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Abstract  

The ever-increasing global energy demand has necessitated new wind energy projects to 

move further offshore and into deeper waters where there are more spaces available and 

the wind is often stronger. The gearbox system is known as one of the most critical 

subassemblies of the offshore wind turbine drivetrain in which failures could lead to long 

downtimes and high repair costs. Therefore, it is crucial to accurately diagnose and predict 

the gearbox faults in the early stage and improve the reliability on continuous basis. This 

study develops a new dynamic Bayesian network (DBN) framework for fault diagnosis 

and reliability analysis of an offshore wind turbine gearbox system by incorporating 

components’ degradation information and condition-based maintenance (CBM) strategy. 

For the purpose of this modelling, the gearbox system is broken down into five degradable 

subassemblies connected to each other in series. The reliability, availability and mean 

time between failures (MTBF) are estimated along with reliability importance and failure 

criticality index (FCI) for each subassembly. Fault diagnosis results identified the loss of 

function in the bearing subassembly as the most likely underlying cause of a failure in the 

gearbox system. A sensitivity analysis is also conducted to determine the effects of fault 

coverage factor on reliability, availability, MTBF and the expected number of failures, as 

well as the effects of redundancy on MTBF and average number of failures.  

Keywords: Fault diagnosis; Offshore wind turbine; gearbox; reliability; mean-time 

between failures; dynamic Bayesian network (DBN). 
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1 INTRODUCTION 

The offshore wind energy industry has experienced an exponential growth over the past 

decade. Despite the COVID-19 pandemic, the world’s installed offshore wind capacity 

increased from 27.7 GW at the end of 2019 to 31.9 GW at the end of 2020 1. To 

accommodate the growth of wind energy, new wind farm projects are moving further 

offshore and into deeper waters where there are more spaces available and the wind is 

often stronger 2. Due to extreme weather conditions and harsh environments, the offshore 

wind turbines are subject to larger loads and more complex maintenance processes as 

compared to onshore wind turbines 3. The transition to deeper waters has also necessitated 

the usage of alternative foundations such as floating substructures that are more expensive 

and more complex than fixed foundations 4. 

The gearbox system is one of the most important drivetrain components in both 

onshore and offshore wind turbines. The main function of a gearbox is to transmit power 

from the rotor to the generator by increasing the low input rotational speed from the rotor 

at high torque to a high output speed for the electric generator at low torque 5. The wind 

turbine gearbox comprises many subassemblies and components that degrade over time 

due to environmental factors and material ageing. Figure 1 shows a standard wind turbine 

gearbox system with its major components including gears, bearings, lubrication system, 

housing and shafts.  

*Figure 1* 

Wind turbine gearbox systems are subject to various complex loads which can cause 

wear and fatigue damage. These loads are often due to rapidly changing weather 

conditions, high winds and gusts, extreme turbulence, high operating temperature and oil 

degradation. Analyses of the wind energy databases such as SPARTA indicate that 

gearboxes are among the most frequently failing components of wind turbines 7. Any 

functional failure in gearbox components could lead to long wind turbine shutdowns and 

major maintenance works, which consequently result in considerable losses in terms of 

both power and finances. In order to improve production availability and reduce operation 

and maintenance (O&M) costs, the operational safety and reliability of offshore wind 

turbine gearboxes must be given high priority. 
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Despite many studies about the reliability analysis of offshore wind turbines, the 

gearbox system has received little attention up to now. In particular, there are some gaps 

in the literature regarding the underlaying causes of gearbox failure, the influencing 

factors in subasslembles’ degradation, and how the reliability of the overall system can 

be improved. To address these gaps, this study aims to develop a new dynamic Bayesian 

network (DBN) framework to perform an advanced reliability analysis and fault diagnosis 

of the gearbox system and its subassemblies by taking into account degradation 

information and condition-based maintenance (CBM) strategy. Our proposed DBN model 

provides a number of advantages. First, it provides an ability to perform both prognostic 

(forward) and diagnostic (backward) analyses; Second, it accommodates both discrete 

and continuous models of time; and third, it supports maintenance decision-making by 

incorporating the health condition information. 

The lifetime distributions of different subassemblies and their failure modes are 

considered as input for reliability analysis of the gearbox system. For the purpose of our 

modelling, the gearbox system is broken down into five degradable subassemblies 

connected to each other in series. The heath condition of each subassembly is classified 

to four different phases, represented by different time slices.  The reliability, availability 

and mean time between failures (MTBF) are estimated along with reliability importance 

and failure criticality index (FCI) for each subassembly. A sensitivity analysis is also 

conducted to determine the effects of fault coverage factor on reliability, availability, 

MTBF and the expected number of failures, as well as the effects of redundancy on MTBF 

and average number of failures. Among different technologies available on the market, 

the R80 gearbox configuration with nominal power of 2MW has been considered in this 

study. This gearbox system is still one of the popular configurations in wind energy 

industry and its failure information has been widely reported in the literature (e.g., see 8). 

The rest of the paper is organised as follows. Section 2 reviews the literature on 

reliability analysis of offshore wind turbine gearboxes and provides some background 

information on Bayesian Networks. Section 3 presents our proposed dynamic Bayesian 

network model for the reliability analysis of offshore wind turbine gearboxes. Section 4 

discusses the results, and finally, Section 5 concludes the paper. 
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2 LITERATURE REVIEW 

2.1 Reliability analysis of offshore wind turbine gearboxes 

The reliability analysis of offshore wind turbines and their components is a relatively new 

subject that has attracted a great deal of attention over the last decade. Dinmohammadi 

and Shafiee 
10 applied a fuzzy failure mode and effect analysis (FMEA) to assess the risks 

associated with failure of offshore wind turbines. In this study, the gearbox was identified 

as the second and third most critical wind turbine subsystem based on the traditional and 

fuzzy FMEA analyses, respectively. In another work, Shafiee and Dinmohammadi 11 

analysed the reliability of both onshore and offshore wind turbines using an extended 

FMEA technique and then compared the results from risk priority number (RPN) measure 

with those obtained based on a cost priority number (CPN) measure. This study also 

identified the gearbox as the second most critical component in both types of wind 

turbines. Guo et al. 12 performed a reliability analysis of floating offshore wind turbines 

by combining both reliability block diagram (RBD) and fault tree analysis (FTA) 

techniques. The study concluded that the yaw system, gearbox, cooling system and 

mooring lines would need to be given highest priority for maintenance. Kang et al. 13 

applied the FTA to analyse the reliability of a semi-submersible floating offshore wind 

turbine in both qualitative and quantitative ways. They found out that the material 

degradation was the most prevalent failure mode of the gearbox system. 

With respect to offshore wind turbine gearboxes, some studies have been conducted 

in recent years. Yang and Jiang 14 analysed the reliability of an offshore wind turbine 

gearbox as part of an effort to describe how wind farm SCADA systems contribute to the 

development of a reliability centred maintenance (RCM) strategy. Bhardwaj et al. 15 

performed a component level reliability analysis by using the FMEA technique to 

determine failure causes, and then applied a stepwise reliability prediction method to 

estimate the overall gearbox failure rate. Li et al. 16 considered the gearbox as a multi-

state system and applied the non-homogenous continuous time Markov process to 

optimise its maintenance policy.  

A number of other studies have focused on failure analysis of the wind turbine 

gearbox at a component level. Zhao et al. 17 propsoed a method for the prediction of wind 

turbine gearbox failures based on a least square support vector machine (LS-SVM) 
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algorithm. Sheng 18 conducted a study in which 320 gearbox damage records were 

analysed to identify top failure modes and root causes. The results revealed that the 

bearings were the most frequent failure mode of the gearbox.  

Most of the reliability studies on wind turbine gearboxes have applied conventional 

analysis techniques. These techniques such as FMEA and FTA possess several drawbacks 

19,20. One of the major drawbacks is that the conventional techniques fail to take into 

account the dynamic, non-binary and multi-component nature of a mechanical system 

such as the wind turbine gearbox. Another drawback is that incorporating degradation 

information of assets over time can be complicated. Furthermore, the traditional 

reliability measures such as RPN do not provide detailed information on the criticality of 

components and subsystems in a complex system such as the offshore wind turbine 

gearbox. 

To overcome these drawbacks, advanced reliability analysis techniques have been 

adopted in a number of studies. Le and Andrews 21 applied the Petri net (PN) technique 

to model the degradation process and optimise the inspection and maintenance schedules 

for offshore wind turbines. They used an extended version of the PNs, known as 

stochastic Petri net (SPN) to capture the dynamic and stochastic nature of offshore wind 

turbines operation. The wind turbine components were assumed to degrade in multiple 

discrete states based on Weibull distributed failure times. In another study, Elusakin et al. 

22 presented a SPN model for reliability analysis and maintenance scheduling of floating 

offshore wind turbines and their support structure components, including floating 

platform, moorings and anchoring system. Lazakis and Kougioumtzoglou23 applied the 

Bayesian Belief Networks (BBN) with failure mode, effect and criticality analysis 

(FMECA) as well as hazard identification (HAZID) techniques to rank offshore wind 

turbine components based on their failure criticality. 

2.2 Bayesian Networks 

Bayesian networks (BN) provide a method through which probabilistic connections 

between variables can be modelled. Developed in the 1980s, the technique is rooted in 

statistics and it provides a simplistic way to solve complex decision-making problems24. 

The BN consists of nodes which represent random variables, arcs which link nodes in a 

directed acyclic graph (DAG), and conditional probability tables (CPT) which define the 
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probability of a node given all potential combinations of its parent nodes25. Each node 

holds a finite number of states which cannot occur simultaneously and arcs which are 

used to connect multiple nodes indicating direct probabilistic relationships.  

BNs, also known as belief networks, are based on the application of the Bayes 

theorem to calculate conditional probabilities. The network is normally built from 

existing data or expert opinion on the variables of consequence and the dependencies 

between them26. The Bayes theorem is based on the knowledge that observations about 

the end result of a system/process must be updated when new evidence is introduced. BNs 

can be applied to solve decision-making problems based on prior knowledge about system 

operation24. A simple BN structure is shown in Figure 2. 

*Figure 2* 

In Bayes theorem, posterior probability of an event can be expressed in terms of its 

prior probability, likelihood function and normalisation constant. This can be expressed 

mathematically as: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
  ,                                              (1) 

where 𝑃(𝐴|𝐵) is the posterior probability and constitutes the belief of 𝐴 occurring given 

the observation of evidence 𝐵, 𝑃(𝐵|𝐴) signifies the likelihood of 𝐵 being observed given 

that the event 𝐴 holds true, 𝑃(𝐵) represents the probability of the evidence occurring and 

𝑃(𝐴) is the prior probability.  

Dynamic Bayesian networks (DBN) are an extension of BNs which include an 

explicit time dimension. The DBN approach expands the power of conventional 

reliability analyses by including common causes and multi-state variables27. A DBN is a 

transition model based on random probability distribution splintered over a set of random 

variables, over which a collection of conditional probability assumptions is defined. The 

feature of time-invariance also ensures that the variable dependency model remains 

unchanged at any time. The term “dynamic” is adopted as an attachment to BN when 

multiple time slices are needed to accurately represent the evolution of the system through 

time28. Due to a DBN being analogous to a semi-Markovian random process with order 

𝑡 − 1, a local BN is extended to t number of time slices when 𝑡 =  2. Such models are 
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referred to as “two-time-slice temporal Bayesian network” or 2-TBN 28. A general 

structure of a DBN is shown in Figure 3. 

*Figure 3* 

If 𝐵1 is a Bayes net that represents the prior probability distribution of variable states 

𝑃(𝑍1) and 𝐵→ is a Two-Timeslice BN (2TBN) which represents 𝑃(𝑍𝑡|𝑍𝑡−1), a DBN can 

be defined as (𝐵1, 𝐵→) by means of a DAG as 30: 

𝑃(𝑍𝑡|𝑍𝑡−1) =  ∏ 𝑃(𝑍𝑡
𝑖|Pa(𝑍𝑡

𝑖))

𝑁

𝑖=1

 (2) 

where 𝑍𝑡
𝑖 represents the ith node at time 𝑡, and Pa(𝑍𝑡

𝑖) are the parent nodes of (𝑍𝑡
𝑖) within 

the network which can be in the same or preceding time slice. The joint distribution of a 

DBN can be obtained by expanding the 2TBN into T number of time slices, as follows: 

𝑃(𝑍1:𝑇) =  ∏ ∏ 𝑃(𝑍𝑡
𝑖|Pa(𝑍𝑡

𝑖))

𝑁

𝑖=1

𝑇

𝑡=1

 (3) 

In the context of wind energy, BNs have been applied towards reliability assessment, 

fault diagnosis and prognosis, and operation and maintenance (O&M) planning. BNs are 

adopted in reliability analysis of wind turbines due to the effect of better reliability on 

reduction of O&M costs which in turn leads to a reduction in levelised cost of electricity 

(LCOE)31. To this effect, Nielsen and Sørensen 32 applied the DBN technique to 

incorporate wind turbine blade inspection measurements into remaining useful life (RUL) 

prediction. With the emergence of condition monitoring (CM) and condition-based 

maintenance (CBM) in reliability engineering research and practice, the concept of BN 

as a tool for fault detection has warranted further exploration. Furthermore, to avoid the 

computational complexities associated with calculating conditional probabilities for large 

networks, some software tools such as Netica 33, WinBUGS 34, Hugin 35 and MSBNx 36 

have been developed to create and manipulate BNs and their different variations. For this 

study, the Netica software application has been used. 
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3 DBN Model development 

In this section, a DBN model is developed for the reliability analysis as well as fault 

diagnosis of offshore wind turbine gearboxes by taking into account the degradation 

information of subassemblies. The DBN model has been divided into three layers: the 

fault layer, the subassembly layer, and the system layer. The model is broken down to the 

fault layer in order to highlight the progression from a fault to the failure of the gearbox 

system. The system layer consists of the gearbox which has been divided – based on 

modular composition – into five components in the subassembly layer that are most 

critical to the reliable operation of the gearbox. These components include the gears, 

bearings, lubrication system, housing and shaft. The subassembly layer is further broken 

down to the fault layer which shows the different avenues through which each 

subassembly may fail. The nodes in the fault layer are referred to as the root nodes as they 

have no parents. The manifestation of one of the failure modes triggers the failure of its 

associated subassembly which in turn leads to the failure of the gearbox system.  

The system was assumed to degrade in four stages, which were represented as four 

time slices denoted by 𝑇 = 0, 𝑇 = 1, 𝑇 = 2 and 𝑇 = 3. The progression of the root nodes 

in the DBN model between degradation states follows a Weibull distribution as it can be 

used to represent system deterioration (see e.g., 21,37,38). The degradation factor of each 

failure mode in the DBN is determined from the reliability function of the analogous 2-

parameter Weibull distribution. This is given below as: 39 

𝑓(𝑡|𝛾, 𝛽) =  
𝛾

𝛽⁄ 𝑡(𝛾−1) exp {− (
𝑡

𝛽
)

𝛾
}, for 𝛾 > 0, and 𝛽 > 0, (4) 

where 𝛾 represents the shape parameter and 𝛽 represents the scale parameter. The failure 

rates which were used as the basis for gearbox Weibull distributions (life data) were 

obtained from Smolders et al. 8 and Bhardwaj et al. 15. For ease of computation, it was 

assumed that the degradation parameters for each time slice are identical. The life data 

for gearbox subassemblies is shown in Table 1.  

*Table 1* 

To incorporate CBM strategy, a repair action was introduced at the first stage of 

degradation, i.e. at time slice 𝑇 = 1. This was done through adding decision and utility 
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nodes to the DBN model to form an influence diagram (ID). A decision node is a type of 

node which presents different options of decisions that are to be made. This node can 

have a direct impact on chance nodes which are nodes that represent variables of interest 

and show the probabilities of different results. Decision nodes can also have certain 

associated costs which are represented by utility nodes 25. The effects of CBM strategy 

on reliability of the gearbox system are described further in Section 4.4. 

The local BN models which represent the gearbox assembly are based on the causal 

relationship between the performance of the subassemblies and that of the gearbox. These 

BN models are then connected by time-based arcs to incorporate time dependence. Each 

subsystem is represented by a chance node with two states: 

• “Yes”, which signifies the reliability of the subassembly/assembly, and  

• “No”, which signifies the probability of failure.  

The representation of the unexpanded BN model can be seen in Figure 4. 

*Figure 4* 

The conditional probability tables (CPTs) for gearbox system performance have been 

generated for the subassembly and system layers to complete the BN model. They 

represent the relationship between the failure modes and each subassembly and the 

relationship between the subassemblies and the gearbox system respectively. Tables 2-6 

present the conditional probability tables for each of the subassemblies and the system. 

In these Tables, the value “1” represents the state of the system working while the value 

“0” represents the state of system failure. The probabilities of each child node are obtained 

based on the gearbox assembly being a series system. For example, Table 2 shows that 

one of the failure modes having a state of “0” causes the gear subassembly to have a state 

of “0” itself, meaning that the gear subassembly only works when none of its failure 

modes occur. 

*Table 2* 

*Table 3* 

*Table 4* 

*Table 5* 
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*Table 6* 

The data obtained from the DBN analysis of the gearbox system is then used as input 

for further analysis using the BlockSim® software tool 40. 

4 Results and discussion 

4.1 Reliability analysis 

The reliability of a system is described as the ability of that system to perform its desired 

functions, for a specific time and under specific conditions 41. The reliability of the 

offshore wind turbine gearbox, given that it is a series system, can be calculated as: 

𝑅(𝑡) =  ∏ 𝑅𝑖(𝑡)

𝑛

𝑖=1

 (5) 

where 𝑛 is the number of components and 𝑅𝑖(𝑡) indicates the reliability of the component 

𝑖 (in the context of this study, subassembly 𝑖) within the system. The transient reliability 

function plot for the entire gearbox system is shown in *Figure 5.  

*Figure 5* 

As can be seen, the reliability of the system gradually decreases until it reaches a 

value of 0.0228 at the end of its design lifetime. The transient reliability of each 

subassembly over the gearbox lifespan was also determined and can be seen in Figure 6. 

The reliability for each subassembly can be calculated using the Equation below: 

𝑅(𝑡) =  𝑒
−(

𝑡
𝜂

)
𝛽

 (6) 

where 𝛽 is the shape parameter and 𝜂 is the scale parameter. 

*Figure 6* 

The reliability plot for each subassembly varies considerably and this can be 

attributed to the different rates at which each subassembly fails. The mean availability of 

the gearbox over its lifetime was obtained and can be seen in Figure 7. The mean 

availability is defined as the proportion of time in which the system is able to operate 

during a given time period. Therefore, the mean availability can be calculated using the 

following Equation:  
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𝐴(𝑡) =
1

𝑡
∫ 𝐴(𝑢)𝑑𝑢

𝑡

0

 (7) 

where 𝑢 is the time of the most recent repair. 

As can be seen, the availability drops in the first seven years of operation before 

stabilising at a value of about 0.99981 over the remaining lifetime of the gearbox system. 

This availability information can be used in a variety of different manners, such as 

estimating the annual energy output (AEO) and associated costs for a specified offshore 

wind farm. 

*Figure 7* 

The mean-time between failure (MTBF), which is defined as the total time the system 

should be in operation divided by the number of times maintenance interventions have 

been performed on the system, is obtained for the entire gearbox system. Mathematically, 

this can be represented as: 

𝑀𝑇𝐵𝐹 =  
𝑇

𝑀
 

(8) 

where T represents the total time that the gearbox should be in operation and M represents 

the number of maintenance interventions performed on the system during its 25-year 

lifespan. M is calculated mathematically using the equation: 

𝑀 = ∫ 𝜆(𝑡)
𝑇

0

 
(9) 

where 𝜆(𝑡) is the rate of occurrence of failure at time t. The gearbox is expected to 

experience functional failure for approximately 3.8 times. This means that the 

maintenance/repair actions, including both up-tower repairs and full gearbox 

replacements, will occur 4 times over the system lifetime. 

4.2 Fault diagnosis  

As stated previously, the BN technique has the ability to perform both forward 

(predictive) and backward (diagnostic) analyses. Fault diagnosis is performed on the 

gearbox system through backward analysis of the DBN model. As faults are known to 

contribute to the deterioration in performance of complex mechanical systems, fault 

diagnosis plays an important part in identifying and isolating faults 42.  
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Fault diagnosis through BN backward analysis is performed by following the 

direction of arcs from child nodes back to their parent nodes, i.e., moving from effect to 

cause 43. This analysis involves obtaining new beliefs (posterior probabilities) about any 

node given new evidence is provided. It is important to note that this method of fault 

diagnosis can only present the probability of a fault occurring. The higher the posterior 

probability of the fault node, the more likely it is that the corresponding fault has occurred 

44.  

In this model, if evidence of system failure is presented at time slice T=1 (i.e., the 

“No” state at the gearbox node = 100% or 1), the posterior probabilities at the fault and 

subassembly layer will be updated. As can be seen in Figure 8, the node with the highest 

probability of failure is the loss of function for the bearings subassembly, identifying this 

as the most probable cause of system breakdown/failure across all time slices.  

*Figure 8* 

4.3 Reliability importance 

The reliability importance of each gearbox subassembly is also obtained in order to 

determine the effect of the reliability of each subsystem on the reliability of the entire 

gearbox system. Analysing the reliability importance of individual subassemblies is 

imperative for a variety of reasons such as determining the major causes of system 

breakdown, evaluating the consequences of failure of each subassembly, scheduling of 

timely maintenance activities, and so on 45.  

The importance measures in this DBN model are derived by calculating the 

difference between the prior and posterior probabilities for each subassembly when an 

evidence of system failure at the final time slice (i.e., the “No” state at the gearbox node 

= 100% or 1 at T=3) is provided. The higher the difference, the higher the importance 

measure. The prior and posterior probabilities for each subsystem at each time slice are 

given in Table 7. 

*Table 7* 

The prior probabilities in Table 7 were determined using the relationship between 

the performance of each subassembly and the performance of the gearbox at the final time 

slice before evidence of a failure is introduced (i.e., the “No” state at the gearbox node = 



13 

 

100% or 1 at T=3). The posterior probabilities were determined following the 

introduction of evidence of failure. The difference between prior and posterior 

probabilities for different subassemblies is also shown in Figure 9. 

*Figure 9* 

As can be seen, the bearings subassembly has the highest probability difference 

value, followed by the shaft, lubrication system, housing and eventually the gear 

subassemblies. This order is confirmed by the failure criticality index, which identifies 

and ranks the impact that each subsystem has on the overall gearbox failure. This can be 

expressed mathematically as: 

FCI𝑖 =  
Number of failures caused by subsystem 𝑖 in (0,𝑡)

Number of BOP systsem failures in (0,𝑡)
                         (10) 

Figure 10 depicts the FCI values for subassemblies of the wind turbine gearbox 

system which confirms that the bearings subsystem has the highest index, followed by 

the shaft, lubrication system, housing and gear. This is consistent with the results of the 

study performed on wind turbine gearbox failures by Sheng 18 and the reliability of 

floating offshore wind turbines by Li et al. 16 which showed that 70% of gearbox failures 

are attributable to bearings.  

*Figure 10* 

4.4 Incorporation of CBM strategy 

CBM is introduced through adding decision and utility nodes to the DBN model. As 

shown in Figure 11, if an evidence of failure in the time slice T=1 is provided, and the 

decision is made to repair (represented by the decision node Drep), the reliability of the 

gearbox in time slice T=2 will increase to 100%. This is because the perfect maintenance 

actions performed on the gearbox system restore it to its original condition. The utility of 

performing repair action, which is the negative value of its relative cost, is represented by 

utility node Urep and assumed to be Urep = -1000 for this analysis. 

*Figure 11* 
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4.5 Sensitivity analysis 

A sensitivity analysis has been performed to determine the effects of variations in key 

metrics (such as coverage factor and redundancy) on the performance of the wind turbine 

gearbox system. The coverage factor, which refers to the percentage of faults that can be 

detected in any engineering system while it is being monitored, is an important measure 

in assessment of how effective a CM technology is 46.  

The effects of coverage factor on reliability, availability, MTBF, and expected 

number of failures were determined. Figure 12 shows the transient reliability plots for the 

gearbox system at coverage factors of 100%, 80%, 60%, 40%, and 20%. As can be seen, 

the reliability of the gearbox will decrease faster with the reduction in the coverage factor. 

*Figure 12* 

The effect of coverage factor on mean availability is shown in Table 8. As can be 

seen, the mean availability decreases with the reduction in the coverage factor. 

*Table 8* 

The effect of the coverage factor on the gearbox’s MTBF was also analysed. It can 

be seen from Table 9 that the MTBF decreases with the reduction in the coverage factor. 

This signifies that the amount of time in which the system is in operation decreases as the 

fault detection capacity declines. 

*Table 9* 

Table 10 shows the effect of coverage factor on the average number of failures. As 

can be seen, the average number of failures increases with the reduction in the coverage 

factor. This shows that a lower level of fault detection leads to a larger number of system 

failures. 

*Table 10* 

The effect of redundancy on the gerabox’s MTBF was also analysed by adding 

another bearing subsystem to the gearbox system. Redundancy has a positive impact on 

MTBF as it is seen to increase the gearbox’s MTBF from 6.5 years to 21.9 years. The 

redundancy also leads to a reduction in average number of failures from 3.8 to 1.1 over 

the gearbox’s lifetime. 
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5. Conclusion and further works 

This paper presented a reliability analysis and fault diagnosis model based on a dynamic 

Bayesian network (DBN) for offshore wind turbine gearboxes while incorporating 

degradation information and condition-based maintenance (CBM) strategy. The gearbox 

was divided into five subassemblies including gears, bearings, lubrication system, 

housing and shafts that are connected with each other in series. The reliability, availability 

and mean time between failures (MTBF) of the gearbox system over its lifetime were  

estimated. Fault diagnosis of the offshore wind turbine gearbox was performed and the 

reliability importance and failure criticality index were calculated. The bearing 

subassembly was determined to be the least reliable component, confirmed by it having 

the highest failure criticality index as well as the highest difference between prior and 

posterior probabilities over time. This was then followed by the shaft, lubrication system, 

housing and gears. The fault diagnosis results showed that loss of function in the bearing 

subassembly is the most likely root cause for the gearbox failure. A sensitivity analysis 

was also conducted to determine the effects of fault coverage factor (as an indicator of 

the fault detection ability) on reliability, availability, and MTBF, as well as the effect of 

redundancy on MTBF and average number of failures. The results showed that fault 

coverage factor and adding a redundant bearings subassembly have a considerable 

positive impact on system performance. A reduction in coverage factor is directly 

correlated with decreases in reliability, availability and MTBF. The introduction of 

redundancy also resulted in an increase in MTBF. 

For future research, a number of opportunities are available. Lessons learned from 

the present reliability analysis and fault diagnosis study can be extended to other multi-

component systems within or outside of the wind energy sector. Another opportunity for 

further work can be to apply the DBN approach to reliability analysis while taking into 

account imperfect repair and common-cause failures. Understanding the effects of 

weather-induced loads on wind turbines reliability can be an interesting subject for 

research.
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