Another finding which points to the validity of our model, was reflected in the decrease of 
depth during the Sedation state of our worst-performing subject (Fig. 5.13), which revealed the 
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order of transition from Wakefulness to LOC and back to Sedation (despite the 5-min 
equilibration period that preceded the recordings). 

Overall, and based on these findings, it is important to note that besides any ground-
truth and PK limitations, model’s behavior can be affected by changes in brain activity that are 
not directly caused by concentration changes, but emerge from phenomena such as neural 
inertia (the process where the brain resists behavioral state transitions, as in the shift from 
conscious to unconscious states) and hysteresis (the asymmetry of induction and emergence 
from anesthesia, due to the lagging of the brain’s response to changes). For example, we know 
that the anesthetic concentration at which consciousness is lost is higher than the concentration 
at which consciousness is regained, due to hysteresis (Tarnal, Vlisides and Mashour 2016). 
Nevertheless, we do not currently have the data to compare and evaluate such observations. It 
may be critical though to obtain such evidence from further experimental designs, by 
combining multiple targeted measures, considering the limitations of implicit and indirect 
evidence of individual approaches (which lack the qualitative and quantitative properties 
exhibited by the brain). 

5.6.3 Regression vs Classification for Tracking States and Levels of 

Consciousness 

As discussed in section 5.2.4, we investigated both main types of supervised learning 
algorithms throughout our experiments, given that each one reflects the discrete and continuous 
aspects of the variously defined anesthetic states and levels of unconsciousness. Besides any 
technical differences, and with respect to our research investigations, two theoretical 
approaches can be considered and posed as a learning objective, which ultimately determines 
the algorithm of choice. The first one is based on the notion of consciousness states as discrete 
phase transitions, which can be classified as separate neurophysiological states. The second 
approach, regards the consideration of discrete or continuous levels of consciousness that may 
share neurophysiological transitions, and which can be exploited by regression. Given that we 
do not have sufficient evidence for either notion (we recognize both distinct and transitional 
electrophysiological signatures throughout the different depths of anesthesia (Patrick L. Purdon 
et al. 2015)), we tested both approaches, allowing the model to interpret the raw data. Literature 
review shows a limited number of studies using regression methodologies (Jiang et al. 2015; 
Sun et al. 2019a), with the majority of studies using classification, on the basis of this first 
implicit assumption (Lalitha and Eswaran 2007; AlMeer and Abbod 2019; Liu et al. 2015; 
Dubost et al. 2019). In one study we are aware, (Ferreira et al. 2021) used classification for the 
problem of the detection of the exact moment of LOC. 

In this work, we argue that a continuous representation by regression is more 
appropriate for our research investigation, which is based on clinical definitions for levels of 
unconsciousness (mainly estimated by behavioral or pharmacological measures). Model 
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predictions of individual subjects under classification did not show strong temporal 
consistency, and were not informative with respect to specific levels of unconsciousness. This 
was observed especially during the intermediate levels of sedation, where the critical events of 
transitioning to and from LOC take place (as we observed in section 5.3.1, by the noisy and 
step-like traces of softmax probabilities). On the contrary, regression was able to capture the 
large-scale temporal dynamics of EEG and track the anesthetic trajectory of individuals, as 
discussed in detail in the previous section. As initially hypothesized, the existence of such 
dynamics contributed to the behavior and performance of the respective algorithms. Moreover, 
this learning objective is in alignment with current DoA monitors, which use continuous 
indices to denote the various anesthetic depths (Patrick L. Purdon et al. 2015). Finally, 
regression has the advantage of a trained model that can be consistently tested in novel and 
unseen anesthetic states, unlike classification models. 

With regards to our initial theoretical notions, the model interpretation of the data 
during our behavioral analysis (section 5.3) revealed specific anesthetic depths across different 
electrophysiological classes, but also changes in depths within a particular class (if we consider 
the electrophysiological classes as the prominent changes in band-power dynamics, that have 
been systematically reported in the literature - see Fig. 5.12). Of course, further understanding 
of these findings would require further interpretation of the model. Overall, our results showed 
the possibility of deep learning in investigating and estimating levels of consciousness, by 
continuous measures of research and clinical value. 

5.6.4 Behavioral Measures are more Reliable than Pharmacological 

Measures as a Ground-truth for Consciousness 

One of the main investigations across the experiments of this chapter, and the 2nd aspect 
of optimization and ground-truth, was the comparison among the different definitions of 
anesthetic states based on behavioral, pharmacological, and psychometrical evidence for 
consciousness. So far, all the studies that we have referenced in our discussion, and which 
relate to our research question, have used behavioral measures as a ground-truth for 
consciousness (using scales such as the Ramsay or the RASS). Even though this ground-truth 
is often implicitly accepted as accurate and valid by clinical standards (in case of standard 
clinical scales), we need to critically assess our findings, under the limitations of behavioral 
evidence for understanding consciousness (discussed in detail in Chapter 2). Besides 
behavioral or other physiological and clinical signs that have been typically used by 
anesthesiologists to assess the anesthetic depth, pharmacological measures are rarely taken into 
consideration (and thus, the pharmacological ground-truth is almost never evaluated). While 
we are aware of few machine learning studies that have incorporated other physiological 
signals alongside EEG to study anesthesia (mostly as input variables for the prediction of DoA, 
as in (Subramanian et al. 2020)), we are not aware of any study focusing on the prediction of 
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states characterized by drug concentrations (either TCI-estimated or arterially measured). 
Nevertheless, here we make several observations, particularly with respect to propofol, where 
we had independent access to both behavioral and pharmacological data. 
 Based on the analysis of Experiments 1 and 2, we can infer that behavioral measures 
are more reliable than pharmacological measures, as a ground-truth for consciousness. First of 
all, the classification analysis of the experiments showed that behaviorally-steady states had 
higher electrophysiological similarity across participants than pharmacologically-steady states, 
as defined by plasma targeting (using the Marsh model). This was evident from the 
performance of the respective models, and particularly on the states of Sedation and Moderate 
Sedation of the corresponding studies (91% over 83% accuracy), which were closest by 
anesthetic depth (based on arterial concentrations). Moreover, regression-to-Ramsay-scores 
showed the ability of the model to represent levels of unconsciousness (almost) linearly using 
the Ramsay scale, and allowed us to reasonably interpret the temporal dynamics of EEG (as 
argued in the previous sections). In contrast, regression to target or blood sample concentrations 
showed significant variation and noise within both group and individual level predictions, with 
blood sample measures slightly improving the results. All these outcomes can be explained by 
the complexity of the inter-individual response to the drug, which can be captured by the EEG 
signatures and partially, by behavior (or any other clinical effect).  

These findings are also consistent with empirical clinical practice and the existing 
literature. From a clinical perspective, the differences between the targeted plasma 
concentrations and the actual effect-site concentrations in the brain relate to a number of 
limitations that arise from contemporary TCI (target-control infusion) devices (Absalom et al. 
2009). These limitations arise from either the pump’s volumetric inaccuracies (mostly relevant 
for short half-life drugs and high dose rates), or from PK modelling deviations, as compartment 
modelling, rate constants and effect-sites are all determined by various pharmacological and 
biological variables. Current PK models (including the Marsh) have been developed with a 
limited number of patients, whose physical characteristics (e.g. age, weight, height, etc.) are 
not always representative, and thus there is no generally superior model. This is also reflected 
in clinical practice, where anesthesiologists often perform TIVA (total intravenous anesthesia) 
using manual adjustments of infusion rates (unlike TCI modes), with doses that are empirically 
adapted to patient characteristics, the intensity of noxious stimulation and as a function of other 
co-administered medications. 

With respect to existing literature, (Chennu et al. 2016) showed in the original study 
that our 2nd experiment was based on, that besides the inter-subject variability of drug 
concentrations (as shown from the blood sample measures), dose-depended signatures and the 
overall anesthetic trajectory varied across participants (including the loss and recovery of 
consciousness). The authors also showed that arterial concentrations were not proportional to 
clinical effect, as measured by an auditory discrimination task, revealing the individual 
susceptibility to anesthetic dosage (specifically, subjects with weaker alpha-band networks 
were more likely to lose responsiveness). Of course, even by acquiring an accurate estimation 
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of drug concentrations, understanding the relation between drug doses and clinical effect is not 
a trivial problem, as the available methods for measuring effect-site concentrations and clinical 
effects are both indirect, and are often used circularly during PD modelling. In this respect, 
EEG is a strong candidate for capturing neurophysiological changes beyond the effect-site 
concentrations, and which are not directly evident from clinical effects (e.g. behaviorally), but 
ideally reflect states and levels of unconsciousness. 

Overall, and despite the advantages of behavioral measures over pharmacological, there 
are still several limitations associated with contemporary clinical scales. One of such 
limitations is reflected on the temporal granularity in which responses can be recorded, and 
which does not allow us to assess the transitional nature of the observed signatures/predictions. 
Moreover, the clinical assessment is limited both qualitatively regarding contents of 
experience, but also quantitatively in terms of levels of unconsciousness, as it relies on the 
grading of specific non-scalable responses (usually verbal, ocular or motor responses). This 
was mostly evident during the state of Recovery, where Ramsay scores were unable to 
differentiate the subtle changes in levels of sedation. Last but not least, behavioral measures 
are (by definition) unable to detect covert awareness, which is particularly important for 
assessing the critical transition from LOBR to LOC. Therefore, the issue of ground-truth 
remains a challenge for the research field, and particularly for deep learning during training 
and evaluation.  

5.6.5 Limitations of Psychometrical Measures for Investigation and 

Estimation of Altered States of Consciousness 

As we mentioned in the previous section, one of the main investigations of the chapter 
regarded the evaluation of psychometrical evidence for consciousness, which are rarely 
explored in similar studies (especially within the machine learning literature). Given that 
subjects under GA can be disconnected from the environment and still having conscious 
experiences, the assessment of the electrophysiological changes during disconnected 
consciousness becomes important for both research and clinical implications. Ketamine is a 
dissociative anesthetic (with various psychoactive effects) that allows us to study such altered 
states, as it induces profound unresponsiveness, but also vivid dreams that subjects report upon 
emergence. However, when it comes to psychometrical measures, and based on the analysis of 
Experiment 3, there are still significant constrains that arise from the timing and nature of the 
subjective reports. 

Starting by a comparison to propofol anesthesia, the electrophysiological distinction of 
the dose-dependent ketamine-induced changes appeared to be a more challenging task, already 
due to the agent itself. This was evident from the significant decrease in performance overall 
(and the larger variance in performances across participants), when comparing the 
corresponding n-state classification tasks of the propofol and ketamine studies (sections 5.3.1 
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and 5.5.1). Particularly for the state of Sedation under ketamine, confusion matrices showed a 
bias towards the prediction of Wakefulness, which could be partly explained by the milder sub-
anesthetic dosing strategy of the Michigan Anesthesia Study (which has been associated to 
Ramsay 2-3 in (Bonhomme et al. 2016)), but also to several ground-truth considerations. 
Specifically, the resemblance of ketamine anesthesia to states of wakefulness has also been 
demonstrated in other studies, both phenomenologically (by reports of dreaming), but also 
electrophysiologically (by measuring the complexity of the cortical responses to TMS 
stimulation, as in (Sarasso et al. 2015)). Additionally, in contrast to Experiment 1, the 
characterization of ketamine Sedation as a unitary behaviorally-defined or psychometrically-
defined state across time and across participants is questionable, given the retrospective reports 
and the subjective nature of the psychometric scoring.  

These limitations were also evident in our regression analysis, where we tried to predict 
specific levels of disconnected consciousness (DC), from the EEG signatures of Sedation. 
Using three different ground-truth measures for DC levels (study scores, lifetime + study 
scores, and relative-change scores), our model showed a large predictive variation within 
Sedation, with no statistically significant differences across measures, and no ability to predict 
the subject-individual DC scores (section 5.5.2). In a similar study based on the Michigan 
Anesthesia Dataset, (Vlisides et al. 2018) made an exploratory analysis that aimed to uncover 
possible relationships between the psychometrics and the EEG. Using Spearman’s correlation 
between the study scores of each subscale in the ASC questionnaires (11 subscales in total), 
and in relation to basic channel and source metrics (spectral power features computed from the 
Sedation state), the authors found no statistically significant correlations, after correction for 
multiple comparisons (Bonferroni’s method). Of course, while deep learning can be used for 
more complex non-linear multivariate pattern analysis, we selectively focused on the average 
score of the three most relevant scales (identified in (Vlisides et al. 2018)), as our best prior 
hypothesis. As a final point to this analysis, the state of LOBR was left unexplored in relation 
to disconnected consciousness, due to the lack of subsequent records of the ASC psychometrics 
(albeit it has previously been associated to reports of DC, for all participants found in (Sarasso 
et al. 2015)). 

In general, there are several other theoretical and technical limitations that affect our 
current tools of investigation and the study of altered states of consciousness. For example, 
although the systematic collection of retrospective reports is the only available method to detect 
covert awareness, we need to critically assess them, as participants may forget or confabulate 
their experiences upon awakening (although in case of ketamine it is unlikely, given that reports 
tend to be highly structured, explicitly narrative, emotionally rich, and extended in time, 
similarly to sleep dreams). Also, it becomes important to continuously refine the ASC 
dimensions in terms of psychometric validity and reliability, temporal effects and inter-
individual differences. Finally, other technical considerations regarding specifically the 
Michigan Anesthesia Study, could relate to the small sample size of participants (which might 
not reached statistical significance), the relatively low dosing strategy, potential cognitive 
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impairment during the assessment (or misunderstandings), environmental factors (e.g. a bright 
lighting and the lack of privacy could lead to weaker effects) and even a lack of placebo 
condition, all of which could affect the credibility of our investigation. 

5.6.6 Deep Learning-based EEG and Comparison to Clinical Practice 

Throughout our experiments, we saw a number of deep learning models attaining 
different levels of performance on the basis of certain factors, such as the learning algorithm, 
the ground-truth measure, the anesthetic agent, and others. While we compared and discussed 
several of these factors within our own results, the heterogeneity across similar studies makes 
a comparative evaluation challenging, due to the significant differences in anesthetic and 
methodological protocols. Most notably, a large number of studies found in the related work 
(section 5.1.3) have analyzed patient data, which although create more clinically relevant 
findings, are not as suitable for a basic analysis of specific agents and dosages, as experimental 
setups found in research (clinical environments are not as controlled, with several medications 
co-administered depending on patients’ needs). Nevertheless, it is important to review the 
current state-of-the-art models for DoA prediction, and discuss their relation to contemporary 
clinical practice. 

Based on our behavioral analysis, we obtained the best performing model using a 
regression-to-Ramsay-scores optimization strategy, as revealed by the average MAE and the 
observed model dynamics. Using the EEG pre-processing pipeline and the 3D cNN derived in 
Chapter 7, and under the 3-state regression task (which included the most reliably encoded 
states), we were able to achieve a total MAE of 0.5 (within the Ramsay scale). (Sun et al. 
2019a), which had the most successful results upon the same criteria, achieved a similar 
performance using a cNN-based EEG model trained under the Richmond Agitation-Sedation 
Scale (RASS), reporting a total MAE of 1. While the range of sedation is similar for the two 
scales (RASS used 2 additional levels of sedation, in comparison to Ramsay), the analysis of 
ICU patients, the variety of anesthetics, and the use of 2 frontal EEG channels makes the 
performance of the study mostly of clinical significance. This was evident by the predictive 
accuracy of the model (allowing one RASS level deviation) that surpassed the accuracy of a 
median technician-nurse agreement (70% over 59%). (Jiang et al. 2015) has also showed that 
neural networks can outperform contemporary DoA monitors like the BIS, as evaluated by 
anesthetic depth curves created by expert doctors (correlation coefficient of 0.73 over 0.62). 
Besides this, BIS like systems cannot perform with all anesthetics (e.g. ketamine or 
dexmedetomidine), and have been shown to exhibit a delay in response ((Zanner, Pilge, E.F. 
Kochs, et al. 2009) found 0.4 – 2 min delay before a new state was detected, which might not 
be acceptable in certain operations). On the other hand, in our own work we focused on 
experimental setups using full-head coverage EEG systems (10-20), which managed to obtain 
more stable performance across participants, and shorter delay responses from our model (in 
comparison to (Sun et al. 2019a) or BIS (Zanner, Pilge, E.F. Kochs, et al. 2009)). 
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 Regarding our pharmacological analysis and the problem of estimating drug 
concentrations, we obtained moderate results by employing a regression-to-blood-sample-
concentrations optimization strategy. When trained under TCI-estimated concentrations, we 
showed that our 3D cNN distinguished plasma concentrations of ~1 μg/ml on average (with an 
accuracy of 83%), which was constrained by the inter-subject variability in response to the 
drug (performance increased by regression to arterial concentrations). Although we showed a 
limitation in predicting drug concentrations for individuals, we need to consider clinical factors 
that contribute to the training behavior and performance of the model (e.g. patient population 
characteristics or range of concentrations). Specifically, while our model trained on data within 
the range of 0 – 2 μg/ml, propofol concentrations in clinical practice can range from 0 to 4 
mg/ml, depending on the operation. Based on the median absolute performance error 
(MDAPE) used in (Glen and White 2014), and defined as the percentage of error between the 
concentrations measured and predicted (an established methodology found in (Varvel, Donoho 
and Shafer 1992)), we can assess the inaccuracy of our model with an IQR median performance 
of 37%. Nonetheless, such performance error is not clinically acceptable, as it has been 
suggested that MDAPE should be in the region of 20-30% (albeit the Marsh model itself does 
not pass these criteria) (Glen and White 2014).  

5.6.7 Summary 

Overall, we focused on the investigation of our EEG data, through different learning 
tasks and ground-truth measures, in order to uncover the relationships across the 
pharmacological, electrophysiological, behavioral, and psychometrical variables. We 
discussed the appropriateness of regression analysis with respect to theoretical considerations 
and the temporal dynamics of anesthesia, as well as the advantages of behavioral measures 
against pharmacological or psychometrical evidence for measuring levels of consciousness. 
Despite the limitations that arise from current tools of investigation, our findings highlight the 
ability of the 3D cNN model to detect anesthetic levels with higher accuracy than any other 
contemporary machine learning model, or method of clinical practice, under an optimal 
optimization strategy. Moreover, we showed the adequacy of deep learning-based EEG to 
refine and enrich (interpolate) its predictions, beyond any noise arising from the EEG or the 
ground-truth. In the next chapter, we test the predictive behavior and generalizability of our 
model under novel setups, by incorporating unseen experimental paradigms and anesthetic 
agents, in order to further investigate its robustness and learning capacity. 
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Chapter 6 Cross-study and Cross-drug 

Generalization of Anesthetic-Induced 

Unconsciousness 

6.1 Introduction 

6.1.1 Overview 

In this chapter we test the predictive power of our deep learning model under a cross-
study and cross-drug generalization task, as a way to explore its performance robustness and 
the validity of our findings thus far. Models within the EEG and deep learning literature have 
shown weaknesses in replication of their results, due to a number of factors, such as the lack 
of consistent methodologies, proper prior hypotheses, or validation frameworks with 
independent datasets. Especially within the context of deep learning-based EEG for tracking 
the depth of anesthesia, there is an absence of reproducibility of the models, which is partly 
driven by the difficulties in acquiring or publicly sharing anesthesia datasets. With this goal in 
mind, we exploit the acquisition of four anesthesia datasets and perform a series of 
experiments, where we evaluate our model across studies and anesthetic agents, using 
predefined behavioral ground-truths. We also explore the possibility of improving model 
generalization using a training strategy that incorporates multiple anesthetics, whilst assuming 
a common electrophysiological learning target. Specifically, in Experiment 1 we focus on 
cross-study generalization using two propofol studies with distinct experimental designs and 
paradigms for measuring behavioral unresponsiveness. In Experiment 2, we focus on cross-
drug generalization using a model trained on propofol and tested on two unseen anesthetics – 
ketamine and xenon. In Experiment 3, we further explore cross-drug generalization by creating 
a mixed trained model using the agents of propofol and ketamine, which exhibit distinct 
electrophysiological and phenomenological characteristics. Our results demonstrate the 
robustness of the model across different experimental designs, and its capacity for learning 
generalized cross-drug features of unconsciousness, given an appropriate setup. We finally 
discuss some of the differences across anesthetics, our limitations in characterizing altered 
states and depths of anesthesia, and their implications on model training and performance. 
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6.1.2 Background 

Our aim here is to focus on the problem of generalization and reproducibility within the 
framework of deep learning-based EEG, in order to assess our model’s strength in impartially 
estimating levels of anesthetic-induced unconsciousness. Specifically, we test our predictive 
model across different studies and anesthetic agents, and we explore a training strategy that 
could allow us to capture potential common features of unconsciousness. The existence of such 
features, besides aiming at an improved cross-study and cross-drug generalization, would also 
have theoretical implications for general anesthesia research. 

The problem of generalization and reproducibility, while fundamental for science and 
engineering, is particularly evident throughout both EEG and deep learning literature, as 
indicated by recent studies. With regards to EEG research, the neuroscience community is 
showing growing awareness about the limited evidence of many findings, and has only recently 
begun to appreciate the importance of large-scale studies, in an effort to improve the 
replicability and statistical power of experiments (Pavlov et al. 2021a). Meanwhile, 
generalization is one of the fundamental issues and goals of machine learning. Specifically for 
deep learning, as neural networks can be trained to fit anything, the generalization hypothesis 
lies on their ability to discover appropriate low-dimensional latent spaces (or “manifolds”), 
where the data can be encoded and interpolated (generalization can be thought as interpolation 
upon this manifold). Even though the success behind this idea is guided by different 
methodological concerns compared to EEG research, both fields share several key insights; the 
statistical power of the models rely significantly on the size and quality of the data 
(representability), the appropriate formulation of the research question or task, and the given 
methodological choices (e.g. the processing pipelines or the architectural priors of neural 
networks). In Chapter 4, we have already discussed the lack of standardized EEG 
methodologies as part of the reproducibility problem in EEG research, and our concomitant 
efforts to acquire a consistent deep learning-based pipeline, that allowed the integration and 
comparability of our findings (generalization testing). Here, we focus on two notions of 
predictive generalization, in terms of extrapolating to new datasets defined by novel 
experimental designs and anesthetic agents. 

The first notion of generalization which is important to evaluate, concerns the cross-
study generalization. As we have previously mentioned, studies with EEG under GA can vary 
across a number of variables, such as the experimental or clinical setting, the EEG device, the 
recording environment, the anesthetic type and administration protocol, and others. In addition, 
EEG experiments often suffer from small sample sizes (due to cost and complexity), noisy 
datasets, computational requirements (data curation), and experimenter degrees of freedom 
(e.g. in statistical tests or regions of analysis). All of the above can result in analytic flexibility, 
which creates the need for improved model robustness. Meanwhile, deep learning studies have 
shown much evidence of faulty performance, with the networks detecting spurious correlations 
in all kinds of biomedical engineering tasks (e.g. related to imaging equipment noise or task-



 147

 

specific confounds) (Fellner et al. 2016; DeGrave, Janizek and Lee 2021; Mahmood et al. 
2021). Specifically within our own analysis, EEG artifacts and mislabeled epochs are 
prospective pitfalls that could lead to model overfitting. Therefore, it is important to extent our 
datasets, pre-define our ground-truth hypotheses, and appropriately assign our training/testing 
sets based on our learning goal. 

The second notion of generalization, which is more relevant to our research inquiry, 
concerns the cross-drug generalization. One of the theoretical considerations and unsolved 
questions recognized in GA research, regards the discovery of the common mechanisms of 
anesthetic-induced unconsciousness, or even the possibility of finding a unitary signature for 
measuring levels of unconsciousness (although less commonly presumed, given that different 
altered states seem to occur through different pathways in the brain) (Bonhomme et al. 2019). 
However, while there has been progress in uncovering many electrophysiological markers for 
a variety of anesthetics, findings are often limited to specific agents, specific mechanisms and 
even specific levels of sedation, with no clear continuity or distinction across states and agents 
(Patrick L. Purdon et al. 2015). Hence, we are interested in exploring the possibility of deep 
learning to discover common cross-drug features, and the potential to improve its performance 
by training under multiple anesthetic agents (or, more “representative” datasets). Such potential 
would also have clinical implications, given the ineffectiveness of contemporary DoA monitors 
to perform under different anesthetics with independent action (Hans et al. 2005). 

6.1.3 Related Work 

In the previous chapter, we mentioned a number of works using learning-based methods 
for the analysis of EEG and the estimation of levels of consciousness under GA (section 5.1.3). 
While several of these studies share similar learning objectives and anesthetic definitions with 
our work here, a comparative evaluation of the models is still limited by the variation found in 
methodological choices, validation frameworks, and most importantly, the datasets under 
analysis. As we have emphasized, the particular selection of the data under training and testing 
has a profound effect on the resulting model and the respective performance. Most importantly 
though, none of the deep learning studies we are aware has further validated the acquired model 
under a cross-study or cross-drug generalization task.  

Despite this gap, there are several works on theoretically or empirically-based EEG 
metrics for discriminating states of consciousness, which have been shown to generalize across 
a variety of conditions (including anesthetic states). Typically, these metrics can be categorized 
to methods that quantify the information or spectral content of the EEG signals (e.g. 
approximate entropy (Bruhn, Röpcke and Hoeft 2000), spectral entropy (Klockars et al. 2012), 
bispectral index (Ellerkmann et al. 2010)), methods that evaluate the spatial extent or 
synchronization of brain activity (e.g. measures of functional/effective connectivity, DCM 
(Boly et al. 2012; Muthukumaraswamy et al. 2015), granger causality (Engel and Singer 2001)) 
or a mixture of the two (e.g. PCI (Casali et al. 2013), graph theoretical measures (Chennu et 
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al. 2014; Chennu et al. 2016)). Here, we focus on some of the techniques that can be used to 
progressively track the anesthetic depth, and which have been tested across a variety of datasets 
and anesthetic agents. 

One of the most successful metrics developed over the past years is the perturbational 
complexity index (PCI), which is based on the estimation of information differentiation and 
integration of cortical activity. In one study, (Casali et al. 2013) showed in 18 healthy 
volunteers undergoing propofol, xenon or midazolam anesthesia (N=6 for each agent) that the 
PCI index was able to discriminate states of consciousness (wakefulness) and unconsciousness, 
as determined by the MOAAS (Modified Observer’s Assessment of Alertness and Sedation) 
scale. (Bai et al. 2015) investigated the permutation Lempel-Ziv complexity (PLZC) index, 
which, similarly to PCI, measures the complexity of the EEG timeseries by quantifying the 
distinct patterns of activity. Specifically, the authors incorporated two studies with 10 healthy 
volunteers under propofol and 19 patients under sevoflurane anesthesia, and showed that the 
PLZC values correlated highly to effect-site concentrations in both agents, as estimated by 
PK/PD modelling (using standard sigmoid models). Another set of widely used techniques, are 
based on entropy measures. (Liang et al. 2015), made a systematic comparison of 12 entropy 
indices on 48 patients under sevoflurane and isoflurane anesthesia (N=19 and 29, respectively), 
upon their ability to predict the effect-site concentrations of the drugs (using PK/PD modelling 
similar to (Bai et al. 2015)). In general, permutation entropy indices performed adequately 
well, with Renyi PE having the best overall performance. (Mhuircheartaigh et al. 2013b) and 
(Sleigh et al. 2019) explored the appearance of slow wave activity (SWA) and its saturation 
point as potential indicators for the transition to LOBR and LOC, respectively. Specifically, 
the two studies used healthy participants under propofol (N=16) and ketamine (N=15) and 
showed a sharp increase of SWA after LOBR for both agents, with a weaker correlation of 
SWA to effect-site concentrations and the point of recovery, for ketamine. Finally, (Colombo 
et al. 2019) investigated the spectral exponent (decay-rate) of the EEG’s PSD as a metric of 
unconsciousness, given the association of anesthetics to EEG slowing and redistribution of 
spectral power. By incorporating 15 healthy subjects under propofol, ketamine and xenon 
anesthesia (N=5 for each agent), the authors showed that the spectral exponent reliably 
separated conditions of consciousness and unconsciousness, as determined by Ramsay scores. 
 In spite of some partial success with the above techniques, each one shows specific 
strengths and limitations, when it comes to generalization and reproducibility. For example, 
the PCI and the spectral exponent have been shown to generalize only within the 2-class 
problem of discriminating wakefulness from states of unconsciousness (a relatively easy 
problem, as seen in section 5.3.1), without being able to progressively track levels of anesthetic 
depth (for propofol, PCI has been shown to produce intermediate values during sedation). On 
the contrary, PLZC, entropy measures and SWA have been tested as continuous indices against 
the effect-site concentrations, showing correlations with the different anesthetic depths. 
Nevertheless, complexity measures cannot differentiate robustly states with distinct 
electrophysiological and phenomenological properties (e.g. from anesthetic induction to LOC, 
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or from deep anesthesia to recovery). Moreover, they have not shown generalization across all 
tested GABAergic anesthetics. This could relate to the fact that the PK/PD modelling used for 
evaluation is determined by EEG parameters, which likely vary across anesthetics (hence, 
creating a problem of a circular ground-truth). SWA has been strongly correlated with the 
moment of LOBR for both propofol and ketamine, but cannot account for pharmacological 
variations or the moment of recovery (SWA is not a sufficient condition for consciousness). 
Finally, none of the above methods can discriminate wakefulness from states of disconnected 
consciousness, which have been shown to appear during LOBR under ketamine. 
 Overall, considering the lack of reproducibility within the deep learning-based EEG 
literature, and given our reasoning for the problems that can emerge within EEG and deep 
learning studies, it is important to focus on the problems of cross-study and cross-drug 
generalization. Besides generalization and reproducibility, a comparison of our deep learning 
approach with these non-learning-based methods can also be made, given the variety of 
methodological differences and limitations, which we discuss in detail in the next chapter. 

6.2 Methods 

6.2.1 Datasets Collection 

For this investigation, we expanded our data from the previous chapter by including a 
novel dataset acquired in (Sarasso et al. 2015), which can serve as an additional test set for our 
cross-study and cross-drug generalization analysis. We also elaborate on our existing datasets 
by incorporating information related to a behavioral ground-truth for assessing levels of 
consciousness, for the states found in Cambridge Anesthesia Study and Michigan Anesthesia 
Study (previously characterized and used for pharmacological a psychometrical investigation). 
 
Liege Anesthesia Dataset 1. The dataset acquired in (Murphy et al. 2011) has been described 
in detail in sections 3.2.1 and 5.2.1. Briefly, fifteen-minute spontaneous high-density EEG was 
recorded from 10 healthy participants during propofol anesthesia at four different states of 
consciousness: Wakefulness, Sedation, LOC, and Recovery. Each state was determined based 
upon reaching and sustaining an individualized effect-site concentration that corresponded to 
a desired behavioral response (Ramsay score), namely: Ramsay 2 (fully awake) for 
Wakefulness and Recovery, Ramsay 3 (slow response to command) for Sedation, and Ramsay 
5-6 (no response) for LOC. For 3 out of 10 participants, the EEG recordings during all 
transitional states (wakefulness to sedation – WS, sedation to loss of consciousness – SL, and 
loss of consciousness to recovery – LR) were also available for analysis. During the transitional 
states, propofol infusion rates were increased or decreased, according to the desired target.The 
experimental design of the dataset is depicted in Fig. 6.1. 
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Fig. 6.1. Experimental design of the Liege Anesthesia Dataset 1. Four different levels of consciousness 
were attained based on the behavioral response of the participants, assessed by the Ramsay scale. 
 
Cambridge Anesthesia Dataset. The dataset acquired in (Chennu et al. 2016) has been 
described in detail in section 5.2.1. Briefly, seven-minute spontaneous high-density EEG was 
recorded from 20 participants during propofol anesthesia at four different states of 
consciousness, namely: Baseline Wakefulness, Mild Sedation, Moderate Sedation and 
Recovery. Each state was determined by a desired (“target”) plasma concentration, controlled 
by a computerized syringe driver (Alaris TCI mode, using the Marsh model) that achieved and 
maintained the required propofol infusion rate (0.6 μg/ml for Mild Sedation and 1.2 μg/ml for 
Moderate Sedation. Recovery was associated to 0 μg/ml, 20 minutes after cessation of 
infusion). 
 

 
 
Fig. 6.2. Experimental design of the Cambridge Anesthesia Dataset. Two different participant 
subgroups were identified during Moderate Sedation based on their behavioral responsiveness 
(Responsive and Drowsy), assessed by the ‘hit rates’ of the auditory discrimination task. 
 
 At each of the four states, and after the resting-state period, a simple behavioral task 
was performed that involved a fast discrimination (button press) between two possible 
binaurally auditory stimuli (buzz or noise). An assessment of levels of consciousness was then 
performed by measuring the hit rates (percentage of correct responses) and reaction times of 
the participants’ responses (the delay between an auditory onset and the button press). During 
Moderate Sedation, and based on binomial modelling of the hit rates, the authors identified two 
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subgroups of 13 and 7 participants, characterized as Responsive and Drowsy, which reflected 
the inter-individual variability of the pharmacodynamic impact of propofol. The experimental 
design of the dataset is depicted in Fig. 6.2. 
 
Michigan Anesthesia Dataset. The dataset acquired in (Vlisides et al. 2017) has been described 
in detail in section 5.2.1. Briefly, spontaneous high-density EEG was recorded from 15 healthy 
participants during ketamine anesthesia at 4 different states of consciousness: Wakefulness, 
Sub-anesthetic Sedation, Loss of Behavioral Response (LOBR) and Recovery. The two 
anesthetic states were characterized by different dosing strategies, namely: a continuous 
intravenous infusion of 0.5 mg/kg racemic ketamine over 40 minutes during Sub-anesthetic 
Sedation, and a 1.5 mg/kg anesthetic bolus dose in LOBR. For each anesthetic state, a steady-
state was extracted in accordance with the original analysis, based on the pharmacologically-
steady period of the sub-anesthetic block (Sedation), and the 5-min period after cessation of 
response to commands (LOBR), respectively. For 14 out of 15 participants, the EEG recordings 
during all transitional phases were also available for analysis.  
 In order to behaviorally characterize the steady-state of Sedation, we draw evidence 
from two independent studies (Bonhomme et al. 2016; Salah and Alansary 2019), which have 
used the Ramsay scale to assess the responses of participants under sub-anesthetic doses of 
ketamine. Based on the experiment in (Vlisides et al. 2017) and their work, the corresponding 
Ramsay scores for the four steady states are: Ramsay 2 for Wakefulness and Recovery, Ramsay 
2-3 for Sedation and Ramsay 5-6 for LOBR. The experimental design of the dataset is depicted 
in Fig. 6.3. 
 

 
 
Fig. 6.3. Experimental design of the Michigan Anesthesia Dataset. Four different levels of 
consciousness were attained, which corresponded to different behavioral responses within the Ramsay 
scale. 
 
Liege Anesthesia Dataset 2. The dataset acquired in (Sarasso et al. 2015) is based on a TMS-
EEG anesthesia study, in which the experimental design is described in detail. Briefly, the 
study was approved by the local ethical committee of the University of Liege and all 
participants gave written informed consent. Physical examination and medical history were 
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obtained from all participants, to exclude conditions incompatible with the experimental 
procedure (anesthesia or TMS related). 

High-density electroencephalography (TMS-compatible hd-EEG, 60 channel Nexstim 
eXimia system) was recorded from 10 participants (age 18-28) during xenon and ketamine 
anesthesia, at two different states: Wakefulness and Loss of Consciousness (LOC)/Loss of 
Behavioral Response (LOBR). Only one type of anesthetic was administered to a given 
participant (randomly assigned, with N=5 for xenon and ketamine, respectively), in order to 
independently study their effects on the brain. At baseline (Wakefulness), spontaneous EEG 
was recorded before the TMS-EEG session, for approximately 5-6 minutes. After anesthetic 
induction and during LOC/LOBR, spontaneous EEG was recorded for several minutes before 
and after the TMS-EEG session (5-6 minutes). Xenon anesthesia was maintained using a 
Dräger PhysioFlex closed circuit ventilator (62.5 ± 2.5% in oxygen), with a total amount 
ranging from 24 to 32 liters. For Ketamine anesthesia, a 2 mg/kg intravenous infusion (diluted 
in 10mL of 0.9% normal saline) of racemic ketamine over 2 minutes was used and maintained 
at 0.05 mg/kg/min over the experimental procedure. During all procedures, participants were 
monitored (electrocardiogram, BP, etc.) and received metoclopramide (2mg) for nausea and 
vomiting complications by the anesthetics. As in this work we focus on resting-state EEG 
measures, we accumulate only the periods of EEG without TMS, which allow us to investigate 
the behaviorally-steady states of the two conditions. 
 

 
 
Fig. 6.4. Experimental design of the Liege Anesthesia Dataset 2. Two different levels of consciousness 
were attained for both agents (ketamine/xenon) based on the behavioral response of the participants, 
assessed by the Ramsay scale. 
 
 

The levels of consciousness were commonly assessed for both agents with the Ramsay 
scale, similarly to the Liege Anesthesia Study 1 (a verbal command to squeeze the hand of the 
investigator, every 30 sec). LOC/LOBR was denoted upon reaching Ramsay score 5-6 (no 
response to external stimuli) and after three consecutive assessments (Ramsay 2 – clear 
response – was assigned during Wakefulness). Moreover, self-report measures were collected 
after participants recovered from deep anesthesia (and asked to confirm their responses after 
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one hour), in order to investigate the possibility of covert experiences during the unresponsive 
period. Conscious experiences were considered present when participants were able to describe 
their content (any kind of activity, such as thoughts, images or emotions). In case of ketamine, 
all participants reported having experiences unrelated to the external environment during 
LOBR, which were vivid, visually rich and extended in time (in agreement with the Michigan 
Anesthesia Study. A more detailed description of a ketamine report can be found in the original 
study). In case of xenon, participants had no explicit recall of any experience (LOC). The 
experimental design of the dataset can be seen in Fig. 6.4. 

6.2.2 EEG Pre-processing and Deep Learning Model 

The EEG pre-processing pipeline and the deep learning model used throughout the 
subsequent analyses were kept common for all datasets and experiments (and in alignment with 
the previous chapter). As we have discussed, the selected pre-processing pipeline and the 
generic 3D cNN derived in Chapter 4, allow us to automatically and consistently integrate 
different EEG devices and channel configurations, while introducing minimal prior 
computational assumptions (on the nature of EEG and the respective model’s architecture 
design). The EEG decoding methodology is briefly depicted below (detailed description in 
section 4.8). 
 
EEG Preprocessing. All preprocessing steps are executed sequentially using the mne and 
scikit-learn libraries. 
 

1. 10-20 System Channel Selection  
2. Band-Pass Filtering (0.5 – 40 Hz, 50/60 Hz Notch Filter)  
3. Resampling at 100 Hz  
4. Epoching (1 sec, non-overlapping)  
5. Automatic Artifact Cleaning (Only for Training Data)  

a. Bad Channel Interpolation (‘bad’ if channel is flat or has >20% epochs exceeding peak-to-
peak threshold of 800 μV)  

b. Epoch Rejection (if >20% channels exceeding peak-to-peak threshold of 800 μV)  
6. Re-referencing to Average  
7. Epoch-wise Robust Standardization (quantile range: 0.25 – 0.75)  

 
 
3D Convolutional Neural Network. The architecture of the 3D cNN is shown in Fig. 6.5. All 
activation functions are ReLU units, with the exception of the output layer. Other non-specified 
hyperparameters are set as default in Tensorflow (v2.6.0). 
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Fig. 6.5. The 3D Convolutional Neural Network model. 

6.2.3 Model Training and Evaluation 

In the previous chapter, we focused on the importance of the optimization task, with 
respect to the learning algorithm and the selection/encoding of a clinical ground-truth. Based 
on our investigation, we derived an optimal training strategy that relied on a regression analysis 
over behavioral measures of unconsciousness. This strategy was evaluated upon two different 
notions of generalization. The first one related to the adequacy of the model in refining and 
enriching its predictions over uncharacterized (or ‘fuzzy’) anesthetic states, most notably 
observed in the large-scale transitional dynamics of the EEG and the predicted anesthetic 
depths, which followed the anesthetic protocols. The second notion related to the cross-subject 
validation framework, which ensured the dismissal of features reflecting subject-dependent 
confounds or noise. In this chapter, we are interested in evaluating our model’s robustness and 
learning capacity in extracting features beyond and unrelated to the experimental design or the 
particular anesthetic action, with an aim towards the acquisition of electrophysiological 
features that impartially reflect levels of unconsciousness. 

More specifically, we employed a regression-to-behavioral-scores training, using either 
the Ramsay scale or the ‘Behavioral-Responsiveness’ (BR) scale (defined in Experiment 3), 
under the 3-state task that incorporates Wakefulness, Sedation and LOC/LOBR (Recovery was 
excluded from training given its unreliable assessment - discussed in section 5.6.1). In case of 
training under one study, the training/testing sets were split by individual datasets, with all 
participants of a given dataset used either for training or testing. In the case of cross-study 
training, a leave-one-participant-out cross-validation (LOPOCV) paradigm was used for the 
evaluation of participants within the training datasets. In both cases, all testing datasets 
consisted of participants from studies unseen during the training phase, which ensured a 
mismatched training/testing distribution. This is important to assess generalization across 
particular desired features, beyond study design and anesthetic type, as well as to estimate a 
cross-study or cross-drug generalization error. 

The loss function and the performance metric for the regressands were the mean-
squared-error (MSE) and the mean-absolute-error (MAE), respectively. Sample/target 
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weighting was applied to training data (described in section 5.2.4), given its advantage to 
correct for biases that stem from unbalanced or heterogeneous datasets. All models were 
trained using the Adadelta optimizer (learning rate = 1), with a batch size of 100 and for 10 
training epochs. Initialization of network weights was done with the Xavier uniform initializer. 
Model creation, training and evaluation were implemented in Python 3 using the 
Tensorflow/Keras library and a CUDA NVIDIA GPU (Tesla P100). 

6.3 Experiment 1 – Cross-study Generalization to Propofol 

Anesthesia 

In this experiment, we investigate the performance of deep learning in a cross-study 
generalization task, by incorporating a test dataset with a novel experimental setup. 
Specifically, we use the Liege Anesthesia Dataset 1 to train a regression-to-Ramsay-scores 
model under the 3-state task (see section 5.3.2), which has been studied, and given that it 
provides us with adequate data and a robust ground-truth for learning (as it includes reliably 
characterized states, ranging from Wakefulness to LOC). We then use the Cambridge 
Anesthesia Dataset, which is also based on a propofol anesthesia study, in order to test our 
predictive model in correctly estimating the unresponsiveness of participants, measured under 
an unseen behavioral paradigm (auditory task). 

6.3.1 Results 

The behavior of the trained model has been reported in detail in section 5.3.2. Briefly, 
a stable convergence is attained during the 10 training epochs, as indicated by the average 
mean-squared-error/mean-absolute-error curves (Fig. 5.9), with a cross-subject validation 
performance of 0.5 MAE. 

In order to test our model, we first need to define a ground-truth on which we can 
evaluate the predictions obtained for the Cambridge Anesthesia Dataset. As the model is 
trained on Ramsay scores, and given that we do not have a ground-truth estimation of Ramsay 
scores for our test dataset, we can exploit the behavioral analysis employed in the original study 
for assessing our model’s performance. Based on this analysis, two subgroups of participants 
were identified – a Responsive (Group 1 – 13 participants) and a Drowsy (Group 2 – 7 
participants) – which reflected the inter-individual variability of the pharmacodynamic impact 
of propofol, leading to different levels of behavioral impairment. 

Fig. 6.6 shows the output of the model over time (one prediction per 1-sec epoch) for 
each of the two groups, averaged across participants (calculated by taking the minimum 
number of epochs per state, and aligning them at the beginning of each state, across subjects). 
Predictions appear consistent overall for both groups, with a slow trend of increasing anesthetic 
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depth, which can be explained by the pharmacodynamic impact of the drug’s accumulation 
over time (Fig. 6.6 A and B). The range of predictions fall within Ramsay 2-3 for the 
Responsive group (Group 1), and Ramsay 2-4 for the Drowsy group (Group 2), in agreement 
with the behavioral evidence found in (Chennu et al. 2016). Overall, the model is able to 
correctly estimate the behavioral responses of the participants, for both groups identified in the 
original study.  
 
 

 
Fig. 6.6. Cross-study generalization results over the four anesthetic states of the test subjects in 
Cambridge Anesthesia Dataset. A) Ramsay score predictions of the Responsive group (Group 1, 
average). B) Ramsay score predictions of the Drowsy group (Group 2, average). C) Mean and standard 
deviation of Ramsay scores, per state and per group. 
 
 

To confirm our results with this ground-truth, we performed a statistical test by entering 
the mean Ramsay scores for each participant and each state (Fig. 6.6 C), into a mixed ANOVA 
model (fitrm/ranova, MATLAB) with one non-repeated measure (participant group – 
Responsive or Drowsy) and one repeated measure (level of sedation – Wakefulness, Mild 
Sedation, Moderate Sedation and Recovery). Our results showed a significant interaction effect 
between participant group and sedation level (F(3) = 6, p = 0.005), which was mainly driven 
by the effect of the group during Moderate Sedation (p = 0.0001). We also observed smaller 
group effects during Mild Sedation (p = 0.004) and Wakefulness (p = 0.01), which indicate the 
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predisposition of the Drowsy group into increased unresponsiveness, both from the drug, but 
also from their prior resting-state EEG. These observations are also in agreement with the 
findings reported in (Chennu et al. 2016). 

Given all the above, our findings highlight the model’s ability for cross-study 
generalization over participants’ levels of unconsciousness, defined by independent behavioral 
assessments and methodological analyses. 

6.4 Experiment 2 – Cross-drug Generalization to Ketamine and 

Xenon Anesthesia 

In this experiment, we investigate the performance of deep learning in a cross-drug (and 
cross-study) generalization task, by incorporating a test dataset with two novel anesthetic 
agents – ketamine and xenon. Specifically, we use the same model from the previous 
experiment (model trained under propofol, based on the Liege Anesthesia Dataset 1) and test 
its predictive behavior in Liege Anesthesia Dataset 2, which includes unseen anesthetic states 
produced by agents with distinct mechanisms and phenomenology. Due to the small size of 
Liege Anesthesia Dataset 2 (which makes it unsuitable for training), we use it as test set for 
both cross-study and cross-drug analysis purposes, in order to acquire a generalization error. 
From the group receiving ketamine, we were able to acquire the data from only 4 out of 5 
participants.  

6.4.1 Results 

The results of the experiment are shown in Fig. 6.7. The mean-squared-error (MSE) 
and mean-absolute-error (MAE) curves of our test set show that the 10 training epochs were 
adequate for convergence (Fig. 6.7 A). An average MAE of 2.09 was obtained for the ketamine 
participants and an MAE of 1.00 for the xenon participants, with the error stemming mainly 
from the anesthetic states during LOBR/LOC (Ramsay 5-6). 

As we observe from Fig. 6.7 (B), all ketamine participants had a relatively high MAE, 
with xenon participants showing a larger variability of performances, ranging from 0.5 to 1.5 
MAE (0.5 is the average performance of the trained propofol model using LOPOCV). 
Generally, predictions appear consistent during Wakefulness (MAE of ~0.45) and LOBR under 
ketamine (albeit with significant deviation from the ground-truth – MAE of 3.20), while a 
larger variability is present for the participants during LOC under xenon (MAE of 1.73) (Fig. 
6.7, C). By comparing the generalization errors with the respective states during training 
(reported in section 5.3.2), we observe a minor error increase for Wakefulness (0.45 over 0.29 
MAE), a moderate increase for LOC under xenon over propofol (1.73 over 0.76 MAE) and a 
significant increase for LOBR under ketamine (3.20 MAE). Although these results could be 
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partially explained by the between-study variations in experimental and methodological 
protocols, the significant error increase during the anesthetic states suggest a generalization 
barrier over the effects of ketamine and xenon. 
 
 

 
 
Fig. 6.7. Cross-drug generalization results of the test subjects in Liege Anesthesia Dataset 2, for 
ketamine and xenon respectively. A) Average mean-squared-error and mean-absolute-error curves. B) 
Subject-wise losses and MAEs. C) Ramsay score predictions for the 2 anesthetic states of the unseen 
test subjects (average, N=4 for ketamine, N=5 for xenon). 
 
 

To better understand the behavior of the model and this barrier, we visualize the 
Ramsay predictions and the mean spectrogram of the corresponding epochs, for the best- and 
worst-performing subjects in the ketamine and xenon group, respectively (Fig 6.8). The two 
subjects were representative both in terms of the EEG signatures and the predictive behaviors 
observed.   
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Fig. 6.8. Cross-drug generalization results of the best- and worst-performing subjects (S3 in ketamine 
group, S2 in xenon group). A) Ramsay score predictions for the two anesthetic states of the ketamine 
and xenon subjects (moving-average filter applied, kernel_size=5). B) PSD of the corresponding states 
and epochs (method=Welch, channel_aggregation=mean, window=1 sec, n_fft=256). 
 

In the case of ketamine, the model predicted a Ramsay score of ~2 for both Wakefulness 
and LOBR, with occasional spikes of increases up to Ramsay 3-4, potentially associated to the 
increases observed in delta (0 – 4 Hz) and high gamma (25 – 45 Hz) activity. This behavior is 
consistent with the signatures and predictions reported in Chapter 5 (5.5.1), for LOBR under 
ketamine (Michigan Anesthesia Study analysis). In the case of xenon, the model predicted a 
Ramsay score of ~3 for Wakefulness and a score of ~5 for LOC, potentially associated to the 
observed weak alpha and strong delta activity, respectively. This behavior is consistent with 
the signatures and predictions of Sedation and LOC under propofol, reported in section 5.3.2 
(Liege Anesthesia Dataset 1 analysis). Together, these findings indicate the possible role of 
delta activity as a common marker of unconsciousness, and potentially, the model’s inclination 
towards the acquisition of features reflecting LOC (LOBR states have not been included during 
training). 
 Overall, our results here show the limitations of the model to fully capture relevant 
electrophysiological features that impartially reflect depths of anesthesia, when trained under 
propofol and tested under novel anesthetics, such as ketamine and xenon. Of course, 
understanding the distinctive mechanisms and qualities (phenomenological properties) of 
unconsciousness across different agents is important to assess our model. In the next section, 
we explore the possibility of improved generalization using a cross-study and cross-drug 
training, by incorporating data from both propofol and ketamine studies. 
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6.5 Experiment 3 – Cross-study and Cross-drug Training on 

Propofol and Ketamine Anesthesia 

6.5.1 Behavioral-Responsiveness (BR) Scale 

So far, and throughout the experiments of the previous chapters, we have been training 
our deep learning model using a single-study/single-agent dataset approach, and mostly under 
a behavioral ground-truth for assessing levels of unconsciousness (such as the Ramsay scale, 
found in Liege Anesthesia Dataset 1). However, anesthetic states produced by different agents 
can show differences in their electrophysiological and phenomenological characteristics, 
despite any common behavioral evidence of unresponsiveness. Therefore, we need to consider 
the implicit information provided to the model, when moving towards a cross-study/cross-drug 
training approach. 

For this reason, an alternative scale to Ramsay scores was devised and used here 
(‘Behavioral Responsiveness’ scale), in order to semantically differentiate the ground-truth, 
potential feature learning, and predictions of the model, when trained under both states of LOC 
and LOBR. As we discussed in the previous chapter, the distinction between LOBR and LOC 
forces us to differentiate the electrophysiological signatures of unconsciousness from 
signatures of disconnected consciousness, often emerging during LOBR. While we have strong 
evidence of unconsciousness during the state of LOC in Liege Anesthesia Dataset 1 and Liege 
Anesthesia Dataset 2 (for propofol and xenon, respectively), the anesthetic state of ketamine 
found in Liege Anesthesia Dataset 2 (LOBR) has been associated with disconnected 
experiences for all participants (we suspect the same is true for LOBR in Michigan Anesthesia 
Dataset, given the comparable dosing, although we do not have direct evidence in the form of 
retrospective reports). Therefore, when training on both states of LOC and LOBR, we 
developed and used a behavioral responsiveness (BR) scale to reflect the intersection of the 
two signatures, which had the same behavioral profile of unresponsiveness, but not necessarily 
the same state of unconsciousness. 
 We devised the BR scale in alignment with other scales used in commercial DoA 
monitors, which index a patient’s levels of unconsciousness within the range of 0 – 1 (or 100) 
(Zanner, Pilge, E. F. Kochs, et al. 2009). A direct mapping to Ramsay scores (Table 6.1) can 
be obtained by using the following formula: 
 

𝐵𝑅 = 1 −
(𝑅𝑎𝑚𝑠𝑎𝑦 𝑆𝑐𝑜𝑟𝑒 − 1)

5
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Table 6.1. Ramsay Sedation Scale and Behavioral Responsiveness 
Participant’s Response Ramsay Score BR Score 

Anxious and agitated, restless or both 1 1.0 
Co-operative, oriented and tranquil 2 0.8     
Responding to commands only 3 0.6     
Brisk response to light glabellar tap or loud auditory stimulus 4 0.4     
Sluggish response to light glabellar tap or loud auditory stimulus 5 0.2     
No response to stimulus 6 0.0      

 

6.5.2 Experiment 

In this experiment, we investigate the performance of deep learning in a cross-study 
and cross-drug training task, by incorporating two datasets with distinct experimental setups 
and administered anesthetic agents – i.e. propofol and ketamine. Specifically, we use the Liege 
Anesthesia Dataset 1 and Michigan Anesthesia Dataset to train a regression-to-BR-scores 
model under the 3-state task, which includes Wakefulness, Sedation and LOC/LOBR. The 
selection of these studies was based upon two criteria. Firstly, both datasets are adequately 
extensive with respect to anesthetic states and participants, which makes them suitable for 
training. Secondly, the inclusion of data from propofol and ketamine is appropriate for cross-
drug feature learning, given their distinct pharmacological, electrophysiological and 
phenomenological properties (as we showed in the previous experiment, the model trained with 
propofol was not able to assess the depth of LOBR under ketamine). As previously mentioned, 
the creation of a representative training dataset is an important aspect for deep learning, which 
is susceptible to data biases. 

The target values used during training were: 0.8 for Wakefulness (Ramsay 2), 0.7 for 
ketamine Sedation (Ramsay 2-3), 0.6 for propofol Sedation (Ramsay 3), and 0.1 for 
LOC/LOBR (Ramsay 5-6), based on the Ramsay scores reported in section 6.2.1. We initially 
evaluate our training participants using a LOPOCV approach (25 participants; ~ 54,000 epoch 
instances in total), and compare our results to those obtained by the respective single-study 
models. We then further test our model on unseen transitional anesthetic states, and on Liege 
Anesthesia Dataset 2, in order to obtain a cross-study and cross-drug generalization error 
(similarly to our previous experiment). 

6.5.3 Results 

The results of the cross-drug model are summarized in Fig. 6.9. The mean-squared-
error (MSE) and mean-absolute-error (MAE) curves show that the model had a stable 
convergence during the 10 training epochs. The average cross-validated performance obtained 
was 0.09 MAE. 
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Fig. 6.9. Cross-study and cross-drug training results of the regression-to-BR-scores model under the 3-
state task (Wakefulness, Sedation, LOC), for Liege Anesthesia Dataset 1 and Michigan Anesthesia 
Dataset. Average MSE loss and MAE curves (top). Subject-wise MAE performances (bottom). 
 
 

As we see from Fig. 6.9, the mean and variance across participants’ performances were 
similar for both datasets, with MAE values ranging from 0.05 to 0.12, except for S1 and S4 in 
Liege Anesthesia Dataset 1, which had the worst performance (already recognized in section 
5.3.2, where we postulated a post-hoc analysis explanation). By comparing the average MAEs 
obtained from the respective single-study trained models, we observed no statistically 
significant difference in the performance acquired by our mixed model here (0.09 over 0.1 for 
Liege Anesthesia Dataset 1, and 0.11 over 0.09 for Michigan Anesthesia Dataset). Moreover, 
training with the BR scale over Ramsay scores did not affect model performance (as expected, 
due to their linear mapping), which we can assess by normalizing the MAEs with respect to 
the target ranges (0.09 MAEBR over 0.10 MAERamsay, with MAEX = MAE / (Xmax – Xmin)). 

To further assess the predictive behavior of the model, we visualize the average-across-
participants predictions over time, for the two trained datasets (calculated by the minimum 
number of epochs per state, and aligning them at the beginning of each state) (Fig. 6.10).  
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Fig. 6.10. Behavioral responsiveness (BR) predictions for the three anesthetic states of the unseen test 
subjects. Average predictions for the Liege Anesthesia Dataset 1 participants (N=10, top). Average 
predictions for the Michigan Anesthesia Dataset participants (N=15, bottom). Horizontal dashed lines 
indicate the BR score ground-truth. 
 

Fig. 6.10 shows that predictions were robust and consistent over time for both studies, 
with the largest MAE (0.16) obtained during LOBR under ketamine. Most notably though, the 
model was able to distinguish the states of Wakefulness and sub-anesthetic ketamine (Sedation) 
of the Michigan Anesthesia Dataset, despite their phenomenological similarities in 
participants’ levels of behavioral responsiveness (sub-anesthetic ketamine can decrease 
vigilance and increase reaction times, as reported in (Maksimow et al. 2006) and (Micallef et 
al. 2002)). This was confirmed statistically by taking a mean prediction of each state per 
participant, and applying a paired t-test (p = 0.0003). 
 
Testing on Unseen Anesthetic States. As a final step to this analysis, we tested our cross-drug 
model over unseen anesthetic states, which include the transitional states of the two training 
datasets, as well as the states from the unseen study and agent (xenon) of Liege Anesthesia 
Dataset 2. Fig. 6.11 depicts the average BR predictions of the test subjects which incorporated 
all anesthetic states (steady and transitional recordings, if available), for each of the three 
datasets. 
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Fig. 6.11. Behavioral responsiveness (BR) predictions of the test participants in Liege Anesthesia 
Dataset 1 (N = 3), Michigan Anesthesia Dataset (N = 14) and Liege Anesthesia Dataset 2 (N = 4 for 
ketamine, N = 5 for xenon) (average). States under training are highlighted in black boxes. 
 
 

While previously observed for Liege Anesthesia Dataset 1, our results here show the 
ability of the model to track the anesthetic paradigms of both training studies, using behavioral 
measures of unconsciousness. The performance of our regression model remains reliable, as 
discussed in Chapter 5, with levels of sedation progressively following the administration of 
the drugs, both statistically but also within the trajectories of individual participants (see section 
5.3.2 for more details).  

With regards to Liege Anesthesia Dataset 2, we observe a significant performance 
increase for the ketamine participants during LOBR, and a moderate performance increase for 
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the xenon participants during LOC, in comparison to the single-study model in Experiment 2 
(0.29 MAEBR over 0.64 MAERamsay, and 0.23 MAEBR over 0.34 MAERamsay, normalized). In 
terms of ketamine, while such improvement is expected for the model trained under both 
propofol and ketamine, it reveals that the cross-study generalization error is quite small (the 
predicted BR score is even lower for the test state of Liege Anesthesia Dataset 2, compared to 
the trained LOBR of Michigan Anesthesia Study, which can be explained by the deeper 
anesthetic depth attained by the continuous infusion of ketamine). In terms of the cross-drug 
generalization error during LOC under xenon, the mixed model performed better than the 
propofol model in Experiment 2, albeit with some variation over specific subjects. This was 
evident by comparing the average predictions of the propofol model and the respective mixed 
model (by converting Ramsay scores to BR scores, or vice versa, using the formula in 6.5.1), 
for the 5 xenon participants (p = 0.08, paired t-test). This reveals the potential capacity of the 
cross-drug model in acquiring better electrophysiological features, that generalize over novel, 
unseen anesthetic agents. 

Given all the above, we have shown that a cross-study and cross-drug training strategy 
can be used for improved generalization over novel experimental setups and anesthetic agents, 
towards an impartial predictive model of anesthetic depths. 

6.6 Discussion 

The challenge we have addressed in this chapter is relevant for both consciousness 
research and the investigation of the electrophysiological signatures, but also for clinical 
practice and the creation of automated systems for monitoring DoA. While there have been 
several techniques developed for EEG to tackle the above problems (e.g. PCI, Algorithmic 
complexity indices, SWAS, and others), studies on machine learning-based methods lack the 
reproducibility found in other works of the field. Given that EEG datasets include noisy and 
ambiguous data, and as we have already observed significant variations across participants’ 
spectral signatures, the task of generalization to novel experimental designs and drugs can be 
considered a robust assessment for relevant feature learning. This is particularly important for 
deep learning models in general, which are over-parameterized, and thus tend to overfit in the 
presence of noisy samples. Of course, we need to consider our findings within the limits of our 
experiments and the selected available datasets. 

6.6.1 Cross-study Generalization 

Our results have highlighted the capacity of the model for cross-study generalization, 
throughout the experiments of this chapter. In our main cross-study analysis (Experiment 1), 
we showed that the model trained on Liege Anesthesia Dataset 1 was able to correctly 
generalize over the novel experimental setup of Cambridge Anesthesia Dataset, by correctly 
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estimating the Ramsay scores of participants, across anesthetic states. The generalization here 
stems from the fact that the two studies had significant differences in their experimental 
designs, most evidently with respect to the anesthetic administration protocol and the 
assessment of behavioral unresponsiveness.  

Regarding the anesthetic administration protocol, an Alaris TCI device (using the 
Marsh PK model) was employed in both studies to administer propofol to healthy participants, 
under different titration modes. In the trained study (Liege Anesthesia Study 1), an 
individualized effect-site concentration was targeted and maintained for each participant 
(TIVA mode with manual adjustments) upon reaching a desired Ramsay score. In the test study 
(Cambridge Anesthesia Study), the TCI device was set to obtain constant plasma concentrations 
of propofol (plasma-targeting mode), irrespective of the participant’s behavioral response. 
Despite the differences in propofol concentrations across studies and participants (measured 
either by TCI estimations or blood sample measures), we hypothesize that the model was able 
to generalize from the EEG an estimate of the effect-site concentration levels and clinical 
outcome (as already discussed in section 5.6.4), which distinguished the two test groups 
(plasma concentrations were similar for the two groups). Moreover, the increasing trend of 
anesthetic depth observed in the predictions of both groups (Fig. 6.6) was in alignment with 
our observations in Chapter 5, and our hypothesis on the pharmacodynamics of hysteresis 
(section 5.6.2). 

Most notably though, and regarding the behavioral assessment, the two studies had 
different methodological protocols for measuring levels of unresponsiveness. While the trained 
model used a ground-truth of Ramsay scores for its optimization (a response to a verbal 
command asking the subject to squeeze the hand of the investigator), the ground-truth of the 
test study was based on the Responsive and Drowsy groups, derived by the hit rate analysis of 
the auditory discrimination task (a prior independent analysis). Of course, while there is no 
way to know which features of the data represent the learned subspace from which the model 
generalizes (interpolates), the training ground-truth acts always as an estimate for the features 
shared across the analyzed states and participants. In view of this fact, the model was able to 
correctly estimate the Ramsay scores for each group of participants – Ramsay ~3 at the end of 
Moderate Sedation for the Responsive group, and Ramsay ~4 for the Drowsy group – in 
agreement with the increased reaction times and decreased hit rates, reported in (Chennu et al. 
2016). In addition, the subtle (although statistically significant) group effects found during 
Wakefulness and Mild Sedation were in alignment with the findings of weaker alpha band 
networks at the baseline state of the Drowsy group (reported in the original study), which 
predicted the predisposition of the group towards unresponsiveness. 
 Further evidence of cross-study generalization was also found in Experiments 2 and 3, 
where we incorporated the Liege Anesthesia Dataset 2 as a test set. A generalization error can 
be estimated by comparing the MAEs of test states with the respective trained states (evaluated 
under a LOPOCV paradigm), in cases where they were included during training (e.g. during 
Wakefulness in Experiment 2, with 0.45 over 0.29 MAERamsay, and during LOBR under 
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ketamine in Experiment 3, with 0.29 over 0.16 MAEBR, normalized). This generalization error 
could stem from differences in the experimental procedures of Liege Anesthesia Study 2, such 
as the difference in the EEG device (Nexstim eXimia, TMS compatible) and channel 
configuration (T7, T8, P7, and P8 channels were used instead of T3, T4, T5 and T6, found in 
the EGI Hydrocel system).  

Finally, other cross-study differences affecting model performance (increase in 
generalization error) could relate to participant demographics, such as the age distributions, 
which we know to significantly contribute to the spectral characteristics of the EEG signatures 
(Purdon et al. 2015) (e.g. mean age = 22 for Liege Anesthesia Dataset 1, and 31 for Cambridge 
Anesthesia Dataset). Overall, our models’ features were shown to generalize accurately to 
novel EEG configurations, and most importantly, to unseen anesthetic protocols and behavioral 
assessments. 

6.6.2 Cross-drug Generalization 

Beyond cross-study generalization and based on our findings in Experiments 2 and 3, 
our model has also shown the potential for cross-drug generalization. Although the single-agent 
model trained under propofol had limited predictive power on Liege Anesthesia Dataset 2, 
which introduced the agents of ketamine and xenon (Experiment 2), the cross-drug trained 
model showed the capacity for improved generalization, when tested on the unseen agent of 
xenon (Experiment 3). 

Specifically, the predictive behavior and biases of the propofol model in Experiment 2 
revealed limitations, as well as potentially learned features, that could help us better understand 
the cross-drug generalization problem. When tested on participants under ketamine, predictions 
remained consistently at a Ramsay score of ~2 during both Wakefulness and for most of the 
duration of LOBR, despite the obvious phenomenological differences in behavioral 
responsiveness. For participants under xenon, although the model could differentiate 
Wakefulness from LOC with a higher anesthetic depth (Ramsay ~4 on average), there was 
significant variability and noise within the group. These results could be viewed and interpreted 
in light of several known characteristics of propofol, ketamine and xenon. For example, the 
partial predictability of the model under xenon could be explained by the pharmacological, 
electrophysiological and phenomenological similarities of propofol and xenon, as both agents 
act as GABA agonists, they are accompanied by strong delta activity, and have been associated 
with profound unconsciousness during deep anesthesia. In contrast, ketamine is an NMDA 
antagonist with distinct features among anesthetics, accompanied by strong gamma activity, 
and associated with disconnected consciousness during deep anesthesia. While the model had 
been trained to predict the anesthetic depth of LOC, it had not encountered states of LOBR, as 
found in ketamine. Also, the electrophysiological resemblance of ketamine LOBR with states 
of Wakefulness has already been discussed in section 5.6.5, while for specific brain regions 
ketamine has been shown to increase metabolism, cortical connectivity and possibly, levels of 



168 

 

(covert) consciousness (Zacharias et al. 2020) (interestingly, the model associated LOBR with 
a slightly decreased anesthetic depth to Wakefulness, observed in Fig. 6.8). Meanwhile, the 
appearance of delta activity as a common feature of behavioral unresponsiveness across all 
three agents (and correlated to our model’s prediction of increased anesthetic depth - albeit 
sporadically during ketamine LOBR), is in agreement with the findings in (Sarasso et al. 2015), 
and has been extensively studied in (Ní Mhuircheartaigh et al. 2013; Sleigh et al. 2019). 
Nonetheless, our results in Experiment 2 could indicate a model behavior consistent with 
adaptations to propofol signatures (such as the delta activity), and thus we cannot presume any 
generalized learned mechanism. 

Following our results in Experiment 3, the cross-study and cross-drug training approach 
showed the capacity of the model to learn over multiple anesthetic agents, with a potential for 
improved cross-drug generalization. Initially, by comparing our mixed model with the 
respective single-study trained models (on Liege Anesthesia Dataset 1 or Michigan Anesthesia 
Dataset), we ensured that there was no overfitting or degradation of performance within each 
study, when training with two distinct anesthetics under a common behavioral ground-truth. 
This is an open challenge in deep learning, as neural networks can be powerful enough to 
overfit, but often unable to generalize, given the increased complexity of the task. Moreover, 
we showed that the model was able to consistently track the anesthetic paradigms of both 
studies, based on the known titration trajectories. Most interestingly though, albeit without a 
strong statistical significance (p = 0.08) (likely due to the limited number of participants, N = 
5), we found that the cross-drug model improved the generalization error over the unseen state 
of xenon LOC (Liege Anesthesia Dataset 2). Despite the inclusion of an agent (ketamine) with 
divergent properties from propofol and xenon, the model was able to acquire better 
performance compared to the propofol model found in Experiment 2. This shows the potential 
of deep learning to discover novel, cross-drug, and generalizable features – instead of simply 
utilizing multiple features – beyond any drug-specific mechanisms (the electrophysiological 
signatures of which have already been recognized in the literature). 
 Finally, these findings can be indicative of the similarities and differences among the 
various anesthetic agents, in terms of their electrophysiology, but also in terms of changes in 
levels of consciousness that are captured by the model, but may not be consistent with our 
behavioral ground-truth (as in the case of covert awareness during ketamine). While we do not 
have sufficient or definitive evidence of a unitary mechanism across the tested agents, deep 
learning has shown its effectiveness in utilizing multiple, and likely cross-drug anesthetic 
features, in order to create a unified predictive model of DoA. This is particularly important 
from a clinical perspective, due to the weakness of contemporary DoA monitors in performing 
across anesthetics with independent action (Hans et al. 2005). 
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6.6.3 Summary 

Overall, we have shown the capacity of our 3D cNN model to accurately detect 
progressive, fine-grained changes in levels of unconsciousness, over unseen datasets that 
incorporate novel anesthetic protocols, EEG devices, behavioral assessments of 
unresponsiveness, and even anesthetic agents. These findings highlight the robustness and 
validity of the model to learn appropriate task-related features, but also the potential of deep 
learning to discover common signatures of unconsciousness. Of course, further testing our 
discussed hypotheses on the nature of the data and the respective behavior of the model would 
require extensive analysis on the network and its learned features. In general, understanding 
the data, the electrophysiological and phenomenological characteristics of each agent, the 
appropriate computational priors, and the limitations of clinical scales, is crucial for the 
development and engineering of a successful model of analysis. In the next chapter, we review 
our findings, we assess the advantages and limitations of our model, and we pose possible 
future research directions. 
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Chapter 7 General Discussion 

7.1 Overview of Research 

In this section, we summarize the research conducted throughout the previous chapters 
(Chapters 3 – 6), towards the engineering of a model for the investigation and estimation of 
anesthetic-induced states of unconsciousness. Specifically, we emphasize our initial goals and 
the respective research gaps, the experiments performed, as well as our main findings and 
contributions, within the fields of Deep Learning-based EEG (DL-EEG) and General 
Anesthesia. 

7.1.1 Chapter 3 – Deep Learning for EEG Decoding of Anesthetic-Induced 

Unconsciousness 

Our investigation began by exploring the effectiveness of deep learning in extracting 
relevant electrophysiological features, from the resting-state EEG of healthy participants under 
general anesthesia. While literature has shown a number of findings and EEG-based techniques 
for decoding states and levels of unconsciousness, robust neurophysiological markers are still 
missing. Meanwhile, the theoretical and mathematical assumptions of contemporary methods 
of analysis constrain a data-driven investigation of novel electrophysiological signatures. This 
is an area in which deep learning has shown great potential. Moreover, deep learning offers an 
end-to-end feature learning approach, which is suitable for the creation of automated systems 
for clinical use.  

With these goals in mind, and given the lack of standard models within the recent field 
of DL-EEG, we compared two widely used deep learning architectures – cNNs and MLPs – 
alongside the effect of the models’ input representation, on their performance under a 
classification task (with three anesthetic states characterized by decreasing levels of 
consciousness). Using leave-one-participant-out-cross-validation (LOPOCV), we showed that 
cNN architectures significantly outperformed MLPs, both in terms of resource utilization (they 
required a lower number of parameters and training time), but also in terms of their capacity to 
extract more effective spatio-temporal features. Furthermore, we showed that cNNs were able 
to achieve high performance using only one-second segments of the raw EEG signals (with 
minimal pre-processing), without the need for feature extraction, which typically constraints 
the data space, and thus, the discovery of novel signatures. Overall, our findings highlighted 
the potential of cNNs to discover and utilize generalizable, cross-subject features (often 



 171

 

overlooked in EEG studies), with implications for both electrophysiological investigation and 
real-world applications in DoA monitoring. 

7.1.2 Chapter 4 – Convolutional Neural Networks and EEG 

Representation 

Following the results from our previous analysis, we further focused on the 
development of a convolutional neural network with a unified architecture, that allowed us to 
incorporate different EEG systems and datasets, under a common processing methodology. 
There were two distinct reasons that led us to this investigation. The first one related to the lack 
of a standardized model for EEG analysis, which prevents a comparative evaluation of findings 
and the possibility of integrating heterogeneous datasets. The second reason related to the 
exploitation of the spatial structure of EEG, given that previous works have dismissed the 
spatial dynamics of the signals, and hence their role in decoding brain states (especially in 
anesthesia studies, which often employ a restricted number of electrodes).  

After a number of experiments and theoretical considerations, we tested several pre-
processing parameters of EEG representation, alongside 2D and 3D cNN architecture designs, 
on their performance under a common classification task (defined in the previous chapter). Our 
results showed that the average reference montage and an epoch-wise standardization of the 
input provides a simple, versatile format for capturing the EEG dynamics with minimal 
distortions. We also found that model performance significantly varied as a function of the 
spatial resolution of the EEG, given the increased parameters and noise of high-density 
configurations, with the 10-20 system achieving an optimal performance. Finally, we showed 
that the 3D cNN (a design based on the projection of the scalp activity into a 2D map) was 
robust to EEG artifacts, with artifact cleaning becoming more impactful for high-density 
systems (in our case, automatic cleaning performed equally to expert manual cleaning). We 
concluded our analysis by deriving an optimal pre-processing pipeline and a generic 3D cNN 
model, which we employed throughout our subsequent analyses. 

7.1.3 Chapter 5 – Predictive Analysis of Behaviorally, Pharmacologically, 

and Psychometrically defined Anesthetic States 

Having explored the basic parameters of EEG representation and network design, we 
moved our investigation to the nature of the optimization task undertaken by deep learning. 
The first goal of this analysis was to understand the EEG data in relation to particular clinical 
variables and anesthetic depths, defined by behavioral, pharmacological, or psychometrical 
evidence for consciousness. As none of these measures provide an infallible ground-truth for 
consciousness, we exploited the strength of deep learning to decode the complex brain states 
that emerge from the various pharmacokinetic and pharmacodynamic interactions. The second 
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goal was to test the predictive power of our cNN model under different learning tasks, and 
reveal an optimal training strategy that impartially captures the electrophysiological dynamics 
reflecting states and levels of unconsciousness (the optimization strategy has been shown to be 
one of the most impactful aspects of deep learning). 

Using classification and regression algorithms, we performed a number of experiments 
with an increasing number of behaviorally, pharmacologically, or psychometrically-defined 
states, and observed the behavior of the model, under propofol and ketamine anesthesia. These 
observations connected to several theoretical considerations, which are open in GA research. 
Our results initially revealed the predictive biases of the model, and most evidently the 
electrophysiological nature of Recovery (as a state of mild sedation), which deviated from the 
assigned behavioral and pharmacological ground-truths. Observations of model predictions 
over time also revealed the existence of large-scale temporal dynamics, and the transitional 
nature of EEG, which were consistent with the depth of anesthesia. This behavior allowed us 
to track the anesthetic paradigm of the studies (in alignment with the drug titration changes), 
and the direction of transitions to various levels of unconsciousness. Based on these findings, 
we further reasoned that regression analysis was able to enrich the information of the model, 
in agreement with our clinical assumptions and research goals. Finally, we discussed the 
limitations of psychometrical measures for the investigation and estimation of disconnected 
consciousness. Overall, we showed the ability of our model to progressively detect anesthetic 
depths with higher granularity than any other contemporary clinical measure (behavioral or 
pharmacological), under an optimal regression-to-Ramsay-scores strategy (achieving an MAE 
of 0.5, within the Ramsay scale). 

7.1.4 Chapter 6 – Cross-study and Cross-drug Generalization of 

Anesthetic-induced Unconsciousness 

In our last research chapter, we tested the reproducibility of our findings and the 
robustness of our model in estimating levels of unconsciousness, by employing cross-study and 
cross-drug generalization tasks. These two notions of generalization were considered important 
for both technical and theoretical reasons. Models within the EEG and Deep Learning literature 
have shown replication weaknesses that generally stem from analytic flexibility (in terms of 
hypotheses or methods (Pavlov et al. 2021a)) and the lack of appropriate validation frameworks 
(e.g. due to non-representative datasets, or our inability to detect and control noise, confounds 
and spurious correlations (Fellner et al. 2016)). From a theoretical perspective, detecting 
generalized signatures across different anesthetic agents has many implications for research, as 
we are unaware of any possible common mechanisms and markers of anesthetic-induced 
unconsciousness. 
 For this analysis, we used our 3D cNN model and the regression task derived in the 
previous chapter, to conduct experiments with two test datasets that incorporated a novel 
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experimental setup, and an unseen anesthetic agent (xenon). Our results highlighted the 
capacity of our model to extract generalized, task-relevant features, given the differences 
exhibited by the studies under training and testing (propofol anesthesia). Specifically, we 
showed that the model was able to correctly estimate the anesthetic depth and clinical outcome 
of the participants, under an unseen titration protocol, and a prior independent behavioral 
assessment of unresponsiveness. Moreover, we highlighted the capacity of the model for 
improved, cross-drug generalization, using a cross-drug training strategy. Although the model 
trained under propofol showed limited predictive power when tested on ketamine and xenon 
(most likely due to the pharmacological, electrophysiological and phenomenological 
differences across the drugs), we found evidence of improved performance for xenon, using 
our mixed trained model with propofol and ketamine. The fact that such improvement was 
exhibited by learning from agents with divergent properties to the one tested, points us to the 
potential of deep learning for discovering common mechanisms of action. 

7.2 Deep Learning-based EEG – Assessment and Limitations 

In this section, we have a general discussion on the assessment and limitations of our 
model, in light of the recent Deep Learning-based literature review. Specifically, we evaluate 
our methodological framework in terms of datasets, EEG pre-processing, deep learning 
architectures and training methodology, validation and reproducibility schemes, and model 
interpretability. 

7.2.1 Overview 

As we have mentioned throughout this thesis, EEG is a complex signal that requires 
advanced signal processing techniques, feature extraction, and often several years of training, 
in order to be correctly interpreted. The challenges exhibited during EEG processing (related 
to its low SNR, non-stationarity, and inter-subject variability) have often led to domain-specific 
processing pipelines, which nonetheless have shown varying success (Lotte et al. 2018). Deep 
learning has been very successful in many different domains, and has shown great promise for 
EEG decoding over the past years, as it can simplify this pipeline by automatic end-to-end 
learning of pre-processing, feature extraction and task-decoding modules (whilst reducing the 
need for expert knowledge and manual curation). 

Of course, the question of whether deep learning has significant advantages over 
traditional EEG processing approaches, remains open. On the one hand, deep learning can 
improve and extend the existing methods, by offering hierarchical feature extraction from the 
raw (or minimally-processed) EEG data, state-of-the-art performances, and the development 
of various learning tasks (e.g. predictive or generative), towards better generalization. On the 
other hand, the neuroscientific community has shown skepticism over its use for data analysis. 
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Notably, deep learning requires large datasets for training, with EEG datasets found in research 
being typically small compared to other fields (such as computer vision, or natural language 
processing), as they are more expensive to collect, and often inaccessible due to privacy 
concerns (especially clinical datasets, with some initiatives trying to tackle this problem). 

Here, we evaluate and compare several aspects of model creation and validation, as 
they have been reviewed in (Roy et al. 2019) for 156 studies within the DL-EEG literature 
(~30% of the studies related to clinical domains, such as epilepsy detection and sleep staging). 

7.2.2 Datasets 

The availability of large datasets is often mentioned as one of the main enablers of deep 
learning. Looking at similar studies, the total amount of data used during the training, validation 
and testing of the models varied significantly across domains of application, both in terms of 
EEG recording times, but also in terms of the number of extracted samples (instances). 
Specifically, (Roy et al. 2019) found a median dataset duration of 360 minutes, with a median 
of 14,000 samples (depending on the epoching strategy), across all 156  studies. In our own 
work, datasets consisted of ~560-600 minutes recordings (with the exception of Liege 
Anesthesia Dataset 2 used for testing, at ~100 minutes), with our cross-study/cross-drug 
analysis acquiring a total of ~1,860 minutes and ~111,600 samples (combining all four 
datasets). While the size of the epoch windows appears to be guided by the domain under study 
(with no standard guidelines), no correlation to model performance has been observed (for our 
research, a small window size was desirable considering the criticality of the temporal 
resolution in estimating the DoA, as discussed in section 3.4.3). 
 In terms of the number of subjects, there is also significant variability across studies, 
with ~50% of datasets containing less than 13 subjects.  (Völker et al. 2017) tested the impact 
of the number of subjects under training (from 1 to 30), using a LOPOCV approach, and 
showed an increase in performance with diminishing returns above 15 subjects. We also 
observed a similar effect, with 9-10 subjects being adequate for a stable performance (the 
addition of multiple datasets in Chapter 6 did not reveal any statistical change). Nevertheless, 
in cases with limited numbers of subjects (as our work here), we empirically found that the 
quality and nature of the data for any particular subject, was more impactful during training 
and testing, than the actual number of subjects. Of course, the potential of DL-EEG models 
reside in the combination of data from multiple subjects and datasets, towards the acquisition 
of common, generalizable features. 

Finally, several studies have explored various data augmentation techniques, in order 
to increase the dataset sizes. A majority of such studies have used overlapping windows for the 
extraction of epochs (samples), albeit without significant performance improvements (notably, 
(Schirrmeister et al. 2017) implemented a cropped-training strategy, using sample-wise sliding 
windows, with no significant effect). In Chapter 3, we also observed that a 50% window 
overlap – which doubled the number of samples – did not affect model performance. Other 
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simple techniques, such as adding Gaussian noise to the data, have been shown to be impactful 
in cases of insufficient data (Wang et al. 2018). More recently, few works have tried to use 
generative adversarial networks (GANs) to produce artificial EEG signals, with one study 
reporting a 3% accuracy improvement (Wang et al. 2018). Lastly, data augmentation can also 
be useful in cases of classes with limited number of samples (in our own analysis, we showed 
that sample/target weighting was an effective method for dealing with unbalanced datasets). 

Overall, and despite the scarcity of anesthesia datasets, our experiments showed that 
the dataset sizes, the number of subjects, and our epoching strategy, were all adequate for 
successful training and testing of the models, throughout our work (in alignment with the 
current literature). 

7.2.3 EEG Pre-Preprocessing 

The problem of EEG pre-processing was investigated in detail in Chapter 4, as we were 
motivated by the lack of standardized processing pipelines, and the general dismissal of the 
spatial dynamics of EEG in respective models. During the past few years, the EEG community 
has started to recognize the need for standard pipelines (as with the initiative of 
EEGManyPipelines.org (Pavlov et al. 2021b)), and the effects of seemingly subtle differences 
across processing routines (Robbins et al. 2020). Based on our own findings, and as initially 
hypothesized, the nature of the data, the dimensionality, and the presence of noise, can be 
significant factors affecting model performance. Given this premise, it is surprising that only 
63% of studies report their pre-processing pipelines (Pavlov et al. 2021b), with the results 
becoming incomparable and irreproducible. As we mentioned, one of the main reasons behind 
DL-EEG analysis, is its potential for automated feature learning, when artifact cleaning and 
feature engineering are demanding, time-consuming and require expertise. Therefore, it is 
critical to assess which levels of pre-processing are required for deep learning models. While 
our analysis tried to systematically investigate the above research questions, it is important to 
recognize the limitations of our work, based on the evaluation of a classification task under a 
single dataset (albeit we tried to incorporate theoretical justifications for our results). 
 Starting with the recording parameters of EEG, the acquisition system and the channel 
configuration is the first important aspect of processing. In general, there are no established 
standards for any domain of application, with a large variety of EEG devices used throughout 
the DL-EEG literature, and with various electrode densities (the number of electrodes varied 
from 1 to 256, with ~50% of works using between 8 and 62). Nevertheless, few studies have 
investigated the effect of the spatial density of EEG. Specifically, (Shah et al. 2017) and 
(Chambon et al. 2018) showed that increasing the number of channels from 4-6 up to 22 
significantly improved their model performance. Moreover, (Schirrmeister et al. 2017) found 
that high-density configurations (128 channels) led to worse performances, compared to 
configurations with 20-40 channels. Both of these findings are consistent with our results, and 
the selection of 20 channels (10-20 system) as a preferable channel configuration. 
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 When it comes to further pre-processing steps, different studies have relied more or less 
on a number of steps and algorithms, typically for EEG filtering, down-sampling, re-
referencing and artifact handling. While there is no clear evidence on the specific effects of 
these methods, (Shah et al. 2017) and (Chambon et al. 2018) emphasized the role of the 
reference montage, as part of the comparative evaluation. Besides this, artifact handling is 
considered one of the most important aspects of pre-processing. (Roy et al. 2019) showed that 
only 1/3 of the studies employed an artifact handling technique, which reveals the capacity of 
deep learning to perform effectively using the raw data. In cases of artifact handling, some 
techniques relied more on expert human knowledge (e.g. on visual inspection of the signals, 
for high-variance segment identification, or amplitude thresholding), while others required 
prior knowledge for hyperparameter tuning of an algorithm (e.g. ICA). Overall, the non-
requirement for artifact cleaning is an important asset for deep learning, given the expertise 
and time needed for manual curation. Even for cases that artifact cleaning is beneficial (as we 
showed with HD sets, which tend to be noisier), our results indicated that simple automatic 
procedures can perform as effectively as manual curation. 
 A final aspect of pre-processing, before feeding the data to the neural networks, can be 
a feature extraction step. A review across the DL-EEG literature revealed that almost half of 
the studies used the raw EEG signals as input to the models, with the remaining using frequency 
domain (36%) or other types of features (Roy et al. 2019). In Chapters 3 and 4, we already 
argued that the raw representation of the EEG outperformed a PSD representation for our task, 
whilst also being preferable for a data-driven investigation of novel electrophysiological 
features (non-constrained from a Fourier-type spectral decomposition). More recently, (Cho 
and Jang 2020) made an explicit comparison of the raw signals against Fourier-type 
representations under a seizure detection task, showing the use of cNNs with the raw EEG as 
the optimal configuration. Given that feature engineering is one of the most demanding steps 
of traditional EEG processing, and the majority of the models performed effectively without it, 
we have strong evidence for the capacity of deep learning for robust feature extraction. 

7.2.4 Deep Learning Architecture and Training 

One of the most crucial aspects in all deep learning studies, is the choice of the neural 
network architecture and its relation to the characteristics of the input data. Since our own 
analysis in Chapter 3, several studies have been published reporting similar findings, regarding 
the application of convolutional neural networks to raw EEG signals, as a successful 
architecture and input modality for EEG decoding (Heilmeyer et al. 2019; Roy et al. 2019; Cho 
and Jang 2020). These results are also evident by the significant growth of DL-EEG studies 
since 2015, with an increasing proportion employing cNNs (>50%). The success behind this 
architecture has been hypothesized to lie in their ability to effectively train feature extraction 
and task-decoding modules simultaneously, contrary to previously used models that were 
mostly effective under a two-step procedure (independent feature learning, alongside MLPs, 
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RBMs or DBNs). This is in alignment with our results in Chapter 3, where MLPs performed 
adequately given a PSD representation of the input. Despite the fact that cNNs do not explicitly 
take into account time dependencies (as RNNs), recent findings have shown their effectiveness 
in processing time series (Bai, Kolter and Koltun 2018). 

This ability for simultaneous feature extraction is generally attributed to the imposed 
hierarchical processing of deep learning models. Although there is no absolute definition or 
rule regarding the number of layers within a cNN (or, how “deep” the networks need to be), 
the majority of studies utilized architectures with at most 10 layers (2-3 layers was the most 
common depth). While few of these studies tried to explicitly investigate the effect of the 
number of layers in the performance of the models, there was no consensus on the results 
(O’Shea et al. 2017; Kwak, Müller and Lee 2017) . In general, some of the most widely 
employed cNN models of the previous years have utilized 2-5 layers (Heilmeyer et al. 2019), 
suggesting that shallower models are more appropriate for EEG processing, compared to state-
of-the-art models found in computer vision (currently utilizing 16-20 layers). 
 Besides the above-described aspects of architectural design, the training strategy and 
the optimization process is also of great impact to deep learning. As previously discussed, the 
vulnerabilities of neural networks to high-dimensional patterns and their susceptibility to 
overfitting, make the selection of the algorithms particularly important in determining the 
generalization performance. In Chapter 5, we explicitly investigated a number of learning tasks 
and ground-truths, in order to understand our data, and formulate an appropriate training 
strategy. However, there is only one study we know that has investigated the effect of training 
algorithms on the outcomes of EEG feature learning (Stober et al. 2015). The majority of DL-
EEG studies have employed classification algorithms under a variety of tasks, depending on 
the domain of application (hence, it would be impossible to have a comparative evaluation). 
From an engineering perspective, almost all studies have incorporated at least one form of 
regularization to the networks, such as Dropout or L1/L2 weighting. Regarding optimization, 
the Adam and the Adadelta optimizers have most often been utilized, as generally effective 
algorithms, due to their adaptive learning-rate tuning, and their fast convergence (empirically, 
we found that Adadelta had a more stable behavior). 
 Finally, other methodological priors can play a role in model performance, which can 
be driven by EEG-specific characteristics. Deep learning models have shown great 
performance by mirroring the shape of information in the data, through their architectural 
design. In this work, we have only investigated the basic parameters of EEG representation, as 
we prioritized the minimization – to the degree it was possible – of the imposed computational 
assumptions (discussed in Chapter 4). Nevertheless, by imposing further mathematical 
assumptions on the nature of EEG and the respective feature extraction, we can significantly 
constrain the underlying learned function, towards a more appropriate (robust) solution (we 
have already set prior constrains on the compositionality of the electrophysiological features 
and their spatio-temporal invariance). For example, a common idea found across several 
studies was the separation of the temporal and spatial information processing, during the first 
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layers of the models (similar to our 3D cNN design) (Roy et al. 2019). Such behavior often 
resembles filter-bank or common-spatial-pattern processing stages, by incorporating layer 
regularization and constrains on convolutional kernels/activation functions.  

Given all the above, the hyperparameter search space can be large and time-consuming 
for the optimization (tuning) of the models. Many of the DL-EEG studies under review have 
not reported such model tuning, with a large proportion discussing model performance after 
several trial-and-error attempts of alternative design hyperparameters (we explicitly avoided 
such hyperparameter optimization, in order to avoid information leakage from our dataset 
evaluation into model architecture). However, deep learning literature has shown that particular 
combinations of hyperparameters can perform better or worse, irrespective of their individual 
performance. For this reason, a very cautious analysis is required, in order to understand the 
effects of such design choices, and ideally in alignment with ideas found within contemporary 
EEG analysis, aiming at an improved model interpretability. 

7.2.5 Validation and Reproducibility  

One of the main questions initially posed, was whether deep learning-based EEG 
models have significant advantages over traditional EEG processing pipelines. While DL-EEG 
is a new field and has not established standard benchmark datasets or validation frameworks, 
and given that methodology varies significantly across studies (as we discussed in Chapter 3), 
we can estimate an answer based on the reported results of similar studies outside our domain 
of analysis. Many researchers have conducted experiments to compare the performance of deep 
learning models with established state-of-the-art EEG processing methods (often incorporating 
feature extraction and machine learning techniques), used to solve a particular task. Based on 
an analysis made in (Roy et al. 2019), the majority of the studies reported a performance 
increase when they employed deep learning techniques (>95%), with a median accuracy gain 
of 5.4% against the current state-of-the-art, across all kinds of EEG application domains (>100 
studies, including clinical domains). This finding provides us with strong evidence over the 
capacity and flexibility of deep learning models, to achieve state-of-the-art performance in 
EEG decoding. 
 Of course, while within-study comparisons are sensible under a common framework of 
analysis (i.e. datasets, methods, and validation), large-scale cross-study comparisons are still 
limited by the variation in methodology (and hence, findings are limited by their statistical 
power). One of the main problems recognized and discussed in Chapter 3, was the variation in 
validation procedures and the respective performance metrics. Machine learning models are 
always evaluated on a measure of generalization performance (i.e. how well they perform on 
unseen data), typically by employing a cross-validation paradigm, the selection of which can 
have a profound effect on the results (especially in EEG, where signals can show significant 
variability across subjects and experiments). Given this fact, it is important to note that more 
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than 60% of studies have not reported the use of any form of cross-validation (Roy et al. 2019), 
and thus the evaluation of many findings remains highly restricted.  

In general, EEG studies have focused on either intra-subject or inter-subject decoding 
tasks (depending on whether the model has been trained and tested on a particular subject, or 
across many subjects), which can significantly differ with respect to their expected 
performance. (Turner et al. 2017) and (Hajinoroozi et al. 2016) showed that intra-subject 
decoding always provided better performance than inter-subject decoding tasks, for several 
deep learning models and in spite of the significant decrease in training data. (Deiss et al. 2018) 
observed a decrease of accuracy from 75% to 38% when using cross-subject validation (inter-
subject training, but testing solely on unseen subjects), under a seizure detection task. These 
results are in agreement with our review on previous DL-EEG studies on anesthesia (see 
section 3.1.3), with the 3-state classification task solved almost perfectly using an intra-subject 
validation approach, contrary to our performance (~87% accuracy). However, while intra-
subject validation can be useful in certain tasks, cross-subject approaches are more applicable 
to real-life scenarios, and provide us with stronger evidence of generalization performance (as 
deep learning is susceptible in capturing subject-specific signatures, unrelated to the task). Over 
the past years, there is a general paradigm shift in machine learning for more systematic and 
robust methods of evaluation, which is also evident in the DL-EEG literature, as an increasing 
number of studies appear to adopt cross-subject validation frameworks (albeit it is still ~20%) 
(Roy et al. 2019). In our work, and for our selected tasks, we showed that deep learning models 
were capable of cross-subject generalization. For this reason, we proceeded to compare our 
findings only with anesthesia studies incorporating cross-subject validation approaches 
(Leave-N-Subjects-Out). 

Finally, the validity of any model eventually rests on the reproducibility of its results, 
which is a cornerstone of science and fundamental for the field to move forward. To date, the 
reproducibility of the majority of DL-EEG studies is still limited by the lack of standardized 
methods, open datasets, and code accessibility. However, during the past few years, the 
recognition of the EEG community regarding the need for large-scale studies that enable the 
replicability of findings, has led to several collaboration efforts (e.g. with the initiatives of 
EEGManyLabs (Pavlov et al. 2021b), OpenML (Vanschoren et al. 2014), and MOABB 
(Jayaram and Barachant 2018)). Currently, about half of the DL-EEG studies have utilized 
public datasets, and especially within the clinical domains (such as sleep and epilepsy), where 
data are more difficult to acquire (Roy et al. 2019). Of course, the availability and sharing of 
anesthesia datasets, which tend to be more expensive to collect, is still a major restriction for 
our research. In this work, we explicitly moved towards the acquisition of a standard pipeline 
that allowed us to integrate various anesthesia studies, compare our findings, and reproduce 
our results (Chapters 4 and 6). Our analysis provided evidence for the ability of deep learning 
to perform effectively under various experimental setups, towards improved cross-study 
generalization. 
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7.2.6 Model Inspection and Interpretability 

Another major way to validate the performance of deep learning models and compare 
findings – with respect to other DL-EEG models or traditional EEG processing pipelines – is 
by methods of model inspection and interpretability. From this perspective, our research has 
focused on investigating the behavior of the models under different learning tasks and 
anesthetic ground-truths (Chapter 5), mainly by inspecting their predictions over time, whilst 
assessed over particular clinical measures. Nevertheless, the validity of our observations can 
be limited by our current understanding of the clinical variables characterizing our EEG data, 
and several post-hoc interpretations, which can mislead our findings (the results of many 
studies within consciousness research have been generally guided by prior theoretical 
assumptions and post-hoc explanations, as indicated in (Yaron et al. 2022)). 
 Alternatively, models can be inspected and interpreted internally (in terms of the layers 
prior to the output), both for the discovery of novel features that have been extracted for a given 
task, but also for understanding how these features are utilized by the models. During the past 
few years, researchers have shown increased interest in the field of AI interpretability and 
explainability (XAI). This has led to the development of many techniques that aim to 
understand model behavior, either in terms of causal relationships (between inputs and 
outputs), or in terms of human interpretability and understanding (especially for deep learning 
models, which are considered as ‘black boxes’). Specifically within the field of DL-EEG, 
several studies have tried to apply interpretability techniques, such as weight analysis, analysis 
of activations, input-perturbation network-prediction correlation maps, and others, with 
varying success (Roy et al. 2019). Interestingly, (Lawhern et al. 2018) was able to find spectral 
features, topomaps, and ERPs that corresponded to existing knowledge within the literature of 
the paradigm under study, using a combination of such methods. 

Given that neural networks can easily diverge into learning spurious patterns, 
algorithmic robustness (e.g. via dataset curation, regularization, and cross-validation) and 
interpretable models can be crucial for the transparency and trustworthiness of deep learning. 
However, current approaches of interpretability present several limitations with respect to their 
explainability of various phenomena (Ghassemi, Oakden-Rayner and Beam 2021). This is 
particularly important within clinical domains, where humans and machines are competing or 
co-operating for the decision-making of patients’ management. Explainable models are often 
required by medical professionals and patients in order to be trusted, considering the ethical 
and societal implications. Overall, further research is required in our work, in order to explore 
the effects of the layers, the hyperparameter design, and the extraction of features with potential 
neuroscientific or clinical interest. 
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7.3 EEG Methods for Analysis and Estimation of Anesthetic-

Induced Unconsciousness 

In this section, we discuss a number of EEG methods that have been developed over 
the past years, for the analysis and estimation of levels of consciousness and the depth of 
anesthesia. Specifically, we compare our model to several theoretically- and empirically-driven 
techniques, as well as to other deep learning models with the same objective, in terms of their 
advantages and limitations for research and clinical purposes. 

7.3.1 Overview 

As initially stated in the introduction of this thesis, our understanding of the 
neurophysiological signatures of the full neural correlates of consciousness (full NCC) remains 
incomplete (Koch et al. 2016). The lack of robust EEG markers specifically, has driven many 
researchers to investigate the electrophysiological correlates of states and levels of 
unconsciousness under general anesthesia, using a variety of methodologies. However, no 
method of analysis has been universally successful across all anesthetic conditions, so far. At 
the same time, medical practice has a fundamental shortcoming in reliably assessing levels of 
consciousness, using behavioral, pharmacological, and physiological measures. Despite the 
fact that GA mainly targets the brain, commercial EEG devices for DoA monitoring have 
shown faulty performance under particular anesthetic agents and depths (Barr et al. 1999; 
Kearse et al. 1994), as well as susceptibility to EEG artifacts and the co-administration of other 
drugs (Schuller et al. 2015). This has led to the more recent development of novel techniques 
for real-time monitoring of the DoA. Here, we highlight the differences across the most 
prominent non-learning-based and deep learning-based methods. 

7.3.2 Non-Learning-Based Models 

In Chapter 6 (section 6.1.1), we mentioned several theoretically- and empirically-based 
EEG metrics that have been widely investigated in similar studies, and which have shown 
adequate generalization across various anesthetic conditions. Notably, the perturbational 
complexity index (PCI) (Casali et al. 2013), the permutation Lempel-Ziv complexity (PLZC) 
(Bai et al. 2015), various entropy measures (Liang et al. 2015), the slow-wave activity 
saturation (SWAS) (Mhuircheartaigh et al. 2013b), and the spectral exponent (Colombo et al. 
2019), have all been extensively tested, and can be in principle used to progressively track 
levels of unconsciousness or the DoA. For the purpose of this discussion, we further evaluate 
the characteristics of these techniques (beyond their generalizability), and other methods used 
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in anesthesia research, with respect to their underlying assumptions, their capacity for 
electrophysiological investigation, and their potential for improved brain monitoring. 

From a theoretical perspective, these metrics generally rely on the quantification of the 
information or spectral content of EEG, the spatial extent and synchronization of brain activity, 
or a mixture of these two. However, the exact approach of each technique is based on particular 
mathematical and theoretical assumptions on the nature of EEG and/or the nature of 
consciousness. For example, PCI presumes that consciousness requires the differentiation and 
integration of cortical activity (as per the integrated information theory (Oizumi, Albantakis 
and Tononi 2014)), and that a measure of these two can be mathematically approximated by 
the compressibility of the EEG response to a TMS perturbation. Similarly, Lempel-Ziv 
complexity and entropy measures presume that consciousness require a level of complexity, 
which can be estimated by algorithmic complexity or information-theoretic measures in EEG 
signals. SWAS relies on the observation that many anesthetic agents favour the 
hyperpolarization of cortical neurons (oscillating at low frequencies, ~1 Hz), a behavior 
associated to the thalamocortical and cortico-cortical communication barrier hypothesis. 
Finally, the spectral exponent exploits the spectral signatures of the signals and the association 
of unconsciousness to EEG slowing. Contrary to these techniques, deep learning models can 
extract a variety of task-related features, within the constraints imposed by the architectural 
design of the networks. Specifically for our own 3D cNN design, while we make no 
electrophysiological assumptions on the nature of consciousness, our computational priors 
presume a compositionality of EEG features, characterized by local invariance across space 
and time (this assumption can be weaker for the spatial dynamics of EEG). 

When it comes to investigating the electrophysiological correlates of anesthetic states, 
theoretically- and empirically-driven techniques have several advantages and limitations, 
compared to learning-based methods. For example, the results obtained by PCI and SWAS 
have been further supported by independent findings of studies on the respective theories and 
hypotheses (e.g. studies on the IIT theory, or the thalamocortical disruption hypothesis). In 
general, the lower analytic flexibility in hypotheses and methods of these techniques is a 
significant aspect for the validity of the results, compared to deep learning, which as discussed 
is vulnerable to false pattern recognition (and thus requires a careful understanding of the data 
and task under analysis). On the other hand, many of the above-mentioned techniques are 
limited by their interpretability (e.g. the complexity and entropy measures), and have been 
evaluated by post-hoc analysis approaches (e.g. studies on Lempel-Ziv complexity and SWAS 
have evaluated the metrics against PK/PD models which incorporate parameters of EEG 
response). Most importantly though, non-learning-based metrics do not allow for a data-driven 
discovery of novel electrophysiological signatures. This is an area where deep learning has 
shown great success in the past years (methods of model inspection have been discussed in 
section 7.2.6).  

From a practical or clinical perspective, deep learning has shown the strongest 
advantages for tracking levels of consciousness and the creation of DoA monitoring systems. 
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As we discussed in section 6.1.1, several of the previously mentioned metrics have shown their 
ability to discriminate states of consciousness from unconsciousness, across agents like 
propofol, xenon and ketamine. Nevertheless, there are significant limitations when it comes to 
their sensitivity and real-time automated analysis. In particular, PCI, SWAS, and the spectral 
exponent cannot differentiate intermediate levels of sedation, while Lempel-Ziv complexity 
and entropy measures are insensitive to small drug concentration changes, yet exhibit large 
within-state fluctuations (as they are sensitive to random processes and locally generated 
patterns). Furthermore, the performance of each technique vary across the different phases of 
anesthesia (e.g. SWAS accounts for the transition to LOC, but is not sufficient to explain the 
opposite transition to Recovery). With regards to automation, all of the mentioned studies have 
used data curation and manual intervention, either for artifact handling, or due to an algorithmic 
requirement (e.g. utilizing ICA or source modelling techniques). PCI also requires the use of 
TMS/EEG, which creates further complications in clinical settings. All of these aspects are 
major limitations for the creation of automated systems for real-time analysis. Finally, it is 
important to differentiate the reported results from group-level performances, with an emphasis 
on the ability of any metric to detect changes in individual participants (which is also a clinical 
end-goal). In this work, we have shown the capacity of deep learning to improve across all of 
the above issues. 

Overall, beyond these theoretically- and empirically-based techniques, other methods 
of EEG analysis have also significantly contributed to anesthesia research. Most notably, 
methods of functional/effective connectivity (FC/EC) are often employed to assess how 
different regions of the brain interact under GA. To this end, many FC/EC techniques have 
been developed that rely on a variety of underlying assumptions, in terms of temporal 
correlations, causal interactions, and the directionality of information flow (data-driven or 
model-based methods). For example, (Lee et al. 2015) showed the disruption of the fronto-
parietal feedback connectivity under GA, using transfer entropy measures on scalp EEG 
(information-based estimation of directed FC). This finding has been robustly found in studies 
including source-level analysis and model-based EC methods as well, across propofol, 
ketamine and other inhaled anesthetics (e.g. using dynamic causal modelling in (Boly et al. 
2012; Muthukumaraswamy et al. 2015)). Other methods, exploring the connectivity of the 
brain using graph theoretical measures, have revealed properties such as increased local 
efficiency and decreased small-world properties for states under GA (Bonhomme et al. 2019). 
Of course, many of these methods require extensive EEG recordings and computational 
requirements (such as source reconstruction) to be applied, which makes them unsuitable for 
real-time analysis. Nevertheless, deep learning models can be informed by such findings, either 
by exploiting relevant areas and mechanisms of the brain under GA, or even by incorporating 
features that would otherwise be hardly extracted by the networks (e.g. measures of FC/EC, or 
even the utilization of architectures that handle such information, such as graph neural 
networks (Wu et al. 2019)). 



184 

 

7.3.3 Deep Learning Models 

Over the past decade, machine learning has shown fundamental breakthroughs, both in 
scientific discovery, but also in the creation of state-of-the-art predictive models, which have 
been partly driven by advances in deep learning techniques. Specifically within biomedical 
engineering, deep learning models have been increasingly developed with an aim to remove 
the inherent subjectivity of the medical decision-making, automate certain tasks and services, 
and provide improved personalized diagnosis and treatment. However, predictive models do 
not always live up to the hype. While there is a lot of research on how to build and train different 
algorithms, we do not have a framework for the questions we want the algorithms to answer 
(especially in medicine, where we often lack straight-forward definitions and ground-truths). 
This problem is evident in our research, as we have several proxy measures of consciousness, 
but a limited understanding of the data and the behavior of the algorithms, which introduce a 
variety of biases. In addition, the obscurity of the decision making leads to further concerns 
about the appropriateness and trustworthiness of the models, which creates the need for 
extensive empirical evaluation. In Chapters 5 and 6, we explicitly tried to tackle each of these 
issues, in order to instill confidence in our findings. 

In section 5.1.3, we mentioned a number of studies using deep learning-based EEG 
methods for the analysis and estimation of the DoA. Given that a comparative evaluation of 
the models was limited by the heterogeneity found in the anesthetic and methodological 
protocols, we proceeded to investigate several basic factors concerning the learning algorithms 
and the clinical ground-truths, in order to understand their effects on model performance. Our 
findings – aligned with the state-of-the-art literature described in section 5.6.6 – showed that 
models trained under a regression analysis over behavioral measures of unconsciousness, 
exhibited the best performance in terms of our clinical understanding and research end-goal. 
Here, we focus on the comparison of our work with studies incorporating cross-subject 
validation approaches, considering the problems discussed in section 7.2.5. Based on the above 
criteria, (Sun et al. 2019a) acquired a model with the best performance, which is comparable 
to our learning objective. However, since the majority of research – including (Sun et al. 2019a) 
– has focused on patient data under clinical settings, our evaluation here is constrained mainly 
within the capacity of the models for real-time estimation of the DoA (rather than an 
electrophysiological investigation of anesthetic states, which is easier under controlled 
experimental settings). 

In order to understand the advantages and limitations of our DL-EEG model and the 
model found in (Sun et al. 2019b), we compare the anesthetic and methodological protocols 
used in each work. As we mentioned in section 5.6.6, (Sun et al. 2019b) developed a cNN 
model trained under a regression over Richmond Agitation-Sedation Scale (RASS) scores, 
achieving an average MAERASS of 0.2 (normalized, with MAEX = MAE / (Xmax – Xmin)). 
Similarly, our cross-study and cross-drug model described in section 6.5, trained under a 
regression over BR scores (Ramsay), acquired an average MAEBR of 0.1 (normalized). In both 
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analyses, the models showed their feasibility for tracking levels of consciousness within a 
similar range of sedation (which included intermediate sub-anesthetic states), with the 
predicted values naturally interpreted, after discretization and mapping onto the respective 
scales (Ramsay or RASS scores). Beyond this framework, there were several differences in our 
works. Most importantly, (Sun et al. 2019b) used data from a significant number of ICU 
patients (174, with exclusion of patients after visual inspection of the EEG quality), which had 
been administered a variety of intravenous anesthetics and other types of medications (76% 
propofol, 20% dexmedetomidine and 4% ketamine, co-administered with opioids such as 
hydromorphone and fentanyl, and benzodiazepines, such as midazolam). Also, the model 
employed a larger window of analysis (4 sec), with the EEG data band-pass filtered from 0.5 - 
20 Hz (higher frequencies were possibly filtered to avoid artifact contamination). Finally, the 
authors tested a number of cNN architectures, with minimal hyperparameter optimization, 
incorporating RNNs, spectrogram and band-power representations, with the cNN and 
cNN/RNN designs applied to the raw EEG obtaining the best performance. 
 Based on a rudimentary comparison of the main differences, we can detect several 
strengths on each model and approach. Most notably, the significant amount of clinical data in 
(Sun et al. 2019b), which spanned many hours for each subject, contributes to a robust 
validation of the model, but also to the clinical relevance of its performance. This was further 
supported by the use of a minimal number of EEG channels (using 4 frontal electrodes), which 
are important for clinical preparation. Of course, the inclusion of multiple agents increases the 
difficulty of the tasks under training, especially given the unknown interactions across the 
combination of drugs (albeit propofol is electrophysiologically closer to dexmedetomidine than 
ketamine, due to the strong presence of slow-delta oscillations and spindles (Patrick L. Purdon 
et al. 2015)). On the other hand, the methodology found in (Sun et al. 2019b) was significantly 
constrained by the sparsity of the RASS score assessment. Specifically, the authors assigned 
RASS scores to EEG segments spanning 1 hour, due to temporal ambiguities, despite the fact 
drug concentrations are typically adjusted manually during the procedure (contrary to our 
datasets, which were designed to maintain pharmacologically-steady states, typically upon 
attaining a targeted behavioral response). Moreover, the use of a large input window, alongside 
the use of RNNs (which acted as a smoothing function), created a delay in model response of 
0.6 – 6 minutes, which can be significant for GA management (whereas our model exhibited 
stable performance, without response delays). Both of these problems potentially contributed 
to the large scale dynamics observed, which deviated from the ground-truth and could explain 
the high variance in patient performance (our model’s lower MAE can likely be attributed to 
the quality of the recordings and the more robust labelling of the EEG epochs).  
 Overall, future research directions could be extended to both aspects of dataset 
acquisition and model improvement. For example, the idea to incorporate information over a 
number of consecutive epochs within our model’s design (in analogy to the function of the 
RNN employed in (Sun et al. 2019b)), could be further explored with respect to model 
dynamics and performance. Moreover, training a model under differentiated targets of arousal 
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and awareness could be beneficial for feature learning, given the desired dissociation of the 
two dimensions (this would be relevant for tracking disconnected consciousness, or even 
connected consciousness in clinical settings with neuromuscular blocking agents. An 
experimentation with our model trained under both BR and DC scores did not reveal significant 
changes over our psychometrical analysis of Chapter 5). Another prospective analysis for 
model improvement could relate to representation learning and cNN interpretability, which are 
mutually connected (e.g. using convolutional sparse coding with rank-1 constraints, as in (La 
Tour et al. 2018)). Of course, the expansion of datasets that incorporate more anesthetic agents 
(including dissociated states) and ICU patients are crucial for the clinical translation of our 
findings. Such analysis could also expand to other state-based paradigms (e.g. sleep, or patients 
with DoC), towards the acquisition of signatures reflecting the full NCC. 

7.4 Conclusions 

Our thesis began by introducing the scientific endeavour towards a neuroscientific 
understanding of consciousness, which has many implications for science, medicine and 
society in general. In this work, we set the basis for the development of a model that allows us 
to investigate and estimate anesthetic-induced states and levels of unconsciousness. Given the 
absence of strong theories and markers of consciousness, we focused on a data-driven analysis 
of the electrophysiological signatures under general anesthesia, by incorporating state-based 
paradigms and minimal assumptions from current clinical DoA measures. 

While EEG provides a simple, non-invasive, and widely accessible way to record the 
brain activity of individuals and patients in hospitals, the complexity of the signals has 
presented many limitations in the past, with respect to the computational approaches and 
expertise required for its interpretation. Nevertheless, deep learning techniques have recently 
shown great promise for EEG decoding tasks, as they offer automatic end-to-end feature 
learning. Here, we demonstrated the effectiveness of deep learning in discovering and utilizing 
relevant electrophysiological features that characterize the different states and levels of 
unconsciousness. Specifically, we have presented a realization of a unified cNN architecture 
and a standard pre-processing pipeline, that allows us to analyze the spatio-temporal structure 
of the raw data, without the need for manual curation (artifact handling) or prior knowledge of 
the signals (or features of interest). Our results have been further supported by the recent DL-
EEG literature, with similar findings on cNN models acquiring state-of-the-art performance.  

We have also demonstrated the capacity of the models to tackle problems of 
contemporary GA research. In particular, our 3D cNN was able to enrich the information of 
behavioral measures under a regression analysis (and correct for ground-truth inaccuracies), 
which provided us with a predictive model that sensitively discriminated a wide range of 
anesthetic depths. This was confirmed by our ability to track the electrophysiological changes 
reflecting the drug concentrations (which followed the anesthetic protocols), the transitional 
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dynamics of EEG (consistently with the observed DoA), as well as the clinical outcomes of 
individuals. We further validated these findings using an independent behavioral assessment 
paradigm, and across the anesthetic agents of propofol, ketamine and xenon. Lastly, we found 
preliminary evidence for common cross-drug signatures of unconsciousness. 

As we hypothesized in the Introduction, the development of such model can also 
contribute to the production of improved, real-time, automated  DoA monitoring systems, 
which can advance patients’ safety. The problems and complications found in contemporary 
anesthesia practice, stem from the imbalanced administration of medications, due to our 
inability in reliably estimating the individualized anesthetic effects. In this work, we showed 
the ability of our model to progressively detect the anesthetic effects in the brain, with higher 
granularity than both behavioral and pharmacological indices, using only 1-second segments 
of the EEG. Additionally, we reasoned for the advantages of our model over alternative 
methods (theoretically- or learning-based), in terms of knowledge discovery and their capacity 
for real-time EEG analysis.  

Of course, while we have empirical evidence for the performance of our model, various 
challenges remain open. Further research can be conducted in our work, mainly with regards 
to the role of specific hyperparameters of our 3D cNN architecture design, and their interactions 
to model performance and interpretability. Such analysis could further promote the discovery 
of knowledge with neuroscientific or clinical interest, towards the transparency and 
trustworthiness of deep learning. 



188 

 

Appendix 

A1. The propofol concentrations, as measured from the blood samples of the participants in the 
Cambridge Anesthesia Dataset (section 5.2.1). 
 
 

Table A1. Drug concentrations (ng/ml) for Mild Sedation, Moderate Sedation and Recovery 
Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Mild Sedation 204 246 525 878 604 482 311 542 144 529 
Moderate Sedation 506 689 1032 1521 1437 947 806 1149 433 1167 

Recovery 299 224 236 483 351 266 312 397 243 363 
           

Subjects S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 
Mild Sedation 200 385 482 723 493 394 272 712 394 394 

Moderate Sedation 555 1018 1029 791 978 800 749 800 795 800 
Recovery 197 171 287 303 226 265 207 395 148 435 

 
 
 
 
A2. The lifetime, study and relative-change scores of the participants in the Michigan 
Anesthesia Dataset (section 5.2.1). Each score is calculated as the average of the three 
subscales - disembodiment, transcendence of time and space, and complex imagery – and 
represents a different ground-truth for measuring levels of disconnected consciousness (DC). 
 
 

Table A2. The psychometric scores of the three ground-truth measures 
Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 
Lifetime 

Score 
0.32 0.10 0.14 0.20 0.22 0.30 0.18 0.28 0.07 0.13 0.06 0.00 0.14 0.05 0.10 

Study 
Score 

0.79 0.85 0.45 0.66 0.59 0.85 0.85 0.63 0.93 0.48 0.83 0.77 0.58 0.37 0.83 

Relative-
Change 

0.47 0.75 0.31 0.46 0.57 0.54 0.67 0.34 0.86 0.35 0.77 0.77 0.44 0.32 0.73 
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