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Abstract 
The limit theory of a change-point process which is based on the Manhattan 
distance of the sample autocorrelation function with applications to GARCH 
processes is examined. The general theory of the sample autocovariance and 
sample autocorrelation functions of a stationary GARCH process forms the 
basis of this study. Specifically the point processes theory is utilized to obtain 
their weak convergence limit at different lags. This is further extended to the 
change-point process. The limits are found to be generally random as a result 
of the infinite variance. 
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1. Introduction 

Empirical observation made in Econometrics and applied financial time series 
literature for long time horizons reveal that log-returns of various series of share 
prices, exchange-rates and interest rates depict unique stylized features. These 
features include: the frequency of large and small values is rather high suggesting 
that the data do not come from a normal but rather a heavy tailed distribution 
and that exceedances of high thresholds occur in clusters which indicates that 
there is dependence in the tails. It is also observed that the sample autocorrela-
tions of data are small whereas the sample autocorrelation of the absolute and 
squared values is significantly different from zero even for large lags. This beha-
vior suggests that there is some kind of long-range dependence in the data. 

Various models have been proposed in order to describe these features. 
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Among these models is the GARCH model which has been found appropriate in 
capturing volatility dynamics in financial time series particularly in modelling of 
stock market volatility as seen in [1] and derivative market volatility as utilized 
by [2]. GARCH (1, 1) in particular is often used in applications as it is believed 
to capture, despite its simplicity, variety of the empirically observed stylized fea-
tures of the log-returns. However the log-return data cannot be modelled by one 
particular GARCH model over a long period of time [3]. They observe that in 
real financial time series the effect of non-stationarity of log-return series can be 
seen by considering the sample autocorrelation function of moving blocks of the 
same length as the estimates seem to differ from block to block. They suggest the 
use of change-point analysis of financial time series modelled by GARCH 
processes with parameters varying with time. The likelihood ratio scan method 
has been proposed by [4] for estimating multiple change points in piecewise sta-
tionary processes where they use a scan statistics to reduce the computationally 
infeasible global multiple change point estimation problem to a number of single 
change point detection problems in various local windows. The cumulative sum 
test is considered by [5] in determining volatility shifts in GARCH model against 
long range dependence. Cumulative sum test has also been used by [6] for 
change-point detection in copula ARMAGARCH Models. Markov switching 
GARCH model has been proposed by [7] where the volatility in each state is a 
convex combination of two different GARCH components with time varying 
weights making the model have a dynamic behavior to capture the variants of 
shocks. According to [8] change-point in the series could also be attributed to 
change in GARCH model order specification. The trio proposes an estimator 
based on the Manhattan distance of the sample autocorrelation of squared values. 
This paper aims at furthering the works of [8] by deriving the distributional 
convergence of the process used in deriving the estimator of change-point k

nD . 
Since k

nD  is based on Manhattan distance of sample autocorrelation, the limit 
theory for sums of strictly stationary sequences is utilized. Conditions that en-
sure that partial sums of strictly stationary processes converge in distribution to 
an infinite variance stable distribution have provided by [9]. This is achieved by 
relating the regular variation condition and weak convergence of point processes. 
This was utilized by [10] in deriving the limit theory for the autocovariance 
function of linear processes which they later extended to bilinear processes in 
[11]. Limit theory for sample autocovariance of GARCH processes was also con-
sidered by [12] where they used weak convergence of point processes in combi-
nation with continuous mapping theorem. Point processes were also utilized by 
[13] in examining the convergence of the partial sum process of stationary regu-
larly varying GARCH (1, 1) sequences for which the clusters of high thresholds 
excesses are broken down into asymptotically independent blocks which they 
established to be a stable Levy’s process. We utilize the point processes theory 
and restrict ourselves to qualitative results. 

The paper is organized as follows. Section 2 outlines the GARCH model speci-
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fication and change-point estimator with corresponding assumptions utilized. 
The weak convergence of point processes associated with the sequence 

( )2 2,t tX σ  is considered in Section 3. In Section 4, the asymptotic behavior of the 
change-point process k

nD  is studied. Here the limiting distribution of k
nD  is 

derived for a stationary GARCH sequence. 

2. Change-Point Estimator 

Let ( )t t
X

∈  be a GARCH process of order ( ),p q  given by the equation 

2 2 2
0

1 1

fort t t
p q

t i t i j t j
i j

X t

X

σ

σ α α β σ− −
= =

∈

+ +

=

= ∑ ∑


                  (1) 

By iterating the defining difference Equation (1) for 2
tσ  the GARCH model 

can be further expressed as a stochastic differential equation as follows: 
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( )0 0 0tB α ′=   then ( tY ) satisfies the following stochastic differential eq-
uation 

1 fort t t tY AY B t−= + ∈                      (2) 

Specifically for the GARCH (1, 1) case with 2
1 1t tA α β= +  and 0tB α=  Eq-

uation (2) reduces into a one-dimensional SDE 

( )2 2 2
0 1 1 1 fort t t tσ α α β σ −= + + ∈

               
 (3) 

Assumption 1. (Strictly Stationary) 
According to [14] the existence of a unique strictly stationary solution to (1) is 

the negativity of the top Lyapunov exponent. This however cannot be calculated 
explicitly but a sufficient condition for this is given by 

1 1
1

p q

i j
i j
α β

= =

+ <∑ ∑  

Assumption 2. (Ergodic Process) 
According to [15] standard ergodic theory yields that ( tX ) is an ergodic 

process. Thus its properties can be deduced from a single sufficiently large ran-
dom sample of the sample. 

Consider the change-point test hypothesis to be investigated to be defined as: 
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( )

( )
( )

{ }

0

1

: 1,1 for 1, ,
against

GARCH 1,1 for 1, ,

GARCH , for 1, ,

where ,

:

\ 0

t

t

H X GARCH t n

t k
H X

p q t k n

p q

∼ =

=∼ 
= +

∈









             (4) 

Assumption 3. (Weight) 
Let the weight kw  be a measurable function that depends on the sample size 

n and change-point k. It is arbitrarily chosen such that it satisfies the condition 
that 

1 1

1 1

1 0

k n

i i
i i

k n

i i
i i

k
n

k
n n

ρ ρ

ρ ρ

= =

= =

=

⇒ − = 
 

∑ ∑

∑ ∑
                    (5) 

Consider Assumption [1], Assumption [2] and Assumption [3] to be satisfied. 
According to [8] the change-point estimator k̂  as hypothesized in (4) is based 
on the lower bound of the weighted Manhattan divergence measure of the sam-
ple autocorrelation function drawn for the process k

nD  as 

1 1

1 11
k n

k
n i i

i i k

k kD
n n k n k

ρ ρ
= = +

 = − −  − 
∑ ∑

               
 (6) 

where iρ  and k denote sample autocorrelation function and the unknown 
change-point respectively which are estimated as: 

( ){ }

2 2
1

4
1

1

for 0 0

ˆ min : max

,
k h

t t ht
k k

tt

k
n nk n

X X
k n h n

X

k k D D

ρ
−

+=

=

< <

= < < < <

= =

∑
∑

            

 (7) 

Proof. The works of [8] are utilized here. Let ( )1 2, , , kX X X X=   be a k 
dimensional vector and ( )1 2, , ,k k nY X X X+ +=   be a ( )n k−  dimensional 
vector. The autocovariance and autocorrelation functions can be expressed in 
terms of the inner product as 

( ) ( ), ,acovar X Y X E X Y E Y= − −
              

 (8) 

( )
( )

( )
( )

, ,
X E X Y E Y

acorr X Y
sd X sd Y
− −

=
              

 (9) 

where ( )sd X  and ( )sd Y  represents the standard deviation of X and Y re-
spectively which represents an 2L  distance from the mean. Applying the Hold-
er’s inequality in Theorem (7) to (8) and (9) yields 

( ) ( ) ( )
( )

1

1

,

, 1

acovar X Y sd X sd Y L space

acorr X Y L space

≤ ∈

≤ ∈
             (10) 

Following (10) we can define a sequence of autocorrelation functions 1,i jρ +  
where for fixed 0i = , 1 1j n≤ ≤ −  and for fixed j n= , 1 1i n≤ ≤ −  to be such 
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that  w e  have  t w o sub sequenc es  ( )1 1,1 1,2 1, 1, 1, , , , ,j k nρ ρ ρ ρ ρ −=    and  
( )2, 3, 1,, , , , ,in n n k n nnρ ρ ρ ρ ρ+=    where 1,kρ  and 1,k nρ +  denote the autocor-

relation of the sequence { }2

1

k

t t
X

=
 and { }2

1

n

t t k
X

= +
 for 1 k n≤ ≤ . A change-point  

process k
nD  quantifying the deviation between 1,kρ  and 1,k nρ +  using a diver-

gence measure motivated by the weighted pL  distance, with k denoting the 
change-point is proposed. Specifically, they assumed the case when 1p =  re-
sulting into a weighted Manhattan distance and by linearity and absolute value 
of inequalities of the expectation operator results into 

( ) ( ) ( )1, 1, 1, 1, 1, 1,
1

2 2
1

1, 4
1

where f 0 0,or

n

p k k n k k k n k k k n
k

k h
t t ht

k k
tt

L w w E E

X X
k n h n

X

ρ ρ ρ ρ ρ ρ

ρ

+ + +
=

−
+=

=

 − = − ≥ − 
 

= < < < <

∑

∑
∑

    (11) 

The change-point estimator is processes k
nD  is assumed to be the lower 

bound of the Manhattan divergence measure (11) where the weight kw  is as 
specified in Assumption 3. The resultant process is as specified in (6). The 
change-point estimator k̂  of a change point *k  is the point at which there is 
maximal sample evidence for a break in the sample autocorrelation function of 
the squared returns process. It is therefore estimated as the least value of k that 
maximizes the value of k

nD  where 1 k n< <  is chosen as given in (7). 

3. Point Process Theory 

Point process techniques are utilized in obtaining the structure of limit variables 
and limit processes which occur in the theory of summation in time series anal-
ysis. The point process theory as developed by [16] is utilized. Consider the state 
space of the point process { }\ 0n  where { } { }= ∞ −∞   . Let B be the 
collection of bounded Borel sets in { }\ 0n . Let cF  be a collection of bounded 
non-negative continuous functions on { }\ 0n  with bounded support and sF  
be a collection of bounded non-negative step functions on { }\ 0n  with 
bounded support. Write M for the collection of Radon counting measures on 

{ }\ 0n  with null measure o. This means that { }\ 0Mµ∈  if and only if μ is of 
the form 1 ii Xi n ε∞

=∑ , where { }1,2,in ∈  , the points iX  are distinct and  

1i iX∞
=∨ < ∞  and 

iXε  is a Dirac measure at iX , that is 
1 for
0 fori

i
X

i

X B
X B

ε
∈

=  ∉
 

for any B M⊂ . Let yM M⊂  be the collection of measures μ such that 

{ }( ): 0X X yµ > > , so that, { }0 \ 0M M= . Define  

{ }( ) { }( ){ }1: : 1 0 and : 0nM M X X X X Sµ µ µ −= ∈ > = ∈ >  and let ( )B M  be 

the Borel set on M . 
Consider a strictly stationary sequence ( )t t

X
∈  of random row vectors with 

values in n , that is, ( )1, , nX X X=  . The characterization of the asymptotic 
behavior of the tails of the random variable X is examined through the regular 

 

DOI: 10.4236/jmf.2018.82027 430 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82027


I. W. Irungu et al. 
 

variation condition. 
Theorem 1. (Regular Variation Condition) 
In light of [17] assume 𝜖𝜖 has a density with unbounded support, 0 0α > , 

( )2
1 1ln 0E α β + <  , 2 2

1 1 1
p

E α β+ ≥  and lnpE < ∞   for some 0p >  
holds, then: 

1) there exist a number ( ]0, pκ ∈  which is a unique solution of the equation 

( ) 22
1 1 1nE

κ
β α + =  

  

and there exist a positive constant ( )0 0 0 1 1, ,c c α α β=  such that 
( ) 0 asP x c x xκσ −> ∼ →∞  

2) If E κ ξ+ < ∞  for some 0ξ > , then 

( ) ( )P X x E P xκ σ> ∼ >  

and the vector ( ),X σ  is jointly regularly varying such that 

( )( )
( ) ( )

, , , / ,
as

,
vP X xt X X B

x P B t
P X t

κσ σ σ
σ

−> ∈
→ Θ∈ →∞

>
 

where v→  denotes vague convergence on the Borel σ-field of the unit sphere 
S1 of 2 , relative to the norm ⋅  with 

( )
( ) ( ) ( ){ }

( )
,1 / ,1

,1

,1

E I
P

E

κ

κ

∈⋅
Θ∈⋅ =

 



 

Proof. Following the works of [17] and [18], assume ξ and η are independent 
non-negative random variables such that ( ) ( )P x L x x κξ −> ∼  for some slowly 
varying function L and E κ εη + < ∞  for some 0ε > , then  
( ) ( )P n x E P xκξ η ξ> ∼ >  as x →∞ . 
Applying Theorem 1 yields 

( )( )
( )( )

( ){ }( )
( ){ } ( )

( ){ } ( )

,1 / ,1

,1 / ,1

,1 / ,1

, , , / ,

,1 , ,1 / ,1

,1

,1

,

~

~ 1

B

B

B

P X xt X X B
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P I xt

E I P xt

E I x P t
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κ κ

σ σ σ

σ

σ

σ

σ

∈

∈

−
∈

> ∈

> ∈

>

=

=

>

>

 

 

 

  







 

also 

( ) ( ) ( ), ,1 ~ ,1P X t P t E P tκσ σ σ> = > >   

which completes proof. 
Theorem 2. (Strongly Mixing Condition) 
Let ( na ) be a sequence of positive numbers such that 

( ) 1nnP X a> →                       (12) 

The sequence ( na ) can be chosen as the ( )11 n−− -quantile of X . Since X  
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is regularly varying, ( )
1

na n L nα=  for slowly varying function ( )L x . The con-
dition (12) holds for ( tX ) if there exists a sequence of positive integers ( nr ) such 
that nr →∞ , [ ]n nk n r= →∞  as n →∞  and 

1 1
exp exp 0 as ,

n
n

k
rn

t t
s

t tn n

X XE f E f n f F
a a= =

              − − − →∞ ∀ ∈                          
→


∑ ∑  (13) 

The condition (12) implies by the strong mixing condition of the stationary 
sequence ( tX ). 

Assume that the joint regular variation in Theorem 1 and strongly mixing 
conditions in Theorem 2 are satisfied for a stationary sequence ( tX ), then, the 
statement can be made for the weak convergence of the sequence of point 
processes 

/
1

, 1, 2,
t n

n

n X a
t

N nε
=

= =∑ 

                   
 (14) 

Define 

,
1

, 1, 2, ,
n

n

m

n r i n
i

N N i m
=

= =∑ 





                  
 (15) 

where ,nr iN  are independent and identically distributed as ,0 /1
n

n t n

r
r X atN ε

=
= ∑ . 

It therefore follows that ( nN ) converges weakly if and only if nN  does and they 
have the same limit N. N is identical in law to the point process 

1 1 i ijPQi j ε∞ ∞

= =∑ ∑
where 1 iPi ε∞

=∑  is a Poisson process +  with iP  describing the radial part of 
the points and 

1 ijQj ε∞

=∑  is a sequence of independent and identically distri-
buted point processes with ijQ  describing the spherical part and a joint distri-
bution Q on ( )( ),M B M  . 

Theorem 3. Assume that ( tX ) is a stationary sequence of random vectors for 
which all finite-dimensional distributions are jointly regularly varying index 

0κ > . To be specific, let , ,m mθ θ−   be the ( )2 1m n+ -dimensional random 
row vector with values in the unit sphere ( )( )2 1 1m nS + − , 0m ≥ . Assume that the 
strongly mixing condition for ( tX ) and that 

( )1 0lim lim sup | 0, 0,nr

t t n nm n
P X a y X a y y=→∞ →∞

> > = >V  

Then the limit 

( ) ( )

( )

0 1

0

lim

mm m
j j

m m

E

E

κ κ

κ

θ θ
γ

θ

=
+

→∞

 − 
 =

V
 

exists and is the extremal index of the sequence ( )tX . 
1) If 0γ = , then d

nN o→  

2) If 0γ > , then 
1 1 i ij

d
n PQi i

dN N ε∞ ∞

= =
 =→ ∑ ∑  

where 1 iPi ε∞

=∑  is a Poisson process on +  with iP  describing the radial part 
of the points and 

1 ijQj ε∞

=∑  is a sequence of independent and identically distri-
buted point processes with ijQ  describing the spherical part and a joint distri-
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bution Q on ( )( ),M B M  , where Q is the weak limit of 

( ) ( )
( )( )

( ) ( )

0 1

0 1

lim
k

t

mm m
j j t m

mm m m
j j

E I
Q

E

κ κ

θ

κ κ

θ θ ε

θ θ

= ≤
+

→∞

=
+

 − 
 =

 − 
 

∑V

V
 

Theorem 4. Utilizing the theory developed by [3], let ( tX ) be a stationary 
GARCH (1, 1) process and assume that the jointly regularly varying and strongly 
mixing conditions hold. For fixed 0h ≥ , set ( ), , , ,t t t t h t hX X Xσ σ+ +=  , then 
the conditions in the Theorem 2 above are met and hence 

, /
1 1 1 1

, 1, 2, , ;
n

n t n i ij

m n
d

n r i n n X a PQ
i t i j

N N i m N Nε ε
∞ ∞

= = = =

= = → =∑ ∑ ∑∑



      (16) 

where ( ) ( )( )0 , , m
ij ij ijQ Q Q=   and iP  are as previously defined. 

We now consider the convergence of point processes which are products of 
random variables, which forms the basis of the results on the weak convergence 
of sample autocovariance and autocorrelation for stationary processes. 

Theorem 5 Let ( tX ) be a strictly stationary sequence such that  
( ) ( )( ), ,t t t mX X X +=   satisfying the jointly regularly varying condition for 
some 0m ≥  and further assume that Theorem 2 and Theorem 3 hold, then: 

( ) ( ) ( )1 02, 0, , 1 1 10, , 0, ,

ˆ ˆ ˆ
h

n t t h i ij ij

n

n n h a X X P Q Qh m t i jh m h

d

m

N N Nε ε−
+

∞ ∞

= = = == =

  = = =   
  




 →∑ ∑∑






 (17) 

where the points ( ) ( )( )0 , , m
ij ij ijQ Q Q=   and iP  are as previously defined, ˆ

nN  
and N̂  are point processes on { }\ 0  meaning that points are not included 
in the point processes if 0t t hX X + =  or ( ) ( )0 0h

ij ijQ Q =  
We study the weak limit behaviour of the sample autocovariance and sample 

autocorrelation of a stationary sequence ( tX ). Construct from this process the 
strictly stationary n-dimensional processes ( ) ( )( ), ,t t t nX X X +=  , 0n ≥ . De-
fine the sample autocovariance function 

( ) 1
,

1
, 0

n h

n X t t h
t

h n X X hγ
−

−
+

=

= ≥∑                   (18) 

and the corresponding sample autocorrelation function 

( ) ( )
( )

,
,

,

, 1
0

n X
n X

n X

h
h h

γ
ρ

γ
= ≥                     (19) 

Define the deterministic counterparts of the autocovariance and autocorrela-
tion functions as follows 

( ) 0 , 0X hh EX X hγ = ≥                     (20) 

( ) ( )
( )

, 1
0

X
X

X

h
h h

γ
ρ

γ
= ≥                     (21) 

Theorem 6. Assume that ( tX ) is a strictly stationary sequence of random va-
riables and that for a fixed 0m ≥ , ( tX ) satisfies the regular variation condition 

and /1 1 1t n i ij

n
n X a PQt

d
i jN Nε ε∞ ∞

= = =
= =→∑ ∑ ∑  where the points  
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( ) ( )( )0 , , m
ij ij ijQ Q Q=   and iP  are as previously defined. 

1) If ( )0,2κ ∈ , then 

( )( ) ( )2
, 0, ,0, ,

d
n n X h h mh m

na h Vγ−
==

→




 

( )( ), 1, ,
0 1, ,

h
n X h m

d

h m

Vh
V

ρ
=

=

 
 →











 

where 

( ) ( )02

1 1
, 0,1, ,h

h i ij ij
i j

V P Q Q h m
∞ ∞

= =

= =∑∑   

The vector ( )0 , , mV V  is jointly 2κ  stable in 1m+ . 

2) If ( )2,4κ ∈  and for 0, ,h m=   

{ }2
2

0 1
lim limsup 0,

t t h n

n h

n t t h X X an t
Var a X X I

+

−
−

+ ≤→ →∞ =

  = 
 

∑ 
 

then 

( ) ( )( )( ) ( )2
, 0, ,0, ,n n X X h h mh m

dna h h Vγ γ−
==

 →− 




 

which implies that 

( ) ( )( )( ) ( ) ( )( )2 1
, 0 1, ,1, ,

0n n X X X h h mh m

d
Xna h h V h Vρ ρ γ ρ− −

==
 −→−





 

4. Limit Theory of Change-Point Estimator 

The following proposition is our main result on weak convergence for our pro-
posed change-point process ( )k

nD h  as specified in (6) for GARCH processes 
based on the point process theory. In addition to the previously stated Theorems 
are additional Theorems are utilized in the proof of the proposition, see Appen-
dix. 

Proposition 2 Let ( )t t
X

∈  be a strictly stationary sequence of random va-
riables irrespective of the distribution of initial value 0X . Specifically, let 
( )t t
X

∈  be a GARCH (1, 1) process defined in the form of a stochastic differen-
tial Equation (3). For fixed 0h ≥ , set ( ), ,t t t hX X X +=  . Assume that the reg-
ular variation conditions hold. Let ( )na  be a sequence of constants such that 
the strongly mixing condition is satisfied, then  

/1 1 1t n i ij

n
n X a PQt

d
i jN Nε ε∞ ∞

= = =
= =→∑ ∑ ∑  where the points ( ) ( )( )0 , , m

ij ij ijQ Q Q=   
and iP  are as defined in Theorem 2. Thus the conditions in Theorem 5 are met 
and hence there exists a sequence of bounded constants ( )( )nC h  which con-
verge in distribution to nC  such that the following statements hold: 

1) If ( )0,2κ ∈ , then 

( )( )
1, ,

0 1. ,

dk h
n hh m

h n

VD h C
V=

=

 
 
 

→




 

2) If ( )2,4κ ∈  and for 0, ,h m=   
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{ }2 2 4
4 2 2

0 1
lim limsup 0,

t t h n

n h

n t t h X X an t
Var a X X I

δ +

−
−

+ ≤→ →∞ =

 
= 

 
∑ 

 

then 

( )( ) ( ) ( )( )
( ) ( )( )

2 2

2

4 4
,1, , 1, ,

1
0 0 1, ,

0

k
n n n n n X Xh m h

d

n

X h h X h m

na D h na C h h

C V h C V

ρ ρ

γ ρ

− −

= =

−

=

=



−

−→







 

where 

( )
( ) ( )

( ) ( )

0 0 0

0 0 0

02

1 1

02

1 1

, 0,1, ,

, 0,1, ,

k k
h h

h k k
h

h
h i ij ij

i j

hk
h i ij ij

i k j k

V V V V VC
V V V V

V P Q Q h n

V P Q Q h n

∞ ∞

= =

∞ ∞

= + = +

 − 
 − 

= =

=

=

=

∑∑

∑ ∑





 

Proof. Consider the GARCH (1, 1) model in the context of a stochastic diffe-
rential Equation (3) defined as ( )2 2 2

0 1 1 1 1t t tσ α α β σ− −= + + , then the necessary 
and sufficient conditions for stationarity are 0 0α >  and  

( )2
1 1log 0nE β α + <   where the latter implies that 

 
1 1 1p q

i ji jα β
= =

+ <∑ ∑ . 

If we assume that the sample vector 1, , nX X  comes from a stationary 
model, then the initial values 0X  also have a stationary distribution. This 
means that the distribution of tX  is stationary whatever the distribution of 

0X , given the latter is independent of ( ) 1,2,t t= 

  and stationarity conditions. To 
show this consider two sequences ( )0 0,1,2,t t

X X
= 

 and ( ) 0,1,2,t tX Z
= 

 given the 
same stochastic differential equation recursion (2) but with initial conditions 

0X  and Z where both vectors are independent of the future values  
( ) 1,2,

,t t t
A B

= 

. Further assume that 0X  has stationary distribution. By iteration 
of stochastic differential Equation (3) we have 

1
1

, 1, 2,t t t t i t i
i

Y B A A B t
∞

− + −
=

= + =∑    

Thus for any initial values Z we have the following recursion 

( ) 1 1
1

, 1, 2,
t

t t t j j
j

X Z A A Z A A B t+
=

= + =∑    

Then for any 0ε >  and for GARCH (1, 1) model (3) the top Lyapunov ex-
ponent γ  given by ( )2

1

1

1 1
1

n n n

n

t
A A A β α

−

=

= +∏   

( ) ( ) ( )

( ) ( )
( )

0 1 0

1
2

1 0 1 1

1
2

1 0 1 1

t t t

t

n

t

n

E X X X Z E A A X Z

E A X Z E

E A E X Z E

ε ε

εε

εε

β α

β α

−

−

− ≤ −

− +

≤ − +

=







      (22) 
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If 2E ε < ∞ , 0E X ε < ∞  and E Z ε < ∞ , then the right hand side is also 
finite. In addition given the stationary conditions previously stated then 

2
1 1 1nE

ε
β α+ <  for some sufficiently small ε. Thus the left hand side of (22) 

decays to zero as t →∞ . Thus we conclude that ( )t t
X

∈  is stationary irrespec-
tive of the distribution of the initial values 0X . 

Now, consider the sample autocorrelation function as defined in (19), then the 
following statements hold, 

2 2 2 2 2 2

1 1 1

n h k n h

t t h t t h t t h
t t t k

X X X X X X
− −

+ + +
= = = +

= +∑ ∑ ∑                (24) 

4 4 4

1 1 1

n h k n h

t t t
t t t k

X X X
− −

= = = +

+=∑ ∑ ∑                     (25) 

From (23) and (24) it can be asserted that there exists constants ( )2,k X
c h  and 

( )2,n k X
c h

−
 such that the autocorrelation functions ( )2,k X

hρ  and ( )2,n k X
hρ

−
 

can be expressed in terms of the autocorrelation function ( )2,n X
hρ  as follows: 

( ) ( ) ( )2 2,, ,k Xk X n X
h c h hρ ρ=                   (25) 

and 

( ) ( ) ( )2 2 2, , ,n k X n k X n X
h c h hρ ρ

− −
=                  (26) 

The change-point process (6) can be expressed in terms of (25) and (26) as 

( ) ( ) ( ) ( ) ( )( ) ( )( )2 2 2 2 2, , , , ,
k
n k X n k X k X n k X n X

D h h h c h c h hρ ρ ρ
− −

= − = −  

The weak limits of the process ( )k
nD h  is characterized in terms of the limit-

ing point processes for the sample autocovariance and autocorrelation functions 
through the application of the Continuous Mapping Theorem 12. To complete 
the proof we independently prove the convergence of ( ) ( )2 2, ,k X n k X

c h c h
−

−  and 
( )2,n X
hρ  and apply Theorem 12. 

Let 0δ > , ( ) ( ) ( ) ( )( ) { }0 0 1
, , , ,, , , \, 0n n n

t t X t t X xx x x xσ σ
+= ∈X   . In order to proof the re-

sults, we define several mappings 

, , :h XT δ →  

as follows 

( ) ( )( ) ( ){ }0
,

20
0, , ,

1 t X
X n t t X xt

T N n x Iδ
δ

∞

>=

= ∑  

( ) ( )( ) ( ){ }0
,

21
1, , ,

1 t X
X n t t X xt

T N n x Iδ
δ

∞

>=

= ∑  

( ) ( )( ) ( )( ) ( ){ } [ ]0
,

0 1
, , , ,

1
, 2,

t X

h
h X n t t X t X xt

T N n x x I h nδ
δ

∞
−

>=

= ∈∑  

The set { } ( ){ }\ 0 h
t x δ∈ >X   is bounded for any 0h ≥  and thus the 

mappings are continuous with respect to the limit point processes N. Conse-
quently by Continuous Mapping Theorem 12 we have that 

( ) ( )d
nT N T N→  
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where 

( ) ( ) ( )
( ){ }0

02

1 1 i ij

h
i ij ij PQi j

T N P Q Q I
δ

∞ ∞

>= =

= ∑∑  

The prove of the convergence of ( )2,n X
hρ  is examined for ( )0,2κ ∈  and 

( )2,4κ ∈ . 
For the case of ( )0,2κ ∈ , the point process results of Theorem 3 holds and a 

direct application of Theorem 5 yields: 

( )( ) ( )2
4

0, ,, 0, ,

d
n h h mn X h m

na h Vγ−
==

→




 

( )( )2, 1, , 0 1, ,

h
n X h m

h m

d Vh
V

ρ
=

=

 
 →











 

For ( )2,4κ ∈  we commence with the { }2
tσ  sequence and establish the 

convergence of ( )2,
0

n σ
γ . We rewrite ( )2,

0
n σ
γ  using the recurrence structure 

of the SDE (3) so that ( )( ) ( )2 1 2 1
1 1 1 1 1 1 1t t tAα α β β α β− −

+= + − = −   and  

( ) ( )( )2 2 2 2 2
0 1 1 1 1 1 11t t t t t t tA Aσ α σ σ α ε α β σ− − −= + ≈ = − + + . 

Now using this representation yields: 

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
4

,

24 4 2 2 2 2
1 1 1 1 1 1

1
2 2 24 4 4 4

1 1 1 1 1 1 1

2 22 4 4 2 4 2 2
1 1 1 1 1

1 1

0 0

1 2 1

1 1

n n

n

n t t t t
t

t

n n

n t t n t
t t

na

a

E E E

a a E Op

σ σ
γ γ

σ α α α β σ

α β σ α β σ α β σ σ

α σ α β σ σ

−

−
− −

=

−

− −
− −

= =

−

− + + −

+ + − + + + −

   − + + − +  
=



= ∑

∑ ∑




 

( ) ( ) ( )( )
( ) ( )

( ) { } ( ) { } ( )

( )

2 2
2 4

1 1 ,

22 4 4 2
1 1

1

2 22 4 4 2 4 4 2
1 1

1 1

1 0 0

1 1

1 1 1

1

t n t n

n n

n

n t t
t
n n

n t t n t ta a
t t

na

a Op

a I a I Op

I II Op

σ σ

σ δ σ δ

α β γ γ

α σ

α σ α σ

−

−
−

=

− −
> ≤

= =

 − + − 

 = − +  

   − + − +      

+ +

=

=

∑

∑ ∑



 

 (27) 

Assuming that the condition ( )4
tE < ∞  is satisfied, we first show that II 

converges in probability to zero by applying Karamata’s theorem (see [19]) on 
the regular variation and tail behavior of a stationary distribution which yields 
the asymptotic equivalence. 

( ) ( ) { }

( ) { }( ) ( )( )

22 4 4 2
1 1

1

2 28 4 2
1

1
8

1

~

1

as
0 as 0

t n

t n

n

n t t a
t

n

n t ta
t

Var II Var a I

a E I E

const n

σ δ

σ δ

κ

α σ

σ

δ
δ

−
+ ≤

=

−
+≤

=

−

  = −   

≤

→∞
→→



−

∑

∑



          (28) 
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Now examining I we have 

( ) { } ( )

( )( ){ } { } ( )

{ } ( ) { } ( )
( )( ) ( ) ( )( ) ( )

22 4 4 2
1

1

24 2 4 1
1 1 1 1 1

1

24 4 4 4
1 1 1

1 1

22 2
1, , 1 1 0, ,

1 1

1

1

,

t n

t n

t n t n

n

n t t a
t

n

n t t a
t
n n

n t n ta a
t t

d

a I Op

a A I Op

a I a I Op

T T N

I

N S

σ δ

σ δ

σ δ σ δ

δ σ δ σ

α σ

α σ α β α

σ α β σ

α β δ

−
>

=

− −
+ >

=

− −
+ > >

= =

 − +  

 = − + +  

= − + +

→ −

=

+ ∞

∑

∑

∑ ∑





      (29) 

We utilize the argument given in Theorem 12 where ( ) *
0, dS Vδ →∞  as 

0δ → . Therefore, we finally obtain that: 

( ) ( )( ) ( )( )2 2
4 *

0 0,
1 1

10 0
1

d
n n

na V V
σ σ

γ γ
α β

− − →
− +

          (30) 

In the presence of a change-point k as hypothesized (4) it is evident that 
( ) 1 1tE A α β≠ +  for all t but rather 

( ) ( )
1 1 for 1

fort

t k
nE A

E A k t n
α β+ < ≤=  < <

                 (31) 

Thus the convergence of ( )2,
0

k σ
γ  and ( )2,

0
n k σ
γ

−
 are respectively given by 

( ) ( )( ) ( )( )2 2
4 *

0 0,
1 1

10 0
1

k
k k

d kka V V
σ σ

γ γ
α β

− →−
− +

         (32) 

( ) ( ) ( )( ) ( )
( )

2 2
*4

0 0,

10 0
1

n k n k
n

d
k n k

n k a V V
E Aσ σ

γ γ −− −
− −

→
−

− −        (33) 

Following (31), (32) and (33) it is concluded that 0 0
k n kV V −≠ . 

Convergence of ( )2,
1

n σ
γ  is determined in a similar manner where 

( ) ( )( )
( )

{ } { } ( )
( )( ) ( )( )

2 2
4

,

4 2 2 4
1

1

4 2 2 4 2 2 4
1 1

1 1

2 2
2, , 1, , 1

1 1

1
t n t n

n n

n

n t t
t
n n

n t t t t t ta a
t t

d
n n

na

a E

a EA I EA I Op

T N EAT N V

σ σ

σ δ σ δ

δ σ δ σ

γ γ

σ σ σ

σ σ σ σ σ σ

−

−
+

=

−
+ +> ≤

= =

−

 = − 

   = − + − +   

= − →

∑

∑ ∑

 

 (34) 

Consequently for arbitrary lags we have 

( ) ( )( )2 2
4

,n hn
dna h h V

σ σ
γ γ− − →  

In the presence of a change-point k the convergence of ( )2,
1

k σ
γ  and 

( )2,
1

n k σ
γ

−
 are respectively given by 

( ) ( )( )2 2
4

1,
1 1 kd

k k
ka V

σ σ
γ γ− − →  

( ) ( ) ( )( )2 2
4

1,
1 1 n k

n k n k
dn k a V

σ σ
γ γ− −

− −
− − →  

Now we consider the { }2
tX  sequence and establish the convergence of 
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( )2,
0

n X
γ  as follows: 

( ) ( )( )
( )

( ) { } ( ) { }

2 2
4

,

4 4 4
0

1

2 24 4 2 4 4

1 1

0 0

2 1 2 1
t n t n

n n X X

n

n t
t

n n

n t t n t ta a
t t

na

a X E X

a I a I

III IV

σ δ σ δ

γ γ

σ σ

−

−

=

− −
> ≤

= =

−

 = − 

   = − + −   
+=



∑

∑ ∑ 

    

 (35) 

Equation (35) follows directly from Equation (27). In a similar way to Equa-
tion (28), ( )

0
lim l upim s 0

n
Var IV

δ→ →∞
= . 

Now examining III and following the results obtained in Equation (29) we 
have that III converges as follows 

( ) { }
( )( ) ( ) ( )( )

( )

2 22 24 4 2
1, , 1 1 0, ,

1

0

2 1

,

t n

n

n t t a
t

d

d

a I T N T N

S V

δ σ δ σσ δσ α β

δ

−
>

=

 − − +



 

∞

→

 →

∑




 

Thus we have that 

( ) ( )( )2 2
4

0,
0 0n n X X

dna Vγ γ− − →  

Similarly it can be shown that the convergence of ( )2,
0

k X
γ  and ( )2,

0
n k X
γ

−
 

are respectively given by 

( ) ( )( )2 2
4

0,
0 0

X
d k

k k X
ka Vγ γ− − →  

( ) ( ) ( )( )2 2
4

0,
0 0 n k

n
d

k n k X X
n k a Vγ γ− −

− −
− − →  

Next we consider the { }2
tX  sequence and establish the convergence of 

( )2,
1

n X
γ  as follows: 

( ) ( )( )
( )

( )( ) ( ) ( )

2 2
4

,

4 2 2 2 2
1 0 1

1

4 2 2 2 2 2 2 2 2
1 1 1 1 0

1 1

1 1n n X X

n

n t t
t
n n

n t t t n t t
t t

na

a X X E X X

a X E a E X E X

V VI

γ γ

σ σ σ

−

−
+

=

− −
+ + +

= =

−

 − 

   − + −  

+

= 

=

=

∑

∑ ∑  

 

Now examining VI we have 

( ) ( )

( ) ( ) ( )

4 2 2 2 2
1 1 0

1

4 2 2 2 2 2 2
1 1 0 1 0 1

1

n

n t t
t
n

n t t t t
t

VI a E X E X

a E X A E X A

σ σ

σ σ σ σ

−
+

=

−
+ +

=

 = − 

   = − − −   

∑

∑




 

( ) ( ) ( )

( ) ( )

4 2 2 2 2 2 2
1 1 0 1 0 1

1

4 2 2 2 2 2 2
1 1 1 1

1 1

8

1

,

0 as

n

n t t t t
t
n n

n t t t t s s s s
t s

n
h

n
h

Var VI a Var X A E X A

a Cov X A X A

constna q n

σ σ σ σ

σ σ σ σ

−
+ +

=

−
+ + + +

= =

−

=

   = − − −   

 = − − 

≤ → →∞

∑

∑∑

∑
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where ( )0,1q∈  is a constant and since ( ),t tX σ  is strongly mixing with geo-
metric rate, thus there exist a 0δ >  and a constant K such that 

( ) 22 2 2
0 1 0 1E X A

δ
σ σ

+
 − < ∞   and  

( ) ( )2 2 2 2 2 2
1 1 1 1, t s

t t t t s s s sCov X A X A Kqσ σ σ σ −
+ + + +

 − − ≤  . 

Now examining V we have 

( )( )

( )

( ) { } ( )

4 2 2 2

1

4 2 2 2 2 2 2 2 2
1 0 0 1

1

4 2 2 4 2 2
1 1

1 1
t n

n

n t t t
t
n

n t t t t t t t
t
n n

n t t t n t t ta
t t

V a X E

a X A X EA X EA E X A

a X A EA I a X A EAσ δ

σ

σ σ σ σ

σ σ

−

=

−
+

=

− −
+ +>

= =

 = − 

 = − + − 

   = − + −   

∑

∑

∑ ∑



 

( )( ) { }

( )( ) { }

( ) ( ) { }

( ) ( ) { }

4 4 2

1

2 4 2

1

4 4 4

1

4 4 4

1

t n

t n

t n

t n

n

n t t a
t
n

n t t a
t

n

n t a
t
n

n t a
t

EAa E I

EAa E I

EAE a E I

EAE a E I EA

VII VIII IX X XI XII

σ δ

σ δ

σ δ

σ δ

σ

σ

σ σ

σ σ

−
>

=

−
≤

=

−
>

=

−
≤

=

 + − 

 + − 

 − 

 + − 

+ +

+

+ += +

∑

∑

∑

∑



 







                  (36) 

By applying Karamata Theorem [19] to (36) 

( )
( )
( )
( )

0 0

0 0

0 0

0 0

sup 0

sup 0

lim lim

lim lim

lim li supm 0

lim li supm 0

n

n

n

n

Var VIII

Var IX

Var X

Var XII

δ

δ

δ

δ

→ →

→ →

→ →

→ →

=

=

=

=

 

Examining VII we have 

( ) { }

{ } { }

( )( ) ( )( )

4 2 2
1

1

4 2 2 4 4
1

1 1

2 2
2, , 1, ,

1

t n

t n t n

n

n t t t a
t
n n

n t t n ta a
t t

d

d

VII a X A EA I

a I EAa I

T N EAT N

V

σ δ

σ δ σ δ

δ σ δ σ

σ

σ σ σ

−
+ >

=

− −
+ > >

= =

 = − 

   −   

→ −

=

→

∑

∑ ∑  

Since ( ) 0E =  then for XI we have 

( ) ( ) { }
4 4 4

1
0

t n

n

n t a
t

XI EAE a E I σ δσ σ−
>

=

 = −  =∑  

Thus we have that 

( ) ( )( )2 2
4

1,
1 1n n X X

dna Vγ γ− − →  

By extending to arbitrary lags 0, ,h n=   the convergence of ( )2,n X
hγ  is 
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given by 

( ) ( )( )2 2
4

, X
d

n hn X
na h h Vγ γ− − →  

Consequently the convergence of ( )2,n X
hρ  is given by 

( ) ( )( ) ( ) ( )( )2 2 2 2
4 1

0,
0d

n hn X X X X
na h h V h Vρ ρ γ ρ− −− → −  

We have been able to examine the limiting behavior of ( )2,n X
hρ  for two 

cases. In the first case, when ( )0,2κ ∈ , the variance of nX  is infinite and thus 
( )2,n X
hρ  has a random limit without any normalization. When ( )2,4κ ∈ , the  

process has a finite variance but infinite fourth moment and ( )( )2
4

,n n X
na hρ−  

converges to an 
2
κ

-stable distribution. By Theorem 8 convergence of ( )2,n X
hρ  

implies that the sequence is bounded with ( )2,
1

n X
hρ ≤ . 

We now examine the convergence of ( ) ( )2 2, ,k X n k X
c h c h

−
− . Consider ( )k

nD h , 
we can express ( ) ( )2 2, ,k X n k X

c h c h
−

−  as follows: 

( ) ( )
( ) ( )

( )
2 2

2 2
2

, ,
, ,

,

k X n k X
k X n k X

n X

h h
c h c h

h

ρ ρ

ρ
−

−

−
− =  

By the Bolzano-Weierstrass theorem, a bounded sequence has always a con-
vergent subsequence. This is further confirmed through the invariance property 
of subsequences in Theorem 10 which states that if ( )2,n X

hρ  converges, then 
every subsequence say, ( )2,k X

hρ  and ( )2,n k X
hρ

−
 converges. By linearity rule 

of sequences as prescribed in Theorem 11, ( ) ( )2 2, ,k X n k X
h hρ ρ

−
−  converges. 

This further implies that ( )2,k X
hρ  and ( )2,n k X

hρ
−

 are bounded since every 
convergent sequence is bounded. The subsequences ( )2,k X

hρ  and ( )2,n k X
hρ

−
  

are also bounded with ( )2,
1

k X
hρ ≤  and ( )2,

1
n k X

hρ
−

≤ , thus their absolute 

difference is also bounded as ( ) ( )2 2, ,
2

k X n k X
h hρ ρ

−
− ≤ . Further assume that 

we are considering only significant sample autocorrelation coefficients where 

( )2,
0.05

n X
hρ ≥ , then ( ) ( )2 2, ,k X n k X

c h c h
−

−  is also bounded. Applying the qu-

otient property of subsequences, then ( ) ( )2 2, ,k X n k X
c h c h

−
−  is also convergent. 

Consider the proposed change-point process ( )k
nD h  as defined in (6), then 

we can derive the limit of nC  as follows: 

( )( ) ( ) ( )
( )
( )

( )
( )

( )

2 2

2 2

2 2

, ,1, ,

, ,

, ,

2 2 2 2
1 1

4 4
1 1

4 2 2 2 2 4
1 1 1 1

4 4 4
1 1 1

0 0

k
n k X n k Xh m

k X n k X

k X n k X

k n
t t h t t ht t k

k n
t tt t k

n n n n
t t t h t t h tt k t t k t

n n n
t t tt k t t k

D h h h

h h

X X X X

X X

X X X X X X

X X X

ρ ρ

γ γ

γ γ

−=

−

−

+ += = +

= = +

+ += + = = + =

= + = = +

−

= −

= −

=
−

≈

−

∑ ∑
∑ ∑

∑ ∑ ∑ ∑
∑ ∑ ∑



    

 (37) 
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Thus applying Theorem 5 to 37 we have 

( )( ) ( ) ( )
0 0 0 0 0

1, ,
00 0 0 0 0 0

k k k k
k hd h h h h
n k k k kh m

h

V V V V V V V V V VD h
V VV V V V V V=

→
 − − =
 − − 



       (38) 

From (38) above, the sequence nC  converges in distribution to hC  as fol-
lows 

( )
0 0 0

0 0 0

k k
h h

n hk
h

d
k

V V V V VC C
V V V V


 −  =
 − 

→  

By application of Continuous Mapping Theorem 12, we have the limiting be-
havior of the proposed change-point process ( )k

nD h  for the three cases 
( )0,2κ ∈ , ( )2,4κ ∈  and ( )4,κ ∈ ∞  as follows. 

for ( )0,2κ ∈  and by application of Theorem 5 (i): 

( )( ) ( ) ( )( ), 1, ,1, ,
0 1. ,

dk h
n n n X hh mh m

h m

VD h C h h C
V

ρ
==

=

 
 
 

= →






 

for ( )2,4κ ∈  and by application of Theorem 5 (ii): 

( )( ) ( ) ( )( )
( ) ( )( )

2 2

2

4 4
,1, , 1, ,

1
0 0 1, ,

0

k
n n n n n X Xh m h

d

n

X h h X h m

na D h na C h h

C V h C V

ρ ρ

γ ρ

− −

= =

−

=

=



−

−→







 

which completes proof. 

5. Conclusion 

The asymptotic behavior of the change-point process k
nD  is established on the 

basis of examining the asymptotic behavior of the sample autocovariance and 
sample autocorrelation functions. The limits of the suitably normalized sample 
autocovariance and sample autocorrelation functions are expressed in terms of 
the limiting point processes. The limit distributions are the difference of ratios of 
the infinite variance stable vectors or functions of such vectors. As a result, de-
termination of the quantiles from the limit distributions is difficult. The limits 
are also generally random as a result of the infinite variance. Future work will be 
aimed at identifying the limit distributions so as to make the results directly ap-
plicable for hypothesis testing purposes. 
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Appendix 

Theorem 7. (Holder’s Inequality) 
Let I be a finite or countable index set. Given 1 p≤ ≤ ∞ , if  

( ) ( )k pk I
X X L I

∈
= ∈  and ( ) ( )k pk I

Y Y L I′∈
= ∈ , where 1 1 1

p p
+ =

′
 then  

( ) ( )1k k k I
XY X Y L I

∈
= ∈  and 

( ) ( )
1 1

1

p pp p
k k k kk I k Ip p k I k I

XY X Y X Y
′′

∈ ∈ ′
∈ ∈

   ≤ = < ∞   
   
∑ ∑  

Theorem 8. (Convergent sequences are bounded) 
Let { }n n

A
∈  be a convergent sequence. Then the sequence is bounded and 

the limit is unique. 
Theorem 9. (Bolzano-Weierstrass)  
Let { }n n

A
∈  be a sequence of real numbers that is bounded. Then there exists 

a subsequence { }k k
n n

A
∈

 that converges. 
Theorem 10. (Invariance property of subsequences) 
If { }n n

A
∈  is a convergent sequence, then every subsequence of that se-

quence converges to the same limit. 
Theorem 11. (Algebra on Sequences) 
If the sequences { }n n

A
∈  converges to L and { }n n

B
∈  converges to M then 

the following hold: 
1)

 
( )

0 0 0
lim lim lim
n n n n nn n

A B A B L M
→ → →

+ = + = +  
2)

 
( )

0 0 0
lim lim limn nn n nn nA B A B L M
→ → →

⋅ = = ⋅  

3)
 

0

0
0

lim
lim

lim
n

n
n

nn

n n

AA L
B B M

→

→
→

= =  for 0,nB n≠ ∀ ∈  and 0M ≠  

Theorem 12. (Continuous Mapping) 
Let a function : k mg →   be continuous in every point of a set C such that 
( ) 1P X C∈ = . Then if nX X→  then ( ) ( )ng X g X→ . 
Theorem 13. (Algebra on Series) 
Let nA∑  and nB∑  be two absolutely convergent series. Then: 
1) the sum of the two series is again absolutely convergent. Its limit is the sum 

of the limit of the two series. 
2) the difference of the two series is again absolutely convergent. Its limit is 

the difference of the limit of the two series. 
3) the product of the two series is again absolutely convergent. Its limit is the 

product of the limit of the two series. 
Theorem 14. Let { }t t

X
∈  be a strictly stationary sequence. Define the partial 

sums of the sequence by 
1

n
n ttS X

=
= ∑ . 

1) if ( )0,2κ ∈  then 
1 d

na S− →  

where 
1 1 i iji jS PQ∞ ∞

= =
= ∑ ∑  has a stable distribution 
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2) if ( )2,4κ ∈  and for all 0ε > , 
 ( ] ( ]

0 0
sup 0l ,im lim 0, 0

n n nP S ES
ε

δ δ ε
→ →

 − > =   then 

( ]1 0,1 d
n n na S ES S− − →  

where S is the distributional limit of 

{ } ( )
1

1 1
d

i ij n
i ij PQ a x

i j
PQ I x x

δ δ
µ

∞ ∞

> < ≤
= =

−∑∑ ∫  

as 0δ → , μ is the measure in section 2.1 which has a stable distribution. 
For every 0δ > , the mapping from M in section 2.1 into   is defined by 

{ }
1 1

:
t tx t x

t t
T x I δε

∞ ∞

>
= =

→∑ ∑  

and is almost surely continuous with respect to the point process N. Thus by 
continuous mapping theorem 

( ) ( ) ( ) ( ), ,d
n nS T N T N Sδ δ∞ = → = ∞  

As 0δ → , ( ) ( ) 1 1, 0, i iji jS S PQδ ∞ ∞

= =
∞ → ∞ =∑ ∑ . 
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