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Abstract

An experimenter, designing or analysing an experiment, frequently 

finds that not all can be done according to the text-book. Considerations 

outside his control may have to be taken into account that affect 

the design; he may not be interested in all his treatments equally but 

perhaps in some unusual contrasts between them. Again, unforseen 

circumstances and happenings can afterwards force him to discard some 

of his results, so upsetting the balance or orthogonality of the 

design.

The aim of this thesis is to help an experimenter in such a situation. 

The first part is concerned with analysing a block experiment that is 

in general unbalanced and non-orthogonal. 'Two different methods, one 

iterative, one non-iterative, are derived for obtaining the analysis, 

each with its own advantages. The non-iterative method basically is 

derived from the actual design and produces matrices, which can then 

operate on any suitable data supplied. The iterative method, however, 

found in appendix A, is applied directly to the data from the start, 

to produce the treatment effects directly. Although the iterative 

method is easier to apply and can also be used with a wider class of 

design than can the non-iterative method, the inter-block analysis 

and the analysis of the dual become easier using the non-iterative 

method.

Certain contrasts are related to the design in special ways, and, 

if known, make the analysis of the design easier. The implications are 

discussed in chapter 2, which is also concerned with finding the 

contribution to the sum of squares for these and other, more general, 

contrasts of interest.

The dual of a design is defined as that design formed from the 

original design when treatments and blocks classifications are 

interchanged, i.e. treatments become blocks and vice-versa in the new 

design. It is useful for studying block differences eliminating those
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due to treatments, which may, for example, be required if the blocking 

system arose from the possible residual effects of treatments from 

some previous experiment on the same material. The second part of the 

thesis, in chapter 3> is concerned with the analysis of the dual. It 

is shown that there is no need to start again from the beginning when 

analysing the dual if the original design had already been analysed, 

because the analysis can provide information about that of the dual.

The method is especially easy when the non-iterative method of analysing 

block designs, discussed in chapter 2, has been used for the original 

design.

Ihe experimenter will often be more interested in some contrasts 

between treatments than in others and a design can be selected to give 

more precise information about these contrasts. The construction of 

such designs is discussed in the third part of the thesis. Various 

measures can be used to judge which design is best as regards contrasts 

of interest. Algorithms for finding the optimal design according to 

these measures are derived and discussed in chapter 4«

Listings and flowcharts of a program to carry out the non-iterative 

analysis of chapter 2 and of a program to construct optimal block 

designs appear in anpendices B and G.
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Chapter 1 Introduction

Three problems are considered in this thesis:

1) The analysis of general block designs,

2) The analysis of the dual of a design

and j) The construction of optimal block designs.

The first problem was thought to be worthy of consideration 

because current methods all lack certain requirements that a general 

method of analysis should have. There are three main methods in use:

a) The method of Tocher (1952)

This method is to calculate directly an inverse of the information 

matrix of the treatments. Although the information matrix is always 

singular; if the design is connected, the only completely confounded 

contrast being that of the mean, then a simple addition to the matrix 

will cause it to become non-singular and an inverse can be found.

This inverse, termed A, is then a generalized inverse (Rao and Mitra, 1971) 

of the original information matrix and so yields correct results.

The disadvantage of this method arises when some disconnectedness 

is present, it then being no longer obvious as to what to add to the 

information matrix so as to cause it to become non-singular - the 

addition depending upon the contrasts confounded. Also, for large 

experiments the size of the matrix to be inverted, equal to the number 

of treatments, can cause excessive calculation.

b) The method of Kuiper (1952)

This is an iterative method, calculating the treatment vector by 

a sequence of vectors tending to the zero vector, the sum of the sequence 

giving the correct estimate of the treatment vector. This method will 

also work when some confounding is present in the design. If a high 

degree of partial confounding exists however, the procedure takes a long 

time to converge. The dispersion matrix for treatment effects can be 

calculated if the design is connected by the extension due to Calinski



(1971); else if some knowledge of the eigensystem of the design is 

known, the extension due to Pearce, Calinski and Marshall (1974) can 

he used for disconnected designs.

c) The method of Wilkinson (1970)

This method, which can he applied to any design, uses a series of 

'sweeps' across the data; each sweep, corresponding to either blocks or 

treatments, calculates simple means for the factor, divides these hy an 

appropriate efficiency factor and subtracts them from the current input 

vector. The next sweep is then applied to the resulting vector and so 

on until the vector of residuals appears. The efficiency factors, if not 

known, can he found, hut not their multiplicities, hy a suitable dummy 

analysis. However, in complex experiments this gives rise to calculating 

the roots of a nolynomial of degree equal to the order of balance of the 

design. A disadvantage of Wilkinson's method lies in the difficulties 

involved when calculating variance information (James and Wilkinson, 1971).

It was therefore decided to find a method which completely 

analysed all designs fairly efficiently and would take full advantage 

ofany inherent simplicity that may exist in the design. The method 

should also he well suited to programming onto a computer.

Two solutions were found: one detailed in chapter 2, the other in 

appendix A. The first solution, a non-iterative method, is more 

useful in situations where a number of experiments, each having the 

same design, are carried out; whereas the other, an iterative method, 

is more easily suited to hand computation if necessary and has the 

advantage of being applicable to designs other than block experiments, 

row and column designs for example. The first method has a further 

advantage if the dual is to be used, since it provides the analysis 

for the dual at the same time as that for the original design.

Thte second problem, the analysis of the dual, can arise if 

treatments from a previous experiment are used as a blocking system 

for the current experiment. The experimenter may then wish to dualise
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his design and study the effects of the previous treatments eliminating 

those of the current set (see, for example, Pearce, 1970). This can 

easily result in an unbalanced design even if the original design was 

balanced and the experimenter may then be faced with having to analyse 

a possibly difficult dual design in addition to the original design.

It was decided to find whether the analysis for the original design 

could be used for the dual design also*

The theory behind the dual of a design is derived in chapter 3 

and it is shown that the analysis for the dual can indeed be found 

almost directly from the method of analysis presented in chapter 2. 

Also, if the experimenter has chosen a design that is good with respect 

to some measure of efficiency, he may wish to know how good the dual 

design is with respect to that measure also. Relations between 

measures for the design and its dual, for various common measures, are 

therefore derived in this chapter.

The third problem arises when an experimenter, wishing to carry 

out some experiments, finds, due to considerations of space or 

available plots or whatever, that no standard design exists that he 

can use. He may attempt to invent a suitable design himself, but would 

find it difficult to know whether he had found the best design 

possible. Procedures do exist for helping the experimenter choose the 

'optimal' design (e.g. Mitchell, 1974)» where 'optimal' depends upon 

the criterion of optimality chosen, but they tend not to take into 

account the fact that the experimenter will often be interested in 

certain contrasts between treatments more than, or even to the 

exclusion of, other contrasts. It was decided then, that an algorithm 

be found which provided the experimenter with the design that 'best' 

met his needs, as regards his interests concerning contrasts between the 

treatments; 'best', of course, depending on the criterion of optimality 

chosen.

Algorithms have therefore been found for each of three possible
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criteria and the relative advantages of each given. These are 

detailed in chapter 4»

'The main aim of the thesis is to help those experimenters 

finding themselves with a design to construct and/or analyse which 

does not fit into the realm of the standard designs.



Chanter 2 The Analysis of a General Block Design

2.1 Introduction

If observations ¡r are known to have expected values X9. where 

X is known and 9  are unknown parameters, and it is also known that 

the error involved with each observation has the same variance f and 

is uncorrelated with the other observations, then the best linear 

unbiased estimate of ©, G say, is obtained by the principle of least 

squares (Gauss, 1821; collected works 1873) as

|  = (X’X r V i .  and d (£) = (X'X)~ V

if X is a matrix of full rank.

If the observations are not uncorrelated, but have a dispersion matrix
2 rsof V«r, where V is known, then the estimate of © becomes

(X 'V~1 X)~ 1_X'V- 1 and D(|) = (XHf 1X)- V* (Aitken, 1934).

Suppose now that X is not of full rank but that V = I. Then an 

unbiased estimate © of @  cannot now be found. Plackett (i960) 

imposes a set of linearly independent conditions on i.e. Bg = 0

where B is such that rank(X'iB') equals the number of unknown parameters. 

Then an unbiased estimate 6 of subject to B© = 0_, is given by 

0 = (X 'X  + B 'B)-1 X'£,

with

D(&) = (X'X + B'B)"1X'X(X'X +

The restrictions actually form the set of non-estimable functions of

An alternative method (Graybill, 1961 t>292) is to augment X'X, i«e.

use
'X'X B'l -1 ------ = A say,
B 0

and invert this. Writing the inverted matrix A as

-1 ry
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then is used for the solution, viz.

Q  = A^X'z » 3X1(1 D (®) =

Both these methods axe using generalized inverses (Rao and Mitra, 1971) 

to give a consistent solution to the normal equations subject to the 

restrictions B'g = 0_ . The generalized inverses are not equal 

(John, 1964) and in fact an infinite set of generalized inverses exists 

giving a consistent solution. The

generalized inverse may be considered as the dispersion matrix of Jl 

if estimable contrasts only are required (John, 1964)-

Now suppose that estimates of some of the parameters only are 

required, the remainder being unwanted or 'nuisance' variables.

Without loss of generality let the parameters be partitioned as

& = m
laj

where is the vector of the required narameters and are "^e
1 1nuisance variables. It will be seen that the partitions (X'X) and

(X'X)12 from

(X'X)-1 (X'X)11 (X'X)12

(X'X)21 (X'X)22

are all that is necessary, i.e. the whole inversion is not required. 

Schur's identity can therefore be used and this is essentially what 

Tocher (1952) does, first adding B'B to X'X because of the inherent 

singularity of the simple block experiment model. Tocher assumes 

that this is the only cause of the singularity, none arising from any 

confounding or disconnection in the design, and so gives a complete 

algebraic solution for all such designs. When other causes of singularity 

are present however, the restrictions B to be placed upon Q  are in 

general unknown and depend on precisely how the singularity of the 

design arises.

Rather than calculate the required inverse directly, iterative 

methods may be used. Hie method presented by Kuiper (1952) essentially
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does this, actually calculating as a sequence of vectors which

add up to the required answer. The Kuiper procedure converges even

when the design is confounded, since it effectively calculates the
1 1generalized inverse (X'^D automatically using the constraints supplied 

by the eigenvectors of the original matrix which correspond to the zero 

eigenvalues (Worthington, 1975)* Since the speed of convergence is 

dependent unon the value of the least non-zero eigenvalue (Worthington, 

1975)j if this is small, the procedure can be slow. The treatment 

sum of squares is easily obtained.

Variance information can be obtained when no confounding exists 

by Galinski's extension (1971) to Kuiper's method. This involves 

analysing suitable dummy variates so as to produce a row of the 

dispersion matrix as the estimated parameters.

If some knowledge of the eigenvectors corresponding to the zero 

efficiency factors (Jones, 1959) of a design is available then Pearce, 

Calinski and Marshall (1975) have extended Kuiper's method further to 

produce the dispersion matrix for singular designs also.

A procedure which will always converge in a fixed number of steps 

is that given by Wilkinson (1970). This uses 'sweeps' across the data, 

each sweep, corresponding to either blocks or treatments, calculates 

a set of means for the factor, divides them by an appropriate efficiency 

factor and subtracts them from the current input vector. Ihte next sweep 

is then applied to the resulting vector and so on until the vector of 

residuals appears. These efficiency factors are not in general known 

beforehand and must be calculated using a dummy analysis of pseudo

variates. This in general however, requires the solution of a polynomial 

equation of degree equal to the order of balance of the experiment to 

be found. As in Kuiper's method, this procedure will work for a 

confounded design.

A disadvantage of Wilkinson's method is the difficulty associated 

with calculating variance information (James and Wilkinson, 1971)•
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Finally, all present methods require a complete re-analysis 

for computing the inter-hlock analysis of a design.

No method exists which

a) can he applied to any design, whether confounded or imbalanced 

or whatever,

b) gives the dispersion matrix for estimable contrasts

and c) computes the inter-block analysis without re-starting the 

procedure.

An attempt has therefore been made to provide a reasonably 

efficient method which complies with all the above conditions. With 

this method, it is necessary to use the efficiency factors (Jones, 1959) 

of the design; therefore, due to the absence of a simple method of 

finding them, a standard routine will have to be used. A matrix 

inversion is also necessary, but the size of the matrix, equal to the 

order of balance, is in general small.

The method, given the efficiency factors of a design, produces 

enough further information about the eigensystem to allow an analysis 

to be made. An alternative method, derived from Pease (1965)» is 

compared.

Now, certain contrasts between treatments may be of interest to 

the experimenter; for example, the difference between the control 

treatment and the other treatments, or, whether a quadratic or higher 

order response exists between different levels or amounts of some 

treatment.

Providing these contrasts are independent of each other (in 

effect, that the covariance between them is zero), the experimenter 

will then require his treatment sum of squares to be oartitioned, 

with each contrast having a sum of squares associated with it, so as to
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be able to apply an F-test to each. If these contrasts satisfy certain 

conditions then they may lead to a simplification of the analysis.

2.2 Notation and Model 

The model used is 

X  = < L  D

where j  is a vector of yields of length N, N being the number of 

plots; ot- is a general parameter; D' is an (H x b) design matrix for 

blocks, b being the number of blocks; ji is the vector of block 

parameters of length b; A' is an (N x v) design matrix for treatments, 
v being the number of treatments; is the vector of treatment 

parameters of length v; and ^  is a vector of residuals of length N.

The dispersion matrix of the residuals is assumed to be l<r.

Hie incidence matrix, n, of treatments to blocks is then equal 

^ e  vector of block sizes, k, equals D1_ and the vector of 

treatment replications, r, equals A1.
bSIhe matrix a denotes the vector a, with elements raised to the

-b £power b, written in diagonal form; its inverse is a . Then 

AA' = r* and D D ' = k .

Also A M  = D M  = 1  .

Minimising leads to the Normal equations for treatment 

effects,being

a i = a  ,

where A = r^ - nk~^n1 (2.2.1)

and £  = T - nk ,

T> -Av, being the vector of treatment totals and B, =Dy. the vector of 

block totals. The matrix A is the same as the matrix £  used by 

Chakrabarti (1962).

Hie normal equations are singular, since A1_ = £. Tocher (1952)
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therefore assumed the constraints r]£ =0 ,  in which case the Normal 

equations can be written

(A + rr'/N)^ = Q say.

For connected designs .hi*1 is not singular and a solution is immediately
A,

available as ±  =

However, in general,more than one constraint is needed; these 

constraints cannot be arbitrary but depend upon the matrix,A , and the 

problem is that of finding these constraints.

2.5 Prerequisite Theory on Singular Designs

It is necessary to prove a preliminary result involving the 

eigensystem of a design.

Definition

Hie eigensystem of a design is the system of eigenvectors and

eigenvalues of Ar~.

Theorem 2.5
-iThe matrix Ar always has a complete set of linearly independent 

eigenvectors.

Proof

Let 2 = S A  (Ar~ )r2 ,* then P is symmetric and has, therefore, a 

complete set of linearly independent eigenvectors.

Let X be the matrix having the eigenvectors of P as iie columns.

'Then PX = where X is the vector of eigenvalues of P.

Since the eigenvectors are linearly independent, X is non-singular; 

therefore

X~1PX = i ,

i . e.
r  = >( ,

or
(r^X)"1Ar‘* ( A )  = / ,

which implies that the columns of ■£? X are the eigenvectors of Ar~
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But, (r3 X) is non-singular, therefore the eigenvectors are linearly 

independent. This completes the proof.

-iIf the matrix C has the eigenvectors of Ar as its columns, 

and is scaled such that

G'r~SG = I , (2.3.1)

then, since

i /
(Ar- )C = C£

- i  '  -1(where ± is the vector of eigenvalues), Ar *" can be written as G e.*C 

or, using (2.3.1), c j C'r-S.

Therefore

A = OeCG ' = ̂ c.c?fc. , (2.3.2)
i

if C = (cj , and £ = (tj .

Note that, from (2.2.1),

Ar- * = (I - M'),

where M = r-^nk ‘n'

and is the matrix used by Jones (1959) • Now, the eigenvalues of 

M , or equivalently, M', are equal to one minus the efficiency factors 

of the design (Jones, 1959). But the eigenvalues of M' are equal to 

one minus those of Ar ^ , therefore, the fc.'s correspond to the—  i

efficiency factors of the design.

It will be seen that one vector, r//N , c^ say, is always an 

eigenvector of Ar ^ , with efficiency factor (eigenvalue) zero.

A contrast between the treatment parameters is defined as c'j£ , 

where c_'1_ = 0 . Since all eigenvectors must satisfy (2.3.1), and c^ = r//N) 

then this gives the following restriction on the other eigenvectors: 

that c_.jr c^ = 0 for i # 1 or, substituting for c^, 1_'ĉ  = 0 for i jfc 1. 

The eigenvectors then, can be considered as contrasts. Due to their 

special nature as eigenvectors of Ar , they will be termed 'basic 

contrasts’, dliese are then identical with one form of the basic
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contrasts used by Pearce, Calinski and Marshall (1974)• The 

eigenvalues, then, correspond to the degree of confounding of the 

basic contrasts. Note that c^ , = t/J®', which corresponds to the 

mean, is always confounded, i.e. always equals zero. It will be 

seen that when no other confounding exists, that is when no efficiencies 

other than equal zero, than the addition of ĉ c_.j = rr'/N to 

expression (2.3-2) will cause (A + rr'/N) to be non-singular, because 

of the linear independence of the eigenvectors. The matrix (A + rr'/N)
^  -j

is, of course, the matrixfb used by Tocher (1952) for analysing 

unconfounded designs.

2.4 Generalized Inverses

A generalized inverse G of a singular matrix A is a matrix 

having similar properties to that of a normal inverse of a non-singular 

matrix. The relation AG = 1̂ cannot exist for singular A, but a 

unique matrix can be found satisfying the relations:

AGA = A (2.4.1)

GAG = G (2.4.2)

(GA)' = GA (2.4.3)

(AG)' = AG . (2.4.4)

rIhe original concept of a generalized inverse is due to Moore (1920), 

although he defined it in terms of projection operators over a complex 

field. Penrose (1955)» unaware of Moore's work also developed a 

generalized inverse, defined as satisfying the conditions (2.4.1 ) - 

(2.4.4) above. These two definitions are equivalent if a 

suitable choice is made of the projection operators mentioned above when 

applied to vectors (hao and Mitra, 1971). The generalized inverse defined 

as above is generally known as the Moore - Penrose inverse. For 

common applications, not all conditions need be satisfied, as will be

seen later



Suppose now the model 

E(z) = X0

is used, with errors ¿^having expected value zero and dispersion 

matrix la0. The matrix X is assumed in general to have rank less than 

the number of parameters. Goldman and Zelen (1964) show that the 

minimum variance unbiased linear estimate of an estimable linear 

function of g  can be found using

a  = ( D i  *

where X is the weak generalized inverse of X, satisfying only the 

conditions (2.4.1) - (2.4.3).

An easier way of finding B is to derive the (over specified) Normal 

equations

(X'X)I = X'Z *

and use a generalized inverse of (X'X) to solve them. Rao and Mitra (1971) 

show that only condition (2.4.1 ) need be satisfied by the generalized 

inverse so as to produce a consistent solution

0 = {(X'XTX'I y .

In fact, (X'X)-^' is one choice for X” above (Rao and Mitra, 1971 p140).

Returning to the model for the block design then, with Normal 

equations

A £ =  3  .

it is required to find a generalized inverse of A satisfying only 

(2.4.1). In the unconfounded case, Tocher's Q. (1952) is one possible 

solution.

Now, since A can be written in the form (2.3*2), then, using (2.3.1) 

enables a generalized inverse of A, satisfying (2.4.1), to be written

a~ = ,

£. , if £. 4 0

'll 1 if ei - 0

- 13 -

where
M i  = 9
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the 'tj/s ^e;>-ng any non-zero numbers.

A consistent solution for the Normal equations is then

jL = A Q - Æ. £ ,̂C *r ^  = r ^  » (2.4.5)

and the best linear unbiased estimate of an estimable function t_'j£ is
A

t/Jf . The dispersion matrix, for use in calculating variance 

information of estimable contrasts can be considered as A <r~.
r- .

Not only are all estimable functions of i unique (e.g. Rao and Mitra, 

1971 p 140)> hut the following theorem also applies!

Theorem 2.A
A

Hie vector ^  is unique, that is, it is independent of the choice 

of the used in the definition of £_x. .

Proof

The theorem will be proved by showing that c_|r Q  is zero if 

c_̂  corresponds to a zero eigenvalue, since then the will have no
A

effect upon the value of .

Now,
H  = T - nk_iB = (A - nk_6D)x

= A(l - D'k“S ) y  

= A for say.

Note that $  is idempotent. 

1 expConsider the expression ( cr~^A fo ( c r  A fo) 1 , which can be written as

çjr (a |A') .6r c. . ~~ ~1 (2.4.6)
-4But (A^A1) equals r6 - nk n ' = A = ̂ (c.c .

i
Therefore (2.4.6) can be written as

c.'r “gtc .c !fc.)r ^c. .
-1- -1u

Using (2.3.1), this reduces to . Now, if c^ corresponded to a zero 

eigenvalue, this implies that the sum of the elements of (c^r squared

is zero. Since the elements are real, this shows that (c|r A^y) or
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c^r ^  is equal to the zero vector whenever £ is zero. This concludes 

the theorem.

The theorem could also have been proved by showing that the 

constraints applied to the parameters by using A are independent of 

the , and that these constraints, H say, where H]£ = 0 , are such 

that rank(A;H') equals the number of parameters, v. The solution
A .

to the Normal equations, subject to HX = 0_ , is then unique (see, for 

example, Plackett, I960 p42).

Corollary
A _

'The constraints imposed upon ^  , due to the using of A , are 

c!k = 0 for all c. such that t . - 0.— —  — L 1

Proof

Prom (2.4.5)»

SJl = c/r" a  = c/r_iA|x ,

-{but, by the theorem, c.'r A<P = 0 if £. = 0, therefore c.' S' = 0 for all—1— x -a—
values of y_ .

These constraints are equivalent to those imposed by Pearce, Calinski 

and Marshall (1974)> who made the point that they correspond to linear 

combinations of the treatment parameters that cannot be estimated from 

the intra-block analysis, that is, they correspond to the confounded 

contrasts.

2.5 Calculation of the Eigensystem of a Design and the Generalized 

Inverse A~

As in section 4»

i
and
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where

E„.  =

L. , if t. 4 0l l
<7. / 0, if £. = 0ll 1

Since, from the previous section, the choice of the <^'s is immaterial, 

they will he chosen so as to minimise the computation involved.

It will be seen that letting the ■» oo is equivalent to ignoring 

the contribution from those eigenvectors having zero eigenvalues when 

forming A . In future, this choice of A will always be used; it can 

be written as

A~ (a.5.o)
i

where the summation covers only those values of i for which 4 0. 

This is a different procedure from that used by Pearce, Calinski and 

Marshall (1975) * who effectively defined the /^'s as 1 .

expanding Ar ^ in terms of its principal idempotents enables A to 

be written as

(2.5.1)

where
( i — 1,....,h)

are the h principal idempotents of Ar . The j summation covers those 

eigenvectors ĉ. having eigenvalues equal to . Note that the are 

mutually orthogonal, idempotent and are such that

¿ E l . = i .
i “

The matrix A- can then be written as

where the summation does not include the principal idempotent corresponding 

to the zero eigenvalues.

There is, then, no need to calculate each separate c^ (which 

are not unique anyway if there are multiple eigenvalues), just the
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principal idempotents (which are unique).

The number of principal idempotents, h, equals the order of 

balance of the design when a simple treatment model is used (Nelder,

1965).

To find the principal idempotents, it is necessary to find the

eigenvalues. Many standard routines exist for doing this, but only

one has been specifically developed for experimental designs, that of

Wilkinson (1970). This, however, requires a full analysis of dummy

data, along with computing the solutions to a polynomial equation of

degree equal to h, the order of balance. Mo other method could be

derived and so a standard routine must be used to find the eigenvalues.

If Householder's method (1964) is used to reduce the matrix to

tridiagonal form, followed by the bisection method of finding the

eigenvalues, the total number of multiplications is of the order

(n + 2n t) (Wilkinson, 1965, p306), where t is the number of steps

used in the bisection sequence and n is the order of the matrix.
✓

It is probably easier to find the eigenvalues of I - Ar than 

of Ar , since most standard routines find the eigenvalues in decreasing
- Corder. Since the eigenvalues of Ar , corresponding to efficiencies,

-iare less than or equal to one, those of _I - Ar are greater than or 

equal to zero. The routine can then be stopped as soon as a zero

eigenvalue is found because any remaining eigenvalues will also be
-i -Czero. Since eigenvalues of Ar are equal to one minus those of I - Ar ,
-ithe zero eigenvalues of I - Ar therefore correspond to contrasts 

estimated with full efficiency. The matrix I - Ar is the transpose of the 

matrix M used by Jones (1959) and therefore will in future be written M*.

The eigenvalue routine should actually be applied to the symmetric 

matrix

_, *2 MI-.ÎH = r 3 M'r

since most standard routines are written for symmetric matrices
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However, since H is similar to M', it will have the same eigenvalues

(see, for example, Graybill, 1969» P46). The number of distinct

eigenvalues, excluding those corresponding to zero efficiency, equals

the order of balance of the design, under a simple treatment model.

It is now necessary to find the L. matrices. Two methods will be given.—1
Method 1

Prom (2.5.1), M' can be written as
h
^ ¡ ¡ i ) ,  whereyu. = 1 - £. . (2.5.2)

Since the L^'s are idempotent and mutually orthogonal, (M')n can be 

written as

(£’)“ = • 
i=1

A set of simultaneous equations in can now be set down:

I =^'L._  --1
1

X

(M*)2 (2.5.3)

(M')h- 1 ii)-
i

These equations could possibly be simplified if some of the

eigenvectors (basic contrasts) were given. Hiis situation can arise

since the experimenter can fairly often guess one or more basic contrasts.

It is quite easy to check whether a given contrast is basic and also
-6to find its efficiency by simply pre-multiplying by Ar or, equivalently, 

by M 1. If some basic contrasts are found, then their contribution to 

the set of equations (2.5.3) can be removed. This is analogous to 

Nelder (1965) testing whether parts of his treatment model are possible 

spectral matrices of the Normal equations; if all spectral matrices 

are found then he calls the design balanced under the (complete)
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treatment model and the analysis follows on directly. The contributions 

from any basic contrasts given can be removed in the following way: 

Suppose that contrasts c^,..,c_p are known (c^ is taken to 

correspond to the mean and will always equal r/fiT, with ̂  = 1). Then 

equations (2.5-3) are re-written as

where

the k summation covering those of the basic contrasts having efficiency 

equal to .

The point is that if all the basic contrasts having efficiency
/ * \are given, then that has been completely determined (i.e. = 0)

and the number of simultaneous matrix equations can be reduced by one 

for each such . This can easily be determined since the multiplicity 

of each £. is known iron the application of the standard eigenvalue 

routine. If the number of basic contrasts having efficiency equal to 

£. equals the multiplicity of , then that L. has been completely 

determined.

It should be noted that the adjustments, in (2.5«4)> need only

be applied to the first equation, since the j such equation can be
i/h.generated by multiplying the (j-1) by M' (because of the orthogonality 

of the eigenvectors).

Now, if

^  = (M')k - 4 h 3 - j ^ ) - ^  (k =
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where (M1)^ = I , then (2.5.4) can be written as

where

If

*
I I ... I-0

••
s

/M /*2 •** /*h
• • •• • •• • • •

h-1 h-1 h-1
[4-1 M  /*2 *•* /*h

0 _ 0 T
/rL " A l  ~  *

A :

1 1 ... 1

A i  A 2 A h

h-1 h-1
n  n

4

*
4

(2.5.5)

then the matrix of coefficients in (2.5«5) can be written as

/rB =/ t® ~  ’

where <S> signifies direct product. The inverse of^  can then be written

1 mm'\
=/+ ®  I *

and the solution to (2.5.5) becomes

*

■*0 '#
•
•
•

-1
•
•
•*

A , 4-1
or

*
L. = (xT1). ..A.

r  10 ~0-1

The size of the actual matrix to be inverted is therefore equal to 

the number of unknown distinct eigenvalues.

The matrix Aj,is in fact Van der Monde's matrix and has
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a determinant equal to

±  X f o  - r p  ■1<J

Since the /*-. 's are distinct, it can be seen that the matrix^£-is never!A i
singular.

Ihe formula for A is then

A = r~ ̂  (c .c !
+4 S I ’

and the analysis follows directly.

Method 2

An alternative method of determining the L.'s is to use the formula 
L. = T V  (M' - I) ,

(see, for example, Pease, 1965, p27l).

15ie formula is derived in the following way:

From (2.5.3),

and

= &

(2.5.6)

(2.5.7)

Multiplying (2.5.6) b y g i v e s

A l f  h  “ A 1  •

Then (2.5.7) minus (2.5.8) gives

t̂h-A }h]= a* - A ji

(2.5.8)

(2.5.9)

that is, the matrix L. has been removed in expression (2.5.9). 

Producing equations analogous to (2.5.9) for all j ^ k, where is 

the matrix required, and multiplying them all together gives
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because is then the only such matrix common to all the equations 

and the are mutually orthogonal and idempotent. The required 

formula follows.

This method may also be modified to include any known basic 

contrasts by changing formulae (2.5.6) and (2.5.7) to

5E kj_ = I  - ^E(%ĉ )r' *= Aq
i i=1

and

^ H - i )  = " ¿ ^ 1 2i2i)rT =

Proceeding as before, but noting that the analogous equation to (2.5.9)
*

for removing L. is not required if all basic contrasts having V) *
efficiency £. have been given since L. is then 0 , gives the formula 

J "j

i* - 7T (t, .

Ihe second (Pease) method is probably to be preferred, if hand
*

computation is to be used, if there are few matrices to compute. In 

general however, a computer will be used and it will be necessary to 

examine the number of operations involved in each method.

Ihe first method requires (h-2) matrix multiplications at operations

each to form the iL matrices. The inversion will require o(h^) operations
2 _1

and there will be a final ht operations involved in forming ®  l)A,
3 3 2giving a total of the order (h-2)v + hr + ht

The second method requires (h-2) matrix multiplications at t^ 

operations each for each matrix, the final matrix being divided by 

7A ^  ~ /*-■) t that is, a further (h-2)t + t operations. The total,
i^J 1 ^

therefore, is hj(h-2)t^ + (h-2)t + t̂ "j operations.

It will be seen that there are always fewer operations in the first 

method than in the second, since h is always less than or equal to t.
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2«6 The Inter-block Analysis

The inter-block analysis is used if the arrangement into blocks 

in a simple block experiment has been to some extent ineffective. 

Additional information about the treatments can then be obtained from 

the differences between blocks if certain assumptions are made as long 

as sufficient degrees of freedom exist (Fisher and Yates (1963) advise 

ten degrees of freedom or more for balanced incomplete block designs).

Yates (1939) showed that 'interblock estimators' could be 

obtained from the block totals and that they were uncorrelated with 

the intra-block estimators. They could therefore be combined with 

weights inversely proportional to the respective error variances, this 

then giving the best linear unbiased estimator (Yates, 1940 ; Tocher, 

1952).

The assumptions to be made are that the block effects are random,
1* thwith zero mean and variance say, for the i block. The model, 

now called the 'mixed model', can then be written (with a possible 

reordering of plots) as

= A'j£ + ̂

with

D<%> cr
£1

Se

0

and % )  = 0 ,

2b

(2 . 6 . 1)

where C. = I + dj. 11 ' , is a (k. xk.) matrix.- 1  —  K —  ' 1  1 '
P

A complete analysis could proceed from here, using the model (2.6.1) 

to get a single estimate of (see, for example, Patterson and Thompson, 

1971» for the case 1̂ . c ). However, difficulties arise because of
v *"the need to use estimates of the block variance and the error variance &,
r

A
The analysis is simpler if separate estimates of £  axe made, one
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inter- and one intra-block, in the fashion of Yates (1939). For the 

estimation of the inter-block effects, the model is now based upon 

blocks rather than plots, i.e. the model is

B = n '1 + £  ,

where the ¿j_'s are uncorrelated, with the variance of ̂  equal to

k. (1 + k.Ofti) <r1 i > i
'<r

Now, if the block size is constant, and is constant (= , say), then

D(̂ _) will equal kt/*! , where <r = <r ■+ k<^. If block size varies, but «5̂. 

is constant, theq no simple analysis is possible. However, if were 

to be inversely proportional to the block size, i.e. ^  = ¿^/k^ , then 

D(^) would equal ¿fcr , where + <^ .

This last proposition is reasonable in as far as it implies that 

large blocks tend to vary less than small ones. For example, an 

experimenter can be reasonably sure of the amount of yield from a large 

block, but realises that unforseen circumstances can vary the yield 

from a small block quite considerably.

It should be remembered though, that no physical randomisation is 

possible with unequal block sizes. The model may still be acceptable 

however, if, for instance, blocks were randomly selected from larger 

blocks.

Assuming then, that the dispersion matrix of the errors is 
%■

where ^  depends upon the assumptions made, the analysis can proceed.

A close analogy exists between the inter-block analysis and split 

plot designs, since the main plot analysis in a split plot design can 

be made using a similar model with the dispersion matrix k ̂ (1 + (k-1 )/o)crj_I, 

where is the correlation between experimental errors in the same 

block.

Using least squares theory, the Normal equations for a model

B = n '£j + with D0̂ _) = k <r1"* (2 . 6 . 2)
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are (nk n')ÌT = nk~^B . (2.6.5)

The parameter has been given a subscript I to differentiate between 

the inter and intra-block estimates of the treatment parameter.

Now,
-Í (

nk n 1 = r - A = A^ say, (2.6.4)

where A is the matrix used in the intra-block analysis and can be 

written
-Sr"  (from 2.3.2)= G / C ' ,

-6where C = [c_̂ | is the matrix having the eigenvectors of Ar as its 

columns with eigenvalues . The eigenvectors are scaled such that

C'r~*C = I . (from 2.3.1)

Since C is non-singular, premultiplying (2.3.1) by C and postmultiplying 

by C 1 leads to

CG* = rf = • (2.6.5)
i

Using (2.6.5) and (2.3.2) enables equation (2.6.4) to be written as

Aq = ^ % c ¿)-£(c^ lJ£í), 
i 1

i

=  ̂ | = » (2.6.6)

where a. = 1 - £, ./ i 1
The Normal equations, (2.6.3)» can now be written

( C ^ C O Í j = nk~^B . (2.6.7)

Notice that the basic contrasts, c^ , again play an important role,

but their efficiencies' are nowyt^ instead of £ , corresponding to the

fact that the inter-block stratum is being used.

It will be seen that the same L. matrices that were used in the-a
intra-block analysis, that is =^|c^c^r °, the summation being over
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those eigenvectors having eigenvalue , can be used in the inter-block 

analysis. This is because a generalized inverse of (2.6,6), needed to 

give a consistent solution to the Normal equations (2.6.7)>can be 

written as

= L^E(ki\ * (2»6.
T U y
' j

where the i summation covers only those basic contrasts having non-zero 

interblock e f f i c i e n c i e s a n d  the j summation is over all L except 

the matrix corresponding to zero efficiencies. As in the intra-block 

case, this choice of generalized inverse is the one involving the least 

computation. It is in general not the same as the of Pearce, Calinski 

and Marshall (1974) who effectively defined 1^u^ as 1 when^«^ = 0.

Because the matrices will already have been found from the 

previous intra-block analysis, then A^ can be calculated and hence the 

complete inter-block analysis can be carried out without difficulty.

The total sum of squares from the model (2.6.2) is B'k ^B , corresponding 

to the block sum of squares plus that for the mean in the original 

analysis of variance table, and it is this which will be partitioned 

to give the inter-block treatment sum of squares with a corresponding 

residual sum of squares and that for the mean.

The weights required for combining the two estimates of the 

treatment parameters can now be estimated from the two residual mean 

squares; one estimating , the other, <r . If there are not enough 

degrees of freedom for ihe error mean squares, then the method of 

Nelder (1968) for estimating weights may be used.

2.7 Partitioning a Sum of Squares According to Contrasts of Interest 

It frquently happens that an experimenter will wish to know the 

contribution to the treatment sum of squares given by some component 

of the treatment parameters. For example, he may be interested in
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whether or not there is a significant difference between a control 

treatment and some other treatment, or whether, in a factorial experiment, 

the average response can he considered linear or whether quadratic or 

even higher orders need he taken into account. For standard designs 

this is reasonably simple, hut for complicated designs it can he difficult. 

One way, for calculating the sum of squares for the difference between 

two treatments, would he to analyse the desigh and- compete the treatment 

sum of squares, and then to merge the two treatments together, analyse 

this new design and compute the new treatment sum of squares. The 

difference between the two is then the sum of squares for the difference 

between the two treatments.

A formula for calculating the sum of squares corresponding to 

some general hypothesis is given by Pringle and Bayner (1971) and extended 

by John and Smith (1974).An alternative derivation of this formula, 

using an extended result of Rao (1966) will now be given.

Hie sum of squares corresponding to some linear hypothesis or 

system of linear constraints on the parameters can be defined as the 

difference between the residual sum of squares with the constraints 

applied and the residual sum of squares without them. An equivalent 

definition is that used by Plackett (1%0, p54) > who defined the sum of 

squares corresponding to a linear hypothesis as the diference between 

the relative minimum of

W = (y - X9) ' (y - X®) (using the model y = Xfr + n )

when the hypothesis is true and the absolute minimum of W.

Expanding W as

[(z - x|) + X(§ - &)] [(z - xe) + X(£ - e)j ,
where © = (X'X)”X'y, the least squares estimate of O'(without the 

constraints), gives

W »  (y - X|) '(z ~ x|) + ( ! - & )  'X'X(6 - Q) + 2(9-Q) 'X'(z ~ Xg)
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But,

r ( y  -  M ) = X '(y  -  X(X'X)“ X '2L)

= (£' - (X'X)(X'X)"X')2L •

Now, consider

fxCx’xTCx'x) - xj flix'xî ix'x) - x]

= £̂'£)~(x'x) - i.yx’|X(x*20"”(x*2D - xj
= [(X'X)“(X'X) - Î  [(X*X)(X'20“(X'X) - X'x"j ,

and the second fa c to r  vanishes by d e fin ition  (2 .4 -1 ) o f a generalized 

inverse, which im plies that X' -  (X 'X K X 'X )":^  _ q >

The expansion of W can now be written as

w = (y: - M) '(z  -  xè) + (è - ej -  £) •

Because the least squares estimate of & when the hypothesis is true is 

obtained by minimising W under those constraints, then, since the first 

expression in the expansion of W above is constant, it will be seen 

that the desired estimate can also be obtained by minimising

(è. - £) TX(© - £) (2.7.1)
subject to the linear constraints upon & .

The actual minimum obtained is then equal to the sum of squares 

corresponding to the hypothesis, h say, since the absolute minimum of 

W is clearly

(Z- É Ò  ,

the first term in the expansion of W above, as (2.7-1) is a positive 

definite quadratic form.

Rao (1966) gives the infremum of a quadratic form X'-AX under the 

constraint B'X = U , where A  is a positive definite matrix, as U'S-U , 

where ¡3 = B'A. b . This can be extended to a singular positive semi- 

definite A  , if certain restrictions are placed upon the choice of B, 

in the following way:

Let A  be the generalized inverse of À  and S the generalized
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inverse of B'A B , satisfying only condition (2.4.1).

It is assumed that B'X = U is consistent, then if B is such 

that B' = OA, i.e. estimable, rank(B'A B) = rank(B), and so

the equation B'A BX = U is consistent and the following hold, where 

X* = A"BS"H >

B'X* = B'A“BS_U = SS-SX = SX = U ,

and
x* 'AX* = (u'S~ *b \[C' )A(A-;BS~U),

which, using the facts that B* = CA  , SS_ U = U and AA ’A = A for a symmetric 

generalized inverse A , reduces to

X*'AX* = U'S~U .

It is now necessary to show that X'AX ^ U'S~U for any other X satisfying 

the condition B'X = U.

Consider the identity

(y - Y W Y  - Y ) = Y'Y - Y'Y - Y'Y + Y'Y V- 1 -±2' V-1 ~2 -1-1 -1^2 -=2— 1 ^2^2

Tk«_ L.H-S.is clearly positive and so

Y'Y. ^ Y'Y_ + JXL - IÀL,— 1— 1 ^ — l-^ <2r2

Now,let X, = A 3X , X2 = A'X , then

Therefore,

I ‘I2 = X ’KS U = U ’S U = Y ^  .

X' X > U'S"U + U'S"U - U'S~U = U*S“U

The minimum of X ' X, where B'X = U , is then U'!S U if B is such that 

B'A~B = U is consistent. 'This minimum is unique under the choices of 

A  and S" .

Applying this result to (2.7.1), with the hypothesis h as L'j& = &

( U = L'0 - z),the hypothesis being consistent, gives the sum of squares 

as
( L ' i  -  z)  , ( L ' ( X ' X ) ” i j ) " (L '&  -  z )  ,
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which is the same as John and Smith's (1974) result. 

Now, let &  he partitioned as

£  =

where is the parameter vector for treatments and ^  are nuisance 

Parameters. The hypothesis to he tested is £'/ = 0 . This gives 

B = (C ; o) and U = C'Y . If X'X is partitioned conformably, then 

(x'20- can he written as

(x'xf =

where A is the matrix (2.5.0) used in the intra-hlock analysis; that 

is, the dispersion matrix for the treatment parameters (e.g. Rhode, 1968,

P 245).

The minimum of (2.7.1) can then he written as

( C ' i ) ' ( C  ,A"G)_ ( C ,i )  .

The conditions placed upon B were that B'A 3^ = U must he consistent, 

i.e. £  must he such that C'A £X = £'X is consistent. This is satisfied 

if C'A £  is of full rank (though not a necessary condition). A particular 

case occurs if £  is simply a vector, whence C'A^C is a scalar, being 

non-zero if var(£'Y) is non-zero, i.e. if £'£ is estimable. If £  = [cl, 

then the sum of squares for the above case is

c 'A~ c

Suppose now that £  is such that £'A-£  = 1/^ ^ , where rank(A-) = t.
Now £ can he written as Si) , where S is the matrix of basic contrast*  .

for some D. If S is partitioned as S \S 1 , where S holds the basic—  —  l-n.—  zJ’ ~z

contrasts with zero efficiencies, then D can he conformably partitioned

as [I], where Y is a square matrix. Using the expansion (2.5.O) for A

and the relation £'r £  = I between basic contrasts implies that
-i£'A C = Y'_e Y = I ,



- 31 -
'"where t_ consists of__the nooatzero efficiencies only. The matrix Yj is‘V  

therefore of full rank and so YY* = J .

Then CC' can he expanded as

m w  - a d l d - i a i a -  -

= S C S' + S ES' + S E'S' + S PS' ~n~ ~n ~n— z —z---n —z— z
s A + S E S '  + S E ' S '  + S P S '  .—  ~n— z —z-- n —z— z

Since i = A. , V 'CC 1Y can he written as £'A CG/A £  , and because

A = 0 , V/CC/X reduces to V/AV » the normal treatment sum of squares.
A

The sums of squares, therefore, corresponding to the together

form a complete partition of the sum of squares. This implies that

if contrasts are chosen such that c.'A c. is zero if i 4 i, and is non-
-i---D

zero for i = j, then these contrasts form a complete partition of the 

treatment sum of squares, the only condition being that the covariance 

between them is zero and the variances are non-zero. Note that this 

condition is sufficient hut not necessary.

For the partition to he useful, it is necessary that

(£'J0 ,(G,A~Cj“ (C,j£)

has a chi-square distribution under the assumption that

N(0 , (C'A“G)) ,

for some C where C'A £  is perhaps singular.

Rao (1966) gives a sufficient condition as

A ( aAa - A)A = 0 ,

where the quadratic form is Y'AY and D(Y) = A  . Inserting (C 'A £) as A  

and (CA G_) as A shows that the condition does indeed hold. The degrees 

of freedom corresnonding to the quadratic form is tr(AA). again from 

Rao 1966). In this case, this gives tr((C_'A £) (C'A C)), If G'A C_ is 

non-singular, the number of degrees of freedom is equal to the number 

of columns of £, i.e. the number of separate contrasts. If there is 

a remainder part of the sum of squares, then this is also distributed 

as Ghi-square since there must exist some contrasts to augment those
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given to produce a matrix £  such that £'A £  is of rank equal to that 

of A (since such a matrix always exists). The augmented part of £ 

would then form a quadratic form with a chi-square distribution.

A similar argument can also be applied to the inter-block treatment 

sum of squares. Here the model is

E(D = n 1 ,

D(B) = k .

Because the dispersion matrix is not the analogous equation

to (2.7.1) for minimising is

(ii - l i) ,n k " V ( i l - 4 ) . (2.7.2)

The minimum of this, under the constraints C'tf. = 0 is

( c ' ^ ' C c ' r c r t e ^ )  ,

-
where A = nk_ n ' , if £  is such that C 'A C k = £3. is consistent.

This can be satisfied if G'A G is of full rank (not a necessary

condition). The particular case then of C being a vector and c'A~c_  ---o

being a non-zero scalar gives the sum of squares according to the 

hypothesis c ' 4 =  0 as

(c’4 ) 2-L •

c 'A c ---o—

3h an exactly analogous proof to that used in the intra-block 

stratum, it follows that the general sum of squares

(G'y.) ,(g ia~g )~(g ,2:,)

has a chi-square distribution with the number of degrees of freedom 

equal to tr[(C_'A^ C_) (C 'A^C)] , or in the case of (C1 A~C) being of 

full rank, the number of columns of £.

If the contrast used corresponds to a basic contrast, then c 'Dĉ . 

always equals zero, where D is either A or A^ depending on the stratum 

involved. Also, if the efficiency of a contrast in the intra-block
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stratum is not zero, then c_'A c_ equals 1/£, and if non-zero in the 

inter-block stratum equals Ihe sum of squares corresponding to

c. is then \c_'±).e or (c, depending on the stratum.

2.8 Derivation of Basic Contrasts in Certain Special Gases

Prom the previous sections it has been shown that if some basic 

contrasts are known then a simplification of the analysis may result. 

Now it may happen that in a design certain treatments are what

is known as proportionate (Pearce, 1971)• Two treatments are termed 

proportionate if

n.. . = &nr2 j ’

for all 1; the treatments being 1 and 2, and n . . an element of the 

incidence matrix. Pearce shows that differences between the two 

proportionate treatments are estimated with full efficiency. In fact, 

such a contrast is basic, and if several treatments are proportionate, i.e,

n 1J = 6 m 2j =<fn33 = / n 4j et0-’

then an orthogonal set of basic contrasts between them could be written 

as

' 1 ' 1 ' 1 1-1 9- e-
0 -(fr+1) V,• 9 0 9 -(©-+<{4-1)
• • 0

- • •

etc..

A further property treatments may have is defined by Pearce as

equivalence. Two or more treatments are said to be equivalent if

interchanging them has no effect on the analysis of the design. Pearce

shows that contrasts between such treatments are estimated with

efficiency -/3/r , where oi is the diagonal element and the off-diagonal
*—1element of Tocher's Ji (1952), or, equivalently, A , corresponding to 

the equivalent treatments, and r is the replication of one of the 

treatments. Such contrasts also turn out to be basic.
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2.9 A -rogram for the analysis of a general block design

A program, GEN, for the analysis of a general block design has 

been written in ALGOL 60 to be run on the IGL 4130. A listing of 

the urogram, together with some example runs are given in appendix B.

lhe program requires only the incidence matrix of the design to 

be analysed and the data from the experiment. Contrasts may optionally 

be given to the urogram. If some contrasts are basic, the program will 

attempt to simplify the analysis using these. The treatment sum of 

squares in both strata are partitioned according to the basic contrasts.

The non-basic contrasts have their corresponding sum of squares given 

separately and a matrix giving the variances and correlations of the 

contrasts enables the experimenter to partition his treatment sum of 

squares further according to the non-basic contrasts if they are independent 

of the basic contrasts that is, c A c  . = 0 i^j). If some are not 

independent, the sum of squares can still be of use since the experimenter 

knows the correlation between them and the other contrasts.

ihe program will always give the matrix M', the order of balance 

of the experiment, the efficiency factors, the grand mean, treatment 

means and block means, the treatment effects from the inter- and intra

block analyses, the block effects if the mixed model is not used, the 

analysis of variance table and the dispersion matrix for the estimable 

contrasts of the treatments, i.e. A .

2.10 Discussion

The original problem was to find a general method for the complete 

analysis of any block design, whether confounded or unbalanced. The 

method given may seem to be rather a difficult one in that the eigenvalues 

of the design must be obtained and a matrix inversion calculated.

However, for designs that are not connected, information about the 

eigensystem of the design seems essential if non-iterative methods are 

to be used. Wilkinson's method (1970) can yield the distinct efficiency
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factors, but not only requires a complete analysis of the design with 

dummy variates substituted for the data, but then requires the roots 

of a polynomial of degree equal to the balance of the design. The 

finding of these roots, which are the efficiencies of the design, can 

present difficulties if some degree of imbalance exists since iterative 

methods of solution would be needed for orders of balance greater than 

four. It is true that the method presented here requires the inversion 

of a matrix of order equal to the balance, but that can proceed directly 

since the matrix is known not to be singular.

Comparing this direct method with the iterative method presented 

by Kuiper (1952), it may be se°n that the work involved in the direct 

method is proportional to the degree of imbalance, whereas in the 

iterative method it may be shown (Worthington,1975) that the work 

involved is proportional to the highest amount of incomplete confounding 

that exists, that is, the lowest non-zero efficiency factor governs 

the speed of convergence - the lower the value, the slower the 

convergence.

However, the direct method lends itself much more readily to the 

analysing of many experiments, all of which have the same design, since 

most of the work is done in calculating the matrices, these depending 

on the design only and therefore need only be calculated the once. A 

further advantage is that once the matrices have been found, the 

inter-block analysis and (as will be shown in chapter 3) that of the 

dual immediately follow on.

The use of treatment contrasts when analysing a design is useful 

since not only do thay permit a possible simplification of the analysis 

if some are found to be basic, but also several, not necessarily related, 

questions nay be asked of the experiment, each having its own estimate 

of reliability due to the fact that an F-test can be made for each

contrast
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An improvement to the method could be made by finding a better 

method of determining the efficiency factors. It seems wasteful that 

when so much is known of the structure of the matrix M, recourse has 

to be made to complicated methods.
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Chapter 3 The Dual of a Block Design

5.1 Intr oduc ti on

The dual of a block design is defined as that design generated 

from the original when the treatments are used for the blocking system 

and the blocks are taken as treatments. The incidence matrix is 

therefore the transpose of the original.

The idea of dual designs appears to date back to Bose and Hair (1939) 

who used them as a means of generating new designs. However, dual 

designs sometimes have a practical importance as can be seen in the 

case when the blocks of a design actually correspond to the residual 

effects of former treatments. It may now be important to study the 

block differences eliminating treatments and Pearce (1968,1970) makes 

the point that this is achieved by considering the dual of the design.

It will be shown that the dispersion matrices for the 'treatment' effects 

in the inter and intra block analyses for the dual are directly related 

to a combination of those of the original design* a separate calculation 

of the analysis of variance is therefore not required.

Relationships between the efficiency factors (Jones, 1959)and basic 

contrasts of one design and those of the other are given, as are 

relationships between the various measures of mean efficiency of one 

design and those of the other.

5.2 The eigensystem of the dual design

The following theorem relates the eigensystem of the dual with 

that of the original design.

Theorem 5.2

If an eigenvalue of a design is not equal to unity then it is also 

an eigenvalue of the dualised design and vice versa. Further, there is 

a direct relation between the eigenvectors corresponding to that 

eigenvalue in the two designs; namely, if c is an eigenvector of the 

original design with non-unit eigenvalue, £., then
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is the corresponding eigenvector for the dual.

Proof

The eigensystem of a design was defined in chapter 2 as the system 

of eigenvectors and eigenvalues of Ar f Then

(Ar-S)Ç = Ce5 (3.2.1)

where G_ is the matrix having eigenvectors c^ as its columns, with 

eigenvalues £. held in E^.

The matrix Ar can be written as

Ar = 3[ - nk ^n'r  ̂ (3.2.2)

from the definition of A, (2.2.1).

The analogue of A in the dual design, A^ , is defined in the 

manner of A, except that n is replaced by n', r by k and k by r, giving

A# = kf - n'r- n

AJc_ ̂  as - n'r ^nk ^ (3.2.3)

The eigensystem of the dual is then the system of eigenvectors 

and eigenvalues of Â k_- .̂
/ \ -SNow pre-multiplying (3.2.2) by n'r and post-multiplying 

(3.2.3) by the same, yields the result

n'r ^Ar ^ = A ^  ̂ n'r 0 (3.2 .4)

But, from (3.2.1)

n'r"^Ar“SG = n'r-SC<f (3-2.5)

and using (3.2.4), (3.2.5) can be written 

A^k"5(n'rf^C) = (n'r""^C)s5.

Non-zero columns of the (bjtv) matrix (n'r C), therefore, are 

eigenvectors of AJc ,with eigenvalues given by £ , thus, by definition,

they form part ofthe eigensystem of the dual.
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However, these non-zero columns could, be linearly dependent, 

and to prove they are not, it is sufficient to show that they satisfy 

B'k B being a diagonal matrix, where B is a matrix of eigenvectors 

of the dual.

Consider then,

(n'rf^C) 'k”^(n'r”% ) (3.2.6)

which equals
— S x _ SC'r ink n')r C . (3*2.7)

But, from (3.2.2)

_S v
(nk n ') = r® - A .

Therefore (3*2.7) can be written as

- A)r-<5C

°r ~ C'r 6\Ar~ĉ~)C ,

which simplifies to

I -«f (3.2.8)

on using (3.2.1) and the fact that

c'rfcg. = I . (2.3.1)

Thus non-zero columns of (n'r C_) are indeed independent.

It is now required to show that a column of (n'r C} is non-zero 

if and only if the corresponding eigenvalue is non-unity; or, equivalently, 

that a column is zero if and only if the corresponding eigenvalue is 

equal to unity.

Assume that n'r” c. is zero, then (n'r c.)'k (n'r c.) must be

zero and hence, from (3.2.6) and (3.2.8), £unust be equal to unity.

Assume now that eq>ials unity, then from (3.2.8) and (3.2.6)

(n'r c^) 'k (n'r”cc_̂ ) must be zero. But k is a positive definite
—<5*matrix, therefore (n'r c^) must be a zero vector.

Therefore, since a non-unit eigenvalue of the original design
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corresponds to a non-null vector, and therefore to an eigenvector of 

the dual design, all non-unit eigenvalues of the original design are 

eigenvalues of the dualised design. Also, since the argument can 

equally well be applied starting with the dual design and forming the 

dual of that (that is, the original design), any non-unit eigenvalue 

of the dual is an eigenvalue of the original design.

Finally, since eigenvectors of the dual are scaled to satisfy

b ‘ k“ f b  = 1,

then, from (3.2.8), non-null columns of (n'r <̂C) should be scaled to 

n'r %  /]( 1 - )) This concludes the theorem.

Some important consequences can be drawn from the above theorem:

1) If there are more treatments than blocks in a design, then at least 

(v - b) of the efficiencies will be unity, with the analogous result 

that if there are more blocks tK<u\ treabneats , then at least (b - v) 

of the efficiencies of the dual will be unity.

Proof

The proof can be made a little easier by considering the matrices

M = I  -

311(1 M* = I - A*k""<̂  .

The eigenvalues of these matrices are then equal to one minus the 

corresponding eigenvalues of Ar S or S. The eigenvectors are 

unchanged. Now

tr(M) = tr(Mj (3.2.9)

using the definitions of A and A^ and the fact that tr(AB) = tr(BA).

Since the trace of a matrix is the sum of its eigenvalues, (3*2.9)

gives the result
v b (3.2.10)

where
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a M  /“*i = 1 - ^  ,

the values £ being the eigenvalues of A„k .

However, theorem 3»2 states that all non-unit eigenvalues of 

one design are eigenvalues of the other. Apnlying this result to the 

gives all non-zero eigenvalues of M are non-zero eigenvalues of M^.

To make (3.2.10) hold therefore, requires that if v > b, then at least 

(v - b) of the ^ ' s  are zero, that is, £^'s are unity, and if b > v, 

then at least (b - v) of the yu^'s are zero, that is, £^'s are unity.

Note, however, that some other efficiencies may also be unity.

2) The number of efficiencies equal to unity in a design equals 

v - rank(n.).l
Proof

The total number of non-unity efficiencies equals the number of
—<5* —Xindependent columns of (n'r C), which equals rank(n'r £). Since r"'5^

is of full rank,

rank(n'r~^C) = rank(n') = rank(n) .

The number of efficiencies equal to unity, therefore equals the 

total number of efficiencies, v, minus the number of non-unity 

efficiencies, rank(n).

3) The order of balance of a design ( in the Nelder (1965) sense for 

a simple treatment model) is less than or equal to rank(n).

Proof

'The order of balance of a design, with a simple treatment model, 

is defined as the number of distinct efficiency factors, excluding 

that corresponding to the mean (which equals zero). But the total 

number of non-unity ^ ' s  equals rank(n), from 2) above, or rank(n) - 1 

when the efficiency factor for the mean, , say, is excluded, the total 

number of distinct £.'s then, without s., must be less than or equal to 

rank(n) - 1 plus one for the unit efficiencies, that is, the total is 

less than or equal to rank(n).
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4) If the number of treatments, v, equals the number of blocks, b, 

then the order of balance ( in the sense of cart 3) ) of the original 

design will be equal to that of the dual. If v > b, then the order 

of balance of the dual will be equal to, or one less than, that of the 

original design, and if b > v, the order of balance of the dual will 

be equal to, or one more than, that of the original design.

Proof

Ihis follows from the fact, proved in the theorem, that non-unit 

efficiencies are identical in both designs. Hie remaining |b — v| 

unit efficiencies of the design having the most 'treatments' will be 

either distinct or not from those of the other design. The result 

follows.

3.3 The analysis of the dual design.

Hie direct analysis of any design revolves around obtaining the 

generalized inverse A , used to obtain consistent solutions to the 

normal equations, and to provide a dispersion matrix for the calculation 

of the variances, etc., of estimable functions of the treatment 

parameters.

In the case of the dual, the matrix required is , where is 

the analog!« of A defined for the original design. To find the 

generalized inverse, it is necessary to find the eigensystem of the 

dual. But all the eigenvectors corresponding to non-unit eigenvalues 

can be found from those of the original design. If B holds the eigen

vectors of the dual as its columns, then partition B as j B̂̂  : b J  , where,for 

some ordering, B^ holds those eigenvectors with non-unit efficiencies ,

and B those with unit efficiencies. The matrix B is easily found since -u -n J
S  .it is the non-zero columns of n'r Ĉ _ , when 1/^ is defined as zero if

-Aequals zero, since those correspond to zero columns of n'r C.

It will be shown later that it is not necessary to know itself, just

B B '.-u—u
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To find B^B^', it is necessary to use the scaling requirement 

applied to the eigenvectors, that is

B'k"5B = I ,

or, equivalently since B is non-singular

BB' = ka .

Partitioning B, and substituting for gives

f , -s  '■ 1 f , -s  1 sĵ n 'r Ĝ i ; B l  B'r n = k

B '-u /

~S -&2.which is allowable since extending B by the zero columns of n'r G 

makes no difference to BB

Expanding the above equation gives

But

B B ' = ká - n ,r-iGju~S"c'r-5n-U~U ---------~ r ~ ----- ---
-A - A . - S

(3.3.1)

£  0f£ C'r“ = r c.c.-~i— i
i

Where the summation does not cover those values of p which are zero, 

since 1/juu was defined as zero if u. were zero. Therefore, by (2.6.8),

£*Cp~SQ ' £ S = A ^  , (3.3.2)

the matrix A^ being the dispersion matrix for the inter-block analysis 

of the original design.

Substituting for in (3.3«1) gives

B B ' = k^ - n'A n —u—u — —  —O —

Now, again by analogy with the original design,

a * = ads.’ >

where £ ,A are the eigenvalues of the dual, a generalized inverse of which 

will be chosen as

A.." = k~^B£ *k~^ ,

where 1/E- is taken 'to be zero if ^ i s  zero.
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Partitioning B as ^  : B^J again, and as £ - 5-*n

-S _S -s -g . -Sgives Aj, =s k E t. B 'k + k B B 'k—* —  -nr'*n ~n — —u~u —

It will now be seen that B by itself is indeed not required, just B B~u -u-u
-S -<&*.Substituting directly n'r Cp_ for B^ cannot be done since in general

it would lead to inconsistencies in dimensions involving . However,

augmenting B^ by zero columns corresponding to the zero columns in
_y _<?/!

n'r Sn , and correspondingly adding extra unit diagonal elements in 
-i& „ enables not only the substitution for B to be made but also *n —n

—«5* —5*enables the augmented £. to be replaced by e  , since by the theorem, 

non-unit 's have equal counterparts in the dual, and unit £ 1 s produce
—S' —$7.corresponding zero columns in n'r Ĉ w .

The matrix A„ can now be written as—-vr
- _<r . s  s  s  s  s  - -sA* = k n'r Oja e £ T3'r nk + k - k n'A^ nk

= k ^n'r c(̂ i (C'r ‘C'r t?nk~J + k ^ - k-<5n 'A ~nk~^ —o —
(3.3.3)

using C_'r 0 = 1̂ . 

How — <51 —s . —5 —Sir-!»• ¡1 — (?r Ce C'r = r \  c.c.'r
a t .i i

where the summation does not cover values of i for which equals zero. 

'Therefore, from (2.5.O),

x~hCc~SQ<r~S = A" (3.3.4)

Substituting this and (3.3.2) into (3.3.3) gives

a - , -S - 6 .- . -<r -S , -S . . - -<TA* = k n Aq r A nk + k - k n 'A^ nk

= k ^ + k ^n'A^ (r^  A -  l)n k  ^ (3.3.5)

If a design is connected, and therefore has no zero-efficiencies

ar>art from that corresponding to the mean, £. , then Tocher's II-1 matrix

(1952) instead of A, may be used, which effectively changes the efficiency
-1£ -j to unity. The matrix II can then be inverted directly, giving ft,
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which can then be used for analysing the experiment in the same way 

as was A-. Now, if the original design was connected, then so will 

be the dual since in the definition of connectedness, blocks and 

treatments are symmetrical. ! The analogue of dl then, , say, may be 

used for the analysis of the dual if II was used in the original design. 

In this case it appears that

lhis result then enables the analysis of the dual to proceed 

directly from that of the inter-block analysis of the original design.

If the inter-block analysis of the dual is required, then the 

analogous matrix to A^ is needed, A ^  say. The expression for A Kq, in 

terms of the eigensystem is

-if
A*q = 2 ^  B' , where = 1 -

by analogy with that for the original design.

A generalized inverse will be chosen as

-€ -6 , -4A*0 = ÌL B'k (3.5.6)

where 1/^.^ is taken to be zero if y ^  is zero.

^Partitioning B as ^B^ i B ^  again, and correspondinglyyurx
— 6 i 1
n

as

0

0

0

since u n i t y ' s  correspond to zero y^'s, enables

(3.3.6) to be written as

JS -t , -6A* = k B u ^ B  ’k 
—*0 — -rÿvn-n —

(3.3.7)

- C  - &As before, substituting directly n for B^ cannot be

done because of the possible inconsistencies with the dimensions 

i n v o l v i n g . It is required then, to augment B^ by zero columns
/ _Ch

corresponding to the zero columns in n 'r GjuT , and correspondingly to
-¡r

add additional zero diagonal elements to . This then causes the
_  £a u g m e n t e d t o  be equal to^  , since zero columns of n'r C.
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corresponded to zero ^ ' s  in the original design, and 1 /yu. = 0 if

= °*

Equation (5.5*7) can now be written as

A*0 = 3l s. r Qjt -fî p 2,'r nie

which equals k. ̂ n1 t~^G £ S (G lr~JCW"^C 1 r^nk~° 

because of (2.5.1).

(5.5.8)

Substituting (5.5.2) into (5.5.8) gives the required formula for as

* — , — & ,. - S. -  — <fA„ = k n ' A r A  nk 
—*0 -----------------o---------o — (3.5.9)

If the method of analysis given by chapter 2 had been carried out 

for the original design, that is, the matrices had been found , 

then equations (5•5«5) and (3.5*9) can both be simplified as follows:

For the Intra-block A^ , consider the expansion of k - i).

Now

and

A “ = r ^ Ç u ’V r ’^ -o —  -p ---

A" = r^Cfc^C 'x~S

from (5.5.2) 

from (5.5.4)

where in both cases the reciprocal of zero is taken as zero. 

The expression k^~ £  £  - k j  is then expanded as

£ SQ}±S1 ' £ Sc£ * c ' £ S - £ sc £ sc ' £ s

-cTwhich, since C/r  C = I, equals

£  - p * ) V £ *

= r y f ç iÇ i Y _ L _ . l ' ] r -
¿-l lhi£i

(5.5.10)

where reciprocals of zero are taken as zero. 

Expansion of the term in brackets gives

1 1 
' hi

1__ or 1
1-r i

which equals
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for the case when ja. and £ are both non-zero.

If u, = 0  both terms are zero while if £. = 0  the first term is 

ignored while the second is not.

Equation (3.3.10) therefore may be written as

A ~tSA~ - A
r  -

. (3.3.11)

i i

where the i summation is over those eigenvectors for which fc. is not 

zero or unity, while the j summation is over those eigenvectors 

having ^  zero.

Now, the matrices L. are defined as

g—' _ 8
L. =/ c, c. 'r —1 '“iCTC ~k

the summation being over those contrasts having efficiency 

Substituting the L. matrices in (3.3.11) gives

A A - A-TO---—O 1 r~^~, Li -

1 1

where corresponds to zero efficiencies, and the i summation is as 

above, in (3.3*11).

Substituting into equation (3.3*5) gives

-8-S  -S' -S  r- 
Ay. = k + k n ’r

or —  — S  —  «5* ,  - r b , —— i T  .  — <5*= k + k n'r \ L^nk

1
- L. nk

1 1

with £.f's such that 1 /t. ' is zero if 6. = 1, -1 if £. = 0, and normal1 i 1 1
otherwise.

For the interblock A*. , consider the expansion of A r°A .—*•0 —o --- 0
Substituting for A (from (3.3.2)) gives—o

A —o
_  s  - 6  S  .r Aq = r C¿* G'r Gju C_'r with 1/̂ * = 0 if p  = 0.

-2¿‘ , -<T = r C/r

—5*since G_'r C_ = and so



AT>

- 48 -

the summation being over those values of i for which is non-zero. 

Substituting the L. matrices gives

A "rJA "—O ---D

and. therefore

■ i He-i t \ , ~s= k  S. 5. /y ^ L .\ n k

where the summation does not cover zero A
Since both A^ and A are both now known, 

analyses can proceed without difficulty.

's.

the intra and inter block

5.4 Relationships between the mean efficiencies of a design and those 

of its dual.

The efficiency factors (Jones, 1959) of a design give an indication 

of how good a design is compared to an orthogonal design with the same 

treatment replications. If there are many distinct efficiency factors 

the problem arises of trying to find some sort of 'mean' efficiency 

with which to judge the design, and also, so as to be able to compare 

the design with another, different one. When the dual is required it 

is useful to know the mean efficiency of the dual, given that of the 

original design, and to know whether or not it has a higher or lower 

'mean' efficiency.

Pearce (1968, 1970) defined the mean efficiency, i,, for adjusted 

treatment means as

v (3.4.1)

tr(rffi)

where v is the number of treatments, and J7. is the matrix used by 

Tocher (1952) for connected designs. This is the harmonic mean of the
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values tU./9., where 1 1

is the variance of the ith mean, that is, n  and.
<L©  .<5 is the variance of the ith mean if an orthogonal design had been

nossible, that is l/r^.

No w ^L "* is equal to /A + rr* \ and so it follows thatJ^-^r 6 has the
V." N /

same eigensystem as Ar ^ except for the eigenvalue corresoonding 

to the eigenvector r/Jif . This has the value 1 for 52 r 5 as onposed 

to 0 for Ar c. For a connected design then, .ft- r has no zero eigen

values and the matrix therefore has eigenvalues 1/g, , where = 1.

Equation (3.4«1)» then, can be written

£  = v (3-4.2)

that is, the harmonic of the efficiency factors, where has been 

taken as unity.

If the dual is considered, then by analogy with the previous 

argument, the mean efficiency for adjusted 'treatment' means of the 

dual, say, is

£ >  = _  (3.4.3)

where are the efficiency factors of the dual, again with £* taken 

as unity.

However, theorem 3*2 and its first corollary proved that non-unit 

efficiencies of one design had equal counterparts in the other, and 

any excess efficiency factors, from the larger design, were unity.

The following results therefore follow:

+ (b-v) = ¿ V

(3.4-4)

(3.4.5)
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b
H k *  ( b - v )  “ È riTT 1 *i

Substituting (3.4*6) into (3.4.3) gives

Î  -  b
* ~ Z i  + < * - *

which, using (3.4*2) can be written as

(3.4.6)

f . - 7g- + b - v

that is, £ = —* v + (b - v ) £

in agreement with Pearce's (1970) result. In fact, Pearce essentially 

derived result (3.4.6), but in a different form. The E used in his
v | - _b_, 1

nroof is > —-- v , or equivalently, ^___ 'T~ “ b.
W  i i=1

However , results (3.4*4) and. (3.4*5) enable the relationship 

between the mean efficiencies to be calculated under different 

definitions of the term 'mean efficiency'.

Suppose mean efficiency is now defined as the arithmetic mean of 

the efficiency factors, that is

(3.4.7)

This is meaningful since

= triiPr-5') ,

that is, it is now not the ratios of the diagonal elements of the 

dispersion matrix of the design, with those of the dispersion matrix 

of the orthogonal design that are being used, as before, but the ratios 

of the diagonal elements of the information matrices of the design and 

the orthogonal design.

'Che corresponding formula for the dual is

b
(3.4.8)
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Using (3.4.5),

£ * = £  € i + (b ~ v)
b

and substituting (3.4*7) gives

£* - v£ + b - v 
b

A possible third definition of mean efficiency is the geometric 

mean of the efficiency factors, that is

This measure, too is meaningful since, because the determinant of a 

matrix is the product of its eigenvalues,

that is, it involves the ratio of the determinant of the information 

matrix of the design to that of the orthogonal design. It will be 

seen that optimality procedures which seek to maximise the determinant 

of the information matrix are maximising the mean efficiency as 

defined in (3.4*9).

'The corresponding formula for the dual is

Note that, in all three definitions of mean efficiency given, 

if b ? v, then > £ (since & must be less than or equal to one). 

Therefore, as Pearce (1970) pointed out for the harmonic mean, the

design with lower actual replication for the group, blocks or 
treatments, will have the higher mean efficiency.

(5.4.9)

i

(5.4.10)

and substituting (3.4.4) into (3.4.10) gives

which reduces, using (3.4*9), to
V

£* -  (£) b •
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5.5 Discussion

The theorem giving the relationship between the efficiency factors

of a design and those of its dual can be seen to have an important

consequence, the analysis of a dual design can now follow on directly

from that of the original design with the minimum of computation. The

theorem also proves useful for finding relations between measures of

efficiency for adjusted treatment means from each design. However,

Pearce (1968, 1970) also defined a measure for the mean efficiency with

respect to differences of means. This is then defined as the harmonic

mean of the (new) values cP. ./Q. . where
T iJ ij

= variance of difference between treatments i and j

= 32.. +SI. . - 251. . ii ij ij
and (0.. = variance of difference between treatments i and 5 for

ij
an orthogonal design

It can then be shown that in the equi-replicate case, this 

definition is equivalent to the harmonic mean of the efficiency factors 

excluding the efficiency corresponding to the mean (§^ in section 3*4), 

which is a reasonable definition. Pearce's relations between the mean 

efficiency for a design and that for its dual follow readily from the 

armlieation of (3.4*6).

However, in the non-equi-replicate case, the definition does not 

reduce to being equal to the harmonic mean of the efficiencies 

excluding as above. Consequently it has not been possible to prove 

or disrrove Pearce's (incorrectly proven) result concerning the relation 

between the mean efficiency with respect to differences among treatments 

and the mean efficiency with respect to adjusted treatment means. It 

does not seem clear at the moment whether or not Pearce's definition is 

in some way 'unnatural' or whether its relationship to efficiencies has

not been understood
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Chapter 4 The construction of optimal block designs when contrasts 

of interest have been given.

4.1 Introduction

When designing an experiment a statistician has available a number 

of criteria for choosing between possible designs ( for example, that 

of mean efficiency, mentioned in the previous chapter). Also available, 

but which, because of computational difficulties (to be mentioned later), 

tend not to be used, are methods for constructing designs that are 

optimal with respect to some criterion.

Apart from the computational difficulties, many such procedures 

are ill-suited to the design of block experiments for two reasons:

a) Much of the work in the field has been concerned with 'continuous' 

designs, that is, where experimental conditions can take any number of 

different values, as opposed to discrete designs, where only certain 

possible values can be taken (for example, replication of a treatment 

must be integral). Most of the procedures therefore decide what 

proportions of the total number of observations should be allowed at 

each possible experimental point. When the total number of observations 

is specified this in general leads to non-integral replication at each 

point. If the total number is not specified, it may require that the 

total number be large so as to either obtain optimal integral replications 

or to have integral replication that closely approximate the optimal ones.

b) In the block design case, the procedures attach equal importance to 

all possible contrasts between treatments and, as Pearce (1974) pointed 

out, they will then give similar status to all treatments and differences 

of treatments. That is, the'optimal design'they therefore evaluate is 

either a randomised block design, a totally balanced design, or one in 

which treatments occur either p or p + 1 times per block, (see Box 1968, 

Wynn 1972). In practice not only may the experimenter not be interested 

at all in certain contrasts, but could well ascribe different levels
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of importance to those contrasts that he is interested in. V/hat is 

required then, is to bse an optimality criterion which will take into 

account the contrasts of interest to the experimenter and the weighting 

attached to each. It is necessary to find a method which will construct 

the corresponding optimal discrete design for a specified number of 

observations.

As was mentioned before, the computational difficulties of such 

procedures are sometimes prohibitive, since a search through the space 

of the independent variables is usually entailed to find the point 

which maximises some function (see, for example, Federov, 1972, p 1649» 

that point then being added to the design,replacing the present 'worst' 

point. Box and Draper (1971) used a 'direct search' routine for the 

construction of D-optimal designs, but reported satisfactory results 

for small designs only (less than 30 co-ordinate values).

Because of this, the approach presented by Dykstra (1971) will be 

used. Dykstra advocates using a given set of candidates for the 

sequential construction of a D-ortimal design, choosing that point from 

the candidates which results in the largest possible increase in the 

appropriate function. Mitchell (1974) lists the following advantages 

of using candidate points:

a) The search procedure can be programmed very easily,

b) It is easy to exclude points that axe not experimentally 

feasible or desirable,

c) Variables can be either qualitative or quantitative

and d) The number of different levels for each factor can be kept 

low.

Particularly because of points (a) and (c), it was decided to use 

the candidate method when constructing designs optimal for criteria 

other than D-optimality.

Three possible criteria will be examined; two based on the well 

known D-optimality and A-optimality criteria and one put forward by
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Pearce (1974)• In each case an iterative procedure will he derived

with which optimal designs may he constructed.

4.2 A Criterion Based upon D-optimality

D-ootimality is a very common criterion for use in constructing 

optimal designs, and one of the most popular for comparing designs, 

having its origin in a paper hy Smith (1918).

Suppose the model used is

where ̂  is the vector of parameters and £  independently and identically 

distihuted random variables with zero mean and variance

The D-optimal design is then defined as that design having the

(1959) gave a sampling theory justification of the criterion, and also 

showed that the D-optimal design has the smallest confidence region 

for the estimates of ihe parameters. Keifer (1961) showed that a 

D-ootimal design is also a minimax design, that is, it minimises the 

maximum variance of a predicted value. The above justifications, 

however, only apply in the continuous case.

A disadvantage, mentioned hy Box and Draper (1971), is that 

D-ootimality ia a 'variance criterion', and effectively assumes that 

the chosen model is the true underlying one. However, because of the 

work of Stigler (1970), they deduce that D-optimality is not unrealistic 

if the design is restricted to a region of interest.

Now assume that contrasts of interest have been given and are 

held columnwise in the matrix V , then the generalized D-optimality 

criterion will be, for a specific number of observations, to choose 

X so as to minimise j V'DV| where D = (X'20-1 (Pederov, 1972, p53)* The 

matrix V'DV is the variance - covariance matrix of the contrasts between 

the parameters rather than the parameters themselves.

Z = Zfi + £  *

minimum or, equivalently, the maximum |X'X|. Box and Lucas

An important disadvantage of this criterion, compared to those



presented, later, is the fact that if weights are attached to the 

contrasts, then this has no effect on the choice of the design. This 

can he seen by supnosing weights w are. given, that is Vw^ is to be 

used instead of V, and it is therefore required to minimise |w^V'DVw^|. 

But, since v/ is non-singular,

|/v«Dv/| = | ^ |  |V'BV| = K|v'DvJ

where K is a constant over all possible choices of design, therefore 

it is still required to minimise |V1OV |.

It should be mentioned that in certain cases it may be simpler to 

use a restricted model rather than use contrasts applied to the full 

one, for example, if only first and second order interactions in a 

factorial experiment were required.

4.5 Iterative method of constructing generalized D-optimal designs

The basic procedure is essentially that advocated by Dykstra (1971)» 

and extended by Mitchell (197 4), that is

a) Scan the candidates for the point which, when added to the design, 

results in the maximum possible decrease in the determinant, then

b) Remove from the design, that point which effects the minimum 

possible increase.

(The above steps could equally well be reversed.)

It will readily be seen that this procedure must result in a decrease 

of at least zero, since the 'worst' that can happen must be to subtract 

the point (or an equivalent point)that had just been added . These steps 

are then repeated until no further improvement can be made.

A formula for deriving the appropriate point to add or subtract 

from the design can be found as follows:

It will be seen that rows of the matrix X correspond to the experimental 

points of the design, the actual form of the row being determined by the 

model used. Adding a point in the design therefore corresponds to

-56 -
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adding an extra row, x', say, and the new (X 'X )  can "be found from the 

old (X'X) by simply adding x*.'» that is,

(X ’ X) = (X'X) + XX

By simple matrix algebra, the inverse of (X*20new can Be found as 

4 ew = (I + , (4.3.1)

where
D = ‘ (X 'X ) ] “ 1-new r---new)

and
D = ( X 'X ) -1 .

Using the identity

(I + AB)“1 = I - A(I + BA)“1B 

in equation (4.3.l), with A as Dx and B as x gives 

D = (I - Dx(l + x'Dx)~1x')D .

But x'Dx is a scalar, therefore,writing v(x) as x'Dx as in Mitchell 

(1973) , gives

I) = D -  I)xx 'D -new —  -----
1 + v(x)

(4.3.2)

Since y  = X'^ and = ¿cr, then

var(y^) = var(Xjyi) = ,

and so v(x) is the variance of the observation y corresponding to the 

point giving rise to the row x' .

Post and premultiplying (4.3.2) by V and V' respectively gives

V'D V = V'DV - V'Dxx'DV . (4-3.3)—■ -new- ----— —
1 + v(x)

Substituting the identity

| A -  GBj = 11 -  BA-1 G||A|

in equation (4.3.3) with A as V'DV , C as V'Dx/.^ 1 + v(x)), and B as C'
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gives

| l % ewl| = (1 - |v'2jj
1 + v(x)

= (1 - ) Iv d v I (4.3.4)
1 + v(x)

where R =( V ’DVj"^

and = V'i)x .

If V is replaced by .1, then (4.3.4) reduces to the same formula 

as that used by Dykstra (1971) for sequential designs.

A similar formula can be found for the case of removing or sub

tracting a point. For this case

(X»X) = (X*X) - XX*

Proceeding in a similar manner as before,

D = Bxx'D - n e w -----
1 - v(x)

and |TL%ewTL| = (1 + 3 ^  )iV'DV| .
1 - v(x)

(4.3.5)

(4.3.6)

with R and as before.

Since the object is to reduce | V'D^^Vl by as much as possible 

when adding a point and to increase by as little as possible when 

subtracting a point, in both cases the point chosen must be that which 

minimises the expression

where

{+1 when adding a point -1 when subtracting a point .

Having chosen a point, a reasonably simple way of updating R can be • 

found by noting the identity obtained from equation (4.3.2), that is

(A + zz/)  ̂ = A 1 - A zz'A

1 + z'A~^z

(4.3.7)
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Since the new R after adding a point can be found as the inverse of 

^  equation (4.3.5)» substituting R for A, and i. J( 1 + v(x) )L for z_ , 

gives

R = R + Rq a ' R —new — 'V x  ~
1 + mv(x)

for adding a point where m is the multiplier used for updating the 

determinant |V'DV| , that is

m = 1 - •

1 + v(x)
-1The new R can also be found after subtracting a point by taking A as R 

and as c^//( 1 - v(x))' in equation (4.3.7)» giving

R = R - Rq q'R -new —  .x x —
1 - mv(x)

for subtracting a point where m is again the multiplier used for 

updating | V *>DV |, that is

m = 1 +

1 - v(x)

The matrix D is easily updated using formula (4.3.2) or (4.3.5) 

according to whether adding or subtracting.

It should be noticed that R always exists if D does since if D is 

positive definite and V is of full rank (that is the chosen contrasts 

are not linearly dependent), then Y W  is positive definite.

4.4 Excursions

Since in discrete designs, the probability of a procedure 

converging to a locally optimum design instead of the global one is 

found to be quite high, Mitchell (1974) advocates the use of 'excursions' 

to improve the chances of not being trapped at a local optimum. The 

restriction that after adding a point to the design, the procedure must 

subtract a point is relaxed and an 'excursion' is permitted where designs
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of various sizes are constructed, each time adding or subtracting one 

point, eventually returning to the original size, n say, The rule is 

this: if it is known that returning to n points would produce no 

improvement, then another point is added, if not, a point is subtracted. 

The determinants of all those designs, of size greater than n, 

constructed on an excursion which led to no improvement in the required 

n-point design are remembered and it is these, the failure designs, 

which the procedure checks against when deciding to add or subtract a 

point. An exactly analogous procedure exists when starting off by 

subtracting rather than ading a point; in this case the excursion is 

always over designs with less than n points.

When using contrasts, the determinants checked will be | V'DV| 

rather than ¡X'X|. Each time an excursion leads to an improvement in 

the determinant, the set of failure designs is cleared and the procedure 

starts anew from the new 'best' design.

Mitchell advocates setting limits at plus or minus six points 

away from n for the excursions, else the excursion wastes too much time 

and rarely results in an improvement. Limits less than these would not 

give enough freedom for the excursions.

A disadvantage of the excursions is that singularity can result 

if too few plots are being used (if n is less than the number of

parameters plus six). To stop this, Mitchell considers (X'X + oC2Sq Xq/Nq )
/

instead of X'X, i.e. M(e*) instead of M(o) say, where cx. is a small 

positive number, X^ the desigi matrix with all of the specified 

candidates present, and the total number of candidates. He then 

minimises | M(cx)| instead of |X'Xj . When X'X is singular, M(c*.) 1 is 

an approximation to a generalized inverse of X'X as defined by Chemoff 

(1953).

There is obviously an error involved in doing this and Mitchell 
shows that the proportional error in considering M(«l) instead of X'X 

is approximately v , where v is the average variance of y^ taken over
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all candidates. The quantity v is usually less than one, and indeed, 

Federov (1972, p.71) shows that in the continuous case, D-optimality

minimises the maximum variance of y.,v(x.).1 — i
When using contrasts a similar procedure can be followed, 

minimising |V'_D(«<)V| instead of |V'DV|, where

2 W  = ( M M ) ' 1

The matrix D(o) is then D when (X'X) is not singular.

As before, an error is involved and it can be approximated the following 

way:

Expand log IV*B(oc)VI about e< = 0 in a Taylor series, that is

log IV'!>(««•)VI ~  logll'DVl a_logll'DWV|^ (4.4.1)

Now i_(log|Yl) = tr/Y_13X'\, (Graybill (1969)»p.266) (4.4.2)
**■ x ^  )

therefore

AlogtV'D(o<:)vl = trr(V'D(^)v)"1^_(V,D(oi)V)

Also,
jL(X'D(oOv) = ,
¿XX h£-

and, from Graybill (1969), p.267,

-1  -1  -1A X = -X dX X ,

(4.4.5)

(4.4.4)

therefore,

3 D(*) = 3 /X'X + ocX'X \~1 = -/X'X +<<X'X \-1X'X /X'X + oa'x \~1
— v /  °  i — — —w — 1 l -----------—n —r% 1 —r»—n  / — — —n —n  1

3 /X'X + c<X'X \~ = - /X'X + <<X'X \
d r -  i n ^ F )¿oC. ¿oiA

Expression (4. )  can now *>e written as

-p-p{- 
N / N \o o

"b<X.log| V'Dk)V j = -tr '(I,̂ ) D - 1y 'd U ) W 3 W v

~N

~o~o 1 
N /

which at«L= 0 becomes

_  1  tr^X^OV(VlDV)~1V 'DX'J

since D(o) = D,
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and finally

- ¿ 2 ^  -
No

where the summation covers all the candidates.

Now, for small

D(qc) - D(0) ^  log D(ot) - log D(0) ,
B(0)

which, using equation (4.4.1) means that the proportional error 

involved in using D(oc) rather than D is approximately

For many exoeriments, the average q^Rq^ will be less than one, 

therefore taking o* as 0*005 would give an approximate error of less than

0*5% •

Continuous R-optimal designs with given contrasts actually minimise

the maximum value of q^Rq^, a result which will be oroved by generalizing

to include contrasts Federov's (1972, p7l) result about normalised

D-optimal designs minimising the maximum v(x). A normalised design is

simply a design in which the X'X matrix is altered to equal ~.X'X .

In general a normalised design will be designated as £, and the matrices

corresponding to that design will be written D(£.) etc.
•#

Now, let the optimum design be £ and some arbitrary design be £.

Then Federov (1972, p66) shows that any design £ can be considered as
*

corresponding to the linear combination of the designs £ and £,

£ = (1 -<*.)£. + oCZ 0-=oC<1 .

Now,
A  log|l,I)(£)l| = trj(V'D(£)v)"1V'^ D(O.V
■u 1 V

and
lR(c) = -2.U)i , where M(t) = D-1(c) = X'(c)x(?),

using equations (4.4*2) and (4.4.4).

Now, if c = (1 - ot)t +°££, then

M(£) = (1 -<*)M(e*) + <*M(£.) , from the definition of M .
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Therefore,

and

*M(c) = M(c) - M( /)

¿log|V'D(£)Vj
~bci.

= -tr
>¿=0

S(0V'D(£)[m (£) - M( c*)]d (£)V
«¿=0

= -tr R(£*)l'D(£*)[M(i) - M( *) D( l  )V

which, using M(£ )d ( l ) = _I , and R(£ )VP(z )V = I ,

-trjR(f*)V,D(£t)M(c)D(£*)vj + p ,

(4.4.5)

where p is the number of contrasts.
* » . 

However, since £ is optimum, that is, it has the smallest |Y'DY|, the

value of the derivative must be greater than or equal to zero.

Now assume, without loss of generality, that the arbitrary design

consists only of one point, that is,

M(c) = x x ' ,

and that this point is one of those contained in i , then, from (4.4*5) 

trjR(c*)V'D(£*)ra'D(e*)vJ - p = tr jx'DU*);«^ e*)V'D( *)xj - p

= a^L( - p £ 0 •

(4.4.6)

Now consider ^  3̂  Rq^ /N , where the summation is over all N points 
i i 1

of some general normalised design, that is, consider 

<  xp V R V 'Dx. = trCDVRV' D ^  x.xl/N) ,
N

which, since DM = I.,
= tr(DVRV *DM).

= tr(V'DV.R) = p .

That is, the average q ̂ Rq^ equals p for any normalised design. 

Therefore the maximum q^Rq^ must be greater than or equal to p. In 

particular,
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max(q^R(£ )g_x.) ^  P (4*4.7)

Comparison of (4.4.6) and (4.4.7) shows that the optimum design £. 

minimises the maximum (a^RU*)^).

For unnormalised designs, ^ R q ^  will be l/N times that of the 

normalised design, that is, the average q^Rq . for the continuous 

design, would be p/N.

4.6 Fixed block size

A useful restriction to place on procedures for constructing 

optimal block designs is to enforce block sizes to equal some fixed 

values given by the experimenter. This might be needed, for instance,s 

if the experimenter is working with pots on a shelf, or plants with 

shoots as blocks and leaves as plots.

This facility can easily be incorporated into a procedure such as 

that outlined in sections 3 and 4 in the following manner:

All blocks have a condition number attached to them; this number is 

zero initially when the original design is set up with correct block 

sizes. Whenever the block size is changed by adding or subtracting a 

point, then the corresponding condition number is altered, being always 

equal to the difference between the present and correct block sizes.

If the condition number is negative, therefore,a block is undersized, 

and if positive, oversized.

Now suppose that the procedure is in the middle of an excursion 

with a design having more design points than the original. Then if it 

is decided to add a further point, this proceeds exactly as before, 

and the condition number of the effected block is increased by one.

If it is decided to subtract a point, then the search over the candidates 

should be conducted over only those candidates which correspond to 

blocks having a positive condition number.

If the procedure is in the middle of an excursion with a design
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subtracted exactly as in the original procedure, and the affected 

block condition number is decreased by one; but when adding points, 

the search is conducted over only those candidates corresponding to 

blocks which have a negative condition number.

This new procedure must still give a positive or zero decrease in 

|V'DV|since the worst that can happen is for the procedure to subtract 

the same points from the design that were added (or vice versa).

4.6 Over-specification in the Model for Block Designs 

In the ordinary block experiment the model

(from chapter 2)

is used. The matrix X for this model is

X = [ j_ j D ' A'

which is not of full rank because

D M  = A'l = 1

The matrix X'X is therefore always singular. 

Mitchell (1973) re-defines the model as

where

9 • • •  9b-1)

- * (i = 11 1 V 9 • • • 9v-1)

if = D with the b ^  row missing

^ *fch
A = A with the v row missing

b = number of blocks

v = number of treatments

Because D-optimality is independent of any non-degenerate linear
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transformation (Federov, 1972, p80), any other re-definition makes no

difference to the choice of the optimal design. Any contrasts to be
"fchapplied to the treatments will have the v element missing. This

makes no difference to the value of the contrast since, if c is a

contrast with elements c., then1
v-1 v-1 v v-1

c .X* - c.(tf. - ^ c.K. - c ^ ) - X* ^  c . .l l l i v . „ l i  v v v ; li=1 i=1 i=1 1=1

v v-1
But ^-7c. = 0 by definition of a contrast, therefore c. =

i=1
V-1 V

c.o. = ^  c.tf. - c ^  + c ^
i=1 1 1 i=1 1 1 V V V V i=1

i=1

c.K . 1 1

-c , and v

4.7 A Computer Program

A FORTRAN IV program, VDVMIN, based upon Mitchell's DETMAX (1974), 

has been written to produce designs minimising |V'DV|. A listing and 

example run are given in appendix 0. Essentially able to be applied 

to any model, it is at the moment in the form for optimising block 

designs, the only alterations needed being the replacement of a 

subroutine defining the model and the removal of the restriction to 

fixed block sizes. Because of the possibility of finding a locally 

optimum design only, the program is applied several times starting with 

a randomly chosen design each time; also, there is the option of 

starting with a design chosen by the user.

When augmenting a design, the original points will need to be 

retained, and the problem is to find the new, larger, design without 

altering the points from the old one. This is achieved by reading into 

the program any 'protected' joints seperately from the other candidates 

and only choosing points to add or subtract from the unprotected

candidates
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4.8 A criterion based on A-optimality

An alternative, and possibly a more natural criterion to use when 

designing experiments is that of A-optimality, or minimising tr[D.(, 

that is minimising the mean dispersion of the estimates of the 

parameters. Chemoff (1953) gives a statistical justification of the 

use of the A-optimality criterion for the general case where the 

information matrix depends on the values of the unknown parameters.

Federov (1972) states that (tr(l)(.Ji)̂ , where D = (X'X)“ \  N = number of 

points, equals half the length of the diagonal of a cuboid circumscribed 

around the ellipse of dispersion.

Although A-optimality is a very easy criterion to apply between 

two designs to decide which is the better, procedures for constructing 

A-optimal designs are more complicated than those for constructing 

D-optimal designs. A further disadvantage is that the A-optimal design 

is not invariant under non-degenerate linear transformations of the 

parameters.

However a relative computational advantage does not occur when 

contrasts of interest amongst the parameters are given and require to 

be estimated in some optimal manner. Further, A-optimality has the 

overiding advantage over D-optimality in that weighting factors can be 

attached to the contrasts when constructing the optimal design.

The criterion used for judging optimality when contrasts and weights 

are given will be that a design is optimal for a given number of points,

N, if it has the minimum tr^w^V'DYw^/ over all possible designs, where 

V is the matrix having the given contrasts ofinterest, held columnwise, 

and w is the diagonal matrix holding the corresponding (arbitrary) weights.

The urogram VDVMIN (see § 4*7), can also nroduce A-optimal designs.

4.9 Construction of A-optimal designs when contrasts and weights have

been given

Federov (1972, pl69) gives an exchange algorithm for constructing 

A-optimal discrete designs which could be generalized to include
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contrasts and weights. However, it requires a search routine to find 

the maximum of a function and would therefore entail much computation, 

the actual amount depending upon the size of the design and the number 

of unknown parameters. The procedure could be simplified somewhat by 

the use of candidates as advocated by Dykstra (1971) for the construction 

of D-ontimal designs; also, rather than exchange two points directly, 

it is simpler, and leads readily to the use of 'excursions' as suggested 

by Mitchell (1974)* to alter the design one point at a time. That is, 

in the simplest case, to add on that point which results in the maximum 

possible decrease in tr(w^V'DVw^) and then to subtract the point giving 

the minimum possible increase in tr(w^V'DVw^), where D now corresponds 

to the design of N+1 points containing the point added previously.

This must result in a decrease of at least zero in tr(w^V'DVw^). The 

criterion for choosing the point to be added can be found in the 

following way.

Let (X'X.)new be the information matrix corresnonding to the design 

which has just had a point added, that is,

(X'X) = (X'X) + xx' ,

where (X'X) is the old information matrix and x' is the row of the design

matrix corresponding to the point just added. Then » the inverse

of (X'X) can then be written as - —^new

D = D - Dxx'D (4.9.1 )
1 + v(x)

where D is the inverse of (X'X) and v(x) equals x'Dx » the variance of 

the estimated response at that point.

Therefore,

wfX'I)newV\/ = j/v'DVw* - w V d x x 'JVw * .
1 + v(x)

Taking the trace,
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tr(w*V'D Vwg) = tr(w6V'DVw6) - x'DVw^V'Dx -----new—  ------- ---------- ------
1 + v(x)

= t r C w ^ V ' W )  - ,
~T + v(x)

where ĉ _ = V'Dx .

The point to he chosen, therefore, is the candidate that maximises

, 2i
\  *

1 + v(x)

For subtracting a point,

(X'X) = (X'X) - xx' ,---' n e w --- ' —

where x ' is now a row of X.

An analogous procedure to that presented above yields

tr(w^V'DVw^) = tr(w*V'DVw*) + q'w2 ,
1 - v(x)

therefore the point to be subtracted would be the one having the 

minimum

Having changed the design, the matrix D can be updated using (4»9»1) 

when adding a point or the equation

D = D - Dxx'D -new — -----
1 - v(x)

(4.9.2)

if the point was subtracted.

Since the sequence formed by the succesive values of trCw^V'DVw*) 

for the N-point design is monotonically decreasing, and since an 

absolute lower bound exists equal to the trace of the actual A-optimal 

design, the sequence must converge. However, there is no guarantee 

that it will converge to the true, or global minimum and not to some 

local minimum. It is necessary, therefore, to repeat the procedure
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several times with different starting designs each time.

4»10 Excursions for A-optimal Designs

The use of excursions (Mitchell, 1974) follows on naturally from 

the basic procedure in an analogous way as that for D-optimality with 

contrasts. When checking for a failure design, that is, one which 

was constructed during an excursion which led to no improvement in the 

design, it is the traces that are compared instead of the determinants 

(since comparing the whole design exactly would be time and space 

consuming).

As in D-optimality, singularity of the design can result if too 

many points are removed from a design during an excursion. As before 

then, instead of using (X'X) to form D and hence the trace, the matrix 

(X'X + X'X /N ) will be used, where X is the design matrix consisting 

of all N q candidates and oc is a small positive number. If the inverse 

is termed D("0, then the error involved in using tr|w^V'D(<x)Vv/|instead 

of tr(wV'DYj/| for nonsingular D can be approximated in the following

way:
2Writing A for Vw V' , then

tr[/v'D(*)V\/j = tr[AD(oOj .

Expanding tr^AD(oc)] in a Taylor series about tr(AD),

tr j AD(qQ| :r tr(AD) + <* U r  |a d(oc)|
.=0

since D(o) = D.

Because matrix multiplication and trace are linear functionals,

Utr AD(qQ  = tr^A^D(oc) | .
V. ^

ll(cc) = -D(<*)l[x’X + X*X /n ] d (<x ) , (Graybill, 1969, p26?) 
'l*. U L oi

= -D(^)l .
U  N

But,
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Theref ore,

ai H r oi
«=0 «*=0

= - ô tr ĵAI) (oi ) X^XJl) ( *-) j 
“ No

= -ottr jVw? ^V 'Dp*) X^X^D (op]

N «.=0

= -¿tr(x D ^ V w ^ V ' D ^ ) ^ ]  N L~o "Di

. 2^
- ^ 2 ^  *xNo

<*=0

2&
- -o£. average (g^w g^) ,

where the summation and average are over all the candidates.

If the average were to cover only those points included in a design 

with matrix D , then

average (g*w2^a) = 1  trCXDVw^ V ' D X 1) = ± tr(Vw2^V'M'XD)
N N

= 1 tr(Vw2^V'])) = ± tr(AD) .
N N

If the candidates are reasonable, then the average over all the 

candidates should be roughly equal to the average over those points in 

the design only, that is, tr(Ah)/N .

The proportional error involved in using D(«*) therefore is

tr{AJ(«0 j - tr(Ag) ^  average(q^w q^) over all candidates
tr(AD) N. average (g^W^g^) over the design points

«  -oi.
N

For coequal to 0»005, this renresents an error of approximately 0*596«
N

4 .11 Inherent Singularity in the Model

The above method only holds if the model is normally non-singular. 

In the case of a block design with the usual model this is not true and 

this is where the big drawback of A-optimality lies. It is not in



general true, as it was for D-optimality, that the A-optimal design is 

invariant under a non-degenerate linear transformation. Therefore, the 

procedure used in the case of singularity for D-optimality, that of 

re-defining the model so as to obtain a non-singular one, cannot he 

used, sincethe ontimal design obtained will depend on the transformation 

used. Pederov (l972,p118) suggests the use of generalized inverses, 

having the property that eigenvalues of the generalized inverse are 

reciprocals of those of the original matrix, except for the zero 

eigenvalues which will correspond to zero eigenvalues in the generalized 

inverse.

Chemoff (1955) suggests the use of

lim (X + \Y) 1 , where Y is a symmetric matrix,
X*0+

such that (X + \Y) is positive definite, as a pseudo-inverse of X» 

when X is singular.

The disadvantage of generalized inverses is that no simple formula 

analogous to (4.9*1) or (4.9.2) exists for updating the generalized 

inverse after each addition or subtraction of a point. To calculate 

the generalized inverse afresh each time would, of course, involve too 

much computation.

The case of block experiments, the usual model for which is always 

singular, can be rescued somewhat if it is considered that the following 

model is is some sense a 'natural' reduction of the original model:

£  = R'jk + 4*4, + ^  (4.1 1.1)

where

£0 = + l°c *

that is, the treatment parameters now have the general mean embedded in 

them. This of course makes no difference to treatment contrasts. If 

this model (which is still singular), is further reduced by altering, 

or reparameterising, the block parameters in some way, then, for the
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resulting model, an optimal design is independent of any non-degenerate 

transformation applied to the block parameters only. This can he seen 

by considering the model, which has been reduced in the general case to

+ 4 %  + -£ (4-11.2)

where = T\6

and 5̂  =  Sj*> +  X^

are now the unknown parameters to be estimated and R, S and T are 

transformation matrices satisfying

D'RT + A'S = D'

and such that (d 'R; A'j is of full rank.

If a non-degenerate linear transformation Y is now applied to the block 

parameters, then the transformation L to be applied to the parameters 

as a whole must be of the form

L = i ; o

Z I I . * <

if the parameters are partitioned thus:

(4.11.3)

Now, as the contrasts of interest, V, are concerned only with the 

treatment parameters, V is of the form

I  = V  »

G t —

where C_ hold the treatment contrasts.

Now consider tr jw8V'D)(Vwsj. where is the dispersion matrix for 

the new model, that is, = L'JL, where D is the dispersion matrix 

for the model used before the transformation L was applied. Then

tr^y'D/w*} = tr(wsV'L'NLVw5J 

= trfLVw^V'L'D]



tr [v/v'DrçVŵ = tr

- 74 -
f ï''-

l

Oi al wfb(0 I O') 
i ! O

Y' Z'' D
0 i I

• )

= tr 0 ; o
1  i o

o
Cw2fC '

T  z'
o ! i

ù

tr
......2$  'Gw C

Di

= tr
U*

w2*(0 ; Ç')D

= tr(Vw2^V'D) = tr(v/ v 'DVì/) .

Therefore, tr(w^V'DVw^) is independent of the transformation L when of 

the form (4.1 1.3)-

An easy reduction of the original block design model to the 

model (4. H . 2) is brought about by simply removing the rows in the 

design matrix X corresponding to the mean and some arbitrary block j. 

The treatment parameters are then 

= V  + J.oC + ,

and the (h-l) block parameters are

f$oi = /*± —  /Sj (i = 1 ,...,j-1,j+1 ,...b) .

It should be stressed that A-optimality in this model is independent 

only of transformations which are not applied to the treatment parameters. 

Under the transformations used by Mitchell (1973), therefore, which 

affected both the treatment and block parameters, the A-optimal design 

would be dependent upon the treatment transformation used.

4.12 A Criterion Based on the Simple or Arithmetic Mean of the 

Efficiency Factors

A third criterion for differentiating between designs is the 

simple or arithmetic mean of the efficiency factors (Jones, 1959); 

that is, a design is said to be optimal in this sense if it has the
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maximum mean of its efficiencies over all possible designs. This has 

some statistical justification in the fact that it is equivalent to 

minimising Pearsons X ” statistic for goodness of fit, when applied to 

the design matrix for treatments to blocks, n, with the expected value 

chosen as the value from an orthogonal experiment, that is, n = rk1 At. 

This can be proved as follows:

'The statistic X 2 can be written as

o v b oX 2 = X- SI. (n.. - r.k./N)2

rikj/N

where n = (n„J ebc* Expanding }

x ? = (Nn.2 - 2n. .r.k. + r?k.2/N) /r.k. ij ij i J i 3 i J

= 2 1  2 1  Nn../r.k. - 2^2 n. . + 5^ r.k./Nlj 1 j . . ij “  “  1 3i 3 0 i j J i 3

= n 2 L  2. n. 2/r.k . - 2N + N
i j ^  1 J

= N ( 2 - 2 1 n . 2/r.k. - 1) 
i 3 10 1 0

= N(tr[r *nk ^n1) - 1)

= N(tr(M] - 1)

= N(2L^. - 1)

where M is the matrix used by Jones (1959) with eigenvalues 1a .̂

The quantities (1 - JU. a r e  the efficiency factors of the design. 

Minimising the X- statistic, therefore, is equivalent to minimising 

2 / v  or equivalently,maximising where £^ = 1 - f̂ ., are the

efficiency factors. The use of the simple mean is also proposed by 

Pearce (1974)* who makes the point that if an efficiency is zero, 

corresponding to some contrasts between the treatments being confounded, 

then the overall mean,2_£^, does not also become zero.

When contrasts and weights are given, it is not obvious how the
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criterion should be amended. However, consideration of D and A-ontimality
will help here. In D-orrtimality, the criterion used was |V'hVl; if

), where V̂. applies to treatments only, then the criterion
can be written as |V*A Ŷ j where A is the dispersion matrix of the

, . _ -itreatments as in chapter 2. Prom (,2.5.0), A = r C& £'r , where
reciprocals of zero are taken as zero. The matrix £ holds the 
eigenvectors of the design, the basic contrasts, as its columns. Since 
0_ is of full rank, can be written as C & . The criterion for 
D-optimality can therefore be written as

{V'DVl = l£,C ' r ' ^ _"C,r“ice{

= ¡6'f: since C'r = £ from (2.3.1).

If contrasts were not used the criterion would have been (£~°|.
Similarly, for A-optimality, the criterion can be written as

tr(w^V 'DVw") = tr (w" £w~),

or, for no contrasts, tr(fc~̂ ), with reciprocals of zero taken as zero, 
as before.

It will be seen then, that the criterion used for the simple mean 
optimality, , or tr^*5), should be altered to tr(w59'e5&w^) when 
contrasts are used. This can be written as

tr(wg&'C'r~^Cfcfa<C 'r~*Cftw*) since G'rf^C = I. (4.12.1) 
But A = C^C', from (2.3.2), and using = C_§ , enables (4.12.1) to
be witten as

tr(w*Vjr Ar V Lwg) . (4.12.2)

If the contrasts V̂. are such that V£r = I , then (4.12.2) becomes

tr[wi(Y^A“V t)“ V j ,

that is, the'information matrix' for the contrasts is being used.

d.13 Construction of Simple Mean Optimal Designs with Contrasts

The matrix A equals r? - nk'̂ n' (from 2.2.1), therefore, for fixed
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r, maximising (4.1 2 .2) is equivalent to minimising 

tr(wfV'r~^nk~<*n 'r~SVw*) ,

(dropping the t suffix on the matrix), or, since tr(AB) = tr(BA). 
to minimising

tr(r ^Vw^V'r ^.nk ^n') . (4.1 3 .1 )

This is then equal to the criterion used by Pearce (1974)• If the 
incidence matrix n is partitioned thus:

a  = (a1 *2 n 3 : i ^  ’

the partitions corresponding to blocks, of size k^ , then (4.13.1)

can be -written as 
b

tr (Sn. n / k .) ,
—1—1 1 ’i=1

where = r V w ^ V  'r ^ . Note that is independent of the design 

once r has been fixed.

To find the optimum value of r,Pearce (1974) suggests minimising 

the weighted sum of the variance of the scaled contrasts, assuming an 

orthogonal design were possible. The scaling is such that c,|ĉ  is the 

same for all contrasts. The vector r is chosen therefore to minimise

-Sw.c.'r c. ( subject to ¿ r .  = N. (4.13.2)
c.c.

Pearce does not give the algebraic solution to this problem, but it 

can be obtained as follows:

Using the method of Lagrangian multipliers, the value of r which gives 

the minimum of (4.13.2) is obtained as the solution to

^ /¿-(w.c.'r 5c.) + A(^Lr. - N)} = 0 for each j.-—  s 1— 1—  —1 j t3 r .] i
c.c.-i-i

i. e. M  2-r. - N) | = 0dr.l i j - ili Ja.r. ■>
1 J

where a . = c ! c . and fc. 1 = c . . 
1 - i-i l ij) -a
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Therefore,

c.'.v. + \ = 0 ,
4 -  i ^ij

i.r*i 3
or

rj =
f Z — 2“ »
/ i J ± 1  v a.x

That is, the r.. must be chosen proportional to J % * i  jW.. /eu .

Having chosen r , it is now required to find the values of the 

vectors n. that minimise
—i

^  tr(&i1n?/ki) . 
i

Now, suppose that n. is altered to (n. + x) > and n. to (n. - x)> fora a j j
some i and j, where x is a vector of zeroes except for two elements,

ththese being +1 and -1. Let these non-zero elements be in the k and
th positions respectively. A restriction on the choice of these

positions is that the new vectors n^ and n must have zero or positive

elements only. Altering n. and n in this way leaves the vectors ra j
and k unchanged. The vector k is in general fixed and known beforehand. 

The change brought about to ^  tr(Sn jn ?/k^) is

tr S(n. + x) (n. + x) ' + S_(n . - x) (n. - x) ' ~ Sn.n.' - Sn ,n ? a _____  a_____ __ J_____  J -1- a 1 3

/
k.- l k.

J
k.l k.

3

= tr IS
r

n^n7 + n . x ’ + x n + x x '  + n.n! - 
-i- — l —  -n~u n.x' - xn ! + xx1 - - n .n ! 

~U~U 1
l L k.l k. k. k. k. 

a 1 a 3
k.
3

k . k . k. 
j 3 a

k.
3 i

Using the identity

tr(Spq') = tr(a.'Sn) = trin'Sg.) = tr(Sqp'), 

since S is symmetric, gives the difference as

tr n^Sx + n!Sx + x'Sx - n!Sx - n!Sx + x'Sx 1
, k . k. k . k k . k .

i a i J 3 3

= 2 n , - n .
H  3Lk. k. a 3

'Sx + h  + l\x'Sx . 
Ik. k)' i .1

(4.13.3)
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This is required to be negative and as large as possible, that is, 

to result in the largest possible decrease in (4.13.1). Note that 

since S_ is non-negative definite, the second term in (4.13.3), is always 

greater than or equal to zero.

Now, since an orthogonal experiment has efficiencies equal to one 

(except for that corresponding to the mean, which equals zero), and 

therefore results in the maximum value of (4.13.2), or the minimum of 

(4.13.1), the lowest value of tr(S n occurs when n = rk'/N.

The actual minimum depends on whether the contrasts for the mean, r, 

has been included, but, if so the weighting attached is usually zero, 

and so the absolute minimum of (4.13.1) can be taken as zero. In 

general, of course, this will be unobtainable.

To choose the blocks to be altered therefore, find the two that 

have the largest tr(Sn jij/k^). This is not an error free method in that 

it can sometimes happen that no improvement can be made using these two 

blocks, but could have been made using others. However it has the 

advantage of simplicity. Suppose the blocks chosen were i and j.

Now, (4.13.3) can be written as

b'x + x'Gx

where

and
k.
1

k.
1

which expands, using the definition of x, to

(4.13.4)

Since G_ is non-negative definite, then

and °kk + CH  + 2ckl ^  0
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which together imply that

2ckk + 2cll ^ Ckk + C11 " 2ckl * 

Equation (4.13.4) is then less than or equal to

^2ckk + + ^2cll " V  * (4.13.5)

Therefore, as a 'coarse' minimising procedure, choose treatment k 

so as to minimise (2c ^  + b^) and treatment 1 so as to minimise (2c.^ - b^) 

subject to n^ and n_. being positive or zero at each element. This 

procedure requires only o(v) steps. After each'adjustment' calculate 

the new tr(Snji'/k^) for each block and so choose the new i and j.

When no more progress can be made, equation (4.13.4) can be minimised 

instead of (4.13*5)* This, however, called the 'fine' minimisation 

procedure, requires o(v(v-l)) steps in the search routine because of 

the presence of the element c^.

As usual in discrete optimality procedures, the method cannot be 

guaranteed to produce a global or absolute minimum. The 'full' 

minimisation procedure would involve finding the minimum of (4.13*3) 

over all pairs of blocks as well and so would involve o(b(b-l)v(v-l)) 

steps.

4.14 Discussion

Current literature on the subject of optimality (Wynn, 1970? 

Dykstra, 1971» Box and Draper, 1971* Mitchell, 1974) indicates a 

preference for the determinant criterion for choosing between designs 

and for constructing them. Although certain advantages are claimed 

for H-ontimality, not least the fact that linear transformations leave 

the choice of the D-orvtimal design unchanged; when contrasts of 

interest to the experimenter are introduced, the fact that weighting 

cannot be applied using D-optimality is a very large disadvantage. Also, 

the claim that constructing A-optimal designs leads to more computation 

(Eederov, 1972, p138) than for D-optiraal designs is seen not to hold



when contrasts are specified, and although some trouble may arise due 

to the non-uniqeness under linear transformations of the optimum design, 

the advantage of weighting would seem to be overiding.
2

The advantages of the third criterion, i.e. that based on X , are 

its simplicity of use and its application to designs having a zero 

efficiency factor, that is, unconnected or fully confounded designs.

Its disadvantages lie in the fact that when the full minimisation 

procedure is not used it is too often trapped on a very local minimum, 

and if the full minimisation is used, the computation becomes excessive. 

Possibly, also, not enough freedom is given to the procedure by not 

allowing treatment replications to vary during the construction. Perhaps 

a similar approach to that used for D and A-optimality may prove useful, 

where points are added to the design for the maximum improvement and 

subtracted for the minimum deterioration in the criterion. This proves 

difficult, however, since the matrix would then not be constant and 

much of the simplicity would be lost.

A disadvantage shared by all procedures dealing with discrete 

designs is the high probability of being trapped at a local minimum 

(or maximum). It would seem that the only solution is to use various, 

reasonably 'seperated' in some sense, starting designs in the hope that 

one, at least, will give the true minimum.
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Chapter 8 Summary

In this chapter the main results of the thesis are summarised 

and the advantages or disadvantages of the various methods used are 

given.

The method of analysing block experiments given in chapter 2 

relies on the use of the eigenvectors of the matrix Ar ‘ . Accordingly, 

it is proved that a complete set of eigenvectors does indeed exist for 

this matrix. These eigenvectors and their corresponding eigenvalues, 

once known, enable the generalized inverse of A to be found and thus 

the analysis of the design follows. If the eigenvalues are known,from 

the use of some standard routine, then expanding powers of a matrix, 

derived from Ar , in terms of its principal idempotents, L^, leads to 

a set of simultaneous matrix equations in the L^. These equations can 

often be simplified if the experimenter knows or can guess which 

contrasts between treatments are basic, that is, eigenvectors of the 

matrix Ar The number of unknowns in the equations, the matrices, 

equals the number of distinct eigenvalues, that is, the order of 

balance of the design in the Nelder (1965) sense. It appears then that 

it is sufficient to invert a matrix of order equal to the order of 

balance only, to solve the equations. An alternative method of 

obtaining the matrices, due to Pease' (1965) is compared but is shown 

to involve more computation.

It is shown that the inter-block analysisnan also be obtained 

from the matrices calculated for the intra-block analysis. Once the 

intra-block analysis has been calculated therefore, no problem arises 

for the inter-block analysis.

A formula for testing some general hypotheses concerning the 

treatments is also given in chapter 2. The formula,' which is the same 

as that given by John and Smith(l974)j who had extended a formula derived by 

Pringle and Bayner (1971)» was found using a different method.
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A program, GFN, written in ALGOL 60, has been written to perform 

the above analyses and a listing together with an example run appears 

in appendix B. A flowchart of the program is also provided.

An alternative method of analysing a design, based on the work 
of Kuiper (1952) and utilising results by Nelder (1965) was derived 

and appears in Worthington (1975)- A copy is given in appendix A.

The method, which can be applied to any design with orthogonal block 

structure, iteratively produces the treatment effects for each stratum.

It is proved that the procedure will always converge to the correct 

result. The basic procedure can easily be extended to produce the 

variance-covariance matrix for each stratum. A disadvantage of the 

procedure is that no information is produced about degrees of freedom.

The method will also take a long time to converge if a low non-zero 

efficiency factor (Jones, 1959) exists.

In chapter 3> theory concerning the dual of a block design is 

given. The main result is that non-unit efficiencies for one design 

agree in value and multiplicity with those of its dual. Further, a 

specific relationship exists between basic contrasts of one design 

and those of the other. Consequences of this result include the fact 

that a certain minimum number of efficiencies must be equal to unity 

in the design with the greater number of 'treatments'; and that the 

analysis for the dual can be obtained from that for the original 

design due to the relationships between the basic contrasts of the two 

designs being known. If the analysis of chapter 2 had been used for 

analysing the original design, and therefore the L^ matrices found, 

then it is shown that the analysis for the dual also depends on these 

matrices and the analysis follows on very simply. Finally, relationships 

between the mean efficiency of one design and that of the other are 

given for various measures of mean efficiency.

Chanter 4 is concerned with the construction of optimal designs. 

Although nrocedures already exist for doing this (for example, Mitchell,
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1974)» very few use the fact that some contrasts between treatments 

will be of more interest to the experimenter than others.

On this basis, an algorithm for constructing D-ortimal designs 

when contrasts of interest are given was developed. The method requires 

inverses and determinant to be calculated only once, at the beginning, 

after which the required determinant and matrices are updated when 

required by using simple formulae. The method uses 'excursions' as 

advocated by Mitchell (1974)» because this can result in singilarity 

the information matrix is altered slightly to prevent this. A formula 

for the resulting error is obtained and the value of this error shown 

to be small. A program, VDVMIN, written in FORTRAN IV, has been 

written and appears in appendix C together with an example run and 

flowchart. The main disadvantage of D-optimality is that weighting the 

contrasts makes no difference to the criterion the procedure attempts 

to minimise. All those contrasts that are given therefore,have always 

in effect equal weighting factors ascribed to them.

This disadvantage is not shared by the second criterion considered, 

that of A-optimality. When contrasts, held columnwise in V, with 

corresponding weights w, are given, then the A-optimal design is said 

to be the design minimising trCw^V'DVw^). D being the covariance matrix 

of the design ( a D-outimal design would minimise ¡V'DVj). An algorithm 

has also been derived for this criterion. As in D-optimality, once the 

initial D matrix has been calculated, it is updated using a simple 

formula each time a point of the design is changed. When excursions 

are used, because singularity may result, the information matrix is 

altered in the same way as for D-ortimality. A formula for the error 

involved in doing this is calculated and the value shown to be small.

Because A-optimality is not invariant under linear transformations 

of the parameters, the case of the usual block design model requires 

special consideration. In general, depending on the reduction used to 

make it non-singular, different A-optimal designs will result. This
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is overcome by assuming that contrasts of interest will be applied 

to treatments only. It is then shown that if the model is reduced by 

altering the non-treatment parameters only, then A-optimality under 

this model is invariant under any linear transformation applied to 

the non-treatment parameters. That is, A-optimality is invariant of 

the particular reduction used as long as the reduction applies to the 

non-treatment parameters only. The program VDVMIN, mentioned above, 

is also suitable for constructing A-optimal designs, and an example 

run is given in appendix 0.

The third criterion considered is that of simple mean optimality; 

in its simplest form this involves maximising the arithmetic or simple 

mean of the efficiency factors. This is shown to be equivalent to 

minimising a suitably defined statistic for the design. The 

criterion can be generalized to include the case of contrasts of interest 

and associated weights being given, an algorithm is given for constructing 

the optimal design and works in three modes: full, fine and coarse, the 

full mode involving the most calculation and coarse, the least. Coarse 

mode is thus applied first to some starting design and when the 

algorithm stops at a possibly local maximum, fine mode is applied, under 

which, the extra freedom of movement should enable the procedure to 

escape a local maximum. The full mode in general requires too much 

calculation and it is probably better to run the algorithm several times 

with different starting designs and use fine and coarse modes only.

All three algorithms can become trapped at a local maximum or minimum 

but because of the discrete nature of the problem (replications of 

treatments must be integral, etc.) this seems to be an unavoidable

drawback of the method.
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Arroendix B Flowchart for program GEN

ENTRY



Write out contrast saying 
whether or not basic. Scale 
contrast. Write out efficiency 
if basic.

yes
Reduce multiplicities of 
eigenvalues by one for each 
corresnonding efficiency of the 
basic contrasts.

his contrast 
non-basic.

Pack eigenvalues up if any of 
the multiplicities have been 
reduced to zero. Adjust 
'balance 1 of design accordingly.

P3
Normal



- B3 -

A H  basic 
contrasts 
given.



- b4 -

Design now 
analysed.
Go on to do 
AOV etc.



- B5 -



- B6 -
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*



C 1

At »pend ix G Flowchart for program VIVHIN.

Initialisation.

P?



C2 -

A-opt... 
being used?^>_yes _— =►-

Calculate 
br(wV'DVv ) .

■no
Cal INV to find V'DV and 

-1
R )•

^Finding 
true values 
^of design?

Excursions.

Preserve -̂ resent design and D.  
Preserve R if using D-ootimality.I

/
decide to add a point.

"

>/

ündate V'BV, D, R and the 
design using UPDATE.

- V, Change direction indicator.
y (reverse nrevions direction)

( P2 > Find best point to subtractV 1410 from design using CHOOSE.

Find best point to 
add from all candidates 
using CHOOSE.

r

Stop, and orint out
best design so far.



-  C3 -

Ehd of an excursion.



- G4 -

Excursions below correct size.



-  C5 -

Excursions above correct size.

P2
L400



-  06  -

Ehd of attempts this try - hit both bounds or number of attempts 
reached specified limit.

yes
_ L
STOP



- C7 -

Converts a candidate, held in C_, to a row x of the design matrix. 
C(1) holds the block number, C(2) the treatment number.

Subroutine CONVRT (c,X).



- C8 -

Forms the matrix A = X'X/N2, where X is made up from the N1 
candidates held in E.

Subrettine CONFIAT (A,E,N1,N2).

yes



C9 -

Subroutine CHOOSE (A,N1,C,W,BLCOS,A0PT,WT).
This routine, depending on whether adding or subtracting a 
point, either adds the best point or takes away the worst, 
subject to the block sizes being correct, from the N1 
candidates held in A. The point chosen is returned in C_.
BLCON holds the condition of the blocks (see 4*5)* Its value 
for each block is (block size) - (correct block size).
If AOPT is zero then A-optimality is being used.

Change candidate to row of 
design matrix form using
CONVRT.



-  G10 -

Subroutine CHOOSE (con tin u ed ).



- C11

Subroutine UPDATE (C,DST,A0PT).
Updates the matrices ID and R and the determinant, DET, of 
(V 'BY). The vector C holds the point which has been removed 
or added. AOPT is zero if A-optimality is being used.



- C12 -

Subroutine VAR (X,DX,VX).
Computes Dx and x'üx (=v(x))> where D is the covariance matrix.

Subroutine CONVDX (Vi)X,])X).
Computes V'Dx, where x 1 is row of design matrix.

Subroutines INV and RANDOM are standard routines.


