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This paper develops an optimisation model for a sustainable closed-loop supply chain network with two
conflicting objectives, namely, the minimisation of the total logistic costs and the total amount of carbon
emissions. The first objective relates to financial benefits whereas the second represents the wider goal
of guaranteeing cleaner air and hence a greener and healthier planet. The problem is first modelled as
a mixed integer linear programming based-model. The aim is to determine the location of distribution
centres and recycling centres, their respective numbers, and the type of vehicles assigned to each facility.
Vehicle type consideration, not commonly used in the literature, adds another dimension to this practi-
cal and challenging logistic problem. A Matheuristic using compromise programming is put forward to
tackle the problem. The proposed matheuristic is evaluated using a variety of newly generated datasets
which produces compromise solutions that demonstrate the importance of an appropriate balance of both
objective functions. The robustness analysis considering fluctuations in customer demand is assessed
using Monte Carlo simulation. The results show that if the standard deviation of the demand falls within
10% of its average, the unsatisfied demand is insignificant, thus demonstrating the stability of supply
chain configuration. This invaluable information is key towards helping senior management make rele-
vant operational and strategic decisions that could impact on both the sustainability and the resilience of
their supply chain networks.

Keywords: Closed-loop Supply Chain Network; Bi-objective; Sustainability; Matheuristic.

1. Introduction

The needs for a well-designed closed-loop supply chain (CLSC) have gained prominence in recent years.
Several reasons are responsible for this renewed push for CLSC ranging from economic considerations,
government legislations, increased customers’ expectations for better business stewardship and global
push for circular economy (Kusakci et al., 2019; Kazancoglu et al., 2018). The singular most important
purpose of these network designs is for efficient and cost-effective approaches to achieve sustainability
in the company’s environmental and economic performances (Dai and Zheng, 2015; Asgari et al., 2016).

In CLSC, the flow of products is between two markets at both ends of the supply chain, with the
forward flow representing the market at the beginning of the CLSC while the reverse flow represents
the market at the end of the CLSC. The reverse flow transports used, damage, unsold, and/or end-of-life
products back to the manufacturers. This flow facilitates reprocessing of such returns with value-added
methods based on material recovery and reuse, recycling, repair, refurbishing and remanufacturing. A
well-structured CLSC system therefore facilitates the attainment of a circular economy that focuses on
recycling, conservation of scarce resources and waste transformation into wealth generation (Ghisellini
et al., 2016; Diabat and Al-Salem, 2015). It also addresses vital operational and strategic decisions on
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inventory positioning/ management and optimal vehicle routing to achieve reduced costs and increased
customer service levels (Asl-Najafi et al., 2015). Furthermore, a well-designed CLSC system enables
low cost determination of optimal product flow quantity within a network (Kadambala et al., 2017; Dai
and Zheng, 2015), with the reverse strategy providing a significant cost savings and reduced operational
greenhouse gas emissions (GHG) considerably (Abdulrahman et al., 2014).

Despite the established benefits, the design and the implementation of a cost-effective CLSC sys-
tem are not easy to achieve. The difficulties lie in the need to simultaneously consider both forward
and reverse supply networks to obtain desired results (Pishvaee and Torabi, 2010). In other words,
solving forward supply chain and reverse logistics separately as traditionally done will only results in
sub-optimal achievements of reduced cost, transport pollution reduction and optimal flow quantities.
Furthermore, senior management often face a challenging decision when attempting to resolve the mul-
tiple conflicting decision choices within a CLSC design solution. Such dilemma include a company’s
desired level of profitability, demand variability, rate of product return, and the firm’s desired position in
terms of social responsibility, among others (Kadambala et al., 2017; Elhedhli and Merrick, 2012; Pan
et al., 2013).

Several extant studies have attempted to address these challenging issues by investigating CLSC de-
signs from different perspectives. The majority of them focused on CLSC designs from a sustainability
perspective (Fahimnia et al., 2013; Devika et al., 2014; Mota et al., 2015; Talaei et al., 2016; Tiwari
et al., 2016; Tosarkani and Amin, 2018; Atabaki et al., 2020). A major problem with these and similar
studies is the lack of a holistic approach, which focuses on the challenging issue of solving the forward
and the reverse supply chain (SC) networks simultaneously. A similar issue of ignoring routing when
locating facilities was initially demonstrated by Salhi and Rand (1989). This issue of sub-optimality
has attracted a lot of attention and research in the area of location-routing problem. We believe this
paper follows a similar line of research but for the case of CLSC instead. Furthermore, all extant studies
assumed only a single type of vehicle for the bidirectional flow of products in their designs. This is
a fundamental omission given the acknowledged environmental impact of transportation through GHG
(Dekker et al., 2012; Elhedhli and Merrick, 2012; Pan et al., 2013). All these are in addition to the
limited number of facilities considered in most of the designs of the extant studies.

To address these gaps and facilitate informed decision-making, we develop a generic optimisation
model for the sustainable CLSC network design (SCLCND). Our aim is to determine the number and
locations of distribution centres (DCs) and recycling centres (RCs) together with their capacity, trans-
portation modes for each facility, and the bidirectional flows of products in order to minimise the total
costs and carbon emissions (CO2) generated. We adopt a compromise programming (CP) methodology
to obtain compromise solutions that deal with the bi-objective problem, namely, minimising the amount
of CO2 emissions and the total operational cost.
The contributions of this study are four-fold:

• The development of an efficient integrated bi-objective model based on compromise programming
for designing a sustainable CLSC network;

• The construction and analysis of an effective matheuristic which integrates an aggregation tech-
nique, an exact method and a local search;

• The ability to solve large newly constructed datasets, which can be used for future benchmarking
purposes; and

• The flexibility in investigating both scenario analysis and Monte Carlo simulation that would
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assist senior management when making their strategic decisions that could impact on both the
sustainability and the robustness of their supply network.

The rest of the study is organised as follows. Section 2 summarised the literature review. Section 3
provides a description of the proposed mathematical model while Section 4 covers the solution method.
The matheuristic is presented in Section 5. The computational results, including the newly constructed
datasets, a scenario analysis and a simulation experiment are provided in Section 6. A summary of the
findings and some future research avenues are highlighted in the final section.

2. Literature Review

In the last two decades, studies on sustainable CLSC developments have received extensive interest due
to growing resource scarcity, environmental concerns and huge financial impact of product returns.To
mitigate these negative impacts, extant studies in the CLSC network design have examined, amongst
other aspects, facility location and allocation, capacities of facilities, production planning, inventory,
transportation, environmental impact (Subramanian et al., 2013; Altmann and Bogaschewsky, 2014;
Kaya and Urek, 2016; Kang et al., 2017; Ghahremani-Nahr et al., 2019). For a comprehensive review on
the CLSC, the reader can refer to the works of Govindan et al. (2015), Govindan and Soleimani (2017),
and recently, Oliveira and Machado (2021) presented a systematic review on optimisation techniques
applied in the CLSC.

Fleischmann et al. (2001) was among the first to study a generic uncapacitated CLSC model with
product recovery facilities as a mixed integer linear programming (MILP). The model was assessed
using two case studies concerning copier remanufacturing and paper recycling, respectively and was
solved using commercial solver package. Lu and Bostel (2007) developed a 0-1 mixed integer program-
ming (MIP) for a remanufacturing closed-loop supply chain network and a lagrangian-based heuristic
was designed to tackle the problem. Demirel and Gökçen (2008) formulated a remanufacturing sys-
tem in a CLSC as MILP and solved the problem using genetic algorithm (GA) to get quantities of
manufactured and remanufactured products while finding the locations of disassembly, collection and
distribution centres. Yi et al. (2016) extended the study of a CLSC with remanufacturing facilities and
a hybrid GA was applied to solve the problem in finding the location of various centre, flows of used
products, components and remanufactured products.

Salema et al. (2009) put forward a MILP for a multi-product and multi-period CLSC model by
embedding strategic and tactical location-allocation decisions where the model was solved using branch
and bound technique. Wang and Hsu (2010) constructed an integer linear programming (ILP) for a
CLSC logistics system and developed a spanning tree based GA to deal with the model.

CLSC network design problems have also been extended to include various aspects in practice, such
as third party logistics (3PL) companies, recyclable products, life cycle assessment principles, pricing
decisions, and uncertainty and product return, among others. Ko and Evans (2007) integrated 3PL
operators into a CLSC model and applied genetic algorithm to tackle the model. In a similar fashion,
Li et al. (2018) studied a CLSC model with location-inventory problem where the logistic service was
outsourced to 3PL. A hybrid heuristic based on the improved hybrid differential evolution algorithm and
GA was put forward to solve the proposed model.

Chaabane et al. (2012) investigated a sustainable CLSC that considers Life Cycle Assessment (LCA)
principles and utilised an optimisation software package to solve the problem. Pishvaee and Razmi
(2012) introduced a multi-objective fuzzy MIP for designing an environmental CLSC network. LCA
method was applied to assess and quantify the environmental influence of the network.
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Kalaitzidou et al. (2015) put forward a MILP model for a CLSC network design with recyclable
products and multifunctional nodes. A branch and bound methodology was implemented to solve the
proposed MILP model using a real case study from a Europe based consumer goods company. Kaya and
Urek (2016) proposed a MINLP to incorporate pricing decisions into a CLSC network and introduced
incentive values for the collection of right amount of recyclable products into the model. Three hybrid
metaheuristics based on simulated annealing (SA), tabu search (TS), GA, and Variable Neighborhood
Search (VNS) were designed as solution methods. Patne et al. (2018),extended the work of Kaya and
Urek (2016) and developed an improved particle swarm optimisation algorithm to deal with the model.
Atabaki et al. (2019) examined a CLSC with price-sensitive demand and put forward a priority-based
firefly metaheuristic algorithm.

Pishvaee et al. (2010) discussed a bi-objective MIP formulation for a CLSC network with product re-
turn under uncertainty. To solve the proposed model, the authors put forward a multi-objective memetic
algorithm with dynamic local search mechanism. Subramanian et al. (2013) presented a CLSC model by
considering fixed charge for locating facilities and warehouse to organise uncertainty of product returns
efficiently. A priority based simulated annealing was proposed as a solution procedure. Yadegari et al.
(2019) hybridised a memetic algorithm with a multi-start SA algorithm to deal with location and product
flow decisions in a multi-period CLSC network design. Zhen et al. (2019) built a two-stage stochastic
MINLP for an integrated CLSC under uncertain demand and return. An improved TS algorithm was
suggested to tackle the problem.

Many previous works have focused on an implementation of CLSC in various industries, such as
computer products (Lee and Dong, 2008; Kusumastuti et al., 2008; Chen et al., 2015), glass (Devika
et al., 2014), tyre (Fathollahi-Fard et al., 2018), battery (Tosarkani and Amin, 2018), bottled water (Pa-
pen and Amin, 2019), dairy (Gholizadeh et al., 2021), and walnut (Salehi-Amiri et al., 2021). Another
variant of CLSC, known as green CLSC network models, has included the environmental element into
the objective function; for example, in the works of Fahimnia et al. (2013), Altmann and Bogaschewsky
(2014), Choudhary et al. (2015), Talaei et al. (2016), Tiwari et al. (2016), and Atabaki et al. (2020).
A number of previous studies on the CLSC network design has integrated fuzzy environment into the
model, such as Ramezani et al. (2014), Kang et al. (2017), Govindan et al. (2017), Ghahremani-Nahr
et al. (2019), and Nayeri et al. (2020).

Table 1 presents a summary of relevant previous works and highlights the distinctive aspects of the
current study (last row in bold). The fourth column of Table 1 indicates the sustainability aspects used
in the corresponding articles where Eco, Env, and Soc refer to the Economic, Environmental and Social
aspects of sustainability respectively. The fifth column provides outputs or decision variables considered
in each paper where L refers to facility location, AL indicates allocation, FC denotes facility capacity,
TM represents transportation mode, TA stands for transportation amount, and ND expresses quantity of
non-satisfied demand.

In this paper, an integrated SCLCND problem is investigated where a mixed integer linear program-
ming (MILP) is constructed to determine the number and locations of DCs and RCs together with their
capacity, transportation modes for each facility, and the flows of products in order to deal with the total
costs and carbon emissions (CO2) produced. In addition, it is common in the literature, as earlier stated,
that a facility uses only one type of vehicle to transport their products. Here, we extend the problem
so that the optimal vehicle type can also be determined for each facility. Although this increases the
complexity of the problem, in practice, it is important to consider this activity as part of the overall
company strategy. Moreover, a combination of single- and multi-sources allocations is applied in the
model. The multi-source allocation is used for the flows of products from plants to DCs and from RCs
to plants whereas the single-source allocation is implemented for the flows of products from the DCs
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Table 1. A Summary of previously relevant published literature for the CLSC
No Authors Modelling Aspect Output Solution Method
1 Fleischmann et al. (2001) MILP Eco L, AL Exact
2 Ko and Evans (2007) MINLP Eco L, TA, FC Genetic Algorithm
3 Lu and Bostel (2007) MIP Eco L, AL Lagrangian relaxation-

based
4 Lee and Dong (2008) MILP Eco L,TA Tabu Search
5 Demirel and Gökçen (2008) MILP Eco L, TA Genetic Algorithm
6 Kusumastuti et al. (2008) MILP Eco L, AL Exact
7 Salema et al. (2009) MILP Eco L, AL, TA, ND Branch and Bound
8 Wang and Hsu (2010) ILP Eco L, TA Genetic Algorithm
9 Pishvaee et al. (2010) MIP Eco L,FC,TA Memetic Algorithm
10 Chaabane et al. (2012) MILP Eco, Env L, TM Exact
11 Pishvaee and Razmi (2012) Fuzzy MIP Eco, Env L, TA Fuzzy approach
12 Fahimnia et al. (2013) MILP Eco, Env L, I, TA Exact
13 Subramanian et al. (2013) ILP Eco L, AL, TA Simulated Annealing
14 Devika et al. (2014) MILP Eco, Env,

Soc
L, AL, TA Hybrid Metaheuristic

15 Ramezani et al. (2014) Fuzzy
MILP

Eco L, AL, TM Exact

16 Altmann and Bogaschewsky
(2014)

LP Eco, Env L, AL, FC Exact

17 Choudhary et al. (2015) MILP Eco, Env L, AL, FC Forest Data Structure
18 Kalaitzidou et al. (2015) MILP Eco L, AL, FC Branch and Bound
19 Chen et al. (2015) MILP Eco L, AL, FC Genetic Algorithm
20 Tiwari et al. (2016) MILP Eco, Env L, AL Hybrid Metaheuristic
21 Yi et al. (2016) MILP Eco L, FC Genetic Algorithm
22 Talaei et al. (2016) MILP Eco, Env L, AL ε-constraint
23 Kaya and Urek (2016) MINLP Eco L, AL Hybrid Metaheuristic
24 Kang et al. (2017) Fuzzy Eco, Env L, AL Particle Swarm
25 Govindan et al. (2017) MILP Eco, Env L, AL, TA, TM Fuzzy Algorithm
26 Fathollahi-Fard et al. (2018) MIP Eco L, AL, FC Metaheuristic
27 Papen and Amin (2019) MILP Eco, Env L, TA ε-constraint
28 Patne et al. (2018) MINLP Eco L, AL Particle Swarm Opti-

misation
29 Li et al. (2018) MINLP Eco L, AL Hybrid Heuristic
30 Yadegari et al. (2019) MILP Eco L, AL, FC Hybrid Memetic Algo-

rithm
31 Atabaki et al. (2019) MILP Eco L, AL, FC, TA Firefly Algorithm
32 Ghahremani-Nahr et al. (2019) MINLP Eco L, AL, FC, TM Whale Algorithm
33 Zhen et al. (2019) MINLP Eco L, AL, FC Tabu Search
34 Atabaki et al. (2020) MILP Eco, Env L, AL, FC, TM Robust Optimisation
35 Nayeri et al. (2020) MIP Eco, Env,

Soc
L, AL, FC, TM Goal Programming

36 Gholizadeh et al. (2021) MILP Eco, Env L, AL, FC, TM Robust and heuristic
Optimisation

37 Salehi-Amiri et al. (2021) MILP Eco L, AL, FC, TM Exact, Metaheuristics,
Hybrid Metaheuristics

38 This paper MILP Eco, Env L, AL, FC, TM,
ND

Matheuristic, Compro-
mise Programming
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to customers and from the customers to RCs. The single-source capacitated facility location problem
(SSCFLP) can be considered as a simple form of the proposed SCLCND. According to Fisher et al.
(1986), the SSCFLP is NP-hard itself and very hard to solve. To the best of our knowledge, there is
no literature has implemented matheuristic as a solution methodology and this is the first time such an
integrated bi-objective CLSC is thoroughly explored.

3. Problem Description and Mathematical Modeling

An illustrative example of a CLSC is shown in Figure 1. Here, the location of the plants and the
customers are fixed and known, while the locations of the distribution centres (DCs) and recycling
centres (RCs) are not. The chosen locations are selected from a list of potential candidate sites. In the
forward supply chain, a set of plants manufacture a product delivered to selected DCs. A plant may
supply the product to more than one DC. A product is then transferred to customers with the assumption
that a customer is served by a single DC and its demand is deterministic. In the reverse supply chain,
the used product is collected from the customers and transferred to the selected RCs. A customer is
also assigned to one recycling centre only. Some of the used products are recycled and shipped back
to the plants whereas the rest, known as non-salvageable products, is sent to the nearest disposal centre
(landfill).

FIG. 1. Flow of products in the proposed CLSC problem

There are two types of costs, namely fixed and transportation costs. The former relates to the opening
of DCs and RCs, which are based on the location and the capacity used. The latter depends on the type of
vehicles used to transfer products. In this study, the environmental impact is measured by the amount of
CO2 emissions produced (OECD/IEA, 2017). It is also assumed, as commonly adopted in the literature,
that the amount of CO2 emissions increases with the capacity of DCs or RCs, the distance traveled
and the type of vehicle used. To ensure economies of scale, a minimal amount of products that can
be shipped from a plant to a DC or from a RC to a plant is imposed. For cost efficiency, simplicity
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and convenience, each plant and each selected DC and RC use one type of transportation mode only,
which is optimally chosen from a set of vehicles provided. This assumption increases the complexity
of the model as a large number of binary variables is used. Practically, the use of low cost vehicles will
reduce the transportation cost at the expense of a significant environmental impact. In other word, there
is a trade-off between economic and environmental aspects when selecting the type of vehicle type.
Therefore, the objective function that we set (minimising total cost or amount of emissions) affects the
solutions generated from the model.

The following notations are used to describe the sets and parameters of the proposed model.

Sets
I: set of plants with i as its index
J: set of potential distribution centres (DCs) with j as its index
K: set of customers with k as its index
L: set of potential recycling centres (RCs) with l as its index
H: set of distribution centre designs with h as its index
R: set of recycling centre designs with r as its index
V 1: set of vehicles used to transport products from a plant to a DC with v as its index
V 2: set of vehicles used to transport products from a DC to a customer with v as its index
V 3: set of vehicles used to transport used products from a customer to a RC with v as its index
V 4: set of vehicles used to transport recycled materials from a RC to a plant with v as its index

Parameters
si: the capacity of plant i ∈ I
dk: the demand of customer k ∈ K
b̄h: the number of products that can be stored in a potential DC when using design h ∈ H
b̈r: the number of used products that can be recycled in a RC when using design r ∈ R
f̄ jh: the fixed cost for opening DC j ∈ J when using design h ∈ H
f̈lr: the fixed cost for opening RC l ∈ L when using design r ∈ R
ēh: CO2 emissions caused by opening a DC using design h ∈ H
ër: CO2 emissions caused by opening a RC using design r ∈ R
τ1

i jv: the transportation cost to transfer one unit product from plant i ∈ I to DC j ∈ J using vehicle
v ∈V 1

τ2
jkv: the transportation cost to transfer one unit product from DC j ∈ J to customer k ∈ K using vehicle

v ∈V 2

τ3
klv: the transportation cost to transfer one unit used product from customer k ∈ K to RC l ∈ L using

vehicle v ∈V 3

τ4
liv: the transportation cost to transfer one unit recycled material from RC l ∈ L to plant i ∈ I using

vehicle v ∈V 4

ε1
i jv: CO2 emissions caused by transferring one unit product from plant i ∈ I to DC j ∈ J using vehicle

v ∈V 1

ε2
jkv: CO2 emissions caused by transferring one unit product from DC j ∈ J to customer k ∈ K using

vehicle v ∈V 2

ε3
klv: CO2 emissions caused by transferring one unit used product from customer k ∈ K to RC l ∈ L

using vehicle v ∈V 3

ε4
liv: CO2 emissions caused by transferring one unit recycled material from RC l ∈ L to plant i∈ I using

vehicle v ∈V 4
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ρi: the minimal amount of products transferred from plant i ∈ I to a DC
θi: the minimal amount of recycled materials transferred from RC l ∈ L to a plant
α: the average percentage of used products that can be collected from a customer to be recycled
β : the average percentage of used products that can be recycled and transformed into raw material

This bi-objective closed-loop supply chain problem can be modelled as a mixed integer linear pro-
gramming (MILP) as follows:

Decision Variables
X1

i j: the amount of products transported from plant i ∈ I to DC j ∈ J

Ȳjh =

{
1 if DC j ∈ J uses design h ∈ H,

0 otherwise

Ÿlr =

{
1 if RC l ∈ L uses design r ∈ R,
0 otherwise

U1
i jv =

1 if products are transferred from plant i ∈ I to DC j ∈ J using
vehicle v ∈V 1 ,

0 otherwise

Û1
iv =

{
1 if plant i ∈ I uses vehicle v ∈V 1 as its transportation mode,
0 otherwise

U2
jkv =

{
1 if customer k ∈ K is served by DC j ∈ J using vehicle v ∈V 2,

0 otherwise

Û2
jv =

{
1 if DC j ∈ J uses vehicle v ∈V 2 to transfer products to customers ,
0 otherwise

U3
klv =

1
if used products of customer k ∈ K are shipped to RC l ∈ L
using vehicle v ∈V 3 ,

0 otherwise

Û3
lv =

{
1 if RC l ∈ L uses vehicle v ∈V 3 to collect used products from customers ,
0 otherwise

U4
liv =

1
if recycled materials are transferred from RC l ∈ L to plant i ∈ I
using vehicle v ∈V 4 ,

0 otherwise

Û4
lv =

{
1 if RC l ∈ L uses vehicle v ∈V 4 to transfer recycled materials to suppliers,
0 otherwise

X4
li : the amount of recycled materials transported from RC l ∈ L to plant i ∈ I

Objective functions

min Zc = Zoc +Ztc (3.1)
min Ze = Zoe +Zte (3.2)

where
Zoc = ∑

j∈J
∑

h∈H

(
f̄ jh · Ȳjh

)
+ ∑

l∈R
∑
r∈R

(
f̈lr · Ÿlr

)
(3.3)
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Ztc = ∑
i∈I

∑
j∈J

∑
v∈V 1

(
U1

i jv ·X1
i j · τ1

i jv
)
+ ∑

j∈J
∑
k∈K

∑
v∈V 2

(
U2

jkv ·dk · τ2
jkv
)
+

∑
k∈K

∑
l∈L

∑
v∈V 3

(
U3

klv ·α ·dk · τ3
klv
)
+∑

l∈L
∑
i∈I

∑
v∈V 4

(
U4

liv ·X4
li · τ4

liv
)

(3.4)

Zoe = ∑
j∈J

∑
h∈H

(
ēh · Ȳjh

)
+ ∑

l∈R
∑
r∈R

(
ër · Ÿlr

)
(3.5)

Zte = ∑
i∈I

∑
j∈J

∑
v∈V 1

(
U1

i jv ·X1
i j · ε1

i jv
)
+ ∑

j∈J
∑
k∈K

∑
v∈V 2

(
U2

jkv ·dk · ε2
jkv
)
+

∑
k∈K

∑
l∈L

∑
v∈V 3

(
U3

klv ·α ·dk · ε3
klv
)
+∑

l∈L
∑
i∈I

∑
v∈V 4

(
U4

liv ·X4
li · ε4

liv
)

(3.6)

subject to

∑
j∈J

X1
i j 6 si, ∀i ∈ I (3.7)

∑
i∈I

X1
i j 6 ∑

h∈H

(
Ȳjh · b̄h

)
, ∀ j ∈ J (3.8)

∑
h∈H

Ȳjh 6 1, ∀ j ∈ J (3.9)

X1
i j > ρi · ∑

v∈V 1

U1
i jv, ∀i ∈ I, j ∈ J (3.10)

X1
i j 6 M · ∑

v∈V 1

U1
i jv, ∀i ∈ I, j ∈ J (3.11)

Û1
iv >U1

i jv, ∀i ∈ I, j ∈ J,v ∈V 1 (3.12)

∑
v∈V 1

Û1
iv 6 1, ∀i ∈ I (3.13)

∑
k∈K

∑
v∈V 2

(
U2

jkv ·dk
)
6 ∑

h∈H

(
Ȳjh · b̄h

)
, ∀ j ∈ J (3.14)

∑
i∈I

X1
i j = ∑

k∈K
∑

v∈V 2

(
U2

jkv ·dk
)
, ∀ j ∈ J (3.15)

∑
j∈J

∑
v∈V 2

U2
jkv = 1, ∀k ∈ K (3.16)

Û2
jv >U2

jkv, ∀ j ∈ J,k ∈ K,v ∈V 2 (3.17)

∑
v∈V 2

Û2
jv 6 1, ∀ j ∈ J (3.18)

Û2
jv− ∑

h∈H
Ȳjh 6 0, ∀ j ∈ J,v ∈V 2 (3.19)

∑
k∈K

∑
v∈V 3

(
U3

klv ·dk ·α
)
6 ∑

r∈R

(
Ÿlr · b̈r

)
, ∀l ∈ L (3.20)

∑
r∈R

Ÿlr 6 1, ∀l ∈ L (3.21)

∑
l∈L

∑
v∈V 3

U3
klv = 1, ∀k ∈ K (3.22)
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Û3
lv >U3

klv, ∀k ∈ K, l ∈ L,v ∈V 3 (3.23)

∑
v∈V 3

Û3
lv 6 1, ∀l ∈ L (3.24)

Û3
lv−∑

r∈R
Ÿlr 6 0, ∀l ∈ L,v ∈V 3 (3.25)

∑
k∈K

∑
v∈V 3

(
U3

klv ·dk ·α ·β
)
6 ∑

i∈I
X4

li , ∀l ∈ L (3.26)

∑
l∈L

X4
li 6 ∑

j∈J
X1

i j, ∀i ∈ I (3.27)

X4
li > θl · ∑

v∈V 4

U4
liv, ∀l ∈ L, i ∈ I (3.28)

X4
li 6 M · ∑

v∈V 4

U4
liv, ∀l ∈ L, i ∈ I (3.29)

Û4
lv >U4

liv, ∀l ∈ L, i ∈ I,v ∈V 4 (3.30)

∑
v∈V 4

Û4
lv 6 1, ∀l ∈ L (3.31)

Û4
lv−∑

r∈R
Ÿlr 6 0, ∀l ∈ L,v ∈V 4 (3.32)

Ȳjh ∈ {0,1}, ∀ j ∈ J,h ∈ H (3.33)
Ÿlr ∈ {0,1}, ∀l ∈ L,r ∈ R (3.34)

X1
i j > 0, integer, ∀i ∈ I, j ∈ J (3.35)

U1
i jv ∈ {0,1}, ∀i ∈ i, j ∈ J,v ∈V 1 (3.36)

Û1
iv ∈ {0,1}, ∀i ∈ I,v ∈V 1 (3.37)

U2
jkv ∈ {0,1}, ∀ j ∈ J,k ∈ K,v ∈V 2 (3.38)

Û2
jv ∈ {0,1}, ∀ j ∈ J,v ∈V 2 (3.39)

U3
klv ∈ {0,1}, ∀k ∈ K, l ∈ L,v ∈V 3 (3.40)

Û3
lv ∈ {0,1}, ∀l ∈ L,v ∈V 3 (3.41)

U4
liv ∈ {0,1}, ∀l ∈ L, i ∈ I,v ∈V 4 (3.42)
Û4

lv ∈ {0,1}, ∀l ∈ L,v ∈V 4 (3.43)
X4

li ∈ {0,1}, ∀l ∈ L, i ∈ I (3.44)

where M is a very large positive number.
Objectives (3.1) and (3.2) refer to the economic and environmental impacts respectively. Both objec-

tives consist of two parts, namely, the sum of all fixed costs/emissions and the sum of all transportation
costs/emissions. The first term of the total transportation costs/emissions formulation (Ztc and Zte) in
(3.4) and (3.6) makes the problem nonlinear due to the product of the two decision variables (U1

i jv and
X1

i j). In the implementation, the problem is transformed into a linear problem (MILP) by the introduc-
tion of new decision variables and constraints.

Constraints (3.7) and (3.8) are the capacity constraints, where a plant and an open DC cannot,
respectively, deliver and receive products more than their capacities. Constraint (3.9) enforces that
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one design (with a certain capacity) can only be used by an open DC. Constraints (3.10)–(3.11) express
that the amount of products shipped to a DC from a plant must be more than or equal to the lower limit.
Constraints (3.12)–(3.13) guarantee that a plant only uses one type of vehicle for transporting products
to DCs. Equation (3.14) indicates the maximum amount of products an open DC can deliver to its
customers (i.e. up to its capacity). Constraint (3.15) states the flow conservation constraints through an
open DC. A single-source allocation problem is represented by Constraint (3.16), where a customer is
only served by one open DC. This constraint is widely used in the facility location problem. Constraints
(3.17)–(3.18) ensure that an open DC only uses one type of vehicle to deliver products to its customers,
whereas Constraint (3.19) imposes that a vehicle for transporting products is only required by an open
DC.

The interpretation of Constraints (3.20) and (3.21) are, respectively, similar to Constraints (3.8) and
(3.9), with DCs replaced by RCs. Constraint (3.22) assures that the used products of a customer are
only collected by one open RC. Constraints (3.23)–(3.24) define that an open RC only uses one type
of vehicle to collect used products from its customers. Constraint (3.25) enforces that a vehicle for
collecting used products is only needed by an open RC. The flow conservation constraints through an
open RC is represented by Constraint (3.26). Constraint (3.27) ensures that the amount of recycled
products delivered to a plant does not exceed the plant capacity. Equations (3.28)–(3.29) impose that
the amount of recycled products transferred to a plant from RC must be more than or equal to the lower
limit. Constraints (3.30)–(3.31) ensure that an open RC only uses one type of vehicle to ship recycled
products to the plants. Constraint (3.32) conveys that a vehicle for transferring recycled products to
the plants is only needed by an open RC. Equations (3.33)–(3.44) indicate binary and non-negativity
restrictions on decision variables.

Constraints (3.7)–(3.8) and (3.20) are designed based on a well-known capacitated plant location
problem (Sridharan, 1995). Constraints (3.9) and (3.21) have been applied for the location problems
with multiple capacity levels (Correia et al., 2010). Constraints (3.15) and (3.26) are usually used by
the two-stage capacitated facility location model (Irawan and Jones, 2019).

4. Compromise Programming for the Bi-objective CLSC

In real-life, we may face problems with more than one objective, which is referred to as a multi-objective
problem (Song et al., 2019; Yakavenka et al., 2019; Kaveh et al., 2019). There are several methods that
can be used to deal with multi-objective problems including goal programming, Pareto efficient set
generation, and compromise programming (CP). In this paper, CP is chosen as it has the advantage
of not requiring the goal target values information, as in goal programming, whilst at the same time
being relatively faster than the Pareto efficient set generation technique. The idea of CP is to select
a solution from the set of efficient solutions based on the assumption that any decision maker seeks a
solution as close to the ideal point as possible (Romero and Rehman, 1989). According to Jones (2011),
CP minimises a set of weighted, scaled distances between the ideal and efficient solutions. Recently,
CP has been used successfully in many applications, including in the environmental area of wind farm
scheduling as shown by Irawan et al. (2017a) and references therein.

CP uses a distance function to measure the closeness between a solution and the ideal point, where
a family of Lp metrics is usually implemented. The general formulation of a CP approach is expressed
as follows:

min Lp =

(
N

∑
k=1

∣∣∣∣ŵk ·
Zk(x)−Z∗k
Z+

k −Z∗k

∣∣∣∣p
) 1

p

(4.1)
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where
p: indicates the distance measure with p in the range [1,∞],
N: the number of objectives,
Z∗k : the ideal solution of objective o,
Z+

k : the anti-ideal solution of objective o,
Zk(x): the compromise solution that minimises Lp, and
ŵk: the weight/importance of objective o relative to the other objectives.

In this study, we explore the case when the value of p is 1 and ∞.
For p = 1, Equation (4.1) is transformed into the following form:

min L1 = min
N

∑
k=1

ŵk ·
Zk(x)−Z∗k
Z+

k −Z∗k
(4.2)

When p = ∞, the objective function (4.1) reduces to minimising the maximum deviation (π) as follows:

min L∞ = min π (4.3)

s.t ŵk ·
Zk(x)−Z∗k
Z+

k −Z∗o
6 π,∀k = 1, . . . ,N (4.4)

Algorithm 4.1 shows the main steps of CP for solving the bi-objective CLSC network problem. This
approach consists of three phases. The first phase is to obtain the anti-ideal solution for each objective,
where the maximising problem is used instead. As expected, in the optimal solution configuration, all
potential sites with their largest capacity will be chosen for opening DCs and RCs. Moreover, a customer
will be served by the furthest facility instead of the nearest one. This property of the maximising
problem renders its resolution relatively easy to solve optimally. In the second phase, the ideal solution
for each objective is obtained by solving the minimising problem separately. In this study, even though
the problem is more complex, it is also solved by an exact method, where CPLEX is used to generate
optimal or near optimal solutions.

Phase 3 is introduced to find the solutions that minimise L1 and L∞ as these can serve as bounds for
the compromise solutions. The MILPs for L1 and L∞ are solved by both the exact method using CPLEX
and the proposed matheuristic. For relatively large instances, the matheuristic is an effective tool for
minimising L1 and L∞ problems as these problems are relatively harder to solve optimally.

5. The Proposed Matheurisic

A matheuristic technique, which falls within the class of hybridisation of heuristics and exact methods,
is proposed. In this study, this approach is designed by integrating an aggregation technique, an exact
method, a local search and metaheuristic. For the applications of matheuristics, the readers are referred
to Ramos et al. (2020), Huber et al. (2020), Obal et al. (2019) and Irawan et al. (2019). This type of
approach, which was shown to be efficient for solving a class of location problems (Irawan et al., 2016),
is adapted to tackle the L1 and L∞ problems.

5.1 Overview of the algorithm

This method requires the ideal and anti-ideal solutions of the total costs and the amount of emissions
that have been calculated in Phases 1 and 2 of Algorithm 4.1. Algorithm 5.1 presents the proposed
matheuristic which consists of five stages.
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Algorithm 4.1 The main phases of the CP procedure
1: Phase 1
2: Solve optimally the maximising total cost problem (Equation 3.1) subject to constraints (3.7) to (3.44) and

let Z+
c be the anti-ideal total cost.

3: Solve optimally the maximising total emissions problem (Equation 3.2) subject to constraints (3.7) to (3.44)
and let Z+

e be the anti-ideal total amount of emissions.
4: Phase 2
5: Solve optimally the minimising total cost problem (Equation 3.1) subject to constraints (3.7) to (3.44) and

let Z∗c be the ideal total cost.
6: Solve optimally the minimising total emissions problem (Equation 3.2) subject to constraints (3.7) to (3.44)

and let Z∗e be the ideal total amount of emissions.
7: Phase 3
8: Using the exact method or the proposed matheuristic, solve the minimising L1 problem subject to constraints

(3.7) to (3.44) where

L1 =
w̃ · (Zc−Z∗c )

Z+
c −Z∗c

+
(1− w̃) · (Ze−Z∗e )

Z+
e −Z∗e

(4.5)

and w̃ is the weight (parameter) of the first objective (total cost).
Let Z1

c denote the total cost obtained and Z1
e the total amount of emissions.

9: Using the exact method or the proposed matheuristic, solve the minimising L∞ problem where

L∞ = π (4.6)

subject to constraints (3.7) to (3.44) with the following additional constraints:

w̃ · (Zc−Z∗c )
Z+

c −Z∗c
6 π (4.7)

(1− w̃) · (Ze−Z∗e )
Z+

e −Z∗e
6 π (4.8)

Let Z1
∞ be the total cost obtained and Z∞

e the total amount of emissions.
10: Compromise solutions are those solutions bounded by L1 and L∞.

For the initialisation stage of Algorithm 5.1, the necessary parameters are defined. This includes the
number of iterations (T ) to solve the aggregated problems, the number of aggregated potential DCs (µ̄)
and RCs (µ̈), the maximum computational time for CPLEX to solve the aggregated problems (τ), the
augmented problem (τ ′) and the reduced problem (τ ′′). A set of arrays is also constructed to store the
solutions obtained when solving the aggregated problems. The data structure of these arrays is the same
as the one representing the decision variables in the model.

Stages 1 and 2 use an aggregation technique to solve the problems where an iterative process is
conducted. In these stages, the aim is to generate promising sites to locate DCs and RCs using an
aggregation approach. Given that the CLSC problem can be divided into forward supply chain and
reverse supply chain problems, the resulting problems become relatively easier to solve. he ideal and
anti-ideal solutions of the total cost and amount of emissions for both supply chains are calculated based
on the solutions generated in Phases 1 and 2 of Algorithm 4.1.

In the first stage, a set of aggregation problems on the forward supply chain is generated. Firstly,
µ̄ potential DCs are selected randomly out of |J| sites. The aggregated forward supply chain problem
(minimising L1 or L∞) consisting of |I| plants, (µ̄) (instead of |J|) potential DCs and |K| customers is



14 of 31

Algorithm 5.1 The proposed matheuristic approach
1: Define T , µ̄ , µ̈ , τ , τ ′ and τ ′′.
2: Set Ȳ jh = 0,∀ j ∈ J,h ∈H; Ȳ lr = 0,∀l ∈ L,r ∈ R; Û1

iv = 0,∀i ∈ I,v ∈V 1; Û2
jv = 0,∀ j ∈ J,v ∈V 2; Û3

lv = 0,∀l ∈
L,v ∈V 3; Û4

lv = 0,∀l ∈ L,v ∈V 4; and Z = ∞.
3: Stage 1 (forward supply chain)
4: repeat
5: Aggregate |J| to µ̄ potential DC sites using a random approach.
6: Solve the aggregated L1 or L∞ problems using the exact method (CPLEX) within (τ) seconds.
7: Update Û1

iv = 1,∀i∈ I,v∈V 1, Ȳ jh = 1,∀ j ∈ J,h∈H and Û2
jv = 1,∀ j ∈ J,v∈V 2 if they are in the solution

of aggregated problem.
8: until T times
9: Stage 2 (reverse supply chain)

10: repeat
11: Aggregate |L| to µ̈ potential RC sites using a random approach.
12: Solve the aggregated L1 or L∞ problems using the exact method (CPLEX) within (τ) seconds.
13: Update Ÿ lr = 1,∀l ∈ L,r ∈ R, ˆ̈U3

lv = 1,∀l ∈ L,v ∈V 3 and ˆ̈U4
lv = 1,∀l ∈ L,v ∈V 4 if they are in the solution

of aggregated problem.
14: until T times
15: Stage 3 (closed-loop supply chain)
16: Solve the original (without aggregation) minimising L1 or L∞ problems using the exact method (CPLEX)

within (τ) seconds. Here, the binary decision variables are set to 0 if they are not selected when solving the
aggregated problems in the previous stages.

17: Let Z be its objective function with all the decision variables also obtained.
18: Stage 4 (interchange-based heuristic or VNS)
19: Implement either the proposed interchange-based heuristic or VNS for the forward and reverse supply chain
20: Stage 5 (Finalisation)
21: Solve the original L1 or L∞ problems using the exact method (CPLEX) within (τ ′) seconds. Here, the

obtained values from the previous stage for Û1
iv, Ȳ jh, Û2

jv, Û3
lv and Û4

lv are known. The solution includes the
flows of products from plants to customers and from customers to plants. Based on the solution obtained,
the total cost (Zc) and the total emissions (Ze) are calculated.

then solved by CPLEX within (τ) seconds. For the forward supply chain problem, model (3.1)-(3.44)
is reduced by considering the following decision variables only: Ȳjh, X1

i j, U1
i jv, Û1

iv, U2
jkv and Û2

jv. Note
that the objective function formulation needs to be revised by removing the flows of products from
customers to plants and the opening of RCs. Constraints (3.20)-(3.32) are also not needed here. The
obtained solution is stored in arrays Û1

iv, Ȳ jh and Û2
jv for decision variables Û1

iv, Ȳjh and Û2
jv respectively.

The process is repeated T times.
The main procedure of Stage 2 is relatively similar to that of Stage 1 whereby a set of aggregation

problems is constructed on the reverse supply chain instead. The potential RCs are also aggregated to
µ̈ sites randomly selected from |L| sites. The aggregated reverse supply chain problem comprises |K|
customers, µ̈ potential RCs and |I| plants which is solved by CPLEX within (τ) seconds. Note that this
is a reduced model which includes the following decision variables only: Ÿlr, X4

li , U3
klv, Ü3

lv, U4
liv and Ü4

lv.
Constraints (3.7)-(3.19) are also excluded from the model. In addition, in constraints (3.27), ∑ j∈J X1

i j

is approximated by si (capacity of plant i) as the variable X1
i j belongs to the forward supply chain. The

obtained solution is stored in arrays Ü3
lv, Ÿ lr and Ü4

lv for decision variables Ü3
lv, Ÿlr and Ü4

lv respectively.
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A feasible solution for the original problem can be found easily. This is then used as an initial
solution in the next stage, which is the local search. Let Z be its objective function. The values of all
the corresponding decision variables are then copied into the set of arrays (Ȳ jh, Ÿ lr, X1

i j, U1
i jv, Û1

iv, U2
jkv,

Û2
jv, U3

klv, Û3
lv, U4

liv, Û4
lv and X4

li) which are referred to as the best storage arrays. Let χ and ψ denote
the set of open DCs and RCs respectively.

In Stage 4, we propose two methods to improve the quality of the solutions produced by the previous
stages, namely the interchange-based heuristic and a metaheuristic based on Variable Neighbourhood
Search (VNS). The description of these two methods are presented in the next subsections. Here, the
implementation of Matheuristic with the interchange-based heuristic is called MTH-ICH, whereas the
one with the VNS is refer to as MTH-VNS. In the final stage, the original L1 or L∞ problem is then
solved using the exact method with CPLEX within (τ ′′) seconds. This problem can be considered as
the reduced problem given that the binary decision variables Û1

iv, Ȳjh, Û2
jv, Û3

lv and Û4
lv are now treated as

known. These are populated from the storage arrays obtained from the previous stage, namely, the local
search. Here, the flows of products from plants to customers and the flows of returned products from
customers to plants are obtained. Based on the solution found, the total cost (Zc) and the total amount
of emissions (Ze) are then determined.

5.2 The interchange-based heuristic (Stage 4 of Algorithm 5.1)

The interchange heuristic is developed using a combination of the first and best improvement strategy.
The heuristic is divided into two categories, namely, one for the forward supply chain and another for
the reverse supply chain. The former local search seeks the best location of open DCs, whereas the latter
searches for the RCs’ sites. The algorithms for both supply chains are quite similar.

Heuristic for the Forward Supply Chain
The main steps of the proposed heuristic for the forward supply chain are presented in Algorithm

5.2. The algorithm aims to seek a potential DC site to replace a DC site already used in the current
solution.

Firstly, the maximum CPU time (cpumax) and the number of nearest potential DCs (ρ) from an open
DC are defined. In Lines 2–20, an open DC, say DC ĵ, is swapped with each potential DC site included
in the set ς (the list of (ρ) potential DCs nearest to the open DC ĵ where ς 6⊂ χ,ς ⊆ J). The set ς is
introduced to reduce the computational time at the expense of a small quality loss. For more information
on the design and practicality of neighborhood reduction, see Salhi (2017). Here, the open DC is not
necessarily swapped with the potential DC located too far from the open DC. The potential DC site that
yields the best positive saving is chosen to replace DC ĵ. Then, the process returns to Line 2 without
checking the remaining open DCs that have not been searched.

In Lines 6–12, the chosen DC is restricted to opt for the same design (capacity) and to use the same
type of vehicle already present at the removed DC. The model is reduced to find the flow of products
from plants to customers only (forward supply chain). In other words, all the decision variables except
X1

i j, U1
i jv and U2

jkv are treated as known, which are populated from the best storage arrays. The reduced
problem is then solved by the exact method using CPLEX applied within (τ ′′′) seconds. In Lines 13–
19, once the potential DC that produces the best improvement is found, the flows of new and returned
products are determined by solving the problem which considers the following decision variables X1

i j,
U1

i jv, U2
jkv, X4

li , U3
klv and U4

liv only. At this stage, other binary decision variables have known values which
are populated by the best storage arrays. This reduced problem is solved by CPLEX within τ̂ seconds.
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Algorithm 5.2 The proposed heuristic for the forward supply chain
Require: Incumbent solution χ with its objective function value Z

1: Define cpumax, (τ ′′′), τ̂ and ρ .
2: for each open DC ĵ ∈ χ (current solution) do
3: If CPU > cpumax then break.
4: Determine the set ς as the list of ρ potential DCs nearest to open DC ĵ where ς 6⊂ χ,ς ⊆ J.
5: Set λ = 0 (Best Saving).
6: for each potential DC j̃ ∈ ς do
7: Construct new storage arrays (Ȳ ′ jh, Ÿ ′lr, Û ′

1
iv, Û ′

2
jv, U ′3klv, Û ′

3
lv, U ′4liv, Û ′

4
lv and X ′4li ). Copy the best storage

arrays values into these arrays

8: Update Ȳ ′ j̃h← Ȳ ĵh,Ȳ
′
ĵh = 0,∀h ∈ H and Û ′

2
j̃v← Û2

ĵv,Û
′2
ĵv = 0,∀v ∈V 2

9: Treat all decisions variables as known except X1
i j, U1

i jv and U2
jkv.

10: Solve the problem using CPLEX within (τ ′′′) seconds. Let Z′ (for L1 or L∞ problems) be its objective
function value.

11: If (Z−Z′)> λ then set λ = Z−Z′ and ~j = j̃
12: end for
13: if λ > 0 then
14: Construct new storage arrays (Ȳ ′ jh, Ÿ ′lr, Û ′

1
iv, Û ′

2
jv, Û ′

3
lv and Û ′

4
lv. Copy the best storage arrays values

into these arrays

15: Update Ȳ ′~jh← Ȳ ĵh,Ȳ
′
ĵh = 0,∀h ∈ H and Û ′

2
~jv← Û2

ĵv,Û
′2
ĵv = 0,∀v ∈V 2

16: Treat all decisions variables as known except X1
i j, U1

i jv, U2
jkv, U3

klv, X4
li and U4

liv.
17: Solve the problem using CPLEX within τ̂ seconds. Let Z′ (for L1 or L∞ problems) be its objective function

value.
18: If (Z−Z′) > 0 then set Z = Z′ and update all best storage arrays based on the decision variables values

obtained and go back to Line 3.
19: end if
20: end for
21: Return Z and all the best storage arrays.

The search goes back to Line 2 and the process is repeated until there is either no improvement or the
computational time reached cpumax, whichever comes first.

Heuristic for Reverse Supply Chain
The local search for the reverse supply chain is relatively similar to the one in the forward suply

chain given in Algorithm 3, except that

(i) the operator, which finds the location of the DC site seeks a potential RC site to replace an RC site
already used in the current solution,

(ii) in Lines 6–12, the model is also reduced to determining the flow of returned products from cus-
tomers to plants (reverse supply chain). Here, all decision variables, except X4

li , U3
klv and U4

liv,
are known and are populated from the best storage arrays,

(iii) in Lines 13–19, the flows of new and returned products are determined by solving the reduced
problem, which considers the following decision variables X1

i j, U1
i jv, U2

jkv, X4
li , U3

klv and U4
liv only.
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5.3 The proposed Variable Neighbourhood Search (Stage 4 of Algorithm 5.1)

Variable Neighbourhood Search (VNS) was first formally formulated by Hansen and Mladenović (1997)
for solving the p-median problem. VNS consists of two parts, namely neighbourhood search and local
search where the objective of the first part is to help the search process escape from the local optima.
The local search seeks the best solution in the local neighbourhood. A larger neighbourhood is used if
the local search process cannot find any improvement, otherwise it reverts to the smaller neighbourhood.
VNS-based matheuristic has successfully been implemented to address challenging problems, including
for location problem (Irawan et al., 2017b), vehicle routing problem (Wang et al., 2017) and layout
problem (Irawan et al., 2017c).

The same as the interchange heuristic described previously, the proposed VNS aims to address the
forward and reverse supply chains. Algorithm 5.3 presents the main steps of the proposed VNS where
parameter kmax needs to be defined first.

Algorithm 5.3 The proposed VNS for the forward supply chain
Require: Incumbent solution χ with its objective function value z

1: Define kmax and set χ ′← χ

2: Set k = 1
3: Perform Shaking Procedure as follows:
4: for i=1 to k do
5: Choose randomly an open DC in current solution, say DC j ∈ χ ′

6: Pick randomly a potential site near to facility j, say facility ĵ, ĵ ∈ J, ĵ /∈ χ ′

7: In current solution χ ′, replace facility j with ĵ
8: Solve the allocation problem using solution χ ′ and determine objective value z′

9: end for
10: Execute the interchange heuristic using the following steps:
11: Set improve = True
12: while improve do
13: Update improve = False and Set zb = ∞

14: for each j ∈ χ ′ do
15: for each ĵ ∈ J, ĵ /∈ χ ′ do
16: if site ĵ is near to facility j then
17: Update χ ′′← χ ′

18: In solution χ ′′, replace facility j with ĵ
19: Solve the restricted allocation problem using solution χ ′′ and determine objective value z′′

20: if z′′ < zb then Update zb = z′′, jb = j and ĵb = ĵ
21: end if
22: end for
23: end for
24: if zb < z′ then
25: Update z′ = zb, replace facility jb with ĵb in solution χ ′

26: Update improve = True
27: end if
28: end while
29: Move or Not:
30: if z′ < z then Update z = z′, χ ← χ ′ and k = 1
31: else Update z′ = z, χ ′← χ and k = k+1
32: return z and χ
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In the proposed, the shaking process is conducted by removing a facility randomly selected from
the current solution (χ ′) and replacing it with a randomly selected potential site near to the removed
facility. Note that the site is chosen from a set of ς , a list of potential DCs near to removed DC, which is
described in the previous subsection. Once the interchange has been conducted, the allocation problem
is solved and the objective value z′ is calculated. Here, the allocation problem is the same as the one
presented in Line 10 of Algorithm 5.2 which is solved by an exact method. This shaking process is
repeated k times to perturb the solution.

Then, an interchange heuristic is proposed using the best improvement strategy to improve the qual-
ity of solution by finding the local optima. The algorithm aims to seek the best facility location site
to be swapped with the facility site used in the current solution. To speed up the process, the swap is
performed between facility j ∈ χ ′ and a potential site ( ĵ ∈ ς , ĵ /∈ χ ′) which is near to facility j. The
restricted allocation problem is solved to check whether improvement has been made. Note that the
allocation problem is restricted by only including facility ĵ and a set of open facilities near to facility
ĵ. This significantly reduces the computing time at the expense of a relatively small solution quality re-
duction. The permanent swap between the best potential site and the best facility to be removed will be
done if improvement occurs. The local search process will be repeated until no improvement is found.

In Move or Not step, if the proposed heuristic is not able to improve the solution, a larger neighbour-
hood is systematically used otherwise the smallest one will be used. This can be performed by updating
the value of k where k = kmax indicates the largest neighbourhood while k = 1 represents the smallest
one. In the VNS, the smallest neighbourhood is the one that is closest to the current solution, whereas
the largest one is the farthest from the current solution (Hansen and Mladenović, 1997). Similar to the
previous method, the proposed VNS can also be used for the reverse supply chain. The modification of
the algorithm is quite similar with the previous method. Here, DC sites are replaced by RC sites and all
decisions for the flow of forward supply chain are replaced by the ones for reverse supply chain.

6. Computational Experiments

Computational experiments are carried out to examine the performance of the proposed solution method.
The implementation is written in C++ .Net 2015 and the mathematical model is solved using the IBM
ILOG CPLEX version 12.7 Concert Library. The tests are run on a PC with an Intel Core i7 CPU
@ 3.60GHz processor, 16.00 GB of RAM and under Windows 7. To the best of our knowledge, no
benchmark dataset is available for this problem. We constructed four new datasets with |K|= 50 to 200
with an increment of 50.

6.1 Computational evaluation of the proposed matheuristic

The four newly constructed datasets are used to assess the performance of the proposed solution method.
For each instance, the number of potential DCs and RCs is set to |K| (i.e. |J| = |L| = |K|), with the
number of plants (|I|) being set to 0,1, . . . , |K|. The locations of plants, potential DCs, customers and
potential RCs are randomly and uniformly generated. The demand of each customer is randomly chosen
between 5 and 15, whereas the number of designs for DCs and RCs is set to 3 (i.e. |H|= |R|= 3). The
number of vehicle types for plants, DCs and RCs is also set to 3 (i.e. |V 1| = |V 2| = |V 3| = |V 4| = 3).
The production capacity, DC and RC capacity for each design, along with their associated parameters,
are estimated based on the total demand of customers. Here, the dataset is constructed in such a way
that the total transportation cost/emissions obtained is close to the total fixed/opening cost/emissions.
These datasets can be downloaded from CLHO (2020).



19 of 31

Table 2 shows the ideal and anti-ideal solutions found by CPLEX when solving the minimis-
ing/maximising total cost and emissions problems. In the experiments, the computing time of CPLEX
is limited to 3 hours where the upper bound (UB) and the lower bound (LB) are obtained. Therefore,
the Gap (%) is determined using the following equation:

Gap(%) =
UB−LB

UB
×100 (6.1)

For the minimising problems, the required number of DCs (p) and the number of RCs (q) to be opened
are also provided. Table 2 reveals that the maximising problems can be easily solved by CPLEX. For
the minimising problems, CPLEX produced near-optimal solutions; on average, relatively small gaps of
1.2% and 1.86% for the minimising total cost and emissions problems respectively.

Table 2. The summary results of minimising/maximising total cost and emissions problem

|K|
Exact Method on the minimising/maximising cost problems

Minimising Zc Maximising Zc

UB Gap(%) Zoc(%) Ztc(%) p q CPU(s) UB Gap(%) CPU(s)

50 180,302 0.75 59.26 40.74 6 5 10,804 1,777,546 0.00 1.40
100 543,406 0.14 54.47 45.53 8 5 10,800 8,268,258 0.01 8.09
150 721,030 0.66 54.44 45.56 8 6 10,805 14,946,664 0.01 23.66
200 966,000 3.35 62.75 37.25 13 9 10,800 31,751,134 0.01 37.31

Average 1.22 57.73 42.27 10,802 0.00 18

|K|
Exact Method on the minimising/maximising emissions problem

Minimising Ze Maximising Ze

UB Gap(%) Zoe(%) Zte(%) p q CPU(s) UB Gap(%) CPU(s)

50 3,891 0.57 61.87 38.13 17 14 10,837 50,388 0.00 0.95
100 9,611 1.68 51.50 48.50 18 14 10,816 202,808 0.01 2.75
150 13,320 1.86 55.74 44.26 18 14 10,825 424,761 0.00 5.24
200 26,089 3.34 75.89 24.11 18 14 10,807 1,769,814 0.00 32.21

Average 1.86 61.25 38.75 10,821 0.00 10

The proposed matheuristic is used for the minimising L1 and L∞ problems, where the weight of
objectives is set equally to 0.5. The solutions for L1 and L∞ problems found by CPLEX are used for
comparison purposes. Here, the upper bound (UB) found within the maximum allowed time of 3 hours
is used as the objective function value. According to the results, CPLEX was not able to obtain the lower
bound (LB) within the allowed time. Therefore, the performance of the matheuristic is then measured
using the percentage deviation (Dev) instead of Gap (Equation 6.1) where Dev (%) is computed as
follows:

Dev(%) =
Z′−Zb

Zb ×100 (6.2)

where Z′ refers to the objective function value obtained by either the exact method (UB) or the proposed
method, whereas Zb is the best objective function value attained by either the exact method or the
proposed matheuristic.
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In these experiments, the following parameter values are used: T = 2, τ = 2|K|/5, τ ′ = 2|K|, τ ′′ =
50, τ ′′′= 1, τ̂ = 5, cpumax = 2|K|, ρ = 25 and kmax = 2. Parameters τ , τ ′, τ ′′, τ ′′′, τ̂ , cpumax are measured
in seconds. The number of aggregated DCs (µ̄) and RCs (µ̈) is calculated based on the upper bound on
the number of open DCs and RCs required, which is expressed as follows:

µ̄ = ε ·
⌊

∑k∈K

maxh∈H b̄h

⌋
and µ̈ = ε ·

⌊
∑k∈K

maxr∈R b̄r

⌋
(6.3)

where ε is a parameter set to 1.5. Those parameters are chosen based on preliminary experiments.
Tables 3 shows the summary of computational results in obtaining compromise solutions using the

exact method (EM) and the matheuristic. Here, the proposed matheuristic is divided into two types,
namely matheuristic with the interchange heuristic (MTH-ICH) and with the VNS (MTH-VNS). The
first column of Table 3 refer to the number of customers. The table is mainly divided into two parts
which are the results of minimising L1 and L∞ problems. For each problem, the table also presents the
solution obtained by EM, MTH-ICH and MTH-VNS represented by the deviation (%) achieved by the
corresponding method together with its computational time (CPU). The best objective function value
(Zb) is also provided. The bold numbers in the table refer to the best solutions found.

According to Table 3, within 3 hours, CPLEX was not able to guarantee optimality for the minimis-
ing L1 and L∞ problems. It is also noted that compared to the proposed matheuristic, CPLEX produced
better solution for one instance only (i.e. |K| = 50 for the minimising L1 problem. It is worthwhile
noting that the exact method experienced difficulties when solving the minimising L1 and L∞ problems,
especially when |K| > 50. Based on the average deviation, the proposed matheuristic performs much
better than the exact method in obtaining the compromise solutions. The MTH-VNS provides a rela-
tively small average deviation of 1.67% and 4.56% for the minimising L1 and L∞ problems respectively,
whereas the exact method yields approximately a massive value of 967% and 6,605%. Note that the
large values of Dev (%) in Table 3 are mostly very large for the exact method. This is due to the fact that
CPLEX could not improve the UB within the maximum computing time of 3 hours. Interesting results
were observed where the MTH-ICH performs better for small instances (i.e., |K|= 50 and 100), whereas
the MTH-VNS produces better results for the large ones (i.e., |K|= 150 and 200). It is mainly because
MTH-VNS explores more feasible solutions rather than MTH-ICH. In summary, the matheuristic, es-
pecially MTH-VNS, is found to be the best method for generating good compromise solutions while
consuming a smaller amount of computational effort.

Table 3 also presents the details of best compromise solutions obtained by the proposed methods,
where the breakdown of the total cost and amount of emissions obtained are provided. Moreover, the
information on the number of open DCs and RCs are given. It is worthwhile noting that the compromise
solutions attained by the proposed are quite close to each other. For example, compromise solutions are
shown in Figure 2 for |K|= 50 and |K|= 150. The figure also reveals the ideal and non-ideal solutions.
Here, compromise solutions are bounded by solutions generated by solving L1 and L∞ problems. The
decision maker, based on his/her individual preferences, will choose one or a few solutions from this
solution set.
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FIG. 2. Ideal, compromise and non-ideal solutions for |K|= 50 and |K|= 150
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6.2 Sensitivity and Robustness Analysis

Sensitivity Analysis
A detailed analysis is performed to assess the effect of the weight factor on the change in the

number of DCs and RCs together with the balance between environmental and economical consider-
ations. As a platform for discussion, the experiment is performed with an instance with |K|= 50, with
w̃ = 0.1,0.2, ...,0.9 leading to a set of solutions as shown in Figure 3. In this case, the solution found for
each (minimising L1 or L∞ problem with a different w̃) using the proposed matheuristic is considered.
Here, these generated solutions make up a Pareto frontier. When w̃ is set to a high value (e.g., w̃ = 0.9),
the total cost decreases but the total emissions increases. It is worth noting that, while the matheuristic
is used to solve the minimising L1 or L∞ problems, it is not guaranteed that the solutions produced are
always non-dominated. This risk is linked to the heuristic nature and would obviously not happen if it
was appropriate to apply an exact method instead.

FIG. 3. A set of solutions for |K|= 50

Figure 4 shows the breakdown solutions for each problem where Figure 4a provides the total cost
and emissions produced whereas Figure 4b presents the number of DCs and RCs. It is also highlighted
that the required number of DCs and RCs decrease when the value of w̃ increases. This indicates that,
despite the increased product movement (transportation) and consequent larger environmental impact,
it is still economically efficient to have fewer DCs and RCs. For example, in the solution generated by
solving the L1 problem with w̃= 0.9, there are 8 DCs and 5 RCs, which are selected. In this solution, the
vehicle that provides the lowest cost for each open facility is chosen. On the other hand, if w̃ is small, say
0.1, we need to open 18 DCs and 14 RCs, with each facility requiring the vehicle, which produces the
smallest amount of emissions. Solving the L∞ problem with mid range values of w̃, such as w̃ = 0.4 and
0.5, generates solutions that are located in the middle of the Pareto frontier. As an example, if w̃ = 0.5 is
used, 13 DCs and 8 RCs are required, whereas 13 DCs and 10 RCs are needed for w̃ = 0.4. In this case,
the type of vehicles used by each facility may be different. Even though this information is invaluable
to senior management, the different configurations obtained presents a dilemma. We believe that the
information given ought to be complemented by external factors, e.g. socio-economic information, in
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order for the management team to reach a compromise. Such an outcome could be based on a robust
solution in order to remain financially and socially attractive for many years to come.

FIG. 4. The breakdown solutions for |K|= 50

Robustness Analysis
Here, we incorporate the concept of robustness to alleviate potential risks that could arise due to

changes in some of the parameters, mentioned in the earlier subsection. It is worth emphasising that
decisions relating to the location and the capacity of the DCs and RCs, together with the transportation
mode used by each facility, are strategic in nature. One way to address this complex decision issue is to
provide a robust configuration for such problem. As an illustration, we investigate the robustness of a
given configuration for a given scenario. The aim is to obtain a configuration that remains economically
viable and environmentally attractive despite alterations in the input. Here, the presence of uncertain
customer demand is analysed using the supply chain configuration generated in the previous subsection.
Monte Carlo simulation is designed and it is assumed that customer demand follows a normal distribu-
tion. The standard deviation of customer demand (σk) is determined based on the expected demand (d̃k)
with σk = ψ · d̃k, where ψ is a correction parameter and d̃k = dk.

The main procedure of the proposed simulation is presented in Algorithm 6.1 where the number of
iterations (T̂ ) needs to be defined first. For each iteration, the demand of customer (d̃k) is randomly
generated. The closed-loop supply chain assignment problem (CLSCAP) is solved using the exact
method within (τ ′′′) seconds. The CLSCAP considers the uncertain demand (d̃k) generated from the
previous step. The decision variables used in the CLSCAP are the same as the ones given in Section
3, except that the decision variables Ȳjh, Ÿlr, Û1

iv, Û2
jv, Û3

lv and Û4
lv are fixed. As the DCs and RCs have

capacity constraints, new decision variables are introduced, representing the unmet demand of each
customer for both the forward supply chain (δ f

k ) and the reverse supply chain (δ b
k ). In this study, the

CLSCAP aims to minimise the overall unmet demand which is expressed as follows:

min ∑
k∈K

(
δ

f
k +δ

b
k

)
(6.4)

The constraints used by the CLSCAP are also similar to Equations (3.1) – (3.44) with minor modifi-
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cations, where Constraints (3.14), (3.15), (3.20) and (3.26) are replaced by (6.5), (6.6), (6.7) and (6.8)
respectively.

∑
k∈K

∑
v∈V 2

(
U2

jkv · (d̃k−δ
f

k )
)
6 ∑

h∈H

(
Ȳjh · b̄h

)
, ∀ j ∈ J (6.5)

∑
i∈I

X1
i j = ∑

k∈K
∑

v∈V 2

(
U2

jkv · (d̃k−δ
f

k )
)
, ∀ j ∈ J (6.6)

∑
k∈K

∑
v∈V 3

(
U3

klv · (d̃k−δ
b
k ) ·α

)
6 ∑

r∈R

(
Ÿlr · b̈r

)
, ∀l ∈ L (6.7)

∑
k∈K

∑
v∈V 3

(
U3

klv · (d̃k−δ
b
k ) ·α ·β

)
6 ∑

i∈I
X4

li , ∀l ∈ L (6.8)

As the CLSCAP is a nonlinear model, we linearise it in the standard way so the model can be solved by
a commercial solver such as CPLEX. Once T̂ CLSCAP problems have been solved, the expected unmet
demand for the forward supply chain (δ̄ f

k ) and for the reverse supply chain (δ̄ b
k ) are determined.

Algorithm 6.1 The simulation procedure

1: Define the number of iterations (T̂ )
2: for t̂ = 1 to T̂ do
3: Generate randomly the demand of customer (d̃k) based on its distribution.
4: Solve the CLSCAP using the exact method (CPLEX) within (τ ′′′) seconds using (d̃k). Store the

decision variables obtained in the t̂ th iteration, namely the unmet demand of each customer for
forward supply chain (δ f

k ) and for reverse supply chain (δ b
k ).

5: end for
6: Determine the expected total unmet demand for forward supply chain (δ̄ f ) and for reverse supply

chain (δ̄ b).

The experiments are conducted on an instance with |K|= 50, where two extreme solutions, as well
as, two other solutions from the middle of the Pareto frontier given in Figure 3 are selected. We vary
the value of ψ from 0.1 to 0.3 with an increment of 0.1 in order to analyse if the standard deviation
of customer demand influences the supply chain configuration. We set the value of T̂ to 1,000 that
represent 1,000 problems with different customer demands using a supply chain configuration. Here,
we also analyse the number of problems that do not meet customer demands. Table 4 presents the
summary of the computational results for this simulation. The supply chain configuration generated by
solving an CLSC problem with a smaller w̃ (focusing on CO2 emissions) resulted in a smaller number
of cases which do not satisfy all of the customer demands. Also, as expected, the increase in the
standard deviation (σk) will increase the number of cases that have unmet demands. We can state that
our configuration is rather stable as long as the changes in customer demand are within a reasonable
margin, say 10% of d̃k. We believe that this finding is valuable to decision makers as the analysis could
be replicated onto their organisational scenarios, to eventually obtain an overall robust decision.
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Table 4. Summary of the computational results for the simulation

Problem
w̃ ψ Out of 1,000 problem,

δ̄
f

k δ̄ b
k(%) (%) #problems that have unmet demands

L1 10 10 6 0.011 0
L∞ 40 10 34 0.09 0
L∞ 50 10 34 0.09 0
L1 90 10 34 0.09 0

L1 10 20 99 0.531 0.219
L∞ 40 20 175 1.091 0.074
L∞ 50 20 175 1.091 0.057
L1 90 20 174 1.09 0.057

L1 10 30 187 1.713 1.07
L∞ 40 30 255 2.632 0.621
L∞ 50 30 255 2.632 0.538
L1 90 30 255 2.632 0.538

7. Conclusions and Suggestions

In this study, we addressed a closed-loop supply chain and examined the challenging problem of sus-
tainability using compromise programming. We designed an optimisation model that incorporates two
conflicting objectives, namely, the minimisation of the total cost and the amount of CO2 emissions. We
modelled this closed-loop supply chain problem as a bi-objective mixed integer linear programming.
The problem was solved to obtain the optimal number and locations of DCs and RCs, along with their
capacity and the type of vehicle used. An effective matheuristic method, which is based on an aggrega-
tion technique, a reduced exact method, an interchange-based heuristic and VNS, was then designed to
overcome the difficulties faced by the original exact method. The matheuristic technique was assessed
using a variety of newly generated datasets which produced compromise solutions with higher quality
than the ones found by the exact method, while requiring only a fraction of the computing time.

To test the efficacy of our proposed methods, we performed scenario analysis followed by robustness
analysis of the network configuration due to the changes in customer demand. The scenario analysis
was to assess the effect of weight with respect to the objective functions which yielded different supply
chain configurations. The robustness of the supply chain configuration is then assessed by applying
Monte Carlo simulation on the customer demand. It was found that if the standard deviation is within
10% of the average demand, the unsatisfied demand is insignificant, thus demonstrating the stability of
supply chain configuration. This invaluable information is key to assisting senior management to focus
on attributes with impact on sustainability and resilience of their supply chain.

The following research directions may be worthy of future investigation. The uncertain demand of
customers can be considered in the proposed model. Using a stochastic model instead of a deterministic
one may be more difficult on a practical level, but it is more academically challenging to solve. In this
study, only one product is considered; this restriction can be expanded to include a class of products
instead. From a general viewpoint of heuristic search, other powerful metaheuristics including adaptive
search methods could also be worth exploring.
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