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Abstract—Human activity monitoring based on wearable 
sensors is important in a wide range of biomedical and 
healthcare applications. Existing wearable sensors using a 
single unit cannot capture the movements of all body 
segments. This paper presents a novel wearable 
electrostatic sensor that can detect limb and torso 
movements during routine daily activities from any 
location on the body. Because the electric potential of the 
human body varies during movements, the sensor 
measures the potential difference between the body and 
the electrode for motion sensing. A charge amplifier 
converts the induced charge on the electrode into a voltage 
signal, which is further amplified, filtered, digitalized and 
transmitted via ZigBee. Experimental assessment was 
carried out by collecting sensor signals from three 
locations simultaneously while the subject performing 
different movements. The capability of the sensor to 
capture limb and torso movements from any location is 
validated. The characteristics of the sensor are quantified 
by correlating the sensor signal to simple and cyclic 
movements. It is found that the sensor signal depends on 
the sensor’s mounting location on the body, the type of 
activity and various factors. 

Index Terms—Wearable sensor, electrostatic sensor, 
human activity monitoring, capacitive coupling, charge 
amplifier. 

I. INTRODUCTION 

UMAN physical activities refer to any form of body 

movements produced by the contraction of skeletal 

muscles. Monitoring of human physical activities aims to 

provide information on various types of actions and behaviors 

in real-world settings. Such information is useful in a wide 

range of applications, such as quantitative health assessment [1], 

fall detection and prevention [2], sport movement analysis [3], 

human-machine interaction [4], among many others. 

Significant research efforts have been undertaken in the last 

decade to develop sensing techniques for human activity 

monitoring. Existing techniques can be broadly classified into 

two categories, namely ambient and wearable [5]. Ambient 

sensors are embedded into the daily living environment and 

unobtrusively detect environmental changes caused by human 

activities, such as temperature, light, sound, pressure, etc [6]. 
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Ambient assisted living systems utilize such sensors to monitor 

the well-being of individuals in the living environment [7]. 

Ambient sensors have limited coverage area and suffer from 

poor accuracy and low spatial resolution of activity recognition. 

Video cameras, as the most common ambient sensors, raise 

wide privacy and security concerns. By contrast, wearable 

sensors attached to various parts of the human body can 

overcome the above drawbacks. Inertial sensors, including 

accelerometers and gyroscopes, are most widely used for 

movement detection and tracking [8]. Magnetometers are often 

used in combination with inertial sensors for improved motion 

tracking. Current MEMS (Micro-Electro-Mechanical-Systems) 

technology has enabled miniaturization, mass production, and 

cost reduction of motion sensors, making them highly attractive 

for human activity monitoring applications. Foot pressure 

sensors embedded into insoles has been used to monitor 

ambulatory movements [9]. Since muscle contraction generates 

electrical signals called electromyography (EMG), detection of 

EMG signals using rigid or textile electrodes also enables 

monitoring of human activities [10]. Although wearable 

sensors allow long-term continuous monitoring of human 

activities in a free-living environment, there are still many 

limitations on the capacity of existing sensors in view of the 

diverse range of applications. For instance, a single wearable 

sensor cannot cover the entire body and fails to capture the 

movements of body segments that have no sensors attached to. 

Unreliable or erroneous results are inevitable for activity 

volume assessment or recognition due to undetected 

movements. 

A network of wearable sensors spatially distributed over the 

human body can address the above problem. However, such a 

system, known as Wearable Body Area Network (WBAN), is 

complex, expensive and power hungry, in comparison with a 

single sensor. This paper presents a novel wearable electrostatic 

sensor capable of detecting limb and torso movements during 

routine daily activities with the sensor placed at any location on 

the body. The sensor works on the principle that variation of the 

capacitive coupling between the naturally charged human body 

and the environment during body movements leads to change in 

body potential [11]. Because the human body is a good 

conductor, potential variation caused by one body segment is 

detectable from elsewhere on the body. 

Monitoring of human activity using electrostatic sensors has 

been studied in a few previous publications, in which different 

terms such as electric potential sensor and capacitive sensor 

have been used to describe the same technique. Kurita and 

Morinaga employed an electrode placed several meters away to 

A Wearable Electrostatic Sensor for Human 
Activity Monitoring 

Yonghui Hu, Senior Member, IEEE, and Yong Yan, Fellow, IEEE 

H 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 

 

detect the change in the electric potential of the human body 

performing daily activities, including walking [12], standing up 

from and sitting down on a chair [13]. Li et al. measured the 

temporal gait parameters using the induced current on an 

electrode located 3 m away from walking subjects [14]. Kim 

and Moon used four electric potential sensors fixed at the 

corners of a TV screen to detect the electric disturbance due to 

moving hands for gesture recognition [15]. Tang et al. 

developed a triboelectric touch-free screen sensor for 

smartphones capable of recognizing diverse hand gestures by 

utilizing the charges naturally carried on the human body [16]. 

Tang and Mandal measured the respiration activity of a 

stationary subject using an electric potential sensor located 0.5 

m away [17]. Indoor human localization based on passive 

electric field sensing has also been investigated by Tang and 

Mandal [17], Grosse-Puppendahl et al. [18], and Prance et al. 

[19]. It is notable that in the above studies the electrostatic 

sensors were fixed in the environment or on smart devices, 

operating in ambient mode. The primary limitations of ambient 

electrostatic sensors for human activity monitoring lie in short 

sensing range and strong dependence of the signal strength on 

the distance between the body and the electrode. 

The idea of wearable electric field sensing was first proposed 

by Cohn et al. [20], who realized movement detection by 

measuring the capacitive coupling between the body and the 

environment. Later, Pouryazdan et al. used an electric potential 

sensor worn on the wrist to detect hair touch and leg 

movements [21]. The sensors developed by Cohn et al. and 

Pouryazdan et al. are both powered by batteries and use 

wireless transceivers for data logging, because wired 

connections to a DC power supply or a data acquisition device 

change the ground reference of the sensor circuit and 

significantly increase the signal strength, according to our 

experimental results. The major difference between the two 

sensors lies in their implementations, with the sensor in [20] 

requiring an electrode in direct contact with the skin, while the 

sensing electrode in [21] pointing away from the body. Because 

the sensor can work in ambient mode, the outward-pointing 

electrode is readily affected by nearby moving subjects. 

In contrast to the design in [20], the wearable electrostatic 

sensor presented in this paper does not require the electrode to 

be in direct contact with the skin, thus offering numerous 

advantages. For instance, it avoids skin irritations due to metal 

allergies. Cloth is allowed to be present between the electrode 

and the skin, thus providing more flexibility in deployment, 

although the signal strength depends on the thickness and 

permittivity of the cloth. In addition, in comparison with the 

outward-pointing electrode in [21], an electrode pointing 

toward the body can achieve higher sensitivity and fidelity as 

well as enhanced immunity to interference in body potential 

measurement.  

It is worth noting that non-contact capacitive sensors have 

been widely used to collect human electrophysiological signals, 

such as EMG, ECG (Electrocardiography) and EEG 

(Electroencephalography) [22]. Movement of the human body 

during electrophysiological recording causes strong 

interference which is referred to as motion artifact [23]. It is 

exactly the unwanted motion artifact caused by human 

movement that is used in this study for activity monitoring. 

II. SENSING PRINCIPLE AND SENSOR DESIGN 

A. Sensing Principle 

Triboelectric charging is a ubiquitous phenomenon. When 

performing daily activities such as walking on insulated floors 

and taking off clothes, the human body becomes 

electrostatically charged. As the charge builds up on the body, 

high electric potential develops with reference to the earth 

ground with zero potential [24]. In an indoor environment, the 

building made of ferroconcrete acts as the earth ground. The 

body movements cause changes in the distance and thus 

capacitive coupling between the body and the earth ground, 

which further leads to variation of the body potential. 

When the electrostatic sensor is worn on the wrist with cloth 

between the electrode and the skin, there exists capacitive 

coupling among the body, the electrode and the earth ground, as 

indicated with electric field lines in Fig. 1. The sensing system 

can be described using an equivalent circuit model consisting of 

lumped capacitors, as shown in Fig. 2. The body is capacitively 

coupled to the earth ground through Cb. The electrostatic sensor 

is battery-powered, and the electrode is held at the local ground 

potential. The electrode and the local ground plane are 

capacitively coupled to the earth ground through Ce. 

Additionally, the capacitive coupling between the body and the 

 

Fig. 1. Capacitive coupling among the human body, the sensor and the 
earth ground. 

 

Fig. 2. Equivalent circuit model. 
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electrode is denoted using Cbe. The electrostatic sensor 

measures the potential difference Ube between the body and the 

electrode, which is expressed as 

be b e

b e

b e

U U U

Q Q

C C

= −

= −
                                      (1) 

where Ub and Ue are the potential of the body and the electrode, 

respectively, and Qb and Qe are the net charges on the body and 

the electrode, respectively. 

When the electrostatic sensor is firmly attached to the body, 

the capacitance Cbe remains constant. It can be seen from 

equation (1) that changes in the charges Qb and Qe as well as 

changes in the coupling capacitances Cb and Ce both lead to the 

variation of Ube. Most daily activities do not change the charges 

Qb and Qe significantly, therefore it is reasonable to attribute the 

variation of Ube mainly to changes in Cb and Ce. Any body 

movement causes Cb to change. However, Ce may change or 

remain constant, depending on whether the sensor is attached to 

a stationary part of the body during daily activities. For instance, 

eating at a table does not change Ce of an ankle-worn sensor as 

the leg is almost stationary. Anyway, all body movements 

cause changes in Ube regardless of the location of the sensor on 

the body. 

B. Signal Conditioning Unit 

There exist a few preamplifiers capable of converting the 

electrode signal into a voltage signal [25], which differ in the 

output waveform, voltage gain, bandwidth, signal-to-noise 

ratio, etc. A potential amplifier is simply a unit-gain amplifier 

that converts the high-impedance potential signal of the 

electrically floating electrode into a low-impedance signal [26]. 

The parasitic capacitance between the electrode and the local 

ground plane affects the voltage gain. A trans-resistance 

amplifier converts the induced current from the electrode into a 

voltage signal using a resistor placed in the feedback path of an 

operational amplifier [27].  The magnitude of the output signal 

is proportional to the rate of change in the target potential. A 

charge amplifier converts the induced charge on the electrode 

into a voltage signal using a feedback capacitor [28]. It is 

immune to parasitic capacitances and its output voltage is 

proportional to the target potential. Therefore, the charge 

amplifier is utilized for signal conditioning of the wearable 

electrostatic sensor. 

Fig. 3 shows a simplified circuit diagram of the charge 

amplifier. The electrode for body potential sensing is connected 

to the inverting terminal of the operational amplifier with 

ultra-low input bias current. In addition to the feedback 

capacitor Cf, a large resistor Rf is placed in the feedback path in 

order to stabilize the DC operating point. Because the electrode 

is held at the virtual battery ground, the induced charge on the 

electrode flows through the feedback path and develops the 

output voltage Uo, which is expressed in phasor representation 

as 

1

f be

o be

f f

j R C
U U

j R C




= −

+
                           (2) 

If the values of Cf and Rf are chosen to satisfy the condition 

1f fR C , equation (2) is simplified as 

be

o be

f

C
U U

C
= −                            (3) 

It is clear that the feedback capacitor Cf determines the voltage 

gain of the charge amplifier. The coupling capacitance Cbe that 

relies on the permittivity and thickness of the dielectric material 

between the body and the electrode as well as the size of the 

electrode also influences the sensitivity of the electrostatic 

sensor. 

The output signal of the charge amplifier is further processed 

in the signal conditioning unit, as illustrated in Fig. 4. Firstly, 

two cascaded twin-T notch filters remove the 50 Hz power line 

noise. Then a secondary amplifier with a voltage gain of 5 

boosts the signal to a level suitable for analog-to-digital 

conversion. Finally, a Butterworth Sallen-Key low-pass filter 

with a cut-off frequency of 15 Hz is used to filter out 

high-frequency noise. It should be noted that, although the 

cut-off frequency of the low-pass filter is lower than the power 

line frequency, the notch filters are necessary in order to 

eliminate the strong power line noise. Additionally, the voltage 

gain of the sensor is so designed that limb and torso movements 

in daily activities can be detected, such as leg lifting, arm 

swinging, sitting down and standing up, etc. It is feasible to 

detect minute movements such as chest movement during 

breathing by increasing the voltage gain [17], but limb and 

torso movements would cause saturation of the sensor output. 

C. Sensor Development 

The wearable electrostatic sensor was designed to be a fully 

functional smart device capable of sensing, signal conditioning, 

data processing, wireless communication and data presentation. 

Fig. 5 shows the prototype and 3D CAD model of the sensing 

unit. It is embedded in a 3D printed, cylindrical case and can be 

worn on the wrist, chest or any other part of the body with a 

band. The bottom of the case separates the electrode from the 

skin or the cloth. The diameter of the sensor’s printed circuit 

 

Fig. 3. Circuit diagram of the charge amplifier. 
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Fig. 4. Block diagram of the signal conditioning unit. 
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board (PCB) is 40 mm with an overall height 32 mm due to the 

stacked structure of the PCBs. It is worth noting that the size of 

the sensing unit can be easily reduced with custom integrated 

circuits and MEMS production. 

The electrode is an insulated copper disk with a diameter of 

36 mm, as shown in Fig. 6(a). In practical applications, exposed 

conductive electrodes should be avoided, because unexpected 

touch or sweat on the electrode would affect the signal. The 

signal conditioning unit is placed on another PCB shown in Fig. 

6(b). The two PCBs are soldered back-to-back together, so that 

the ground planes between the PCBs prevent the electrode 

signal from being contaminated by the noise in the signal 

conditioning unit. 

The sensor is powered from a rechargeable lithium polymer 

battery. The 3.7-4.2 V battery voltage is converted into a 

number of different voltages using the power circuit shown in 

Fig. 7(a). Because the electrode is held at local ground potential, 

the amplifiers in the signal conditioning unit operate with ±2.5 

V dual power supplies. The digital circuit of the sensor operates 

with +3.3 V. 

In order to acquire the sensor signal, a wireless 

microcontroller CC2530 which is designed for ZigBee 

applications is adopted (Fig. 7(b)). Because the sensor signal 

can swing between -2.5 V and +2.5 V, a voltage adder is used to 

shift the signal level to the range of 0 V to +2.5 V in order to 

match the input range of the Analog to Digital Converter (ADC) 

of the microcontroller. As a result, the zero baseline voltage of 

the signal is +1.25 V when no movement is performed. The 

signal is sampled at a rate of 50 Hz and then displayed on a 

0.96-inch OLED screen.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

Although the wearable electrostatic sensor can detect limb 

and torso movements regardless of its mounting location on the 

body, the pattern and magnitude of the sensor signal depend on 

its location and motion state. Consequently, experiments were 

conducted to investigate the influence of the sensor location 

and type of activity on the sensor signal. To this end, three 

sensors were developed to collect signals at different body 

locations simultaneously. It should be stressed that the use of 

three sensors is not meant to build a WBAN for whole-body 

movement detection, but to facilitate the investigation into the 

effect of sensor location on the acquired signal. Additionally, in 

order to keep consistency of the three sensors, electronic 

components with high tolerance are adopted. 

Fig. 8 shows the experimental setup. The sensors were 

attached to the left wrist, right ankle and chest of the subject, 

respectively. The thickness of the cloth between the sensors and 

the skin is 3 mm, while the cloth fabric is a blend of cotton and 

polyester. A CC2530 evaluation board configured as 

Coordinator establishes a ZigBee network and relays the 

collected signals to a computer through a virtual serial port over 

a USB cable (Fig. 8). A GUI (graphical user interface) program 

plots the sensor signals in real time and logs the data for post 

analysis. 

 

(a) Prototype.                                        (b) 3D CAD model. 

Fig. 5. Prototype and 3D CAD model of the wearable electrostatic 
sensor. 

 

 

(a) Electrode.                       (b) Signal conditioning unit. 

Fig. 6. Electrode and signal conditioning unit. 

    

(a) Power circuit.                        (b) Microcontroller circuit. 

Fig. 7. Power and microcontroller circuits. 
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Fig. 8. Experimental setup. 
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The experiments started with simple movements, including 

leg lifting and lowering, arm swing, sitting down and standing 

up. A temporal correspondence between the movements and 

the sensor signals was established, which facilitated elucidation 

of the sensing mechanism. Then, sensor signals due to cyclic 

daily movements that involve various body elements such as 

walking and jogging were investigated. Afterwards, the 

influence of various factors on the signal was experimentally 

assessed. Finally, the electrostatic sensor was compared with 

accelerometers for different movements. 

B. Sensor Signals of Simple Movements 

In the leg lifting and lowering experiment, one foot was 

raised to a height of 10 cm, held in the air for a few seconds and 

then lowered back to the floor, while the other parts of the body 

remained stationary. Fig. 9 plots the sensor signals due to 

sequentially lifting and lowering the right and left legs. It can be 

seen that, as the right leg is lifted from 1.4 s to 2.0 s, all sensor 

signals increase to different peak voltages. When the right leg is 

held in the air from 2.0 s to 6.6 s, the signals decay gradually to 

+1.25 V because of the feedback resistor Rf of the charge 

amplifier that continuously discharges the feedback capacitor 

Cf. It is noticeable that there are small fluctuations in the 

decaying signals, because the body cannot stay completely still 

and the sensors respond to slight body movements. From 6.6 s 

to 7.3 s, the right foot is lowered to the floor and all sensor 

signals decrease with different trough voltages. Afterwards, the 

signals return to +1.25 V gradually.  

When the left leg is lifted from 12.1 s to 12.8 s and then 

lowered from 17.3 s to 17.9 s, the sensor signals from the left 

wrist and the chest have similar shapes but different magnitudes 

in comparison with those during moving the right leg, as shown 

in Fig. 9. However, the pattern of the signal from the right ankle 

changes substantially. More experiments have confirmed that 

the approaching and moving away of the left foot relative to the 

right ankle have caused such changes. 

Fig. 10 shows the sensor signals due to sequentially swinging 

forward and backward the left and right arms. As with the leg 

moving experiment, all sensors can detect the movements of 

both arms. In the case of swinging the left arm, the fixation of 

the sensor on the moving arm produces a strong signal. In 

general, the signals are weaker than those of moving legs. It can 

be explained that the stronger capacitive coupling between the 

feet and the earth ground leads to more significant variation of 

the body potential when moving legs. It is also clear that the 

signal from the chest is stronger than that from the ankle 

because of a closer distance between the chest and the moving 

arms. 

Fig. 11 plots the sensor signals due to sitting down on and 

standing up from a chair. All sensor signals increase during 

sitting down and decrease during standing up, both followed by 

a recovery period when the body is stationary. The signal from 

the left wrist performing down-and-up movement is stronger 

than that from the right ankle which is almost stationary. The 

signal from the chest is the weakest, although the chest also 

moves during sitting down and standing up. 

From the above experiments, the following findings can be 

summarized regarding the sensing mechanism of the sensor. 

Firstly, the movements of body parts in opposite directions give 

rise to opposite changes in the signal voltage. Secondly, 

mounting of the sensor on a moving body part and a closer 

distance between the sensor and the moving body part generate 

a stronger signal. Thirdly, the movement of the foot and the leg 

that are close to the floor produce a stronger signal than 

movement of the other parts of the body. 

 

Fig. 9. Sensor signals due to leg lifting and lowering. 
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Fig. 10. Sensor signals due to arm swing. 

 

Fig. 11. Sensor signals due to sitting down and standing up. 
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C. Sensor Signals of Cyclic Movements 

In the walking experiment, the arms swing naturally in an 

out-of-phase pattern with the legs, i.e. the left arm swings 

forward when the right leg moves forward, and vice versa for 

the opposing leg and arm. Fig. 12 shows the sensor signals due 

to walking. It can be seen that the signals exhibit clear 

periodicity due to the cyclic nature of the movement. The signal 

from the right ankle has different patterns during the swing and 

stance phases of the right leg, whereas the signals from the left 

wrist and the chest have similar pattern during the two phases. 

Moreover, the signal from the right ankle has the largest peak 

magnitude because of the strong capacitive coupling between 

the feet and the earth ground as well as the large-amplitude 

movement of the leg. The signal from the chest is the weakest 

because the torso is relatively stable during walking. 

In general, the sensor signals due to jogging (Fig. 13) are 

stronger than that due to walking because the movement has 

larger amplitude and faster speed. Roughly, all signals have 

similar patterns during the swing and stance phases of the right 

leg. The fundamental frequency of the signals equals the 

jogging frequency. In addition, the peak magnitude of the 

signal from the right ankle during the swing phase is larger than 

that during the stance phase, allowing differentiation between 

the two phases from the signal.  

D. Effect of Various Factors 

Equation (1) indicates that the electrostatic signal acquired 

from human activity depends mainly on the coupling 

capacitance between the human body and the earth ground as 

well as the amount of charge on the human body, both of which 

depend on a variety of factors. For instance, the floor, the 

furniture and appliances in an indoor environment affect the 

coupling capacitance, while the clothing material, the ambient 

temperature and humidity affect the charge quantity. The 

following experiments illustrate the variability of the signal 

under different conditions. 

The influence of the distance between the subject and the 

wall was investigated with the subject walking in place. Fig. 14 

shows the signals from the ankle for distances of 0.2 m and 1.0 

m. It can be seen that the signal weakens as the subject gets 

closer to the wall. Because the wall can be regarded as the earth 

ground, a closer distance to the wall means larger coupling 

capacitance between the earth ground and the subject. It 

follows from equation (1) that the electric potential of the 

subject is lower and the fluctuation of the sensor signal is 

weaker (Fig. 14). 

The effect of the floor material on the signal of walking in 

place was then investigated with the subject wearing cotton 

socks. Fig. 15 exhibits the signals from the ankle due to 

 

Fig. 12. Sensor signals due to walking. 

 

Fig. 13. Sensor signals due to jogging. 
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Fig. 14. Sensor signals from the ankle for different distances between 
the subject and the wall. 

 

Fig. 15. Sensor signals from the ankle due to walking in place on the 
wooden floor and the acrylic carpet. 
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walking in place on the wooden floor and the acrylic carpet. As 

illustrated, the signal for walking on the acrylic carpet is 

stronger than that for walking on the wooden floor. According 

to the triboelectric series [29], it is easier for the cotton socks to 

be charged through friction with the acrylic carpet than with the 

wooden floor. The stronger signal due to walking on the carpet 

arises from the larger quantity of charge on the socks. 

Anti-static floors are widely seen in industrial workplaces. 

The effect of the anti-static floor on the sensor signal was 

experimentally assessed using an anti-static mat with 

dimensions of 1 m × 1.2 m (width × length). Fig. 16 plots the 

signals of a wrist-worn sensor due to walking in place on the 

anti-static mat and a ceramic floor. It can be seen that the 

magnitude of the signal for the anti-static mat is much smaller 

than that for the ceramic floor, and the fundamental frequency 

of the signal for the anti-static mat has reduced by half. The 

significant effect of the anti-static mat on the sensor signal is 

explained by its three-layered structure. The top layer of the 

mat is made of vinyl that is dissipative. The electrostatic 

charges on the bottom of the shoes are discharged through vinyl. 

According to equation (1), the potential of the feet is thus 

significantly reduced. On the other hand, the middle layer of the 

anti-static mat is a metallic sheet, which functions as an 

electrostatic screen and reduces the capacitive coupling 

between the feet and the ground. More experiments have 

confirmed that the signal for the anti-static mat is mainly 

attributed to the swinging of the arm and the leg movement 

only accounts for the small fluctuations superimposed on the 

arm swinging signal. 

In equation (1), the assumption that the body-electrode 

capacitance Cbe remains constant holds when the sensor is 

firmly attached to the body. However, in practice Cbe may vary 

due to loose binding of the sensor and this effect was 

experimentally assessed. Two sensors were attached to the 

same wrist for comparison, with one being loosely bound and 

the other tightly bound. Fig. 17 plots the sensor signals during 

arm swinging. Because the loosely bound sensor is not as close 

to the wrist as the tightly bound one, the smaller Cbe between 

the loosely bound sensor and the wrist leads to smaller 

magnitude of the signal. During arm swinging, the loosely 

bound sensor moves relative to the wrist, which changes Cbe. 

Meanwhile, the friction between the sensor and the cloth 

produces electrostatic charges. As a result, there is obvious 

noise in the signal from the loosely bound sensor. It is therefore 

recommended to attach the sensor firmly to the body in order to 

acquire high-quality signals. 

As aforementioned, the electrostatic sensor can work in 

ambient mode for human activity monitoring, therefore the 

effect of a nearby moving subject on the sensor signal was 

experimentally assessed. The sensor was worn on the wrist of a 

subject standing still while another subject performed walking 

in place with different distances to the stationary subject. Fig. 

18 shows the sensor signals with distances of 1.0 m and 0.5 m, 

respectively. It can be seen that the electric potential signal of 

the nearby moving subject is detectable by the sensor worn on 

the stationary subject, although the magnitude of the signal is 

much smaller than that due to the subject wearing the sensor. It 

is also clear that a closer distance leads to a stronger signal. In 

order to suppress the interference from a nearby subject, the 

electrostatic sensor should be encased within a metallic box 

with only the electrode exposed. Because the electrode points 

toward the body which is a good conductor, the interfering 

signal can be minimized. It is worth noting that the reason why 

the waveforms in Fig. 18 are not smooth is because the signal 

magnitudes are only a bit larger than the resolution of the ADC, 

which is 1.22 mV. 

 

Fig. 16. Sensor signals due to walking in place on an anti-static mat and 
a ceramic floor. 

 

Fig. 17. Sensor signals from the wrist for loose and tight bindings. 

 

Fig. 18. Sensor signals due to a nearby moving subject. 
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Because the electrostatic sensor is dependent on various 

factors, it was believed that the signal would vary across 

subjects. Consequently, three subjects including two males and 

one female participated in the experiment. The heights of the 

participants are 187 cm, 170 cm and 157 cm, respectively, 

whereas their weights are 70 kg, 80 kg and 48 kg, respectively. 

For the convenience of description, the participants are 

numbered as 1, 2 and 3. The participants wore different shoes 

and clothes. The sensor was attached to their left wrists with 

direct contact with the skin. They performed movements of 

walking in place with similar stepping frequencies at the same 

spot in the room. Fig. 19 shows the sensor signals for the three 

subjects. Although the sensor signal is dependent on various 

factors, it is clear that the height of the subject has a strong 

influence on the signal magnitude. Because subject 1 is the 

tallest and his movement amplitude is the largest, the signal of 

subject 1 is the strongest. It can also be seen that subjects 2 and 

3 have similar signal shapes, but that of subject 1 is apparently 

different. This could be attributed to the difference in gait 

between the subjects. 

E. Comparison with Accelerometers 

Accelerometers are the most common wearable sensors for 

human activity monitoring. In order to compare with 

accelerometers, the electrostatic sensor was augmented with a 

three-axis accelerometer ADXL335, as shown in Fig. 20. The 

three analog outputs of ADXL335 for accelerations along the X, 

Y and Z axes were sampled simultaneously with the 

electrostatic signal. 

In the comparative experiment, electrostatic and 

accelerometer signals were collected from the left wrist and the 

right ankle of the subject, who performed a series of different 

movements. Fig. 21 plots the electrostatic signals and the 

accelerometer outputs along the X axis. For the sake of clarity, 

the accelerometer outputs along the Y and Z axes are not 

plotted, as the X axis aligns with the gravity vector in the 

stationary state and the output is strongest. As shown in Fig. 21, 

the movements performed during time intervals I-V are lifting 

and lowering the right leg, lifting and lowering the left leg, 

swinging both arms in an out-of-phase manner, walking in 

place, and jogging in place, respectively. During interval I, the 

accelerometer on the left wrist cannot detect the movement of 

the right leg, which contrarily can be detected by both 

electrostatic sensors. During interval II, both accelerometers 

cannot detect the movement of the left leg, to which both 

electrostatic sensors can respond. During interval III, the 

movement of arm swinging is detectable to both electrostatic 

sensors and the wrist-worn accelerometer only. During 

intervals IV and V, all sensors can respond to the complex 

walking and jogging movements. The outputs of the 

accelerometers are more regular than that of electrostatic 

sensors which have a more complex sensing mechanism and 

are affected by various factors. In addition, the mean value of 

the electrostatic sensor tends to vary because of the large 

feedback resistor of the charge amplifier that pulls the output 

slowly to the DC operating point. 

F. Discussion 

The experimental results demonstrate the feasibility of 

detecting limb and torso movements using a single wearable 

electrostatic sensor. This design offers a unique advantage over 

wearable inertial sensors. The sensor is built with common 

off-the-shelf components, making it a low-cost option. Power 

consumption is a critical design parameter of battery-powered 

wearable sensors [30]. Although the presented design of the 

sensor is not low-power oriented, it is feasible to achieve power 

consumption much lower than that of accelerometers using 

ultra-low power amplifiers available on the market. This sensor 

has the potential to be deployed in a variety of application 

scenarios, such as step counting, gait analysis, gaming and 

entertainment. 

Despite the above advantages, there are drawbacks with the 

wearable electrostatic sensor. The correlation between the 

signal waveform and the movement pattern is complex, making 

it difficult to interpret the signal. The strength of the sensor 

signal is susceptible to the mounting location, height of the 

human body, and various other factors. It is therefore difficult 

to measure activity parameters related to the signal strength, 

such as movement amplitude. For this reason, it is unnecessary 

to calibrate the sensor for different subjects. Nevertheless, 

temporal information can be derived from the sensor signal, 

such as the stepping frequency, number of steps, etc. The above 

drawbacks pose challenges for application of the sensor in a 

number of areas, such as recognition of human activity and 

measurement of physical activity level. Significant future 

research is required to advance this new sensing technique. 

 

Fig. 20. Accelerometer for comparison with the electrostatic sensor. 

 

Fig. 19. Sensor signals of three subjects walking in place. 
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IV. CONCLUSION 

In this paper, a wearable sensor working on the principle of 

electric field sensing has been developed to monitor human 

daily activities. The sensing mechanism has been analyzed 

using an equivalent circuit model. Design and implementation 

of the sensor have been presented in details. Experimental 

assessment has been conducted by attaching three prototype 

sensors to different locations on the subject. Results obtained 

have demonstrated the capability of the sensor to detect limb 

and torso movements regardless of its mounting location. The 

pattern and magnitude of the sensor signal depends on a variety 

of factors, including mounting location, type of activity, and 

environmental conditions. Future work will explore the 

feasibility of the sensor for various motion-sensing applications 

in real-world scenarios. 
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