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Abstract

We discuss a widely used air traffic flow management formulation. We
show that this formulation can lead to a solution where air delays are
assigned to flights during their take-off which is prohibited in prac-
tice. Although air delay is more expensive than ground delay, the
model may assign air delay to a few flights during their take-off to
save more on not having as much ground delay. We present a modified
formulation and verify its functionality in avoiding incorrect solutions.

Keywords: Transportation, Air traffic flow management (ATFM), departure
capacity constraint, ground delay, network optimization
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1 Introduction

Aviation management has received great attention in the literature to enhance
operations efficiency and reduce associated costs. Several management areas
have been investigated, such as ground holding (Andreatta, Odoni, & Richetta,
1993; Brunetta, Guastalla, & Navazio, 1998; Mukherjee & Hansen, 2007), gate
assignment (Bihr, 1990; Cheng, Ho, & Kwan, 2012; Ding, Lim, Rodrigues,
& Zhu, 2005), runway sequencing and scheduling (Atkin, Burke, Greenwood,
& Reeson, 2007; Bennell, Mesgarpour, & Potts, 2013; Ikli, Mancel, Mon-
geau, Olive, & Rachelson, 2021; Sölveling & Clarke, 2014), conflict resolution
(Alonso-Ayuso, Escudero, & Mart́ın-Campo, 2014; Menon, Sweriduk, & Srid-
har, 1999; Pallottino, Feron, & Bicchi, 2002; Peyronne, Conn, Mongeau, &
Delahaye, 2015), airspace capacity management (Barnhart, Fearing, Odoni, &
Vaze, 2012; Liu & Hu, 2009; Sherali & Hill, 2013), and air traffic flow man-
agement (Boujarif, Hamdan, & Jouini, 2021b). An air traffic flow management
problem (ATFM) involves optimizing flight schedules to match schedules with
the available airport and airspace capacities (Bertsimas & Patterson, 1994). It
considers a network of airports and airspace sectors, where flights fly between
these airports passing through the airspace sectors during a specific planning
horizon. In the ATFM problem, flights are controlled through ground delays,
air delays, rerouting or cancellation decisions (Boujarif, Hamdan, & Jouini,
2021a; Hamdan et al., 2021).

The pioneering work of Bertsimas and Patterson (1994) gave the first
binary formulation for the ATFM problem with airspace sector capacities.
This is an NP-hard problem for which the binary formulation has succeeded
in solving large-scale practical size instances with thousands of flights. The
proof of NP-hardness lays in the fact that the problem can be reduced to
the job-shop scheduling problem, which is in turn NP-hard (Bertsimas & Pat-
terson, 1994; Diao & Chen, 2018). Several algorithms and approaches were
proposed and used to solve large-scale instances, such as Lagrangian relaxation
(X. Zhang & Mahadevan, 2017), fix-and-relax (Agust́ın, Alonso-Ayuso, Escud-
ero, & Pizarro, 2012b; Hamdan et al., 2021), sequential strategy (Akgunduz
& Kazerooni, 2018), heuristic-repair (Junker, 2012) and hierarchical heuristic
(Y. Zhang et al., 2018).

The formulation has been then used widely in the related literature
(Agust́ın, Alonso-Ayuso, Escudero, & Pizarro, 2012a; Agust́ın et al., 2012b;
Alonso, Escudero, & Ortuño], 2000; Bertsimas, Farias, & Trichakis, 2012; Bert-
simas & Gupta, 2016; Bertsimas, Lulli, & Odoni, 2008, 2011; Boujarif et al.,
2021b; Churchill, Lovell, Ball, & Smith, 2009; Dal Sasso, Djeumou Fomeni,
Lulli, & Zografos, 2018, 2019; Hamdan et al., 2021, 2018, 2019, 2020; Vossen,
Hoffman, & Mukherjee, 2012). Although the binary formulation is widely used
in the literature, other formulations and approaches exist, such as the graph
coloring (Barnier & Brisset, 2004), the real-time holding and rerouting (Chen,
Han, Du, & Luo, 2020), the non-time segmented (Akgunduz & Kazerooni,
2018) and the shortest path with common capacity constraint (Garćıa-Heredia,
Alonso-Ayuso, & Molina, 2019). This paper contributes to the literature by
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discussing the widely used binary formulation and highlighting circumstances
where this formulation will give incorrect solutions. The widely used binary
formulation in the literature can lead to a solution where air delays are assigned
to flights during their take-off, which is prohibited in practice. We present a
modified formulation to prevent this issue. Unless otherwise specified, the cur-
rent formulation denotes the binary formulation widely used in the literature,
and the enhanced formulation denotes the modified formulation presented in
this work. For consistency with the literature, we follow the notations and ter-
minologies used in Bertsimas and Patterson (1994). It is worth noting that
despite the advanced features and aspects presented in the wide ATFM liter-
ature, this possible modeling weakness appears in following works that used
this formulation.

The ATFM model considers a set of flights (f ∈ F ), a network of airports
(k ∈ K ) and airspace sectors (j ∈ J ), under a discrete finite planning horizon
(t ∈ T ). The model uses a set Pf = {P(f, i), 1 ≤ i ≤ Nf} that contains
the flight path, with P(f, i) denoting the ith sector in this path. The path
starts with the departure airport P(f, 1), goes through certain airspace sectors,
and ends with the arrival airport P(f,Nf ). Flight f must spend a minimum
time lfj in each sector j. This helps in defining the set of feasible times to

reach sector j denoted by T j
f . The scheduled departure and arrival times of a

flight f are defined as df and rf , respectively. The airport departure, airport
arrival and airspace sector capacities at time t are given by Dk(t), Ak(t), Sj(t),

respectively. The model uses the binary decision variable wj
f,t that is equal to

1 if flight f enters sector j by time t, and 0 otherwise. The definition “by time
t” means that if wj

f,t is equal to 1 for period t, then it will be equal to 1 for
all later periods.

The model optimizes flight schedules under limited available airspace
capacities in order to minimize the total flight delay costs as given in Equation
(1). Although we present an objective function with only ground and air delays,
the issue discussed appears in all extensions that include aspects such as can-
cellation, rerouting, early and late arrivals if they consider a ground and air
delays calculation with the same formulation.

Min
∑
f∈F

[
cgf

( ∑
t∈Tk

f ,

k=P(f,1)

(t− df )
(
wk

f,t − wk
f,t−1

))

+ caf

( ∑
t∈Tk

f ,

k=P(f,Nf )

(t− rf )
(
wk

f,t − wk
f,t−1

)
−

( ∑
t∈Tk

f ,

k=P(f,1)

(t− df )
(
wk

f,t − wk
f,t−1

)))]
.

(1)

The first part in (1) gives the ground delay cost by multiplying the ground
delay unit cost cgf by the amount of ground delay calculated at the departure
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airport. The second part calculates the air delay cost by multiplying the air
delay unit cost caf by the amount of air delay, which is the time difference
between the actual and the scheduled arrival times, minus the ground delay.

As we focus on the ground delay calculation, we provide its expression
separately. It is given by

∑
f∈F

cgf

( ∑
t∈Tk

f ,k=P(f,1)

t
(
wk

f,t − wk
f,t−1

)
− df

)
. (2)

The departure capacity constraint ensures that the number of flights which
may take-off from airport k at time-period t does not exceed the departure
capacity Dk(t). It is given by∑

f∈F :P(f,1)=k

(wk
f,t − wk

f,t−1) ≤ Dk(t), ∀ k ∈ K , t ∈ T . (3)

The path connectivity constraint ensures that a flight cannot enter its next
resource (airport or sector) in its path unless it has spent at least the minimum
time needed in the previous resource. It is given by

wj′

f,t+lfj
−wj

f,t ≤ 0, ∀f ∈ F , t ∈ T j
f , j = P(f, i), j′ = P(f, i+1), i<Nf . (4)

Equation (1) and Constraints (3) and (4) here correspond to the objec-
tive function, Constraint (2) and Constraint (5) in Bertsimas and Patterson
(1994), respectively. The remaining constraints in the problem formulation are
related to the airport arrival capacity, the sector capacity, time connectivity,
and continuing flights.

We show how this current formulation can be exploited leading to an incor-
rect solution for the ATFM problem. The identified shortfall does not reduce
the novelty of previous works. The correction presented in this paper ensures
correct solutions and thus helps keeping correct advancement in the ATFM
research field.

The organization of this paper is as follows. Section 2 discusses the potential
weakness in the current formulation. Section 3 presents an enhanced formula-
tion. Section 4 gives two detailed examples illustrating the exploitation using
the current formulation and how it is corrected using the enhanced formulation.
Finally, Section 5 concludes the paper.

2 Potential weakness in the current ATFM
formulation

Constraint (3) counts the number of flights that took off during period t from
airport k and compares it with the departure capacity. Flights are counted by
computing the difference between wk

f,t and wk
f,t−1. If the difference equals to
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1, then flight f took off at period t (wk
f,t = 1 and wk

f,t−1 = 0). If the difference

equals to 0, it means that either flight f has not taken off yet (wk
f,t = 0 and

wk
f,t−1 = 0) or flight f took off in a previous period (wk

f,t = 1 and wk
f,t−1 = 1).

Constraint (4) allows flight f to enter its next resource (j′) after it has
spent at least lfj in its previous resource (j). The use of “at least” allows
imposing speed control. For example, if flight f needs a minimum of 1 period
(lfj = 1, j = P(f, 1)) during the take-off and takes off at t, then Constraint
(4) will allow it to enter its first sector (j′) anytime from t + lfj till its last
possible time.

The definition of the path connectivity constraint using “at least” along
with the flight counting method in the departure capacity constraint and the
ground delay calculation expression lead to potentially incorrect results. In
practice and logically speaking, a flight should enter its first sector immedi-
ately after spending the required time at the departure airport. However, in
the current formulation, a flight may take off to benefit from the available
departure airport capacity at a certain time-period, where one period after the
take-off, the flight is not counted in the departure capacity. Then, the flight
may be assigned air delay for some periods during its take-off. After that, it
enters its first airspace sector at a later time due to capacity-related issues.
During the take-off and the appearance in the first sector times, other flights
may exploit the available airport and airspace sector capacities.

Consider the solution scenario in Figure 1. It provides the optimal schedule
for one flight, where the rows are the resources of the flight path, the columns
are the time-periods, and the values inside the cells are example solutions of
the decision variable wj

f,t. The leading 1’s, in the grey cells, give the time of
departure, the time of arrival at each sector, and the time of arrival at the
destination airport. Assume that flight f requires zero time-periods for its take-
off, then a prohibited solution is obtained if flight f takes off, say, at t = 2 and
enters its first modeled sector (Sector A in Figure 1) at a later time, say, t = 5.
This situation means that flight f is not detected in any capacity constraint at
t = 3 and t = 4. For instance at t = 4, flight f already took off from Airport
1 in a previous period since wAirport1

f,4 = wAirport1
f,3 = 1 from Constraint (3),

but it did not enter its first sector (Sector A) since wSectorA
f,4 = wSectorB

f,4 = 0,
see Constraint (4) in Bertsimas and Patterson (1994). Although this solution
results in three periods of air delay for flight f (t = 2, 3, 4), it allows other
flights to benefit from the available airport and sector capacities as flight f is
not counted and results in less total delay.

One might argue that the model is unlikely to prefer assigning air delay
over ground delay if both options are feasible since cgf<caf . This is true for
one flight. However, in the case of a network with many flights, assigning
air delay to a small group of flights might be cheaper than assigning ground
delay to a larger number of flights. In other words, the total air delay needed
becomes cheaper than the total ground delay alternative. Thus, in the previous
example, the savings from other flights should be more than the three air
delay periods of flight f to make the model exploit this possibility. Note that
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Fig. 1 Illustration of the deficiencies in Case 1 and Case 2 using the solution of one flight.

the same holds if the required time at the departure airport is greater than
zero. Examples illustrating this will be given in Section 4. This issue may be
further apparent when other decisions, such as reroutings and cancellations,
are accounted for, when several objective functions are used or when stochastic
aspects are considered. Note also that the departure capacity constraint will
not function as intended if the take-off requires more than one time-period
(although this case is unpractical) as this case is not restricted in the modeling.

3 Enhanced formulation

To prevent the exploitation discussed in Section 2, we need to ensure that
airport departure capacity and ground delay are calculated correctly and that
each flight enters its first sector at the right time.

In the case when the required time at the departure airport is zero, then
if the departure occurs at t, flight f needs to be counted in the airport depar-
ture capacity and counted in its first sector at t. At the same time, it should
immediately enter its first sector after the departure. Thus, we propose the
following modification to the path connectivity constraint.


wj′

f,t+lfj
− wj

f,t = 0, ∀f ∈ F , t ∈ T j
f , j = P(f, i),

j′ = P(f, i+ 1), i<Nf if i = 1

wj′

f,t+lfj
− wj

f,t ≤ 0, ∀f ∈ F , t ∈ T j
f , j = P(f, i),

j′ = P(f, i+ 1), i<Nf if i>1.

(5)

Constraint (5) ensures that each flight enters its first modeled sector imme-
diately after spending the required time at the departure airport (i = 1). It
also ensures that each flight enters its next sector after spending at least the
minimum time needed in the previous one (i>1). This result is summarized in
Proposition 1.

Proposition 1 Constraint (5) and the time window of each resource (T j
f ) that

specifies the earliest and the latest entry times prevent any violations.
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Proof Assume that flight f is scheduled to depart at t = 2 and let us say that flight
f has a maximum delay of 4 periods. This means that the latest departure time is
t = 2+ 4 = 6. Consequently, T j

f = 2, 3, 4, 5, 6, j = P (f, 1) = k. If the minimum time

spent at the departure airport is 5 (lfj = 5, j = P (f, 1)), then flight f can enter

its next sector within a time window T j
f = 2 + 5, 3 + 5, . . . , 6 + 5 = 7, 8, . . . , 11, j =

P (f, 2). Therefore, flight f cannot enter sector j earlier (e.g. before t = 7) due to the

time window T j
f , j = P (f, 2).

Now, assume that flight f receives 2 periods of delay, then the take-off occurs at
t = 4. We illustrate how the flight cannot enter its first sector earlier than t = 4+5 =
9, say at t = 7 as shown in Table 1. If flight f can enter its first sector earlier, then
due to the time connectivity “that ensures if wj

f,t = 1 at any period, it will be one

for all later periods”, the sector connectivity (Constraint (5)) will not be violated as

wj
f,t = 1 at t = 9.

Table 1 Example of an infeasible solution that can be prevented.

t 1 2 3 4 5 6 7 8 9 10 11 12

w
j=P (f,1)=k
f,t 0 0 0 1 1 1 1 1 1 1 1 1

w
j=P (f,2)
f,t 0 0 0 0 0 0 1 1 1 1 1 1

However, if we look at Constraint (5), it is checked at each T
j=P (f,1)
f “departure

time window”: from 2 to 6 – in our example. This means that: at t = 2, w
j=P (f,2)
f,t=2+5 −

wk
f,t=2 = 0 → since wk

f,t=2 = 0, w
j=P (f,2)
f,t=2+5 should be zero. Hence, w

j=P (f,2)
f,t=7 = 1, is

infeasible and is detected by Constraint (5). Alternatively, for w
j=P (f,2)
f,t=7 to be equal

to 1, wk
f,t=7−lfk

should equal to 1.

At t = 3, w
j=P (f,2)
f,t=3+5 − wk

f,t=3 = 0 → since wk
f,t=3 = 0, w

j=P (f,2)
f,t=3+5 will be zero.

Similarly at t = 4, w
j=P (f,2)
f,t=4+5 − wk

f,t=4 = 0 → since wk
f,t=4 = 1, w

j=P (f,2)
f,t=4+5 = 1.

Thus, if the flight departs at t = 4, it cannot enter its first sector earlier than

t = 4+5. This makes the only case where w
j=P (f,2)
f,t=2+5 = 1 is when wk

f,t=2 = 1, due to

checking all the time periods in T
j=P (f,1)
f . Consequently, the flight cannot enter its

first sector earlier, which completes the proof of the proposition. □

In the case when the required time at the departure airport is greater than
zero, then we need to ensure that the airport departure capacity is correctly
functioning if the required time at the airport is more than one period. Thus,
for the airport departure capacity, i.e., Constraint (3), flights are counted if
they did enter their first sector by comparing the value of the decision variable
at the departure airport with the value in the first sector after the departure
airport. This leads to

∑
f∈F :P(f,1)=k,j=P(f,2)

(wk
f,t − wj

f,t) ≤ Dk(t), ∀ k ∈ K , t ∈ T . (6)
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Constraint (6) ensures that a flight is counted as long as it is still at its
departure airport. It stops considering flight f at its departure airport once
it enters its first modeled sector. One may prefer to calculate ground delays
using the first sector’s information as no delay is allowed between the departure
and the first sector entry. Thus, checking the delay at the departure airport
(k = P(f, 1)) in Expression (2) is replaced by the first sector after the departure
airport (j = P(f, 2)). This modification requires subtracting the scheduled
departure time and the minimum time to be spent at the departure airport
(df + lfj′ with j′ = P(f, 1)) from the time a flight enters its first sector after
the departure airport as given in Expression (7).

∑
f∈F

cgf

( ∑
t∈T j

f ,j=P(f,2),j′=P(f,1)

t
(
wj

f,t − wj
f,t−1

)
− (df + lfj′)

)
. (7)

Although the terms “cgf × df” in Expression (2) and “cgf × (df +
lfj′)” in Expression (7) are constants and can be removed, they
are used to facilitate interpreting ground delay costs. Note also that
in the case of allowing cancellations, Expressions (2) and (7) can

be rewritten as
∑

f∈F cgf

(∑
t∈Tk

f ,k=P(f,1) (t− df )
(
wk

f,t − wk
f,t−1

))
and

∑
f∈F cgf

(∑
t∈T j

f ,j=P(f,2),j′=P(f,1) (t− (df + lfj′))
(
wj

f,t − wj
f,t−1

))
, respec-

tively.
In addition, the enhancement for the case when the required time at the

departure airport is zero applies when the time required is one period. Note
also that we consider the case where flights may take more than one period. By
doing so, we provide a general and comprehensive enhancement independent
of the length of the time period or the number of periods required for take-
off. In previous models in the literature, it is rarely stated how much time an
aircraft requires to take off, but it is implicitly assumed that it will require
either zero or one time period. However, if a short period is used, an aircraft
may require more than one period during the take-off.

4 Examples

In this section, we provide two detailed illustrations for the potential exploita-
tion of the current formulation discussed in Section 2. In the first example,
the departure airport capacity of one airport varies over time. In the second
example, the departure airport capacity of one airport and the capacity of one
sector vary over time. In both examples, the network consists of three airports
and four airspace sectors. The planning horizon is ten periods. The minimum
time to be spent in each sector is one period. The arrival capacity is equal to
5 flights for each airport at each period. The network and the flight path from
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Fig. 2 The location of the airports, airspace sector arrangements and flight paths used in
the examples.

each airport are given in Figure 2. The ground delay and air delay unit costs
are cgf =AC120 and caf =AC200. The time to be spend at the departure airport
for each flight is assumed to be zero in Case 1 and one time-period in Case 2.
Note that we also report the impact on large networks in Appendix A. The
model was implemented and solved using the Julia programming language on
a Jupyter notebook with an Intel(R) Core(TM) i7-9750H 2.6 GHz CPU, 16
Gb of RAM, and 64-bit Windows 10 Home operating system. CPLEX 20.1.0
was used as the solver.

4.1 Example 1: Varying the Airport Capacity

There are five flights scheduled to depart at t = 2. Flights 1, 2 and 3 depart
from Airport 1, while Flights 4 and 5 depart from Airport 2. All flights will
land at Airport 3. The departure capacity for each airport at each time-period
is three flights per period, except for Airport 2. It is set to be zero for periods
3 and 4. Note that the drop in the capacity can be substituted with situations
in which there are more flights in the network. The sector capacity is limited
to two flights per period in each sector, except for Sector D, where the capacity
is one flight per period.

Figure 3 provides the optimal solutions obtained using the current formu-
lation as well as the enhanced one for Cases 1 and 2. The leading 1’s (in the
grey cells) indicate the time when a flight takes off from an airport, enters a
sector, or arrives at an airport. Red cells indicate location where the solution
given by the current formulation becomes incorrect.

Since Sector D allows one flight per period, it is cheaper to assign at least
one unit of ground delay to either flight 4 or 5. However, as the departure
capacity drops to zero in periods 3 and 4, either flight 4 or 5 will be held in the
ground for at least three periods. In case 1 and using the current formulation,
flight 5 leaves its departure airport at t = 2 but appears in Sector D at t = 3
(Figure 3(a)). This situation means that as flight 5 requires zero time-periods,
flight 5 is assigned one air delay period during its take-off phase, which is
prohibited in practice. In Case 2, flight 4 utilizes the glitch in the current
formulation and takes off at t = 2, assigns one time-period of air delay during
the take-off (Figure 3(b)). In this case and since the time to be spent at the
airport is one time-period, the departure capacity constraint does not detect
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Fig. 3 Optimal solution of example 1 using the current and the enhanced formulations
under (a) Case 1 and (b) Case 2.

flight 4 during its delayed take-off at t = 3 (wk
4,3 − wk

4,2 = 1 − 1 = 0). As a
result, the solution remains feasible, although it is incorrect. In this situation,
delaying flight 4 results in an air delay of one period (AC200). On the other hand,
flight 4 in the enhanced formulation takes off at t = 5, and the resulting delay
is three periods (120 × 3 = AC360). This enhanced solution is less efficient than
the exploited solution in the current formulation but satisfies the departure
capacity requirement correctly. Note that the optimal cost for the current and
the enhanced formulations in Case 1 are AC560 and AC600, respectively. Case 2
results in the same costs as Case 1.

4.2 Example 2: Varying the Sector Capacity

In this example, all five flights take off from Airport 1 and land at Airport 3,
and they are scheduled to depart at t = 2 except flights 4 and 5, which are
scheduled at t = 3 and 4, respectively. The departure capacity of Airport 1 is
three flights at t = 2, and then it drops to one flight from t = 3 till t = 10 due
to low visibility. Sector A has a capacity of three flights per period, and due to
some military activities, the available capacity at t = 1 till t = 3 is one flight
per period. The capacity of the remaining sectors is two flights per period.

Figure 4 illustrates the optimal solutions under both cases using the current
and the enhanced formulations. The departure capacity of Airport 1 allows
three flights to take off. Then flights need to enter its first sector (Sector A)
immediately after the departure in Case 1 and after one time-period in Case 2.
Although the departure capacity is high, the reduced sector capacity of Sector
A limits the number of departures.
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Fig. 4 Optimal solution of example 2 using the current and the corrected formulations
under (a) Case 1 and (b) Case 2.

In Case 1 (Figure 4(a)), the optimal costs using the current and the
enhanced formulations are AC760 (two periods of ground delay and two periods
of air delay) and AC840 (seven periods of ground delay), respectively. In the
current formulation, flight 3 takes off at t = 2 along with flight 2 as the depar-
ture capacity allows. However, only flight 2 enters Sector A at t = 2 (after its
take-off) due to the sector capacity. Flight 3 enters at t = 4 when the sector
capacity increases. The early take-off of flight 3 with the assigned two peri-
ods of air delay during its take-off allows the solution to avoid delaying other
flights by a total of four periods of ground delay due to capacity restrictions.

In Case 2 (Figure 4(b)), the optimal costs using the current and the
enhanced formulations are AC560 (two periods of ground delay and one period
of air delay) and AC840 (seven periods of ground delay), respectively. In the
current formulation, flight 1 takes off from Airport 1 at t = 2 along with flight
3 while flight 2 takes off at t = 3. Flight 3 receives air delay during its take-off
and enters Sector A at t = 4. Consequently, it is not counted in the departure
capacity and its first modeled sector’s capacity at t = 3 although it took off
at t = 2.

5 Conclusion

The current formulation used in the literature might lead to incorrect results as
the formulation can be exploited under certain circumstances. The shortfall can
be detected through the analysis of the optimal flight schedule. The cause of the
shortfall is that the current formulation may assign air delay to flights during
their take-off, which allows other flights to benefit from the available airport
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and sector capacities. In this paper, we proposed an enhanced formulation to
resolve this issue. We also provided two examples to illustrate the discussed
flaw.
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Appendix A Impact on large networks

We consider more complex networks than the one presented in Section 4.
Table A1 shows the percentage difference in the total cost between the
current formulation and the enhanced one for several instances, calculated
as 100 × Total cost of the enhanced formulation−Total cost of the current formulation

Total cost of the enhanced formulation . We
observe that the current formulation, where delays and departure capacity are
exploited, leads to a lower bound for the total cost. Table A1 shows also the
number of undetected violations in the capacity constraint. Note that the min-
imum time at the departure airport is set to one for all instances. The current
formulation can result in violations ranging from 10 to 27% and errors in the
total cost that can reach 26%. These gaps depend on the network configuration,
capacity values, flight paths and other factors.

Table A1 Cost errors and capacity violations in the current formulation

# ∥F∥/∥K ∥/∥J ∥

Number of
capacity violations
[flights]
(Percentage
violations[%])

Total cost of
the current
formulation
[AC]

Total cost of
the enhanced
formulation
[AC]

Relative
cost error
[%]

1 50/6/15 7 (14) 282,538 326,872 13.56
2 50/6/15 7 (14) 145,793 152,485 4.39
3 150/6/15 33 (22) 1,097,868 1,471,912 25.41
4 150/6/15 30 (20) 1,124,717 1,500,241 25.03
5 150/6/15 32 (21.33) 1,446,270 1,788,273 19.12
6 200/6/15 53 (26.5) 3,074,313 3,624,407 15.18
7 200/6/15 43 (21.5) 2,328,591 2,774,520 16.07
8 300/6/15 63 (21) 5,516,408 6,092,468 9.46
9 500/10/25 50 (10) 2,147,598 2,383,893 9.91
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