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Fault diagnosis of offshore wind turbine gearboxes using a
dynamic Bayesian network
Tobiloba Elusakina and Mahmood Shafieeb

aDepartment of Energy and Power, Cranfield University, Bedfordshire, UK; bMechanical Engineering Group, School
of Engineering, University of Kent, Canterbury, UK

ABSTRACT
The gearbox system is one of the most critical subassemblies in offshore
wind turbine (OWT) drivetrains whose failures could lead to long
downtimes and high repair costs. Therefore, it is crucial to accurately
diagnose and predict the gearbox faults at an early stage of
development. This study develops a new dynamic Bayesian network
(DBN) framework for fault diagnosis and reliability analysis of OWT
gearbox systems by incorporating components’ degradation
information and condition-based maintenance (CBM) strategy. The
reliability, availability, and mean-time between failures (MTBF) as well as
the failure criticality index (FCI) for each subassembly are estimated. The
results identified the loss of function in the bearing subassembly as the
most likely underlying cause of a failure in the gearbox system.
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1. Introduction

The offshore wind energy industry has experienced an exponential growth over the past decade.
Despite the COVID-19 pandemic, the world’s installed offshore wind capacity increased from
27.7 GW at the end of 2019 to 31.9 GW at the end of 2020 (Buljan 2021). To accommodate the
growth of wind energy, new wind farm projects are moving further offshore and into deeper waters
where there are more spaces available and the wind is often stronger (Shafiee 2015a). Due to
extreme weather conditions and harsh environments, the offshore wind turbines are subject to lar-
ger loads and more complex maintenance processes as compared to onshore wind turbines (Shafiee
2015b). The transition to deeper waters has also necessitated the usage of alternative foundations
such as floating substructures that are more expensive and more complex than fixed foundations
(Shafiee and Sørensen 2020b).

The gearbox system is one of the most important drivetrain components in both onshore and
offshore wind turbines. The main function of a gearbox is to transmit power from the rotor to the
generator by increasing the low input rotational speed from the rotor at high torque to a high output
speed for the electric generator at low torque (Bhardwaj, Teixeira, and Soares 2019b). The wind tur-
bine gearbox comprises many subassemblies and components that degrade over time due to environ-
mental factors and material aging. Figure 1 shows a standard wind turbine gearbox system with its
major components including gears, bearings, lubrication system, housing and shafts.

Wind turbine gearbox systems are subject to various complex loads which can cause wear and
fatigue damage. These loads are often due to rapidly changing weather conditions, high winds and
gusts, extreme turbulence, high operating temperature and oil degradation. Analyses of the wind
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energy databases such as SPARTA indicate that gearboxes are among the most frequently failing
components of wind turbines (Fox and Hill 2020). Any functional failure in gearbox components
could lead to long wind turbine shutdowns and major maintenance works, which consequently
result in considerable losses in terms of both power and finances. In order to improve production
availability and reduce operation and maintenance (O&M) costs, the operational safety and
reliability of offshore wind turbine gearboxes must be given high priority.

Despite many studies about the reliability analysis of offshore wind turbines, the gearbox system
has received little attention up to now. In particular, there are some gaps in the literature regarding
the underlying causes of gearbox failure, the influencing factors in subasslemblies degradation, and
how the reliability of the overall system can be improved. To address these gaps, this study aims to
develop a new dynamic Bayesian network (DBN) framework to perform an advanced reliability
analysis and fault diagnosis of the gearbox system and its subassemblies by taking into account
degradation information and condition-based maintenance (CBM) strategy. Our proposed DBN
model provides a number of advantages. First, it provides an ability to perform both prognostic
(forward) and diagnostic (backward) analyses; Second, it accommodates both discrete and continu-
ous models of time; and third, it supports maintenance decision-making by incorporating the
health condition information.

The lifetime distributions of different subassemblies and their failure modes are considered as
input for the reliability analysis of the gearbox system. For the purpose of our modelling, the gear-
box system is broken down into five degradable subassemblies connected to each other in series.
The health condition of each subassembly is classified into four different phases, represented by
different time slices. The reliability, availability and mean-time between failures (MTBF) are esti-
mated along with reliability importance and failure criticality index (FCI) for each subassembly.
A sensitivity analysis is also conducted to determine the effects of the fault coverage factor on
reliability, availability, MTBF and the expected number of failures, as well as the effects of redun-
dancy on MTBF and average number of failures. Among different technologies available on the
market, the R80 gearbox configuration with nominal power of 2MW has been considered in this
study. This gearbox system is still one of the popular configurations in the wind energy industry
and its failure information has been widely reported in the literature (e.g. see Smolders et al. 2010).

The rest of the paper is organised as follows. Section 2 reviews the literature on reliability analysis of
offshore wind turbine gearboxes and provides some background information on Bayesian Networks.
Section 3presents our proposeddynamicBayesiannetworkmodel for the reliability analysis of offshore
wind turbine gearboxes. Section 4 discusses the results, and finally, Section 5 concludes the paper.

Figure 1. Typical modern design of a wind turbine gearbox (Onyx Insight 2019).
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2. Literature review

2.1. Reliability analysis of offshore wind turbine gearboxes

The reliability analysis of offshore wind turbines and their components is a relatively new subject that
has attracted a great deal of attention over the last decade. Dinmohammadi and Shafiee (2013) applied
a fuzzy failure mode and effect analysis (FMEA) to assess the risks associated with the failure of
offshore wind turbines. In this study, the gearbox was identified as the second and third most critical
wind turbine subsystem based on the traditional and fuzzy FMEA analyses, respectively. In another
work, Shafiee and Dinmohammadi (2014) analysed the reliability of both onshore and offshore
wind turbines using an extended FMEA technique and then compared the results from the risk pri-
ority number (RPN) measure with those obtained based on a cost priority number (CPN) measure.
This study also identified the gearbox as the second most critical component in both types of wind
turbines. Guo et al. (2015) performed a reliability analysis of floating offshore wind turbines by com-
bining both reliability block diagram (RBD) and fault tree analysis (FTA) techniques. The study con-
cluded that the yaw system, gearbox, cooling system and mooring lines would need to be given the
highest priority for maintenance. Kang et al. (2017) applied the FTA to analyse the reliability of a
semi-submersible floating offshore wind turbine in both qualitative and quantitative ways. They
found out that the material degradation was the most prevalent failure mode of the gearbox system.

With respect to offshore wind turbine gearboxes, some studies have been conducted in recent
years. Yang and Jiang (2011) analysed the reliability of an offshore wind turbine gearbox as part
of an effort to describe how wind farm SCADA systems contribute to the development of a
reliability centred maintenance (RCM) strategy. Bhardwaj, Teixeira, and Soares (2019a) performed
a component level reliability analysis by using the FMEA technique to determine failure causes, and
then applied a stepwise reliability prediction method to estimate the overall gearbox failure rate. Li
et al. (2019) considered the gearbox as a multi-state system and applied the non-homogenous con-
tinuous-time Markov process to optimise its maintenance policy.

A number of other studies have focused on failure analysis of the wind turbine gearbox at a com-
ponent level. Zhao, Hu, and Li (2012) proposed a method for the prediction of wind turbine gear-
box failures based on a least square support vector machine (LS-SVM) algorithm. Sheng (2014)
conducted a study in which 320 gearbox damage records were analysed to identify top failure
modes and root causes. The results revealed that the bearings were the most frequent failure
mode of the gearbox.

Most of the reliability studies on wind turbine gearboxes have applied conventional analysis
techniques. These techniques such as FMEA and FTA possess several drawbacks (Shafiee and
Sørensen 2019; Shafiee, Elusakin, and Enjema 2020a). One of the major drawbacks is that the con-
ventional techniques fail to take into account the dynamic, non-binary and multi-component
nature of a mechanical system such as the wind turbine gearbox. Another drawback is that incor-
porating degradation information of assets over time can be complicated. Furthermore, the tra-
ditional reliability measures such as RPN do not provide detailed information on the criticality
of components and subsystems in a complex system such as the offshore wind turbine gearbox.

To overcome these drawbacks, advanced reliability analysis techniques have been adopted in a
number of studies. Le and Andrews (2016) applied the Petri net (PN) technique to model the degra-
dation process and optimise the inspection and maintenance schedules for offshore wind turbines.
They used an extended version of the PNs, known as stochastic Petri net (SPN) to capture the
dynamic and stochastic nature of offshore wind turbine operation. The wind turbine components
were assumed to degrade in multiple discrete states based on Weibull distributed failure times. In
another study, Elusakin et al. (2021) presented a SPNmodel for reliability analysis and maintenance
scheduling of floating offshore wind turbines and their support structure components, including
floating platform, moorings and anchoring system. Lazakis and Kougioumtzoglou (2019) applied
the Bayesian Belief Networks (BBN) with failure mode, effect and criticality analysis (FMECA)
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as well as hazard identification (HAZID) techniques to rank offshore wind turbine components
based on their failure criticality.

2.2. Bayesian networks

Bayesian networks (BN) provide a method through which probabilistic connections between vari-
ables can be modelled. Developed in the 1980s, the technique is rooted in statistics and it provides a
simplistic way to solve complex decision-making problems (Adedipe, Shafiee, and Zio 2020). The
BN consists of nodes which represent random variables, arcs which link nodes in a directed acyclic
graph (DAG), and conditional probability tables (CPT) which define the probability of a node given
all potential combinations of its parent nodes (Yang and Frangopol 2018). Each node holds a finite
number of states which cannot occur simultaneously and arcs which are used to connect multiple
nodes indicating direct probabilistic relationships.

BNs, also known as belief networks, are based on the application of the Bayes theorem to calcu-
late conditional probabilities. The network is normally built from existing data or expert opinion on
the variables of consequence and the dependencies between them (Kammouh, Gardoni, and Paolo
2020). The Bayes theorem is based on the knowledge that observations about the end result of a
system/process must be updated when new evidence is introduced. BNs can be applied to solve
decision-making problems based on prior knowledge about system operation (Adedipe, Shafiee,
and Zio 2020). A simple BN structure is shown in Figure 2.

In Bayes theorem, posterior probability of an event can be expressed in terms of its prior prob-
ability, likelihood function and normalisation constant. This can be expressed mathematically as:

P(A|B) = P(B|A)× P(A)
P(B)

(1)

where P(A|B) is the posterior probability and constitutes the belief of A occurring given the obser-
vation of evidence B, P(B|A) signifies the likelihood of B being observed given that the event A holds
true, P(B) represents the probability of the evidence occurring and P(A) is the prior probability.

Dynamic Bayesian networks (DBN) are an extension of BNs which include an explicit time
dimension. The DBN approach expands the power of conventional reliability analyses by including
common causes and multi-state variables (Ashrafi and Zadeh 2017). A DBN is a transition model
based on random probability distribution splintered over a set of random variables, over which a
collection of conditional probability assumptions is defined. The feature of time-invariance also
ensures that the variable dependency model remains unchanged at any time. The term ‘dynamic’
is adopted as an attachment to BN when multiple time slices are needed to accurately represent
the evolution of the system through time (Montani et al. 2008). Due to a DBN being analogous

Figure 2. Simple representation of a BN.
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to a semi-Markovian random process with order t − 1, a local BN is extended to t number of time
slices when t = 2. Such models are referred to as ‘two-time slice temporal Bayesian network’ or 2-
TBN (Montani et al. 2008). A general structure of a DBN is shown in Figure 3.

If B1 is a Bayes net that represents the prior probability distribution of variable states P(Z1) and
B� is a Two-Time slice BN (2TBN) which represents P(Zt|Zt−1), a DBN can be defined as (B1, B�)
by means of a DAG as (Murphy 2002):

P(Zt|Zt−1) =
∏N
i=1

P(Zi
t|Pa(Zi

t)) (2)

where Zi
t represents the ith node at time t, and Pa(Zi

t) are the parent nodes of (Z
i
t) within the net-

work which can be in the same or preceding time slice. The joint distribution of a DBN can be
obtained by expanding the 2TBN into T number of time slices, as follows:

P(Z1:T) =
∏T
t=1

∏N
i=1

P(Zi
t|Pa(Zi

t)) (3)

In the context of wind energy, BNs have been applied towards reliability assessment, fault diag-
nosis and prognosis, and operation and maintenance (O&M) planning. BNs are adopted in
reliability analysis of wind turbines due to the effect of better reliability on the reduction of
O&M costs which in turn leads to a reduction in levelised cost of electricity (LCOE)
(Shafiee, Brennan, and Espinosa 2016). To this effect, Nielsen and Sørensen (2017) applied
the DBN technique to incorporate wind turbine blade inspection measurements into the
remaining useful life (RUL) prediction. With the emergence of condition monitoring (CM)
and condition-based maintenance (CBM) in reliability engineering research and practice, the
concept of BN as a tool for fault detection has warranted further exploration. Furthermore,
to avoid the computational complexities associated with calculating conditional probabilities
for large networks, some software tools such as Netica (Norsys Software Corporation 2021),

Figure 3. Typical structure of a DBN (Cai et al. 2013).
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WinBUGS (Griffin and Steel 2007), Hugin (Nielsen and Sørensen 2010) and MSBNx (Kadie,
Hovel, and Horvitz 2001) have been developed to create and manipulate BNs and their differ-
ent variations. For this study, the Netica software application has been used.

3. DBN model development

In this section, aDBNmodel is developed for the reliability analysis aswell as fault diagnosis of offshore
wind turbine gearboxes by taking intoaccount the degradation informationof subassemblies. TheDBN
modelhasbeendivided into three layers: the fault layer, the subassembly layer, and the system layer.The
model is brokendown to the fault layer in order tohighlight the progression froma fault to the failure of
the gearbox system. The system layer consists of the gearbox which has been divided – based onmod-
ular composition – into five components in the subassembly layer that are most critical to the reliable
operation of the gearbox. These components include the gears, bearings, lubrication system, housing
and shaft. The subassembly layer is further broken down to the fault layer which shows the different
avenues through which each subassembly may fail. The nodes in the fault layer are referred to as the
root nodes as they have no parents. The manifestation of one of the failure modes triggers the failure
of its associated subassembly which in turn leads to the failure of the gearbox system.

The system was assumed to degrade in four stages, which were represented as four time slices
denoted by T = 0, T = 1, T = 2 and T = 3. The progression of the root nodes in the DBN model
between degradation states follows aWeibull distribution as it can be used to represent systemdeterio-
ration (see e.g. Le and Andrews 2016; Dinwoodie, Quail, and McMillan 2021; Douard, Domecq, and
Lair 2012). The degradation factor of each failure mode in the DBN is determined from the reliability
function of the analogous 2-parameter Weibull distribution. This is given below as (Nielsen 2011)

f (t|g, b) = g

b
t(g−1) exp − t

b

( )g{ }
, for g . 0, andb . 0 (4)

where g represents the shape parameter and b represents the scale parameter. The failure rates which
were used as the basis for gearboxWeibull distributions (life data) were obtained from Smolders et al.
(2010) and Bhardwaj, Teixeira, and Soares (2019a). For ease of computation, it was assumed that the
degradation parameters for each time slice are identical. The life data for gearbox subassemblies are
shown in Table 1.

To incorporate CBM strategy, a repair action was introduced at the first stage of degradation, i.e. at
time sliceT = 1. Thiswas done through addingdecision andutilitynodes to theDBNmodel to forman
influence diagram (ID). A decision node is a type of node which presents different options of decisions
that are to bemade. This node can have a direct impact on chance nodeswhich are nodes that represent
variables of interest and show the probabilities of different results. Decision nodes can also have certain
associated costs which are represented by utility nodes (Yang and Frangopol 2018). The effects of CBM
strategy on the reliability of the gearbox system are described further in Section 4.4.

The local BN models which represent the gearbox assembly are based on the causal relationship
between the performance of the subassemblies and that of the gearbox. These BN models are then
connected by time-based arcs to incorporate time dependence. Each subsystem is represented by a
chance node with two states:

. ‘Yes’, which signifies the reliability of the subassembly/assembly, and

. ‘No’, which signifies the probability of failure.

The representation of the unexpanded BN model can be seen in Figure 4.
The conditional probability tables (CPTs) for gearbox system performance have been generated

for the subassembly and system layers to complete the BN model. They represent the relationship
between the failure modes and each subassembly and the relationship between the subassemblies

1854 T. ELUSAKIN AND M. SHAFIEE



and the gearbox system respectively. Tables 2–6 present the conditional probability tables for each
of the subassemblies and the system. In these Tables, the value ‘1’ represents the state of the system
working while the value ‘0’ represents the state of system failure. The probabilities of each child
node are obtained based on the gearbox assembly being a series system. For example, Table 2
shows that one of the failure modes having a state of ‘0’ causes the gear subassembly to have a
state of ‘0’ itself, meaning that the gear subassembly only works when none of its failure modes
occur.

The data obtained from the DBN analysis of the gearbox system is then used as input for further
analysis using the BlockSim® software tool (Reliasoft Blocksim 2021).

4. Results and discussion

4.1. Reliability analysis

The reliability of a system is described as the ability of that system to perform its desired functions,
for a specific time and under specific conditions (BSI 2016). The reliability of the offshore wind tur-
bine gearbox, given that it is a series system, can be calculated as:

R(t) =
∏n
i=1

Ri(t) (5)

where n is the number of components and Ri(t) indicates the reliability of the component i (in the
context of this study, subassembly i) within the system. The transient reliability function plot for the
entire gearbox system is shown in Figure 5.

Table 1. Life data for gearbox subassemblies.

Failure modes Subsystem T = 1 (h) T = 2 (h) T = 3 (h) Subsystem repair time (h)

Gear teeth fail Gear b = 0.96
g = 1057.79

b = 0.96
g = 1057.79

b = 0.96
g = 1057.79

12

Gear teeth slip b = 1.07
g = 1921.36

b = 1.07
g = 1921.36

b = 1.07
g = 1921.36

Abnormal noise b = 1.46
g = 347.55

b = 1.46
g = 347.55

b = 1.46
g = 347.55

Loss of function Bearings b = 1.00
g = 15.86

b = 1.00
g = 15.86

b = 1.00
g = 15.86

12

Bearings ring creep b = 0.98
g = 100.01

b = 0.98
g = 100.01

b = 0.98
g = 100.01

Abnormal noise b = 0.99
g = 98.35

b = 0.99
g = 98.35

b = 0.99
g = 98.35

Misalignment b = 0.99
g = 98.35

b = 0.99
g = 98.35

b = 0.99
g = 98.35

Overheating b = 0.99
g = 97.55

b = 0.99
g = 97.55

b = 0.99
g = 97.55

Loss of function Lubrication System b = 1.01
g = 51.16

b = 1.01
g = 51.16

b = 1.01
g = 51.16

4

Fracture in housing 1.03
g = 440.14

b = 1.03
g = 440.14

b = 1.03
g = 440.14

12

Leakage b = 0.99
g = 360.74

b = 0.99
g = 360.74

b = 0.99
g = 360.74

Fatigue and fracture Shaft b = 0.99
g = 121.54

b = 0.99
g = 121.54

b = 0.99
g = 121.54

12

Bending/deflection b = 0.99
g = 162.23

b = 0.99
g = 162.23

b = 0.99
g = 162.23

Surface finish degradation b = 0.99
g = 237.51

b = 0.99
g. = 237.51

b = 0.99
g = 237.51

Misalignment b = 1.01
g = 439.15

b = 1.01
g = 439.15

b = 1.01
g = 439.15
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As can be seen, the reliability of the system gradually decreases until it reaches a value of 0.0228
at the end of its design lifetime. The transient reliability of each subassembly over the gearbox life-
span was also determined and can be seen in Figure 6. The reliability for each subassembly can be

Figure 4. Unexpanded DBN model.
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Table 3. CPT of bearings subassembly performance.

Loss of function Bearing ring slip Abnormal noise Misalignment Overheating P (Bearings = 1)

1 1 1 1 1 1
1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 0
1 1 0 1 1 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 0
1 0 1 1 1 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 0
1 0 0 1 1 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 0
0 1 0 1 1 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

Table 4. CPT of lubrication system performance.

Loss of function P (Lubrication system = 1)

1 1
0 0

Table 5. CPT of housing subassembly performance.

Fracture in housing Leakage P (Housing = 1)

1 1 1
1 0 0
0 1 0
0 0 0

Table 2. CPT of gear subassembly performance.

Gear teeth fail Gear teeth slip Abnormal noise P (Gear = 1)

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0
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calculated using the Equation below:

R(t) = e
−

t
h

( )b

(6)

where b is the shape parameter and h is the scale parameter.
The reliability plot for each subassembly varies considerably and this can be attributed to the

different rates at which each subassembly fails. The mean availability of the gearbox over its lifetime
was obtained and can be seen in Figure 7. The mean availability is defined as the proportion of time
in which the system is able to operate during a given time period. Therefore, the mean availability

Table 6. CPT of shaft subassembly performance.

Fatigue and fracture Bending/deflection Surface finish degradation Misalignment P (Shaft = 1)

1 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 0
1 0 1 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 0
0 1 1 1 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

Figure 5. Reliability plot for gearbox over its lifetime.
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can be calculated using the following Equation:

A(t) = 1
t

∫t
0
A(u)du (7)

where u is the time of the most recent repair.
As can be seen, the availability drops in the first seven years of operation before stabilising at a

value of about 0.99981 over the remaining lifetime of the gearbox system. This availability infor-
mation can be used in a variety of different manners, such as estimating the annual energy output
(AEO) and associated costs for a specified offshore wind farm.

The mean-time between failure (MTBF), which is defined as the total time the system should be
in operation divided by the number of times maintenance interventions have been performed on
the system, is obtained for the entire gearbox system. Mathematically, this can be represented as:

MTBF = T
M

(8)

Figure 6. Reliability plot for gearbox subassemblies over its lifetime.

Figure 7. Mean availability for the gearbox over its lifetime.
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where T represents the total time that the gearbox should be in operation and M represents the
number of maintenance interventions performed on the system during its 25-year lifespan. M is
calculated mathematically using the equation:

M =
∫T
0
l(t) (9)

where l(t) is the rate of occurrence of failure at time t. The gearbox is expected to experience func-
tional failure for approximately 3.8 times. This means that the maintenance/repair actions, includ-
ing both up-tower repairs and full gearbox replacements, will occur 4 times over the system lifetime.

4.2. Fault diagnosis

As stated previously, the BN technique has the ability to perform both forward (predictive) and
backward (diagnostic) analyses. Fault diagnosis is performed on the gearbox system through back-
ward analysis of the DBN model. As faults are known to contribute to the deterioration in the per-
formance of complex mechanical systems, fault diagnosis plays an important part in identifying and
isolating faults (Ren, Wang, and Wang 2015).

Fault diagnosis through BN backward analysis is performed by following the direction of arcs
from child nodes back to their parent nodes, i.e. moving from effect to cause (Kabir and Papado-
poulos 2019). This analysis involves obtaining new beliefs (posterior probabilities) about any node
given new evidence is provided. It is important to note that this method of fault diagnosis can only
present the probability of a fault occurring. The higher the posterior probability of the fault node,
the more likely it is that the corresponding fault has occurred (Liu et al. 2020).

In this model, if evidence of system failure is presented at time slice T = 1 (i.e. the ‘No’ state at the
gearbox node = 100% or 1), the posterior probabilities at the fault and subassembly layer will be
updated. As can be seen in Figure 8, the node with the highest probability of failure is the loss of
function for the bearings subassembly, identifying this as the most probable cause of system break-
down/failure across all time slices.

Figure 8. Backward (diagnostic) analysis of the wind turbine gearbox system.
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4.3. Reliability importance

The reliability importance of each gearbox subassembly is also obtained in order to determine the
effect of the reliability of each subsystem on the reliability of the entire gearbox system. Analysing
the reliability importance of individual subassemblies is imperative for a variety of reasons such as
determining the major causes of system breakdown, evaluating the consequences of failure of each
subassembly, scheduling of timely maintenance activities, and so on (Daemi, Ebrahimi, and Fotuhi-
Firuzabad 2012).

The importance measures in this DBN model are derived by calculating the difference between
the prior and posterior probabilities for each subassembly when an evidence of system failure at the
final time slice (i.e. the ‘No’ state at the gearbox node = 100% or 1 at T = 3) is provided. The higher
the difference, the higher the importance measure. The prior and posterior probabilities for each
subsystem at each time slice are given in Table 7.

The prior probabilities in Table 7 were determined using the relationship between the perform-
ance of each subassembly and the performance of the gearbox at the final time slice before evidence
of a failure is introduced (i.e. the ‘No’ state at the gearbox node = 100% or 1 at T = 3). The posterior
probabilities were determined following the introduction of evidence of failure. The difference
between prior and posterior probabilities for different subassemblies is also shown in Figure 9.

As can be seen, the bearings subassembly has the highest probability difference value, followed
by the shaft, lubrication system, housing and eventually the gear subassemblies. This order is
confirmed by the failure criticality index, which identifies and ranks the impact that each subsystem
has on the overall gearbox failure. This can be expressed mathematically as:

FCIi = Number of failures caused by subsystem i in (0, t)
Number of BOP systsem failures in (0, t)

(10)

Figure 10 depicts the FCI values for subassemblies of the wind turbine gearbox system which
confirms that the bearings subsystem has the highest index, followed by the shaft, lubrication sys-
tem, housing and gear. This is consistent with the results of the study performed on wind turbine
gearbox failures by Sheng (2014) and the reliability of floating offshore wind turbines by Li et al.
(2019) which showed that 70% of gearbox failures are attributable to bearings.

4.4. Incorporation of CBM strategy

CBM is introduced through adding decision and utility nodes to the DBN model. As shown in
Figure 11, if an evidence of failure in the time sliceT = 1 is provided, and the decision ismade to repair
(represented by the decision nodeDrep), the reliability of the gearbox in time slice T = 2 will increase
to 100%. This is because the perfect maintenance actions performed on the gearbox system restore it

Table 7. Prior and posterior probabilities of all gearbox subsystems in each time slice.

T = 1 T = 2 T = 3

Subassembly Prior Posterior Prior Posterior Prior Posterior

Gear Yes 0.9973 0.9926 0.9946 0.9853 0.9919 0.9780
No 0.0027 0.0074 0.0054 0.0047 0.0081 0.0220

Bearings Yes 0.9017 0.7290 0.8110 0.4850 0.7310 0.2660
No 0.0993 0.2710 0.1890 0.5150 0.2690 0.7340

Lubrication System Yes 0.9812 0.9487 0.9628 0.8980 0.9447 0.8490
No 0.0188 0.0513 0.0372 0.1020 0.0553 0.1510

Housing Yes 0.9953 0.9872 0.9906 0.9744 0.9860 0.9618
No 0.0047 0.0128 0.0094 0.0256 0.0140 0.0382

Shaft Yes 0.9790 0.9426 0.9584 0.8860 0.8860 0.8310
No 0.0210 0.0574 0.0416 0.1140 0.1140 0.1690
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to its original condition. The utility of performing repair action, which is the negative value of its rela-
tive cost, is represented by utility node Urep and assumed to be Urep =−1000 for this analysis.

4.5. Sensitivity analysis

A sensitivity analysis has been performed to determine the effects of variations in key metrics (such
as coverage factor and redundancy) on the performance of the wind turbine gearbox system. The
coverage factor, which refers to the percentage of faults that can be detected in any engineering sys-
tem while it is being monitored, is an important measure in the assessment of how effective a CM
technology is (Elusakin and Shafiee 2020).

The effects of the coverage factor on reliability, availability, MTBF, and expected number of fail-
ures were determined. Figure 12 shows the transient reliability plots for the gearbox system at cov-
erage factors of 100%, 80%, 60%, 40%, and 20%. As can be seen, the reliability of the gearbox will
decrease faster with the reduction in the coverage factor.

Figure 9. Difference between prior and posterior probabilities.

Figure 10. Failure criticality index for subassemblies of the wind turbine gearbox system.
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The effect of the coverage factor on mean availability is shown in Table 8. As can be seen, the
mean availability decreases with the reduction in the coverage factor.

The effect of the coverage factor on the gearbox’s MTBF was also analysed. It can be seen from
Table 9 that the MTBF decreases with the reduction in the coverage factor. This signifies that the
amount of time in which the system is in operation decreases as the fault detection capacity
declines.

Table 10 shows the effect of the coverage factor on the average number of failures. As can be
seen, the average number of failures increases with the reduction in the coverage factor. This
shows that a lower level of fault detection leads to a larger number of system failures.

The effect of redundancy on the gerabox’s MTBF was also analysed by adding another bearing
subsystem to the gearbox system. Redundancy has a positive impact on MTBF as it is seen to
increase the gearbox’s MTBF from 6.5 years to 21.9 years. The redundancy also leads to a reduction
in the average number of failures from 3.8 to 1.1 over the gearbox’s lifetime.

Figure 11. Gearbox system performance (a) without evidence of CBM (b) with evidence of CBM.
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5. Conclusion and further works

This paper presented a reliability analysis and fault diagnosis model based on a dynamic Bayesian
network (DBN) for offshore wind turbine gearboxes while incorporating degradation information
and condition-based maintenance (CBM) strategy. The gearbox was divided into five subassemblies
including gears, bearings, lubrication system, housing and shafts that are connected with each other

Figure 12. Effect of 100%, 80%, 60%, 40%, and 20% coverage factor on system reliability.

Table 9. Effect of coverage factor on the gearbox’s MTBF.

Coverage factor (%) MTBF (Years)

100 6.58
80 5.15
60 3.91
40 2.58
20 1.29

Table 8. Effect of coverage factor on the gearbox’s availability.

Coverage factor (%) Availability

100 0.99981
80 0.99976
60 0.99968
40 0.99952
20 0.99904

Table 10. Effect of coverage factor on average number of failures.

Coverage factor (%) Average number of failures

100 3.8
80 4.8
60 6.4
40 9.6
20 19.2
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in series. The reliability, availability and mean-time between failures (MTBF) of the gearbox system
over its lifetime were estimated. Fault diagnosis of the offshore wind turbine gearbox was performed
and the reliability importance and failure criticality index were calculated. The bearing subassembly
was determined to be the least reliable component, confirmed by it having the highest failure criti-
cality index as well as the highest difference between prior and posterior probabilities over time.
This was then followed by the shaft, lubrication system, housing and gears. The fault diagnosis
results showed that loss of function in the bearing subassembly is the most likely root cause for
the gearbox failure. A sensitivity analysis was also conducted to determine the effects of fault cover-
age factor (as an indicator of the fault detection ability) on reliability, availability, andMTBF, as well
as the effect of redundancy on MTBF and average number of failures. The results showed that fault
coverage factor and adding a redundant bearings subassembly have a considerable positive impact
on system performance. A reduction in coverage factor is directly correlated with decreases
in reliability, availability and MTBF. The introduction of redundancy also resulted in an increase
in MTBF.

For future research, a number of opportunities are available. Lessons learned from the present
reliability analysis and fault diagnosis study can be extended to other multi-component systems
within or outside of the wind energy sector. Another opportunity for further work can be to
apply the DBN approach to reliability analysis while taking into account imperfect repair and com-
mon-cause failures. Understanding the effects of weather-induced loads on wind turbines reliability
can be an interesting subject for research.
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