
Fil, Jakub (2022) Towards modelling of autonomous neuromorphic learning
systems. Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/95778/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.95778

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/95778/
https://doi.org/10.22024/UniKent/01.02.95778
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

TOWARDS MODELLING OF AUTONOMOUS
NEUROMORPHIC LEARNING SYSTEMS.

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF PHD.

By

Jakub Fil

October 27, 2021

Abstract

This thesis aims to investigate physically plausible models of spiking neurons and pro-

pose a path for autonomous molecular implementation.

First, I will discuss supervised learning of multi-class stimuli in a single spiking

neuron. Particularly, I will focus on the aggregate-label learning framework originally

proposed by Gütig (2016). To this end, I will introduce a novel model of a spiking

neuron capable of performing complex computational tasks, while remaining simple

and readily interpretable. Moreover, I will demonstrate how this neuronal model can be

interpreted as a chemical reaction network, and how synaptic weights can be encoded

by reaction rate constants.

Next, I will investigate a minimal molecular model of a spiking neuron capable of

unsupervised learning. In order to be practically useful, such molecular implementation

needs to be autonomous. I will define what it means for the learning systems to be

autonomous, and propose a model which implements both the neuronal functions as

well as the learning algorithm within a chemical reaction network. Through extensive

simulations I will demonstrate that this model is capable of autonomous recognition of

frequency biases and temporal correlations embedded into discrete spike trains.

Lastly, I will present an implementation of a spiking neuron based on DNA-strand

displacement interactions. The advantage of this method is that it can realistically be

synthesised in a laboratory. The DNA neuron will be shown to be capable of performing

a variety of computational tasks including temporal correlation learning and novelty

detection.

ii

Contents

Abstract ii

Contents iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Thesis outline . 6

1.2 Thesis contributions . 7

2 Background 9

2.1 Biological neuron . 10

2.2 Artificial neural modelling . 12

2.2.1 Hodgkin-Huxley neuron model 12

2.2.2 Leaky Integrate-and-Fire (LIF) 14

2.2.3 Spike Response Model (SRM) 16

2.2.4 Izhikevich neuron . 17

2.2.5 Tempotron . 19

2.3 Synaptic plasticity . 21

2.4 Supervised multi-class learning . 23

2.4.1 Multi-spike Tempotron . 24

iii

2.4.2 Finite-precision spiking algorithm 28

2.4.3 Other multi-class learning approaches 30

2.5 Neuromorphic hardware . 30

2.6 Computation in cells . 32

2.6.1 Chemotaxis . 32

2.6.2 Associative learning . 33

2.6.3 DNA . 33

3 Generalised Neuronal Model 42

3.1 Introduction . 42

3.2 Model description . 44

3.3 Training algorithm . 50

3.4 Aggregate-label learning . 51

3.5 Multi-class aggregate-label learning 56

3.6 Comparison to other neural models . 59

3.7 Alternative learning approaches . 60

3.7.1 Error-trace feedback learning 61

3.7.2 Error backpropagation in networks of GNM 62

3.8 Continuous-time GNM and chemical implementation 65

3.9 Chapter summary . 68

4 Chemical neuron and computation in cells 74

4.1 Introduction . 74

4.2 Frequency accumulator model . 78

4.3 Chemical neuron model . 79

4.4 Learning . 86

4.4.1 Associative learning . 87

4.4.2 Full Hebbian learning . 88

4.5 Performance analysis . 91

iv

4.5.1 Nonlinearity and learning . 91

4.5.2 Analysis of learning outcomes 96

4.5.3 Measuring the thermodynamical cost of computation 102

4.6 Interpreting CN as a single-celled organism 104

4.6.1 Performance analysis . 108

4.7 Chapter summary . 110

5 Neural modelling in DNA-strand displacement 112

5.1 Introduction . 112

5.2 DNA neuron implementation in CRN 115

5.3 Neuron implementation in DSD . 117

5.3.1 Simulating the DNA neuron 123

5.3.2 Increasing the number of input channels 124

5.4 Learning . 125

5.4.1 Associative learning . 125

5.4.2 Temporal learning . 125

5.4.3 Bias detection in noisy input streams 126

5.5 Novelty detection . 133

5.6 Tuneable activation function . 138

5.7 Chapter summary . 147

6 Conclusions 150

6.1 Thesis summary . 150

6.2 Discussion . 151

6.3 Future work . 157

6.3.1 Backpropagation for networks of GNM 157

6.3.2 Building networks of CN . 157

6.3.3 Wet-lab implementation of DNA neuron 158

6.4 Publications . 159

v

A ϑ∗ gradient 160

B Examples of GNM dynamics. 164

C GNM noisy residuals for two and four input patterns. 165

D Detailed compilation mode in DSD 166

E Performance of the CN and DNA neuron 167

F Specification for the DNA neuron 169

G Specification for the DNA neuron - B 173

Bibliography 180

vi

List of Tables

1 List of chemical reactions in a single frequency accumulator CN unit. . 79

2 List of chemical reactions in a single chemical neuron. 80

3 List of reaction rate constants in a single chemical neuron. 81

4 List of chemical reactions in a cellular interpretation of the chemical

neuron. 107

5 List of reaction rate constants in a cellular interpretation of the chemical

neuron. 107

6 List of reactions in a single DNA neuron. 116

7 List of key DNA strands in the DNA neuron. 119

8 List of toehold domains and their respective binding and unbinding

rates for the DNA neuron. 119

9 List of nucleotide sequences in a DNA neuron 120

10 List of reactions in a single DNA neuron with a tuneable activation

function . 139

11 List of toehold domains and their respective binding and unbinding

rates for the DNA neuron with tuneable activation function. 139

12 List of nucleotide sequences in a DNA neuron with a tuneable activa-

tion function . 140

vii

List of Figures

1 Schematic structure of a biological neuron. 11

2 Shape of the PSP kernel for a LIF neuron. 15

3 Different STDP functions . 22

4 Structure of a DNA molecule . 34

5 Basic interactions in DNA-strand displacement 36

6 Examples of two-domain DNA-strand displacement 37

7 Diagram of a join gate in the two-domain DSD. 39

8 Diagram of a fork gate in the two-domain DSD. 40

9 Diagram of a seesaw gate in the two-domain DSD. 41

10 Schematic depiction of the GNM neuron 46

11 Examples of Hill kinetics . 47

12 Neuronal functions in the GNM . 49

13 Performance of the GNM on the task of recognising a single pattern. . . 54

14 Performance of the GNM on the task of recognising multiple patterns. . 56

15 Noisy performance and residuals for learning multi-class stimulus. . . . 57

16 Performance comparison of the GNM and equivalent LIF neuron. . . . 59

17 Comparison of MST and different training algorithms for the GNM. . . 62

18 Diagram of error backpropagation in layered network of GNM. 63

19 Comparison of BP and different training algorithms for the GNM. . . . 64

20 Example of error backpropagation in a network of GNM 65

21 Diagram of GNM interpreted as a chemical reaction network. 66

viii

22 Example of learnt functions in a chemical interpretation of the GNM. . 67

23 Example of alternative learning framework for continuous-time GNM. . 68

24 Diagram of reactions in the frequency accumulator model. 79

25 Diagram of reactions in a single chemical neuron. 81

26 Activation and weight accumulation in the chemical neuron. 83

27 Signal modulation in the chemical neuron. 84

28 Self-regulation mechanism in the chemical neuron. 85

29 Example of associative learning in the chemical neuron. 88

30 Comparison of the dynamic behaviour of the LIF neuron and chemical

neuron. 89

31 Steady state weights of the chemical neuron for a variety of tasks. . . . 91

32 Weights of the chemical neuron as a function of the bolus size and the

degree of nonlinearity. 94

33 Differential weight increase as a function of differently timed stimulus

for the chemical neuron. 95

34 Differential weight increase as a function of differently timed stimulus

for the chemical neuron with a simplified activation function. 96

35 Steady state weights of the chemical neuron as a function of the degree

of nonlinearity. 97

36 Index of dispersion of weights as a function of the degree of nonlinear-

ity and bolus size. 99

37 Index of dispersion of weights as a function of the degree of nonlinear-

ity and volume of the system. 100

38 Mutual information as a function of degree of nonlinearity and volume

of the system. 102

39 Tradeoff between the cost of computation and the volume of the system. 104

40 Diagram of the cellular interpretation of the chemical neuron. 105

ix

41 Example of associative learning in the cellular interpretation of the

chemical neuron. 109

42 Steady state weights of the cellular interpretation of the chemical neu-

ron for a variety of tasks. 109

43 Diagram of the reactions in the CRN version of the DNA neuron. 116

44 The internal state and activation of the DNA neuron as a function of

differently weighted inputs. 118

45 Mapping between chemical reactions and the DNA-strand displace-

ment interactions in the DNA neuron. 122

46 Garbage collection strategies for the DNA neuron. 124

47 Associative and temporal learning in the DNA neuron. 126

48 Learning of temporal and frequency biases in the DNA neuron. 128

49 Index of dispersion of the steady state weights of the DNA neuron as a

function of the bolus size. 130

50 Example of learning changing frequency bias in the DNA neuron. . . . 131

51 Example of learning changing temporal correlations in the DNA neuron. 132

52 Novelty detection in the DNA neuron - Approach A. 135

53 Novelty detection in the DNA neuron - Approach B. 138

54 Diagram of a tuneable activation function in the DNA neuron. 141

55 Diagram of weight accumulation mechanism in the DNA neuron with

a tuneable activation function. 142

56 The internal state and activation of the DNA neuron with a tuneable

activation function as a function of differently weighted inputs. 144

57 Learning in a DNA neuron with a tuneable activation function. 145

58 Normalised steady state weights of a DNA neuron with tuneable acti-

vation function. 146

59 Steady state weights of the DNA neuron for a variety of tasks. 147

60 GNM dynamics for varied η parameter. 164

x

61 Noisy performance residuals for learning of two and four spatio-temporal

patterns in the GNM. 165

62 Example learning episodes for detailed compilation mode of Visual DSD.166

63 Comparison of the CN and DNA neuron. 168

xi

Chapter 1

Introduction

The nervous systems consist of interconnected networks of billions of cells - neurons.

There are many different types of neurons in the brain, however their basic function re-

mains to integrate input signals and propagate outputs forward into the network. Neu-

rons can only relay information one way, they accumulate electrical pulses through their

dendrites and under certain conditions propagate the signal through their axon to neigh-

bouring cells. When a neuron activates in correlation with its neighbour, their synaptic

connection is strengthened. In simple terms, their synaptic plasticity follows a well-

known Hebbian principle - “what fires together, wires together” (Hebb 1950). These,

in essence very simple, devices when combined in networks are capable of producing

intelligent behaviour.

The study of artificial neural networks (ANNs) and an effort to understand the pro-

cess of learning and memory formation have a long history. Apart from the estab-

lishment of the Hebbian principle by Hebb (1950), perhaps the first leap in our un-

derstanding of these systems was the introduction of the perceptron model (Rosenblatt

1958), which mathematically formulated how information storage and network inter-

actions could be implemented in the brain. This concept led to an enormous research

effort in the following years, especially after the discovery of the backpropagation al-

gorithm, initially described by Linnainmaa (1976), which allowed for training of deep

1

CHAPTER 1. INTRODUCTION 2

multi-layered networks (Rumelhart, Hinton and Williams 1986). Nowadays, the ANNs

became widely adopted in variety of use-cases and industries. Networks with billions

or even trillions of weights are becoming increasingly common, for example in natural

language processing (Fedus, Zoph and Shazeer 2021). Nevertheless, using the models

of this size leads to extremely high energy costs when training them, and becomes in-

creasingly difficult to validate due to their hardware requirements (Brown et al. 2020).

Spiking neural networks (SNNs) are a biologically plausible alternative to the ANNs.

Unlike standard artificial neuronal networks which are rate-coded, in the SNNs the in-

formation is conveyed in the form of discrete spike signals. This type of information

processing has been shown to be advantageous over traditional approaches, for exam-

ple due to their significantly shorter time-scale of processing input features (Johansson

and Birznieks 2004). Moreover, the SNNs can be trained in an unsupervised way by

employing biologically inspired learning rules such as spike-time dependent plasticity

(STDP). The state of a spiking neuron is defined by spatial, as well as temporal se-

quences of pre-synaptic neuronal activations (Abbott, DePasquale and Memmesheimer

2016). This allows to encode the spike-based signals via temporal coding. In contrast

to the rate-coded approaches, this framework enables a neuron to distinguish signals

based on their temporal correlations, hence allowing for a more refined signal filter-

ing. Arguably, this is not only more realistic with respect to the real neuronal systems

(Brette 2015), but also a single spiking neuron was conjectured to be computationally

more powerful than a single rate-coded neuron. Notably, Maass (1997) claimed that “a

single spiking neuron is able to replace hundreds of hidden units on a sigmoidal neu-

ral network”. One example of such increased capabilities could be learning multiple

classes of patterns by a single spiking neuron and recognising them by means of releas-

ing a different amount of output spikes (Gütig 2016). These features suggest that the

SNNs may offer a greater potential for fast and efficient AI.

Multiple different models of spiking neurons have been proposed over the years.

Notably, some of them focused on being true to nature, while others were designed to

CHAPTER 1. INTRODUCTION 3

fit the requirements of neuromorphic computing platforms. The examples include sim-

ple and widely applicable models like leaky integrate-and-fire (Brunel and van Rossum

2007), models which allow for derivation of sophisticated learning rules - tempotron

(Gütig and Sompolinsky 2006; Gütig 2016), as well as models which closely repli-

cate realistic dynamic behaviour of biological neurons and capture well recognised

firing patterns seen in the brain - Hodgkin-Huxley neuron (Hodgkin and Huxley 1952),

Izhikevich neuron (Izhikevich 2003), and spike-response model (Gerstner and Kistler

2002b).

One of the aspects which are often considered while designing a spiking neuron

model is its biological plausibility. While appealing, the precise definition of what does

it mean to be biologically plausible is often vague. There are many different aspects

which may be considered essential for such a neuron to be functional. These may

include neuronal functions such as refractory period, post-spike membrane reset, or

discrete spiking. Nevertheless, not all models encompass all of those elements. For

example, models like the multi-spike tempotron (MST) (Gütig 2016) offer a powerful

framework for learning multi-class stimuli, however they are also internally complex.

This vastly limits its potential, by making the model difficult to train and deploy outside

of the simulation on a digital computer.

Spiking neurons are the most useful when simulated on specialised neuromorphic

hardware. These computing platforms are designed to efficiently simulate large popu-

lations of neurons with biologically plausible properties. Due to the discrete nature of

spiking neurons, the electrical signals in the processor only need to be propagated at the

time of firing. This brings an advantage over traditional approaches, in that it signifi-

cantly reduces the energy consumption of both training and simulation of these neural

networks. In some contexts this approach could also improve the speed of computa-

tion, and therefore allows for real-time execution of large populations of realistic neural

networks (Furber and Bogdan 2020), which is especially important for modelling the

dynamics of human brain. Moreover, this feature is also crucial for systems which need

CHAPTER 1. INTRODUCTION 4

to interact with the outside environment, such as robots or self-driving cars.

While applications which interact with the outside environment generate a lot of in-

terest, there is also a wealth of possible use-cases which require computational systems

which need to perform on the molecular scale. Such computational devices are of in-

terest in a number of practical tasks, for example in targeted drug delivery (Ausländer,

Wieland and Fussenegger 2012). This perspective encourages the development of

learning systems which would be innate to the biochemical environment within the

living organisms. Additionally, such system would need to be physically realisable and

be able to independently interact with its surroundings in order to detect environmental

cues.

Even though intelligence and learning are often only associated with organisms

with neuronal circuits some organisms, such as bacteria, have the ability to analyse

and adapt to changes in their environment. In this case, these intelligent patterns of

behaviour are implemented through bio-molecular circuits in their entirety. The field

of synthetic biology has uncovered some of the mechanistic properties of these organ-

isms, and proposed frameworks for implementation of artificial cells which can exhibit

complex behaviours, for example associative learning (Fernando et al. 2009) or clas-

sification (Blount et al. 2017). Recent advancements in bio-engineering bring forward

the possibility to synthesise intelligent artificial cells which could perform many useful

functions by interacting with the biochemical environment, for example within the hu-

man body. Nevertheless, designing such systems has proven to be a challenge due to a

range of requirements, such as the need for the system to be low-powered, small, and

autonomous.

Autonomy may be one of the most important aspects which need to be considered

while designing a learning system in wet-ware. When these systems are embedded into

a living organism or synthesised in a wet-lab they need to be able to operate without

any influence from the external observer. This poses a number of challenges. Most

importantly, this type of system needs to learn in an unsupervised fashion. Moreover,

CHAPTER 1. INTRODUCTION 5

these systems would not have any digital memory to store information, hence they can-

not rely on algorithms which require the knowledge of their input history. The learning

system also needs to encompass mechanisms such as signal modulation, i.e. scaling

of the pre-synaptic input proportional to their weights. Importantly, the lack of digital

memory would also mean that these weights need to be represented internally to the

system, rather than stored outside. Notably, the current interpretations of spiking neu-

rons typically only model signal integration of temporal inputs and threshold-mediated

output firing. It is assumed that an external observer applies a learning algorithm, such

as STDP, when a neuron fires, and readjust the synaptic weights based on the history of

pre-synaptic inputs. Therefore, such a learning framework would be difficult to realise

in synthetic biology.

Before attempting to build such synthetic bio-chemical computers, it is necessary

to first understand how to program them. A common approach is to use gene regulatory

networks (GRNs) (Racovita and Jaramillo 2020). Fernando et al. (2009) used GRNs to

implement an artificial single-celled organism capable of associative learning, however

their model was limited to a predefined coincidence pattern and could not be extended

to accommodate more advanced computation. Programming GRNs still poses a num-

ber of difficulties, one being non-specific binding between biochemical molecules and

resulting cross-talk which makes them difficult to control (Grah and Friedlander 2020;

Grant et al. 2016). Perhaps a more promising biological programming language could

be found in DNA. In particular, the framework of DNA-strand displacement (DSD) has

proven to be a reliable substrate for computation. DSD systems have been shown to

be capable of universal computation (Seelig et al. 2006), and in principle can imple-

ment any set of chemical interactions (Chen et al. 2013). More importantly, nowadays

arbitrary DNA strands can be efficiently synthesised in a laboratory and their dynamic

behaviour can be accurately predicted from simulations (Yurke et al. 2000; Fontana

2006).

CHAPTER 1. INTRODUCTION 6

1.1 Thesis outline

The central research question of this thesis is to uncover the necessary components for

computation in spiking neurons and present a possible approach to modelling neuro-

morphic systems in the context of synthetic biology. It will also address the question of

autonomy which is revealed to be crucial for such implementations. Moreover, I will

discuss what constitutes a biologically plausible neuromorphic model, and propose a

path towards experimental in-vivo implementation through DNA-based computing.

To this end, I will first review the most prominent spiking neuron models, training

algorithms, and discuss the advantages of using neuromorphic platforms. The rest of

the background will cover computation within single-celled organisms, both biological

and artificial, as well as introduce the paradigm of DNA-based computing, in particular

the DNA-strand displacement framework.

In the first research chapter of the thesis, I will focus on supervised learning of

multi-class stimuli in a single spiking neuron. In particular, I will examine the aggregate-

label learning framework for multi-spike tempotron (Gütig 2016). The main contribu-

tion of this chapter is a neuron model which can perform the same tasks as the MST -

the generalised neuronal model (GNM). The GNM’s performance will be compared to

other neuron models trained to recognise multiple classes of input patterns. An alterna-

tive, less biologically plausible but more efficient, training algorithm will be discussed

as well. I will also demonstrate how such neurons could be arranged in networks and

trained using an algorithm similar to error backpropagation. Lastly, using the fact that

the GNM can be described as a system of differential equations, I will demonstrate how

this neuron model can be interpreted as a chemical reaction network, and how synaptic

weights can be encoded by its reaction rate constants.

In the following chapter, I will propose a fully autonomous neuronal model im-

plemented in its entirety as a system of chemical reactions. The chemical neuron (CN)

consists only of micro-reversible reactions following mass-action kinetics. In this chap-

ter, I will discuss the question of autonomy in more detail and propose a concrete list

CHAPTER 1. INTRODUCTION 7

of requirements which need to be met in order to claim that the system is autonomous.

I will demonstrate that it is possible to design models which can implement both the

neuronal functions, as well as the learning algorithm. Extensive simulations will be

presented, showing that this model is capable of learning in a similar fashion to a spik-

ing neuron with STDP. Moreover, I will demonstrate how this system relates to other

previously published learning frameworks for artificial single-celled organisms, and

propose a more biochemically plausible version of the CN which could potentially be

synthesised in the context of synthetic biology.

In the last chapter of the thesis, I will introduce the notion of DNA computing in

more detail. In particular, I am going to discuss a system implemented through DNA-

strand displacement interactions, which mimics a spiking neuron. The DNA neuron

is the first fully autonomous DNA-based machine capable of learning spatio-temporal

patterns of inputs. I will demonstrate that the system implements a form of Hebbian

learning similar to STDP, and can perform a variety of computational tasks includ-

ing temporal correlation learning and novelty detection. The proposed model is based

on the well-established and experimentally proven design motif of two-domain DNA

strand displacement (Cardelli 2010). This approach proves to be a plausible strategy

for designing a DNA-based learning system physically realisable in a laboratory.

1.2 Thesis contributions

The main research contributions of this thesis can be summarised as follows:

• I showed that the internal complexity of the multi-spike tempotron model is not

necessary for multi-class learning. To this end, I proposed the generalised neuron

model, which vastly simplifies the computation and can perform the same tasks.

• I demonstrated how weights of a spiking neuron can be implemented through the

adjustment of reaction rate constants in a chemical reaction network.

CHAPTER 1. INTRODUCTION 8

• I established the criteria for autonomy of neuromorphic learning systems.

• I proposed the chemical neuron model, implemented entirely as a chemical reac-

tion network. I demonstrated that fully autonomous Hebbian learning of spatio-

temporal patterns can be achieved in a synthetic single-celled organism.

• I investigated a plausible route for implementation of neuromorphic systems in

DNA-strand displacement interactions and produced a list of necessary interac-

tions and nucleotide sequences which could be synthesised in a wet laboratory.

Chapter 2

Background

In this chapter, I will present all of the background knowledge necessary for the fol-

lowing research chapters. I will first describe the mechanistic details of biological

neurons and relate them to models commonly used in the field of neuromorphic en-

gineering. Multiple different neuron models will be discussed here including Leaky

Integrate-and-Fire (LIF), Spike-Response model (SRM), Izhikevich neuron, and Tem-

potron. Having established the key neuronal models, I will proceed to introduce the

framework of synaptic plasticity and unsupervised learning in spiking neural networks.

Here, I will establish the concept of spike-time dependent plasticity (STDP), describe

its biological justification, and discuss its different forms and interpretations typically

employed in spiking neural networks research.

Supervised approaches for multi-class learning will be introduced next. First, I

will focus on algorithms allowing a single neuron to perform this task. In particular,

I will start with a LIF-based model: Multi-spike Tempotron (MST). This approach fa-

cilitates recognition of spatio-temporal patterns of activation embedded into random

background noise, and allows for their classification by means of outputting varied

multi-spike responses. A similar outlook was also shared by Memmesheimer et al.

(2014) who introduced the Finite Precision Learning (FPL) algorithm which will also

be examined. Lastly, I will discuss other research describing learning and classification

9

CHAPTER 2. BACKGROUND 10

of multiple classes of inputs in networks of spiking neurons, such as ReSuMe (Ponulak

2005) and Chronotron (Florian 2012). In the next section, I will provide a brief review

of computational devices, which are specifically designed to simulate spiking neurons,

or neuromorphic hardware.

Finally, I will discuss how computation can be implemented in non-neural biologi-

cal systems. This section will include both examples from in-vivo experiments, for ex-

ample in bacteria performing chemotaxis, as well as theoretical work from the field of

synthetic biology. I will also discuss how single-celled organisms, both natural and ar-

tificial, can adapt to changes in the environment. In particular, I will introduce the work

by Fernando et al. (2009) who showed that associative learning can be implemented in

an artificial single-celled organism through gene regulatory networks. I will end this

chapter by discussing perhaps one of the most promising new substrates for molecular

computation - DNA-strand displacement (DSD). This method has a vast potential for

enabling the construction of computational devices verifiable in a laboratory. To this

end, I will introduce a framework of two-domain DSD, and familiarise the reader with

the examples of DNA circuits.

2.1 Biological neuron

The human brain is perhaps one of the most complex biological systems ever dis-

covered. It consists of a network of approximately 80 billion neurons (Schliebs and

Kasabov 2014), which are the basic information processing unit in a nervous system.

In real neuronal systems there exist many different types of neurons, which play various

roles within bigger interconnected networks. The individual functionality of each neu-

ron depends primarily on its morphology, structure and the size of its dendritic arbors,

placement relative to the whole population, and many other factors. Many of these

aspects are, however, often ignored in order to simplify the analysis in terms of their

computational properties.

CHAPTER 2. BACKGROUND 11

Figure 1 schematically depicts a biological neuron. Each neuron receives signals

from a population of pre-synaptic neurons through its dendrites. These incoming cur-

rents are capable of changing the neuron’s internal state, otherwise known as the mem-

brane potential. When the membrane potential reaches a threshold value, an output

spike is propagated down its axon. The myelin sheath, which is a collection of fatty

cells wrapped around an axon, acts as an insulator and prevents the movement of ions

into and out of the axon. Therefore, this element controls how well is the signal propa-

gated down the axon, and thus ensures that a clear action potential is delivered to other

neurons further down in the network.

Dendrites

Nucleus
Synapses

Axon

Cell body

Figure 1: Schematic representation of the structure of a biological neuron.

The signal produced by the neuron is transmitted down the axon, and to all other

neurons connected by its synapses. The synapse is a connection between the axon

of the pre-synaptic neuron and the dendrites of the post-synaptic one. The amount of

current injected to each post-synaptic neuron, and hence the effect the spike has on their

membrane potential, is defined by the synaptic “weights”. The weights are repeatedly

readjusted to form meaningful connections during the process of learning. After the

neuron has fired and reached its maximum voltage, the membrane is repolarised until it

reaches a minimum value. At that time, the neuron enters a so called refractory period,

CHAPTER 2. BACKGROUND 12

when it is incapable of releasing any spikes. This feature prevents the network from

getting overstimulated, and provides an increased sparsity in output spike signals.

The generation of output spikes (action potentials) necessitates the neuron to be

electrically polarised, i.e. maintain a potential difference across the cell’s membrane.

The neuron’s membrane potential is fundamentally controlled by a combination of bio-

chemical mechanisms which regulate the movement of ions entering and exiting the

cell, thus allowing them to maintain a certain voltage equilibria. This is achieved

through regulating the concentration gradients of different ionic channels within the cell

body enclosed by the membrane. Examples of these ionics elements include sodium

(Na+), potassium (K+), calcium (Ca2+) and chloride (Cl−) (Trappenberg 2010). One

example of such mechanism are so called sodium-potassium pumps, which transport

positively charged sodium ions from inside of the cell to the extra-cellular space. On

the other hand, the positively charged potassium ions are transported in the opposite

direction, into the cell. The membrane also has a number of ion channels, which allow

for a regulated influx of sodium ions into the cell, as well as slow decay or leakage

of potassium ions out of the cell. At the resting state, when no inputs influence the

neuron’s state, its membrane is polarised and maintains a negative potential.

2.2 Artificial neural modelling

2.2.1 Hodgkin-Huxley neuron model

One of the most well-known and widely recognised models of a spiking neuron is

a conductance-based neuron introduced by A.L. Hodgkin and A. F. Huxley in 1952

(Hodgkin and Huxley 1952). They derived a mathematical model for a neuron by

analysing the properties of action potentials in the axon from a squid. The model dy-

namics are based on three ionic currents driven by different elements, namely sodium

CHAPTER 2. BACKGROUND 13

(Na+), potassium (K+), and a leak current. The simplified formula for each ion chan-

nel current takes a form resembling the Ohm’s law:

Iion = −gion(V − Eion) (1)

where Iion denotes the current of a given ionic gate, and ḡion is a conductance of that

channel. The expression V − Eion describes a net potential, where V is the membrane

potential and Eion is the equilibrium channel potential for a certain ion. Equilibrium

potential describes a state when the channel manages to balance the flow of electricity

and forces of diffusion.

The membrane potential V of the neuron is then described by the following equa-

tion:

Cm
dV

dt
= Iion + Iapp (2)

where Cm is the membrane capacitance, Iapp denotes the current applied to the sys-

tem, and Iion represents the sum of individual ionic current for all three channels. Thus,

at any given time the Iion would take the following form:

Iion = −gK (V − EK)− gNa (V − ENa)− gl (V − El) (3)

where gK, gNa, gl are conductances for different ionic channels, and EK, ENa, El

are the respective equilibrium potentials for these channels.

The ionic channels are known to have voltage-dependent gates which control the

flow of ions into and out of the cell. One of the key insights provided by the authors

was that different gates react differently to the changes in the membrane potential.

Using the data obtained from voltage-clamp experiments, they derived the following

CHAPTER 2. BACKGROUND 14

expressions for the K+ and Na+ conductances:

gK = gKn
4,

gNa = gNam
3h

(4)

where gK and gNa are maximum conductances for these channels, and n, m, and

h are gating variables. Therefore, n4 is the probability that a K+ channel is open and

depends upon four activation gates. On the other hand, the probability that the Na+

channel is open is m3, and depends on three activation gates. Additionally, there is also

an inactivation gate in the sodium channel, and it’s probability to be in the open state is

described by h.

2.2.2 Leaky Integrate-and-Fire (LIF)

The current-based leaky integrate-and-fire neuron (LIF) is one of the most commonly

used spiking neuron models. Its popularity results from the relative ease with which

it can be simulated and analysed. This type of model was first introduced by Louis

Lapicque, who was one of the first researchers to study excitability of nerves obtained

from frogs (Brunel and van Rossum 2007). This research would later inspire the first

model of the membrane potential (Blair 1932). The model is adjusted to simulate a

stimulation by pre-synaptic currents and consists of a membrane potential function

driven by exponentially decaying synaptic currents. Each input spike makes a con-

tribution to the overall voltage of the neuron, and its shape over time is often described

by a bi-exponential synapse model (Gütig and Sompolinsky 2006) (eq. 6). The mem-

brane potential is evaluated at each time step by integrating incoming currents from N

pre-synaptic neurons in the following way:

V (t) =
N∑
i=1

wi
∑
tfi <t

K(t− tfi) + Vrest (5)

Where t is a current time, tfi is the time of the f th pre-synaptic firing of the ith

CHAPTER 2. BACKGROUND 15

afferent, wi is its corresponding weight, and Vrest is a membrane resting potential, which

is assumed to be 0. K(t) denotes a normalised post-synaptic potential (PSP) kernel,

vanishing at ti > t, contributed by each incoming spike. Its shape is defined by:

K(t− tfi) = Vnorm

(
exp

(
−t− t

f
i

τm

)
− exp

(
−t− t

f
i

τs

))
(6)

Vnorm normalises the PSP kernel in such a way that its maximum value reaches

1. The value of the normalisation factor is dependent on the ratio of integration time

constants τm and τs following the equation below with η = τm/τs:

Vnorm = η[η/(η−1)]/(η − 1) (7)

The LIF neuron releases an output spike whenever the membrane potential crosses

a threshold ϑ. The membrane potential is then reset to Vrest and the neuron enters a

refractory period when no extra output spikes can be elicited.

Figure 2: Shape of PSP kernel for τm = 10ms (blue) and τm = 20ms (red), and
τs = τm/4. X-axis is defined by t − ti which is the time elapsed since the most recent
input spike elicited by neuron i.

Figure 2 shows that for τm = 10 ms the function maximum is shifted to the left.

The neuron receives the maximal input earlier and the membrane potential decay is

CHAPTER 2. BACKGROUND 16

more abrupt as well. This means that the memory of previous inputs is shorter. Gütig

and Sompolinsky (2006) suggest that the τm parameter should be adjusted with regard

to both trial time T and the number of pre-synatpic neurons N . They conclude that for

τm significantly shorter than the mean time between inputs T/N there is virtually no

temporal integration of input signals.

2.2.3 Spike Response Model (SRM)

The Spike Response Model (SRM) is a generalisation of the LIF neuron model (Gerst-

ner and Kistler 2002b; Brunel and van Rossum 2007). Here, the membrane potential of

neuron i is represented by a variable ui. When this variable reaches the threshold from

below, a spike is elicited. Importantly, in this model the spiking threshold ϑ may not be

a fixed value, but also can depend on the timing of output spikes. More precisely, the

spiking threshold increases when the neuron fires, thus imposing a refractory period.

The membrane potential function is denoted as follows:

u(t) =
∑
tfj<t

η
(
t− tfj

)
+

N∑
i=1

∑
tfi <t

wiεi
(
t− tfi

)
(8)

where tfi is the spike time from the ith pre-synaptic neuron, wi is its corresponding

synaptic weight, and tfj denotes the spikes times of the post-synaptic neuron j.

The kernel functions η and ε in the SRM can take different forms between specific

implementations. The post-spike reset kernel η models the decay of the membrane

potential after firing, and is typically described in the following way:

η(t) = −ϑ exp
(
− t
τ

)
Θ(t) (9)

where τ is a time constant, Θ(t) is the Heaviside function, and ϑ is the threshold

value which determines the magnitude of the reset.

CHAPTER 2. BACKGROUND 17

The kernel function ε describes the evolution of u(t) as a function of the pre-

synaptic input spikes, and can be expressed as a bi-exponential synapse in the following

way:

εi(t) =
(

exp
(
− t

τm

)
− exp

(
− t

τs

))
Θ(t) (10)

where τs and τm are the time constants, and Θ(t) denotes the Heaviside function.

2.2.4 Izhikevich neuron

Another biologically plausible model of a spiking neuron was introduced by Izhikevich

(2003). The main advantage of this model is that it can be tuned to simulate multi-

ple different types of neuron dynamics such as regular spiking neurons, fast spiking

neurons, or bursting neurons. The membrane potential dynamics are described by the

following set of equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I (11)

du

dt
= a(bv − u) (12)

if v ≥ 30mV, then

 v ← c

u← u+ d
(13)

where v denotes the membrane potential, and u is the membrane recovery variable.

The parameter a describes the time scale of the recovery variable u (typical value a =

0.02), parameter b describes the sensitivity of the recovery variable (typical value b =

0.2), parameter c is the after-spike reset value of the membrane potential v (typical value

c = −65mV), and d describes after-spike reset of the recovery variable u (typical value

d = 2). The input to the neuron is represented by a weighted sum of the pre-synaptic

CHAPTER 2. BACKGROUND 18

currents:

I =
N∑
i=1

wiSi(t) (14)

The firing times of pre-synaptic neuron i are denoted by tfi , where f corresponds to

the number of the spike. Thus, the inputs sequence from neuron i is described as the

sequence of spike times Si(t):

Si(t) =
∑
tfi <t

δ
(
t− tfi

)
(15)

where δ(x) corresponds to the Dirac delta function with δ(x) = 0 for x 6= 0 and∫∞
−∞ δ(x)dx = 1. Thus the input spikes are reduced to discrete points in time.

Neocortical neurons can be divided into several types according to their temporal

pattern of activation. The different types of neural dynamics they exhibit can be repro-

duced in the Izhikevich model by choosing specific values for the parameters a, b, c, d.

The excitatory neurons can be divided into the following classes:

• Regular spiking neurons are the most common neurons in the cortex. Given

continuous stimulation these neurons fire multiple spikes within a short burst.

The temporal distance between spikes increases with each output. This kind of

behaviour can be achieved by appropriate choice of c and d parameters. These

dynamics necessitate high membrane potential reset (c = −65 mV), and large

post-spike increase of u (d = 8).

• Intrinsically bursting neurons are characterised by a firing pattern of a single burst

of spikes followed by a series of individual spikes. These dynamics necessitate

high voltage reset (c = −55 mV) and moderate post-spike increase of u (d = 4).

• Chattering neurons fire regular bursts of spikes in close temporal proximity. In

this model, this corresponds to c = −50 mV and d = 2, which allow for high

voltage reset and relatively short post-spike increase of u.

CHAPTER 2. BACKGROUND 19

Typically inhibitory neuron are associated with two classes:

• Fast spiking neurons fire high frequency spike trains. These dynamics necessitate

fast post-spike recovery (a = 0.1).

• Low-threshold spiking neurons also fire high frequency spike trains, however in

this case the temporal distance between the spikes undergoes frequency adapta-

tion. This can be implemented by setting b = 0.25.

Moreover, this model can be also reproduce neuron types from other areas of the

brain, for example thalamo-cortical neurons, as well as other types of dynamics such as

oscillators.

2.2.5 Tempotron

The tempotron is a neuron model based on a leaky integrate-and-fire neuron driven by

exponentially decaying synaptic currents (Gütig and Sompolinsky 2006). The mem-

brane potential dynamics are described by the standard LIF membrane potential equa-

tion (eq. 5) with the exception of the hard post-spike reset.

Similarly to the LIF neuron, the total sum of current injected at each time step is

described by the bi-exponential synapse model (eq. 6). Here, the parameters τm and τs

are typically set in a way that τs = τm/4. Whenever the membrane potential crosses a

predefined firing threshold ϑ, the neuron elicits a spike, and its membrane potential is

reset to Vrest after the first output spike, which indicates class membership.

Learning capabilities

One of the functions which the tempotron can perform is to classify the “latency pat-

terns” consisting of spatio-temporal spike trains. The neuron is given p input patterns,

each of them consists of spike trains fromN different input channels. Each pre-synaptic

neuron is only allowed to spike once at a random time drawn from a uniform distribu-

tion between 0 and T .

CHAPTER 2. BACKGROUND 20

Gütig and Sompolinsky (2006) showed that the tempotron model is capable of per-

forming this task, “as long as the pattern load denoted by α is less than a critical value

at approximately 3”, where α = p/N . This was a crucial insight since this result is

higher than the fundamental capacity of α = 2 for a single receiving rate-coded Per-

ceptron unit (Hertz, Krogh and Palmer 1991).

Training algorithm

The tempotron model considers a classification task where each latency pattern belongs

to one of the two classes: the one where a single output spike is elicited (here denoted

as ⊕), or where the neuron remains silent (labeled as). The weight update function

is defined as follows:

∆wi = λ
∑

tfi <tmax

K(tmax − tfi) (16)

where Kt is the PSP kernel (see eq. 6), tmax is the time when membrane potential is

in its maximum, and λ denotes the learning rate. After each training epoch the weights

are either decreased by the value of ∆wi, in the case when an unwanted spike was

elicited (pattern), or increased when no spike was elicited for a pattern in ⊕ class.

Formal requirements

The temporal summation of input spikes requires the τm parameter to be adjusted with

regard to the average time between input spikes T/N . Where T is a total time of a trial,

and N denotes the number of synapses connected to the neuron. The optimal value of

τm for N = 500 was determined to be ∼ 10 ms (Gütig and Sompolinsky 2006). The

range of feasible values of τm changes with different pattern load. The learning rate λ

is chosen in the following way: λ = 3×10−3T/(τmNVnorm), where N is the number of

pre-synaptic neurons, T is duration of the trial, τm is the time integration parameter, and

Vnorm is the normalisation factor of the PSP kernel (7)(Gütig and Sompolinsky 2006).

CHAPTER 2. BACKGROUND 21

2.3 Synaptic plasticity

Taylor (1973) has demonstrated that on average biological synapses are updated as

a function of the relative spike time compared to the output neuron’s activity. Spik-

ing neurons are known for their capacity for unsupervised learning of patterns in time

(Gütig 2014), usually in a form of spike-time dependent plasticity (STDP) (Feldman

2012; Maass 1996). In this scenario, a neuron is not given any feedback. The learn-

ing depends solely on the statistical distribution of the input data stream. This means

that typically the synaptic efficacies of neurons which spiked just before the output

spike was produced will be strengthened. Reversely, the weights associated with the

synapses which spiked immediately after the threshold crossing event will be decreased.

This mechanism is often attributed to N-methyl-D-aspartate (NMDA) receptors, which

are sensitive to changes in membrane potential of the neuron. Therefore, the synaptic

weight update size is determined by the fraction of NMDA receptors open at the time

of an input spike. Nevertheless, there are different interpretation of the role of these re-

ceptors. For example, Gütig (2016) motivates the design of his aggregate-label learning

on the same mechanism.

The STDP function is typically described as follows:

∆wj =
N∑
i=1

∑
tfi <t

W
(
tfi − t

f
j

)
(17)

where functionW (t) determines the shape of the learning window, and tfi and tfj denote

the spiking timing of the input neurons and the output neuron respectively.

The researchers typically distinguish two types of weight update functions, namely

additive (wi = wi + ∆wi) and multiplicative (wi = wi∆wi) STDP. Both methods

have their advantages. The additive STDP may be simpler to compute, however has

been show to be unstable in deeper feed-forward networks, due to the cumulative na-

ture of the update rule. Since the current weight value is not taken into consideration

CHAPTER 2. BACKGROUND 22

when calculating a subsequent update, this rule tends to develop weight drifts (Gerstner

and Kistler 2002a). On the other hand, in multiplicative STDP the weight update for

each spike event is calculated in a way that considers the current state of the synapse.

Therefore, this rule is less prone to develop solutions where one of the weights becomes

overrepresented.

Learning temporal correlations is facilitated by the functionW (t) which determines

the size of weight update for a particular input on the basis of its temporal distance from

an output spike event. Multiple different shapes of the so called STDP learning window

have been proposed over time, see fig. 3.

(a) Rectangular STDP (b) Bi-directional exponential STDP

Figure 3: Different shapes of spike-time dependent plasticity (STDP) functions.

Typically the form of the W (t) function is defined by two exponential functions

(Gerstner and Kistler 2002a), see fig. 3b. Zhang et al. (1998) demonstrated that this

shape displays high correlation with the experimental data from real neuronal circuits.

In the simplest form, this function can be describe in the following way:

W (x) = A+ exp (−x/τ+) for x > 0

W (x) = −A− exp (x/τ−) for x < 0
(18)

where x is the difference between the neuron’s input and output spiking times, A+

CHAPTER 2. BACKGROUND 23

and A− are scaling parameters, and τ+ and τ− are time constants of positive and nega-

tive side of the STDP curve respectively.

2.4 Supervised multi-class learning

Some researchers tried to prove the potential of spiking neurons by demonstrating that

they can perform complex tasks which cannot be performed with a single rate-coded

neuron, for example recognition of multiple class of input patterns. In the SNN lit-

erature, a number of approaches exist for multi-label classification tasks in networks

of spiking neurons. The purpose of this task is to classify incoming spatio-temporal

patterns into different classes and to distinguish them from noise. Among the early

attempts was the Remote Supervised Method (ReSuMe) by Ponulak (2005). It uses

multiple post-synaptic neurons which, when given external feedback during training,

learn to classify spatio-temporal patterns. The Chronotron learning rule (Florian 2012)

allows a single LIF neuron to assign patterns into multiple classes by using precisely

timed spike responses, i.e. different pattern classes are distinguished by the exact tim-

ing of the output spike released by the post-synaptic neuron. Other related approaches

include the Spike Pattern Association Neuron (Mohemmed et al. 2012) and the Precise

Spike Driven Synaptic Plasticity (Yu et al. 2013). Both of these allow for multi-label

classification of spatio-temporal patterns, when provided with precisely timed training

feedback. In contrast to the aforementioned approaches, other researchers have also

proposed a number of algorithms which allow for learning multi-label classification

tasks in a single neuron setup, including multi-spike tempotron (Gütig 2016) and finite-

precision spiking algorithm (Memmesheimer et al. 2014). In order to understand how

such a difficult task can be solved by a single spiking neuron, I am going to spend more

time discussing the details of their training algorithms.

CHAPTER 2. BACKGROUND 24

2.4.1 Multi-spike Tempotron

The multi-spike tempotron can learn to recognise and produce an appropriate reaction

to specific spatio-temporal patterns called features, and distinguish them from distrac-

tor patterns and the background noise. According to Gütig and Sompolinsky (2006)

this closely mirrors the tasks agents in nature have to perform in order to survive. For

example, the life of a prey animal can depend on its ability to detect temporarily corre-

lated clues, such as the sounds of breaking branches and a certain odour produced by

an approaching predator. However, this can be difficult as these clues are embedded

into the stream of background noise, and other distracting patterns of sensory data.

The challenge here is to reconcile the short time windows within which the tem-

poral features occur, and a longer ones when the feedback arrives. This is frequently

described as a “temporal credit assignment problem” and can be solved by Gütig’s

“aggregate-label” learning (ALL) algorithms. This means that the feedback the neuron

receives at the end of each training iteration is proportional to the number of features,

and does not convey any information about their timing, which clues were presented,

or the total number of their occurrences.

Gütig proposes two methods to solve this problem. One is to adjust the weights

based on the computation of the gradient for the critical threshold which allows to

produce a desired amount of output spikes. The second approach is a correlation-based

method which allows to associate the pre-synaptic input timing with the membrane

potential of the post-synaptic neuron.

Model of neural dynamics

The model of neural dynamics for the multi-spike tempotron is implemented as a

current-based leaky integrate-and-fire neuron model with exponential post-spike reset.

CHAPTER 2. BACKGROUND 25

The membrane potential V (t) is defined by:

V (t) =
N∑
i=1

wi
∑
tfi <t

K(t− tfi)− ϑ
∑
tfj<t

exp
−t− tfj

τm

 (19)

where the K function describes the PSP kernel (eq. 6), ϑ denotes the firing thresh-

old, and tfj is the time of an output spike for the post-synaptic neuron j. The last part of

this new membrane potential equation represent the post-spike reset of the membrane

potential.

Spike-threshold-surface

One of the methods for solving aggregate-label problems proposed by Gütig was the

spike-threshold-surface (STS) method. The author argues that aggregate-label learn-

ing should use a learning rule that adjusts the weights of a neuron in the direction

along which its number of output spikes changes most rapidly. He points out that naive

gradient-based approaches proposed at the time of publication were insufficient be-

cause of the discrete nature of spiking neurons, where the derivative with respect to

the weights is non-zero only at the time of spiking. Thus, he proposed an alternative

approach that is based on a continuous deterministic objective function.

In order to approximate the neuron’s discrete number of output spikes, the spike-

threshold-surface (STS) function was established. The function maps each theoretical

threshold value to the number of output spikes produced. The critical threshold (ϑ∗k)

denotes a supremum (least upper bound of the set) at which the number of output spikes

increases from k − 1 to k.

ϑ∗k = sup{ϑ ∈ R+ : STS(ϑ) = k}, k ∈ N (20)

This means that ϑ∗k is the maximum threshold value which given a specific stimula-

tion can produce k spikes. Hence, the neuron would produce its first spike as soon as

ϑ = Vmax (the highest membrane potential achieved in a trial), and its current threshold

CHAPTER 2. BACKGROUND 26

can be described as critical for a single spike (ϑ∗1). If the Vmax at this point in time lies

below the ϑ: STS(ϑ > Vmax) = 0. Thus, k spikes are produced when:

STS(ϑ∗k+1 < ϑ < ϑ∗k) = k (21)

Each individual input spike train has its unique STS shape. The algorithm proposed

by Gütig (2016) allows to reshape the STS function and manipulate the position of the

critical thresholds, thus achieving the desired number of output spikes. As a result,

it becomes possible to replace the number of spikes, which is a discrete value, with

the distance between the original ϑ and the hypothetical critical threshold which cor-

responds to the desired output. This means that the function becomes differentiable as

each critical threshold value directly corresponds to a value of membrane potential (eq.

25) which is a function of pre-synaptic weights.

The weight adjustment is achieved by calculating the gradient of the critical thresh-

old ϑ∗k and applying it in the following way:

∆wi =

−λ∇wϑ
∗
o if o > d

λ∇wϑ
∗
o+1 if o < d

(22)

Here, o denotes the current number of output spikes, and d the desired output. The

learning rate is described by λ and was fixed to be 1e−5 (Gütig and Sompolinsky 2006).

For the full derivation of the ϑ∗ gradient method, see Appendix A.

Correlation-based learning

The correlation-based learning algorithm is based on the correlation of the neuron’s

voltage and pre-synaptic activity. Gütig (2016) explains the biological rationale for

this method: “In neurons, eligibility traces of this or similar form could be realised

on the basis of intracellular calcium signals, which are sensitive to the coincidence of

pre- and post-synaptic activity through the voltage dependence of synaptic N-methyl-

D-aspartate (NMDA) receptors. It is well established that the induction of long-term

CHAPTER 2. BACKGROUND 27

synaptic changes requires these calcium signals to reach specific plasticity induction

thresholds”. In this model these induction thresholds were simplified in a way that at

each epoch 10% of the most eligible synapses (denoted by D9: 9th decile) are chosen

for the update.

∆w±i =

±λν if εi > D9

0 if εi ≤ D9

(23)

The eligible synaptic efficacies are increased (if the neuron produced less spikes

than required) or decreased (if too many spikes were elicited) by the learning rate λν =

1e−5. The eligibility of the ith synapse is defined by εi = ∑
tfi
νi, where νi denotes the

correlation of a pre-synaptic input spike from neuron i with the membrane potential of

the post-synaptic neuron V (t), and K describes the PSP kernel (eq. 6):

νi =
∫ ∞
tfi

dtV (t)K(t− tfi) (24)

Formal requirements

Similarly to single-spike tempotron, the τm parameter has to be adjusted with regard to

the average time between input spikes T/N . However, since in the case of the multi-

spike tempotron more than one spike per afferent is elicited, the average number of

incoming spikes per synapse also has to be taken into consideration. Hence, a safe

assumption would be to adjust the parameters as follows: τm ∝ (T/N) × f , where f

is a frequency of spikes in each of input spike trains. For simplicity, it is assumed that

each afferent operates within the same spike frequency: 5 Hz (Gütig 2016).

Similarly, Gütig (2016) recommends that the synaptic weights of the post-synaptic

neuron to be initialised in a way that the neuron spikes with the rate of 5 Hz when driven

by the 5 Hz Poisson background noise. This means that the initial random weights are

multiplied by the coefficient which is negatively correlated with N - the number of

pre-synaptic neurons. For example, for N = 500 the weights have to be multiplied by

CHAPTER 2. BACKGROUND 28

0.022 to achieve this effect.

2.4.2 Finite-precision spiking algorithm

The finitely precise spiking neuron model introduced by Memmesheimer et al. (2014)

is another example of a single neuron approach which can learn multiple classes of

patterns. Here, the neuron is trained to recognise with finitely precise spike timing.

The membrane potential function is based on the current-based leaky integrate-and-fire

neuron model with a built-in post-spike reset. Specifically, the neuron’s post-synaptic

membrane potential V (t) is given by the integration of exponentially decaying currents

from N synaptic afferents, and a exponential reset based on the timing of output spikes

normalised with regard to the threshold:

V (t) =
N∑
i=1

wi
∑
tfi <t

K(t− tfi)− ϑ
∑
tfj<t

exp
−t− tfj

τm

 (25)

where K is the PSP kernel (eq. 6), tfj is the time of an output spike for the post-

synaptic neuron j. Similarly to the MST, the neuron undergoes an exponential post-

spike reset.

In this model, the LIF neuron is trained to respond with a single spike at each time

of desired output: td. Additionally, the algorithm has some level of tolerance with

regards to the precision of the spiking. More precisely, the length of the temporal

tolerance window, during which the spikes are still recognised as correct, is defined by

the parameter ε.

Training algorithm

There are two cases when the weights are in need of adjusting. Firstly, when the neuron

produces an output spike outside of the tolerance window, or more spikes than required.

The weights are being decreased proportionally to the value defined by the PSP kernel

CHAPTER 2. BACKGROUND 29

at terr, where terr is the time of an extra output spike.

∆wi ∝ −
∑
tfi <terr

K(terr) (26)

Secondly, if the neuron does not spike within a predefined tolerance window, the

weights are being increased in the same manner, where terr is the end of a tolerance

window.

∆wi ∝
∑
tfi <terr

K(terr) (27)

Formal requirements

Similarly to the previous models discussed in this section, the membrane potential time

constant parameters have to be adjusted with regard to input spike frequency. Another

requirement necessary to provide robust behaviour is ε/τm � 1. The ratio of the time

window length and the membrane integration time constant has to be much smaller than

1.

Precise spiking neuron

Memmesheimer et al. (2014) also proposed a variation of this algorithm: the precise

spiking neuron which allow to train the neuron to respond to the stimuli with output

spikes at exact times td. The membrane potential function is based on the same model

of neuron dynamics as the model with finite precision (eq. 25).

In order to learn precise outputs a High-Threshold Projection (HTP) method is em-

ployed. Firstly, in order to avoid the undesired spikes and thus prevent the membrane

potential from resetting at the unwanted times the firing threshold ϑ is increased in

a manner preventing the neuron from spiking. Secondly, the post-spike resets are en-

forced at times of desired spikes: td. In the next step, the projection operation is applied

CHAPTER 2. BACKGROUND 30

in order to ensure that V (td) = ϑ (see Memmesheimer et al. (2014) for the details). Fi-

nally, a perceptron-like learning rule is used in order to ensure that no other unnecessary

output spikes are elicited.

2.4.3 Other multi-class learning approaches

Among the early attempt was the Remote Supervised Method (ReSuMe) by Ponulak

(2005). It uses multiple post-synaptic neurons which, when given external feedback

during training, learn to classify spatio-temporal patterns. ReSuMe takes advantage of

both the spike-based Hebbian learning and a concept of remote supervision. The au-

thors indicate that a spiking network trained with ReSuMe can be used to, for example,

control neuroprosthetic systems.

Another popular approach is the chronotron (Florian 2012). This learning rule al-

lows a single LIF neuron to assign patterns into multiple classes by using precisely

timed spike responses, i.e. different pattern classes are distinguished by the exact tim-

ing of the output spike released by the post-synaptic neuron. This method allows a

neuron to learn to classify inputs, by firing temporally precise spike trains for different

inputs belonging to the same class.

2.5 Neuromorphic hardware

Nervous systems in biology operate fundamentally differently to digital computers.

Simulating realistic neuron models, even at a fraction of the biological scale and synap-

tic connectivity, proves to be very computationally expensive on conventional com-

puters. Furthermore, often there are additional requirements for such simulations, for

example low power consumption and real-time execution (Hasler and Marr 2013). The

search for suitable hardware for simulating realistic neuronal circuits led to discovery

of unconventional computers which either operate according to analog principles or

allow for efficient simulation of electrophysiological behaviour of neurons in digital

CHAPTER 2. BACKGROUND 31

hardware.

Neuromorphic processors are a special type of hardware which is built with a pur-

pose to simulate spiking neural networks. Their main advantage is that they allow for a

reduction of the cost of computation. In analog neuromorphic hardware this is accom-

plished by limiting the amount of electricity required to compute. These neuromorphic

chips, unlike von Neumann machines, do not work in a clocked mode and only send

electrical pulses when necessary (Indiveri et al. 2011). Among the most recent devel-

opments in terms of analog devices are the optical neural networks (ONNs) (Xu et al.

2021). These devices allow for up to 10 trillion of operations per second, which is more

than 1000 times faster than its analog predecessors.

Other processors are mixed analog-digital or fully digital chips which employ a spe-

cialised hardware to simulate networks with biologically plausible connectivity. SpiN-

Naker is a digital neuromorphic platform based on ARM processors, primarily used in

mobile devices (Khan et al. 2008). The first generation of SpiNNaker system had 1 mil-

lion cores, while the new generation SpiNNaker 2 has 20 million cores and is capable

of modelling up to a billion spiking neurons and allow for 1 ms per step of simulation

(Höppner et al. 2021; Plana et al. 2020; Rhodes et al. 2020). Importantly, SpiNNaker

is an example of a hybrid architecture. This means that it is capable of simulating

both rate-based and spiking artificial neural networks. This feature allows to harness

the power of well-established deep neural network paradigms, and combine them with

energy efficient feature detection provided by spiking neural networks. Other exam-

ples of fully digital chips include TrueNorth developed by IBM as part of the DARPA

SyNAPSE programme (DeBole et al. 2019), or Loihi which was manufactured by Intel

(Davies et al. 2018).

BrainScaleS is an example of mixed-analog-digital neuromorphic hardware system

developed by research groups from the University of Heidelberg and the TU Dresden,

and was funded as a part of Human Brain Project (Wunderlich et al. 2019). In addition

to the analog processor, this system also contains an embedded digital processor which

CHAPTER 2. BACKGROUND 32

allows for on-chip learning. This framework, similarly to SpiNNaker, allows for com-

bining both spiking neurons and traditional perceptron neurons in the same experiment.

2.6 Computation in cells

There has been a significant amount of research in the area of theoretical computa-

tion in molecular systems, nevertheless most of them explore the effect of changing

topology, rather than the weighting of nodes in the network (Bray 2003). There has

been multiple attempts to show that arbitrary computation, such as neural networks

and Turing machines (Hjelmfelt, Weinberger and Ross 1991), or finite-state machines

(Hjelmfelt, Weinberger and Ross 1992) can be implemented in a chemical setup. No-

tably, Okamoto, Sakai and Hayashi (1988); Okamoto and Hayashi (1983); Okamoto,

Sakai and Hayashi (1987) have demonstrated that switch-like behaviour and a model

of McCulloch-Pitts binary neuron are realisable through cyclic enzyme systems. How-

ever, it is important to highlight that these were not autonomous systems, and they did

not implement learning.

2.6.1 Chemotaxis

Single-celled organisms have been shown to demonstrate forms of learning behaviour,

for example in bacteria such as Escherichia coli (Hoffer et al. 2001). The most widely

studied computation mechanism may be their adaptation to the changes in the envi-

ronment or chemotaxis (Alon et al. 1999; Yi et al. 2000). Chemotaxis allows those

organisms to direct their movement based on the gradient of concentration of a particu-

lar chemical compound or attractant in their surrounding. In that way, these organisms

are able to, for example, sense and move towards the most promising source of food

(glucose). E.coli is a type of bacteria which uses a run and tumble method to move

in its environment. Their behaviour resembles a random walk consisting of long peri-

ods of swimming in a particular direction (run), which is interrupted by periods when

CHAPTER 2. BACKGROUND 33

the bacterium stops and rotates counter-clockwise (tumble). The organism implements

chemotaxis, through modulation of the tumbling frequency. More precisely, the con-

centration gradient of the attractant in the environment, is negatively correlated with the

tumbling frequency of the bacterium. As the concentration of the attractant increases

over time, theE.coli changes the directions less frequently, and therefore tends to move

up the gradient.

2.6.2 Associative learning

Associative learning is typically only attributed to animals with a nervous system (Wal-

ters, Carew and Kandel 1979; Fanselow and Poulos 2005). Fernando et al. (2009) have

shown that a limited case of associative learning could be implemented in an artificial

single-celled organism. Associative learning is typically exemplified by the famous

Pavlov’s dog experiment. Here, a dog learns to associate a conditioned stimulus - the

bell ringing, with the unconditioned stimulus - the sight and smell of food. After a cou-

ple of presentations of the conditioned stimulus together with the unconditioned one,

the dog learnt to salivate when only hearing the bell, without the smell of the food. This

type of memory is encoded via modification of the synaptic efficacies in the animal’s

brain.

Fernando et al. have demonstrated that such behaviour can be implemented in an

artificial cellular circuit by using gene regulatory networks (GRNs) and protein kinase

signalling networks. Here, the cell’s memory is stored in the form of concentrations

of dimerizable proteins. This work has shown that such learning paradigms could in

principle be implemented in a single-celled organism, such as bacteria.

2.6.3 DNA

Deoxyribonucleic acid (DNA) is a molecule which encodes biological instructions for

the development of all living organisms. It’s double helix structure was first described

CHAPTER 2. BACKGROUND 34

by Watson and Crick (1953). The long DNA chains, typically referred to as strands,

consist of two types of material: the backbone made of deoxyribose sugar and phos-

phate groups. Each sugar has one of the four nucleotides attached to it. These can be

either adenine (A), cytosine (C), guanine (G), or thymine (T). The DNA molecules exist

in a form of a double-stranded structure which remains stable thanks to the pairing of

complementary nucleotide pairs with opposite spatial orientation. The DNA molecules

obey a strict nucleotide pairing, where nucleotide A can only bind to T, and C is always

paired with G.

A

T A

T

GC

G C

G

G GT

T T

T TA A

AA

C

C C A

Sugar-phosphate backbone

Nucleotides

Base pairs

Figure 4: The double helix structure of a DNA molecule. The stability of the two
strands is maintained by complementary pairing of nucleotides: adenine (A), cytosine
(C), guanine (G), and thymine (T).

DNA-strand displacement

The DNA-based systems are typically analysed on two levels: sequence-level and

domain-level. The former involves the study of interactions between individual nu-

cleotide pairs, while the latter focuses on the interactions between domains. Here,

domains are understood as sequences of nucleotides of varied length. Fundamentally,

there are two types of domains which are differentiated by their length. Firstly, short

CHAPTER 2. BACKGROUND 35

domains or toeholds are between 4 to 10 nucleotides, and are assumed to be able to bind

and unbind from complementary strands. Secondly, long domains, which are also re-

ferred to as recognition domains, are at least 20 nucleotides in length, and are assumed

to bind irreversibly.

In principle, such domains can be designed in an arbitrary manner and synthesised

in a laboratory. This opens a vast field of opportunities for using these molecules as

a substrate for computation. The field of DNA nanotechnology primarily focuses on

constructing static structures, which exhibit certain properties, for example catalytic

reactions and oscillators (Dalchau et al. 2018). Nevertheless, there has been significant

advancements made in engineering systems which can work as logic gate circuits, or

neural networks (Seelig et al. 2006; Cherry and Qian 2018). The design process of such

systems was enabled by the framework of DNA strand displacement (DSD).

DSD is a domain-level mechanism for performing computational tasks with DNA

via two basic operations: toehold mediated strand displacement and toehold exchange,

see fig. 5. Importantly, one of the crucial features of this framework is its autonomy.

Once the desired DNA strands are introduced to the system, the computation will pro-

ceed without the need for any further interactions from the outside.

It has been shown that these strand displacement systems are capable of universal

computation (Seelig et al. 2006) and indeed that any set of chemical interactions can

be realised in DSD (Chen et al. 2013). From a practical point of view, DSD systems

are an interesting platform for molecular computation because they are straightforward

to implement and their behaviour can also be accurately predicted (Yurke et al. 2000;

Fontana 2006) using software such as Microsoft Visual DSD (Lakin et al. 2011) or

other simulation platform such as Peppercorn (Badelt et al. 2020).

In order to describe the DNA molecules, I will employ a standard syntax of the

Visual DSD programming language (Lakin et al. 2011). In this approach, the double-

stranded molecules are denoted as [r], where its upper strand <r> is connected to a

CHAPTER 2. BACKGROUND 36

a

a*t1*

t1 a
t1 a+

a

t1* a*
a+

t1 a

a*t1*

Toehold binding
Branch migration

Strand displacement

Toehold Long domain

Input strands Output strands

A

B

a t2

t2*a*t1*

t1 at1 a+
a t2

t1* t2*a* a t2+
t1 a

a*t1* t2*

Figure 5: Example of two basic operations in DNA-strand displacement: A) toehold-
mediated strand displacement, and B) toehold exchange. These two examples show that
the DSD interactions can take either reversible or irreversible form, depending on the
toehold domains being exposed for binding. More precisely, the long domains (here in
grey) can only unbind from the double-stranded complex, once the toehold has already
been attached. This distinction will turn out to be crucial for creating sealed DNA
complexes, which become unreactive once they have served their purpose.

complementary lower strand {r*}. Most of the molecules in a DSD system are two-

domain species, which have a single long domain and a toehold domain. Therefore, for

example, an upper single-stranded two-domain molecule would be composed of a short

toehold domain (annotated with a prefix t and an identifier ˆ) and a corresponding long

domain r. Such two-domain species would thus take a following form: <trˆ r>.

Depending on their underlying nucleotide sequence the domains can exhibit differ-

ent binding properties. Thus, by choosing different nucleotide sequences it is possible

to control the dynamics of the DNA strand displacement reactions. Figure 6 shows

examples of toehold mediated strand displacement for two molecules with different

reactivity.

The Visual DSD offers four different compilation modes, where each mode speci-

fies a different set of assumptions for the simulation of a DSD system:

• Infinite: The rates of unbinding and migration reactions are assumed to be infi-

nite compared to the rates of binding reactions. Therefore, strand displacement

CHAPTER 2. BACKGROUND 37

CCCAAAACAAAACAAAACAA
+

TATTCC CCCAAAACAAAACAAAACAATTGTTTTGTTTTGTTTTGGGGGAATA0.05TATTCC CCCAAAACAAAACAAAACAA
+

CCCAAAACAAAACAAAACAAGGAATA TTGTTTTGTTTTGTTTTGGG

CCCTTTTCTAAACTAAACAA
+

GCTA CCCTTTTCTAAACTAAACAATTGTTTAGTTTAGAAAAGGGTAGC0.5GCTA CCCTTTTCTAAACTAAACAA
+

CCCTTTTCTAAACTAAACAATAGC TTGTTTAGTTTAGAAAAGGG

A

B

(a) Two-domain DSD interactions.

0 10 20 30 40 50
time

0

2

4

6

8

10

μM

A
B

(b) Concentration of A and B strands.

Figure 6: Examples of toehold mediated strand displacement reactions. The nucleotide
sequence of the toehold domain in strand A the has a higher binding propensity than
the one in strand B. This results in a quicker completion of the reaction.

is assumed to take place in a single step that merges binding, migration and un-

binding. Thus, only the binding rate affects the evolution of the concentrations.

• Default: The branch migration rate is assumed to be infinite, however the rate of

unbinding reactions is finite. Thus, the strand displacement occurs in two steps:

first binding and then unbinding.

• Finite: The rates of unbinding and migration reactions are assumed to be fast

but finite, where consecutive fast reactions are merged into a single reaction with

rate τ (which is a parameter of the simulator). As a result, strand displacement

is again assumed to happen in two steps: binding followed by a faster step that

merges migration and unbinding.

• Detailed: In this case, binding, migration and unbinding have finite rates. The

CHAPTER 2. BACKGROUND 38

branch migration rates are calculated from the migration rate per nucleotide and

the number of nucleotides in the domain.

Two-domain DNA-strand displacement

The framework of two-domain DSD has been shown to be capable of simulating any

chemical reaction. Moreover, it promised an intuitive framework for building efficient

and cross-talk free implementations (Cardelli 2010; Chen et al. 2013). Here, each

species present in the system is a two-domain strand, comprised of a toehold and a

long domain. These species can interact with double-stranded gates which facilitate the

computation. Restricting computation to two-domain strands helps to protect against

unexpected interactions between single stranded species, which can occur with more

complex molecules. Also, as all double-stranded structures are stable, and can only

change once a single-stranded component has bound, there is no possibility for gate

complexes to polymerise and interact with each other.

I will now discuss three of the fundamental structures in two-domain DSD. In order

to exemplify how a catalytic reaction (R1 + R2 −−⇀↽−− R2 + P2) can be implemented in

DSD, I will show the mechanistic details of sealed Join and Fork gates which were

proposed by Chen and collaborators (Chen et al. 2013), based on an initial proposition

by Cardelli (2010).

Join gate Figure 7 shows the reactions which implement a sealed two-domain join

gate. The join gate is facilitated by a single double-stranded complex F1, which allows

for interaction with two-domain reactants: {tr1ˆ*}[r1 tr2ˆ]:[r2 ttˆ]:[i].

The empty toehold domain on the top strand tr1ˆ allows for binding of the first re-

actant (R1), which is a two-domain species and takes a form: <tr1 ˆr1>. Once the

molecule is connected via a short domain, the branch migration of the long one occurs

(r1). This allows for the detachment of an unreactive waste molecule, which in turn

makes the tr2ˆ domain available. This mechanism - toehold exchange, is the key

CHAPTER 2. BACKGROUND 39

process by which interactions in two-domain DSD occur (see fig. 5).

As a result of the toehold exchange an intermediate form of the fuel complex is

created: I1 which has a different binding potential than the original complex F1. Bind-

ing of the second reactant R2 (<tr2 ˆr2>) follows the same route, however now a

different toehold domain becomes available: ttˆ. Subsequently, the branch migration

of the long domain of the second reactant allows for the detachment of the translator

molecules: <r2 tt>. This strand is later used in order to trigger the fork gate. Lastly,

another two-domain species Sjoin binds to the join complex irreversibly via toehold-

mediated strand displacement, and as a result waste molecule W3 is created. This seals

the gate, i.e. prevents any other strands from binding to the double-stranded structure.

r2 tt
+

i

i*tt*r2*tr2*r1*ta*

tr2 r2ta r1
tr2 r2

+

+

i

i*tt*r2*tr2*r1*tr1*

r2 tttr1 r1

i
+

tt i

i*tt*r2*tr2*r1*tr1*

tr2 r2tr1 r1
tt i

+

i

i*tt*r2*tr2*r1*tr1

tr2 r2tr1 r1

r1 tr2
+

i

i*tt*r2*tr2*an*ta*

r2 ttta r1
tr1 r1

i

tr1* i*tt*r2*tr2*r1*

r2 ttr1 tr2

F1 R1 I1 W1

I1 R2 I2 T

I2 Sjoin W2 W3

Figure 7: Sealed join gate implementing the first part of the signal modulation mech-
anism: R1 + R2 −−⇀↽−− T. The initial fuel complex F1 allows for binding of the first
reactant R1 via an available toehold domain. When the first reactant binds to the com-
plex, its structure and binding potential changes to accommodate for the second one.
Once both R1 and R2 are connected to the double-stranded complex, the translator
strand T unbinds. This molecule plays a role of a trigger for the fork gate. As the
last step, Sjoin binds to the intermediate complex I2. This results in creation of two
unreactive waste molecules W2 and W3.

Fork gate Figure 7 shows the reactions which implement a sealed two-domain fork

gate. The fork gate is facilitated by another double-stranded complex F2: [i]:[tp2ˆ

p2]:[tp1ˆ p1]{ttˆ*} Similarly to the join gate, the initial gate complex starts

CHAPTER 2. BACKGROUND 40

with one exposed toehold domain: ttˆ, which allows for a single-stranded translator

molecule to bind. In turn, the gate complex releases the product strand P1 (<tr2

ˆr2>), which is the same as the second reactant of the join gate: P1 = R2. Next, an

additional fuel molecule F3 is used in order to release the second product P2 (<tp2

ˆp2>). Eventually, Sfork binds to the intermediate complex I4 creating two unreac-

tive waste molecules W5 and W6.

F2 T I3 P1

I3 F3 I4 P2

I4 Sfork W5 W6

tr2 r2
r2 tt

tt*r2*tr2*p2*tp2*i*

tp2 p2i
r2 tt+

tr2 r2

r2*tr2*p2*tp2*i* tt*

tp2 p2i

i+

r2 tt

tt*r2*tr2*p2*tp2*i*

p2 tr2i tp2
i tp2+

r2 tt

tt*r2*tr2*p2*tp2*i*

p2 tr2i

tp2 p2
r2 tt

tt*r2*tr2*p2*tp2*i*

p2 tr2i
p2 tr2+

r2 tt

tt*r2*tr2*p2*tp2*i*

tp2 p2i

Figure 8: Sealed fork gate implementing the second part of the translator strand mech-
anism: T −−⇀↽−− P1 + P2. The initial gate complex F2 accommodates for binding of the
translator strand produced by the join gate: T . Given another fuel molecule F3, the
gate subsequently releases the product strands: P1 and P2. Lastly, Sfork binds to the
intermediate complex I4 creating two unreactive waste molecules W5 and W6.

Seesaw gate The seesaw gate is another commonly used DSD motif (Qian and Win-

free 2011). For example, this mechanism was used to implement weight multiplication

and signal restoration in perceptron-like neural networks for winner-takes-all compu-

tation (Cherry and Qian 2018). This mechanism enables the concentrations of two

two-domain strands <t1ˆ a> (input strand) and <a t2ˆ> (output strand) to achieve

different steady state levels based on the binding properties of their two toeholds t1ˆ

and t2ˆ.

CHAPTER 2. BACKGROUND 41

a t2
+

t1 a

a*t1* t2*

t1 a
+

a t2

t1* t2*a*

Figure 9: Seesaw gate motif in two-domain DSD. Here, the reaction is bidirectional.
The concentrations of the two-domain input strands reaches a steady state depending
on the amount of the reactants and backwards and forwards rates which are driven by
the binding properties of the two toehold domains: t1ˆ and t2ˆ.

More precisely, when the gate consumes an input strand, it releases one output

strand. After that, the binding properties of the gate change. The gate can now con-

sume output strands and produce input strands. Therefore, the seesaw gate reaction is

reversible.

As a result, the input species and the output species are in a constant competition for

binding to the seesaw gate complex. This means that a dynamic equilibrium is found

between the concentrations of these two species. The equilibrium value depends on the

underlying nucleotide sequences of the toehold domains t1ˆ and t2ˆ, as well as their

initial molecular abundances.

Chapter 3

Generalised Neuronal Model

3.1 Introduction

The neural dynamics of the multi-spike tempotron (MST) (Gütig 2016) have already

been discussed in section 2.4.1, however it is important to recall some of the key ob-

servations: (i) The state of the neuron is denoted by a function V (t), and is updated

in discrete time. The neuron elicits an output spike when V (t) crosses a set threshold

value from below. (ii) The inputs to the MST neuron are provided through N unmod-

elled pre-synaptic channels. Importantly, the MST model includes a preprocessing step

where discrete input spikes are converted into analog signals. This is implemented by

a bi-exponential synapse function (see eq. 6). (iii) The update function also includes

a “soft” exponential reset of the membrane potential following a spike. This sets it

apart from other popular neural models, such as the leaky integrate and fire (LIF) neu-

ron, which typically employs a “hard” immediate reset to the resting potential which is

followed by a refractory period. This feature of the MST allows it to integrate inputs

even after an output spikes was released, which will be demonstrated to be crucial for

recognising multiple classes of patterns.

42

CHAPTER 3. GENERALISED NEURONAL MODEL 43

The MST is a powerful neuronal model, and has been demonstrated to solve multi-

class tasks in a single neuron aggregate-label learning setup. However, it is also inter-

nally complex. In this chapter, I will examine whether or not this internal complexity

is necessary for the ability of the MST to learn. In an effort to investigate this, I will

systematically strip away features from the MST and check whether this impacts on its

ability to learn.

Firstly, I will propose the Generalised neuronal model (GNM) (Fil and Chu 2020).

This neuronal system can be understood a special case of the well known Spike-Response

model (Gerstner and Kistler 2002b; Jolivet, J. and Gerstner 2003). In the following sec-

tions, I will rigorously explore the GNM’s parameter space in order to explore crucial

features of the model. The model will be tested on a variety of tasks, in order to charac-

terise its learning capabilities in comparison to the MST and LIF neurons trained using

the aggregate-label learning algorithm (ALL). This investigation will lead to the con-

clusion that the neuron’s ability to compute is primarily dependent on two parameters:

the one which determines its response to the behavioural threshold and another one

which controls the decay of its membrane potential. Further investigation will show

that most of the complexities of the MST neuron are not crucial for learning multi-class

spatio-temporal patterns using the aggregate-label learning framework. Interestingly, I

will find that there is no strict need for spiking, nor is the “soft” exponential post-spike

reset of the membrane potential essential. Particular attention will be given to a param-

eter which controls the degree of temporal autocorrelation of the membrane potential.

This ability to remember the past inputs will prove to be crucial for successful learning.

Therefore, concluding that using immediate hard reset, which erases any memory of

the correlation between post-spike and pre-spike membrane potentials, has a negative

impact on the learning capability of a single neuron trained using ALL.

An alternative approach to training the GNM will be proposed next. Here, I will

demonstrate that error-trace learning can further improve the neuron’s performance.

CHAPTER 3. GENERALISED NEURONAL MODEL 44

This training algorithm includes more detailed information about the timing of the er-

roneous spikes, as opposed to the ALL where the neuron only receives the feedback

concerning the amount of output spikes. I will finish this part of the chapter by in-

troducing a framework for error backpropagation, which is an extension of error-trace

learning. This approach can be applied to training multi-layer networks of the GNM.

Finally, I will discuss how the continuous-time model can be interpreted as a chem-

ical reaction network (CRN). To this end, I will first show how synaptic weights can

be encoded by reaction rate constants in the reaction network. Next, I will demon-

strate how this neuron model can be trained, by proposing an alternative way to obtain

aggregate-label feedback in non-discrete neural models. The chapter will conclude by

showing that this model is also capable of multi-class learning, and discuss how the

volume of the system affects the noise around the obtained solutions.

3.2 Model description

The main contribution of this chapter is the generalised neuron model (GNM), which

is a parametrised family of neurons which can be tuned to display certain neuronal

functions. The model can be parametrised to exhibit varying degrees of spikiness,

temporal autocorrelation of the membrane potential, and hysteresis. For a detailed

outline of the model see fig. 10. In this section, I am going to discuss the key parameters

of the GNM, in an effort to understand what are the crucial functions allowing a model

of a spiking neuron to learn.

As is typically assumed in the SNN literature, the membrane potential or the state

of the neuron is described by a function V (t). Similarly to the MST model, discrete

CHAPTER 3. GENERALISED NEURONAL MODEL 45

time update steps are assumed:

V (t)− V (t− 1) = I(t)− (ηγR(t− 1)V (t− 1) + (1− η)αV (t− 1))︸ ︷︷ ︸
=:D(t)

R(t)−R(t− 1) = ζ
V (t− 1)h

ϑhB + V (t− 1)h − βR(t− 1) (28a)

where I(t) :=
N∑
i=1

M∑
j=1

wiδ(tji − t) is the sum of the weighted inputs at time t and tij is

the time of the j-th spike of input i, and i ranges from 1 to M ; δ(x) is 1 if x = 0 and 0

otherwise; 0 ≤ wi ≤ 1 is the weight of the i-th input. α and γ are decay coefficients of

the membrane potential, ϑB denotes a behavioural threshold, and 0 ≤ η ≤ 1 acts as a

model choice parameter, ζ is a rate parameter of the Hill function, h is a Hill function

coefficient, and β defines the decay rate of R. The GNM can be best understood by

considering certain parameter values (see Appendix B for examples of GNM dynamics

with different parameter choices.).

CHAPTER 3. GENERALISED NEURONAL MODEL 46

time

V(t)

w1

w2

w3

w4

w5

I(t)Input spikes

D(t)

(a) (b)

0 25 50 75 100 125 150 175 200
Time

0.00

0.25

0.50

0.75

1.00

V(
t) I=0.15

I=0.05

(c)

0.0 0.2 0.4 0.6 0.8 1.0
V(t)

0.0

0.2

0.4

0.6

0.8

D(
t)

(d)

Figure 10: (a) Schematic diagram of the GNM. A single neuron has N weighted input
channels, each of them receives a set of temporal input signals. (b) When the readout
function reaches a threshold ϑR, then an output spike is recorded. In this example,
the neuron is presented with three spatio-temporal patterns: red, blue and green. The
GNM was trained to respond with a single spike to the red pattern, two spikes to the
blue pattern, and three to the green pattern. Otherwise, it should remain silent during
a noisy phase in-between each pattern. (c) Membrane potential as a function of time
for the GNM stimulated by sub-threshold (dashed line) and super-threshold (solid line)
continuous input, with parameters η = 0.8, α = 0.3, β = 0.1. (d) Hysteretic dynamic
behaviour of D(t) as a function of V (t) and given a single super-threshold input signal.

The parameter η controls the “spikiness” of the neuron, i.e. how responsive is the

membrane potential function with respect to the behavioural threshold. In other words,

it can be understood as enabling the detection of high frequencies of spiking in the

power spectrum. If η is set to a positive value, then another time dependent decay rate

R starts to have an influence on the membrane potential function. In neuronal terms,

R can be understood as describing the number of ion-channels that only open after the

membrane potential approaches the behavioural threshold ϑB and close, stochastically,

CHAPTER 3. GENERALISED NEURONAL MODEL 47

with a constant factor of β. As a result an additional decay of membrane potential is

introduced when the membrane potential gets close to the threshold value. The purpose

of this mechanism is to simulate a soft post-spike reset, similar to that of the MST.

R is set to 0 at the beginning of the simulation. The subsequent increase of R(t) is

dependent on the membrane potential via a Hill-function (first term on the right hand

side of eq. 28a). In biochemistry, the Hill equation describes the binding of ligands

to a macromolecule as a function of the ligand concentration. Depending on the Hill

coefficient h the function can display a varying degree of steepness, and thus exhibit a

behaviour similar to a sigmoidal activation function:

f(x) = xh

ϑhB + xh
(29)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

h=1
h=10
h=100

Figure 11: Hill kinetics for ϑB = 1 and varied h coefficient.

As the Hill function coefficient h → ∞, the approximation approaches a step-

function with the threshold at the behavioural threshold ϑB. Nevertheless, even when

considering small finite values for h, the Hill function is close to 0 when V (t) is below

ϑB, and 1 when V (t) is above it. Importantly, this additional decay rate R itself decays

with a rate factor of β. The effect of this is that the model exhibits hysteresis (see

fig. 10d). More precisely, given certain parameters, the membrane potential decays

faster after having crossed a threshold value ϑB. The duration of this additional reset

CHAPTER 3. GENERALISED NEURONAL MODEL 48

is defined by the value of β, and will continue when the membrane potential falls back

below the threshold (see fig. 12)

When η = 0 the post-spike reset of the membrane potential is disabled, i.e. the

threshold does not effect the neural dynamics. Such a model lacks some of the char-

acteristic features typically associated with spiking neurons. Setting η = 0 disables

the additional decay factor R. Therefore, there is no post-spike reset of the membrane

potential, as the neural dynamics become indifferent to the activation threshold. In

that case, the GNM (eq. 28) reduces to a simple model of input integration with an

exponential decay of the membrane potential:

V (t)− V (t− 1) = I(t)− αV (t− 1). (30)

In this basic scenario, the membrane potential only increases as a function of the

input I , and constantly decays with a constant factor of α. In the extreme case of α = 0,

the neuron’s membrane potential never decays. On the opposite end of the spectrum,

when α = 1, all prior inputs are forgotten at each time step. Setting α > 1 or α < 0 is

not meaningful in the case of the discrete model. The parameter α controls the temporal

autocorrelation of the membrane potential, and it will be henceforth referred to as the

“memory” of the system. In other words, it can be understood as enabling the detection

of low frequencies of spiking in the power spectrum. The choice of α parameter will

eventually be demonstrated to be critical for the GNM’s success.

Spiking neurons are typically assumed to function in discrete time dynamics. In

the following sections, in addition to the discrete time dynamics (as show in eq. 28),

I will also test the GNM with continuous-time dynamics. This version of the model

is equivalent to the discrete implementation, and one time step corresponds to dt =

1ms. For the continuous-time model, the update equations are converted into proper

CHAPTER 3. GENERALISED NEURONAL MODEL 49

0 20 40 60 80 100
0

1 V(t)

0 20 40 60 80 100
0

1
R(t)

0 20 40 60 80 100
Time

0

1
D(t)

Figure 12: Example of neurons reaction in terms of the membrane potential, reset
function, and the output. Here, the GNM with parameters η = 0.8, α = 0.3, β = 0.1
and h = 50 is presented with three inputs, which are sub-threshold on their own. At
t = 50, the neuron’s membrane potential crosses the threshold, which in turn activates
the reset and produces an output spike response. Note that the sharp output spike is
possible due to the choice of a high hill coefficient h. For more examples of spike
waveforms for different α and η combinations see fig. 60.

differential equations:

d

dt
V (t) = I(t)− (ηγR(t)V (t) + (1− η)αV (t))︸ ︷︷ ︸

:=D(t)

d

dt
R(t) = ζ

V (t)h
ϑhB + V (t)h − βR(t) (31)

In the differential equation model, the parameters α, β, γ, ζ become rates and are re-

stricted to positive values, although they may be greater than 1. The η parameter re-

mains restricted to 0 ≤ η ≤ 1. See fig. 10a for a graphical representation of the

model. When η = 0, the continuous update function of the membrane potential (eq.

31) becomes a leaky integrator and takes the following form:

V̇ = I − αV (32)

CHAPTER 3. GENERALISED NEURONAL MODEL 50

3.3 Training algorithm

I will first discuss the eligibility-based learning method similar to the one proposed

by Gütig (2016) - aggregate-label learning algorithm (ALL). Here, the weights are

potentiated or decayed after a period of time during which the neuron is shown target

patterns embedded into noisy streams of activations. Depending on which randomly

chosen patterns were presented, a target output spike count is determined. At the end

of the trial, the error is then set to a negative value if the neuron spiked too many times

during the trial, or to a positive value if it didn’t spike enough. Otherwise the weights

are not updated. Notably, this algorithm does not use any information about the degree

to which the output was wrong. The only feedback the neuron receives is the “sign” of

the error, and the learning proceeds by updating the weights in the following way:

∆wi =

±λ if εi > D9

0 if εi ≤ D9

(33)

where λ denotes the learning rate which is positive when the error is positive and oth-

erwise is negative, D9 represents the 9th decile, or top 10% of the synapses with the

highest eligibility. The eligibility of the synapse i is represented by the variable εi,

which quantifies the extent to which the inputs from the pre-synaptic neuron i has con-

tributed to the state of the post-synaptic neuron V (t):

εi :=
∫ T

0
Ii(t)V (t) dt (34)

CHAPTER 3. GENERALISED NEURONAL MODEL 51

Momentum heuristic

Following the example of Gütig (2016) the momentum heuristic has been applied through-

out all experiments in order to improve the speed of convergence. At each weight up-

date step a fraction of previous synaptic change is added to the update value:

∆wcurrent
i = ∆wi + γ∆wprevious

i (35)

where γ is the momentum parameter (in all experiments discussed in this chapter γ

is set to 0.2).

3.4 Aggregate-label learning

In this section, I will demonstrate that the discrete-time GNM can learn a single spatio-

temporal pattern given aggregate-label feedback. In this work, a pattern is understood

as a temporal sequence of M binary strings of length N . In all of the following exper-

iments, these values are set to M = 50 time-steps and N = 100 pre-synaptic neurons

respectively. These patterns are generated randomly by drawing each of the bits from a

Bernoulli distribution with p(1) = 0.005. In addition to randomly generated but fixed

patterns, the neuron is exposed to a stream of noisy background activity. This random

activity is generated in the same way as the patterns, however it is randomly produced

at each individual time-step. Therefore, the statistical properties of noisy background

activity and patterns are identical in this setup.

It is worth noting that unlike the MST, the GNM does not have discrete output

spikes. Thus, in order to interpret the output of the GNM an arbitrary readout threshold

value needs to be set ϑR. The threshold values used in the following sections are set

uniformly ϑR = ϑB = 1. The response of the GNM is determined by the number

of times the membrane potential V (t) (or alternatively decay D(t)) crosses ϑR from

below within the duration of the pattern, see fig. 10b. This number is used to indicate

CHAPTER 3. GENERALISED NEURONAL MODEL 52

class membership. In the case of learning just a single spatio-temporal pattern, the

membrane potential is required to cross the threshold exactly once during the duration

of this pattern. All of the experiments discussed below have been carried out in Python

using software written specifically for this project 1.

Firstly, the performance of the GNM is tested on the task of learning a single pattern

using the ALL algorithm (see section 3.3). In this task, GNM needs to respond with

exactly one spike in response to each presentation of the trained pattern and should stay

inactive otherwise, i.e. if presented with noise. The neuron is presented with 500s of a

randomly generated stream of noise with the target patterns inserted into it at random

times. The number of such pattern insertions is chosen at random from a uniform

distribution within a range from 0 to 10. During each trial, the GNM receives a delayed

feedback indicating whether it has released too many or too few spikes, and the weights

are adjusted accordingly. This algorithm is repeated for 60000 epochs and the learning

rate was set to λ = 0.0001, which proved to be sufficient for successful learning.

After training, the GNM should remain silent when presented with noise, but should

respond to the patterns. In practice, however, the GNMs will never learn perfectly. It

is bound to eventually produce an erroneous output when given continuous stimula-

tion. In an effort to quantify the learning quality of the neuron, the number of time

steps before the GNM failed is recorded. I will henceforth refer to this metric as the

noisy performance (np) and it will be used as an indicator for the quality of the GNM

learning. A high value of np indicates that the neuron can distinguish patterns from the

background noise well.

In order to evaluate the model’s ability to learn, 1681 GNMs with different parame-

ter settings were generated. These models differ in their setting of α and η parameters.

Both of these parameters were varied in a range from 0 to 1, and 41 different values

were sampled uniformly. The other parameters are kept fixed at: β = 0.3, ζ = 1, γ = 1,

and h = 50 in order to enable the GNM to exhibit a post-spike reset closely resembling

1The details of the software implementation are available on https://github.com/jf330/HystNeuron/

CHAPTER 3. GENERALISED NEURONAL MODEL 53

that of the MST. Each of these models was tested on 100 generated patterns, and the

average np across these tasks was recorded. Figure 13 shows a qualitative landscape

of this parameter space. In order to better understand this result, I will now discuss

particular parameter choices and provide a justification for their performance and the

emergence of the line of optimal performance. The presented results can be interpreted

in terms of the well-established plasticity-stability dilemma (Mermillod, Bugaiska and

Bonin 2013), where for successful learning the neuron is required to display both plas-

ticity for obtaining new knowledge, but also stability in order to avoid the forgetting of

previous knowledge.

Let’s first examine the case of α, η ≈ 0. As can be seen from the figure, the perfor-

mance at the top left corner is rather poor. The failure to perform can be attributed to

the fact that in this region the decay of the membrane potential V (t) is low or nonexis-

tent, and thus the GNM integrates over all past events. This means that the membrane

potential remains in a permanent super-threshold state.

As noted before, at η = 0 the neural dynamics of the GNM reduce to Vi(t + 1) =

V (t) + I − αVi(t). Thus, the model’s dynamics are not affected by the behavioural

threshold ϑB. As a result, it lacks one of the features typically associated with spiking

neurons - the post-spike reset of the membrane potential. Regardless, allowing more

leakage by increasing α while keeping η at 0 improves the performance and allows for

successful classification. This shows that the system is sensitive to the α parameter.

Adjusting α from 0.05 to just 0.08 results in the mean noisy performance increasing

from approximately 0 to the globally best result. As α is further increased towards 1,

the performance drops. This can be attributed to the lack of temporal integration.

When η is increased above 0, the behavioural threshold ϑB starts to influence the

neuronal dynamics. At the extreme case of η ≈ 1, the threshold dynamics dominate

the neuron and the membrane potential leak becomes negligible. Thus, the membrane

potential is constrained to a small range of values, which in turn make learning impos-

sible. Figure 13 shows that the best performing models concentrate along a fuzzy line

CHAPTER 3. GENERALISED NEURONAL MODEL 54

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

0

200

400

600

800

1000

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

0

2000

4000

6000

8000

10000

(b)

(c)

Figure 13: Mean noisy performance averaged over 5 training iterations as a function of
α and η. The values reported in this figure represent the average number of time steps
a neuron was able to withstand without eliciting an erroneous spike. The simulations
were capped at (a) 1000, and (b) 10000 time steps, and trained for 60000 epochs. The
performance of a corresponding MST neuron averaged at approximately 377 time steps,
it is marked on the colour bar in blue, while the red mark indicates the maximum GNM
performance on each heatmap. In (b) the dashed line shows the optimal line (see section
3.4 for further explanation). (c) Noisy performance as a function of α. Here, the red
line depicts the performance of models with η = 0, and the blue lines show 40 other
settings of η.

CHAPTER 3. GENERALISED NEURONAL MODEL 55

of combinations of α and η. This line will henceforth be referred to this as the optimal

line (see fig. 13b). However, relative to the non-spiking case of η = 0, the performance

along this line does not significantly increase for other models with 0 < η � 1. In-

deed, the globally best performance is achieved with parameters η = 0 and α ' 0.3.

Therefore, it seems that, at least for the case of a single pattern, introducing spikiness

does not bring any visible benefits.

There is a particular reason for the existence of the optimal line. As can be seen

from eq. 28a, the membrane potential decay is effectively reduced by (1 − η). This

means that the optimal line may be a consequence of there being an optimal value for

the leak parameter α. If this optimal value is given by α = α∗ and the actual value of

α is set to α′ > α∗. A suitable choice of η which satisfies (1− η) = α∗/α′ could offset

the non-optimal choice of α to the optimal value. This effect plausibly explains the

observed optimal line in the parameter space. Apart from this correction of the decay

parameter, an increased η does not seem to bring any benefits in terms of performance.

Therefore, the temporal autocorrelation of the membrane potential is revealed to be the

crucial parameter for learning.

Nevertheless, it is important to emphasise that the conjecture that there exists an

optimal value for the leak parameter α is conditioned on the fact that the patterns pre-

sented to the neuron have a fixed duration and spiking frequency. Indeed, this optimal

α would necessarily change for patterns with different firing statistics. While deter-

mining the optimal value for other types of patterns would be interesting, the research

conducted in this chapter focuses on learning input features constructed in a way that

was originally proposed by Gütig (2016), in order to provide a more fair comparison to

the MST model.

CHAPTER 3. GENERALISED NEURONAL MODEL 56

3.5 Multi-class aggregate-label learning

The MST is an example of a single neuron approach which can learn to recognise

multiple patterns, as well as multiple classes of patterns. The MST can be trained

to recognise a set of patterns with a single spike, another set of patterns to which it

responds with two spikes etc. In this section, I will test whether the GNM can perform

the same task. Similarly to the single-pattern case, the GNM is considered to “spike” n

times if the membrane potential crosses the readout threshold ϑR from below exactly n

times. The neuron will be exposed to two, three, and four different randomly generated

patterns, and will be required to indicate their class membership by releasing a different

amount of spikes within the duration of each pattern. Thus, if a pattern belongs to class

1 the neuron should react with one output spike, if it belongs to class 2 two spikes should

be elicited etc. The patterns themselves are generated in the same way as described in

section 3.4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

0

200

400

600

800

1000

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

0

200

400

600

800

1000

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

0

200

400

600

800

1000

(c)

Figure 14: Mean noisy performance averaged over 5 training iterations as a function of
α and η (same as fig. 13), for the task of learning (a) two, (b) three, and (c) four classes
of patterns respectively. The performance of the MST is indicated by the blue mark on
the colour bar, while the red mark denotes the maximum GNM performance on each
heatmap.

The multi-pattern case shows a qualitatively similar pattern in parameter space as

the single pattern case (see fig. 14). Again, a line of optimal performance emerges in the

bottom left corner of the heatmaps. Nevertheless, the noisy performance of the GNM

CHAPTER 3. GENERALISED NEURONAL MODEL 57

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

400

300

200

100

0

100

200

300

N
o

is
y

 P
e

rf
o

rm
a

n
c
e

 R
e

s
id

u
a

ls

η

(b)

Figure 15: (a) Mean noisy performance as a function of α for same data as in fig. 14b -
three classes of input patterns. Similarly, the red line indicates the models with η = 0,
and the blue lines show 40 other η settings. (b) Noisy performance residuals for each
of 5 training simulations (indicated by different marker colours) as a function of η in
range from 0.025 to 0.6. Each point represents the performance difference between the
best performing α for any given η > 0 and the model with η = 0 which performed
best. Thus, the deviation from the dashed line indicates the difference in performance
in comparison to η = 0. Here, the negative values indicate that the best training for a
particular η was worse than η = 0. Notably, only for a single set of input patterns the
GNM with η = 0 was suboptimal. This points to the conclusion that the variation in
performance depends primarily on the random seed used for pattern generation.

CHAPTER 3. GENERALISED NEURONAL MODEL 58

shows signs of decline as the number of pattern classes increases. In the case of the

most difficult tasks with 4 different pattern classes, the GNM produces an erroneous

spike after approximately 200 time-steps on average (see fig. 14c). Across different

parameter choices tested, there does not seem to be a typical mode of failure for the

GNM. The neuron is equally likely to fail on the noise, as it is on the trained patterns.

Similarly to the case of single pattern learning, there does not seem to be any ap-

parent benefit in setting the model choice parameter above η = 0. Although for some

of the generated patterns, the performance of the GNM with η > 0 was better, there

was no consistent best value of η and the best model with η = 0 always performed on

par with the globally best result (see fig. 14b and fig. 15). For a better understanding

of this phenomenon, see the noisy performance residuals graph for three input patterns

in fig. 15b. Residual graphs for learning of two and four spatio-temporal patterns can

be found in Appendix C.

The residuals are defined as a performance difference between the best α for any

given η and the best performing model with η = 0. In other terms, for each column

in a heatmap, the best performing row is selected and then compared to η = 0. This

means that negative values of the y-axis, below the dashed line, indicate that the best

performer for a particular η was worse than that of η = 0, for a given set of feature

patterns. Most of the points lie under the dashed line, which indicates that the models

with η = 0 are indeed competitive. The GNM was shown to perform reasonably well

on the multi-label classification task. The performance is competitive with the more

computationally complex MST model (marked by the blue line on the colour bars in

fig. 13 and 14). Notably, the simplest “non-spiking” case of the GNM (η = 0) is

sufficient for solving these multi-class tasks.

CHAPTER 3. GENERALISED NEURONAL MODEL 59

0 5 10 15 20 25

Refractory period length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 N
o

is
y
 P

e
rf

o
rm

a
n

c
e

 r
a

ti
o

1 pat tern

3 pat terns

Figure 16: Noisy performance ratio between the GNM with η = 0 and an equivalent
LIF neuron on the two tasks: learning one and three classes of patterns. Here, the noisy
performance ratio is defined as the average noisy performance of LIF neuron divided by
the result produced by the GNM trained with the ALL algorithm. Both neuron models
have been trained for 60000 epochs. The following parameters were used for the GNM:
α = 0.3, η = 0, β = 0.3, and LIF: α = 0.3 and varied length of the refractory period.

3.6 Comparison to other neural models

The GNM can be contrasted against other well-known neuronal models, such as the LIF

neuron. The LIF neuron behaves similarly to the GNM model with h =∞, ζ = 1, γ =

1/η and 0 < η < 1 up to reaching the behavioural threshold ϑB, including the post-

spike reset. However, after the reset, the LIF neurons typically undergo a deterministic

refractory period. During this time the neurons become insensitive to further inputs.

Note, that the GNM does not allow for simulating this type of refractory period. In

an effort to validate the results presented in the previous section, I will compare the

GNM’s performance to the LIF neuron trained for multi-label classification. The GNM

and the MST differ from the LIF neuron in two significant ways: (i) These models

don’t have a refractory period and (ii) the membrane potential reset function following

an output spike is exponential, rather than a hard reset to the resting potential.

Figure 16 shows the comparison of the ability of the LIF neuron to recognise pat-

terns with the GNM assuming η = 0 and α = 0.3. The same parameter α = 0.3

CHAPTER 3. GENERALISED NEURONAL MODEL 60

was used for the leak rate of the LIF neuron, and the length of the refractory period

was varied from 0 to 25. Similarly to previous experiments, the two neural models

are contrasted by calculating the noisy performance ratio, which is the average noisy

performance of LIF neuron divided by that of the GNM trained on the same task. In

the case of a single pattern, the LIF neuron performed comparably to or slightly worse

than the GNM. It can also be noticed that the performance increases with the length

of refractory period, see fig. 16. For the task involving two patterns, however, the LIF

neuron performed worse than the GNM. On the contrary to the single pattern case, now

the performance drops with the increase in refractoriness, thus imposing such a pe-

riod of forced inactivity seems to limit the neuron’s ability to perform the multi-spike

response.

It’s important to emphasise that the LIF neuron with no refractory period is identical

to the GNM. The only exception being the hard post-spike reset. Nevertheless, the pre-

sented results suggest that the LiF neuron still performs worse on the task of multi-label

classifications. This observation leads to the conclusion that the hard reset is respon-

sible for the decreased performance of the LIF model. Importantly, this is consistent

with the earlier conjecture that the temporal autocorrelation of the membrane potential

is the crucial parameter for learning.

3.7 Alternative learning approaches

In the previous sections, I have demonstrated that the GNM can indeed perform com-

parably to the MST. Nevertheless, the comparison might have been unfair because a

single parameter setting of the MST was compared to a large number of simulations

of the GNM. In this section, I will now more rigorously validate the performance of

the GNM relative to the MST, as well as the GNM trained using an alternative learning

algorithm.

To this end, 50 training simulations for the task of recognising two patterns were

CHAPTER 3. GENERALISED NEURONAL MODEL 61

conducted. Two sets of fixed parameters were chosen for the GNM: η = 0.0 and

α = 0.3 and MST: τm = 20, and τs = 5 respectively. Figure 17 shows that the GNM

outperformed the MST, trained with ALL, in most of the simulations (47 out of 50).

3.7.1 Error-trace feedback learning

The GNM’s performance can be improved by applying a different training approach

which utilises precise information about the timing of erroneous spikes. This method

encompasses information about when and which feature patterns should have been

recognised. This algorithm will be henceforth referred to as error-trace learning (ET).

The error trace is defined by the values of the integral at the time when each of the pat-

terns was presented, rather than after an entire episode of patterns and noise sequences.

This way, the algorithm utilises more detailed information about which channels caused

erroneous spiking for each pattern separately. More precisely, if the neuron is supposed

to cross the readout threshold exactly twice during the presentation of the pattern unlike

in the previously described ALL algorithm, here the neuron will be penalised if any of

the spikes occurs outside of the duration of the pattern. The error is calculated for each

individual synapse by correlating its inputs with the error trace:

∆wi = λεi

εi :=
∫ T

0
Ii(t)E(t) dt (36)

where λ is the learning rate, and E(t) denotes the error trace. E(t) is a function which

determines the extent of an error with a greater temporal precision. More precisely,

if a pattern shown between tA and tB produces one too many spikes than desired the

E(t) in this range will take the value of -1. Similarly in the case of noisy background

activity, the E(t) will represent the overall error produced during the whole trial. If the

neuron spiked twice outside of the duration of the patterns, the error trace during the

entire noisy phase will be -2. The variable εi can be interpreted as “error blame” of

CHAPTER 3. GENERALISED NEURONAL MODEL 62

a pre-synaptic neuron i towards the post-synaptic neuron. This variable quantifies the

extent to which the pre-synaptic neuron i has contributed to the erroneous spiking of

the post-synaptic neuron. The ET algorithm is compared to the ALL trained GNM and

the MST neuron on the task to recognise two classes of input patterns (the same data as

in fig. 14). Each of the approaches shown in figure 17 was trained on the same patterns,

and the experiment was repeated over 50 training iterations. The comparison shows

that the error trace learning algorithm has consistently outperformed the aggregate-

label learning method. In 46 out of 50 training simulations a better result in terms of

noisy performance was achieved when using the ET learning method. This shows that

despite the fact that the ALL is an elegant and simple training rule, it turns out to be

suboptimal.

MST GNM ALL GNM ET
0

200

400

600

800

1000

No
isy

 P
er
fo
rm

an
ce

Figure 17: Comparison of the mean noisy performance measure averaged over 50 train-
ing interactions for two class recognition (the same as in fig. 14a) in MST, GNM with
aggregate-label learning (ALL), and GNM with error-trace learning (ET). Each of the
neuron models have been trained for 60000 epochs and the following parameters were
used: GNM: α = 0.3, η = 0, β = 0.3 (both ALL and ET); MST: τm = 20, and τs = 5.

3.7.2 Error backpropagation in networks of GNM

Although some of the most recent approaches to training SNNs, such as EventProp

(Wunderlich and Pehle 2021), allow to computer exact gradients in an event-based

CHAPTER 3. GENERALISED NEURONAL MODEL 63

fashion, most of spiking neuron models can only make use of backpropagation in-

directly, for example by employing surrogate gradients (Neftci, Mostafa and Zenke

2019; Tavanaei and Maida 2017). In this section, I will present the second training

regime for the GNM based on error-trace - error backpropagation. The activation func-

tion of the GNM is differentiable, thus this training method can in principle be applied

with no constraints. The temporal precision of the ET algorithm makes it possible to

train multi-layered networks of the GNMs. The performance of the network of GNMs

surpasses the learning capabilities of a single neuron trained with the ALL algorithm.

Ok

I1 I2 Ii• • •

HjH1 H2 • • •

Tk

E
rr

or
A

ctivation

Output neuron

Teacher signal

Figure 18: Diagram of a possible implementation of error backpropagation in the multi-
layered network of GNMs. In this example, an additional intermediate layer of 10
hidden neurons is added between the inputs and a single post-synaptic output neuron.
All of the neurons in the network have the same parameters. Each neuron in the hidden
layer is connect to the input sources in all-to-all fashion. The signal from the hidden
neurons is propagated to the output neuron in a form of the sum of decaying currents in
the continuous form. In order for the network to learn, the error needs to be propagated
back through the hidden layer and the weights need to be adjusted for both the hidden
layer, as well as the output neuron. Additionally, the hidden layer neurons in the red
dashed box are subject to lateral inhibition, which prevents them from learning similar
subsets of the input features. This means that when one of the hidden units crosses
the threshold, the membrane potential of other neurons in this layer is decreased to the
resting potential.

CHAPTER 3. GENERALISED NEURONAL MODEL 64

This training approach was tested on the multi-label classification task using an

architecture of layered GNMs consisting of 3 layers and 10 hidden neurons (see fig.

18). The training specification, parameters of the neurons, and the statistics of input

patterns remain the same as in all other experiments presented in the previous sections.

The backpropagation trained network was tested on the task to recognise three classes

of input patterns. The network is trained using the algorithm described in figure 18.

Importantly, the neurons in the hidden layer are subjected to lateral inhibition. Thus,

when one of the hidden units crosses the readout threshold ϑR, the membrane potential

of all other neurons in this layer is decreased to their resting potential. This prevents

them from learning similar subsets of the input features, and as a result allows the

network to achieve better performance.

GNM ALL GNM ET

0

200

400

600

800

1000

N
o

is
y

 P
e

rf
o

rm
a

n
c
e

GNM BP

Figure 19: Comparison of the mean noisy performance measure averaged over 50 train-
ing interactions for two class recognition (the same as in fig. 14a) in GNM with back-
propagation (BT), GNM with aggregate-label learning (ALL), and GNM with error-
trace learning (ET). Each of the neuron models have been trained for 60000 epochs and
the following parameters were used: GNM: α = 0.3, η = 0, β = 0.3.

Figures 19 and 20 show that the multi-layered network indeed can perform this

task with a high accuracy compared to the case of a single neuron. In particular, the

GNM network approach performed better in terms of noisy performance metric when

compared to a single neuron trained with the ALL algorithm.

CHAPTER 3. GENERALISED NEURONAL MODEL 65

Although the multi-layer networks of GNM are not the main topic of this chap-

ter, this naive implementation shows that the GNM may have a potential for building

layered neuronal populations capable of performing more sophisticated types of com-

putation in the future.

0 100 200 300 400 500 600 700

Time

0.2

0.4

0.6

0.8

1.0

1.2

O
(t
)

Figure 20: Example activation of the output neuron in a two-layered network of GNM,
as shown in fig. 18. Here, the network is stimulated in the same way as in the previous
experiments and with the same parameters. The task of the output neuron is to recognise
three different classes of patterns. The output neuron has been trained for 60000 epochs
to respond to each pattern with a different amount of spikes.

3.8 Continuous-time GNM and chemical implementa-

tion

The GNM model can easily be extended to the continuous-time case (eq. 31). The

continuous case of the GNM model with η = 0 (eq. 32) lends itself to an interpretation

as a chemical system. In that case, V can be interpreted as a molecular species which

decays with a rate of α. The input I is then equivalent to N different chemical species

Ii. Each of the species representing input channels decays to V with a rate of wiC and

to ∅ or “null-species” with a rate of (1−wi)C, see fig. 21. The constant C determines

the time-scale of the decay. Therefore, the weights are effectively implemented by the

ratio between those reaction rates.

CHAPTER 3. GENERALISED NEURONAL MODEL 66

Figure 21: Diagram depicting a chemical reaction network which implements synaptic
weighting in a GNM-like learning unit. Here, the weights are encoded as the ratio
between the reaction rate from In to V , and from In to ∅.

The ability of this chemical system to recognise patterns can be tested by solving

the differential equation 32. A crucial assumption of the differential equation model is

that the number of molecules involved in the system is very large or infinite. In such

a system, V would be described as a concentration. In any real system, however, the

number of particles is finite. If the number of particles involved in the computation

is small, the system exhibits noise around the deterministic solution of eq. 32. As

a consequence, with a decrease in the number of particles, the output of the neuron

becomes stochastic and produces more erroneous outputs.

Figure 22 shows how this noise affects the performance of the stochastic systems

in comparison to the deterministic solution. The simulations were performed using

Gillespie’s algorithm and MATLAB SimBiology software package 2.

2The details of the software implementation are available on https://github.com/jf330/HystNeuron/

CHAPTER 3. GENERALISED NEURONAL MODEL 67

Figure 22: Example of the membrane potential trace of a deterministic continuous-time
GNM neuron trained to recognise two classes of patterns (black line), and equivalent
stochastic chemical reaction network simulations with inputs equivalent to 25, 100,
and 500 molecules respectively. In each simulation the neuron had parameters: η = 0,
α = 0.2, β = 0.3, and C was set to 10. The pre-synaptic spikes were encoded as
instantaneous increase of corresponding pre-synaptic species by N , where tij is the
time of the j-th spiking event of the i-th pre-synaptic neuron, and N = 25, 100, 500 is
the number of particles that is added to the pre-synaptic species i at time tji .

Various models in the SNN literature, including the MST, assume that the input

channels are clocked (the system is updated in discrete time). This assumption make

the system easier to simulate on conventional computers, as well as simplifies the way

spikes are recorded by assigning them to a particular time step. Having interpreted the

GNM as a chemical reaction network allows for alternative output recognition meth-

ods to be designed. In the continuous-time case quantifying “spiking” is based on the

integral of the GNM membrane potential when it exceeds ϑR:

S :=
∫ T

0
Θ(V (t)− ϑR)V (t) dt (37)

where Θ is the Heaviside function, ϑR represents a readout threshold, and T is the

duration of the trial. The error is calculated by the difference between the actual and the

desired output S. Using this error the training proceeds following the ALL algorithm

(see section 3.3).

Training the model in continuous-time yields qualitatively the same results as the

discrete-time case. Figure 23 shows the feasibility of this interpretation by showing the

CHAPTER 3. GENERALISED NEURONAL MODEL 68

behaviour of a continuous-time version of the GNM trained to recognise two classes of

patterns.

0 20 40 60 80 100

time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
(t
)

Figure 23: Pattern responses learnt in a continuous-time GNM trained by aggregate-
label algorithm. The integral of super-threshold membrane potential S is marked in
blue. In order to determine the spikes and thus the class membership, the membrane
potential is integrated when it is above a readout threshold ϑR. In this particular ex-
ample, the continuous spike integral totals at ∼ 0.81 for the red pattern, and ∼ 1.98
for the green pattern. In the case of the red pattern, the membrane potential crosses
the threshold 3 times, however the total integral is ≈ 1, thus the class membership is 1
rather than 3.

3.9 Chapter summary

In this chapter, I probed the ability of the minimal neuronal model for solving multi-

label classification tasks. The main contribution of this chapter is the GNM, which

can be trained using aggregate-label learning originally proposed by Gütig (2016). It is

demonstrated that its computing power is on par with the MST, while vastly simplifying

the computation. Importantly, this model follows a “conservation of membrane poten-

tial”, which prevents the arbitrary manipulation of the neuron’s state. In that sense, the

model is physically plausible, which allows it to be interpreted as a chemical reaction

network.

While novel and powerful, Gütig’s model is also internally complex, and efficient

implementation outside of digital computers could pose a number of challenges. The

CHAPTER 3. GENERALISED NEURONAL MODEL 69

multi-spike tempotron can classify spatio-temporal patterns into multiple classes, how-

ever in this chapter I have shown that a much simpler neuronal model can achieve the

same performance. Key components of the MST were systematically removed in or-

der to show that they are indeed unnecessary for learning in the aggregate-label setup.

The autocorrelation of the membrane potential was identified as a crucial parameter of

the neuron. Moreover, this research has indicated that there exists a certain range of

intermediate values for this parameter which provide best performance.

The parameters of the GNM can be readily interpreted, allowing an intuitive under-

standing of what enables a single neuron classification to work. The two key parameters

which control the properties of the GNM are α and η. As discussed in section 3.2, pa-

rameter α describes the “memory” of the neuron. More precisely, it determines the rate

of leakage for the membrane potential. At one extreme case: α = 1, the neurons state is

being reset at each time-step. The neuron has no memory of previous inputs, and thus

loses the ability to integrate in time. This severely limits the GNMs ability to compute.

When the memory parameter is set to α = 0, the neuron’s state has no leak, and there-

fore constantly integrates over its inputs. This obviously is also a suboptimal strategy,

because the neuron can then only produce one spike, as its state forever remains above

threshold. The optimal choice of α seems to lie somewhere in-between these two cases.

A more in-depth analysis has shown that at the low end of the parameter range, there

is a critical value of α which separates models with the weakest performance from the

ones which learn best, see figs. 13c and 15a.

The other key parameter η can be interpreted as model choice parameter, it deter-

mines the influence of the behavioural threshold and hysteresis on the neuron’s state.

At one extreme η = 0, the neuron’s state decays exponentially with a rate of α. Here,

the neuron dynamic behaviour is not influenced by the threshold, and does not produce

spiky responses. At η = 1, however, the membrane potential has no leakage whatso-

ever. The neuron has a perfect memory of past inputs, until it resets when the output

spike is elicited. At intermediate values of η, the behavioural threshold parameter ϑB

CHAPTER 3. GENERALISED NEURONAL MODEL 70

has a greater impact on the internal dynamics of the model. When the membrane po-

tential approaches the threshold, a decay term R rapidly increases. This results in a

membrane potential decay, which increases in rate when the neuron crosses the thresh-

old.

Further analysis has shown that the best performing models tend to lie on an off-

centre diagonal in the bottom left part of the heatmaps presented in figures 13 and 14.

Notably, it is uncertain whether there exists a single optimal model along this diagonal.

A crucial conclusion from this analysis is that the models with η = 0, and therefore

no “spikiness”, perform reasonably well compared to other settings. The results from

the heatmaps suggest that there may not be any benefit in strict enforcement of spiking,

at least when considering this particular task. This opens up an interesting discussion,

whether the hysteretic behaviour as defined in this chapter is necessary for efficient

learning.

These findings, also point to a different insight, the temporal autocorrelation of the

membrane potential emerges as the crucial parameter of this model. It is important to

point out, that the optimal diagonal, remains a line of “constant memory”. This is a

result of the factor (1 − η) in the membrane potential equation (see eq. 31), which

additionally reduces the degree of the memory parameter α. This observation suggests

that, while there is no strict optimal “spikiness”, there indeed is an optimal value for

“memory”, at least in the context of patterns with the length and firing statistics consid-

ered in this research. Nevertheless, the GNM does not seem to be particularly sensitive

to small changes in α, and there exists a wide range of parameters which provide for a

decent performance.

The simplified version of the GNM with η = 0 reduces to a spike integrator with a

fixed leakage rate, and lends itself to an interpretation as a chemical system. The func-

tion of V can be interpreted as a concentration of certain molecular species with a fixed

decay constant: V α−→ ∅. This trend is only interrupted by immediate increases of

the membrane potential, caused by the pre-synaptic inputs: V −→ kV . Moreover, the

CHAPTER 3. GENERALISED NEURONAL MODEL 71

synaptic weights associated with different input channels can be implemented through

modifying certain reaction rate constants. Each of N input channels Ii decays to V

with a rate of wiC and to ∅ (outside of the system) with a rate of (1 − wi)C. This

finding brings an interesting perspective on how a chemical system can implement sig-

nal modulation. Nevertheless, this method still requires an external observer to apply

the algorithm, and calculate new wi at each post-synaptic spike. Moreover, the storage

of information about the current weights is not internal to the system, and adjusting

rate constants may not be as trivial in a real biochemical system. While training could

pose a challenge, performing classification tasks with an already trained model with

fixed rate constants could be possible. The only feature which both the MST and this

chemical system share is the ability to integrate and remember past inputs between

time steps. This again leads to the conclusion that the “memory” parameter is crucial

for multi-label classification.

The GNM’s performance was compared to other neuronal models, such as LIF and

MST, trained with the aggregate-label learning algorithm. The LIF neurons typically

exhibit a hard reset after an output spike is elicited. The membrane potential subse-

quently enters the refractory period, when the neuron is incapable of processing more

incoming signals for a fixed period of time. This feature has previously been found in

real neuronal systems (Feldman 2012). It is also useful in layered approaches, in par-

ticular in combination with STDP (Gerstner and Kistler 2002a), where it implements

a form of winner takes all dynamics. This prevents all neurons in the network from

reacting to the same stimulus, thus allowing for more refined classification. Otherwise,

the advantages of using the refractory period in single artificial spiking neurons is un-

clear. It is important to emphasise, that when post-spike reset and refractory period are

removed, the LIF neuron becomes mathematically equivalent to the GNM with η = 0.

The simulations have shown that while the performance of the LIF neuron is on par

with both the GNM and the MST in the case of a single pattern, it quickly drops as

soon as multi-class learning is introduced. This seems to point to the conclusion that

CHAPTER 3. GENERALISED NEURONAL MODEL 72

the refractory period harms the performance in the latter case. This stems from the fact

that the refractoriness affects the period of time when the neuron can react to incoming

spikes. In the multi-spike framework, this severely impacts the performance as the LIF

neuron is incapable of releasing several spikes within a limited time window when the

pattern is presented.

Nevertheless, the performance of the LIF neuron is worse than that of the GNM

even for a refractory period of length 0, see fig. 16. As pointed out earlier, in this

case the only difference between the LIF and the GNM is the immediate post-spike

reset of the membrane potential. This has an effect of immediate forgetting of the past

inputs, thus no temporal autocorrelation of the inputs is preserved after a single output

spike is produced. This begs the question whether biological neurons, which do have a

refractory time, are sub-optimal components. This conclusion is far-fetched, and most

likely invalid, since the real neuronal systems operate in a different context than the

limited problem examined here. Furthermore, the refractory duration in real neurons

could be a reflection of resource restrictions, or otherwise some physical constraints

that were not considered here.

The majority of tasks considered in this chapter were trained using aggregate-label

learning rule, see section 3.3. Here, the feedback is provided with a delay at the end

of each training phase. An aggregate error value is calculated and distributed among

the weights based on their spiking history. Gütig (2016) has motivated this method

by its presumed biological realism, in particular NMDA receptors could in an abstract

way facilitate a similar process. While aggregate-label learning remains an interesting

learning rule, and the biological plausibility was the key criterion in designing it, it is

not necessarily the most effective for this tasks. Firstly, a more information-rich error-

feedback method has been proposed. Dropping the requirement of delay and aggregate-

label for the error trace resulted in a substantial increase in the model’s performance,

see section 3.6. This direct error feedback also allows for backpropagation-based train-

ing in layered networks of GNMs, see fig. 18. The feasibility of this method was

CHAPTER 3. GENERALISED NEURONAL MODEL 73

demonstrated by solving a multi-label classification task using a hierarchical network

of GNM with 10 hidden neurons.

Chapter 4

Chemical neuron and computation in

cells

4.1 Introduction

Intelligence is typically associated with animals with nervous system (Walters, Carew

and Kandel 1979; Fanselow and Poulos 2005). However, a number of other plausible

substrates capable of simulating intelligent behaviour have been proposed (Adamatzky

et al. 2019), one of them being biochemical systems (Amos 2004). In nature, even

single-celled organisms show the ability to analyse and act upon changes in their envi-

ronment. These intelligent patterns of behaviour are implemented through bio-molecular

circuits in their entirety. Perhaps the most well-documented example of such intelligent

behaviour is chemotaxis, which enables E.coli bacteria to readily adapt to changes in

concentration of certain chemicals in their environment (Yi et al. 2000; Hoffer et al.

2001). Other examples of biochemical information processing is sensing (Govern and

ten Wolde 2014a,b; Alon 2019) or diauxic growth (Chu 2018, 2017; Chu and Barnes

2016).

The advancements in synthetic biology make it possible to implement increasingly

74

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 75

more complex systems in wet laboratories. Artificial devices capable of intelligent be-

haviour could be useful in a vast array of use-cases. Examples include environmental

sensing and cleaning (Schneiker et al. 2006), smart drug delivery (Ausländer, Wieland

and Fussenegger 2012), or to enable more precise control in bio-reactors for the pro-

duction of drugs (Trosset and Carbonell 2015). Designing such systems has proven to

be challenging due to a range of requirements, such as the need for the system to be

low-powered, small, and autonomous.

Perhaps the most important requirement for implementing neuronal systems in the

context of synthetic biology is their autonomy. The neurons learn by adjusting the

strengths of their synaptic connections. In digital computers this can be easily done,

however in chemical computers this becomes more difficult due to the information

being encoded in terms of reaction rates and molecular abundances. The spiking neuron

models discussed in the previous sections only describe the integration of pre-synaptic

signals and implement a threshold for output spiking. These models rely on an external

learning algorithm, such as STDP, to be applied under certain conditions. Moreover,

such learning assumes a memory of pre-synaptic inputs, in order to adjust the weights.

Therefore, I propose that the following list of requirements needs to be met in order

to consider a system fully autonomous in the context of biochemical implementation:

1. The systems needs to be able to learn in an unsupervised way, since providing

feedback would require an external agent.

2. The learning algorithm needs to be implemented within the reaction system itself.

This means that the simulation cannot be stopped to perform weight adjustment.

3. The storage of synaptic weights cannot rely on external storage. They need to be

represented internally by the system.

4. Signal modulation also needs to be internal to the system. There needs to be a

mechanism which allows the weights to scale the impact of their respective inputs

on the state of the neuron.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 76

A number of attempts have been proposed to designing chemical implementations

of intelligent systems. The earliest attempts to implement intelligent systems as bio-

chemical circuits focused on artificial neurons. Examples include work by Okamoto,

Sakai and Hayashi (1988) or Hjelmfelt, Weinberger and Ross (1991) who designed

biochemical network capable of simulating a McCulloch-Pitts neuron and act as logic

gates. A biochemical perceptron model was proposed by Banda, Teuscher and Ste-

fanovic (2014). This was later used to build feed-forward networks of perceptrons ca-

pable of solving the XOR problem (Blount et al. 2017). Nevertheless, neither of these

approaches was capable of learning, as they only presented models for neural integra-

tion of rate-coded inputs. More recently a number of new substrates for computation in

biology have been identified, for example: interconnected phosphorylation/dephospho-

rylation which can implement biomolecular neural networks (Samaniego et al. 2020;

Moorman et al. 2019), microbial consortia capable of simulating perceptron neurons

(Li et al. 2021), and receptor-ligand interactions in the bone morphogenetic protein

(BMP) pathways used to simulate simple neuronal functions (Antebi et al. 2017). Be-

sides neuronal circuits other researchers focused on more fundamental tasks such as

associative learning, for example in gene regulatory networks (Fernando et al. 2009)

or in multi-cell systems (Macia, Vidiella and Solé 2017a; Macia and Sole 2014; Ma-

cia, Vidiella and Solé 2017b). Other researchers also attempted to implement multiple

forms of in vivo computation (Shirakawa and Sato 2013; Nesbeth et al. 2016; Chen and

Xu 2015; Racovita and Jaramillo 2020).

Fulfilling the requirements for autonomy of the system proves to be a difficult task.

None of the aforementioned models met all of the criteria established earlier. Some of

them only present classification models, others require an intervention from an exter-

nal observer during the training phase, or can only learn a single association and thus

become useless for solving more complex spatio-temporal tasks.

In this chapter, I will probe the question of the simplest autonomous learning sys-

tem implementable as a biochemical circuit. I will propose the chemical neuron (CN)

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 77

model constructed as a molecular system following mass-action kinetics. The model is

described as a chemical reaction network, and mimics the behaviour of a spiking neu-

ron. The results part of this chapter will commence by demonstrating that the system

is capable of associative learning. Next, I will demonstrate that the CN can implement

a full Hebbian learning mechanism, in the sense that its internal molecular abundances

will encode statistical biases of its inputs. More specifically, two types of bias will

be considered: frequency bias (FB) and temporal correlation (TC). In the former, the

spiking frequency of certain synapses is increased. Thus, the input times are drawn

from independent, but differently distributed random variables. In the latter, the in-

put frequency remains the same across channels, however some of the inputs always

spike in close temporal proximity. Thus, the input signals are drawn from identically

distributed, but not independent random variables.

Through extensive simulation, it will be demonstrated that the CN can learn both

of these tasks. Learning capabilities of the system will be examined and I will attempt

to determine the optimal chemical composition for detecting different types of bias

in the data. In particular the parameter which controls the degree of nonlinearity of

the CN’s activation function will be considered. In order to estimate the thermody-

namical cost of computation I will measure the entropy production of the system as a

function of its volume and other key parameters. The tradeoff between the cost of com-

putation and quality of the weights will also be examined. While thermodynamically

consistent, the CN model cannot be easily realised in synthetic biology. To this end,

I will propose an interpretation of this model as a single-celled organism, built using

well-known biochemical motifs. While not thermodynamically explicit, this version is

however biochemically plausible and could potentially be synthesised in a laboratory.

Again, I will demonstrate that it’s capable of both associative learning and implements

full Hebbian learning extendable to an arbitrary number of input channels.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 78

4.2 Frequency accumulator model

I will first consider a model capable of learning to recognise bias in the spiking frequen-

cies of multi-channel inputs. This task reflects the limited case of learning in rate-coded

neurons, where the temporal aspect of the inputs is ignored. Perhaps the simplest com-

putational unit capable of that can be implemented by a chemical reaction network with

just five reactions. Figure 24 shows the schematic depiction of such a system.

Here, the species A1, . . . , AN are the input species of the CN. They can be used

to encode some external information to be processed by the CN. This means that at

various time points tsn ∈ R+ a number of M > 0 molecules of In are added, this

value will be henceforth referred to as the “bolus”. Therefore adding the molecules

is not modelled as an instantaneous process. Instead, it can be thought of as that at

each of the time-point tsn the CN is brought in contact with a reservoir consisting of M

precursor molecules In that then decay into An molecules with a rate constant κ > 0.

Once inside the system, the input molecules decay to a molecular species B with

a rate constant kAB. In neuromorphic analogy, molecule B plays a role of the mem-

brane potential encoding the internal state of the system. Its function is to integrate the

incoming signals over time, and thus it serves as a form of short-term memory of the

neuron. This kind of trivial system can detect frequency bias in the input data. This

process is facilitated by a less reactive molecule Hn which could be thought of as the

weight of the input channel n. This type of long-term memory is formed by a slow re-

action An
kAH−−⇀↽−− Hn. Therefore, the input channels which “spiked” more frequently have

more Hn associated with them. Notably, such a system would not be able to implement

learning of temporal correlations, as it lacks a time-dependent activation function.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 79

Function Reaction

Input
In

kIA−−⇀↽−−kAI
An

An
kAB−−⇀↽−−kBA

B

Weight accumulation An
kAH−−⇀↽−−kHA

Hn

Leak
Hn

kHOut−−⇀↽−− Out

B
kBOut−−⇀↽−− Out

Table 1: List of chemical reactions in a single frequency accumulator CN unit.

In BAn

Hn Out

Figure 24: Schematic representation of a basic chemical reaction network which can
accumulate information about input frequencies of different synaptic channels.

4.3 Chemical neuron model

The main contribution of this chapter is the model of the chemical neuron (CN). CN

is fundamentally constructed as a set of micro-reversible chemical reactions. Each

reaction is formulated exclusively in terms of mass-action dynamics. The law of mass-

action describes how the velocity of a chemical reaction is related to the molecular con-

centrations of the reactants, and thus underpins certain biochemical phenomena, such

as molecules binding to receptors. The full CN model is an extension of the frequency

accumulator model, which additionally includes reactions responsible for an activation

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 80

Function Reaction

Input
In

kIA−−⇀↽−−kAI
An

An
kAB−−⇀↽−−kBA

B

Activation function
B + Ei

k+

−−⇀↽−−k– Ei+1, i < m− 1

B + Em – 1
k+

−−⇀↽−−k–
last
E

Weight accumulation An + E kAE−−⇀↽−−kEA
AEn

kEH−−⇀↽−−kHE
Hn + E

Signal modulation An + Hn
kAH−−⇀↽−−kHA

AHn
kHB−−⇀↽−−kBH

B + Hn

Leak
Hn

kHOut−−⇀↽−− Out

B
kBOut−−⇀↽−− Out

Table 2: List of chemical reactions in a single chemical neuron.

function, signal modulation, and threshold mediated weight accumulation. These dif-

ferences allow the CN model to learn temporal correlations in the multi-channel input

stream. The reaction are tabulated in table 2, for schematic diagram see fig. 25, and for

the reaction rate constants see table 3.

The system can be best understood by first considering the species which have their

equivalent in other spiking neuron models. Similarly to the frequency accumulator

model, the molecular speciesAi can be thought of as the synaptic input to the system via

input channel i. The internal state or the membrane potential of the CN is represented

by the abundance of the B molecules. The abundances of the species Hi indicates the

weight associated with the i-th input channel of the CN. Lastly, the molecular species

E which is the activated form of E has the role of the learning signal and the output of

the neuron. There are four main reactions which facilitate learning in such a system, I

will now discuss them in more detail starting with the input integration.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 81

Function Reaction rates

Input
kIA = 10, kAI = 0.000001
kAB = 0.1, kBA = 0.000001

Activation function
k+ = 1, k− = 5
k−last = 0.5

Weight accumulation kAE = 0.05, kEA = 0.000001, kEH = 100, kHE = 0.000001
Signal modulation kAH = 0.001, kHA = 0.000001, kHB = 100, kBH = 0.000001

Leak
kH∅ = 0.0003
kB∅ = 0.1

Table 3: List of reaction rate constants in a single chemical neuron.

In BAn

Hn

E1

E2

E

E

Out

Hn

Figure 25: Schematic representation of a single chemical neuron (CN) processing unit
as chemical reaction network. The bold arrows signify reactions where one of the rate
constants is significantly stronger than its reverse Annotated arrows depict catalytic
reactions.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 82

Input integration

The input integration is implemented in the same way as proposed in section 4.2. There-

fore, the species A1, . . . , AN are the input species of the CN. Again at each of the time-

point tsn a predefined amount of precursor molecules In are injected. The amount of In

added to the system will be henceforth referred to as bolus size or β. The In molecules,

in turn, decay to their respective An with a rate constant κ > 0.

Once inside the system the input molecules partake in a number of reactions. The

first one is that they decay themselves to a molecular species B with rate constant kAB.

The molecule B plays a central role in the system in that it encodes the internal state of

the CN. In the spiking neuron analogy, one could think ofB as the membrane potential.

Its function is to integrate the incoming signals over time, thus it serves as a short-term

“memory” of the system.

Activation function

The next functional module of the CN is the activation function, see table 2. This mod-

ule involves the moleculesE, which simulate a ligand receptor withm binding sites that

can be occupied by molecules of type B. Association and dissociation of B molecules

happens with fixed rates. Cooperativity is a phenomenon that leads to collective prop-

erties of chemical systems, which are not present on the level of individual molecules.

More precisely, it describes a behaviour where binding of a ligand to one site influences

the rate of subsequent bindings. This model implements a form of cooperativity in that

the binding affinity is much lower when all binding sites of E are occupied. This is

implemented by setting the dissociation constants to k−last � k−.

With an appropriate choice of rate constants, this system is known to implement

ultrasensitivity, i.e. the probability for the fully occupied form of the ligand chain (E)

to exist transitions rapidly from close to 0 to close to 1 as the concentration of ligands

approaches a threshold value ϑ ≈ k+/k− (Chu, Zabet and Mitavskiy 2009). Such

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 83

systems can be approximated by the Hill kinetics:

f(x) = xh

ϑh + xh
(38)

where h is the parameter which determines the steepness of the function, and ϑ

denotes the transition point or the activation threshold. It can be shown that the maximal

Hill exponent that can be achieved by such a system is m. Therefore, the number of

binding sites on the receptor determines how similar the activation function is to a step

function. The parameter m will be from now on referred to as the chain length or

nonlinearity. The degree of nonlinearity in the activation function will turn out to be a

crucial parameter determining the computational properties of the CN.

Figure 26: The first graph shows the evolution of membrane potential (B) over time.
The membrane potential increases in response to external input presented to the CN at
time 0.015. Secondly, I examine the behaviour of E molecules representing the last link
in the ligand chain, i.e. an activate form of the molecule (for m = 15). As membrane
potential approaches the threshold, more ligands bind to the receptors and eventually E
molecules are produced. When the amount of B in the system drops due to B

kBOut−−⇀↽−− Out
reaction, the ligands unbind and E molecules dissipate again. Lastly, the third graph
shows how the amount of H molecules changes over time. Here, since the E molecules
become present approximately at time 0.03, the reaction An

E−−⇀↽−− Hn is catalysed and
the H molecules are accumulated. Note, that the CN reinforces the weight associated
with the input which triggered the threshold crossing event. The temporal coincidence
of An and E molecules acts as a Hebbian element which drives the increase of the
weights.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 84

Weight accumulation

Associated with each input channel n is a slowly acting learning module and its as-

sociated molecule Hn, which can be thought of as the weight of the input channel n.

In the next sections, I will demonstrate that the learning reaction the CN implements

is akin to the Hebbian learning rule. Fundamentally, it implements a slowly acting

feedback loop in that a higher concentration of An accelerates the accumulation of the

weight molecule Hn, which in turn accelerates the conversion of input An to the state

molecules B. Note that this learning module is only active when the E molecules are

present, which in turn only happens when the state molecules B are above a thresh-

old abundance. Finally, the CN also has the ability to forget its past history, which is

implemented by the decay of the weight and state molecules outside of the system.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

100

200

B

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time

0

100

200

A

Figure 27: Example of three inputs of uniform size received from 3 different channels.
Each input shown in the second graph has a different weight associated to it: Hgreen =
250, Hblue = 50, and Hred = 0. H molecules act as a catalyst in An

Hn−−⇀↽−− B reaction,
hence the change in the function of B molecules over time for each of the inputs. The
higher the amount of H , the higher is the peak of B molecules caused by a particular
input. Moreover, with the increase in weights, the function of inputs also changes. The
higher the amount of H , the quicker its corresponding A dissipates. Therefore, the
chance to further increase this weight in the future updates decreases, which introduces
a self-regulatory mechanism similar to Oja’s rule (Oja 1982) (see fig. 28).

Signal modulation

Figure 27 shows the effect of different weights on the function of inputs and the mem-

brane potential. This reaction takes a catalysed, as well as an uncatalysed form. The

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 85

uncatalysed reaction An
kAB−−⇀↽−−kBA

B is necessary in order to allow the system to learn

to react in response to new stimulus, even when the weight associated with a given

channel decayed to 0. In the case of the catalysed reaction the channel specific Hi

molecules play the role of the catalyst. Thus the amount of Hn molecules controls the

conversion speed of input An to the membrane potential B. This in turn changes the

influence of each input channel on the state of the neuron. This mechanism, however,

also implements a self-regulating mechanism which prevents the weights from growing

indefinitely, see fig. 28.

0 50 100 150 200
Update step

0

200

400

600

800

H

ε=20
ε=25
ε=30

Figure 28: Self-regulation mechanism in the CN is similar to the one proposed by Oja
(1982). This graph shows the rate of change of a weight as a function of the update step
number. As the weight increases the subsequent update becomes smaller, as an effect of
faster dissipation of A. Eventually, the weight stabilises at the equilibrium level, which
is determined by parameter ε - the total amount of E1 molecules in the system at the
beginning of the simulation.

To summarise, the mechanisms implemented by the CN can be described in a sim-

plified way:

1. Input signals are added to the system by molecular species A1, . . . , AN repre-

senting the input channels.

2. The inputs are integrated and converted into a molecular species representing the

membrane potential of the neuron: B.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 86

3. The weight of each input channel is represented by molecular species Hn. These

weight molecules decay outside of the system via reaction Hn
kHOut−−−⇀↽−−− Out.

4. If the amount of the membrane potential species reaches a threshold, then chan-

nels accumulate weights via molecular species Hn. How much weight they ac-

cumulate depends on the abundance of the input molecules An. Those channels

that have received input immediately before the system reached the threshold will

have more input molecules. This implements the Hebbian idea of “what fires to-

gether, wires together.”

5. More weight molecules means that future inputs are converted faster to the state

molecules. Therefore, they have a greater immediate effect on the post-synaptic

membrane potential.

6. However, larger weights also mean that the inputs dissipate faster, thus making

it more difficult to accumulate more weights in the future. In other words, effec-

tively decreasing the learning rate, in a way similar to Oja’s rule (Oja 1982).

4.4 Learning

The experiments conducted in the following sections were simulated using Gillespie’s

stochastic simulation algorithm (Gillespie 1976) in purpose-built software written in

Python 1. The software generates a statistically correct trajectory of the chemical re-

action network by simulating collisions of molecules within an enclosed environment.

The reactions in the Gillespie’s algorithm must involve at most two molecules, and the

reaction environment is assumed to be well mixed.
1The details of the software implementation are available on https://github.com/jf330/CRN-neuron/

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 87

4.4.1 Associative learning

Firstly, I will demonstrate that the CN can solve the task of associative learning with

N = 2 input channels only, see fig. 29. This corresponds to a well-known case of

Pavlovian conditioning. Previous molecular implementations of associative learning,

for example by Fernando et al. (2009) (see section 2.6.2), did not offer much flexibility

and could only learn a single pre-defined set of inputs. The system I propose can learn

arbitrary sequences and requires several coincidences before it learns the association,

and thus is robust against noise. It also can unlearn the correlation if input patterns

change.

The model is initialised in such a way that the weights associated with the first

channel are high (H1 = 100) and the weights for the second channel are low (H2 =

0). With this initialisation setting a single bolus of A1 is sufficient to push the state

molecule over the threshold of ϑ = 250 molecules of B. In contrast, a bolus of A2,

corresponding to stimulating the second channel is not sufficient to trigger a response.

Crucially, a bolus of A2 will not lead to an increase of the weight H2 associated with

the second channel. If, however, both A1 and A2 are given simultaneously, then the

action of A1 is sufficient to push the internal state over the threshold; at the same time

temporal proximity of the bolus with the threshold crossing leads to an increase of

the weights H2 of the second channel. After a few of coincidence of A1 and A2, the

weight associated with the second channel reaches a sufficient value and A2 can push

the internal state of the system over the threshold on its own.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 88

0.0 0.2 0.4 0.6 0.8 1.0
0

250
A1 Input 1

0.0 0.2 0.4 0.6 0.8 1.0
0

250

A2 Input 2

0.0 0.2 0.4 0.6 0.8 1.0
0

250B Membrane
 potential

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2

 Activation

0.0 0.2 0.4 0.6 0.8 1.0
time

50
100

H Weight 1
Weight 2

Figure 29: Example of associative learning in the CN. The CN is presented with two
inputs: A1 andA2. At first, E molecules are only produced in response to the first input,
and none are produced when a signal from the second one is presented. Next, the CN
is exposed to both inputs in close temporal proximity multiple times. The fourth graph
shows that the weight associated with the second input channel H2 grows each time the
inputs coincide, howeverH2 is saturated at this point. Lastly, at time t = 0.9 the neuron
is presented with the input A2 only. After just a few coincidences the neuron produces
an output spike in response to the input from A2 without any additional stimulation.

4.4.2 Full Hebbian learning

Next, I will test the CN on the task typically associated with computation in spiking

neurons (Gütig and Sompolinsky 2006; Brunel and van Rossum 2007). The system

is presented with a random stream of inputs embedded with patterns of fixed tempo-

rally correlated spikes from the subset of pre-synaptic channels. Figure 30 shows the

behaviour of SN and equivalent CN trained on statistically the same randomly gener-

ated input. In this example, the task is to recognise a single spatio-temporal pattern

consisting of 3 spikes, where the input from I1 was followed by the one from I0, and

another input from I1. It is worth noting that the SNs are typically trained on data which

contains both temporal and statistical bias.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 89

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.5

1.0
V

(a) LIF neuron

0.0 0.2 0.4 0.6 0.8 1.0
time

0

100

200

B

(b) Chemical neuron

Figure 30: State of a (a) LiF neuron, and (b) equivalent CN given the same input. At
time 0.5 a trained pattern is presented. This causes the activation of both SN and CN
to exceed the threshold. The discrete nature of absolute refractory period in the SN,
which causes the membrane potential to immediately drop to 0, cannot be reproduced
in this chemical network.

In the following sections, however, I will focus on showing that the CN is capable of

learning to recognise both the frequency bias as well as temporal correlations embedded

within its input streams, in the sense that its internal molecular abundances will reflect

these statistical biases.

Learning frequency bias

First, I will test the CN on the task which requires it to recognize frequency bias in

the input data, the same as in section 4.2. This type of task will be henceforth referred

to as the FB task. In practice, this is done by providing boli to each of the N input

channels at random times. This means that the waiting time between two successive

boli of Ai is distributed according to an exponential distribution with parameter 1/fi,

where fi is the frequency of the input boli to channel i. The CN should then detect the

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 90

difference in frequencies fi between input channels. At the steady state, the ordering of

the abundances of weights reflects the input frequencies, i.e. the number of Hi should

be higher than the number of Hj if fi > fj .

The CN is initialised with N = 5 input channels and the weight molecules are set

to Hi = 0 at the beginning of each simulation. In order to test this, 3 variants of the FB

task are considered. The variant FB 2 assumes that boli to the first two input channels

come at a frequency of 4Hz whereas channels 3, 4 and 5 fire at a frequency of 2 Hz;

Similarly, for tasks FB 3 and FB 4 the first 3 and 4 channels respectively also spike at

the high frequency. Fig. 31 shows the steady state weights for each of the three tasks.

As expected, in each of the experiments the weights of the high-frequency inputs are

higher when compared to the low frequency inputs. Therefore, the CN can be used as

a frequency detector.

Learning temporal correlations

In this section, I will demonstrate that the CN is capable of detecting temporal correla-

tions in the input data stream. I will henceforth refer to this task as a TC task. In this

scenario, all inputs are added to the system with the same frequency, i.e. fi = fj for

all pairs of channels i and j. For some pairs of channels, the probability to observe an

input bolus Ak within a time period τ after a bolus Al is higher than within a time pe-

riod τ before a bolus of Al. In practice, such correlations are implemented as follows:

If A1 and A2 are temporally correlated then each bolus of A1 is followed by a bolus of

A2 after a time period of δ. In all simulations presented below, the input frequency of

all channels is set to 2Hz. After a transient period, the weights should indicate which

channels are correlated and the temporal order implied by the correlation, i.e. if Ai

tends to precede Aj , then the corresponding weights should be Hi > Hj .

In order to test the ability of the system to detect TC biases, the CN is initialised

withN = 5 input channels and the weight molecules are set toHi = 0. Similarly to the

FB case, three different scenarios are compared where there are correlations between

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 91

A1 and A2 (TC 2), A1, A2, A3 (TC 3), and A1, A2, A3, A4 (TC 4). The temporal order

is always in ascending order of the index, such that in the last example, A1 occurs

before A2, which in turn occurs before A3. Fig. 31 shows that at the steady states,

the accumulated weights reflect the correlation between input channels, including the

temporal ordering.

TC 2 TC 3 TC 4 FB 2 FB 3 FB 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
ise

d
we

ig
ht
s

 a
t s

te
ad

y
st
at
e

H1 H2 H3 H4 H5

Figure 31: Normalised weights for a variety of TC and FB tasks. Here, each bar corre-
sponds to a different weight, where the blue bar refers to the first weight, orange to the
second etc. The nonlinearity was set to m = 4 for the TC, and m = 1 for FB, and the
initial number of E1 molecules was set to 40. Each values were obtained by averaging
the weights at the steady state over 300 time units, after the neuron was trained for 700
time units. The CN is trained for 3 tasks with temporal correlation of inputs, where 2, 3
or 4 synapses are biased respectively. Similarly for FB, where 2, 3 or 4 synapses have
the higher spiking frequency. The weight distributions at the steady state proves to be
highly correlated with the type of bias embedded in the data.

4.5 Performance analysis

4.5.1 Nonlinearity and learning

I will now examine in more depth the impact of the nonlinearity parameter m on the

ability of the system to compute. As noted before,m represents the number of receptors

on the ligand chain, and thus governs the steepness of the activation function. Let’s

consider two extreme cases: the case of minimal nonlinearity (i.e. m = 1) and the

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 92

case of maximal nonlinearity (i.e. m = ∞). Where the latter case corresponds to an

activation function similar to a step function. To be precise, biochemical systems such

as the CN cannot realise a pure step function, nevertheless this abstraction provides a

useful insight into the properties of the system.

I will first consider the case of maximal nonlinearity (i.e. m = ∞) and a CN with

two input channels A1 and A2. In this case, there will be a learning signal E in the CN

if the abundance of B crosses the threshold ϑ. Assume that the parameters are set such

that a single bolus of either A1 or A2 is not sufficient to push the abundance of B over

the threshold, but a coincidence of both is. Therefore, a single bolus of A1 will not lead

to a threshold crossing and the weights will not increase. However, If a bolus of A1

coincides with a bolus of A2 then the membrane potential will cross the threshold. As

a result, a learning signal will be generated and weights for both input channels 1 and

2 will be increased (although typically not by equal amounts).

In the opposite case, i.e. m = 1, the neuron’s activation function is minimally

nonlinear. Similarly, both A1 and A2 are required to push the abundance of B across

the threshold. However, now the learning behaviour of the CN will be different. A

single bolus of A1 will not lead to a threshold crossing, however a learning signal may

still be generated even below the threshold because the activation function is a gradual

change rather than a step function. As a result, weight H1 will be increased by an

amount, depending on the bolus size. If a bolus of A1 coincides with a bolus of A2

even more learning signal molecules will be produced than in the case of a single input.

Thus, the weights for both input channels will be potentiated more than if they had

occurred separately.

These two extreme cases illustrate how the CN activates in response to inputs. In

the case of low nonlinearity the weights of a channel will be a weighted sum over all

input events of this channel. The weights will be higher for channels whose boli arrive

with a higher frequency. On the other hand, a step-like activation function will integrate

only over those events where the threshold was crossed. Thus the neuron is tuned to

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 93

detect temporal coincidences. Two conjectures can be derived from these observations:

• As the degree of nonlinearity increases, the CN becomes better at detecting tem-

poral coincidences. Lowest nonlinearity still allows for coincidence detection,

however in a significantly weaker form.

• The higher the bolus size, the worse the CN’s ability to detect temporal corre-

lations. Particularly, when the bolus size is sufficiently large for a single bolus

to push the abundance of B over the threshold. In this case, a single input spike

would be able to saturate the activation function, thus undermining the ability of

the system to detect coincidences effectively.

In an effort to validate these conjectures, consider an example of a CN with 3 inputs.

Here, the inputs A1 and A2 are correlated and A3 comes at a frequency twice as high

as that of A1 and A2. Figure 32 shows the weights as a function of the bolus size.

Additionally, the degree of nonlinearity was varied from m = 1 (minimally nonlinear

case) up to m = 4 (moderate nonlinearity).

The CN with a minimal nonlinearity seems to detect both coincidences and fre-

quency differences. However, the weight associated with A3, is consistently higher

than the other weights. Noticeably, it also loses its ability to detect coincidences for

larger bolus sizes, as both temporarily correlated weights converge to the same value.

These observations are consistent with the conjectures listed earlier.

In the case of a more nonlinear CN (m = 4) with moderately low bolus size the

weight distribution indicates the temporal coincidence more strongly, i.e. the weights

associated with the temporal coincidence are higher relative to H3. Nevertheless, the

CN still loses its ability to detect coincidences as the bolus size increases, due to a

single input being able to trigger enough activation.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 94

1 2 3
0.2

0.3

0.4

0.5
N

o
rm

a
li

s
e

d
 w

e
ig

h
ts

m = 1

1 2 3
0.2

0.3

0.4

0.5
m = 2

1 2 3
0.2

0.3

0.4

0.5
m = 3

1 2 3
0.2

0.3

0.4

0.5
m = 4

H1

H2

H3

Bolus size

Figure 32: The weights as a function of bolus size for a CN with 3 inputs. Input A1
(green) is provided at 4Hz, A2 and A3 are correlated with a δ = 0.0047 but they are
presented with a lower frequency of 2Hz. The graph shows the normalised weights at
steady state corresponding to the input channels for different bolus size relative to the
threshold. The nonlinearity increases in subsequent graphs from left to right. In the case
of the minimally nonlinear model m = 1 the system mostly detects the input channel
with the higher frequency - A1. The weight of A2 (orange) is only slightly higher than
the weight of A3, indicating that the CN detects the coincidence only to some limited
extent. As the nonlinearity increases, the CN shows a stronger signs of the correlation
since the weights are increasingly dependent on the coincidences. However, if the bolus
size is increased, then again a single input is sufficient to allow the membrane potential
to cross the threshold, thus the frequency biased inputs are more strongly recognised.

I will now characterise the dependence of coincidence detection on the time-delay

between the correlated signals. Consider a scenario where two boli are given to the

system. The first bolus A1 comes at a fixed time and the second one follows after a

time period δ. Then the accumulation of H2 as a fraction of total weight accumulation

is measured as a function of δ. Fig. 33 demonstrates that the CNs with the higher

nonlinearity are more sensitive to short-term temporal coincidences, however they seem

to lose the ability to recognise coincidences that are further spaced out. On the other

hand, in the case of minimal nonlinearity, the differential weight update rewards the

correlation less, but is not limited to detecting very small δ only. For example, for a

relatively high δ > 0.1, the CN with m > 1 does not detect any coincidences and thus

the weight update is uniform. Whereas, in the case of m = 1 some differential weight

updates can be seen for any δ.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 95

0.00 0.05 0.10 0.15 0.20

tA2 � tA1

0.50

0.55

0.60

0.65

0.70

0.75

0.80

�

H
2

�

H
1

�

�

H
2

m = 1

m = 2

m = 3

m = 4

0.00 0.05 0.10 0.15 0.20
tA2− tA1

0.4

0.5

0.6

0.7

0.8

ΔH
2

ΔH
1
Δ
ΔH

2

kB∅=0.05
kB∅=0.1
kB∅=0.15

Figure 33: The left panel shows the differential weight increase for different degrees
of nonlinearity. Here, 1 on the y-axis means that only the weight associated with the
second channel increased, while 0.5 means that the weights of both channels were
updated equally. The figure on the right shows the same value, but for different removal
rates of B molecules. The faster the rate of removal, the more specific the coincidence
detection. Thus, the inputs need to coincide within a narrower temporal distance. For
both plots the points were computed by simulating a CN with two input channels and
with initial weights of H1, H2 = 0. The neuron is provided with a bolus of A1 at t = 0
and after a variable time the second bolus from A2 is provided. The simulation then
continues for another 0.2 time units. Each point on the graph is then an average over
1000 repetitions of this experiment.

In order to further explain this point, simulations equivalent to fig. 33 were con-

ducted for a simplified model which instead of the ligand reactions employs an approx-

imation by a Hill function or a step function, see fig. 34. Note that, these models are

less biologically plausible, as the activation is calculated in a deterministic way and not

implemented by a cascade of chemical interactions. A familiar pattern of differential

weight updates emerges from these experiments as the Hill coefficient h is varied. For

δ > 0.1 the neuron with high Hill function coefficient h = 8 does not detect any coin-

cidences, whereas the case of h = 2 shows some differential weight update throughout.

In the case of a step function, the differential weight increase shows a similar qualitative

trend. Notably, the neuron experiences an abrupt drop in performance when the bolus

size β becomes too small to saturate the activation function.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 96

0.00 0.05 0.10 0.15 0.20
tA2− tA1

0.50

0.55

0.60

0.65

0.70

0.75

0.80
ΔH

2
ΔH

1
Δ
ΔH

2
h=2
h=3
h=4
h=5
h=10

(a)

0.00 0.05 0.10 0.15 0.20
tA2− tA1

0.5

0.6

0.7

0.8

0.9

1.0

ΔH
2

ΔH
1
Δ
ΔH

2

β=1.5
β=2.5
β=3

(b)

Figure 34: (a) Differential weight increase for varied steepness parameter of the Hill-
function, which acts as the activation function. Same as in fig. 33, the higher value
indicates a stronger learning of temporal correlations. (b) The differential weight in-
crease for different boli sizes in a model which replaces the activation function with a
step-function. Here, for sufficiently large boli (β ≥ 1.5) the system learns similarly to
non-deterministic systems. When the bolus is too small, it never crosses the threshold
and the system doesn’t learn.

4.5.2 Analysis of learning outcomes

I will now more closely examine the conjecture that the temporal correlations can be

solved more effectively by the CN with higher nonlinearity. To this end, a set of CNs

with N = 5 input channels were trained on the TC 2 and FB 2 tasks. Each of the

generated CNs differs in the degree of nonlinearity of the activation function in range

m = 1, . . . , 11. Figure 35 reveals that changing the parameter m indeed has a great

influence on the learning outcomes at the steady state. The weight sets appear to have

significantly different distributions as a function of m. Whether the highest degree of

nonlinearity of the activation function is optimal for learning remains unclear.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 97

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0.0

0.1

0.2

0.3
N

o
rm

a
li

s
e

d
 w

e
ig

h
ts

H1 H2 H3 H4 H5

0

2000

4000

6000

8000

W
e

ig
h

t
s
u

m

(a) Temporal correlation

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0.00

0.05

0.10

0.15

0.20

0.25

N
o

rm
a

li
s
e

d
 w

e
ig

h
ts

H1 H2 H3 H4 H5

0

2000

4000

6000

8000

10000

W
e

ig
h

t
s
u

m

(b) Frequency bias

Figure 35: Normalised weights for an (a) TC 2, and (b) FB 2 tasks as a function of
chain length m. The y-axis on the right side of the figures and horizontal black bars
describe the sum of weights across all input channels, which is a normalisation constant
for the corresponding sets of weights. It can be noticed that the accumulation of weights
becomes more difficult as the chain length increases. However, it’s worth noting that
both low and high m result in low variance of the weight representations.

The index of dispersion, i.e. the standard deviation divided by the mean of the

weights, can be used as a useful measure of the ability of the system to produce diverse

weights. In simple terms, the higher the index of dispersion, the less homogeneous the

weights. The assumption here is that the more diverse weight sets have an improved

ability to discriminate between different biases.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 98

The ability to discriminate between frequencies increases with the degree of non-

linearity of the activation function, which is consistently with the previously proposed

hypothesis, see fig. 37. However, it does so only up to a point, which I will henceforth

refer to as the optimal nonlinearity. Above this point the index of dispersion decreases.

The optimal nonlinearity shifts to the right, when the bolus size is increased. This

is consistent with the previous results, see fig. 32. As β increases, it becomes easier to

saturate the activation function and the neuron loses the ability to detect temporal coin-

cidences. Therefore, a more steep activation function is necessary to produce optimally

diverse distribution of weights at the steady state.

The above observation suggests that the decline in the performance of the CN for

higher chain lengths is a result of resource starvation. This is due to the activation

function which, depending on the length of the ligand chain, consumes m molecules

of B from the system. As a consequence, for insufficiently large β the CN is unable to

represent its internal state efficiently and the neuron fails to produce a learning signal.

This effect is negligible if the maximum abundance ofB is high relative to the length of

the ligand chainm. This can be interpreted as a resource cost of computing nonlinearity.

The higher m, the higher the bolus size required to faithfully implement the activation

function.

Figure 37 shows that the change in volume of the system (while keeping the bolus

size β fixed) does not influence the optimal nonlinearity. This is consistent with the

previous observations, and suggests that the optimal nonlinearity is primarily related to

the bolus size. In any case, the change in volume still does not prevent the CN from

suffering resource starvation at the higher nonlinearities (m > 6). In all of the previous

experiments, the volume of the system was fixed at V = 15, which was found to allow

for sufficiently stable dynamics and fast simulation. Changing the volume of the system

has a twofold effect. Firstly, the amount of molecules is multiplied by the volume. This

means that the inputs as well as the amount of species which remains fixed through the

simulation (i.e. E0) are increased linearly as a function of volume. At the same time,

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 99

2 4 6 8
Chain length (m)

0

20

40

60

80

In
de

x
of
 d
isp

er
sio

n

(a) TC 2

2 4 6 8
Chain length (m)

0

25

50

75

100

125

150

175

In
de

x
of
 d
isp

er
sio

n

β/ϑ=0.5
β/ϑ=1.0
β/ϑ=1.5

(b) FB 2

Figure 36: Index of dispersion for the set of weights produced by the CN given bolus
size β = 0.5, 1, and 1.5, for TC 2 (left) and FB 2 (right) tasks. The index of dispersion is
a measure of the diversity of the weight at the steady state, thus indicating how well the
CN can distinguish between the input channels. Therefore a set of weights for unbiased
input would result in index of dispersion ∼ 0. The graph on the left shows that there
is an optimal degree of nonlinearity for detecting temporal correlations. Notably, there
is a visible shift of the peak value of the index of dispersion. This is a result of the
starvation effect. More precisely, for high values of the m parameter the system with
a small bolus size is unable to compute because of the way the activation function is
implemented. As the chain length increases more B molecules are consumed, and thus
the neuron is unable to activate.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 100

the volume of space in which the chemical reactions occur expands, and as a result the

probability of any bi-molecular reaction to occur decreases. This is because for higher

volumes the space in-between the molecules increases, and thus the collisions become

less likely. Therefore their reaction rate constants needed to be divided by the current

volume parameter, in order to simulate this phenomenon. Increasing the volume of the

system has an effect of bringing the simulation results closer to deterministic model,

which in principle can be understood as a model with infinite number of molecules.

However, increasing the volume further quickly becomes expensive to simulate on a

conventional computer, and thus a careful calibration of this parameter is required.

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0

10

20

30

40

50

In
d

e
x

 o
f

d
is

p
e

rs
io

n

V= 5

V= 10

V= 20

(a) TC 2

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0

20

40

60

80

100

120
In

d
e

x
 o

f
d

is
p

e
rs

io
n

(b) FB 2

Figure 37: Index of dispersion for the set of weights of the system with V = 5, 10, 20 in
the steady state as a function of chain length m for TC 2 task. Measuring the diversity
of channel representations allows us to differentiate which m provides the learning
strategy the most different from random weight allocation (IoD = 0). TC tasks require
the activation function to be dependent on auto-correlation of inputs to a certain degree.
However, for m > 6 the nonlinearity becomes too high and disables learning. On
the other hand, FB tasks exhibit no temporal correlation of inputs, thus the index of
dispersion is negatively correlated with the ligand chain length.

Another useful metric for measuring the performance of the trained CN is the mu-

tual information. The mutual information is a metric which describes the amount of

mutual dependence of two distributions X and Y, see eq. 39. In other words, how

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 101

much information can be deduced about one variable by observing another one.

I(X;Y) =
∫
Y

∫
X
p(X,Y)(x, y) log

(
p(X,Y)(x, y)
pX(x)pY (y)

)
dxdy (39)

Figure 38 shows the mutual information between the distributions of molecules at the

steady state for E and each of the input channels An. Molecular species E represents

the fully occupied ligand chain, thus their presence signifies neuronal activation and

catalyses the reaction responsible for the weight potentiation. Therefore, the mutual

information between E and each of the input channels Ai reflects their influence on

threshold crossing events, and thus synaptic learning.

Plotting mutual information confirms the findings from the previous experiments.

Figure 38 shows a similar qualitative pattern in terms of optimal nonlinearity to ex-

periments in figs. 36 and 37. Noticeably, the mutual information also tends to drop

as the system approaches the resource starvation. Moreover, an interesting picture is

revealed when looking at biased and unbiased inputs separately. The biggest differ-

ence in mutual information of these sets of weights also seems to occur at the point

of optimal nonlinearity. This shows that in the case of temporal correlation tasks not

only the biased synapses have the highest mutual information at m = 4, but also the

unbiased ones show signs of decline. Therefore, the separation between those two sets

of weights is the greatest here, for the case of learning temporal coincidences. In the

case of frequency bias, similarly the biggest difference in the mutual information is at

m = 1, which confirms the observations from fig. 37 and 36.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 102

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0.00

0.05

0.10

0.15

0.20

0.25

M
u

tu
a

l
In

fo
rm

a
ti

o
n

A1

A2

A3

A4

A5

(a) TC 2

1 2 3 4 5 6 7 8 9 10 11 12
Volume

0.00

0.05

0.10

0.15

0.20

M
ut
ua

l I
nf
or
m
at
io
n

(b) TC 2

1 2 3 4 5 6 7 8 9 10 11

Chain length (m)

0.02

0.04

0.06

0.08

M
u

tu
a

l
In

fo
rm

a
ti

o
n

A1

A2

A3

A4

A5

(c) FB 2

1 2 3 4 5 6 7 8 9 10 11 12
Volume

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
M
ut
ua

l I
nf
or
m
at
io
n

(d) FB 2

Figure 38: Mutual information between the activation function (E) and an input chan-
nels (An) after training on TC as a function of (a) chain length for fixed v = 20, and
(b) volume for fixed m = 4. The amount of information about the neuronal activa-
tion carried by an input channel differs immensely between biased (A1 and A2) and
unbiased synapses. Again, it’s noticeable that a degree of dependence on temporal
auto-correlation in neural activation is needed for more efficient learning of TC tasks.
The amount of useful information captured by the weights peaks at m = 4. More-
over, it can be observed that the volume of the system scales the mutual information
logarithmically.

4.5.3 Measuring the thermodynamical cost of computation

The energy efficiency of neural systems has been a widely researched topic in recent

years, in particular in the field of stochastic thermodynamics (Valadez-Godı́nez, Sossa

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 103

and Santiago-Montero 2020). Here, I will identify the energy cost of computation with

the entropy produced during the computation. Entropy production is a measure of cost

associated with irreversible processes (Bennett 1982; Seifert 2012), and has been shown

to be related to the thermodynamical cost of such reactions (Tomé and de Oliveira 2018;

Goldt and Seifert 2017).

The entropy changes each time the system transitions from one state to the next

(i.e. any reaction occurs), since each transition results in heat dissipated into the en-

vironment. Notably, the entropy may also decrease, however it does so with a much

lower probability. Seifert (2005) shows that this can be approximated by the ratio of

the forward rate of the state transition wij and the respective backwards rate wji:

∆S = ln wji
wij

(40)

As the CN learns and its weights approach a steady state, the entropy production

rate of the system also reaches a steady value. Figures 39 shows the tradeoff between

the cost of computation in terms of entropy production at the steady state and the mutual

information between the learning signal and certain input channels (as defined in sec-

tion 4.5.2). Here, the volume of the system is varied from 1 to 12, in order to examine

a trade-off between the cost of computation and quality of learnt representations. For

small systems with volume close to 1, there are not enough molecules in the environ-

ment, thus the noise around the solution is high. This results in a negligible difference

in mutual information between the biased and unbiased input channels. However, as the

volume increases, the mismatch between them widens. This trend appears to saturate

as the volume approaches infinity, and thus more closely approximates a deterministic

model.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 104

500 1000 1500 2000 2500
Entropy production

0.00

0.05

0.10

0.15

0.20

0.25
M
ut
ua

l I
nf
or
m
at
io
n

Biased input
Unbiased input

(a) TC 2

1000 2000 3000
Entropy production

0.00

0.01

0.02

0.03

0.04

M
ut
ua

l I
nf
or
m
at
io
n

Biased input
Unbiased input

(b) FB 2

Figure 39: Tradeoff between the cost of computation in terms of entropy production and
mutual information for tasks (a) TC 2 and (b) FB 2. Here, the volume of the system
was varied, and the degree of nonlinearity was set to m = 4 for TC task, and m = 1 for
FB. The post-spike reset parameter was fixed for all experiments at β = 1.

4.6 Interpreting CN as a single-celled organism

The CN model discussed so far is consistent with regards to mass-action kinetics, how-

ever it does not meet the criteria for biochemical plausibility. For example, species A,

B, and H would have to be interpreted as conformations of the same molecule with

different energy levels. On top of that, those conformations would need to have spe-

cific enzymatic properties. In this section, I will explore viable options to improve the

biological realism of the CN model. I will propose a plausible molecular interpreta-

tion of necessary neuronal mechanisms, explaining how computation can be done in an

environment of single-celled organisms.

I will now explain the biochemical version of the CN in more detail (see tables 4 and

5). This version of the CN model is split into a number of compartments representing

different input channels, see fig. 40. In the basic model, the indexed species (such as

Ai and Hi) referred to different species that exist in the same volume, while in this case

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 105

2

1

4

Bolus injection (A)
3

Leak (B)

h

h

h

h

B

A*

H

A

Figure 40: Graphical representation of a compartmentalised version of the CN. Here,
the molecules representing inputs to different channels Ai and Aj are the same molec-
ular species but contained in different compartments i and j respectively. The activated
form of the input species - A∗ binds to the promotor site of gene h and activates its ex-
pression. The weight species H act as an active transporter molecules for A. The mem-
brane potential molecules B are the same as any of the input species Ai when trans-
ported to the outermost compartment. Each of the compartment has a trans-membrane
protein E with m extra-cellular binding sites. When all of the m binding sites are oc-
cupied by B molecules, then the internal site becomes active (indicated by green). This
in turn catalyses the activation of A which becomes A∗.

they are interpreted as the same type of molecules in different compartments. There-

fore, different Ai would then be the boli of the same molecular species injected into a

compartment i. In turn, these compartments are contained within another enclosed en-

vironment or “extra-cellular space”. The individual input channel compartments can be

thought of as individual bacterial cells or artificial membranes with a minimal genome.

In this interpretation, the molecules of type Hi are interpreted as transporters for

Ai molecules. The conversion of Ai to B is now interpreted as export of Ai from

compartment i to the extra-cellular space. The molecular species B is then the same

as Ai but contained directly in the outer compartment, and the process of moving these

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 106

between the compartments is facilitated by the Hi species. Without the Hi species,

there would be no B molecules in the system, since the Ai species would have no way

to leave their compartment i.

The rate of export of Ai is specific to each compartment in that it depends on the

local abundance of Hi. To regulate this, molecules Hi are assumed to be expressed

by a gene h. This means that Hi molecules are produced when the gene is activated.

Here, the genes can be understood as binary switches which act slowly compared to the

other reactions. They become activated as a result of certain molecules binding to their

promoter sites.

The E molecules are interpreted as transmembrane proteins that are embedded in

the membrane of each compartment. This means that each of these proteins is par-

tially contained within the compartmentalised channels (intra-cellular part), while the

remaining fragment is on the outside of the membrane separating the compartments

from the outside (extra-cellular part). Their extra-cellular site has m binding sites for

B molecules which bind cooperatively, i.e. the binding properties change as more sites

are occupied. When all sites are occupied then the intra-cellular part is activated, i.e

the transmembrane protein enters its active state E . In this model, there also exists an

activated form of Ai, denoted by A∗i . The basic model does not have an analogue of

this activated form of Ai. The conversion of A
 A∗i is mediated by the activated form

of the transmembrane protein E .

Each compartment contains a gene h that codes for the molecule Hi. Expression of

the gene is triggered by the activated form of Ai. Here, A∗i binds to a promoter site of

gene h0 and in turn activates it. This means that the gene now becomes its active form

h, and starts to produce the molecular species Hi. There also is a low leak expression

by the unactivated gene, which is denoted as kleak in tables 4 and 5. This results in

a constant low supply of Hi, which is needed as a catalyst in the input integration

reaction. Gene activation of this type is frequently modelled using Michaelis-Menten

kinetics, and thus it is a good approximation of the corresponding enzyme kinetics in

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 107

Function Reaction

Input
In

kIA−−⇀↽−−kAI
A

A + H
kAH−−⇀↽−−kHA

AH
kHB−−⇀↽−−kBH

B + H

Activation function
B + Ei

k+

−−⇀↽−−k– Ei+1, i < m− 1

B + Em – 1
k+

−−⇀↽−−k–
last
E

Weight accumulation

E + A
kAE−−⇀↽−−kEA
EA

kA*E−−⇀↽−−kEA*
E + A*

A* kA*A−−⇀↽−−kAA*
A

h0 + A∗
A*h−−⇀↽−−hA*

h

h0
kleak−−→ Hn + h0

h kh−−→ Hn + h

Leak
H

kH∅−−→ ∅
B

kB∅−−→ ∅

Table 4: List of chemical reactions in a single CN unit interpreted as a cell. Molecular
species A,E, E , h0, h and H are compartmentalised. Each compartment has a gene h0
which when activated by A∗ can express a transporter H .

Function Reaction rates

Input
kIA = 10, kAI = 0.000001

kAH = 0.03, kHA = 0.000001, kHB = 100, kBH = 0.000001

Activation function
k+ = 1, k− = 5
k−last = 0.5

Weight accumulation

kAE = 0.2, kEA = 0.000001, kA∗E = 0.2, kEA∗ = 0.000001,
kA∗A = 0.05, kAA∗ = 0.000001

kA∗h = 1, khA∗ = 0.1
kleak = 0.0001

kh = 1

Leak
kH∅ = 0.0003
kB∅ = 0.1

Table 5: List of reaction rate constants in a biochemical interpretation of the CN model.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 108

the basic model of the CN.

A major difference between this version of the CN and the one introduced earlier

is that the molecules E are now specific to each compartment. Thus, the minimum

number of instances ofE isN , while in the basic model a single copy ofE at time t = 0

could be sufficient. One consequence of this design choice is that at any particular time

the number of occupied binding sites will typically be different across the different N

compartments. This is a source of additional variability. Moreover, since the number of

copies of E is higher than in the basic CN (see table 3), it becomes more susceptible to

the resource starvation of B as a result of the extra-cellular binding sites withdrawing

molecules from the outer compartment. However, both of these issues can be solved

by tuning the model in a way that the abundance of B molecules is high in comparison

to that of E. This shows that the resource starvation problem becomes even more

severe in this case, and therefore the bolus size needs to be further increased, in order

to accommodate for the same degree of nonlinearity.

4.6.1 Performance analysis

The performance of this biological interpretation of the CN was tested on the task of

associative learning. As discussed before, Fernando et al. (2009) has proposed a bio-

chemical model which implemented a form of Pavlovian learning. However, it had

multiple shortcomings and was not scalable to more input channels (see section 2.6.2).

Figure 41 shows that the proposed biochemical system has the same capacity for asso-

ciative learning as the original CN model.

This biochemical version of the CN is also capable of learning in a variety of tasks

involving frequency bias and temporal correlations. The results presented in fig. 42

show a similar qualitative pattern to the original CN model (see fig. 31). Although the

index of dispersion for the obtained sets of weights is higher in the case of the original

design, different types of bias embedded in the input data are still clearly recognised.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 109

0

250
A1 Input 1

0

250

A2 Input 2

0

250

B Membrane
 potential

0
25 Activation

0.0 0.2 0.4 0.6 0.8 1.0
time

250
500H Weight 1

Weight 2

Figure 41: Example of associative learning in cellular interpretation of the CN. The
task is the same as in fig. 29, where the neuron is presented two inputs. At first, E
molecules are only produced in response to the first input, and none are produced when
a signal from the second one is presented. Next, the CN is exposed to both inputs
in close temporal proximity multiple times. The fourth graph shows that the Weight
2 grows each time the inputs coincide, however Weight 1 has saturated at this point.
Lastly, at time 0.9 the CN is presented with the Input 2 only. After just a few examples
CN is able to respond in reaction to Input 2 without any additional stimulation.

TC 2 TC 3 TC 4 FB 2 FB 3 FB 4
0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ise

d
we

ig
ht
s

 a
t s

te
ad

y
st
at
e

H1 H2 H3 H4 H5

Figure 42: Normalised weights for a variety of TC and FB tasks. The nonlinearity or
the chain length is set to m = 4 for the TC, and m = 1 for FB, the same as in fig.
31. The CN is trained for 3 tasks with temporal correlation of inputs, where 2, 3 or
4 synapses are biased respectively. Similarly for FB, where 2, 3 and 4 synapses have
the higher spiking frequency respectively. The weight distributions at the steady state
proves to be highly correlated with the type of bias embedded in the data.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 110

4.7 Chapter summary

The main contribution of this chapter is the chemical neuron model (CN), which is the

first fully autonomous design for a biochemical system which can learn spatio-temporal

patterns. The proposed design mimics a spiking neuron, and its learning algorithm

produces results similar to those of a spiking neuron with STDP. Unlike some of its

predecessors, such as (McGregor et al. 2012; Fernando et al. 2009; Blount et al. 2017),

this model is fully autonomous in learning and can be arbitrarily scaled to accommodate

for more input channels. Two versions of the CN were discussed. One which is readily

interpretable as a chemical reaction network, and the other which is more biochemically

plausible. The former one, provides a framework for understanding minimal energy

costs associated with neuronal computation. Thanks to this, it is possible to estimate the

computational cost as measured by the entropy production. The second cellular model,

on the other hand, is built using well-known biochemical motifs. Thus it describes a

system which in theory could be implemented in nature. Although the model would still

be difficult to synthesise with current technology, it uses well defined components found

in living organisms such as: gene expression, cooperative binding, and transmembrane

proteins.

Another contribution of this chapter was the establishment of criteria for autonomy,

see section 4.1. These criteria are not only necessary for building theoretical systems

which can perform certain intelligent functions, but also ensures that it can learn with-

out supervision and that all of the functions are embedded into the system. This means

that both the learning algorithm, as well as all other functions need to be internal to the

model itself. These considerations are crucial when considering the experimental im-

plementation in the context of synthetic biology. Biological systems cannot be stopped

in order to readjust the weights, and therefore they require the learning algorithm which

works without an outside interference.

The investigation conducted in this chapter has shown that the degree of nonlin-

earity, controlled by parameter m allows for better learning of temporal correlations.

CHAPTER 4. CHEMICAL NEURON AND COMPUTATION IN CELLS 111

However, even models with m = 1 (the least nonlinear model) still can perform rea-

sonably well, and can distinguish inputs which spike in a synchronised way. This is

consistent with the findings described in Chapter 3, showing that the temporal autocor-

relation of the membrane potential is the key parameter for learning, while the spikiness

of the model was found to be less important.

The CN consists of chemical reactions following mass-action kinetics, and there-

fore allows for the estimation of entropy production. I evaluated the cost of compu-

tation with regards to the scale of the system, as well as the degree of nonlinearity in

the activation function. More in-depth analysis has shown that the CN experiences a

resource starvation of B species, as the parameter m increases. This means that the

models which more closely approximate spiking activation require increasingly more

resources. Although higher m allows for better performance in the tasks which involve

learning of temporal correlations, when the nonlinearity is sufficiently high, the neuron

loses the ability to learn and react to stimuli correctly. The starvation effect can be par-

tially solved by means of increasing the bolus size relative to the threshold, see fig. 36.

This, however, comes with an extra cost in terms of entropy production. These addi-

tional costs come from two sources. First of all, more particles need to be added to the

system at each input. Secondly, perhaps more importantly, the additional expenditure

comes from the programmed decay of H and B molecules outside of the system. This

discovery brings forth the question whether such nonlinear functions pose an additional

cost in neuronal systems. Although outside of the scope of this chapter, this investiga-

tion could be an interesting point for further research on the tradeoff between metabolic

cost and the neuron’s ability to compute temporal patterns.

Chapter 5

Neural modelling in DNA-strand

displacement

5.1 Introduction

In the previous chapter, I have demonstrated that, in principle, autonomous neuromor-

phic learning systems could be implemented as networks of chemical reactions. Al-

though the chemical neuron is autonomous and biochemically sound, it would be diffi-

cult to synthesise in a laboratory. This is mainly because the synthesis of proteins with

these very specific properties still remains impossible. In fact, it is unclear whether

such proteins exist at all.

One promising approach is to employ gene regulatory networks (Racovita and

Jaramillo 2020). Fernando et al. (2009) demonstrated that a relatively simple gene

regulatory network (GRN) can implement a basic version of associative learning. This

system, however, learns an association after just a single coincidence of inputs and is

unable to forget the association between already learnt inputs. Moreover, it is limited

to recognising the correlations between two input channels only. This makes it unsuit-

able for solving more complex tasks, such as detecting temporal correlations in a multi-

channel stream of inputs. Other researchers employed evolutionary algorithms, in order

112

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 113

to produce GRNs capable of associative learning (McGregor et al. 2012). More biolog-

ically plausible systems comprised of multiple compartments were also proposed (Ma-

cia, Vidiella and Solé 2017a; Macia and Sole 2014; Macia, Vidiella and Solé 2017b).

However, they too lack the autonomy and are not suitable for learning spatio-temporal

data.

Reliable programming of GRNs still remains a challenge due to a number of rea-

sons:

1. Cross-talk is a common problem (Grah and Friedlander 2020; Grant et al. 2016).

Due to non-specific binding between biochemical molecules the behaviour of the

system is unpredictable.

2. Gene regulation occurs on multiple levels, such as gene expression, post-translational

control, or protein degradation. This regulation also acts on multiple scales, it can

only affect a specific gene or act globally (Yubero and Poyatos 2020).

3. Lastly, these regulatory mechanisms are likely to pose a metabolic burden to

the host organism. This would result in evolutionary pressure to remove such a

circuit, if it doesn’t bring enough benefits to the host (Wang, Wei and Smolke

2013).

One alternative to gene-regulatory networks could be DNA-based computing. In

particular, DNA strand displacement (DSD) (Lakin et al. 2011) has a potential to be

a reliable substrate for computation. Most importantly, this framework allows for the

behaviour of real DNA machines to be accurately predicted from simulation (Yurke

et al. 2000; Fontana 2006). Notably, a framework of two-domain DSD (Cardelli 2010)

allows for building DNA circuits which are efficient and free of cross-talk, which is

often associated with biochemical systems (Grah and Friedlander 2020). Moreover,

Chen et al. (2013) have demonstrated that arbitrary chemical reaction networks can be

implemented in DSD.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 114

DSD has been used to implement a vast array of intelligent behaviours, such as

linear-threshold circuits and logic gates (Seelig et al. 2006; Qian and Winfree 2011),

switches and oscillators (Dalchau et al. 2018; Lakin et al. 2012), consensus algorithms

(Chen et al. 2013). DSD cascades have also been used to analyse cells by classifying

their surface markers (Rudchenko et al. 2013). Neuronal systems implemented in DNA

have long been of interest to researchers. Early attempts include a Hopfield network

implemented through DSD cascades (Qian, Winfree and Bruck 2011). Although the

network was shown to be capable of recreating partially erased patterns, the weights

were obtained from separate simulations and were hard-coded into the system. Other

researchers recently attempted to design competitive winner-take-all networks of per-

ceptron neurons (Genot, Fujii and Rondelez 2013; Cherry and Qian 2018). This ap-

proach allows the DSD network to perform multi-class learning, which was shown to

be useful for example in the recognition of handwritten digits from the MNIST dataset

(LeCun and Cortes 2010). However, similarly to the previous attempts, the learning

phase was performed on a digital computer, and then the obtained weights were trans-

ferred onto the DNA circuit.

Some researchers attempted to build DSD systems which can learn without the need

for digital computers. For example, Lakin and Stefanovic (2016) demonstrated that a

form of gradient descent learning could be constructed through the DSD interactions.

They used a two-concentration multiplier circuit motif, and demonstrated that a neuron

can adjust its weights internally given an external feedback. However, this means that

this network also requires constant feedback from an external observer, and thus does

not meet the criteria for being autonomous.

In this chapter, I will present a DNA-based design for a spiking neuron capable of

autonomous Hebbian learning - the DNA neuron. The DNA circuit proposed here is

based on an approach presented in the previous chapter: the chemical neuron. Simi-

larly to the chemical neuron, this system also meets all necessary criteria for being au-

tonomous (see section 4.1). This means that the neuronal model, synaptic weights, as

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 115

well as the learning algorithm are implemented within the reaction network. Therefore,

the system does not require any external agent to read its state, adjust the weights, or

implement the signal modulation. The system’s learning algorithm functions in a simi-

lar way to that of a spiking neuron with STDP. This DNA neuron model is based on an

experimentally proven design motif of two-domain DNA strand displacement (Cardelli

2010), which allows for cross-talk free implementation of DNA-based systems. This

design is scalable to an arbitrary number of input channels, and can readjust its weights

based on new learning episodes. Through extensive simulations, I will demonstrate that

the DNA neuron can recognise temporal and statistical biases embedded within noisy

streams of sensory data, in the sense that the steady state abundance of specific weight

molecules reflect the biases of its inputs.

5.2 DNA neuron implementation in CRN

All of the interactions between the molecules constituting the neuron are facilitated by

four catalytic reactions (see fig. 43 and table 6). The DNA implementation of a spiking

neuron, that I will describe below, is similar to the one proposed in the previous chapter,

however it will include a few crucial differences. The chemical reaction network (CRN)

discussed in this section is a special case of a chemical neuron, with a simplified acti-

vation function (i.e. m = 1). Moreover, the four key interactions implementing the CN

now become catalytic reactions. Firstly, I will briefly describe this system as a CRN,

before showing, in the next section, how to translate this to a system of DNA-strand

displacement interactions.

Signal integration

The inputs are instantaneously injected into the system via N concurrent input chan-

nels. It is assumed that input channel n receives input in the form of molecules of type

An, at a particular time tsn. An molecules from each channel facilitate the conversion of

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 116

B

Hn

Spike inputs

A1

A2

A3

State

Hn
E

Activation/Learning Signal

E

Weights

Faf

Fsin

I1

I2

I3

Figure 43: Graphical representation of an autonomous neuron implemented as a chem-
ical reaction network. The inputs to the system are provided in the form of discrete
spikes of molecular species An. The double arrows signify catalytic reactions, which
can be implemented by a combination of two-domain Join and Fork gates in DSD.

Function Reaction

Signal integration Fsin + An −−⇀↽−− An + B
Activation function B + Faf −−⇀↽−− Faf + E

Weight accumulation An + E −−⇀↽−− E + Hn

Signal modulation An + Hn −−⇀↽−− Hn + B

Table 6: List of reactions in a single DNA neuron implemented as a chemical reaction
network.

the respective fuel molecules Fsin into B. Molecular species B represents the internal

state (or the short-term memory) of the neuron.

Activation function

Molecular species E is used to implement the activation function and the learning sig-

nal, i.e. learning only takes place when abundance of E is high. B molecules are

converted into E by the catalyst Faf .

As can be seen from table 6, E is only produced when the state of the neuron

reaches a sufficient level. Depending on the amount of inputs accumulated within a

time window, more or less of the activation is exhibited. The coincidence of E and An

molecules triggers learning.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 117

Weight accumulation

The process of learning is understood as the accumulation of channel specific Hn

molecules. These species can be interpreted as synaptic weights of the neuron and

they play the role of a long-term memory. Functionally they impact the dynamics of

the system in that they act as catalysts in the signal modulation reaction.

Signal modulation

Depending on the current abundance of weight molecules Hn, the speed of conversion

of An to B changes. Figure 44 shows the result of different weight abundances on the

state of the neuron (B), and the activation (E). The signal modulation reaction: An +

Hn −−⇀↽−− Hn + B, has a twofold effect. Firstly, it promotes highly weighted channels

by increasing their immediate effect on the state of the neuron. This results in a higher

peak value ofB when an input from these channels arrives. Secondly, by increasing the

rate of conversion of An, the subsequent weight updates become smaller. This achieves

a self-regulatory mechanism similar to the well known Oja’s rule (Oja 1982). As a

result, the neuron’s weights have a limited range of values they can take, and they don’t

grow infinitely.

Additionally, there are reactions which allow for a constant decay of E and Hn

molecules outside of the system. This in turn, enables the system to reach a homeostatic

state after a learning period, and given continuous inputs.

5.3 Neuron implementation in DSD

Soloveichik, Seelig and Winfree (2010) have shown that the molecular circuits de-

scribed by CRNs can be closely approximated by DSD circuits. In particular, two-

domain strand displacement has promised an intuitive framework for building efficient

and cross-talk free implementations (Cardelli 2010; Chen et al. 2013). Restricting

computation to two-domain strands helps to protect against unexpected interactions

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 118

0 100 200 300 400 500 600
0.00000

0.00005

0.00010

0.00015
B

0 100 200 300 400 500 600
time

A1
A2
A3

In
pu

ts

(a) Internal state (B) as a function of Hn.

20 40 60 80 100
H

2.8

3.0

3.2

3.4

3.6

3.8

4.0

E

(b) Activation (E) as a function of Hn.

Figure 44: The internal state and activation of the DNA neuron as a function of dif-
ferently weighted inputs. (a) 5 µM of An molecules are injected into the system at
t = 100, 300, and 500. Each of the three channels has a different amount of weight
molecules associated with it: H1 = 10, H2 = 50, and H3 = 100. Different amount
of weights results in different conversion rates from An to B. This means that the ef-
fective reaction rate of A1 is slower than that of A2, which is in turn is slower than the
conversion of A3. (b) The influence of differently weighted inputs on the concentration
of E species. The DNA neuron shows a different amount of activation as a function
of the weights. Here, a constant decay of E and Hn species is assumed with the rate
constants of kE = 0.1 and kH = 0.00002 respectively.

between single stranded species, which can occur with more complex molecules. Also,

as all double-stranded structures are stable, and can only change once a single-stranded

component has bound, there is no possibility for gate complexes to polymerise and in-

teract with each other. In the two-domain DSD scheme, each signal species comprises

of a short domain, or toehold, of between 4 to 10 nucleotides, which can bind and un-

bind from complementary strands, and a long (recognition) domain, which are at least

20 nucleotides in length, and are assumed to bind irreversibly. In the following sections,

the standard syntax of the Visual DSD programming language (Lakin et al. 2011) (see

section 2.6.3) will be used to describe the species present in the system.

All of the species that facilitate computation in the neuron are two-domain DNA

strands. The four main two-domain strands that enable communication between differ-

ent modules of the DNA neuron are shown in table 7. Henceforth, I will refer to a short

domain of a two-domain DSD strand An as ta and its corresponding long domain as

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 119

Name Signal DSD Species

Input An <taˆ an>
Weights Hn <thˆ hn>

Internal state B <tbˆ b>
Activation E <teˆ e>

Activation function fuel Faf <tfafˆ faf>
Signal integration fuel Fsin <tfsiˆ fsin>

Table 7: List of key DNA strands which facilitate learning.

Signal Species Toehold Bind Unbind

An ta 0.01 10
Hn th 0.01 10
B tb 1 10
E te 0.05 10
Fsi tfsi 1 10
Faf tfaf 1 10

Ism tism 1 10
Iaf tiaf 1 10
Isi tisi 1 10

Iwan itwan 1 10

Table 8: List of toehold domains and their respective binding and unbinding rates in
µMs−1.

an, where n is a channel index. Therefore, the recognition of each input and weight

strand is dependent on their long domains, rather than their toeholds. The same con-

vention will be used for all other channel specific two-domain DNA species. For the

detailed description of the nucleotide structure and binding rates, see tables 8 and 9.

To implement CRNs using two-domain DNA strand displacement, a collection of

partially double-stranded gates can be used (Cardelli 2010; Chen et al. 2013). Accord-

ingly, the reactivity of the DNA neuron signal strands is described by appropriately

designed gate complexes, which allow for binding of the reactants (fig. 45).

For each reaction, a Join gate is responsible for binding of two reactants. In turn the

Join gate produces a translator strand which signifies that the reaction has successfully

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 120

Strand Sequence

<taˆ a1> TACCAA+ CCCTTTTCTAAACTAAACAA
<taˆ a2> TACCAA+ CCCTTATCATATCAATACAA
<taˆ a3> TACCAA+ CCCTATTCAATTCAAATCAA

<thˆ h1> TATTCC + CCCTTTACATTACATAACAA
<thˆ h2> TATTCC + CCCTTTACATTACATAACAA
<thˆ h3> TATTCC + CCCTTTACATTACATAACAA

<tbˆ b> ACTACAC + CCCTATTCAATTCAAATCAA
<teˆ e> GCTA+ CCCTTATCATATCAATACAA

<tfsiˆ fsi1> CCTACG+ CCCTAAACTTATCTAAACAT
<tfsiˆ fsi2> CCTACG+ CCCTATACTATACAATACTA
<tfsiˆ fsi3> CCTACG+ CCCATTACTAATCAATTCAA
<tfafˆ faf> CCCT + CCCATAACTATTCTAAACTA

<tisiˆ> TCTCCA
<tismˆ> CCCTA
<tiafˆ> GACA
<tiwa1ˆ> GTCA
<tiwa2ˆ> TACCAA
<tiwa3ˆ> CATCG

<i> CCCTTAACTTAACAAATCTA

Table 9: List of the two-domain DNA strands and their respective nucleotide sequences
in the DNA neuron. The suitable nucleotide sequences were produced using the Mi-
crosoft Visual DSD software.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 121

completed. Then, the translator activates a Fork gate, which is responsible for releasing

the reaction products. Additional energy must be supplied to completely release all

products from Fork gates, as the translator strand will only displace the first product.

Appropriately designed helper strands are therefore placed in solution to release sub-

sequent products, after the first product has unbound leaving an exposed toehold. As

has been employed previously (Chen et al. 2013), the original design as proposed by

Cardelli (2010) is extended by incorporating an additional long domain on the left-hand

side of the Fork gate, which upon binding of an appropriate auxiliary molecule, seals

the gate to prevent rebinding of its outputs. Here, all of the Join gates are also extended

in an equivalent way, thus preventing rebinding of the translator strand.

In order to understand the equivalence of the CRN and the DSD implementations,

let’s consider the reaction Fsin + An −−⇀↽−− An + B (fig. 45a) as an example of all 4

other catalytic reactions in the DNA neuron. A JoinAFsi gate is defined by a double

stranded complex that enables the binding of two reactants: Fsin and An. It only

releases the translator strand when both of these have bound to the structure. Firstly,

the fuel species Fsin binds and displaces the incumbent bound <in taˆ> molecule,

exposing the taˆ toehold. This allows for the binding of An (<taˆ an>), which in

turn displaces the translator strand: <an tisiˆ>. The release of this strand is a sign

that both of the reactants have bound to the complex. The JoinFsiA gate is then sealed by

the binding of <tisiˆ i>, which prevents rebinding of the translator. This reaction

results in the release of the seal waste molecule: <i>.

The ForkAB gate is then triggered by binding of the translator strand released by

the corresponding Join gate. Next the gate complex proceeds to release both of the

product molecules. In this design, binding of the translator releases the first product of

the reaction products: An strand (<taˆ an>). The second product, B (<tbˆ b>),

is released upon binding of a Fork helper strand: <b taˆ>. Lastly, the ForkAB gate

is sealed upon binding of the Fork seal strand <i tbˆ>, and as a result another seal

waste molecule <i> is produced. This combination of Join and Fork gates consumes

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 122

(a
)S

ig
na

li
nt

eg
ra

tio
n:

Fs
i n

+
A

n
−−
⇀

↽
−−

A
n

+
B

(b
)A

ct
iv

at
io

n
fu

nc
tio

n:
B

+
Fa

f
−−
⇀

↽
−−

Fa
f+

E

(c
)W

ei
gh

ta
cc

um
ul

at
io

n:
A

n
+

E
−−
⇀

↽
−−

E
+

H
n

(d
)S

ig
na

lm
od

ul
at

io
n:

A
n

+
H

n
−−
⇀

↽
−−

H
n

+
B

Fi
gu

re
45

:T
he

co
rr

es
po

nd
en

ce
of

ea
ch

of
th

e
re

ac
tio

ns
in

a
ch

em
ic

al
ne

ur
on

to
th

e
D

N
A

-s
tr

an
d

di
sp

la
ce

m
en

ti
nt

er
ac

tio
ns

.E
ac

h
re

ac
tio

n
in

th
e

ch
em

ic
al

re
ac

tio
n

ne
tw

or
k

(s
ee

ta
bl

e
6)

,i
s

im
pl

em
en

te
d

as
a

co
m

bi
na

tio
n

of
tw

o-
do

m
ai

n
Jo

in
an

d
Fo

rk
ga

te
s.

Fo
r

ea
ch

re
ac

tio
n,

a
Jo

in
ga

te
bi

nd
s

th
e

tw
o

re
ac

ta
nt

s
in

se
qu

en
ce

,fi
rs

td
is

pl
ac

in
g

a
w

as
te

m
ol

ec
ul

e,
an

d
se

co
nd

ly
di

sp
la

ci
ng

a
tr

an
sl

at
or

m
ol

ec
ul

e.
In

tu
rn

th
is

tr
an

sl
at

or
m

ol
ec

ul
e

bi
nd

s
to

th
e

Fo
rk

ga
te

w
hi

ch
re

le
as

es
st

ra
nd

s
re

pr
es

en
tin

g
th

e
pr

od
uc

ts
of

th
e

ca
ta

ly
tic

re
ac

tio
n.

T
he

tr
an

sl
at

or
di

sp
la

ce
s

th
e

fir
st

pr
od

uc
t,

an
d

th
en

a
Fo

rk
he

lp
er

di
sp

la
ce

s
th

e
se

co
nd

pr
od

uc
t.

B
ot

h
Jo

in
an

d
Fo

rk
ga

te
s

ar
e

se
al

ed
up

on
bi

nd
in

g
of

an
ap

pr
op

ri
at

e
au

xi
lia

ry
st

ra
nd

(l
ab

el
le

d
Jo

in
se

al
an

d
Fo

rk
se

al
),

w
hi

ch
di

sp
la

ce
s

th
e

fin
al

in
cu

m
be

nt
bo

un
d
<
i
>

st
ra

nd
.

Se
e

se
ct

io
n

2.
6.

3
fo

r
an

in
-d

ep
th

ex
pl

an
at

io
n

of
th

e
un

de
rl

yi
ng

st
ra

nd
di

sp
la

ce
m

en
tm

ec
ha

ni
sm

s
in

th
e

Jo
in

an
d

Fo
rk

ga
te

m
ot

if
s.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 123

1 molecule of each reactant, and produces 1 molecule each of the products, ensuring

equivalent stoichiometry to the abstract reaction.

5.3.1 Simulating the DNA neuron

The DNA neuron is simulated using Microsoft Visual DSD software 1 (see Appendix

F). The timescales used in the all of the experiments are realistic, in a sense that the

system could be synthesised and simulated in a laboratory in real time. The strand

displacement reaction rates proposed in this model (see table 8) are within the realistic

range that has been measured experimentally (Zhang and Winfree 2009). In order to

reproduce the desired dynamical behaviours, the binding rates associated with the ta,

th and te toeholds have been set to lower values than the other toeholds. Accordingly,

shorter toehold and less reactive sequences are recommended for these domains (see

table 9).

Each simulation starts with 10000 µM of gate complexes and helper strands needed

for the computation by both Join and Fork gates in all catalytic reactions. The fuel

molecules Fsin and Faf are initiated in the same way with the concentrations of 10000

µM . Lastly, the bolus size, or the amount of An species injected to the system at each

spike, is set to β = 1 µM . In order to implement depletion of Hn and E species

garbage collection molecules are introduced: {teˆ*}[e] and {thˆ*}[hn], which

sequester and inactivate E and Hn respectively. These molecules are injected into

the system periodically every 1000s with concentrations of 12 µM and 0.1 µM . This

setup provides for a sufficiently stable environment, and allows for reproducible results.

Notably, less frequent injections (e.g. δdecay = 120000) produce less stable behaviours,

see fig. 46.

1The details of the software implementation are available on https://github.com/jf330/DNA-neuron/

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 124

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
β

0.26

0.28

0.30

0.32

0.34
No

rm
al
ise

d
H
3

δdecay=1000
δdecay=10000
δdecay=120000

(a) Normalised H3.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
β

0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
de

x
of
 d
isp

er
sio

n

δdecay=1000
δdecay=10000
δdecay=120000

(b) Index of dispersion.

Figure 46: The performance of different strategies of supplying garbage collector
molecules to the system as a function of bolus size β. Here, I varied the temporal
distance between subsequent injections of these species (δdecay). The diversity of the
weight set is measured using index of dispersion, i.e. the standard deviation divided
by the mean of the weights. As expected, the more frequent but smaller injections
(more similar to a decay with a constant rate) are more conducive to learning. The ex-
treme case of δdecay = 120000 demonstrates that the system fails to learn if the garbage
collection complexes are provided only once at the beginning of the simulation.

5.3.2 Increasing the number of input channels

In order to extend the system to accommodate for additional input channels the user

needs to define a single new toehold domain tiwan, which is responsible for the

weight accumulation in each of the N channels. Moreover, there are nine toehold

domains that remain the same regardless of the number of input channels (ta, th, tb,

te, tfsi, tfaf, tism, tisin, and tiaf). This means that the system with N = 3

input channels requires 12 toehold definitions (9 + N). The recognition of the inputs,

as well as other two-domain strands in the system, is based on the long domains which

are different for each channel. There are four long domains which remain the same

regardless of number of channels (b, e, faf, i), and three which need to be defined

when adding a new input channel (an, hn, fsin). Therefore, the system with N = 3

input channels requires 13 long domain definitions (4 + 3N). Notably, due to the dif-

ferent length requirements for long and short domains, it is easier to generate new long

domains which are compatible with the reactivity requirements.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 125

5.4 Learning

In order to determine whether the DSD implementation of a spiking neuron is capa-

ble of learning, a number of simulations were carried out using Visual DSD. Through

these experiments I will demonstrate that both infinite and detailed compilation modes

(see section 2.6.3) can produce the intended dynamical behaviours. Similarly, these be-

haviours can be reproduced in both simulations at low copy numbers (using Gillespie’s

stochastic simulation algorithm) and in the fluid limit (deterministic rate equations). In

the following section, I will focus on the results from simulations carried out in infinite

deterministic mode. Other simulations, including the ones using the detailed mode of

Visual DSD, can be found in Appendix D.

5.4.1 Associative learning

I will first demonstrate that the system is capable of associative learning (fig. 47a). In

this task, the neuron has N = 2 input channels, one with a low weight (H1 = 0 µM)

and the other with a higher weight (H2 = 1 µM). The coincidence of low-weight input

(A1) with one that has a higher weight (A2) allows for a quicker weight accumulation of

the second channel. This is because the higher concentration of H2 slows the progress

of the weight accumulation reaction An + E −−⇀↽−− E + Hn. After just a few repetitions

of the inputs in close temporal proximity, the weights associated with both channels

converge. Initially the system would respond with a weaker activation (i.e. less E

produced) if presented with input 1, but after conditioning, it would respond to both

inputs with equal activation.

5.4.2 Temporal learning

Next, I will demonstrate that the system can be extended to an arbitrary number of

input channels. This experiment shows that in this case the DNA neuron can learn to

distinguish the temporal order of inputs by adjusting its weights. Figure 47b shows,

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 126

0 100 200 300 400 500 600 700
0

5

10

W
ei
gh

ts
H1
H2

0 100 200 300 400 500 600 700
time

A1

A2

In
pu

ts

(a) Associative learning.

0 100 200 300 400 500 600
0.0

2.5

5.0

7.5

10.0

12.5

W
ei
gh

ts

H1
H2
H3

0 100 200 300 400 500 600
time

A1
A2
A3

In
pu

ts

(b) Temporal learning.

Figure 47: (a) Example of associative learning in the DNA neuron. The weight associ-
ated with inputs from the first channel H1 initially do not provide sufficient activation
to the internal state B. The signal from A1 channel is presented multiple times in co-
incidence with the signal from A2. As a result the amount of H1 molecules rapidly
increases and after a couple of coincidences, the weights associated with both chan-
nels become equal. Thus, the system’s reaction to the signal from conditioned (A1)
and unconditioned (A2) channels becomes the same. (b) Example of Hebbian learning
with three temporally correlated inputs. Here, the inputs fromA1 channel were injected
first, and followed by inputs from A2 and A3 at fixed predefined temporal distance. Af-
ter each pattern presentation, the weights increase, however not uniformly. The neuron
learns to distinguish inputs by associating different weights depending on the order of
their appearance. Here, a constant decay of E and Hn species is assumed with the rate
constants of kE = 0.1 and kH = 0.00002 respectively.

for the case of 3 neurons, that the inputs which occur in closer temporal proximity

to the moment when the learning signal molecules E (<teˆ e>) become available,

accumulate greater amounts of H molecules corresponding to their channels. Thus, the

weights of inputs that spike in a synchronised manner are promoted. Moreover, the

inputs which appear later in a sequence accumulate higher weights. This experiment

qualitatively reproduces the effect of the STDP function on a spiking neuron’s weights.

5.4.3 Bias detection in noisy input streams

I will now explore the system’s performance on more complicated tasks, in which the

neuron is presented with randomly generated streams of input spikes with a certain

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 127

statistical bias. More precisely, I will test the ability of the DNA neuron to detect

frequency biases and temporal correlations. In each simulation, the neuron is exposed

to 120000 seconds of inputs with a given type of statistical bias. The first 100000

seconds will be considered as a learning phase. After that time, the weights reach a

homeostatic state, and remain on a steady level. The statistics of the weights are then

measured over the remaining 20000 seconds.

Frequency bias detection

Firstly, I will consider the frequency bias detection task (FB), as described before in

section 4.4.2. In this task, the neuron is provided randomly generated boli to each of

its N input channels. The waiting time between two successive boli of An is randomly

distributed according to an exponential distribution with parameter 1/fn, where fn is

the frequency of the input boli to channel n. The system should then detect the dif-

ference in frequencies fn between input channels. The task is considered as solved if

(after a transient period) the ordering of the abundances of weights reflects the input

frequencies, i.e. the number of Hi is higher than the number of Hj if fi > fj .

The neuron has three synaptic channels with randomly arriving inputs of differing

frequencies (fig. 48a). The first channel is assumed to spike at a frequency of 0.002

Hz whereas the two remaining channels fire at a frequency of 0.001 Hz. The system is

initialised with Hn = 0 for all three channels. As expected, the weights of the high-

frequency input (H1) increase faster compared to the other low-frequency inputs. This

means that the DNA neuron can work as a frequency detector.

Temporal correlation detection

A more challenging task, which could not be solved by a single rate-coded neuron, is

the learning of temporal correlations (see section 4.4.2). In this task, the input frequen-

cies of each channel are the same, i.e. fi = fj for all i, j ≤ N , and set to 0.002 Hz.

Pairs of channels i, j were chosen and time windows ∆τ such that the probability to

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 128

0 20000 40000 60000 80000 100000 120000
0

10

20

30

40

50

W
ei
gh

ts

H1
H2
H3

0 20000 40000 60000 80000 100000 120000
time

A1
A2
A3

In
pu

ts

(a) Example of frequency bias learning.

0 20000 40000 60000 80000 100000 120000
0

5

10

15

20

W
ei
gh

ts

H1
H2
H3

0 20000 40000 60000 80000 100000 120000
time

A1
A2
A3

In
pu

ts

(b) Example of temporal correlation learning.

H1 H2 H3
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Av
er
ag

e
no

rm
al
ise

d
we

ig
ht
s

(c) Average weights for frequency bias.

H1 H2 H3

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38
Av

er
ag

e
no

rm
al
ise

d
we

ig
ht
s

(d) Average weights for temporal correlation.

Figure 48: Examples of learning episodes for (a) frequency bias task, and (b) temporal
correlation task. Normalised weights in the steady state for input data with (c) fre-
quency bias, and (d) temporal correlation. The values presented here are averages over
20000s of stimulation, which were collected once the system reached a homeostatic
state after 100000s. The experiment is then repeated 10 times. It can be seen from
the figure that the steady state abundances of channel specific Hn molecules reflect
the temporal order of the inputs provided. Moreover, the input channel that spiked in
an asynchronous way (A3) accumulated lower weights than the temporally correlated
channels. In the frequency bias experiment, A1 is assumed to come at frequency twice
as high as that of the two other input channels. The DNA neuron achieves learning by
accumulating steady state abundances of weight molecules Hn for different channels.
At the end of the training phase, the weights of the channels with a greater probability
of spiking will be high, while the channels with a lower frequency will reach a similar
low level.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 129

observe a bolus of j between time t0 and t0 +∆τ — where t0 is the time where inputAi

fired — is greater than the probability to observe a bolus between t0 −∆τ and time t0.

In practice, such correlations are implemented as follows: If A1 and A2 are temporally

correlated then each bolus of A1 is always followed by a bolus of A2 after a randomly

generated but fixed time period δ. This means that the pair of correlated input signals

always appears within a predefined temporal window, which is randomly generated for

each trial.

The neuron is capable of solving the temporal correlation detection task in the sense

that after a transient period, the weights indicate which channels are correlated and the

temporal order implied by the correlation, i.e. if Ai tends to precede Aj , then the

abundance of weight Hi should be higher than the abundance of Hj . Furthermore, if Ai

is correlated with some other channel k, but Aj is not, then the abundance of Hi must

be greater than that of Hj (see fig. 48d).

Next, I will investigate the ability of the systems to distinguish temporarily corre-

lated inputs as a function of the bolus size β. To this end, I will use index of dispersion,

i.e. the standard deviation divided by the mean of the weights, as a measure of diversity

in the weight set. Figure 49 shows that the increase of β results in less diverse weight

representations. As the amount of An molecules injected at each spike increases, the

system’s performance declines as a result of resource starvation. Each input spike re-

sults in a complete release ofE molecules, regardless of the abundance ofB molecules.

Therefore, the weight updates become increasingly dependent on the frequency of in-

puts, rather than the temporal correlations embedded within the input data. This results

in the steady state weight of the uncorrelated input (H3) approaching the weights of the

two other inputs.

Moreover, I tested different settings for the abundance of gate fuel molecules avail-

able at the beginning of each simulation. As the amount of available gate complexes

increases, the ability of the system to distinguish temporally correlated inputs also in-

creases. This shows that the performance of temporal correlation detection can be

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 130

increased at the cost of more fuel molecules, and thus longer simulation time.

1.0 1.2 1.4 1.6 1.8 2.0
β

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

No
rm

al
ise

d
H
3

10000 μμ
20000 μμ
30000 μμ

(a) Normalised H3.

1.0 1.2 1.4 1.6 1.8 2.0
β

0.01

0.02

0.03

0.04

In
de

x
of
 d
isp

er
sio

n

10000 μμ
20000 μμ
30000 μμ

(b) Index of dispersion.

Figure 49: (a) The normalised value of the uncorrelated weight H3 in a TC 2 task, and
(b) index of dispersion for the set of weights at the steady state as a function of the bolus
size β. The index of dispersion is a measure of diversity of the steady state weights,
thus it indicates how well the neuron is able to distinguish between input channels. This
means that an input stream with no bias would result in an index of dispersion ∼ 0.

One particularly useful feature of the DNA neuron model, which was not present

in any of the previous learning models in the DSD, such as Qian, Winfree and Bruck

(2011) or Genot, Fujii and Rondelez (2013), is that it can readjust its weights based

on the new learning episodes. Figures 50 and 51 show examples of such simulations.

Here, the neuron is first exposed to one type of bias, which subsequently changes after

t = 120000. In the case of frequency bias detection, firstly A1 comes at a higher

frequency than all other channels. Next, the bias embedded in the input stream changes

and the inputs from A3 become statistically overrepresented. After the next 120000s,

the neuron’s weights clearly reflect the new bias in the input data. Similarly, in the

case of learning temporal correlation, I initially enforce a temporal correlation between

inputs A1 and A2, where A2 comes after A1 with δ = 1. Next, at t = 120000 the bias is

changed, and a different temporal correlation is presented to the neuron: now the inputs

from A1 arrive at a fixed temporal interval after the inputs from A3. In both cases, the

weight distribution shifts in order to reflect the new kind of bias embedded in the input

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 131

data.

0 50000 100000 150000 200000
time

0

10

20

30

40

50

W
ei
gh
ts

H1
H2
H3

(a) Example of frequency bias learning with input statistics changing during the simulation

H1 H2 H3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ise

d
we

ig
ht
s

(b) Normalised weights at t=120000.

H1 H2 H3
0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ise

d
we

ig
ht
s

(c) Normalised weights at t=240000.

Figure 50: Example of a simulation where the statistical bias of the inputs changes
during the trial. The simulation starts with inputs having a statistical bias towards
inputs from A1, which arrive twice as frequently as the other channels. At t=120000
the statistics change and A3 becomes the statistically over-represented input channel.
The neuron’s weights reflect this change and the weight associated with the new biased
input channel increases.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 132

0 50000 100000 150000 200000
time

0

2

4

6

8

10

12

14

16

W
ei
gh
ts

H1
H2
H3

(a) Example of temporal correlation learning with input statistics changing during the simulation

H1 H2 H3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

al
ise

d
we

ig
ht
s

(b) Normalised weights at t=120000.

H1 H2 H3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
No

rm
al
ise

d
we

ig
ht
s

(c) Normalised weights at t=240000.

Figure 51: Example of a simulation where the statistical bias of the inputs changes
during the trial. The simulation starts with inputs having a temporal correlation between
inputs A1 and A2, where the inputs from A2 always arrive 1s after that of A1. After
120000s, the weight associated with the second input channel H2 is slightly higher
than H1, and both of them are significantly higher than H3. At t=120000 the statistics
change and a correlation between A1 and A3 is introduced, where the inputs from A1
always arrive 1s after that of A3. The neuron’s weights reflect this change at t=240000.
Now, the weight associated with the first input channel H1 is slightly higher than H3,
and both of them are significantly higher than H2.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 133

5.5 Novelty detection

The DNA neuron is able to learn statistical relationships between a number of input

channels. Crucially, this model is capable of readjusting its weights, and thus re-

learning these relationships when they change. One application of this is to use it

as a novelty detector, i.e. as a device that indicates that the statistics of the input has

changed. Crucially, a useful novelty detector should be as much as possible, insensitive

to the specific states of the system and only indicate changes of the state. To illustrate

this, consider the following example: If the system has been in state A for a long time,

then the novelty detector should be in its base state 0. If then, at some time t = T1

the system changes its state to B, then this should lead to the detector entering the

state 1 transiently, before relaxing back to its base state 0. If now, the system changes

again to a new state C, then again the detector should indicate this by going into state

1 transiently.

The basic idea of the novelty detector is that it indicates changes in the abundance

of B. The amount of B molecules in the system is maximal when the weights are

optimally adapted to the external inputs. Consequently, a sudden change of the external

input will lead to a drop of the concentration of B. However, in the context of DNA

computing, B itself cannot be used as an indicator, because it plays a crucial role in

the functioning of the neuron. Using it in a different set of reactions would lead to

interference. Hence, the novelty detector proposed here uses a proxy for B.

The input to the novelty detector is the two-domain strand <b tfafˆ> (AFw1).

This is a waste molecule produced as a side-product of the activation function reaction

depicted in Figure 45b. The production rate of AFw1 is therefore by construction ex-

actly the same as that of the state species B. When B becomes available they interact

with the JoinBFaf gate, and in turn the exact same amount of AFw1 is released. Since

AFw1 is a waste molecule which does not serve any purpose in the system, it can be

used to facilitate additional functions, such as the novelty detection. To this end, an ad-

ditional double-stranded DNA complex is introduced to the system: [b]{tfafˆ*}.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 134

This novelty reporter species Ra allows for the binding of AFw1 species.

I have previously demonstrated that the amount of B reaches the maximum value,

when the weights settle at the steady state. Knowing this value, from here on referred to

as [B]c, the same amount of the novelty reporter species is periodically injected into the

environment. This naturally requires pre-established knowledge about the nature of the

patterns presented to the neuron, which begs the question about the autonomy of this

approach. One way of solving this problem is to run the program twice. First, in order

to gather the statistics about the inputs, i.e. wait until the weights reach a homeostatic

state and measure the amount of B produced in response to the inputs ([B]c). Second

time, in order to detect any further changes to the input statistics, i.e. periodically inject

[B]c of reporter molecules to detect when the statistics of the inputs change.

The simulation starts with a temporally correlated inputs from A1 and A2, where

the inputs from A2 follow the ones from A1 in a close temporal proximity. Initially,

as the simulation begins, the amount of B produced is far lower than [B]c, and thus a

small amount of novelty reporters remain in the system. As the neuron learns and the

weights corresponding to the currently presented pattern reach the homeostatic state,

the discrepancy between the concentrations of B and the novelty reporter decreases.

Therefore, the amount of novelty reporter molecules stabilises, see fig. 52c.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 135

0 100000 200000 300000 400000
time

0.0

0.5

1.0

1.5

2.0

W
ei
gh

ts
H1
H2
H3
H4

(a) Synaptic weights - Hn

0 100000 200000 300000 400000
time

0

1

2

3

4

5

6

7

St
at
e

1e−5
B

(b) State of the neuron - B

0 100000 200000 300000 400000
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
ve

lty
 re

po
rte

r

Ra

(c) Novelty reporter - Ra

Figure 52: Novelty detection in a DNA neuron - Approach A. Here, the neuron is
presented with two types of temporally correlated patterns. After every 150000s the
pattern being presented changes. Even though the frequency of inputs remains the
same, the inputs which spike differ. This results in a decreased neuronal activation, and
different set of weights being promoted in the process of learning. Here, I demonstrate a
strategy for detecting such changes in the input stream. The number of times a change
in the input pattern has occurred can be deduced by observing the concentration of
novelty detector species.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 136

At t = 150000, the pattern presented to the neuron is changed to input from A3

proceeding the one from A4. Since the weights associated with the inputs constituting

this new pattern are low, the amount of B produced at each pattern presentation is

also lower than before. This results in a surplus of novelty reporter molecules, which

stabilise at a new higher level. This gives an indication of every subsequent presentation

of novel inputs to the neuron. Notably, after switching the patterns again, at t = 300000

the same behaviour repeats. Initially, the amount of B released in response to the

unfamiliar pattern is low. As the stimulation continues and the weights increase, the

amount of B stabilises at [B]c. On the contrary, the concentration of novelty detectors

increases again, and finds a new equilibrium. The results of this mechanism are read

out by measuring the average concentration of the reporter molecules, each increase in

the concentration of Ra indicates that the inputs currently presented to the neuron are

novel.

The second approach to novelty detection in a DNA neuron is based on a two-

domain DSD seesaw motif (see section 2.6.3). Similarly to the previous example,AFw1

molecules are employed for this task. Firstly, a translator complex is used to exchange

the <b tfafˆ> strand for another one with a different toehold domain which can be

chosen arbitrarily. This allows to customise the properties of the novelty detector. To

this end, a double stranded complex is added to the environment at the beginning of

the simulation: <t1ˆ>[b]{tfafˆ*} in a quantity of 500 µM . This complex allows

for binding of the AFw1 species and in response releases another two-domain single

stranded species: <t1ˆ b > (S).

This approach to novelty detection is based on the well-known seesaw gate motif

(Qian and Winfree 2011). The S molecules are used as an input species for the see-

saw gate. Additionally, S decays with a rate of σ, such that S tends to a steady state

determined by the abundance of B.

In order to implement the seesaw motif another type of double-stranded gate com-

plexes is added to the system in a quantity of 5 µM . This seesaw gate complex

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 137

(SeesawSR) has the following structure: {t1ˆ*}[b t2ˆ], and allows for binding

of one two-domain strand. When S strands bind to the gate complex, another two-

domain species is released: <b t2ˆ>, which will serve as a novelty reporter and will

be henceforth referred to as Rb.

Once the gate has produced an R molecule, its binding properties change and it

is able to consume R and release S. In that sense, the seesaw gate is reversible. As

a result, the input species of the seesaw gate S and the output species Rb are in a

constant competition for binding to the seesaw gate complex and a dynamic equilibrium

is found between the concentrations of R and S. Their binding properties, and thus the

equilibrium value, is defined by the nucleotide sequences of the toehold domains t1ˆ

and t2ˆ but also their abundances. Indirectly, this equilibrium also depends on the

concentration of B, which in turn changes the concentration of S and thus changes the

balance.

In the process of learning, the DNA neuron accumulates the weights and therefore

produces more B in response to the stimulus. When a novel pattern is being presented,

the production of B molecules temporarily decreases, as a result of the weights asso-

ciated with this input being low. As a result, the corresponding quantity of AFw1, and

therefore S also decreases. This means that the equilibrium between the S andRb needs

to change, as at that point the balance of their concentrations shifts. Therefore, the nov-

elty is read out by periodically measuring the concentration of Rb reporter molecules.

A drop in the average concentration of the molecular species Rb denotes a sudden de-

crease in the production of molecular species B (see fig. 53), and thus indicates that

statistically novel input is being received by the neuron.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 138

50000 100000 150000 200000 250000 300000 350000 400000
time

0.35

0.40

0.45

0.50

0.55

0.60

No
ve

lty
 re

po
rte

r
Rb

Figure 53: Novelty detection in a DNA neuron - Approach B. Here, the novelty is
indicated by a dip in the level of Rb. The inputs, and therefore the weights and the state
of the neuron remain the same as in fig. 52.

5.6 Tuneable activation function

The DNA neuron can be extended to implement activation functions with different

degrees of nonlinearity. This can be achieved by employing an extendible polymer

which can consume B and Em molecules, where m indicates the length of the polymer,

i.e. the number of B molecules which need to bind to it before the learning signal

species L is released. The other reactions - signal integration and signal modulation

remain the same as in the previously discussed DNA neuron model. The reactions

within this new version of the DNA neuron are tabulated in table 10 and the binding

parameters and the nucleotide sequences are shown in tables 11 and 12. See Appendix

G for details of the Visual DSD implementation.

The key difference in this version of the DNA neuron is a different design of the

activation function. The basic form of the activation function with m = 1 takes the

form: {tbˆ*}[b te0ˆ]:[b te1ˆ]. This complex allows for binding of B

molecules; this in turn exposes the te0 toehold which allows for binding of E0. When

E0 binds to the complex, it displaces a long domain b and releases the learning signal

L, which in the case of m = 1 is represented by three-domain species: <b te1ˆ

b>. This series of interactions implements an activation function with the minimal

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 139

Function Reaction

Signal integration Fsin + An −−⇀↽−− An + B
Weight accumulation An + L −−⇀↽−− L + Hn

Signal modulation An + Hn −−⇀↽−− Hn + B

B + E0 −−⇀↽−− E1

Activation function ...
B + Em – 1 −−⇀↽−− L

Table 10: List of reactions in a single DNA neuron with a tuneable activation function
implemented as a chemical reaction network.

Signal Species Toehold Bind Unbind

An ta 1 10
Hn th 0.001 10
B tb 1 10
Em tem 5 10
Fsi tfsi 1 10
Faf tfaf 1 10

Ism tism 1 10
Iaf tiaf 1 10
Isi tisi 1 10

Iwan itwan 1 10

Table 11: List of toehold domains and their respective binding and unbinding rates
in µMs−1 for the simulations carried out in the infinite compilation mode for a DNA
neuron with a tuneable activation function.

degree of nonlinearity. This means that a comparatively small amount ofB molecules is

needed to produce a learning signal. Therefore, the system does not promote temporal

correlations in its inputs, and thus is more sensitive to the frequency bias.

The DNA neuron can be tuned to exhibit varied sensitivity to frequency biases and

temporal correlations by controlling the degree of nonlinearity of the activation func-

tion. This can be achieved by extending the polymer with additional segment to accom-

modate for binding of more B and Em molecules. More precisely, this can be done by

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 140

Strand Sequence

<taˆ a1> GACA+ CCCTAAACTTATCTAAACAT
<taˆ a2> GACA+ CCCATTTCAAATCAAAACTT
<taˆ a3> GACA+ CCCATTACTAATCAATTCAA

<thˆ h1> CTCAG+ CCCTTTTCTAAACTAAACAA
<thˆ h2> CTCAG+ CCCTTATCATATCAATACAA
<thˆ h3> CTCAG+ CCCTTAACTTAACAAATCTA

<tbˆ b> ACTACAC + CCCAAAACAAAACAAAACAA
<te0ˆ b> CATCG+ CCCAAAACAAAACAAAACAA
<te1ˆ b> TACCAA+ CCCTTATCATATCAATACAA
<te2ˆ b> GTCA+ CCCTTATCATATCAATACAA
<te3ˆ b> GCTA+ CCCTTATCATATCAATACAA
<te4ˆ b> TATTCC + CCCTTATCATATCAATACAA
<te5ˆ b> CACACA+ CCCTTATCATATCAATACAA

<tfsiˆ fsi1> ACCT + CCCTATTCAATTCAAATCAA
<tfsiˆ fsi2> ACCT + CCCTATACTATACAATACTA
<tfsiˆ fsi3> ACCT + CCCTAATCTAATCATAACTA

<tisiˆ> TAGCCA
<tismˆ> CCCT
<tiwa1ˆ> CTCAATC
<tiwa2ˆ> CCTACG
<tiwa3ˆ> TCTCCA

<i> CCCTTTACATTACATAACAA

Table 12: List of the two-domain DNA strands and their respective nucleotide se-
quences in the DNA neuron with tuneable activation function.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 141

Figure 54: Diagram of the tuneable activation function for m = 2. The activation
function is implemented by a long polymer which accommodates for binding of B and
subsequent E molecules to its surface. These two species can bind to the polymer
in an alternating manner. So first the binding of B frees up a te0 toehold, next the
binding ofE1 frees up tb toehold etc. This allows for an implementation of a repetitive
extendible process which consumes B molecules. At the end of the process a three-
domain learning signal molecule L is produced. In the case of m = 2, this molecule
takes the form: <b te2ˆ b>. This mechanism is fully reversible, and thus once B
molecules are removed from the system the polymer relaxes back to its original state.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 142

Figure 55: Weight accumulation (m = 2): An + L −−→ L + Hn. The catalytic reaction
implementing the weight accumulation function is facilitated by a Join gate and a mod-
ified variant of the Fork gate. In this variation, the first reactant of the Join gate and the
first product of the Fork gate is now a three-domain species L. The initial Fork gate
complex now has a long domain b branching out of the double-stranded structure. This
modification is needed to ensure complementarity with the tuneable activation function.

adding subsequent segments [b tbˆ]:[b temˆ] to the polymer, wherem is the in-

dex of the next segment in the complex. This segments should be added before the last

fragment which contains L species: [b te1ˆ]. This way, the activation func-

tion with m = 1 takes the form: {tbˆ*}[b te0ˆ]:[b te1ˆ], with m = 2:

{tbˆ*}[b te0ˆ]:[b tbˆ]:[b te1ˆ]:[b te2ˆ], etc.

The different form of activation function also requires a modified weight accumu-

lation mechanism. In this variant, the first reactant of the Join gate and the first product

of the Fork gate now becomes a three-domain species L. The initial form of the Fork

gate complex now has a long domain b branching out of the double-stranded structure,

and takes the following form: [i]:[thˆ hn]:[te3ˆ b]{tiwanˆ*}, see

fig. 55. This modification is necessary in order to allow for L to catalyse the reaction.

In this variation of the system, the simulation starts with different amounts of gate

complexes and helper strands needed for the computation by both Join and Fork gates

depending on their function. Signal modulation fuel molecules are initiated at 25000

µM , signal integration at 50000 µM , and weight accumulation at 10000 µM . The fuel

molecules necessary for the signal integration mechanism: Fsin were initialised with

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 143

50000 µM . The simulation starts with a 10 µM of polymer molecules which facilitate

the activation function and each of Em molecules with 5 µM . Additionally 10 µM of

molecules with a spatial orientation opposite to each of Em are introduced. These two-

domain strands: <temˆ b>, are necessary in order to maintain desirable dynamics of

the activation function. Lastly, in all of the experiments the bolus size, i.e. the amount

of An species injected to the system at each spike, is set to β = 10 µM .

Another major difference in this version of the system is that E molecules (as well

as its equivalent here - L) are not removed from the system. Instead, the new de-

sign requires the removal of B molecular species. In an effort to implement depletion

of Hn and B species garbage collection molecules are introduced: {tbˆ*}[b] and

{thˆ*}[hn], which allow for irreversible binding of these molecules.

Extending this version of the DNA neuron to accommodate additional input chan-

nels requires the user to define a single new toehold domain definition tiwan, which

is responsible for weight accumulation in each of the N channels. Moreover, there are

six toehold domains that remain the same regardless of the number of input channels

(ta, th, tb, tfsi, tism, tisi). Therefore, the system with N = 3 input channels

requires 9 toehold definitions (6 +N). The recognition of the inputs strands, as well as

all other two-domain strands in the system, is based on the long domains. There are two

long domains which remain the same regardless of the number of channels (b, i), and

three which need to be defined when adding another input channel (an, hn, fsin).

Therefore, the system with N = 3 input channels requires 11 long domain definitions

(2 + 3N). Additionally, depending on the length of the polymer which facilitates the

activation function there are at least two additional toehold domains required, i.e. for

m = 1 te0 and te1. When the system is extended to accommodate for more non-

linear activation functions it requires an addition of new toeholds domains: te2 for

m = 2, te3 for m = 3, and so on.

Figures 56 and 57 show that this version of the DNA neuron exhibits similar dy-

namics to the original system.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 144

0 2500 5000 7500 10000 12500 15000 17500 20000
0.00

0.02

0.04

0.06

0.08

0.10
B

0 2500 5000 7500 10000 12500 15000 17500 20000
time

A1
A2
A3

In
pu

ts

(a) Internal state (B) as a function of Hn.

10 20 30 40 50 60
H

0.20

0.22

0.24

0.26

0.28

0.30

L

(b) Learning signal (L) as a function of Hn.

Figure 56: The internal state and activation of the DNA neuron withm = 1 as a function
of differently weighted inputs (same as in fig. 44). (a) 10 µM of An molecules are
injected to the system at t = 100, 300, and 500. Each channel has a different amount
of H molecules associated with it: H1 = 10, H2 = 30, and H3 = 50. This has the
effect that the conversion of A1 is slower than that of A2, which is in turn slower than
the conversion of A3. (b) The influence of inputs on the concentration of L species as
a function of its weight (H). The DNA neuron shows a different amount of activation
given inputs from differently weighted channels. Additionally, a constant decay of Hn

and B species is implemented with rate constants kH = 0.00002 and kB = 2.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 145

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

10

20

30

40
W
ei
gh

ts
H1
H2
H3

0.0 0.2 0.4 0.6 0.8 1.0
time 1e6

A1
A2
A3

In
pu

ts

(a) Example of frequency bias learning

(m = 1).

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

5

10

15

W
ei
gh

ts

H1
H2
H3

0.0 0.2 0.4 0.6 0.8 1.0
time 1e6

A1
A2
A3

In
pu

ts

(b) Example of temporal correlation learning

(m = 3).

H1 H2 H3
0.20

0.25

0.30

0.35

0.40

0.45

0.50

Av
er
ag

e
no

rm
al
ise

d
we

ig
ht
s

(c) Average weights for frequency bias

(m = 1).

H1 H2 H3

0.26

0.28

0.30

0.32

0.34

0.36
Av

er
ag

e
no

rm
al
ise

d
we

ig
ht
s

(d) Average weights for temporal correlation

(m = 3).

Figure 57: Examples of learning episodes for (b) frequency bias task, and (a) temporal
correlation task. Normalised weights in the steady state for input data with (d) fre-
quency bias, and (c) temporal correlation. The values represent averages over 200000s
of stimulation, and were only collected once the system reached a homeostatic state
(after 800000s). We then repeat each experiment 10 times, and calculate the statis-
tics. We define the temporal correlation as pairing of inputs from channels A1 and A2.
The inputs from A1 always precede that of the A2 with a fixed temporal distance δ.
We can see that the steady state abundances of channel specific Hn molecules reflect
the temporal order of the inputs provided. Moreover, the input channel that spiked in
an asynchronous way (A3) accumulated lower weights than the temporally correlated
channels. In the frequency bias experiment we assume A1 to come at frequency twice
as high as that of the two other input channels. The system learns by accumulating
steady state abundances of weight molecules Hn for each channel. After training, the
weights of the channels with a high input frequency will be high, whereas the ones less
likely to spike are on a similar low level.

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 146

1 2 3 4 5
nonlinearity (m)

0.20

0.25

0.30

0.35

0.40

0.45
No

rm
al
ise

d
we

ig
ht
s

H1
H2
H3

(a) FB + TC

1 2 3 4 5
nonlinearity (m)

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

al
ise

d
we

ig
ht
s

H1
H2
H3

(b) TC

Figure 58: Normalised steady state weights as a function of the length of the activation
function polymer. As the polymer is extended, the activation function becomes steeper
and therefore requires a correlation of at least two signals to trigger learning. Therefore,
the ability of the DNA neuron to recognise temporal correlations increases when m is
high.

The ability of the DNA neuron to distinguish the two types of bias was tested on the

task where A2 is temporally correlated with A1, and A3 has a spiking frequency twice

as high as the other input channels. In this experiment, A2 always spikes 10s after A1,

i.e. δ = 10. Both of the correlated channels spike with a frequency of 0.0001Hz, while

the third input channel A3 spikes with a frequency of 0.0002Hz.

Figure 58a shows the normalised steady state weights for 5 different systems with

m = 1, 2, 3, 4, 5. The DNA neuron with a modified activation function is sensitive

to frequency bias when the nonlinearity is low, i.e. m = 1. As a result, the weights

corresponding to A3 are high. In the case of high nonlinearity, the neuron promotes

temporally correlated inputs, and thus the weights associated withA1 andA2 are higher.

This shows that as the length of the polymer is increased, the neuron produces less

activation in response to individual spikes and becomes more sensitive to the temporally

correlated inputs. This is consistent with the previous findings discussed in Chapter 4.

Figure 58b shows the same graph, but for a modified experiment where temporal

correlation between inputs A1 and A2 was enforced, and A3 fires at the same rate as the

other two input channels. Noticeably, the system still works (i.e. differentiates between

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 147

uncorrelated and correlated inputs) even for the lowest degree of nonlinearity in the

activation function. The ability to distinguish the two types of signal further increases

when m > 1.

Lastly, the DNA neuron was tested on the tasks previously performed by the CN

and compartmentalised CN models (see figs. 31 and 42 respectively). Figure 59 shows

that the DNA neuron with tuneable activation function indeed can solve a variety of TC

and FB tasks to a high degree of accuracy. In order to better understand the relationship

of the CN model proposed in Chapter 4 with the DNA neuron, the performance of both

models was contrasted on a range of different tasks, see Appendix E.

FB 2 FB 3 FB 4 TC 2 TC 3 TC 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o

rm
a

li
s
e

d
 w

e
ig

h
ts

a

t
s
te

a
d

y
 s

ta
te

H1 H2 H3 H4 H5

Figure 59: Normalised weights for a variety of TC and FB tasks. The first (blue) bar
refers to the first weight, the second (orange) to the weight for the second channel
and so on (same as fig. 31, but for the DNA neuron). Each value represents the average
over 200000 time units of a single simulation. Data was only collected after the weights
reached the steady state (after 800000 time units). The non-linearity was set to m = 5
for the TC, and m = 1 for the FB tasks.

5.7 Chapter summary

In this chapter, I proposed a design for the first DNA-based model capable of au-

tonomous learning of spatio-temporal patterns. The system replicates the behaviour of

a spiking neuron with STDP. Through extensive simulations, I have demonstrated that

it can detect both frequency biases and temporal correlations. Other useful functions

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 148

of this approach include: scalability to an arbitrary number of input channels, being

able to readjust its weights once the input statistics change, and novelty detection, i.e.

indication of when a change in input statistics has occurred.

This model meets all necessary criteria for being considered autonomous (see sec-

tion 4.1). This design is an implementation of the previously discussed chemical neuron

(see Chapter 4), however it provides a concrete framework for successful implementa-

tion in a wet laboratory. This model inherits the key feature of the CN, in that it is

autonomous. Both the learning algorithm and the neuronal functions are implemented

within the model itself. The DNA neuron is built using a well established and ex-

perimentally proven design motif of two-domain DNA strand displacement (Cardelli

2010). This framework promises to provide building blocks for implementations which

are efficient and free of cross-talk. Moreover, it has been used to recreate other molec-

ular circuits described as chemical reaction networks (Chen et al. 2013), and therefore

offers a plausible strategy for physical realisation in laboratory.

The advantage of employing DNA circuits over GRNs is that the former are much

easier to program and synthesise, and they also have a much reduced propensity to

engage in cross-talk. A disadvantage, however, is that the DNA circuits need to inter-

face with the in vivo target systems. How to do this in a general way remains an open

question, but there have been a number of previous systems that demonstrated how

this can be done (Groves et al. 2015; Oesinghaus and Simmel 2019; Jung and Elling-

ton 2014). One example of such interface can be the work of Douglas, Bachelet and

Church (2012) who proposed a design for an autonomous DNA nanorobot capable of

transporting molecular payloads to cells. This system is capable of detecting certain

cues related to the cell surface and translate them into DNA-based signals.

The DNA neuron has a few crucial differences when compared to the CN (see Chap-

ter 4). Unlike the CN, the basic DNA-based model can be built using four main catalytic

reactions, each implemented using a combination of two-domain Join and Fork gates.

Moreover, the DNA system requires several types of fuel molecules in order to drive

CHAPTER 5. NEURAL MODELLING IN DNA-STRAND DISPLACEMENT 149

the reactions. The sealed variant of the gates was used in order to avoid rebinding of

the products, and thus making the reactions unidirectional. A significant aspect of the

neuron’s biochemical implementation was a customisable activation function, which

allows the user to control the degree of nonlinearity of the activation function. In most

spiking neuron models, this would ideally be a step-function. In molecular systems,

this cannot be realised directly. Usually, it is instead approximated by Hill enzyme ki-

netics. In section 5.6, I have demonstrated how more nonlinear activation functions can

be implemented in the DNA-strand displacement. Extendible polymers which allow

for several B molecules to bind to a single long DNA complex were shown to be able

to approximate such Hill dynamics. This extension allows the DNA neuron to put more

emphasis on learning of the temporal patterns, and ignore the ones which spike more

frequently but in an uncorrelated manner.

Chapter 6

Conclusions

6.1 Thesis summary

This thesis aimed to investigate the possible directions towards modelling autonomous

neuromorphic systems and find possible substrates for biological implementation.

In the first research chapter of this thesis, I have investigated the necessary com-

ponents for multi-pattern classification in spiking neurons. I proposed an alternative

neuronal model - GNM, which can perform the same task as the MST and vastly sim-

plify the computation. The GNM proved to be on par with other neuron models, such

as LIF and MST, when trained using the aggregate-label learning algorithm. I have also

examined the possibility of implementing this neuronal model in a molecular setup by

interpreting the continuous time differential equation model as a chemical reaction net-

work. Lastly, I demonstrated how the synaptic weights can be encoded as reaction

rate constants between certain molecular species, thus making the first step towards

biochemically implementable neuromorphic systems.

The investigation from Chapter 3 led to the introduction of the chemical neuron:

a network of chemical reactions which incorporates both learning and classification

mechanisms in a single system. I proposed a biochemically consistent model for a

150

CHAPTER 6. CONCLUSIONS 151

spiking neuron, and demonstrated that it is capable of performing simple tasks previ-

ously shown to be realisable in synthetic biology - associative learning, as well as more

complex tasks including full Hebbian learning of spatio-temporal inputs. Additionally,

an alternative version of the system was presented, which is constructed using estab-

lished biochemical motifs. This model lends itself to an interpretation as an artificial

single-celled organism.

In search for a suitable substrate for biochemical implementation of autonomous

neuromorphic learning systems, I investigated the usefulness of DNA-based computa-

tion. The main contribution of Chapter 5 was the model of the DNA neuron, which

is the first fully autonomous learning system built entirely with two-domain DNA-

strand displacement reactions. Moreover, it is also the first model which allows to

learn the statistics of spike-based inputs in DNA. Importantly, employing the frame-

work of DNA-strand displacement allowed for constructing a system which could be

realistically synthesised in a wet laboratory.

6.2 Discussion

Compared to the rate-coded neuron models, such as the perceptron, spiking neurons are

more closely related to the realistic biological neuronal systems (Brette 2015). They are

also proven to be computationally more powerful (Maass 1997). The spiking neurons

distinguish signals based on their temporal arrangement, hence allow for more precise

signal filtering and more energy efficient computation. These promising findings led

to the development of a field centred around designing mathematical models which

could closely mimic the functions exhibited by real neurons in the brain. However, it

is still an open question whether all of these functions are relevant, and at what level

of abstraction should these systems be analysed. As a result, over the years researchers

have proposed multiple vastly different neuromorphic models of neuronal systems.

There are many different elements which may need to be taken into consideration

CHAPTER 6. CONCLUSIONS 152

when designing a spiking neuron. These may include neuronal functions such as refrac-

tory period, post-spike membrane reset, or discrete spiking. Nevertheless, not all of the

previously published neuromorphic models possess all of these features. For example,

the Izhikevich neuron (Izhikevich 2003) closely mimics realistic dynamic behaviour of

biological neurons and populations of such neurons can reproduce well-known firing

patterns present in the brain. On the other hand, models like the multi-spike tempotron

(Gütig 2016) offer a powerful framework for learning multi-class stimuli, however they

are also internally complex and do not include a hard post-spike reset and refractori-

ness.

This observation raises the question of what are the essential elements which a

biologically inspired neuron model needs to possess in order to be considered “neu-

romorphic”. Some would argue that the models should be judged according to their

“biological plausibility”, since the word neuromorphic derives from the words neuro -

related to the nervous system, and morphic - having the form or structure. However,

this word typically refers to the systems which can be implemented on neuromorphic

hardware. This special type of computational devices allow for more efficient simula-

tion of spiking neurons, compared to standard digital computers. Importantly, some of

the spiking neuron models, such as LIF, are more suitable for simulation on analog ver-

sions of such computational devices. On the other hand, more complex models, such as

multi-spike tempotron, offer an improved potential for solving difficult computational

tasks, such as multi-class learning in a single neuron. However, due to their internal

complexity, they are computationally expensive and difficult to implement outside of

digital computers.

A reasonable question to ask is whether this internal complexity of models like MST

is indeed necessary. As shown in Chapter 3, the MST model can be vastly simplified,

while still retaining its ability to compute. Importantly, the spikiness has been shown to

be unnecessary (given that discrete threshold crossing events can still be registered by

an outside observer). The GNM models which have the lowest degree of nonlinearity

CHAPTER 6. CONCLUSIONS 153

(i.e. η = 0) were revealed to perform equally well or better than more complex GNM’s

with η > 0. This investigation has shown that the degree of temporal autocorrelation

of the membrane potential is a key parameter for learning in aggregate-label fashion,

and hysteretic post-spike reset of the membrane potential is redundant. This is an unex-

pected discovery, since the sensitivity to threshold and the post-spike reset are typically

present in the spiking neuron models.

The notion of biological plausibility frequently appears in the neuromorphic lit-

erature. However, it is often ill-defined and vague. As pointed out before, different

neuronal models offer certain subsets of the properties of the real neurons. One such ex-

ample could be absolute refractory period, which completely disables the neuron from

integrating the inputs for a period of time after an output spike was elicited. While it is

useful in certain tasks involving larger neuronal networks, it also seems to damage the

neurons ability to compute in multi-spike aggregate-label learning tasks (see fig. 16).

The investigation conducted in this thesis has shown, that it is detrimental especially

in the case when the neuron is supposed to release multiple spikes in a close temporal

proximity. Even though the refractoriness has been observed in real neuronal circuits,

it is unclear whether it serves a particular role or is a side effect of resource limitations

in this particular implementation.

In the first research chapter of this thesis, after first establishing what are the nec-

essary components for spiking neuron computation and designing the initial model for

approximating neuronal models in chemical reaction networks, it became clear that

there is a gap in understanding of neuronal systems on the abstract mathematical level

and in terms of their actual biochemical implementation in the brain.

In an effort to replicate neuromorphic functions in synthetic biological systems,

first it is necessary to understand all requirements for such implementation. A partic-

ular challenge in designing these systems, before they can be useful, turns out to be

endowing them with autonomy. For the purposes of this thesis, I have established a

list of necessary conditions for the system to be autonomous: (i) The learning needs

CHAPTER 6. CONCLUSIONS 154

to be unsupervised, since providing feedback would require an external agent. (ii) The

learning algorithm needs to be internal to the system itself. This means that the sim-

ulation cannot be stopped to perform weight adjustment. (iii) The storage of synaptic

weights cannot rely on external storage. They need to be represented internally by the

system. (iv) Signal modulation also needs to be implemented internally. There needs

to be a mechanism in place which allows the weights to scale the impact of their re-

spective inputs on the state of the neuron. Meeting all of these criteria is a difficult

challenge, however I have demonstrated that a neuromorphic learning system which

fulfils these requirements can be designed as a chemical reaction network. The one

particularly troublesome requirement is the need for implementing the learning algo-

rithm within the chemical reaction network. The supervised aggregate-label learning

framework used to train the MST requires an entire history of pre-synaptic inputs in

order to calculate the weight updates. This method necessitates keeping track of the

eligibility traces for each of the input channels. Moreover, the simulation needs to be

stopped after each trial in order to adjust the synaptic efficacies. Similarly for unsuper-

vised learning, such as STDP, it is assumed that an external observer applies a learning

algorithm when a neuron fires, and readjust the synaptic weights based on the history of

pre-synaptic inputs. While this is trivial to implement in digital computers, it becomes

much more difficult when implemented in biology.

In the biological neural circuits, the learning is attributed to the intracellular calcium

signals, which are sensitive to the coincidence of pre and post-synaptic activity through

the voltage dependence of synaptic N-methyl-D-aspartate (NMDA) receptors. It is well

established that the induction of long-term synaptic changes requires these calcium sig-

nals to reach a specific plasticity induction thresholds. Gütig (2016) uses this biological

mechanism to justify his correlation-based learning framework. His simplified version

assumes selecting the 10% most eligible synapses to undergo depression or potentia-

tion. On the other hand, this mechanism is often also attributed to the unsupervised

STDP learning, where the synaptic weight update size is determined by the fraction

CHAPTER 6. CONCLUSIONS 155

of NMDA receptors open at the time of input spike. This shows that while we have

some understanding of the mechanism which underpin the learning in the real neuronal

circuits, there is still some uncertainty in how is it implemented on the chemical level

of abstraction.

Spiking neurons are capable of detecting two types of biases embedded within the

input data streams. Firstly, they are specifically designed to detect temporal correla-

tions. The temporal nature of integration kernels, allows these neurons to accumulate

information about the incoming signals through time. Therefore, two inputs have a

greater probability of activating the neuron when they occur in close temporal proxim-

ity. Secondly, the channels which are more likely to produce the input spikes compared

to the other channels are also promoted. This is because they have a greater proba-

bility to coincide with the other inputs, and therefore cause activation. In principle,

all of the tasks that the SNNs perform are in fact a combination of these two types

of biases. Examining the neurons ability to detect these biases separately has shown

that there exists an optimal degree of nonlinearity in activation function which allows

for detecting them. The higher nonlinearity is needed for a better recognition of tem-

poral correlations, while the frequency bias can be detected by a very simple models

with no activation whatsoever (see section 4.2). This means that for biochemical mod-

els, such as CN, there is an optimal chemical composition for detecting different types

of biases in the environment. The additional reactions, of course come at the cost of

higher energy consumption (see fig. 39). Simpler models, while retaining some abil-

ity to recognise temporal correlations between inputs, lose the ability to provide more

diverse sets of weights.

In order to synthesise such a system in a laboratory, it is first necessary to iden-

tify a suitable and reliable substrate for this type of computation. The DNA-strand

displacement framework has emerged as a promising alternative to previously popu-

lar gene regulatory networks. This is mainly due to the fact that the simulation can

closely approximate the behaviour of real DNA circuits. Another reason is the lack of

CHAPTER 6. CONCLUSIONS 156

some problems common to the GRNs, such as cross-talk and non-specific binding be-

tween the biochemical molecules. The DNA neuron, which realises the simplest case of

minimal nonlinearity, has been shown to be sufficient to realise both temporal and fre-

quency bias learning. Additionally, the DNA neuron can be extended to accommodate

for more nonlinear activation functions, and thus improve its ability to detect temporal

correlations.

While the DNA neuron model is autonomous and minimally complex, it also lacks

certain features which would make it easily deployable in biological contexts. Most no-

tably, it assumes that the input signals are two-domain DNA strands. While interesting

in itself, mechanisms allowing to interface with biological cues which are not in a form

of DNA would be needed to fully explore the potential of this model. This aspect still

remains an open question, but there have been a number of previous systems that in-

dicate possible pathways (Groves et al. 2015; Oesinghaus and Simmel 2019; Jung and

Ellington 2014). For example, Douglas, Bachelet and Church (2012) demonstrated that

it is possible to build an autonomous DNA nanorobot capable of transporting molecular

payloads to cells. The system is endowed with an ability to sense cell surface inputs for

conditional activation. This kind of nanorobots can be loaded with a variety of materi-

als, for example antibody fragments. This device is controlled by an aptamer-encoded

logic gate, which allows it to respond to different environmental cues. Endowing such

a system with additional computational capabilities beyond logic gates, for example

detecting temporally correlated cues, could make it even more flexible and capable of

reacting to more complex stimuli. The DNA neuron could in theory be used as a detec-

tion layer for this type of DNA-based devices.

Implementable learning system which could interact with arbitrary biochemical sig-

nals could be put into practical use in a range of useful tasks. One example of such a

use case would be intelligent drug delivery based on changing conditions inside of the

living organism. Theoretically, such a machine could be used to deliver medicine at

precise times when the concentration of a certain chemical in the organism reaches a

CHAPTER 6. CONCLUSIONS 157

threshold level. Other examples could be environmental sensing or automated produc-

tion of medicine, both of which require a high degree of control and could benefit from

autonomous detection of environmental cues.

6.3 Future work

This thesis demonstrated several novel contributions to neuronal modelling and build-

ing intelligent systems in the context of synthetic biology. Nevertheless, during this in-

vestigation several shortcomings as well as possible extensions were identified. These

topics were considered outside of the scope of this thesis, and left for future researchers

to investigate. In the following sections I am going to discuss some of these ideas.

6.3.1 Backpropagation for networks of GNM

In section 3.7.2, I have proposed a framework for multi-layered learning in the networks

of GNMs. This approach was able to learn on par with other neuronal models and

other training approaches. Nevertheless, the advantage of using a greater number of

neurons wasn’t clear enough (see fig. 19). In order to validate this approach it would

be beneficial to conduct more in-depth analysis of the underlying algorithm and test it

on more complex datasets, such as classification of MNIST handwritten digits (LeCun

and Cortes 2010).

6.3.2 Building networks of CN

In this thesis, the research has mainly focused on the modelling of individual neurons

in the context of synthetic biology. Nevertheless, building functional networks out of

these chemical processing units remains a challenge. In particular, these systems are

unsupervised, while deep neural networks are typically trained in a supervised way.

Another issue could be an immediate and fixed amount of inputs which needs to be

injected to the post-synaptic neurons in the next layer of the network. This feature

CHAPTER 6. CONCLUSIONS 158

would need to be facilitated by a separate biochemical mechanism, which would allow

for a controlled released of the precursor molecules I to the hidden units in the network.

6.3.3 Wet-lab implementation of DNA neuron

While the DNA neuron proposed in Chapter 5 promises a model which could real-

istically be synthesised in a laboratory, a number of caveats and potential challenges

remain:

• The proposed system is a two-domain DSD design. It assumes that all species

which facilitate computation, as well as the inputs are such two-domain DNA

strands. The signals in the real world would not necessarily be DNA strands of

this kind. Therefore, in order to perform its function, the DNA neuron requires

an additional system which could interface with non-DNA cues in the environ-

ment. How to do this, however, remains an open question, and still has not been

answered in other experimental work.

• In order to scale the system to accommodate for more input channels additional

short domain sequences need to be defined for each new channel. Therefore, the

scaling of the DNA neuron is limited by the availability of orthogonal short do-

main sequences. This suggests that there exists a theoretical hard limit for the

number of channels which could be modelled. One solution to the limitation of

toeholds could be a redesign based on localised design principles, i.e. physical

separation introduced between the channels. A similar case of compartmentali-

sation has been shown to be feasible in DSD systems by Chatterjee et al. (2017).

• A particular limitation of the DNA computing is that the underlying nucleotide

sequences may undergo unforeseen interactions. The toeholds may bind erro-

neously or form unintended complexes (Berleant et al. 2018), which may be dif-

ficult to predict and account for from the domain-level perspective. Therefore, it

CHAPTER 6. CONCLUSIONS 159

would be useful to conduct a nucleotide sequence level analysis. This way, such

interactions could be avoided, or at least the error rate could be estimated.

• Describing the model as a neuron encourages the question of building networks

of these units. Such networks could carry out more complex computational tasks.

A major obstacle in building networks of DNA neurons could be the immediate

injection of A species to the post-synaptic neuron. This would necessitate a re-

thinking of how the activation function is implemented. Nevertheless, the use

of long polymers could be a potential answer to this challenge. Incorporating

a buffered design of a long polymer, could allow for a programmed release of

a certain number of input species, once the activation signal is produced (Lakin

et al. 2012).

6.4 Publications

The list of publications by the author relevant to the thesis:

• Fil J., Dalchau N., Chu D.; Autonomous unsupervised learning for a spiking

neuron implemented in DNA strand displacement reactions. 27th International

Conference on DNA Computing and Molecular Programming. September 2021

• Fil J., Chu D.; Minimal Spiking Neuron for Solving Multilabel Classification

Tasks. Neural Computation 2020; 32 (7): 1408–1429. July 2020

Appendix A

ϑ∗ gradient

The second learning algorithm proposed by Gütig (2016), after the correlation based

aggregate-label learning, requires the calculation of the gradient ∇wϑ
∗ of threshold

allowing for a certain neural response. This is done in two steps. After each iteration,

when the neuron is exposed to the stimuli, the error is calculated. Firstly, in order

to narrow down the range of possible answers (the recursive operations used in the

second step can be computationally expensive), interval halving is used until an extra

spike is produced, with upper bound being the threshold which gives k − 1 spikes, and

lower bounds corresponding to ϑ which results in k spikes. In the second step ϑ∗k is

determined numerically by finding the root of expression [ϑ− νmax(ϑ)], where νmax(ϑ)

corresponds to the maximum sub-threshold membrane potential value. The membrane

potential equation for the multi-spike tempotron (Eq. 25) with the threshold set to a

critical spike threshold ϑ∗, can be rewritten as:

V (t) = Vo(t)− ϑ∗
∑
tfj<t

exp
−t− tfj

τm

 (41)

where function Vo is equivalent to the voltage equation for the leaky integrate-and

160

APPENDIX A. ϑ∗ GRADIENT 161

fire neuron with no post-spike reset:

Vo(t) =
N∑
i=1

wi
∑
tfi <t

K(t− tfi) (42)

It is assumed that for each ϑ∗ there is a unique t∗ such that:

ϑ∗ = V (t∗) = Vo(t∗)− ϑ∗
m∑
f=1

exp
−t∗ − tfj

τm

where m denotes the number of output spikes produced before t∗, and tfj < t∗ for

f ∈ {1, ...,m}.

Since the membrane potential is being reset every time it reaches the threshold, all

output spike times tfj and t∗ should satisfy:

ϑ∗ = V (t∗) = V (tfj)

Hence for each afferent i ∈ {1, ..., N}:

ϑ∗i
′ ≡ d

dwi
ϑ∗ = d

dwi
V (t∗) = d

dwi
V (tfj) (43)

where ϑ∗i
′ denotes the ith component of the desired gradient. The expression ϑ∗

depends on the synaptic weights, and its derivative with respect to wi is:

ϑ∗i
′ = ∂

∂wi
V (t∗) +

m∑
f=1

∂

∂tfj
V (t∗) d

dwi
tfj (44)

Note that the last term in the derivative: ∂
∂wi

V (t∗) d
dwi
t∗ = 0 was dropped as V (t∗)

is a local maximum with ∂V (t∗)/∂t∗ = 0. Similarly, for every k ∈ {1, ...,m}:

d

dwi
tkj = ∂

∂wi
V (tkj) +

k∑
f=1

∂

∂tfj
V (tkj)

d

dwi
tfj (45)

APPENDIX A. ϑ∗ GRADIENT 162

From which the following can be obtained:

d

dwi
tkj = 1

V̇ (tkj)

ϑ∗i ′ − ∂

∂wi
V (tkj)−

k−1∑
j=1

∂

∂tfj
V (tkj)

d

dwi
tfj

 (46)

where the time derivatives are:

V̇
(
tkj
)
≡ ∂

∂t
V (t)

∣∣∣∣∣
t=tkj

(47)

Eq. 44 can be solved for ϑ∗i
′ by refactoring Eq. 46 into the following form:

d

dwi
tkj = 1

V̇ (tkj)
[ϑ∗iAk +Bk] (48)

Here Ak and Bk are recursive equations:

Ak = 1−
k−1∑
f=1

Aj

V̇ (tfj)
∂

∂tfj
V (tkj) (49)

and

Bk = − ∂

∂wi
V (tkj)−

k−1∑
f=1

Bj

V̇ (tfj)
− ∂

∂tfj
V (tkj) (50)

At time t∗, these two can be reformulated as:

A∗ = 1−
m∑
j=1

Aj

V̇ (tfj)
∂

∂tfj
V (t∗) (51)

and

B∗ = − ∂

∂wi
V (t∗)−

m∑
j=1

Bj

V̇ (tfj)
− ∂

∂tfj
V (t∗) (52)

Now, ϑ∗i
′ can be calculated by inserting Eq. 48 into Eq. 44, which yields:

ϑ∗i
′ = −B∗

A∗
(53)

APPENDIX A. ϑ∗ GRADIENT 163

In order to calculate B∗ and A∗, all times at which membrane potential reaches

the threshold need to be considered: tx ∈ {t1j , t2j ..., tmj , t∗}. At every spike time the

membrane voltage equation can be reduced to:

V (tx) = Vo(tx)
Ctx

(54)

where

Ctx ≡ 1 +
∑
tfj <tx

exp
−tx − tfj

τm

 (55)

This gives the following derivatives:

∂

∂wi
V (t∗) = 1

Ctx

∂

∂wi
Vo(tx) = 1

Ctx

∑
tfi <tx

K(tx − tfi) (56)

∂

∂tkj
V (tx) = −Vo(tx)

C2
tx

exp(− tx−tfj
τm

)
τm

for tkj < tx (57)

V̇ (tx) = 1
C2
tx

Ctx ∂

∂tx
Vo(tx) + Vo(tx)

τm

∑
tfj<tx

exp
−tx − tfj

τm

 (58)

Appendix B

Examples of GNM dynamics.

(a) η = 0.8 (b) η = 0.6

(c) η = 0.4 (d) η = 0.2

Figure 60: GNM dynamics for varied η and other parameters set in the following way:
α = 0.05, β = 0.05 and h = 100. Here, the GNM is presented with one sub-threshold
(t = 0) and one super-threshold input (t = 150). Increasing the “spikiness” param-
eter η results in a more pronounced reaction to the membrane potential crossing the
behavioural threshold ϑB.

164

Appendix C

GNM noisy residuals for two and four

input patterns.

(a) Two classes of patterns (b) Four classes of patterns

Figure 61: Noisy performance residuals for learning of two and four spatio-temporal
patterns in the GNM, for the same setup as in fig. 15.

165

Appendix D

Detailed compilation mode in DSD

0 20000 40000 60000 80000 100000 120000
0.0

2.5

5.0

7.5

10.0

W
ei
gh

ts

H1
H2
H3

0 20000 40000 60000 80000 100000 120000
time

A1
A2
A3

In
pu

ts

(a) Example of temporal correlation learning.

0 20000 40000 60000 80000 100000 120000

0

5

10

W
e
ig
h
ts

H1

H2

H3

0 20000 40000 60000 80000 100000 120000

t ime

A1

A2

A3

In
p
u
ts

(b) Example of frequency bias learning.

Figure 62: Example learning episode for (a) temporal correlation task, and (b) fre-
quency bias task simulated using a detailed compilation mode of Visual DSD. The
detailed mode is the most realistic setting, which assumes that binding, unbinding and
branch migration have finite rates.

166

Appendix E

Performance of the CN and DNA

neuron

When using the CN to detect a FB, the difference between the steady state weight

abundances will reflect the difference of the frequencies with which the input channels

fired, although the exact relationship between the two is not immediately clear. In order

to understand this better, I considered a CN with three input channels. The frequency

of channel 1 was varied while keeping the input frequency to channel 2 fixed. I then

recorded the ratio w1/w2 as a function of f1/f2. Figure 63a shows that the weight ratio

was proportional to the frequency ratio. While it remains unclear to what extent this

qualitative result generalises to more complicated cases, it is apparent that CN is able

to detect very small biases, albeit with a correspondingly small output signal strength.

An equivalent analysis was also conducted for the TC task. Here, I varied the proba-

bility of an input spike in channel 1 being followed by an input spike in channel 2, while

keeping the total frequency of all input channels constant. So, for example, a probabil-

ity of 0.5 means that on average every second input spike of channel 1 is followed by

an input spike of channel 2 after a delay of δ and half of the input spikes of channel 2

occur at random times. Again, figure 63b shows that even for small probabilities, there

is a reliable difference in weights between the first and the second channel.

167

APPENDIX E. PERFORMANCE OF THE CN AND DNA NEURON 168

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Frequency ratio

1.0

1.5

2.0

2.5

3.0

W
ei
gh

t r
at
io

CN
d-CN

(a)

0.2 0.4 0.6 0.8 1.0
Probability of temporal correlation

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

W
ei
gh

t r
at
io

CN
d-CN

(b)

Figure 63: The responses of the CN and DNA neuron, as measured by the ratio of
the first and the second channel weight, as a function of the signal strength. (a) We
kept the frequency of the first channel fixed at 1 Hz and decreased the frequency of the
second channel. The non-linearity was set to m = 1. (b) Both input channels have
the same frequency of 1 Hz, but we varied the probability that an output spike of the
second channel follows an input to channel 1. For both models the nonlinearity was set
to m = 5.

Appendix F

Specification for the DNA neuron

This appendix contains the Visual DSD specification code for simulating the DNA

neuron (as described in section 5.3).

1 directive rendering {classic = {mode = nucleotides}}

2 directive simulator deterministic

3 directive deterministic {stiff=true}

4 directive units{concentration=uM}

5 directive compilation infinite

6 directive parameters [Ain = 1; Ni = 10000.0; NiSI = 10000.0;

7 NiAF = 10000.0; NdegE = 12; NdegH = 0.1; Hs = 0;

8 kdegE = 0.1; kdegH = 0.00002]

9

10 //// Toehold domain reactivity

11 dom ta = {bind=0.01; unbind=10; colour="green"} // Inputs

12 dom th = {bind=0.01; unbind=10; colour="orange"} // Weights

13 dom tb = {bind=1; unbind=10; colour="#00fbff"} // State

14 dom te = {bind=0.05; unbind=10; colour="#eb34e8"} // Activation

15 dom tfsi = {bind=1; unbind=10; colour="black"} // Fuel for SI

16 dom tfaf = {bind=1; unbind=10; colour="#05f796"} // Fuel for AF

17 //// Translator toeholds reactivity

169

APPENDIX F. SPECIFICATION FOR THE DNA NEURON 170

18 dom tiwa1 = {bind=1; unbind=10; colour="#ffe000"} // WA1

19 dom tiwa2 = {bind=1; unbind=10; colour="#ffe000"} // WA2

20 dom tiwa3 = {bind=1; unbind=10; colour="#ffe000"} // WA3

21 dom tism = {bind=1; unbind=10; colour="blue"} // SM

22 dom tisi = {bind=1; unbind=10; colour="red"} // SI

23 dom tiaf = {bind=1; unbind=10; colour="#b9bdbb"} // AF

24

25 //// Inputs

26 def A1() = <taˆ a1>

27 def A2() = <taˆ a2>

28 def A3() = <taˆ a3>

29 //// Weights

30 def H1() = <thˆ h1>

31 def H2() = <thˆ h2>

32 def H3() = <thˆ h3>

33 //// State

34 def B() = <tbˆ b>

35 //// Activation

36 def E() = <teˆ e>

37 //// Join gate (R1 + R2 <-> T)

38 def Join(ta, a, tb, b, tr) = {taˆ*}[a tbˆ]:[b trˆ]:[i]

39 //// Fork gate (T <-> P1 + P2)

40 def Fork(ta, a, tb, b, tr) = [i]:[taˆ a]:[tbˆ b]{trˆ*}

41 //// Decay modules

42 def degE() = {teˆ*}[e] // E removal

43 def degH1() = {thˆ*}[h1] // H1 removal

44 def degH2() = {thˆ*}[h2] // H2 removal

45 def degH3() = {thˆ*}[h3] // H3 removal

46

47 //// Weight accumulation: An + E <-> E + Hn

APPENDIX F. SPECIFICATION FOR THE DNA NEURON 171

48 def WA_fuel(an, hn, tiwan) =

49 (Ni Join(ta, an, te, e, tiwan)

50 | Ni Fork(th, hn, te, e, tiwan)

51 | Ni <hn teˆ>

52 | Ni <i thˆ>

53 | Ni <tiwanˆ i>

54)

55 //// Signal modulation: An + Hn <-> Hn + B

56 def SM_fuel(an, hn) =

57 (Ni Join(ta, an, th, hn, tism)

58 | Ni Fork(tb, b, th, hn, tism)

59 | Ni <b thˆ>

60 | Ni <i tbˆ>

61 | Ni <tismˆ i>

62)

63 //// Signal integration: I + An <-> An + B

64 def SI_fuel(in, an) =

65 (NiSI Join(tfsi, in, ta, an, tisi)

66 | NiSI Fork(tb, b, ta, an, tisi)

67 | NiSI <b taˆ>

68 | NiSI <tfsiˆ in>

69 | Ni <i tbˆ>

70 | Ni <tisiˆ i>

71)

72 //// Activation function: Faf + B <-> Faf + E

73 def AF() =

74 (Ni Join(tb, b, tfaf, ib, tiaf)

75 | Ni Fork(te, e, tfaf, ib, tiaf)

76 | Ni <e tfafˆ>

77 | Ni <tfafˆ ib>

APPENDIX F. SPECIFICATION FOR THE DNA NEURON 172

78 | NiAF <i teˆ>

79 | NiAF <tiafˆ i>

80)

81

82 //// Fuels N=1

83 (SM_fuel(a1, h1)

84 | SI_fuel(i1, a1)

85 | WA_fuel(a1, h1, tiwa1)

86 //// Fuels N=2

87 | SM_fuel(a2, h2)

88 | SI_fuel(i2, a2)

89 | WA_fuel(a2, h2, tiwa2)

90 //// Fuels N=3

91 | SM_fuel(a3, h3)

92 | SI_fuel(i3, a3)

93 | WA_fuel(a3, h3, tiwa3)

94 //// Fuels Activation function

95 | AF()

96)

Appendix G

Specification for the DNA neuron - B

This appendix contains the Visual DSD specification code for simulating the DNA

neuron with a tuneable activation function (as described in section 5.6).

1 directive simulation {final=20000; plots=[E0(); B(); L();

H1(); H2(); H3(); A1(); A2(); A3()]}

2

3 directive simulator deterministic

4 directive deterministic {stiff=true}

5 directive units{concentration=uM}

6 directive compilation infinite

7 directive parameters [bOUT=2; Ein=5; AFgateIn=10; backIn=10;

rateb=1; tedeg=1; t1b_deg =0.1; NovelB1=10; Ain = 10; SMFin

= 0.5; WAFin = 0.5; SIFin = 0.5; AFFin=1; NdegE = 0; NdegH

= 0.05; Hs = 0; kdegB = 0.1; kdegE = 0.1; kdegH = 0.000005]

8

9 //// Toehold domain reactivity

10 dom ta = {bind=1; unbind=10; colour="green"} // Inputs

11 dom th = {bind=0.001; unbind=10; colour="orange"} // Weights

12 dom tb = {bind=1; unbind=10; colour="#00fbff"} // State

13

173

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 174

14 dom te0 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

15 dom te1 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

16 dom te2 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

17 dom te3 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

18 dom te4 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

19 dom te5 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

20

21 dom tfsi = {bind=1; unbind=10; colour="black"} // Fuel for SI

22 //// Translator toeholds reactivity

23 dom tiwa1 = {bind=1; unbind=10; colour="#ffe000"} // WA1

24 dom tiwa2 = {bind=1; unbind=10; colour="#ffe000"} // WA2

25 dom tiwa3 = {bind=1; unbind=10; colour="#ffe000"} // WA3

26

27 dom tism = {bind=1; unbind=10; colour="blue"} // SM

28 dom tisi = {bind=1; unbind=10; colour="red"} // SI

29

30 //// Inputs

31 def A1() = <taˆ a1>

32 def A2() = <taˆ a2>

33 def A3() = <taˆ a3>

34 //// Weights

35 def H1() = <thˆ h1>

36 def H2() = <thˆ h2>

37 def H3() = <thˆ h3>

38 //// State

39 def B() = <tbˆ b>

40 //// Activation

41 def E0() = <te0ˆ b>

42 def E1() = <te1ˆ b>

43 def E2() = <te2ˆ b>

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 175

44 def E3() = <te3ˆ b>

45 def E4() = <te4ˆ b>

46

47 //def L() = <b te1ˆ b>

48 //def L() = <b te2ˆ b>

49 //def L() = <b te3ˆ b>

50 //def L() = <b te4ˆ b>

51 def L() = <b te5ˆ b>

52

53 def nE0() = <b te0ˆ>

54 def nE1() = <b te1ˆ>

55 def nE2() = <b te2ˆ>

56 def nE3() = <b te3ˆ>

57 def nE4() = <b te4ˆ>

58

59 def nB() = <b tbˆ>

60

61 //// Join gate (R1 + R2 <-> T)

62 def Join(ta, a, tb, b, tr) = {taˆ*}[a tbˆ]:[b trˆ]:[i]

63 //// Fork gate (T <-> P1 + P2)

64 def Fork(ta, a, tb, b, tr) = [i]:[taˆ a]:[tbˆ b]{trˆ*}

65 def Fork_WA(ta, a, tb, b, tr) = [i]:[taˆ a]:[tbˆ b]{trˆ*}

66 //// Decay modules

67 def degB() = {tbˆ*}[b] // B removal

68 def degH1() = {thˆ*}[h1] // H1 removal

69 def degH2() = {thˆ*}[h2] // H2 removal

70 def degH3() = {thˆ*}[h3] // H3 removal

71

72 //// Weight accumulation: An + Ex <-> Ex + Hn (OLD) mx

73 def WA_fuel_mx(an, hn, tiwan, fuel, time) =

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 176

74 (fuel Join(ta, an, te5, b, tiwan) @ time

75 | fuel Fork_WA(th, hn, te5, b, tiwan) @ time

76 | fuel <hn te5ˆ> @ time

77 | fuel <i thˆ> @ time

78 | fuel <tiwanˆ i> @ time

79)

80

81 //// Signal modulation: An + Hn <-> Hn + B

82 def SM_fuel(an, hn, fuel, time) =

83 (fuel Join(ta, an, th, hn, tism) @ time

84 | fuel Fork(tb, b, th, hn, tism) @ time

85 | fuel <b thˆ> @ time

86 | fuel <i tbˆ> @ time

87 | fuel <tismˆ i> @ time

88)

89 //// Signal integration: I + An <-> An + B - OLD

90 def SI_fuel(in, an, fuel, time) =

91 (fuel Join(tfsi, in, ta, an, tisi) @ time

92 | fuel Fork(tb, b, ta, an, tisi) @ time

93 | fuel <b taˆ> @ time

94 | fuel <tfsiˆ in> @ time

95 | fuel <i tbˆ> @ time

96 | fuel <tisiˆ i> @ time

97)

98

99 //// Activation function: B + E -> L (m=5)

100 def AF_newE_5(fuel_gate, time) =

101 (fuel_gate {tbˆ*}[b te0ˆ]:[b tbˆ]:[b te1ˆ]:[b tbˆ]:[b

te2ˆ]:[b tbˆ]:[b te3ˆ]:[b tbˆ]:[b te4ˆ]:[b te5ˆ] @ time

102)

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 177

103

104 //// Activation function: B + E -> L (m=4)

105 def AF_newE_4(fuel_gate, time) =

106 (fuel_gate {tbˆ*}[b te0ˆ]:[b tbˆ]:[b te1ˆ]:[b tbˆ]:[b

te2ˆ]:[b tbˆ]:[b te3ˆ]:[b te4ˆ] @ time

107)

108

109 //// Activation function: B + E -> L (m=3)

110 def AF_newE_3(fuel_gate, time) =

111 (fuel_gate {tbˆ*}[b te0ˆ]:[b tbˆ]:[b te1ˆ]:[b tbˆ]:[b

te2ˆ]:[b te3ˆ] @ time

112)

113

114 //// Activation function: B + E -> L (m=2)

115 def AF_newE_2(fuel_gate, time) =

116 (fuel_gate {tbˆ*}[b te0ˆ]:[b tbˆ]:[b te1ˆ]:[b te2ˆ] @ time

117)

118

119 //// Activation function: B + E -> L (m=1)

120 def AF_newE_1(fuel_gate, time) =

121 (fuel_gate {tbˆ*}[b te0ˆ]:[b te1ˆ] @ time

122)

123

124 //// Short example of randomly generated input with frequency

bias

125 def TemporalCorrelationDetection() =

126 (0 B() | B() ->{bOUT}

127 | Ein E0()

128 | Ein E1()

129 | Ein E2()

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 178

130 | Ein E3()

131 | Ein E4()

132

133 | 0 H1() | H1() ->{kdegH}

134 | 0 H2() | H2() ->{kdegH}

135 | 0 H3() | H3() ->{kdegH}

136

137 | backIn nE0()

138 | backIn nE1()

139 | backIn nE2()

140 | backIn nE3()

141 | backIn nE4()

142

143 | backIn nB()

144 | 0 L()

145 | AF_newE_5(AFgateIn, 0)

146

147 | SM_fuel(a1, h1, 25000, 0)

148 | SI_fuel(i1, a1, 80000, 0)

149 | WA_fuel_mx(a1, h1, tiwa1, 10000, 0)

150

151 | SM_fuel(a2, h2, 25000, 0)

152 | SI_fuel(i2, a2, 80000, 0)

153 | WA_fuel_mx(a2, h2, tiwa2, 10000, 0)

154

155 | SM_fuel(a3, h3, 25000, 0)

156 | SI_fuel(i3, a3, 80000, 0)

157 | WA_fuel_mx(a3, h3, tiwa3, 10000, 0)

158

159 | Ain A1() @ 5623

APPENDIX G. SPECIFICATION FOR THE DNA NEURON - B 179

160 | Ain A2() @ 5633

161 | Ain A1() @ 8318

162 | Ain A2() @ 8328

163 | Ain A1() @ 12691

164 | Ain A2() @ 12701

165 | Ain A3() @ 13335

166 | Ain A1() @ 16757

167 | Ain A2() @ 16767

168)

169

170 // Input signals

171 (TemporalCorrelationDetection()

172)

Bibliography

Abbott, L., DePasquale, B. and Memmesheimer, R.-M. (2016). Building functional

networks of spiking model neurons. Nature Neuroscience, 19, pp. 350–355.

Adamatzky, A., Fullarton, C., Phillips, N., De Lacy Costello, B. and C. Draper, T.

(2019). Thermal switch of oscillation frequency in belousov–zhabotinsky liquid mar-

bles. Royal Society Open Science, 6(4), p. 190078.

Alon, U. (2019). An Introduction to Systems Biology: Design Principles of Biological

Circuits. Chapman & Hall/CRC Computational Biology Series, CRC Press LLC.

Alon, U., Surette, M. G., Barkai, N. and Leibler, S. (1999). Robustness in bacterial

chemotaxis. Nature, 397(6715), pp. 168–171.

Amos, M. (2004). Cellular Computing. Oxford University Press.

Antebi, Y. E. et al. (2017). Combinatorial signal perception in the bmp pathway. Cell,

170(6), p. 1184—1196.e24.

Ausländer, S., Wieland, M. and Fussenegger, M. (2012). Smart medication through

combination of synthetic biology and cell microencapsulation. Metabolic Engineer-

ing, 14(3), pp. 252–260, synthetic Biology: New Methodologies and Applications

for Metabolic Engineering.

Badelt, S. et al. (2020). A domain-level dna strand displacement reaction enumerator

180

BIBLIOGRAPHY 181

allowing arbitrary non-pseudoknotted secondary structures. Journal of The Royal

Society Interface, 17(167), p. 20190866.

Banda, P., Teuscher, C. and Stefanovic, D. (2014). Training an asymmetric signal per-

ceptron through reinforcement in an artificial chemistry. Journal of The Royal Society

Interface, 11(93), p. 20131100.

Bennett, C. H. (1982). The thermodynamics of computation—a review. International

Journal of Theoretical Physics, 21(12), pp. 905–940.

Berleant, J. et al. (2018). Automated sequence-level analysis of kinet-

ics and thermodynamics for domain-level dna strand-displacement sys-

tems. Journal of The Royal Society Interface, 15(149), p. 20180107,

https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.

2018.0107.

Blair, H. A. (1932). On the intensity-time relations for stimulation by electric currents.

Journal of General Physiology, 15(6), pp. 709–729, https://rupress.org/

jgp/article-pdf/15/6/709/1234679/709.pdf.

Blount, D., Banda, P., Teuscher, C. and Stefanovic, D. (2017). Feedforward chemical

neural network: An in silico chemical system that learns xor. Artificial Life, 23(3),

pp. 295–317.

Bray, D. (2003). Molecular networks: the top-down view. Science, 301 5641, pp. 1864–

5.

Brette, R. (2015). Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of

the Brain. Frontiers in Systems Neuroscience, 9(November), pp. 1–14.

Brown, T. B. et al. (2020). Language models are few-shot learners. 2005.14165.

Brunel, N. and van Rossum, M. (2007). Lapicque’s 1907 paper: from frogs to integrate-

and-fire. Biological Cybernetics, 97(5), pp. 337–339.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2018.0107
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2018.0107
https://rupress.org/jgp/article-pdf/15/6/709/1234679/709.pdf
https://rupress.org/jgp/article-pdf/15/6/709/1234679/709.pdf
2005.14165

BIBLIOGRAPHY 182

Cardelli, L. (2010). Two-domain DNA strand displacement. In S. B. Cooper, P. Panan-

gaden and E. Kashefi, eds., Proceedings Sixth Workshop on Developments in Com-

putational Models: Causality, Computation, and Physics, DCM 2010, Edinburgh,

Scotland, 9-10th July 2010, EPTCS, vol. 26, pp. 47–61.

Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. and Seelig, G. (2017). A spa-

tially localized architecture for fast and modular dna computing. Nature Nanotech-

nology, 12(9), p. 920.

Chen, M. and Xu, J. (2015). Construction of a genetic conditional learning system in

escherichia coli. Science China Information Sciences, 58(11), pp. 1–6.

Chen, Y.-J. et al. (2013). Programmable chemical controllers made from dna. Nature

Nanotechnology, 8(10), p. 755–762.

Cherry, K. M. and Qian, L. (2018). Scaling up molecular pattern recognition with dna-

based winner-take-all neural networks. Nature, 559(7714), pp. 370–376.

Chu, D. (2017). Limited by sensing - a minimal stochastic model of the lag-phase

during diauxic growth. Journal of Theoretical Biology, 414, pp. 137–146.

Chu, D. (2018). Performance limits and trade-offs in entropy-driven biochemical com-

puters. Journal of Theoretical Biology, 443, pp. 1–9.

Chu, D. and Barnes, D. (2016). The lag-phase during diauxic growth is a trade-off

between fast adaptation and high growth rate. Scientific Reports, 6, p. 25191.

Chu, D., Zabet, N. and Mitavskiy, B. (2009). Models of transcription factor binding:

Sensitivity of activation functions to model assumptions. Journal of Theoretical Bi-

ology, 257(3), pp. 419 – 429.

Dalchau, N. et al. (2018). Computing with biological switches and clocks. Natural

Computing, 17(4), pp. 761–779.

BIBLIOGRAPHY 183

Davies, M. et al. (2018). Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning. IEEE Micro, 38(1), pp. 82–99.

DeBole, M. V. et al. (2019). Truenorth: Accelerating from zero to 64 million neurons

in 10 years. Computer, 52(5), pp. 20–29.

Douglas, S. M., Bachelet, I. and Church, G. M. (2012). A logic-gated nanorobot for

targeted transport of molecular payloads. Science, 335(6070), pp. 831–834.

Fanselow, M. and Poulos, A. (2005). The neuroscience of mammalian associative

learning. Annual Review of Psychology, 56(1), pp. 207–234, pMID: 15709934,

https://doi.org/10.1146/annurev.psych.56.091103.070213.

Fedus, W., Zoph, B. and Shazeer, N. (2021). Switch transformers: Scaling to trillion

parameter models with simple and efficient sparsity. 2101.03961.

Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75(4), pp.

556–571.

Fernando, C. et al. (2009). Molecular circuits for associative learning in single-celled

organisms. Journal of The Royal Society Interface, 6(October 2008), pp. 463–469.

Fil, J. and Chu, D. (2020). Minimal spiking neuron for solving multilabel classification

tasks. Neural Computation, 32(7), pp. 1408–1429.

Florian, R. V. (2012). The chronotron: A neuron that learns to fire temporally precise

spike patterns. PLoS ONE, 7(8).

Fontana, W. (2006). Pulling strings. Science, 314(5805), pp. 1552–1553, https://

science.sciencemag.org/content/314/5805/1552.full.pdf.

Furber, S. and Bogdan, P. (2020). SpiNNaker: A Spiking Neural Network Architecture.

Genot, A., Fujii, T. and Rondelez, Y. (2013). Scaling down dna circuits with competi-

tive neural networks. Journal of The Royal Society Interface, 10.

https://doi.org/10.1146/annurev.psych.56.091103.070213
2101.03961
https://science.sciencemag.org/content/314/5805/1552.full.pdf
https://science.sciencemag.org/content/314/5805/1552.full.pdf

BIBLIOGRAPHY 184

Gerstner, W. and Kistler, W. M. (2002a). Mathematical formulations of hebbian learn-

ing. Biological Cybernetics, 87(5-6), pp. 404–415.

Gerstner, W. and Kistler, W. M. (2002b). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press.

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of Computational Physics, 22(4),

pp. 403–434.

Goldt, S. and Seifert, U. (2017). Stochastic thermodynamics of learning. Physical Re-

view Letters, 118(1).

Govern, C. and ten Wolde, P. (2014a). Energy dissipation and noise correlations in

biochemical sensing. Physical Review Letters, 113(25), p. 258102.

Govern, C. and ten Wolde, P. R. (2014b). Optimal resource allocation in cellular sensing

systems. PNAS, 111(49), pp. 17486–17491.

Grah, R. and Friedlander, T. (2020). The relation between crosstalk and gene regulation

form revisited. PLOS Computational Biology, 16(2), pp. 1–24.

Grant, P. K. et al. (2016). Orthogonal intercellular signaling for programmed spatial

behavior. Molecular systems biology, 12(1), p. 849.

Groves, B. et al. (2015). Computing in mammalian cells with nucleic acid strand ex-

change. Nature Nanotechnology, 11(3), pp. 287–294.

Gütig, R. (2014). To spike, or when to spike? Current Opinion in Neurobiology, 25,

pp. 134–139.

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label

learning. Science, 351(6277), pp. aab4113–aab4113.

BIBLIOGRAPHY 185

Gütig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nature Neuroscience, 9(3), pp. 420–428.

Hasler, J. and Marr, H. (2013). Finding a roadmap to achieve large neuromorphic hard-

ware systems. Frontiers in Neuroscience, 7, p. 118.

Hebb, D. O. (1950). The organization of behavior: A neuropsychological theory.

Science Education, 34(5), pp. 336–337, https://onlinelibrary.wiley.

com/doi/pdf/10.1002/sce.37303405110.

Hertz, J., Krogh, A. and Palmer, R. (1991). Introduction To The Theory Of Neural

Computation, vol. 44.

Hjelmfelt, A., Weinberger, E. D. and Ross, J. (1991). Chemical implementation of

neural networks and turing machines. Proceedings of the National Academy of

Sciences, 88(24), pp. 10983–10987, https://www.pnas.org/content/88/

24/10983.full.pdf.

Hjelmfelt, A., Weinberger, E. D. and Ross, J. (1992). Chemical implementation of

finite-state machines. Proceedings of the National Academy of Sciences, 89(1), pp.

383–387, https://www.pnas.org/content/89/1/383.full.pdf.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve. The Journal of Physi-

ology, 117(4), p. 500–544.

Hoffer, S. M., Westerhoff, H. V., Hellingwerf, K. J., Postma, P. W. and Tommassen, J.

(2001). Autoamplification of a two-component regulatory system results in ”learn-

ing” behavior. Journal of bacteriology, 183(16), p. 4914—4917.

Höppner, S. et al. (2021). The spinnaker 2 processing element architecture for hybrid

digital neuromorphic computing. 2103.08392.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sce.37303405110
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sce.37303405110
https://www.pnas.org/content/88/24/10983.full.pdf
https://www.pnas.org/content/88/24/10983.full.pdf
https://www.pnas.org/content/89/1/383.full.pdf
2103.08392

BIBLIOGRAPHY 186

Indiveri, G. et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in Neuro-

science, 5, p. 73.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on

Neural Networks, 14(6), p. 1569–1572.

Johansson, R. and Birznieks, I. (2004). First spikes in ensembles of human tactile af-

ferents code complex spatial fingertip events. Nature Neuroscience, 7, pp. 170–177.

Jolivet, R., J., T. and Gerstner, W. (2003). The spike response model: A framework to

predict neuronal spike trains. In O. Kaynak, E. Alpaydin, E. Oja and L. Xu, eds.,

Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP

2003, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 846–853.

Jung, C. and Ellington, A. D. (2014). Diagnostic applications of nucleic acid circuits.

Accounts of Chemical Research, 47(6), pp. 1825–1835.

Khan, M. et al. (2008). Spinnaker: Mapping neural networks onto a massively-parallel

chip multiprocessor. In Proceedings of the International Joint Conference on Neu-

ral Networks—Proc Int Jt Conf Neural Networks, United States: IEEE Computer

Society, pp. 2849–2856, 2008 International Joint Conference on Neural Networks,

IJCNN 2008 ; Conference date: 01-07-2008.

Lakin, M., Youssef, S., Polo, F., Emmott, S. and Phillips, A. (2011). Visual dsd: a de-

sign and analysis tool for dna strand displacement systems. Bioinformatics (Oxford,

England), 27(22), pp. 3211–3213.

Lakin, M. R. and Stefanovic, D. (2016). Supervised learning in adaptive dna strand

displacement networks. ACS Synthetic Biology, 5(8), pp. 885–897.

Lakin, M. R., Youssef, S., Cardelli, L. and Phillips, A. (2012). Abstrac-

tions for dna circuit design. Journal of The Royal Society Interface, 9(68),

BIBLIOGRAPHY 187

pp. 470–486, https://royalsocietypublishing.org/doi/pdf/10.

1098/rsif.2011.0343.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Li, X. et al. (2021). Synthetic neural-like computing in microbial consortia for pattern

recognition. Nature Communications, 12(1), p. 3139.

Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT Nu-

merical Mathematics, 16(2), pp. 146–160.

Maass, W. (1996). Lower Bounds for the Computational Power of Networks of Spiking

Neurons. Neural Computation, 40, pp. 1–40.

Maass, W. (1997). Networks of spiking neurons: The third generation of neural network

models. Neural Networks, 10(9), p. 1659–1671.

Macia, J. and Sole, R. (2014). How to make a synthetic multicellular computer. PLOS

ONE, 9(2), pp. 1–13.

Macia, J., Vidiella, B. and Solé, R. V. (2017a). Synthetic associative learning in en-

gineered multicellular consortia. Journal of The Royal Society Interface, 14(129),

p. 20170158, https://royalsocietypublishing.org/doi/pdf/10.

1098/rsif.2017.0158.

Macia, J., Vidiella, B. and Solé, R. V. (2017b). Synthetic associative learning in engi-

neered multicellular consortia. Journal of The Royal Society Interface, 14(129), p.

20170158.

McGregor, S., Vasas, V., Husbands, P. and Fernando, C. (2012). Evolution of associa-

tive learning in chemical networks. PLoS Computational Biology, 8(11).

Memmesheimer, R. M., Rubin, R., Ölveczky, B. P. and Sompolinsky, H. (2014). Learn-

ing Precisely Timed Spikes. Neuron, 82(4), pp. 925–938.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2011.0343
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2011.0343
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0158
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0158

BIBLIOGRAPHY 188

Mermillod, M., Bugaiska, A. and Bonin, P. (2013). The stability-plasticity dilemma:

investigating the continuum from catastrophic forgetting to age-limited learning ef-

fects. Frontiers in Psychology, 4.

Mohemmed, A., Schliebs, S., Matsuda, S. and Kasabov, N. (2012). Span: Spike Pat-

tern Association Neuron for Learning Spatio-Temporal Spike Patterns. International

Journal of Neural Systems, 22(04), p. 1250012.

Moorman, A., Samaniego, C. C., Maley, C. and Weiss, R. (2019). A dynamical

biomolecular neural network. In 2019 IEEE 58th Conference on Decision and Con-

trol (CDC), pp. 1797–1802.

Neftci, E. O., Mostafa, H. and Zenke, F. (2019). Surrogate Gradient Learning in Spiking

Neural Networks, pp. 1–21. arXiv:1901.09948v1.

Nesbeth, D. N. et al. (2016). Synthetic biology routes to bio-artificial intelligence. Es-

says in Biochemistry, 60(4), pp. 381–391.

Oesinghaus, L. and Simmel, F. C. (2019). Switching the activity of cas12a using guide

RNA strand displacement circuits. Nature Communications, 10(1).

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology, 15(3), pp. 267–273.

Okamoto, M. and Hayashi, K. (1983). Optimal control mode of a biochemical feedback

system. Biosystems, 16(3), pp. 315 – 321.

Okamoto, M., Sakai, T. and Hayashi, K. (1987). Switching mechanism of a cyclic

enzyme system: role as a ”chemical diode”. Bio Systems, 21(1), p. 1—11.

Okamoto, M., Sakai, T. and Hayashi, K. (1988). Biochemical switching device realiz-

ing mcculloch-pitts type equation. Biol Cybern, 58(5), p. 296–299.

arXiv:1901.09948v1

BIBLIOGRAPHY 189

Plana, L. A. et al. (2020). spinnlink: Fpga-based interconnect for the million-core spin-

naker system. IEEE Access, 8, pp. 84918–84928.

Ponulak, F. (2005). ReSuMe-new supervised learning method for Spiking Neural Net-

works. Inst Control Information Engineering, Poznan Univ, 22(2), pp. 467–510.

Qian, L. and Winfree, E. (2011). Scaling up digital circuit computation with dna strand

displacement cascades. Science, 332(6034), pp. 1196–1201.

Qian, L., Winfree, E. and Bruck, J. (2011). Neural network computation with dna strand

displacement cascades. Nature, 475(7356), pp. 368–372.

Racovita, A. and Jaramillo, A. (2020). Reinforcement learning in synthetic gene cir-

cuits. Biochemical Society Transactions, 48(4), pp. 1637–1643.

Rhodes, O. et al. (2020). Real-time cortical simulation on neuromorphic

hardware. Philosophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, 378(2164), p. 20190160,

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.

2019.0160.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65 6, pp. 386–408.

Rudchenko, M. et al. (2013). Autonomous molecular cascades for evaluation of cell

surfaces. Nature Nanotechnology, 8(8), pp. 580–586.

Rumelhart, D., Hinton, G. E. and Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323, pp. 533–536.

Samaniego, C. C., Moorman, A., Giordano, G. and Franco, E. (2020). Signaling-based

neural networks for cellular computation. bioRxiv.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0160
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0160

BIBLIOGRAPHY 190

Schliebs, S. and Kasabov, N. (2014). Computational Modeling with Spiking Neural

Networks, Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 625–646.

Schneiker, S. et al. (2006). Genome sequence of the ubiquitous hydrocarbon-degrading

marine bacterium alcanivorax borkumensis. Nature Biotechnology, 24(8), pp. 997–

1004.

Seelig, G., Soloveichik, D., Zhang, D. Y. and Winfree, E. (2006). Enzyme-free nu-

cleic acid logic circuits. Science, 314(5805), pp. 1585–1588, https://science.

sciencemag.org/content/314/5805/1585.full.pdf.

Seifert, U. (2005). Entropy production along a stochastic trajectory and an integral

fluctuation theorem. Physical Review Letters, 95(4).

Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular ma-

chines. Reports on Progress in Physics, 75(12), p. 126001.

Shirakawa, T. and Sato, H. (2013). Construction of a molecular learning network. Jour-

nal of Advanced Computational Intelligence and Intelligent Informatics, 17(6), pp.

913–918.

Soloveichik, D., Seelig, G. and Winfree, E. (2010). Dna as a universal sub-

strate for chemical kinetics. Proceedings of the National Academy of Sci-

ences, 107(12), pp. 5393–5398, https://www.pnas.org/content/107/

12/5393.full.pdf.

Tavanaei, A. and Maida, A. S. (2017). BP-STDP: approximating backpropagation using

spike timing dependent plasticity. CoRR, abs/1711.04214, 1711.04214.

Taylor, M. (1973). The problem of stimulus structure in the behavioural theory of

perception. South African journal of psychology = Suid-Afrikaanse tydskrif vir

sielkunde, 3, pp. 23–45.

https://science.sciencemag.org/content/314/5805/1585.full.pdf
https://science.sciencemag.org/content/314/5805/1585.full.pdf
https://www.pnas.org/content/107/12/5393.full.pdf
https://www.pnas.org/content/107/12/5393.full.pdf
1711.04214

BIBLIOGRAPHY 191

Tomé, T. and de Oliveira, M. (2018). Stochastic thermodynamics and entropy produc-

tion of chemical reaction systems. The Journal of Chemical Physics, 148(22), p.

224104.

Trappenberg, T. (2010). Fundamentals of Computational Neuroscience. OUP Oxford.

Trosset, J.-Y. and Carbonell, P. (2015). Synthetic biology for pharmaceutical drug dis-

covery. Drug design, development and therapy, 9, pp. 6285–6302.

Valadez-Godı́nez, S., Sossa, H. and Santiago-Montero, R. (2020). On the accuracy and

computational cost of spiking neuron implementation. Neural Networks, 122, pp.

196 – 217.

Walters, E. T., Carew, T. J. and Kandel, E. R. (1979). Classical conditioning in aplysia

californica. Proceedings of the National Academy of Sciences, 76(12), pp. 6675–

6679, https://www.pnas.org/content/76/12/6675.full.pdf.

Wang, Y.-H., Wei, K. Y. and Smolke, C. D. (2013). Synthetic biology: advancing the

design of diverse genetic systems. Annual review of chemical and biomolecular en-

gineering, 4, pp. 69–102.

Watson, J. D. and Crick, F. H. C. (1953). Molecular structure of nucleic acids: A struc-

ture for deoxyribose nucleic acid. Nature, 171(4356), pp. 737–738.

Wunderlich, T. et al. (2019). Demonstrating advantages of neuromorphic computation:

A pilot study. Frontiers in Neuroscience, 13, p. 260.

Wunderlich, T. C. and Pehle, C. (2021). Event-based backpropagation can compute

exact gradients for spiking neural networks. Scientific Reports, 11(1), p. 12829.

Xu, X. et al. (2021). 11 tops photonic convolutional accelerator for optical neural net-

works. Nature, 589(7840), pp. 44–51.

https://www.pnas.org/content/76/12/6675.full.pdf

BIBLIOGRAPHY 192

Yi, T.-M., Huang, Y., Simon, M. I. and Doyle, J. (2000). Robust perfect adaptation

in bacterial chemotaxis through integral feedback control. Proceedings of the Na-

tional Academy of Sciences, 97(9), pp. 4649–4653, https://www.pnas.org/

content/97/9/4649.full.pdf.

Yu, Q., Tang, H., Tan, K. C. and Li, H. (2013). Precise-Spike-Driven synaptic plasticity:

Learning hetero-association of spatiotemporal spike patterns. PLoS ONE, 8(11), pp.

1–16.

Yubero, P. and Poyatos, J. F. (2020). The impact of global transcriptional regulation on

bacterial gene order. iScience, 23(4), pp. 101029–101029.

Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. and Neumann, J. L. (2000). A

dna-fuelled molecular machine made of dna. Nature, 406(6796), pp. 605–608.

Zhang, D. Y. and Winfree, E. (2009). Control of dna strand displacement kinetics using

toehold exchange. Journal of the American Chemical Society, 131(47), pp. 17303–

17314.

Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. and Poo, M.-m. (1998). A critical

window for cooperation and competition among developing retinotectal synapses.

Nature, 395(6697), pp. 37–44.

https://www.pnas.org/content/97/9/4649.full.pdf
https://www.pnas.org/content/97/9/4649.full.pdf

