
Vollmer, Michael, Svensson, B.J., Holk, Eric and Newton, Ryan R. (2015)
Meta-programming and auto-tuning in the search for high performance
GPU code. In: FHPC 2015: Proceedings of the 4th ACM SIGPLAN Workshop
on Functional High-Performance Computing. . pp. 1-11. ACM ISBN 978-1-4503-3807-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/95046/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2808091.2808092

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/95046/
https://doi.org/10.1145/2808091.2808092
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Meta-programming and Auto-tuning in the
Search for High Performance GPU Code

Michael Vollmer Bo Joel Svensson Eric Holk Ryan R. Newton
Indiana University, USA

{vollmerm,joelsven,eholk,rrnewton}@indiana.edu

Abstract
Writing high performance GPGPU code is often difficult and time-
consuming, potentially requiring laborious manual tuning of low-
level details. Despite these challenges, the cost in ignoring GPUs
in high performance computing is increasingly large.

Auto-tuning is a potential solution to the problem of tedious
manual tuning. We present a framework for auto-tuning GPU ker-
nels which are expressed in an embedded DSL, and which expose
compile-time parameters for tuning. Our framework allows for ker-
nels to be polymorphic over what search strategy will tune them,
and allows search strategies to be implemented in the same meta-
language as the kernel-generation code (Haskell). Further, we show
how to use functional programming abstractions to enforce regular
(hyper-rectangular) search spaces.

We also evaluate several common search strategies on a variety
of kernels, and demonstrate that the framework can tune both EDSL
and ordinary CUDA code.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search—Heuristic methods

Keywords auto-tuning, meta-programming, parallelism, GPUs

1. Introduction
Modern GPUs offer significant performance potential, but this
potential has proven to be difficult to realize in practice. De-
veloping high-performance GPGPU programs is a tedious and
time-consuming process, often involving manual tuning and non-
portable, architecture-dependent optimization. Programmers are
responsible for managing details of memory access, thread diver-
gence, and synchronization points, all while fighting with program-
mers manuals that are vague about the actual workings of their
device.

Still, GPUs offer enormous benefit in performance on some
problem domains compared to CPUs, and GPUs are becoming
more common on consumer electronics devices like laptops and

smart phones. As GPUs become commonplace, the cost of ignoring
the potential performance of GPUs will continue to increase.

1.1 Tuning
When implementing an algorithm for a GPU using CUDA, the
programmer is forced to make choices about how to decompose the
workload over—in NVIDIA CUDA terminology—threads, warps,
blocks, and the grid. The number of threads and blocks, the size
of the grid, is called the launch configuration and is specified upon
launching a workload onto the GPU. NVIDIA provides an Excel
spreadsheet called the Occupancy Calculator (see reference [20]
for information) that helps the programmer choose an appropriate
launch configuration1. The programmer provides parameters for
register and shared memory usage of the kernel, compute capability
and shared memory configuration of the target GPU and can read
out a launch configuration that leads to high GPU occupancy.
There are two caveats: high occupancy does not always imply
high performance, and high-performance CUDA code will often be
specialized to a specific decomposition of work over threads warps,
blocks, memory access patterns and array chunk sizes. Thus the
tool may recommend a launch configuration that is not compatible
with your code. In this case the programmer is forced to rewrite her
code in order try out a different launch configuration.

One solution to this problem is to write “meta-programs”, or
programs that generate specialized CUDA kernels. Embedded,
domain-specific languages for building these sorts of programs
have been developed for languages like C++, Haskell, Python and
many more [6, 7, 15, 17]. Such meta-programs may expose param-
eters to the meta-language, where they can be programmatically
tuned.

Obsidian [24] is an embedded DSL in Haskell for GPU pro-
gramming that provides a high-level functional interface for CUDA
programming but still exposes the ability to make low-level de-
cisions about the GPU kernel. In previous work on Obsidian, we
have taken advantage of the ability to programmatically tune ker-
nels by exhaustively searching over parameter spaces exposed by
CUDA (number of blocks and threads per block) while generating
size-specialized CUDA code. This approach can be successful, but
the size of the search space combined with long CUDA compila-
tion time make exhaustive search impractical in general. Addition-
ally, a programmer may wish to expose more parameters than the
block/thread parameters explored previously with Obsidian.

1.2 Auto-tuning
Auto-tuning is the technique of automatically controlling parame-
ters to improve program performance. Borrowing from artificial in-

1 CUDA 6.5 and up provide functionality similar to the Occupancy Calcu-
lator programmatically to the developer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FHPC’15, September 3, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3807-3/15/09...$15.00
http://dx.doi.org/10.1145/2808091.2808092

1

telligence research, auto-tuning systems often make use of heuris-
tics when searching, avoiding expensive exhaustive searches [25].

High-level DSLs, like Obsidian, are well suited to take advan-
tage of auto-tuning, because of their ability to expose compile-time
decisions as ordinary parameters in their meta-language. This prop-
erty also opens up an interesting possibility: the language for ex-
pressing kernels and the language for expressing auto-tuning can
both be embedded side-by-side in the same meta-language. Using
only in-language features, rather than (for example) using text sub-
stitution or pre-processing of source code, means that one is free
to arbitrarily nest or compose auto-tuning sessions, or compute the
configuration for an auto-tuning search at runtime, without much
difficulty.

1.3 Contributions
The contributions of this paper are:

• We present a general framework for auto-tuning search in
Haskell, including implementations of many common search
strategies, like hill climbing, simulated annealing, and a genetic
algorithm.

• We evaluate the auto-tuning search strategies by tuning GPGPU
kernels, both generated by a functional GPU language (Obsid-
ian) and written in an imperative language (CUDA), and present
results showing that such kernels can be effectively tuned.

• We show how auto-tuning with regular search spaces is well
captured as an applicative functor, or by treating each parameter
request as a separate effect in a monad for extensible effects
(Section 7).

2. GPU Programming
In this paper we focus on auto-tuning of GPU kernels, specifically,
NVIDIA CUDA GPU kernels as generated by Obsidian. For more
information about programming GPUs using CUDA see [19].

A GPU supporting CUDA is capable of running thousands of
threads simultaneously and thrive on highly regular workloads. A
CUDA program is expressed in SPMT form, Single Program Mul-
tiple Threads, which means that a single program control flow is
executed over a (large) number of threads. The thread’s identity
is available in the program and often used to make choices or for
indexing into data. The threads are mapped onto a hierarchy of
threads, warps, blocks and finally the grid. This program abstrac-
tion hierarchy in turn maps onto the hardware hierarchy where dif-
ferent capabilities are present at different levels. For example, only
threads that are part of the same block can exchange data via lo-
cal shared memory. From the bottom up: each thread belongs to a
warp, each warp to a block and all of the blocks make the grid.

Obsidian is an embedded language for programming GPU ker-
nels. Specifically Obsidian generates kernels specialized for a a
chosen problem size (array size). Generating kernels for fixed sizes
reduces the amount of dynamic control flow that the GPU needs to
execute at runtime.

The goal of Obsidian is to provide a tool for design space
exploration when implementing GPU kernels [24]. To meet this
end Obsidian exposes enough low-level details to enable tuning
of GPU code for performance. Amongst these details are usage of
shared memory, memory access patterns and distribution of work
over threads, warps and blocks.

There are two different delayed array representations in Obsid-
ian, push and pull arrays, which are also found in the embedded
language Feldspar [5]. The two delayed array types correspond to
different methods of computing an array; in both cases, a compute
function computes the array elements and makes them manifest in
memory. For more details about Obsidian programming see [9].

Obsidian has benefits over CUDA in that hierarchy-level poly-
morphic code can be expressed. Code can be written once and then
reused either as a sequential computation in a thread, a parallel im-
plicitly synchronized warp program or an explicitly synchronized
block program. The example below implements a hierarchy-level-
polymorphic reduction kernel:

reduceKernel :: (Compute t, Data a)
=> (a -> a -> a)
-> Pull Word32 a
-> Program t (Push t Word32 a)

reduceKernel op arr
| len arr == 1 = return $ push arr
| otherwise =
do let (a1,a2) = halve arr

arr’ <- compute $ zipWith op a1 a2
reduceKernel op arr’

The code above implements reduction of an array of length 2n by
recursively splitting the input array in half and combining halves,
using zipWith op.

The type of reduceKernel says that its result is a Program
t. That is a program that is to be executed at level t in the GPU
hierarchy. The t parameter can be any of:

• Thread : for sequential execution on a thread.
• Warp : for parallel execution over the threads in a warp.
• Block : for parallel execution over the threads in a block.
• Grid : for execution over a collection of blocks.

In this case the t parameter is restricted by the constraint Compute
t. this restriction means that the code can only be instantiated as
a Thread, warp or Block program; these are the levels of the
hierarchy that allow use of GPU shared memory. The function
compute, stores an array in shared memory.

As an example, the programmer can instantiate the same reduc-
tion code at warp or block level, just by specializing the type:

blockReduce :: Data a
=> (a -> a -> a)
-> Pull Word32 a
-> Program Block (Push Block Word32 a)

blockReduce = reduceKernel

warpReduce :: Data a
=> (a -> a -> a)
-> Pull Word32 a
-> Program Warp (Push Warp Word32 a)

warpReduce = reduceKernel

The generated CUDA code for the warp version will not con-
tain explicit synchronizations, while the block version will. This
enables the programmer to easily implement a hybrid warp/block
reduction strategy where the array that each block is processing is
split up into chunks reduced in parallel by the different warps of the
block. This is then followed by a reduction of the results produced
by each warp.

2

hybridReduce :: Data a
=> Word32
-> (a -> a -> a)
-> Pull Word32 a
-> Push Block Word32 a

hybridReduce warp_th f arr = exec $ b_body arr
where
b_body arr = do
arr’ <- compute

$ asBlockMap (exec . warpReduce f)
$ splitUp warp_th arr

reduceKernel f arr’

The hybridReduce program makes use of the same reduction
code twice: On line 10, warpReduce is mapped over sub-arrays
and composed into a block computation with asBlockMap and on
line 12 where partial results computed by each warp is reduced.

The hybridReduce program exposes a warp th parameter that
decides how large sub-arrays each warp should reduce and can be
varied as long as it evenly divides the input array.

When generating CUDA code using Obsidian, knobs for vary-
ing the number of threads and blocks are exposed by default. In the
above case, yet another knob for tuning is made available via the
warp th parameter.

3. A Simple Auto-tuning Framework
We developed a simple framework for tuning of Obsidian kernels
over a fixed number of parameters. We based our framework on the
following criteria:

1. It should easily interface with Obsidian.

2. Kernel code and scoring function should be reusable between
search strategies.

Obsidian makes use of the NVIDIA NVCC compiler to compile
GPU kernels. This process is monadic since it involves IO. Thus
the scoring function needs to be able to perform IO actions. The IO
effect needs to be composed with the tuning effect, for which we
introduce a class of monads called TuneM:

class TuneM m where
-- | Get parameter by index.
getParam :: ParamIdx -> m Int

type ParamIdx = Int

This class exposes a single getParam function that takes an
index representing a parameter and returns a parameter value. Each
different search strategy provides an instance of TuneM along with
a runSearch function. When running a search the user specifies
from what ranges the parameters are sampled. These ranges are
provided at the point of runSearch to (1) achieve a separation of
concerns, and (2) to make sure the full dimensions of the search
space are known before running the computation. In Section 7 we
discuss improvements to this simple interface; for example, what
happens if the programmer requests an index, using getParam that
is out of bounds? In this simple version that is a runtime error.
We can, however, catch this error at compile time with a more
sophisticated use of the type system, which we demonstrate in
Section 7.2.

The code below is an example of what a scoring function for an
Obsidian kernel looks like. It is a monadic computation yielding a
Maybe Result. The example tunes a kernel while varying two pa-
rameters threads and blocks obtained by two calls to getParam.

scoreIt :: (MonadIO m, TuneM m)
=> m (Maybe Result)

scoreIt = do

threads <- getParam 0
blocks <- getParam 1

liftIO $ catch (
do time <- timeIt threads blocks

return $ Just
$ Result ([threads,blocks],time)

)
(\e -> do putStrLn (show (e :: SomeException))

return Nothing
)

The timeIt function, wrapped in exception handling, repre-
sents compiling, executing and timing the kernel. This involves in-
voking external tool, linking compiled binary and calling a foreign
function and it can go wrong. If everything is successful a result
containing the parameter settings and score (in this case, the time)
is returned, otherwise Nothing.

The result type that the search strategies use as a score during
tuning is specified by the user. Different search strategies place
different constraints upon the result type. However, all instances
require an Ord instance for results. In the scoreIt example above,
we could have used a simple result type, type Result = Double.
But we instead show a simple custom datatype that also keeps the
parameters that led to a timing, paired together with the time:

data Result = Result ([Int],Double)

instance Ord Result where
compare (Result (_,d1)) (Result (_,d2))
= compare d1 d2

instance Show Result where
show (Result (p,r)) = show p ++ " | " ++ show r

For our evaluation in Section 6 we focus on single-objective
searches, measuring only overall runtime. However, it would not be
difficult to incorporate multiple objectives, such as memory usage
or energy consumption, by adding them to the Result type and
extending the Ord instance of Result to weigh the different values
appropriately.

When tuning an Obsidian kernel the timeIt function generates
the CUDA code, compiles it using NVCC and then executes and
times that kernel.

timeIt :: Int -> Int -> IO Double
timeIt threads blocks = do
-- Generate code using parameters.
-- Compile generated code.
-- Run and time executable.

As an example, the code below shows what running a search
using the exhaustive strategy looks like. Section 4 presents the other
search strategies implemented using the framework.

3

import Auto.ExhaustiveSearch as ES

main = do
resLog <- ES.runSearch

(ES.Config [[x*32| x <- [1..32]]
, [x*32| x <- [1..32]]])

scoreIt

let best = getBestResult resLog

case best of
Nothing -> putStrLn "No results"
Just r -> putStrLn $ show r

putStrLn "Done!"

The runSearch function provided by ExhaustiveSearch takes a
configuration as parameter that specifies the parameters values to
sample exhaustively as well as the monadic action used to score
each parameter setting. The result of a search is a log collected
during searching. This log includes the best setting found during
search.

4. Searching
For the “auto” part of “auto-tuning,” we need to search. With our
framework, a program may expose a fixed number of parameters to
be automatically tuned according to a programmer-defined search
strategy. All the potential configurations for these parameters form
a set referred to as the search space.

4.1 Strategies
We implemented the following heuristic search strategies in our
framework: hill climbing, simulated annealing, and a genetic algo-
rithm. Each of these search strategies have a notion of neighbor-
hoods. In our auto-tuning experiments with these three strategies,
we chose a search space of bit strings. Each solution was made of
some number of integers, represented in bit strings, and the neigh-
borhood of each solution is all the other bit strings that differ by
only one bit. This representation is useful for discrete optimization
problems because it provides many neighbors for each state, allow-
ing a search strategy to make both large and small jumps around a
search space.

• Hill climbing. Hill climbing is an search strategy that starts with
a random solution, and seeks to incrementally improve it by
changing individual parts of the solution [21]. It tries different
permutations of the current solution (neighbors), and if it finds
one better than the current solution, it moves there, or sets that
neighbor as the current best solution. This process is repeated
up to some fixed number of iterations, or until no neighbors of
the current solution are an improvement. This is a simple and
powerful search strategy, but because it stops when there are no
neighbors with better evaluations, the search can get stuck in
local optima. We refer to the variant of hill climbing we use as
“bit climbing,” which is hill climbing with a bit string.

• Simulated annealing. Simulated annealing is a heuristic-based
search strategy that is inspired by the process of annealing in
metallurgy [13]. Like hill climbing, the search starts with a
random state, and generates a neighborhood. The search also
has a temperature, which denotes how likely it is to move to a
neighbor that is worse than its current solution. Over the course
of the search, the temperature cools, making the search less
likely to move to worse solutions, and more likely to always

choose new solutions that are as good or better than the current
solution.

• Genetic algorithm. A genetic algorithm is a heuristic-based
search strategy that attempts to mimic the behavior of evolution
by natural selection [18]. A population of candidate solutions is
first randomly generated, then evolved based on some fitness
criteria. Each solution is evaluated, which determines its fit-
ness, then solutions are combined based on their fitness. We use
tournament selection: some number (greater than two) of solu-
tions are picked from the population to engage in a tournament,
where the two with the highest fitness cross over (combine) to
produce an offspring—we repeat this process until we have a
new generation of solutions. The offspring solutions are also
subject to random mutations, which provide some randomness
to help prevent the search from getting stuck in local optima

Each search provides a function for launching the auto-tuning
search, and may expose any search-specific configuration options.

-- | Configuration options for hill climbing.
data Config = Config { numBits :: Int

, numParams :: Int
, numIters :: Int
}

-- | Run the hill climbing search.
runSearch :: (Show result, Ord result)

=> Config
-> BitClimbSearch (Maybe result)
-> IO (ResultLog result)

Searches are launched by calling the provided run function.

runSearch (Config bitCount paramCount iterCount)
(scoreIt :: BitClimbSearch

(Maybe Result))

If we wanted to convey to the search that we wanted to, for ex-
ample, exclude part of the search space (if we had domain knowl-
edge telling us this would be beneficial), there are a couple of ways
we could do this. We could, for example, extend Config to take a
new field, and modify BitClimbSearch to use it. We could also
modify the range of numbers searched, and change the evaluation
function to interpret the parameters differently.

While our evaluation only considers problems of a few parame-
ters, these search techniques (and different permutations and im-
provements on them) have been shown [4] to perform well on
high-dimensional problems. Additionally, there is value in applying
auto-tuning to programs with a small number of parameters—such
as the occupancy calculation mentioned in the introduction—and
we believe our results are representative of the auto-tuning process
for many GPU kernels.

4.2 Exploration vs. Exploitation
A trade-off evident in these approaches, and in search generally,
is the balance between exploration and exploitation. Hill climbing
is 100% exploitation, because it always moves to a better solution
in its neighborhood. In the case of a local optima, this means it
has nowhere to go, and if there is a better global optima, it has
no way to reach it. In contrast, simulated annealing and genetic
algorithms involve some amount of randomness, which is the key
to exploration. In a search space with many local optima, some
exploration is generally needed to avoid getting trapped.

This trade-off between exploration and exploitation is critical to
evaluating these search strategies in auto-tuned GPU kernels, and
we discuss it in more detail in Section 6.

4

4.3 Domain Knowledge
These search strategies themselves are tunable. They provide some
configurable knobs that may be set up to take advantage of domain
knowledge about our kernels. For example, the genetic algorithm
exposes knobs for the mutation rate and tournament size, both of
which affect the ratio of exploitation/exploration that happens in
the search. All the searches also provide general knobs, such as
scaling the parameters they tune and excluding ranges of parameter
values from being considered.

Our framework would allow nested auto-tuning searches, so it
is possible to apply the auto-tuning search to choosing parameters
for auto-tuning—a topic for future work.

5. Applications
In Section 6, we evaluate the search framework on a number of
applications. The evaluation is based on a number of Obsidian
kernels—Fractals, Histogram and Reduction—as well as a breadth-
first search algorithm implemented directly in CUDA. This section
describes what we tune for each of these applications and what
tuning those parameters means.

5.1 Fractal
The Mandelbrot fractal is an example of an embarrasingly parallel
application. In this program we compute a 1024 × 1024 pixel
image of the Mandelbrot set. Each pixel is computed completely
independently of every other by an iterative process.

Our tuning effort for this program tunes the number of threads
and the number of blocks used to compute the image. Varying these
numbers changes the number of pixels computed per CUDA thread
and block.

5.2 Histogram
Computing an histogram is done by counting the number of oc-
curences of each value in an array. For example the histogram of
{0,1,1,4,3,3,0} is {2,2,0,2,1}. One way to compute a histogram in
parallel on a GPU is to use the atomic increment instruction avail-
able on CUDA GPUs.

The parameters we tune for this program is the number of
threads and blocks used. Sliding the values for these parameters
changes the amount of sequential computation within a thread or
block. It also potentially has effects on contention as different
atomic operations performed in sequential code will not contend
with each other. The trade-off is sequentiality vs contention.

5.3 Reduction
In Section 2, reduction was used as an example Obsidian program.
When auto-tuning this program there are up to three parameters
available for tuning. The first is an threshold or chunk size at which
to run warps in parallel, each performing a reduction of a part of the
input array. The second parameter decides the number of threads
to use per block, which changes the number of warps that run in
parallel. And finally the number of blocks to launch can also be
tuned.

5.4 Breadth-First Search
Graph algorithms are irregular and thus at first glance not a perfect
fit for GPUs that thrive on regular, massively parallel problems.
Work has been put into developing efficient graph algorithms for
GPUs, for example [10, 11]. And with the introduction of dynamic
parallelism in CUDA for compute capability 3.5 and above [2] the
situation for graph algorithms on GPUs is improving [26].

The breadth-first search (BFS) code behind reference [26] is
used as one of the auto-tuning case studies in this paper. This algo-
rithm dynamically switches between several code variants based on

the number of outgoing edges on each vertex. The smallest vertices
(i.e. those with out degree less than SMALL VERTEX TH) are
processed sequentially using a simple for loop. Medium-sized ver-
tices (those larger than small vertices but with out degree less than
KERNEL TH) are processed using a warp-cooperative algorithm.
Finally, the largest vertices are processed by launching a child ker-
nel to process all outgoing edges in parallel. Each successive vari-
ant adds overhead and the variant should only be used when there
is enough additional parallelism to overcome the overhead.

These two parameters are amenable to tuning by our framework
to find the best cutoff points.

Note that the BFS application is implemented in C++ and
CUDA directly. Our search framework is flexible enough to handle
tuning arbitrary functions: the scoring function for the BFS code
performs IO actions that interface with the CUDA compiler and
runs the application via a shell command (createProcess). This
process was more cumbersome than tuning Obsidian code directly,
but it demonstrates the flexibility of our approach.

6. Evaluation
In this section we evaluate the search strategies for a selection of
GPU applications. Each timing measurement is the result of many
repeated runs of the GPU kernel. We conducted our experiments
on a system with dual 12 core Intel Xeon CPU E5-2670 v3 running
at 2.30GHz and a Tesla K40 GPU. The Tesla K40 GPU has 2880
CUDA cores running at 745.0 MHz.

For some of the applications (where it was feasible), we use
a series of exhaustive searches to approximate optimal parameter
assignments, and compare our search results to these approximate
optimal values. The parameter assignments that yield the best result
(lowest time) changes from run to run—many measurements differ
by milliseconds, so the data is necessarily noisy. Note that these
exhaustive searches are performed at a lower resolution, where the
space is uniformly sampled with a fixed stride in each dimension.

We represent search spaces visually as heat maps, with “hotter”
(lighter color) sections representing better solutions. In our results,
an “iteration” of the search is defined as an invocation of the evalu-
ation function, so (for example) a genetic algorithm with a popula-
tion of 10 will do 10 iterations per generation. For mandelbrot and
histogram searches where parameters were multiples of 32, we ran
the search for fewer iterations than the other benchmarks (25 rather
than 50 iterations).

6.1 Fractal
Our mandelbrot kernel exposed two parameters: number of threads
and number of blocks. The results are shown in Figures 2, 3, and 4.

For this kernel we also used the CUDA Occupancy Calculator
to see what guidance it provides for chosing parameters. The ca-
clulator suggest that the number of threads should be one of 128,
256, 512 and 1024 and that at those settings you need 2, 4, 8 or
16 blocks per GPU multiprocessor to have enough warps to com-
pletely saturate the GPU. The TESLA K40 GPU has 15 multipro-
cessor meaning that 30, 60, 120 or 240 blocks in total saturates the
device. Figure 1 suggests that using any of these settings blindly is
not ideal. The programmer needs to apply some heuristic or experi-
mentation in addition to using the occupancy calculator to find one
of the better parameter settings.

We know that, when it comes to the number of threads, it is
very likely that the best parameter setting should be a multiple of
32. This is because the warp size on a CUDA GPU is 32 threads. In
our evaluation, we considered searches that took advantage of this
knowledge, and searches that did not. It is clear that the addition
of domain knowledge to this problem greatly improves the results
from all of the searches. With this domain knowledge included,

5

Figure 1. Heat maps showing the fitness landscape for each search space

Mandelbrot Histogram

Figure 2. Left: Two dimensional heat map of Mandelbrot search space. Right: Two dimensional heat map of histogram search space

6

Mandelbrot

Figure 3. Best solutions over time during search for Mandelbrot

Mandelbrot with domain knowledge

Figure 4. Best solutions over time during search for Mandelbrot,
using multiples of 32.

even the random search reached within 5% of the approximate
optimal value after 25 iterations.

By looking at the heat map in Figure 2, it is obvious that there
are plenty of potential local optima for a search to get stuck in. The
data presented in Figure 3 and Figure 4 confirm this intuition: hill
climbing performs poorly, getting stuck in a local optima, while
the other searches (which involve some amount of exploration)
perform better.

In particular, simulated annealing is the big winner. With mul-
tiples of 32 it reached a value within 1% of the approximate opti-
mal within 10 iterations, and with the full search it reached a value
within 11.3% of the approximate optimal within 20 iterations.

6.2 Breadth-First Search
Our BFS kernel exposes two parameters: SMALL VERTEX TH and
KERNEL TH. The results are shown in Figure 5. Because of the
large range of reasonable cutoffs, the search space for BFS is big.
The heatmap in Figure 1 shows part of that search space, sampling
multiples of 32 in the X axis. Compile time for this application

Breadth first search

Figure 5. Best solutions over time during search for BFS

Histogram

Figure 6. Best solutions over time during search for Histogram

is ≈ 11 seconds on the benchmarking platform, which limits our
ability to exhaustively search a large space.

Here, in contrast to the previous mandelbrot kernel, hill climb-
ing performs the best overall, and simulated annealing never even
manages to improve its initial guess. Interestingly, the random
search ends up beating two of the heuristic searches (genetic and
simulated annealing) after 19 iterations. The search space is large
enough, and there are enough points on it yielding sub 0.02 sec-
ond times, that we speculate these two searches with randomness
become basically interchangeable with purely random selection in-
side 50 iterations.

6.3 Histogram
Our histogram kernel exposes two parameters: threads and blocks.
The results are shown in Figure 6, Figure 7, and Figure 2.

As with mandelbrot, we have some knowledge of good param-
eter assignments: they are likely multiples of 32. In the search
over multiples of 32, the search space is small enough that all the
searches converge on more-or-less equivalent results after 16 it-
erations. By reducing the search space with domain knowledge,
the tuning problem has become simple enough that search heuris-

7

Histogram with domain knowledge

Figure 7. Best solutions over time during search for Histogram
using multiples of 32

Reduction

Figure 8. Best solutions over time during search for reduction

tics are no longer necessary. The best result, however, from these
searches was still 7% slower than the approximate optimal result.

The full search covers a significantly larger space. Here, the
genetic algorithm performs the best after 15 iterations, reaching a
result that is equivalent to the approximate optimal result.

6.4 Reduction
Our reduction kernel exposes three paremters: warp threshold,
threads, and blocks. The results are shown in Figure 8. The heat
map for reduction in Figure 1 is obtained by varying the warp
threshold and number of threads while keeping the number of
blocks fixed. An exhaustive search over all parameters would have
rendered a volume.

All searches, including random search, yield nearly identical
results after 25 iterations. Like BFS, the search space is too large
to exhaustively search, but from our experimentation we speculate
that the results found by the auto-tuning searches are very close to
optimal.

This tells us that this problem is not very hard, despite having
three parameters (one more than the other applications considered

above) and a very large search space. Scaling up the problem size
increases the times, but the results follow the same pattern.

While this data does not require much explanation or analysis,
it is representative of common GPU kernels that are trivial to tune
with simple searching—low hanging fruit for optimization with
Obsidian.

6.5 Interpretation
When domain knowledge is incorporated into the auto-tuning
searches for fractal and histogram, the auto-tuning searches per-
form very well. On mandelbrot, for example, searches over multi-
ples of 32 start out with times close to 0.02 seconds, which is within
12% of the approximate optimal value, while some full searches
do not surpass 0.02 seconds even after 50 iterations. This is not
surprising: having knowledge of the search space that drastically
reduces its size is going to make the search much more effective.

Going by the heat maps, it is obvious that there are many spots
in the search spaces that are not optimal but are reasonably close.
Continuing with the example of mandelbrot, times of around 0.02
seconds are solid yellow on the heat map, and while Figure 4 shows
how searches narrow in on sub 0.02 second times, one can imagine
situations where being within 12% of the optimal answer is “good
enough.”

In the case of BFS, because the search space was too expensive
to exhaustively search, we cannot make an argument or conclusion
about optimality. Still, the auto-tuning searches returned results
below 0.017 seconds, which appears to be (at least informally) in
the “good enough” range.

7. Discussion: Functional Interfaces for
Auto-Tuning

The simple auto-tuning interface we have presented is a lot cleaner
than a pile of scripts and C preprocessor hacks. However, it is
possible to go further and statically guarantee that the application
being tuned never requests a parameter which does not exist. In this
section we consider two solutions to this problem.

7.1 Applicative Tuning
One solution is to formulate auto-tuning as an applicative functor
rather than a monad, corresponding to the Applicative class
in Haskell. Applicatives are often useful when the structure of
the computation needs to be observed, such as collecting data
fetch requests in the Haxl project [16], or collecting all getParam
parameter requests here. That is, if we can collect all ParamIDs
used by the computation before running it, we can ensure that we
bind all parameters that it will possible reference.

We can create an Applicative tuner whose representation
is simply a function of tuning parameters together with possible
settings for those parameters, as follows:

data Tune a = Tune { run :: Params -> a
, paramDomains :: [Domain] }

type Params = [Int]
type Domain = (Int,Int)

In this case, the parameterized function is pure, Params -> a,
but in general it’s better to allow this computation to itself be
monadic, like the IO-based Obsidian computations we’ve seen in
this paper. Thus, we make Tune into a kind of transformer, TuneT,
parameterized over a monad m:

data TuneT m a =
TuneT { run :: Params -> m a

, paramDomains :: [Domain] }

8

instance Monad m => Functor (TuneT m) where
fmap f (TuneT g l) =
TuneT (\p -> do x <- g p; return (f x)) l

instance Monad m => Applicative (TuneT m) where
pure x = TuneT (\[] -> return x) []
TuneT f l1 <*> TuneT g l2 =
let len1 = length l1
in TuneT (\ls -> let (x,y) = splitAt len1 ls

in do f’ <- f x
v <- g y
return $ f’ v)

(l1 ++ l2)

Figure 9. The full Functor and Applicative instances for TuneT.
Here the applicative instance ensures that the subcomputations each
get their own share of the parameter settings.

Note that this business of abstracting over an underlying monad,
m, was not necessary with TuneM above, because any monad could
be made an instance of TuneM.

In this applicative TuneT setting, getParam is defined as:

getParam :: Monad m => Domain -> TuneT m Int
getParam d = TuneT (\[p] -> return p) [r]

Because getParam returns a non-monadic value, do notation
cannot be used, and instead we use applicative combinators. For
example, to add the value of two tuning parameters, we would
write:

(+) <$> getParam (1,10) <*> getParam (0,3)

And then to run a tunable computation, a particular search
strategy might expose the following run function, which, given a
computation that exposes a Score, searches for values of Params
that maximize that score.

tune :: Tune IO (a,Score) -> IO (a, Params, Score)
...
type Score = Double -- Simple scoring...

In this case, we assume the underlying monad is IO, although it
could also accept any Monad m, provided there is a function to run
that monad inside IO, i.e., m a -> IO a. In either case, the tune
function must be able to run the underlying monadic computations,
so that it can execute different configurations as it varies Params.

Many tunable computations gather runtime timings, which ne-
cessitates IO. However, it is also important to consider tuning pure
functions and monadic computations with dischargeable effects:

tunePure :: Monad m => (forall b . m b -> b) ->
Tune m (a,Score) -> (a, Params, Score)

This might arise, for example, if we are tuning a computation
against an abstract, deterministic performance model.

To conclude this section, Applicative offers a semantic fit for
auto-tuning with fixed search spaces. It accomplishes the “stag-
ing” whereby parameters used are gathered before the tunable com-
putations begin execution, without necessitating the indirection of
requesting parameters by index or key. The drawback of the ap-
plicative approach—and our reason to consider one more alterna-
tive design—is that an applicative that returns a monadic value is
awkward to deal with. It is a form of effect composition that works

much less smoothly than, e.g., monad transformers, which retain
do-notation.

7.2 Monads with Extensible Effects
The final solution we consider here—and which we ultimately
recommend—uses a modern mechanism for composable effects
in Haskell. In particular, we employ the extensible-effects
library by Kiselyov et. al.2. As described in a 2013 paper [14],
this framework replaces monad transformer stacks with a single
monad Eff r a, where r encodes the set of effects, and constraints
such as Member (State Int) r, capture the fact that r contains
at least a state effect storing an integer state.

For the purpose of auto-tuning, we add an effect Param s. This
is akin to a Reader effect, indicating that the computation reads
a parameter identified by s. We could use any type for s but we
choose type-level strings, i.e. of kind Symbol, which provide us
with an unlimited source of unique types without requiring extra
newtype declarations.

Since GHC 7.8, the GHC.TypeLits module provides facilities
for dealing with type-level string literals, including synthesizing
instances of the KnownSymbol class, which we use below.

-- The data type for tuning effects:
data Param s a =

KnownSymbol s => GetParm (Int -> a)
deriving (Typeable)

-- getParam is polymorphic in *which* param:
getParam :: (Member (Param s) r,

KnownSymbol s, Typeable s) =>
Proxy s -> Eff r Int

The return value of getParam is still a simple Int. For its input,
here we use the standard approach of passing a Proxy datatype—
with a phantom type argument—as a means of passing in a type
argument to the function. To invoke getParam then, the user needs
only pass in the type-level name of the parameter:

go = do x <- getParam (Proxy::Proxy "a")
y <- getParam (Proxy::Proxy "b")
...

Type-level keys By naming parameters at the type level, it is
possible to know which parameters a computation uses before
running it. A runSearch function provide by a search strategy
then takes a particular parameter and the desired domain for that
parameter. For example:

x = runSearch $
setParam (Proxy::Proxy "a") (0,10) $
setParam (Proxy::Proxy "b") (10,20) $
go

Here it is possible to write different versions of runSearch for
different search strategies: e.g. hill climbing vs. genetic algorithms.
Thus it is not necessary to have a type class like TuneM above,
because the selection of monad (Eff) does not determine the search
strategy. Further, in the above example, any parameter expected by
the computation but not provided by a runParam would result in a
static type error.

Thus, the extensible effect approach ensures safe parameter
access: it is impossible to request a parameter value that has not
been provided by the tuning framework. Further, the search domain
of all parameters is known before execution begins. And it also

2 https://hackage.haskell.org/package/extensible-effects

9

enables composability. It is possible to run a sub-computation,
with two parameters, or to compose it with a larger computation
and jointly optimize across the larger set of parameters. No code
modification in the tunable computations is required to enable this
composability.

8. Related Work
OpenTuner [4] is a general framework for auto-tuning fixed param-
eter search spaces. It provides an interface for building and com-
posing domain-specific search strategies that can be tailored to a
particular tuning problem. OpenTuner also introduces the idea of
ensambles, combining search strategies to cooperatively find opti-
mal sollutions.

PATUS [8] is a auto-tuning and code generating framwork for
stencil computations. A user of PATUS describes a stencil compu-
tation in a machine independent way, at a high-level, and the system
generates architecture specific and auto-tuned implementation for
a target GPU or CPU. The tuning process is configurable so that
different auto-tuning strategies can be used.

In reference [1] tuning is applied to the problem of compiler
optimization pipelines. A compiler is designed with a number of
reorderable optimization passes. Different orderings of these opti-
mization passes are evaluated during the tuning process.

PetaBricks[3] is a language and auto-tuning compiler that in-
cludes algorithmic choice. For example, sorting algorithms are of-
ten implemented using hybrids of several algorithms, parhaps start-
ing out as merge sort but switching to insertion sort for small arrays
(reference [22] uses an hybrid algorithm to implement fast sorting
on GPUs). The problem with hybrid algorithms is that the cut-off
point, where to switch between algorithms, often varies between
target systems. PetaBricks tunes these cut-off points as well as se-
lects algorithms to use from a palette of choices.

In reference [23] the authors propose a rewrite system for gen-
erating efficient OpenCL kernels from high-level code. The rewrite
rules define a search space which can be searched over in the goal
to produce efficient low-level GPU code. As an example a map op-
eration over an array can be decomposed in different ways over the
hierarchy of the GPU programming model. Tuning in this system
means to select rewrite rules to apply.

In reference [12], a framework for implementation of auto-
tuned EDSLs in Python is described. The system generates multiple
variants of target code from a single high level description. When
invoking a computation on a set of data, the runtime system chooses
one of the variants and executes it. If all variants have been tried,
the fastest variant is choosen. The approach to exploring the search
space is exhaustive search. The system does not perform install
time tuning, the tuning happens online as the programs are being
run.

9. Conclusion
From the data presented above, and from our experience in im-
plementing and tuning these kernels, we can make some general
conclusions.

• We confirmed expected results regarding the utility of auto-
tuning for setting thresholds and block sizes. As always, incor-
porating domain knowledge, whenever possible, into an auto-
tuning search is beneficial, and adding domain specific knowl-
edge to the search using the same meta-language used to imple-
ment the GPU kernel felt natural.

• Wiring up auto-tuning programmatically in Haskell proved to
be convenient. We needed to evaluate many different search
configurations on the same few GPU kernels, and we were able

to use ordinary Haskell code automate much of the work of
setting up and evaluating the different searches.

Because we find good results with such modest effort, we be-
lieve that average GPU kernels should be auto-tuned by default.
With Obsidian’s meta-programming approach, no additional effort
is required to make tunable designs, even if they explore different
uses of the GPU’s hierarchy.

Acknowledgments
This work was supported by NSF grant XPS-1337242.

References
[1] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,

D. Subramanian, L. Torczon, and T. Waterman. Finding effec-
tive compilation sequences. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES ’04, pages 231–239, New York, NY, USA,
2004. ACM. ISBN 1-58113-806-7. . URL http://doi.acm.org/
10.1145/997163.997196.

[2] Andrew Adinetz. Adaptive Parallel Computation with CUDA Dy-
namic Parallelism, May 2014. URL http://devblogs.nvidia.
com/parallelforall/introduction-cuda-dynamic-par%
allelism/.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. PetaBricks: A Language and Compiler for
Algorithmic Choice. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’09, pages 38–49, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-392-1. . URL http://doi.acm.org/10.1145/1542476.
1542481.

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe. OpenTuner: An Extensible
Framework for Program Autotuning. In Proceedings of the 23rd Inter-
national Conference on Parallel Architectures and Compilation, PACT
’14, pages 303–316, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2809-8. . URL http://doi.acm.org/10.1145/2628071.
2628092.

[5] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Ly-
ckegård, A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda.
Feldspar: A domain specific language for digital signal processing
algorithms. In Formal Methods and Models for Codesign (MEM-
OCODE), 2010 8th IEEE/ACM International Conference on, pages
169–178. IEEE, 2010.

[6] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compil-
ing an embedded data parallel language. In Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’11, pages 47–56, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0119-0. . URL http://doi.acm.org/10.1145/
1941553.1941562.

[7] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In Proceed-
ings of the sixth workshop on Declarative aspects of multicore pro-
gramming, pages 3–14. ACM, 2011.

[8] M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation
and Autotuning Framework for Parallel Iterative Stencil Computations
on Modern Microarchitectures. In Proceedings of the 2011 IEEE
International Parallel & Distributed Processing Symposium, IPDPS
’11, pages 676–687, Washington, DC, USA, 2011. IEEE Computer
Society. ISBN 978-0-7695-4385-7. .

[9] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array con-
structs in an embedded GPU kernel programming language. In Pro-
ceedings of the 7th workshop on Declarative aspects and applications
of multicore programming, pages 21–30. ACM, 2012.

[10] A. Davidson, S. Baxter, M. Garland, and J. Owens. Work-Efficient
Parallel GPU Methods for Single-Source Shortest Paths. In Paral-
lel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional, pages 349–359, May 2014. .

10

[11] P. Harish and P. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDA. In S. Aluru, M. Parashar, R. Badrinath,
and V. Prasanna, editors, High Performance Computing HiPC 2007,
volume 4873 of Lecture Notes in Computer Science, pages 197–208.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-77219-4. .

[12] S. A. Kamil. Productive High Performance Parallel Programming
with Auto-tuned Domain-specific Embedded Languages. PhD thesis,
Berkeley, CA, USA, 2012. AAI3555748.

[13] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[14] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: An al-
ternative to monad transformers. In Proceedings of the 2013 ACM
SIGPLAN Symposium on Haskell, Haskell ’13, pages 59–70, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2383-3. . URL
http://doi.acm.org/10.1145/2503778.2503791.

[15] G. Mainland and G. Morrisett. Nikola: embedding compiled GPU
functions in Haskell. In ACM Sigplan Notices, volume 45, pages 67–
78. ACM, 2010.

[16] S. Marlow, L. Brandy, J. Coens, and J. Purdy. There is no fork:
An abstraction for efficient, concurrent, and concise data access. In
Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’14, pages 325–337, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2873-9. . URL http:
//doi.acm.org/10.1145/2628136.2628144.

[17] M. D. McCool and S. D. Toit. Metaprogramming GPUs with Sh. A K
Peters, 2004. ISBN 978-1-56881-229-8.

[18] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[19] NVIDIA. CUDA C Programming Guide. URL http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/
#axzz3XP6X8l00.

[20] NVIDIA Corporation. Cuda C Best Practices Guide, 2015. http:
//docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html.

[21] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, 2003. ISBN 0-13-790395-2.

[22] E. Sintorn and U. Assarsson. Fast parallel GPU-sorting using a hybrid
algorithm. Journal of Parallel and Distributed Computing, 68(10):
1381 – 1388, 2008. ISSN 0743-7315. . General-Purpose Processing
using Graphics Processing Units.

[23] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating Per-
formance Portable Code using Rewrite Rules: From High-level Func-
tional Expressions to High-Performance OpenCL Code. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’15, New York, NY, USA, 2015. ACM.

[24] B. J. Svensson, M. Sheeran, and R. R. Newton. Design Exploration
Through Code-generating DSLs. Commun. ACM, 57(6):56–63, June
2014. ISSN 0001-0782. . URL http://doi.acm.org/10.1145/
2605685.

[25] R. W. Vuduc. Autotuning. In Encyclopedia of Parallel Computing,
pages 102–105. 2011. . URL http://dx.doi.org/10.1007/
978-0-387-09766-4_68.

[26] P. Zhang, E. Holk, M. Zalewski, S. Mcmillan, J. Chu, and A. Lums-
daine. Dynamic Parallelism for Simple and Efficient GPU Graph Al-
gorithms, 2015. http://www.cs.indiana.edu/~eholk/papers/
bfsdp.pdf.

11

