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Abstract. There is growing interest in learning from data classifiers
whose predictions are both accurate and fair, avoiding discrimination
against sub-groups of people based e.g. on gender or race. This pa-
per proposes a new Lexicographic multi-objective Genetic Algorithm for
Fair Feature Selection (LGAFFS). LGAFFS selects a subset of relevant
features which is optimised for a given classification algorithm, by si-
multaneously optimising one measure of accuracy and four measures
of fairness. This is achieved by using a lexicographic multi-objective
optimisation approach where the objective of optimising accuracy has
higher priority over the objective of optimising the four fairness mea-
sures. LGAFFS was used to select features in a pre-processing phase
for a random forest algorithm. The experiments compared LGAFFS’
performance against two feature selection approaches: (a) the baseline
approach of letting the random forest algorithm use all features, i.e. no
feature selection in a pre-processing phase; and (b) a Sequential Forward
Selection method. The results showed that LGAFFS significantly im-
proved fairness measures in several cases, with no significant difference
regarding predictive accuracy, across all experiments.

1 Introduction

Recently, there has been an increased focus on the fairness of the decisions made
by automated processes [1,2]; since algorithms that learn from biased data often
produce biased predictive models. We address fairness in the classification task
of machine learning, where a predictive feature (e.g. gender or race) is set as a
sensitive feature. The values of a sensitive feature are used to split individuals
(instances in a dataset) into protected and unprotected groups. The protected
group contains individuals likely to be victims of discrimination, who are more
likely to obtain a negative outcome (class label) than the unprotected group.

A large number of fairness measures have been proposed to capture some
notion of fairness in a model learned from data [3,4]. These fairness measures
can be categorised into group-level and individual-level fairness measures.

An example of a group-level fairness metrics is the discrimination score [5],
which measures the difference between the predicted positive-class probabilities
of the protected and unprotected groups. Some group-level metrics of fairness
measure the difference between the false positive error rate and/or the false neg-
ative error rate between the protected and unprotected groups [6]. Group-level
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fairness measures have the limitation of not considering fairness at the individual
level; i.e., they do not penalise models where two very similar individuals within
the same group unfairly receive different outcomes (class labels).

An individual-level fairness metric avoids this limitation, by measuring sim-
ilarities among individuals. Consistency is an individual fairness metric which
compares an individual to its k-nearest neighbours; if all of an individual’s neigh-
bours have the same class as the current individual, this test is considered max-
imally satisfied for that individual, this is then repeated for each individual
and an average taken [7]. However, as the number of features grows, the notion
of “nearest neighbours” become increasingly meaningless, as the distances be-
tween individuals tend to increase, leading to comparisons being made between
increasingly different individuals.

In practice, no single fairness measure can be deemed the best in general,
and it has also been proved that there is a clear trade-off among some fairness
measures, which cannot be simultaneously optimised [6,8].

Hence, intuitively it makes sense to use multiple fairness measures, with dif-
ferent pros and cons, and try to optimise those multiple measures at the same
time, in order to achieve more robust fairness results. This is precisely the fo-
cus of this paper, where we propose a new multi-objective Genetic Algorithm
(GA) for fair feature selection, The GA uses the lexicographic approach to opti-
mise two objectives in decreasing priority order: predictive accuracy and fairness.
The accuracy objective involves one measure, but the fairness objective is more
complex and involves four measures. Hence, we propose a new procedure for ag-
gregating four fairness measures into a single fairness objective by systematically
considering all permutations of lexicographic ordering of those four measures, as
described in detail later.

The GA selects a subset of relevant features for a given classification algo-
rithm in a data pre-processing phase [9]. This is a difficult task for two reasons.
First, the search space’s size is exponential in the number of features, with 2n

– 1 candidate solutions (feature subsets), where n is the number of features in
the dataset (the “– 1” discounts the empty feature subset). Second, intuitively
the search space is rugged (highly non-convex) with many local optima, even
in a single-objective scenario, with the problem being aggravated in the multi-
objective scenario.

We focus on GAs for two mains reasons. First, they are robust global search
methods, being less likely to get trapped into local optima in the search space,
by comparison with conventional local search methods [10,11], and so they tend
to cope better with feature interaction (a key issue in feature selection). Second,
the fact that they evolve a population of candidate solutions facilitates multi-
objective optimisation [12,13], as proposed in this work.

This paper is organised as follows. Section 2 describes the proposed multi-
objective genetic algorithm for fair feature selection. Section 3 describes the
datasets used in the experiments and the experimental setup. Section 4 reports
experimental results and Section 5 presents the conclusions and future work.
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Algorithm 1: Ramped Population Initialisation

Data: population size, MIN P, MAX P
Result: Population of Individuals

1 Function initialise population():
2 step size = (MAX P – MIN P) / population size
3 for i to population size do
4 p = MIN P + (i * step size)

5 population += Individual.initialise(p)
6 return population

2 A Lexicographic-Optimisation Genetic Algorithm for
Fair Feature Selection

This section describes our new Lexicographic-optimisation Genetic Algorithm
for Fair Feature Selection (LGAFFS), which selects a subset of relevant features
for a classification algorithm in a data pre-processing phase. LGAFFS selects
individuals for reproduction based on the principle of lexicographic optimisation
to combine predictive accuracy and fairness measures, as described later.

In LGAFFS, each individual of the population represents a candidate feature
subset. More precisely, each individual consists of a string of N bits (genes),
where N is the number of features in the dataset, and the i-th gene takes the
value 1 or 0 to indicate whether or not (respectively) the i-th feature is selected.

LGAFFS follows a wrapper approach to feature selection [9], where a base
classification algorithm is used to learn a classification model based on the feature
subset selected by an individual, and that model’s quality (in terms of accuracy
and fairness) is used to compute that individual’s fitness. Hence, the GA aims
at finding the best subset of features for the base classification algorithm. Fit-
ness computation is performed by using a well-known internal cross-validation
procedure, which uses only the training set (i.e. not using the test set).

LGAFFS uses uniform crossover and bit-flip mutation as genetic operators
to generate new individuals in each generation. However, the population initial-
isation, tournament selection and elitism selection are non-standard procedures,
and hence these are described in detail in the next subsections.

2.1 Population Initialisation

When creating the initial population, each individual has a different probability
that each gene (feature) will be selected or not. This ramping initialisation is
described in Algorithm 1. As shown in line 4, each individual has the probability
(p) that a gene (feature) will be switched on increased by step_size compared
to the previous individual, where step_size is defined in line 2 as a function of
the maximum and minimum probabilities for a feature to be selected – denoted
MAX_P and MIN_P, which are input arguments for Algorithm 1.

The motivation for this ramped population initialisation procedure is to pro-
mote diversity in the population. If all individuals had the same probability p
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Algorithm 2: Pseudo-code of Lexicographic Tournament selection.

Data: Instances, Population, ε, fair win ε
1 Function tournament selection():
2 i1, i2 = select random individuals()
3 if not |i1.accuracy – i2.accuracy| > ε then
4 i1 win, i2 win = fairness aggregation(i1,i2) // See Algorithm 3

5 if |i1 win – i2 win| > fair win ε then
6 return fairest individual

7 return best accuracy individual

that a single gene is switched on or off, then, as the number of genes (features)
in an individual increases, the number of features selected (switched on genes) in
each individual would tend to converge to p×Ngenes, the mean of a binomial dis-
tribution, where p is the probability of each gene being switched on and Ngenes is
the number of genes. Hence, all individuals would tend to have a similar number
of selected features, and individuals with low or high numbers of selected fea-
tures in the initial population would be rare, limiting the search of these areas.
The ramped population initialisation avoids this problem, giving each individual
a different probability p of switching a gene, sweeping from MIN_P to MAX_P.

2.2 Lexicographic Tournament Selection

Lexicographic tournament selection, with tournament size of two, is used to
select individuals for reproduction. In the lexicographic-optimisation approach
[14], we compare the two individuals in a tournament considering the objectives
in decreasing order of priority. Let V1 and V2 denote the values of the current
objective for individuals 1 and 2. When those two individuals are compared based
on the first objective, if |V1−V2| > ε (where ε is a very small value), then the best
individual is the tournament winner. Otherwise, the two individuals’ objective
values are deemed equivalent (negligible difference) based on that objective; then
the next objective is considered in the same way, and so on. This is repeated until
a significant (greater than ε) difference is observed and a best individual selected.
If there is no significant difference between two individuals for all objectives, then
the individual with the best value of the highest priority objective is selected.

The pseudo-code for this is shown in Algorithm 2. When comparing two
individuals, the lexicographic approach requires the objectives to be ordered.
LGAFFS considers accuracy as the highest-priority objective to be optimised,
followed by a lower-priority set of fairness measures which are aggregated into a
single fairness objective to be optimised as described in section 2.4.

Note that the lexicographic method avoids the specification of ad-hoc weights
to each objective, which would be the case if using a weighted sum of objectives
[14]. The lexicographic approach simply requires that an order of priority for the
objectives be defined; and intuitively it is easier for users to specify a priority
order of objectives than ad-hoc numerical weights. The lexicographic approach
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requires a small threshold parameter (ε); but again, it is intuitively easier for
users to specify this parameter than to specify ad-hoc weights for each objective.

Note that an alternative to the lexicographic approach would be the well-
known Pareto dominance approach [12]. However, the Pareto approach is not
suitable for our feature selection task where the objective of accuracy has higher
priority than the objective of fairness, since the Pareto approach ignores this
objective prioritisation. In particular, if we used the Pareto approach, once the
fairest model is found it would tend to be preserved by the selection operator
and remain in the Pareto front along the GA run even if its accuracy was very
low; but that model would be a bad solution, given the objectives’ priority order.
In this case, the GA would waste computational resources searching on areas of
the Pareto front around bad solutions (like areas with maximal fairness but low
accuracy). In contrast, a lexicographic approach would never select that fairest
model due to its very low accuracy (as the highest-priority objective).

2.3 The Four Fairness Measures and the Accuracy Measure

No single fairness measure captures all nuances of a fair model, so LGAFFS
optimises four fairness measures to get more robust fairness results. To define
these measures we use the following nomenclature:

– S: Protected/sensitive feature: 0→ unprotected group, 1→ protected group
– Ŷ : the predicted class; Y : the actual class; taking class labels 1 or 0
– TP , FP , TN , FN : Number of True Positives, False Positives, True Negatives

and False Negatives, respectively

The first measure is the discrimination score (DS) [5], which is defined as:

DS = 1−
∣∣∣P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)

∣∣∣ (1)

DS is a group-level fairness measure that takes the optimal value of 1 if both
protected and unprotected groups have an equal probability of being assigned to
the positive class by the classifier. If DS is used on unbalanced datasets, those
where the data shows a large difference between the probability of a positive
outcome for both groups, to satisfy DS will require a reduction in accuracy. In
this case the lexicographic approach is robust to such selective pressures as the
ordering of the objectives prioritises accuracy over the fairness measures.

The second measure used is consistency[7], defined as:

C = 1− 1

Nk

∑
i

∑
j∈kNN(xn)

|ŷi − ŷj | (2)

Consistency is an individual-level similarity metric that compares the class pre-
dicted by a classifier to each instance in the dataset to the class predicted by
the classifier to that instance’s k nearest instances (neighbours) in the dataset.
If all these neighbours have the same predicted class as the current instance,
then that instance is considered consistent. The measure computes the average
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degree of consistency over all instances in the dataset. A fully consistent model
has a consistency of 1 and an inconsistent model has a value of 0.

Thirdly, the False Positive Error Rate Balance Score (FPERBS) [6,15] is:

FPERBS = 1−
∣∣∣∣ FPS=0

FPS=0 + TNS=0
− FPS=1

FPS=1 + TNS=1

∣∣∣∣ (3)

FPERBS measures the difference in the probability that a truly negative instance
is incorrectly predicted as positive between protected and unprotected groups.
Fourthly, the False Negative Error Rate Balance Score (FNERBS) [6,16,17] mea-
sures the difference in the probability that a truly positive instance is incorrectly
predicted as negative between protected and unprotected groups:

FNERBS = 1−
∣∣∣∣ FNS=0

FNS=0 + TPS=0
− FNS=1

FNS=1 + TPS=1

∣∣∣∣ (4)

A score of 1 indicates an optimally fair result for both FPERBS and FNERBS.

As the accuracy measure to be optimised, LGAFFS uses the geometric mean
of Sensitivity and Specificity (Equation 5). This measure was chosen because it
incentivises the correct classification of both positive-class and negative-class in-
stances, to counteract pressure from the fairness measures to produce maximally
fair models that trivially predict the same class for all instances.

Sensitivity =
TP

TP + TN
, Specificity =

TN

TN + FP
,

GMSen×Spec =
√
Sensitivity · Specificity

(5)

2.4 Aggregating fairness measures

As discussed earlier, LGAFFS optimises one accuracy measure and four fairness
measures. We consider accuracy as the highest-priority objective (as usual in
machine learning), and the four fairness measures as lower-priority objectives.
Among those fairness measures, there is no consensus in the literature about
what is the best one, and so it would be “unfair” to prioritise one fairness measure
over the others. Hence, we aggregate the four fairness measures into a single
objective to be optimised by the GA (in addition to the accuracy objective), by
computing all possible 24 (4!) permutations of the four fairness measures.

Algorithm 3 shows how two individuals are compared regarding fairness.
Each permutation defines a lexicographic order for the fairness measures which
can be evaluated to find the first significant difference between the individuals,
at which point the best individual is given a win. A significant difference is one
greater than the very small ε. After all permutations have been evaluated, the
individual with the higher number of wins is declared the best individual overall.
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Algorithm 3: Aggregating fairness measures.

Data: Ind 1, Ind 2, ε
Result: Number of wins for each individual

1 Function fairness aggregation():
2 i1 win = i2 win = 0
3 permutations = generate permutations(measures)
4 forall permutations do
5 forall permutation.measures do
6 i1, i2 = compute fairness measure(measure, Ind 1, Ind 2)
7 if |i1 - i2| > ε then
8 if i1 > i2 then
9 i1 win++

10 break // Exit inner forall

11 else
12 i2 win++
13 break // Exit inner forall

14 return i1 win, i2 win

2.5 Lexicographic elitism

Recall that the lexicographic approach requires the ranking of objectives, and
our GA prioritises the accuracy objective (the geometric mean of Sensitivity
and Specificity) over the four fairness measures. The fairness measures are ag-
gregated into a single objective (see Section 2.4). To find the best individual

the procedure in Algorithm 4 is used for implementing elitism.

First the population is sorted by accuracy (line 2 of Algorithm 4), where any
individuals with accuracy within ε of the most accurate individual are shortlisted
for fairness comparison (line 4). These shortlisted individuals have their average
rank of fairness computed across all 24 permutations generated as described
in Section 2.4. For each permutation of the four fairness measures, the set of

Algorithm 4: Lexicographic Selection of the Best Individual

Data: population, ε, fair rank ε
Result: Best individual

1 Function get best individual():
2 accuracy rank = sort population by accuracy(population)
3 best accur indiv = accuracy rank.head()
4 individuals = select all individuals within accuracy ε(accuracy rank)
5 avg fair rank = average rank of fairness permutations(individuals)
6 if (avg fair rank.head().average rank – best accur indiv.average rank) >

fair rank ε then
7 return avg fair rank.head()
8 else
9 return best accur indiv
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Table 1. Datasets used in all experiments, detailing the number of instances, features
and the sensitive features for each dataset.

Data set Instances Features Sensitive Features

Adult Income (US Census) 48842 14 Race, Gender, Age
German Credit 1000 20 Age, Gender
Credit Card Default 30000 24 Gender
Communities and Crime 1994 128 Race
Student Performance (Portuguese) 650 30 Age, Gender, Relationship
Student Performance (Maths) 396 30 Age, Gender, Relationship
ProPublica recidivism 6167 52 Race, Gender

shortlisted individuals is arranged by its lexicographic order, where the first (last)
measure in the permutation is considered the most (least) important. Fairness
values within the threshold ε are considered equivalent and the less important
metrics are considered until a significant difference is found.

If the fairest shortlisted individual (with the lowest average rank) has a sig-
nificantly better rank than the most accurate shortlisted individual (i.e. the
difference between their average ranks is greater than fair rank ε), the former is
selected by elitism as the best individual in preference over the most accurate
individual – since the difference in accuracy between those two shortlisted indi-
viduals is considered non-significant, i.e., within ε. Otherwise, the most accurate
shortlisted individual is selected by elitism.

LGAFFS’ Python code is available at https://github.com/bunu/LGAFFS.

2.6 Related Work

Quadrianto et al. [18] and Valvidia et al. [19] proposed a GA for fair classification.
Both GAs were designed for optimising (hyper)-parameters of a classification al-
gorithm, rather than feature selection; and both GAs use Pareto dominance
rather than the lexicographic approach used here. The Pareto approach is sound
in general, but as noted earlier, it is not suitable for our feature selection task
prioritising accuracy over fairness. La Cava and Moore [20] proposed genetic pro-
gramming (GP) for feature construction, which can implicitly perform feature
selection, but feature construction has a much larger search space than feature
selection. Their GP uses lexicase selection, a broadly lexicographic approach.
However, instead of ordering the objectives based on user-defined priorities like
in LGAFFS; their GP uses randomised lexicographic orderings of different sub-
groups of instances (with different sensitive feature values). The GP evaluates
multiple fairness-violation events, each for a different subgroup of instances; but
each event is evaluated by the same fairness formula: the difference of error rates
(either FP or FN error rates) between all instances and a sub-group of instances.
In addition, unlike those three algorithms, LGAFFS combines group-level and
individual-level fairness measures, increasing fairness robustness.

https://github.com/bunu/LGAFFS
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3 Datasets and Experimental Setup

Table 1 describes the 7 binary classification datasets used. When a dataset has
multiple sensitive features – a sensitive feature is one which represents a pro-
tected characteristic and/or a group that is unfairly treated – the algorithm
is ran multiple times using a different sensitive feature each time. 6 datasets
are from the UCI Machine Learning repository [21]. The 7th dataset is from
ProPublica, investigating biases in predicting if criminals would re-offend [2].

For all datasets, except Adult Income, the experiments use a well-known 10-
fold cross-validation procedure. Adult Income is already partitioned into a train-
ing and test set, so this partition is used instead of cross validation. LGAFFS’ pa-
rameters were not optimised and were set as follows: ε: 0.01 (threshold for signifi-
cant differences in Algorithms 2, 3 and 4), fair rank ε: 1 (threshold for significant
fairness-rank differences in Algorithm 4), fair win ε: 1 (threshold for significant
difference in the number of wins among 24 permutations of fairness measures in
Algorithm 2); population size: 100, MAX P: 0.5 and MIN P: 0.1 (for population
initialisation in Algorithm 1), internal cross validation folds: 3, max iterations:
50, tournament size: 2, crossover probability: 0.9, mutation probability: 0.05.

4 Experimental Results

We addresses two research questions. First, we compare the use of LGAFFS
to select features in a pre-processing phase against the baseline of no feature
selection in that phase. Second, we compare LGAFFS to the popular Sequen-
tial Forward Selection (SFS) method. Both LGAFFS and SFS use the wrapper
approach to feature selection; i.e., they repeatedly use a base classification algo-
rithm to evaluate feature subsets. The base algorithm was Random Forest from
scikit-learn [22], with default parameter settings; which was chosen because it
is a very popular and powerful classification algorithm. Note that the Random
Forest algorithm performs embedded feature selection (during its run), but that
feature selection considers only accuracy; whilst using LGAFFS to perform fea-
ture selection in a pre-processing phase we optimise both accuracy and fairness.

We also calculated the Pearson’s linear correlation coefficient for each of
the 6 pairs of fairness measures for LGAFFS, the coefficients were: 0.71 for
(DS,FNERBS), -0.59 for (C,FPERBS), 0.42 for (C,FNERBS), 0.24 for (DS,C),
0.08 for (DS,FPERBS) and 0.02 for (FPERBS,FNERBS). So, 4 pairs of fairness
measures have an absolute value of correlation smaller than 0.5.

4.1 RQ1: Does LGAFFS select a better subset than the full set?

The first research question asks whether using LGAFFS to select features in a
pre-processing phase leads to better results than the baseline approach of not
performing any feature selection. That is, does the random forest algorithm
perform better (regarding accuracy and fairness) when it is trained with the
features selected by LGAFFS or when it is trained with the full feature set?
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Table 2 show the experimental results for this research question. In this table,
the first two columns show the dataset and the sensitive feature. The following
ten columns show the accuracy and fairness results of training the Random
Forest algorithm with features selected by LGAFFS or with the full feature set.

In each row of this table (i.e. for each pair of a dataset and a sensitive feature),
for each pair of columns comparing the accuracy or fairness of LGAFFS against
the full feature set, the best result is shown in boldface. The last but one row
of the table shows the number of wins for each approach for each of the five
measures of performance, whilst the last row shows the p-value obtained by the
Wilcoxon signed-rank statistical significance test. Statistically significant results,
at the conventional significance level of α = 0.05, are marked with a red triangle.
In Table 2, there was no substantial difference in the number of wins regarding
accuracy. LGAFFS achieved substantially more wins in three of the four fairness
measures, with statistical significance in one measure: FPERBS.

4.2 RQ2: Does LGAFFS perform better than SFS?

The second question involves the comparison of LGAFFS to a popular local
search-based feature selection method, viz. Sequential Forward Selection (SFS).
The SFS method is not aware of the 4 fairness measures; it is just optimising
the accuracy measure, i.e., the geometric mean of sensitivity and specificity.

Table 3 presents the results for the Random Forest algorithm when using
LGAFFS or SFS to select features. LGAFFS achieved more wins in all 5 mea-
sures, with statistical significance shown in 3 of the 4 fairness measures.

5 Conclusions

We have proposed a new lexicographic-optimisation Genetic Algorithm for fair
feature selection, which selects a feature subset optimised for a classification al-
gorithm based on both predictive accuracy and 4 fairness measures capturing
different aspects of fairness, including both group-level and individual-level fair-
ness. No single fairness measure reflects all the nuances of fairness; LGAFFS
optimises multiple fairness measures to obtain more robust fairness results.

LGAFFS was compared with 2 other feature selection approaches (no feature
selection and Sequential Forward Selection) using Random Forest as the classifi-
cation algorithm. There was no significant difference in the predictive accuracies
of models learned when using LGAFFS versus the 2 other approaches. Regard-
ing fairness, when comparing LGAFFS against the 2 other approaches across
the 4 fairness measures, LGAFFS achieved significantly better results in 4 of the
8 comparisons, and there was no significant differences between LGAFFS and
the 2 other approaches in the other 4 comparisons.

Future work could include extending SFS to make it a fairness-aware method.

Acknowledgements: This work was funded by a research grant from The
Leverhulme Trust, UK, reference number RPG-2020-145.
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