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Objectives: Coma state and loss of consciousness are associated with decreased brain activity, 

including and especially gamma oscillations, which are involved in neural network integrity, as 

well as the default mode network (DMN). This condition can be aggravated by mechanical 

ventilation since nasal respiration, known to drive functional neural oscillations, is diminished. 

Hence, we proposed that rhythmic nasal air-puffing in mechanically ventilated comatose patients 

may promote brain activity and improve network connectivity.  

Materials and Methods: We assessed the activity, complexity, and connectivity of the DMN using 

electroencephalography (EEG) in fifteen comatose patients (eight males) admitted to the intensive 

care unit due to opium poisoning before and during the application of nasal air-puff. Air-puffing 

into the nasal cavity was done using a nasal cannula via an electrical valve (open duration of 

630ms) with a frequency of 0.2 Hz.  

Results: Our analyses demonstrated that nasal air-puffing enhanced gamma power (30-40 Hz) 

oscillation in the DMN. Additionally, the coherency and synchrony between DMN regions were 

increased during nasal air-puffing. Recurrence quantification analysis (RQA) analysis revealed 

that global complexity and irregularity of EEG, which is typically seen during wakefulness and 

conscious state, were increased during rhythmic nasal air-puffing. 

Conclusions: Rhythmic nasal air-puffing, as a non-invasive brain stimulation method, opens a new 

window into modifying the brain connectivity integration in comatose patients, which potential 

can influence their outcome by reducing the adverse effect of mechanical ventilation on brain 

activity. 

Keywords: nasal air-puff, non-invasive brain stimulation, default mode network, coma state,  
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Introduction 

A coma is an unresponsiveness state characterised by a drastic reduction of brain activity, leading 

to the absence of consciousness, awareness, and arousal (1). Depending on underlying pathology 

and degree of consciousness, brain activity in disorders of consciousness (DOC), including coma, 

changes in multiple ways, such as oscillatory activity alterations, network interactions, and 

connectivity (2, 3). Organised oscillatory activities are critically involved in brain network 

communications during cognition and conscious processing, and their perturbation could be 

representative of impairment in intrinsic brain functions and decreased level of consciousness (4).  

The gamma-range activity, which has been suggested to correlate with conscious processing, 

awareness and arousal (5, 6), is disrupted in comatose patients (7). The activity of gamma 

oscillations, in particular brain regions of frontal, centroparital and temporal cortices, is potentially 

correlated with the level of consciousness (3, 8-10). Gamma power is reduced in DOC, such as 

unresponsive wakefulness syndrome and loss of consciousness (11, 12). Further, gamma activity 

has been proposed to drive the influx of information from lower to higher brain areas during 

conscious processes such as perception (13, 14). Connectivity across the brain regions at the 

gamma band is also pivotal for information integration (13, 15). The coherence between cortical 

or subcortical regions is increased at the gamma band during consciousness (14, 16, 17), 

contributing to the merging or binding of information (18).  

Another aspect of brain activity that changes due to comas is the complex patterns of 

electroencephalography (EEG) (19, 20). Various complexity features are positively correlated with 

the consciousness level (11, 21-23). Therefore, non-linear analysis of EEG based on complexity 

and entropy (an index for irregularity) can provide a valuable tool to assess brain activity in patients 

with DOC (19, 24). The EEG dynamics complexity is suggested to discriminate brain state 
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between different levels of consciousness, such as sleep, wakefulness, anaesthesia, and coma (23, 

25-27). Generally, complexity measures are higher during the awake state, in which the brain is 

more active than the asleep state and that the brain activity is decreased by anaesthetic agents (28). 

Notably, less complexity and irregularity of brain waves are observed in comatose patients (28, 

29). Thus, the complexity measures of particular brain state EEG, such as resting-state, can be 

used in comatose patients to assess their brain activity. 

Different brain networks are engaged in consciousness and information processing during 

wakefulness. Default mode network (DMN) activity is critically associated with consciousness 

(30, 31). The DMN consists of several brain areas, including the precuneus, medial-prefrontal 

cortex, and bilateral temporoparietal junction, which is more active at rest than attention-

demanding functions (16). The function of DMN, regarded as an example of spontaneous brain 

activity, provides a baseline functional state of consciousness associated with internally oriented, 

complex cognitive processes (16, 17, 32). Additionally, the strength of connectivity among DMN 

regions is correlated with different levels of consciousness (32).The activity of DMN changes due 

to different neurological conditions, such as DOC, including coma (31-33). The DMN connectivity 

is reversibly disrupted in comatose patients and is suggested to be associated with clinical severity 

and outcome (17, 30, 31, 34). 

On the other hand, endotracheal intubation and mechanical ventilation (MV) is another factor that 

may alter brain function (35-37). Due to impaired spontaneous breathing, comatose patients should 

receive MV, usually via an endotracheal tube (38). Although intubation and MV are lifesaving 

procedures that compensate for breathing impairment resulting from the coma, it is not without 

complications. Epidemiological studies reported that intubating comatose patients increase 

delirium incidence by 74-83% compared to 20-48% in non-intubated patients (39-41), and current 
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knowledge of potential contributing factors and strategies are not efficient control the problem (37, 

42-44). Delirium in these patients is positively associated with cognitive impairments after 

discharge (45-47). Moreover, after recovery, long-term intubation in mechanically ventilated 

patients is linked with neurological impairment in critical care units, such as memory and cognitive 

decline (37, 48). Different explanations are introduced to justify the relationship between cognitive 

problems and MV (37, 49-51). Part of this cognitive decline may result from changes in neural 

activities of related networks (37), probably due to eliminated nasal airflow and olfactory receptors 

stimulation because of this endotracheal intubation (52).  

Growing evidence shows that nasal breathing in mammals, including humans, generates 

oscillations that extent to distant brain areas, such as cortical and subcortical regions (53-56), and 

these activities diminish when breathing deviates from the nasal pathway (57). These neural 

oscillations are called respiration-entrained brain rhythms, which are global and phase-locked to 

nasal respiration (54). The respiration-entrained rhythms produced through the stimulation of 

olfactory sensory neurons (OSNs) by air passage can synchronise the activity of the piriform cortex 

and limbic regions and, significantly, affect cognitive functions such as memory retrieval (52, 57, 

58). In addition, the respiratory cycle phase has been reported to entrain and modulate higher 

frequency bands such as gamma oscillations in cortical and subcortical regions (59-61). 

Although eliminated nasal breathing has been demonstrated to disrupt respiratory-coupled neural 

oscillations, re-establishing nasal airflow can stimulate OSNs, and therefore, restore these neural 

activities (57). It has been demonstrated that respiration-coupled oscillations in the hippocampus 

of anaesthetised rats diminish when airway maintenance is restricted to tracheostomy and restore 

by rhythmic delivery of air puffs to nasal cavities (62). Applying nasal airflow can also alter the 

cortical activity in healthy individuals (63). It appears that applying air-puff into nasal cavities can 
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re-induce respiration-entrained oscillations and subsequently increase neural activities in resting-

state networks, such as DMN. 

Considering the bypassed route of respiration due to endotracheal intubation and the evidence that 

nasal breathing can drive oscillatory activities involved in brain network coordination, part of the 

decreased brain activity exhibited in comatose patients might be due to eliminated nasal airflow. 

Therefore, we hypothesised that MV with endotracheal intubation in comatose patients could 

worsen the resting-state activity during comas, and therefore, restoring the nasal airflow may 

alleviate the adverse effect of comatose condition on rhythmic brain activity. Hence, we conducted 

this study to evaluate the effect of nasal air-puffing on DMN reactivity and connectivity in 

comatose patients. We recorded and analysed the EEG from comatose patients with intubation and 

MV in two conditions of nasal air-puff (AP) and non-air-puff (nAP) to investigate the impact of 

nasal airflow on gamma frequency activity, complexity features, and connectivity across DMN 

regions. 

 

Materials and methods 

Subjects 

Fifteen patients (seven females, with a median age of 30.0 years old, range: 25-38 years old), with 

initial Glasgow Coma Scale (GCS) score ranges between 3/15 to 8/15, were selected for the study 

(64). All patients were admitted to the intensive care unit (ICU) of Loghman Hospital, Tehran, 

Iran, due to opium poisoning. Demographic data and clinical characteristics of study subjects are 

summarised in the Table. They were sedated with fentanyl, midazolam, or a combination of both, 

based on their condition and treatment protocols. None of the patients had previous head trauma, 

coma status, or loss of consciousness. Written informed consent was provided by patients' next of 
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kin. The study was approved by the Ethics Committee at Tarbiat Modares University 

[IR.MODARES.REC.1397.036].  

 

Non-invasive Air-puffing into the nasal cavity 

Airflow was puffed into the nasal cavity (7-10 L/s; 1.1 bar) through a nasal cannula connected to 

a cylindrical tube following the previous study protocol but with a different frequency (63). We 

selected 0.2 Hz (i.e., 12 cycles per min, Open:Close, 1:2) according to regular respiration rate and 

breathing ratio of inspiration:expiration to adjust the rate of nasal air-puffing with the delivered 

ventilator respiratory rate avoiding a potential confounding factor. The air-puffing through the 

cannula was controlled by an electrical valve (BIODAC-Ev118, TRITA WaveGram Co., Tehran, 

Iran). We set up equipment as described for a control condition and started EEG acquisition from 

patients while the equipment was running, but without air-puff delivery. These baseline recordings 

were done before air-puff delivery and used to compare air-puff (AP) and no air-puff (nAP) 

conditions. 

EEG Recording 

Continuous EEG was recorded using 17 electrodes based on international 10/20 system (Fp1, Fp2, 

Fz, F3, F4, F7, F8, Cz, C3, C4, T5, T6, Pz P3, P4, O1, O2 (65); g.tec medical engineering GmbH, 

Graz, Austria). The ground and reference electrodes were attached to the left mastoid and the right 

earlobe, respectively. Raw EEG was sampled at 256 Hz with 16-bit resolution. Markers were 

placed at the beginning of non-air-puff (nAP) periods and air-puff (AP). Data were used to 

calculate 15 regions of interest (ROI) as the mean of channels in each ROI. Otherwise, the activity 

of the channels was averaged to generate each ROI data. The arrangements of the channels 

providing ROI's data is shown in Figure 1. 
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EEG analysis  

EEG data were analysed using EEGLAB v2019 (66, 67) on MATLAB v2019 (MathWorks Inc., 

California, USA). Next, data were filtered using a 30–100 Hz bandpass filter with the linear finite 

impulse response. After artefacts rejection by visual inspection, the independent component 

analysis (ICA) technique was carried out using the EEGlab toolbox. Since patients in the ICU were 

connected to multiple electrical and mechanical equipment and delivered air-puff using an 

electrical valve suspected to induce artefact on the signal, the ICA was computed to find the source 

of component generating signals.  

According to the assumptions of statistical properties, the ICA method can find the underlying 

components and sources mixed of oscillations (68). It, therefore, generated the power spectra and 

topographic plot showing the distribution of the component values across the scalp. Based on the 

artefact rejection guidance, we removed the components presenting mechanical noise and 

artifactual oscillations (ref). For example, as shown in Supplementary Figure S1, the heartbeat 

component with a clear signature, usually present in a single channel, was removed. Application 

of ICA resulted to removal of three ECG-like components from two patients in total (two during 

baseline and one during air-puff).  

Following hospital safety protocols for patients' care in the ICU, we were allowed to record the 

signals for five minutes. Subsequently, after preprocessing, including noise cancellation, cleaning 

by eye and using ICA, which shortened signals, we used the remaining  60 seconds of the signals 

(60 seconds of baseline recording without air-puffing-which considered nAP, and 60 seconds of 

signals during air-puff which named AP condition).  
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Power of EEG signals was calculated during no air puff (baseline) and air puff using the pwelch 

function in MATLAB. To compare data, we carried out paired t-test analysis on brain oscillations 

from low gamma (30-50 Hz), middle (50-80 Hz), and high (80-100 Hz) with 0.5 Hz frequency 

resolution (69). 

 

Network connectivity analysis 

We investigated network properties within three distinct gamma frequency ranges: low: 30-50 Hz, 

middle: 50-80 Hz, and high gamma 80-100 Hz. In this case, we constructed a matrix: edges were 

defined as absolute values of Pearson's correlations applied to all pairwise electrode data with no 

lag. Next, the correlation matrix was thresholded from 0.6 to 0.95. The reason behind selecting a 

broad threshold is to compare highly correlated vs moderately correlated regions. The edges with 

a correlation value less than the threshold were removed. To measure graph parameters, we 

computed global efficacy (the mean inverse of the minimum number of edges that are needed to 

cross on the path from one node to another) and local efficacy (global efficiency in the subgraph 

that indicates neighbours of each node) (58, 70-72).  

For further investigation, connectivity information was graphically rendered in a circular diagram 

displaying relationships between regions' pairs. Absolute values of Pearson's correlations were 

applied for all pairwise regions of DMN. Similar to the previous analysis, the connectogram was 

thresholded from 0.6 to 0.95 and connections that did not reach the threshold (i.e., 0.6) were 

removed. Number of connected regions were accounted within eight threshold bins (r > 0.6, r > 

0.65, r > 0.7, r > 0.75, r > 0.8, r > 0.85, r > 0.90 and r > 0.95).  

Following a time-domain analysis application to assess network connectivity, we measured cross-

frequency spectra (coherence) of DMN regions pairwise. The coherence spectra were calculated 
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using the mscohere function in MATLAB that calculates the magnitude-squared coherence of two 

regions.  

 

Global complexity analysis 

Recurrence Quantification Analysis  

We measured the EEG signals' complexity using the recurrence quantification analysis (RQA) 

technique (73, 74). RQA is a useful tool to study non-linear signals such as EEG (75, 76). This is 

computed using the visual aspects of the structure called recurrence plots (RPs), which are 

graphical representations of time series when pairwise states of a system are neighbours in phase 

space (77). To analyse the complexity, diagonally and vertically aligned recurrence points in the 

RP are measured, characterising the temporal interdependences between individual observations 

of the phase-space trajectory (78, 79). Further, to estimate the correct embedding dimension, the 

false nearest neighbour algorithm (FNN) was applied (80). The RP parameters are embedding 

dimensions calculated by the false nearest neighbour technique similar to the former report (80), 

obtained from the first local minimum in mutual information trace according to the protocol of 

previous studies (81). 10% threshold was selected for fixed amount neighbours computation (82). 

The neighbourhood was also considered the amount of nearest neighbour points. In order to 

observe the recurrences of states here, we compute the T × T matrix using the following formula: 

𝑅𝑖.𝑗 = Θ(ε − |𝑥𝑖 − 𝑥𝑗|), 𝑖, 𝑗 = 1,… , 𝑇 

Where Θ is the Heaviside function, ε is a predefined threshold, and |∙| means absolute value (73). 

To conduct 𝑅𝑃(𝑖,𝑗), we choose a black colour to plot the points if 𝑅𝑖,𝑗 = 1, in the recurrent case, 

and white colour otherwise. The white and black points can generate different lines (vertical, 

horizontal, and diagonal), representing the properties of the underlying dynamics. According to 
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the lines and structures encountered in an RP, we applied L-mean, L-max, determinism (DET), 

entropy (ENTR), trapping time (TT) and network transitivity. 

L-mean: indicates the average time that two segments of the trajectory (of the EEG signals) are 

close to each other, calculated with the following formula. 

𝐿𝑚𝑒𝑎𝑛 =
∑ 𝑙. 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 

Results of the L-mean can be interpreted as the mean prediction time (83). So, values of the L-

mean have an inverse relationship with the complexity of the EEG signals.  

L-max: Another RQA we measured is the length of the longest diagonal line found in the RP 

called L-max (84). 

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥({𝑙𝑖}𝑖=1
𝑁𝑙 ), 

Where 𝑁𝑙 = ∑ 𝑃(𝑙)𝑙≥𝑙𝑚𝑖𝑛
 is the all-around diagonal lines. Similar to the L-mean, this also has an 

inverse relationship with complexity. 

Determinism (DET) is defined as a diagonal line length in the RP that corresponds to the time 

system changes very similar to during another time. Otherwise, a segment of the phase space 

trajectory runs parallel and within an ε-tube of another phase space segment of the trajectory (85). 

𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑙≥𝑙𝑚𝑖𝑛

∑ 𝑅𝑖.𝑗

𝑖,𝑗

 

Uncorrelated processes or weakly correlated with stochastic behaviour showed very short 

diagonals, while deterministic processes had longer diagonals with fewer single and isolated 

recurrence points. Otherwise, the ratio of recurrence points that form diagonal structures to all 

recurrence points is introduced as a measure for the system's determinism. Therefore, more level 

of complexity indicates less value of determinism. 

Entropy (ENTR): This index measures the entropy of the diagonal line lengths and is calculated.  
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𝐸𝑁𝑇𝑅 = −∑ 𝑝(𝑙)𝑙𝑛𝑝(𝑙)
𝑁

𝑙=𝑙𝑚𝑖𝑛

 

Where p(l) is the probability of occurring a diagonal line of length l. ln(.) is the natural logarithm, 

and Lmin is the shortest length of the diagonal lines (86). As shown by previous studies, ENTR of 

a periodic signal exhibits higher than stochastic time-series.  

Trapping time (TT): TT indicates the mean length of a vertical line, according to the line of length 

generated in RP (75).  

𝑇𝑇 =
∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 

TT estimates the meantime that the system will abide at a particular state or how long it is trapped 

in a certain state. Therefore, the value of TT inversely indicates the complexity.   

Transitivity (Cl): This denotes the average probability of two neighbours among any state that 

they are also neighbours and is given by: 

𝐶𝐼 =
∑ 𝐴𝑗𝑘𝐴𝑖,𝑗𝐴𝑖𝑘
𝑇
𝑖,𝑗,𝑘=1

∑ 𝐴𝑖,𝑗𝐴𝑖𝑘
𝑇
𝑖,𝑗,𝑘=1

 

𝐶𝐼 is a global measure of the underlying attractive set's effective dimensionality (87). Then, when 

probability increase, predictivity increased, and complexity decreased. 

Fractal dimension analysis 

Higuchi's fractal dimension (HFD): HFD is directly showed the fractal dimension of time-series 

in which the original time series is defined as: 

𝑋𝑚
𝑘 = 𝑋(𝑚), 𝑋(𝑚 + 𝑘), 𝑋(𝑚 + 2𝑘),…𝑋(𝑚 + 𝑖𝑛𝑡(

𝑁 −𝑚

𝑘
) × 𝑘 

Where N is the total number of the sample in time series, m showed the initial time, and k denotes 

the interval time. Accordingly, the length of the curve is computed as follows: 
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𝐿𝑚(𝑘) =
∑ |𝑋(𝑚 + 𝑖𝑘) − 𝑋(𝑚 + (𝑖 − 1)𝑘|
𝑖𝑛𝑡(

𝑁−𝑚
𝑘

)

𝑖=1
× (𝑛 − 1)

𝑘 × 𝑖𝑛𝑡 [
𝑁 −𝑚
𝑘

]
 

In this study, 10 s duration of the EEG and Kmax=6 was taken. We finally computed the average 

of all windows (85, 88). 

This algorithm is developed from the concept that the stochastic signals are more fractal-like with 

and higher length L(k) than periodic time series.  

Katz's fractal dimension (KFD): This algorithm is developed to calculate fractal dimension and 

complexity, as the distance between two successive points is calculated. That distance can be 

considered as a measure of the complexity in time-series (89). maximum distance from the first 

point is measured as d that computed as following: 

𝑑 = max(|𝑥1 − 𝑥𝑗|) 

Where j =2, 3, … N 

Then a total length of the time series taken as 

𝐿 = ∑ 𝑋𝑖
𝑁

(𝑖=2)
− 𝑋𝑖−1 

The average distance of two successive points is  

𝑎 =
𝐿

𝑁 − 1
 

Finally, Katz's fractal dimension measured as  

FD=
𝑙𝑛𝑎

𝐿

𝑙𝑛𝑎
𝑑 

The optimum threshold of 10% was selected. The neighbourhood was also considered the amount 

of nearest neighbour points. In order to reduce multichannel recordings to a single measure 

corresponding to complexity parameters, we calculated the global value. We first computed each 
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RQA parameter per DMN region; then, the global values were defined as a mean of one parameter 

for all regions. It, therefore, corresponds to the average RQA parameters values per DMN region. 

 

Statistical analysis 

We used GraphPad Prism v6.0 (GraphPad Software, USA) for statistical analysis. The normality 

assessment was done employing both Shapiro-Wilk and Kolmogorov-Smirnov tests. A parametric 

t-test and repeated measures ANOVA followed by post hoc Bonferroni tests were performed to 

assess the significance of the difference between groups. Pearson's correlation was performed 

based on the distribution of the data. For demographic analysis, all results have been shown with 

a mean (standard error of the mean; SEM) or median (25% and 75% quartile). P-values less than 

0.05 were considered statistically significant. 

 

Results 

Demographic characteristics 

The Table shows the demographic and clinical data collected from fifteen patients. The median of 

ICU hospitalisation was 11 (range 7-16) days, and the median of duration in coma state was 9 

(range 6-15) days median of GCS was 3 (range 3-9) points.  

 

The nasal air-puff increased power of gamma 

To characterise the influence of nasal airflow on human brain oscillations, we analysed EEG data 

from 17 electrodes associated with the DMN. First, we analysed the power spectral density (PSD) 

for all regions in all frequencies (from 0.2 to 100-Hz) to investigate whether the effect of nasal air-

puffing is global or limited to a specific frequency range. This analysis showed that the majority 



               15 
  

of the differences is focused in the gamma oscillations (30-100 Hz) in the DMN  (see 

Supplementary Figure S2 for comparison across frequencies 0.2-100 Hz and Figure 2 for 30-100 

Hz). We applied Welch's periodogram function to assess the absolute value of power in each region 

of DMN with nasal AP versus without AP for better discrimination. The gamma (30-100 Hz) 

power was significantly increased at dACC, rACC, vmPFC, PCC and Insula at the left side, dACC, 

PCC, rACC and vmPFC at the right side, and finally dmPFC (Figure 2 and Supplementary Figure 

S2). 

 

Connectivity of DMN increased during AP 

The signals acquired from electrode recording sites are represented as nodes based on graph theory, 

and the edges denote the correlation coefficient between nodes (Figure 3). We quantified the 

topology of the graphs by measuring global and local efficacy within eight incremental thresholded 

bins. We observed the main effect of AP on higher thresholded calculation in the 30-50 Hz 

frequency range (see Videos 2 and 3 in the Supplementary for 50-80 and 80-100 Hz). This result 

means AP may drive a notable change in highly correlated electrodes (Figure 3).  

The different frequency range of gamma from low to high has been assumed to reflect different 

brain functions (90). Hence, we investigated the relative impact of AP on different frequency 

ranges of gamma. We computed the correlation coefficient between brain regions across the low 

(30-50 Hz), middle (50-80 Hz), and high gamma (80-100 Hz). As shown in Figure 4A, AP 

increased the correlation of DMN pairwise regions (Supplementary Figure S3-S5 shows absolute 

values). Notably, this effect, provided by AP, increased concomitantly with the gamma frequency 

range. Instead of selecting the fixed point to compare highly correlated vs moderately correlated 

regions, we constructed a connectogram thresholded from >0.6 to >0.95 (Figure 4B indicates 30-
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50 Hz range; see Supplementary Figure S6 for middle and high gamma frequency ranges). In this 

line, a repeated-measures ANOVA on the number of connections within eight correlation 

thresholds and frequency ranges revealed that high gamma (80-100 Hz) was more affected than 

low and middle gamma. Moreover, in the middle gamma band (50-80 Hz), number of the 

connections significantly increased compared to lower gamma (30-50 Hz; F=20.5, p<0.0001; 

Figure 4C). This suggests that AP has a more noticeable influence on high gamma than low gamma 

oscillation (for more details, see Supplementary Videos 1-3). 

We further asked whether these phenomena were restricted to time-domain analysis. One way to 

answer this question is to calculate coherence, indicating cross-frequency spectra between signals 

(91). Consistent with our observations in time domain analysis, we found that AP significantly 

increased brain regions' coherence in DMN (Figure 5). Additionally, AP seems to have a different 

effect on the absolute value of coherence among low, middle, and high gamma oscillations (see 

Supplementary Figures S7-S9). As shown in Figure 5, during the air-puffing number of 

significantly heightened DMN regions compared to nAP, the p-value in 80-100 (Hz) was more 

significant than middle and low gamma subbands (50-80 and 30-50 respectively). In this respect, 

we note that AP induces more coherent interactions between DMN regions, particularly in higher 

gamma bands.  

 

AP increased complexity EEG signals  

To further explore EEG features reflecting a higher level of brain activity, we measured brain 

signals' complexity using RQA. This analysis constructs a 2D matrix according to this time series's 

recurrences of signal states (Figure 6). We then quantified the black points in the RP matrix, which 

indicates the similarity of two points in the signals' trajectory (for more details, see global 
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complexity analysis in the Method section). One way to evaluate RQA method complexity is to 

measure the longest (Lmax) length and the average of diagonal lines (Lmean). In this case, we 

observed that both Lmax and Lmean significantly decreased in AP, indicating a higher complexity 

level than the nAP state. We also established another approach using transitivity that indicates the 

average probability of two neighbours among any state of the neighbourhood. A significant 

reduction in transitivity (indicating higher complexity) during AP was observed. Our finding 

showed that EEG signals during the AP have a significantly higher global complexity. DET was 

also computed, indicating the ratio of recurrence points forming diagonal structures to all 

recurrence points. We found that AP reduces the ratio of diagonal structures as regularity 

parameters (i.e., more complex time series represents less ratio of diagonal lines). Furthermore, 

according to the result of ENTR that measures lengths of the diagonal line, AP is shown to reduce 

it, indicating further complexity compared to nAP. Finally, we calculated TT that estimates how 

long a system is trapped in a certain state. This analysis illustrated that AP causes DMN signal TT 

estimates not to abide at a particular state, i.e., increasing complexity.   

Our analysis in Higuchi and Katz fractal dimension in line with RQA measures confirms that AP 

increases the DMN signals' complexity (Supplementary Figure S10). 

 

Discussion  

Our findings demonstrated that puffing air into the nasal cavity of mechanically ventilated 

comatose patients at a frequency range similar to regular respiration (i.e., 0.2 Hz) increases the 

activity of gamma oscillations (30-100 Hz) in DMN regions. Moreover, we identified that AP 

could affect connectivity between DMN regions in gamma frequency. This effect was more 
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remarkable in high-gamma frequencies. Finally, the EEG data showed that the gamma range's 

brain oscillation complexity increased when comatose patients received AP. 

There is evidence suggesting that different modalities of external stimulation, such as visual, 

acoustic, nociceptive, and electrical current stimulation, can promote gamma activity in comatose 

patients (54, 92, 93). For example, Cavinato et al. reported electrophysiological changes following 

simple visual, acoustic, and noxious stimulations in parietal and frontoparietal regions within the 

gamma (30-50 Hz) band of healthy and minimally conscious subjects, but not in the vegetative 

state group (7). In this study, we suggested a novel method to increase the brain activity in 

mechanically ventilated comatose patients: patients had marked increase gamma oscillations (30-

100 Hz) activity in the AP condition than the nAP condition. A more robust response was observed 

at higher frequencies.  

Gamma activity has been proposed to play a fundamental role in information integration 

throughout the brain during wakefulness (13, 15, 94). There have been controversies regarding the 

necessity of gamma activity for consciousness (95, 96), suggesting that it may be more closely 

associated with selective attention rather than conscious experience (95). However, it has been 

shown that emerging from unconscious state to consciousness is associated with frontal-parietal 

coherence increment in high-gamma, emphasising the role of gamma in information transfer (96).  

Meanwhile, gamma power is lower in patients with consciousness disorders (11). In addition to 

power, the cortical oscillations connectivity in the gamma band is also associated with loss of 

consciousness (12, 97, 98). The brain connectivity in the gamma range provides a tool for 

determining brain states from awareness to deep coma in patients with consciousness disorder (7). 

Therefore, one key aspect of this study is that we suggested an innovative method to modulate the 

brain reactivity of comatose patients. 
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Another strength of our study is inaugurating the ability of nasal air-puffing on integrating DMN 

regions dynamics. Connectivity of different brain areas within DMN has been suggested as an 

indicator of the level of consciousness, which can help to differentiate minimally conscious 

patients from patients in vegetative and coma states (99). Multiple oscillatory processes have been 

linked to the DMN regions (100, 101). In this regard, the DMN activity is associated with an 

increase in gamma oscillation (101), related to awareness (102, 103). On the other hand, some 

earlier reports have suggested a disruption in DMN functional connectivity in comatose patients. 

For instance, Norton et al. observed that the connectivity between DMN regions in comatose 

patients who later emerged from coma can be detected, but such connectivity was absent in patients 

with irreversible coma   (31).  

In the present study, the number of correlated connections and connectivity patterns after 

stimulation with nasal air-puffing suggests a marked increase in global interaction among DMN 

regions in the gamma range. We presumed that the causative driver might be located in the 

olfactory sensory neurons (OSNs). Neural projections from OSNs are anatomically and 

functionally connected to areas comprising the DMN (54). Stimulating OSNs by airflow passage 

during natural nasal breathing generates oscillations that propagate throughout the brain called 

respiration-entrained rhythms (RRs) (54, 104). These oscillations are eliminated by olfactory bulb 

inhibition or when breathing root switches from nose to mouth (53, 57, 105). Consistently, it has 

been shown that the olfactory bulb stimulation can increase gamma activity in neocortical areas 

(106, 107). Taken together, we established a method in which nasal air-puffing increased the DMN 

connectivity. The olfactory system and OSN anatomical and functional association provide the 

possibility to stimulate the brain by a non-invasive approach like nasal air-puffing. 
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In line with past research, the coherence and time-domain correlation analyses showed that air-

puffing-entrained high-frequency gamma is stronger than low-frequency gamma (80-100 Hz > 50-

80 Hz > 30-50 Hz). Kay showed that high-gamma activity (65-100 Hz) rather than low-gamma 

(35-65 Hz) is correlated with the peak of inhalation (108). Zhong et al. also showed greater phase-

locking of RR with high-gamma (80-120 Hz) compared to low-gamma (40-80 Hz) (109).  

Moreover, we observed that brain oscillatory activities in comatose patients were more complex 

during nasal air-puffing. Complexity features analysis can be applied to differentiate the state of 

the brain (28, 29). For instance, EEG dynamic complexity is higher during wakefulness than 

anaesthesia (28). Previous studies also observed less complexity and irregularity of brain waves 

activity in comatose patients (28, 29, 110). Accordingly, our findings align with this evidence and 

support our hypothesis that nasal air-puffing seems to change brain signals into a more activated 

state. 

As this study was designed for proof-of-concept regarding our hypothesis, and the results are 

preliminary, it faced several limitations. First, we performed this study in a cross-sectional manner. 

Therefore, our results should not be used to interpret outcomes of comatose patients under MR. 

To explore the long-term effects of our approach, longitudinal studies with larger sample sizes, 

more groups and thorough follow-ups both on cognitive and non-cognitive functionalities are 

needed. Second, we were allowed to experiment for a limited period, considering the patients' 

critical condition and ICU safety protocols. Since our results were promising, this approach should 

be applied for more extended periods and intervals to find their effect on the brain reactivity over 

a longer time scale. Third, we only enrolled patients in a coma due to opium toxicity; applying this 

approach on patients with other causes of non-traumatic coma can help to elucidate its 

generalizability and utility in this setting. 
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We provide several directions for future studies to elucidate the utility and also benefits of our 

approach. Firstly, our findings were observed only at the gamma range; these effects might depend 

on nasal air-puff features such as rate or duration of stimulation. Therefore, stimulation with a 

different strenght and frequency may provide a better understanding regarding its effect on other 

frequency bands. Secondly, the effects of nasal air-puffing stimulation should be investigated on 

the clinical outcome, particularly neurologic and cognitive function after coma and more extended 

periods after recovery. Although our results provide preliminary evidence for possible application 

of this method in clinical settings, further research is needed to clarify its effects and consequences 

on these patients deprived of nasal airflow. Moreover, more electrodes are needed to elucidate the 

accurate source localisation and connectivity across the sub-cortical regions and brain networks. 

 

Conclusion  

We investigated the possibility of modulating brain activity in comatose patients via sensory 

stimulation. We found that OSNs stimulation increases activity, connectivity, and complexity in 

multiple brain areas comprising DMN at the gamma band (30-100 Hz). Our findings enhance the 

application of a non-invasive and painless stimulation that can potentially counteract MR’s adverse 

effects on cognition. Altogether, these effects can potentially lead to a better prognosis and faster 

recovery after a coma.  
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Figure legends: 

Figure 1.   Electrode placement for EEG acquisition.  (Left) Schematic arrangement of 17 

electrodes corresponding to the default mode network (DMN). Each colour demonstrates one 

region of DMN, made by clustering of two or more electrodes. (Right) Raw signal sample from 

17 electrodes. Blue and red represent brain waves during nAP and AP conditions, respectively; 

AP, air-puff; nAP, non-air-puff; dACC, dorsal anterior cingulate cortex; rACC, rostral anterior 

cingulate cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; 

PCC, posterior cingulate cortex. 

 

Figure 2. The effect of nasal air-puff on power in the default mode network (DMN). Each plot 

demonstrates the comparison between mean spectral power in nAP (blue) and AP (red) groups at 

the gamma frequency range (30-100 Hz) in ten regions of DMN. Grey areas in plots display 

statistically significant differences between nAP and AP (p < 0.05), analysed by paired-sample t-

tests. Error bars represent one SEM. PSD, power spectral density; AP, air-puff; nAP, non-air-puff; 

dACC, dorsal anterior cingulate cortex; rACC, rostral anterior cingulate cortex; dmPFC, 

dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate 

cortex.  

 

Figure 3. The effect of nasal air-puff on the connection between nodes. (A) The upper section 

shows a representative EEG epoch extracted to calculate graph theory parameters during nAP 

(blue) and AP (red). The middle section demonstrates functional connectivity matrices using the 

Pearson's correlations, in which each pixel indicates the correlation between the signal of pairwise 

channels. In the AP group, the correlation between channels was significantly increased, indicating 
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higher connectivity among pairwise regions. As the bottom section illustrates, following 

thresholding, the remaining edges constructed graphs based on graph measurements, which 

demonstrated higher connectivity between nodes in the AP group (B) network parameters, were 

compared in eight incremental thresholds. AP increased network connectivity parameters (global 

efficiency and local efficiency) compared to nAP. Data were analysed using paired-sample t-tests. 

Error bars represent one SEM.* p<0.05, **p<0.01, *** p<0.001, **** p<0.0001. AP, air-puff; 

nAP, non-air-puff; AU, arbitrary unit.  

 

Figure 4. The effect of air-puff on connectivity between pairs of regions. (A) 2D histogram 

(cell plot) of cross-correlation differences between pairwise DMN regions of nAP and AP groups 

in three gamma subbands. Each cell represents the p-value from the comparison of a pair of regions 

between AP and nAP groups. Darker colours indicate a lower p-value (p<0.05, which is considered 

statistically significant, is shown in dark brown). These plots demonstrate that more cross-

correlation between a pair of regions can occur in a higher gamma range (80-100 Hz > 50-80 Hz 

> 30-50 Hz). Data were analysed by paired-sample t-test. (B) Circular connectogram analysis using 

Pearson's correlation with eight incremental thresholds in 30-50 Hz frequency range. AP strongly 

increased the number of connections between different brain regions. See Supplementary Figures 

6 for 50-80-Hz and 80-100-Hz. (C) Depict the number of connections within incremental 

thresholds. The number of connections in the AP group was higher in higher frequency ranges (80-

100 Hz > 50-80 Hz > 30-50 Hz). Data were analysed using ANOVA followed by Bonferroni 

correction for multiple comparisons. ⴕⴕ p<0.01, ***, ### and ⴕ ⴕ ⴕ p<0.001, ****, #### and ⴕ ⴕ 

ⴕ ⴕ p<0.0001. Error bars represent one SEM. AP, air-puff; nAP, non-air-puff; L, left; R, right; AP, 

air-puff; nAP, non-air-puff; dACC, dorsal anterior cingulate cortex; rACC, rostral anterior 
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cingulate cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; 

PCC, posterior cingulate cortex; Thr, threshold 

 

Figure 5. the effect of nasal air-puffing on the coherence of DMN connectivity. (Top) 

Visualisation of functional connectivity within three gamma subbands. The coherence between 

brain regions increases in higher gamma ranges after nasal air-puffing, compared to the nAP group 

( the coherence between regions is thresholded based on p<0.05).  (Bottom) 2D histogram (cell 

plot) of coherence differences between pairwise DMN regions of nAP and AP groups in three 

gamma subbands. Each cell represents the p-value from the comparison of a pair of regions 

between AP and nAP groups. Darker colours indicate a lower p-value (p<0.05, which is considered 

statistically significant, is shown in dark brown). These plots demonstrate that more coherence can 

occur between a pair of regions in a higher gamma range (80-100-Hz > 50-80-Hz > 30-50-Hz). 

Data were analysed by paired-sample t-test. Error bars represent one SEM. AP, air-puff; nAP, non-

air-puff; dACC, dorsal anterior cingulate cortex; rACC, rostral anterior cingulate cortex; dmPFC, 

dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate 

cortex; Thr, threshold. 

 

Figure 6. the effect of nasal air-puffing on EEG signal complexity. (Top) A representative 

example of the 2D matrix generated using the recurrence plot method with embedding dimension 

m=6 (calculated by the false nearest neighbours' algorithm), time delay t=9 (calculated by mutual 

information), and threshold r=10% (using a constant neighbour's value) in nAP and AP groups. 

(Bottom) EEG complexity values were averaged in all regions. AP strongly increased complexity 

parameters across all three gamma subbands (lower values of transitivity, Lmax, Lmean recurrent 
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time, determinism, entropy and trapping time indicates more complexity of the signals). Data were 

analysed by paired-sample t-test. * p<0.05, **p<0.01, *** p<0.001 and **** p<0.0001. Error bars 

represent one SEM. AP: air-puff; nAP: non-air-puff; AU: arbitrary unit.  

 

Figure S1. Independent component analysis example. ICA determines. (A) signal of one 

sample before (left) and after conducting the ICA (B) Topographic plot showing the component 

values across the scalp. (C) Decomposition of the signal in the trial of 420 (ms). (D) Power 

spectrum of the component. In this example, ICA detected non-cortical activity close to channel 

O2 channel.   

 

Figure S2. Power spectral density in the default mode network (DMN). Panels display the 

mean spectral power of nAP (blue) and AP (red) among the regions of the DMN at 0.2 to 100 Hz. 

Line denotes mean, and shading area represents SEM. Grey areas display significant differences 

between nAP and AP. Data was analyzed by paired-sample t-tests; PSD: Power spectral density; 

AP: air-puffing; nAP: non-air-puff; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. 

 

Figure S3. Pairwise correlation between DMN areas in 30-50 Hz. Blue and red horizontal lines 

indicate the mean of correlation in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed by paired t-test. nAP: non-air-

puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior cingulate 
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cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; PCC: 

posterior cingulate cortex. The shaded area represents one SEM. 

 

Figure S4. Pairwise correlation between DMN areas in 50-80 Hz. Blue and red horizontal lines 

indicate the mean of correlation in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed using paired-sample t-tests. nAP: 

non-air-puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. Shaded areas represent one SEM. 

 

Figure S5. Correlation between DMN pairwise in 80-100 Hz. Blue and red horizontal lines 

indicate the mean of correlation in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed using paired-sample t-tests. nAP: 

non-air-puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. The shaded area represents one SEM. 

 

Figure S6. Circular connectogram analysis using Pearson's correlations with eight incremental 

thresholds in (left) 50-80 Hz and (right) 80-100 Hz frequency ranges. 

 

Figure S7. Pairwise coherence between DMN areas in 30-50 Hz. Blue and red horizontal lines 

indicate the mean of coherence in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed using paired-sample t-tests. nAP: 
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non-air-puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. The shaded area represents one SEM. 

 

Figure S8. Pairwise coherence between DMN areas in 50-80 Hz. Blue and red horizontal lines 

indicate the mean of coherence in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed using paired-sample t-tests. nAP: 

non-air-puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. The shaded area represents one SEM. 

 

Figure S9. Pairwise coherence between DMN areas in 80-100 Hz. Blue and red horizontal lines 

indicate the mean of coherence in nAP and AP, respectively. The Green area displays the 

significant difference between nAP and AP. Data were analysed using paired-sample t-tests. nAP: 

non-air-puff; AP: air-puffing; dACC: dorsal anterior cingulate cortex; rACC: rostral anterior 

cingulate cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex; 

PCC: posterior cingulate cortex. The shaded area represents one SEM. 

 

Figure S10. Fractal dimension (FD) is computed as feature complexity. Katz and Higuchi's 

fractal dimension were calculated as an indicator of complexity according to the protocol of 

previous studies (Accardo et al. 1997). Here, 10 s duration with 75% overlap and KMax=2 for 

HFD was taken. We finally computed the average of all windows. Similar to our finding in RQA 
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parameters, FD indexes showed an enhancement of complexity during nasal air-puff. Data were 

analysed by paired-sample t-tests; AP: air-puffing; nAP: non-air-puff; AU, arbitrary unit. 

 

Video 1. Interaction between network nodes within incremental thresholds (from r>0.95 to r>0.6) 

in 30-50 Hz. Circles represent correlated nodes (electrodes). Correlated edges are shown with blue 

lines for nAP and red for AP. nAP: non-air-puff; AP: air-puffing. 

 

Video 2. Interaction between network nodes within incremental thresholds (from r>0.95 to r>0.6) 

in 50-80 Hz. Circles represent correlated nodes (electrodes). Correlated edges are shown with blue 

lines for nAP and red for AP. nAP: non-air-puff; AP: air-puffing. 

 

Video 3. Interaction between network nodes within incremental thresholds (from r>0.95 to r>0.6) 

in 80-100 Hz. Circles represent correlated nodes (electrodes). Correlated edges are shown with 

blue lines for nAP and red for AP. nAP: non-air-puff; AP: air-puffing. 

 

 

 

 


