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Abstract
Visualisation techniques are powerful tools to understand the behaviour of Artificial 

Intelligence (AI) systems. They can be used to identify important features contributing 

to the network decisions, investigate biases in datasets, and find weaknesses in the 

system's structure (e.g., network architectures). Lawmakers and regulators may not 

allow the use of smart systems if these systems cannot explain the logic underlying a 

decision or action taken. These systems are required to offer a high level of 

'transparency' to be approved for deployment. Model transparency is vital for safety-

critical applications such as autonomous navigation and operation systems (e.g., 

autonomous trains or cars), where prediction errors may have serious implications. 

Thus, being highly accurate without explaining the basis of their performance is not 

enough to satisfy regulatory requirements. The lack of system interpretability is a major 

obstacle to the wider adoption of AI in safety-critical applications. Explainable 

Artificial Intelligence (XAI) techniques applied to intelligent systems to justify their 

decisions offers a possible solution. In this review, we present state-of-the-art 

explanation techniques in detail. We focus our presentation and critical discussion on 

visualisation methods for the most adopted architecture in use, the Convolutional 

Neural Networks (CNNs), applied to the domain of image classification. Further, we 

discuss the evaluation techniques for different explanation methods, which shows that 

some of the most visually appealing methods are unreliable and can be considered a 

simple feature or edge detector. In contrast, robust methods can give insights into the 

model behaviour, which helps to enhance the model performance and boost the 

confidence in the model's predictions. Besides, the applications of XAI techniques show 

their importance in many fields such as medicine and industry. We hope that this review 

proves a valuable contribution for researchers in the field of XAI.
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Table 1 Abbreviations

Abbreviation Meaning

ACoL Adversarial Complementary Learning

AI Artificial Intelligence

AM Activation Maximisation

AGG-Mean Aggregating Mean

AGG-Var Aggregating Variance

AUC Area Under Curve

CAM Class Activation Map

CNN Convolutional Neural Network

CCAM Common Class Activation Map

CLEAR CLass-Enhanced Attentive Response

CLRP Contrastive Layer-wise Relevance Propagation

DCNN Deep Convolutional Neural Network

DeepLIFT Deep Learning Important FeaTures

DeSaliNet Deconvolutional Salient Network

DGN Deep Generator Network

DNN Deep Neural Networks

DTD Deep Taylor Decomposition



FC layer Fully Connected layer

FGVis Fine-Grained Visual explanation

FullGrad Full-Gradient

GAIN Guided Attention Inference Network

GI Gradient ʘ Input

GAP Global Average Pooling

GBP Guided Back Propagation

Grad-CAM Gradient Class Activation Map

HoG Histogram of Gradients

IG Integrated Gradients

LBP Local Binary Pattern

LIME Local Interpretable Model-agnostic Explanation

LRP Layer-wise Relevance

MSE Mean Square Error

PCC Pearson Correlation Coefficient

R-CNN Regions with CNN features

ReLU Rectified linear unit

RISE Random Input Sampling for Explanation

SDR Smallest Destroying Region

SENN Self-Explaining Neural Network 

SGD Stochastic Gradient Descent

SGLRP Softmax-Gradient Layer-wise Relevance Propagation

SHAP SHapley Additive exPlanation



Smooth-Grad Smooth-Gradient

SPG Self-Produced Guidance

SSIM Structure Similarity Index

SSR Smallest Sufficient Region

t-SNE t-Distributed Stochastic Neighbor Embedding

XAI Explainable Artificial Intelligence

XRAI Better Attributions Through Regions

1. Introduction

The significant success of Convolutional Neural Networks (CNNs) in image and 

video-based tasks such as image classification [1–3], object detection [4–6], and 

semantic segmentation [7–9] is bounded by their inherent inability of explaining their 

behaviours. Consequently, the adoption and deployment of CNN-based systems in 

safety-critical real-life applications, such as medical, automation and assistive robotics, 

is limited. These industries require reliable and explainable systems that integrate trust 

in the decision process with no or very low error tolerance. Besides, when a system 

failure occurs, it should be possible to justify and interpret its source to avoid it in the 

future. Thus, it is challenging to trust a black box system without understanding the 

intuitions behind its predictions.

The complex nature of CNNs makes the interpretation process challenging because 

it is difficult to identify the relations between the activities of individual neurons and 

the outcome of the neural network. That is why the explanations of CNNs predictions 

need to be considered in a wider frame of connections between several neurons or layers 

to attain a comprehensive understnading of the final result. CNN-based models can 

perform significantly better than conventional computer vision algorithms in terms of 

accuracy. However, the intractability of failures in CNN-based systems, when they 

occur, is a critical flaw.



Model interpretation through visualisation, or any other means of analysis, is an 

overlooked step in many systems, even though it can greatly help in improving the 

systems’ robustness if appropriately utilised. It can provide insights into how the 

network operates at each time step. This can explain the effort to understand and verify 

powerful deep network methods, not only to improve reliability for real-life application 

deployment but also to gain a general understanding of the model’s components and 

operation. Explainable AI is an active and quickly growing research area that needs 

more investigation and consensus [10].

The definition of model interpretability in the context of image analysis and 

understanding is not well-established [11]. Also, there is a discrepancy between 

researchers in defining the concept of explaining the motive of a prediction. Some 

studies define it as the ability of the model only to highlight the important regions or 

features that contribute to the output predictions. Others assess the model's 

interpretability by its ability to highlight the entire object of interest in an input image.  

Consequently, Lipton [11] argued that model interpretability might have different 

definitions that reflect different ideas or applications. For example, semantic 

segmentation can be argued as a visualisation approach to explaining a model’s 

predictions because it assigns each pixel in an image to a specific class. Nevertheless, 

segmentation outputs focus on the whole object without revealing which parts of the 

image are relevant for the outcome. Consequently, the annotated output is not sufficient 

to justify the model’s decision. On the other hand, input perturbation methods highlight 

only the important features or regions used by a model to support its decision. This 

study presents and discusses methods that follow both definitions for operation and 

output understanding.

We mainly focus on the visual explanation of pre-trained CNNs. Though, Cynthia 

[12] argued that some explanation methods do not provide enough evidence or details.  

It is also suggested that building inherently interpretable models is a better approach 

than explaining the model’s decisions [12]. It is argued that self-explaining models, 

such as Self-Explaining Neural Networks (SENN) [13], can construct a highly complex 

and interpretable model without limiting the performance. This makes inherently 

interpretable systems more immune to adversarial noise. On the other hand, many post-

hoc explanation methods are unstable because they produce different explanations for 



the same input when noise is introduced [13].  It is a significant challenge to persuade 

policymakers to define metrics and procedures to ensure the safety of complex non-

self-explaining deep network models because some measurements and evaluation 

methods can be easily misinterpreted and exploited [12]. However, self-explaining 

systems are beyond the scope of this review.

Unlike Seifert et al. [14], Guidotti et al. [15], and Zhang et al. [16], whose surveys 

are extended to other analysis techniques such as confusion matrices, histograms, 

explanatory graphs [17], and decision trees for model analysis [18], this review is 

mainly focused on visualisation methods, because CNN visualisation is the direct way 

to explore network decisions and representations [16]. Also, unlike other surveys [19–

21], which present trends, statistics, and prospective applications of XAI, we conducted 

a technical-oriented review with in-depth comparisons and evaluations. We present the 

methods which justify their predictions visually and disregard the reasoning methods 

that describe the process of how a CNN makes its decision, such as image dissection 

techniques [22]. Model-agnostic methods such as Shapley values [23, 24] and Anchors 

[25] are beyond the scope of this review because they are well-covered by Molnar [26] 

and Samek et al. [27]. Also, model approximation methods are beyond the scope of this 

review as we are interested in the direct explanation of pre-trained models. Mainly, we 

focus on visualising heatmaps (saliency maps), reconstructed images (synthesized 

images), and hidden layers’ features. The main task for the systems being visualised is 

image classifications using the architecture of CNNs.

First, we want to draw the reader's attention that terms like visualisation, explanation, 

and attribution methods are used interchangeably. Relevance maps, attribution maps, 

saliency maps, sensitivity maps, and activation heatmaps are used in different contexts 

to refer to the visual contribution of each feature to the overall prediction. ‘Saliency’ 

can have two meanings depending on the context. It either signifies the gradient 

approach or the sensitivity map.

Second, we organise the visualisation techniques into three main categories 

depending on which part of the CNN is being visualised (Figure 1). We follow a 

different categorisation technique to the one presented by Grun et al. [28], at which the 

authors proposed a taxonomy for feature visualisation methods consisting of three main 

classes: Input Modification, Deconvolutional, and Input Reconstruction methods. Input 



Modification methods, such as Occlusion [29, 30], modify the input by occluding 

patches and measure the resulting changes in the output score [28]. Deconvolution 

methods [28] measure the contribution of a pixel in the input image by backpropagating 

its activation in the higher layer through the network until the input layer is reached. As 

the contribution of each pixel is measured, the group contribution can build up a 

visualisation map of features relevant to the object of interest [28]. Methods that goes 

under this class are DeconvNet [29], Backpropagation [31], Guided Backpropagation 

[32], Layer-wise Relevance Propagation (LRP) [33] and Class Activation Maps (CAM) 

[34]. Input Reconstruction methods [31, 35, 36] generate input images that can 

maximally activate a specific network’s unit of interest.

 

Figure 1 Visualisation taxonomy.



Figure 1 shows the proposed categorisation chart. Different visualisation methods 

are split based on the architecture position where the features are being visualised (input 

layer, hidden layer, or output layer). First, visualising feature maps at the input layer 

(equivalent to Input Reconstruction class [28]) by mathematically synthesizing images 

either by using Activation Maximisation (AM) to maximally activates a particular 

neuron or by using representations inversion. Second, visualising features and patterns 

learned by hidden layers. Last, visualising features that activate a network to make a 

decision with respect to the output class of interest or so-called post-hoc activation 

visualisation (visualise network decision). This includes gradients-based sensitivity 

analysis, decomposition techniques, and occlusion methods. The fashioned heatmaps 

from this section can be overlaid with the input image to reflect the salient features. 

Although some methods use the same approach to visualise hidden and output layers, 

we prefer to separate them into two different categories as the visualised features are 

different. Thus, the application and utilisation of the visualised features differ. The 

proposed categorisation organises the investigation process and suggests a possible 

framework for discussion. 

Last, we present an in-depth analysis of state-of-the-art explanation methods, as 

many other techniques are built upon them. The paper's contribution can be summarised 

as follows: a technical review of different attribution methods focusing on post-hoc 

visualisation is presented in section 2. Applications and potential uses of visualisation 

techniques are highlighted in section 3. Different evaluation techniques (sanity checks) 

to assess the robustness of different explanation techniques are discussed in section 4. 

Finally, the review is concluded. Besides, the gaps and the future directions are 

highlighted in section 5. 

2. Visualisation methods

In this section, the visualisation techniques of CNNs are explored. Subsection 2.1 

(corresponding to activation visualisation at the input layer) presents AM, 

representation inversions, and combined approaches. Subsection 2.2 (corresponding to 

activation visualisation at the hidden layer) investigates features and patterns learned 



by hidden layers. Whereas perturbation, deconvolution, decomposition, and sensitivity 

analysis methods are discussed in subsection 2.3 (corresponding to activation 

visualisation at the output layer).  For each primary method in subsection 2.3, network 

architecture, training details, conceptional approach, information extracted, pros, and 

cons are discussed. The generated heatmaps by these methods assign each pixel an 

importance value according to some function that depends on the output score.

2.1 Input image synthesizing ‘Activation Maximisation’

Erhan et al. [37] constructed images that maximally activate a specific neuron using 

gradient ascent optimisation in the input image space. The AM problem is simplified 

to an optimisation problem at which an optimal input that can maximally activate a 

specific neuron using gradient ascent is sought. Starting with an initial input, the 

activation’s gradients of the unit of interest is computed w.r.t the initialised input. Then 

gradient ascent is used to take steps in the input space to synthesize inputs that cause 

the highest activation for this unit (gradient ascent is also used by Nguyen et al. [38] 

for the same purpose). The process stops when an optimal input is obtained that can 

maximally stimulate this neuron. The optimal input can be displayed for interpretation 

and debugging purposes. Moreover, it helps to understand the nature of the functions 

learned by the network. However, as the produced input is mathematically synthesized, 

it looks artificial and far from natural images with high-frequency patterns and extreme 

pixel values in a random arrangement. The output is mainly scattered image parts that 

may represent what activates a particular unit. 

The techniques of maximising the activation by modifying inputs can be applied to 

correctly classified images to manipulate them by some unrecognisable pixels’ changes, 

to push the model to output different predictions (i.e. to deceive the network from 

classifying an object as class A to class B) [39]. Another approach is to mathematically 

produce unrecognisable images for humans that do not show any specific object. 

However, state-of-the-art CNNs still produce a high confidence score to a recognisable 

class which means some non-robust network architectures ‘discriminative models’ can 

be fooled [38]. The behaviour of discriminative models can be attributed to their linear 



nature and high-dimensional input space, while generative models are more robust to 

adversarial noise [40].

L2 regularisation can be used to numerically generate input images representing an 

output class of a model [31]. Generating such an image is similar to the backpropagation 

technique used to optimise layers’ weights. However, in the case of image synthesizing, 

the trained weights are kept fixed, and optimisation is performed in the input space. The 

process starts with a zero-initialised image. After that, the mean of the training dataset 

images is added to the result. The optimisation process will continue until the optimal 

image that can maximally activate a specific unit is reached. This approach helps to 

reduce the effect of extreme pixels domination. Mitigating the impact of these pixels is 

beneficial as they are not useful for visualisation.

Gradient descent is used to optimise an objective function that inverts deep 

representations using image priors [36]. Image priors, such as total-variation 

normalisation, help to recover the statistics of low-level images. This information is 

useful for visualisation. However, the representation may remove them due to their non-

usefulness for high-level tasks. Also, the technique helps to visualise the representation 

learned at each layer of a CNN. Mahendran et al. [41] extended their previous work 

[36] by introducing a unified formulation to visually investigate image features and 

CNNs. Visualisation of different representation types such as AM, inversion, and 

caricaturization are merged into a common framework. Thus, the visualisation problem 

is formulated as a regularised energy minimisation problem. The main aim is to produce 

natural-looking images by restricting image reconstruction to a set of natural images or 

so-called ‘natural pre-images’. The analysis of CNN visualisation shows some 

interesting results, such as lower layers that contain representations of simple structures, 

e.g., lines and edges (local invariance). At the same time, deeper layers capture object-

specific information and learn complex compositions.

Unlike [36], the inversion method learns image priors implicitly [42]. The method 

trains a CNN that invert a given feature vector into an expected pre-image using 

deconvolution networks. The trained network reconstructs images from the feature 

representation of different layers. It has been noticed that reconstructing from 

convolutional layers of AlexNet [1] produce high-resolution images. However, the 

quality degrades as representations of higher layers are being used, especially 



representations from Fully Connected layers (FC layers), which produce blurred 

images. Visualising representations from FC layers using the gradient descent approach 

[36] shows that they cannot preserve colours or locations. This contrasts with the trained 

network for inversion [42], which can retrieve some colour and location information 

from higher layers’ representations. The inversion method [42] can be applied to non-

differentiable features such as Local Binary Patterns (LBP) [43] and is significantly 

faster, in contrast to the gradient-based method [36].

Yosinski et al. [44] introduced new regularisation techniques that help to visualise 

the learned features. The regularisation operator is introduced to map an input to a 

regularised version of itself. The process starts from an initial value while taking 

gradient steps in the direction specified by the operator until the version of input that 

maximally activates a specific neuron is reached. Four regularisation techniques are 

used. Combined, they produce more effective results compared to individual utilisation. 

L2 and Gaussian blur regularisations are used to suppress high-frequency components 

and extreme pixel values, which are not useful for visualisation. At the same time, 

clipping pixels with small norms and small contributions to the output score helps to 

remove unnecessary values and only highlights the object of interest [44]. Many other 

image priors techniques are introduced to enhance the produced image quality, such as 

data-driven patches [45], jitter [41], initialisation from mean images [46], and centre-

bias regularisation [46].

To produce more realistic visualisations, the DGN-AM technique [47] extended 

activation maximisation methods by introducing a deep generator network (DGN) that 

is trained as a prior to take a vector of scalars (feature representations) and produce a 

synthetic image. The synthetic image achieves two properties: it resembles real images 

from the ImageNet dataset [48], which means it is human interpretable (ImageNet is 

the same dataset used to train the CNN). Besides, it activates the neuron of interest. 

Experiments show that the produced synthetic images by DGN-AM reflect the learned 

features by neurons independently from priors (i.e., it shows neurons’ prefers, not 

priors’ prefers). Image synthesizing techniques are important in deep learning 

applications. They can be used to visualise features evolving during the training 

process, which may help to understand and debug DCNNs.



2.2 Hidden layers feature visualisation

Zhang et al. [49] proposed a method to modify a CNN to be more interpretable by 

training high convolutional layer filters to be able to represent a specific part of an 

object without any additional object-specific data annotation. High-layer filters in 

traditional CNNs can describe a mixture of patterns that might negatively impact the 

network interpretability. On the other hand, the proposed interpretable CNN pushes 

high layer filters to be more component-specific. This may help to identify object parts 

responsible for a specific prediction. The proposed method can be achieved by adding 

a loss for each filter's output to boost the filter towards a specific representation of an 

object part. The added loss helps to reduce the entropy of inter-category activations and 

spatial distributions of neural activations.

Zhou et al. [50] introduced a framework for network dissection that interprets the 

network’s representations and quantifies their interpretability. The process involves 

three steps: identifying visual concepts in a dataset, measuring hidden units’ response 

to the visual concepts, and quantifying alignments of hidden unit activations with visual 

concepts. The study also examines the impact of using different datasets and 

regularisation techniques [51, 52] on the interpretability of a model.  The introduced 

framework has some limitations, such as the inability to identify the contribution of 

joint units' that might represent one visual concept.

A software tool [44] is introduced to enable the visualisation of the channel’s 

activations of convolutional layers in the same spatial layout as the input, where each 

filter is activated by a specific feature or pattern such as edges, faces, eyes, etc. Layers 

such as pooling and normalisation can be visualised using the proposed software, 

reflecting their impact on the model’s behaviour. Real-time visualisation of all filters 

of a specific layer on one screen is a very informative approach as it shows the 

propagating data through a CNN. 

Methods presented in [29, 32, 44, 53] can be adapted to visualise the units of hidden 

layers. Filters in hidden layers are activated by patches or shapes captured by their 

receptive field. Krizhevsky et al. [1] directly visualised filters learned by the first layers 

to assess the learned features by a trained CNN. As multichannel layers are hard to 

visualise, Yu et al. [54] used dimension reduction (t-SNE) [55] to visualise patches in 



representation space constructed by filters of hidden layers. Besides, the DeconvNet 

approach [29] has been used to visualise the layer’s information by reconstructing 

activations layer-by-layer successively until input space is reached (DeconvNet 

approach is described in detail in subsection 2.3). Also, image patches that maximally 

activates a filter in a hidden layer have been used by non-parametric methods to 

visualise that filter [56, 57].

2.3 Visualisation of output layer activations ‘post-hoc visualisation’

Explanation methods aim to define the contribution of each input feature to the 

output prediction. The output neuron associated with the correct prediction is the neuron 

of interest. The generated heatmap regarding the target object has red and blue regions 

corresponding to positive and negative evidence, respectively.

2.3.1 DeconvNet [29]
Conceptional Approach: Input patterns can cause a given activation in the feature 

maps. Deconcoultional networks are used by Zeiler et al. [58] to map the activations 

back to the input pixel space. The process can be explained as follows: an input image 

is presented to the CNN, whereas the features are computed through the networks’ 

layers. To analyse a given activation, all other activations in that layer are set to zero. 

Then the feature maps are passed to the attached deconvolutional layer. Finally, the 

input pixel space is reached through successive un-pooling, rectifying, and filtering 

operations to reconstruct the layer's activity. 

To examine a convolutional network, a deconvolutional network is attached to its 

layers to show the input pattern that causes a given activation in the feature maps. The 

used approach can help to observe the features' progression during training and 

diagnose potential problems with the model. A disadvantage of this approach is that it 

can only visualise a single activation and not the joint activity presented in a layer.

Implementation details: Zeiler et.al [29] used a similar architecture to AlexNet [1] 

with some modifications. For instance, the sparse connections used in AlexNet layers 

3, 4 and 5 are replaced by dense ones. For training, images are pre-processed by resizing 

and cropping. Furthermore, they are normalised by subtracting the per-pixel mean. 



Finally, ten different sub-crops of size 224×224 are used. Stochastic Gradient Descent 

(SGD) with 0.9 Momentum is used to update the model’s parameters. The training 

dataset is divided into mini-batches of 128 images. The learning rate starts at  and 10 ―2

then decreased manually throughout the training process when the validation error 

plateaus. All weights are initialised to  and biases to zero. Data augmentation is 10 ―2

used with different flips and crops. After 70 epochs, training is stopped. The system 

takes around 12 days to be trained on a single GTX580 GPU. The proposed architecture 

outperforms AlexNet results on ImageNet dataset [48].

Visualisation and localisation: The proposed system has proved its efficiency to 

visualise feature activations using a deconvolutional network. Visualising a trained 

model can help to select better architectures. For example, by visualising the first and 

second layers of AlexNet architecture [1], it is noticed that the filters of the first layer 

are a mixture of high and low-frequency information. At the same time, the second 

layer visualisation shows aliasing artefacts caused by a large stride ( ) that is used 𝑠 = 4

in the first convolutional layer. A new architecture is proposed to overcome these 

problems by reducing the filter size in the first convolutional layer from 11×11 to 7×7 

and reducing the stride to 2 instead of 4. Consequently, the new system retains more 

information in the first and second convolutional layers and achieves better accuracy.

Occlusion sensitivity is introduced to make sure that the object itself is the element 

that activates the network and not the context or the background. It also shows the 

ability of the model to locate the object in an image. This can be attained by occluding 

different portions of the input image with a grey square in a sliding window manner 

and monitoring the classifier's output. The system clearly shows its ability to localise 

an object within an image as the correct class probability has dropped significantly 

when the object of interest is occluded.

Discussion: The DeconvNet approach recalls the position of the max-pooling layers’ 

values during a forward pass by storing these values in switches. The activations are 

then copied into the positions indicated by these switches during the deconvolutional 

process, while other low layer activations are set to zero. Switches are introduced as the 

max-pooling operation is non-invertible.



Unlike Regions with CNN features (R-CNN) [56], which can demonstrate 

visualisation by identifying patches within a dataset responsible for activations at the 

model’s high layers, the occlusion approach is a top-down projection that can reveal 

structures within each patch that stimulate a particular feature. Results show that as the 

network becomes deep, it can learn powerful features [29]. Generally, high layers 

produce more discriminative features. Visualisation can be used to identify models’ 

problems and obtain better results by selecting or modifying models’ layers. Also, it 

provides insights into the sensitivity of the classification model to local structures and 

not to contexts.

A drawback of the DeconvNet method is that the image-specific information comes 

from max-pooling layers (switches). The absence of pooling layers will result in non-

image-specific explanations. Besides, negative pieces of evidence are discarded during 

the backpropagation process due to the ReLU units, resulting in less informative 

heatmaps [59].

Similar to the Occlusion approach, Zintgraf et al. [53] proposed a method to evaluate 

the impact of removing information from an image. The introduced approach is based 

on prediction difference analysis [60] with some improvements.  In prediction 

difference analysis, each input feature is assigned a relevance value according to its 

importance to the output prediction. A large prediction difference indicates a high 

contribution of the corresponding features to the output prediction and vice versa. Two 

enhancements are introduced [53]: conditional sampling and multivariate analysis. 

Compared to marginal sampling, conditional sampling can improve feature 

approximation by suppressing redundant, easily predicted pixels. Whereas a robust 

model should not be significantly affected by the deletion of one feature at a time 

(univariate approach), removing patches with several features (multivariate approach) 

should produce more descriptive relevance. The proposed improvements have 

produced more refined heatmaps that concentrate on the object of interest. Methods 

based on input features perturbation by occluding, manipulation or masking are 

significantly slow [53]. It needs several forward propagations through the network to 

compute the output score after every input perturbation. Moreover, the results are 

biased by the number of occluded features at each iteration determined by the sliding 

window size [61].



2.3.2 Saliency Map (Gradients) [31]
Conceptional Approach: Gradients approach, also called backpropagation or 

saliency, visualise the derivatives calculated during the model's training. Still, saliency 

maps are computed after network training and not during the training process (i.e., the 

networks’ weights are constant). Backpropagation is the process of increasing or 

decreasing the networks’ weights to minimise the loss function during the training 

process [62]. Saliency maps return the spatial locations of the discriminative pixels of 

a particular class in an image. Class weights can be used to visualise the discriminative 

regions of an image that activates the network to produce a specific prediction. This is 

valid for linear class score functions, but as the class score of CNNs is a non-linear 

function of the input image, an approximation of the class score function can be 

estimated using first-order Taylor expansion [31].  In this case, the magnitude of the 

class score derivatives w.r.t the input image can compute image-specific class saliency 

maps. The magnitude of the derivatives indicates the most discriminative pixels of an 

image. Changing these pixels can have a great impact on the predictions. Consequently, 

these pixels represent the location of the object of interest in the image.

Saliency maps can be computed as follows: the class score derivatives are calculated 

w.r.t the input image through backpropagation. Then, the saliency map values are 

arranged in the same order as the input image pixels, i.e., m × n derivatives matrix will 

have the same indices as m × n input image pixels where m and n represent rows and 

columns of a grey-scale image, respectively. Suppose the input is a multi-channel image 

such as RGB images. In that case, the maximum derivative magnitude is selected across 

all the channels to produce a single class saliency value for each pixel. Finally, the 

derivatives matrix is plotted to produce the saliency map.

Implementation details: The proposed system used a similar CNN architecture to 

AlexNet [1] but less wide with the following structure: five convolutional layers with 

64, 256, 256, 256, 256 filters, respectively, followed by three FC layers with 4096, 

4096, 1000 output neurons respectively. The network is trained on the ImageNet dataset 

with 1.2M training images for 1000 classes [48]. Image jittering and zeroing-out 

random parts of an image are employed as regularisation techniques.



Visualisation and localisation: Saliency maps need one backpropagation pass to be 

produced. They can be considered a weakly-supervised approach for object 

localisation. It localises an object that mainly activates the network to make a prediction 

unless the network is cheating. No other types of annotations, such as bounding boxes 

or segmentation masks, guide the technique to localise an object. A proposed system 

based on saliency maps [63] has been used for the localisation task of ImageNet 2013 

[48] and achieved a 46.4% top-5 error on the test set. The system computes the object 

segmentation mask using an image and its corresponding saliency map. Object 

segmentation mask is computed using GraphCut colour segmentation [64]. Colour 

segmentation is selected since the saliency maps may highlight only the most 

discriminative region of an image representing a part of an object and not the whole 

object. The process sets the foreground and background to follow the Gaussian Mixture 

Models [65]. The foreground is estimated from the pixels with saliency higher than the 

95% threshold of saliency distribution in the image. At the same time, the background 

is estimated from pixels with less than a 30% threshold. The estimated foreground and 

background are then used to set the object segmentation mask to the largest connected 

component of the foreground pixels.

Discussion: Baehrens et al. [66] introduced the local gradients method to explain the 

predictions of machine learning classifiers. The proposed approach assigns a unique 

explanation to individual data points, unlike conventional feature extraction methods 

that extract the relevant global features for all data points. The gradients method [31], 

on the other hand, is applied to CNNs. It highlights an object located in an image using 

the target object’s score derivative w.r.t the input image. The weakly-supervised 

approach for localisation, using the proposed Gradient method, beats the author’s 

previous submission to ImageNet 2012 [48] using a fully supervised model [67] and 

Fisher vector feature encoding [68] by achieving a 50% localisation error.

The backpropagation ‘saliency’ approach can be considered a generalisation of the 

DeconvNet approach [29] as it can be used to visualise any layers’ features and not only 

the convolutional ones. FC layer neurons are visualised in this paper [31] using the 

Gradient approach. DeconvNet is equivalent to the gradient approach through a CNN 

except for the backpropagation through the ReLU layers.



Although Gradient heatmaps are computationally faster than Occlusion as it only 

needs one backward propagation through the network, they do not fully explain the 

output prediction. The calculated map measures pixels change that would make an 

image belong to a specific category. However, it does not explain the classifier decision 

as argued by [59] or the direct relation to the variation of the output [61, 69].

2.3.3 Gradient related approaches
Many approaches based on Gradients (eq. 1) are proposed, such as element-wise 

products of gradients and input (GI) [70] (eq. 2), Integrated Gradients (IG) [71] (eq. 3), 

Smooth Gradients (SmoothGrad) [72] (eq. 4), etc. Gradients of the output score are 

calculated w.r.t input and then multiplied with the input to enhance heatmap resolution 

[70]. Moreover, GI can be used to address the gradient saturation problem [70]. 

Although this technique can visually enhance the produced maps, this may be attributed 

to the original image's quality rather than the visualisation technique [73].
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Full-Gradient (FullGrad) [74] approach expands the Gradient method [31] by 

aggregating the information obtained from GI [70] and the gradients of the intermediate 



layers of a CNN. Aggregating maps from many layers produces sharp heatmaps as 

neuron-wise maps can independently support each spatial location's importance [74]. 

However, FullGrad can only use the maps of convolutional layers as they can preserve 

the spatial locations. Similarly, CAMERAS [75] produces high-resolution saliency 

maps by accumulating and fusing multi-scale activation maps and backpropagated 

gradients. 

The Integrated Gradients [71] approach accumulates gradients over scaled-up 

versions of the input that follow a baseline defined by the user, i.e. it integrates the 

gradients of all points that fall on the straight-line path from the baseline to the input. 

Based on IG, XRAI region-based attribution method [76] is introduced to enhance IG’s 

performance. Firstly, XRAI segments the input image using different sets of parameters 

to many overlapping regions. Then, using IG with black and white baselines, the 

importance of each region is tested. Finally, regions are combined into a large segment 

based on their relevance score. Using segmentation, XRAI can outperform gradient-

based methods as it can identify relevant regions and discard others. Moreover, it can 

detect many instances of the same class in a given input image. Also, it can measure 

the smallest sufficient region that positively contributes to the output prediction.

The Smooth Gradients [72] approach uses added noise to enhance heatmap 

sharpness by averaging the explanations of noisy copies of the input. As Gradient 

sensitivity maps tend to be noisy due to the noisy gradients, SmoothGrad reduces visual 

noise by sampling similar images with added noise and then averaging the resulting 

sensitivity maps. Two hyper-parameters can be adjusted for SmoothGrad: the noise 

level (determined by the standard deviation) and the number of samples (equation 4). 

SmoothGrad shows better visual coherence (highlights object of interest) and 

discrimination (highlights which class in a multi-class image is responsible for the 

prediction) compared to vanilla Gradient, Integrated Gradients, and Guided 

Backpropagation [72]. Inspired by SmoothGrad, Bykov et al. [77] propose NoiseGrad 

and FusionGrad. Instead of adding noise in the input space like SmoothGrad, 

NoiseGrad introduces stochasticity in the weight parameter space, resulting in a 

perturbated decision boundary. In other words, SmoothGrad produces a heatmap using 

multiple noisy versions of the input, whereas NoiseGrad uses multiple versions of the 

model. SmoothGrad and NoiseGrad are combined to produce FusionGrad [77] by 



incorporating both stochasticity in the input and model spaces to gain the benefits of 

both techniques. 

2.3.4 Decomposition related approaches
Layer-wise Relevance Propagation (LRP) [33, 78] uses backpropagation to compute 

relevance. LRP can be seen as a biased gradient towards positive values [27]. It is a 

generalised approach to visualise the contributions of non-linear classifiers by a pixel-

wise decomposition of each pixel's output prediction. Starting from the output layer, 

the algorithm assigns a relevance (importance score) to the target neuron equal to the 

neuron's output. At the same time, the relevances of all other neurons are set to zero. 

Recursively, the LRP technique redistributes relevance over layers’ neurons according 

to some rules (ϵ-rule, for instance) until it reaches the input layer, where the attribution 

can be identified [33] (Figure 2). An example of LRP maps is shown in Figure 3.

Figure 2 LRP relevance redistribution technique (reproduced from [33]).

LRP can miss-attribute input regions to the relevance as it only considers the target 

class in the relevance calculations [79]. Consequently, Contrastive Layer-wise 

Relevance Propagation (CLRP) is introduced to enhance the discriminative ability of 

LRP by subtracting the relevance for non-target classes from the relevance propagation 

[79]. This boosts the contribution of the target class and suppresses the contribution of 

other classes. However, equally penalising non-target class may cause wrong 

attributions because of the equal weighting of non-target nodes. Softmax-Gradient 



Layer-wise Relevance Propagation (SGLRP) [80] is proposed to overcome this 

problem. SGLRP uses the gradients of the softmax layer w.r.t the intermediate value of 

each output node to subtract the relevance from the non-target classes. Using the 

softmax layer gradients as the initial relevance from the output layer while 

backpropagating creates an LRP model where the propagating values are the 

probabilities of all classes, and the highest is the target class [80]. A great advantage of 

the SGLRP [80] approach is that it removes relevance corresponding to non-target class 

with high probability compared to the low probability non-target classes, unlike vanilla 

LRP [33], which ignore non-target classes, and CLRP [79], which penalise non-target 

classes equally.

Figure 3 An example of LRP maps.

 Deep LIFT [81] is an improved version of LRP [33]. Like LRP, it decomposes the 

output score while backpropagating through the model until input space is reached. 

However, DeepLIFT defines a reference point in the input space. Then, relevance is 

assigned according to the relative change (difference) in activations at the original input 

compared to the reference point [81]. Deep Taylor Decomposition (DTD) extends LRP 

using first-order Taylor expansion around a root point to decompose a neuron's 

activation in terms of contribution from its inputs [82]. Choosing the root point for DTD 

is challenging as many options are available. PatternAttribution extended DTD to solve 

this problem by learning the root point from the data (class ‘signal’ estimator is trained 

on the first half of the ImageNet training dataset) [69]. PatternAttribution acts as a root 



point estimator for DTD. PatternAttribution can be visualised as the neuron 

contribution of the estimated class to the output score. Using baseline (reference point) 

in decomposition approaches helps to overcome zero and saturate gradient problems in 

the gradient-based sensitivity analysis. However, decomposition techniques cannot 

satisfy the chain-rule property inherited in the gradient-based analysis [71]. Generally, 

sensitivity analysis measures local effects while decomposition measures global ones.

SHapley Additive exPlanation (SHAP) is a unified framework for interpreting 

predictions [23]. The proposed framework attempts to relate different methods that are 

based on assigning each feature an importance value. In addition, it helps to pick the 

best explanation method for a specific application. 

2.3.5 Guided Backpropagation (GBP) [32]
Conceptional Approach: The DeconvNet method proposed by Zeiler et al. [29] is 

used to analyse the All-CNN and to visualise the most discriminative regions of an 

image that contributes to the network’s prediction. The DeconvNet approach is also 

used to investigate the impact of removing pooling layers. It is noticed that the 

DeconvNet approach fails to produce a reasonable explanation for the concepts learned 

by the networks’ high layers. This behaviour is attributed to the absence of pooling 

layers. The DeconvNet approach relies on switches (position of maximum values as the 

max-pooling operation is a non-invertible operation) computed during a forward pass. 

Switches are then passed to the deconvolutional layers to reconstruct the image with 

the most discriminative regions. Without pooling layers, therefore, without switches, 

the DeconvNet approach will not be able to reconstruct the image. 

All-CNN does not have any pooling layers. Consequently, the DeconvNet approach 

can be applied in the low layers without any need for switches. These layers learn 

general features such as Gabor filters. On the other hand, the DeconvNet method [29] 

fails to visualise high layers activations that learn more invariant representation. 

Sprinenberg et al. [32] proposed an alternative way for visualisation by computing 

the activations' gradients w.r.t the input image through backpropagation. The main 

difference between DeconvNet and backpropagation approaches is how the 

backpropagation is handled through the ReLU units [31]. The backpropagation 

approach [31] is equivalent to the DeconvNet one except for gradients through ReLUs, 



which are computed based only on the top gradient values, and the bottom input is 

ignored. DeconvNet approach [29], which zeros negative values of top gradients, and 

backpropagation [31], which zeros negative values from bottom inputs, are then 

combined to produce Guided Backpropagation [32] which zeros both negative values. 

The signal from high layers guides the backpropagation; hence the name is derived. It 

works as the switches in the DeconvNet approach [29]. Doing so prevents negative 

gradients from flowing back, which can undesirably impact the visualisation.

Implementation details: Guided backpropagation uses only convolutional layers in 

its architecture. The proposed architecture investigates the simplest architecture based 

uniquely on convolutional layers. This architecture is intended to identify what specific 

components in a typical CNN is crucial to achieving state-of-the-art performance on 

deep learning tasks such as object recognition. 

To achieve this, pooling layers, in a typical CNN used for classification, are replaced 

by convolutional ones with a stride equal to two. Convolutional layers with small filters 

are used to reduce the number of parameters (for example, 3×3 filter size). Lastly, FC 

layers are replaced by 1×1 convolutional layers with fewer parameters than FC ones 

[83]. 

Convolutional layers can compensate for pooling ones by removing pooling layers 

and increasing the stride of the convolutional layer before it. Besides, the pooling layer 

itself will be replaced by a convolutional one with a stride larger than one [32]. 

Increasing the stride of the convolutional layers can reduce the overlap between filters, 

which can negatively impact the network’s accuracy. Also, replacing pooling layers 

with convolutional ones can increase network parameters. Consequently, the 

architecture is abstracted to only convolutional layers with subsampling, ReLU, Global 

Average Pooling (GAP), and softmax layers for output predictions.

Three datasets are used to evaluate the performance of the proposed models: CIFAR-

10, CIFAR-100 [84, 85], and ImageNet [48]. However,  the focus is on CIFAR-10, as 

the training time is shorter than other datasets.

Detailed training parameters are as follows: SGD with 0.9 momentum has been used 

as the optimisation algorithm. The learning rate is multiplied by 0.1 when training 

epochs reaches 200, 250, and 300. Proposed systems (Strided-CNN, ConvPool-CNN, 

and All-CNN) are trained for 350 epochs. Strided-CNN removed pooling layers and 



increased the stride of the preceding convolutional layer. ConvPool-CNN kept the 

pooling layer but added a convolutional layer before it. All-CNN replaced the pooling 

layer with a convolutional one. Dropout [51, 86] has been used as a regularisation 

technique. It is applied to the input layer with a 20% dropout probability and the newly 

introduced layers with a 50% probability. Also, a weight decay of 0.001 is introduced 

for further regularisation. Besides, data augmentation techniques are applied such as 

image flipping and random translation.

Visualisation: Guided Backpropagation provides high-resolution and clear 

activation maps compared to the DeconvNet approach on All-CNN. It can be used to 

visualise the intermediate and the output layers of the proposed network with or without 

switches. However, DeconvNet fails to produce clear activation maps on the All-CNN 

as it needs switches for deconvolution and un-pooling computations.

Discussion: The proposed simple architecture (All-CNN) has achieved state-of-the-

art performance without complex design, normalisation, or pooling. All-CNN stabilises 

the performance with some improvements compared to the base model (that has pooling 

and FC layers). It can be concluded that pooling layers are not vital for CNNs, as 

removing them does not hurt the performance [32]. 

Guided Backpropagation and Occlusion approaches produce high-resolution maps, 

but their localisation ability is very poor compared to CAM [34] and Grad-CAM [87]. 

Guided Backpropagation's output is the fine-grained details of the features that activate 

a network to make a specific decision. In comparison, CAM and Grad-CAM are more 

region-based approaches.

Similar to Guided Backpropagation, DeSaliNet [88] combines both advantages of 

DeconvNet, which can accurately reproduce image boundaries, and the saliency 

method, which can localise objects efficiently. It can be noticed that DeconvNet [29], 

Backpropagation [31], and Guided backpropagation [32] use almost the same steps to 

produce the visualisation maps, although they are described in different ways. The main 

difference is in how they handle the gradients through ReLU layers. DeconvNet allows 

only positive derivatives to backpropagate (i.e., applying ReLU operation to the 

gradients). Backpropagation passes only the positive elements corresponding to the 

preceding feature map (from the lower layer). Guided backpropagation combines both 



techniques. Figure 4 depicts the difference [32]. A qualitative comparison between the 

three gradient-based methods is shown in Figure 5.

Figure 4 Main differences between backpropagation, DeconvNet and Guided 
backpropagation approaches (reproduced from [32]).

Figure 5 Examples of gradient-based methods.

Kindermans et al. [69] proved theoretically using a linear model which mimics the 

simplest CNN that DeconvNet, Guided Backpropagation, and LRP do not produce the 

correct explanation. The limitations of these methods on a linear model hold for non-

linear models. PatternNet and PatternAttribution [69] are introduced to tackle this 

problem. They produce qualitatively improved signal visualisation and attributions. 



PatternNet, as a signal estimator, visualises the explanation using the original colour 

channels, while PatternAttribution is visualised as a heatmap of pixel-wise 

contributions. Signal (class) visualisation and attribution can be attained using a signal 

estimator learned from data that is optimised to remove most of the information in the 

residuals (input minus estimator signals) [69]. PatternNet projects the estimated signal 

back to the input space. A process similar to gradients computation while 

backpropagation, but the network weights are replaced by the guiding directions 

determined by the signal estimator. Kindermans et al. [69] argued that the implicit 

signal estimator of DeconvNet, Guided Backpropagation, LRP, and DTD could not 

capture the true object (signal) in the input as the gradients do not provide an estimate 

for the signal in the data. In contrast, PatternNet can recover the signal effectively 

thanks to the optimised signal estimator [69]. 

Visually, Guided backpropagation seems to have an advantage over 

Backpropagation (Gradients) and DeconvNet approaches as it generates more human-

interpretable visualisation (Figure 5). Experimentally, this is not true. Guided 

Backpropagation is less class-sensitive than saliency maps (Gradients approach). In 

fact, Guided backpropagation acts as a simple edge detector. More details on 

visualisation techniques sanity checks are provided in section 4. 

2.3.6 Class Activation Map [34]
Conceptional Approach: The term Class Activation Map (CAM) has been used to 

refer to the weighted activation maps generated for an image. GAP layer is introduced 

to generate accurate discriminative localisation. Though GAP is not a novel technique, 

its utilisation to produce heatmaps is a major contribution [34]. The intuition behind 

using GAP is that it helps the network to identify the whole area of the object [34], 

unlike global max pooling, where the localisation is limited to a point lying on the 

object's boundary [89].

CAM technique displays a heatmap representation that highlights image pixels 

which trigger the CNN to categorise an image to a specific class. Primarily, the 

approach maps the predicted class score back to the previous convolutional layer. GAP 

layer outputs the spatial average of the feature map of each unit at the last convolutional 

layer. A weighted sum of these values is used to generate the final output. The process 



can be summarized as follows: after the last convolutional layer of a typical CNN, the 

GAP layer takes the convolutional layer channels as an input and return their average 

as an output. Each output per category is assigned a weight.  Then, a heatmap is 

generated per class output, and the weighted sum is calculated for all the heatmaps. 

Finally, the CAM is up-sampled to the image input size. The generation process of the 

heatmaps using the CAM technique is depicted in Figure 6.

Figure 6 Class Activation Map (CAM) generation process (reproduced from 
[34]).

Implementation details: The proposed architecture resembles Network-in-Network 

[83] and GoogleNet [90] with mainly convolutional layers. GAP is performed on the 

convolutional feature maps before the final output. Zhou et al. [34] evaluate the CAM 

technique on AlexNet, VGGNet,  and GoogleNet. FC layers are replaced by GAP and 

softmax layers for class scoring. The number of learnable parameters significantly 

decreases by removing the FC layers with a side effect of a drop in the network’s 

accuracy. It is found that increasing the spatial resolution of the last convolutional layer 

before the GAP layer results in improvements in the localisation ability [34]. Layers 

after conv5, conv5-3, and inception4e are removed from AlexNet, VGGNet, and 

GoogleNet, respectively. This results in a high spatial resolution for the last convolution 



layers of 13×13, 14×14, and 14×14, respectively, which improves the network's 

localisation ability [34]. Finally, a convolutional layer with 3×3 filter size, 1024 

channels, one stride, and one padding followed by a GAP and a softmax layers are 

added to the mentioned architectures. Each proposed architecture is trained on the 

ImageNet dataset [48]. The details of the training options are not mentioned in the paper 

[34]. Similar results are obtained when these systems are trained from scratch or fine-

tuning the newly added layers [34].

Visualisation and localisation: CAM can be seen as a weighted linear sum of 

specific visual patterns that activate some network units at different spatial locations. 

The proposed GAP-CNN network learned generic features similar to FC layers in 

AlexNet and VGGNet. Besides, it can identify discriminative image regions. Though, 

it has not been trained on a localisation task. In addition to heatmaps, CAM can be used 

to visualise class-specific units. Convolutional units act as visual concept detectors [30] 

that can identify low-level features such as edges and high-level features such as objects 

and compositions. A combination of individual class-specific units can guide the CNN 

to output predictions. Visualising this combination, besides heatmaps, gives insights 

into understanding CNN’s behaviour and its approach to classifying an image. At the 

same time, it is challenging to track each unit contribution in FC layer networks, which 

can explain the intuition of using GAP. 

Discussion: Many architectures tend to avoid FC layers to minimise the number of 

trainable parameters while maintaining high performance, such as SqueezNet [91], 

GoogleNet [90], ResNet [3] and MobileNet [92]. GAP layer is introduced as a 

regularisation technique to avoid overfitting [83]. It is found that the GAP layers can 

also enable CNNs to have localisation capabilities [30, 34]. The proposed system has 

proved its efficiency by achieving top-5 errors for object localisation on ImageNet [48].

Both Occlusion maps [29] and CAM [34] analyse only convolutional layers. They 

ignore FC ones if they exist, which means some of the intuition behind the predictions 

are missing. Modifying CNN architectures to have a GAP layer then retraining the 

model is a limitation of the CAM technique. Also, CAM is constrained to visualise the 

final layer's heatmap and cannot be applied to visualise the middle layers.



2.3.7 CAM-related approaches
Many proposed studies for weakly-supervised object localisation are based on the 

success of CAM. Since CAM does not localise the entire object but rather a specific 

region that strongly contributes to the network’s prediction, the Adversarial 

Complementary Learning (ACoL) [93] approach is introduced. Using weakly-

supervised end-to-end training, ACoL can discover and localise the entire object of 

interest in an image by using an additional classifier for complementary object regions. 

Motivated by adversarial erasing [94], two classifiers are used. The first one is used to 

identify the most discriminative regions, which are then erased from the feature map. 

The erased feature maps are fed to the other classifier to extract new complementary 

object-related regions.

The strategy of the Hide-and-Seek [95] approach during training is to hide random 

patches in the training images. This prompts the network to search for other regions in 

an image that contributes to the network decision in the absence of the most 

discriminative regions. However, hiding patches randomly without any supervision 

might not help the network to discover new regions.

Zhang et al. [95] proposed a learning process called Self-Produced Guidance (SPG) 

to separate the foreground, mainly the object of interest, from the background to 

generate better visualisation and precise localisation of objects. SPG uses a 

classification network to generate an attention map (feature activation map) where the 

highlighted pixels represent the foreground, the low confident score regions represent 

the background, and the medium confidence areas remain undefined. Intermediate 

features are used to assign these undefined pixels to either the foreground or the 

background regions during the iteration process, using the upper layer’s output as 

supervision for the lower layer to learn better object localisation. The foreground and 

background guidance masks are then used as supportive supervision to enable the 

network to learn better relations between pixels. Consequently, better visualisation 

maps can be attained.

Common Component Activation Map (CCAM) [96] uses CAMs as components 

instead of class-specific maps to localise unseen or unknown objects. Localising 

common objects of the same class among a set of images ‘co-localising’ is different 



from weakly-supervised object localisation as it is not limited to the predefined object 

categories. In CCAM, the output of the last FC layer of a typical convolutional network 

is used as an input object component vector instead of a categorical probability output. 

The average component vector is computed for a group of images to find the group 

common vector. The largest components from the group common vector are selected. 

Lastly, a weighted sum of the feature maps of the last convolutional layer is computed 

for each image to get the common component activation map according to the top 

components.

CLass-Enhanced Attentive Response (CLEAR) [97] is a multi-factor visualisation 

approach. It allows the visualisation of regions of interest that mainly contribute to the 

network's decisions and the predominant classes associated with these regions. It 

alleviates the ambiguity produced by binary-based heatmap approaches such as [33, 82] 

by producing class-based heatmaps that are more readable and understandable. Binary-

based heatmaps produce output that highlights positive and negative regions. Whereas 

CLEAR visualises the regions that contribute to the network predictions, besides to 

which classes are these regions belong. 

CLEAR approach and architecture are similar to CAM [34] and Guided 

Backpropagation [32]. The process of CLEAR is as follows: activation maps are 

computed for each class of the last convolutional layer of the network. Two different 

types of maps are extracted from these activation maps, the predominant class 

activation map, which shows the highly contributed class for the network’s prediction 

at each location, and the dominant response map, which shows the activation level for 

each location. Finally, they are combined to produce a CLEAR map. The architecture 

of CLEAR is built using only convolutional layers. The last convolutional layer of the 

network has a number of channels equal to the number of classes predicated by the 

network, which is then fed into a GAP layer then a softmax layer for output 

probabilities.

As CLEAR uses different colours to distinguish between different classes in class-

based heatmaps, it is unfeasible to use this approach for more than ten classes, as shown 

in their paper [97]. Using different colours for big datasets such as ImageNet, which 

has more than 1000 classes, would be chaotic, making it difficult to visualise and 

interpret the decision outputs. This limits CLEAR applications for large datasets. Like 



CAM [34] and Guided Backpropagation [32], the proposed approach is applied only on 

fully convolutional networks. So, neural network modifications are applied to use 

VGG-16 [2], where the FC layers are replaced by convolutional ones that are fine-tuned 

on the training dataset.

2.3.8 Gradient-weighted Class Activation Map [87]
Conceptional Approach: Unlike FC layers, convolutional layers can preserve 

spatial information. Although Grad-CAM is a general technique that can be applied to 

any layer of a CNN to examine its activations, this work [87] only focuses on explaining 

the output layer's decisions as its neurons can identify parts specific to the target object. 

Grad-CAM uses the gradient information passed to the last convolutional layer of a 

CNN to assign importance weights to each neuron for a specific decision ‘class’ of 

interest. The main difference between CAM [34] and Grad-CAM [87] is in the way of 

generating the weights for the feature maps. In CAM, heatmaps are generated by 

computing the weighted average sum of the activations of the last convolutional layer 

using the FC layer's weights. Whereas in Grad-CAM, the gradients of any layer are 

used to generate these weights.

The Grad-CAM approach can be summarised as follows: first, gradients of the score 

for a specific class are computed w.r.t. feature map activations of a convolutional layer. 

Then, the computed gradients are averaged to obtain the weights for each feature map. 

Finally, the forward activation maps are weighted and combined, followed by a ReLU 

operation (Figure 7 grey shaded). ReLU is used to highlight the contributing features 

to the class of interest. Negative impact pixels usually belong to a different class. 

Consequently, they need to be suppressed using a ReLU function to obtain better 

localisation.  The final result is a coarse heatmap of the same size as the final 

convolutional layer feature map.



Figure 7 Grad-CAM (grey-shaded) and Guided Grad-CAM approaches 

(reproduced from [87]).

Implementation details: Grad-CAM can be applied to any CNN architecture. 

Unlike its ancestor (CAM) [34], there are no restrictions on using specific layers such 

as GAP, and there is no need to retrain the whole system to adapt to the Grad-CAM 

approach. This means it can be applied to off-the-shelf CNN based architectures. It can 

be applied to CNNs with FC layers, CNNs with multimodal inputs, and reinforcement 

learning without architecture modification as it uses the gradients of any target class. 

Grad-CAM does not trade off architecture complexity or accuracy with interpretability. 

Thus, it can be applied to very deep architecture, such as ResNet [3].

Visualisation and localisation: Grad-CAM is a localisation technique that can 

produce a visual explanation for any CNN. To evaluate Grad-CAM localisation, pre-

trained VGG-16 [2], AlexNet [1], and GoogleNet [90] have been used. Ramprasaath et 

al. [87] assume a model should achieve two factors to produce a high-quality visual 

explanation on a classification task. First, it should produce a class-discriminative 

output that localises a specific object in an image. Second, a high-resolution map can 

be attained with fine-grained details. 



For visualisation evaluations, human studies and experiments have been conducted 

to understand the trade-off between interpretability and fidelity of Grad-CAM to model 

predictions. The main purpose of these studies is to show that Grad-CAM produces 

better quantitative and qualitative results than previous approaches. Besides, an end-

user can trust the visualised model. Guided Grad-CAM, a combination between Guided 

backpropagation [32] and Grad-CAM [87], shows that it can help to improve human 

performance to better identify the object of interest (more class-discriminative) 

compared to Guided backpropagation [32]. They (humans) can also identify which 

model provides better results based on the produced visual explanations, which may 

help to build more trust in the model. Since VGG-16 [2] is better than AlexNet [1] in 

terms of accuracy on the PASCAL classification task [98], visualisation results show 

that humans can identify the more reliable model from prediction explanation, despite 

both models making the same predictions. 

Grad-CAM shows a reasonable explanation for failure modes. Also, it is robust to 

adversarial noise. Adversarial examples can be created by optimising the input to 

maximise the prediction error [39]. Moreover, Grad-CAM can be used to identify and 

reduce biases in datasets.

Discussion: Grad-CAM technique shows that incorrect and unreasonable 

predictions can often have reasonable explanations. It can be used to identify dataset 

bias which can help to achieve model generalisation. Results show that it outperforms 

previous methods on weakly-supervised localisation tasks. It also helps users to 

distinguish between strong and weak deep neural networks, even if they produce the 

same predictions. Grad-CAM can be considered a generalisation of CAM, or CAM is 

a special case of Grad-CAM. Examples of CAM and Grad-CAM heatmaps are shown 

in Figure 8.



Figure 8 Examples of CAM and Grad-CAM heatmaps.

On the other hand, Grad-CAM cannot highlight fine-grained details. Pixel space 

gradient-based visualisation methods such as Guided backpropagation [32] produce 

high-resolution visualisations than Grad-CAM [87]. To counter this problem Guided 

Grad-CAM technique is introduced. Grad-CAM and Guided backpropagation 

techniques are combined by point-wise multiplication to produce high-resolution (fine-

grained pixel class-specific) and class discriminative (the class region is highlighted) 

maps. Guided Grad-Cam approach can be seen in Figure 7. 

The incapability of localising multiple occurrences of an object in an image can be 

considered a disadvantage of the Grad-CAM technique. Also, the partial derivatives 

hypothesis can cause inaccurate localisation.

Grad-CAM is used in Guided Attention Inference Networks (GAIN) [99] to generate 

online attention maps for training a network for the task of interest. Attention maps can 

be used as priors in weakly-supervised localisation and segmentation tasks. Although 

Grad-CAM can highlight the most discriminative regions in an image that contribute to 

the network’s prediction, GAIN is introduced to supervise the attention maps while 

training a network to produce complete and accurate maps. The produced map can 

cover the complete object of interest and enhance the overall performance of the system. 

This can be achieved using the two streams network of GAIN: the classification stream, 

which finds the regions that help to recognise the object of interest and the attention 

mining stream, which includes all the regions that contribute to the prediction in the 

attention map. Both streams share the same network parameters. The approach helps 

the network to extend its focus not only to the most discriminative regions of the input 

image but also to other contributing regions. The proposed approach boosted the system 



performance and achieved the best performance on the PASCAL VOC 2012 

segmentation task [98].

2.3.9 Grad-CAM related approaches [87]
Grad-CAM++ [100] is introduced to alleviate two problems in Grad-CAM: the 

inability to localise and visualise multiple occurrences of the same class in an image 

and the failure to localise the entire area of the object. This improvement has been 

achieved by rearranging the convolutional neurons' importance weights equation of 

Grad-CAM and introducing a weighted average for the gradients.

𝒘𝒄
𝒌 =  

𝟏
𝒁∑

𝒊
∑

𝒋

∂𝒀𝒄

∂𝑨𝒌
𝒊𝒋

(5)

𝑴𝒄
𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴 = 𝑹𝒆𝑳𝑼(∑

𝒌
𝒘𝒄

𝒌 𝑨𝒌) (6)

𝒘𝒄
𝒌 = ∑

𝒊
∑

𝒋
𝜶𝒌𝒄

𝒊𝒋 .𝑹𝒆𝑳𝑼(
∂𝒀𝒄

∂𝑨𝒌
𝒊𝒋

)
(7)

𝑴𝒄
𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴 + + =  ∑

𝒌
𝒘𝒄

𝒌 𝑨𝒌 (8)

𝒘𝒄
𝒌 = ∑

𝒊
∑

𝒋
𝜶𝒌𝒄

𝒊𝒋 .𝑹𝒆𝑳𝑼(
𝟏
𝒏

𝒏

∑
𝟏

𝑫𝒌
𝟏) (9)

𝑴𝒄
𝑺𝒎𝒐𝒐𝒕𝒉 𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴 + + =  ∑

𝒌
𝒘𝒄

𝒌 𝑨𝒌
(10)

∂𝒀𝒄

∂𝑨𝒌

:
Gradient 

𝒀𝒄 : Class  score𝑐

𝑨𝒌 : Activation feature of channel 𝒌

𝒘𝒄
𝒌 : Neuron importance weight

𝒁 : Number of pixels in the activation map

𝜶𝒌𝒄
𝒊𝒋 : Weighted average coefficients of the pixel-wise gradients

𝑴𝒄
𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴 : Grad-CAM heatmap



𝑴𝒄
𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴 + + : Grad-CAM++ heatmap

𝑫𝒌
𝟏 : 1st derivative of the kth feature map 

Grad-CAM [87] computes the gradients   of the score  of class  with respect 
∂𝒀𝒄

∂𝑨𝒌 𝒀𝒄 𝒄

to feature activation maps . To obtain the neuron importance weights  of feature 𝑨𝒌 𝒘𝒄
𝒌

map  for a target class  as in (eq. 5), these gradients are global average pooled over 𝒌 𝒄

the dimensions of the image indexed by  (  represent the number of pixels in the 𝒊,𝒋 𝒁

activation map). Finally, feature maps are weighted and combined, followed by a ReLU 

operation to produce the coarse heatmap visualisation  as in (eq. 6).𝑴𝒄
𝑮𝒓𝒂𝒅 ― 𝑪𝑨𝑴

Grad-CAM++ [100] proposed a generalisation to Grad-CAM to overcome its 

limitations. First, it reformulates (eq. 5) by moving the ReLU operation to the neuron 

importance weights equation (eq. 7). Second and most importantly, it has introduced 

weighted average coefficients of the pixel-wise gradients . The introduced term 𝜶𝒌𝒄
𝒊𝒋

helps to highlight the existences of objects in all feature maps with equal importance. 

ReLU is used to highlight positive gradients (importance in feature maps) and to ignore 

negative ones similar to Grad-CAM [87]. Unlike Grad-CAM, Grad-CAM++ has a 

constraint for the class score. It assumes that a particular class's score must be a smooth 

function, such as exponential or softmax functions. Discriminative localisation can be 

obtained using (eq. 8). Grad-CAM++ produces heatmaps of all regions. This is 

beneficial with scattered and occluded objects, besides multiple instances of the same 

objects. 

Smooth Grad-CAM++ [101] is amid to enhance visual sharpness and object 

localisation of heatmaps by combining SmoothGrad [72] and Grad-CAM++ [100] 

approaches. The first three order partial derivatives of the score w.r.t the feature map 

are averaged to compute  . The coefficient term  reflects the importance of a 𝜶𝒌𝒄
𝒊𝒋 𝜶𝒌𝒄

𝒊𝒋

specific pixel in the feature map. Thus, it is used to compute neuron importance weights 

 (eq. 9). Lastly, Smooth Grad-CAM++ [101] can be obtained using eq. 10.  𝒘𝒄
𝒌

2.3.10 Other visualisation approaches



Randomised Input Sampling for Explanation (RISE) [102] can be considered a 

general approach that does not require any prior knowledge of the network’s weights 

or any network adaptation.  RISE can be considered as a genuine black box explanation 

approach. It only requires access to the input and output of the base model. The process 

to generate heatmaps using RISE is as follows: the input image is element-wise 

multiplied by randomly generated masks. Masked inputs are then fed to the black-box 

model to calculate the confidence scores. Finally, the weighted sum of the random 

masks, using each mask's output score as its weight, is used to compute the final 

heatmap that explains the network decision (the contribution of each pixel to the 

network prediction). Small binary masks are sampled and then up-sampled to a larger 

resolution using bilinear interpolation to avoid adversarial effects while generating the 

input masks. This results in masks with values in the range of zero to one. In addition, 

it produces smooth heatmaps. RISE is a heavy computational approach that requires 

several forward propagations through the base model (it uses 4000 masks and 8000 

masks for VGG-16 and ResNet50, respectively). On the other hand, it can detect many 

objects of the same class in an image.

Score-CAM is introduced to tackle gradient issues such as gradient saturation and 

false confidence [103]. Unlike Grad-CAM [87] and Grad-CAM++ [100], Score CAM 

[103] is independent of gradients during the calculation of the channel’s importance. 

However, the increase in score confidence is used by Score-CAM to quantify the 

channel's importance. Also, unlike RISE [102], which generates random masks to be 

multiplied by the input image, Score-CAM uses the extracted activation maps from the 

last convolutional layer (theoretically, any convolutional layer can be used) as masks 

on the input image. The heatmap generation for Score-CAM can be summarized as 

follows [103]: first, activation maps are extracted. Then, the target class's score is 

obtained by element-wise multiplication of the input image with the extracted feature 

map (feature maps act as a mask on the original image), then forward passing the 

product through the CNN. The process is repeated for all of the extracted activation 

maps. Lastly, score-based weights and activation maps are combined linearly to 

generate the heatmap. It is found that the concept of increased confidence scores is a 

better way to quantify activation map importance as it avoids gradients drawbacks for 

weights’ importance calculations.



Saliency can be defined as the smallest region of the image that alone produces a 

confident score or so-called Smallest Sufficient Region (SSR) [104]. Another definition 

is the smallest region of the image that degrades the confident score when removed or 

so-called Smallest Destroying Region (SDR) [104]. Dabkowski et al. [104] and Fong 

et al. [105] proposed a mask model technique to achieve both SSR and SDR. A 

resemble technique for semantic segmentation approaches (the authors of [104] adapt 

the U-Net architecture [106], which is mainly used for semantic segmentation tasks). 

This may explain the reason for producing better localisation (Table 2) compared to 

other saliency methods that attempt to detect only parts of interest to the model in an 

object (not the whole object) that is responsible for a specific prediction or so-called 

relevance heatmaps [59].

Adversarial evidence can negatively impact optimised-based visual explanation 

methods because the computations involved in both adversarial and optimised-based 

visual explanation methods are similar. Consequently, regularisation and constraint 

techniques are needed to counteract the faulty evidence in explanation methods [104, 

105]. Such techniques result in smooth and low-resolution heatmaps for which the fine-

grained details are lost [107]. Moreover, they introduce hyperparameters that need to 

be tuned. Fine-Grained Visual explanation (FGVis) [107] method extended the mask 

model technique [105] and proposed a defence approach that does not introduce 

hyperparameters. Additionally, neither smoothing nor regularisation is needed. The 

proposed technique filters gradients that may introduce adversarial evidence due to the 

adversarial noise during the optimisation process. The main concept is to allow the 

activation of only the CNN neurons (feature indicators) that are triggered by both the 

explanation and the original image. This enforces the explanation to contain subset 

features of the original image features (prevent the generation of new unwanted 

evidence) and exist at the same location as the original image [107]. As pixels are 

optimised individually, high-resolution explanations that preserve image characteristics 

can be obtained [107].

Feedback CNN [108] is a unified system that can classify and localise objects. The 

proposed network uses both forward and backward paths to visualise neuron activation. 

It introduces feedback layers that are stacked on top of the ReLU layers and only 

activate the gates responsible for target neurons depending on the sign of each neuron's 



gradient. Feedback CNN achieved competitive performance for object localisation 

using weakly-supervised information compared to fully-supervised state-of-the-art 

systems.

Local Interpretable Model-agnostic Explanations (LIME) [109] is a non-

backpropagation based approach for CNNs interpretations. To explain an input, it uses 

a local linear model around that input to approximate the CNN’s behaviour. The process 

can be summarised as follows:  images are segmented into features. These features are 

used to generate synthetic data. The CNN is then used to classify the generated synthetic 

data. For each synthetic image, a regression model is fit to indicate the presence or 

absence of such features. This means the new simpler model approximates the 

behaviour of the complex CNN in the region of observation. Finally, the importance of 

each input feature can be estimated from the coefficients of the linear model. The 

important features can be visualised as a map to indicate regions of the image that 

directly influence the model prediction. As LIME method requires many passes through 

the CNN, it is considered a computationally expensive approach compared to other 

explanation methods. Another disadvantage of LIME method lies in the approximation 

technique used, as it is challenging to approximate complex non-linear models such as 

DCNN. An example of the main contributing features generated by LIME technique is 

shown in Figure 9.

Figure 9 Examples of LIME maps.



Inspired by ensemble models, Rieger et al. [110] applied the same idea to the 

explanation methods to reduce variance and bias in machine learning tasks. 

Aggregating the explanation methods approach has proven its efficiency compared to 

single explanation methods to identify important features more accurately, reduce 

variance and bias, and resist adversarial attacks. Two aggregate explanation methods 

are introduced: AGG-Mean and AGG-Var. AGG-Mean can be calculated by taking the 

average over all the explanation methods. This will result in fewer errors than the 

typical error of an individual explanation method, consequently, low variance. Error in 

this context refers to the mean square error (MSE) between the aggregated explanation 

and the hypothesised true explanation. For AGG-Var, the AGG-Mean is divided by its 

standard deviation. This will include the difference between methods uncertainty in the 

calculation, which can be utilised to assign less relevance to regions with a high conflict 

between methods. Both AGG-Mean and AGG-Var have shown significant 

improvement quantitively and qualitatively over individual methods.

Moreover, using various explanation methods for aggregating explanation has a 

smoothing effect like Smooth-Grad [111] but with fewer computations, explaining the 

resilience of aggregating methods to adversarial attacks. Replacing ReLU units with 

Softplus [112] can produce more robust explanations. However, architecture 

modification is an undesirable approach to visualise network predictions [111].

It is clearly shown that none of the introduced approaches is perfect. Some need 

special design adaptions; others need a combination of two or more techniques to 

achieve significant visualisation results. Figure 10 attempts to gather the post-hoc 

visualisation techniques, spinoffs, and enhancements in one figure. In the end, the best 

approach is limited by the application and network architecture.



Figure 10 A chart of post-hoc visualisation techniques.

3. Applications and use-cases of explanation methods

Visual inspection using explanation techniques can add a further dimension to the 

evaluation process of the robustness of neural network models. It can be used to debug 

models and identify biases. Standard evaluation procedures of CNNs by testing the 

system performance on the validation part of a dataset can be less informative because 

the validation dataset can be limited or biased. Consequently, applying the explanation 

techniques to ensure the reliability and trustworthiness of systems is vital and beneficial 

in many applications, particularly critical applications that cannot tolerate errors. For 

instance, Zhang et al. [113] presented the application of XAI in diagnosis and surgery, 

a promising research area for medical applications. Ahmed et al. [114] explored XAI 

usage in the fourth industrial revolution (Industry 4.0). Stakeholders in XAI are 

discussed from an engineering perspective in [115] with a case study on autonomous 

cars.

One of the most important uses of visualisation techniques is the selection and 

modification of CNN architectures. Visualising the learned features by the first and 

second layers of the AlexNet architecture reveals that the first layer filters retain a mix 

of high and low-frequency information. On the other hand, the second layer filters retain 



aliasing artefacts caused by the large stride of the first layer. Zeiler et al. [29] proposed 

a new architecture that can enhance the model performance by reducing the stride of 

the first layer. Besides, the filter size of the first convolution layer is reduced to 7×7 

instead of 11×11. The modified version of AlexNet achieved high accuracy. Most 

importantly, the first and second layers can now preserve better representations.

Zhu et al. [116] visualise the first four convolutional layers trained to classify galaxy 

morphology. Filter visualisation can give insights into what the model has learned 

during the training process.  The filters of the first convolutional layer can detect galaxy 

edges and corners, which are used by the second layer filters to detect simple shapes. 

The filters learn to detect more complex shapes and patterns as the CNN goes deep. 

Visualising CNN filters helps to debug the model and enhance the architecture by 

adding or removing layers, controlling filters sizes, and modifying the filter’s stride.

Score-CAM [103] is used to debug different systems, identify dataset bias, and 

explain wrong predications. Even with poor classification confidence, Score-CAM can 

achieve adequate localisation. Nevertheless, the quality of saliency maps increases as 

the model performance increases. Thus, better quality maps indicate model 

convergence.

In the document classification domain [117], LRP [33] is used to interpret the 

predictions of two different models. Although the two models have achieved the same 

test accuracy, their approaches to classifying the documents differ. LRP explanation 

techniques show that the Support Vector Machine (SVM) model based its decision on 

the word count. In comparison, the CNN model assigns more relevance to the 

keywords. The case study shows that explanation techniques can be used to understand 

models’ behaviours.

In the image classification domain [118], LRP is used to compare the predictions of 

a Fisher vector classifier [68] trained on the PASCAL dataset and a CNN trained on the 

ImageNet dataset. Both systems produce different relevance maps, though they have 

achieved similar classification accuracy on the horse category. The heatmaps of the 

Fisher vector model assign high relevance to the copyright tags that are usually 

presented in horse images. However, the relevance maps of the CNN model show that 

the model bases its decision on the horse features using the edges and contours.



Using visualisation techniques can help to mitigate the system’s weaknesses by 

identifying biases, such as the case of the Fisher vector model in the classification of 

horse images. Retraining the Fisher vector model on untagged horse images can help 

to mitigate the bias issue.

In the biometric domain, LRP has been used to identify the pixels responsible for 

age and gender characteristics in face images [119]. Also, GBP [32] is used to highlight 

features corresponding to shadow pixels in 2D ultrasound images [120]. This technique 

can help to generate shadow-focused confidence maps that can be used in biometric 

measurements. In the medical domain, LRP explanation techniques have been used to 

visualise EEG heatmaps to understand which part of the brain is responsible for a 

particular decision [121].

The choice of the appropriate explanation method is mainly dependent on the 

application. Also, the method's reliability can significantly influence that choice 

because some methods are merely edge detectors (evaluating explanation methods is 

presented in section 4). Generally, applications that require high-resolution heatmaps 

may find gradient-based methods helpful. These methods can be used for masking 

foreground objects from the background with sharp edges and fine-grained details. For 

example, it can be used for medical applications to detect cancer cells. However, 

discriminative region methods can be used for weakly-supervised tasks where the 

annotated data for object localisation (bounding boxes) are unavailable. These methods 

are suitable for semi-supervised tasks. In conclusion, there is no perfect method, but 

researchers have to trade-off between different methods to achieve the required 

objective.

4. Evaluating different explanation methods

Localisation error is argued to be a descriptive metric for assessing saliency methods. 

Table 2 shows the performance of different saliency methods on the ImageNet 

validation dataset for localisation.



Table 2 Localisation error for different saliency methods on the ImageNet 
validation dataset.

Approach Localisation error (%)

Gradients [31] 41.7

Guided Backpropagation [32] 42.0

LRP [33] 57.8

CAM [34] 48.1

Grad-CAM [87] 47.5

Feedback [108] 38.8

Mask [105] 43.1

Mask [104] 36.9

Excitation backprop [122] 39.0

Occlusion [29] 48.6

Results in Table 2 are reported in [104, 105, 108, 122], following the same evaluation 

protocol as [108] and using the same CNN (GoogleNet). The evaluation process on the 

localisation task is as follows: given an image, the class of interest, and the 

corresponding saliency map, the object segmentation mask is computed by thresholding 

the foreground area to cover 95% energy out of the produced saliency map. Then, the 

tightest bounding box containing the whole object in the saliency map is calculated as 

the localisation bounding box. This localisation box is only considered valid if the 

Intersection over Union (IoU) with the ground truth bounding box is greater than 0.5. 

Different thresholds for localisation error may explain the differences in the originally 

reported results. However, the results reported in Table 2 use the same threshold value 

for consistency.

It is not only important to understand how different visualisation techniques work 

but also if they are valid or not. What are the intuitions behind the performance of these 

techniques? Are these techniques reliable enough to put our trust in their visualisations? 

How can we evaluate these methods? Are these methods dependable on model 

parameters, architecture, and training data? Visualisation methods are key tools to get 

intuitions into models’ predictions. Consequently, understanding their failure is 



necessary for their usage in critical applications like medicine and security, where 

mistakes may cause tragic consequences.

Some studies tried to answer these questions [73, 123]. Besides, an XAI toolkit 

called Quantus [124] is introduced to quantitatively evaluate the explanations of neural 

networks comprehensively and speedily. Quantus is built to ensure the transparency 

and reproducibility of the evaluation process. However, this field is starving for more 

research and investigation. Table 3 groups different evaluation studies according to the 

manipulated parameter and the used technique. These techniques are investigated in the 

following subsections.

Table 3. Evaluation methods to assess different explanation techniques.

Evaluation method Study

Weights manipulation [73], [125], [126]

Data randomisation [73]

Architecture manipulation [126] [88]

Input perturbation [123] [127]

Evaluation metrics [61] [104] [128] [102]

Behavioural assessment [129] [78]

4.1 Weights manipulation

The learned weights during the training process should influence the visualisation 

techniques used to get insights into the model’s prediction, whether these predictions 

are right or wrong. Manipulating models’ weights should affect the resulting heatmap, 

which means the heatmap is dependable on the weights learned by the model [73]. In 

contrast, a visualisation technique is undependable on the weights if randomising the 

models’ weights does not affect the resulting activation map. Hence the first introduced 

test is model parameter randomisation [73], at which all the weights of the model are 

randomised at once, then the resulting heatmap is tested. Another version of the test is 

to randomise one layer’s parameters at a time from top to bottom successively and 

monitor the influence on the output heatmap. Moreover, randomise a single layer while 



keeping other learned layers fixed. The resulting heatmaps from the randomly 

initialised untrained network are compared with the trained model ones (original 

weights). A visualisation technique that is dependable on the learned models’ 

parameters should produce two different heatmaps for each network. In contrast, 

insensitive visualisation approaches to the learned models’ parameters will have similar 

maps. Shortly, randomising models’ weights should break ‘disturb’ the output saliency 

map for a visualisation technique to pass this test. Failing this test means a particular 

visualisation technique cannot be used to debug a model.

To provide a quantitative comparison besides the qualitative one, similarities 

between both maps are calculated using several metrics such as Spearman rank 

correlation [130], Structural Similarity Index (SSIM) [131], and histogram of gradients 

(HOGs) [132]. A low correlation between the produced saliency maps is observed for 

Gradients and Grad-CAM methods. In contrast, high correlation maps for Guided 

Backpropagation and Guided Grad-CAM are obtained (Table 4). 

Nie et al. [125] showed through theoretical and practical analysis that visualisation 

methods such as Guided Backpropagation [32] and DeconvNet [29] are class 

insensitive. Gradients [31], Guided Backpropagation, and DeconvNet are assessed 

using a simple three-layer CNN with random Gaussian initialised weights. As these 

explanation methods should visualise weights, perturbed weights should result in 

random noise maps. However, it is found that Guided Backpropagation under some 

conditions, in this case, a sufficiently large number of filters, can be approximated as 

the input image regardless of the class label. On the other hand, DeconvNet and 

Gradients, under the same condition, can be approximated as Gaussian random 

variables. The behaviour of the Gradients method is understandable because it 

visualises the output class derivatives w.r.t input image. An operation that is mainly 

weights dependent. However, DeconvNet has conducted a similar attitude to Guided 

Backpropagation when used in a CNN with max-pooling layers. The Max-pooling layer 

is believed to be responsible for image-specific information in DeconvNet [59] [133]. 

Adversarial attacks by manipulating class labels and ReLU states are conducted on 

state-of-the-art CNNs such as VGG [2] to test the class sensitivity of the visualisation 

models. Unlike the Gradients approach, it is shown that Guided backpropagation and 

DeconvNet are input invariant. Their performance is proven to be an analogy for 



recovering input images, which is asserted by their insensitivity to class labels. Thus, 

providing high-quality heatmaps is attributed to the usage of the backward ReLU and 

the local connections in CNNs but is not related to CNN’s weights or inputs [125].

Viering et al. [126] considered an adversary technique that manipulates the model’s 

weights and architecture to generate any desired explanation with a minimum impact 

on the model’s accuracy. Four techniques are introduced to manipulate Grad-CAM's 

explanations: constant flat and constant image explanations manipulate the model’s 

weights to produce a constant explanation regardless of the input. On the other hand, 

an input pattern triggers Semi-random and malicious explanations to modify the 

model’s architecture to produce random explanations dependent on the input. The first 

two techniques are easily detected by inspection as they are independent of the input, 

while the second two techniques are hard to detect as they are randomly dependent on 

the input. In all cases, the prediction accuracy does not change significantly.  The 

manipulations are produced using almost the same process: an extra filter is added to 

the last convolutional layer containing the desired target explanation. Besides, the 

architecture or weights of the fully connected layers are changed. Results show that the 

Grad-CAM explanation is not robust to the adversary and follows the desired target 

explanations.

We want to expand on the malicious explanation triggered by the input pattern 

technique because hackers might exploit it as a backdoor to abuse systems. The idea is 

to inject some patterns into the input image. A CNN, which is highly activated by these 

patterns, will force the explanation to refer to the malicious pattarns. If the malicious 

patterns do not exist, the output of this CNN will be zero. Consequently, the explanation 

of the original network can be returned. The introduced techniques [126] can be 

extended to other gradient-based methods. However, architectural changes are 

necessary, which might not be a real case scenario, because when a model is deployed, 

its weights and architecture are kept constant. Thus, we can conclude that Grad-CAM 

is efficient for a normally trained model but vulnerable to adversarial manipulated 

models. Generally, heatmaps quality depends on the visualisation techniques, which are 

intuitively dependent on the model and the training data. A poor performance model 

will not provide high-quality maps.



4.2 Data randomisation

Data randomisation is the second introduced test by Adebayo et al. [73], in which 

the training labels for a classification task are permuted. The relation between the data 

examples and their labels is broken to test the sensitivity of different explanation 

methods. A CNN is then trained to fit the randomised training data with 95% accuracy. 

State-of-the-art CNN can be taught to memorise random labels by overfitting the model 

[134]. As the data is inconsistent, the test accuracy is significantly low. Visualisation 

techniques are used to produce heatmaps for the test set examples. The produced 

heatmaps for a model trained on consistent data should look different from heatmaps 

that have been trained on shuffled data, which means the explanation approach is 

sensitive to data. On the other hand, a visualisation technique that produces the same 

heatmaps for both networks will fail this test. Consequently, this technique is 

insensitive to labels randomisation, and it cannot explain the connection between an 

example and its label. 

To provide a quantitative assessment besides the qualitative one, the correlation 

between the heatmaps of different visualisation techniques trained on both labels 

(models trained on the true label and random labels) is calculated. A low correlation 

means no relation, which is considered a reliable technique and vice versa for high 

correlation [73].

The presented evaluation approaches have shown alarming results regarding some 

of the widely used explanation methods. Table 4 shows the testing result of different 

saliency methods. Some of the tested techniques have no relation to the model or the 

training data. These visualisation methods are merely a simple edge detection algorithm 

that does not depend on the model or the training data [73]. This claim is investigated 

using a simple case study of a one-layer CNN model. As edges’ regions in an image 

have different activations from surrounding pixels, they may visually emerge, which is 

one of the basic functions of CNN filters. These models, which failed the proposed 

tests, are unsuitable for investigating data or modelling dependable tasks. They cannot 

be used to find the relation between inputs and outputs, model debugging or data 

outliers because these kinds of tasks are model- and data-dependent [73]. 



Table 4 Test results for different saliency methods

                               Test

Approach

Model Parameter 

Randomisation Test

Data Randomisation 

Test

Input invariance

Gradients Pass Pass Pass

Gradients ʘ Input Fail Fail Fail

Smooth-Grad Pass Pass Saliency method dependant

Integrated Gradients Fail Fail Reference point dependant

Guided Backpropagation Fail Fail Pass

Grad-CAM Pass Pass *

Grad-CAM ++ Pass Pass *

Score-CAM Pass Pass *

Guided Grad-CAM Fail Fail *

PatternNet * * Pass

Deep Taylor 

Decomposition

* * Reference point dependant

* Not reported.

4.3 Architecture manipulation

The DeconvNet approach is meant to visualise neurons' responses activated by 

objects or visual patterns. Mahendran et al. [88] argued that the response at different 

image depths relies on the network architecture, not the learned weights or data [88]. 

Through investigation of different neurons with different parameters, it is concluded 

that the visualisation of DeconvNet is mainly dependent on the information gained 

during a forward pass or so-called bottleneck information (pooling switches and ReLU 

masks) [88].  Consequently, DeconvNet visualisation is independent of the selected 

neuron activation, which means it is not neuron discriminative.

Network architecture may have a significant impact on the models’ predictions. 

Many studies illustrate the influence of randomly initialised weights, which greatly 

impact the network classification capabilities [135] [136]. Besides, it makes the 

network more immune to noise and produces high-resolution output without more 



training data [137]. These kinds of networks may produce saliency maps that are 

independable of the model parameters or the input data but rather on the model 

architecture. In this case, using explanation methods is possible when the network 

architecture is believed to be sufficient for reasonable predictions.

4.4 Input perturbation

Implementation invariance is another quantitative method to assess different 

saliency maps [71]. Models with different architectures that produce the same 

predictions for all inputs should always generate similar heatmaps to satisfy reliability. 

Kindermans et al. [123] proposed an additional invariance test called input invariance 

that adds a constant shift to the input to assess the model's sensitivity to input 

transformations. If an explanation method fulfils input invariance, it can be considered 

a reliable interpretation method. 

Input transformation, which is used in some cases as a pre-processing technique, can 

be used to manipulate attributions. However, it does not affect models’ predictions or 

weights. Disturbingly, some widely used methods fail this test (Table 4). However, data 

normalisation techniques may minimise this failure. Two networks are used to test the 

sensitivity of saliency methods to input transformation. Both have the same weights 

and produce the same output for all input instances. The only difference is the addition 

of the mean shift to the bias of the first layer activation, which cancels out the shift 

transformation. An explanation method to pass the input invariance test should produce 

identical heatmaps for both networks where network 1 accepts the input and network 2 

accepts a shifted version of that input.

Table 4 shows that Gradients, Guided Backpropagation and PatternNet [69] pass the 

test because both networks have identical weights. Kindermans et al. [123] assumed 

that these methods would fail if models with different weights/architecture but the same 

output predictions for inputs were used. Gradient times input [70] fails to pass the input 

invariance test as the input shift is propagated to the saliency heatmap. Moreover, 

multiplying by the input limits visual explanations [72]. 



The sensitivity to the input invariance test of Integrated Gradients [71] and Deep 

Taylor Decomposition [82] depends on the reference point's choice, which is a hyper-

parameter that can be tuned. Using a black image as a reference point for image 

classification tasks is a normal choice reference point [71]. At the same time, zero 

vector would be a suitable reference point for text-based networks [71]. 

SmoothGrad [72] technique uses duplicated versions of the input with added noise 

to produce heatmaps using any visualisation method. The resulted maps are then 

averaged to produce the final saliency map. Consequently, SmoothGrad depends on the 

underlying method used to produce these maps. If the Gradients method is used, then 

SmoothGrad is input invariant. On the other hand, if GI is used to produce the heatmaps, 

it will fail the input invariance test.

Ghorbani et al. [127] introduced three input perturbation techniques to manipulate 

inputs to produce different interpretations without changing the output predictions. The 

first perturbation is a random sign perturbation at which each pixel value is randomly 

changed with some constraint norm. The second perturbation technique is iterative 

attacks against the explanation methods at which three alterations are introduced to 

maximise the difference between the original and perturbed interpretation. The third 

perturbation technique is a gradient sign attack against influence functions at which the 

equation for the influence functions is linearised around the values of the current inputs 

and parameters.

Three explanation methods are tested: Gradients [31], Integrated Gradients [71] and 

DeepLIFT [81]. The tested saliency methods give different heatmaps from the original 

ones when subjected to input perturbations. Although input manipulation does not 

change the network prediction or significantly change the confidence score, it is 

imaginable that changing an input can produce different saliency maps as visualisation 

methods are sensitive to input changes. However, having the same output prediction 

should at least produce analogous saliency maps. The cause of this fragility is attributed 

not only to the explanation methods but also to the network itself that is being 

vulnerable to such perturbations. Ghorbani et al. [127] blamed the high-dimensionality 

and non-linearity of CNNs for producing fragile explanations vulnerable to adversarial 

attacks. It is suggested to Constrain the non-linearity of CNNs while training [138] to 

overcome this weakness. Though, Goodfellow et al. [40] attributed the vulnerability of 



models to adversarial perturbation to the models’ linear nature. One can argue that they 

used easily optimised CNNs, which are intrinsically flawed, as easily optimised models 

can be easily perturbed.

4.5 Evaluation metrics

Deletion and Insertion metrics [102] are introduced to measure the changes in 

classification output score as important pixels are gradually removed or added from/to 

an image. A good explanation should show a sharp drop in confidence score for the 

deletion metric as important pixels, determined by saliency methods, are removed from 

an image, consequently a low Area Under Curve (AUC). In contrast, a high AUC 

indicates better explanations as important pixels are being added to an image in the case 

of the insertion metric. Using these metrics, the RISE [102] approach outperforms 

Grad-CAM [87] and LIME [109].

Ancona et al. [61] noticed that the Occlusion approach [29] could highlight the 

impact of individual features distinctively. However, Integrated Gradient [71] can 

better explain jointly features. An attribution metric called ‘sensitivity-n’ is introduced 

to understand the impact of each feature compared to the impact of a group or several 

ones upon deletion. For an explanation method to satisfy the sensitivity-n metric, the 

sum of attributions of any subset of features of a cardinality ‘n’ should correlate to the 

variation of the output caused by removing these features. Pearson Correlation 

Coefficient (PCC) is used to quantify the correlation between the decrease in output for 

a subset of the removed features and the sum of their relevance for each n. Authors [61] 

argued that explanation methods such as Occlusion, Gradients times input, Integrated 

Gradient, LRP and DeepLIFT can satisfy sensitivity-n metric if they are applied to 

linear or linearly behaved models.

Based on SSR, Dabkowski et al. [104] proposed a saliency metric to assess different 

saliency methods. First, it finds the smallest rectangular crop that contains the entire 

salient region. This rectangular region is then fed to the classifier to verify whether it 

can predict the correct class. Cropping is used to avoid adversarial artefacts that might 

be introduced by masking. Manipulating the image by masking SSR or SDR regions 



using pixels blurring or added noise may introduce adversarial artefacts. Although it is 

usually tiny changes, it can lead to evidence of wrong classes; that is why it needs to be 

avoided. A low value of saliency metric, which quantifies the amount of relevant 

information captured by the rectangular region, means the explanation approach can 

reduce the rectangular cropped size while maintaining the classification score, which is 

a good attribution for that explanation method [104]. The proposed masking model 

[104] achieved a lower saliency metric compared to Gradients [31] and excitation 

backprop [122].

More recently, Bansal et al. [128] proposed an evaluation metric that evaluates the 

sensitivity of attribution methods to the change in their hyperparameters. Explanation 

methods hyperparameters such as random seeds for LIME [109] or sample size and 

Gaussian standard deviation for Smooth-Grad [72], which are randomly set, can be used 

to assess the robustness of an explanation method. A robust explanation method should 

be independent of the arbitrary hyperparameters choices, i.e., it should reproduce the 

same heatmaps for different hyperparameters. For gradient-based methods, robust 

classifiers (classifiers trained to limit adversarial pixel noise) produce heatmaps that 

demonstrate smooth object structure, unlike regular classifiers, which produce 

uninterpretable maps. This is also valid for hyperparameters changes as gradients-based 

explanations are insensitive to the added random noise to the input image. For example, 

Smooth-Grad explanation maps for robust classifiers under different sample sizes 

produce almost the same results for a different number of samples. In contrast, regular 

models produce enhanced quality maps as the number of samples increases. On the 

other hand, non-gradient based methods, such as Occlusion [29], are sensitive to their 

hyperparameter (the patch size in the case of the Occlusion method), whether a robust 

or non-robust classifier is used [128]. 

4.6 Behavioural assessment

Yeh et al. [129] introduced infidelity and sensitivity checks to assess explanation 

methods quantitatively and qualitatively. Sensitivity measures the impact of 

insignificant perturbations on an explanation method. In comparison, infidelity 



measures the difference between the output perturbation and the dot product of input 

perturbation with the explanation. Infidelity is used to test the relevance of the important 

features in an explanation to a subset of predefined features.  A combined map of 

Smooth-Grad and Integration Gradients has shown an optimal ability to minimise 

infidelity. Using Smooth-Grad with base explanation methods has shown a high ability 

to reduce sensitivity and infidelity. Methods that can optimise fidelity can pass sanity 

checks [73].

Montavon et al. [78] presented systematic and objective assessments for the quality 

of explanation methods using a simple task where the same inputs, predictions, and 

network architectures are used. Appropriate parameters are transferred from a known 

domain-related task, such as the classification of digits [139], to a target domain, in this 

case, handwritten characters [140]. Simple tasks do not require an expert to evaluate 

different explanations compared to field-specific tasks such as tumour identification. 

Two behavioural properties of explanation methods are investigated: explanation 

continuity and explanation selectivity. The produced explanation function should be 

continuous for a continuous output function. This means that the produced explanation 

for any two input equivalent data points should be equivalent [78] which can be 

quantified by the strong variation in the activation maps.

Three explanation methods are investigated: simple Taylor decomposition [141], 

sensitivity analysis (backpropagation method) [31], and LRP [33]. To investigate the 

explanation continuity property of a method, an MNIST digit [139] is translated from 

left to right while tracking the output and relevance scores. The relevance method scores 

the importance of image pixels according to their impact on the output prediction [33]. 

Only LRP produced a smooth continuous transition. Gradient-based methods such as 

sensitivity analysis and simple Taylor decomposition tend to be discontinuous because 

they are more liable to gradient noise [142] and shattered gradients [143] [144] that 

occur due to ReLU units in CNNs. 

Explanation selectivity is quantified by measuring the response of the output score's 

degradation when patches corresponding to important features are removed. A process 

known as ‘region perturbation’ [54], a generalisation of ‘pixel-flipping’ [28] in image 

domain tasks, illustrates how an explanation method redistributes relevance to pixels 

that influence the networks’ predictions. The same technique is used in the text data 



domain by setting word embedding to zero for selected words [117]. In explanation 

selectivity, features are sorted in descending order according to their relevance scores. 

Sequentially, features are removed (by setting corresponding pixels to black or by 

randomly sampling values from a uniform distribution). Then, output scores are 

calculated. Finally, the area under the curve is calculated for the plot of output scores 

against the number of removed patches [78]. The low AUC represents a low output 

score, meaning the most influence features are correctly detected. LRP and Guided 

Backpropagation have achieved high explanation selectivity compared to simple Taylor 

decomposition, sensitivity analysis, and DeconvNet. LRP outperforms other methods 

due to its ability to detect negative evidence [59]. In addition, it produces less noisy 

heatmaps because of the normalisation property [59].

Other experiments are conducted to understand the reason for the failure of 

explanation methods that visualise the element-wise product of the gradients and inputs 

[70] or explanation methods that can be approximated to gradients times inputs. The 

element-wise product of a fixed input with two random vectors is calculated. The two 

results are then compared. It is observed that the input dominates the product, especially 

for sparse inputs, even with a significant change in the random vectors [73]. 

Explanation methods such as Integrated Gradients [71], LRP [33] and DeepLIFT [81] 

can be reduced to gradients times input under certain conditions [23] [61] [145] [70]. 

For these methods, the experiments have concluded that as the gradients tend to be 

visually noisy, they will return mostly the input [73] [69].

5. Conclusion

This paper presents an extensive review of different visualisation techniques as 

explanation methods for the operation of convolutional neural networks. State-of-the-

art techniques are discussed and compared. Besides, the merits and drawbacks of the 

visualisation methods are highlighted. 

Although explainable AI techniques are essential in understanding the behaviour of 

CNNs, they can be easily misinterpreted, especially in the case of visualisation 

methods. For example, a saliency method can highlight the edges of an object as its 



activation pixels. Although this may be a simple edge detection in the image processing 

sense, it could be misinterpreted by unrobust visualisation methods as revealing a 

relation between the trained model’s weights and the output labels. Thus, visual 

inspection in these cases is insufficient because explanation methods of unrobust 

systems may suffer from user subjectivity and unreliable explanations. 

The presented analysis and discussion offer guidance on how and in which cases 

these methods can be fruitfully utilised. Understanding the strengths and weaknesses of 

visualisation approaches is the key to explaining the systems' behaviour. Consequently, 

explanation methods can facilitate the deployment of deep learning-based systems in 

real-life applications. Important application domains such as natural language 

processing or multi-object detection systems for autonomous navigation and driving 

(e.g., robotic assistants for the elderly or autonomous cars) suffer delays in wider 

adaption and mass deployment because explaining the systems’ decisions is 

overlooked. 

Furthermore, there is a significant debate among researchers to define the qualitative 

characteristics of a model’s transparency and how the properties of related explanation 

methods can be assessed. One side addresses the issue as an object recognition task in 

a weakly-supervised manner, where the whole object should be identified by the 

explanation method in order to be reliable. The other side argues that a good explanation 

method should highlight only the most discriminative parts of an object which make it 

belongs to a particular class. 

We believe this review is a significant contribution that enables the researchers in 

the field to better understand the structure and properties of different visualisation 

techniques and facilitate the choices of the appropriate method for a specific 

application.

Acknowledgements

This work is supported by the Assistive Devices for empowering dis-Abled People 

through robotic Technologies (ADAPT) project. ADAPT is selected for funding by the 

INTERREG VA France (Channel) England Programme which is co-financed by the 



European Regional Development Fund (ERDF). The European Regional Development 

Fund (ERDF) is one of the main financial instruments of the European Union (EU) 

cohesion policy.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with 

deep convolutional neural networks,” Commun. ACM, 2017.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for 

Large-Scale Image Recognition,” in 3rd International Conference on Learning 

Representations, {ICLR} 2015, San Diego, CA, USA, May 7-9, 2015, 

Conference Track Proceedings, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2016.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time 

Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. 

Mach. Intell., 2017.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: 

Unified, Real-Time Object Detection,” 2016 IEEE Conf. Comput. Vis. Pattern 

Recognit., pp. 779–788, 2015.

[6] W. Liu et al., “SSD: Single shot multibox detector,” in Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics), 2016.

[7] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for 

Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 2017.

[8] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep 

Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE 



Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, 2017.

[9] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmentation,” 

in Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11211 

LNCS, pp. 833–851.

[10] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Muller, 

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, vol. 

11700. 2019.

[11] Z. C. Lipton, “The mythos of model interpretability,” Commun. ACM, 2018.

[12] C. Rudin, “Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead,” Nature Machine Intelligence. 

2019.

[13] D. Alvarez-Melis and T. S. Jaakkola, “Towards robust interpretability with self-

explaining neural networks,” in Advances in Neural Information Processing 

Systems, 2018.

[14] C. Seifert et al., “Visualizations of Deep Neural Networks in Computer Vision: 

A Survey,” 2017.

[15] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, 

“A survey of methods for explaining black box models,” ACM Comput. Surv., 

2018.

[16] Q. shi Zhang and S. chun Zhu, “Visual interpretability for deep learning: a 

survey,” Frontiers of Information Technology and Electronic Engineering. 

2018.

[17] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S. C. Zhu, “Interpreting CNN 

knowledge via an explanatory graph,” in 32nd AAAI Conference on Artificial 

Intelligence, AAAI 2018, 2018.

[18] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu, “Interpreting cnns via decision 



trees,” in Proceedings of the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition, 2019.

[19] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on 

Explainable Artificial Intelligence (XAI),” IEEE Access, 2018.

[20] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli, “Trends 

and trajectories for explainable, accountable and intelligible systems: An HCI 

research agenda,” in Conference on Human Factors in Computing Systems - 

Proceedings, 2018.

[21] E. Tjoa and C. Guan, “A Survey on Explainable Artificial Intelligence (XAI): 

Towards Medical XAI,” vol. 14, no. 8, pp. 1–21, 2019.

[22] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, “This looks like that: 

Deep learning for interpretable image recognition,” in Advances in Neural 

Information Processing Systems, 2019.

[23] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model 

predictions,” in Advances in Neural Information Processing Systems, 2017.

[24] M. Sundararajan and A. Najmi, “The many shapley values for model 

explanation,” in 37th International Conference on Machine Learning, ICML 

2020, 2020.

[25] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-

agnostic explanations,” in 32nd AAAI Conference on Artificial Intelligence, 

AAAI 2018, 2018.

[26] C. Molnar, “Interpretable Machine Learning. A Guide for Making Black Box 

Models Explainable.,” Book, 2019.

[27] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. R. Müller, 

“Explaining Deep Neural Networks and Beyond: A Review of Methods and 

Applications,” Proc. IEEE, 2021.

[28] F. Grün, C. Rupprecht, N. Navab, and F. Tombari, “A Taxonomy and Library 

for Visualizing Learned Features in Convolutional Neural Networks,” vol. 48, 



2016.

[29] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional 

Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Comput. Vision–ECCV 

2014, 2014.

[30] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors 

emerge in deep scene CNNs,” in 3rd International Conference on Learning 

Representations, ICLR 2015 - Conference Track Proceedings, 2015.

[31] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional 

networks: Visualising image classification models and saliency maps,” in 2nd 

International Conference on Learning Representations, ICLR 2014 - Workshop 

Track Proceedings, 2014.

[32] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for 

simplicity: The all convolutional net,” in 3rd International Conference on 

Learning Representations, ICLR 2015 - Workshop Track Proceedings, 2015.

[33] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W. Samek, 

“On pixel-wise explanations for non-linear classifier decisions by layer-wise 

relevance propagation,” PLoS One, 2015.

[34] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep 

Features for Discriminative Localization,” in Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, 

2016.

[35] J. Long, N. Zhang, and T. Darrell, “Do convnets learn correspondence?,” in 

Advances in Neural Information Processing Systems, 2014.

[36] A. Mahendran and A. Vedaldi, “Understanding deep image representations by 

inverting them,” in Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2015.

[37] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer 

features of a deep network,” Bernoulli, 2009.



[38] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: 

High confidence predictions for unrecognizable images,” in Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 2015.

[39] C. Szegedy et al., “Intriguing properties of neural networks,” in 2nd 

International Conference on Learning Representations, ICLR 2014 - 

Conference Track Proceedings, 2014.

[40] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing 

adversarial examples,” in 3rd International Conference on Learning 

Representations, ICLR 2015 - Conference Track Proceedings, 2015.

[41] A. Mahendran and A. Vedaldi, “Visualizing Deep Convolutional Neural 

Networks Using Natural Pre-images,” Int. J. Comput. Vis., 2016.

[42] A. Dosovitskiy and T. Brox, “Inverting visual representations with 

convolutional networks,” in Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 2016.

[43] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and 

rotation invariant texture classification with local binary patterns,” IEEE Trans. 

Pattern Anal. Mach. Intell., 2002.

[44] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding 

Neural Networks Through Deep Visualization,” 2015.

[45] D. Wei, B. Zhou, A. Torrabla, and W. Freeman, “Understanding Intra-Class 

Knowledge Inside CNN,” vol. 6, no. 2, pp. 6–12, 2015.

[46] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted Feature Visualization: 

Uncovering the Different Types of Features Learned By Each Neuron in Deep 

Neural Networks,” 2016.

[47] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing 

the preferred inputs for neurons in neural networks via deep generator 

networks,” in Advances in Neural Information Processing Systems, 2016.



[48] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” 

Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[49] Q. Zhang, Y. N. Wu, and S. C. Zhu, “Interpretable Convolutional Neural 

Networks,” in Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2018.

[50] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting Deep Visual 

Representations via Network Dissection,” IEEE Trans. Pattern Anal. Mach. 

Intell., 2019.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 

“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. 

Learn. Res., 2014.

[52] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network 

training by reducing internal covariate shift,” in 32nd International Conference 

on Machine Learning, ICML 2015, 2015.

[53] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep neural 

network decisions: Prediction difference analysis,” in 5th International 

Conference on Learning Representations, ICLR 2017 - Conference Track 

Proceedings, 2019.

[54] W. Yu, K. Yang, Y. Bai, H. Yao, and Y. Rui, “Visualizing and Comparing 

Convolutional Neural Networks,” 2014.

[55] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. 

Learn. Res., 2008.

[56] R. Girshick, J. Donahue, T. Darrell, U. C. Berkeley, and J. Malik, “Rich feature 

hierarchies for accurate object detection and semantic segmentation,” Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 580–587, 2014.

[57] W. Yu, K. Yang, Y. Bai, H. Yao, and Y. Rui, “DNN Flow: DNN feature 

pyramid based image matching,” in BMVC 2014 - Proceedings of the British 

Machine Vision Conference 2014, 2014.



[58] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional 

networks for mid and high level feature learning,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2011.

[59] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. R. Müller, 

“Evaluating the visualization of what a deep neural network has learned,” IEEE 

Trans. Neural Networks Learn. Syst., 2017.

[60] M. Robnik-Šikonja and I. Kononenko, “Explaining classifications for 

individual instances,” IEEE Trans. Knowl. Data Eng., 2008.

[61] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better 

understanding of gradient-based attribution methods for deep neural networks,” 

in 6th International Conference on Learning Representations, ICLR 2018 - 

Conference Track Proceedings, 2018.

[62] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations 

by back-propagating errors,” Nature, 1986.

[63] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Fisher Networks and Class 

Saliency Maps for Object Classification and Localisation,” {ILSVRC} Work., 

2014.

[64] Y. Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal boundary & 

region segmentation of objects in N-D images,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2001.

[65] D. Reynolds, “Gaussian Mixture Models,” in Encyclopedia of Biometrics, 

2009.

[66] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K. R. 

Müller, “How to explain individual classification decisions,” J. Mach. Learn. 

Res., 2010.

[67] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, 

multiscale, deformable part model,” in 26th IEEE Conference on Computer 

Vision and Pattern Recognition, CVPR, 2008.



[68] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher kernel for 

large-scale image classification,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics), 2010.

[69] P. J. Kindermans et al., “Learning how to explain neural networks: Patternnet 

and Patternattribution,” in 6th International Conference on Learning 

Representations, ICLR 2018 - Conference Track Proceedings, 2018.

[70] A. Shrikumar, P. Greenside, A. Y. Shcherbina, and A. Kundaje, “Not Just a 

Black Box : Learning Important Features Through Propagating Activation 

Differences,” in Proceedings of the 33rd International Conference on 

MachineLearning, 2016.

[71] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep 

networks,” in 34th International Conference on Machine Learning, ICML 

2017, 2017.

[72] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “SmoothGrad: 

removing noise by adding noise,” 2017.

[73] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, 

“Sanity checks for saliency maps,” in Advances in Neural Information 

Processing Systems, 2018.

[74] S. Srinivas and F. Fleuret, “Full-gradient representation for neural network 

visualization,” in Advances in Neural Information Processing Systems, 2019.

[75] M. A. A. K. Jalwana, N. Akhtar, M. Bennamoun, and A. Mian, “CAMERAS: 

Enhanced Resolution And Sanity preserving Class Activation Mapping for 

image saliency,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit., pp. 16322–16331, Jun. 2021.

[76] A. Kapishnikov, T. Bolukbasi, F. Viegas, and M. Terry, “XRAI: Better 

attributions through regions,” in Proceedings of the IEEE International 

Conference on Computer Vision, 2019.



[77] K. Bykov, A. Hedström, S. Nakajima, and M. M.-C. Höhne, “NoiseGrad: 

enhancing explanations by introducing stochasticity to model weights,” 2021.

[78] G. Montavon, W. Samek, and K. R. Müller, “Methods for interpreting and 

understanding deep neural networks,” Digital Signal Processing: A Review 

Journal. 2018.

[79] J. Gu, Y. Yang, and V. Tresp, “Understanding individual decisions of CNNs 

via contrastive backpropagation,” arXiv. 2018.

[80] B. K. Iwana, R. Kuroki, and S. Uchida, “Explaining convolutional neural 

networks using softmax gradient layer-wise relevance propagation,” in 

Proceedings - 2019 International Conference on Computer Vision Workshop, 

ICCVW 2019, 2019.

[81] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features 

through propagating activation differences,” 34th Int. Conf. Mach. Learn. 

ICML 2017, vol. 7, pp. 4844–4866, 2017.

[82] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. R. Müller, 

“Explaining nonlinear classification decisions with deep Taylor 

decomposition,” Pattern Recognit., 2017.

[83] M. Lin, Q. Chen, and S. Yan, “Network in network,” in 2nd International 

Conference on Learning Representations, ICLR 2014 - Conference Track 

Proceedings, 2014.

[84] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-100 datasets,” 

https://www.cs.toronto.edu/~kriz/cifar.html, 2009. .

[85] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” … 

Sci. Dep. Univ. Toronto, Tech. …, 2009.

[86] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. 

Salakhutdinov, “Improving neural networks by preventing co-adaptation of 

feature detectors,” pp. 1–18, 2012.

[87] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, 



“Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based 

Localization,” Int. J. Comput. Vis., 2020.

[88] A. Mahendran and A. Vedaldi, “Salient deconvolutional networks,” in Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 2016.

[89] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for free? - 

Weakly-supervised learning with convolutional neural networks,” in 

Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 2015.

[90] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 2015.

[91] F. N. Iandola, S. Han, and W. J. Dally, “SqueezeNet: AlexNet-level accuracy 

with 50x fewer parameters and textless1MB model size,” no. April 2019, 2016.

[92] H. A. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, 

Weijun Wang, Tobias Weyand, Marco Andreetto, “MobileNets: Efficient 

Convolutional Neural Networks for Mobile Vision Applications,” in Computer 

Vision and Pattern Recognition, 2009.

[93] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. Huang, “Adversarial 

Complementary Learning for Weakly Supervised Object Localization,” in 

Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 2018.

[94] Y. Wei, J. Feng, X. Liang, M. M. Cheng, Y. Zhao, and S. Yan, “Object region 

mining with adversarial erasing: A simple classification to semantic 

segmentation approach,” in Proceedings - 30th IEEE Conference on Computer 

Vision and Pattern Recognition, CVPR 2017, 2017.

[95] X. Zhang, Y. Wei, G. Kang, Y. Yang, and T. Huang, “Self-produced guidance 

for weakly-supervised object localization,” in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and 



Lecture Notes in Bioinformatics), 2018.

[96] W. Li, H. Jafari, and C. Rother, “Localizing Common Objects Using Common 

Component Activation Map,” pp. 28–31.

[97] D. Kumar, A. Wong, and G. W. Taylor, “Explaining the Unexplained: A 

CLass-Enhanced Attentive Response (CLEAR) Approach to Understanding 

Deep Neural Networks,” in IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition Workshops, 2017.

[98] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, 

“The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 

88, no. 2, pp. 303–338, 2010.

[99] K. Li, Z. Wu, K. C. Peng, J. Ernst, and Y. Fu, “Tell Me Where to Look: Guided 

Attention Inference Network,” in Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 2018.

[100] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-

CAM++: Generalized gradient-based visual explanations for deep 

convolutional networks,” in Proceedings - 2018 IEEE Winter Conference on 

Applications of Computer Vision, WACV 2018, 2018.

[101] D. Omeiza, S. Speakman, C. Cintas, and K. Weldemariam, “Smooth Grad-

CAM++: An enhanced inference level visualization technique for deep 

convolutional neural network models,” arXiv. 2019.

[102] V. Petsiuk, A. Das, and K. Saenko, “RisE: Randomized input sampling for 

explanation of black-box models,” in British Machine Vision Conference 2018, 

BMVC 2018, 2019.

[103] H. Wang et al., “Score-CAM: Score-weighted visual explanations for 

convolutional neural networks,” in IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition Workshops, 2020.

[104] P. Dabkowski and Y. Gal, “Real time image saliency for black box classifiers,” 

in Advances in Neural Information Processing Systems, 2017.



[105] R. C. Fong and A. Vedaldi, “Interpretable Explanations of Black Boxes by 

Meaningful Perturbation,” in Proceedings of the IEEE International 

Conference on Computer Vision, 2017.

[106] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for 

biomedical image segmentation,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics), 2015.

[107] J. Wagner, J. M. Kohler, T. Gindele, L. Hetzel, J. T. Wiedemer, and S. Behnke, 

“Interpretable and fine-grained visual explanations for convolutional neural 

networks,” in Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2019.

[108] C. Cao et al., “Look and think twice: Capturing top-down visual attention with 

feedback convolutional neural networks,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2015.

[109] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should i trust you?’ Explaining 

the predictions of any classifier,” in Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 2016.

[110] L. Rieger and L. K. Hansen, “Aggregating explanation methods for stable and 

robust explainability,” no. 2014, 2019.

[111] A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Müller, and 

P. Kessel, “Explanations can be manipulated and geometry is to blame,” pp. 1–

34, 2019.

[112] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporating 

second-order functional knowledge for better option pricing,” in Advances in 

Neural Information Processing Systems, 2001.

[113] Y. Zhang, Y. Weng, and J. Lund, “Applications of Explainable Artificial 

Intelligence in Diagnosis and Surgery,” Diagnostics, vol. 12, no. 2. 2022.

[114] I. Ahmed, G. Jeon, and F. Piccialli, “From Artificial Intelligence to eXplainable 



Artificial Intelligence in Industry 4.0: A survey on What, How, and Where,” 

IEEE Trans. Ind. Informatics, 2022.

[115] F. Hussain, R. Hussain, and E. Hossain, “Explainable Artificial Intelligence 

(XAI): An Engineering Perspective,” Jan. 2021.

[116] X. P. Zhu, J. M. Dai, C. J. Bian, Y. Chen, S. Chen, and C. Hu, “Galaxy 

morphology classification with deep convolutional neural networks,” 

Astrophys. Space Sci., 2019.

[117] L. Arras, F. Horn, G. Montavon, K. R. Müller, and W. Samek, “‘What is 

relevant in a text document?’: An interpretable machine learning approach,” 

PLoS One, 2017.

[118] S. Lapuschkin, A. Binder, G. Montavon, K. R. Muller, and W. Samek, 

“Analyzing Classifiers: Fisher Vectors and Deep Neural Networks,” in 

Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 2016.

[119] F. Arbabzadah, G. Montavon, K. R. Müller, and W. Samek, “Identifying 

individual facial expressions by deconstructing a neural network,” Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 9796 LNCS, no. Gcpr, pp. 344–354, 2016.

[120] Q. Meng et al., “Automatic shadow detection in 2D ultrasound images,” in 

Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.

[121] I. Sturm, S. Lapuschkin, W. Samek, and K. R. Müller, “Interpretable deep 

neural networks for single-trial EEG classification,” J. Neurosci. Methods, vol. 

274, pp. 141–145, 2016.

[122] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-Down 

Neural Attention by Excitation Backprop,” Int. J. Comput. Vis., 2018.

[123] P. J. Kindermans et al., “The (Un)reliability of Saliency Methods,” in Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 



Intelligence and Lecture Notes in Bioinformatics), 2019.

[124] A. Hedström et al., “Quantus: An Explainable AI Toolkit for Responsible 

Evaluation of Neural Network Explanations,” Feb. 2022.

[125] W. Nie, Y. Zhang, and A. B. Patel, “A theoretical explanation for perplexing 

behaviors of backpropagation-based visualizations,” in 35th International 

Conference on Machine Learning, ICML 2018, 2018.

[126] T. Viering, Z. Wang, M. Loog, and E. Eisemann, “How to Manipulate CNNs 

to Make Them Lie: the GradCAM Case,” vol. 1, pp. 1–13, 2019.

[127] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of Neural Networks Is 

Fragile,” Proc. AAAI Conf. Artif. Intell., 2019.

[128] N. Bansal, C. Agarwal, and A. Nguyen, “SAM: The Sensitivity of Attribution 

Methods to Hyperparameters,” 2020.

[129] C.-K. Yeh, C.-Y. Hsieh, A. S. Suggala, D. I. Inouye, and P. Ravikumar, “On 

the (In)fidelity and Sensitivity for Explanations,” no. NeurIPS, 2019.

[130] J. H. Zar, “Spearman Rank Correlation,” in Encyclopedia of Biostatistics, 2005.

[131] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality 

assessment: From error visibility to structural similarity,” IEEE Trans. Image 

Process., 2004.

[132] T. Surasak, I. Takahiro, C. H. Cheng, C. E. Wang, and P. Y. Sheng, “Histogram 

of oriented gradients for human detection in video,” in Proceedings of 2018 5th 

International Conference on Business and Industrial Research: Smart 

Technology for Next Generation of Information, Engineering, Business and 

Social Science, ICBIR 2018, 2018.

[133] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and Checkerboard 

Artifacts,” Distill, 2017.

[134] C. Zhang, B. Recht, S. Bengio, M. Hardt, and O. Vinyals, “Understanding deep 

learning requires rethinking generalization,” in 5th International Conference 

on Learning Representations, ICLR 2017 - Conference Track Proceedings, 



2019.

[135] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On 

random weights and unsupervised feature learning,” in Proceedings of the 28th 

International Conference on Machine Learning, ICML 2011, 2011.

[136] G. Alain and Y. Bengio, “Understanding intermediate layers using linear 

classifier probes,” 2016.

[137] V. Lempitsky, A. Vedaldi, and D. Ulyanov, “Deep Image Prior,” in 

Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 2018.

[138] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval 

networks: Improving robustness to adversarial examples,” in 34th International 

Conference on Machine Learning, ICML 2017, 2017.

[139] Y. LeCun, C. Cortes, and C. J. C. Burges, “MNIST handwritten digit database, 

Yann LeCun, Corinna Cortes and Chris Burges,” 2011. [Online]. Available: 

http://yann.lecun.com/exdb/mnist/. [Accessed: 15-Aug-2018].

[140] L. van der Maaten, “A New Benchmark Dataset for Handwritten Character 

Recognition,” Tech. Report. Tilbg. Univ. Tilburg, Netherlands, pp. 1–9, 2009.

[141] S. Bazen and X. Joutard, “The Taylor Decomposition: A Unified 

Generalization of the Oaxaca Method to Nonlinear Models,” AMSE Work. 

Pap., 2013.

[142] J. C. Snyder, M. Rupp, K. Hansen, K. R. Müller, and K. Burke, “Finding 

density functionals with machine learning,” Phys. Rev. Lett., 2012.

[143] D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W. D. Ma, and B. McWilliams, 

“The shattered gradients problem: If resnets are the answer, then what is the 

question?,” in 34th International Conference on Machine Learning, ICML 

2017, 2017.

[144] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear 

regions of deep neural networks,” in Advances in Neural Information 



Processing Systems, 2014.

[145] P.-J. Kindermans, K. Schütt, K.-R. Müller, and S. Dähne, “Investigating the 

influence of noise and distractors on the interpretation of neural networks,” no. 

Nips, 2016.

ELHASSAN MOHAMED is a Ph.D. candidate with the School of Engineering and 
Digital Arts, University of Kent, Canterbury, UK. He received his M.Sc. degree 
with distinction in Embedded Systems and Instrumentations form the same 
university in 2016. He received his B.Sc. degree from Mansoura University, 
Mansoura, Egypt in Electronics and Communications in 2011. Currently, he is a 
part of the ADAPT team that is working on developing smart assistive devices for 
disabled people. His research interests focus on Computer Vision, Embedded 
Systems, Artificial Intelligence, and Robotics.

KONSTANTINOS SIRLANTZIS is Associate Professor of Intelligent 
Systems, Head of the Intelligent Interaction Research Group and Academic Lead of 
the Kent Assistive Robotics Laboratory (KAROL) at the School of Engineering and 
Digital Arts, University of Kent. His main research interests focus on Pattern 
Recognition, Artificial Intelligence, Robotics, Computer Vision, and their 
application to Assistive Technology (AT) systems and their security. He 
successfully gained over £3M in research awards from public and private funders 
in the UK and Internationally. He has published more than 120 peer-reviewed 
papers and organized International Conferences (EST 2019) and Thematic Sessions 
(AAATE 2019) on topics of robotic assistive systems. 

GARETH HOWELLS is currently a Professor of Secure Electronic Systems 
at the University of Kent in the UK and Founder, Director and Chief Technology 
Officer of Metrarc Ltd, a university spin-out company. He has been involved in 
research relating to pattern recognition and image processing for over 30 years and 
has published over 200 papers in the technical literature, co-editing two books and 
contributing to several other edited publications. His core research interests are in 
applying soft computing and pattern recognition techniques to the domains of 
device authentication, biometrics, secure communications, and identity 
management.

Highlights
 Different XAI methods are technically discussed in detail.



 Evaluation techniques to assess the reliability of explanation methods are 
presented.

 Applications of visualisation methods and potential uses are highlighted.
 XAI gaps and adaptation challenges of AI in real-life applications are 

illustrated.
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