
Irawan, Chandra Ade, Salhi, Said and Chan, Hing Kai (2022) A continuous
location and maintenance routing problem for offshore wind farms: Mathematical
models and hybrid methods. Computers & Operations Research, 144 .
ISSN 0305-0548.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94748/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.cor.2022.105825

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94748/
https://doi.org/10.1016/j.cor.2022.105825
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A continuous location and maintenance routing problem for offshore wind
farms: mathematical models and hybrid methods

Chandra Ade Irawana,b,∗, Said Salhic, Hing Kai Chana,b

aNottingham University Business School, University of Nottingham Ningbo, China
bNottingham Ningbo China Beacons of Excellence Research and Innovation Institute

cKent Business School, University of Kent, Canterbury, UK

Abstract

In this study, we examine a challenging green logistical problem encountered with offshore wind
farms: the integrated continuous location and maintenance routing problem wherein a service opera-
tion vessel and a safe transfer boat are used to maintain offshore turbines. Our aim is to dynamically
and simultaneously determine the best locations for the service operation vessel in the plane (i.e.
the sea) and the best delivery and pick-up routes by which the safe transfer boat can access the
turbines. An optimisation model of the problem is first developed based on mixed-integer nonlinear
programming to minimise the total maintenance cost. Given the limitations of this method, a novel
algorithm that integrates a genetic algorithm, variable neighbourhood search, and a Weiszfeld-based
algorithm is presented. To assess the performance of the proposed technique, a guided multi-start
approach and a hybrid technique based on particle swarm optimisation are introduced. Moreover,
our proposed method is shown to be easily adaptable to produce results that compete with those
of state-of-the-art methods when it comes to solving a related continuous location routing problem.
The computational results demonstrate the effectiveness and robustness of the proposed hybrid
method.
Keywords: combinatorial optimisation, continuous location, location routing, hybridisation
search, offshore wind farm

1. Introduction

The demand for renewable energy is continuously increasing, and offshore wind farms are one of
the most environmentally friendly sources of said energy. Thus, it is essential to enhance wind farm
efficiency, making them more competitive and attractive in terms of investment and sustainability.
The costs related to the operations and maintenance (O&M) of offshore wind farms, which are
relatively high, are expected to account for a quarter of the life-cycle cost of each wind farm
(Snyder and Kaiser, 2009). These high O&M costs are mainly due to the long turbine downtime
caused by accessibility restrictions, whereby vessels are not allowed to transfer technicians during

∗Corresponding author
Email address: chandra.irawan@nottingham.edu.cn (Chandra Ade Irawan)

Preprint submitted to Computers and Operations Research April 21, 2022

bad weather conditions (Dewan and Asgarpour, 2016). The concept of a service operations vessel
(SOV) has significant potential to reduce O&M costs by decreasing the accessibility restrictions and
the transfer time, as a SOV can remain at sea for several days without needing to return to the
shore base. As an example, Siemens started using a SOV (shown in Figure 1) in 2016 to maintain
the turbines at the Gemini wind farm located in the northern Netherlands.

Figure 1: The SOV used in Gemini wind park (www.geminiwindpark.nl)

The SOV carries a safe transfer boat (STB) that can be used to transfer technicians and equip-
ment to the turbines. The SOV has accommodations for technicians and can store the equipment
and spare parts required to maintain the turbines. This paper focuses on minor preventive main-
tenance activities for which technicians and equipment are transferred by a STB that consumes
less fuel and is faster than a SOV. The aim is to dynamically identify the best locations for the
SOV in the plane and to generate the best routes by which the STB can transfer the technicians
to the turbines. This problem can be considered as a continuous location and maintenance routing
problem for offshore wind farms (CLMRPOWF), which, to the best of our knowledge, has not been
investigated in the literature.

The CLMRPOWF is related to the location-routing problem (LRP) and the maintenance routing
problem. For more details on the taxonomy of LRP, see Lopes et al. (2013). The LRP integrates
two NP-hard problems: the location problem and the routing problem. It was initially shown by
Salhi and Rand (1989) (and has since been strongly supported by many other researchers) that
it can be misleading to ignore the effect of the routes when locating facilities. Several variants
of LRP exist; some focus on location (e.g. type of location, size) and others on routing (e.g.
classical routing, routing with pick-ups and delivery, routing with heterogeneous fleet). Some recent
interesting applications of LRP are provided by, among others, Rabbani et al. (2019), Almouhanna
et al. (2020), Karakostas et al. (2020), Cao et al. (2021), and Calık et al. (2021). The reader will
find the frequently cited initial review by Nagy and Salhi (2007), and two interesting later reviews
by Prodhon and Prins (2014) and Schneider and Drexl (2017) (with the references therein) to be
informative.

To our knowledge, research on the LRP in the plane is limited compared to that on its counter-

2

part, the discrete LRP, in which the selected facilities are part of the potential sites. This lack of
interest is mainly due to the large number of applications that consider discrete locations instead of
continuous ones. Despite this obvious weakness, it is worth stressing that the solution to the planar
(continuous) location problem could be used as a benchmark or an ideal solution for the discrete
problem while also providing guidance when generating promising potential sites, thereby reducing
unnecessary data collection and thus cost.

Schwardt and Dethloff (2005), Schwardt and Fischer (2009), and Salhi and Nagy (2009) are
among the first who investigated this problem. Schwardt and Dethloff (2005) and Schwardt and
Fischer (2009) proposed algorithms based on neural networks to solve the planar single-facility
LRP in which the interaction between the facility and the customers is defined using interconnected
neuron rings. Salhi and Nagy (2009) considered the end-points of the routes as demand points to
determine the location of the facility using an algorithm known as the end-point algorithm (EPA).
The new location is then fed back into the routing as the new depot location, and this process
continues until there is no change in either the end-points of the routes or the depot location.
Manzour-al-Ajdad et al. (2012) proposed a hierarchical heuristic-based method incorporating the
EPA introduced by Salhi and Nagy (2009) to tackle the planar single-facility LRP. Ghaffarinasab
et al. (2018) dealt with a planar hub LRP for the design of a parcel delivery network that is
modelled using the continuous approximation technique. The problem was solved using two solution
methods: an iterative Weiszfeld-type algorithm and particle swarm optimisation (PSO). Rybičková
et al. (2019) designed an algorithm based on the genetic algorithm (GA) that considers the presence
of multiple depots to solve the continuous LRP. Recently, Tayebi Araghi et al. (2021) investigated
a green stochastic open LRP with planar facility locations. As the rectilinear distance was applied
between customers’ locations and the depots, a linear programming model was then adopted. For
large-scale problems, a hybrid meta-heuristic method was developed instead. It is also interesting
to note that our problem has some similarities to recent developments in drone routing problems,
in particular the mothership and drone routing problem (Poikonen and Golden, 2020b,a; Roberti
and Ruthmair, 2021), where the routing of a two-vehicle tandem is considered (for example, the
truck and the drone). However, the proposed problem (the CLMRPOWF) differs from the above,
as it consists of multiple separate delivery and pick-up trips, and the timing of each route needs to
be determined by taking into account maintenance duration and travel time.

The maintenance routing problems faced by offshore wind farms have been investigated in the
literature. However, researchers have only considered the use of crew transfer vessel (CTV) wherein
the CTV navigates from a static O&M-base located at the port nearest to the wind farm. In this
situation, the CTV must return to the O&M-base on the same day after the maintenance tasks are
completed. As the construction of new wind farms usually takes place farther from shore, the acces-
sibility restrictions are increased and the transfer time is longer when the above concept is applied.
Dai et al. (2015) were among the first to study this problem and developed a mixed-integer linear
programming (MILP) model. St̊alhane et al. (2015) and Irawan et al. (2017) extended the work by

3

developing a Dantzig-Wolfe decomposition method (Dantzig and Wolfe, 1960). Schrotenboer et al.
(2019) further explored this by developing an exact algorithm based on a branch-and-price-and-cut
algorithm. Raknes et al. (2017) proposed a methodology for scheduling maintenance activities and
generating CTV routes, while Schrotenboer et al. (2018) studied the routing problem by consid-
ering whether technicians should divide their time between multiple wind farms. The uncertainty
related to weather conditions affects maintenance activities at offshore wind farms, and the main-
tenance routing problem can be enhanced by taking this uncertainty into account, as discussed by
Stock-Williams and Swamy (2019), Irawan et al. (2021), and Schrotenboer et al. (2020).

We first propose an optimisation model based on a mixed-integer nonlinear programming (MINLP)
model. As the model is nonlinear and difficult to solve optimally, a hybrid algorithm (HGA) that
integrates a GA and variable neighborhood search (VNS) is designed. We also incorporate a new
iterative approach based on the Weiszfeld algorithm to find the optimal SOV locations on the
plane. This is a modification of the end-point algorithm originally developed by Salhi (1987) and
applied by Salhi and Nagy (2009). We refer to this iterative approach as the modified end-point
algorithm (MEPA). The performance of the proposed hybrid method (HGA) in solving the contin-
uous problem is assessed against a guided multi-start (MS) and an implementation of PSO that we
developed, which we refer to those methods as HMS and HPSO, respectively. We also design the
discrete version of the problem for benchmarking purposes, which can be modelled as a MILP and
solved using a commercial optimiser. Note that the proposed solution methods (HGA, HMS, and
HPSO) are mainly used to solve the continuous non-linear problem. However, the proposed HGA
can be used to solve the discrete problem, where its results are compared with those produced by
the exact method to assess the HGA performance. In addition, to evaluate the robustness of our
algorithm, our proposed HGA method is also adapted accordingly to solve a related continuous
LRP, namely, the planar single-facility LRP. Competitive results are discovered when compared
against those methods available in the literature. We use Thanet offshore wind farm layout to carry
out computational experiments. The contributions of the study are fourfold:

• Produce a new optimisation model based on MINLP for the continuous location and mainte-
nance routing problem
• Design a hybrid algorithm that integrates GA and VNS while introducing a novel class-based

parent selection operator in the GA to increase the diversity of the population
• Develop an efficient, new, iterative approach, based on Weiszfeld algorithm to dynamically

identify the best SOV locations in the plane based on a given set of routes.
• Present managerial insights obtained from extensive experimental results.

The remainder of the paper is organised as follows: Section 2 describes the CLMRPOWF and
the mathematical model. Section 3 presents a description of the proposed GA, including VNS
and the iterative approach for locating the SOV on the sea. In Section 4, a set of computational
experiments is presented alongside the results of the MS method and the PSO algorithm. The final
section summarises our findings and presents some potential research areas.

4

2. Problem Formulation

2.1. Overview of the proposed problem

The CLMRPOWF consists of a set of selected offshore turbines (I) that need to be maintained
according to a specific schedule. The location of the turbines is fixed, and the Euclidean distance
is considered. Each turbine requires an estimated maintenance duration (hours), the number of
technicians needed, and the weight of the required spare parts. The technicians are usually dropped
off in the morning by the STB and picked up in the evening once the maintenance activities are
completed.

The SOV may travel through a number of locations that need to be determined; once the SOV
is located at a certain position, the STB is then deployed to transfer crews to the selected turbines.
The locations of the start and the end of the STB route may not be the same since the SOV’s
location may change. In this paper, the SOV consists of only one STB; however, the STB may
make several trips. There are two types of trip: a delivery (drop) trip and a pick-up trip. In the
former, the STB makes multiple trips - one to each turbine - to drop the technicians, usually in
the morning. The latter refers to the STB’s trip to collect the crews from the turbines once the
maintenance activities have been completed, usually in the evening. The problem can be considered
as a variant of the multi-trip separate pick-up and delivery problem with time windows (Bettinelli
et al., 2019). The number of each type of trip can also be determined by the decision-maker based
on the number of technicians available on the SOV.

A STB’s capacity for transferring technicians and carrying equipment and parts is limited. The
time it takes for the crews to board and the equipment to be transferred from the SOV to the STB
is considered along with the boarding/transfer time from the STB to a turbine. The travel cost
and travel time for both the SOV and STB are considered to ensure that the delivery and pick-up
trips are within the given time window [0,tmax]. A penalty cost occurs if the STB returns from the
final pick-up trip later than tmax, meaning that soft time window is implemented. Here, the time of
the final pick-up trip indicates the time by which all maintenance activities have been completed.
A time window is not required for delivery trip, as all such trips are performed before any pick-up
trips. We also consider time synchronous between the delivery and pick-up trips as the pick-up
route can be performed once the maintenance task has been completed. The pick-up time needs to
consider the delivery time and the maintenance duration. The SOV cost consists of the travel cost
(this is based on the fuel cost and traveling distance) and the fixed cost (this is incurred when the
SOV travels from one location to another). The objective of the problem is to minimise the total
maintenance cost by determining (i) the best locations for the SOV, (ii) the best routes for the STB
to take to perform the maintenance activities at the offshore wind farms, and (iii) the best times
for the STB to leave from and return to the SOV, including the timing when the STB needs to visit
the turbines.

Figure 2 illustrates two feasible solutions for the problem in a situation where 12 turbines need
to be maintained. In the solution, the SOV can be situated at several locations, with Po and Pf

5

representing the start and end location of the SOV, respectively. The solution presented in Figure
2a will locate the SOV at seven sites, whereas the one in Figure 2b will locate the SOV at two sites.
The start and the end points of the STB route are not necessarily the same which is illustrated
in the first STB delivery trip in Figure 2a (DT1). The delivery and pick-up routes are also not
necessarily the same, as maintenance duration needs to be considered. If the SOV is located in a
turbine, the technicians and equipment can access the turbine via the SOV. It is assumed that the
boarding and the transfer time are the same as those for the STB. In this case, the travel time is
negligible and hence set to zero.

Figure 2: Examples of two feasible solutions for the problem

2.2. The mathematical model

Our mathematical model is based on a MINLP model. The following notation is used to describe
the sets and parameters of the proposed model:

Sets and indices

I: set of turbines indexed by i and n = |I|
CI

i (xI
i , y

I
i): the location of turbine i ∈ I.

m̃: the number of STB delivery trips
m̂: the number of STB pick-up trips
m: the total number of STB trips (delivery and pick-up) where m = m̃+ m̂

s: index of STB trips, s = {1, . . . , m̃, (m̃+ 1), . . . ,m}
l: index of SOV locations, l = {0, 1, . . . ,m+ 2}
CL

0 (xL
0 , y

L
0): the initial SOV location, also denoted by P0

CL
(m+2)(x

L
(m+2), y

L
(m+2)): the final SOV location, also denoted by Pf

CL
l (xL

l , y
L
l): the location of turbine l(l = 1, . . . ,m+ 1} that needs to be found.

6

Ns ⊆ {{0} ∪ I ∪ {(n + 1)}}: the set of nodes that may be visited by the STB for each trip s;
s = 1, . . . ,m. Here, node 0 represents the SOV location at the beginning of each STB trip,
the unknown location is defined by CL

s (xL
s , y

L
s), and node (n+ 1) refers to the SOV location

at the end of the STB trip, the unknown location of which is defined by CL
(s+1)(x

L
(s+1), y

L
(s+1)).

Parameters

fS : the SOV fixed cost when travelling from one point to another (e)
vS : the travel cost of the SOV (e/km)
vC : the travel cost of the STB (e/km)
eS : the average speed of the SOV (km/hour)
eC : the average speed of the STB (km/hour)
τi: the required time to maintain the turbine i ∈ I (hour)
τ̂ : the boarding time for crews and equipment to the STB from the SOV (hour)
τ̃i: the transfer time for crews and equipment from the STB to the turbine i ∈ I (hour)
wi: the weight of spare parts and equipment needed by the turbine i ∈ I (kg)
ŵ: the total weight of parts and equipment that can be transported by the STB (load capacity)
ρi: the number of crew members needed to service the turbine i ∈ I
ρ̂: the maximum number of crew members on board the STB (crew capacity)
ρ̈: the number of crew members available in the SOV
t̂max: the latest time at which the last pick-up STB trip can return to the SOV
pC : the penalty cost if the STB arrives at the SOV after t̂max (e/hour)
dij : the distance between turbines i and j, (i, j) ∈ I

Decision Variables

CL
l (xL

l , y
L
l): the coordinate of SOV location at site l; l = 1, . . . ,m+ 1

Tl: the time when the SOV visit site l; l = 0, . . . ,m+ 1

Us =

1 if the STB is used for trip s; s = 1, . . . ,m,

0 otherwise

Xsij =

1 if the STB travels from node i to j, (i, j ∈ Ns) in trip s; s = 1, . . . ,m,

0 otherwise
Hsi: the time when the STB leaves node i ∈ Ns in trip s; s = 1, . . . ,m

Yl =

1 if the SOV moves from position l to (l + 1); l = 0, . . . ,m+ 1,

0 otherwise

7

The CLMRPOWF can be modelled through MINLP, which is expressed as follows:

minZ = max{0, (Tm+1 − t̂max)} · pC +
l=m+1∑

l=0

(
vS ·D(CL

l , C
L
(l+1)) + fS · Yl

)
(1)

+
m∑

s=1

∑
j∈I

vC
[
D(CL

s , C
I
j) ·Xs0j +D(CI

j , C
L
(s+1)) ·Xsj(n+1)

]
+

m∑
s=1

∑
i∈I

∑
j∈I

dij · vC ·Xsij

s.t.
D(CL

l , C
L
(l+1)) =

√
(xL

l − xL
(l+1))2 + (yL

l − yL
(l+1))2, ∀l = 0, 1, . . . , (m+ 1) (2)

D(CL
s , C

I
j) =

√
(xL

s − xI
j)2 + (yL

s − yI
j)2, ∀j ∈ I, s = 1, . . . ,m (3)

D(CI
j , C

L
(s+1)) =

√
(xI

j − xL
(s+1))2 + (yI

j − yL
(s+1))2, ∀j ∈ I, s = 1, . . . ,m (4)

Xsij ≤ Us, ∀s = 1, . . . ,m; (i, j) ∈ Ns (5)∑
i∈I

Xs0i = Us, ∀s = 1, . . . ,m (6)

∑
i∈I

Xsi(n+1) = Us, ∀s = 1, . . . ,m (7)

m̃∑
s=1

∑
i∈Ns

Xsij = 1, ∀j ∈ I (8)

m̃∑
s=1

∑
i∈Ns

Xsij =
m∑

s=m̃+1

∑
i∈Ns

Xsij , ∀j ∈ I (9)

∑
i∈Ns

Xsij =
∑

i∈Ns

Xsji, ∀j ∈ I, s = 1, . . . ,m (10)

∑
i∈I

∑
j∈Ns

Xsij · wi ≤ ŵ, ∀s = 1, . . . , m̃ (11)

∑
i∈I

∑
j∈Ns

Xsij · ρi ≤ ρ̂, ∀s = 1, . . . ,m (12)

m̃∑
s=1

∑
i∈I

∑
j∈Ns

Xsij · ρi ≤ ρ̈ (13)

Hs(n+1) ≤ H(s′)0 +M(1− U(s′)), ∀s = 1, . . . , (m− 1), s′ = s, . . . ,m (14)

Hs0 + τ̃i +D(CL
s , C

I
j)/eC −Hsj ≤M · (1−Xs0j), ∀j ∈ I, s = 1, . . . ,m (15)

Hsi + τ̃i + dij/e
C −Hsj ≤M · (1−Xsij), ∀s = 1, . . . ,m; (i, j) ∈ I (16)

Hsi +D(CI
i , C

L
(s+1))/e

C −Hs(n+1) ≤M · (1−Xsi(n+1)), ∀i ∈ I, s = 1, . . . , m̃ (17)

Hsi + τ̂ +D(CI
i , C

L
(s+1))/e

C −Hs(n+1) ≤M · (1−Xsi(n+1)), ∀i ∈ I, s = (m̃+ 1), . . . ,m (18)
m∑

s=m̃+1

∑
j∈Ns

Xsij ·Hsi −
m̃∑

s=1

∑
j∈Ns

Xsij ·Hsi ≥ (τ̃i + τi) ·
m̃∑

s=1

∑
j∈N

Xsij , ∀i ∈ I (19)

T0 +D(CL
0 , C

L
1)/eS ≤ T1 (20)

Ts + τ̂ ≤ Hs0 +M(1− Us), ∀s = 1, . . . , m̃ (21)

Ts ≤ Hs0 +M(1− Us), ∀s = (m̃+ 1), . . . ,m (22)

8

Ts+1 ≥ Hs(n+1) +M(1− Us), ∀s = 1, . . . ,m (23)

Hs0 +D(CL
s , C

L
(s+1))/e

S ≤ Ts+1, ∀s = 1, . . . ,m (24)

D(CL
l , C

L
(l+1)) ≤M · Yl, ∀l = 1, . . . , (m+ 1) (25)

Us = {0, 1}, ∀s = 1, . . . ,m (26)

Xsij = {0, 1}, ∀s = 1, . . . ,m; (i, j) ∈ Ns (27)

Tl ≥ 0, ∀l = 0, . . . ,m+ 1 (28)

Hsi ≥ 0, ∀s = 1, . . . ,m; i ∈ Ns (29)

Yl = {0, 1}, ∀l = 0, . . . ,m+ 1 (30)

CL
l (xL

l , y
L
l) ∈ R2, ∀l = 1, . . . ,m+ 1 (31)

The objective function (1) aims to minimise the total maintenance cost (Z). The first part of
(1) defines the penalty cost, while the second part, which consists of three terms, represents the
traveling and fixed costs. The first term refers to the traveling and the fixed costs of the SOV,
while the remaining two represent the traveling cost of the STB. Note that the way the first term
is defined with the inclusion of Constraints (25) is equivalent to (vS ·D(CL

l , C
L
(l+1)) + fS) ·Yl, which

could have made this nonlinear problem even more complex. Constraints (2) calculate the Euclidean
distance between two SOV locations. Constraints (3)–(4) determine the Euclidean distance between
the SOV locations and the offshore turbines. Constraints (5)–(7) ensure that the routes of the STB
are generated only for the selected trips, with start and end points at node 0 and node (n + 1),
respectively. Constraints (8)–(9) guarantee that a turbine is maintained only once, i.e. the turbine
is visited on one delivery trip and one pick-up trip only.

Constraints (10) state the flow conservation at each node and for each trip. Constraints (11)
and (12) guarantee that the weight of equipment transported and the number of crew members
on board do not exceed the STB’s capacity. Constraints (13) ensures that the number of crew
members needed to perform the maintenance activities on the selected turbines does not exceed the
number of crew members available in the SOV. Constraints (14) ensure that the STB trip (s + 1)
can be started only after the STB has returned to the SOV after trip s. Constraints (15) and
(16) are used to determine the optimal time for the STB to leave a node, and the time needed for
crew members to transfer from the STB to the turbines and the distances between two nodes are
considered. Constraints (17) and (18) aim to obtain the optimal time for the STB to return to the
SOV, taking into account the boarding times for the pick-up trips. Constraints (19) state that the
time between the delivery and the pick-up must be greater than the time required to maintain the
turbine.

Constraints (20)–(23) determine the optimal time for the SOV to arrive at the location where
the STB will be deployed for each trip. Here, the SOV needs to be in a certain location before the
STB leaves or returns to the SOV. For the delivery trips, boarding time is considered in Constraints
(21). Constraints (24) state that the SOV may move if the STB has left the SOV. Constraints (25)

9

indicate whether the SOV location changes for each trip, turning Yl to 1, and hence triggers the use
of D(CL

l , C
L
(l+1)) and, consequently, the fixed cost in (1). Constraints (26)–(31) indicate the types

of decision variable used.
In brief, the positions of the SOV when the STB trips start and end are defined as follows. At

the beginning of STB trip s, the SOV is located at CL
s (xL

s , y
L
s) (i.e., s = l). In the set Ns, this is

represented by the start of STB trip s known as Node 0, while at the end of STB trip s, the SOV
is located at CL

(s+1)(x
L
(s+1), y

L
(s+1)) (i.e., l = s+ 1), which is indicated by Node (n+ 1) in the set Ns.

As the SOV locations CL
l (l = 1, . . . , (m + 1)) are unknown, the distance between SOV locations

D(CL
l , C

L
(l+1)) are variables. It is the same for the distance between SOV locations and turbines for

each STB trip s
(
D(CL

s , C
I
j) and D(CI

j , C
L
(s+1))

)
.

2.3. The mathematical model for the discrete model

As the mathematical model of the proposed problem (CLMRPOWF) is nonlinear and cannot
be solved by the exact method (EM) using an off-the-shelf commercial optimiser, we propose the
discrete model of the problem, which we refer to as the discrete location and maintenance routing
problem for offshore wind farms (DLMRPOWF). The solutions generated by the EM (CPLEX)
to solve the discrete problem are used as benchmarks for the proposed method when solving the
continuous problem. In the discrete model, a set of potential sites (Q) for the locations of the SOV
is introduced. The locations of the turbines to be maintained and the midpoints between any two
turbines can be included in the set Q. The first and the last elements of the set Q are assigned to
the initial location (P0) and the final location (Pf) of the SOV, respectively. The notation used in
the proposed model is the same as that adopted for the continuous problem. However, the variables
CL

l (xL
l , y

L
l) are now replaced by the following:

X̂qrl =

1 if SOV travels from node q to r, (q, r ∈ Q) in the lth SOV location; l = 1, . . . ,m+ 1,

0 otherwise

Oql =

1 if SOV is located in potential site q ∈ Q in the lth SOV location; l = 1, . . . ,m+ 1,

0 otherwise

The proposed mathematical model of the discrete problem is developed using MILP. The DLM-
RPOWF is modelled as follows:

minZ = max{0, (Tm+1 − t̂max)} · pC +
l=m+1∑

l=0

[(
fS · Yl

)
+ (

∑
(q,r)∈Q

vS · dqr · X̂qrl)
]

(32)

+
m∑

s=1

∑
j∈I

vC

[
Xs0j

∑
q∈Q

dqj ·Oqs +Xsj(n+1)
∑
q∈Q

djq ·Oq(s+1)

]
+

m∑
s=1

∑
i∈I

∑
j∈I

dij · vC ·Xsij

s.t.

(5)–(14), (16), (19), (21)–(23), (26)–(30)

10

Hs0 + τ̃i +
∑
q∈Q

(Oqs · dqj)/eC −Hsj ≤M · (1−Xs0j), ∀j ∈ I, s = 1, . . . ,m (33)

Hsi +
∑
q∈Q

(Oq(s+1) · diq)/eC −Hs(n+1) ≤M · (1−Xsi(n+1)), ∀i ∈ I, s = 1, . . . , m̃ (34)

Hsi + τ̂ +
∑
q∈Q

(Oq(s+1) · diq)/eC −Hs(n+1) ≤M · (1−Xsi(n+1)), ∀i ∈ I, s = (m̃+ 1), . . . ,m (35)

T0 +
∑
q∈Q

d0q · X̂0q1/e
S ≤ T1 (36)

Hs0 + τ̂ · Us +
∑

(q,r)∈Q

dqr · X̂qr(s+1)/e
S ≤ Ts+1, ∀s = 1, . . . , m̃ (37)

Hs0 +
∑

(q,r)∈Q

dqr · X̂qr(s+1)/e
S ≤ Ts+1, ∀s = (m̃+ 1), . . . ,m (38)

∑
(q,r)∈Q

X̂qrl = 1, ∀l = 1, . . . , (m+ 1) (39)

∑
q∈Q

X̂0q1 = 1 (40)

dqr · X̂qrl <= Yl ·M, ∀(q, r) ∈ Q, l = 1, . . . , (m+ 1) (41)∑
q∈Q

X̂qrl =
∑
q∈Q

X̂rq(l+1), ∀r ∈ Q, l = 1, . . . ,m (42)

Oql ≤
∑
r∈Q

X̂rql, ∀q ∈ Q, l = 1, . . . , (m+ 1) (43)

∑
q∈Q

Oql = 1, ∀l = 1, . . . , (m+ 1) (44)

X̂qrl = {0, 1}, ∀(q, r) ∈ Q, l = 1, . . . , (m+ 1) (45)
Oql = {0, 1}, ∀q ∈ Q, l = 1, . . . , (m+ 1) (46)

Similar to that of the continuous model, the objective function of the discrete model is to
minimise the total maintenance cost. Constraints (33)–(35) determine the times at which the STB
leaves and returns to the SOV. Constraints (36)–(38) track the time of each SOV trip. Constraints
(39) and (40) restrict the movement of each SOV trip. Constraints (41) have the same function as
Constraints (25). The flow conservation of the SOV is expressed by Constraints (42). Constraints
(43) and (44) determine the optimal location of the SOV. Constraints (45) and (46) state that
variables X̂qrl and Oql are binary.

Constraints (19) and the objective function (32) make the problem nonlinear due to the product
of two decision variables (integer/real and binary). In the implementation, the problem is trans-
formed into a linear problem (MILP) using the common scheme of introducing new non-negative
decision variables and the necessary constraints. The transformed model can then be solved using
a commercial solver such as CPLEX, Xpress or Gurobi.

11

3. The Proposed Algorithm for the CLMRPOWF

The GA is one of the most powerful population-based metaheuristics used to solve complex
combinatorial and optimisation problems. This method is inspired by the theory of evolution, as
the concepts of natural selection, reproduction, genetic heritage, and mutation are invoked (Holland,
1992). Since the GA is population-based, it is powerful for diversification purposes but can suffer
from intensification. To overcome this weakness, hybrid genetic algorithms (HGAs) are usually
implemented when a local search is embedded within the GA. This is performed either for every
chromosome (which can be time-consuming), or for certain defined chromosomes, or following a
certain number of generations, which can be decided periodically or adaptively.

3.1. Algorithm overview

Figure 3 illustrates an example of the continuous LRP. The figure shows that the SOV may
travel from the initial location P0 to P1 till Pm+1, and will ultimately end up at the final location
Pf . Here, the SOV needs to be located before the STB is deployed to access the turbines for each
trip. Therefore, there will be (m+1) SOV locations in the plane that need to be determined, where
the location Pm+1 is the SOV location for the last pick-up trip of the STB. It is noted that the
coordinates of the SOV locations (i.e. Pl, l = 1, . . . ,m+ 1) may be identical, as the SOV may not
move to avoid additional fixed costs. It is assumed that once the STB returns to the SOV, the STB
will leave the SOV from the same SOV location. For example, in Figure 3, the STB will return
from the first delivery trip to the SOV located at P2, then, with the SOV located still at P2, will
embark on the second trip.

Figure 3: The LRP for the SOV and the STB

For our proposed method, a HGA is developed in which the GA is designed to find the best
locations for the SOV. Once the location of the SOV for each trip is known, the delivery and pick-
up routes of the STB are constructed by a metaheuristic based on VNS. The SOV locations are
then improved using a new iterative mechanism based on the Weiszfeld algorithm and the end-
point algorithm originally proposed by Salhi (1987) and Salhi and Nagy (2009). As previously
mentioned, we refer to our new mechanism as the MEPA. The main objective of the MEPA is to
find, for the given end-points of the routes found so far, the optimal SOV locations in the plane to
reduce the total traveling cost. The main steps of the proposed HGA, which consists of two phases,
are presented in Algorithm 1.

12

Algorithm 1 Procedure Hybrid GA
1: Phase 1: HGA
2: Set t = 0 and the parameter λ
3: Create an initial population G(0) representing the SOV locations
4: for each individual in G(0) do
5: Generate STB routes using the mini VNS algorithm
6: Apply the MEPA algorithm
7: Evaluate the fitness values (Z and Zbm)
8: end for
9: Classify the population (α1, α1 and α3)

10: repeat
11: Set G′(t)← G(t) and θ = false
12: if A random number in the range [0,1] < λ then θ = true
13: Select pairs of parent based on the θ value (G′′(t)← G′(t))
14: Perform the crossover on G′′(t) based on crossover rate pc

15: Conduct the mutation on G′′(t) based on mutation rate pm

16: Implement the mini VNS to generate STB routes for each individual in G′′(t)
17: if θ = true then
18: Apply the MEPA algorithm for each individual in G′′(t)
19: end if
20: Evaluate the fitness values for each individual in G′′(t)
21: if A random number in the range [0,1] < (pe) then
22: Replace the worst w individuals in G′′(t) by random ones.
23: for each random individual do
24: Implement the mini VNS to obtain STB routes
25: Apply the MEPA algorithm
26: Evaluate the fitness values (Z and Zbm)
27: end for
28: end if
29: Classify the population (α1, α1 and α3)
30: G(t+ 1)← G′′(t)
31: t = t+ 1
32: until the termination condition is met
33: Phase 2: Post-optimization
34: Take γ best distinct solutions from G(t) denoted as G∗.
35: for each individual in G∗ do
36: Implement the full VNS algorithm to generate STB routes
37: Apply the MEPA algorithm
38: Evaluate the fitness value (Z)
39: end for
40: Take the best solution of the problem.

In the first phase of Algorithm 1, an iterative HGA is designed where Parameter λ is introduced
to determine whether the proposed MEPA needs to be applied to chromosomes in a certain gen-
eration. When the MEPA is not executed, the process will be relatively faster, but this occurs at
the expense of a reduction in the quality of the solutions generated. Note that when λ = 1, the
MEPA will be executed for all generations, while when λ = 0, the MEPA will not be used at all.
Phase 1 of Algorithm 1 deals with the discrete problem (DLMPRPOWF) only if λ = 0 and if the
MEPA in Line 6 of Algorithm 1 is not executed. In other words, the locations of the SOV will be
based on the potential sites Q. In the first phase, a mini VNS is applied instead of the full VNS to

13

reduce the computational time. The mini VNS relies on one shake with one neighbourhood struc-
ture (kmax = 1) and only uses one iteration (imax = 1). The second phase is the post-optimisation
phase, which consists of the selection of γ best distinct solutions from Phase 1, the full VNS and
the MEPA algorithm. Explanations of these two algorithms are provided in Subsections 3.4 and
3.5, respectively.

Once a chromosome (i.e. the locations of the SOV) is generated, the delivery and pick-up routes
of the STB are obtained using the proposed VNS. The fitness value of each chromosome is calculated
based on the total traveling costs of the SOV and STB, together with the penalty cost incurred if
the STB returns to the SOV later than tmax. For each chromosome, we record both the final total
cost (Z) and the total cost before the MEPA is executed (Zbm). These two costs are introduced to
classify the population that will be used for parent selection (Subsection 3.3).

3.2. Chromosome encoding and initial population

In the GA, we represent the chromosome using (m+1) columns, from P1 to Pm+1. The columns
represent the locations of the SOV at the start and the end of each STB trip. An initial population
of N chromosomes is generated where each chromosome is constructed based on the potential sites
(Q) that have been defined. The set of sites may consist of the locations of the turbines (I) and the
midpoints between the turbines (K) together with the SOV’s initial and final locations (P0 and Pf ,
respectively). In mathematical terms, Q = {P0}∪I∪K∪{Pf}. Figure 4 illustrates the chromosome
representation when six trips take place (m = 6). At the beginning of the first STB trip, the SOV
is located at site q4 whereas at the end of the final trip, the SOV is located at site q2. Note that
the SOV stays at site q12 during Trips 2 and 3. Note that S = {q1, q2, . . . , |S|}.

Figure 4: The chromosome representation

Algorithm 2 describes the procedure to generate the initial population. The chromosome is
constructed based on the sets I and K. When selecting any SOV location, it should not be too
far from previous location. Therefore, a parameter (Aq) that defines the average distance from a
potential site (q ∈ Q) to the other sites in Q is introduced. The maximum number of sites used in
each chromosome (β) is randomly generated. Line 15 of Algorithm 2 controls the number of the
sites used in a solution. Here, if the number of sites in a chromosome has reached β, the next gene
(site) is the same as the previous one generated. There is also the probability of using the site (gen)
that has been previously allocated, which is represented in Lines 18-19 of Algorithm 2.

3.3. Genetic operators

The following genetic operators, which include parent selection, crossover, mutation and the
injection operator that deals with the immigration effect, are adopted.

14

Algorithm 2 Procedure Initial Population Generation
1: Define set Q and ϕ value
2: Calculate Aq, the average distance from site q ∈ Q to other sites
3: for i = 1 to N do
4: Generate a random integer number β in the range [1,m]
5: Set s = 0
6: for j = 1 to m do
7: Generate a random number π in the range [0, 1]
8: if j = 1 then
9: if π < ϕ then Choose randomly site q̂ from set I

10: else Choose randomly site q̂ from set K
11: if d(P0, q̂) > AP0 then Go back to Line 6.
12: else Set Pj ← q̂
13: s = s+ 1
14: else
15: if s = β then
16: Set Pj = P(j−1)
17: else
18: if A random number in the range [0, 1] < 0.5 then
19: Set Pj = P(j−1)
20: else
21: if π < ϕ then Choose randomly site q̂ from set I
22: else Choose randomly site q̂ from set K
23: if site q̂ has been chosen then Go back to Line 21
24: if d(P(j−1), q̂) > APj−1 then Go back to Line 21
25: s = s+ 1
26: end if
27: end if
28: end if
29: end for
30: end for

3.3.1. Parents selection
This genetic operator guides the selection of pairs of parents for mating and reproducing a

number of offspring, with the aim of yielding better chromosomes. A selection process based on
the survival of the fittest is designed to ensure a higher likelihood that good chromosomes will be
chosen. In the proposed GA, we do not consider all chromosomes to contribute equally to solving
the problem. At each generation, therefore, we classify the population into three categories based on
the fitness value of each individual using Zbm, and Z. Based on Zbm, individuals are classified into
classes αbm

1 , αbm
2 and αbm

3 (αbm classification), whereas based on Z, they are categorised into classes
αam

1 , αam
2 , and αam

3 (αam classification). An individual classified as αam
1 has a good fitness value,

whereas an individual classified as αam
3 has a relatively less attractive fitness value. An individual

may receive different Zbm and Z classifications. For example, Individual 1 may be classified as αbm
1

and αam
2 . This classification is used when selecting a pair of parents for breeding. The number of

individuals for each classification is equally distributed. This kind of classification within GA was
shown to be promising when applied to a class of continuous location problems (Salhi and Gamal,
2003) and also in routing problems (Salhi and Petch, 2007).

15

In the implementation, the selection of the parents is performed by considering the value of θ in
Algorithm 1 (θ is true if the MEPA is used for chromosomes in a certain generation; otherwise, θ
is false). Algorithm 3 summarises this flexible parent’s selection operator. Here, we first randomly
choose the type of population classification where class α1 (αbm

1 or αam
1) has a higher probability to

be selected (i.e. p(α1) = 0.6, p(α2) = 0.3 and p(α3) = 0.1). We then randomly choose ψ individuals
from this classification. The tournament selection is then implemented wherein the best individual
from the ψ individuals is chosen as a parent based on its fitness value. We set the value of ψ to 5
which is based on our preliminary experiments.

Algorithm 3 The Parent Selection Operator
1: if θ = false then
2: Select a pair of parents based on the αbm classification
3: else
4: Generate randomly an integer number (ω) in the range [1,3]
5: if ω = 1 then
6: Select a pair of parents using the αam classification
7: else if ω = 2 then
8: Select a pair of parents based on the αbm classification
9: else

10: Select one parent using the αam classification and the other using the αbm classification
11: end if
12: end if

3.3.2. Crossover and mutation
The crossover operator aims to promote diversity in the new offspring while producing a new

population that is able to survive in the next generation based on the good qualities of the parents.
Here, one-point and two-point crossovers are implemented with a crossover rate (pc). The crossover
points are randomly determined. The operator is performed by cutting the columns of the matrices
representing the two parents and separating the genes to produce two new individuals (Child 1 and
Child 2), as illustrated in Figure 5.

Figure 5: Crossover operator.

The mutation process is randomly performed with a probability pm (mutation rate) for each
individual. This is conducted by randomly modifying some genes to produce new offspring, avoid
local optima and diversify the population. An individual is chosen to be mutated, and then a gene
(a SOV location) is randomly selected, say Aq. This is replaced by a new site taken from set Q,

16

which is not too distant from Aq. Here, we consider the threshold as the average distance of the
potential sites from Aq.

3.3.3. Injection operator and termination criteria
For each generation, we inject new chromosomes with a probability (pe). In real life, this

represents the positive effect immigrants can have on the economy and is intended to maintain the
diversity level of the population by replacing a number of individuals in the current population with
random individuals (immigrants) at each generation. When this operator is applied, the worst w
individuals in the current population are replaced by these randomly generated ones. Here, w is set
to a small value (i.e. 0.2N) in order to guide the search while introducing only small perturbations
(Yang, 2008). Algorithm 2 of the initial population generation procedure is used to construct these
random individuals.

There are several termination (stopping) criteria that can be implemented, including the number
of generations, the convergence of fitness values, and no improvement in the best fitness value for a
certain number of successive generations. In our proposed method, we use the number of generations
(NG) that is determined by the size of the problem. In this case, the value of NG is based on the
number of turbines and the number of trips, where NG = bN/3c and N = min{100,m · |I|}.

3.4. VNS algorithm for generating the STB routes

VNS was first introduced by Mladenović and Hansen (1997). Three key steps in the VNS
include shaking, improvement, and neighbourhood change procedures. The shaking step is used to
perturb an existing solution to resolve local minima traps. The improvement step aims to find local
optimality for a given solution configuration that can be performed using a single local search as
in the basic VNS or a local search engine like a variable neighbourhood descent (VND) procedure
as in the general VNS. The neighbourhood change step aims to explore the solution space that can
be performed using several methods including sequential, cyclic, pipe, and skewed neighbourhood
change steps. For more information on VNS and its variants, see Hansen et al. (2010) and Hansen
et al. (2017), and for an overview of heuristic search, including VNS, see Salhi (2017).

The key steps of the proposed VNS are presented in Algorithm 4. It is categorised as a General
VNS, according to the classification provided by Hansen et al. (2017), as the improvement step
is made up of more than one local search, forming a local search engine. In the first step of the
Algorithm 4, groups of turbines are formed for each delivery and pick-up trip. Next, the initial
STB routes are generated based on the groups constructed. In the VNS algorithm, the shaking
procedure is performed by executing an operator from a neighbourhood structure (Nk). In the
improvement step, a local search engine known as the multi-level heuristic, as developed by Salhi
and Sari (1997), is implemented. This multi-level local search is similar in principle to a sequential
VND. In the neighbourhood change step, a sequential strategy is used. In Phase 1 of the main HGA
procedure (Algorithm 1), when executing the VNS to generate the STB routes, the values of kmax

and imax are set to 1 to reduce the computational time. We refer to this type of VNS as a mini VNS

17

due to its simplicity. In the post-optimisation phase of Algorithm 1, the full VNS is executed with
imax = 25 and kmax = 7, which is determined based on the preliminary computational experiments
considering the quality of solutions generated and the computational time required.

Algorithm 4 General VNS for generating the STB’s routes
1: Form groups of turbines for each delivery and pickup trip
2: Generate initial STB routes based on the groups of turbines formed
3: Define neighborhood structures Nk, for k = 1, . . . , kmax
4: Set i = 1
5: repeat
6: Set k = 1
7: while k ≤ kmax do
8: Shaking: Generate randomly a point x′ from the kth neighborhood of x (x′ ∈ Nk(x))
9: VND: Apply a multi-level local search engine to obtain the best neighborhood x′′ (Subsection 3.4.3).

10: if the local optimum x′′ is better than the incumbent x then
11: Update x← x′′ and k = 1
12: else
13: Update k = k + 1.
14: end if
15: end while
16: Update i = i+ 1
17: until i = imax

3.4.1. Group construction and initial solution
We construct groups of offshore turbines based on the number of delivery or pick-up trips (m)

and the SOV locations (Pj , j = 1, . . . , m̃ for the delivery trips and j = m̃ + 1, . . . ,m for the pick-
up trips). In this case, m − m̃ = m̂. Initially, each SOV location is grouped with its nearest
turbine. Next, each turbine that has not been allocated is assigned to the nearest group (based on
its distance from the closest member). This also considers the number of crew members and the
weight of the equipment allocated to each group since the STB has a limited capacity. A turbine
can be allocated to the second-nearest group to meet these constraints. If this procedure is not
able to construct groups that include all the turbines, the modified generalized assignment problem
(GAP) is adopted. In the modified GAP, the allocation of a turbine to its respective SOV locations
(Yij) is considered as the binary decision variable. This modified GAP is given in the following
mathematical model.

max
∑
i∈I

m̃∑
j=1

(Yij · (d(i, j) + d(i, j + 1))/2) (47)

s.t.
m̃∑

j=1
Yij = 1,∀i ∈ I (48)

∑
i∈I

Yij · ρi ≤ ρ̂, ∀j = 1, . . . , m̃ (49)∑
i∈I

Yij · wi ≤ ŵ,∀j = 1, . . . , m̃ (50)

Yij = {0, 1},∀i ∈ I, j = 1, . . . , m̃ (51)

18

The modified GAP model is an integer linear programming (ILP) model, which can be optimally
solved using any suitable ILP solver such as CPLEX or Gurobi. Once the turbines have been
grouped for each delivery and pick-up trip, the initial STB routes for these trips are generated.
The initial routes are obtained by implementing Gillett and Miller (1974) sweep algorithm for each
group (intra-route). Each route is then improved by executing Lin (1965) 2-opt algorithm. This
solution is then used as the initial solution (x) for the VNS algorithm.

3.4.2. Neighborhood Structures
This subsection presents the neighbourhood structures that are applied in the shaking phase.

We examined seven neighbourhood structures (Nk, k = 1, . . . , kmax) as follows:
The first neighbourhood (N1) is the 1-0 shift in which a random turbine from a randomly chosen
route is selected. This turbine is then inserted into the route that yields the smallest total cost.
The position of the turbine in the chosen route also needs to be determined.
In the second neighborhood (N2), the 1-1 interchange is implemented, generating a feasible solu-
tion by swapping a pair of turbines from two routes. This procedure begins by taking a random
turbine from a randomly chosen route and swapping it with another turbine from another route to
minimises the total cost.
Note that the local searches LS1 and LS3 described in Subsection 3.4.3 are based on the neighbour-
hood structures N1 and N2, respectively except that in the N1 and N2, one turbine is first randomly
selected only whereas in the local searches their respective neighbourhoods are entirely examined
leading to the adoption of the best improvement strategy.
The third and the fourth neighbourhoods (N3 and N4) are the random 1-0 shift and the random
1-1 interchange, respectively. These are similar to N1 and N2, respectively, except that the random
turbine from a randomly selected route is inserted into a random feasible route or swapped with a
random turbine from a randomly chosen route.
The fifth neighbourhood (N5) is the random 1-1-1 interchange, which considers three routes simul-
taneously. A random turbine is first taken from a randomly chosen route. This turbine is then
allocated to a second randomly selected route, while a random turbine from the second route is as-
signed to a third randomly chosen route. Finally, a random turbine from the third route is inserted
into the first route. This process is repeated until a feasible solution is found. The basis of this
mechanism was initiated by Salhi (1987) and is known as ’perturb’.
The sixth and seventh neighbourhoods (N6 and N7) are the random 2-1 and 2-2 interchanges, re-
spectively. These neighbourhoods are similar to N4 except in the number of turbines that need to
be swapped.

3.4.3. Multi-level local search engine
This subsection describes the multi-level engine that is applied in the improvement/intensification

phase. Seven local searches are adopted to make up the multi-level local search heuristic. Based on

19

the complexity of the local searches, we adopt the following order: LS1, the 1-insertion inter-route;
LS2, the 2-opt inter-route; LS3, the 1-1 swap/interchange inter-route; LS4, the 2-opt intra-route;
LS5, the 1-1 interchange intra-route; LS6, the 1-insertion intra-route; and LS7, the 2-insertion intra-
route.
The best improvement strategy is used for each local search. Whenever an improvement is identi-
fied by any local search (LS2 to LS7), the process is repeated, starting from LS1. This multi-level
local search heuristic, developed by Salhi and Sari (1997), acts in a similar way to the variable
neighbourhood descent outlined by Hansen et al. (2010).

In LS1 (the 1-insertion inter-route), each turbine from a route is removed from its position, and
an attempt is made to allocate it elsewhere in another route. If this is feasible and considered to
be the best improvement, the selected turbine is then permanently moved. The insertion process is
repeated until no further improvement can be found. In LS6 (the 1-insertion intra-route), we move
a turbine position to another position in a route to achieve a better solution, while in LS7 (the
2-insertion intra-route), two consecutive turbine positions are checked for possible insertion as one
block within a route to reduce the traveling cost.

The 2-opt intra-route (LS4) proposed by Lin (1965) works by removing two non-adjacent arcs
and adding two new arcs within a route. An exchange is accepted if the resulting total cost is better
than the previous one. The exchange process is continued until no improvement can be found. In
the 2-opt inter-route (LS2), two routes are considered in which each of the two arcs belong to a
different route. This operator reverses directions of the corresponding affected path of each route,
as illustrated in Figure 6, where arcs a and b are replaced by arcs a′ and b′, respectively. In this
particular problem, the exchange needs to be performed for two adjacent routes. For example, the
exchange cannot be carried out for the routes started at P1 and P3 because it will affect the sequence
of the trips and the movement of the SOV.

Figure 6: The 2-opt inter-route operator.

Two types of swap/interchange procedure are implemented: the 1-interchange intra-route (LS5)
and the 1-interchange inter-route (LS3). The interchange intra-route aims to improve the route con-
figuration by swapping the positions of a pair of turbines within the same route. In the interchange
inter-route, the pair of turbines belong to different routes.

These local searches all have O(m2) time complexity, including LS7, as it uses two consecutive
locations as one block and reinserts the block within the route. However, in practice, the inter-

20

routes-based ones generally consume relatively less computational time than others since they are
based on individual routes. In brief, in the VNS method, a random movement is performed in
the neighbourhood structures to perturb the incumbent solution with the aim of escaping from the
local optima. In the local search, a systematic movement (rather than random movement) that
explores the whole of the chosen neighbourhood is implemented instead in order to determine the
best solution for that neighbourhood (i.e. the local minimum).

3.5. The modified end-point algorithm (MEPA)

The MEPA is based on the Weiszfeld iterative procedure, which guarantees ε optimality for
the case of one facility. In other words, the procedure terminates when the difference between
the cost of two successive solution configurations is less than ε with each update requiring just
O(1). The main objective of this algorithm is to find the SOV locations in the plane based on
the SOV locations obtained from the potential sites (Q). Let m̃ and m̂ be the number of delivery
and pickup routes generated, respectively, where m = m̃ + m̂. Let Rj be the jth route where
j = 1, . . . , m̃, (m̃+ 1), . . . ,m. Let Rj

s and Rj
e be the start and the end point of route j respectively

with Rj
s(aj

s, b
j
s) and Rj

e(aj
e, b

j
e) known. Figure 7 illustrates SOV and STB routes where the SOV

locations at P0 and Pf are fixed. Note that MEPA relies on the Weiszfeld recursive technique to
determine the new optimal location based on the demand nodes, which consists of the end-points
of the routes and the two closed SOV locations. Here, the SOV locations at P1 and P2 until Pm+1

are considered one at a time in a recursive manner to reduce the traveling cost.

Figure 7: The illustration of SOV and STB routes
The new SOV location (Pj) is determined by considering the locations of (Pj−1), (Pj+1), Rj−1

e

and Rj
s. However, the points Rj−1

e and Rj
s are not taken into account for the location of P1 and

P(m+1) respectively as these SOV locations consist of 3 arcs only as illustrated in Figure 7. The
general model to find the optimal locations (P1, . . . , P(m+1)) for locating the SOV is as follow:

min
m+1∑
j=1

[w2 · (d(Pj , Pj−1) + d(Pj , Pj+1))] +
[
w1 · d(P1, R

1
s)
]

(52)

+
m∑

j=2

[
w1 ·

(
d(Pj , R

j−1
e) + d(Pj , R

j
s)
)]

+ [w1 · d(Pm+1, R
m
e))]

where w2 >> w1. Here, w2 is represented by the fixed and variable costs of the SOV whereas w1 the
variable cost of the STB. The decision variables will be P (xj , yj) ∈ R2 and the Euclidean distance
is used as follows:

21

d(Pj , Pj−1) =
√

(xj − x(j−1))2 + (yj − y(j−1))2, d(Pj , Pj+1) =
√

(xj − x(j+1))2 + (yj − y(j+1))2,

d(Pj , R
j−1
e) =

√
(xj − aj−1

e)2 + (yj − bj−1
e)2 and d(Pj , R

j
s) =

√
(xj − aj

s)2 + (yj − bj
s)2.

The model can be solved using an NLP solver. However, this is time-consuming and inefficient.
The approximated approach that we develop is based on the iterative process of Weiszfeld (1937).
This algorithm, MEPA, is presented in Algorithm 5. In the algorithm, the total cost (Zbm) and
the set Pj(j = 1, . . . ,m + 1) and (Rj

s, R
j
e), j = 1, . . . ,m are required. The new location, P̃j(x̃, ỹ),

in the plane is based on the current location P̄j(x̄, ȳ) and iteratively obtained using the Weiszfeld
equations represented by (53) and (54) as follows:

x̃j =

w2·(x̄j−1+x̄j+1)+w1·(aj
s+aj−1

e))
d(Pj ,Pj−1)+d(Pj ,Pj+1)+d(Pj ,Rj−1

e)+d(Pj ,Rj
s)

w2
d(Pj ,Pj−1) + w2

d(Pj ,Pj+1) + w1
d(Pj ,Rj−1

e)
+ w1

d(Pj ,Rj
s)

(53)

ỹj =

w2·(ȳj−1+ȳj+1)+w1·(bj
s+bj−1

e))
d(Pj ,Pj−1)+d(Pj ,Pj+1)+d(Pj ,Rj−1

e)+d(Pj ,Rj
s)

w2
d(Pj ,Pj−1) + w2

d(Pj ,Pj+1) + w1
d(Pj ,Rj−1

e)
+ w1

d(Pj ,Rj
s)

(54)

where (aj−1
e , bj−1

e) and (aj
s, b

j
s) are not considered for (x̃0, ỹ0) and (x̃m+1, ỹm+1) respectively.

Algorithm 5 The MEPA Algorithm
Require: The total cost Zbm

Require: Set Pj(j = 1, . . . , (m+ 1)) and (Rj
s, R

j
e), j = 1, . . . ,m

1: Z = Zbm

2: for j = 1 to (m+ 1) do
3: Set P̄j ← Pj

4: Use the iterative Weiszfeld equations to find P̃j

5: if d(P̄j , P̃j) > ε then
6: Calculate the leaving times of STB and SOV for each visited node based on the new site P̃j

7: Determine the new total maintenance cost z′
8: if z′ < Z then Update P̄j ← P̃j and Z = z′

9: Go back to Line 3
10: end if
11: Set Pj ← P̄j

12: end for
13: Use VNS (Alg. 4) to generate the STB routes based on the new Pj

14: Update the total cost Z
15: if some (Rj

e, R
j
s) are changed then Go back to Line 1

16: return Z and Pj(j = 1, . . . , (m+ 1)))

Once the location of P̃j has been changed (d(P̄j , P̃j) > ε), the times at which the STB and SOV
leave the nodes are determined, and the new total maintenance cost z′ is calculated. It should be
noted that the sequence of STB routes is unchanged for each trip. If the cost is improved, then
both the SOV location and the cost are updated. This procedure is repeated until the new location
of P̃j is not changed by considering the parameter ε. In the proposed HGA method (Algorithm 1),
ε is set to 0.0001 and 0.000001 for Phases 1 and 2, respectively. When all new SOV locations are
obtained, the proposed VNS (Algorithm 4) is executed to construct the routes of the STB based on

22

the new SOV locations. To avoid evaluating unnecessary computations, we introduce the following
reduction scheme. If, in the new routes, the configuration of (Rj

e, R
j
s) is changed (i.e. the end points

of route j are changed), the MEPA is repeated from the beginning; otherwise, there is no change
in either the location or the end points, and therefore, there is no need to continue.

3.6. Benchmarking against two other heuristic algorithms for the CLMRPOWF

To evaluate the performance of the proposed genetic operators designed in the GA, we develop
two heuristic-based approaches: an evolutionary algorithm (i.e. the PSO) and a multi-start method
(MS). As we aim to assess our GA-based metaheuristic, for consistency, both the PSO and the
MS will incorporate the same VNS and MEPA implementations used by the HGA. For simplicity,
the proposed PSO and MS are referred to as the hybrid PSO (HPSO) and the hybrid MS (HMS),
respectively.

3.6.1. The hybrid particle swarm optimisation
The PSO is considered an evolutionary-type approach and was introduced by Kennedy and

Eberhart (1995). The PSO has shown to be especially promising in solving (i.e. continuous) opti-
misation problems. For instance, the PSO has successfully addressed continuous location problems,
including the continuous location-allocation problem (Ghaderi et al., 2012), the p-centre problem
(Rabie et al., 2013), and the continuous p-median. PSO is developed so that each particle (p) of
the swarm evaluates its new position (Xp(k + 1)) at iteration (k + 1) with respect to its current
position Xp(k), its best position XP B

p , its updated velocity Vp(k + 1), and the global best position
of the entire swarm (XGB). This is defined as:

Xp(k + 1) = Xp(k) + Vp(k + 1) (55)

Vp(k + 1) = wk · Vp(k) + c1 · r1 · (XP B
p −Xp(k)) + c2 · r2 · (XGB −Xp(k)) (56)

wk refers to the inertia weight and is a non-increasing function of the iteration number k. r1 and r2

are uniformly distributed random numbers chosen at each iteration from the range [0,1]; c1 and c2

are acceleration parameters linked to the current best and global best positions, respectively. The
search begins with an initial solution, and the swarm keeps moving by updating its position based
on the two above equations until a stopping criterion is met.

Similar to the proposed HGA, the HPSO comprises two phases. In the first phase, the population
of particles is generated based on Algorithm 2. The velocity for each particle is randomly generated
by considering the locations of the turbines. Once the position of a particle is updated, based on
Equations (55) and (56), the mini VNS and MEPA algorithms are executed. The parameters used
in the HPSO are set as follows: r1 and r2 are randomly generated in the range [0,1]; c1 is randomly
generated in the range [0,4], while c2 = 4− c1; and the inertia weight (w) is systematically reduced
over the iterations where wk+1 = 0.9 · wk. In the second phase, the γ best distinct solutions, such
as the HGA method, are used.

23

3.6.2. The hybrid MS
We also provide a comparison using the HMS that we developed. A multi-start technique

has also been implemented to solve the continuous problem (Cooper, 1964; Redondo et al., 2009;
Brimberg et al., 2014). The proposed HMS is designed based on an iterative process that integrates
the VNS algorithm and the MEPA algorithms. The HMS also consists of two phases. In the first
phase, the SOV locations are randomly selected from the potential sites (Q), which are constructed
based on the turbine sites and the midpoints between the turbines. This is followed by the mini
VNS and the MEPA. This process is repeated until the stopping criteria are met. Then, the second
phase of the proposed HGA method is applied. The γ best distinct solutions are then used in the
second phase. This is the same post-optimisation of the proposed HGA method.

4. Experimental Results

The computational experiments are carried out to evaluate the proposed HGA. The algorithm
is coded in C++ .Net 2017, and the experiments are executed on a PC with an Intel Xeon W-2133
CPU @3.60 GHz processor and 64.00 GB of RAM.

4.1. Dataset

Datasets are constructed based on the Thanet offshore wind farm that consists of 100 3MW
turbines. This wind farm is located 11 km off the coast of Thanet in Kent, England. The layout
of the Thanet wind farm is taken from Fischetti and Pisinger (2018). The data consists of a set
of offshore turbines that need to be maintained on a given day. Table 1 presents the turbine
data generated based on the dataset provided by Irawan et al. (2017). In the table, the latitude
and longitude of each turbine location is given. The maintenance duration (τi), the weight of the
equipment (wi), and the number of technicians needed to maintain each turbine are also provided.

The initial SOV location (P0) is located at (51.4000, 1.5600), while the final SOV location (Pf)
is placed differently for each instance. The speed and fuel cost of the SOV are set to 25 km/hour
and e700/hour, respectively, and those of the STB are 35 km/hour and e350/hour, respectively.
The STB can accommodate up to 12 technicians on board and up to 3,900 kg of equipment and
parts needed to maintain the turbines. The boarding times for crews from the SOV to the STB
and from the STB to a turbine are assumed to be 5 and 11 minutes, respectively. There are at
least three delivery and three pick-up trips, which are determined by the number of turbines and
the crew members required. The latest recommended time (tmax) is set to 12 hours, and a penalty
cost of e700/hour is incurred if the final STB pick-up trip returns to the SOV later than tmax. We
consider Time 0 as the start time when the SOV leaves position P0. We generate 24 instances with
IxxFyy as the name of an instance. Here, Ixx refers to the number of turbines which we vary from
11 to 14. Instance I11Fyy consists of turbines T1, T2, ..., T11 whereas Instance I12Fyy includes
T1, T2, ..., T12 (I13Fyy = I12Fyy

⋃
{T13} and I14Fyy = I13Fyy

⋃
{T14}). Fyy indicates the

24

Table 1: Turbine data

Turbine Lat Long τi (hours) wi (kg) ρi

T1 51.4455 1.6105 6 730 2
T2 51.4174 1.6380 7 359 3
T3 51.4344 1.6527 7 696 2
T4 51.4433 1.6530 7 223 3
T5 51.4093 1.6236 5 395 2
T6 51.4054 1.6417 8 561 3
T7 51.4302 1.6195 6 454 3
T8 51.4095 1.6755 7 676 2
T9 51.4512 1.6154 8 398 3
T10 51.4189 1.6097 5 674 2
T11 51.4305 1.6714 6 564 2
T12 51.4413 1.5774 5 452 3
T13 51.4271 1.6241 6 564 2
T14 51.4103 1.6614 5 452 3

fixed cost of the SOV, which we vary between e0 and e50/movement in increments of e10. For
example, Instance I13F30 comprises 13 turbines with a fixed cost of e30.

4.2. Results on the discrete problem (DLMRPOWF)

To assess the performance of the proposed HGA, we compare the solutions obtained by the
HGA to those obtained by the exact method (EM). Note that the MEPA described in Section
3.5 is not included in the HGA as we deal with the discrete problem. For the EM, IBM ILOG
CPLEX version 12.8 is used to solve the discrete model (32)–(46) with a maximum execution CPU
time of three hours (10,800 seconds). It is found that without such a time limitation, CPLEX will
unfortunately terminate, as it will run out of memory. The performance of the HGA is measured
using the deviation (%Dev) between the Z value attained by the proposed method and the best-
known solution (Zb) obtained either from the EM or the HGA. The deviation (%Dev) is formulated
as follows:

%Dev = Zm − Zb

Zm
× 100 (57)

where Zm refers to the feasible solution cost obtained by either the EM or the HGA.
For the EM, two potential sites (Q) scenarios are implemented. First, the set of potential sites

(Q) to locate SOV is restricted to the locations of the turbines (I) and the SOV’s initial and final
locations (Q = I ∪ {P0} ∪ {Pf}). In the second scenario, in addition to the turbine sites, a set
of midpoints between any two turbines (K) is also included (Q = {P0} ∪ I ∪ K ∪ {Pf}). ZEM

1

and ZEM
2 refer to the objective function values obtained by the EM when Scenarios 1 and 2 are

used to construct the set Q, respectively. The values of the parameters used in the proposed HGA
are determined based on the number of trips and turbines. Here, we set these values as follows:

25

the population size (N = min{100, (|S| + 3)|I|}, the number of generations (NG = bN/3c), the
immigration rate (pe = 0.2), and the mutation rate (pm = 0.1). The HGA is executed five times
for each instance to evaluate the consistency of the methods, where Zb and Za refer to the best and
the average objective values obtained by this method, respectively.

Table 2 presents the summary of the experimental results pertaining to the discrete problem
(DLMRPOWF). As the HGA is executed five times, the table also reveals the best solution (Zb)
and the average solution (Za) obtained by this method. The boldface indicates the best solution
found by either the HGA or the EM on the discrete model. The average deviation (%Dev) and the
number of best solutions found by each method are also presented.

Table 2: The experimental results on the discrete problem (DLMRPOWF)

Instance Exact Method (3 hours) HGA
ZEM

1 ZEM
2 Zb Za CPU (s)

I11F0 678.33 708.48 674.08 681.08 27.61
I11F10 716.76 763.17 718.33 719.58 28.36
I11F20 749.53 766.97 739.89 739.89 27.18
I11F30 756.76 791.30 759.89 759.89 28.14
I11F40 778.44 776.76 779.89 779.89 27.76
I11F50 796.76 811.75 799.89 799.89 30.94
I12F0 722.26 729.67 711.34 717.60 43.29
I12F10 748.98 762.10 741.34 753.27 47.54
I12F20 765.34 794.37 762.26 762.26 48.78
I12F30 795.76 786.86 782.26 789.41 50.27
I12F40 802.26 842.85 795.47 809.68 50.06
I12F50 805.47 826.48 805.47 833.97 52.32
I13F0 814.61 790.48 753.34 757.93 53.48
I13F10 778.61 802.26 788.79 791.89 50.49
I13F20 803.57 856.00 815.32 815.32 50.70
I13F30 841.26 877.03 835.32 835.32 51.07
I13F40 903.91 857.14 848.88 854.03 55.33
I13F50 858.13 866.48 868.88 874.03 57.00
I14F0 807.82 848.89 800.21 805.61 104.13
I14F10 894.83 868.49 834.91 840.23 105.55
I14F20 874.23 961.24 861.08 863.22 109.86
I14F30 1,116.44 914.37 881.93 890.58 126.25
I14F40 986.19 930.03 902.12 905.81 129.17
I14F50 955.90 1,146.96 921.99 929.69 144.97
Average % Dev 3.0111 4.7820 0.2272 0.8914
best solutions 7 1 17 3

Based on our observation, the DLMRPOWF is difficult to solve using the EM. We notice in-
teresting results where the EM generates worse solutions when solving second scenario problems

26

compared to when solving first scenario problems. The midpoints between the turbines in the set
Q increase the size of the problem, making it difficult to solve optimally using the EM. The average
gap between the lower bound (LB) and the upper bound (UB) obtained by CPLEX is relatively
high at 16.89% and 33.63% on average for the first and the second scenarios, respectively. It is also
observed that CPLEX experiences difficulties tightening the LB. According to Table 2, the proposed
HGA runs well, as this method produces good solutions with an average %Dev of 0.2272% in the
relatively short computational time (an average of 62.51 seconds). The average %Dev of the average
solutions is not that far from the one of best solutions, demonstrating the consistency of our HGA
algorithm. It is also noted that a higher SOV fixed cost tends to have a longer computational time.

4.3. Results from the continuous problem (CLMRPOWF)

As the mathematical model of the CLMRP is nonlinear, CPLEX is not able to solve the problem.
Therefore, the solutions to the CLMRPOWF obtained by the proposed HGA are compared to those
generated by the HPSO and HMS. Several HGA configurations are constructed by varying the λ
value from 1 to 0 using intervals of 0.25. This is performed to analyse the effect of the proposed
MEPA algorithm. If λ is set to 0, the MEPA is not used in the HGA method. The values of GA
parameters are set to be identical to those used to solve the discrete problem, except the population
size, which is set to N = min{100,m · |I|}.

Table 3 presents a summary of the experimental results pertaining to the CLMRPOWF problem,
where Zb and Za refer to the best and the average results of the five runs, respectively. To be
consistent in our comparison, we set the computational time of all methods to that of the HGA(λ =
1). According to the table, the HGA(λ = 1) is found to be the best optimiser, as it produces the
smallest deviation, with an average %Dev of 0.1020%. Moreover, the HGA(λ = 1) obtained the
best solutions for 14 instances, which is significantly more than those produced by other methods.
Note that all methods utilise the VNS algorithm and the MEPA to solve the continuous problem.
According to the results, the HGA with a different λ value performs better than the HPSO and the
HMS. This is mainly because the genetic operators implemented in the HGA run well and produce
good SOV location solutions. It is also found that decreasing the value of λ reduces the quality of
the solutions produced, meaning that the MEPA algorithm significantly affects the performance of
the HGA method.

A sensitivity analysis to assess the robustness of the proposed HGA method is also carried
out. This is based on the injection operator and the parent selection operator. First, we remove
the injection operator to evaluate whether the immigrant affects the solution. We refer to this
method as the HGA-WIE. Second, the classic roulette wheel method is implemented to examine
our proposed approach in the parent selection. We refer to this configuration as the HGA-RW. Note
that the λ value is set to 1 for the HGA-WIE and HGA-RW.

27

Ta
bl

e
3:

T
he

ex
pe

rim
en

ta
lr

es
ul

ts
on

th
e

co
nt

in
uo

us
pr

ob
le

m
(C

LM
R

P
O

W
F)

In
s-

C
PU

H
G

A
(λ

=
1)

H
G

A
(λ

=
0.

75
)

H
G

A
(λ

=
0.

5)
H

G
A

(λ
=

0.
25

)
H

G
A

(λ
=

0)
H

PS
O

H
M

S
ta

nc
e

(s
)

Z
b

Z
a

Z
b

Z
a

Z
b

Z
a

Z
b

Z
a

Z
b

Z
a

Z
b

Z
a

Z
b

Z
a

I1
1F

0
26

67
6.

40
67

7.
76

67
6.

39
67

8.
60

67
6.

40
67

7.
79

67
7.

45
67

8.
97

67
3.

10
68

1.
37

67
6.

46
68

1.
83

67
7.

94
68

3.
19

I1
1F

10
26

71
9.

78
71

9.
85

71
9.

78
71

9.
85

71
9.

78
71

9.
83

71
9.

78
71

9.
84

71
9.

77
71

9.
82

71
9.

89
72

7.
37

71
8.

54
72

7.
06

I1
1F

20
26

73
9.

89
73

9.
89

73
9.

89
73

9.
89

73
9.

89
73

9.
89

73
9.

89
73

9.
89

73
9.

89
73

9.
89

73
9.

89
74

8.
22

76
6.

75
76

5.
21

I1
1F

30
27

75
9.

88
75

9.
90

75
9.

89
75

9.
89

75
9.

88
75

9.
89

75
9.

89
75

9.
89

75
9.

89
75

9.
89

75
9.

89
76

0.
13

76
0.

56
77

7.
39

I1
1F

40
32

77
9.

89
77

9.
89

77
9.

88
77

9.
89

77
9.

88
77

9.
92

77
9.

88
77

9.
89

77
9.

89
77

9.
89

77
9.

89
78

0.
26

78
3.

24
79

0.
21

I1
1F

50
27

79
6.

78
79

9.
27

79
9.

89
79

9.
89

79
9.

89
79

9.
89

79
9.

89
79

9.
89

79
9.

89
79

9.
89

79
9.

89
79

9.
98

80
0.

07
80

1.
80

I1
2F

0
40

70
3.

24
70

5.
44

70
3.

88
71

1.
42

70
5.

11
71

3.
24

70
7.

26
71

0.
69

71
6.

97
72

2.
77

70
3.

48
70

7.
63

71
3.

52
71

3.
69

I1
2F

10
46

73
6.

12
74

0.
52

73
7.

01
74

2.
21

73
7.

03
74

2.
94

74
0.

92
74

4.
55

74
0.

91
75

4.
20

74
5.

26
75

0.
42

73
8.

43
74

4.
80

I1
2F

20
57

75
9.

02
76

1.
39

76
1.

64
76

2.
95

76
2.

27
76

6.
14

75
8.

58
76

5.
05

76
6.

59
77

7.
80

76
1.

86
77

6.
11

76
8.

98
76

8.
56

I1
2F

30
56

77
6.

64
77

9.
95

77
7.

15
78

1.
09

78
1.

35
78

2.
47

78
1.

64
78

2.
20

77
6.

15
78

5.
93

78
2.

38
78

4.
10

78
7.

17
78

5.
18

I1
2F

40
63

79
5.

45
79

7.
62

79
5.

45
79

8.
15

79
5.

45
80

1.
52

79
5.

45
80

3.
74

79
5.

45
80

2.
23

79
5.

45
79

6.
82

79
8.

02
79

5.
97

I1
2F

50
49

80
5.

45
80

5.
45

80
5.

45
80

5.
45

80
5.

45
80

8.
63

80
5.

45
81

3.
05

80
5.

45
82

3.
47

80
5.

45
80

5.
45

80
5.

45
80

5.
45

I1
3F

0
49

73
8.

88
73

9.
36

73
8.

88
73

9.
50

73
8.

89
74

0.
05

73
9.

67
74

4.
06

73
9.

67
74

7.
37

73
9.

24
74

1.
25

74
0.

82
74

2.
89

I1
3F

10
45

77
5.

08
77

8.
90

77
6.

55
77

7.
92

77
6.

55
77

7.
16

77
8.

13
78

4.
22

77
8.

87
78

8.
25

78
2.

05
78

6.
66

78
1.

81
78

2.
02

I1
3F

20
67

79
5.

07
79

8.
56

79
8.

80
80

0.
46

79
8.

87
80

0.
55

79
8.

87
79

9.
65

80
4.

09
81

3.
07

80
3.

29
81

0.
44

82
2.

93
81

4.
59

I1
3F

30
66

81
5.

08
81

7.
43

81
6.

01
81

9.
03

81
8.

13
82

1.
08

81
5.

53
82

2.
07

82
1.

07
83

2.
15

82
2.

11
82

7.
12

83
6.

91
82

5.
43

I1
3F

40
78

83
8.

71
84

1.
39

83
5.

07
83

8.
90

83
8.

80
84

3.
08

83
8.

87
84

6.
92

85
4.

35
85

4.
78

83
8.

03
84

3.
31

83
5.

58
83

7.
31

I1
3F

50
74

85
5.

07
85

5.
99

85
5.

10
85

7.
42

85
5.

07
85

6.
66

85
5.

07
86

6.
31

85
8.

82
86

9.
23

85
5.

39
85

6.
89

85
5.

44
85

7.
63

I1
4F

0
11

7
78

0.
85

78
5.

17
77

9.
38

78
5.

15
78

0.
71

79
7.

86
78

0.
55

79
3.

14
78

8.
89

79
7.

94
77

8.
16

78
2.

26
77

6.
77

78
1.

47
I1

4F
10

12
5

82
6.

82
83

4.
99

82
3.

95
83

1.
08

82
7.

84
83

1.
99

82
7.

83
83

4.
62

82
5.

59
83

5.
41

82
7.

15
83

0.
37

82
7.

14
83

3.
91

I1
4F

20
13

0
85

5.
34

85
9.

75
85

7.
66

85
9.

41
85

7.
66

86
2.

29
85

7.
66

86
3.

82
85

8.
79

86
6.

49
85

7.
47

86
5.

53
85

9.
07

86
1.

11
I1

4F
30

13
6

87
7.

48
87

9.
38

87
7.

48
88

1.
73

87
7.

49
87

8.
77

87
7.

59
88

3.
56

87
7.

47
88

1.
74

87
7.

48
88

4.
00

87
7.

48
87

9.
38

I1
4F

40
13

7
89

7.
47

89
9.

61
89

7.
46

89
9.

56
89

7.
47

89
8.

62
89

7.
50

89
7.

53
89

7.
53

89
8.

51
89

4.
34

89
9.

81
89

7.
63

89
8.

46
I1

4F
50

14
3

91
3.

75
91

7.
02

91
7.

42
91

8.
04

91
7.

47
91

7.
74

91
7.

47
91

7.
87

91
7.

47
91

7.
75

91
7.

46
91

7.
74

91
7.

50
91

7.
02

Av
er

ag
e

%
D

ev
0.

10
20

0.
39

53
0.

16
38

0.
46

86
0.

25
42

0.
63

16
0.

27
65

0.
80

07
0.

51
51

1.
33

14
0.

33
56

0.
87

94
0.

79
99

1.
03

49
#

be
st

so
lu

tio
ns

14
7

6
6

6
4

3

28

Table 4 shows the experimental results of the sensitivity analysis of the proposed HGA method.
The computational time of each configuration is set to be identical to the time used in the proposed
HGA presented in Table 3. Each method is executed five times for each instance. The table reveals
that, based on the average %Dev, without the immigrant chromosomes, the quality of the solutions
slightly deteriorates. The results also show that the proposed parent selection method performs
better than the roulette wheel method. It is worthwhile to note that the HGA-WIE and HGA-
RW generate more best solutions than the HGA(λ = 1). However, the HGA(λ = 1) consistently
produces good solutions for different instances.

Table 4: Comparison results on the CLMRPOWF using different configurations used in the HGA

Instance CPU (s) HGA (λ = 1) HGA-WIE HGA-RW
Zb Za Zb Za Zb Za

I11F0 26 676.40 677.76 676.39 677.80 677.91 678.91
I11F10 26 719.78 719.85 719.79 719.85 719.78 719.85
I11F20 26 739.89 739.89 739.89 739.89 739.88 739.89
I11F30 27 759.88 759.90 759.88 759.89 759.88 759.89
I11F40 32 779.89 779.89 779.89 779.89 779.89 779.89
I11F50 27 796.78 799.27 796.75 798.63 799.89 799.89
I12F0 40 703.24 705.44 703.87 707.04 702.71 708.67
I12F10 46 736.12 740.52 736.03 741.28 735.35 741.12
I12F20 57 759.02 761.39 762.26 762.86 756.74 761.90
I12F30 56 776.64 779.95 781.63 782.16 777.59 782.99
I12F40 63 795.45 797.62 795.45 796.98 795.45 799.97
I12F50 49 805.45 805.45 805.45 805.45 805.45 808.84
I13F0 49 738.88 739.36 738.89 740.32 739.67 739.91
I13F10 45 775.08 778.90 775.07 778.43 775.07 778.59
I13F20 67 795.07 798.56 798.87 799.50 798.87 804.98
I13F30 66 815.08 817.43 815.07 817.97 818.87 825.57
I13F40 78 838.71 841.39 835.07 838.93 838.74 842.77
I13F50 74 855.07 855.99 855.08 857.41 858.87 860.27
I14F0 117 780.85 785.17 779.14 781.36 777.55 782.20
I14F10 125 826.82 834.99 826.82 830.02 827.68 831.98
I14F20 130 855.34 859.75 854.38 860.88 855.82 861.08
I14F30 136 877.48 879.38 877.47 880.85 877.50 883.21
I14F40 137 897.47 899.61 897.46 902.24 897.46 898.88
I14F50 143 913.75 917.02 917.46 918.42 917.47 918.02
Average %Dev 0.0610 0.3542 0.1136 0.3724 0.1400 0.5353
#Best Solutions 11 13 12

We also present the best solution by solving either the DLMRPOWF or the CLMRPOWF
using the solution methods used. Table 5 presents a summary of the best solution configuration
where the best known total cost (Z∗), the percentage of the SOV travelling cost (%Zs), the CTV
travelling cost (%Zc), and the penalty cost (%Zp) are given. The table also provides the number of

29

movements of the SOV (#Move) in the best solution. Information on the method that generates the
best solution is also provided. Table 3 reveals that in the best known solution, the SOV travelling
cost (Zs) comprises nearly 36% of the total maintenance cost. The solution is also constructed to
avoid the penalty cost (%Zp = 0.00). The table shows that, as expected, increasing the SOV fixed
cost reduces the number of SOV movements, as each movement comes with additional cost. In
general, when the fixed cost is set to e50, two movements occur, meaning that only one potential
site (q̃) is selected. In other words, the SOV moves from the initial location P0 to q̃, then from
location q̃ to the final destination Pf .

Table 5: Best solution configuration of the problem

Instance Z∗ %Zs %Zc %Zp #Move Solution methods
I11F0 673.10 41.58 58.42 0.00 5 HGA(λ = 0)
I11F10 716.76 39.35 60.65 0.00 3 EM with Q = I

I11F20 739.88 40.82 59.18 0.00 3 HGA-RW
I11F30 756.76 42.56 57.44 0.00 2 EM with Q = I

I11F40 776.76 44.04 55.96 0.00 2 EM with Q = I ∪R
I11F50 796.75 45.44 54.56 0.00 2 HGA-WIE
I12F0 702.71 27.43 72.57 0.00 6 HGA-RW
I12F10 735.35 29.93 70.07 0.00 3 HGA-RW
I12F20 756.74 30.27 69.73 0.00 3 HGA-RW
I12F30 776.15 32.17 67.83 0.00 2 HGA(λ = 0)
I12F40 795.45 28.80 71.20 0.00 1 HGA(λ = 0, 0.25, 0.5, 0.75, 1),HGA-WIE,HGA-RW,PSO
I12F50 805.45 29.68 70.32 0.00 1 HGA(λ = 0, 0.25, 0.5, 0.75, 1),HGA-WIE,HGA-RW,PSO,MS
I13F0 738.88 30.67 69.33 0.00 5 HGA(λ = 0.75, 1)
I13F10 775.07 31.54 68.46 0.00 2 HGA-WIE, HGA-RW
I13F20 795.07 33.27 66.73 0.00 3 HGA(λ = 1)
I13F30 815.07 34.90 65.10 0.00 2 HGA-WIE
I13F40 835.07 36.46 63.54 0.00 2 HGA(λ = 0.75)
I13F50 855.07 37.95 62.05 0.00 2 HGA(λ = 0.25, 0.5, 1)
I14F0 776.77 34.29 65.71 0.00 6 MS
I14F10 823.95 35.57 64.43 0.00 3 HGA(λ = 0.75)
I14F20 854.38 37.81 62.19 0.00 3 HGA-WIE
I14F30 877.47 35.97 64.03 0.00 2 HGA(λ = 0), HGA-WIE
I14F40 894.34 38.23 61.77 0.00 2 PSO
I14F50 913.75 39.70 60.30 0.00 2 HGA(λ = 1)

4.4. The algorithm performance analysis

In this subsection, the analysis of the algorithm performance is presented. All the solution
methods (the HGA, the HPSO, and the HMS) consist of two phases, and the same post-optimisation
is applied in the second phase of all methods. Note that in the HGA, we use the results when λ = 1.

30

We first analyse the performance of the first phase of the solution methods first, followed by the
effect of the optimisation phase.

4.4.1. The analysis of the first phase
As each instance is solved multiple times, the results generated by the first phase of each solution

method are presented using the box plot in Figure 8. The figure reveals that the first phase of the
HGA produces solutions that yield the smallest total cost in almost all instances. Moreover, the
variance of solutions generated by the first phase of the HGA is much lower than the other two
methods. This indicates that the proposed HGA is a robust tool for solving this kind of problem.

Figure 8: The box plots of the results generated by the first phase of the solution methods, where M1, M2 and M3
represent the HGA, the HPSO, and the HMS, respectively

We also perform a parametric test using the independent samples t-test to determine whether
there is statistical evidence that the proposed HGA is significantly better than the other methods.
We first compute the deviation for the average and best results using Equation (57) to compare the
HGA vs the HPSO and the HGA vs the HMS. Figure 9 shows the p−values (Sig.) of the Levene’s
test for equality of variances and the t-test for equality of means.

Figure 9 reveals that based on both average and best results, the deviation mean and variance
of the HGA are much smaller than those of the HPSO and the HMS. This means that the HGA
produces better and consistent solutions compared to the other two. Based on the t-test results, we
conclude that there is statistical evidence that the HGA significantly outperforms the HPSO and
the HMS at 1% significance levels for both average and best results.

31

Figure 9: The t-test results for comparing the HGA vs the HPSO and the HGA vs the HMS

4.4.2. The effect of the post-optimisation phase
In this subsection, we examine the performance of Phase 2 (post-optimisation) in Algorithm 1.

In this phase, a full VNS is implemented in which seven neighbourhood structures (kmax = 7) are
used. For consistency and simplicity, in the MEPA algorithm, we set the parameter ε to 0.000001.
Table 6 reveals the improvement made by the post-optimisation process in each instance. The table
presents the improvement in the total cost (%Z) together with the additional computational time
(%CPU) required to run the post-optimisation process. The observations are carried out for the
proposed HGA, HPSO and HMS methods.

The second phase of the HGA reduces the average total maintenance cost by only 0.69%, at
the expense of an additional 45.59% CPU time. This indicates that relatively good solutions have
been produced by the first phase of the HGA. A significant improvement is achieved in the post-
optimisation phase for the HPSO and the HMS: the total cost is improved by 5.7% and 3.07%,
respectively. However, this gain comes with a significant increase in CPU time of 61.25% and
68.71%, respectively. In brief, we can conclude that the proposed HGA, even without the post
optimisation phase, remains a better optimisation tool compared to the other two methods, the
performances of which rely heavily on the second phase.

4.4.3. The effect of increasing the number of potential SOV sites on the discrete problem
It is worth noting that the optimal solution generated by solving the discrete model (DLMR-

POWF) using the exact method (EM) can get closer and closer to the optimal solution for the
continuous model (CLMRPOWF) when the number of potential sites (Q) for the SOV gets larger
and larger. In other words, we can theoretically approximate a continuous problem using its coun-
terpart, a discrete problem, if an infinite number of potential sites is adopted. However, in practice
a larger |Q| makes the problem more difficult to solve by CPLEX and hence the optimal solution

32

Table 6: Improvement by the post-optimisation phase

Instance HGA HPSO HMS
%Z %CPU %Z %CPU %Z %CPU

I11F0 0.19 54.65 2.30 57.94 1.36 74.04
I11F10 0.04 45.22 3.63 54.86 1.64 62.50
I11F20 0.00 32.99 4.74 48.22 2.02 66.28
I11F30 0.10 41.61 8.31 70.51 4.40 72.72
I11F40 0.12 87.13 8.41 175.20 6.64 236.54
I11F50 0.02 58.93 10.42 144.55 6.49 189.43
I12F0 1.19 56.95 2.73 63.63 0.97 63.79
I12F10 0.66 47.90 2.22 50.48 1.90 50.47
I12F20 0.66 31.21 3.95 37.47 1.92 40.16
I12F30 0.96 31.79 5.48 47.72 4.23 53.73
I12F40 0.83 54.73 6.46 70.70 5.31 83.81
I12F50 1.05 44.03 8.53 73.63 3.80 76.50
I13F0 0.09 72.43 3.92 70.91 0.93 69.78
I13F10 0.25 56.48 1.72 64.73 1.76 69.67
I13F20 0.52 30.50 4.85 38.87 1.92 39.04
I13F30 0.44 43.99 5.60 62.57 3.56 63.57
I13F40 0.49 69.21 6.27 83.52 4.67 80.53
I13F50 0.65 78.83 7.19 80.10 4.58 79.22
I14F0 0.97 24.06 5.45 26.42 1.12 27.07
I14F10 0.64 23.30 5.74 23.54 1.30 26.49
I14F20 1.86 22.52 6.39 25.12 2.70 26.79
I14F30 1.81 27.21 5.62 29.13 3.29 30.58
I14F40 1.20 27.99 6.75 38.69 3.42 33.36
I14F50 1.85 30.60 10.01 31.57 3.87 33.09
Average 0.69 45.59 5.70 61.25 3.07 68.71

will not be guaranteed if the limited computational time allocated is not long enough.
Here, we perform experiments where we can guarantee optimality by using a small instance

consisting of six turbines. To see whether a similar pattern may exist under different fixed costs,
we opted for two levels of fixed costs, namely, a fixed cost of 0 and 20 respectively. In addition
to the turbine sites (I), the set Q is augmented by including additional potential sites (25, 64,
100, 225 and 400) using a rectangle grid covering the turbine locations. The EM is then solved
using CPLEX for each of these discrete problems. For simplicity, six potential sites (Q) scenarios
with an increasing number of potential sites from one scenario to the next are implemented: (i)
(EM − I): Q = I ∪ {P0} ∪ {Pf}, (ii) (EM −G25): (Q = {P0} ∪ I ∪G25 ∪ {Pf}), (iii) (EM −G64):
(Q = {P0} ∪ I ∪G64 ∪ {Pf}), (iv) (EM −G100): (Q = {P0} ∪ I ∪G100 ∪ {Pf}), (v) (EM −G225):
(Q = {P0} ∪ I ∪ G225 ∪ {Pf}), and (vi) (EM − G400): (Q = {P0} ∪ I ∪ G400 ∪ {Pf}), Here, G25,
G64, G100, G225 and G400 represent 25, 64, 100, 225 and 400 extra potential sites constructed in
the grid, respectively where the new potential sites are the intersection points of the x and y axis
of the rectangles inside the grid. For example, the 25 additional points are the intersection points
of the 5 rows × the 5 columns of the grid. Note that the solution of the continuous problem is

33

solved using the HGA(λ = 1) with the set Q is constructed based on turbines sites and midpoints
between the turbines only. For each discrete problem, the deviation (in %) from the solution of the
continuous problem is computed and the corresponding CPU time (in secs) is recorded.

Figure 10 shows the solutions generated by the EM over the number of points (up to 400 points).
For Instance in the case of T6F0 in Figure 10(a), the cost reduces or does not increase as the number
of potential sites increases while the corresponding CPU times increases drastically. However, it
was also observed that for the case of T6F20 in Figure 10(b), the pattern was not followed as
expected where the solution of EM-G225 was worse. One may presume that the result contradicts
the theoretical claim given the instance with a relatively smaller number of additional points such
as the EM-G64 and the EM-G100 obtain better results. However, this is not unusual as these
smaller instances must have included more promising potential sites than those used for EM-G225
given the was these points are generated. This observation needs to be taken into account when
adopting such an approximation type strategy. As mentioned earlier, including a very large number
of potential points or a large number of promising points will normally converge to the optimal
solution of the continuous problem.

Figure 10: The solutions generated by the EM over the number of points

To evaluate the performance of the proposed HGA, we solve the same instance based on the
continuous model (CLMRPOWF) as performed previously using all the various fixed costs but
using up to 100 extra potential sites only. This is due to the large CPU time that is required
to solve the discrete problem as reported in Figure 10. Table 7 presents the results of the small
instance generated by the EM and the HGA, where the total cost (Z) together with the average
%Dev are provided. The CPU time is measured in seconds. The HGA is executed five times to
obtain the average and best costs. Table 7 also shows that the proposed HGA runs well when
solving continuous problems. All solutions produced by the HGA are still better than those optimal
solutions produced for the discrete problem by the EM. It also means that more promising points
are required to improve the quality of solutions generated by the EM on the discrete problem. This
could increase the chance to attain good quality solutions at the expense of a longer computational
time as shown by the average %Dev when 64 and 100 points in the grid are used.

34

Table 7: Results comparison on the small instance with large number of potential sites

Instance
EM−I EM−G25 EM−G64 EM−G100 HGA
Z CPU Z CPU Z CPU Z CPU Zb Za CPU

T6F0 553.96 4 553.96 106 550.75 2,754 545.97 6,872 544.38 544.46 10
T6F10 583.76 5 583.76 479 582.85 2,900 582.85 5,350 582.48 583.11 7
T6F20 603.76 5 603.76 1,614 602.85 1,242 602.85 5,682 602.55 603.07 9
T6F30 623.76 4 623.76 1,454 622.85 1,681 622.85 4,177 622.49 622.82 9
T6F40 643.76 2 643.76 75 642.85 1,656 642.85 9,030 642.59 642.75 9
T6F50 663.76 4 663.76 1,526 662.85 1,765 662.85 3,586 662.52 662.90 9
Average 0.459% 4 0.459% 876 0.238% 2,000 0.091% 5,783 0.000% 0.057% 9

4.4.4. The comparison with other known algorithms on a related problem
Our proposed method is also adapted to solve the related classic problem addressed in the

literature: the planar single-facility location routing problem (PSFLRP). Here, parts of the proposed
algorithms are used, including the VNS algorithm and the MEPA. In the PSFLRP, the delivery and
pick-up trips are not considered. Moreover, the visiting time at each node is not determined. Here,
we slightly modify our algorithm to be able to solve the problem. The results of our method are
compared to those obtained by Schwardt and Dethloff (2005), Schwardt and Fischer (2009), Salhi
and Nagy (2009), and Manzour-al-Ajdad et al. (2012). Note that Schwardt and Fischer (2009)
propose two methods: the sequential method (Schwardt and Fischer1) and the neural network
technique (Schwardt and Fischer2). Seven instances taken from Manzour-al-Ajdad et al. (2012)
are solved, and Table 8 shows the results on the PSFLRP. According to the results, our method
outperforms other algorithms, as it produces the smallest average %Dev of 0.2634%, in addition to
discovering five new best solutions. This indicates that our approach is robust and flexible enough
to solve related LRPs.

Table 8: Results comparison with other algorithms in solving the planar single-facility location routing problem

Instance
Schwardt and Schwardt and Schwardt and Salhi and Manzour-al- HGA

Dethloff Fischer1 Fischer2 Nagy Ajdad et al. Best Avg CPU(s)
C1 - 50 521.4 527.7 522.5 522.8 538.5 521.4 529.7 9
C2 - 75 888.8 881.9 879.0 854.1 849.8 834.4 845.8 79
C3 - 100 837.7 864.5 835.6 838.5 858.8 826.9 827.8 103
C4 - 100 827.0 826.0 828.9 830.4 821.6 818.7 846.0 110
C6 - 120 907.4 931.8 905.7 972.5 902.7 897.4 900.3 279
C8 - 150 1,068.8 1,110.9 1,058.4 1,091.2 1,088.2 1,028.7 1,037.6 374
C10 - 199 1,363.5 1,377.1 1,344.0 1,373.2 1,354.8 1,369.2 1,378.5 1,198

Avg Dev(%) 2.1019 3.6176 1.6135 2.9941 2.2747 0.2634 1.4210

35

4.5. Managerial Insight
In this subsection, we provide a scenario analysis to highlight (i) the effect of the fixed cost on

the number of SOV stops, and (ii) the impact the running (travel) cost of the two vessels may have
on the total cost and hence on the viability of the solution configuration.

(i) Effect of the fixed cost

If we refer back to Table 5, it is worth noting that in the best-known solution, the SOV traveling
cost (Zs) comprises almost 36% of the total maintenance cost. The solution is also constructed to
avoid the penalty cost. In this experiment, we generate the solution by varying the fixed cost from
0 to 50 in increments of 10. In each solution configuration we also record the number of SOV stops.
For example, Figure 11a provides the number of SOV stops in the best solution for Instance I12.
A similar pattern is observed for the other instances. Note that the number of stops includes the
stop at the final destination (Pf). As expected, increasing the SOV fixed cost reduces the number
of stops to the point where the solution configuration stabilises at two stops. This observation may
not be valid if the fixed cost is relatively high, as the additional cost for each movement (stop and
start) could become too expensive, resulting in one or no stops. For example, for I12, the fixed cost
of e40 leads to only one stop, whereas for I14, the solution stabilises at two stops when the fixed
cost reaches e30.

Figure 11: The scenario analysis for Instance I12

(ii) Effect of variable cost on the robustness of the solution

We examine the effect that the travel cost of both the SOV and the STB has on the robustness
of the solution configuration. In other words, we want to explore whether small changes in the
running cost have significant effects on the solution configuration (and hence the schedule); any
significant changes may inconvenience. We refer to the original configuration (or schedule) as the
base line, the total cost of which is computed by substituting the new running cost in the solution
and comparing it to that in the new solution that is found when the changes in running cost are
introduced. In the previous experiments, the travel costs of the SOV and the STB are set to

36

e700/hour and e350/hour, respectively. We construct six scenarios by increasing or decreasing the
travel cost by 10%. For instance, In Scenario 1 (S1), the travel cost of the SOV is reduced by 10%
to e630/hour, while the running cost of the STB remains unchanged at e350/hour; In Scenario
2 (S2), the STB travel cost is reduced by 10% to e315/hour, while the SOV remains unchanged.
The running cost of the remaining four scenarios are summarised as follows: Scenario 3 (S3): SOV
(e630/hour) and STB (e315/hour); Scenario 4 (S4): SOV (e770/hour) and STB (e350/hour);
Scenario 5 (S5): SOV (e700/hour) and STB (e385/hour); Scenario 6 (S6): SOV (e770/hour) and
STB (e385/hour).

To illustrate such scenarios, we consider the problem in Instance I12, which has a fixed cost
of e20, as similar trends are also observed in the other instances. Figure 11b presents the total
maintenance cost for each scenario. Here, two solutions are used: the baseline and new solutions.
As mentioned earlier, the baseline solution is obtained by solving the problem using the HGA when
the travel costs of the SOV and STB are set to their original values of e700/hour and e350/hour,
respectively. This solution configuration is unchanged but its total cost is revaluated for each
scenario. The new solution for each scenario is determined by implementing the HGA to solve each
problem scenario using the respective travel costs. The figure reveals that both solutions produce
similar total costs with a miniscule deviation of 0.0317%. This demonstrates that the proposed
HGA produces solution configurations (or schedules) that are robust to the changes due to the
running costs. This observation is useful to decision makers given the considerable fluctuations in
the fuel costs.

5. Conclusion and Suggestions

In this paper, a new and challenging green logistic problem that integrates continuous location
and maintenance routing problem for offshore wind farms was investigated. The aim was to dy-
namically identify the best SOV locations in the plane and the best delivery and pick-up routes for
the STB to use when maintaining the offshore turbines. We first developed optimisation models
based on MINLP for the CLMRPOWF and for its counterpart, the DLMRPOWF.

We also designed an efficient HGA by integrating a GA and VNS. To achieve near-optimal
solutions for the continuous locations, we introduced a modification of the end-point algorithm
(MEPA) initially designed for the planar LRP based on the well-known Weiszfeld iterative process.
We assessed the effectiveness of the proposed HGA by comparing the results to those of a new HMS
heuristic and an efficient evolutionary approach (PSO). Computational experiments were conducted
using the Thanet wind farm in the UK as an example. The results demonstrate that the proposed
hybrid evolutionary method that integrates the GA with VNS and other elements from continuous
location analysis is an effective tool for solving the CLMRPOWF. Managerial insights that cover
the effect of the fixed cost on the number of stops, and whether changes in the travel cost of the two
vessels have a significant effect on the solution configuration and hence the schedule are provided.
Our method is also found to be easily adaptable for solving a related continuous LRP (PSFLRP),

37

as it outperformed the state-of-the-art methods available in the literature.
A number of aspects could be worth exploring further. The study could, for example, be built

upon to include multiple periods, with the last location of a given period acting as the starting
location for the next period. Another avenue would be to extend the model by considering the
effect of uncertainty on some of the parameters, such as the maintenance duration together with
travel and transfer time. The way we augmented the discrete problem with artificial potential sites
is based on a simple grid type approach but this could be revisited by constructing a more effective
mechanism to generate promising additional potential sites instead. Such a scheme will enhance
the solution quality while requiring a relatively less computational burden.

In this study, we encounter no geographical obstacles, but that might not be case in other areas,
including in which travel time and location are restricted. From a practical viewpoint, the above
techniques could easily be used as a basis for the design of an efficient decision-support system for
offshore wind farms to be used by environmental agencies and governments that embrace the green
economy.

References

Almouhanna, A., Quintero-Araujo, C.L., Panadero, J., Juan, A.A., Khosravi, B., Ouelhadj, D., 2020. The
location routing problem using electric vehicles with constrained distance. Computers & Operations Re-
search 115, 104864.

Bettinelli, A., Cacchiani, V., Crainic, T.G., Vigo, D., 2019. A branch-and-cut-and-price algorithm for the
multi-trip separate pickup and delivery problem with time windows at customers and facilities. European
Journal of Operational Research 279, 824–839.

Brimberg, J., Drezner, Z., Mladenović, N., Salhi, S., 2014. A new local search for continuous location
problems. European Journal of Operational Research 232, 256–265.

Calık, H., Oulamara, A., Prodhon, C., Salhi, S., 2021. The electric location-routing problem with heteroge-
neous fleet: Formulation and benders decomposition approach. Computers & Operations Research 131,
105251.

Cao, J.X., Zhang, Z., Zhou, Y., 2021. A location-routing problem for biomass supply chains. Computers &
Industrial Engineering 152, 107017.

Cooper, L., 1964. Heuristic methods for location-allocation problems. SIAM Review 6, 37–53.

Dai, L., St̊alhane, M., Utne, I.B., 2015. Routing and scheduling of maintenance fleet for offshore wind farms.
Wind Engineering 39, 15–30.

Dantzig, G.B., Wolfe, P., 1960. Decomposition principle for linear programs. Operations Research 8, 101–111.

Dewan, A., Asgarpour, M., 2016. Reference O&M Concepts for Near and Far Offshore Wind Farms. Technical
Report. ECN-E-16-055.

Fischetti, M., Pisinger, D., 2018. Optimizing wind farm cable routing considering power losses. European
Journal of Operational Research 270, 917 – 930.

Ghaderi, A., Jabalameli, M., Barzinpour, F., Rahmaniani, R., 2012. An Efficient Hybrid Particle Swarm
Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem. Networks
and Spatial Economics 12, 421–439.

Ghaffarinasab, N., Van Woensel, T., Minner, S., 2018. A continuous approximation approach to the planar
hub location-routing problem: Modeling and solution algorithms. Computers & Operations Research 100,
140–154.

38

Gillett, B., Miller, L., 1974. A heuristic algorithm for the vehicle dispatch problem. Operations Research 22,
340–344.

Hansen, P., Mladenović, N., Pérez, J.M., 2010. Variable neighbourhood search: methods and applications.
Annals of Operations Research 175, 367–407.

Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S., 2017. Variable neighborhood search: basics and
variants. EURO Journal on Computational Optimization 5, 423–454.

Holland, J.H., 1992. Genetic algorithms. Scientific American 267, 66–73.

Irawan, C.A., Eskandarpour, M., Ouelhadj, D., Jones, D., 2021. Simulation-based optimisation for stochastic
maintenance routing in an offshore wind farm. European Journal of Operational Research 289, 912–926.

Irawan, C.A., Ouelhadj, D., Jones, D., St̊alhane, M., Sperstad, I.B., 2017. Optimisation of maintenance
routing and scheduling for offshore wind farms. European Journal of Operational Research 256, 76 – 89.

Karakostas, P., Sifaleras, A., Georgiadis, M.C., 2020. Adaptive variable neighborhood search solution methods
for the fleet size and mix pollution location-inventory-routing problem. Expert Systems with Applications
153, 113444.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95 - International
Conference on Neural Networks, pp. 1942–1948 vol.4.

Lin, S., 1965. Computers solutions of the traveling salesman problem. Bell System Technical Journal 44,
2245–2269.

Lopes, R.B., Ferreira, C., Santos, B.S., Barreto, S., 2013. A taxonomical analysis, current methods and
objectives on location-routing problems. International Transactions in Operational Research 20, 795–822.

Manzour-al-Ajdad, S., Torabi, S., Salhi, S., 2012. A hierarchical algorithm for the planar single-facility
location routing problem. Computers & Operations Research 39, 461–470.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & Operations Research 24,
1097–1100.

Nagy, G., Salhi, S., 2007. Location-routing: Issues, models and methods. European Journal of Operational
Research 177, 649 – 672.

Poikonen, S., Golden, B., 2020a. The mothership and drone routing problem. INFORMS Journal on Com-
puting 32, 249–262.

Poikonen, S., Golden, B., 2020b. Multi-visit drone routing problem. Computers & Operations Research 113,
104802.

Prodhon, C., Prins, C., 2014. A survey of recent research on location-routing problems. European Journal
of Operational Research 238, 1 – 17.

Rabbani, M., Heidari, R., Yazdanparast, R., 2019. A stochastic multi-period industrial hazardous waste
location-routing problem: Integrating nsga-ii and monte carlo simulation. European Journal of Operational
Research 272, 945 – 961.

Rabie, H.M., El-khodary, I.A., Tharwat, A.A., 2013. A particle swarm optimization algorithm for the
continuous absolute p-center location problem with euclidean distance. International Journal of Advanced
Computer Science and Applications 4, 101–106.

Raknes, N.T., Ødeskaug, K., St̊alhane, M., Hvattum, L.M., 2017. Scheduling of maintenance tasks and
routing of a joint vessel fleet for multiple offshore wind farms. Journal of Marine Science and Engineering
5, 1.

Redondo, J.L., Fernández, J., Garćıa, I., Ortigosa, P.M., 2009. Solving the multiple competitive facilities
location and design problem on the plane. Evolutionary computation 17, 21–53.

39

Roberti, R., Ruthmair, M., 2021. Exact methods for the traveling salesman problem with drone. Transporta-
tion Science 55, 315–335.

Rybičková, A., Mocková, D., Teichmann, D., 2019. Genetic algorithm for the continuous location-routing
problem. Neural Network World 29, 173–187.

Salhi, S., 1987. The Integration of Routing into the Location-Allocation and Vehicle Fleet Composition
Problems. Technical Report. PhD dissertation, Lancaster University.

Salhi, S., 2017. Heuristic Search: The Emerging Science of Problem Solving. Springer, Switzerland.

Salhi, S., Gamal, M., 2003. A genetic algorithm based approach for the uncapacitated continuous location-
allocation problem. Annals of Operations Research 123, 203–222.

Salhi, S., Nagy, G., 2009. Local improvement in planar facility location using vehicle routing. Annals of
Operations Research 167, 287–296.

Salhi, S., Petch, R.J., 2007. A ga based heuristic for the vehicle routing problem with multiple trips. Journal
of Mathematical Modelling and Algorithms 6, 591–613.

Salhi, S., Rand, G.K., 1989. The effect of ignoring routes when locating depots. European Journal of
Operational Research 39, 150 – 156.

Salhi, S., Sari, M., 1997. A multi-level composite heuristic for the multi-depot vehicle fleet mix problem.
European Journal of Operational Research 103, 95 – 112.

Schneider, M., Drexl, M., 2017. A survey of the standard location-routing problem. Annals of Operations
Research 259, 389–414.

Schrotenboer, A.H., uit het Broek, M.A., Jargalsaikhan, B., Roodbergen, K.J., 2018. Coordinating technician
allocation and maintenance routing for offshore wind farms. Computers & Operations Research 98, 185 –
197.

Schrotenboer, A.H., Ursavas, E., Vis, I.F., 2020. Mixed integer programming models for planning maintenance
at offshore wind farms under uncertainty. Transportation Research Part C: Emerging Technologies 112,
180 – 202.

Schrotenboer, A.H., Ursavas, E., Vis, I.F.A., 2019. A branch-and-price-and-cut algorithm for resource-
constrained pickup and delivery problems. Transportation Science 53, 1001–1022.

Schwardt, M., Dethloff, J., 2005. Solving a continuous location-routing problem by use of a self-organizing
map. International Journal of Physical Distribution & Logistics Management 35, 390–408.

Schwardt, M., Fischer, K., 2009. Combined location-routing problems - a neural network approach. Annals
of Operations Research 167, 253–269.

Snyder, B., Kaiser, M.J., 2009. Ecological and economic cost-benefit analysis of offshore wind energy. Re-
newable Energy 34, 1567 – 1578.

St̊alhane, M., Hvattum, L.M., Skaar, V., 2015. Optimization of routing and scheduling of vessels to perform
maintenance at offshore wind farms. Energy Procedia 80, 92 – 99.

Stock-Williams, C., Swamy, S.K., 2019. Automated daily maintenance planning for offshore wind farms.
Renewable Energy 133, 1393–1403.

Tayebi Araghi, M.E., Tavakkoli-Moghaddam, R., Jolai, F., Hadji Molana, S.M., 2021. A green multi-facilities
open location-routing problem with planar facility locations and uncertain customer. Journal of Cleaner
Production 282, 124343.

Weiszfeld, E., 1937. Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku
Mathematical Journal 43, 355–386.

Yang, S., 2008. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Evolutionary Computation 16, 385–416.

40

