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Abstract

In 1996, Jens Franke in an unpublished paper states that the homotopy

category of E(1)-local spectra is equivalent as a triangulated category to

D1(A), the derived category of quasi-periodic cochain complexes of period 1

for primes p ≥ 3. This is Franke’s realization functorR : D1(A)→ Ho(L1Sp).

However, Irakli Patchkoria spotted gaps in the proof of J.Franke that were

filled in a series of papers and put in a firm ground that for primes p ≥ 5

Franke’s realization functor is a triangulated equivalence. The categories

D1(A) and v are in fact tensor-triangulated, that is, both categories posses

a monoidal structure that are compatible with the triangulated structure.

In this thesis we prove that Franke’s realization functor commutes with

the monoidal products up to a natural isomorphism, that is, R i is tensor-

triangulated functor.
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Chapter 1

Introduction

1.1 Overview

One can say that the main object of study in stable homotopy theory is

the stable homotopy category, a category which contains an immense amount

of geometrical and topological information. This geometric and topological

information comes up as homotopy groups of spheres, invariants of vector

bundles of manifolds such as characteristic classes and K-theory, and ho-

mology and cohomology groups of CW-complexes or simplicial sets. This

information is encoded in the notion of a (sequential) spectrum, a sequence

of spaces

X0, X1, X2, . . .

together with specified structure maps σn : ΣXn → Xn+1. A map f : X → Y

between spectra is a collection of maps {fn : Xn → Yn}n∈N that are compati-

ble with the structure maps of the spectra X and Y . The various flavours of
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geometrical and topological information appear now as the stable homotopy

groups of a spectrum X, which is the Z-graded abelian group given by the

colimit of homotopy groups of the component spaces (or of their geometric

realization if they are given as simplicial sets),

π∗(X) := colim
k

π∗+k(Xk).

In order to study the stable homotopy category one uses various models

that represent the same avatar of stable homotopy category. These models

use the theory of model categories, a machinery introduced by Quillen in [37]

and risen to prominence in the subsequent years. A model category C is a cat-

egory equipped with three classes of morphisms, the weak equivalences, the

cofibrations and fibrations satisfying certain axioms that are reminiscent of

weak homotopy equivalences and (co)fibrations of topological spaces. These

axioms ensure that it is possible to localize or invert with respect to the class

of weak equivalences bypassing set-theoretic issues. Thereby, one obtains a

new category Ho(C) (in a universal way) which is called the homotopy cate-

gory of C. This category contains the vital information about the homotopy

theory in C. One way to compare the underlying homotopy theories of two

model categories is by a relation known as Quillen equivalence. A Quillen

equivalence between model categories C and N is a functor F : C → N with

certain conditions that ensure the induced functor on homotopy categories

LF : Ho(C)→ Ho(N ) is an equivalence of categories but also preserves much

more structure.

Nowadays there are many models that all have the stable homotopy cat-
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egory SH as their homotopy category. In the terminology of model cate-

gories, there are many model categories, which are all Quillen equivalent to

each other and have as homotopy category the stable homotopy category

SH. One of the oldest is the category of Bousfield-Friedlander spectra or

sequential spectra [13] SpN which we alluded to in the first paragraph. With

these definitions in mind, we can define the stable homotopy category as

SH := Ho(SpN). These model categories are stable in the sense that their ho-

motopy categories have the structure of a triangulated category. Now suppose

we have a stable model category C with homotopy category Ho(C) and as-

sume that Ho(C) is equivalent as triangulated category to SH. This gives rise

to the following natural question. Does this equivalence come from a Quillen

equivalence? Schwede shows in [45] that the stable homotopy category SH is

rigid. This means that every stable model category C such that

Φ: SH
∼=−→ Ho(C),

that is, the homotopy category Ho(C) is triangulated equivalent to the ho-

motopy category Ho(SpN) is Quillen equivalent to SpN. The stable homotopy

category has much more structure than just a triangulated category. In par-

ticular interest to us, it has a compatible monoidal structure, i.e., it is a

tensor-triangulated category in the sense of Balmer [4]. The rigidity prop-

erty of the stable homotopy category can be extended to take into account

monoidal product on spectra [46]. One further structural property of the

stable homotopy category is that it is not algebraic. This means that the

triangulated category SH is not triangulated equivalent to a triangulated
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category that arises from chain complexes in an additive or abelian category.

One of the most useful tools of modern stable homotopy theory is Bous-

field localization. It is a formal method to “invert” a class of maps in a model

category C, in way that one can consider these maps to be weak equivalences

in C. Since the stable homotopy category is so complicated, mathematicians

have used the tool of Bousfield localization to simplify SH and break apart

into smaller pieces that are easier to understand. These localizations involve

localizations at a prime p, that is, one inverts those maps that induce isomor-

phism after tensoring with Z(p). Even though the p-local stable homotopy

category SH(p) is much easier to handle, still has the structural properties of

SH. In particular, like SH, the p-local version is also rigid and also it cannot

be algebraic. In sharp contrast, if one inverts all primes at once, that is,

if one inverts those maps that induce isomorphisms after tensoring with Q,

then one obtains the stable homotopy category of rational spectra denoted

by SHQ. A key result in rational stable homotopy theory essentially states

that the stable homotopy theory of rational spectra is Quillen equivalent to

that of chain complexes of rational vector spaces Ch(Q), which is an algebraic

model category. So, there is a huge structural difference between SHQ and

SH(p).

In the previous paragraph we mentioned that one can break apart the

stable homotopy category into building blocks, one for each prime. By the

work of Devinatz, Hopkins, Smith, Ravenel, Morava, [22] one can further

break apart the p-local parts into smaller parts, one for every natural number
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n that fit into a sequence. Thus, for every spectrum X there exists a tower

. . .→ L2X → L1X → L0X ∼= XQ,

satisfying various properties which we will not discuss here. The chromatic

convergence theorem states mild conditions under which the homotopy limit

over this tower is the p-localization X → X(p). In this sense, there is for each

prime number a countable family of stable homotopy categories between

SHQ and SH(p), which we denote for now {SHn}n∈N. Like rationalization and

p-localization, these stable homotopy categories come also from Bousfield lo-

calization with respect a homology theory. In this case, it is represented by

the Johnson-Wilson spectrum E(n). The localized categories SHE(n) = SHn

promise to be simpler and indeed there are algebraic descriptions of these

categories for some n and p. The algebraic description of these categories

started with the paper [11]. Bousfield provides a purely algebraic descrip-

tion of the objects of the E(1)-local stable homotopy category at an odd

prime. However, there is not a full description for the homotopy classes of

maps. Franke in the unpublished paper [16] uses Bousfield’s work to prove

that the homotopy category of E(1)-local spectra is equivalent, through a

functor which he calls realization to the derived category of a specific type of

cochain complexes in an abelian category. This derived category is denoted

by D1(ComodE(1)∗E(1)) and we call this Franke’s algebraic model. Further-

more, this equivalence of triangulated categories cannot come from a Quillen

equivalence and in this sense, one calls these type of equivalences exotic.

Franke continues to generalize the result to ‘’higher chromatic primes”, i.e.,
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the case for E(n)-local spectra depending on p. However there were some

gaps in the proof that were filled in the paper by Patchkoria [34], where the

author also provides many more cases of exotic equivalences. Also in the

paper [43] a more streamlined proof can be found for the case E(1).

Finally, we come to the subject of this thesis. The homotopy cate-

gory of E(n)-local spectra and Franke’s algebraic model are actually tensor-

triangulated categories. The main result of Ganter in [18] is that that in the

case n = 1, Franke’s realization functor maps the derived tensor product to

the smash product of E(1)-local spectra in a natural way. That is, there is a

functor isomorphism

R(−⊗LE(1) −) ∼= R(−) ∧L R(−). (1.1)

However, this equivalence cannot be monoidal for the case p = 3 since it

cannot be an associative functor. To illustrate this, consider p = 3 and

denote the mod 3 Moore spectrum by M(3). This Moore spectrum has a

unique multiplication which is not associative. But

R(M(3)) ∼= . . .→ 0→ E(1)∗
·p−→ E(1)∗ → 0→ . . .

has an associative multiplication. This means that we cannot hope to find an

associative functor isomorphism between −∧L and the derived tensor prod-

uct of twisted complexes. However, for sufficiently large prime number the

question of associativity of the functor R remains open. Retrospectively, one

could argue this is good enough, since in the realm of tensor triangulated cat-
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egories, functors between tensor-triangulated categories are only required to

preserve the monoidal products up to natural isomorphism, see [4, Definition

3] and [3, Remark 2.4].

We now come to the more technical aspects of the thesis. The category

C1(ComodE(1)∗E(1)), which is a version of Franke’s algebraic model, does not

have enough projectives, so the derived tensor product − ⊗LE(1) − in (1.1)

is not trivial. Ganter defines the monoidal product on D1(ComodE(1)∗E(1))

as the tensor product of underlying degree-wise flat replacements, i.e., res-

olutions that are flat as E(1)∗-modules which does not use model category

theory techniques. This technique is very similar to how derived tensor prod-

ucts are defined in algebraic geometry, where usually the abelian category of

quasi-coherent sheaves lacks enough projectives, but does have enough flat

objects. We use the theory from the paper [6] by Barnes and Roitzheim

which constructs a monoidal model category on C1(ComodE(1)∗E(1)), with

operation denoted again ⊗ which is equivalent in a sense to Franke’s alge-

braic model. This means, the homotopy category of the aforementioned

model structure together with the derived tensor product, i.e., the pair

(D1(ComodE(1)∗E(1)),⊗L) is naturally a tensor-triangulated category. The

derived tensor product ⊗L, like in all monoidal model categories, is defined

by cofibrant replacements on both arguments and then tensoring on point-

set level. Another aspect in that we diverge from Ganter’s paper, is that,

like [16] which is one of the founding papers of derivators, Nora’s paper is

in the language of derivators. We chose to work in model category the-

ory instead, which we believe makes our exposition more explicit and more

straightforward. Another novelty is the use of homology of categories with

15



coefficients in the proof of Theorem 4.3.1. This tool simplifies and stream-

lines the computation of homology groups that goes into a spectral sequence

that computes homology of homotopy colimits. A theme that is common

throughout the thesis is the use of techniques that come from simplicial ho-

motopy theory. Simplicial objects play a very important auxiliary role, both

in the theory of homotopy colimits and in calculating homology of categories

with coefficients. Lastly, the author was unable to follow the argument in

the proof of [18, Proposition 7.2.5] that a certain crowned diagram realizes

the tensor product of disks of twisted-periodic complexes. In particular, the

author could not find a relative discussion about the obligatory sign that

appears in the definition of the tensor product of complexes. We hope our

proof elucidates the introduction of the signs in the tensor product.

Overall, we have relied in more modern methods and we refer to modern

literature. Our techniques put Ganter’s theorem in firm rigorous footing and

in better context with other existing literature. We hope it will be possible

to extend the result to other settings as well.

1.2 Main Result & Strategy

In this section we will explain in more technical detail the main result and

our strategy. We have hinted that the triangulated categories D1(A) and

Ho(L1Sp) admit a triangulated structure and a monoidal structure compat-

ible with the triangulation. The overall plan of this thesis is to rigorously
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prove that the Franke’s realization functor

R : D1(A)→ Ho(L1Sp)

is compatible with the respective monoidal structures. That is, we want to

show that

R : (D1(A),⊗L)→ (Ho(L1Sp),∧L)

is a ⊗-functor. We now state it formally.

Theorem 1.2.1. Franke’s realization functorR : (D1(A),⊗L)→ (Ho(L1Sp),∧L)

commutes with respect the monoidal products up to a natural isomorphism,

that is,

R(C•∗ ⊗L D•∗)
∼= R(C•∗) ∧L R(D•∗).

In other words, we have to show that the following diagram commutes,

up to a natural isomorphism.

D1(A)×D1(A) Ho(L1Sp)× Ho(L1Sp)

D1(A) Ho(L1Sp).

R×R

⊗L ∧L

R

(1.2)

We stress yet again that for the case p = 3 the functor Rcannot be monoidal.

So, there will be no discussion on associativity of R. In order to prove that

the above diagram commutes we will break it down two big parts, namely
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the left half and the right half side of the following diagram.

D1(A)×D1(A) //

−⊗L−

��

Ho(L1Sp
CN )× Ho(L1Sp

CN )oo

∼=
��

// Ho(L1Sp)

=

��

Ho(L1Sp
CN×CN )

hocolim
55

Lpr!=HoLanpr
��

Ho(L1Sp
DN )

hocolimDN

::

Li∗
��

D1(A)
Q−1

// Ho(L1Sp
CN )

Q
oo

hocolimCN

// Ho(L1Sp)

(1.3)

The left hand side and right half side are further broken down into smaller

pieces. Our task at hand now is to prove that the left half is a commutative

diagram and all the all the smaller triangles on the right hand side are also

commutative. Since all the functors are natural, once we show all the smaller

triangles commute it will follow that (1.2) also commutes. This makes the

exposition easier since the proofs are broken apart into smaller propositions

and easier-to-prove statements. We will properly define all the functors in

(1.3) in Chapter 4.

1.3 Organization of the Chapters

In this section we will outline how the thesis is organized. The structure is

as follows:

(i) Chapter 2 contains the necessary background in homotopy theory. We

will recall relevant theory from simplicial homotopy theory, model cat-

egory theory, homotopy colimits and homotopy Kan extensions. Lastly
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we will recall some notation and some theory from stable homotopy

theory, spectra, and Bousfield localizations.

(ii) Chapter 3 contains the necessary background in homological algebra.

We will recall relevant theory from homological algebra and Franke’s

algebraic model. Tangentially to that we will introduce various model

structures on Franke’s algebraic model which are essential for our ex-

position. We will also recall an another tool that we will use in this

thesis, homology of a category with coefficients in a functor. This alge-

braic gadget will be essential in our computation of a spectral sequence

that computes the homology of a homotopy colimit of spectra in the

following chapter.

(iii) Chapter 4 is the heart of the thesis. It deals with the left half side of

(1.3). The main result is Theorem 4.3.1. In summary, there exists a

bifunctor i∗Lpr!(−∧L−) such that under certain conditions it preserves

objects in L, a full subcategory of Ho(L1Sp
CN ) and

Q(i∗Lpr!(X ∧L Y )) ∼= Q(X)⊗L Q(Y ).

In order to prove the theorem, we will break apart the proof into three

parts. These three parts cover Section 4.5, Section 4.6 and Section

4.7. In Section 4.5 we will employ homology of categories with coef-

ficients in order to show that the bifunctor i∗Lpr!(− ∧L −) preserves

objects in L. Then, in Section 4.6 we show that Q(i∗Lpr!(X ∧L Y )) is

a good candidate for the tensor product The proof relies on the theory
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of homotopy Kan extensions and the structural properties of crowned

diagrams. Lastly, in Section 4.7 we prove, after a reduction to a sim-

pler case, that indeed Q(i∗Lpr!(X ∧L Y )) is naturally isomorphic to the

tensor product Q(X) ⊗L Q(Y ). The proof relies on Section 4.6 and is

the most technically involved in the thesis.

(iv) Chapter 5 deals with the right hand side of the above diagram. In

summary, we show that for the bifunctor i∗Lpr!(− ∧L −) we have a

canonical isomorphism

hocolim
CN

i∗Lpr!(X ∧L Y ) ∼= hocolim
CN

X ∧L hocolim
CN

Y.

The main result is Theorem 5.1.1 which also is broken down to smaller

lemmas. The proofs rely on standard methods of homotopy theory, i.e.,

smash products for diagram model categories, homotopy Kan exten-

sions and a homotopy finality argument.

(v) Lastly, in Chapter 6 we will conclude the proof of our main result,

Theorem 1.2.1. Since we have done most of the work in the previous

chapters, our last proof is a short one.

More details of contents of each chapter can be found the introduction of

each chapter.
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Chapter 2

Background in Homotopy

Theory

In this chapter we recall the elements of homotopy theory that are necessary

for the proof of our result. The chapter is structured as follows. In Sec-

tion 2.1 we will recall some relevant facts from simplicial homotopy theory.

Simplicial objects play an auxiliary role in our exposition but nevertheless

quite an important one. In Section 2.2 we will recall some relevant definitions

from model category theory which we heavily rely on throughout. In Section

2.3 we will recall the concepts of monoidal model categories and enriched

model category. We also discuss some relevant material on monoidal model

categories on the arrow category and how this interacts with the monoidal

product. In Section 2.4 we will discuss the Bousfield-Kan definition of homo-

topy colimits in a simplicial model category. Inherently the Bousfield-Kan

construction is a statement about the interaction of model category theory

and simplicial homotopy theory. This means we will return to simplicial ob-
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jects and we will use the material discussed in the first section. In Section

2.5 we recall some definitions of homotopy Kan extensions which are cen-

tral in our exposition. In Section 2.6 we will recall some definitions from

spectra, i.e., stable homotopy theory which we mostly treat as a black box.

Throughout the chapter we do not try to be complete or prove every single

proposition and we assume the reader is familiar with the notions defined.

We will provide all the necessary references.

2.1 Simplicial Objects

In this section we will recall some relevant facts about simplicial objects that

will be useful later on. For reference see [19, Chapter I]. A more classical

reference is [29].

2.1.1 Main Definitions

The main reference for this subsection is [19, Chapter I]

Definition 2.1.2. Let ∆ denote the following category. The objects of ∆

are the totally ordered sets [n] = {0, 1, 2, . . . n} for n ≥ 0. A morphism

σ : [n] → [k] is an order-preserving function, i.e., a function σ : [n] → [k]

such that σ(i) ≤ σ(j) for 0 ≤ i ≤ j ≤ n.

Definition 2.1.3. A simplicial set is a functor X : ∆op → Set, where Set

is the category of sets. The functor category Fun(∆op, Set) is called the

category of simplicial sets. We will usually write the value of the functor X

at an object [n], as Xn
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As usual, the standard n-simplex ∆n is the simplicial set

∆n : ∆op → Set

[m] 7→ Hom∆([m], [n]) = ∆([m], [n]),

and with notation from Definition above, the value of the n-simplex at [k] is

given by ∆n
k := ∆([k], [n]).

There is a more traditional way to define a simplicial set than the one

given in Definition 2.1.3, which we describe below. Among all of the functors

(order preserving maps) [m] → [n] appearing in ∆ there are special ones,

namely

di : [n− 1]→ [n] 0 ≤ i ≤ n (cofaces)

sj : [n+ 1]→ [n] 0 ≤ j ≤ n (codegeneracies)

where, by definition,

di(k) =


k if k < i

k + 1 if k ≥ i

and

sj(k) =


k if k ≤ i

k − 1 if k > i.

These functors satisfy a list of identities called the cosimplicial identities

which we do not reproduce here, see [19, Figure 1.2, p4]. The maps dj, si
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and these relations can be viewed as a set of generators and relations for

∆. Thus, in order to define a simplicial set Y , it suffices to write down sets

Yn, n ≥ 0 (sets of n-simplices) together with maps

di : Yn → Yn−1, 0 ≤ i ≤ n (faces)

sj : Yn → Yn+1, 0 ≤ j ≤ n (degeneracies)

satisfying the simplicial identities, which are dual to the cosimplicial identi-

ties, see [19, p5]. We can depict a simplicial set Y : ∆op → Set as follows

Y0 Y1oooo Y2 · · ·oo oo
oo

where we usually omit the degeneracy maps for typographical reasons.

Notation 2.1.4. The letter I will stand for the simplicial set ∆1, and (I, 0)

for the pointed at 0. S0 denotes the pointed simplicial 0-sphere, i.e., th

union of the standard 0-simplex with a disjoint base point. S1 denotes the

simplicial circle I/(0 ∼ 1), i.e., ∆1/∂∆1.

Simplicial sets are ubiquitous since every category C gives rise to a sim-

plicial set as the next example shows.

Example 2.1.5. Let C be a small category and let N(C) be the following

simplicial set

N(C)n = HomCat([n], C),

where HomCat([n], C) denotes the set of functors from [n] to C. In other words
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a n-simplex is a string

c0 → c1 → . . .→ cn

of composable morphisms in the category C.

We will encounter nerves of certain categories later on. Simplicial sets

are very closely related to topological spaces as our next example will show.

Example 2.1.6. There is a standard functor

∆op → Top

[n] 7→ |∆n|

The topological standard n-simplex |∆n| ⊂ Rn+1 is the space

|∆n| =

{
(t0, . . . , tn) ∈ Rn+1 :

n∑
i=0

ti = 1, ti ≥ 0

}
,

with the subspace topology. The map θ∗ : |∆n| → |∆m| induced by θ : [n]→

[m] is defined by

θ∗(t0, . . . , tm) = (s0, . . . , sn),

where

si =


0 θ−1 {i} = ∅

Σj∈θ−1(i)tj θ−1i ̸= ∅.

Conversely, every topological space gives rise to a simplicial set. Let T be a

topological space and consider the simplicial set

Sing(T ) : ∆op → Set [n] 7→ HomTop(|∆n| , T ).
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This is the object that leads to the singular homology of the space T .

In fact, the homotopy theory of simplicial sets and topological spaces are

“equivalent” in a specific sense. We will recall this form of equivalence of

homotopy theories in the next section. In the example above we mention

briefly the construction of the topological standard n-simplex |∆n| from the

simplicial set ∆n. This construction can be thought of as “ gluing” and can

be made formal as a certain form of colimit. We will return to that later on

when we recall the geometric realization functor.

2.1.7 Decomposition & Skeleta

In this subsection we will discuss the canonical and natural filtration of a

simplicial object by its skeleton. The skeleton of a simplicial object is con-

structed using lower dimension simplices, and it turns out any simplicial

object can be written as a colimit of its skeleta. We will return to the skele-

tal filtration of a simplicial object later in Subsection 2.4.20 and Subsection

3.5.9, and it will play a fundamental role in our exposition. For reference for

this subsection, we refer to [19, Chapter VII].

Following Definition 2.1.3, we can replace the category Set with any other

category C in which all small limits and all small colimits exist, that is to say

C is complete and cocomplete. Then we consider the category sC, i.e., the

category of simplicial objects in C. Let ∆≤n be the of the full subcategory

of ∆ with objects [k] for k ≤ n and denote by in : ∆≤n ↪→ ∆ the inclusion.
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Following the notation sC for the category of simplicial objects in C we denote

snC = Fun(∆op
≤n, C) = C

∆op
≤n .

There is a restriction functor,

i∗n : sC → snC,

which simply forgets the k-simplices, k > n, that is, given X ∈ sC we have

the diagram i∗nX

∆≤n
in
↪→ ∆

X→ C.

Since we assume C to be cocomplete, the restriction functor i∗n has a left

adjoint denoted by Lanin which is given by

(Lanin X)m = colim
[m]→[k]

Xk = colim
[k]∈[m]/∆n

Xk.

The colimit is over morphisms [m]→ [k] in ∆ with k ≤ n. This is an example

of a left Kan extension, a concept which we will make formal in Section 2.5.

If X ∈ sC, we define the nth skeleton of X by the formula

sknX := Lanin i
∗
nX. (2.1)

There are natural maps sknX → skmX for n ≤ m and sknX → X. Since

(sknX)m = Xm for m ≤ n, by construction, there is a natural isomorphism

colim
n

sknX
∼=−→ X. (2.2)
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Dual to the notion of skeleta are the coskeleta. The restriction functor i∗n

has also a right adjoint defined by

(Ranin X)m = lim
k→n

Xk,

with the limit over all morphism k → m in ∆ with k ≤ n. This can be used

to construct a coskeleton such that X

X
∼=−→ lim

n
cosknX.

Because C has limits and colimits, sC has a canonical structure as a sim-

plicial category, i.e., the hom-objects are not just sets but actually simplicial

sets. Thus, we have a bifunctor

Hom: Cop × C → sSet,

and further there is a functor, the so-called tensor

− ∧− : sSet× sC → sC.

which is left adjoint to Hom, see [42, Definition 3.3.1.] for details. We will

make the concept formal later on Section 2.3. In particular, if X ∈ sC and

K ∈ sSet, then a natural choice of tensor action of simplicial sets is the

following.

(K ⊙X)n =
∐
Kn

Xn. (2.3)

We denote this particular tensor with ⊙ to make it distinct with another form
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of natural tensor action of simplicial sets on an arbitrary diagram category

given in Example 2.3.15. It is now a straightforward to prove that if X ∈ sC

is a constant simplicial object, i.e., all the sets Xn for n ≥ 0 are equal and

all the face and degeneracy maps are the identity map and K ∈ sSet, then

there is a natural isomorphism

sknX ⊙ sknK ∼= skn(X ⊙K). (2.4)

There is more constructive way to obtain the skeleton sknX of a simplicial

object X ∈ sC which we now briefly explain. First we have the definition

of the latching space of a simplicial object. We also give the definition of

matching space since we are at it.

Definition 2.1.8. Let X ∈ C∆op
. The nth latching object of X is

LnX := (skn−1X)n ∼= colim
[k]∈[n]/∆n−1

Xk.

Dual to the latching space we have the nth matching space

MnX := (coskn−1X)n = lim
k→n

Xk = lim
[k]∈∆n−1/[n]

Xk,

in other words where k → n runs over all morphisms (or all monomorphisms)

in ∆ with k < n.

If Z ∈ C, we may regard Z as a constant object in sC. Then, there is an

adjunction isomorphism

HomC(Z,Xn) ∼= HomsC(∆
n ⊙ Z,X)
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for all n ≥ 0. By choosing X = sknX and Z = Xn we obtain a natural map

in sC

∆n ⊙Xn → sknX.

Setting X = skn−1X and Z = LnX we obtain a natural map

∆n ⊙ LnX → skn−1X.

Furthermore, by (2.4),

skn−1(∆
n ⊙Xn) = skn−1∆

n ⊙Xn = ∂∆n ⊙Xn

and we obtain a commutative diagram

∂∆n ⊙ LnX //

��

∆n ⊙ LnX

��
∂∆n ⊙Xn

// skn−1X.

We have the following proposition. For the proof we refer to [19, Proposition

1.7, Chapter VII].

Proposition 2.1.9. For all X ∈ sC and n ≥ 0 there is a natural pushout

square.

∂∆n ⊙Xn

∐
∂∆n⊙LnX

∆n ⊙ LnX

��

// skn−1X

��
∆n ⊙Xn

// sknX

There is a dual version for coskeleta that is given by certain pullbacks,

but we do not need this in our exposition.
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2.2 Model Categories

In this section we will introduce some relevant facts from model category

theory. Model categories were introduced by Quillen in 1967 [37]. We will

introduce the basic definitions of a model category and of derived functors.

We will also discuss various model structures on diagram (functor) categories,

homotopy colimits and stable model structures. We assume the reader is

familiar with the basics of the theory and most of the proofs are skipped and

refer to the large literature of model categories.

2.2.1 A Short Reminder of Model categories

A model category C is a complete and cocomplete category equipped with

three classes of morphisms called weak equivalences, fibrations and cofibra-

tions, satisfying certain axioms. A map that is both a weak equivalence

and a cofibration resp. fibration, is called acyclic cofibration resp. acyclic

fibration. We will not list the axioms here and reader is advised to look up

the references, for example see [24, Definition 1.1.4]. The main point of this

structure is that it allows one to do “homotopy theory” in the category C.

The most prominent examples of model categories are the categories sSet of

simplicial sets, Top of topological spaces and Ch(k), the category of chain

complexes of modules over a ring k.

For every model category C, one has the associated homotopy category

Ho(C) which is defined as the localization of C with respect to the class of

weak equivalences. The model structure ensures that we do not face any

set theoretic problems when passing to localization, i.e. Ho(C) has sets of
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morphisms. Note however that Ho(C) admits other equivalent descriptions as

well. For example Ho(C) is equivalent to the homotopy category of cofibrant

objects in C. Then Ho(C) is equivalent to the localization Ccof [W−1] where

W is the class of weak equivalences in Ccof see for example [24, Proposition

1.2.3]. Given objects X and Y of C, the notation [X, Y ] will stand for the

set of morphisms in Ho(C) between X and Y .

We will assume that in a model category C there are functorial fibrant

and cofibrant replacements. We write any cofibrant replacement functor

Q : C → C that comes with weak equivalence q : Q→ 1C

Convention 2.2.2. In what follows, we let Ho(C) denote the category Ccof [W−1].

Next, we recall the definition of a Quillen adjunction, which is the primary

way to relate different model categories.

Definition 2.2.3. A Quillen adjunction between two model categories C and

N is a pair of adjoint functors

F : C ⇄ N : G

where the left adjoint F preserves cofibrations and acyclic cofibrations (or,

equivalently G preserves fibrations and acyclic fibrations).

We refer to F as a left Quillen functor and to G as a right Quillen functor.

The usefulness of the above definition is that any such pair of adjoint functors,

induces an adjunction on the level of homotopy categories, that is,

LF : Ho(C) ⇄ Ho(N ) : RG.
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We refer LF as the left derived functor of F and RG as the right derived

functor of G. If LF , or equivalently RG is an equivalence, then the Quillen

adjunction is called a Quillen equivalence.

Convention 2.2.2 allows us to provide a very simple description of the

functor LF . Indeed, the functor

FCcof : Ccof → Ncof

preserves weak equivalences and, therefore, it induces a functor between the

localizations. This functor is precisely LF in terms of Convention 2.2.2.

So, any Quillen equivalence

F : C → N

induces an equivalence on homotopy categories

LF : Ho(C)→ Ho(N ).

However, there are examples of functors Φ: Ho(C)→ Ho(N ) that are equiv-

alences of categories, but nevertheless, they are not induced by any zig-zag

of Quillen equivalences. Such equivalences are called exotic equivalences.

Finally, an important class of model categories is the class of simplicial

model categories. These are model categories which are enriched, tensored

and cotensored over sSet and which satisfy the pushout-product axiom. If a

simplicial model category is pointed, i.e., the terminal object is isomorphic to

the initial one, then C is enriched over the category sSet∗ of pointed simplicial
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sets. In particular, we have functors

− ∧− : sSet∗ × C → C, MapC(−.−) : Cop × C → sSet∗,

and the adjunction

HomC(K ∧X, Y ) ∼= HomsSet(K,MapC(X, Y )),

see [5, Definition 6.1.28]. We will define simplicial model categories properly

in Section 2.3.

2.2.4 Diagram Model Categories

For C a model category and J any small category there are two natural ways

to put a model category structure on the functor category Fun(J, C) = CJ .

These are the projective and the injective model structures. In the greatest

generality, neither one need exist, but there are rather general conditions

that ensure their existence. One way is to restrict the properties of the

model category C in order to ensure a model structure on the category of

diagrams CJ . The other way is to restrict the properties of the indexing

category. We recall the basic definitions.

Definition 2.2.5. We define the following classes of maps in CJ .

1. The projective weak equivalences and projective fibrations are the nat-

ural transformations that are objectwise such morphisms in C.

2. The injective weak equivalences and injective cofibrations are the nat-
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ural transformations that are objectwise such morphisms in C.

If either of these choices defines a model structure on CJ , we call it the

projective model structure CJproj or injective model structure CJinj respectively.

Of course, the projective cofibrations and injective fibrations can then be

characterized by the appropriate lifting properties.

Because the projective and injective model structures on CJ have the same

weak equivalences, the identity functor Id is a Quillen equivalence between

them if they both exist. The projective model structure exists as long as

C is cofibrantly generated, see [21, Definition 11.1.2 ], while both model

structures exist if the underlying categoryC is a locally presentable (a set-

theoretic condition) and cofibrantly generated, see [26, Proposition A.2.8.2].

On the other hand if the indexing category is restricted enough say, a finite

poset, then both model structures exist without any restriction on the model

category C.

Below we introduce the definition of a direct category which is a general-

ization of the concept of a poset. The structure of a direct category allows us

to be more explicit with the cofibrations in the projective model structure.

Definition 2.2.6. Let ω denote the poset category of the ordered set {0, 1, 2, . . .}.

A small category J is called direct if there is a functor f : J → ω that sends

non-isomorphims to non-isomorphisms. We refer to f(j) as the degree of the

object j. Dually, J is an inverse category if there is a functor Jop → ω that

sends non-isomorphisms to non-isomorphisms.

For further details, see [24, Definition 5.1.1.]. Any finite poset J is a direct

category, and dually Jop is an inverse category. We provide some examples
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that will be useful later on.

Example 2.2.7. Let [1] denote the poset 0 ≤ 1.

Example 2.2.8. Consider the poset

(0, 0) //

��

(1, 0)

(0, 1)

denoted by ⌜. Let ι : [1]→ ⌜ be the map of posets which sends 0 to (0, 0) and

1 to (1, 0). In other words, ι includes the interval [1] to the top horizontal

line. Furthermore, consider the product of the interval posets [1]× [1]. It is

the following poset

(0, 0)

��

// (1, 0)

��
(0, 1) // (1, 1)

and we let i⌜ : ⌜→ [1]× [1] be the inclusion. The product [1]× [1] is usually

denoted by □.

Next we are introducing two posets that we will work with

Example 2.2.9. Let CN be the poset consisting of elements {βi, ζi | i ∈ Z/NZ}

such that βi < ζi and βi < ζi−1 for i ∈ Z/NZ. As a diagram it looks as fol-

lows:

ζ0 ζ1 . . . ζN−1

β0

OO 44

β1

OO__

. . .

``

βN−1

OObb

The other poset that will be of interest is the following.
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Example 2.2.10. LetDN be the poset consisting of elements {βn, γn, ζn : n ∈ Z/NZ}

such that βn ≤ γn ≤ ζn and βn+1 ≤ γn and γn+1 ≤ ζn. As a diagram it looks

as follows

ζ0 ζ1 . . . ζN−1

γ0

OO 44

γ1

OO``

. . .

``

γN−1

OObb

β0

OO 44

β1

OO``

. . .

``

βN−1

OObb

Definition 2.2.11. Suppose C is a small category with small colimits, J a

small direct category, z an object in J and Jz the category of all non-identity

morphisms with codomain z. The latching space functor Lz : CJ → C is the

composition

CJ → CJz colim−−−→ C,

where the first arrow is the restriction functor. Note that we have a natural

transformation

LzX → Xz

for any fixed object z ∈ C. Dually the matching space functor Mz : CJ → C

is the composition

CJ → CJz lim−→ C,

where Jz is the category of all non-identity morphisms with domain z.

Notice that, equivalently the latching space of a diagram X is given by

LzX = colim
(
Jz ↪→ J

X−→ C
)
,

37



where Jz ↪→ J is the inclusion. Dually, the matching space of a diagram X

is given by

MzX = lim
(
Jz ↪→ J

X−→ C
)
.

The following proposition is proved in [24, Theorem 5.1.3].

Proposition 2.2.12. Given a model category C and a direct category J ,

there is a model structure on CJ in which a morphism f : X → Y is a weak

equivalence (resp. fibration) if and only if the map fz : Xz → Yz is a weak

equivalence (resp. fibration) for all z ∈ J . Furthermore, f : X → Y is an

(acyclic) cofibration if and only if the induced map

Xz

∐
LzX

LzY → Yz

is an (acyclic) cofibration for all z ∈ J .

To clarify the above proposition proves that the projective pre-model

structure is a model structure; it does not introduce a new and different

model structure

Example 2.2.13. Let I be a finite poset and any model category C. We

have the model structure 2.2.12 on CI .

Remark 2.2.14. In what follows, when we have a direct category I and a

model category C, the category of diagrams CI will always have the model

structure defined in Proposition 2.2.12 without further mention. If not, we

will explicitly say so.
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2.2.15 Reedy Model Structure on Simplicial Objects

In this subsection we will review the Reedy model structure on simplicial

objects. For a reference see [5, Definition 6.9.4], also [24, Section 5.2]. We

start with the definition of a Reedy category.

Definition 2.2.16. A Reedy category is a triple (J, J+, J−) consisting of a

small category J and two wide subcategories (that is, they contain all the

objects) J+, and J−, such that there exists a functor d : J → ω, called a

degree function, such that every nonidentity map in J+ raises the degree,

every nonidentity map in J− lowers the degree, and every map f ∈ J can be

factored uniquely as f = gh, where h ∈ J−and g ∈ J+. In particular, J+ is

a direct category and J− is an inverse category, see Definition 2.2.6.

Example 2.2.17. Every direct category J , see Definition 2.2.6 is a Reedy

category, by considering J+ = J and the discrete J− = Ob(J) (with degree

on J− given by identity). Dually, any inverse category is a Reedy category.

Example 2.2.18. The prototype example of a Reedy category is the simplex

category ∆. The Reedy category structure on ∆ is defined by as follows.

(i) The degree function d : Ob(∆)→ N is defined by [k] 7→ k,

(ii) A map [k]→ [n] is in ∆+ precisely if it is injective.

(iii) A map [n]→ [k] is in ∆− precisely if it is surjective.

The Reedy category structure on ∆op is defined by switching ∆+ and ∆−.

Suppose C is a category with all small colimits and limits, and J is a

Reedy category. For each object z of J , we define the latching space functor
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Lz as the composite

CJ → CJ+ Lz−→ C,

where the latter functor is the latching space functor defined for direct cate-

gories in Definition 2.2.11 . Similarly, we define the matching space functor

Mz as the composite

CJ → CJ− Lz−→ C,

where the latter functor is the matching space functor defined for inverse

categories in Definition 2.2.11. Note that we have natural transformations

LzX → Xi →MiX

defined for X ∈ CJ .

Proposition 2.2.19. Let C be a model category and consider the category

C∆op
, i.e., the category of simplicial objects in C. A morphism f : X → Y in

sC is

(i) a Reedy weak equivalence if fn : Xn → Yn is a weak equivalence in C,

(ii) a Reedy (trivial) cofibration if for every n ≥ 0 the canonical map,

Xn

∐
LnX

LnY → Yn

is a (trivial) cofibration in C

(iii) a Reedy (trivial) fibration if for every n ≥ 0 the canonical map

Yn → Yn ×MnY MnX
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is a (trivial) fibration in C.

Remark 2.2.20. More generally, in the above proposition the Reedy cat-

egory ∆op can be interchanged with any other Reedy category J , but for

the course of our exposition we only make use of simplicial objects. The

Reedy model structure for arbitrary Reedy category J enjoys the following

property. Let C be a combinatorial model category and recall the projective

and injective model struture on CJ , Definition 2.2.5. The identity functors

provide left Quillen equivalences

Cjproj
Id−→ CJReedy

Id−→ CJinj

from the projective model structure on functors to the injective one.

It follows from the definition that a Reedy cofibrant object has a simple

description. For future reference we state it as a definition.

Definition 2.2.21. A simplicial object X ∈ sC is Reedy cofibrant if the maps

LnX → Xn are cofibrations in C for all n. A sequence of objects {Xi}i∈Z≥0

as follows

∗ → X0 → X1 → X2 → . . .

is Reedy cofibrant if all the maps in the sequence are cofibrations.

We will return to Reedy cofibrant objects and Reedy cofibrant sequences

in Section 2.4 and in Section 3.5.
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2.2.22 Homotopy Colimits in Model Categories

In this subsection we will recall some definitions of homotopy colimits in

general model categories. Recall that the functor colim: CJ → C has a right

adjoint which is given by the constant functor

const : C → CJ .

It follows from Proposition 2.2.12 that for any model category C and direct

category J , there is a Quillen adjunction

colim
J

: CJ ⇄ C : const .

One can see this by noticing that the constant functor

const : C → CJ

sends weak equivalences and fibrations in C to projective weak equivalences

and projective fibrations in CJ , that is, it is a right Quillen functor.

Definition 2.2.23 (Homotopy Colimit). Let C be a model category and let

J be a poset. Consider the projective model structure CJ . The left derived

functor of colim: CJ → C is called homotopy colimit and denoted by

hocolim
J

: Ho(CJ)→ Ho(C), X 7→ colim
J

QX,

where QX is some cofibrant replacement of X in CJ . We will explain the

concept of homotopy colimit more in the next section. If J is not a poset
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we have to require the existence of the projective model structure on CJ (in

other words, C should be cofibrantly generated) to consider the homotopy

colimit.

In the case the poset is ⌜ defined in Example 2.2.8, the homotopy colimit

of a diagram F ∈ Ho(C⌜), i.e., hocolim⌜ F is called homotopy pushout. A

particular form of homotopy pushout is the so-called homotopy cofiber or

cone, a homotopical version of ordinary cofiber (or cokernel) of a map. Recall

that the cofiber (cokernel) of a map is given by the pushout

colim

 X Y

∗

f

 .

Our next example recalls the homotopy cofiber.

Example 2.2.24 (Homotopy Cofiber). Let f : X → Y be a morphism in a

pointed model category C. The homotopy cofiber or cone of f is defined as

the homotopy colimit (homotopy pushout)

hocolim

 X Y

∗

f

 .

We can define the homotopy cofiber with the help of homotopy Kan ex-

tensions which we define later. We will denote the homotopy cofiber by

cone(f) or with hocofib(f). Another way to write the above colimit is

cone(f) = hocolim(∗ ← X → Y )

We barely touched the subject of homotopy colimits in model categories
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but this will suffice for our purposes. We will return to the subject of homo-

topy colimits in Section 2.4

2.2.25 Stable Model Categories

Recall that the homotopy category Ho(C) of a pointed model category C

supports a suspension functor

Σ: Ho(C)→ Ho(C)

given by

ΣX := hocolim(∗ ← X → ∗),

with a right adjoint functor

Ω: Ho(C)→ Ho(C)

given by

ΩX = holim(∗ → X ← ∗).

In the more familiar examples of model categories like spaces and chain

complexes, suspension and loop functors usually admit a simple description.

Example 2.2.26. Consider Top∗ the model category of pointed topological

spaces and letX ∈ Top∗. The suspension ΣX is defined as the smash product

S1 ∧ X and the loop space ΩX is defined by the mapping space of pointed
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maps Map(S1, X). It follows we have the adjoint pair (Σ,Ω), i.e.,

Map(ΣX, Y ) ∼= Map(X,ΩY ).

Example 2.2.27. Let C(K) be the category of cochain complexes of K-

modules for a commutative ring K. In this case the suspension of C• is

simply the shift, i.e., ΣC• = C•+1. Notice in this case the suspension has an

inverse Σ−1 which shifts in the opposite direction.

A stable model category is an axiomatization of the above fact, that is, if

the adjoint pair (Σ,Ω) is an adjoint equivalence.

Definition 2.2.28. A stable model category is a pointed model category for

which the unit and counit functors of the adjoint pair (Σ,Ω) are equivalences.

As we will see later, the category Sp of spectra is also a stable model cat-

egory. Leaving examples for now, we continue our discussion for an arbitrary

stable model category C.

Remark 2.2.29. If C is a pointed simplicial model category, then the sus-

pension functor

Σ: Ho(C)→ Ho(C)

admits a simple description. Indeed, by the simplicial model category axioms

the functor

S1 ∧ − : C → C

is a left Quillen functor, where S1 stands for the simplicial circe, i.e., ∆[1]/∂∆[1].
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Then, Σ can be defined as the left derived functor of S1 ∧ −, i.e.,

ΣX := S1 ∧L X = S1 ∧QX,

see, [24, p. 6.1.1]

Note that if C is stable, then the homotopy category Ho(C) is a triangu-

lated category with Σ a shift functor, see [5, Theorem 4.2.1] and [24, p. 7.1.6].

We will not recall here the definition of a triangulated category, we refer to [5,

Definition 4.1.2]. In a simplicial model category C we can choose a particular

model for the homotopy cofiber or cone, see Example 2.2.24 of a morphism

that helps with computations. It is called the mapping cone construction.

Definition 2.2.30. Suppose C is a simplicial stable model category and

f : X → Y a morphism in Ccof . Let cone(f) be the pushout of f along the

morphism canonical morphism

incl∧1: S0 ∧X → (I, 0) ∧X = CX,

that is, cone(f) comes with the pushout square

X Y

CX cone(f).

f

incl∧1

Here CX denotes the cone of X, i.e.the smash product (I, 0) ∧ X, where
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(I, 0) is the simplicial set ∆1 pointed at 0. The natural map

π : (I, 0) ∧X → S1 ∧X

and the trivial map

∗ : Y → S1 ∧X

induce, using the universal property of pushput, a map

∂ : cone(f)→ S1 ∧X

The fact that the mapping cone construction cone(f) represents the ho-

motopy cofiber and further details can be found in the proof of [24, Propo-

sition 6.3.4].

Definition 2.2.31. Let C be a simplicial stable model category and f : X →

Y a morphism in Ccof . The elementary triangle associated to f is the triangle

X
f−→ Y

ι−→ cone(f)
∂−→ S1 ∧X.

A triangle (f, g, h)

A
f−→ B

g−→ C
h−→ ΣA

in Ho(C) is called distinguished if it is isomorphic to an elementary one.

Note, that a morphism (α, β, γ) is an isomorphism of triangles if all com-

ponents are isomorphisms.
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2.3 Monoidal & Enriched Model Categories

In this section we will review some relevant facts about monoidal model cat-

egories, that is to say, model categories that support a compatible monoidal

structure. In order to do so we will make a small detour and introduce the

notion of a Quillen bifunctor. The advantage of introducing this more ab-

stract formulation first is that it axiomatizes various interesting structures

in homotopy theory that we will be using. This includes the structure of

a monoidal model category and an enriched model category. For references

for Quillen bifunctors we refer to [24, Chapter 4], and for a contemporary

reference on monoidal model categories see [5, Chapter 6].

2.3.1 Quillen Bifunctors

In this subsection we introduce Quillen bifunctors. We do not recall here the

definition of a closed symmetric monoidal category. See, [5, Definition 6.1.1].

It is usually denoted by (C,⊗, I,Hom), where I is the unit of the monoidal

product, and Hom is the inner hom. We will abuse notation and write it as

(C,⊗). We start with the definition of a two-variable adjunction.

Definition 2.3.2. Let C,D and E be categories. An adjunction of two vari-

ables or two-variable adjunction

(⊗,Homl,Homr) : C × D → E
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consists of bifunctors

⊗ : C × D → E

Homr : Dop × E → C

Homl : Cop × E → D

together with natural isomorphisms

HomC(c,Homr(d, e)) ∼= HomE(c⊗ d, e) ∼= HomD(d,Homl(c, e)).

We often abuse notation by referring to (⊗,Homr,Homl),or even ⊗ alone as

an adjunction of two variables, leaving the adjointness isomorphisms implicit.

Example 2.3.3. [42, Definition 3.7.2] If V is a closed symmetric monoidal

category and let C be a category. We say that C is a tensored V-category, if

for each v ∈ V and c ∈ C there is an object v ⊗ c ∈ C together with natural

isomorphisms

HomC(v ⊗ c, c′) ∼= HomV(v,Hom(c, c′)) ∀ v ∈ V , c, c′ ∈ C.

Similarly we say that C is cotensored if for each v ∈ V and c ∈ C there is an

object cv ∈ C together with natural isomorphisms

HomC(c
′, cv) ∼= HomV(v,HomC(c

′, c)) ∀ v ∈ V , c, c′ ∈ C.
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Then, the tensor cotensor, and hom-objects define a two-variable adjunction

V × C → C.

Example 2.3.4. Any closed symmetric monoidal category is tensored, coten-

sored and enriched over itself. These functors define a two-variable adjunc-

tion.

The above are the examples of two-variable adjunctions that most fre-

quently appear “in nature”.

Definition 2.3.5. Let (C,⊗) be a closed symmetric monoidal monoidal cate-

gory and let f : X0 → X1 and g : Y0 → Y1 be maps in C. The pushout-product

map is the universal arrow

f □ g : X0 ⊗ Y1
∐

X0⊗Y0

X1 ⊗ Y0 → X1 ⊗ Y1.

In other words, it is the universal map out of the following pushout as shown

below

X0 ⊗ Y0 //

��

X1 ⊗ Y0

��

��

X0 ⊗ Y1 //

,,

P

&&
X1 ⊗ Y1

where we have denoted the pushout P = (X0 ⊗ Y1)
∐

X0⊗Y0(X1 ⊗ Y0).

Remark 2.3.6. The pushout-product map f□g can be defined alternatively

as a left Kan extension. We will see it in Example 2.5.5.
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Definition 2.3.7. Given model categories C,D and E , an adjunction of two

variables

(⊗,Homr,Homl) : C × D → E

is called a Quillen adjunction of two variables or a left Quillen bifunctor if,

given a cofibration f : U → V in C and a cofibration g : X → Y in N , the

universal map f □ g defined in Definition 2.3.5 is a cofibration in E which

is acyclic if either f or g is. We refer to the left adjoint ⊗ of a Quillen

adjunction of two variables as a Quillen bifunctor, and often abuse notation

by using the term “Quillen bifunctor ⊗”.

An important point of left Quillen bifunctors is that they preserve weak

equivalences on the subcategories of cofibrant objects and furthermore pre-

serve cofibrant objects, see [42, Lemma 11.4.2] for a proof of this fact and

further motivation on left Quillen bifunctors.

Our first example of Quillen bifunctor, which also can be taken as a

definition is that of a monoidal model category see [24, p. 4.2.6] and [42,

Definition 11.4.6]

Definition 2.3.8. A symmetric monoidal modal category is a closed symmet-

ric monoidal categry (C,⊗, I) with a model structure such that the following

hold:

(i) The monoidal structure −⊗− : C × C → C is a Quillen bifunctor, and

(ii) the maps

QI ⊗ v → I ⊗ v ∼= v, and v ⊗QI → v ⊗ I ∼= v
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are weak equivalences if v is cofibrant.

The second condition is redundant if the unit I is cofibrant.

Example 2.3.9. Consider the monoidal categories (sSet,×) and (Top,×).

These monoidal categories equipped with the standard model structures

(Serre or Hurewicz) are both (symmetric) monoidal model categories. The

same is true for the pointed versions, i.e., (sSet∗,×) and (Top∗,×)

Example 2.3.10. Let K be a commutative ring and consider the monoidal

category (Ch(K),⊗). This monoidal category equipped with the projective

model structure is monoidal model category. However, (Ch(K),⊗) equipped

with the injective model structure is not a monoidal model structure. To re-

call these two model structures on chain complexes, see [24, Theorem 2.3.11]

and [24, Theorem 2.3.13] respectively.

A monoidal category C gives rise to more monoidal categories by consid-

ering diagrams from small categories into C. In our next example we discuss

how this is related to model category theory.

Example 2.3.11. Let (C,⊗) be a monoidal model category and let J be a

direct category. Consider the diagram category CJ with the projective model

structure, Definition 2.2.12. The category CJ inherits a monoidal structure

CJ × CJ → CJ , (X, Y ) 7→ X ⊗ Y,

where X ⊗ Y is the diagram j 7→ Xj ⊗ Yj. By [8, Proposition 4.15] (CJ ,⊗)

is a monoidal model category.
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As we mentioned in the introduction of this section, Quillen bifunctors

also capture the structure of an enriched model category. We now state the

long-waited definition of a simplicial model category.

Example 2.3.12 (Simplicial Model Category). A simplicial model category

is a model category C that is tensored, cotensored, and simplicially enriched

and such that

sSet× C → C

is a left Quillen bifunctor.

We can generalize the above and consider enriched in monoidal model

categories other than (sSet,×).

Example 2.3.13 (Enriched Model Category). Let E be a monoidal model

category. An E-model category is a category C enriched, tensored and coten-

sored over E together with a model structure such that

−⊗− : E × C → C

is a left Quillen bifunctor.

Enriched model categories, i.e., E model categories are also known as

E-modules.

Example 2.3.14. As a particular example of the above, an algebraic model

category is a Ch(Z)-model category.

Our next example of simplicial structure plays will play a fundamental

role in the thesis. Given a simplicial model category C, there is a natural

choice of simplicial model structure for the category of diagrams CJ .
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Example 2.3.15. Let J be a direct category. If C is a simplicial model

category, then so is CJ . Indeed, we define tensors and cotensors levelwise,

that is, for T ∈ sSet and X ∈ CJ

(T ∧X)z := T ∧Xz, (XT )z := (Xz)
T ,

and the mapping spaces for CJ are given by the end construction

MapCJ (X, Y ) =

∫
z∈J

MapJ(Xz, Yz).

Now that we have a simplicial structure on the functor category CJ , it will

be useful to make the mapping cone construction on this category explicit,

see Definition 2.2.30. Let J be a direct category and C be a simplicial model

category. We equip CJ with the simplicial structure given in Example 2.3.15.

If f : X → Y is a natural transformation of diagrams in CJ we can define the

mapping cone cone(f) ∈ CJ of the natural transformation f , see Definition

2.2.30. Since colimits and tensors in CJ are computed objectwise, we can

evaluate cone(f) at z ∈ J by the pushout

Xz
//

��

Yz

��
CXz

// cone(f)z,

that is,

cone(f)z = cone(fz : Xz → Yz). (2.5)

This remark will be important in Section 4.6.
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Next, we discuss that the homotopy category of a monoidal category is a

closed monoidal category. In order to do so, we first present a result that a

Quillen bifunctor of model categories induces an adjunction of two variables

on the homotopy categories.

Proposition 2.3.16. Suppose C,D and E are model categories and

(⊗,Homr,Homl) : C × D → E

is Quillen bifunctor. Then the total derived functors define an adjunction of

two variables

(⊗L,RHomr,RHoml) : Ho(C)× Ho(D)→ Ho(E)

For a proof see [24, Proposition 4.3.1.]. For objects C ∈ C and D ∈ D,

the derived functor −⊗L − is defined as follows

C ⊗L D := QC ⊗QD (2.6)

where Q is a cofibrant replacement, in the model structures C and D respec-

tively. The above proposition specializes to the case of a monoidal model

category (C,⊗), see [5, Theorem 6.1.11 ] and [24, Theorem 4.3.2].

Corollary 2.3.17. Let (C,⊗) be a symmetric monoidal model category.

Then (Ho(C),⊗L) is a closed symmetric monoidal category.
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2.3.18 Monoidal Model Structures on the Arrow Cat-

egory

In this subsection we will explore the model structures on the arrow category

Arr(C) = C[1] and the interaction with the cofiber (cokernel) functor. Recall

the interval poset [1] = {0 ≤ 1} from Example 2.2.7. The functor category

C[1] is also known as the category of arrows Arr(C). This is because, an

object in C[1] is a morphism f : X → Y and a morphism in C[1] is a natural

transformation of diagrams [1]→ C given by α : f → g which is the following

commutative square

X0
//

��

X1

��
Y0 // Y1.

The arrow category C[1] has two natural functors Ev0 : C[1] → C and Ev1 : C[1] →

C which just evaluates a diagram at 0 and 1 respectively. This is the same

as the functor that gives the source and target of an arrow f in C.

Lemma 2.3.19. [25, Lemma 1.1] Suppose C is a closed symmetric monoidal

category. The evaluation functors Ev0,Ev1 : C[1] → C have left adjoints L0, L1

and right adjoints U0, U1

Theorem 2.3.20. [25, Theorem 1.2.] Let (C,⊗) be a closed symmetric monoidal

category. The category C[1] has two different closed symmetric monoidal

structures. In the tensor product monoidal structure, the monoidal prod-

uct of f : X0 → X1 and g : Y0 → Y1 is given by

f ⊗ g : X0 ⊗ Y0 → X1 ⊗ Y1.
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The unit is L0e, and the closed structure is given by the projection map

Hom⊗(f, g) = Hom(X0, Y0)×Hom(X0,Y1) Hom(X1, Y1)→ Hom(X1, Y1).

In the pushout-product monoidal structure, the monoidal product of f and

g is the pushout product

f □ g : (X0 ⊗ Y1)
∐

X0⊗Y0

(X1 ⊗ Y0)→ X1 ⊗ Y1.

The unit is L1e, and the closed structure Hom□(f, g) is given by

Hom□(f, g) = Hom(X1, Y0)→ Hom(X0, Y0)×Hom(X0,Y1) Hom(X1, Y1).

Consider now the monoidal category (C[1],□) equipped with the projec-

tive model structure, see Proposition 2.2.12. By [25, Theorem 3.1] this is a

monoidal model structure. By Corollary 2.3.17, we have the monoidal cate-

gory (Ho(C[1]),□L). For the next lemma, recall from Example 2.2.24 the cone

or homotopy cofiber cone(f) or hocofib(f) of a map in a model category C. It

is the homotopical invariant version of the cokernel or cofiber of a morphism,

that is, the pushout

coker(f) = colim

 X Y

∗

f
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We can regard the cokernel as a functor

coker : C[1] → C[1], (X
f→ Y ) 7→ (Y → coker(f)).

Dually we have the kernel of a morphism, given by

ker(f) := lim

 X

∗ Y

f



The following [25, Theorem 1.4.]

Theorem 2.3.21. Suppose (C,⊗) is a pointed closed symmetric monoidal

category. The functor

coker : (C[1],□)→ (C[1],⊗)

is a (strongly) symmetric monoidal functor. Its right adjoint is the kernel.

The isomorphism coker(f □g) ∼= coker(f)⊗ coker(g) comes from commu-

tation of pushouts which we briefly explain. Consider the following diagram.

X1 ⊗ Y1 X0 ⊗ Y1 ∗

X1 ⊗ Y0 X0 ⊗ Y0 ∗

X1 ⊗ Y0 X1 ⊗ Y0 ∗

=

==

=
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If we take vertical pushouts in the above diagram we get the diagram

X1 ⊗ Y1 ← X0 ⊗ Y1
∐

X0⊗Y0

X1 ⊗ Y0 → ∗,

whose pushout is coker(f □ g). On the other hand, if we take horizontal

pushouts , we get the diagram

coker(f)⊗ Y1 ← coker(f)⊗ Y0 → ∗,

whose pushout is coker(f) ⊗ coker(g). Since pushouts commute with each

other, we see that

coker(f □ g) ∼= coker(f)⊗ coker(g),

both as objects in C and as maps in C.

Next, consider the monoidal category (C[1],⊗) with the injective model

structure, (C[1]inj,⊗), see Definition 2.2.5. By [25, Theorem 2.1] it is a monoidal

model category and the evaluation functor Ev1 C[1] → C is left Quillen. By

[25, Proposition 4.1.] the cokernel functor is a left Quillen and hence so is

the composition

(C[1]proj,□)
coker−−−→ (C[1]inj,⊗)

Ev1−−→ (C,⊗).

So, the fact that both functors are monoidal and left Quillen imply the

following corollary.

Corollary 2.3.22. Let (C,⊗) be a pointed symmetric monoidal model cate-
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gory, and let f and g be morphisms in C. There is a canonical isomorphism

cone(f) ∧L cone(g) ∼= cone(f □L g),

which comes from the commutation of homotopy colimits and evaluating at

the target, that is,

(Ho(C[1]),□L)
cone−−→ (Ho(C[1]),⊗L)

Ev1−−→ (Ho(C[1]),⊗L).

This corollary will be fundamental later on in Chapter 4. We will also

see a different proof of the above fact using homotopy left Kan extensions,

see Proposition 2.5.11.

2.3.23 Smash Products for Diagram Model Categories

In the following, given posets I and J , the product I × J will always have

the product order. If I and J are more generally direct categories then the

degree of an element (i, j) ∈ I × J is defined to be the sum of degrees of i

and j.

Definition 2.3.24. Let (C,⊗) be a monoidal category and let I and J be

direct categories. We define the external product, or objectwise product, which

is the bifunctor

−⊗− : CI × CJ → CI×J

sending (X, Y ) to the diagram X ⊗ Y : (i, j) 7→ Xi ⊗ Yj.

The external product is part of a two-variable adjunction. Since we do
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not use the extra structure we will not define the other two functors in the

two-variable adjunction.

We have the following proposition.

Proposition 2.3.25. Let (C,⊗) be a monoidal model category and let I and

J be direct categories . Then, the bifunctor

−⊗− : CI × CJ → CI×J

is a Quillen bifunctor, that is to say, it has a total left derived functor

−⊗L − : Ho(CI)× Ho(CJ)→ Ho(CI×J).

In fact, the above assertion follows from the more general statement that I

and J are Reedy categories, see [8, Proposition 4.15]. Alternatively, suppose

that CIinj, CJinj and CI×Jinj exist, e.g., if C is a combinatorial model category.

Since in the injective model structures the cofibrations are the objectwise

cofibrations objectwise in C, the above proposition follows directly. The

universal property of − ⊼L− implies that up to canonical isomorphism both

constructions give the same result.

Corollary 2.3.26. There is a functor isomorphism

hocolim
I×J

(X ⊗L
Y ) ∼= (hocolim

I
X)⊗L (hocolim

J
Y )

Proof. From Proposition 2.3.25, it follows that the external product preserves

cofibrant objects and preserves trivial cofibrations between diagram cofibrant
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objects. The result now follows from the strict formula

colim
I×J

(X ⊼ Y ) ∼= (colim
I

X) ∧ (colim
J

Y ).

2.4 Homotopy Colimits in Simplicial Model

Categories

In Definition 2.2.23 we saw a general definition of a homotopy colimit of

a diagram in a model category C as a left derived functor. This is called

the “global” definition. In the case that C is a simplicial model category

there is another equivalent formulation, called the “local” definition. There

is both a theory for homotopy limits and colimits but since we only use

homotopy colimits we will only refer to that and leave homotopy limits out.

In Subsection 2.4.8 we review the “local” definition of homotopy colimit and

in the next subsection 2.4.11 we will review a closely related way to construct

homotopy colimits via simplicial objects.

2.4.1 Nerves of Overcategories and Undercategories

In this subsection we will recall overcategories and undercategories. They

are also known as comma or slice category. They will be useful later on.

Definition 2.4.2. If C and D are categories, F : C → D is a functor, and d

is an object of D, then the category of objects of C over d denoted by F/d
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or (F ↓ d) is the category in which an object is a pair (c, σ) where c is an

object of C and σ is a map Fc → d in D, and a morphism from the object

(c, σ) to the object (c′, σ′) is a map τ : c→ c′ in C such that the triangle

Fc //

σ
��

Fc′

σ′
��

d

Notice that for every all the categories F/d there exists a natural forgetful

functor

π : F/d→ C, (c, σ) 7→ c. (2.7)

Let constd : F/d → D be the constant functor sending every (c, σ) to d ∈ D

and any morphism h ∈ mor(F/d) to 1d. Then, there is a natural transfor-

mation η : F ◦ π ⇒ constd given by η =
{
η(c,σ) : Fc

σ→ d
}
. A convenient way

to organize this data is the following diagram

F/d
π //

�� !!

C
F
��

∗ // D.

(2.8)

Here ∗ denotes the category with one object ∗ and one morphism. Our first

example of an overcategory is the following

Example 2.4.3. Let C = D and F = 1C. Then, the category F/d is usually

denoted by C/d. That is, an object in C/d an object is a pair (b, σ) where

b is an object of C and σ is a map b → a in C, and a morphism from the

object (b, σ) to the object (b′, σ′) is a map τ : b→ b′ that makes the following
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triangle commutative

b //

σ
��

b′

σ′
��

d

Dually to Definition 2.4.2 we can define the following category.

Definition 2.4.4. If F : C → D is a functor between small categories and d

is an object of D, then the category d/F or d ↓ F of objects of C under d is

the category in which an object is a pair (c, σ) where c is an object of C and

σ is a map σ : d → Fc in D, and a morphism from the object (c, σ) to the

object (c′, σ′) is a map τ : c→ c′ in C that makes the triangle

d
σ′

��

σ

��
Fc τ

// Fc′

Similarly, we have the dual to Example 2.4.3.

Example 2.4.5. If C is a small category and a is an object of C, then the

category of objects of C under a denoted by a/C or a ↓ C is the category in

which an object is a pair (b, σ) where b is an object of C and σ is a map

a → b in C, and a morphism from the object (b, σ) to the object (b′, σ′) is a

map τ : b→ b′ that makes the triangle

a
σ′

��

σ

��
b τ

// b′

commute.
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In fact, the categories c/C for various c can be assembled into a single

functor which we define below

Definition 2.4.6. Let C be a small category. We define the following two

functors.

• −/C : Cop → Cat, is the diagram that on an object c of C takes the

value c/C. A morphism c→ c′ induces a functor c′/C → c/C by pulling

back,

• N(−/C) : Cop → sSet, is the diagram that an object c of C takes the

valueN(c/C), and that takes the map σ : c→ c′ to the map of simplicial

sets σ∗ : N(c′/C)→ N(c/C).

Remark 2.4.7. In all of our cases of interest we only consider slice categories

of posets. So it will be useful to have a more explicit form of the slice

categories for morphisms of posets. Given a morphism of posets f : C → D,

the slice categories f/d and d/f are given by

f/d = {c ∈ C : f(c) ≤ d}

d/f = {c ∈ C : f(c) ≥ d}

A similar statement holds for the slice categories C/c and c/C. For details

see [36, Section 1].

2.4.8 Local Definition and Functor Tensor Products

As we said above, in this section we will review the local definition of ho-

motopy colimits. The main reference for this subsection is [21, Chapter
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18]. More contemporary references are [47, Section 6], while we follow the

overview given at [15, Chapter 5].

Since we would like to formulate a homotopy invariant version of functor

colim: CI → C it will be convenient to reformulate it in a way that is easier

to construct a homotopical invariant version of colim. First we recall the

functor tensor product.

Definition 2.4.9 (Functor tensor product). [21, Definition 18.3.2] Let C be a

simplicial model category and let I be a small category. If F is a I-diagram

in C and G is a Iop-diagram of simplicial sets (G : Iop → sSet), then the

functor tensor product G⊗I F is defined as follows. The object G⊗I F of C

is the coequilizer of the maps

coeq

 ∐
σ : i→i′

Gi′ ⊗ Fi ⇒
∐

i∈ob(C)

Gi ⊗ Fi


where the top map on the summand σ : i→ i′ is the composition of the map

σ∗ ⊗ 1: Xi ⊗Kj → Xi ⊗Ki

with the natural injection into the coproduct where σ∗ = X(σ) : Xi → Xi′ .

Similarly, the lower map is the composition of the map

1⊗ σ∗ : Gi ⊗ Fj → Gi ⊗ Fi

with the natural injection into the coproduct (where σ∗ : Kj → Ki).

The functor tensor product G⊗IF from the functor G⊗F : Iop×I → C is

66



an example of the general construction knows as coend. Usually it is denoted

as ∫ i∈I
Gi ⊗ Fi.

Here ⊗ is the tensor action of simplicial sets on the category C. Note that

if we take K to be the constant functor at the terminal simplicial set, which

has a unique simplex in each dimension, then we obtain

∗I ⊗I X ∼= colim
I

X.

Thus, the tensor product G ⊗I F can be thought of as the colimit of F

“fattened up” by G.

The point of the functor tensor product is that we can replace the con-

stant diagram ∗I at the terminal simplicial set in the construction ∗ ⊗I X

by a diagram of larger contractible spaces. This replacement gives us the

homotopical “wiggle” room we were looking for and produces the homotopy

colimit. The minimal natural choices for these contractible spaces come from

the nerves of over-categories and under-categories in the diagram. Given a

small category C, recall the diagram of simplicial sets N(−/C)op : Cop → sSet,

see Definition 2.4.6.

Definition 2.4.10 (Uncorrected Homotopy Colimit). Let X be a I-diagram

in a simplicial model category C. Then the uncorrected homotopy colimit is

uhocolimI X := N(−/I)⊗I X
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Spelled out from Definition 2.4.9 the object uhocolimX is given by

uhocolimX = coeq

(∐
i→j

N(j/I)⊗Xi ⇒
∐
i∈I

N(i/I)⊗Xi

)
.

This is [21, Definition 18.1.1] where the author does not use the adjective

“uncorrected”. The reason that we call it uncorrected is that in full general-

ity, in an arbitrary simplicial model category C, the above construction is not

homotopy invariant, so it does not induce a functor on the level of homotopy

categories. Problems tend to arise when the objects of our diagram are not

cofibrant. We will come back to that later one.

To briefly explain how we reached Definition 2.4.10 as a first approxima-

tion, lets look back at how we first defined the derived colimit, Definition

2.2.23. We defined it as first taking a cofibrant replacement and then calcu-

lating the ordinary colimit. With the formulation of a colimit as a functor

tensor product, Definition 2.4.9 this is the following.

hocolim: Ho(CI)→ Ho(C)

X 7→ ∗I ⊗I Xcof .

Here Xcof is a cofibrant replacement in the projective model structure CIproj.

This cofibrant replacement can be very hard to calculate, so instead of re-

placing X we replace the constant functor ∗I . If X is objectwise cofibrant,

then ∗I ⊗I Xcof and (∗I)cof ⊗I X are weakly equivalent. Here Xcof is, as

before, the cofibrant replacement in the projective model structure on CI ,

while (∗I)cof is the cofibrant replacement in the projective model structure
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on sSetI
op

= Fun(Iop, sSet). The nerve N(−/I) : Iop → sSet is cofibrant in

the projective model structure on sSetI
op

and so provides a particular choice

of a cofibrant replacement for the constant functor, and thereby we reached

the definition of uncorrected homotopy colimit Definition 2.4.10, i.e.,

uhocolimI G := N(−/I)⊗I G.

We can reestablish homotopy invariance by precomposing this functor with

an objectwise cofibrant replacement which we assume that exists in any

model category, see Subsection 2.2.1. We denote by CobjG the objectwise

functorial cofibrant replacement. The result is the corrected homotopy col-

imit

hocolim
I

: Ho(CI)→ Ho(C) G 7→ N(−/I)⊗I CobjG (2.9)

The (corrected) homotopy colimit represents the derived functor, as desired:

the functor tensor product ∗I ⊗I Gcof (which represents the derived colimit)

is weakly equivalent to the corrected homotopy colimit N(−/I) ⊗I CobjG.

Here Gcof is the cofibrant replacement in the projective model structure on

CI .

2.4.11 Bousfield-Kan Construction aka Simplicial Re-

placement

In this subsection we will provide one more way to construct homotopy colim-

its. This is done via simplicial techniques. After introducing some definitions

we explain briefly how this method constructs a good theory of homotopy
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colimits. The main references for this subsection are [42, Chapters 4, 5] and

[47, Section 7].

Let C be a model category and consider the category of simplicial objects

sC = C∆op
. We consider sC as a simplicial category with tensors defined

objectwise, as in Example 2.3.15. This means that if K ∈ sSet and X ∈ sC,

then K ⊗X is the simplicial object defined by

(K ⊗X)n = K ⊗Xn.

Note the difference from the tensor action that we used in (2.3) which was

denoted by

(K ⊙X)n =
∐
Kn

Xn.

Now, let C be a simplicial model category. Given a simplicial objectX ∈ C∆op

we can construct an object in C by “gluing” the simplices. This is called

geometric realization, see [21, Definition 18.6.2].

Definition 2.4.12 (Geometric Realization). Let X ∈ C∆op
. The geometric

realization of X, denoted as |X| is defined as the coequalizer

coeq

 ∐
σ : [n]→[k]∈∆

∆k ⊗Xn ⇒
∐

[n]∈∆

∆n ⊗Xn

 .

This is an example of a functor tensor product Definition 2.4.9 (coend). In

this case, the geometric realization is the functor tensor product ofX : ∆op →

C and the functor ∆• : ∆ → sSet, [n] 7→ ∆n. In other words, the realization
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|X| is the object

∆• ⊗∆op X =

∫ n

∆n ⊗Xn.

The following theorem is the cornerstone of our exposition of homotopy

colimits using geometric realizations. Like all theorems of importance, it has

many proofs which some can be found in [19, p. VII 3.6], [21, p. 18.4.11] and

[42, Corollary 14.3.10]. Recall the Reedy model structure on sC, Proposition

2.2.19.

Theorem 2.4.13. If C is a simplicial model category, then

|−| : sC → C

is a left Quillen functor with respect to the Reedy model structure. In par-

ticular, |−| sends Reedy cofibrant simplicial objects to cofibrant objects and

preserves objectwise weak equivalences between them.

At this level of generality, this is the strongest result possible. It is not

true that geometric realization preserves all objectwise weak equivalences.

However this will suffice for our purposes. With the power of above theorem,

we start to work our way towards how this is related to the homotopy colimit

of a diagram X ∈ CI in a simplicial model category C.

Our first definition towards this goal is the simplicial replacement functor.

That is to say, given any diagram F : I → C we can replace it with simplicial

object in C with good properties.

Definition 2.4.14 (Simplicial replacement). Let I be a small category and

consider a diagram X : I → C. The simplicial replacement of X is the
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simplicial object in C, denoted as srepX or as X∆ given in simplicial degree

[n]

(srepX)n =
∐

(i0→i1→...→in)∈N(I)n

Xi0 .

The coproduct is indexed over the set of n-chains

σ = [i0 → i1 → . . .→ in]

over the nerve of I. If 0 ≤ k < n, then

dk : (srepX)n → (srepX)n−1

maps the term Xin indexed on σ to the term Xin indexed on

σ(k) = [i0 → i1 → ik−1 → ik+1 → . . .→ in]

via the identity, while for k = n, the map dn sends the term Xin to Xin−1

indexed on

σ(n) = [i0 → i1 → . . .→ in−1]

via the induced map X(in → in−1). The degeneracy maps

sj : (srepX)n → (srepX)n+1, 0 ≤ j ≤ n

are easier to define. Each sj sends the summand Xin corresponding the

summand

[i0 → i1 → . . .→ in]
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to the identical summand Xin corresponding to the chain in which one has

inserted the identity map ij → ij.

In other words, the simplicial replacement is the following simplicial ob-

ject ∐
i0

Xi0

∐
i0→i1

Xi0oooo
∐

i0→i1→i2

Xi0 · · ·oooo
oo

where degeneracy maps are omitted. Usually this is called the simplicial bar

construction or Bousfield-Kan construction denoted by B(∗, I,X). We will

stick to srep(X) or X∆ for now. The reader can find more details in the

references mentioned in the beginning of the subsection.

Remark 2.4.15. The colimit of a diagram X ∈ CI if it exists, agrees with

the colimit of srep(X) ∈ sC. Indeed, consider the colimit of the diagram

srep(X), that is colim∆op srep(X). Since we assume that C is cocomplete we

can writh this colimit as a coequilizer of coproducts, that is to say

∐
i

Xi ⇔
∐
j←i

Xi,

where the arrows are “source” and “target”. But this is precisely the colimit

of X. Therefore in this case srep(X) has the augmentation

srep(F )→ colim
I

F,

where here we regard the object colimI F as a constant simplicial object.

Formally we have presented the following result.

Lemma 2.4.16. Given a diagram X ∈ CI and its simplicial replacement
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srep(X) ∈ sC, there is a canonical isomorphism

colim
I

X ∼= colim
∆op

(srep(X))

The proof can be found in [42, Lemma 4.4.2]. The following lemma will

be very important to us [42, Lemma 5.1.2], [47, Lemma 8.7]. Since it is so

important in our exposition we include a proof for completeness.

Lemma 2.4.17. Let I be a small category and let C be a simplicial model

category. If F ∈ CI is objectwise cofibrant, then srep(F ) ∈ sC is Reedy

cofibrant.

Proof. Recall Bn(∗, I, F ) is the coproduct over NIn of the image under F

of the first object in the sequence of composable arrows. Hence, the nth

latching object sits inside Bn(∗, I, F ) as the coproduct indexed by degen-

erate simplices in NIn. But cofibrations, and hence cofibrant objects, are

closed under coproducts. Similarly cofibrations are closed under pushout

and hence coproduct inclusions of cofibrant objects are also cofibrations. By

our hypothesis, every object in these coproducts is cofibrant, so the above

observations imply that the nth latching map is a cofibration.

The following theorem relates what we have discussed so far, that is, the

uncorrected and corrected homotopy colimit constructed in Definition 2.4.10

and (2.9) and the geometric realization of simplicial replacements. For a

proof see [42, Theorem 6.6.1].

Theorem 2.4.18. Let F ∈ CI be any diagram in a complete and cocomplete,
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simplicial model category C. There are natural isomorphisms

| srep(F )| ∼= N(−/I)⊗I F.

In particular, the homotopy colimit of a objectwise cofibrant diagram F can

be computed by the functor tensor product with N(−/I).

So, based on the Theorem above, if we have a diagram F : I → C that is

objectwise cofibrant, then the geometric realization of the simplicial replace-

ment captures the correct notion for derived colimit and can be used as a

model for it. One of the reasons that this is happening is that simplicial re-

placements of objectwise cofibrant diagrams are Reedy cofibrant, see Lemma

2.4.17, and that geometric realization preserves weak equivalences between

them.

Remark 2.4.19. In model categories such as topological spaces, simplicial

sets and spectra, the geometric realization of the simplicial replacement cap-

tures the correct homotopy type. No objectwise cofibrant replacement is

needed. The reader can find more details in [28], [30, Appendix C] and a

more thorough treatment in [21, Chapter 18].

2.4.20 Skeletal Filtration of the Geometric Realization

In this subsection we return to our discussion of the skeleton filtration defined

in (2.2) and how it relates with model category structure. Again we let C be

a simplicial model category and let J be a direct category. We start with a

remark.
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Remark 2.4.21. On the category of simplicial objects in C, that is, sC we

have defined two different simplicial tensor actions, one given in Example

2.3.15, and the other (2.3). We recall them here briefly for clarification. For

K ∈ sSet and X ∈ sC we have defined the simplicial actions, that is, the

simplicial objects in C K ⊗X and K ⊙X as follows

(K ⊗X)n = K ⊗Xn

(K ⊙X)n =
∐
Kn

Xn

We need to know how they interact. We give a result that we won’t prove.

Consider the category sC with simplicial tensor action on sC given by (2.3)

, i.e.,

sSet× sC → sC (K,X) 7→ K ⊙X,

with (K⊙X)n =
∐

Kn
Xn. Let c ∈ C and consider it as a constant simplicial

object, i.e., const(c) ∈ sC. Then there is a natural isomorphism

|K ⊙ const(c)| ∼= K ⊗ const(c)

where the simplicial tensor action on the right hand side is as in Example

2.3.15, see [19, Lemma 3.4] for a proof.

Recall from Proposition 2.1.9 that for a simplicial object X and for every

76



n ≥ 0 there is a pushout square

∂∆n ⊙Xn

∐
∂∆n⊙LnX

∆n ⊙ LnX

��

// skn−1X

��
∆n ⊙Xn

// sknX.

Therefore, for X ∈ sC Reedy cofibrant, the geometric realization comes with

a natural skeletal filtration. We define

skn |X| = |sknX| .

Then, by the above and the natural isomorphism |K ⊙ A| ∼= K⊗A, Remark

2.4.21 yields that there are natural pushout squares

∂∆n ⊗Xn

∐
∂∆n⊗LnX

∆n ⊗ LnX skn−1 |X|

∆n ⊗Xn skn |X| .

(2.10)

This is because |−| as a left adjoint commutes with all colimits. If X is Reedy

cofibrant, then Theorem 2.4.13 implies that each of the maps

skn−1 |X| → skn |X|

is a cofibration. Furthermore, again since |−| commutes with colimits

colim
n

skn |X| ∼= |X| . (2.11)

We end this subsection by discribing how equation (2.11) can be equivalently
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stated as a homotopy colimit. This is will come up in Subsection 3.5.9 where

we will discuss a spectral sequence of a filtration of spectra. Recall from

Definition 2.2.21 that a sequence of objects {Ci}i∈Z≥0
in C as follows

∗ → C0 → C1 → C2 → . . .

is Reedy cofibrant if all the objects are cofibrant and all the maps are cofi-

brations. This means that the colimit of the above sequence coincides with

the homotopy colimit of the sequence. Now, if X ∈ sC is Reedy cofibrant,

then the morphisms |X|n−1 → |X|n are cofibrations which of course implies

that the sequence

∗ → |X|0 → |X|1 → |X|2 → . . .

is Reedy cofibrant. Altogether we have hocolimi |X|i ∼=RC colimi |X|i = |X|

where the subscript RC serves as a reminder that an equivalence depends

upon Reedy cofibrancy of X. Lastly, there is another homotopy colimit, that

is, the homotopy colimit of the ∆op-diagram itself. For completeness we state

the following proposition.

Proposition 2.4.22. [21, p. 18.7.4] If the simplicial object X is Reedy cofi-

brant, then there is a natural weak equivalence (The Bousfield-Kan map)

hocolim
∆op

X
∼=−→ |X|.

We do not use the above proposition in our exposition.
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2.4.23 Changing the Indexing Category & Homotopy

Final Functors

Let α : C → D a functor between small categories. Note that given any

diagram X : D → C we get a natural morphism of simplicial objects

ϕα : (srepF
∗X)→ (srepX).

Taking geometric realizations gives a natural map

ϕα : hocolim
C

α∗X → hocolim
D

X. (2.12)

Suppose now that C is a simplicial model category. It is a natural question

to ask the following. What are sufficient conditions for a functor K : C → D

such that the map (2.12) is a weak equivalence in C? Turns out that a

sufficient conditions is the homotopical analogue of a final functor which we

define below. Recall the category d/K, the category of objects of C under an

object d ∈ D, Definition 2.4.4. Also, recall that a simplicial set is contractible

if the unique map to the terminal object is a weak homotopy equivalence.

Definition 2.4.24 (Homotopy Finality). [42, Definition 8.5.1] A functor be-

tween small categories K : C → D is homotopy final (or homotopy terminal)

if for every object d ∈ D, the simplicial set N(d/K) is contractible and

homotopy initial if each N(K/d) is contractible.

Recall that a functor K : I → J is final, if we can restrict diagrams on J
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to diagrams on I along K without changing their colimit, that is,

colim
I

K∗F ∼= colim
J

F.

The definition of homotopy final functor is justified by the following theorem

Theorem 2.4.25. [42, Theorem8.5.6] Let F : D → C be a diagram in a

simplicial model category. If K : C → D is homotopy final then

hocolim
C

K∗F → hocolim
D

F

is a weak equivalence.

Dually, a homotopy initial functor induces a weak equivalence on homo-

topy limits. Since we are only interested in diagrams of posets, by Remark

2.4.7 we can be more specific when a morphism of posets is homotopy final.

Corollary 2.4.26. A map f : C → D of posets is homotopy terminal if for

for every d ∈ D

d/f = {c ∈ C : f(c) ≥ d}

is contractible.

Remark 2.4.27. In Chapter 5 in the proof of Proposition 5.2.4 we will need

a convenient way to check whether a poset is contractible. Recall from [36,

Section 1.5] that a poset C is conically contractible if there is an object c0 ∈ C

and a map of posets f : C → C such that c ≤ f(c) ≥ c0 for every c ∈ C. In

this case one can show that the identity 1C, the map f , and the constant map
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with value c0 from C to itself are homotopic (that is to say, their realizations

are homotopic), and hence C is contractible.

Another useful fact that will come handy later is the following.

Lemma 2.4.28. If F : C ⇄ D : G is an adjoint pair, then F is homotopy

initial and G is homotopy terminal.

Proof. For any object d ∈ D, the category F/d of objects of C over d is

isomorphic to C/Gd. However, the category C/Gd has 1: Gd → Gd as a

terminal object. This implies that N(F/d) is contractible, so F is homotopy

initial. A dual argument shows that the right adjointG is homotopy terminal.

2.5 Homotopy Kan Extensions

In this section we will recall some basic definitions and facts about homotopy

Kan extensions which we will use throughout. To help motivate the defini-

tions we will briefly recall how Kan extensions work and then we will recall

homotopy Kan extensions.

2.5.1 Kan Extensions

In this subsection we will recall some relevant facts for ordinary Kan exten-

sions. For our exposition, [21, Section 11.9] is enough. For more details see

[27, Chapter X] and [42, Chapter 1].

Let I and J be a small categories, and let f : I → J be a functor. If C is

a cocomplete category and X : I → C is a diagram, we can ask whether there
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is any natural extension of X to a functor J → C, denoted by Lanf X ∈ CJ .

That is, we wish to find a functor filling in the dotted arrow in the diagram

I C

J

in a universal way. That means that if Y : J → C is another diagram and

f ∗Y is the restriction to I we have a natural isomorphism

HomCJ (Lanf X, Y ) ∼= HomCI (X, f
∗Y ) .

If j is an object of J , then we must define (Lanf X)j so that for every object

i ∈ I and every map σ : f(i)→ j we have a map

(Lanf X)σ : Xi → (Lanf X)j

. If τ : i1 → i2 is a map in I then we must ensure the triangle

Xi1 Xi2

(Lanf X)j

Xτ

commutes. This suggests that we define (Lanf X)j to be the colimit indexed

by f/j, the category of objects of I over j, see Definition 2.4.2.

Definition 2.5.2. Let f : I → J a functor between small categories, let C

be a cocomplete category and let X : I → C be a functor. The extension

Lanf X of X to J is the functor Lanf X which on the object j ∈ J is defined
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by

(Lanf X)j = colim
i∈f/j

Xi, (2.13)

On maps τ : j1 → j2 in J , it is the natural map of colimits induced by

τ∗ : f/j1 → f/j2.

Theorem 2.5.3. Let f : I → J a functor between small categories, let C

be a cocomplete category and let X : I → C be a functor. If Lanf X is the

extension of X to J , then for every diagram Y : J → C there is a natural

isomorphism (in X and in Y )

HomCJ (Lanf X, Y ) ∼= HomCI (X, f
∗Y ) .

For a proof see [21, p. 11.9.3]. By the above theorem, the restriction

functor (pullback)

f ∗ : CJ → CI ,

has a left adjoint Lanf , constructed in Definition 2.5.2

Lanf = f! : CI ⇄ CJ : f ∗. (2.14)

Expanding the definition of the left Kan extension we have that the value

(f!X)j is given by the colimit

(f!X)j = colim
(
f/j

π−→ I
X−→ C

)
= colim

f/j
π∗F

where π is the forgetful functor (2.7). For a morphism j1 → j2 in J the
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induced map

(f!X)j1 → (f!X)j2 (2.15)

is the map on colimits induced by the functor f/j1 → f/j2

( f/j1
π //

��

I
X // C ) // colim

f/j1
π∗X

��
( f/j2 π

// I
F
// C ) // colim

f/j2
π∗X

Example 2.5.4. Consider the case where J is the terminal category ∗, so

for any small category I there is a unique functor t : I → ∗. Then, in this

case, the left Kan extension along this functor

Lant : CI → C : t∗

is just the functor colimI .

A more interesting example is given by the pushout-product map, Defi-

nition 2.3.5. It can be defined as a left Kan extension.

Example 2.5.5. Consider a cocomplete, (closed) monoidal category (C,⊗).

Let [1] = {0 ≤ 1} and the product [1]× [1]. Furthermore the following map

of posets

pr : [1]× [1]→ [1]

(0, 0), (1, 0), (0, 1) 7→ 0

(1, 1) 7→ 1
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Now let f and g be morphisms in C. We can consider them as as objects in

the arrow category f, g ∈ C[1]. The functors f : [1] → C and g : [1] → C give

rise to their objectwise tensor product, f ⊗ g, see Definition 2.3.24. That is,

the functor

f ⊗ g : [1]× [1]→ C

which is the following commutative diagram.

X0 ⊗ Y0 //

��

X1 ⊗ Y0

��
X0 ⊗ Y1 // X1 ⊗ Y0.

Notice that the slice category pr/0 is the poset ⌜ and the slice pr/1 is the

whole [1]× [1]. It follows from (2.15) that the map

colim
⌜

(f ⊗ g)→ colim
[1]×[1]

(f ⊗ g) ,

induced by the inlcusion ⌜↪→ [1]× [1] is exactly the map

f □ g : X0 ⊗ Y1
∐

X0⊗Y0

X1 ⊗ Y1 → X1 ⊗ Y1.

So, indeed (Lanpr(f ⊗ g)) = pr!(f ⊗ g) = f □ g.

2.5.6 Homotopy Kan Extensions

In this subsection we briefly introduce homotopy Kan extensions. They are

the homotopy invariant version of ordinary Kan extensions. Nowdays the

theory of homotopy Kan extensions is subsumed in the theory of derivators.
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For our purposes the discussion in [21, Section 11.9] suffices. See [20], for a

detailed exposition.

Now, let C be a model category. Furthermore, let I, J be finite posets

and f : I → J a map of posets. The pullback functor

f ∗ : CJ → CI

preserves weak equivalences, so it defines a functor between homotopy cat-

egories, which we denote by the same letter. Recall the functor Lanf = f!,

left adjoint to f ∗, see Definition 2.5.2. We have the following proposition.

Proposition 2.5.7. Let C be a model category and let f : I → J be a map

of finite posets. Then the adjunction

f! : CI ⇄ CJ : f ∗

is a Quillen adjunction.

Proof. This follows from the definition of the projective model structure, see

Proposition 2.2.12. The functor f ∗, by construction is a right adjoint, it

preserves weak equivalences and projective fibrations which means that f ∗ is

right Quillen.

This means that the derived functors of the adjoint pair (f!, f
∗) define an

adjoint pair on the level of homotopy categories

LLanf := Lf! : Ho(CI) ⇄ Ho(CJ) : f ∗.
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A useful fact about homotopy Kan extension is that it does not change the

homotopy colimit of a diagram which is similar to ordinary Kan extensions.

Corollary 2.5.8. Let C be a model category, f : I → J be map of direct

categories and let X ∈ CI . Then there is a canonical isomorphism in Ho(C)

hocolim
J

Lf!X ∼= hocolim
I

X.

Proof. This follows from the fact that for every pair of left Quillen functors

F and G there is a natural isomorphism

LF ◦ LG→ L(F ◦G),

see [24, Theorem 1.37], together with the natural isomorphism

colim
J

Lanf X ∼= colim
I

X.

To conclude this section, we will shortly discuss how one calculates the

values and edges of a homotopy Kan extension. It is a fact that left homotopy

Kan extensions can be calculated pointwise, like in ordinary category theory.

Proposition 2.5.9. Let f : I → J be a map of posets and let X be any

functor I → C. For any object j ∈ J there is a canonical isomorphism in

Ho(C),

(Lf!F )j ∼= hocolim
(
f/j

π−→ I
X−→ C

)
.
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In other words we can calculate the values of a homotopy left Kan exten-

sion much like as in (2.13) but taking homotopy colimits instead.

Remark 2.5.10. Recall that in the case of the diagram F ∈ CI being object-

wise cofibrant, the homotopy colimit of F may be calculated as the realization

of its simplicial replacement, i.e.

B(∗, I, F ) = |srep(F )| ∼= hocolim
I

X.

There is a similar construction that uses the two-sided bar construction, [42,

Defintion 4.2.1]. With this, we could define the homotopy Kan extension of

F along f as the functor

j 7→ B(HomJ(f(−), d), I, F ).

With the above technology we present another proof of Proposition 2.3.22.

Recall from Example 2.2.24 that

cone(f) = hocolim

 X Y

∗

f


where the underlying poset is the poset ⌜ from Example 2.2.8, i.e.,

(0, 0) (1, 0)

(0, 1)

For easier notation we will write it as cone(f) = hocolim(∗ ← X → Y ).
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With the theory of homotopy left Kan extensions we now give a different

proof of Proposition 2.3.21.

Proposition 2.5.11. Let (C,⊗) be a pointed symmetric monoidal model cat-

egory, and let f : X → Y and g : U → V be morphisms in C. There is a

canonical isomorphism

cone(f) ∧L cone(g) ∼= cone(f □L g).

Proof. We may assume that X, Y, U, V are cofibrant in C. By definition,

cone(f) ∧L cone(g) = hocolim(∗ ← X
f−→ Y ) ∧L hocolim(∗ ← U

g−→ V ).

By Corollary 2.3.26, this is isomorphic to

hocolim


∗ X ∧ V Y ∧ V

∗ X ∧ U Y ∧ U

∗ ∗ ∗


. (2.16)

We denote the above underlying ⌜×⌜-diagram by Z. We define the following

map of posets

pr : ⌜×⌜→ ⌜

((1, 0), (1, 0)) 7→ (1, 0)

((0, 0), (0, 0)) , ((0, 0), (1, 0)) , ((1, 0), (0, 0)) 7→ (0, 0)

else 7→ (0, 1),
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and consider the homotopy left Kan extension

Lpr! : Ho(C⌜×⌜)→ Ho(C⌜).

First, applying the formula from Proposition 2.5.9 to the diagram Z firstly

we have (Lpr!Z)(1,0) = Y ∧ V . Next, for the object (0, 0) the slice category

pr/(0, 0) is just the poset ⌜ and we have

(Lpr!Z)(0,0) = hocolim

 X ∧ U Y ∧ U

X ∧ V

1∧g

f∧1


and finally (Lpr!Z)(0,1) ∼= ∗. Notice

(Lpr!Z)(0,0) → (Lpr!Z)(1,0) = f □L g.

Hence, the homotopy left Kan extension of the underlying diagram (2.16) is

the following ⌜-diagram

X ∧ V
∐h

X∧U Y ∧ U Y ∧ V

∗

whose homotopy colimit is cone(f □L g).
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2.6 Spectra

Many phenomena and invariants such as homology and cohomology of sim-

plicial sets or CW-complexes are “stable” in the sense that suspending acts

as a degree shift that can be reversed. Spectra are meant to capture the

essential properties of homology and cohomology theories in a manner that

is easier to handle. For a general introduction we refer to [9, Section 2] , [7],

and the seminal [1].

2.6.1 Modern Foundations of Spectra

The first popular model category of spectra was due to Bousfield-Friedlander

[13], and for many years it was the only one in common use. By a spectrum

we mean the following: a spectrum X is a collection Xn ∈ S∗ for n ≥ 0

together with morphisms σn : ΣXn → Xn+1. A morphism f : X → Y of

spectra is a collection of morphisms fn : Xn → Yn that commute with the

structure maps, i.e., the following diagram commutes.

ΣXn Xn+1

ΣYn+1 Yn+1.

fn

σn

fn+1

σn

Here by S∗ we mean either the category of Top∗ (some convenient category for

pointed topological spaces) or sSet∗, the category of pointed simplicial sets.

We denote the above category of spectra by SpN. We give two elementary

examples.

Example 2.6.2. Every based space X gives rise to a spectrum Σ∞, the
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suspension spectrum. Its nth space is given by ΣnX and the structure maps

are the canonical homeoomorphisms.

ΣΣnX ∼= Σn+1X → Σn+1X.

In fact, this extends to a functor

Σ∞ : S∗ → SpN,

which sends a space A to Σ∞A. The functor Σ∞ is left adjoint to the functor

Ω∞ : SpN → S∗ which sends a spectrum to its zeroth space.

Example 2.6.3. The Eilenberg-Mac Lane prespectrum HA, where A is an

abelian group, has nth space K(A, n), i.e., the Eilenberg-Mac lane space

associated to A. That is, it is the sequence of spaces

K(A, 0), K(A, 1), K(A, 2), . . . .

The structure maps of HA are the adjoints to the weak homotopy equiva-

lencesK(A, n)→ ΩK(A, n+1).A homomorphism of abelian groupsA1 → A2

gives rise to a map of spectra HA1 → HA2, hence it defines a functor

H : Ab→ SpN.

However, the category SpN has the disadvantage that does not admit a

suitable smash product on the model category level. This means that it is ill-

equipped to deal with multiplicative properties of homology and cohomology
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theories,i.e., ring spectra. These days, there are many monoidal model cat-

egories that have the same underlying stable homotopy theory. Each model

has their various advantages and disadvantages. Here is a list of the main

players:

(i) Bousfield-Friedlander spectra, SpN

(ii) Symmetric spectra SpΣ

(iii) Orthogonal spectra SpO,

(iv) S-modules or EKMM spectra,

(v) functors with smash product.

Symmetric and orthogonal spectra can be considered as objects in SpN with

extra structure. The other models are more abstract and harder to define.

However, for the purposes of this thesis, it is irrelevant in which model

we chose to work with. All that it matters to us is that we work on sta-

ble, monoidal model category. Henceforth we will assume the existence of

a pointed category Sp equipped with a closed symmetric monoidal smash

product ∧, with unit S (the sphere spectrum) and inner hom F (−,−). Ad-

ditionally, we will assume we are given adjoint functors

Σ∞ : S∗ ⇄ Sp: Ω∞,

that generalize the adjoint pair given in Example 2.6.2 as well as a simplicial,

stable model structure on Sp, see Example 2.3.12 and Definition 2.2.28. The
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following is a non-exhaustive list some of the following properties that we

will assume.

(i) The adjoint pair (Σ∞,Ω∞) is a Quillen pair.

(ii) There is a smash product ∧ which makes (Sp,∧) into a monoidal model

category see, Definition 2.3.8. This means that that stable homotopy

category (Ho(Sp),∧L) is a tensor-triangulated category, i.e., a triangu-

lated category with a compatible monoidal product.

(iii) There exists a a weak equivalence ϵ : Σ∞S0 → S.

(iv) There is a Quillen equivalence Φ: Sp→ SpN.

For more properties of the tensor-triangulated category (Ho(Sp),∧L) see [5,

Theorem 6.1.14 ]. The objects of Ho(Sp) are simply called spectra. As

we noted above the category Ho(Sp) is a triangulated category. Since by

assumption Sp is a simplicial model category, the shift operator is given by

the suspension Σ(−) constructed in simplicial model categories, see Remark

2.2.29. Elementary triangles are as in Definition 2.2.31. Since Sp is also

stable, in Ho(Sp) becomes inverse to Σ−1(−) = Ω(−).

We briefly explain the importance of the monoidal structure on the cat-

egory Sp. One of the main reasons for introducing a symmetric monoidal

products on the category of spectra Sp or on its homotopy category Ho(Sp)

is to take care of multiplicative properties on homology or cohomology theo-

ries. For example the cohomology theory that one first encounters, singular

cohomology, has the structure of a graded ring. By the Brown representabil-
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ity theorem, this gives rise to maps

HZ ∧HZ→ HZ

for the Eilenberg–MacLane spectrumHZ. Many (co)homology theories come

equipped with such structure. A ring spectrum is a spectrum R ∈ (Sp,∧)

together with a multiplication map µ : R∧R→ R and a unit map η : S→ R

such that the expected associativity and unitality diagrams commute. In

other words, (R, µ, η) is a monoid in (Sp,∧, S). In the same vein one can

define commutative rings and modules over rings, i.e., one can do “algebra”

in the symmetric monoidal category (Sp,∧)

2.6.4 Homotopy Groups of Spectra

Recall that in stable a model category C we write [−,−] for the set of mor-

phisms in Ho(C). For spectra X, Y ∈ Sp we define

[X, Y ]r := [ΣrX, Y ] (2.17)

and we let [X, Y ] = [X, Y ]0. These are abelian groups for all X, Y and

r ∈ Z. Notice that [X, Y ]∗ is a Z-graded abelian group. Next, we define

stable homotopy groups of spectra. For the sphere spectrum S, we can define

Sn recursively as Sn = ΣSn−1

Definition 2.6.5. For an integer n, we define the nth stable homotopy group

πn(X) of a spectrum X as the group [Sn, X] of morphisms from Sn to X in

the stable homotopy category Ho(Sp). However, this should not be confused
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with homotopy classes of maps, unless X is fibrant in Sp.

If X is a ring spectrum and f : Sp → X and g : Sq → X, i.e., f ∈ πp(X)

and g ∈ πq(X) we may form the composite

Sp+q γ−→ Sp ∧ Sq f∧g−−→ X ∧X µ−→ X

which defines a pairing

· : πp(X)× πq(X)→ πp+q(X). (2.18)

More generally we have the following proposition.

Proposition 2.6.6. There is a natural pairing

π∗(X)⊗ π∗(Y )→ π∗(X ∧ Y ),

and a homeomorphism

Z→ π∗(S),

that makes the functor

π∗ : (Sp,∧)→ (Ab∗,⊗)

lax symmetric monoidal.

For a concrete construction of the above map using the model of sym-

metric spectra, see [44, Chapter I, Subsection 6.2] [44, Theorem 6.16].

Lastly, let us mention that any spectrum defines a generalized homology
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theory as follows. We will use this concept in the following subsection where

we will discuss Bousfield localizations.

Definition 2.6.7. Let E be a spectrum. For any other spectrum X and an

integer k, we define the kth E-homology group of X as

Ek(X) = πk(E ∧L X) = [Sk, E ∧L X].

Collecting together all the Ek(X) we have a Z-graded module

E∗(X) := [S, Z ∧L X]∗ = π∗(E ∧L X).

We will expand on the homological properties of the above functor in

Chapter 3. We will see there that the functor

E∗(−) : Ho(Sp)→ Ab∗ = AbZ,

is homological where Ab∗ = AbZ is the category of Z-graded abelian groups.

2.6.8 Bousfield Localization at a Spectrum

Bousfield localization, is an established tool in model category theory. It is a

method to formally add more weak equivalences to a model category C. One

chooses a set S of maps in C that one wants to add to the class of weak equiv-

alences. That is to say, one can construct a new model structure LSC such

that now that the set of maps S are weak equivalences. As a consequence

these maps become isomorphisms in Ho(LSC). Therefore, we can think of
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Bousfield localization as a formal framework for inverting maps in the homo-

topy category. For our purposes, the most common setting is localization of

spaces or spectra with respect to a homology theory E∗(−). Specializing to

this case, rather than the weak equivalences being weak equivalence of spaces,

or stable equivalences of spectra, one constructs a model structure with the

E∗-equivalences as the weak equivalences in the localized model structure.

Informally speaking, the general idea of localization at a spectrum E is to

associate to any spectrum X the “part of X that E can see”, denoted by

LEX. In particular, it is desirable that LE is a functor with the following

equivalent properties:

E ∧X ≃ ∗ implies LEX ≃ ∗.

For reference for the general construction and existence of the left Bousfield

localization in model categories at a set of maps see, [21, Chapter 3]. For

localizations with respect to homology theories see [40, Chapter 7] and [5,

Chapter 7] for a more contemporary exposition.

To make things formal, we start with the following definition that gathers

all the necessary terminology.

Definition 2.6.9. Let E be a spectrum.

(i) A spectrum X is E-acyclic if the smash product with E is zero, i.e.,

E ∧X ≃ ∗.

(ii) A map f : X → Y is an E-equivalence if 1E ∧ f : E ∧X → E ∧ Y is a

weak equivalence, hence, if E∗(f) : E∗(X) → E∗(Y ) is an isomorphism

98



in Ho(Sp).

(iii) A spectrum X is E-local if the following equivalent conditions hold.

• For every E-equivalence f : A→ B the map f ∗ : [B,X]∗ → [A,X]∗

is an isomorphism;

• Every morphism Y → X out of an E-acyclic spectrum Y is zero

in Ho(Sp), i.e., [Y,X]∗ = 0

(iv) A spectrum Y with a map X → Y is called an E-localization of X if Y

is E-local and X → Y is an E-equivalence.

(v) If a localization of X exists, then it is unique up to homotopy and will

be denoted by X
ηX−→ LEX.

Localizations of this kind were first studied by Adams [1], but set-theoretic

difficulties prevented him from actually constructing them. In the paper

[12], Bousfield showed that localization functors exist for arbitrary spectra

E. Next we discuss how localizations can be put in terms of model cate-

gory theory. The E-local equivalences, that we defined above are the weak

equivalences of a model structure on Sp.

Proposition 2.6.10. Let Sp be either the category of Bousfield-Kan, sym-

metric or orthogonal spectra and let E be an object in Sp. There is a model

structure on Sp such that a map f : X → Y is an

(i) weak equivalence if f is an E∗-equivalence

(ii) cofibration if each Xn

∐
ΣXn−1

ΣYn−1 → Yn is a cofibration in S, and
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(iii) fibration if f has the right lifting property with respect to acyclic cofi-

brations.

We will use the notation LESp for the model E-local model structure on

Sp. The fibrant objects are the E-local Ω-spectra. The existence of the above

model structure is given by a left Bousfield localization at a set of maps. For

details see [5, Chapter 7.2]. Let’s see some examples

Example 2.6.11. Let E = HQ. Then LEX = E ∧LQS = E ∧HQ, it is the

rationalization of X

Example 2.6.12. Let E = MZ(p) be the Moore spectrum of the abelian

group Z(p). In this case LEX ∼= X(p) is the Bousfield p-localization.

Much of contemporary homotopy theory relies on the machinery of Bous-

field localizations. Particularly, the main object of study of the stable homo-

topy theory, the tensor-triangulated category Ho(Sp) is an extremely compli-

cated category. It is very beneficial to break apart this category into smaller

pieces, so to speak, that are easier to understand and to work with. These

smaller pieces are all Bousfield localizations with respect to various spec-

tra. This is the starting point of chromatic homotopy theory. One starts

by breaking apart Ho(Sp) each prime at a time as in Example 2.6.12, and

then further breaking it apart using the so called Johnson-Wilson theories

E(n) and the closely related Morava K-theories K(n). For a reference see

[5, Subsection 7.4.3] and the seminal [39].

For the purposes of this thesis we will working with the following.
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Example 2.6.13. Let p be an odd prime and let n ∈ Z. There exists a ring

spectrum E(1) also known as the Adams summand of the p-local complex

K-theory spectrum and one has

KU(p) =

p−2∨
i=0

Σ2iE(1).

Therefore, the localizations at E(1) and at KU(p) are the same. The con-

struction of the spectrum is highly non-trivial and will not concern us here.

What does concern us that it defines a multiplicative homology theory and

that it has coefficients

E(1)∗ = Z(p)[v1, v
−1
1 ] |v1| = 2p− 2.

In this case, it is customary to write the Bousfield localization LE(1)Sp as

L1Sp.

Lastly, we would like the Bousfield localization LESp also to be a monoidal

model structure. We have the following proposition.

Proposition 2.6.14. Let (Sp,∧) a model of spectra and let E be an object

of Sp. Then (LESp,∧) is also a monoidal model category.

For a proof we refer to [5, Theorem 7.3.11].
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Chapter 3

Background in Homological

Algebra

In this chapter we recall the elements of homological algebra that are neces-

sary for the proof of our result. Also one of its goals is to set up the necessary

language to state Franke’s theorem and all the necessary components. The

chapter is structured as follows. In Section 3.1 we will set up some notation

regarding chain and cochain complexes since we are going to use both in

our exposition. We will review some relevant definitions from generalized

homology theory defined by a spectrum and the tensor product of graded

objects (abelian groups). In Section 3.2 we will discuss how homology of a

spectrum has actually much more structure than a graded abelian group. In

other words it has the structure of a comodule over a Hopf algebroid. We

will also introduce our main example, comodules over the Johnson -Wilson

spectrum at height 1. After this, in Section 3.3 we will discuss Franke’s al-

gebraic model, that is to say, twisted complexes over the abelian category
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of comodules. It has at least two descriptions because our abelian category

A = ComodE(1)∗E(1) has a splitting of period 2p−2 and the homology theory

E(1)∗(−) is periodic. We will also discuss another simpler algebraic model

for twisted complexes, that is, differential graded comodules. After this, we

will discuss the monoidal structure of these algebraic models. In Section 3.4

we will discuss again some model category theory applied to the algebraic

models of twisted complexes. In order to do so, we will make a small tour

of relative homological algebra. In Section 3.5 we will introduce another key

ingredient, homology with coefficients in a functor. This is a generalization

of the homology of a group or a category and it also plays a very important

role in this thesis. Lastly we will see how homology with coefficients is used

in the spectral sequence that computes the homology of a homotopy colimit

of a diagram of spectra.

3.1 Homology

In this section we will discuss how a spectrum gives rise to a homology theory.

Before that we establish some notation about chain and cochain complexes

in additive categories.

3.1.1 Chain and Cochain Complexes

Let A be an abelian category. A cochain complex in A is a sequence of maps

. . .→ Xn dn−→ Xn+1 dn+1

−−−→ . . .
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such that

dn ◦ dn−1 = 0

for all n ∈ Z, so differentials raise the degree. We denote the category of

complexes in A where a morphism ϕ : X → Y between complexes consists of

maps ϕn : Xn → Y n compatible with the differential by Ch(A) or by C(A).

Now suppose that A is abelian. For a complex X• and each n ∈ Z one defines

the nth-cohomology as

HnX = Ker dn/ Im dn−1.

Setting X−i = X i, we get a chain complex, i.e., an object

. . .→ X2 → X1 → X0 → X−1 → X−2 → . . .

and we get the homology of a chain complex. We will denote chain complexes

with lower indices.

Remark 3.1.2. In our exposition we will use both cochain and chain com-

plexes and this is not done by accident. In particular, due to the shape of the

poset CN and the functor Q : L → C2p−2(B) that we will construct in Section

4.2, see (4.2), will produce cochain complexes, that is, the differentials raise

the degree. On the other hand, the spectral sequence that computes the ho-

mology of a homotopy colimit that we will see later, Proposition 3.5.11, has

as input homology of certain chain complexes (differential lowers the degree),

that originate from simplicial objects via the Dold-Kan correspondence.

We will denote the category of cochain complexes by C(A) and the derived
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category by D(A).

3.1.3 Generalized Homology Defined by a Spectrum

In this subsection we discuss how a spectrum E determines a “generalized

homology theory” both for spaces (or simplicial sets) and spectra. It also de-

termines a “generalized cohomology theory” but since we are only interested

in homology theory we skip the definitions for cohomology. Recall that from

Definition 2.6.7, a spectrum E ∈ Ho(Sp) determines a functor

E∗(−) : Ho(Sp)→ Ab∗, X 7→ E∗(X) = π∗(E ∧L X).

As the terminology suggests, E-homology is a homological functor. Recall

that if T is a triangulated category, a covariant functor E : T → Ab is called

homological if it takes coproducts in T to coproducts of abelian groups, and

if for every distinguished triangle (f, g, h) in T the sequence of abelian groups

E(A)
E(f)−−→ E(B)

E(g)−−→ E(C)
E(h)−−→ E(ΣA)

is exact.

Proposition 3.1.4. Let E be a spectrum and k any integer.

(i) For every distinguished triangle (f, g, h) in the stable homotopy cate-

gory, the sequence

Ek(A)
Ek(f)−−−→ Ek(B)

Ek(g)−−−→ Ek(C)
Ek(h)−−−→ Ek(ΣA),
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is exact.

(ii) For every family {Xi}i∈I of spectra the natural map

⊕
i∈I

Ek(Xi)→ Ek(
∨
i∈I

Xi)

is an isomorphism.

If E is a ring spectrum, one can define various algebraic operations, such

as products on homology groups, that arise from the operations on E. We

will only be interested in the following.

Construction 3.1.5 (External Product). Let E be a ring spectrum and let

X and Y be spectra and k, l integers. Then we define the external products

× : Ek(X)⊗ El(Y )→ Ek+l(X ∧L Y ) (3.1)

as follows

Ek(X)⊗ El(Y ) = πk(E ∧L X)⊗ πl(E ∧L Y )
·−→ πk+l(E ∧L X ∧L E ∧L Y )

(1E∧τX,E∧L1Y )∗−−−−−−−−−−→ πk+l(E∧E∧X∧Y )
(µ∧X∧Y )∗−−−−−−→ πk+l(E∧LX∧LY ) = Ek+l(X∧LY ).

The first map is the pairing (2.18).

For more details on pairings and products see [1, Part III, Section 9].

Before the next proposition, we recall the following.

Definition 3.1.6 (Tensor product). Let R∗ be a graded ring and letM∗ and

M∗ be graded R∗-modules. The tensor product of M∗ ⊗R∗ N∗ is defined as
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having n-th component

(M∗⊗R∗N∗)n :=

( ⊕
p+q=n

Mp ⊗Z Nq

)
/(mr⊗n−m⊗rn|a+b+c = n,m ∈Ma, r ∈ Rb, n ∈ Nc)

(3.2)

The following proposition is the cornerstone [44, Proposition 6.20, Chap-

ter II] and will be used implicitly throughout.

Proposition 3.1.7. Let E,X and Y be as in 3.1.5. If E∗(X) is flat as a

(right) graded E∗-module or if E∗(Y ) is a flat (left) graded E∗-module then

map

E∗(X)⊗E∗ E∗(Y )→ E∗(X ∧L Y )

induced by the exterior product is an isomorphism.

For a proof see, [48, Theorem 13.75].

3.2 Comodules over a Hopf Algebroid

In this section we will review some relevant facts about the abelian category

of comodules over a Hopf algebroid. None of the results in this section are

new, and we refer the reader to [23, Section 1], [38, App. A1] and [38, Section

2] for further details.

We saw briefly in Definition 2.6.7 that any spectrum E ∈ Sp defines a

homological functor to abelian groups, the E-homology, i.e.

E∗(−) : Ho(Sp)→ Ab∗, X 7→ E∗(X) = π∗(E ∧L X).
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In fact the value E∗(X) has a lot more structure than just a plain graded

abelian group, i.e., it is a E∗(E)-comodule, a notion which we will introduce

below. The pair (π∗(E), E∗(E)) has a structure of a Hopf algebroid which we

will define shortly. Let K be a commutative ring. A Hopf algebroid is a pair

(A,Ψ) of commutative graded K-algebras such that it is a cogroupoid object

in the category of commutative K-algebras. We will commit a small abuse

of notation by omitting. Unwinding the above, that means in particular that

it consists of a pair (A,Ψ) of graded commutative K-algebras along with

K-algebra morphisms

ηL : A→ Ψ (left unit, inducing source)

ηR : A→ Ψ (right unit, inducing source)

∆: Ψ→ Ψ⊗A Ψ (coproduct, inducing composition of morphisms)

ϵ : Ψ→ A (augmentation, inducing idenity morphisms)

c : Ψ→ Ψ (conjugationm inducing inverses),

satisfying certain identities. These ensure that, for any commutative ring

B, the sets Hom(A,B) and Hom(Ψ, B) are the objects and morphisms of a

groupoid, respectively. Here, ηL gives Ψ the structure of a left A-module,

ηR gives Ψ a right A-module structure, and Ψ ⊗A Ψ refers to the bimodule

tensor product. We now come to the definition of a comodule over a Hopf

algebroid.

Definition 3.2.1 (Comodule). A (A,Ψ)-comodule is a left A-module M
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together with a map

ψM : M → Ψ⊗AM

satisfying a coassociativity and a counit condition.

We refer to [38, Proposition 2.2.8. ] for a detailed account on how

(π∗(E), E∗(E)) is Hopf algebroid and E∗(X) is a E∗(E)-comodule. We write

ComodΨ for the category of Ψ-comodules; we will always assume that Ψ is a

flat A-module, which ensures that ComodΨ is a cocomplete abelian subcat-

egory of ModA [23, Lemma 1.1.1]. The forgetful functor ComodΨ → ModA

has a right adjoint that sends an A-module M to the Ψ-comodule Ψ⊗AM ,

with structure map ∆ ⊗ id [38, A1.2.1]. Such a comodule is called an ex-

tended comodule. It follows that the colimit in ComodΨ is just the colimit

in A-modules equipped with its canonical comodule structure. The forgetful

functor does not preserve limits, or even infinite products, and so in general it

is difficult to construct right adjoints in ComodΨ. Nonetheless, the category

ComodΨ is also complete, see [23, Proposition 1.2.2].

The category of Ψ-comodules is symmetric monoidal. Let M and N be

Ψ-comodules and define their comodule tensor product M ⊗ N to be the

module M ⊗A N , with comodule structure given by the composite

M ⊗N ψN⊗ψN−−−−→ (Ψ⊗AM)⊗ (Ψ⊗A N)→ Ψ⊗A (M ⊗N) (3.3)

where the last map sends g1⊗m⊗g2⊗n→ g1g2⊗m⊗n. The tensor product

has a right adjoint HomΨ(−,−) (the underline is to remind us that they are

internal Hom) making ComodΨ a closed symmetric monoidal category [23,
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p. 1.3.1], although it is harder to explicitly give a formula for HomΨ(M,N)

and we will do not use it. With this closed monoidal structure, we can define

the dual of a Ψ-comodule M to be DM = HomΨ(M,A).

The following proposition which characterizes dualizable comodules will

be fundamental to us in the subsequent chapters.

Proposition 3.2.2. [23, Prop. 1.3.4] A comoduleM is dualizable in ComodΨ

if and only if M is dualizable as an A-module, i.e., M is finitely generated

and projective as an A-module.

A Hopf algebroid (A,Ψ) will be called an Adams Hopf algebroid if it

satisfies Adams’ condition, i.e., if Ψ is a filtered colimit of dualizable Ψ-

comodules. We also note if one has a flat Adams Hopf algebroid then ComodΨ

is a Grothendieck abelian category. This implies that ComodΨ is locally

presentable, see [10, Proposition 3.10]. We have the category C(ComodΨ),

the category of cochain complexes in the abelian category ComodΨ.

3.2.3 Comodules over the Johnson-Wilson spectrum

In this subsection we will recall some properties of a particular Hopf algebroid

(E(1)∗, E(1)∗E(1)). There is a very concrete albeit complicated description

of this category which goes back to Bousfield, see [11]. Since we do not use

this description we will not recall it here. Let X be a spectrum. Then the

E(1)∗E(1)(X)-comodule E(1)∗(X) is an object of A = ComodE(1)∗E(1) by

taking

Mn := E(1)n(X), n ∈ Z.
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Since the homology theory E(1)∗(−) is 2p− 2-periodic we will also use sub-

category B = Comod0
E(1)∗E(1) of ComodE(1)∗E(1) consisting of those objects

(Mn)n∈Z such that

Mn =


M : n ≡ 0 mod 2p− 2

0 : else

(3.4)

This describes a so-called split of period 2p− 2 of A : B ⊂ A is a Serre class

such that

⊕
0≤i<2p−2

B → A

(Bi)→
⊕

0≤i<2p−2

Bi[i]

is an equivalence of categories.

3.3 Twisted Cochain Complexes

In this section we will review some essential material regarding twisted com-

plexes.

3.3.1 Main Definitions

Let A be an arbitrary abelian category (we will assume that it is also Z-

graded and we suppress the grading), T : A → A a self-equivalence and N a

natural number.
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Definition 3.3.2. The category C(T,N)(A) of (T,N)-twisted cochain com-

plexes or quasi-periodic complexes with values in A is defined as follows.

The objects are cochain complexes C•∗ with Ci
∗ ∈ A for all i together with

specified isomorphism of cochain complexes

ϕ•C : T (C
•
∗)→ C•∗ [N ] = C•+N .

The morphisms are morphisms of cochain complexes f : C•∗ → D•∗ that are

compatible with those isomorphisms, that is, the following diagram com-

mutes.
T (C•) C•[N ]

T (D•) D•[N ]

Note that the shifted complex C•∗ [N ] = C•+N has differentials (−1)Nd,

where d is the differential of the cochain complex C•∗ . In our particular

case where A = ComodE(1)∗E(1), the self-equivalence is the last section’s

T p−1 : A → A. We denote the category C(T p−1,1)(A) by C1(A). Secondly

we are interested in the category CT ((2p−2)(p−1),2p−2)
(B) where B is the split

of A introduced above. This category of twisted cochain complexes will be

denoted by C2p−2(B). Actually, these two categories are equivalent, that is,

C1(A) ∼= C2p−2(B)

and we explain why below. Consider

C•∗ = (. . .→ C0
∗ → C1

∗ → C2
∗ → . . .)
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an object of C1(A), that is, Ci
∗ ∈ A and T (Ci

∗)
∼= Ci+1

∗ via αC . Since A splits

into 2p− 2 copies of B, each Ci
∗ splits into

Ci
∗ = Ci

(0) ⊕ Ci
(1) ⊕ . . .⊕ Ci

(2p−1).

with Ci
(j) ∈ B[j]. So C•∗ gives us a complex taking values in B by setting

C∗(0) := (. . .→ C0
(0) → C1

(0) → C2
(0) → . . .).

The self-equivalence T act on each Ci by cyclically permuting the summands:

T (Ci
(j))
∼= T (Ci)(j+1)

∼= Ci+1
(j+1), j ∈ Z/(2p− 2)Z.

As a consequence we have

T (2p−2)(p−1)(Ci
(0))
∼= T (2p−3)(p−1)(Ci+1

(1) )
∼= . . . ∼= Ci+2p−2

(0) ,

and thus C•(0) is a 2p − 2-periodic, that is, C•(0) ∈ C2p−2(B). On the other

hand, an object of C2p−2∗ (B) carries the same information as an object of

C1∗(A): given

D•∗ = (. . .→ D0
∗ → D1

∗ → D2
∗ → . . .) ∈ C2p−2∗ (B)

one obtains a corresponding object D
•
∗ ∈ C1(A) by setting D

i

(j) := T j(Di−j
∗ ).

The category C1(A) of twisted periodic complexes of period 1 can be

given equivalently as the category whose objects are cochain complexes in A
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together with an isomorphism between internal and external shifts, i.e.,

C•∗−1
∼= C•+1

∗ .

Similarly, for C2p−2(B), can be given as the category whose objects are cochain

complexes in B together with an isomorphism

C•∗−2p+2
∼= C•+2p+2

∗ .

Notice that the definition of the category C1(A) is redundant since it consists

of a complex

. . .
d−1

−−→ C0
∗

d0−→ C1
∗

d1−→ C2
∗

d2−→ . . . ,

in which ϕn : T (Cn
∗ )
∼= Cn+1

∗ , i.e., all the objects are isomorphic. There is a

simpler algebraic structure that captures the same information and it’s a lot

more simple.

Definition 3.3.3. A differential comodule M∗ is a pair (M∗, d) where

M∗ ∈ A = ComodE(1)∗E(1) and d : M∗ →M∗,

where d is an endomorphism of degree −1 satisfying d2 = 0. We denote the

abelian category of differential comodules as dA = dComodE(1)∗E(1)

To ease notation for the following proposition we will write ψn : Cn+1
∗ →

T (Cn
∗ ), i.e., the inverse of ϕn. See also [35, Proposition 3.3].

114



Proposition 3.3.4. The functor

F : C1(A)→ dA, (C•∗ , d) 7→ (C0
∗ , ψ

0 ◦ d0)

is an equivalence of categories.

Proof. The functor F picks only the entry at n = 0, i.e., C0
∗ , with differential

d : C0
∗ → C0

∗ [1] = T (C0
∗) defined by the composition

C0
∗

d0−→ C1
∗

ψ0

−→ T (C0
∗).

The functor G : dA → C1(A) defined by G(M∗, d)k = T k(M∗) with differen-

tial dk = (−1)kT k(d) in an inverse to F .

3.3.5 The Tensor Product of Twisted Complexes

In this subsection we will review the tensor product on C1(A). By definition,

an object C•∗ ∈ C1(A) is a cochain complex of objects in A = ComodE(1)∗E(1),

i.e., it is a bigraded object.

Definition 3.3.6. Let X•∗ , Y
•
∗ ∈ C1(A). The tensor product is defined by

(X ⊗ Y )pq =
⊕
m+s=p
n+t=q

Xm
n ⊗ Y s

t

with differential

d(x⊗ y) = d(x)⊗ y + (−1)|x|x⊗ d(y).
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Note that the formula uses the total degree in the sign convention, that is,

we are using the notation |x| for the sum of horizontal and vertical degree.

The category dA of differential objects is also symmetric monoidal. Let

X∗, Y∗ ∈ dA. The tensor product X ⊗ Y is defined

(X ⊗ Y )n =
⊕
p+q=n

Xq ⊗ Yp

with differential defined by

d(x⊗ y) = d(x)⊗ y + (−1)deg(x)xd(y).

Recall from Proposition 3.3.4 the functor F : C1(A) → dA, which picks the

object C0
∗

Proposition 3.3.7. The equivalence

F : (C1(A),⊗)→ (dA,⊗)

is strong symmetric monoidal.

Proof. The assertion follows directly from the definitions.

3.4 Model Structures for Twisted Complexes

In this section we will make a small thematical detour and recall various

model structures on twisted cochain complexes in the categoryA = ComodE(1)∗E(1).

The main result of this section which is also fundamental to our thesis is that
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there is a monoidal model structure on C1(A) which is Quillen equivalent to

the injective model structure C1(A)inj. Our first definition is to recall injec-

tive model structure.

Definition 3.4.1 (Injective Model Structure). In this model structure, a

map f : X → Y in C1(A) is

(i) a weak equivalence if it is a quasi-isomorphism,

(ii) a cofibration if it is monomorphism, and

(iii) a fibration if it is a degreewise split epimorphisms with strictly injective

kernel

We denote this model structure by C1(A)inj.

This model structure was the one considered initially by J.Franke. The

homotopy category of the above model structure is called the Franke’s model

i.e., D1(A) = Ho(C1(A)inj). Note that since the abelian category A does

not have enough projectives, there is no projective-type model structure on

C1(A). Recall from Section 3.2 that the category A is a symmetric monoidal

abelian category with the tensor product as operation. However, the symmet-

ric monoidal category (C1(A),⊗) equipped with the injective model structure

is not a symmetric monoidal model category. This is because, in the injective

model structure, the monoidal product ⊗ is not a Quillen bifunctor, i.e., the

pushout product axiom fails, see Definition 2.3.7. An example that illustrates

it is the following. Consider U = PE(1)∗, V = P(E(1)∗ ⊗ Q),W = 0 and

X = E(1)∗ ⊗ Z/p and let f : U → V and g : W → X. Note that

P(C)⊗ P(D) ∼= P(C ⊗D),
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we see that f□g is tha map X → 0 which is not a monomorphism and hence

not a cofibration in C1(A)inj.

In order to remedy the fact that (C1(A)inj,⊗) is not a monoidal model

category we will construct a monoidal model category which is called quasi-

projective model structure. This model structure together with the tensor

product of complexes turns out to be a symmetric monoidal model category

and moreover, it is Quillen equivalent to the injective model structure. We

will not recall all of the proofs and definitions for the construction of this

model structure. Instead we will define only the necessary ingredients and

we will refer mainly to the paper [6] for a detailed exposition.

Recall from Definition 3.3.2 that an object C•∗ ∈ C1(A) is a cochain

complex in the abelian category A together with an isomorphism T (C•∗)
∼=

C•+1
∗ . Equivalently, a quasi-periodic cochain complex of period 1 is a cochain

complex C•∗ , together with an isomorphism between internal and external

shifts i.e., C•∗−1
∼= C•+1

∗ . By “forgetting” this isomorphism between internal

and external shifts we have the forgetful functor

U : C1(A)→ C(A).

The forgetful functor has a left and a right adjoint. We will be interested

only in the left adjoint to the forgetful functor. Define a functor P as follows

P : C(A)→ C1(A), M•
∗ 7→

⊕
k∈Z

T kM•+k
∗ . (3.5)
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In particular, this means that

PMn
∗ =

⊕
k∈Z

T kMn+k
∗ .

The proof that indeed the functor P is left adjoint to the forgetful functor

can be found in [6, Lemma 1.2]. With the help of the adjunction

P : C(A) ⇄ C1(A) : U

we are going to lift various model structure from C(A) to C1(A), see [21,

Theorem 11.3.2].

The first step in order to construct the quasi-projective model structure

is the relative projective model structure. We are going to summarize the

relative projective model structure on C(G) for an arbitrary Grothendieck

abelian category G. It is a generalization of the projective model structure on

C(ModR) where R is a commutative ring. It was introduced by Christensen

and Hovey in the paper [14]. Recall that if P is an object in G and X is a

object in C(G) we write HomG(P,X) for the cochain complex that has the

abelian group HomG(P,Xn) in degree n with differentnial

(dX)∗ : HomG(P,X
n)→ HomG(P,X

n+1).

To construct the relative projective model structure, one begins by choosing

a projective class in G, that is, a collection P of objects in G and a collection

E of maps in G such that the pair satisfy certain conditions which we define

below. Recall that given a collection of objects P in G, a morphism f : A→ B
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in A is called P-epimorphism if it induces an epimorphism HomG(P,A) →

HomG(P,B) for all P in P .

Definition 3.4.2 (Projective class). Let G be an abelian category. A pro-

jective class in G is a collection P of objects of G and a collection E of maps

in G such that

(i) An object U is in P if and only if HomG(U,X) → HomG(U, Y ) is sur-

jective for every X → Y in E ,

(ii) A map X → Y lies in E if and only if HomG(U,X) → HomG(U, Y ) is

surjective for every U in P

(iii) For every X in G, there is a morphism P → X in E such that P is in

P .

When a collection P is part of a projective class (P , E), the projective class

is unique, and so we say that P determines a projective class or even that

P is a projective class. An object of P is called a P-projective, or, if the

context is clear, a relative projective. Objects of P are called P-projectives

or relative projectives. Elements of E are called P-epimorphisms or relative

epimorphisms.

See [14, Definition 1.1] for further details and examples of projective

classes.

We are ready now to define the relative projective model structure on

C(G). We have the following definition.

Definition 3.4.3. Suppose that P is a projective class on the abelian cate-

gory G. We say that a map f : X → Y in C(G) is:
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(i) a P-equivalence if f∗ : HomG(P,X)→ HomG(P, Y ) is a quasi-isomorphism

in C(Z) for all P ∈ P ,

(ii) a P-fibration if HomA(P, f) is a degreewise surjection for all P ∈ P ,

(iii) a P-cofibration if it has the left lifting property with respect to all

P-fibrations that are also P-equivalences.

When this model structure exists we denote it by C(G)rel.proj.

By [14, Lemma 1.5], assuming that G is cocomplete, one way to obtain

a projective class is to take any set S and define P to be the collection

of retracts of coproducts of objects in S and E to be the collection of S-

epimorhisms. Recall from Section 3.2 that a comodule M ∈ ComodE(1)∗E(1)

is dualizable if and only ifM is finitely generated and projective as an E(1)∗-

module.

Definition 3.4.4. Let S be the set of isomorphism classes of dualizable

comodules in A = ComodE(1)∗E(1).

As above, the set of isomorphism classes of dualizable comodules defines

a projective class on ComodE(1)∗E(1). In what follows we will always use this

projective class on the abelian category A = ComodE(1)∗E(1). To provide

motivation for the choice of dualizable comodules, see [23, Section 1.4]. By

[23, Theorem 2.1.1] the relative projective model structure C(A)rel.proj exists

and by [6, Proposition 1.3] the forgetful functor U : C1(A) → C(A)rel.proj

creates a model structure on C1(A) and we denote it by C1(A)rel.proj. Next,

we would like to have a more explicit version of the cofibrant objects in

C1(A)rel.proj.
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Lemma 3.4.5. A quasi-periodic cochain complex C•∗ is cofibrant in C1(A)rel.proj

if and only if it is degreewise relative projective and every map from C•∗ to a

weakly P-contractible quasi-periodic chain complex K•∗ is nullhomotopic with

quasi-periodic homotopy.

So, in particular, a cofibrant cochain complex in C1(A)rel.proj is degreewise

dualizable. For a proof of the above Lemma, see [6, Lemma 5.6].

Finally, we are ready to define the quasi-projective model structure C(A)q.proj.

It can be defined as the left Bousfield localization of C(A)rel.proj with respect

to the class of quasi- isomorphisms, i.e., maps that induce isomorphism in

cohomology. To be specific we have the following definition.

Definition 3.4.6 (Quasi-projective model structure). LetA = ComodE(1)∗E(1)

together with the projective class P generated by the set of dualizable co-

modules. We call a map f : X → Y in C(A)

(i) a weak equivalence if f is a quasi-isomorphism,

(ii) a cofibration if it is a P-cofibration, (see Definition 3.4.3) and

(iii) a fibration it if has the right lifting property with respect to the acyclic

cofibrations.

The existence of this model structure is technical and we refer to [6,

Proposition 6.2] for the relevant details. As a left Bousfield localization, the

cofibrations of C(A)q.proj are the same as that of C(A) rel.proj. In particular,

the cofibrant objects are the same as in Lemma 3.4.5. Like above, the adjoint

pair (P, U) creates a model structure on quasi-periodic complexes which we

denote by C1(A)q.proj.
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To conclude this section, so far we have three model structure on C1(A)

and it will be useful to describe how are these three model structures are

related to each other. The following adjunction

Id: C1(A)rel.proj ⇄ C1(A)q.proj : Id

is a Quillen adjunction, and the adjunction

Id: C1(A)q.proj ⇄ C1(A)inj : Id

is a Quillen equivalence, see [6, Theorem 6.5] for a proof. Furthermore, by

[6, Theorem 6.9], the model category C1(A)q.proj together with the tensor

product of complexes ⊗ is a symmetric monoidal model category. As a

corollary [6, Corollary 6.10], Franke’s model D1(A) is a symmetric monoidal

category with the derived tensor product ⊗L, see Corollary 2.3.17.

3.5 Homology of a Category with Coefficients

in a Functor

In this section we will introduce one our main tools, namely homology of

a category with coefficients in a functor. It is a particular case of functor

homology that assigns the groups TorI∗(F,G), to functors F : I → A and

G : Iop → A withA an abelian category. Since we do not need such generality

we will introduce it in a more down-to-earth way that goes back to Quillen

and uses simplicial techniques. Traditional references include [31] and [32].
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More contemporary references include [17] and [41, Chapters 15, 16].

3.5.1 Definition of Homology of a Category with Co-

efficients

For the following definition, we let A be an arbitrary abelian category and

sA be the category of simplicial objects in A, i.e., sA = Fun(∆op,A). Recall

from Section 2.1 that D ∈ sA can be given equivalently as a collection Dn

of objects of A and a collection of maps

di : Dn → Dn−1, 0 ≤ i ≤ n (faces)

sj : Dn → Dn+1, 0 ≤ j ≤ n (degeneracies)

for all n ∈ Z≥0 satisfying the simplicial identities.

Before we define the homology of a category with coefficients in a functor

we will first define the associated complex of a simplicial object in an abelian

category.

Definition 3.5.2. Let D ∈ sA be a simplicial object in A. We define the

associated complex (C•(U), ∂) ∈ Ch≥0(A) by

Cn(D) = Dn ∂n =
n∑
i=0

(−1)ndi : Cn(D)→ Cn−1(D).

Note that the simplicial identities imply ∂2 = 0, so C•(D) is indeed a chain

complex. Moreover, this evidently defines a functor C : sA → Ch≥0(A)

In other words, the associated complex to a simplicial object D ∈ sA is

124



the following chain complex.

D0
d0−d1←−−− D1

d0−d1+d2←−−−−−− D2 ← . . . . (3.6)

We could just as well consider cochain complexes and cosimplicial objects,

that is, diagrams D : ∆→ A. We chose to work with simplicial objects since

it fits better thematically. Now, let D : I → A be a diagram in an abelian

category. We will define the objects Hp(I;D) in A for p ≥ 0.

Definition 3.5.3. Let I be a small category and consider a diagram D : I →

A. The homology of the category I with coefficients in the functor D, is

defined as the homology of the complex C•(D), i.e., the homology of the

associated complex of the simplicial replacement srep(D) ∈ sA.

So, unwinding the definition, we start by first taking the simplicial re-

placement ofD, see Definition 2.4.14, that is, the diagram srep(D) : ∆op → A

⊕
i0

Di0

⊕
i0→i1

Di0oo oo
⊕

i0→i1→i2

Di0 · · ·oo oo
oo

Then we consider the associated chain complex, (3.6), C•(D). Then we

defined Hp(I;D) to be the pth homology group of the chain complex C∗(D).

Lemma 3.5.4. Let A be a cocomplete abelian category, and let I be a small

category. For any diagram D : I → A there is a canonical isomorphism

H0(I;D) = colim
I

D

Proof. By construction, the zeroth homology H0(C•(D)) is C1(D)/ im(d0 −
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d1), i.e., coker(d0 − d1) which is

d0 − d1 :
⊕
i0→i1

Di0 →
⊕
i0

Di0 .

But this solves the universal problem defining the colimit, so H0(C;D) =

colimI D.

Although homology of a category with coefficients is easy to define, in

practice it can be very difficult to calculate.

Definition 3.5.5. Let A ∈ sA. We define the degenerate subcomplex D•(A)

of C•(A) by

D0(A) := 0 and Dn(A) :=
n−1∑
i=0

im(si) for n ≥ 1.

That is, D•(A) is generated by the images of the degeneracy maps. Note

that by the simplicial identities,

d(sj) =
n∑
i=0

(−1)idisj =
j−1∑
i=0

(−1)isj−1di +
n∑

i=j+2

(−1)isjdi.

Definition 3.5.6. Again let A ∈ sA be simplicial object in A. We define the

normalised chain complex N(A) ∈ Ch≥0(A) which in dimension n, Nn(A)

consists of the subobject of An that is killed by the face maps di, i < n. That

is,

N0(A) := A0 and Nn(A) :=
n−1⋂
i=0

ker(di) ⊆ An, ∂n := (−1)ndn : Nn(A)→ Nn−1(A) for n ≥ 1.
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The simplicial identities imply both that dn(Nn(A)) ⊆ Nn−1(A), assumed

in the above definition of dn, and that ∂2 = 0. Again this gives a functor

N : sA → Ch≥0(A).

Proposition 3.5.7. [19, Theorem 2.1] Let A ∈ sA. For all n ≥ 0 the natural

map

ϕ : Nn(A)⊕Dn(A)→ An = Cn(A).

induced by the inclusions is an isomorphism. Therefore we have a natural

isomorphism

N•(A) ∼= C•(A)/D•(A).

Furthermore, the inclusion N(A) ↪→ C(A) is a natural chain homotopy equiv-

alence.

Consider now a diagram D ∈ AI and its simplicial replacement srep(D) ∈

sA, see Definition 2.4.14. By construction, an n-simplex in srep(D) is degen-

erate if and only if there is an identity map in the n-chain. This means that

by in order to compute the homology objects H∗(I;D) it suffices to consider

the normalized complex which by Proposition 3.5.7 means we can can focus

only on the non-degenerate simplices.

The following example will appear frequently in Section 4.5.

Example 3.5.8. Consider the pre-pushout diagram ⌜ given in Example 2.2.8

and let D : ⌜→ A be a diagram as follows.

A B

C

f

g
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Because of the shape of the poset, the simplicial replacement srep(D) ∈ A∆op

of the diagram X is 2-skeletal. That is to say, for n ≥ 3 all of the elements

in srep(X)n are degenerate. This implies that the normalized complex asso-

ciated to the simplicial object srep(D) is the following chain complex.

0→ A⊕ A ∂−→ A⊕B ⊕ C.

Here the differential ∂ is the following map

∂ : A⊕ A→ A⊕B ⊕ C

(x, y) 7−→ (x+ y,−f(x),−g(y)).

From the above, we have directly that

H0(⌜, D) = colim
⌜

D

H1(⌜, D) = ker ∂ = ker f ∩ ker g.

3.5.9 A Spectral Sequence for Homotopy Colimits of

Diagrams of Spectra

In this subsection we introduce a very important tool that we will use in

Chapter 4. This tool is a spectral sequence such that given a spectrum E

and a diagram of spectra X ∈ SpI one can compute the E∗-homology of the

homotopy colimit hocolimI X, that is,

E∗(hocolim
I

X).
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In order to introduce this spectral sequence, we will venture once again to

the garden of simplicial objects. References for this subsection include [15,

Section 3.2.1, Chapter 5].

Suppose we have a sequence {Xi}i∈Z≥0
in the stable model category of

spectra

∗ = X0 → X1 → X2 → . . . (3.7)

We set Ci = hocofib(Xi → Xi+1) and X = hocolimiXi. Here by a sequence

we mean nothing more than just a sequence of maps, we do not impose

any kind of conditions. Usually sequences like the above are considered as

“filtrations” of some object and we think of the sequence of spectra Xi as

a filtration of hocolimiXi. Taking homotopy groups, see Definition 2.6.5 of

the spectra Xi, and of the homotopy cofibers Ci, we wrap up the resulting

triangles into an exact couple with

D D

E

i∗

j∗∂

in which

D =
⊕
p,n

πnXp

and

E =
⊕
p,n

πnCp.

The maps i∗ and j∗ are the direct sums of the maps on homotopy induced

by ip : Xp → Xp+1 and jp : Xp → Cp respectively, and ∂ is the direct sum of

the boundary maps ∂ : πnCp → πn−1Xp−1. This produces a spectral sequence
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with E1
pq = πp+qCp and converges strongly to πp+qX = πp+q hocolimiXi:

E1
pq = πp+qCp =⇒ πp+qX. (3.8)

Now that we have a spectral sequence of a sequence of spectra we general-

ize the above spectral sequence for an arbitrary simplicial object in spectra.

Proposition 3.5.10. Let X ∈ Sp∆op

be a simplicial spectrum which is Reedy

cofibrant. Then there is a spectral sequence

E1
pq = πqNXp ⇒ πp+q(|X|),

where NXp := Xp/LpX = cofib(LpX → Xp).

Proof. Consider the skeletal filtration 2.4.20 of A namely,

∗ → |X|0 → |X|1 → |A|2 → . . . .

Since we assume that X is Reedy cofibrant 2.2.21 all of the maps above

are cofibrations, hence the homotopy cofiber |X|n−1 → |X|n is simply the

ordinary cofiber. Moreover,

hocolim
i
|X|i ∼= colim

i
|X|i = |A|.

Since the ordinary cofiber is just the quotient of the target by the image of

the map, by Proposition 2.1.9 we can identify the cofiber of |X|n−1 → |X|n

with ΣnNXn. Therefore the filtration (3.7) together with the cofibers is the
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following.

∗ // |X|0
ϕ0 //

��

|X|1
ϕ1 //

��

|X|2 //

��

. . .

X0 ΣNX1 Σ2NX2 . . .

where each sequence

|X|n−1 → |X|n → ΣnNXn

is a cofibration sequence. Hence the E1
pq term of the spectral sequence (3.8)

is the following.

πp+q(Σ
pNXp) =

[
Sp+q,ΣpNXp

] ∼= [Sq, NXp] = πqNXp

Next we generalize from a simplicial spectrum to an arbitrary diagram of

spectra. Let now I be a direct category. We equip the category SpI with the

model structure 2.2.12 and consider a diagramX ∈ SpI . We may assume that

X is objectwise cofibrant. If not, we replace it cofibrantly. In any case, by

Lemma 2.4.17, its simplicial replacement srep(X) ∈ sSp is Reedy cofibrant.

Recall from Definition 2.6.7 that given spectra E and X, the E∗-homology

of X is given by E∗(X) = π∗(E ∧X).

Proposition 3.5.11. Let E be a spectrum and let X ∈ SpI be a diagram of

spectra that is objectwise cofibrant. There is a spectral sequence

E2
pq = Hp(I;EqX)⇒ Ep+q(hocolim

I
X).
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Proof. Consider the simplicial replacement of X, namely, srep(X) which

by Lemma 2.4.17 is Reedy cofibrant. So we have the skeletal filtration of

srep(X), i.e.the following sequence of spectra.

∗ → | srep(X)|0 → | srep(X)|1 → | srep(X)|2 → . . . .

Notice that again by Proposition 2.1.9 we can identify

cofib (| srep(X)|n−1 → | srep(X)|n) = Σn
∐

i0→...in

Xi0 .

Here in the coproduct we consider only the non-degenereate simplices. Next,

we objectwise smash the simplicial object srep(X) with E to get the diagram

E ∧ srep(X) : ∆op → Sp, [n] 7→ E ∧L srep(X)n.

Smashing preserves cofiber sequences and the geometric realization of the

simplicial spectrum E∧L srep(X) is naturally isomorphic to hocolimI E∧LX.

Since homotopy colimits commute with − ∧L − this is naturally isomorphic

to E ∧L hocolimI X. So the terms of the spectral sequence

πp+q

Σp(E ∧L
∐

i0→...→ip

Xi0)

 ∼= πq(E∧L
∐

i0→...→ip

Xi0) = Eq(
∐

i0→...→ip

Xi0) = Hp(I;EqX)

and we are done.

Notice that given C F→ D X→ Sp by (2.4.23) we have an induced natural
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map of simplicial objects

srep(F ∗X)→ srep(X),

hence the above proposition gives a morphism of spectral sequences f :
{
E2
pq

}
→{

E ′2pq
}
. More generally we have the following

Proposition 3.5.12. There is a functorial assignment of a spectral sequence

to each simplicial object of Sp converging (in good cases) to its homotopy

colimit (geometric realization) with a canonical identification of the E2 terms

given in the previous proposition.
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Chapter 4

Monoidal Properties of the

Functor Q

4.1 Introduction to the Chapter

This chapter constitutes the heart of the thesis and it is the longest one. It is

structured as follows. In the second section, with all the tools at our disposal

from Chapters 2 and 3 we can finally recall Franke’s realization functor R

and it’s construction. We will recall all the necessary definitions and concepts

to make the construction precise. We will also establish some notation that

we will use throughout. In the next section we state the main theorem and

result of the chapter. We will explain what the theorem entails how the

theorem will be broken down into smaller propositions. In the fourth section

we start our way to set up the necessary definitions and notation. We will

be interested in a homotopy left Kan extension of a particular functor, so

we will discuss the slice categories of that functor in detail. This is because
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the values of a homotopy left Kan extension are computed using homotopy

colimits of slice categories, as explained in Proposition 2.5.9. In the fifth

section, after we have set up the necessary notation, we will explain in more

detail our strategy and various technicalities and we will start the proof of

the first part of Theorem 4.3.1. That is, we are going to construct a crowned

diagram that computes the tensor product of twisted periodic complexes.

In the sixth section we will discuss the cones of the new diagram that we

will construct. In the last section we will discuss the differentials of the new

twisted-periodic complex.

4.2 Construction of Franke’s Functor

In this section we are ready to recall the constructions of Franke’s functor,

our main character for this thesis. For more detailed exposition, see [43].

Recall the poset CN defined in Example 2.2.9 for N := 2p − 2 for p an odd

prime. It is the following poset

ζ0 ζ1 . . . ζN−1

β0

OO 44

β1

OO__

. . .

``

βN−1

OObb

Also, recall Proposition 2.6.10 for the E(1)-local model structure, L1Sp. We

equip the category L1Sp
CN with the projective model structure 2.2.12. For a

diagram X ∈ L1Sp
CN we denote the structure morphisms as follows

ln : Xβn → Xζn , kn : Xβn+1 → Xζn .

135



Consider now the full subcategory of objects X of Ho(L1Sp
CN ) satisfying the

following conditions.

(i) The objects Zn
∗ := E(1)∗−n(Xζn) and B

n
∗ := E(1)∗−n(Xβn) are concen-

trated in degrees congruent to 0 modulo N , i.e., Zn
∗ and Bn

∗ are objects

of B = Comod0
E(1)∗E(1).

(ii) The maps λn := E(1)∗−n(ln) : B
n
∗ → Zn

∗ are injective.

Definition 4.2.1. Denote the subcategory of Ho(L1Sp
CN ) defined above by

L. Furthermore, we let L′ ⊂ L be the full subcategory of L such that Zn
∗

and Bn
∗ are projective E(1)∗-modules.

Now, let X be an object of L. We define

Cn
∗ (X) := E(1)∗−n(cone(Xβn+1 → Xζn)) = E(1)∗−n(cone(kn)) (4.1)

Since we are working in Ho(L1Sp
CN ) and not Ho(L1Sp)

CN , all of the con-

structions above are properly functorial.

If we apply E(1)∗−n(−) to the exact triangle

Xβn+1

kn→ Xζn → cone(kn)→ ΣXβn+1

we obtain a short exact sequence

Bn+1
∗+1 → Zn

∗ → Cn
∗ → Bn+1

∗
0→ Zn

∗−1.

It follows that Cn
∗ is also an object of B = Comod0

E(1)∗E(1). In order to define
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the differential we apply E(1)∗−n(−) to

cone(Xβn+1 → Xζn)→ ΣXβn+1

Σln+1−−−→ ΣXζn+1

Σι−→ Σcone(Xβn+2 → Xζn+1)

and we have

dn : Cn
∗ (X)→ Bn+1

∗ (X)→ Zn+1
∗ (X)→ Cn+1

∗ (X).

So, we have a well-defined functor

Q : L → C2p−2∗ (B) X 7→ Q(X) = (C•∗(X), d). (4.2)

Franke proves that this functor is an equivalence. Choose an inverse Q−1 of

Q once and for all. Franke further shows that

R := hocolim
CN

◦Q−1 : C2p−2∗ (B)→ Ho(L1Sp). (4.3)

factors over the derived category of C2p−2∗ (B) and induces an equivalence of

categories

R : D2p−2(B)→ Ho(L1Sp)

Here D2p−2(B) = Ho(C2p−2∗ (B)inj), the homotopy category of the injective

model structure on C ∗2p−2 (B), see Definition 3.4.1.

Remark 4.2.2. There is another category which is implicit in the above

discussion. Let ce be the class of morphisms in Ho(L) that are sent to

equivalences by the homotopy colimit functor. The above claim is that these
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are the same as the morphisms sent by Q to quasi=equivalences, so we have

Ho(L1Sp) ∼= Ho(L)[ce−1] ∼= C2p−2∗ (B)[qi−1] = D2p−2(B),

where qi is the class of weak equivalences in C2p−2∗ (B), that is to say the

quasi-isomorphisms.

Finally, for all C,D ∈ C2p−2∗ (B), the mapping space Map(C,D) is weakly

equivalent to a product of Eilenberg-MacLane spaces. However, the mapping

space MapL1Sp(S,S) is not a product of Eilenberg-MacLane spaces. It follows

that C2p−2∗ (B) and L1Sp cannot be Quillen equivalent. For details of that fact

see [43]. So, the functor R is an equivalence of homotopy categories which

cannot rise from a Quillen equivalence. Moreover, this equivalence can be

made stronger in certain cases. Both model structures C2p−2∗ (B) and L1Sp

are stable model categories, see Definition 2.2.28, therefore the homotopy

categories D2p−2(B) and Ho(L1Sp) are triangulated categories. In the paper

[33, Section 4.2], it is proven that if p ≥ 5 the functor R is a triangulated

equivalence. However, the question, whether the equivalence is triangulated

in the case p = 3, remains open.

4.3 Statement of the Main Result

In this section we will state the main result of this chapter and we will provide

motivation.
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Theorem 4.3.1. There exists a bifunctor

i∗Lpr!(− ⊼L −) : Ho(L1Sp
CN )× Ho(L1Sp

CN )→ Ho(L1Sp
CN )

such that the following holds. Let X, Y ∈ L such that for any n ∈ Z/(2p −

2)Z and any α ∈ {β, ζ}, the underlying E(1)∗-modules of the E(1)∗E(1)∗-

comodules

E(1)∗(Xαn) and E(1)∗(Yαn),

are projective. Then,

i∗Lpr!(X ⊼L Y ) ∈ L

and there is a natural isomorphism

Q(i∗Lpr!(X ⊼L Y )) ∼= Q(X)⊗Q(Y ).

The theorem has two parts. For brevity we will use the subcategory L′

introduced in Definition 4.2.1. The first part is the existence of the bifunctor

i∗Lpr!(−⊼L−) : L′×L′ → L′ and the second part is the existence of a natural

isomorphism

Q(i∗Lpr!(X ⊼L Y )) ∼= Q(X)⊗Q(Y ),

given that X and Y satisfy certain hypotheses. The theorem above (the two

139



parts combined) tells us that the following diagram is commutative.

C1(A)× C1(A)
⊗
��

L′ × L′oo

��
C1(A) L′oo

where

(i) The top horizontal arrow is the functor

Q×Q : L′ × L′ → C1(A)× C1(A).

(ii) The left vertical arrow is the tensor product of twisted periodic com-

plexes of period 1 in the abelian category A = ComodE(1)∗E(1).

(iii) The right vertical arrow is our, yet to be constructed, bifunctor

i∗Lpr!(− ⊼L −) : L′ × L′ → L′.

(iv) The bottom horizontal arrow is the functor

Q : L′ → C1(A).

The first part of Theorem 4.3.1, i.e., the existence of the bifunctor

i∗Lpr!(− ⊼L −) : L′ × L′ → L′

is the content of Section 4.5. The second part of Theorem 4.3.1, i.e., the
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natural isomorphism

Q(i∗Lpr!(X ⊼L Y )) ∼= Q(X)⊗Q(Y )

is the content of Sections 4.6 and 4.7.

4.4 Crowned Diagrams

4.4.1 Main Definitions of Crowned Diagrams

Recall the poset CN that was defined in Example 2.2.9 as follows. It is

the poset consisting of elements {βi, ζi | i ∈ Z/NZ} such that βi < ζi and

βi < ζi−1 for i ∈ Z/NZ. As a diagram it looks as follows.

ζ0 ζ1 . . . ζN−1

β0

OO 44

β1

OO__

. . .

``

βN−1

OObb

We will set N = 2p− 2 where p is an odd prime.

Also recall the posetDN in Example 2.2.10 consisting of elements {βn, γn, ζn : n ∈ Z/NZ}

such that βn ≤ γn ≤ ζn, βn+1 ≤ γn and γn+1 ≤ ζn. As a diagram it looks as

follows.

ζ0 ζ1 . . . ζN−1

γ0

OO 44

γ1

OO``

. . .

``

γN−1

OObb

β0

OO 44

β1

OO``

. . .

``

βN−1

OObb
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We will be interested in two functors between these two categories. The first

functor is the projection functor

pr : CN × CN → DN (4.4)

(βi, βj) 7→ βi+j

(ζi, ζj) 7→ ζi+j

(ζi, βj) 7→ γi+j

(βi, ζj) 7→ γi+j.

Note, that we really should be writing βi(modN) and γi+j(modN) etc. but we

do a small abuse of notation and avoid this. The other functor that we will

deal with is the functor

i : CN → DN , ζn 7→ ζn, βn 7→ γn. (4.5)

As we can see from the definition, the functor i embeds CN into DN in the

two top “floors”. Notice that the functor i∗ : L1Sp
DN → L1Sp

CN preserves

weak equivalences, hence it defines a functor on the homotopy categories,

which we denote by the same letter

i∗ : Ho(L1Sp
DN )→ Ho(L1Sp

CN ).

Next, recall from Definition 2.3.24, the objectwise (exterior) smash product

for diagramsX ∈ CI and Y ∈ CJ , for I and J finite posets. It follows formally
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by choosing I = J = CN , we have a bifunctor

− ⊼− : L1Sp
CN × L1Sp

CN → L1Sp
CN×CN . (4.6)

By Proposition 2.3.25, this external product has a total left derived functor

− ⊼L− : Ho(L1Sp
CN )× Ho(L1Sp

CN )→ Ho(L1Sp
CN×CN ). (4.7)

Given diagrams X, Y ∈ Ho(L1Sp
CN ), we can define the homotopy left Kan

extension of the objective (exterior) smash product diagram

X ⊼L Y ∈ Ho(L1Sp
CN×CN )

along the functor pr : CN × CN → DN , that is,

LLanpr(X ⊼L Y ) = Lpr!(X ⊼L Y ) ∈ Ho(L1Sp
DN ).

Now that we have all the necessary ingredients, we can finally define the

bifunctor that we need for Theorem 4.3.1.

Definition 4.4.2. The bifunctor i∗Lpr!(−⊼L−) is defined as the composition

L × L ⊼L
−→ Ho(L1Sp

CN×CN )
Lpr!−−→ Ho(L1Sp

DN )
i∗−→ Ho(L1Sp

CN ).

To ease notation we will set

E = Lpr!(X ⊼L Y ) ∈ Ho(L1Sp
DN )
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and we will use both interchangeably throughout.

The values of this functor are given by the formula in Subsection 2.5.6.

That is, the values of E at the objects are given by the following.

Eγn = hocolim
pr/γn

(X ∧L Y ) (4.8)

Eζn = hocolim
pr/ζn

(X ∧L Y ) (4.9)

Eβn = hocolim
pr/βn

(X ∧L Y ) (4.10)

The edges of the homotopy Kan extension, l̂n : Eγn → Eζn and k̂n : Eγn+1 →

Eζn are given by the natural maps

Eγn = hocolim
pr /γn

(X ⊼L Y )→ hocolim
pr /ζn

(X ⊼L Y ) = Eζn (4.11)

Eγn+1 = hocolim
pr /γn+1

(X ⊼L Y )→ hocolim
pr /ζn

(X ⊼L Y ) = Eζn (4.12)

induced by functors ϕ and ψ, respectively, see Subsection 2.12.

Since we are interested in the homotopy Kan extension of the functor

pr : CN × CN → DN , we need to have an explicit discription of all the slice

categories pr /ζn, pr /γn and pr /βn. Recall from Remark 2.4.7 that given C

and D posets and a functor f : C → D, the slice category is defined as

f/d = {c ∈ C : fc ≤ d}

for d ∈ D.

Example 4.4.3. For n ∈ Z/(2p − 2)Z and the object ζn we have the slice
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category pr /ζn as below.

(ζi, ζj)

(βi+1, ζj)
(ζi, βj) (βi, ζj)

(ζi, βj+1)

(βi, βj)

(βi+1, βj+1)

(βi+1, βj) (βi, βj+1)

. . .

. . . . . .

. . .

Here, i+j ≡ n (mod 2p−2). Notice that all the morphisms (non-idenity) are

of the form (id, li) or (li, id) and similarly (id, ki) or (ki, id) for i ∈ Z/(2p−2)Z.

The poset pr /ζn follows the same pattern to the left and to the right.

Our next example of interest is the following.

Example 4.4.4. Let n again as above but now consider the slice category

pr /γn which looks as follows.

(βi, βj)

(βi, ζj)(ζi, βj)

(βi, βj+1)(βi+1, βj)

(ζi−1, βj+1)(βi+1, ζi−1)

. . .. . .

Again i + j ≡ n (mod 2p − 2). Analogously to the above example, all the

non-identity morphisms are of the form (id, li) or (li, id) and similarly (id, ki)

or (ki, id) for i ∈ Z/(2p− 2)Z.

Example 4.4.5. Let again n ∈ Z/(2p − 2)Z but now we consider the slice
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category pr /βn. Notice that it is

. . . (βi+1, βj−1) (βi, βj) (βi−1, βj+1) . . .

in which i + j ≡ n (mod 2p − 2). In other words, it is a discrete category.

This means that

Eβn = hocolim
pr /βn

(X ⊼L Y ) ∼=
⊕
i+j=n

Xβi ∧L Yβj .

This is the only case that we can be explicit about the values of the homotopy

left Kan extension

E = Lpr!(X ⊼L Y ).

As a last example that will be useful for us is the following.

Example 4.4.6. [18, pp 35] For the poset pr /ζn, consider the following

subposet Jn ⊆ pr /ζn defined as follows:

(ζi, ζj)

(βi, βj+1)

(ζi−1, ζi+1)

. . .(βi+1, βj)

(ζi+1, ζi−1)

. . .

where i + j ≡ n (mod 2p − 2). Notice that in this poset the non-identity

morphisms are of the form (ki, li) or (li, ki), unlike the examples above where

one arrow was always the identity arrow.
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Suppose now that we have a pair of adjoint functors

F : C ⇄ D : G.

If C and D are posets (and F and G are map of posets) then the condition

that the pair (F,G) defines an adjoint pair becomes

Fc ≤ d if and only if c ≤ Gd. (4.13)

For more details on posets adoints, see [2, Section 9.4].

Remark 4.4.7. Now let θn : Jn → pr /ζn denote the inclusion of the subposet

defined in Example 4.4.6. Below, we will define a map of posets

L : pr /ζn → Jn, (4.14)

which it suffices to define for the part of the poset visible in Example 4.4.3,

the rest can be defined analogously. The map L is defined as follows.

L : pr /ζn → Jn

(βi+1, βj) 7→ (βi+1, βj)

(βi, βj+1) 7→ (βi, βj+1)

else 7→ (ζi, ζj)

Notice that the condition (4.13) holds for L as the left adjoint and θn as

the right adjoint. In other words, the functor L as constructed above, is a

left adjoint to the inclusion θn : Jn → pr /ζn. As a consequence, since the
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inclusion map θn : Jn → pr /ζn is a right adjoint, by Lemma 2.4.28, for any

F ∈ Ho(Cpr/ζn)

hocolim
Jn

θ∗n(F )
∼= hocolim

pr /ζn
F.

In other words, the value Eζn in (4.8) can be calculated

Eζn = hocolim
pr /ζn

(X ⊼L Y ) ∼= hocolim
Jn

θ∗n(X ⊼L Y ). (4.15)

Given any of subposet of CN ×CN , e.g., pr/γn from Example 4.4.4 we can

define the restriction of the objectwise smash product X ⊼Y ∈ L1Sp
CN×CN to

pr/γn by taking the pullback along the inclusion ν : pr/γn → CN × CN , that

is,

ν∗ : L1Sp
CN×CN → L1Sp

pr/γn .

Notice that ν∗ preserves weak equivalences so it induces a functor on homo-

topy categories

ν∗ : Ho(L1Sp
CN×CN )→ Ho(L1Sp

pr/γn).

The diagram

X ⊼L Y : pr /γn
ν→ CN × CN → L1Sp

which looks as follows:

Xβi ∧L Yβj

Xβi ∧L YζjXζi ∧L Yβj

Xβi ∧L Yβj+1
Xβi+1

∧L Yβj

Xζi−1
∧L Yβj+1Xβi+1

∧L Yζi−1

. . .. . .
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Moreover we have maps between the subposets of CN × CN . The morphisms

γn → ζn and γn+1 → ζn induce maps of posets

ψ : pr /γn → pr /ζn

ϕ : pr /γn+1 → pr /ζn

which in turn also induce pullback functors on the homotopy cateogies, that

is,

ϕ∗ : Ho(L1Sp
pr/ζn)→ Ho(L1Sp

pr/γn), and ψ∗ : Ho(L1Sp
pr/ζn)→ Ho(L1Sp

pr/γn).

We conclude this section with a convention.

Convention 4.4.8. To ease notation we will make the following convention.

Consider the poset pr/ζn.

(ζi, ζj)

(βi+1, ζj)
(ζi, βj) (βi, ζj)

(ζi, βj+1)

(βi, βj)

(βi+1, βj+1)

(βi+1, βj) (βi, βj+1)

(ki, id) (id, ki)

The red color shows the image of the morphism of posets

ϕ : pr /γn+1 → pr/ζn,
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and the blue color shows the image of the morphism

ψ : pr /γn → pr/ζn.

We regard both of them as subposets of pr/ζn. Because of this, we will

commit an abuse of notation, so instead of writing, for example,

ϕ∗(X ⊼L Y ) ∈ Ho(L1Sp
pr/γn)

we will simply write

X ⊼L Y ∈ Ho(L1Sp
pr/γn),

with the understanding that this diagram was given by the pullback functor

ϕ∗ : Ho(L1Sp
pr/ζn)→ Ho(Ho(L1Sp

pr/γn))

unless we need the extra notation for clarification.

4.5 The Spectral Sequence

In this section we will prove the first part of Theorem 4.3.1, that is, the

existence of the bifunctor

i∗Lpr!(− ∧L −) : L × L → L.

After we review some relevant notions, we will state formally in Proposition

4.5.2 our main result of this section. Before we start with the proof we will
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explain some relevant technical details and the overall strategy for the proof

of Proposition 4.5.2.

4.5.1 Preliminaries

Recall Definition 4.4.2. The goal of this subsection is to show that for the

DN -diagram

E = Lpr!(X ∧L Y ) ∈ Ho(L1Sp
DN )

given by the homotopy left Kan extension along the projection functor pr : CN×

CN → DN , is what we need, namely that the CN -diagram i∗E is in the sub-

category L. This means we have to show that

E(1)∗(i
∗Eβn)[n] = E(1)∗(Eγn)[n] = E(1)∗−n(Eγn)

and

E(1)∗(i
∗Eζn)[n] = E(1)∗(Eζn)[n] = E(1)∗−n(Eζn)

are not just objects of A = ComodE(1)∗E(1), but objects of the splitting

B = Comod0
E(1)∗E(1) and that the induced morphism

E(1)∗(Eγn)[n]→ E(1)∗(Eζn)[n]

is a monomorphism for all n.

We now formally state the proposition that we are going to prove.

Proposition 4.5.2. Let X, Y ∈ L such that for every n ∈ Z/(2p− 2)Z and
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α ∈ {β, ζ} the underlying E(1)∗-modules of

E(1)∗(Xαn) and E(1)∗(Yαn)

are projective. Consider the homotopy left Kan extension of

X ⊼L Y ∈ Ho(L1Sp
CN×CN )

along

pr : CN × CN → DN , E = Lpr!(X ⊼L Y ) ∈ Ho(L1Sp
DN )

with the values and morphisms given in (4.8)-(4.10) and (4.11), (4.12) re-

spectively.

Eζ0 Eζ1 . . . EζN−1

Eγ0

OO 44

Eγ1

OOaa

. . .

``

EγN−1

OObb

Eβ0

OO 44

Eβ1

OOaa

. . .

``

EβN−1

OObb

(4.16)

Then, the E(1)∗E(1)-comodules E(1)∗(Eαn)[n] with α ∈ {β, γ, ζ} are not just

objects of A but objects of the splitting B and the morphisms

E(1)∗(Eγn)→ E(1)∗(Eζn)

induced by Eγn → Eζn are monomorphisms.

For the following corollary, recall the map of posets i : CN → DN , from
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(4.5).

Corollary 4.5.3. Let X, Y ∈ L satisfying the hypothesis in the above Propo-

sition. The top two rows of the diagram E = pr!(X ⊼L Y ) is an object in L,

that is, the diagram i∗E ∈ L.

Since the values Eζn , Eγn and Eβn are computed by homotopy colimits, we

will use Proposition 3.5.11, the spectral sequences converging to the E(1)∗-

homology of the homotopy colimit.

Lemma 4.5.4. There are spectral sequences

E2
pq = Hp(pr /γn;E(1)q(X⊼LY ))⇒ E(1)p+q

(
hocolim

pr /γn
(X ⊼L Y )

)
= E(1)p+q(Eγn)

(4.17)

and

E ′2pq = Hp(pr /ζn;E(1)q(X⊼LY ))⇒ E(1)p+q

(
hocolim

pr /ζn
(X ⊼L Y )

)
= E(1)p+q(Eζn)

(4.18)

and a natural morphism of spectral sequences f :
{
E2
pq

}
→
{
E ′2pq
}
induced by

the map in (4.11).

Before we start with the proof we briefly explain the strategy of the proof

and some technicalities which we gather below.

Recollection 4.5.5. (i) We are aiming to computeE(1)∗(Eζn) andE(1)∗(Eγn)

for each n ∈ Z/N and to show that they are concentrated in the correct

degrees. In order to do so, we will compute the pages of the spectral

sequences above. The second page of the spectral sequences are the ho-

mologies of the posets pr/γn and pr/ζn with coefficients in the functors
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E(1)q(X ⊼L Y ) for various q ∈ Z, i.e.,

Hp(pr/γn;E(1)q(X ⊼L Y ))

and

Hp(pr /ζn;E(1)q(X ⊼L Y )).

The morphism of posets pr/γn → pr/ζn induces a morphism on the

homology of categories

H∗(pr/γn;E(1)q(X ⊼L Y ))→ H∗(pr/ζn;E(1)q(X ⊼L Y ))

which will be used to show that the morphismsE(1)∗(Eγn)→ E(1)∗(Eζn)

are monomorphisms. These two facts together will prove that in-

deed i∗E = i∗Lpr!(X ⊼L Y ) ∈ L, and we have a well defined functor

L × L → L.

(ii) We will calculate H∗(pr/γn;E(1)q(X ⊼L Y )) as follows. First we will

consider the simplicial replacement of the diagram

E(1)q(X ⊼L Y ) : pr/γn → A = ComodE(1)∗E(1),

see Definition 2.4.14 to obtain a simplicial object in A, that is,

srep(E(1)q(X ⊼L Y )) : ∆op → A.

Then we compute the homology of the associated complex, C∗(E(1)q(X⊼L
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Y )), see Definition 3.5.2.

(iii) Consider a diagram F ∈ Ho(L1Sp
CN×CN ). By Convention 2.2.2, F is a

projective cofibrant object, so in particular, it is objectwise cofibrant.

The external smash product X ⊼L Y as defined in (4.6)

− ⊼− : L1Sp
CN × L1Sp

CN → L1Sp
CN×CN ,

is Quillen bifunctor, so in particular it preserves cofibrant objects. This

implies that X ⊼L Y is cofibrant in L1Sp
CN×CN , so in particular object-

wise cofibrant. Now, for any subposet ι : P ↪→ CN ×CN , e.g., any of the

slice categories of the projection functor pr (4.4), we have the pullback

functor

ι∗ : L1Sp
CN×CN → L1Sp

P .

This functor is not necessarily a left Quillen functor (with respect the

projective model structures, see Proposition 2.2.12). However, the dia-

gram ι∗(X ⊼L Y ), is objectwise cofibrant, which means that geometric

realization of the simplicial replacement still models the homotopy col-

imit of the diagram ι∗(X ⊼L Y ). In particular, the skeletal filtration of

all the restrictions is always Reedy cofibrant, see Definition 2.2.21.

(iv) By Proposition 3.5.5, the homology of the complex C•(E(1)q(X⊼LY )) is

isomorphic to the homology of the normalized complex N•(E(1)q(X ⊼L

Y )). This means in practice that we will ignore degenerate simplices

when we construct the associated complex.

155



(v) Consider a crowned diagram X ∈ L as follows.

X : Xζ0 Xζ1 . . . XζN−1

Xβ0

OO 44

Xβ1

OOaa

. . .

aa

Xβ−1

OObb

We have that for each i ∈ Z/(2p− 2)Z

Zi
∗ = E(1)∗(Xζi)[i] = E(1)∗−i(Xζi)

and

Bi
∗ = E(1)∗(Xβi)[i] = E(1)∗−i(Xβi).

are objects of the splitting B, that is, the E(1)∗E(1)-comodules Zi
∗

and Bi
∗ are concentrated in degrees ≡ 0 (mod 2p − 2). Since e.g.

E(1)∗−i(Xζi) is concentrated in degrees ≡ 0(mod 2p − 2) this implies

that E(1)∗(Xζi) is concentrated in degrees ≡ −i (mod 2p−2). Similarly,

given another crowned diagram Y in L, with

Z̃j
∗ = E(1)∗(Yζj)[j] = E(1)∗−j(Yζj)

and

B̃j
∗ = E(1)∗(Yβj)[j] = E(1)∗−j(Yβj)

we have as above that E(1)∗(Yζj) and E(1)∗Yβj are concentrated in de-

grees ≡ −j (mod 2p− 2). Now given diagrams X, Y ∈ L, assume that

for every i, j ∈ Z/NZ and α ∈ {β, ζ} the underlying E(1)∗-modules
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E(1)∗(Xαi
) and E(1)∗(Yα′

j
) are projective as E(1)∗-modules. So, from

Proposition 3.1.7, for any such pair we have that that the smash prod-

ucts Xαi
∧L Yα′

j

E(1)∗

(
Xαi
∧L Yα′

j

)
∼= E(1)∗(Xαi

)⊗E(1)∗ E(1)∗(Yα′
j
).

Furthermore, E(1)∗(Xαi
∧L Yα′

j
) is concentrated in degrees ≡ −i −

j(mod 2p − 2). Since objects in the split category B , see 3.4 are

concentrated in degrees congruent to 0 mod 2p− 2 and the definition

of the tensor product 3.1.6 we have that for n = i+ j

E(1)−n
(
Xβi ∧L Yζj

) ∼= Bi ⊗ Z̃j.

Note that we have removed the grading in Bi and Z̃j above since we

have summed them up due to the tensor product.

(vi) The above is the reason that we will assume the hypothesis that the

diagrams X, Y ∈ L are objectwse projective. We will see in Chapter 6

in the proof of the main Theorem, why this is a reasonable assumption

to make.

(vii) From the above discussion, it follows that if we have, for example,

Xβi ∧ Yβj with i+ j = n, then

E(1)m(Xβi ∧ Yβj) = 0

for m ̸= −n (mod 2p− 2).
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(viii) The category L1Sp is equipped with the E(1)-local model structure,

a left Bousfield localization of the stable model structure on Sp, see

Proposition 2.6.10. We equip L1Sp
CN with the model structure of

Proposition 2.2.12. By Example 2.3.11, (L1Sp
CN ,∧) is a monoidal

model structure.

4.5.6 The Start of the Proof

Now we are ready to start the proof of Proposition 4.5.2.

Proof. We will start by working out the spectral sequence (4.17). Recall the

poset pr /γn which looks as follows

(βi, βj)

(βi, ζj)(ζi, βj)

(βi, βj+1)(βi+1, βj)

(ζi−1, βj+1)(βi+1, ζi−1)

. . .. . .

Here i+ j = n, and so the functor X ⊼L Y : pr/γn → L1Sp is

Xβi ∧L Yβj

Xβi ∧L YζjXζi ∧L Yβj

Xβi ∧L Yβj+1
Xβi+1

∧L Yβj

Xζi−1
∧L Yβj+1Xβi+1

∧L Yζi−1

. . .. . .

Our goal is to compute

Hp(pr /γn;E(1)q(X ∧L Y )) for all p ≥ 0 and all q ∈ Z

which form the E2-terms of the spectral sequence (4.17). In order to do so,
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we apply the homological functor E(1)−n(−) to the above diagram to get the

diagram

E(1)−n(X ⊼L Y ) : pr /γn → A = ComodE(1)∗E(1).

By Discussion (v) the diagram E(1)−n(X ⊼L Y ) looks as follows

Bi ⊗ B̃j

Bi ⊗ Z̃jZi ⊗ B̃j

00

Bi−1 ⊗ Z̃j+1Bi+1 ⊗ Z̃j−1

. . .. . .

(4.19)

We write the morphisms as

fij = li ⊗ 1: Bi ⊗ B̃j → Zi ⊗ B̃j (4.20)

gij = 1⊗ l̃j : Bi ⊗ B̃j → Bi ⊗ Z̃j (4.21)

to distinguish, for labeling purposes, the two different morphisms in the

simplicial replacement below. Notice that since Bi and B̃j and projective

E(1)∗-modules, they are flat automatically, hence the morphisms (4.20) and

(4.21) are monomorphisms. Next, we consider the simplicial replacement of

the diagram E(1)−n(X ⊼L Y ). We have the diagram

srep
(
E(1)−n(X ⊼L Y )

)
: ∆op → A = ComodE(1)∗E(1).
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Following Definition 2.4.14 we have that

srep
(
E(1)−n(X ∧L Y )

)
0
=
⊕
i+j=n

(
(Bi ⊗ B̃j)⊕ (Zi ⊗ B̃j)⊕ (Bi ⊗ Z̃j)

)
srep

(
E(1)−n(X ⊼L Y )

)
1
=
⊕
i+j=n

(
(Bi ⊗ B̃j)fi,j ⊕ (Bi ⊗ B̃j)gi,j

)

with face maps given by “source” and “target” respectively. Notice that

because of the shape of the poset pr/γn, for all m ≥ 2, the simplices

srep
(
E(1)−n(X ⊼L Y )

)
m

consist of solely of degenerate simplices. Now we consider the associated

complex of the above simplicial object,

C∗(E(1)−n(X ⊼L Y ),

see Definition 3.5.2. We shortly explain the differential of the complex

C∗(E(1)−n(X ⊼L Y )),

∂ = d0 − d1 : C1(E(1)−n(X ⊼L Y ))→ C0(E(1)−n(X ⊼L Y )).

Notice from (4.19), we can consider the simpler case where the diagram 4.19

looks as follows.

Zi ⊗ B̃i Bi ⊗ Z̃j

Bi ⊗ B̃j

gijfij
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Then, the differential of the associated complex of the simplicial replacement

of the above diagram, in this simpler case, is as follows

∂ij = d0 − d1 : (Bi ⊗ B̃j)⊕ (Bi ⊗ B̃j)→ (Bi
∗ ⊗ B̃j)⊕ (Zi ⊗ B̃j)⊕ (Bi

∗ ⊗ Z̃j)

(4.22)

(x, y) 7→ (x+ y,−fij(x),−gij(y)). (4.23)

See Example 3.5.8. By Lemma 3.5.4 the 0th homology of the above complex

is just the pushout Bi ⊗ Z̃j
∐

Bi⊗B̃j Zi ⊗ B̃i. The first homology is just

the kernel of the differential ∂ij, given in (4.22). Since the maps fij and

gij are injective, this forces dij(x, y) = 0 if and only if x = y = 0, which

implies the the first homology is 0. It follows from the diagram (4.19), the

differential ∂ of the complex C∗(E(1)−n(X ⊼L Y )) is the direct sum of the

above differentials ∂ij for i+ j = n. Now that we know the differential of the

complex C∗(E(1)−n(X ⊼L Y )) we will compute its homology. The group

H0(pr /γn;E(1)n(X ∧L Y ))

is the colimit of the diagram E(1)−n(X ⊼L Y ). By inspecting the diagram

E(1)−n(X ⊼L Y ) above we can see the colimit of the diagram is a direct sum

(coproduct) of pushouts, that is,

H0(pr /γn;E(1)−n(X ⊼L Y )) = colim
pr /γn

E(1)−n(X ⊼L Y )

=
⊕
i+j=n

Zi ⊗ B̃j
∐

Bi⊗B̃j

Bi ⊗ Z̃j

 .
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Similar to the simpler case

H1(pr /γn;E(1)−n(X ⊼L Y ))

is the kernel of the differential

d0 − d1 : srep(E(1)−n(X ⊼L Y ))1 → srep(E(1)−n(X ⊼L Y ))0.

Since it is a direct sum of the simpler differentials ∂ij in (4.22), it follows that

H1(pr /γn;E(1)−n(X ⊼L Y )) = 0.

All the higher homologies

Hq(pr /γn;E(1)−n(X ⊼L Y ))

vanish for all q ≥ 2.

Next we apply the homology functor E(1)−n−1(−) to the diagram X ⊼L

Y : pr /γn → L1Sp and we have the diagram

E(1)−n−1(X ⊼L Y ) : pr /γn → A = ComodE(1)∗E(1)

as follows

0

00

Bi ⊗ B̃j+1Bi+1 ⊗ B̃j

00

. . .. . .
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Clearly,

H0(pr /γn;E(1)−n−1(X ⊼L Y )) = 0,

and

H1(pr /γn;E(1)−n−1(X ⊼L Y )) =
⊕

i+j=n+1

Bi ⊗ B̃j.

By the Discussion in (vii) it follows that for all p ≥ 0 and all m ̸= −n,−n−

1 mod 2p− 2), the terms

Hp(pr /γn;E(1)m(X ⊼L Y ))

all vanish. This completes the computation of the E2-terms of the spectral

sequence (4.17). It is concentrated in degrees (0,m) and (1,m − 1) with

m ≡ −n mod 2p− 2. Therefore the spectral sequence collapses and we have

a short exact sequence:

0→
⊕
i+j=n

Zi ⊗ B̃j
⊕
Bi⊗B̃j

Bi ⊗ Z̃j

→ E(1)−n(Eγn)→
⊕

i+j=n+1

Bi⊗ B̃j → 0

(4.24)

This concludes the calculation of the spectral sequence (4.17).

We are moving on to calculate the spectral sequence (4.18). Recall the

poset Jn from Example 4.4.6. It is a subposet of pr /ζn, which is the following.

(ζi, ζj)

(bi, bj+1)

(ζi−1, ζi+1)

. . .(βi+1, βj)

(ζi+1, ζi−1)

. . .
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By Remark 4.4.7 the inclusion functor θn : Jn → pr /ζn has a left left adjoint

L, see (4.14), and we have

Eζn = hocolim
pr /ζn

(X ⊼L Y ) ∼= hocolim
Jn

θ∗n(X ⊼L Y ),

see (4.15). So, instead of the spectral sequence (4.18) we can compute the

following spectral sequence

Hp(Jn;E(1)q(θ
∗
n(X ∧L Y ))) =⇒ E(1)p+q(hocolim

Jn
θ∗n(X ∧L Y ))

since both converge to the same target, namely

E(1)∗(hocolim
Jn

θ∗n(X ∧L Y )) ∼= E(1)∗(hocolim
pr /ζn

(X ∧L Y )) = E(1)∗(Eζn).

In fact this can be made stronger. The adjunction L : pr/ζn ⇄ Jn : θn induces

a natural isomorphism

H∗(pr/ζn;Eq(X ⊼L Y )) ∼= H∗(Jn, θ
∗
nEq(X ⊼L Y )).

By Discussion (vii), and from the diagram Jn we only need to consider again

E(1)−n(−) and E(1)−n−1(−). So, firstly we apply E(1)−n(−) to the diagram

θ∗n(X ∧L Y ) and get the Jn-diagram in A

E(1)−n(θ
∗
n(X ∧L Y ))→ A = ComodE(1)∗E(1)
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which looks as follows

Zi ⊗ Z̃j

0

Zi−1 ⊗ Z̃i+1

. . .0

Zi+1 ⊗ Z̃i−1

. . .

From the above we get that

H0(Jn;E(1)−n(θ
∗
n(X ⊼L Y ))) =

⊕
i+j=n

Zi ⊗ Z̃j,

and

Hp(Jn;E(1)−n(θ
∗
n(X ⊼L Y ))) = 0, p ≥ 1.

Next, we will apply the functor E(1)−n−1(−) and we get the diagram

E(1)−n−1(θ
∗
n(X ⊼L Y ))→ A = ComodE(1)∗E(1)

which is as follows.

0

Bi ⊗ B̃j+1

0

. . .Bi+1 ⊗ B̃j

0

. . .

From the above we get that

H1(Jn;E(1)−n−1(θ
∗
n(X ⊼L Y ))) =

⊕
i+j=n+1

Bi ⊗ B̃j
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and

Hp(Jn;E(1)−n−1(θ
∗
n(X ⊼L Y ))) = 0 p = 0 and p ≥ 2

This completes the computation of the E2-terms of the spectral sequence.

It is concentrated in degrees (0,m) and (1,m − 1) with m ≡ −nmod 2p −

2. Therefore, the spectral sequence collapses and we have a short exact

sequence:

0→
⊕
i+j=n

Zi ⊗ Z̃j → E(1)−n(Eζn)→
⊕

i+j=n+1

Bi ⊗ B̃j → 0. (4.25)

Now that we have calculated both spectral sequences we can continue with

the proof. The map of posets ψ : pr /γn → pr /ζn induces morphisms on

homologies of categories with coefficients E(1)−n(−) and E(1)−n−1(−) re-

spectively, i.e.,

H∗(pr/γn;E(1)−n(X ⊼L Y ))→ H∗(pr/ζn;E(1)−n(X ⊼L Y )) ∼= H∗(Jn;E(1)−n(θ
∗
n(X ⊼L Y )))

H∗(pr/γn;E(1)−n−1(X ⊼L Y ))→ H∗(pr/ζn;E(1)−n−1(X ⊼L Y )) ∼= H∗(Jn;E(1)−n−1(θ
∗
n(X ⊼L Y )))

and the natural map E(1)∗(Eγn) → E(1)∗(Eζn) which is induced by ψ, is

compatible with the morphism of spectral sequences. Hence we have a mor-
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phism of short exact sequences.

0 //
⊕

i+j=n

(
Zi ⊗ B̃j

∐
Bi⊗B̃j Bi ⊗ Z̃j

)
//

��

E(1)−n(Eγn) //

��

⊕
i+j=n+1

Bi ⊗ B̃j

∼=
��

// 0

0 //
⊕

i+j=n

Zi ⊗ Z̃j // E(1)−n(Eζn) //
⊕

i+j=n+1

Bi ⊗ B̃j // 0.

(4.26)

By naturality, the left vertical map is the direct sum of the pushout-product

maps

λi □ λ̃j :

Zi ⊗ B̃j
∐

Bi⊗B̃j

Bi ⊗ Z̃j

→ Zi ⊗ Z̃j.

By Lemma 4.7.6 the map λi□ λ̃j is injective which means that so is the direct

sum, i.e., the left vertical map. The short five lemma implies now that the

morphism

E(1)−n(Eγn)→ E(1)−n(Eζn)

is an injection. In particular, E(1)∗(Eγn) and E(1)∗(Eζn) are concentrated

in the correct degrees and the induced morphisms E(1)∗(Eγn)→ E(1)∗(Eζn)

are injections. This concludes the proof of the proposition.

4.6 Cones of the New Diagram

Recall from Definition 4.4.2, and Corollary 4.5.3 we have the bifunctor

i∗Lpr!(− ⊼L −) : L × L → L.
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Recall from (4.1), that for a diagram X ∈ L we defined

Cn
∗ (X) := E(1)∗−n(cone(Xβn+1 → Xζn)) = E(1)∗−n(cone(kn)).

The goal of this section, together with the next one, Section 4.7, is to prove

the following proposition.

Proposition 4.6.1. Let X, Y ∈ L such that for every n ∈ Z/(2p− 2)Z and

α ∈ {β, ζ} the underlying E(1)∗-modules of

E(1)∗(Xαn) and E(1)∗(Yαn)

are projective. There is a natural isomorphism

Q(i∗Lpr!(X ⊼L Y )) ∼= Q(X)⊗Q(Y ).

The above proposition will follow from Corollary 4.6.4 and Proposition

4.7.3.

4.6.2 Cones of the Diagram i∗E

In this subsection we will show that Q(i∗E) is a good candidate for the

tensor product Q(X)⊗Q(Y ). We start with the following proposition. We

recall some notation for crowned diagrams.For X, Y ∈ L1Sp
CN ] we denote

the structure morphisms ki : Xβi+1
→ Xζi and k̃i : Yβi+1

→ Yβi

Proposition 4.6.3. Let X, Y,E as above and consider now i∗E, the pullback

of E along i : CN → DN as an object of L. For every n ∈ Z/(2p− 2)Z there
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is a canonical isomorphism

cone(i∗Eβn+1 → i∗Eζn)
∼=
∨

i+j=n

cone(ki) ∧L cone(k̃j).

Proof. Recall the slice categories of the functor pr : CN × CN → DN , namely

pr /ζn, see Example 4.4.3 and pr/γn, see Example 4.4.4. Below we reproduce

the functor

X ⊼L Y : pr/ζn → L1Sp,

and the red color shows the image of the map of posets ϕ : pr/γn+1 → pr /ζn

(ζi, ζj)

(βi+1, ζj)
(ζi, βj) (βi, ζj)

(ζi, βj+1)

(βi, βj)

(βi+1, βj+1)

(βi+1, βj) (βi, βj+1)

. . .

. . . . . .

. . .

(4.27)

Recall from (4.9)

Eζn = hocolim(pr/ζn
π→ CN × CN

X⊼LY−−−→ L1Sp),

and we committed an abuse of notation by writing

hocolim
pr/ζn

(X ⊼L Y ) = hocolim
pr /ζn

π∗(X ⊼L Y ).

Also, recall from (4.12) that the morphism Eγn+1 → Eζn is the canonical
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morphism

hocolim
pr /γn+1

ϕ∗(X ⊼L Y )→ hocolim
pr /ζn

(X ⊼L Y )

which is induced by the map of posets ϕ : pr /γn+1 → pr /ζn. The pullback

functor

ϕ∗ : Ho(L1Sp
pr /ζn)→ Ho(L1Sp

pr /γn+1)

has a left adjoint defined by the homotopy left Kan extension, see Proposition

2.5.7

Lϕ! : Ho(L1Sp
pr /γn+1) ⇄ Ho(L1Sp

pr /ζn) : ϕ∗.

The counit of the derived adjunction ε : Lϕ!ϕ
∗ → Id provides the canonical

natural transformation

εX⊼LY : Lϕ!ϕ
∗(X ⊼L Y )→ X ⊼L Y. (4.28)

Lastly, since Lϕ! is a homotopy left Kan extension, by Corollary 2.5.8, we

have the canonical isomorphism

hocolim
pr /γn+1

ϕ∗(X ⊼L Y ) ∼= hocolim
pr /ζn

Lϕ!ϕ
∗(X ⊼L Y ).
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So, the diagram X ⊼L Y : pr /ζn → L1Sp looks as follows.

Xζi ∧ Yζj

Xβi+1
∧ Yζj

Xζi ∧ Yβj Xβi ∧ Yζj
Xζi ∧ Yβj+1

Xβi ∧ Yβj

Xβi+1
∧ Yβj+1

Xβi+1
∧ Yβj Xβi ∧ Yβj+1

. . .

. . . . . .

. . .

(4.29)

The diagram Lϕ!ϕ
∗(X ⊼L Y ) ∈ Ho(L1Sp

pr /ζn) is the following.

Xζi+1
∧ Yζj

∐h
Xβi+1

∧Yβj+1
Xζi ∧ Yβj+1

Xβi+1
∧ Yζj

Xβi+1
∧ YβjXβi ∧ Yβj+1

Xζi ∧ Yβj+1

∗

Xβi+1
∧ Yβj+1

Xβi+1
∧ Yβj Xβi ∧ Yβj+1

. . .

. . . . . .

. . .

(4.30)

We briefly explain how we calculated the left homotopy Kan extension Lϕ!ϕ
∗(X⊼L

Y ). From the formula (2.5.9) of calculating homotopy Kan extensions, we can
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calculate the homotopy left Kan extension Lϕ! at an object (αs, αt) ∈ pr/ζn

as follows

(Lϕ!ϕ
∗(X ⊼L Y ))(αs,αt)

∼= hocolim(ϕ/(αs, αt)
π→ pr/γn+1

ϕ∗(X⊼LY )−−−−−−→ L1Sp).

Recall from Remark 2.4.7 the slice f/d = {c ∈ C | fc ≤ d} for a map of posets

f : C → D. For the object (ζi, βj), the slice ϕ/((ζi, βj)) consists only of the

object the object (βj+1, βj), which implies

(Lϕ!ϕ
∗(X ⊼L Y ))(ζi,βj) = Xβi+1

∧ Yβj .

For the object (βi, ζj) the argument is the same as above. For (βi, βj) the

slice category ϕ/(βi, βj) is empty which means

(Lϕ!)(βi,βj)
∼= ∗.

For the object (ζi, ζj) the slice category ϕ/((ζi, ζj)) is the poset

(βi+1, ζj) (ζi, βj+1)

(βi+1, βj)

88

(βi+1, βj+1)

77gg

(βi, βj+1).

ff

But the subposet

(βi+1, βj+1)

��

// (ζi, βj+1)

(βi+1, ζj)
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is homotopy final, which means

(Lϕ!ϕ
∗(X ⊼L Y ))(ζi,ζj)

∼= hocolim
⌜

(X ⊼L Y ),

that is, the homotopy colimit (pushout)

Xβi+1
∧ Yβj+1

1∧k̃j
��

ki∧1 // Xζi ∧ Yβj+1

Xβi+1
∧ Yζj

Next, we calculate the cone of the natural transformation

εX⊼LY : Lϕ!ϕ
∗(X ⊼L Y )→ X ⊼L Y

see (4.28), of diagrams in Ho(L1Sp
pr/ζn). Recall the cone construction of a

natural transformation in a simplicial model category of diagrams from (2.5).

cone
(
εX⊼LY

)
: pr /ζn → L1Sp

(αs, αt) 7→ cone
(
ϕ!(X ⊼L Y )(αs,αt) → (X ⊼L Y )(αs,αt)

)
.

In other words, we are taking objectwise cones of the canonical map from

the diagram (4.30) to the diagram (4.29). This means that cone
(
εX⊼LY

)
is
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the following diagram.

cone(ki □L k̃j)

∗
Ci ∧ Yβj Xβi ∧ C̃j

∗

ΣXβi ∧ Yβj

∗

∗ ∗

. . .

. . . . . .

. . .

(4.31)

Here, we have denoted provisionally

Ci := cone(ki) = cone(Xi+1 → Xζi)

C̃j := cone(k̃j) = cone(Yj+1 → Yζi)

due to spacing.

Next, we determine the homotopy colimit of the above diagram, that is, of

the diagram cone
(
εX⊼LY

)
. One way is to observe that the homotopy colimit

of the above diagram is isomorphic in Ho(L1Sp) to the homotopy colimit of

(finite) coproduct of squares

ΣXβi ∧ Yβj

��

// cone(ki) ∧ Yβj

��

Xβi ∧ cone(k̃j) // cone(ki □L k̃j)

(4.32)

where we can consider the above as an object in Ho(L1Sp
[1]×[1]). Formally
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this is by taking the visually obvious map of posets f : [1]× [1]→ pr/ζn and

considering the pullback

f ∗ : L1Sp
pr/ζn → L1Sp

[1]×[1].

The poset [1] × [1] has the bottom right corner as a final object which im-

plies the homotopy colimit of the diagram (4.32) is naturally isomorphic to

cone(ki □L k̃j). One can see this by noting that the inclusion of a terminal

object in a category is a right adjoint, and the result follows from Lemma

2.4.28. Hence the homotopy colimit over pr/ζn is, up to natural isomorphism,

the coproduct ∨
i+j=n

cone(ki □
L cone(k̃j)).

The other way of seeing it is by pulling back the above diagram to θn : Jn →

pr /ζn. We get the diagram

cone(ki+1 □ kj−1) cone(ki □ kj) cone(ki−1 □ kj+1)

. . . ∗ ∗ . . . .

All in all, we have that the homotopy colimit of the diagram (4.31) is

hocolim
pr/ζn

(
cone(εX⊼LY

) ∼= ∨
i+j=n

cone(ki □
L k̃j). (4.33)

Finally, by Corollary 2.3.22, for each pair i, j ∈ Z/NZ we have the canonical

isomorphism

cone(ki □
L k̃j) ∼= cone(ki) ∧L cone(k̃j).
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The coproduct of these isomorphisms, together with (4.33) gives us that

hocolim
pr /ζn

(
cone(εX⊼LY )

) ∼= ∨
i+j=n

cone(ki) ∧L cone(k̃j).

We write the above calculations formally. In order to calculate the homotopy

cofiber (cone) of the morphisms i∗Eβn1 → i∗Eζn it is the same thing to

calculate the homotopy cofibers Eγn+1 → Eζn .

cone
(
i∗Eβn+1 → i∗Eζn

)
= cone

(
Eγn+1 → Eζn

)
= cone

(
hocolim
pr /γn+1

ϕ∗(X ⊼L Y )→ hocolim
pr /ζn

(X ⊼L Y )

)
∼= cone

(
hocolim

pr /ζn
ϕ!ϕ
∗(X ⊼L Y )→ hocolim

pr /ζn
(X ⊼L Y )

)
∼= hocolim

pr /ζn

(
cone

(
ϕ!ϕ
∗(X ⊼L Y )→ (X ⊼L Y )

))
∼=
∨

i+j=n

cone(ki □
L k̃j)

∼=
∨

i+j=n

cone(ki) ∧L cone(k̃j)

We have the the following corollary.

Corollary 4.6.4. Let X, Y ∈ L and E = Lpr!(X ⊼L Y ) and assume further-

more for every n ∈ Z/N and α ∈ {ζ, β}

E(1)∗(Xαn) and E(1)∗(Yαn) are projective E(1)∗-modules,
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then there is a canonical isomorphism in A = ComodE(1)∗E(1)

Cn
∗ (i
∗E) = E(1)∗−n(cone(i

∗Eβn+1 → i∗Eζn))
∼=
⊕
i+j=n

Ci
∗(X)⊗ Cj

∗(Y ).

Proof. Given a crowned diagram X ∈ L1Sp
CN recall that for every n ∈ Z/N

we have the following distinguished triangle

Xβn+1

kn−→ Xζn
ι−→ cone(kn)

∂−→ ΣXβn+1 .

Applying E(1)∗−n(−) to the above distinguished triangle we have the short

exact sequence

Zn
∗ (X)→ Cn

∗ (X)→ Bn+1
∗ (X).

By our assumption, for α ∈ {ζ, β} and every n ∈ Z/N the comodule

E(1)∗(Xαn) is a projectiveE(1)∗-module and therefore also Zn
∗ (X) andBn+1

∗ (X)

are projective E(1)∗-modules. By the long exact sequence of Ext(−,−) and

the characterization of projective dimension, see [49, Lemma 4.1.6], this

means that the

Cn
∗ (X) = E(1)∗−n(cone kn) are also projective E(1)-modules.

This means that also the unshifted E(1)∗(cone kn) are projective E(1)∗-

modules for every n ∈ Z/N . By Proposition 3.1.7,

E(1)∗(cone ks ∧L cone k̃t) ∼= E(1)∗(cone ks)⊗E(1)∗ E(1)∗(cone kt)
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where we regard the right hand side as a comodule with the canonical co-

module structure on the tensor product, (3.3). By Proposition 4.6.1 we have

cone(i∗Eβn+1 → i∗Eζn)
∼=
∨

i+j=n

cone(ki) ∧L cone(k̃j),

and applying the functor E(1)∗(−) we have

E(1)∗(cone(i
∗Eβn+1 → i∗Eζn))

∼= E(1)∗

( ∨
i+j=n

cone(ki) ∧L cone(k̃j)

)
∼=
⊕
i+j=n

E(1)∗(cone(ki) ∧L cone k̃j)

∼=
⊕
i+j=n

E(1)∗(cone ki)⊗ E(1)∗(cone k̃j).

Shifting the above by [n] = [i+ j] we have

Cn
∗ (i
∗E) ∼=

⊕
i+j=n

Ci
∗(X)⊗ Cj

∗(Y ).

4.7 Differentials

4.7.1 Introduction

In the previous section, we showed in Corollary 4.6.4 that given diagrams

X, Y ∈ L satisfying certain hypotheses we can construct naturally a new
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diagram i∗E ∈ L such that

Cn
∗ (i
∗E) ∼=

⊕
i+j=n

Ci
∗(X)⊗ Cj

∗(Y )

as graded objects, so the diagram i∗E is a good candidate that models the

tensor product C•∗(X)⊗C•∗(Y ). The final step in order to show Proposition

4.6.1 is to prove that that the differentials of the complex C•∗(i
∗E) coincide

with the differentials of the tensor product C•∗(X)⊗C•∗(Y ). That is, we have

to show that

C•∗(i
∗E, d) ∼= (C•∗(X)⊗ C•(Y ), d⊗)

where d⊗ is the differential of the tensor product of the complexes (C•∗(X), d)

and (C•∗(Y ), d). Before we move on to the proof, let us recall from Section

4.2 how the differentials of the complex Q(X) = (C•∗(X), d) are defined using

the structure morphisms of the crowned diagram X. So, let X ∈ L and we

will construct the morphism (differential) dn : Cn
∗ (X) → Cn+1

∗ (X). Recall

Definition 2.2.31 of an elementary triangle associated to a map. We have the

following sequence.

cone(Xβn+1 → Xζn)
ι−→ ΣXβn+1

Σln+1−−−→ ΣXζn+1

Σι−→ Σcone(Xβn+2 → Xζn+1)

(4.34)

We apply the functor E(1)∗−n(−) to the above and we have.

dn : Cn
∗ (X)→ Bn+1

∗ (X)→ Zn+1
∗ (X)→ Cn+1

∗ (X). (4.35)
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4.7.2 Reduction to the Case of Quasi-Periodic Disks

In this subsection we will discuss how it suffices to actually prove a much

simpler case. The following is based on Franke & Ganter, [18, Remark 7.2.4].

Let L•∗ ∈ C2p−2(B) and choose s ∈ Z. Consider the following map of cochain

complexes

. . . // 0 //

��

Ls Ls //

ds
��

0 //

��

. . .

. . .
ds−2
// Ls−1

ds−1
// Ls

ds
// Ls+1

ds+1
// Ls+2

ds+2
// . . .

(4.36)

where the top cochain complex is still considered as an object of C2p−2(B)

The top cochain complex is the complex (DsLs)•, and we denote the above

map as

fL,s : (D
sLs)• → L•.

Under the equivalence of categories Q : L → C2p−2∗ (B) there are objcts X ′

and X in L and a morphism F : X → X ′ such that the morphism fL,s is

realized as Q(F ). That means there are isomorphisms

Q(X) ∼= (DsLs)•, Q(X ′) ∼= L•

and the following diagram commutes.

Q(X) Q(X ′)

(DsLs)• L•

Q(F )

∼= ∼=

fL,s
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Let now M•
∗ be another cochain complex and let t ∈ Z. Similarly to (4.36)

we have the morphism

f̃M,t : (D
tM t)• →M•.

Again, under the equivalence Q there are crowned diagrams Y and Y ′ and a

morphism G : Y → Y ′ such that

Q(Y ) ∼= (DtM t)•, Q(Y ′) ∼= M•

and the following diagram commutes.

Q(Y ) Q(Y ′)

(DtM t)• M•

Q(G)

∼= ∼=

fM,t

Recall that the tensor product (DsLs)• ⊗ (DtM t)• has only three nontrivial

entries periodically, in which n = s+ t.

(
(DsLs)• ⊗ (DtM t)•

)n
= Ls ⊗M t(

(DsLs)• ⊗ (DtM t)•
)n+1

= (Ls ⊗M t)⊕ (Ls ⊗M t)(
(DsLs)• ⊗ (DtM t)•

)n+2
= Ls ⊗M t

Tensoring the morphisms fL,s and f̃L̃,t we have the morphism of cochain

complexes

fL,s ⊗ f̃M,t : (D
sLs)• ⊗ (DtM t)• → L• ⊗M•
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which looks as follows.

. . . // Ls ⊗M t //

��

(Ls ⊗M t)⊕ (Ls ⊗M t) //

(ds⊗id,id⊗d̃t)
��

. . .

. . . //
⊕

i+j=n

Li ⊗M j //
⊕

i+j=n+1

Li ⊗M j // . . .

(4.37)

Here the left vertical morphism is the inclusion of the (s, t)th summand, and

the right vertical map is the universal map out of the coproduct.

By Propositions 4.5.2 and 4.6.1 the diagrams i∗pr!(X∧LY ) and i∗pr!(X
′∧L

Y ′) are in L and moreover, there are natural isomorphisms.

Cn(i∗pr!(X ∧L Y )) ∼=
⊕
i+j=n

(DsLs)i ⊗ (DtL̃t)j n = {s+ t, s+ t+ 1, s+ t+ 2}

(4.38)

Cn(i∗pr!(X
′ ∧L Y ′)) ∼=

⊕
i+j=n

Li ⊗ L̃j n ∈ Z. (4.39)

By the isomorphisms (4.38) and (4.39), if we show that the differentials of the

complex C•∗(i
∗pr!(X ⊼L Y )) are the same as the differentials on the complex

(DsLs)i ⊗ (DtM t) we will have

C•∗(i
∗pr!(X ⊼L Y )) ∼= (DsLs)i ⊗ (DtM t).

If the above holds for every s, t ∈ Z, by the isomorphism (4.39) and the

commutativity of the squares in 4.37 we will also have

C•∗(i
∗pr!(X

′ ⊼L Y ′)) ∼= L• ⊗M•
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and the following diagram commutes:

C•(i∗pr!(X ⊼L Y )) C•(i∗pr!(X
′ ⊼L Y ′))

(DsLs)• ⊗ (DtM t)• L• ⊗M•.

We note that the above argument holds if we consider L•∗,M
•
∗ as objects in

dA. This concludes the remark.

Following the above discussion, we move on to prove the case for disks.

Recall that the differentials on the disks are the identity morphisms hence

the differential for n = s+ t on the tensor product is

dn :
(
(DsLs)∗ ⊗ (DtM t)∗

)n → (
(DsLs)∗ ⊗ (DtM t)∗

)n+1
(4.40)

dn : Ls ⊗M t → (Ls ⊗M t)⊕ (Ls ⊗M t)

x⊗ y 7−→ (x⊗ y, (−1)|x|x⊗ y)

and similarly for the other nontrivial differential. The complex (DsLs)∗ is

mapped via Q−1 to the following crowned diagram X ∈ L

X : . . . ∗ A ∗

∗

OO``

A

__

∗

OO__

. . .

`` (4.41)

Here the non-trivial entries are at the (s + 1)-spot, i.e., Xβs+1 = Xζs+1 = A
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and ks : A→ ∗. To verify, we calculate

Cs(X) = E(1)∗−s(cone(ks)) = E(1)∗−s(cone(A→ ∗)) = E(1)∗−s(ΣA)

Cs+1(X) = E(1)∗−s−1(cone(∗ → A)) = E(1)∗−s−1(A).

Furthermore, from the crowned diagram X above we have

ds = 1: Cs
∗(X)→ Cs+1

∗ (X). (4.42)

A similar claim holds for (DtM t)∗, which is mapped to a crowned diagram

Y in which Yβt+1 = Yζt+1 = Ã where the only non-trivial morphism is the

identity.

Proposition 4.7.3. Let X and Y be the objects of L that correspond to the

quasi-periodic disks (DsLs)• and (DtM t)•. Then

(C•∗(i
∗Lpr!(X ⊼L Y )), d) ∼= (C•∗(X)⊗ C•∗(Y ), d⊗)

where (C∗(X)⊗ C∗(Y ), d⊗) is the tensor product of cochain complexes.

Proof. For technical reasons we consider Franke’s algebraic model as the cat-

egory of differential graded objects in A, see Definition 3.3.3. By the discus-

sion in Subsection 3.3.5 there is no loss of information since the equivalence

of categories

F : (C1(A),⊗)→ (dA,⊗)

is strong symmetric monoidal. By Proposition 4.5.2 and Proposition 4.6.1
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we can construct a diagram

E = Lpr!(X ⊼L Y ) ∈ Ho(L1Sp
DN ),

such that

i∗E ∈ L and cone(i∗Eβn+1 → i∗Eζn)
∼=
∨

i+j=n

cone(ki) ∧ cone(k̃j).

For convenience we will write

k̂n : i
∗Eβn+1 → i∗Eζn and l̂n : i

∗Eβn → Eζn

for the structure maps of the diagram i∗E. Recall from (4.34) that the

differential Cn
∗ (i
∗E)→ Cn+1

∗ (i∗E) is obtained by applying E(1)∗−n(−) to the

composition of maps

cone(k̂n)→ Σi∗Eβn+1 → Σi∗Eζn+1 → Σcone(k̂n+1). (4.43)

This is the same as the composition of maps

cone(k̂n)→ ΣEγn+1 → ΣEζn+1 → Σcone(k̂n+1).

By Proposition 4.6.1, we have:

cone(k̂s+t) ∼= cone(ks) ∧L cone(k̃t)

cone(k̂s+t+1) ∼=
(
cone(ks+1) ∧L cone(k̃t)

)
∨
(
cone(ks) ∧L cone(k̃t+1)

)
,
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and the rest are trivial maps due to the structure of the crowned diagrams

X and Y . Directly from the structure morphisms of the crowned diagrams

X and Y we have

cone(k̂s+t) ∼= (ΣA) ∧ (ΣÃ)

cone(k̂s+t+1) ∼=
(
A ∧ ΣÃ

)
∨
(
ΣA ∧ Ã

)
.

So, it remains to compute the values Eγs+t+1 , Eζs+t , Eζs+t+1 and the map

Eγs+t+1 → Eζs+t+1 . The map

cone(Eγs+t+1 → Eζs+t) = cone(k̂s+t)→ ΣEγs+t+1

is the canonical map cone(k̂s+t)→ S1 ∧L Eγs+t+1 see Definition 2.2.31. Simi-

larly, the map

ΣEζs+t+1 → Σcone(k̂s+t+1)

is the suspension of the canonical map Eζs+t+1 → cone(k̂s+t+1) = cone(Eζs+t+2 →

Eζs+t+1), see again Definition 2.2.31. To compute the above, let us recall from

Example 4.4.6 the poset Jn with inclusion θn : Jn ↪→ pr/ζn, which has a left

adjoint L : pr/ζn → Jn, and which for i + j ≡ n modulo 2p − 2 looks as

follows.

(ζi, ζj)

(βi, βj+1)

(ζi−1, ζi+1)

. . .(βi+1, βj)

(ζi+1, ζi−1)

. . .
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Also, recall from Example 4.4.4 the poset pr /γn, which for i + j ≡ n looks

as follows.

(βi, βj)

(βi, ζj)(ζi, βj)

(βi, βj+1)(βi+1, βj)

(ζi−1, βj+1)(βi+1, ζi−1)

. . .. . .

So, we have

Eζn = hocolim
pr/ζn

X ⊼L Y ∼= hocolim
Jn

θ∗n(X ⊼L Y ),

Eγn = hocolim
pr/γn

(X ⊼L Y ).

Furthermore, the maps

Eγn+1 → Eζn and Eγn+1 → Eζn+1

are the maps of homotopy colimits induced by the map of posets

ψ : pr/γn+1 → pr /ζn and ϕ : pr/γn+1 → pr/ζn+1

respectively. For the following we set q = s+ t. The diagram

θ∗q(X ⊼L Y ) : Jq → L1Sp

consists only of ∗ hence Eζq = Eζs+t
∼= ∗. Continuing with calculating Eζq+1 =

Eζs+t+1 , we have the poset Jq+1. The diagram θ∗q+1(X ⊼L Y ) ∈ Ho(L1Sp
Jq+1)
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looks as follows.

∗

∗

∗

. . .A ∧ Ã

∗

. . .
(4.44)

Here, there only non-trivial entry is at (βs+1, βt+1). From the diagram above

we get

Eζs+t+1 = Eζq+1 = hocolim
pr/ζq+1

(X ∧L Y ) ∼= hocolim
Jq+1

θ∗q+1(X ∧L Y ) ∼= ΣA ∧ Ã.

We continue to do the same (briefly) for Eγq , Eγq+1 and Eγq+2 . Recall the

poset pr/γn from Example 4.4.4, which for i+ j ≡ n looks as follows.

(βi, βj)

(βi, ζj)(ζi, βj)

(βi, βj+1)(βi+1, βj)

(ζi−1, βj+1)(βi+1, ζi−1)

. . .. . .

The value Eγq+2 is the homotopy colimit of the diagramX⊼LY ∈ Ho(L1Sp
pr/γq+2)

which is

∗ A ∧ Ã A ∧ Ã ∗

. . .

@@

∗

==]]

A ∧ Ã ∗

AAaa

. . .

^^

(4.45)

The non-trivial entries are at the places (βs+1, βt+1) (the bottom), (ζs+1, βt+1)

(on the left) and (βs+1, ζt+1) (on the right) and the non-trivial morphisms
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are identities as shown. Hence Eγn+2
∼= A ∧ Ã. Similarly, we have

Eγq = hocolim
pr/γq

(X ⊼L Y ) ∼= ∗

Eγq+1 = hocolim
pr/γq+1

(X ⊼L Y ) ∼= ΣA ∧ Ã.

Let us move on to calculate the map cone(k̂q)→ S1∧Eγq+1 . From Definition

2.2.31 we have the pushout square

Eγq+1

k̂q //

��

Eζq

��
∗

��

(I, 0) ∧ Eγq+1
//

π∧1 ,,

cone(k̂q)

&&
S1 ∧ Eγq+1

which based on our computations above is the following

Σ(A ∧ Ã)

��

// ∗

��

��

(I, 0) ∧ Σ(A ∧ Ã)

π∧1 ,,

// cone(k̂n)

''

S1 ∧ Σ(A ∧ Ã).

Recall from Proposition 4.6.3, (4.33), and Corollary 2.3.22 there is a series

of canonical isomorphisms

cone(k̂q) = cone(k̂s+t) ∼= cone(ks □
L k̃t) ∼= cone(ks) ∧L cone(k̃t).
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In our particular case for diagrams X and Y such that ks : A → A and

k̃ : Ã→ ∗ this is

cone(k̂q) ∼= cone(ks □
L kt) ∼= Σ2A ∧ Ã ∼= ΣA ∧ ΣÃ ∼= cone(ks) ∧L cone(k̃t).

This implies that the universal map out of the pushout (the dotted map) is

the identity map. Thus, the map

cone(k̂q)→ ΣEγq+1

is the map ΣA∧ΣÃ→ Σ2(A∧ Ã) which is the composition of the canonical

map described above and the identity map. From the posets above we can

see directly that the map

l̂q+1 : Eγq+1 → Eζq+1

is the identity map induced by

ψ : pr /γq+1 → pr/ζq+1.

Therefore the map

Σl̂q+1 : Eγq+1 → ΣEζq+1

is the identity map

1: Σ2(A ∧ Ã)→ Σ2(A ∧ Ã).
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Lastly it remains to figure out the map

Eζq+1 → cone(k̂q+1) = cone(Eγq+2 → Eζq+1).

Recall from the proof of Proposition 4.6.1 that cone(k̂q+1) can be written as

a homotopy colimit.

cone(k̂q+1) ∼= hocolim
pr/ζq+1

(
cone(εX⊼LY )

)
,

where ϕ : pr /γq+2 → pr/ζq+1 and where ε is the counit of the derived ad-

junction (Lϕ!, ϕ
∗). Pulling back the diagram cone(εX⊼LY ) to Jq+1 with the

inclusion θq+1 : Jq+1 → pr/ζq+1 we get the diagram

ΣA ∧ Ã

∗

∗

. . .∗

A ∧ ΣÃ

. . .

with non-trivial entries at (ζs+1, ζt) and (ζs, ζt+1) respectively. Recall the

diagram θ∗q+1(X ⊼L Y ) : Jq+1 → L1Sp from (4.44)

∗

∗∗

∗A ∧ Ã

∗∗

. . .. . .

The only non-trivial entry is at (βs+1, βt+1), left top being (ζs+1, ζt) and right

top being (ζs, ζt+1). Because of the shape of the underlying posets and the

191



map, we can safely ignore the trivial entries, so the map

Eγq+1 → cone(k̂q+1)

can be taken as the map of homotopy pushouts

hocolim(∗ ← A ∧ Ã→ ∗)→ hocolim(A ∧ ΣÃ← ∗ → ΣA ∧ Ã)

induced by the following map of pre-pushout posets.

∗

��

A ∧ Ãoo //

��

∗

��

A ∧ ΣÃ ∗oo // ΣA ∧ Ã.

Now consider the above map of diagrams and the following map at the bot-

tom.

∗

��

A ∧ Ãoo //

��

∗

��

A ∧ ΣÃ

τ
��

∗oo

��

//

��

ΣA ∧ Ã

ΣA ∧ Ã ∗oo // ΣA ∧ Ã

a Here τ is the map

A ∧ ΣÃ = A ∧ (S1 ∧ Ã) ∼= (A ∧ S1) ∧ Ã τ−→ (S1 ∧ A) ∧ Ã ∼= ΣA ∧ Ã

(The first map is the associativity isomorphism.) By Lemma 4.7.5, the in-
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duced map of homotopy colimits is up to weak equivalence the diagonal map

diag : ΣA ∧ Ã→ (ΣA ∧ Ã) ∨ (ΣA ∧ Ã).

Hence, the map (4.43) is up to weak equivalence the diagonal map but with

a sign introduced by the twist map as above. This implies that that indeed

the differential

ds+t : Cs+t(i∗E)→ Cs+t+1(i∗E)

coincides with the differential of the tensor product of

(
(DsLs)⊗ (DtL̃t)

)s+t
→
(
(DsLs)⊗ (DtL̃t)

)s+t+1

.

We do not need to consider the other differential, namely to check that the

differential

ds+t+1 : Cs+t+1(i∗E)→ Cs+t+2(i∗E)

coincides with the differential

(
(DsLs)⊗ (DtL̃t)

)s+t+1

→
(
(DsLs)⊗ (DtL̃t)

)s+t+2

since by construction (C•∗(i
∗E), d) is a cochain complex and that means that

by necessity ds+t+1 ◦ ds+t = 0. This concludes the proof.

4.7.4 Technical Lemmas

In this subsection we prove two technical lemmas that are used in the the

proofs. We put them here so they do not disrupt the flow of the proofs. The
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first lemma shows that the canonical map from a suspension of a spectrum

to the wedge product of suspensions is, up to natural isomorphism, the di-

agonal map. The second lemma shows that the pushout-product of injective

morphism is injective in the abelian category of E(1)∗-modules.

Lemma 4.7.5. Let X be a spectrum and consider the following map of ho-

motopy pushouts.

hocolim(∗ ← X → ∗)→ hocolim(ΣX ← ∗ → ΣX)

Then the above map is, up to isomorphism in Ho(Sp) the diagonal map

diag : ΣX → ΣX ∨ ΣX

Proof. Let CX = (I, 0) ∧ X be the cone of X and let i : X → CX be the

canonical inclusion (this is an h-cofibration). We choose a model for ΣX as

the homotopy pushout

ΣX ∼= hocolim(CX ← X → CX).

In fact, this we can take this to be the ordinary pushout colim(CX ← X →

CX) since i : X → CX is an h-cofibration and the gluing lemma. From

the model that we chose for the homotopy pushout, that is, the following

pushout

X CX

CX ΣX
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the two maps CX → ΣX are the inclusions of the top and bottom “hemi-

spheres‘’. From this model we get directly that the induced map on pushouts

CX X CX

ΣX ∗ ΣX

π∧1

i i

π∧1

where π : I → S1 is the projection is indeed the diagonal map diag : ΣX →

ΣX ∨ ΣX. Hence, the induced map of homotopy pushouts is the diagonal

map up to natural isomorphism.

Lemma 4.7.6. Let X, Y, U, V be projective E(1)∗-modules and let f : X → Y

and g : U → V be injective E(1)∗-module maps. Then the pushout-product

map f □ g is injective.

Proof. Since g : U → V is a monomorphism we have the short exact sequence

0→ U
g−→ V

j→ coker g → 0.

Notice that the dimension of the abelian category E(1)∗-modules is 1, which

implies that coker g is a projective module since it is a submodule of V . Since

X is flat, X ⊗− is an exact functor which means the sequence

0→ X ⊗ U 1⊗g−−→ X ⊗ V 1⊗j−−→ X ⊗ coker g → 0
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is short exact. Consider the diagram

0 // X ⊗ U 1⊗g //

f⊗1
��

X ⊗ V 1⊗j//

��

X ⊗ coker g // 0

0 // Y ⊗ U // P //

f□g
��

X ⊗ coker g //

f⊗1
��

0

0 // Y ⊗ U
1⊗g

// Y ⊗ V
1⊗j
// Y ⊗ coker g // 0

where P is the pushout of 1 ⊗ g and f ⊗ 1. Since the top left square is

cocartesian, the canonical map

coker(1⊗ g)→ coker(Y ⊗ U → P )

is an isomorphism so the middle row is also exact. Notice now the morphism

f ⊗ 1: X ⊗ coker g → Y ⊗ coker g,

which is the right bottom vertical arrow, is injective since coker g is projective.

Now applying the snake lemma gives us that f □ g is a monomorphism.
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Chapter 5

Homotopy Colimit Calculations

5.1 Introduction to the Chapter

In this short chapter we will deal with the right half of the diagram (1.3).

The goal of this chapter is to prove the following theorem.

Theorem 5.1.1. For any pair of diagrams (X, Y ) ∈ Ho(L1Sp
CN )×Ho(L1Sp

CN ),

the homotopy colimit of the CN -diagram

i∗Lpr!(X ⊼L Y ) ∈ Ho(L1Sp
CN )

is naturally isomorphic to the smash product of the homotopy colimits of X

and Y , that is,

hocolim
CN

(
i∗Lpr!(X ⊼L Y )

) ∼= hocolim
CN

X ∧L hocolim
CN

Y.

We will prove the above theorem by breaking it apart into smaller easier
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to prove lemmas that we explain in the section below.

5.2 Calculations

Recall the diagram (1.3). In the previous chapter we showed that the left half

side of the diagram commutes up to natural isomorphism. In this chapter we

will deal with the right half side of the diagram and show that it commutes

up to natural isomorphism.

Ho(L1Sp
CN )× Ho(L1Sp

CN )

⊼L

��

// Ho(L1Sp)

Ho(L1Sp
CN×CN )

pr!
��

(·)hCN
55

Ho(L1Sp
DN )

i∗

��

(·)hDN

::

Ho(L1Sp
CN )

hCN // Ho(L1Sp)

Let us briefly recall all the functors involved.

(i) The top horizontal functor is the smash product of homotopy colimits

of crowned diagrams, that is,

hocolim
CN

X ∧L hocolim
CN

Y,

(ii) The first vertical functor is the derived functor of the objectwise smash
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products of crowned diagrams

− ⊼L − : Ho(L1Sp
CN )× Ho(L1Sp

CN )→ Ho(L1Sp
CN×CN )

see (4.7),

(iii) The second vertical functor is the homotopy left Kan extension along

pr : CN × CN → DN ,

Lpr!(− ⊼L −) : Ho(L1Sp
CN×CN )→ Ho(L1Sp

DN ),

(iv) The third vertical functor is the pullback functor i∗ : Ho(L1Sp
DN ) →

Ho(L1Sp
CN ), induced by the functor i : CN → DN .

(v) The first diagonal functor is the homotopy colimit functor

hocolim
CN×CN

: Ho(L1Sp
CN×CN )→ Ho(L1Sp).

(vi) The second diagonal functor is also the homotopy colimit functor

hocolim
DN

: Ho(L1Sp
DN )→ Ho(L1Sp).

(vii) The bottom horizontal functor is again the homotopy colimit functor

hocolim
CN

: Ho(L1Sp
CN )→ Ho(L1Sp).

(viii) finally, the right vertical functor is just the identity functor.
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By Corollary 4.5.3 given crowned diagrams X, Y ∈ L satisfying certain hy-

potheses, we have that i∗Lpr!(X ⊼L Y ) ∈ L. So we can rewrite the above

diagram as follows.

L × L Ho(L1Sp)

Ho(L1Sp
CN×CN )

Ho(L1Sp
DN )

L Ho(L1Sp)

⊼L

Lpr!

i∗

(5.1)

Lemma 5.2.1. The top triangle commutes, that is,

hocolim
CN

X ⊼L hocolim
CN

Y ∼= hocolim
CN×CN

(X ⊼L Y ).

Proof. This follows from Corollary 2.3.26 as a direct application for C = D =

CN

Next, we deal with the middle triangle.

Lemma 5.2.2. The middle triangle commutes, that is,

hocolim
CN×CN

(X ⊼L Y ) ∼= hocolim
DN

L pr!(X ⊼L Y ).

Proof. This follows directly Corollary 2.5.8 as a direct application for the

map of posets pr : CN × CN → DN .

The last lemma that we need is the following.
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Lemma 5.2.3. The bottom triangle commutes, that is,

hocolim
CN

i∗E ∼= hocolim
DN

E.

We will prove the above lemma by proving that the functor i : CN → DN

is homotopy final, see Definition 2.4.24. By Remark 2.4.26, given a diagram

E ∈ Ho(L1Sp
DN ), to check that the canonical morphism

ϕi : hocolim
CN

i∗E → hocolim
DN

E

is an isomorphism it suffices to check that for any n ∈ Z/(2p− 2)Z and any

α ∈ {ζ, γ, β} the slice categories

αn/i = {α′n ∈ CN : i(α′n) ≥ αn}

of the functor i : CN → DN are contractible. Recall from Remark 2.4.27

Quillen’s criterion.

Proposition 5.2.4. The functor i : CN → DN is homotopy final.

Proof. We will prove the above proposition by applying Quillen’s criterion

of conical contractible posets [36, Section 1.5]. First, we identity the slice

categories ζn/i, γn/i and βn/i and then we will check that they are indeed

conically contractible. We start first with ζn/i. By definition

ζn/i = {αn ∈ CN : i(αn) ≥ ζn} = {ζn}

Since this poset contains only one element it is is obviously contractible. The
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next slice categories are of the form γn/i. By definition,

γn/i = {αn ∈ CN : i(αn) ≥ γn} ,

which is the poset

ζn−1 ζn

βn

OOaa

We choose βn and Id: γn/i→ γn/i. Directly from above we can see that γn/i

is conically contractible. The last case are the slices βn/i. By definition,

βn/i = {αn ∈ CN : i(αn) ≥ βn} ,

which is the poset

ζn−1 ζn

βn−1

OO

βn

OOaa

We choose βn and the map of βn/i → βn/i as follows, ζn−1 7→ ζn−1, ζn 7→

ζn, βn−1 7→ ζn−1, βn 7→ βn.With these choices, we can see that the poset βn/i

is conically contractible.

Finally we end with a short proof of Theorem 5.1.1. By combining Lemma

5.2.1, Lemma 5.2.2 and Lemma 5.2.3, we get that all the smaller triangles in

(5.1) commute. Combined, we have that the whole diagram (5.1), commutes

and the proof is concluded.
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Chapter 6

Franke’s Realization functor R

is a ⊗-functor

In this last chapter we will at last prove our main theorem. We will combine

the results of Chapters 4 and 5.
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6.1 Proof of the Main Theorem

Before we move to the proof we recall the following diagram which summa-

rized our overall strategy.

D1(A)×D1(A) //

−⊗L−

��

Ho(L1Sp
CN )× Ho(L1Sp

CN )oo

∼=
��

// Ho(L1Sp)

=

��

Ho(L1Sp
CN×CN )

hocolim
55

Lpr!=HoLanpr
��

Ho(L1Sp
DN )

hocolimDN

::

Li∗
��

D1(A)
Q−1

// Ho(L1Sp
CN )

Q
oo

hocolimCN

// Ho(L1Sp).

(6.1)

Recall from Section 3.4 that we consider Franke’s algebraic model to

be the model category C1(A)q.proj. This model category together with the

tensor product (C1(A)q.proj,⊗) is a monoidal model category. Also, recall

that R = hocolimCN ◦Q−1.

Theorem 6.1.1. The realization functor R : (D1(A),⊗L)→ (Ho(L1Sp),∧L)

is a ⊗-functor, i.e., it preserves the monoidal products up to a natural iso-

morphism

R(C•∗ ⊗D•∗) ∼= R(C•∗) ∧L R(D•∗).

Proof. Let M•
∗ and N•∗ be objects in D1(A) = Ho(C1(A)q.proj). By our Con-

vention 2.2.2, both objects are cofibrant. Since M•
∗ is cofibrant, the functor

M•
∗ ⊗− : C1(A)q.proj → C1(A)q.proj

204



is a left Quillen functor, see [24, Remark 4.2.3], which means it preserves cofi-

brant objects. Since both objects are cofibrant, the tensor product M•
∗ ⊗N•∗

represents the derived tensor product in (D1(A),⊗L) and in particular it

also cofibrant. Recall from Definition 3.4.6, that the cofibrant objects in

C1(A)q.proj are the same as those in C1(A)rel.proj, see Lemma 3.4.5. This

means that M•
∗ , N

•
∗ and M•

∗ ⊗ N•∗ are in particular degreewise dualizable

E(1)∗E(1)-comodules and hence by Lemma 3.2.2 they are degreewise pro-

jective as E(1)∗-modules.

We recall some notation from Section 4.2. Given a crowned diagram

X ∈ L1Sp
CN

X : Xζ0 Xζ1 . . . XζN−1

Xβ0

OO 44

Xβ1

OOaa

. . .

aa

Xβ−1

OObb

we set

Zn
∗ (X) = E(1)∗−n(Xζn), B

n
∗ (X) = E(1)∗−n(Xβn), C

n
∗ (X) = E(1)∗−n(cone(Xβn+1 → Xζn)).

Next we recall Franke’s functor Q (4.2)

Q : L → C2p−2(B) ∼= C1(A)

that constructs an object C•∗(X) ∈ C2p−2(B) ∼= C1(A), i.e.,

. . .
d−1

−−→ C0
∗

d0−→ C1
∗

d1−→ C2
∗

d2−→ . . . .
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We use the notation Zn
∗ (X) = ker dn and Bn

∗ = im dn.

By the discussion above, for the twisted complex M•
∗ for any n ∈ Z the

underlying E(1)∗-module Mn
∗ is projective. Notice that the global homolog-

ical dimension of the abelian category of Z(p)[v1, v
−1
1 ]-modules is equal to 1,

i.e.,

dim Z(p)[v1, v
−1
1 ] = 1,

which implies that any submodule of a projective Z(p)[v1, v
−1
1 ]-module is itself

projective. Hence, any submodule of Mn
∗ is a projective E(1)∗-module. In

particular, the submodules ker dn and im dn−1 of Mn
∗ are projective E(1)∗-

modules. Under the equivalence of the abelian categories C1(A) ∼= C2p−2(B),

the kernels and images of the differentials are also projective for M•
∗ ∈

C2p−2(B). In similar fashion, the kernels and images of the differentials of

the complex N•∗ are all projective E(1)∗-modules. Let now Q−1 be an in-

verse to Franke’s Q functor and we let

X ∼= Q−1(M•
∗ ), Y ∼= Q−1(N•∗ ).

By our discussion above, it follows that for the crowned diagrams X and Y ,

for any n ∈ Z/(2p− 2)Z and α ∈ {β, ζ}, the underlying E(1)-modules of the

E(1)∗E(1)-comodules,

E(1)∗(Xαn) and E(1)∗(Yαn)
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are projective. Now, by Theorem 4.3.1

Q(i∗Lpr!(X ⊼L Y )) ∼= Q(X)⊗Q(Y ) =M•
∗ ⊗N•∗

that is, the left hand side of the diagram (6.1) commutes. By Theorem 5.1.1

hocolim
CN

(
i∗Lpr!(X ⊼L Y )

) ∼= hocolim
CN

X ∧L hocolim
CN

Y.

that is, the right hand side of the diagram (6.1) commutes. Finally, Franke’s

realization functor (4.3) is defined by

R = hocolim
CN

◦Q−1

and the proof is concluded.
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Birkhäuser Verlag, Basel, 2009, pp. xvi+510. isbn: 978-3-0346-0188-

7. doi: 10.1007/978-3-0346-0189-4. url: https://doi-org.

chain.kent.ac.uk/10.1007/978-3-0346-0189-4.

[20] Moritz Groth. “Derivators, pointed derivators and stable derivators”.

In: Algebr. Geom. Topol. 13.1 (2013), pp. 313–374. issn: 1472-2747.

doi: 10.2140/agt.2013.13.313. url: https://doi-org.chain.

kent.ac.uk/10.2140/agt.2013.13.313.

[21] Philip S. Hirschhorn. Model categories and their localizations. Vol. 99.

Mathematical Surveys and Monographs. American Mathematical So-

ciety, Providence, RI, 2003, pp. xvi+457. isbn: 0-8218-3279-4. doi:

10.1090/surv/099. url: https://doi-org.chain.kent.ac.uk/10.

1090/surv/099.

[22] Michael J. Hopkins. “Global methods in homotopy theory”. In: Ho-

motopy theory (Durham, 1985). Vol. 117. London Math. Soc. Lecture

Note Ser. Cambridge Univ. Press, Cambridge, 1987, pp. 73–96.

211

https://doi.org/10.1016/j.jpaa.2013.02.005
https://doi-org.chain.kent.ac.uk/10.1016/j.jpaa.2013.02.005
https://doi-org.chain.kent.ac.uk/10.1016/j.jpaa.2013.02.005
https://doi.org/10.1007/978-3-0346-0189-4
https://doi-org.chain.kent.ac.uk/10.1007/978-3-0346-0189-4
https://doi-org.chain.kent.ac.uk/10.1007/978-3-0346-0189-4
https://doi.org/10.2140/agt.2013.13.313
https://doi-org.chain.kent.ac.uk/10.2140/agt.2013.13.313
https://doi-org.chain.kent.ac.uk/10.2140/agt.2013.13.313
https://doi.org/10.1090/surv/099
https://doi-org.chain.kent.ac.uk/10.1090/surv/099
https://doi-org.chain.kent.ac.uk/10.1090/surv/099


[23] Mark Hovey. “Homotopy theory of comodules over a Hopf algebroid”.

In: Homotopy theory: relations with algebraic geometry, group cohomol-

ogy, and algebraic K-theory. Vol. 346. Contemp. Math. Amer. Math.

Soc., Providence, RI, 2004, pp. 261–304. doi: 10.1090/conm/346/

06291. url: https://doi-org.chain.kent.ac.uk/10.1090/conm/

346/06291.

[24] Mark Hovey. Model categories. Vol. 63. Mathematical Surveys and

Monographs. American Mathematical Society, Providence, RI, 1999,

pp. xii+209. isbn: 0-8218-1359-5.

[25] Mark Hovey. “Smith ideals of structured ring spectra”. In: arXiv preprint

arXiv:1401.2850 (2014).

[26] Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics

Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925.

isbn: 978-0-691-14049-0; 0-691-14049-9. doi: 10.1515/9781400830558.

url: https://doi-org.chain.kent.ac.uk/10.1515/9781400830558.

[27] Saunders MacLane. Categories for the working mathematician. Grad-

uate Texts in Mathematics, Vol. 5. Springer-Verlag, New York-Berlin,

1971, pp. ix+262.

[28] Cary Malkiewich. “Homotopy colimits via the bar construction”. In:

Unpublished manuscript (2014).

[29] J. Peter May. Simplicial objects in algebraic topology. Chicago Lectures

in Mathematics. Reprint of the 1967 original. University of Chicago

Press, Chicago, IL, 1992, pp. viii+161. isbn: 0-226-51181-2.

212

https://doi.org/10.1090/conm/346/06291
https://doi.org/10.1090/conm/346/06291
https://doi-org.chain.kent.ac.uk/10.1090/conm/346/06291
https://doi-org.chain.kent.ac.uk/10.1090/conm/346/06291
https://doi.org/10.1515/9781400830558
https://doi-org.chain.kent.ac.uk/10.1515/9781400830558


[30] Thomas Nikolaus and Peter Scholze. “On topological cyclic homology”.

In: Acta Mathematica 221.2 (2018), pp. 203–409.

[31] Ulrich Oberst. “Basiserweiterung in der Homologie kleiner Kategorien”.

In: Math. Z. 100 (1967), pp. 36–58. issn: 0025-5874. doi: 10.1007/

BF01111327. url: https://doi-org.chain.kent.ac.uk/10.1007/

BF01111327.

[32] Ulrich Oberst. “Homology of categories and exactness of direct limits”.

In: Math. Z. 107 (1968), pp. 87–115. issn: 0025-5874. doi: 10.1007/

BF01111023. url: https://doi-org.chain.kent.ac.uk/10.1007/

BF01111023.

[33] Irakli Patchkoria. “On exotic equivalences and a theorem of Franke”.

In: Bulletin of the London Mathematical Society 49.6 (2017), pp. 1085–

1099.

[34] Irakli Patchkoria. “On the algebraic classification of module spectra”.

In: Algebr. Geom. Topol. 12.4 (2012), pp. 2329–2388. issn: 1472-2747.

doi: 10.2140/agt.2012.12.2329. url: https://doi-org.chain.

kent.ac.uk/10.2140/agt.2012.12.2329.

[35] Piotr Pstragowski. “Chromatic homotopy theory is algebraic when p >

n2 + n+ 1”. In: Advances in Mathematics 391 (2021), p. 107958.

[36] Daniel Quillen. “Homotopy properties of the poset of nontrivial p-

subgroups of a group”. In: Adv. in Math. 28.2 (1978), pp. 101–128.

issn: 0001-8708. doi: 10.1016/0001-8708(78)90058-0. url: https:

//doi-org.chain.kent.ac.uk/10.1016/0001-8708(78)90058-0.

213

https://doi.org/10.1007/BF01111327
https://doi.org/10.1007/BF01111327
https://doi-org.chain.kent.ac.uk/10.1007/BF01111327
https://doi-org.chain.kent.ac.uk/10.1007/BF01111327
https://doi.org/10.1007/BF01111023
https://doi.org/10.1007/BF01111023
https://doi-org.chain.kent.ac.uk/10.1007/BF01111023
https://doi-org.chain.kent.ac.uk/10.1007/BF01111023
https://doi.org/10.2140/agt.2012.12.2329
https://doi-org.chain.kent.ac.uk/10.2140/agt.2012.12.2329
https://doi-org.chain.kent.ac.uk/10.2140/agt.2012.12.2329
https://doi.org/10.1016/0001-8708(78)90058-0
https://doi-org.chain.kent.ac.uk/10.1016/0001-8708(78)90058-0
https://doi-org.chain.kent.ac.uk/10.1016/0001-8708(78)90058-0


[37] Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathemat-

ics, No. 43. Springer-Verlag, Berlin-New York, 1967, iv+156 pp. (not

consecutively paged).

[38] Douglas C. Ravenel. Complex cobordism and stable homotopy groups

of spheres. Vol. 121. Pure and Applied Mathematics. Academic Press,

Inc., Orlando, FL, 1986, pp. xx+413. isbn: 0-12-583430-6; 0-12-583431-

4.

[39] Douglas C. Ravenel. “Localization with respect to certain periodic ho-

mology theories”. In: Amer. J. Math. 106.2 (1984), pp. 351–414. issn:

0002-9327. doi: 10.2307/2374308. url: https://doi-org.chain.

kent.ac.uk/10.2307/2374308.

[40] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy the-

ory. Vol. 128. Annals of Mathematics Studies. Appendix C by Jeff

Smith. Princeton University Press, Princeton, NJ, 1992, pp. xiv+209.

isbn: 0-691-02572-X.

[41] Birgit Richter. From categories to homotopy theory. Vol. 188. Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge, 2020, pp. x+390. isbn: 978-1-108-47962-2. doi: 10.1017/

9781108855891. url: https://doi-org.chain.kent.ac.uk/10.

1017/9781108855891.

[42] Emily Riehl. Categorical homotopy theory. Vol. 24. New Mathematical

Monographs. Cambridge University Press, Cambridge, 2014, pp. xviii+352.

isbn: 978-1-107-04845-4. doi: 10.1017/CBO9781107261457. url: https:

//doi-org.chain.kent.ac.uk/10.1017/CBO9781107261457.

214

https://doi.org/10.2307/2374308
https://doi-org.chain.kent.ac.uk/10.2307/2374308
https://doi-org.chain.kent.ac.uk/10.2307/2374308
https://doi.org/10.1017/9781108855891
https://doi.org/10.1017/9781108855891
https://doi-org.chain.kent.ac.uk/10.1017/9781108855891
https://doi-org.chain.kent.ac.uk/10.1017/9781108855891
https://doi.org/10.1017/CBO9781107261457
https://doi-org.chain.kent.ac.uk/10.1017/CBO9781107261457
https://doi-org.chain.kent.ac.uk/10.1017/CBO9781107261457


[43] Constanze Roitzheim. “On the algebraic classification of K-local spec-

tra”. In: Homology Homotopy Appl. 10.1 (2008), pp. 389–412. issn:

1532-0073. doi: 10.4310/HHA.2008.v10.n1.a17. url: https://doi-

org.chain.kent.ac.uk/10.4310/HHA.2008.v10.n1.a17.

[44] Stefan Schwede. “Symmetric spectra”. In: in preparation, http: //

www. math. uni- bonn. de/ people/ schwede/ SymSpec- v3. pdf

(2012).

[45] Stefan Schwede. “The stable homotopy category is rigid”. In: Ann. of

Math. (2) 166.3 (2007), pp. 837–863. issn: 0003-486X. doi: 10.4007/

annals.2007.166.837. url: https://doi-org.chain.kent.ac.uk/

10.4007/annals.2007.166.837.

[46] Brooke Shipley. “Monoidal uniqueness of stable homotopy theory”. In:

Adv. Math. 160.2 (2001), pp. 217–240. issn: 0001-8708. doi: 10.1006/

aima.2001.1988. url: https://doi-org.chain.kent.ac.uk/10.

1006/aima.2001.1988.

[47] Michael Shulman. Homotopy limits and colimits and enriched homotopy

theory. 2006. doi: 10 . 48550 / ARXIV . MATH / 0610194. url: https :

//arxiv.org/abs/math/0610194.

[48] Robert M. Switzer. Algebraic topology—homotopy and homology. Die

Grundlehren der mathematischen Wissenschaften, Band 212. Springer-

Verlag, New York-Heidelberg, 1975, pp. xii+526.

[49] Charles A. Weibel. An introduction to homological algebra. Vol. 38.

Cambridge Studies in Advanced Mathematics. Cambridge University

Press, Cambridge, 1994, pp. xiv+450. isbn: 0-521-43500-5; 0-521-55987-

215

https://doi.org/10.4310/HHA.2008.v10.n1.a17
https://doi-org.chain.kent.ac.uk/10.4310/HHA.2008.v10.n1.a17
https://doi-org.chain.kent.ac.uk/10.4310/HHA.2008.v10.n1.a17
http://www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf
http://www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf
https://doi.org/10.4007/annals.2007.166.837
https://doi.org/10.4007/annals.2007.166.837
https://doi-org.chain.kent.ac.uk/10.4007/annals.2007.166.837
https://doi-org.chain.kent.ac.uk/10.4007/annals.2007.166.837
https://doi.org/10.1006/aima.2001.1988
https://doi.org/10.1006/aima.2001.1988
https://doi-org.chain.kent.ac.uk/10.1006/aima.2001.1988
https://doi-org.chain.kent.ac.uk/10.1006/aima.2001.1988
https://doi.org/10.48550/ARXIV.MATH/0610194
https://arxiv.org/abs/math/0610194
https://arxiv.org/abs/math/0610194


1. doi: 10.1017/CBO9781139644136. url: https://doi-org.chain.

kent.ac.uk/10.1017/CBO9781139644136.

216

https://doi.org/10.1017/CBO9781139644136
https://doi-org.chain.kent.ac.uk/10.1017/CBO9781139644136
https://doi-org.chain.kent.ac.uk/10.1017/CBO9781139644136

	Introduction
	Overview
	Main Result & Strategy
	Organization of the Chapters

	Background in Homotopy Theory
	Simplicial Objects
	Main Definitions
	Decomposition & Skeleta

	Model Categories
	A Short Reminder of Model categories
	Diagram Model Categories
	Reedy Model Structure on Simplicial Objects
	Homotopy Colimits in Model Categories
	Stable Model Categories

	Monoidal & Enriched Model Categories
	Quillen Bifunctors
	Monoidal Model Structures on the Arrow Category
	Smash Products for Diagram Model Categories

	Homotopy Colimits in Simplicial Model Categories
	Nerves of Overcategories and Undercategories
	Local Definition and Functor Tensor Products
	Bousfield-Kan Construction aka Simplicial Replacement
	Skeletal Filtration of the Geometric Realization
	Changing the Indexing Category & Homotopy Final Functors

	Homotopy Kan Extensions
	Kan Extensions
	Homotopy Kan Extensions 

	Spectra
	Modern Foundations of Spectra
	Homotopy Groups of Spectra
	Bousfield Localization at a Spectrum


	Background in Homological Algebra
	 Homology
	Chain and Cochain Complexes
	Generalized Homology Defined by a Spectrum

	Comodules over a Hopf Algebroid
	Comodules over the Johnson-Wilson spectrum 

	Twisted Cochain Complexes
	Main Definitions
	The Tensor Product of Twisted Complexes

	Model Structures for Twisted Complexes
	Homology of a Category with Coefficients in a Functor
	Definition of Homology of a Category with Coefficients
	A Spectral Sequence for Homotopy Colimits of Diagrams of Spectra


	Monoidal Properties of the Functor Q 
	Introduction to the Chapter
	Construction of Franke's Functor
	Statement of the Main Result
	Crowned Diagrams
	Main Definitions of Crowned Diagrams

	The Spectral Sequence
	Preliminaries
	The Start of the Proof 

	Cones of the New Diagram 
	Cones of the Diagram i*E 

	Differentials
	Introduction
	Reduction to the Case of Quasi-Periodic Disks
	Technical Lemmas


	Homotopy Colimit Calculations
	Introduction to the Chapter
	Calculations

	Franke's Realization functor R is a -functor
	Proof of the Main Theorem


