
Svensson, Bo Joel, Vollmer, Michael, Holk, Eric, McDonell, Trevor L. and
Newton, Ryan R. (2015) Converting data-parallelism to task-parallelism
by rewrites: purely functional programs across multiple GPUs. In: FHPC
2015: Proceedings of the 4th ACM SIGPLAN Workshop on Functional High-Performance
Computing. . pp. 12-22.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/95507/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2808091.2808093

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/95507/
https://doi.org/10.1145/2808091.2808093
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Converting Data-Parallelism to Task-Parallelism by Rewrites
Purely Functional Programs across Multiple GPUs

Bo Joel Svensson Michael Vollmer Eric Holk Trevor L. McDonell Ryan R. Newton
Indiana University, USA

{joelsven,vollmerm,eholk,mcdonelt,rrnewton}@indiana.edu

Abstract
High-level domain-specific languages for array processing on the
GPU are increasingly common, but they typically only run on a
single GPU. As computational power is distributed across more
devices, languages must target multiple devices simultaneously. To
this end, we present a compositional translation that fissions data-
parallel programs in the Accelerate language, allowing subsequent
compiler and runtime stages to map computations onto multiple
devices for improved performance—even programs that begin as a
single data-parallel kernel.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Languages, Performance

Keywords GPU, Multi-device, Haskell, Data-parallelism, Schedul-
ing

1. Introduction
Modern computing platforms contain a mix of processors—often
more than one with vectorized arithmetic (SIMD) units. A high-end
laptop has three: a vectorized CPU, a low-power integrated GPU,
and a high-power discrete GPU. From a language perspective, we
would like to be able to target multiple devices in the same platform
with a single language (portability), but we’d further like to write
individual programs that are implicitly partitioned over devices.
Indeed, in this paper we propose a method for targeting multiple
devices from a single, data-parallel, purely functional program—
that is, not just compiling the same program for multiple platforms,
but partitioning the work and assigning components to different
devices at runtime.

Like other embedded array languages, Accelerate’s internal rep-
resentation is essentially a directed graph of data-parallel kernels,
with edges communicating complete arrays. The data-parallelism
inside even one kernel can be stretched across multiple devices. But
this kernel-splitting approach runs into difficulties for languages
that include mutable data structures and side-effects within their

data-parallel code (Section 2.2). Purely functional array languages
such as Accelerate [10, 30], Nikola [29], Copperhead [9] and Intel
ArBB [31], have significant advantages for multi-device purposes.
Of course, they have their own challenges as well: in compiling
these languages to vectorized code it is critical to employ aggres-
sive fusion [14, 21, 30] to eliminate intermediate data-structures.

In this paper we add multi-device capabilities to Accelerate, in-
cluding using a fissioning program transformation during the com-
pilation process to expose latent parallelism. This is a source-to-
source transform that yields valid programs in the original lan-
guage, simply converting implicit intra-kernel parallelism, into ex-
plicit, inter-kernel parallelism—data to task parallelism. For exam-
ple, a fold operation on an array would be replaced by two fold
operations over halves of the array.

Previous systems have looked at multi-device execution, but
run into limitation related to mutable arrays and memory consis-
tency [7, 25, 27, 34]. Further, these systems are also focused at the
individual-loop level. Compilers for purely functional languages
like Accelerate deal with large numbers of “loops” (e.g. every map
and fold) and depend on inter-loop optimizations such as fusion/de-
forestation for efficiency. Compared to other approaches, our fis-
sioning transformation makes its decisions early, in the compiler
rather than runtime, but one upshot is that it formulates fissioning
as a discrete compiler phase whose correctness is easier to reason
about. Further, by making multiple copies of a program subgraph
explicit in the syntax tree, the fissioning approach can allow “di-
vergent evolution” of those fragments that are destined for different
devices, even at the level of inter-loop optimizations.

We use the fissioning approach to build an Accelerate multi-
device backend, which can dynamically split work across multiple
devices. In this paper, we make the following contributions:
• We formalize a non-deterministic term-rewriting system that

captures the rich optimization/fissioning space for Accelerate
programs, while ensuring any strategy for navigating that space
will produce valid programs for the compiler backend. We test
the correctness of these transforms through a PLT-Redex model
(Section 3).
• We implement these fissioning transforms as a source-to-source

optimization pass for Accelerate, which is guaranteed —via the
Haskell type system— to be type-preserving in object programs
(Section 4).
• We present a multi-device scheduler that makes Accelerate

the first purely functional array language implementation to
automatically distribute individual operators across multiple
devices, without changing the program semantics (Section 5).
• We assess the performance of our optimization pass and multi-

device scheduler through a number of benchmarks, showing
speedups on two GPUs as high as 2.4ˆ over a single GPU
(Section 6).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FHPC’15, September 3, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3807-3/15/09...$15.00
http://dx.doi.org/10.1145/2808091.2808093

12

2. Preliminaries
2.1 General Purpose GPU Computing
Modern graphics processing units (GPUs) are massively parallel
processors optimized for workloads with a large degree of SIMD
parallelism. Despite the advertised potential of 100ˆ speedups,
attaining good performance requires highly idiomatic programs
that are work intensive and require expert knowledge to produce.

The most popular frameworks for programming GPUs are
CUDA [33] from NVIDIA, and its open-standard competitor,
OpenCL [24]. Both are extensions of the C or C++ program-
ming language that include support for defining GPU kernels,
which contain code executed by many data-parallel threads on the
GPU. These threads are arranged in a multidimensional structure
of thread blocks and grids, and executed in SIMD groups called
warps. Threads must be programmed so that they make efficient
use of both the global memory region in off-chip DRAM, as well
as the on-chip shared memory region, a software managed cache
that can be used for efficient intra-block communication. All this
and more must be managed by the programmer in order to ensure
good use of a GPU’s hardware resources [33].

2.2 Multi-device Partitioning: Language Issues
In CUDA and OpenCL programming, the kernels created by the
user are indivisible tasks that run on a single GPU of the user’s
choosing. In related research, the “single kernel, multiple device”
(SKMD) approach has already been attempted with the OpenCL
language [27], where it can yield improved performance. Yet this
is a challenging prospect because OpenCL allows arbitrary side ef-
fects from any kernel to any array. As a result, OpenCL-based par-
titioning systems take one of three approaches: (1) avoid partition-
ing kernels that use writes; (2) attempt a static analysis to identify
the memory access patterns [27]; or (3) use a runtime technique to
merge writes from multiple threads in different memories.1

Even with these techniques to handle kernel side effects, match-
ing the semantics of OpenCL operations such as global barriers and
atomic instructions has proved infeasible. For example, Lee et al.
[27] chose to simply ignore these features, Moreover, it is unclear
whether the full OpenCL language can ever be a suitable target for
multi-device partitioning.

By contrast, several recent array-based languages targeting
GPUs provide only immutable data [9, 10, 29–31]. These languages
usually still allow reads at arbitrary, data-dependent array indices,
which poses challenges for multi-device distribution. Because of
immutability, however, array dereferences in these languages are
referentially transparent, so replicating the same array in multiple
memories is a viable option. Furthermore, these languages employ
a combinator-based style of programming using operations such
as map and fold, which de-emphasizes the need for arbitrary array
indexing in favor of implicit data-access patterns. This leaves us
in a good position to begin executing these languages on multiple,
distributed memory devices.

2.3 Array Languages, Generally
Array-oriented languages have been around for a long time, includ-
ing APL [22], Matlab [40], and so on. Even data-parallel languages
centered around high-level combinators date at least from Blel-
loch’s work in the late 1980s on the scan vector machine [3] and
NESL [4, 5]. Nevertheless, today’s hardware environment has in-
spired a renaissance. It is increasingly practical to generate efficient
parallel code from high-level data-parallel descriptions. The last ten

1 The technique has proved useful in many domains [6, 28], but has both
significant runtime overhead and, in the OpenCL case, relies on relaxed
memory consistency.

years have seen a flurry of activity, with many array DSLs (domain-
specific languages) targeting CPUs [31], GPUs [9, 10, 12, 29], or
either one [36]. There has also been plenty of focus on code gener-
ation for more narrow domains, such as stream-processing [32, 41]
and for specific algorithms [19, 35, 38]. This trend is bolstered
by general improvements in DSL embedding (meta-programming),
such as improvements in sharing observation2 and AST represen-
tation [1, 2, 8]. There have also been advances in array languages
specifically, supporting new program transformations and schedul-
ing approaches [9, 31] and techniques for optimized code genera-
tion [13, 38].

At its core, a typical array DSL provides a way to compile
a pipeline or graph of data-parallel operators—e.g. map, filter,
fold—into parallel code. Typically, there are no language abstrac-
tions separating the operators in the pipeline. That means there are
no function calls left at the array level, enabling the compiler to ob-
serve all data-flow relationships. This is especially true of deeply
embedded DSLs, which also add an extra code generation phase
(either at compile or runtime) in which code for the object language
is emitted.

Generally speaking, array languages occupy a spectrum of re-
strictiveness, with full-featured languages like Matlab and APL
occupying one end of the spectrum, and more recent embedded
DSLs occupying the other. The Accelerate embedded language—
which we work with in this paper—is towards the restrictive end of
the spectrum, disallowing nested parallelism and general recursion.
Nevertheless, Accelerate is not the most restrictive array language
that would be reasonable to implement. For example, it does allow:
(1) array values to be returned from conditionals, and (2) arbitrary
indexing into arrays. See Table 1 for a feature comparison between
array languages.

As with other deeply embedded languages, once the Accelerate
abstract syntax tree is extracted during meta-program evaluation,
an Accelerate program is effectively a graph of data-parallel oper-
ators, represented as combinators such as zipWith and permute.
Compiling Accelerate programs amounts to transforming this
graph and generating target-platform code for each vertex in the
final graph. It is this graph that we will expand through vertex
splitting and map onto multiple devices. We begin by introducing
the Accelerate language in the following section.

2.4 The Accelerate Language
Accelerate [10, 30] is a small language for computations over
regular, multidimensional arrays. Embedded in Haskell, it exposes
data-parallel combinators on arrays that closely mirror familiar
Haskell list-processing idioms. For example, to compute a dot
product we write:

dotp :: Num n ñ Vector n Ñ Vector n Ñ Acc (Scalar n)
dotp xs ys = let xs’ = use xs

ys’ = use ys
in fold (̀) 0 (zipWith (˚) xs’ ys’)

The function dotp consumes two one dimensional arrays (Vector)
of values, and produces a single (Scalar) result as output. The Acc

type constructor indicates that the result is an embedded Accelerate
computation—it will be evaluated in the target language of dynam-
ically generated parallel code, rather than the meta language, which
is vanilla Haskell.

The arguments to dotp are of plain Haskell type Vector a. To
make these arguments available to the Accelerate computation they
must be embedded with the use function, which is overloaded so
that it can accept tuples of arrays:

2 This refers to the recognition of common subexpressions (CSE) in the tar-
get language via inspection of meta-language in-heap data structures [20].

13

Table 1. Comparison of the features of different array-oriented languages, which range from narrowly domain specific to more general
purpose. More restricted languages generally enable better auto-parallelization at the cost of expressiveness. Some languages differentiate
between the scalar and kernel language; in those cases we report the features for the kernel language.

Accelerate Intel ArBB Copperhead Data Parallel Haskell APL

Mutable Arrays no no no no yes
Arbitrary Reads yes yes yes yes yes

Multidimensional Arrays yes yes yes no yes
Sparse/Segmented Arrays yes yes no yes no

Nested Parallelism no yes yes yes yes
Recursion/Iteration yes no yes yes yes

Array-level Conditionals yes no yes yes yes

use :: Arrays arrays ñ arrays Ñ Acc arrays

The functions zipWith and fold are defined by the Accelerate
library, and have massively parallel semantics, supporting up to as
many threads as data elements. The type of fold is:

fold :: (Shape sh, Elt e)
ñ (Exp e Ñ Exp e Ñ Exp e)
Ñ Exp e
Ñ Acc (Array (sh:.Int) e)
Ñ Acc (Array sh e)

The type classes Shape and Elt indicate that a type is admissible
as an array shape and array element, respectively. Array shapes are
denoted by type-level lists formed from Z and (:.)—see [10, 23]
for details. Array elements can be signed and unsigned integers (8,
16, 32, & 64-bits wide), floating point numbers (single & double
precision), Char, Bool, shapes formed from Z and (:.), as well as
nested tuples of these.

The type signature for fold shows the stratification into scalar
computations using the Exp type constructor, and array compu-
tations that are wrapped in Acc. Collective operations consist of
many scalar computations that are executed in data-parallel, but
scalar computations can not contain collective operations. This is
enforced because Array itself is not in Elt and thus there is no
way to embed an Acc inside an Exp. This stratification statically
excludes nested, irregular data parallelism, enforcing a flat data-
parallel model.

We give a representative grammar of the Accelerate language
in Figure 1. Overall, the collective operations in Accelerate are
based on the scan-vector model [11, 37], including array-specific
operations such as index permutations. For example, backpermute
constructs a new array using an index permutation function that
specifies, for each index in the output array, which element of the
input array to read, while the function generate constructs a new
array by applying a function at each index. See [10, 30] for more
information.

As a second example, the following n-body code simulates
Newtonian gravitational forces on a set of massive bodies in 3D
space, using a precise (but expensive) O

`

n2
˘

algorithm:

type Position = (Double, Double, Double)
type Accel = (Double, Double, Double)

calcAccels :: Acc (Vector Position) Ñ Acc (Vector Accel)
calcAccels bodies

= let move body =
sfoldl (λacc next Ñ acc .̀ . accel body next)

(vec 0)
(constant Z)
bodies

in
map move bodies

array exps æ ::“ use pCq | map pλx. eq æ |

generate σ pλx0 . . . xn. eq |
let p “ æ in æ | a | pæ,æq |
zipWith pλx y. eq æ æ |

fold pλx y. eq e æ |

backpermute σ pλx. eq æ |

permute pλx y. eq æ pλx0 . . . xn. eq æ |

reshape σ æ | slice σ æ | replicate σ æ
scalar exps e ::“ let p “ e in e | x | c | primpe0, . . . , enq |

e0?pe1, e2q | pe0, . . . , enq | . . .
patterns p ::“ x | pp, pq

variables x, a
dim or hole s ::“ e | l

full shape σ ::“ rs | rs0 . . . sns
const c ::“ 1, 2, . . .

arrconst C ::“ rc0, . . . , cnsσ

Figure 1. Grammar of the core Accelerate constructs.

The core data-parallel structure of the implementation is a map over
all bodies. The function being mapped over all bodies perform a se-
quential fold operations, sfoldl, of a function computing accelera-
tion between two points over all bodies. Thus, forces are computed
between every pair of bodies. The acceleration between a pair of
point masses is then calculated as:

accel :: Exp Position -- The point being accelerated
Ñ Exp Position -- Neighboring point
Ñ Exp Accel

accel body1 body2 =
if x1 == x2 && y1 == y2 && z1 == z2
then constant (0, 0, 0)
else acc

where
acc = lift (aabs ˚ dx { r,

aabs ˚ dy { r,
aabs ˚ dz { r)

(x1, y1, z1) = unlift body1
(x2, y2, z2) = unlift body2
dx = x2 - x1
dy = y2 - y1
dz = z2 - z1
rsqr = (dx ˚ dx) ` (dy ˚ dy) ` (dz ˚ dz)
aabs = 1 { rsqr
r = sqrt rsqr

The Accelerate code has some small syntactic overhead compared
to what a version in plain Haskell would look like. In this case, as
pattern matching cannot be overloaded, lift and unlift is used to
pack and unpack expressions into and out of tuple constructors.

3. Fissioning Rewrite System
Our goal in this paper is to compile an Accelerate program into
separately executable components, in order to fully utilize the com-

14

Currently Implemented
fold f e æ ñ let px, yq “ split-1 æ in

zipWith f pfold f e xq pfold f e yq
map f æ ñ let px, yq “ spliti æ in

concati pmap f x,map f yq
generate σ f ñ concati pgenerate σrσi :“ tσi{2us f,

generate σrσi :“ rσi{2ss

pλx0...xn. fx0...txi ` σi{2u...xnqq
replicate σ æ ñ let px, yq “ spliti æ in

concatnewIndexpσ, iq p

replicate σ x,
replicate σ yq

zipWith f æ1 æ2 ñ let px1, y1q “ spliti æ1 in
let px2, y2q “ spliti æ2 in
concati pzipWith f x1 x2, zipWith f y1 y2q

backpermute σ f æ ñ concati
pbackpermute σrσi :“ tσi{2us f æ,
backpermute σrσi :“ rσi{2ss

pλx0...xn. fx0...rxi ` σi{2s...xnq æq
use rc0 . . . cnsσ ñ concat0 puse rc0 . . . ctn{2usσrσ0“rσ0{2ssq

puse rcrn{2s . . . cnsσrσ0“tσ0{2usq

Additional Legal Rules
fold f e æ ñ let px, yq “ split0 æ in

concat0 pfold f e x, fold f e yq

Figure 2. Fission rewrite rules. One rule application fissions one
data-parallel combinator.

pute capability of a machine. Because Accelerate programs are
(task-parallel) DAGs of purely functional array operators, some
programs will already be suited for using multiple devices, sim-
ply by distributing the intermediate array operations over multi-
ple devices. However, this cannot generally be relied upon, and in
fact many useful programs are—after fusion optimizations—a sin-
gle kernel.

Fissioning programs provides a way to convert latent paral-
lelism, inside data-parallel operators, into explicit task parallelism.
This in turn provides enough tasks to utilize multiple GPUs. We
implement fissioning through a non-deterministic rewriting system
as described in Section 3.1. We further validate the correctness of
these rules by implementing a semantic model of Accelerate and
the fissioning system in PLT Redex (Section 3.2).

3.1 The Rewrite System
Figure 2 defines a term-rewriting system that exposes a large search
space of valid program transformations. An Accelerate optimizer
can navigate this space in arbitrary ways, and be assured that
the resulting program will run on any combination of Accelerate-
supported devices. In the special case of a multi-device fission opti-
mizer, the end goal is to end up with sufficient, balanced task paral-
lelism for the hardware. Our implementation currently supports fis-
sioning fold,map, and generate, and other operators are supported
via transformation to generate-like deferred arrays (Section 4).

The rules in Figure 2 make frequent use of splitting and con-
catenation operations, as well as manipulating the shapes of ar-
rays. Split divides an array into two halves along a given di-
mension, indicated by a subscript on the split operator. If a has
shape rσ0 σ1 σ2 σ3s—from “outermost” (left) to “innermost”
(right)—then split1 a produces a tuple of arrays pb, cq, with
xby “ rσ0 t

σ1
2
u σ2 σ3s and xcy “ rσ0 r

σ1
2
s σ2 σ3s, where xby

and xcy denote the shape of b and c. We use split´1 as a shorthand
for splitting on the innermost dimension of an array.

Similarly, concatenation combines two arrays along a certain
dimension. A key observation is that concatenation is the inverse

of splitting:

spliti a “ pb, cq ùñ concati pb, cq “ a

These definitions allow zero-sized arrays, e.g. split0 rvs “ prs, rvsq
and split0 rs “ prs, rsq. Neither of these operations are primitive
in the original Accelerate, but they are straightforward to add as
library functions. Our Redex model treats these as primitives for
simplicity.

In our formal notation we shall treat shapes as arrays, so if
a “

“

10 20 30
40 50 60

‰

, then xay0 “ r3 2s0 “ 3. The rank of an array is
the number of dimensions (i.e. xxayy0). For a shape σ, we use the
notation σrσi :“ ns to define a new shape with the ith dimension
in σ replaced by n. For example, given σ “ r1 2 3s, σrσ1 :“ 4s
would be r1 4 3s. Note that in the Accelerate source language, rank
is static and encoded in the type system, and that most of Accel-
erate’s core primitives are rank-polymorphic, which is in keeping
with traditions established by many dynamically typed array lan-
guages such as APL and Matlab.

The general strategy for most rules is to split the input arrays
in half, apply the operation to both halves and then combine the
results into a single array. As an example, consider the expression
fold p`q 0 a. The second fold rule splits along the outermost
dimension, meaning the rule would split a into x “ r10 20 30s
and y “ r40 50 60s. Folding the two halves yields r60s and r150s,
and then concatenating these yields the correct result of

“

60
150

‰

. On
the other hand, the first version of the fold rule splits along the
innermost dimension, splitting a into

“

10
40

‰

and
“

20 30
50 60

‰

. The two
sub-folds would produce

“

10
40

‰

and
“

50
110

‰

, so these two arrays must
be combined using a zipWith instead of a simple concatenation.

Cases such as replicate require more care because replicate
increases the rank of its input. Let us consider the expression
replicate r2 ˝s bwith b “ r1 2s, which makes two copies of b along
the outermost (in this case vertical) dimension. This expression
evaluates to

“

1 2
1 2

‰

Let us consider a potential naive fission rule for
replicate, which simply splits the array along a dimension and then
concatenates the replicated result along the same dimension. In this
case, splitting b along dimension 0 gives r1s and r2s. Replicating
these halves yields

“

1
1

‰

and
“

2
2

‰

. If we then concatenate along
dimension 0, we would get:

»

—

–

1
1
2
2

fi

ffi

fl

Instead, we need to concatenate along dimension 1, since the
replicate command inserted a new outermost dimension. The
newIndexpσ, iq clause in the replicate rule in Figure 2 accounts
for the shifting of dimension identifiers due to replication. See Fig-
ure 5 for a formal definition of newIndex.

3.2 Testing with PLT Redex
As we have just seen, there are some subtleties to the fissioning
rules, especially in the presence of changing ranks. To increase our
confidence in the fissioning rules, we developed a model in PLT
Redex [16]. Developing this model was motivated in part by bugs
we found in the first draft of our fissioning rules. Modeling the
semantics in PLT Redex allowed us to design and debug fissioning
rules with less effort than implementing them in the full Accelerate
compiler. The model serves both as a semantics for the Accelerate
language as well as a way to explore the fissioning rules. While the
PLT Redex model is not a full proof of correctness, it has validated
correct behavior in a test suite of 28 tests, exploring all possible
fissioning and evaluation choices for these programs. These rules
were tested on arrays of up to three dimensions, and is sufficient to
exercise all of the rewrite rules. Our model is available at https:

15

https://github.com/iu-parfunc/accelerate-redex

��������
������������
����������������������������������
��������������������������������������
���������������
����������������������
��
����������������
��������������
������������������
������������������������������������
������������������������������
��������������

Figure 3. Fission contexts.

//github.com/iu-parfunc/accelerate-redex. Here we will
discuss the salient aspects of our model.

We start by defining a language and reduction relation for Ac-
celerate programs defined by the grammar in Figure 1 and then we
create a reduction relation to define the semantics of the Accelerate
language. Our semantic model makes a strict separation between
the array-level language and the scalar language. The overall struc-
ture of the program is determined by high-level array operations
(e.g. map, fold), while the scalar language describes operations on
individual elements of an array which are driven by the array op-
erators. The array-level and scalar-level languages have different
environments, so scalar functions cannot access array variables di-
rectly. To simplify the semantics, we use a traditional substitution
based system for array level bindings and use an environment pass-
ing interpreter to evaluate scalar expression as a single operation.

Next we extend this base language with extra operators that
are useful for fissioning. These operators include split and concat
operators, as well as fst and snd operators to project from the tuples
produced by split.

Armed with split and concat primitives, we define a set of fis-
sion contexts, which describe points where a fission transformation
is applicable. which are similar to evaluation contexts except they
describe points where a fission transformation is applicable rather
than traditional program evaluation [17]. This allows us to describe
the fission rules simply by adding more clauses to the reduction
relation. The fission contexts are given in Figure 3.

The fission rules implemented in the PLT Redex model are
shown in Figure 4 and a set of helper functions are defined in Fig-
ure 5.3 The rules implemented here match the full set of legal rules
described in Figure 2. Many of these rules are nondeterminisic—
they can fission across any dimension of the inputs. PLT Redex
ensures that any combination of fission reductions preserves the
behavior of the program.

It is critical that programs transformed by our rewrite system
evaluate to the same result as without the fissioning rules.

The full reduction relation may apply at any point during pro-
gram evaluation. This is different from the implementation in Ac-
celerate, where all fissioning occurs before program execution be-
gins. Freely mixing evaluation and fissioning subsumes the ahead-
of-time method that we implemented, so any evidence our model
finds of correctness also extends to our chosen application of the
rewrite rules.

Finally, we validate our model by running it on a number of
test cases. Our test cases include programs to ensure the seman-
tic model matches our notion of what Accelerate programs should

3 For readers unfamiliar with Racket’s . . . pattern syntax, the ellipsis indi-
cates that the preceding pattern should be matched zero or more times. As
an example, a rule such as px . . . yq Ñ px . . .q would rewrite p1 2 3 4q as
p1 2 3q. This is similar to the * operator in regular expressions.

mean, as well as programs designed to test each of the fissioning
rules in isolation. We inspected a number of execution traces man-
ually to ensure the fissioning rules behaved as expected. In each
case, we ensure that all execution traces of a program using the fis-
sioning rules result in the same final value being computed as the
unfissioned program.

4. Implementing Fission in Accelerate
The fissioning rules shown in Figure 2 were implemented in the
Accelerate front-end via a type-preserving source-to-source trans-
lation of the AST. This transformation takes a valid Accelerate pro-
gram and produces a new program by splitting it into additional op-
erations. Crucially, this translation pass is applied after the program
has undergone kernel fusion optimization, so that fission does not
interfere with critical fusion optimizations.

Consider the following program map f xs. The fissioning trans-
formation will split the map operation into two map operations, each
computing over half of the input array xs, together with a final step
to combine the partial results. When this code is executed, these
two new map operations can, potentially, be executed in parallel
on different devices. While the formalism of Section 3 emphasizes
defining a space of legal fissioning moves, our prototype implemen-
tation simply traverses the entire program and fissions each oper-
ator once, and thus guaranteeing that there is no bottleneck in the
program with insufficient task parallelism, provided that the array
sizes are large enough to saturate the parallelism of the individual
compute devices.

The primary concerns when implementing fissioning were the
following:

• The fissioning transformation should be safe: the fissioning
transformation should produce valid, type-safe Accelerate pro-
grams without changing their original meaning.
• The fissioned code should be efficient: whenever possible, the

fissioning pass should optimize the code it generates to avoid
extra run-time overhead in the form of copying or allocation.

Our implementation achieves these two goals in the following
way. For the first goal, the type-preservation guarantee of the Ac-
celerate compiler is verified statically by the Haskell compiler, and
the fissioning pass retains this same methodology. For the second
goal, the fissioning pass manipulates delayed array representations
in the abstract syntax, and attempts, when possible, to merge the
code to split an array with the code that generates that array.

4.1 Safe Fissioning
In Accelerate, the type of an array encodes both its element
type as well as its rank (number of dimensions). For example,
Array (Z:.Int) Float denotes a one-dimensional array of single-
precision floating-point numbers. To safely implement our fission-
ing rules, we must ensure that the array is greater than zero dimen-
sions, for our fissioning rules to apply. Thus we need to produce
a type witness for the shape of the array. We do this by matching
on the shape of the array, which—being of non-zero dimension—
must be of the form (sh :. Int). Once we know that, we are able
to apply the logic of each fissioning rule, as formulated.

All of the necessary program logic for splitting and concatenat-
ing arrays in different situations is inlined directly into the typed
AST by the fissioning pass. For example, the code for a concat is
filled in as generate node of its own. In doing this, the fissioning
pass must convince the Haskell type-checker that the modified pro-
gram remains type safe. In particular, because the nameless ASTs
in Accelerate carry scalar and array environments in their types, the
fissioning pass must prove that the resulting program is well-typed

16

https://github.com/iu-parfunc/accelerate-redex

��������������������������� ������������������������
��������������������

�����������������������������
��������������������������������

���������������

�������������������������������� �� ��������

��������������������������� �����������������������
���������

�����������������������������
��������������������������������

���������������

�������������������������������� �� ������������������ �� ����

��������������������� �����������������〈��������〉������
��������〈��������〉

�����������������������
��������������������������

��������

���������� ��� � �� ������������������� �� �������

������������������������������������ ������������������ �����������
��������� ��� ��������������������

������������������������
��������� ��� ��������������������

��������������������
��������������������
������

�������������

�����������〈��������〉��〈��������〉���〈��������〉�������

������������������� �����������������������
���������������������� ��

���������������������
������������������������

��������������

�� �� ������〈��������〉��������

�������������������������������� ������������������������
����������������������
���

���

������������

��� �� ������〈��������〉��������������������

��� ������������������������ ��� �������������� ���������������������������
������������ ��� ��������������

��������������������
�������������������

�����

����������������

���������������������������������������〈��������〉��〈��������〉���〈��������〉�������

��� ��
����������������������������������

��������

�������〈��������〉�������������������������������� �� ��� �� ��������

Figure 4. Fissioning rules as implemented in PLT Redex.

����������������������������� �� ��� �����
������������������ �� ��� ������������ ��
������������������������������������ �� ��� �
��������������������������� �� ��� ������������� ��
����������������������������� �� ��� ������������� ��
���������������������������������� �� ��� �������� �������������������������������� ��
������������������������������ �� ��� �
��������������������������������� �� ��� ������������� ��
������������������������ �� ��� �
���������������������� �� ��� ���������������������������� �� ��
�������������������������� �� ��� ����������������������������� �� ��
������������������������������� �� ��� ������������� ��
������������������������������� �� ��� ������������� ��

���������������������������� �� ��� ������������������������ ��� �� ������������������������������������ �� ������〈��������〉
����������� �� ��� ��

Figure 5. The shape-of metafunction, which is used by the fissioning rules in Figure 4.

17

and well-scoped even with the introduction of new bindings and the
modification of some existing bindings.

Additionally, the fissioning pass must maintain some general
invariants present in the internals of the Accelerate compiler and
enforced by its types. As an example, the scalar functions that pa-
rameterize array operations are “half closed”: they are closed in the
scalar environment, but open in the array environment. This is one
invariant that is and must be maintained through the fissioning pro-
gram transformation. While the compiler comes short of full formal
verification, having the ability to statically verify many invariants
of a newly-added compiler pass gave us more confidence in the
safety and correctness of the fissioning pass than we would have
had if it did not preserve types in this way. Further, when combined
with the testing approach used in our PLT Redex model, this gives
us high confidence that we don’t insert bugs into programs while
optimizing for multi-device execution.

4.2 Efficient Fissioning
Our fissioning rules described in Section 3 assume functions for
splitting and concatenating arrays. This level of abstraction is con-
venient for explaining the meaning of the rewrite rules, but it hides
some complexity that is present in the implementation.

In the Accelerate AST, arrays can either be manifest or de-
layed [30]. A delayed array is represented by a shape, and a func-
tion that maps indices to expressions. As the name indicates, the
actual creation of the array is delayed, so that it can be inlined into
a later computation.

Rather than implementing a split function that takes an array in
memory then allocates two new arrays to fill, the fissioning pass
directly manipulates the representation of delayed arrays.

At an example, consider the dotp program from Section 2.4.
Following the standard Accelerate compiler pipeline, this program
will be fused into a single operation, with the zipWith computation
embedded into the fold operation as a delayed array. Without
fissioning, the program looks like:

dotp xs ys =
fold (̀) 0

(Delayed (intersect (shape xs) (shape ys))
(λix Ñ (xs!ix) ˚ (ys!ix)))

With fissioning, this same program splits the single fold into
two folds, and introduces a new zipWith to combine the partial
results. The non-fissioned code had the optimization of doing the
work of the zipWith inside the fold kernel, and fissioning piggy-
backs on this optimization by pushing its work inside the delayed
array structures as well. The end result of this transformation will
have the following form:

dotp xs ys =
let s1 = fold (̀) 0

(Delayed
(let sh = intersect (shape xs) (shape ys)

n = {- first partition size -}
in indexTail shape :. n)

(λix Ñ (xs!ix) ˚ (ys!ix)))
s2 = fold (̀) 0

(Delayed
(let sh = intersect (shape xs) (shape ys)

n = {- second partition size -}
in indexTail shape :. n)

(λix Ñ let ix’ = {- index with offset -}
in (xs!ix’) ˚ (ys!ix’)))

in
zipWith (̀) s1 s2

Because of the delayed array representation, array splits intro-
duced by fissioning carry relatively little overhead. At run-time, the
splits are themselves delayed arrays.

That is not to say that fissioning cannot increase the runtime
overhead costs in programs that it is applied to. For example, while
fissioning introduces new kernels that can be evaluated indepen-
dently, these partial results must be combined, which implies a sin-
gle synchronization point in the program. More generally, execut-
ing fissioned code may impose additional data transfer cost from
the host to the device, or between devices themselves. We explore
these issues in Section 6.

5. Implementing a Multi-device Runtime
The fissioning pass described in the previous sections is designed
to expose task parallelism in Accelerate programs. Of course, some
programs expose sufficient task parallelism even without fission-
ing, and the runtime we describe in this section can handle those
programs too—with or without fissioning applied. Indeed, an ad-
vantage of the rewrite-based approach is that fissioning becomes
an orthogonal concern from scheduling.

Our runtime system thus takes on the traditional role of a sched-
uler, as found in operations research [43]. Namely, it must:

• Identify tasks to execute, consisting of DAG of one or more
collective array operations;
• Select a device to execute the task on;
• Copy any dependencies to the device, if not already present;

and finally
• Compile and execute the operation(s).

We implement the multi-device runtime system on top of the
existing Accelerate CUDA backend, reusing as much of that (well-
tested) backend as possible. The major difference between the
traditional and new runtime system has to do with where and how
inter-task dependencies are managed.

The CUDA backend relies on the CUDA driver to track inter-
dependencies between tasks and transfer events, starting kernels on
the hardware only after their dependencies are met. In this way
it can essentially offload entire graphs of actions onto the CUDA
driver. This is possible, because it has no need to hold back any
work: as all tasks would eventually run on the same device.

The multi-device runtime system cannot take this approach. If
it overcommits too many tasks to one device via the CUDA driver,
then it commits too early and loses the ability to load balance those
tasks onto other devices. Thus our new runtime must track task
dependencies and completion explicitly on the Haskell side, and be
judicious about how much to commit to any one device.

5.1 The Runtime System
The decision of which task to place on which device is performed
by a scheduler component of the runtime system. We use a standard
approach, as in previous work [18], where one worker thread serves
as a representative of each CUDA device. Each of these proxy
threads waits to be assigned work items. This worker thread is
in control of both launching kernels on, and copying data to, the
associated device. On the other hand, recovering results from the
device(s) is a different matter, and will be addressed in a moment.
The heart of the scheduling algorithm on each thread is thus the
following simple loop:

18

deviceLoop dev done work = do
-- Is any work available ?
workItem Ð takeMVar work
case workItem of

ShutDown Ñ putMVar done Done >> return ()
Work w Ñ do

w -- Perform work, then indicate
registerAsFree dev -- that the device is now free
deviceLoop dev done work

5.2 Task Extraction Heuristic
Because every (non-fused) array-level operation becomes a CUDA
kernel, these are the atoms of our task graph. While each such
kernel could be scheduled independently, our current prototype
uses a heuristic that follows the nesting structure of the AST itself.
That is, the heuristic is based on the structure of let bindings in the
program. In short, the outer spine of let bindings is preferred as the
axis along which to subdivide tasks among devices. Our prototype
fissioning pass is tuned to work well with this heuristic.

As an example, in the following nesting of let bindings, the
runtime system will partition out as tasks: a1, a2, a3 and result.
Ideally these tasks are both independent and expensive.

let a1 = . . . in
let a2 = . . . in
let a3 = . . .
in result

On the other hand, given the structure below the runtime system
will partition out only three tasks: a0, a3 and result, scheduling
a1 and a2 onto the same device as part of a single task.

let a0 =
(let a1 = . . . in
let a2 = . . .
in
result1)

in let a3 = . . .
in result

The Accelerate compiler backend transformations provides an
AST for which this heuristic is suitable. Although not a good
in general, this heuristic works well for our specific use case in
Accelerate. We intend to explore other strategies in the future.

5.3 Execution of Tasks
When a task is identified to run on a device, the algorithm proceeds
as follows:

• Create the asynchronous result array structure, which are re-
turned immediately so that other tasks can refer to, and wait on,
arrays computed by the current task.
• Fork a task thread (distinct from per-device worker threads):

1. Find dependencies of the task.

2. Wait for dependencies to be computed.

3. Compute a per-device affinity score based on how many of
the dependency arrays are present on each device.

4. Ask a scheduler for the best device available, given the
computed affinity scores.

5. Create a work item and execute it on the assigned device.

The work item created in step 5 above is sent to the worker
thread associated with the device selected by the scheduler. The
work item sent over performs the following sequence of operations:

• Transfer dependency arrays to associated device.

• Compile task (if not already cached)
• Execute task.
• Write results into the asynchronous arrays created earlier and

mark those arrays as completed.

All the operations performed at this stage make use of the
already existing Accelerate CUDA back-end. We add a information
about which memory contains which arrays for the purpose of
the scheduler and runtime system, but the copying is performed
by existing Accelerate CUDA functionality. When it comes to
compiling and executing tasks, we even gained the benefits of the
Accelerate CUDA back-end’s caching of already compiled code.

5.4 Scheduling of Tasks
This section outlines the scheduling algorithm used in the bench-
marks in Section 6. The scheduler we implemented is multi-
threaded, spawning task-threads on demand.

Each task thread starts out by requesting the use of a device from
the runtime system. To do this it blocks on a queue of device tokens,
which represent an entitlement to use a currently free device. Upon
receiving a token, the task thread atomically performs the following
to choose a specific device:

• If there is only one device available, pick it.
• If more than one device is free, sort the devices based on affinity

score and pick the highest scoring device.
• The device is marked as busy and is sent the task work item.

6. Evaluation
In this section we evaluate the performance of our implementation
on a selection of benchmarks. Our benchmarks aim to test both
weak and strong scaling behavior of our system. The selected
benchmarks both illuminate the strengths of the approach, as well
as identify several areas for future improvement.

Benchmarks were conducted using two Tesla C2075 GPUs
(compute capability 2.0, 14 multiprocessors = 448 cores at 1.15
GHz, 5GB RAM) backed by two 6-core Xeon X5660 CPUs (64-
bit, 1.6 GHz, 200GB RAM) running GNU/Linux (Red Hat 4.4.7-9).
We used GHC-7.8.3 and NVCC-6.0. Results are generated using
criterion4 via linear regression.

6.1 Weak Scaling Benchmarks
Weak scaling benchmarks consist of a synthetic benchmark, mega-
par, of completely independent tasks and exposing many oppor-
tunities for task parallelism. We also test the N -body simulation
where the data is duplicated onto each device. These tests consti-
tute a sanity test for our runtime system.

The Megapar benchmark consists of a parallel map over a wide
(2M element) array, where the scalar function consists of a long
running loop. The figure compares overall execution time as we in-
crease the iteration count of the scalar loop. The duplicatedN -body
benchmark represents scaling when running the N -body calcula-
tion on two independent sets of bodies.

Both of these benchmarks expose completely independent
tasks, and the results from each device do not need to be com-
bined in a final step. These benchmarks demonstrate speedups of
close to 2ˆ, validating that our system makes effective use of both
GPUs in these sanity checking benchmarks (Figure 6).

6.2 Strong Scaling Benchmarks
With our runtime system validated, our strong scaling benchmarks
exercise our approach to fissioning via our rewrite rule system,

4 http://hackage.haskell.org/package/criterion

19

http://hackage.haskell.org/package/criterion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4

M
e
d
ia

n
 t

im
e
 i
n
 s

e
co

n
d
s

Sequential depth multiplier

Megapar Benchmark

Accelerate CUDA
MULTI 2 GPUs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

50K 60K 70K 80K 90K 100K 110K

M
e
d
ia

n
 t

im
e
 i
n
 s

e
co

n
d
s

Number of bodies

Duplicated N-Body Benchmark

Accelerate CUDA
MULTI 2 GPUs

Figure 6. Weak scaling benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

50K 60K 70K 80K 90K 100K 110K

M
e
d
ia

n
 t

im
e
 i
n
 s

e
co

n
d
s

Number of bodies

N-Body Benchmark

Accelerate CUDA
MULTI 1 GPU Fission=On
MULTI 1 GPU Fission=Off

MULTI 2 GPUs Fission=On
MULTI 2 GPUs Fission=Off

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

M
e
d
ia

n
 t

im
e
 i
n
 s

e
co

n
d
s

Size of matrix (n by n)

Matrix Multiplication Benchmark

Accelerate CUDA
MULTI 1 GPU Fission=On
MULTI 1 GPU Fission=Off

MULTI 2 GPUs Fission=On
MULTI 2 GPUs Fission=Off

Figure 7. Strong scaling benchmarks.

where both our new multi-GPU backend as well as the existing
single-GPU backend execute the same problem size. As further
sanity checks of our runtime and fissioning systems, we execute
both the fissioned and unfissioned program through our new back-
end on both one and two GPUs. Executing the original program
through our multi-device runtime on one GPU provides a measure
of any additional overhead introduced by our scheduler compared
to the existing Accelerate CUDA backend.

It is important to remember that, unlike the benchmarks from
the previous subsection, here the devices need to cooperate to
compute a program over a single data set. That is, if we split an
array to execute its pieces over multiple devices, we must then
combine those partial results to reach the final value.

N-Body TheN -body example simulates Newtonian gravitational
forces on a set of massive bodies in 3D space, using the basic
Opn2

q algorithm shown in Section 2.4.
The N -body benchmark has a high compute to data-transfer ra-

tio, and benefits greatly from fissioning and multi-device execu-
tion. Executing the original or fissioned program through our multi-

device scheduler on a single GPU yields performance similar to the
existing Accelerate CUDA backend. Executing the fissioned pro-
gram over 2 GPUs yields a maximum speed of 2.4ˆ (Figure 7). At
these sizes, splitting the working set in half on each GPU allows
the bodies to fit entirely into the 2MB cache, resulting in a benefit
even on a single GPU. At larger sizes, once the cache is exhausted
in both the single and multi-GPU cases, the performance delta sta-
bilizes at 2.0ˆ.

Matrix Multiplication The matrix multiplication benchmark
achieves a modest speedup at large matrix sizes. This benchmark
requires a large partial result to be communicated between devices
and combined, which we observe is only worthwhile at larger in-
put sizes (Figure 7). Additionally, this program exercises the fold
fissioning rules, so the combination step is more expensive relative
to the other benchmarks we consider, such as N -body, which only
need to concatenate their partial result vectors.

Mandelbrot The Mandelbrot set is generated by sampling values
c in the complex plane, and determining whether under iteration
of the complex quadratic polynomial zn`1 “ z2n ` c that |zn|

20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
e
d
ia

n
 t

im
e
 i
n
 s

e
co

n
d
s

Width/height

Mandelbrot Benchmark

Accelerate CUDA
MULTI 1 GPU Fission=On
MULTI 1 GPU Fission=Off

MULTI 2 GPUs Fission=On
MULTI 2 GPUs Fission=Off

Figure 8. The Mandelbrot program is an example of an unbal-
anced problem. The area marked as 1 is considerably cheaper to
compute than the area marked 2.

remains bounded however large n gets. This is an example of an
unbalanced workload, as the time to compute each point c on the
complex plane varies. Figure 8 shows a visual representation of the
result, and indicates how our fission rules distributed the iteration
space between the two devices. Areas that are colored black take
the longest time to compute. Thus, we can see that the second piece
(right half) is considerably more expensive to compute compared to
the first. We discuss possible approaches to resolving this problem
in Section 8.

7. Related Work
There have been several efforts to build languages or tools for more
effectively leveraging multiple GPUs. Many projects either rely on
a programmer to specify some or all of the details of how their
program is distributed across devices, or only distribute sections of
their input vector or array to identical programs on multiple GPUs.

SkelCL [39] is an extension to OpenCL that allows program-
mers to specify at a high level the general strategy to use when dis-
tributing a computation across multiple devices. It abstracts away
lower level concerns like the details of copying data.

Delite/LMS [36] is a library-based parallelization framework
for DSLs in Scala that allows specifying complex optimizations in
a modular manner. The Delite code generator is able to target mul-
ticore CPUs and GPUs, and demonstrates impressive performance
on both.

Wu et al. [42] describe kernel fusion and fission operations, to
be used in optimization of data warehousing applications. Their
intent is to schedule smaller data-parallel kernels to hide PCIe
transfer time.

SkePu [15] is a C++ template library for single and multi-
GPU systems based on code skeletons, for operations such as map
and reduce. SkePu is capable of launching array computations on
multiple devices.

AMGE [7] is a CUDA source to source compiler that aug-
ments executables with information about array access patterns.
The AGME runtime system uses this access pattern information
and run CUDA applications across multiple GPUs. The same ker-
nel is launched on all GPUs and unified addressing is required to
ensure that all data is reachable from all devices at once.

PLT Redex has seen adoption in several projects as a way
to explore programming language semantics. Kuper et al. [26]
also use PLT Redex in the context of a language designed for
parallelism.

8. Discussion and Future Work
Much work remains to fully explore the potential of single ker-
nel, multiple device embedded languages, particularly in the area
of scheduling algorithms. In this paper we have presented a proof
of concept: a prototype that makes Accelerate the first purely func-
tional SKMD embedded language. Our prototype demonstrates the
possibility of transparently using two GPUs without changing the
user’s high-level source code.

We have demonstrated that our fissioning transformation and
multi-device runtime perform well on a set of benchmarks —
namely N -body and matrix multiplication— while the Mandelbrot
program was used to highlight the problems with our current, fixed
domain decomposition. We plan to integrate our approach to fis-
sioning with an auto-tuning mechanism that would explore differ-
ent fissioning and decomposition strategies, and thus automatically
find the best split point for unbalanced workloads such as Mandel-
brot.

While we have used the system on unbalanced workloads, we
have not tested it on a system with GPUs of different performance
characteristics. Doing this, as well as heterogeneous GPU/CPU
decompositions, is left as future work.

Additionally, we believe fissioning may be exploited to auto-
matically handle datasets that do not fit in the memory of a single
GPU. We leave this exploration to future work.

We have modelled our system of fission rewrite rules in PLT
Redex and tested their correctness. We found this to be extremely
useful, allowing us to test and debug the rewrite rules, thereby
increasing our confidence in the system as a whole and helping us
in weeding out incorrect rewrite rules. However, important future
work is to formally prove the correctness of our rewrite rules.

Acknowledgments
This work was supported by NSF grant XPS-1337242.

References
[1] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific

languages. In Haskell Symposium, 2009.
[2] E. Axelsson. A generic abstract syntax model for embedded lan-

guages. In ICFP: International Conference on Functional Program-
ming. ACM, 2012.

21

[3] G. E. Blelloch. Vector models for data-parallel computing, volume
356. MIT press Cambridge, 1990.

[4] G. E. Blelloch. NESL: A Nested Data-Parallel Language. Technical
Report CMU-CS-95-170, 1995.

[5] G. E. Blelloch and J. Greiner. A provable time and space efficient
implementation of NESL. In ICFP: International Conference on
Functional programming. ACM.

[6] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Two for the
price of one: A model for parallel and incremental computation. In
OOPSLA: International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2011.

[7] J. Cabezas, L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro, and W.-
m. Hwu. Automatic execution of single-GPU computations across
multiple GPUs. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14, pages 467–468.
ACM, 2014.

[8] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(5), 2009.

[9] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an embedded data parallel language. In Principles and Practice of
Parallel Programming, pages 47–56, 2011.

[10] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In Declarative
Aspects of Multicore Programming. ACM, 2011.

[11] S. Chatterjee, G. E. Blelloch, and M. Zagha. Scan primitives for vector
computers. In Supercomputing. IEEE Computer Society Press, 1990.

[12] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array con-
structs in an embedded GPU kernel programming language. In Pro-
ceedings of the 7th Workshop on Declarative Aspects and Applications
of Multicore Programming, DAMP ’12, pages 21–30. ACM, 2012.

[13] R. Clifton-Everest, T. L. McDonell, M. M. Chakravarty, and G. Keller.
Embedding foreign code. In Practical Aspects of Declarative Lan-
guages. Springer International Publishing, 2014.

[14] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists
to streams to nothing at all. In ICFP: International Conference on
Functional Programming. ACM, 2007.

[15] J. Enmyren and C. W. Kessler. SkePU: A multi-backend skeleton
programming library for multi-GPU systems. In Proceedings of the
Fourth International Workshop on High-level Parallel Programming
and Applications, HLPP ’10. ACM, 2010.

[16] M. Felleisen, R. B. Finder, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[17] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implemen-
tation, PLDI ’93, pages 237–247, New York, NY, USA, 1993. ACM.
ISBN 0-89791-598-4. .

[18] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, and R. R.
Newton. A meta-scheduler for the par-monad: Composable schedul-
ing for the heterogeneous cloud. In ICFP: International Conference
on Functional Programming. ACM, 2012.

[19] M. Frigo and S. G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[20] A. Gill. Type-safe observable sharing in Haskell. In Haskell Sympo-
sium. ACM, 2009.

[21] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
Architectural Support for Programming Languages and Operating
Systems. ACM, 2006.

[22] K. E. Iverson. A programming language. In AIEE-IRE: Joint Com-
puter Conference. ACM, 1962.

[23] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, shape-polymorphic, parallel arrays in
haskell. In ICFP: International Conference on Functional Program-
ming. ACM, 2010.

[24] The OpenCL Specification. Khronos OpenCL Working Group, 2010.

[25] T. Komoda, S. Miwa, H. Nakamura, and N. Maruyama. Integrating
multi-gpu execution in an openacc compiler. In Proceedings of the
2013 42Nd International Conference on Parallel Processing, ICPP
’13. IEEE Computer Society, 2013. .

[26] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. Newton. Freeze
after writing: Quasi-deterministic parallel programming with LVars.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 257–270.
ACM, 2014.

[27] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent CPU-GPU
collaboration for data-parallel kernels on heterogeneous systems. In
Parallel architectures and compilation techniques. IEEE Press, 2013.

[28] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient determin-
istic multithreading. In Symposium on Operating Systems Principles.
ACM, 2011.

[29] G. Mainland and G. Morrisett. Nikola: Embedding compiled GPU
functions in Haskell. In Haskell Symposium. ACM, 2010.

[30] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional GPU programs. In ICFP: International
Conference on Functional Programming. ACM, 2013.

[31] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang.
Intel’s Array Building Blocks: a retargetable, dynamic compiler and
embedded language. In International Symposium on Code Generation
and Optimization, 2011.

[32] R. R. Newton, L. D. Girod, M. B. Craig, S. R. Madden, and J. G.
Morrisett. Design and evaluation of a compiler for embedded stream
programs. In Conference on Languages, Compilers, and Tools for
Embedded Systems. ACM, 2008.

[33] CUDA C Programming Guide. NVIDIA, Oct. 2012.

[34] P. Pandit and R. Govindarajan. Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices. In Proceed-
ings of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’14, pages 273:273–273:283, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2670-4. .

[35] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson. Spiral: a generator for platform-
adapted libraries of signal processing algorithms. International Jour-
nal on High Performance Computing Applications, 18:21–45, 2004.

[36] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs: new directions for extensible com-
pilers based on staging. In Principles of programming languages.
ACM Request Permissions, 2013.

[37] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for
gpu computing. In Symposium on Graphics Hardware. Eurographics
Association, 2007.

[38] J. Siek, I. Karlin, and E. Jessup. Build to order linear algebra kernels.
In Parallel and Distributed Processing, 2008.

[39] M. Steuwer, P. Kegel, and S. Gorlatch. Towards high-level pro-
gramming of multi-GPU systems using the skelcl library. In Par-
allel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 1858–1865, May
2012.

[40] The MathWorks, Inc. Matlab.

[41] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A lan-
guage for streaming applications. In International Conference on
Compiler Construction. Springer-Verlag, 2002.

[42] H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and
S. Chakradhar. Optimizing data warehousing applications for GPUs
using kernel fusion/fission. In Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Work-
shops & PhD Forum, IPDPSW ’12, pages 2433–2442. IEEE, 2012.

[43] T. Yang and A. Gerasoulis. List scheduling with and without commu-
nication delays. Parallel Computing, 19(12):1321–1344, 1993.

22

