Competition modes determine ecosystem stability in rock-paper-scissors games

Zeyu Zhang, Daniel Bearup, Guanming Guo, Helin Zhang, Jinbao Liao

 PII:
 S0378-4371(22)00734-8

 DOI:
 https://doi.org/10.1016/j.physa.2022.128176

 Reference:
 PHYSA 128176

To appear in: Physica A

Received date : 22 March 2022 Revised date : 6 August 2022

Please cite this article as: Z. Zhang, D. Bearup, G. Guo et al., Competition modes determine ecosystem stability in rock–paper–scissors games, *Physica A* (2022), doi: https://doi.org/10.1016/j.physa.2022.128176.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

Manuscript

- 1 Competition modes determine ecosystem stability in rock-paper-scissors games
- 2 Zeyu Zhang¹, Daniel Bearup², Guanming Guo¹, Helin Zhang¹, Jinbao Liao^{1,*}
- ³ ¹Research Center for Theoretical Ecology, School of Geography and Environment,
- 4 Jiangxi Normal University, Ziyang Road 99, 330022 Nanchang, China
- 5 ²University of Kent, School of Mathematics, Statistics and Actuarial Sciences,
- 6 Parkwood Road, Canterbury, CT2 7FS, UK
- 7
- 8 *Corresponding author: jinbaoliao@163.com (J.L.)
- 9 Address: Ziyang Road 99, 330022 Nanchang, Jiangxi Province, China.
- 10 Tel.: +86-(0)791-88133622

Fax: +86-(0)791-88120538

	C.
11	Abstract
12	Identification of the mechanisms which permit ecological communities to maintain high
13	levels of biodiversity is of both theoretical interest and practical importance. Intransitive
14	competition, in which there is no single superior competitor, is known to play an
15	important role in this problem. In this study, we undertake a systematic comparative
16	analysis of how different competition modes and ranges affect community stability in
17	paper-rock-scissors games. We confirm that short-ranged interactions, in combination
18	with cyclic competition, permits relatively stable coexistence. However, in contrast to
19	previous studies, we show that long-range interactions can also produce stable
20	communities. This stability emerges when competition interactions create asymmetries
21	in the opportunities for population growth depending on the abundance of the species.
22	Our findings demonstrate that small differences in the way species compete can
23	qualitatively change dynamic behaviors of the system, and therefore emphasize the
24	importance of correctly identifying these competition modes when designing
25	conservation actions.
26	<i>Keywords:</i> cyclically competing ecosystems; negative frequency dependence (NFD);
27	interaction modes; interaction range; symmetric and asymmetric competition.

28	1. Introduction
29	Exploring how a multitude of species can coexist in a community is a long-standing
30	issue in ecology [1-5]. Many mechanisms have been proposed (e.g. niche and neutral
31	theories), and significant progress has been made in understanding community
32	maintenance [2-7]. Among them, intransitive competition has been a classic paradigm to
33	explain species coexistence, as it can prevent the emergence of a dominant species [5,
34	7-12]. Moreover, there is a substantial body of empirical evidence which supports the
35	presence of intransitive competition across a broad range of natural communities [7, 9,
36	12-16].
37	The classic game of rock-paper-scissors provides a paradigmatic model for
38	intransitive competition. Models of communities with this sort of competition structure
39	typically produce neutrally stable limit cycles, in which species abundances oscillate
40	without converging to a stable equilibrium point. However, adding so-called
41	higher-order interactions (HOIs), i.e. interactions where the effect of one species on
42	another is modulated by a third, has been shown to stabilize these systems, resulting in
43	the convergence to an equilibrium steady state [17-20]. Furthermore, Reichenbach et al.
44	[21] have demonstrated the importance of population mobility in mediating ecosystem
45	stability in rock-paper-scissors games, specifically with low mobility promoting species
46	diversity while high mobility jeopardizing biodiversity. Similarly, it has been shown that
47	embedding such communities in space stabilizes their dynamics when species interact
48	only over short distances [22, 23]. When interactions are long-ranged, such

49	communities become unstable, producing large oscillations in species abundance and,
50	ultimately, stochastic extinctions [23-26]. This theoretical outcome has also been
51	confirmed in controlled microcosm experiments [9, 27]. Later, Szolnoki & Perc [28]
52	have additionally found that zealots are very effective in taming the amplitude of
53	oscillations arising from mobility and/or long-range interactions. Thus, these efforts
54	have greatly promoted our understanding of ecosystem stability and biodiversity
55	maintenance in spatial rock-paper-scissors games (see reviews in [29, 30] and
56	references therein).
57	However, these results do not tell the full story. In a theoretical study, Laird and
58	Schamp [11] found that short-range intransitive competition reduced community
59	diversity compared to long-range competition. This suggests the existence of an
60	opposed mechanism which can stabilize cyclic competition at longer spatial scales.
61	Rojas-Echenique & Allesina [31] suggest a candidate for this mechanism. Specifically,
62	where the spatial interaction rules are asymmetric, species fitness can vary depending
63	on its abundance, stabilizing the community for long-range interactions. Whether this
64	mechanism applies to other competition rules (e.g. competing for an empty site [19, 23])
65	remains unclear. Additionally, existing analysis of the effects of competition mode and
66	range on community stability is fragmented, with specific cases being considered in
67	separate studies. In this study, we seek to address this gap, by undertaking a systematic
68	comparative analysis of community stability using four typical competition modes
69	across a wide range of spatial scales.

2. Methods 70

70	2. Methods
71	We consider a system of 3 species in a rock-paper-scissors game, with a large fixed
72	number of individuals (N) arranged in a 2D-lattice (i.e. regular distribution of
73	individuals). Each site can only accommodate one individual. Similar to previous
74	studies [10, 11, 31], we simply assume the competitive matrix
75	$\mathbf{H} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$
76	with elements H_{ij} denoting the probability of species <i>i</i> winning against species <i>j</i> . In
77	particular, when there is an interspecific competition event occurring between species <i>i</i>
78	and j , $H_{ij}=1$ represents that species i is always the winner while species j being the loser.
79	When members of the same species compete, neither has an advantage [32]. Thus, we
80	set the diagonal elements $H_{ii}=0$, i.e. disregarding intraspecific competition throughout.
81	Such a simple competition matrix H can avoid the enormous numerical difficulties we
82	face at the specific matrix where the values of H_{ij} are highly heterogeneous [33].
83	We perform simulations of the community dynamics as follows: (1) we have a
84	square lattice of $N = L \times L = 100 \times 100$ sites (or 200×200 sites in Fig. S1, <i>Appendix</i>) with
85	periodic boundaries; (2) we populate the lattice with individuals randomly drawn from
86	three species; (3) In each time step, we perform a competition event using the four
87	interaction modes specified below; (4) we repeat step (3) for a long time, finding that
88	10,000 generations (i.e. 1×10^8 steps) are sufficient for those systems with linear size
89	L=100 (while 20,000 generations for $L=200$) to achieve the steady state; (5) we record

the number of individuals for each species and their spatial patterns at every generation.
To explore the effect of competition range on community stability, we consider a
variety of interaction ranges. We define these ranges in terms of the number of sites that
are considered to be in the neighbourhood of a focal site. Specifically, at the extremes of
this scale we have: <i>local</i> interactions, for which the neighbourhood consists of the four
sites directly adjacent to a focal site; and global interactions, for which the
neighbourhood consists of all sites within the lattice. Between these extremes, a range
of X means that the X sites closest to the focal site constitute the neighbourhood.
Mode 1: In each time step, a focal site is randomly selected along with four sites
within interaction range of it. According to the competitive matrix \mathbf{H} , we then check if
any of the individuals of these four invader sites can outcompete the resident of the
focal site: (i) if none of them can outcompete the resident, then the resident is
unchanged; (ii) if there is at least one superior competitor (relative to the focal resident),
then we randomly select one of the superior competitors to replace the focal resident.
Note for local competition, the invader sites are the four sites directly adjacent to the
focal site. This algorithm is similar to that used by Laird & Schamp [11].
Mode 2: This type of interaction is similar to Mode 1. The only difference is that if
none of the invaders can outcompete the focal resident, then one of them is chosen at
random to be replaced by the resident of the focal site.
Mode 3: In each step, the resident of a randomly chosen site dies. Two invader
sites are chosen randomly within the interaction range to compete for the empty site,

with the winner occupying this site. Note for local competition, the invader sites are
chosen randomly from the four directly adjacent sites. This algorithm is similar to that
used by Grilli et al. [19] and Calleja-Solanas et al. [23].
Mode 4: In each time step, two sites within interaction range are chosen at random.
If one of the two individuals is able to outcompete the other, then the losing individual
is replaced by the winner [34]. Note that for local competition, the sites must be directly
adjacent. This algorithm is similar to that often used by previous studies [31, 35-39].

118 **3. Results**

We begin by investigating the temporal population dynamics of this three-species 119 system with linear size L=100 (Fig. 1) and L=200 (Fig. S1 in Appendix). Species 120 abundances fluctuate around the equilibrium point $\rho^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, as is expected in a 121 stochastic rock-paper-scissors system. These fluctuations have an underlying structure; 122 123 in particular, they form loops around ho^* in phase space (Fig. 1I-P). These loops result from the succession cycles which are a typical characteristic of communities with 124 rock-paper-scissors games. A species increases in abundance by displacing the species 125 which it outcompetes and then declines as it is displaced in turn by the species which 126 127 outcompetes it.

The mode and range of competition affect the magnitude of these fluctuations. With local competition, the variation in fluctuation size among the four interaction modes is small (Fig. 1A-D). Mode 1 produces the smallest fluctuations (Coefficient of Variation

131	C.V.=0.034), while Modes 2-4 produce somewhat larger fluctuations (with C.V.≈0.087);
132	in all cases the system remains close to the equilibrium point. In contrast, global
133	competition may yield a large or small variation in fluctuation size, depending on the
134	interaction mode. Specifically, modes 1 & 2 (Fig. 1E-F & M-N) produce small
135	fluctuations (C.V.=0.02 and 0.027 respectively) comparable to, or even smaller than
136	those obtained under local competition. Under Modes 3 & 4 (Fig. 1G-H & O-P),
137	fluctuations become very large, and stochastic extinctions occur, eventually leading to
138	monoculture.
139	Competition mode and range also influence the spatial organization of the
140	community (Fig. 2). With local competition, the species aggregate into spatial clusters
141	excluding the other species from these regions of space. The cluster size can be
142	measured using the intraspecific clumping degree, i.e. the density of pairs of adjacent
143	sites occupied by the same species is divided by the global density of that species (see
144	Fig. S2 in Appendix). These clusters are relatively small for Mode 1 but are clearly
145	identifiable for Modes 2-4. By contrast, with global competition, no spatial
146	self-organization emerges, instead the species remain well-mixed. Fluctuations in
147	cluster sizes mirror those seen for species abundances, with small fluctuations for local
148	competition and global competition under Modes 1 & 2 while large fluctuations for
149	global competition under Modes 3 & 4 (Fig. S2 in Appendix).
150	The two competition ranges (i.e. the number of neighbours surrounding a focal site)
151	considered so far lie at the two extremes of interaction range. We observe that

152	competition mode influences how the magnitude of fluctuations in abundance varies
153	between these extremes (Fig. 3). For Modes 1 & 2, fluctuation size decreases
154	monotonically but later levels off, as interaction range increases. In contrast, for Modes
155	3 & 4, fluctuations generally increase in size as interaction range increases, though the
156	minimum fluctuation size for Mode 4 is achieved at an intermediate interaction range of
157	around 8 neighbours for a focal site. We also note that Modes 1 & 3 generally produce
158	the smallest and largest fluctuations in population abundances respectively.
159	Finally, we observe that increasing the number of available habitat sites generally
160	increases community stability (Fig. 4). Specifically, with local competition, increasing
161	system size results in a linear decline in the magnitude of fluctuations in abundance
162	regardless of competition mode (Fig. 4A). For global competition, the same linear
163	decline in fluctuation magnitude is obtained for Modes 1 and 2 (Fig. 4B). Under Modes
164	3 & 4, succession cycles continue to expand and, ultimately, result in monoculture due
165	to stochastic extinctions. However, it takes longer for these extinctions to occur in larger
166	systems.

167 **4. Discussion**

- 168 Our results confirm that cyclic dominance alone is not sufficient to maintain
- 169 biodiversity [9, 27]. In particular, despite a cyclic competition structure, global
- competition with Modes 3 and 4 results in monoculture in the long term (Fig. 1; Fig. S1
- 171 in Appendix). Previous empirical and theoretical studies concluded that local
- 172 interactions promote ecosystem stability relative to global competition, in line with our

	C.
173	predictions in Modes 3 & 4. However, in stark contrast to this conclusion, we find that
174	with Modes 1 & 2, fluctuations decrease in magnitude for global competition,
175	producing a more stable community. The rule governing competition appears to play an
176	important role in determining how the interaction range affects community stability. In
177	particular, small changes in the way competitors interact can reverse how local vs.
178	global competition modify ecosystem stability. As such, to avoid misleading predictions,
179	the competition rules must be identified and accurately characterized before modelling a
180	given community.
181	Local competition permits the emergence of self-organized spatial structure within
182	the habitat which is not possible under global competition (Fig. 2). Specifically, when
183	interactions are short range, chance aggregations of a single species tend to expand as: 1)
184	the species with the highest local density has the greatest chance to occupy nearby sites;
185	and 2) intraspecific competition events do not change the composition of the local area.
186	This results in the formation of relatively large conspecific clusters. In turn, this slows
187	down the community dynamics (Fig. S3 in Appendix), as only competition events
188	occurring at the boundaries of these clusters result in changes in species abundances and
189	such boundaries represent a relatively small proportion of the total habitat. With global
190	competition, all sites are equally far apart, as such, the results of competition are
191	predicted by the total, rather than the local, abundances of each species. This means that,
192	when one species gains a population advantage, it will tend to increase in abundance by
193	displacing its weaker competitor. However, this reduces competition pressure on its

194	stronger competitor, which is then able to increase in abundance by displacing it in turn.
195	Thus global competition produces global scale succession cycles and large fluctuations
196	in abundances.
197	However, this does not explain the stability of communities under Modes 1 & 2
198	with long-range interactions. This can be attributed to the emergence of frequency
199	dependence selection under these competition modes. We find that, under Modes 1 & 2,
200	the average fitness of individuals decreases as they become more common (negative
201	frequency dependence, NFD; see System Analysis in Appendix). In particular, we
202	analyze the expected growth of a given species relative to its abundance in a simplified
203	system with global competition. As shown in Fig. S4 (Appendix), Modes 1 & 2 induce
204	NFD, i.e. the expected growth is positive when species abundance is below the
205	equilibrium level $(1/3)$ and negative when species abundance is above this level. In
206	contrast, Modes 3 & 4 do not induce NFD, instead the expected growth is always equal
207	to zero regardless of species abundances. NFD acts as a restoring force; by reducing the
208	growth rate of any species which becomes dominant, it damps oscillations and biases
209	the system dynamics towards returning to the equilibrium state.
210	We note further that the effect of NFD is stronger for longer range interactions.
211	This results, again, from the formation of conspecific clusters for short range
212	competition. Recall that, when competition is localized, species abundances change
213	only at the boundary of these clusters. Since the majority of sites occupied by a species
214	are likely to lie within a cluster, they are protected from competition and so do not

	C
215	experience NFD as noted by Rojas-Echenique & Allesina [31]. Our results suggest that
216	NFD plays a greater role in stabilizing the community dynamics than the formation of
217	conspecific clusters. In particular, variation around the equilibrium state is lower with
218	global competition (permitting NFD) than with local competition (permitting
219	conspecific cluster formation) for Modes 1 & 2. This contradicts the claim that reducing
220	the range of species interaction is always beneficial to community stability [9, 21, 23].
221	The emergence of negative frequency dependence arises from the symmetry, or
222	asymmetry, of the competition rules. In particular, Modes 3 and 4 permit only pairwise
223	interactions, which are inherently symmetric in the rock-paper-scissors game. This
224	means that, a given species wins half of its interactions with other species and loses the
225	other half. By contrast, Modes 1 & 2 allow interactions to occur between the occupants
226	of five sites (one focal individual competing with four competitors). This benefits
227	species at low abundance and disadvantages those at high abundance. Specifically, this
228	rule gives a species with low abundance more frequent opportunities to compete than it
229	would obtain under a pairwise competition rule. This can allow its population to grow
230	quickly if the species it outcompetes is high abundance. By contrast, a high abundance
231	species is involved in proportionately fewer competition events than it would be under a
232	pairwise competition rule. Note that this asymmetry is stronger for Mode 1 (i.e. higher
233	NFD) than for Mode 2 (Fig. S4, Appendix), explaining why Mode 1 produces the most
234	stable communities for long-range competition.

235

It seems likely that different types of real-world ecosystems will correspond to

Ç

236	different interaction modes and scales. Asymmetric long-range interactions, like Modes
237	1 & 2, might be more appropriate for animal communities, where competition is more
238	diffuse. On the other hand, where individuals compete directly for substrate on which to
239	grow, and can grow over a competitor (e.g. lichens, corals or sponges), a symmetric
240	short-range interaction, like Mode 4, would be more appropriate. Similarly, Mode 3
241	might be appropriate to describe competition in forests, where the death of an individual
242	creates a gap in the canopy for which seedlings compete. In this case, the interaction
243	range would depend on the range of seed dispersal in the community. Despite the
244	diversity of possible applications, microbial experiments would be most appropriate to
245	test our modelling predictions, as they are easy to control and manipulate [14]. In
246	particular, microcosm experiments have the key advantage that the rapid microbial
247	reproduction allows multigenerational community dynamics to be studied within short
248	time frames. For instance, using toxin-producing (colicinogenic) E. coli to construct the
249	rock-paper-scissors system has proved useful for studying the generation and
250	maintenance of biodiversity [9].
251	This study adopts a simple lattice-structured model where three species with
252	rock-paper-scissors games compete for space under diverse interaction modes and
253	ranges. We find that competition rules determine the effect of interaction range on
254	ecosystem stability. Specifically, where spatial competition is limited to nearest
255	neighbours, the formation of conspecific clusters leads to more stable species
256	coexistence. This is in good agreement with empirical evidence that the self-organizing

257	nottemp enerted by local competition play a vital rate in maintaining big diversity (0, 22
257	patterns created by local competition play a vital role in maintaining biodiversity [9, 22,
258	27]. However, asymmetry induced by higher-order interactions can induce negative
259	frequency dependence in competition outcomes, thereby stabilizing communities with
260	long-range interactions. This result is in contrast to prior studies which omitted this
261	mechanism and consequently concluded that long-range interactions were always
262	destabilizing. Our findings highlight the importance of identifying the modes of
263	competition present in an ecosystem prior to developing models for it, as apparently
264	small differences in these modes can produce qualitatively different system behaviors.
265	Declaration of interests
266	The authors declare that they have no known competing financial interests or personal
267	relationships that could have appeared to influence the work reported in this paper.
268	Acknowledgments
269	We thank both reviewers for their constructive comments to greatly improve this
270	manuscript. This study was supported by the National Science Foundation of China (No.

- 271 31901175 & 31760172), and the Key Youth Project of Jiangxi Province (No.
- 272 20192ACBL21029).
- 273 Data accessibility statement
- 274 This theoretical study has no data.
- 275 Supplementary materials
- 276 *Appendix* is available for this manuscript.

277 References

- [1] R.M. May, Will a large complex system be stable? Nature 238 (1972) 413-414,
- 279 https://dx.doi.org/ 10.1016/S0022-5193(85)80081-3.
- 280 [2] P. Chesson, Mechanisms of maintenance of species diversity, Ann. Rev. Ecol. Evol.
- 281 & Syst. 31 (2000) 343-366, https://doi.org/10.1146/annurev.ecolsys.31.1.343.
- [3] S.P. Hubbell, *The Unified Neutral Theory of Biodiversity and Biogeography*.
- 283 Monographs in Population Biology. Princeton University Press, Princeton NJ, US,
- 284 2001.
- 285 [4] J.M. Levine, J. HilleRisLambers, The importance of niches for the maintenance of
- 286 species diversity, Nature 461(2009) 254-257, http://dx.doi.org/10.1038/nature08251.
- 287 [5] S. Allesina, J.M. Levine, A competitive network theory of species diversity, PNAS
- 288 108 (2011) 5638-5642, http://dx.doi.org/10.1073/pnas.1014428108.
- 289 [6] C. Chu, P.B. Adler, Large niche differences emerge at the recruitment stage to
- stabilize grassland coexistence, Ecol. Monogr. 85 (2015) 373-392,
- 291 https://doi.org/10.1890/14-1741.1.
- 292 [7] J.M. Levine, J. Bascompte, P.B. Adler, S. Allesina, Beyond pairwise mechanisms of
- species coexistence in complex communities, Nature 546 (2017) 56-64,
- 294 https://doi.org/10.1038/nature22898.
- [8] J. Huisman, F.J. Weissing, Biodiversity of plankton by species oscillations and chaos,
- 296 Nature 402 (1999) 407-410, https://doi.org/10.1038/46540.

- 297 [9] B. Kerr, M.A. Riley, M.W. Feldman, B.J.M. Bohannan, Local dispersal promotes
- biodiversity in a real-life game of rock-paper-scissors, Nature 418 (2002) 171-174,
- 299 https://doi.org/10.1038/nature00823.
- 300 [10] R.A. Laird, B.S. Schamp, Competitive intransitivity promotes species coexistence,
- 301 Am. Nat. 168 (2006) 182-193, https://doi.org/10.1086/506259.
- 302 [11] R.A. Laird, B.S. Schamp, Does local competition increase the coexistence of
- species in intransitive networks? Ecology 89 (2008) 237-247,
- 304 https://doi.org/10.1890/07-0117.1.
- 305 [12] S. Soliveres, et al., Intransitive competition is widespread in plant communities and
- maintains their species richness, Ecol. Lett. 18 (2015) 790-798,
- 307 https://doi.org/10.1111/ele.12456.
- 308 [13] J.B.C. Jackson, L. Buss, Allelopathy and spatial competition among coral reef
- 309 invertebrates, PNAS 72 (1975) 5160-5163, https://doi.org/10.1073/pnas.72.12.516.
- 310 [14] T.L. Czárán, R.F. Hoekstra, L. Pagie, Chemical warfare between microbes
- 311 promotes biodiversity, PNAS 99 (2002) 786-790,
- 312 https://doi.org/10.1073/pnas.01239989.
- 313 [15] B. Sinervo, C.M. Lively, The rock-scissors-paper game and the evolution of
- alternative male strategies, Nature 380 (1996) 240-243,
- 315 https://doi.org/10.1038/380240a0.
- 316 [16] L. Gallien, N.E. Zimmermann, J.M. Levine, P.B. Adler, T. Wootton, The effects of

	C,
317	intransitive competition on coexistence, Ecol. Lett. 20 (2017) 791-800,
318	https://doi.org/10.1111/ele.12775.
319	[17] E.D. Kelsic, J. Zhao, K. Vetsigian, R. Kishony, Counteraction of antibiotic
320	production and degradation stabilizes microbial communities, Nature 521 (2015)
321	516-519, https://doi.org/10.1038/nature14485.
322	[18] A. Szolnoki, M. Perc, Vortices determine the dynamics of biodiversity in cyclical
323	interactions with protection spillovers, New J. Phys. 17 (2015) 113033,
324	https://doi.org/10.1088/1367-2630/17/11/113033.
325	[19] J. Grilli, G. Barabás, M.J. Michalska-Smith, S Allesina, Higher-order interactions
326	stabilize dynamics in competitive network models, Nature 548 (2017) 210,
327	https://doi.org/10.1038/nature23273.
328	[20] Y. Li, D. Bearup, J Liao, Habitat loss alters effects of intransitive higher-order
329	competition on biodiversity: a new metapopulation framework, Proc. Roy. Soc. B 287
330	(2020) 20201571, https://doi.org/10.1098/rspb.2020.1571.
331	[21] T. Reichenbach, M. Mobilia, E. Frey, Mobility promotes and jeopardizes
332	biodiversity in rock-paper-scissors games, Nature 448 (2007) 1046-1049,
333	https://doi.org/10.1038/nature06095.

- 334 [22] P. Szabó, T. Czárán, G. Szabó, Competing associations in bacterial warfare with
- two toxins, J. Theor. Biol. 248 (2007) 736-744,
- 336 https://doi.org/10.1016/j.jtbi.2007.06.022.

- 337 [23] V. Calleja-Solanas, N. Khalil, E. Hernández-García, J. Gómez-Gardeñes, S. Meloni,
- 338 Structured interactions as a stabilizing mechanism for competitive ecosystems, *arXiv*:
- 339 2012.14916v1 (2021), https://doi.org/10.48550/arXiv.2012.14916.
- 340 [24] M. Frean, E.R. Abraham, Rock-scissors-paper and the survival of the weakest,
- 341 Proc. Roy. Soc. B 268 (2001) 1323, https://doi.org/10.1098/rspb.2001.1670.
- 342 [25] G. Szabó, A. Szolnoki, R. Izsák, Rock-scissors-paper game on regular small-world
- 343 networks, J. Phys. A: Math. & Gen. 37 (2004) 2599-2609,
- 344 https://doi.org/10.1088/0305-4470/37/7/006.
- 345 [26] A. Szolnoki, G. Szabó, Phase transitions for rock-scissors-paper game on different
- 346 networks, Phys. Rev. E 70 (2004) 037102,
- 347 https://doi.org/10.1103/PhysRevE.70.037102.
- 348 [27] R. Durrett, S. Levin, Allelopathy in spatially distributed populations, J. Theor. Biol.
- 349 185 (1997) 165-171, https://doi.org/10.1006/jtbi.1996.0292.
- 350 [28] A. Szolnoki, M. Perc, Zealots tame oscillations in the spatial rock-paper-scissors
- 351 game, Phys. Rev. E 93 (2016) 062307, https://doi.org/10.1103/PhysRevE.93.062307.
- 352 [29] A. Szolnoki, M. Mobilia, L.L. Jiang, B. Szczesny, A.M. Rucklidge, M. Perc, Cyclic
- dominance in evolutionary games: a review, J. Roy. Soc. Interface 11 (2014)
- 354 20140735, https://dx.doi.org/10.1098/rsif.2014.0735.
- 355 [30] A. Szolnoki, B.F. De Oliveira, D. Bazeia, Pattern formations driven by cyclic
- 356 interactions: A brief review of recent developments, Europhys. Lett. 131 (2020)

- 357 68001, https://dx.doi.org/10.1209/0295-5075/131/68001.
- 358 [31] J. Rojas-Echenique, S. Allesina, Interaction rules affect species coexistence in
- 359 intransitive networks, Ecology 92 (2011) 1174-1180,
- 360 https://dx.doi.org/10.1890/10-0953.1.
- 361 [32] Y. Itoh, K. Tainaka, Stochastic limit cycle with power-law spectrum, Phys. Lett. A
- 362 189 (1994) 37-42, https://dx.doi.org/10.1016/0375-9601(94)90815-X.
- 363 [33] J. Juul, K. Sneppen, J. Mathiesen, Labyrinthine clustering in a spatial
- rock-paper-scissors ecosystem, Phys. Rev. E 87 (2013) 042702,
- 365 https://dx.doi.org/10.1103/PhysRevE.87.042702.
- [34] Y. Itoh, On a ruin problem with interaction, Ann. I. Stat. Math. 25 (1973), 635-641,
- 367 https://dx.doi.org/10.1007/BF02479405.
- 368 [35] K. Tainaka, Lattice model for the Lotka-Volterra system, J. Phys. Soc. Japan 57
- 369 (1988) 2588-2590, https://dx.doi.org/10.1143/JPSJ.57.2588.
- 370 [36] K. Tainaka, Stationary pattern of vortices or strings in biological systems: lattice
- version of the Lotka-Volterra model, Phys. Rev. Lett. 63 (1989) 2688-2691,
- 372 https://dx.doi.org/10.1103/physrevlett.63.2688.
- 373 [37] M. Bramson, D. Griffeath, Flux and fixation in cyclic particle systems, Ann. Prob.
- 374 17 (1989) 26-45, http://www.jstor.org/stable/2244194.
- 375 [38] G. Szabó, G. Fáth, Evolutionary games on graphs, Phys. Rep. 446 (2007) 97-216,
- 376 https://doi.org/10.1016/j.physrep.2007.04.004.

- 377 [39] K. Tainaka, N. Nakagiri, H. Yokoi, K. Sato, Multi-layered model for
- 378 rock-paper-scissors game: A swarm intelligence sustains biodiversity, Ecol. Inform.
- 379 66 (2021) 101477, https://doi.org/10.1016/j.ecoinf.2021.101477.

381	Figure captions
382	Figure 1. Panels (A-H): Dynamics of the abundance of a 3-species system in
383	rock-paper-scissors games, comparing different interaction modes under both local and
384	global competition. In each panel, the ecosystem is represented by a 2D-lattice of linear
385	size $L=100$ ($N=L\times L=10^4$ sites). Panels (I-P): Trajectories in the phase space represented
386	by the 3-simplex (sum of three species' abundances equal to one) with different
387	interaction modes and ranges (local and global), corresponding to the dynamics of the
388	panels (A-H). The colour bar represents time evolution (generations). Larger
389	oscillations around the equilibrium point cover boarder areas, indicating a more
390	unstable system.
391	Figure 2. Snapshots of the spatial organization of a 3-species ecosystem at the 1000 th
392	generation in a 2D-lattice of linear size $L=100$ ($N=L\times L=10^4$ sites) for different
202	competition modes under local and global interactions. Individuals of each species are
393	competition modes under local and global interactions. Individuals of each species are
394	painted in a different color. Panels (A-D): local competition within the four nearest
395	neighbours. Panels (E-H): global competition across the whole lattice.
396	Figure 3. Effect of interaction range (i.e. increasing the number of neighbours for each
397	site) on ecosystem stability (defined as the coefficient of variation C.V. in the size of
398	fluctuations in species abundances) in a 3-species ecosystem with a total number of
399	$N=L^2=10^4$ individuals, again under different competition modes (see <i>Methods</i>). The
400	points represent the mean of 20 replicates with standard deviation (error bar).

401	Figure 4. Effect of system size $(N=L^2)$ on ecosystem stability under local and global
402	competition of three species in four different interaction modes. Stability is
403	characterized by the coefficient of variation (C.V.) in fluctuations around the mean of
404	species abundances, or the time (generations) required for the first species being extinct.
405	As such, higher C.V. or less time required for the first species extinction indicates a
406	more unstable ecosystem. Each point is the mean of 20 replicates (error bar - standard
407	deviation).

(G)

(E)

(F)

Global

(H)

Figure 2

Cover Letter

Journal name: Physica A: Statistical Mechanics and its Applications Manuscript ID: PHYSA-22659 Title: Competition modes determine ecosystem stability in rock-paper-scissors games

Dear Prof. Dr. Kenneth A. Dawson,

Thank you for giving us the opportunity to revise this manuscript. We have addressed the comments from both reviewers, and list the responses and corrections in *Response to Reviewers*.

In *Response to Reviewers*, we additionally submit a *revised version with track changes* in which we have inserted line numbers ourselves. Using these line numbers, we indicate the exact positions of all changes.

The manuscript has been resubmitted to your journal. We thank you for the helpful comments and look forward to your response.

Yours sincerely,

Jinbao Liao^{*} on behalf of other co-authors ***Corresponding author:** Dr. Jinbao Liao (Email: jinbaoliao@163.com)

Highlights

- We compare system stability among four interaction modes in cyclic competition
- We find that long-ranged competition can also produce stable coexistence
- Small differences in interaction modes qualitatively change dynamic behaviors
- We emphasize the importance of correctly identifying species competition modes

Credit author statement:

Zeyu Zhang: Methodology, Software, Data curation, Visualization, Investigation.

Daniel Bearup: Writing - Review & Editing.

Guanming Guo: Formal analysis, Software, Visualization.

Helin Zhang: Formal analysis, Software, Visualization.

Jinbao Liao: Conceptualization, Methodology, Formal analysis, Supervision, Funding acquisition, Writing- Original draft preparation.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

 \Box The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: