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Abstract 

Background. Automated segmentation methods are developed to help with the segmentation 

of different brain areas. However, their reliability has yet to be fully investigated. To have a 

more comprehensive understanding of the distribution of changes in Alzheimer’s disease (AD), 

as well as investigating the reliability of different segmentation methods, in this study we 

compared volumes of cortical and subcortical brain segments, using HIPS, volBrain, CAT and 

BrainSuite automated segmentation methods between AD, mild cognitive impairment (MCI) 

and healthy controls (HC).  

Methods. A total of 182 MRI images were taken from the minimal interval resonance imaging 

in Alzheimer's disease (MIRIAD; 22 AD and 22 HC) and the Alzheimer’s disease 

neuroimaging initiative database (ADNI; 43 AD, 50 MCI and 45 HC) datasets. Statistical 

methods were used to compare different groups as well as the correlation between different 

methods.  

Results. The two methods of volBrain and CAT showed a strong correlation (p’s<0.035 

Bonferroni corrected for multiple comparisons). The two methods, however, showed no 

significant correlation with BrainSuite (p’s>0.820 Bonferroni corrected). Furthermore, 

BrainSuite did not follow the same trend as the other three methods and only HIPS, volBrain 

and CAT showed strong conformity with the past literature with strong correlation with mini 

mental state examination (MMSE) scores.  

Conclusion. Our results showed that automated segmentation methods HIPS, volBrain and 

CAT can be used in the classification of HC, AD and MCI. This is an indication that such 

methods can be used to inform researchers and clinicians of underlying mechanisms and 

progression of AD. 
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1 Introduction  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease, contributing to 60-70% 

of dementia cases 1. One important characteristic of AD is a significant loss of neurons and 

synapses, resulting in brain shrinkage and atrophy. Structural changes have been shown to be 

one of the earliest biomarkers that can be used in the diagnosis of AD, and mild cognitive 

impairment (MCI). Much effort has been devoted to find patterns of changes in the structure 

of different brain areas that can be reliably used for diagnosis of AD and MCI. 

Earlier investigations relied mostly on manual segmentation of brain areas requiring a great 

deal of expertise and time. Therefore, the majority of the focus has been devoted to changes in 

the hippocampus due to its distinct structure. It has been shown that a loss in hippocampal 

volume can be an indication of AD. Further investigations have looked at subfields of the 

hippocampus, showing a nonuniform rate of neuroplasticity due to their specialisation 3. For 

example, it has been shown that NFT begin in the medial temporal region and exhibit a 

characteristic distribution pattern across subfields, starting in the CA1 and later spreading to 

subiculum, CA2, CA3 and CA4/Dentate Gyrus 4.  

With the development of semi- and fully-automated segmentation methods, however, it has 

now become easier and faster to segment not only the hippocampal area, but also other brain 

areas 5–9. HIPpocampus subfield Segmentation (HIPS) 10, volBrain 11, Computational Anatomy 

Toolbox (CAT) 12,13, BrainSuite 14,15 and FreeSurfer 16 are some of the commonly used semi- 

and fully-automated methods. These methods, however, are still under development 17. For 

example, CA1 segmentation in the FreeSurfer v5.3 was partially included in the subiculum 18 

potentially explaining why the CA1 field was reported to be insensitive to AD pathology in 

some 19 but not all 20. Similar findings have recently raised questions and concerns regarding 

the accuracy and consistency of these methods 21. Therefore, it is important to investigate the 

accuracy of these methods further 22.  

Benefiting from the computational power of automated methods, analysis of a large number of 

brain images has become more feasible. Large datasets of brain scans such as Minimal Interval 

Resonance Imaging in Alzheimer's Disease (MIRIAD) 23, and the Alzheimer’s disease 

neuroimaging initiative database (ADNI) 24,25 public databases of Alzheimer's magnetic 

resonance imaging (MRI), offer a great opportunity to have a more comprehensive approach 

to the underlying mechanism and progression of AD. It also facilitates multisite studies to form 

a more accurate understanding of the disease. 



Mini mental state examination (MMSE) is one of the commonly accepted measurements of 

cognitive ability, in particular in clinical settings. This measure has been widely used in 

classification of AD. For example, MIRIAD classifies participants with score between 12 and 

26/30 as AD and those higher than 26/30 as healthy control. There is huge body of literature 

showing correlation between MMSE score and brain atrophy 26.  

The aim of this study was to investigate the reliability of four automated segmentation methods 

of volBrain, CAT and BrainSuite for segmentation of the whole brain, and HIPS for 

segmentation of subfields of hippocampus, which belongs to the same analysis tool as volBrain. 

We used images belonging to MIRIAD. Correlation of the volume of each brain area with 

MMSE scores are also investigated. To investigate the reliability of the three methods volBrain, 

CAT and BrainSuite, the correlation of their common brain areas is also reported.  

2 Material and Methods 

2.1 Subjects 

Our data analysis is based on data from 182 participants from two databases of Minimal 

Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) 

(https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-

alzheimers-disease-miriad) 23 , and the Alzheimer’s disease neuroimaging initiative database 

(ADNI) (http://adni.loni.usc.edu) 24,25. For details of the demographics please see 

Supplementary Table 1. 

2.2 Magnetic Resonance Imaging (MRI) 

Data was extracted from MIRIAD, and ADNI databases. All of the MIRIAD subjects 

underwent MRI scanning on a 1.5 T Signa scanner (GE Medical Systems, Milwaukee, WI, 

USA). T1-weighted volumetric images were obtained using an inversion recovery prepared 

fast spoiled gradient echo sequence with acquisition parameters time to repetition = 15 ms, 

time to echo = 5.4 ms, flip angle = 15°, TI = 650 ms, a 24-cm field of view and a 256 × 256 

matrix, to provide 124 contiguous 1.5-mm thick slices in the coronal plane (voxels 0.9735 × 

0.9735 × 1.5 mm3) 23. Brain structural T1-weighted MRI data with 256×256×170 voxels and 

1×1×1 mm3 voxel size were extracted for ADNI subjects. ADNI data were obtained using an 

echo-planar imaging sequence on a 3T Philips MRI scanner. 

https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad
https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad
http://adni.loni.usc.edu/


2.3 Methods 

HIPS and volBrain; The volumes of Cerebrospinal fluid (CSF), white matter (WM), grey 

matter (GM), brain hemispheres, cerebellum and brainstem were obtained using volBrain 

pipeline 11. This method is based on an advanced pipeline providing automatic segmentation 

of different brain structures from T1 weighted MRI, Supplementary Figure 1. The 

preprocessing is based on the following procedure: (1) a denoising step with an adaptive non-

local mean filter, (2) an affine registration in the Montreal Neurological Institute (MNI) space, 

(3) a correction of the image inhomogeneities, and (4) an intensity normalisation. (5) 

Afterwards, MRI images are segmented in the MNI space using non-local patch-based multi-

atlas method. Images were corrected for intensity inhomogeneity, and the images were 

segmented into brain/non-brain using a semi-automated technique (MIDAS). The non-local 

means filter was applied to each pixel of the image by computing a weighted average of 

surrounding pixels using a robust similarity measure that takes into account the neighbouring 

pixels surrounding the pixel being compared. This segmentation method is based on the idea 

of non-local patch-based label fusion technique, where patches of the brain image to be 

segmented are compared with those of the training library, looking for similar patterns within 

a defined search volume to assign the proper label. HIPS and volBrain are used for 

segmentation of the hippocampus subfields and the rest of the brain, respectively 10.  

CAT; Computational Anatomy Toolbox (CAT) is a powerful package for brain T1-MRI data 

segmentation, Supplementary Figure 2. It is a voxel base estimation method. The CAT 

preprocessing steps are as follows: (1) spatial registration to a template, (2) tissue segmentation 

into grey, white matter and CSF, and (3) bias correction of intensity non-uniformities. (4) 

Finally, segments are extracted by scaling the amount of volume changes based on spatial 

registration, so that the total volume of grey matter in the modulated image remains the same 

as the original image. For correction of the orientation and size of the brain, non-linear 

registration methods are applied to the image. Projection-based thickness (PBT) method is used 

for calculation of the cortical thickness and central surface. Spatial-adaptive non-local means 

(SANLM) and classical Markov random field (MRF) were used for image denoising. Adaptive 

Maximum a Posterior (AMAP) method was used for segmentation. 

BrainSuite; BrainSuite is an open-source software tool that enables largely automated cortical 

surface extraction from MRI of the brain, Supplementary Figure 3. BrainSuite includes 

automatic cortical surface extraction, bias field correlation, cerebrum labelling, and surface 



generation features. Also, this toolbox is used in tractography and connectivity matrix 

calculation in diffusion imaging data 14. 

2.4 Statistical Analysis 

Independent-sample t-tests are run to compare the volume of different brain areas between the 

AD and HC, AD and MCI, and MCI and HC groups for volBrain, CAT and BrainSuite for the 

whole brain, and HIPS for the hippocampus subfields. Bivariate-correlation analyses are also 

run to investigate the relationship between volume and MMSE scores for all four segmentation 

methods. Correlational analyses are run between the common brain areas in volBrain, CAT 

and BrainSuite to investigate the relationship between the three methods. Bonferroni correction 

is applied to account for multiple comparison by reduction of the p threshold.  

3 Results 

Using three automatic segmentation methods CAT, volBrain and BrainSuite, we segmented 

the whole brain, and using HIPS we segmented the hippocampus. For details of the values for 

each of the segmentation methods, see Supplementary Data for ADNI and MIRIAD databases. 

Using independent-sample t-tests we compared the volumetric data for AD and HC, AD and 

MCI, and MCI and HC for each segment. Supplementary Figures 4-7 show sample output 

images for one AD patient and one HC participant. Furthermore, we investigated the 

correlation of volumetric data with MMSE scores in AD and HC, AD and MCI, and MCI and 

HC groups.  

CAT segmentation method returned data for 63 distinct brain areas. This method highlighted 

many brain areas that are significantly different between the AD and HC, AD and MCI, and 

MCI and HC groups, Table 1. In particular fusiform gyrus, parahippocampal gyrus, 

hippocampus, entorhinal cortex, amygdala, temporal gyri, thalamus, nucleus accumbens, 

insula, caudate and precuneus were significantly different. Importantly, the size of all these 

brain areas showed a strong correlation with MMSE scores. For further details see 

Supplementary Figures 8-10. 

=== Table 1 === 

volBrain segmentation method returned data for eight distinct brain areas. In particular the 

amygdala, hippocampus, nucleus accumbens, thalamus and caudate were significantly 

different between the AD and HC, AD and MCI, and MCI and HC groups, Table 2. Again, the 



size of all these brain areas showed a strong correlation with MMSE scores. For further details 

see Supplementary Figure 11-13. 

=== Table 2 === 

BrainSuite segmentation method returned data for 50 distinct brain areas. In contrast to CAT 

and volBrain, this method highlighted only six brain areas that are significantly different 

between the AD and HC, AD and MCI, and MCI and HC groups, Table 3. These brain areas 

included temporal gyri, third ventricle, supramarginal gyrus and angular gyrus. Similar to 

previous segmentation methods, all these brain areas showed strong correlation with MMSE 

scores. For further details see Supplementary Figures 14-16. 

=== Table 3 === 

HIPS segmentation method returned data for the whole hippocampus and five of its subfields: 

CA1, CA2-CA3, CA4/Dentate Gyrus, Subiculum and strata radiatum/lacunosum/moleculare 

(SR-SL-SM). All these areas showed a significant difference between the AD and HC, AD and 

MCI, and MCI and HC groups, Table 4. The size of hippocampus and all its subfields showed 

strong correlation with MMSE scores. For further details see Supplementary Figure 17-19. 

=== Table 4 === 

To investigate the relationship between the three whole-brain segmentation methods CAT, 

volBrain and BrainSuite, we ran correlational analysis, Table 5. Seven brain areas were 

common between these methods: nucleus accumbens, amygdala, caudate, globus pallidus, 

hippocampus, putamen and thalamus. CAT and volBrain showed strong correlation for nucleus 

accumbens, amygdala, caudate, hippocampus and thalamus. Two brain areas globus pallidus 

and putamen were not significantly correlated. These brain areas did not show significant 

difference between the AD and HC, AD and MCI, and MCI and HC groups either. BrainSuite, 

however, showed no significant correlation with either of the other two segmentation methods. 

For further details see Supplementary Figures 20-22. 

=== Table 5 === 

4 Discussion 

We used HIPS automated method to segment the subfields of hippocampus, and CAT, volBrain 

and BrainSuite automated methods to segment the whole brain using T1 weighted MRI data. 

Our results showed that all subfields of hippocampus in the Alzheimer’s Disease (AD) and 



mild cognitive impairment (MCI) groups were significantly smaller than those of the healthy 

control (HC) group. The atrophy of all subcomponents of hippocampus were correlated with 

the MMSE measure. Quite a large portion of cortical and subcortical areas in the brain were 

also smaller in the AD, and MCI groups as compared to the control group, as evident from 

CAT and volBrain segmentation results. The shrinkage in these brain areas mostly showed a 

strong correlation with MMSE measure. BrainSuite failed to discriminate between the two 

groups. While CAT and volBrain shows a strong correlation, BrainSuite did not show any 

significant correlation with CAT and volBrain.  

With the advancement of computational methods, fine-grain analysis of the brain areas is more 

feasible. Earlier methods relied heavily on manual segmentation of the brain areas, which was 

extremely time demanding and also required a great level of expertise. Therefore, the majority 

of the analysis was limited to brain areas with more distinct structure, such as the hippocampus. 

Many semi- and fully-automated segmentation methods have been developed. While these 

methods have been used more commonly in recent years, the reliability and accuracy of these 

methods was yet to be fully studied. We used four pipelines of HIPS 10, volBrain 11, CAT 12,13 

and BrainSuite 14. In this study we evaluated their reliability by looking at their ability to 

discriminate between AD and HC, AD and MCI, and MCI and HC groups with ADNI and 

MIRIAD databases, whether a correlation existed between them, their correlation with MMSE 

scores, and comparing their results with past literature. Our results showed strong reliability of 

HIPS, volBrain and CAT. These methods have been successfully applied to brain images from 

those with AD and MCI 27.  

BrainSuite, however, underperformed greatly. For example, it failed to accurately segment the 

hippocampus, thalamus and amygdala to show a significant difference between the two groups. 

While this automatic segmentation method has been used frequently in past research 28, its 

application has been mostly limited to the processing of brains with no atrophy 29, as well as 

detection of gross segments such as tumours 30. Given that early AD is so difficult to recognise, 

being able to detect atrophy represents a crucial aspect to diagnosing AD earlier and 

consequently providing such subjects with better preventative measures, thus helping to ensure 

an extended period of higher quality of life for these individuals. This highlights the importance 

of validation studies such as ours to gain a greater understanding of the applications and 

limitations of different methods 31, especially considering the greater accuracy and speed 

identified with our method. 



The volume of the hippocampus is considered as an important biomarker for AD and has been 

included in recently proposed research diagnostic criteria. It has been shown that the 

hippocampal atrophy estimated on anatomical T1 weighted MRI can help in classifying the 

different stages of AD. Confirming past literature, our results showed that the hippocampus 

volume significantly differed between AD and the HC, MCI and HC.  

Histological studies have shown that lesions are not uniformly distributed within the 

hippocampus. Neuronal loss results in a reduction of the thickness of the layers richer in 

neuronal bodies, while the loss of synapses results in the reduction of the layers poorer in 

neuronal bodies and these changes are stage-dependent 32. Our results, however, failed to 

differentiate the contribution of these subfields in AD; they all showed significant reduction in 

size, compared to the control group. This effect could be because our AD group consisted of 

those with later stages of AD. The contribution of different subfields of the hippocampus is 

more visible in those with MCI 33.  

While the contribution of atrophy in the hippocampus has been widely studied, the role of 

atrophy in the rest of the brain in AD is less clear 17. An important contributing factor is that 

the boundaries of the hippocampus are easier for human operators or automated algorithms to 

recognise than other brain areas such as the amygdala, entorhinal cortex or thalamus 17. Due to 

methodological advances, however, it is now possible to measure atrophy across the entire 

cortex with good precision. Our results from CAT and volBrain methods showed strongly 

significant differences between many brain areas such as the amygdala, thalamus, nucleus 

accumbens, insula and caudate. These findings are in-line with past literature showing similar 

differences in these brain areas 17.  

There is a growing body of literature showing a correlation between cognitive decline and brain 

atrophy. For example, it has been shown that basal forebrain changes are correlated with 

cognitive decline in MCI and AD patients, as measured with recall task and MMSE, as well as 

healthy participants that later progressed to AD. Atrophy of other brain areas such as lateral 

and medial parietal cortex, as well as lateral temporal cortex have also been shown to have a 

correlation with cognitive decline 34. Our results showed a strong correlation between brain 

atrophy and cognitive decline as measured by MMSE. All brain areas that were significantly 

different between the AD and the control group showed a significant correlation with MMSE, 

except for the caudate (CAT p = 0.001155, volBrain p = 0.005091, Bonferroni corrected 

statistic not significant). While the effect of shrinkage of the caudate in AD is not very clear, 

there is some evidence that caudate volume has a correlation with MMSE measures, although 



not as strongly as other brain areas such as the thalamus 35. An important consideration is that 

atrophy in the left caudate has a stronger role in AD, as compared to the right caudate 36. Our 

analysis combined both the left and right caudate, which may have led to this inconsistency 

between our results and previous literature.  

Although AD commonly presents as an amnestic syndrome, there is significant heterogeneity 

across individuals, which is accompanied by different atrophy patterns 26. For example, while 

those with more language difficulties might exhibit greater atrophy in temporal or parietal 

regions, those with more visual difficulties might have greater atrophy in posterior cortical 

regions 37. Availability of the automated systems offers many opportunities, such as the ability 

to analyse a large number of brain images with reasonable time and expertise. This is in 

particular very appealing, considering the increased number of large datasets such as MIRIAD 

and ADNI. Automated systems can go through the collection and aggregate data from a wide 

range of participants, healthy and patients to gain a greater understanding of AD. Methods with 

advanced accuracy and speed can analyse such banks with accuracy such that their applicability 

to clinical settings is inevitable with ongoing technological and practical advancements. This 

is important considering the heterogeneity of the disease and its progression.  

Another application of automated systems is in clinical settings. By the time of diagnosis, rapid 

ongoing atrophy is already far advanced. Early diagnosis of AD in MCI stage can help with 

deceleration of the progression of the disease. This is particularly important as there are 

modifiable factors that can help with brain health. Therefore, a massive effort has been devoted 

to the development of diagnostic methods to enable researchers and clinicians to detect AD 

and MCI and cases with potential progression to AD, as early as possible. For the development 

of preventive strategies, it is important to predict future brain atrophy, as this may aid in 

identifying which individuals with normal cognition are more susceptible of progressing to 

later stages of AD 38. Clinician’s reliance on their own expertise and subjective judgements 

arises from caution held over automated systems due to their lower performance. However, 

with recent developments and methods, automated systems can provide additional information 

to clinicians, enabling them to have a greater understanding of the progression of the atrophy 

39. Some of these methods have already received approval from different licensing bodies such 

as CE (European conformity) and FDA (food and drug administration, USA) approval. These 

methods, however, come with some limitations such as speed of processing, expensive 

licences, or requirement of other specialised software. This study is another step to evaluate 

freely available analytical tools to achieve an ideal analysis pipeline, suitable for researchers 



and clinicians. Ultimately, such work serves to aid clinicians in their diagnoses of future MCI 

and thus AD, as well as to help improve the preventative measures taken to help secure a greater 

quality of life for subjects with AD. Clinicians still rely heavily on subjective judgement, which 

requires great expertise. Agreeing with the reviewer, clinicians use automated segmentation 

methods very cautiously due to their poor performance. Therefore, development of methods 

such as the one suggested in this study can pave the way for further application of automated 

methods in clinical settings. 

Availability of the reliable automated segmentation methods enables researchers and clinicians 

to have a greater understanding of the underlying mechanisms and the progression of the AD. 

This will allow them to attempt to prevent or decelerate the progression of the disease more 

effectively. This rate can be helpful to have a more informed understanding whether an 

individual with MCI will later progress to AD or not. The output of automated segmentation 

methods can also be used in training of intelligent classification methods such as those using 

artificial neural networks and support vector machines, which has shown promising results 40 

The purpose of this article was not to identify the superiority of any particular automatic 

segmentation method over another, but to solely highlight possible limitations and applications 

of four commonly used segmentation methods. We proposed that CAT, volBrain and HIPS are 

methods that can robustly operate on brain images with significant atrophy and can be used in 

research and clinical settings. BrainSuite, however, should be used with caution for brain 

images with atrophy.  
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