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Summary.
In Chapter 1 a brief introduction to the theory of

gravitational radiafion in general relativity is presented,
and an outline of the variety of different methods that
have been used to study it is given.

In the second_cﬁapter,-a single theoretical approach,
upon which to. basb.the subsequent treatment, is chosen.
This aporoach, developed by R. A. Isaacson (1968a,b),
involves obtaining approximate gravitational wave solutions
to the vacuum Einstein equations by supposing that the
radiation is of high frequency. The work of Isaacson.is
reviewed to show how the high frequency approximation leads
to a tensor representation of the gravitational field
energy.

In Chapter 3, the Isaacson theory is extended, by the
present writer, so that it may be applied to situations
in which gravitational radiation is present in a matter
filled manifold. The work of J. Madore, who has also
considered gravitational radiation in a material fluid, is
discussed to show that his results may be found, as are
Isaacson's, as special cases within the proposed general
formalism, Provided that certain assumptions are made,
the wave energy in matter is shown to be of the same form
as that found in vacuunm.

It is in Chapter 4 that the cosmological applications
of the general formalism of Chapter 3 are first considered.
Radiation travelling through a cosmological 'background!

space-time is examined, with the intention of discovering




how this background geometry interacts with the radiation.
A Friedmann line element, with the space curvature constant
K =0, is used to represent the cosmological backgrdund
upon which the radiation propagates. Employing this
example I am able to show that test particles, located in
a plane perpendicular to the direction of propagation of
a monodirectional gravitational wave, experience acceler-
ations dde to the wave superimposed upon the effects of
the model's cosmological expansion. Further, the theory
for constfucting an isotropic gfavitational radiation
field is developed. It is shown that the energy tensor
of such a field may be represented by a perfect fluid
energy tensor, with an equation of state in which the
radiation pressure is one-~third of the energy density.

In Chapter 5, the manner in which the radiation modifies
the cosmological background is considered. The work is
motivated by a model of the Universe, containing matter and
gravitational radiation, proposed by Isaacson and Winicour
(1972, 1973). They assumed that matter was converted into
an isotropic field of gravitational radiation. However,
as 1s shown in Chapter 5, the model can lead to a negative
mass density. This difficulty is overcome by bringing
the conversion to an end at some pre-assigned instant
in cosmic time. This ensures that the energy distribution
in the model remains physically acceptable throughout the
model's development. The cosmological equations for the
model are solved, by numerical methods where necessary,

and a number of examples of the resulting universes are
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given in diagrammatic and tabular form.

Finally, in an appendix, the possibility that gravit-

ational radiation is generated during the ifireball' era

of the Universe is briefly considered.

The Mathematical Institute,

University of Kent at
Canterbury.

July, 1975.



Chapter 1.

Introduction.

The problem of obtaining a theoretical description of a
radiative gravitational field is one that was first consider-
ed by Albert Einstein in 1916. Over half a century later
the problem still remains one of the most interesting posed
by the general theorj of relativity, since in that time it
has still evaded é satiéfactory solution. The apparently
elusive nature of the answer to the problem has however
inspired and motivated many researchers to explore a variety
of different theoretical avenues in search of ways to resolve
the difficulties. flork on gravitational waves may be
divided into several groups, each reflecting a different
approach to the problen.

The first of these seeks to give a rigourous definition
of the conditions which the space-time metric must satisfy
in order to describe a wave-like field. Pirani (1957)
produced one of the most important studies in thié group
when he recognized that the procedure of classifying electro-
magnetic fields, by an examination of the eigenvectors of
the field's energy tensor, could be carried over into grav-
itational theory. An observer is envisaged who moves in an
electromagnetic field in such a way that he measures no net
energy flow due to the field (in Pirani's original terminology
the observer is said to be 'following the field'). The
four velocity of such an observer may be shown to be an
eigenvector of the field's energy tensor. In this scheme
a null electromagnetic field is identified by the fact that
its energy tensor has no timelike eigenvectors (Synge, 1956),

and hence azn observer following the field would need to
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attain the fundausental velocity. The eigenvectors cf the
gravitational field were defined by Pirani with the aid of
Petrov's algebraic classification (Petrov, 1954, 1969) of
empty space-time Riemann-Christoffel tensors into canonical
types. Of the five algebraically distinct types of gravity
field, only three, generally denoted by II, III and N, do not
possess timelike gigenvectors. By analogy with the elecﬁro-
magnetic case, Pirani introduced the criterion that gravit-
ational waves exist in a region of space-time only if the
Riemann-Christoffel tensor there is of Petrov type II, IIT
or N. Other works in this group,'that éontain algébraié-
or geometrical criteria for the exiétance of wave-like
gravity fields, have been presented by Bel (1959) and
Lichnerowicz (1960).

A second group is composed of investigations containing
exact solutions of Einstein's field equations which the
authors have interpreted as gravitational waves. Some
examples of these may be found in the studies of Einstein and
Rosen (1937), Bondi, Pirani and Robinson (1959) and Robinson
and Trautman (1960). These solutions are regarded as repre-
sentations of waves with cylindrical, plane and spherical
symmetry respectively, and have been shown to fzall into the
type II category of the Petrov classification.

In a third group of works, gravitational waves are treated
by approximation methods. This approach was used by
Einstein (1916) when he employed the linearized equations of
gravity to show that, in certain coordinate systems, their
solutions exhibited obvious wave-like characteristics. How=-

ever, due to the inherent nonlinearity of the equations of
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general relativity, this result was treated with some caution.
It was not until 1938 that a method of approximation was
devised which took account of this nonlinearity (Linstein,
Infeld and Hoffmann, 1933). This work however did not lend
weight to the idea that gravitational waves had any physicgl
significance, since it contained no indication that freely
gravitating particles produced gravitational emission.
Indeed there was a good deal of controversy about the physical
existence of radiative fields until the late 1950's and this
situation was not alleviated b& the fact. that the'exact
solutions known ﬁp to that time described free wave fields,
uncoupled from sources. New light was cast upon this question
wheh Bonnor (1959) develqped a new approximation technique
also capable of examining some of the nonlinear aspects of the
field equations. Applying this to the problem of gravita-
tional waves generated by a specified source system, he was
'able to show that the energy of the radiating field, as
calculated frbm the energy pseudotensor of the linear theory,
corresponded to the amount of mass lost by the source during
the emission process. Bonnor's method was subsequently
developed and applied to problems of astrophysical interest
by, for example, Bonnor and Rotenberg (1966). Many such
studies of waves by approximation methods have been made.
Instances of these may be found in Price and Thorne (1969)
and Infeld and Michalska-Trautman (1969).

Investigations in a fourth category deal with the gravit-
ational emission of elementary particles. This method of
attack, which is neither fully in the domain of the quantum

novr
theorist #e# the relativist, has proved to be a very difficult
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one. Although great deal of work hazas been attempted

)

(Vladimirov, 1964; Carmeli, 1967; Isham, Salam and Strathdee,
1974), fruitful results will perhaps only be forthcoming
when the extensive problems of reconciling quantum theory
and gravitation have been resolved.

A fifth group comprises works devoted to the experimental
study of gravitationai radiétion. A comprenensive account
of the theory and'praétice of wave detection may be found in
Wieber (1961). The relevant details of the present day
observational climate in this field is set out in the text of
this thesis.

Finally, in a sixth category, the authors arrive at a:
definition of gravitational radiation by first establishing
a definition of the gravitational field energy. Examples
of this approach may be found in the works of Brill (1959)
and Isaacson (1968a,b). |

The study of gravitational waves that is to follow is
broadly based upon the technique outlined in the investiga-
tions of category six, although the approximation methods of
group three have a bearing, since approximate solutions of
Einstein's field equations will be considered. In this
brief introduction I have given only the barest sﬁmmary of
the efforts of some sixty years of work. It is hoped how-
ever that it haé been sufficient to indicate the diversity
and ingenuity of the ideas employed in the attempt to under-

stand this interesting physical and theoretical problem.




Chapter 2.

A review of the work of Isaacson.

2sl Discussion of approximation technigues.

A number of different approaches to the problem of grav-
itational radiation have been mentioned in Chapter 1. The
approach adopted here was first fully developed by R. A. Isaacson
(1968a,b). The technique is one of finding approximate ’ »
solutions to Einstein's ecuations, beginning with the assump-

tion that the metric of space-time takes the form

@

©)
= + < << (2.101)
cy/,w 09/1"" ¢ P72 s £ .
)
Here éé?*“’ is regarded as a small perturbation superim-

(c)
posed upon ngA;. The field equations are then expanded
in terms of powers of the smallness parameter c. Approx-

imate solutions to the resulting system of equations are then

found which may be interpreted as representing gravitational
radiation.

The similarity between this procedure and earlier approx-
imation schemes is immediately apparent, and in light of this,
perhaps it would be prudent to ask what significant improvements
in the theory did Isaacson propose. The essential difference
lies in the choice OfC§:uV in equation (2.101). Prior to
1968, analyses of approximate wave-like fields dealt, in the
zeroeth approximation, with the flat space-time metric. |
That is, the components ofcf;;w, were identified with those
of the Minkowski metric, and the gravitational field entered
the scheme only as a small correction to flat space. This

type of procedure is severely limited in its domain of |

applicability.
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An important step towards overcoming some of the short-
comings of linearized theory, was taken by Isaacson when he
(o)
proposed that the metrickj?ka be represented by the metric
of an arbitrary, curved space-time. His work was the first

entirely devoted to an investigation of approximate wave-like

fields in general relativity, employing a completely gener
(@) ;

choice of Cj/“\).

A review of Isaacson's work is undertaken here, since most
&f what Ls Lo Folloy will Pind i%s crigins bhers,

Treating gravitational waves in a curved space-time, we
will discover a linear wave equation whiéh will describe how
the curved background interacts with, and modifies the 'high
frequency' radiation field. Then, using higher order ferms
afforded us by the non-linear framework adopted by Isaacson,
it will be possible to show how the wave acts back upon the
geometry of the curved space-time. If it is assumed that
energy transportation occurs in radiative gravity fields, then
the radiation itself should be expected to act as a source
in creating some part of the curvature of the space-time
through which it propagates. The energy of the field in this
case, like all other forms of energy, will have an effective
gravitational mass. Why it ié necessary to suppose that the
radiation is of 'high frequency' will be explained later,
as well as what i1s meant by this expression.

It is assumed that the total metric,(f7fkg , takes the form

given by equation (2.101), and this will be written as
J/LL‘\) = 0:@? T 5/7/»«9, O<cC<< [, (z.102)

where 2ﬁ;v’is a slowly varying function of space-time, and /DMV




is a relatively rapidly changing perturbation linearly
superimposed upon ngw. Following Isaacson, it will be
supposed that fyAQ is identified with a high frequency
gravitational radiation field, and the Z§A9 with the curved
"background" space-time through which it propagates.

2.2 Definition of high frequency radiation.

To formalize what has been said about the relative rates
of change of 5&»9 and'/7p»n the concept of 'characteristic
length' is.introduced. Let (X %)% LY x3, =%)
be a dimensionless coordinate system, where };% i=l,2,5 are
spacial coordinates, and JCAF, a time coordinate. Thus,
in this system the components of the total metric,é?%kp .
will be of zero physical dimensions. The theory will be
developed employing a dimensionless anaiysis unless it is
specifically stated otherwise. In particular, units are
chosen such that G=c=1, where G is the Newtonian gravitational
constant and ¢ is the velocity of light.

Now, if a frequency.fZ.is attributed to the radiation then
it is possible to define a dimensionless wavelength,,ﬂ=z.iift
Since the radiation will vary significantly over this distance,
A is chosen to be the characteristic length of the fyiy.

This is expressed as
-1
/‘.Q__ho/:‘"/ ~ A //7,4,9/, (2.201)
o x ,

The characteristic length [, , over which the background
changes appreciably, may be defined in the followihg manner,
Provided attention is restricted to the non-zero components

of the background, let

| o A7
‘5—3%9 3(1_,“9) /bju\)/,




Then
B . &)
[’ = Imin ( L—//n)/ g - (2.202)
(o4
where [_ " L.,*y are pure numbers and where no summation is
implied by repeated indices.
For those derivatives of 5;i9 which are non-zero, we

may write for simplicity
S Yo =1
/,,./“‘/ = [ /3@\?/ (2.203)
X ,

By consideration of the conditions (2.201) and (2.203)
gravitational radiation is said to be of‘high frequency

provided that
L >> A. (2.204)

It is of interest to note that if Oy = v, where
TZ#UJ is the metric of Minkowski, then the condition for
high frequency radiation is fulfilled for any finite charac-
teristic length A. Thus, the results of the linearized
theory should be expected to emerge from Isaacson's more
general high frequency approximation theory. |

Henceforth, only radiation satisfying the definition of
high frequency will be considered. The limitations of the
validity of this assumption will be briefly discussed later.

In Isaacson's treatment, the parameter_é: is defined as
follows. Let & = A/L  and choose L such that [ = [,
Then, indeed, for high frequency radiation & << [ , and it
can be seen that the magnitude of the wavelength A is of
the order C . Further, since the frequency {2 will now
have an & de}ﬁendence of the form (). CC é-/ , the limiting
process given by & —> O will be called the 'high frequency

Limity,
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2.3 Notations and conventions.

The geometry of space-time will be represented by a

four-dimensional Riemannian manifold, with fundamental form
2 g
As< = 09/'”” Hx Tl

where the signature of the total metriccj7bu; is ~2.
~] 7/

Greek indices will be regarded as taking the values 1,2,
3,4, latin indices as taking the the values 1,2,3, and the
convention of summing over repeated indices is adopted unless
it is specifically stated otherwise,

Partial derivatives will be denoted thus

..-—9%( s Fa,
Idx
and Christoffel symbols of the second kind for a metric

tensor fAQ will be defined by

A0"
/—705; = jé AD (/zgavg/s * Z&qﬂ,oc._' é)cq@,o*,>-

Covariant derivatives with respect to the background metric

5;;9 will ke indicated by a semicolon. For example

9(/,“,;;“ = }Z’P_,),a"/-’/:;‘(a;ﬁ) 5[/0"9 N /—1’:‘ (%3) %‘M

All indices will be raised or lowered by the use of the
background metric tensor, and the conventions adopted for the

Riemann-Christoffel and Ricci tensors will be

{O
U—O-';/LA.\)_’Z)—;',‘V/& = /e O'/AQ(Z{C’(ﬁ) Zj‘("’,
where Z};r is an arbitrary covariant vector, and
. xR /o
Ruw= 8 Roprs, Bz & Rue.
Finally, the notation ()= (O(¢”) should be read

i)ﬁ is of the order of magnitude &” ', If f(x) = C)(kﬁnp,

then this will be taken to mean that there exists a constant




= M0 =
;D‘> O such that
[fee) ] < FPe”, as ¢ — O.

2.4 Constructing an approximation scheme in vacuum.

Before continuing this review of the work of Isaacson,
no attempt should be made to evade the critism that the
splitting of a metric into parts, in the manner displayed in
equation (;.102), is in general not allowable. This absence
of a superposition principle in general relativity is, of
course, a consequence of the notorious non-linearity of the
field equations. The form of the metric (2.102), first
postulated by Brill and Hartle (1964), should rather be
regarded as an initial assumption the adeduacy of which is
to be tested in the particular situation under consideration.

The definition of high frequency gravitational radiation
employed by Isaacson, the basis of his work, is as follows.

A metric is said to contain a high frequency wave if and
only if there exist a family of coordinate systems in which

the total metric takes the form
T = a:u)(") * éh/-“’ (=€), 0<E<</, (2.401)
where
v
Zj;Lvﬁot

i

C)(/,) ’ fbuw) = O/ ) 9
O(/) ’ %)/Ay)a - O(C—) ?

OC1) s hpw,as = O(E7).

(2.402)

I

F vy s

Following Isaacson, we will use this definition to derive
approximate vacuum field equations, and to demonstrate that
the results thus obtained may indeed be interpreted as grav-

itational radiation.
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In vacuum the Einstein field equations may be written

Ru» = ©O. - (2.403)
If the metric tensor (2.401) is used, the total Ricci

tensor may be expressed as a power series in E given by

/m) (juﬁ) ﬁ(o) £ RO)

g (2.108)

+ C. E /f.\',w) .

<3f9
where }D is a remainder ternm.

After some calculation, it is found that

©) ' e .

R v = Ruw( ¥as) Ao
@) a :

E,ou) D,:o—',-y i DM":‘“‘ , (2.406)

R = (hald ) o (holl e )
Z—U:;: 5 D;Dta;—

!

it

(2.407)
: 0 L

where

A
[.j/,w = "21 (/7 ;\,u.,'v + h 2\’;//» "/7#9; A), (2.408)

Thus the vacuum field equations (2.403%) become

©) @ () 3 L3+) _
3 v T R,wﬂ" *C PR R Q.  (2.409)

The order of magnitude of each term in this expansion is
now assessed by appealing to equations (2.405), (2.406) and
)
(2.407), and to the definition (2.402). Since 78.,bv is
a function of the background metric only, it is argued that
() :
}Q = O(1). (2.410)

()
The expression /P » on the other hand, is a function



of terms typically of the form /77 v, o/ and thus it is

supposed that

@ ; |
ER = 0(C"). (2.411)

A similar argument applied to the remaining terms in the

expansion (2.409) will give

2 (2) _ 3 H(3+)
& E/U;,) = 0(/) N /\ff_‘/uy~ o(e), (2.412)
The estimates given here led Isaacson to propose that the

vacuum equations may be decomposed in the following manner.

To first order, equations (2.409) become

) .
29 = 0 ' (e

/ocv ’
and, to second order
) 2. (2)
R mv = ~C 7\;' JZa (2.41Y4)

Henceforth, equations (2.413) and (2.414) will be regarded
as describing the propagation, in vacuum, of high frequency
gravitational radiation through a curved background space—time._

An account of the results obtained by an analysis of
these equations will follow. Before we do this however,

certain preliminaries still require attention.

2.5 Coordinate conditions.

Consider the question; to what extent are the wave
'potentials!, /UAV , uniquely determined?

It is easily seen from equations (2.406), (2.407) that
the vacuum equations, given by equations (2.413), (2.414),
are very cumbersome and complex expressiohs. It is not
difficult to foresee the formidable challenge they pose if
an analysis of them is to be made. Some assistance can be

obtained here by noting, as is well known, that the Einstein
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equations in themselves fail to uniquely determine the metric
tensor(é%u,>. This allows some freedom to impose restric-
tions on the coordinate system which act to eliminéte the
ambiguity in the determinacy of 697*9. |

Thus, if such restrictions are to be chosen, it would be
natural to make the choice with a view to reducing the labour
involved in studying the vacuum equations,

Mathematical convenience however is not the only criterion
that must bé considered when deciding upon suitable conditions.
To illustrate another, it is of use to briefly review the
equations of linearized general reiativi£y. If a perturbed

metric of the form

69/'0‘) - >z,u,\> " eh/pQ ’

is assumed, where )Z/yﬂ is the flat space metric of Minkow-
ski, and powers of /£ greater than one are neglected, it is

found that the vacuum Einstein equations become

77/0(/3/)/1—9 P O , (2.501)

provided that the conditibns

/’)'wj »=0, h= ’Zaﬂ/"a'ﬁ = 0, (2.502)
are satisfied. Although the foundations upon which this
weak field treatment is built severely limits its applic-
ability, it would never-the-less be desirable to adépt a
correspondence principle between the linear theory and the
theory of Isaacson. In the limit Qhen the general background
metric 5;u)
required to reduce to the 'flat space' equations (2.501).

= 72/40 , the wave equations (2.413) will be

To demonstrate the consequences of this principle, the explicit

form of equations (2.413) will now be derived.
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Substituticn of equations (2.4C8) into equations (2,406)
will give

) e @o( / £ 1
2 = Noo; Y 7 1 wy; 6o

R Y
- %7,0/4,';)0' ~ Npv; ﬁ«”o"/p

3

so that the first order vacuum equations (2.413) becone
5/ c-/c(/) C'/O;'/{‘-'\” | -+ | /L7/,¢v‘,' oo (2.504)
A,o/u; I)Q' - //7/0\),',0’-0") = O .
Now since |
hussee = hyuwine = Ry b5 + Rz e, (o509

the wave equations (2.504) may be written

A/,(,V; /OIO ' u /7/0 ;Ibb“) "/}/o/u,;/o))

' R o ) ) o p (9}
- /7/09,' yzs v o //’? ,(,(,78«120‘ . /1/7 VE-«/UVG‘ (2.506)
(©) palin
- Zglo/u\)o‘/) = O)
where

/70(/3; T2 I hapip

If the covariant forms of conditions (2.502) are adopted,

that is

oY .
hf;l’z o ‘ {5

? \ ‘_.-'/"073)

- R [ " |
/7 - @/ /7o<ﬁ = O, © (2,507b)

as the new coordinate conditions, then indeed. (2.506) recduces
to (2.501) in the limit &;&9'—} 72%LQ . The coordinate
system in which these conditions are imposed is sometimes
referred to as the 'transverse-traceless' (TT) gauge, for

reasons which will become evident later.




If the coordinate conditions (2.507) are now imposed upon

equations (2.506), we observe that
(I) / ] {(; ° e (Q
= = . -t :
Rlu,}) Z‘ (A,U«’): 7~ /7 /J/KVG" (2.508) |
o @) (o) T |
+ h R = 2R Gwe h™),
Isaacson has pointed out that the conditions (2.507) and
the equations (2.506) are consistent with one another only
in cases where the background geometry is of constant
curvature. A However, he has also demonstrated that the scheme
may be applied to cases other than this, since the terms

2
comprising the inconsistency are a factor & smaller than

the dominant terms in the wave equations (2.506).

2.6 The 'WKB' assumption.

In his treatment of the radiation problem, Isaacson found
it convenient, again for reasons of mathematicél simplicity,
to analyse his approximate equations making a particular
choice of the functions ;VLV. A most useful and natural
way of deciding upon a choice of /Luw is to appeal a'second
time to the linearized vacuum Einstein equations, given by
equations (2.501), (2.502). Clearly, if éfa is a constant

null vector then these equations possess a solution of the form
e i S

h,on’ - A,un) e ’ (2.601)
where the /%;&V are constants. |

In the more general case, when the background geometry is
curved, this type of solution may be expected to be reasonable
only within a small, locally Euclidean region of space-time.
To account for the expected deviations from the linear solutions
(2.601), it is assumed that the Auy are of the form

/7,qu = A/.w € = (2.602)
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where now the /ﬂ/xv are functions of svace-time, and where

the 'phase'! ?5 has a functional dependence noltl necessarily

of the kind displayed in solutions (2.601). Actually, only
the real part of (2.662) is to te used. If a correspondence
principle is supposed between (2.602) and (2.601) in the 1limit
J;LV —> 7Z}Ly 5 then this, and the initial definition (2.402),
will restrict (2. 602) such that the /1}AV snould be expected
to be slowly changlng funptlons of space-time, and Cﬁ to

be a relatively rapidly varying function of space-time.

The test solution (2.602) will be referred to as the WKB
assumption after its chief proponents in' quantum mechanicé,
Wentzel, Kramers and Brillouin (Wentzel, 1926; Kramers, 1926;
Brillouin, 1926). '

With the preliminaries over, it is now possible to consider

the results obtained by Isaacson.

2:7 The wave equation.

In this section the properties of the linear equations
(2.413) are investigated, employing the TT gauge conditions
(2.507) and the WKB assumption (2.602).

The components of the vector normal to the surfaces of

constant phase will be denoted thus

%ea = 925,« ‘ (2.701)

Since the surfaces, gé = constant, define the 'wave-fronts!
of the radiation, the ray vector %fd is locally tangential A
to the path through space-time along which it propagates.

To ensure compatibility between the WKB assumption and the
definition (2.402), the A v and the phase & must be

restricted in the following manner.




/%/A?) = CD(f/) ) ;;/4 — CN/6~

i - A (2.702)
A/,Ls),oc: O(/) ) g/c)fx: OC/)

The assessment of the order of magnitude of %ff‘fx is not,
however, uniquely determined by the above considerations since
equation (2.602) would still be consistent with the definition

(2.402) in the event that

g/,c,a" = O((f-,)
This difficulty may be overcome by noting that gfﬁ‘ is
unchanging in a small, locally flat regién of space-time,
This is the reason why it is asserted that the ray vector
should vary only slowly in equations (2.702).

From equation (2.508), the wave equations (2.413), become

huos To bRy + hTo R (2.703)
-' Zg(oi,w’a‘/)/oc— = 0O,

for arbitrary Ay . If the WKB form of Ay is adopted,

then equation (2.703) becomes an equation in /q/xﬂ and gﬁ
given by

Zf-%’/o %a/o/l\,u.w + A/u\); 'O,Q + /4 /Q(O)
+A% Rysw = 2R e A
i é[/Z%a,cA/.w;/o‘/' é‘”’;ﬂAM}. ==

This equation is assumed to be valid as a complex equation,

Thus, it is decomposed into real and imaginary parts so that

/0 _ _ (o)
5,0 5 A/N - A,w’; pﬂ + A o-,u En)o— (2.704)

+ A VE@ “”Q:;V,O‘A’W,




)?Ay.p_l_ 50/0 A::_\):O.

P ,,)/Ol A/,LV, i )/o o Y (2.705)
It is observed that the RHS of equation (2.704) is smaller
2
than the LHS by a factor € , 80 to a good degree of approx-

imation

S-S =0, (2.706)

Thus, in the high'frequency limit, the ray vectors of the
radiation are null. To show that the radiation propagates
along null géodesics, it is admissable to introduce a
family of curves in space-time which have the ray vectors

as tangents. That is

/"' .

5{61 %? (2.707)
where (. 1s a non-zero scalar parameter varying along the
curve. Since the gf“ are null vectors, the solution curves
.JC/JZ/C13) may be identified with null geodesics of the
background geometry. If equation (2.706) is now covariantly

differentiated, it is found that

§>O<;ﬁ %\a/é = O $ (2.708)

or equivalently

5.éix = O

?

since §:< is a gradient.

Here é>/JkL is the absolute derivative. Thus, the
rays undergo parallel transport tangentially albng the null
geodesics.

If equation (2.705) is considered, then following Isaacson

we introduce a tensor 'polarléatlon' field ¥ Eliven by
) H

A - J‘f*a#a (2.709)
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The tensor EZ;LV will be required to satisfy €Zﬁ‘¢ G
that the 'amplitude’ vf? is a scalar function of spac

given by

\7% = (/4/4))/4/40))2

Then equation (2.705) becomes '

(ﬁ)ﬁ§°”+ jﬁswj/o/%w" (2.710)

+ A Qe §°= O

If this equation is multiplied by (Z'“ ” then

-/4;/°§/o+ ZL\/‘!{E’/T,G Z éﬂ(iﬁ’)?\}i);ﬂ 3)‘)/0:' Ly
so that

Jf"),o §/o"‘2“’\/4 Sacp A (2.711)
or equivalently

(/425/0);/0 - O (2.712)

A comparison of equations (2.710) and (2.711) implies

Quip €L =0, (2.713)
so that

$Quw = O.
s

Thus, 51’“’ alsc undergoes parallel transport along the null
geodesics of the background.

Finally, if the WKB form of A» is substituted into the
TT coordinate conditions, equation (2.507a) becomes to first

order

Ve _
5?/4«/3'_ 0, (2.714)

which displays the transverse character of the radiation
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induced by this choice of coordinate system. The equation

(2.507b) gives
o3 _
Y Ao(/3 = {J,

If the initial conditions

/3
§ﬁidﬁzo, D//Q\Qlﬁ: Oy

(2.715)

are imposed at any event £ in the radiation field, equations
(2.708) and.(2.713) will ensure that these conditions are
satisfied everywhere along the null geodesic passing through
E. . Thus consistency with conditions (2.714) and (2.715)
is guaranteed.

In summary, it may be concluded that in the first approx-

imation 'WKB' radiation is defined locally by the equations

2
$a5"=0. (U 2r).=0. (2.716)
9w - o, |
ao

provided that the conditions
m_ /3 _
Qw4 = , $ Qa7 O, (2.717)
éy/a%3§2503 = CD’

are satisfied.

2.8 The energy tensor for gravitational radiation.

In this section, an analysis of equations (2.414) is
undertaken employing the TT coordinate conditions to demons-
trate the existence of a tensor representation of gravitat-
ional wave energy, in the high frequency approximation.

The basis of the Isaacson scheme is the vacuum FEinstein

equations, given by equations (2.403). However, since the
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background is assumed to be curved, Epe existence of an
effective energy distribution, Z;MQ37 , must be postulated
to account for the creation of this curvature even though
the space-time is by definition devoid of material sources.

Following Isaacson, we express this as

@ > @ &F
R/M)"QL 3;/,>1/€_ = —dm E/»’- (2.801)

In investigating the non-linear aspects of the scheme;
Isaacson interpreted equation (2.414) as showing how the
radiation itself "acts as a source for the curvature of the-
background". Substitution of equatlon (2.414) into equation

(2. 801), gives the following expression for i;ﬁu) ’

(2) 2
= (/51 ) (R =3 % R® ). (200

This demonstrates how the geometric fluctuations of the field
due to the radiation may be regarded as an effective energy
tensor, which appears on the RHS of the 'Einstein equations!,
(2.801). Thus the energy cuving the baékground is derivedA
from the radiation, so that f:ﬁggylnay be described as the
local energy tensor for gravitational radiation.

From equations (2.407) and (2.408) it is found that

Riv = 3{ #h™ hesip

+ h ”"(/,,PW * N uviae— hopioe ™ /»N,-p.,o) (2.803)
+/7x)a:'p(/"o%;/°-/7ﬂ/*:°') |
B T N B B e

If equation (2.803) is substituted into equations (2.802),

€5~
and E/“,J is written as




b

eff 2 p /0 \ .
E,w = (/1677 )( Uy + Wy i) (2.804)

= b (hepsv +"* hovise = b ) (2.805)
-/-2/' b:NZ_IELAIdU; “/7/00';“ - Ado; p'!”fof“’“

+ h; " Chow “'2”7“”) } 2
and

P o QT s
LVC$V £ = cyﬂ ;4 L)aay;b + /71 ( }IPLQ;O’

- /76#;*’ - ho”’»‘f‘") (2.806
xo~ o ) ‘ |

Ly ot
+a:‘.’){h (Aofo(; *j}),(‘;")-—é{ O{u“/'//\l ; Jr/ »

-

~

Clearly the explicit form of f;ujjp will be very cumbersome,
even if the coordinate conditions, (2.507), are imposed.
However, it will now be shown that équation (2.802) can
provide a simple and elegant expression for the energy of
gravitational radiation, provided that certain assumptions are
made.

Of great importance in the treatment is Isaacson's
assumption that a meaningful result is obtainable cﬁLy if
a space-time average of equation (2.802) is considered,
The underlying idea here is that only the macroscopic properties
of the wave, and not the fine details of the radiative
oséillations, are considered of importance in assessing the
gravitational field energy. This is analogous to the sit-

uation in electromagnetics where a similar averaging process
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is carried out wnen the energy and momenium of electromagnetic
radiation is determined. Indeed, the Maxwell equations theu=-
selves are obtainable by taking the average of the micro-
scopic field equations of electromagnetism over innumerable,
non-static atomic fields. The details of the microscopic
structure are, however, irrelevant to problems involving bulk
matter on the labofatory scale,

Let Z%My’ be an arbitrary tensor field, and denote the
average of B,u.\) at the point P(x) by < 5/»\) Oﬁ)} " It is
required that this average should.possess contributions from
all points P'(x') in a neighbourhood of P(x). However,
since tensors at different points have different transform-
ation properties, an average cannot be constructed by simply
integrating ZSfAV over a ne%ghbourhood of P(x). Indeed
parallel propagators, c??;f?i,Jc:> , are introduced in order
that the tensor field at P'(x'), denoted by ZB/KKV , may
be transported along a geodesic to P(x). If we perform
this operation for all points P'(X')‘belonging to a neigh-
bourhood of P(x), in effect contributions are gathered at

one point thus making an integral average possible. The

e
.

propagators,cgyk , Which transform as vectors at either P(x)

o o8’ )
or P'(x'), are defined by V/«":g,u, l/d’where, if ‘/o(’ is
a vector at P'(x'), then V;& is the result of parallel
transport along a geodesic from P'(x') to P(x).

The average itself is defined by

s ol p . B ’ |
<3,w(’<)) :\/J,, T (x’x)cy” (%, ") (2.807)
x Buow(x) O (%) d%",

where the subscript vﬁ7 indicates that the integral is
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2 : £ a :
evaluated over all space-time, and where & is a scalar

function which satisfies

R
’ ’ = 2 . A
jw © (x,x") dx /] & > 0 .

The extent of the neighbourhood of P(x) from which contrib-
utions to the average are obtained is governed by the
function C:>. Denote by’é§3 , a region of space-time con-
taining P(x), such that‘EQS is sufficiently large to contain
several wavelengths of the radiation field, and yet small
enough to ensure that the background geometry remains approx-
imately flat. The function 2 is defined such that, as
P'(x') approaches the boundary of‘éiﬁ, & falls smoothly to
zero and remains so for all P'(x') not belonging to %QS.
Within &5 ,(:) and its derivatives are assumed to be of
order unity, and in addition a fusction Se may be intro-

duced such that

O« = S«O. (2.809)

With an averaging technique suitably defined, we consider
again equation (2.804). The averaged energy tensor is

denoted thus

_ 74
E/uw) = <E,w’ > (2.810)
— (52//67V)<U,m) * W o >

To assist in the task of averaging this equation, Isaacson
introduced three rules which are stated, and proved, here.

(1i). The term CSZ( \’\/,un/ /?,o> , in equation (2.810),
is smaller than 62 \/\//,4(_))/0)'/0 by a factor E . In
particular, C:z(\/\//ux)fo,'p> = O(C).

(ii). To first order in &

52<h~) 0-; /o/7,o,u-;0‘> = = 62<%VO: [CO‘ A/‘;~*“'> ‘




- 28 -

2
The factor éf is introduced for convenience due to the

presence of such a factor outside the averaging brackets in
equation (2.810).
S . . . / . .
(iii).  Covariant derivatives of /Muv in equation (2.810)

may be commuted. That is

s 2
62/’)/“,1),'(00‘ = ¢ 11'7,ULV)'O’K).

Praootf of (1):

First, it is required to show that
X WuvTip ) = 0(C).

By definition |

(W Gpp = € ~/m da/* j v Wew ﬂ,:,o" & el
&L (g3, v«f/w@)_ s ol

) 6//4 {j/u "~ jg /3”00 (2.811)

ot - cor? R’ b > it
e [~4 ﬁ / 4 ﬁ £ & 4
i I i Wais"CO +Gpu Jo' Waew 6D, o f ol
The first of these terms may be transformed to & surface
integral, which will be zero due to the behaviour of 9,
To assess the order of the remaining terms we consider the

modulus of the final integral in equation (2.811).

/I//-V/ d // C?/‘"’ g,) !/V/o(’i L ﬁ’ C"/Zﬁ?‘('//
sz /cjf/.*o:j?ﬁ Wd'ﬁ/ﬁ@;ﬂ"/ o e’ (2.812)
= &L 1959 waw ™ S| @t

i T -
by equation (2.809). Since the propagators, 7, , are
L s A’
dependent only upon the background geometry, &~ and /Q%& 30
o L

may be supposed to be of order unity. Thus, by inspection

of conditions (2.402)
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(9.5 9. Waw 750 ) = O(E)

So, as (f —> () , there exists some constant Q> C),

such that
R X e’
2
2/ 9 9. Wun" Spr] < Q&
Hence, continuing from relations (2.812), we find that

11,0/ < [, QEBus’ = QE, a5 &~ O.

Therefore, by definition, it may be concluded that

Sy 99 Wy PO, %’ = O(C). (o13)

A similar argument applied to the remaining terms in equation
(2.811) leads to the result
o ~

X W 0 p = O,
An assessment of the order of 5; bV/ must now be
made.

From equation (2.806), \/V;»v’o;ﬁ; is seen to consist of
terms typically of the form /)/,u)ho(/sl poo  or h/uy,o ha/,,o—
Therefore, by inspection of the definition (2 402), Mé@»)fz,a

-2

will be of order & “', so that
2 o
E- W S0 = 0(1),
. 2 o
Thus, a comparison of the orders of magnitude of ) lNﬁAV 5P

2
and ¢ (%V?p} provides the desired result.

Proof of (ii).

Define

2
CE ;[:>LY)OTG— = 2-</f7>7 /%fOLL o

b

Teking the average, and expanding the RIS of this equztion
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we find

\

52<D/L,n) U:U‘/

i

2 ’ o~ @
é <h\) ; O‘hfo/"“ (2.814)

L e
T hy o AﬁMﬂT?.

By a similar argument to that contained in the proof of (1),

it is found that
2 o -
G <D/f‘") :'°'> - O(@),
whereas
2 o PR o r
6 (h)) ; O'AIO/,L -+ /’)\) ) IL)/o/J,,o‘> - O(/).
Thus, equation (2.314) may be written

&5 h5 hppio) = =€ X “o g ) + 0CE),

so that, indeed, to first order

EX 1o hpsa ) = = K bo e hpp ).

It is stressed that both sides of this equation are of the
order of magnitude unity.

Proof of (iii).

Here equation (2.505) is reconsidered.

@ 6»
h/u.s),"Cp ’”;)/u.\);pt - E O’/OC/? 1 ,)o~,o'(; }7

If the definition (2.402) is used, it is possible to assess
the orders of magnitude of the terms in this expression.

It is found that

< (/¢5ﬁbu ;T o /5fky)/DC/) C)(’I

whereas
®) @
Z(EuG‘/O’CA G:) + E :))O’/O'C A/u, o—) == O(CSZ).

Thus, equation (2.505) may be written
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626#v;no = 52}UM4@¢ +'C>(62),

which gives the required result, that is

2 2
& //7#));5/0 Z /’)/uV,'/OC.
It is noted that both sides of this equation also are of
{ ¢ ‘

unit magnitude.

Corollary to Rule (i).

With reference to subsection 3.3(III), it may be shown

that

£3(CBwh™ hap; ), ) = OLE).

Proof of Corollary.

This statement follows if »wcuw)’o is replaced by

a3 ©
in the proof of Rule (i).

These rules may now be used to simplify equation (2.810).

From rule (i), it is observed that

(16T ) Uw) = (1), E 16 ) Waer 3002 O(E),

so0 that equation (2.810) becomes

E v = /16 ) Upv ) + o(¢). (2.815)

If the TT coordinate conditions are used, then equation

(2.805) implies that,
2
é?}Av’ = (C://767T;><’:f 'ai;x ;Lody‘w

"AViP(AﬁwW ”/wav)
—é a;u)féi Apo,t O‘Afoa",'o: - /) 0‘0: {o/70(/~’,‘ O"/?> "

An examination of this equation shows that only the first

(2.816)
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term on the RHS can evade manipulation by the use oi rule (ii).
Indeed, it can be shown that this term becomes the oaly
survivor when rules (i), (ii), (4iii), and the coordinate con-
ditions are further applied to equation (2.816). Thus,
Isaacson's result for the stress energy of gravitational
radiation is found,

2 o \
E/w = (5/3‘2'”')( /o;//«/’mon' V> 7+ O(é/’. (2.817)
It is, of course, by virtue of the averaging process‘ihat it
is possible to reduce the equation (2.804) for £Z .. , to
this remarkably elegant form. This, however, is not the
only benefit to be derived from this treatment of [ "
If we recall the expression for the effective field energy,

given by equation (2.804), and consider its behavicur under

a general infinitesimal coordinate transfcormation

x¥ — XX = x%p cz® ,

(2.818)
then to first order, /7fm¢ transforms as
A/,u) - h/,u) = /‘)/ux) - Z/u.;\) - L Vi
so that the effective field energy can be shown to transform

as
eff — & F
- < Jap
Eﬂ,;'*’f/u,) - E/AV‘*H/AV,ﬂ + Ofcy.
On averaging this equation, Isaacson has chown that fhe

o L
divergence term, f#}»ﬁ 3, » diminishes in magnitude so we

find that ézpu)5'<’£;49€ﬁi> transforms as
E/u\) == E/M/ = E/M\) - O(@ )_ (2.819)
Thus, a very important result is obtained. The averaged

gravitational radiation energy tensor is invariant, in the
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high frequency limit, under the general gauge transformation
(2.818), and is therefore given by equation (2.817) for all
choices of coordinates.

It is of interest to investigate equation (2.817)
assuming the WKB form of /Iuv. It will Dbe supposea that
/”),u,v = Reol {7’% (rl/,u) £ 075} , and that equations (2.7165,

(2.717) are satisfied. = Then, to first order

Eow = '(62/327‘\’)<«742§7b <y 55”2?5). (2.820)

By inspection of the definition (2.807), to evaluate this
average a knowledge of the propagators,cggld/, of the
background geometry is required as well as a suitable choice
of the function & , satisfying equations (2.808). Since a
general choice of the background metric 5;u’ is being
considered, it is not possible to obtain explicit expressions
for thecgk;“/. Instead, the averaging integral is modified
to find a procedure which will provide an alternative averag-
ing technique of practical use in evaluating the WKB form

of f?fkw.

We recall the rigourous statement of the average given by
equation (2.807). Since the function & is zero for all
points P'(x') not belonging to neighbourhood &2 of P(x),

a reasonable alternative integral can be constructed by elim-
inating EE froa the integrand of (2.807) and integrating
over & , instead of over the whole manifold, uﬁ7 . Also,
as 85 is defined to be a locally Euclidean region with
respect to the background geometry, the general propagators
in the integral over M may be replaced by the propagators
of the Minkowskl metric in the integral overgé} Since é

vector b;g’ at P'(x') is unaltered by the operation of
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parallel transport to P(x) in the flat region & 5

I (on) = 5/«*'0‘>
because

Vi = 9" Var = 8§ Vi = Vi

/bb

where é;{ is the Kronecker delta at P'(x'). Thus,

equation (2.820) may be written as

E,..=(&/35m) ;%f $i & S AC) & ar sin2gh(x?) ol
= (52/327T)J32 Jf’z(x')g#/ §x)’ Sgn_zﬁé(X') Q/L’LXI’.

By the definition (2.702), the amplitude and the wave vectors
of the radiation can be seen to change at a rate corresponding
to the rate of change of the background. Hence, as a further
consequence of the Euclidean nature of S0 , it may be inferred
that the product Qﬁi%£¢;)§ip’§?w’ is unchanging over the

region of integration. This gives

B = (62320 ) A°E, Eo Coin? p )y

which leads finally to Isaacson's expression

Luv = (521/742/6477')5»5) ; (2.821)

for the stress energy of monochromatic, WKB radiation in
the high frequency limit. It is also of interest to note

that the WKB form of £ ,uv satisfies
MY 2 2 i) y2a
EXe = (6/64’”){(04 )i § (2.822)
2wy i -
- J% ée éeM;sz = "
by equations (2.708) and (2.712).
The result (2.821), that the form of the energy tensor for

gravitational waves is the same as the form for electromag-

netic null fields, has also been found by MHacCallum and Taub
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(1973) using a different method. Their rederivation of
Isaacson's result was obtained by employing a WKB form for
#ULQ,Fand using the "averaged Lagrangian'" technique devel-
oped by Whitham (1971). The orimary difference between

this and the Isaacson treatment is that (2.821) is arrived

at by averaging a scalar density, therefore overcoming some

of the above mcnticned problems of tenscor averaging.

In summary; it has been found that, provided the wave-
length of gravitational radistion is short compared with the
characteristic length of the background geometry, localisation
of the energy carried by the radiation is possible. Isaacson
has convincingly demonstrated that such 'high frequency'
waves possess an energy tensor f:va, satisfying the local
conservation laws (2.822), which is second rank, symmetric
and gauge invariant. Further, the inclusion of some of the
inherent non-linearity of general relativity is an additional
attractive feature of Iséacson's treatment. This allows
us to display the manner in which the wave field energy
contributes to the curvature of the background space-time
through which the wave Jjourneys. Thus, the 'Isaacson
tensor! fffu) overcomes many of the difficulties which plague
the pseudotensorial representations of field energy associated

with the linear theory of gravity.

2.9 Validity of approximation.

The scheme which has been reviewed in this chapter is
valid for all magnitudes of gravitational field strength.
Its applicability is, however, restricted in that it may only
be used in situations where the condition for high frequency,

(2.204), is well satisfied. The severity of this restriction
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is not great since radiation emitted by a material source
will satisfy (2.204) in the region, a sufficient distance

from the source, usually refered to as the "wave zone".



Chapter 3.

A general formalism for the treatment of high frecuency.

gravitational radiation, employing the WKRB approximation.

Bl Motivation.

In this Chapter, the scheme developed by Isaacson, for
finding approximate solutions to Einstein's field equations,
will again.be the subject of attention. From the review of
the previous Chapter, it is known that the solutions thus
obtained may be interpreted as deécribiﬁg the propagation
of high frequency gravitational radiation through a curved
'background'! space-time.

The tensor representation of the energy of gravitational
radiation discovered by Isaacson has since been recognised
as being a considerable improvement upon the inadequate
descriptions of field energy provided by the linear theory.
Consequently, it has attracted the attention of many writers
since its advent, with contributions being made in either
developing the technique further (Choquet-Bruhat, 1969;
Madoré, 1972, 1973; MacCallum and Taub, 1973; Legros and
Madore, 1974), or in applying it to astrophysical problems
(Price and Thorne, 1969; Rees, 1971; Jackson, 1972;
Madore, 1974). In particular, J. Madore may be regarded
as having produced some powerful physical results employing-
a WKB analysis of gravitational radiation, and these will
be mentioned later.

The motivation for the work in this Chapter is to devise
a formalism extending Isaacson's vacuum scheme to one capable

of describing radiation in the presence of matter. It is




hoped to do this in such a way as to render the presently
published results of Isaacson and Madore as speclal cases
within the general formalism. During the discussion, it
will become apparent that the treatments of these two authors
contain mathematical differences and the significance of

these will be investigated. .

3.2 The approximation scheme in matter.

In this ‘Section, a set of field equations capable of
describing the propagation of high frequency gravitational
radiation within a matter filled background is developed.
Einstein's equations for a space-time manifold containing

a distribution of material energy may be written

(g,w) = —&r 7—,“») ’ © (3.201)

where y7s is a tensor describing the matter content of

the manifold, and where

(9’“’ - /Q/N éﬂ«/J . j”j,w E(Jo«/s). (3.202)

Observe that

Rlges) = 3" Ruw (Sen),

and suppose, for the moment, that the total metricc;?*“) is
arbitrary.

As is well kndwn, the set of equations (3.201) is
interpreted as relating the gravitational field, represented
by the geometry of a Riemannian manifold, to the material
sources -7;*v creating the field. It is important to make
the apparently trivial observation that the components of the
tensor v contain only the energetic contributions of the
material sources, and that contributions due to the gravit-

ational field energy itself do not enter into the RHS of




Einstein's equations.

The effect of introducing gravitational radiation into
the system will be to impose restrictions uvpon the form of
the total metric,cyfby. To describe the gravitatioﬁal
radiation content of the manifold, a definition similar to
that of Section 2.4 is adopted. A metric is said to contain
high frequency gravitational radiation if and only if there
exists a family of‘coordinate systems in which the total metric
of the matter filled region takes the form of equation (2:401) .

That is
G = Tuv + Chpw, 0<E< L

In addition, it is suppose d that

aﬁw = o(t) , hus = o), (3.203)

where the dﬁ;a again represent the background, and where

the ;vAV are ldentified with the 'wave potentials' of the
gravitational radiation. In the—vacuum treatmenf of Chapter
2, it was discovered that the effective energy of the radiation
field was responsible for the curvature of the background.

In this casé, when matter is also present, it should be

borne in mind that aij’ will be generated by both wave and
material energy sources.

The complete definition of Section 2.4, involving detailed
estimates of the orders of magnitude Qf the derivatives of
the € v and the /yJw’, is not employed. However, some
indication of the rates at which the Juv and the Auw
change relative to one another is necessary since it was

concluded, in Section 2.8, that localization of the wave
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energy is only possible if the radistion is of high frequency.
It is for this reason that the definition of high frequency,
as stated in Section 2.2, is a common feature of the works of
btoth Isaacson and Madore. Thus, instead of imposing the
totality of the conditions (2.402), it will only be required
that the radiation conform to the weaker restrictions of
equations (2.201), (2.203) and (2.204), when developing the
general scheme.

It is not claimed that the following formulation is unique.
The aim is to produce a single theoretical framework which
enconpasses the known results of Isaacson and Madore. Assump—
tions are made, and the scheme is developed-along lines which
provide the desired results by the simplest means.

If the metric (2.401) is substituted into equation (3.202),

it is found that

G = 2 {RE -2 2R

(=0
et (L) L‘/'2 o, (el
- AL +<E T Thwh PR ag (3.204)
2 Moz
3/506% 4 9)_ «F B sy /3 Gﬂ
+[C(7€,w 7 %k ) Z‘A/W+ P b S
)
where the ﬁa terms are defined by equations (2.405) to

(2.408), and where

E(c‘) - a/O*/SR(")

<« _ O] * /3 <)
A9, = pwBO= L b RY . o
for i=0,1,2,3+. Hence equation (3.204) becomes
(b) a)
= -+
/é%ﬁu) /(2 Cifg;/‘Q (3.206)
2 -~ (2) 3 -~
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where
—~® () / )
Y T e =5 b//un)/e s (3.207)
o - RO Ly, R 24 (3.208)
Ko = S T2 O 2 S 209
) _ YN} (2) /o, 1) .

GY _ pH 34) &
T ’M?"Zlb:»”e( — 54
_ 3+ (1)
5’-4 e +2—'/)/J,w/v°('8(/€q,e SR O T
) |

Now we consider the matter content of the model. In
what follows, matter will be envisaged as a general fluid
characterized by a velocity L4-vector LX%L , a density /0 ’
a pressure 7> , a temperature t[ﬂ , and variables 72 "
3: and ;(V representing the shear viscosity, the bulk
viscosity and the thermal conductivity respectively. An
explicit statement of this tensor appears in the next Section.
In the presence of the radiation, it is assumed that all
of the quantities describing the fluid will be perturbed

from their 'background' values in such a way that

= 0@ s ® )
Upe = Upe T EL L= LT EQT (3.211)

and correspondingly for 73 , T 3 72' ; ér and ‘jé .

Since the radiative perturbation to the metric is small, of
the order of & , the fluid perturbations are also expected
to be small although this will be discussed in greater detail

later.

If the perturbed variables are now substituted into the
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functional form of 7:;# , a power series in & will arise,

(©) @
’7‘;¢ = 7r;40 + C 7r—;4V (

/.

N
Ny
‘—J
AV}
S

-3 =
’ 7~(%f T C 7—§iVR )

} ~ e 1
the particular

(J

(3+)
where jTM is a remainder term. Here
7—‘(6) .
forms of the JV will be dependent upon the choice of 77AV.
Thus, using equations (3.206) and (3.212), Einstein's

equations become

< 5(5" +cé§,fi “’"%9(3)
= -é’n (7’@ + & T 5 (3.21%)
FET S+ € T62).

As will be seen, these equations provide an adequate
machinery with which to describe the propagation of rédiation
in matter. Attention is now turned to the task of gener-
ating an appropriate set of approximate field equations.

Consideration of the vacuum scheme of Isaacson suggests
that the presence of gravitational radiation in a region of
space-time will give rise to an effective energy density
there, which may be attributed to the radiation. Thus in
the case now under consideration, there are two energy
sources, that of the radiation field and that of the fluid,
which act in creating the background curvature.

To accomodate this hypothesis, in matter it is assumed
that

() ®) e )
- - 0 - ,
(‘\(7:/“"') a Tl ( T//LV E/(/.V /S s (3.214)

an equation analogous to Isaacson's vacuum equation (2.801),
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f

As before, éi/4? denotes the effective energy tensor of
the radiation field.

As emphasised previously, the equations of Einstein have
a source tern 77;9 which contains all contributions to
the energy of space-time, other than that of the gravity
field itself. '

Since we have égain postulated the existence of a gravity
field energy f;}bl? , the field equations should be express-
ible so as to exhibit this energy amongst the material energy
terms on the RHS of equation (3.213). Insight into how
to do this is provided by a reconsideration of the methods
employed in the vacuum case. The field energy £:/*Eff is
looked for amongst the geometrical terms in the expansion
on the LHS of equations (3.213). If this energy is to be
displayed on the RHS of equations (3.213), then mathematically
this amounts to a trivial shifting of terms from one side of
the field equations to the other. However, from a physical
point of view this simple operation will contribute signif-
icantly in obtaining a sénsible scheme to describe radiation
in this approximation.

As a further step towards the realization of a suitable
formalism, another assumption is made. It is supposed that
the wave energy resides in thecﬁg%;fi term of the field

equations. In particular that

el? (15,//é?"'/%f£5;(2)
2 (2)
= (€ /aOF)ZfE E i

a/s )
—_éLA/J.\) ’f“;/‘ ,u.x)/’> R
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from equation (3%.209). The validity of this important
assumption will be a subject for discussion later, | By
a comparison of equation (3.215) with its vacuum analogue,
equation (2.802), it is immediately apparent that the
definition of E;uﬂ) in matter differs from the correspond-
ing definition in vacuo. Despite this modification, however,
equation (3.215) will be shown to provide a final averaged
energy tensor for high frequency radiation in matter, which
has a form identical to the energy tensor derived in the
vacuum treatment.

Having identified the energy of the gravitational rad-
iation with an aspect of the geometry of the matter filled

manifold, equations (3.213) are rewritten in the following

manner
(3+)

©) ) 3
g/*‘i+é /.AV-{‘%,@U)
Cb) 0 2
= —gm (Too+ €Tub +€°TH

59 . ¢
+ & T d?“g”(‘“))

Then, by equation (3.215), this becomes

«9 0) 3+)
= =& (/7:AV»‘+ éi7_(i + 5:2 7~Q)

(3+ &7
= // -_/,42/ P
which provides a modification of thé field equations in
which both material and the field energy sources are clearly

exhibited on the RHS. Finally, the substitution of equations

(3.214) into the above equation gives
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—~ (D ~ B4
& /NQ7'€(4/#P

:"877-(C Q“/’(SzT(xg'/é 713?‘;)

b

(%,216)

Thus, an approximate solution of Einstein's equations,
representing gravitational radiation travelling through a
material medium, is obtained by simultaneously solving the

equations (3.214) and (3.216),
@ _ () ?if
C’\ i = 5’..!. (/ /u,i) /,x.}) ]
w) w) e e a. g (s+)
where the effective energy tensor of the high frequency

field is given by equation (3.215),

4 N
E/w(’j - (6?/5371.)(9/%9 i

These equations, which are proposed by the present writer,
are generalisations of the vacuum field equations (2.801),
(2.413) and (2.802) respectively.

The above field equations, which will sometimes be referred
to as the 'general formalism', have been obtained with the
aid of much guidance provided by the Isaacson vacuum treat-
ment. One criterion that may be employed to measure the
adequacy of this general formalism is to check to see that
it is, at least, consistent with the published results of
Isaacson and Madore. This will now be attempted. In
addition, an examination of the Isaacson method when applied
to manifolds possessing a non-zero matter content will be
undertaken., It will be interesting to discover to what

extent the materisl medium will have a modifying influence
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upon the original results of Isaacson.
In the course of the discussion, we will endeavour to
justify the assumptions made in developing the equations

(3.214), (3.215) and (3.216).

5:3 The general formalism and the 'Isaacscn approach'.

The approach eﬁployed by Isaacson is based upon the
definition 'of high frequency radiation stated at the opening
of Section 2.4, which demands that the order of magnitude of
the quantities involved, and their derivatives, be specified
a priori, This is expressed by the array of equations
(2.402)., The definition of high frequency given by
equations (2.201), (2.203) and (2.204), as well as the
equations (3.203%), are automatically satisfied by the conditions
(2.402), since £ << [,

Other important aspects of the Isaacson method, for
example the WKB form of ;yuw and the coordinate conditions
employed, are features which are shared with the Madore
method., Therefore, so as not to detract from the fundamental
importance of the equations (2.402) to the Isaacson approach,
these other characteristics will be introduced later when
necessary.

Equation (3.216) is now considered in both the vacuum
and matter cases, using equations (2.402) as a basis for
the analysis.

(I). BEquation (3.216) in vacuum ~ the Isaacson method.

In the absence of matter, equation (3.216) immediately

reduces to
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) 3 G+) .
G s+ G = 0 .
G o T O (3.301)
" 0]
Since uv 1s a function of terms the largest of which

are of the form /vav;a/a , the equations (2.402) iﬁply that

Q. oy
é(g,m) = o(&”). (3.302)
{3+4). : X
Similarly,céa fv  can be shown to be a function of terms
the largest:of which are typically of the form /&MVAptﬂxhﬂﬁyﬁ.

Thus, it is asserted that

G+) _ :

5;9/“» = 0(¢) . (3.20%)
To a good degree of approximation, equation (3.301) may
therefore be writteﬁ

/
Cgi’w = 0,
By an inspection of equation (3.208), it can be seen that
the appropriate treatment of equation (3.216) of the general
formalism gives rise to the original vacuum results of

Isaacson (1968a).
(L] Equation (3.216) in matter - the Isaacson method.

It has been emphasised throughout that Isaacson did not
attempt to discuss radiation in the presence of material
energy in his pioneering papers of 1968. The possibility
that Isaacson's method can be extended to deal with radiation
in the presence of matter, and thus be applied to cosmology,
will now be examined.

Consider again the equation (3.216)

® 3,4 a) 2 ) 3T@#
5(9/*“).{-6(9/4\)— 8”(67_/,4,\) +<: 7;1\)'7“6 7‘/,(\)/'

In the prescence of matter, the estimates (3.3202) and (3.303)
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remain valid, so that the ék49':iv term ﬁill again be
dominant on the LHS. On the RHS, it would appear that
there are no terms larger than order é;, so that at first
sight the éCg%;Z) term would Seem to be larger than all the
other terms in the equation by at least a factor Ciﬂz-.
This implies that equation (3.216) could be written to good

accuracy as
a) . '

e T O (3.304)
This procedure, however, does not conform to the spirit of
the Isaacson approach in that the ferm 7F;Z$ for examplé
may inherently possess an order of magnitude other than
unity. There exisﬁs the possibility, which must be considered,
that the order of 7f;23 could become large enough to equal
the order of Cg; ;29 during the passage of the gravitational
waves. In this event, equation (3.3%04) would certainly not
be the case. A careful analysis is required to resolve
this problem.

Firstly, it will be assumed that the 'potential' of the
radiation is given by the WKB form, as iﬁtroduced in Section
246 That is

- cp
h/,u) = uﬁ?\,u,\) 8 P
where b/%, QZ/LQ and gé represent the amplitude, the pol-
arization and the phase of the radiation respectively.
Since the background metric, and its derivatives, are stated
in equations (2.402) as having unit magnitude it is further

supposed that the unperturbed values of the fluid variables

satisfy the following conditions,




o hE =

(o) (o)
w?, p%... < 001), (3.305)
aul . 357, _
O a'g”"""o ‘ (3.306)

Since the WKB form of %bwd has been adopted, it is reason-
able to suppose that the passage of the radiation will induce

fluid perturbations of the form

@ _‘&\(1)60#5 Q) AC) P
Ay & Ly VAR (3.307)
and similarly for /3 T(') )Z‘(l)’ :(.(’/) and ;< & , where
o 0) A
Loy O ,..... & O(1).

This type of hypothesis, which is common in hydrodynamical
treatments of waves in fluids, is not of course totally
satisfactory since any full treatment of the problem must
involve a solution of the equations of fluid motion.

However, if it is accepted for the time being, a reasonable

evaluation of the radiation's effect upon the fluid is possible.

Two cases are briefly considered. Firstly, when the
material distribution may be described by a perfect fluid

energy tensor, given by
7—,,.\»-: Wik thy = Guvi (3.308)

P

and secondly, when it may be described by a general dissipative

fluid energy tensor, given by
.._,L.

\?’/F7/LV (/Z)a'ccoa)-f 5(2//¢x?1 527%7 “+ ULy :ZZAL/),




where
/—7/}“)) S& Cj/("“\) i C/J/u, (,(:V "
\

_(Z/M« = /—] a/u, T ox I,TC’(’V)(“])’;} C/C/U’/ ’

J
Z/.,u) =[] O(M /7 ﬂ\) (])(X wp + Dgp (,(,c()

3
. _ T 4, ¢
Here, the variables CA%A, /(7 ; f) N R /( , =  and
:Xi are as defined in Section 3.2, and the QCfA denotes
the covariant derivative with respect to C?ﬁAQ. For an
&4

account of the theory of imperfect fluids see, for example,
Veinberg (1972).

Consider the passage of the radiation through the perfect
fluid distribution. When the hypothesis characterized by

equations (3.307) is accepted the following estimates arise,

Hop S ) s W £ O(E7), (3.310)
@) Q) /ol )
/O SO(/); /O)ociiO(é/)

7 (7 o e (1) (1) )
and similarly for ZDC{ :ﬁ ), fz 0, ~§x ana X , since
?M:_: ¢;/u. = O(@"’) in the Isaacson schene,
When equations (3.211), (3.307) are combined and the result
introduced into the equation (3.308), particular functional

a (z) '-7—‘(3-&)
forms for '7;LQ . 70/*¢ and / pa  are obtained.
This straight-forward calculation shows that none of these
quantities contain derivatives of the form displayed in equatiocns
(3.310).
Thus, in this rough approxim~tion, it is posszible to

conclude that
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an 2)
G
[ o S OC) .

f4
Now consider the radiation incident upon the dissipative
fluid, A similar procedure applied to equgtlon &N 309)
! 7’\—’— ) (2) 7—(3 +)
provides lengthy expressions for the / v AAV and
which for the sake of brevity are not reproduced here, L -

is sufficient to indicate the result. For a dissipative

fluid it is found that :
=) - o (2) .
//JA/ $ 0(6 ) ) 7ﬂ/“"") < O(é )) (5.3512)

?1(3 +) < o(é—/)

Sy
since the 7—;:V; y 1= 1,2,3%+, are comprised of terms linear
in derivatives of the kind contained in equations (3.310).

Before any conclusions are drawn about the form of equation
(3.216) treated in matter, it is desirable to justify the
equations (3.311) and (3.312) by a rigourous soclution of the
approximate equations of fluid metion. This may be done as
follows for the perfect fluid case.

Consider gravitational radiation travelling through a
space~time manifold in which the material distribution is
described by equation (3.3%08). As before, it is supposed
that the fluid variables are perturbed in the presence of the

radiation in such a way that

®) () )
= Cl, o+ = -+ &
o ¢ “ , 27/ 77 (3.313)
S S s ) W |-
poe pUrep? W wrew
where W“,') = f’” + /O("‘) and v\/(') = p(/)vL p(/)

Substitution of equations (3.313) into equation (3.308) gives




- L9 -

Tuw= T+ €T+ 1,0+ ' 700
where
Tfii = Wl - o P, (3.3142)
/Z)V: W ""/(j)"‘y"’” W W’ (3.314D)
- w“”)ocff,"u‘j” __/,D(/)a/ /_3 /’7/4\),
7‘;;2\); = W(o)btm bé,) o W")f/LM u,() (3.314c)
- w?ulul — b,
T,{»i:)_ w Pl (3.314q)

and where the conditions (3.305) and (3.306) are valid.

The equations governing the flow of the fluid are

v
ZDMT’M = O, | (3.315)
and
pev
VA = ' (3.316)

where Z:&A represents the covariant derivative with respect
to the total metric(éyﬁég , and a semicolon represents the
covariant derivative with respect to the background metric
é;4¢. Additionally the fluid velocity L4-vector is assumed

to satisfy

Vv .
hY " U Lo =/, (3.317a)
and
5 U = |
Llpe Ly : (3.317D)
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The equation (3.315) may be written explicitly as

7—# ) phe Ly (?ry/s)T ?%\:-é%(ﬁ) 7—*/4(7:

Substitutions for i?#“) and j?;u) in this equation, from
equations (2.401) and (3.212) respectively, give an expansion

of the following form,

wagn (0) pV (1) Y
/ s T £ (3.318)

+-6zj—(2)9+ 63j“(3"‘)‘): O

)

where

) ~49 (/) /,(9 ()
VANE Tce = T o (3.319)
Jt B (c) (o) :
=g /ﬂ/«“9 vy T U\;B 7—#-5)’

(2) #48 1—(2) 8
7 g A B /v/u 7—/,(\);9 (3.320)

6r /T o (o) —(0) -
Zf’u(/)o([j,u,aTzf)"‘/ﬂr 0 3 /'_/u.'f
yx) T (0 4 (»)
— g U/,,(_g 7—-5-\; + [jwe )
6 T ) v ce)
+ A? ( Ulu_g T—C\‘) + D\/Q T )

Although the remainder term, 63Tg+) , 15 not given
explicitly, it is discussed in the subsequent analysis to
indicate that it is too small to be of imnortance in the first
order fluid flow equations. The [:7AAV terms are as
defined by equation (2.408).

Equation (3%.316) substituted into equation (3.318) gives

. (2) —(31)
Csxj\)—f_(fj-’ 5Ju = 0. (3.321)

Now consider the first term of this equation. If the follow-

ing definition is made,
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= = - 1/
L._.J/u.\) - 7/_,_\)

and the coordinate conditions given by equations (2.507) are

(o)
—f' Poh/u.\) )

imposed, then

{1 B ~— JAe M8 (o) (o) ()
J oo 5 Ty, — A \/‘“/ p v Jog  (3,582)
oy (0) €0 | () ( L T _ "l "C)
é—l/\/ Uy, ey h v+ A % AV ., ;

It is now convenient to introduce a useful notation. If
X denotes an arbitrary tensor of rank j, then let

v = oX _ |
X:‘a"a r VX = (X;M)¢

Thus, the covariant derivative of )( may be written as a

= conStO-I’) t.

sum of two parts,

X;/A« = 5/»)( i V/«‘X, (3.323)

where éi;° is defined in equation (2.701). In particular,

—

Aa’/%}/-k e §,u, Ao(/?) 7 V/Ahuﬁ
since hap = OC1) , Vihap = (/) ama
ép,(, = O(CS’/) , it is possible to write

Chapin = EE hop + O(E)
Thus, to lowest order, the covariant derivative of /5cvs
is reduced to a partial derivative with respect to Qﬁ ]
It is also true that )(;/¢ = VZA'>< , for all tensors
)< satisfying X=0. For example, from equations (3.306)

@) _ ¢o)
Ui = Ve Ly

These considerations show that equation (3.323) turns

equation (3%.322) into




S @y ) =0 e (D) ) Cleo=M Y (@
5 :Zvv S MN(AV'+( Lo 7+ W/ Lo ) LL,
P @) ) (2% ©)f3
(B yThap TN 5L S
K fL8 ) (e) (o) :
{7//“/::7 /) 7 (;,/ LA T W (3.324)
et g1 G /~

(e (o)pt (o) T | .
'“-/W )CC. (AL (V/«L/-)'CV '7,_{7;)/[)'[//0 V’C /’7/-&)))]’
)
If the expression in the first bracket ls denoted by Cz,p, $

and that in the second bracket by Cl»uz , then equation

(3.324) may be written

/0 (Ia f [ "“]- (3.325)

Suppose it is now assumed that the fluid perturbatioﬁs

satisfy the following conditions,

0] - (0 — ) /
LX,/u,, CJ{«/u., = O(/) P - O()} (3.3%26)
) —

0 = O(/).
<o~
The equations of fluid motion are now investigated to discover
whether this assumption provides a consistent solution.
By equations (2.702), (3.305) and (3.326), it follows

from equation (3.324) that, at most,
— /\ -'/\ (l) =
ol = o), 2% = o).

(3.327)
Also, if
(2 @ )
C 5 = (/?—))/ 7" a‘)z_ 4
o) _ G P (3-+)
T N VL,

then, by a similar argument, it may be shown that




- 53 =

@ = oE™), a% = 00),
» 3+
A% o(e) . G = OC7),

(3.328)

since equation (%.3%18) contains first derivatives only.

Hence equation (3. 521) may be written

éi</51wn Ay 0) ,) + < (/CL,% T Qy
+ & {0«(3+)+ @\)2 ) .

By inspection of the conditions (3%.327) and (3.328), to

(2)

first order this equation becomes
&
CQ .y T O(d)
The approximate equation (3.3%21) of fluid flow may therefore

be written explicitly as
@xX () — D —0) pot, @)
- @) —(7)
+ w®E ) (/w - ( (3.329)
, (2] ) —
+ 3 Wo/)« (O)“uf”s)f\)j - O(C") = 0.

We now consider the consequences of the restrictions (3%.317)

imposed upon the velocity 4-vectors. If equation (3.317a)

is combined with equation (3.317b), it is found that

n () O»w @)a @JG

2w Aap + 0(¢), .33
which also implies, since CC;L is assumed to be independent
of &, that

@ —@) 2 (o) 6-) /3 -
2 KM= fogw 0(E). s

Thus, under the hypothesis (3.3%26), the motion of the irradiated

perfect fluid is governed, in the first spproximation, by
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equations (3.329) and (3.330). Moreover, it will be
supposed throughout the remainder of this Section that the
hypersurfaces of constant phase are null, to the following

degree of approximation,

£23, 37+ 0(e7) =
X

If equation (3.329) is divided by & (L& , then

2/\//(0)(:: (7) V_;(I)C(-(S) " W(O) §~° (J’ ) (°)
§>O‘ r o (o)

sr U4 ONE @) (bh3

—_w /1

Fo® E g Sf o)
Y

(3 332)

' ()

The divisor satisfies Légf?oc‘aﬁ O , because U g
must be a timelike vector, whereas é%;b is 2311.

By contracting equation (3.332) with éi§’ , and again
using the null character of gfﬁb , we find that

70 _ )
G 'y -
W o = - W o(E ), (3.333)
\ FT@ 2

If this result is substituted into equation (3.332), then
a slight rearrangement gives
0y (1) T (oyee  (0)/3
2w - W heg U Z,
¢
FUY

fg\i"g - WU )+ 0(8)

Lo
@y
Equation (3.334) is now contracted with L | and equation

(3.33%4)

(3.317b) applied. This gives

(o) ~ () (0) V__ © 7 ) c),3
i whap (3.335)

_ S a=® —W 3 + 0 )
- (-r._/_, — W / (CS/.
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However, by appeal to equation (3.3%1), it is seen that the
LHS of this equation is zero in this approximation. Since
a8 =)

/7 , W are assumed initially to be of order unity,

equation (3.335) therefore implies that
/ & _“\/’
= 259+ ocE),
or
— (1) — (1)
P e pl H+o(e), (3.336)

5 Bg o \V\/(/) . . .
from the definition of . Substitution of this result

back into equation (3.334) produces

@ —=0) w® 9% 08
2wy hag — =y 75 (3.337)
T
W & (o)
= W §au@)” L ’} + o(¢&).

Consideration of the equation (3.3%30) implies that a possible

@
solution for CLfb is given by

)
Lo = T Spe *+ Fr (3.338)

where
)x ()
hoge L7 UPP

T

Substitution of this result back into equation (5 330)

implies that F? must satisfy
) —
uy F %= o(<). (3.339)

If the result (3.338) is now substituted into equation (3.337),

then the following differential equation in f;@. arises,

. —_ () (o)
F . ZW(OJ{ “/’“j+ O(E ), (3.340)

which is consistent with eqaation (3.339), as well as with

I



equation (3.3%3).

The result (3.3%36) can now be shown to impose restrictions

o) ()

upon the functional relationship between fD" and ’ﬁy‘ , the

unperturbed pressure and density of the fluid. Assume that

the total pressure and density satisfy

. A '
= W ,
P57, (3.341)
where & is arbitrary, and also that their unperturbed

S

componcntb are related by the same equation of state, thus

(@) .
E | - (3.342)

If the expressions for fD and W from equations (3%.313)
are used, then equation (3.341) may be expanded as a Taylor

series,

:3(0)-# 573(') =

Now employ equation (3.342), and partially differentiate with

respect to gé. Since W@ is independent of gﬁ ;

P S IO foaS W+ 0. s

Comparison of equations (3.33%6) and (3.343) provides a

simple linear equation in éff , given by

g ( W,(O))

w/
so that
- /.” /(A)\' o <r /(J)"L /Q‘
s =2 1~)
where zi is the constant of integration, Thus
(e) ©)
- =
/ ot/ (3.344)
This result ensues from equation (3.341), i h the
arbitrary functional dependence of 7 upon W is reozarded

Op’(w@) + c”wZQé (,C,C«;j("”’(o)) + 0(C7),
w s
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as being of sufficient generality. The result (3.344) also
arises in the event that equation (3.341) is replaced by
PSP
Thus, the imposition of the conditions (3.326) has finally
led to equation (B.BAQ), whereas the relationsnip between
the pressure ]CDQ» , and the density /KD&O of an isotropic
perfect fluid medium is‘usually restricted by the inequalities.

(o)

;] (@)
O« p s g7 (3.345)

The relationship

7_7(0) o5 ((, - /)/o(o)’ L = Constanl':; .
has been studied by many authors, in particular, by Harrison
(1965, 1967, 1968) and by Zel'dovich (1962). In order that
equations (3.345) and (3.346) be consistent with one another,
{ must satisty / § ¢ £ 4/3 . |\Moreover, given that
the sound velocity, 2[; y in the fluid is governed by

2);,2 = 8/0(0)/ 8/0(0) . ( must also satisfy L <2 to
ensure that EJ} does not exceed the velocity of light.

In the limit of high material densities, Zel'dovich has
claimed that indeed equation (3.346) becomes 73Fo):: /(j¢9 :
that is, L"9¢Z as the densi ties become very large.
Harrison (1965), however, refutes this conclusion and rein-
forces the claim that the maximum value of 6 is 4/3.
Without entering into the controversy one thing remains clear,
and that is that an equation of state of the form (3.344) may
be possible, but only in matter at 'supernuclear' densities.
We do not wish to be restricted to such high densities and
we accept Harrison's conclusion that (3.345) holds good.

Therefore the assumptions (3.326), which led to equation




(3.344) must be rejected. A possible alternative is the set
) — {1 D, — (/) -
= ) e — )
Ui, Cope = OC1) 5 P7L P T= 0(€), (534
G — @
/O 4 /O = O((S),

It will now be shown that these lead to an internally
consistent solution of the equations of fluid flow.

Substitution of the conditions (3.347) into equation

(3.332) gives - .
{ = {/
WO + wO (&l Jwy I
3346

(O)A oA u(;o))a w(i’),”a §V) + O(é)
= .
2 LU "

The contraction of this equation with < will give
o — (1)
Ly =-006), (3.349)

due to the null character of the ray vector,\?i) " jif s

this result is substituted back into equation (3.348), then

) s (1) ' (0) (O)o( (9)/3 o , N
© _ 2#75 & S» + O(<).

This equation, and equatlon (5 330), imply that

(/7 ,@w (,c(")ﬁ = O(u>,

o‘ ﬂv

w

which may be seen to be consistent with equation (3.349).
This, of course, also implies that /3Q, as defined in

equation (3.338) satisfies

F. = O(¢)

. 3 3 - . - - 3 r
which is in accord with the equation (3.340) in f}h 3

07
since W O(E) by definition.

Thus, the equations}governing the motion of the fluid

have a solution
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o @3 :
(°+ /’d/ﬁ' //)?SL,,W

</(J/LA' = (/(’M ‘ /2 g" (o (o/ . /

P = T 0E), | (
e /O(O) _74_.0 (@2)‘

Further, it is possible to assert that the intuitive

550)

N
N

i

argument which gave rise to the statements (3.307) is

acceptable, In particular

A @ w@“ @F
(/(, = kjf‘i‘ﬁ /U/ 9
1 ’2‘5' LC@U
by comparison of equations (3.307) and (3.350).

In conclusion of this subsection, we return to the guestion
posed at the opening of subsection 3.3(II). What is the
form of equation (3%.216) in matter, for the Isaacson approach?
For the case of the perfect fluid, the intuitive approach
based on the equations (3.307), has been shown to be reasonable
by a detailed analysis of the equations of fluid motion.
Substitution of the results (3.350) into equations (3.31l4)

implies that
x3 ) — ).
=0o(1) T =o(/l) , = O},
Therefore, for the perfect fluid, equation (3.216) nay be

written
2
gég + 0(E%) = O,
w
since & ((/\;uﬂ = O(/) . To a good degree of

(3.251)

approximation, equation (3.351) may be written

@
/u.\) = O )

which becomes



-

2 (A,U,\), + /7 /Q(O) + h (Tv /e(;,)a’

@ C o3 (@ . _
’2/2 AV C r/‘)po:'}?/un)g) /J.,v’;‘) E - O, (3.352)

if the coordinate.conditions (2.507) are employcd Since
the background Riemann-Christoffel tensor Fz( xB3¥8§ , and
the background Ricci tensor ﬁ?ﬁze have no functional
dependence upon the /7f;9, the wave equation (3.352) is scen
to be linear in A/u,\).

If an analysis similar to the one contained in Section 2.7
is now made of equation (3.352), then high frequency gravit-
ational radiation in a perfect fluid is found to obey
equations identical in form to those discovered in the vacuunm
case. That is, equation (3.352) gives rise to equations
(2.716) and (2.717), provided that the Isaacson approach is
adhered to. This should not be taken ﬁo imply, however,
that the radiation traverses precisely similar geodesic paths
through the background space-time regardless of whether or
not material is present., Indeed, the background geometry
of a manifold containing both matter and radiation would
differ from the geometry of a space-time containing only
radiation, as may be seen from equation (3.214).

The determination of the form of equation (3.216) for the
case of a dissipative fluid is not so straightforward.

When equation (3.216) is divided by ¢ , 1t is found that

2 2 B+ _ _ = (1) =) 2 5231
Cwﬂ“é(g;, = 57r(7L tC T +ETT
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PN

where s is given by equation (3.3%09). Of the terms

on the LHS of this equation Cg;;ﬁv is larger than &~ S;(g)
by a factor Cf_z , which follows from equations (3. )02) and
(3.303). On E?e RHS, the equations (3.312) imply that the
leading term .7;53 dominates over the other terms by a
factor C—J . Thus, maintaining the largest terms on either

side of equation (3.216), we write

@ ()
AV 7— (3.353)

The explicit form of the LHS of this equation is given in
equation (3.352). If the WKB form /7},“) A,We 9‘

employed, we find that

w L1 27 [3]
CQ/«W_ (fﬁ@ Pt j
where
[1l &
é,w\): w\??/o?’/o/\/&‘)(e ¢
£« (2 At T Ay f 10

BT = { Ay S+ AT%R e + AT RE
’ZE;?#VO‘A/OO_ A/NR(O) XQAM/Q%@}&

The equation (3.353) therefore becomes

reJ 27 37
§P+§MQ+§HQ: —/677—7—/“'")

where
E']—O(C"?) ?IF[J—_O(é-) .%[33 O(/)’

by inspection of equations (2.702), and where at most

=" -t
7‘ C)(é; ) from equations (3.312). Hence, equation
(3.353) may be decomposed into the following pair of approx-

imate equations,




(1]
EPF p + O(E) = O

(3.354)

e FH = -~ remre 71/5,/)) + O(¢)

;_L‘C/J
By an examination of the definition of - wv, the first of

o
these equations implies that the ray vector SDu, is a null
vector in the dissipative fluid, at least to the following

degree of approximation,

¥, + O(¢)

The second equation in (3.354) indicates that the solution
for the /A;»Q is influenced by the presence of the fluid.

It is sufficient for the time being to indicate that equation
(3.216) becomes equation (3.353) to lowest order for rad-
iation in a dissipative fluid. The consequences of

equation (3.3%53) will be briefly discussed later, when the
work of J. Madore is considered,

(111). The effective energy in matter - the Isaacson method.

In this final subsection on the Isaacson approach the
effective energy of the radiation field in matter is discussed.

By equation (3.215) we have

Qﬁp ('8'%/,87Tl) Zf;zz/*») 2 Zi;u) Xe e
'é—A/w; //),uw%o{/s/e@

(c . :
where the /Ezf;L g & F C),;l , are given by equations
@
(2.405) and (2.407), and where fu>is given by equation
(3.205) .

If Isaacson's definition of radiation is imposed, then

the conditions (2.402) provide a means of assessing the orders



of magnitude of the terms of equation (3.215). Since

(2) / /

K; contains terms of the form Nw,« N pc;B , and
0)
o

(2.402) imply that

(2 > ‘9(2) ! “ 2 =2
K =5 Fuw K 7 Sm o) .

Similar considerations in the case of the remaining term

contains terms of the form /7F‘de/g , then equations

gives
/7/»»9 Aaﬁfe@) = O(/)-

Hence, equation (3.215) becomes
2 _ 1 H(2)
(’/) 2
285 ) + 0(€?),

A comparison between this equationand its vacuum analogue,
equation (2.802), indicates that é:ﬁuf in matter is
modified, to lowest order, by the appearance of the term
in A ;’:\) . We now wish to discowr the form of the averaged
energy tensor Zskgo = <( éauk’qﬁf;> in matter,

The effect of rpaoplying the averaging process to the
terms containing ﬁB/A in equation (3.355) is known
from Section 2.8. The effect of averaging the zﬁsii» term

is now investigated. By definition,
() 2 ) B> )
2 =
Zﬁ = </ ;)ﬁz. - /un’%ﬁ /E? /) .

From equation (2.508), the leading term of Zﬁ /Lg is given

by

b B?= L by (s ot 25" Ry =2 B e "

/ A I
— 2' h/,l_ﬁ,/ 4 /,‘ p
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However, from the TT coordinate condition (2.507b) we

observe that this term vanishes. Moreover, by an inspection
)

of equation(2.508), the second term comprising A J

becones

3//»9 /70’/31223 = 2 ,w Z{A Av«)
0(/8(% E(a) " //) /g;ew) /glelodﬁu hzod‘)f

Then, using the equations (2.402), we find that

SLA = “5 2 %o h P hap; Yo + O(E2)

/A,L\)
which, by a rearrangement of the covariant derivative,

becomes

) 25 o o r°
E o = 3 E°] Fir B s has;

”(Z{/,w /)‘WSAWG; /o);/o} 7 0(52).

Taking the average, and appealing to the Corollary to

Rule (1), Section 2.8, we may conclude that
(/) / 2 /8 ©
cf \\ = = <i QZLQ %7 5P /7oq3; ‘;> + C)(Q:).

Thus, the averaged high frequency energy tensor for gravit-

ational radiation in matter may be written

= (@‘73277’){(%0(/5;#/3%8;9}
G b o b O+ OLE)D.

Moreover, if the WKB assumption is adopted, then this

equation becones
(A 6t ) fu 50 = w7 F+0(e).

However, due to the null character of the ray vector Eix

in matter, we may write f;io finally as
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I \ ,
By = (C AL 6hT) GLE+ 0(C). (5.356)

In conclusion, therefore, the definition (3.215) provides
an expression for the wave enersy in matter which is the

same as that found in the vacuum case.

5.4  The general formalism and the 'Madore approach'.

The approximation scheme discussed in this, and the previous
chapter, hés been developed employing the assumption that
WAy be expressed as a sum of two
functions, ZC;Q and «S/]#u?. It is noﬁ apvarent that the

the total metricC§7
success of the technique is dependent upon this division of
é?ALp into two parts being quite distinct, and Bils has baen
ensured by demanding that the radiation be of high frequency.
To accomodate this hypothesis, the Isaacson approach introduces
the array of magnitudes assessments (2.402). The Madore
approach, however, demands only that the radiation satisfies
the definition of high frequency given in Section 2.2,
together with the equation (3.203).

Further, in contrast to Isaacson's use of one smallness
parameter éi , Madore introduces and employs a second given
by

§ = AL | (3.401)

where A 3 L. are defined in Section 2.2 and J‘<</ by
condition (2.204).
Equation (3.216) is now considered, to demonstrate that

Madore'!s results arise naturally from the general formalism,
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(1). Equation (3%.216) « the Madore method.

First consider briefly the case when material energy
is absent. The Madore approach applied to equation (3.216)

gives, to lowest order, the now familiar equation

)
G = 9

Thus, the vacuum results of Hadore (1972) may be shown to
be contained within the general formalism of Section 3.2.
The case of radiation travelling through a matter filled
background requires more detailed comment.,

Madore (1973) himself discussed the absorption of
gravitational radiation by a dissipative fluid and found the
rate of entropy production in the fluid resulting from the
passage of the radiation. In this subsection attention is
restricted to the absorption analysis. For this, Madore

imposed the additional conditions

¢ .
- >
S >> £ . e = O for L 22, (3.402)
Application of the Madore approach to equation (3.216),

together with the conditions (3.402), leads to the following

expression,
@ =20
o = 8T (3.403)

This equation is basic to Madore's absorption analysis
(Madore, 1973. Equation (3.13)). He solves it for the
dissipative fluid and finds that the radiation is absorbed

by the fluid in a characteristic time 72{ , Where 72 is

the shear viscosity of the fluid, This provides verificatién
of an earlier result of Haviking (196G). Thus, the general

formalism of Section 3.2 is found to be sufficiently versatile
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to contain this result also.

If the Isaacson approach of Section 3.% is reconsidered
for a moment, a comparison of equation (3.403) with equation
(3.353) indicates that radiation treated in a dissipative
fluid by the Isaacson.method is also absorbed. A rigourous
proof of this statement was omitted from the previous
Section, since to include it would have entailed duplicating
much of wha% Madore has already stated in his 1973 paper.
Moreover, when the general formalism of Section 3.2 is applied
to cosmology in the subsequent cha?ters,.the matter content
of the cosmological models will be regarded as a perfect
fluid, rather than as a dissipative fluid.

It is now apparent that the form of the lowest order
approximation to equation (3.216) in matter is not dependent
upon the mathematical approach employed. However, there are
implicit physical assumptions associated with each apprcach,
as we shall now demonstrate.

In Section 3.2, it was assumed that the effective radiation

2 ~ (2) (2)
field energy was proportional to cf(ﬁ; yTA Thus, since CQ;”AV
is a function of terms typically of the form /7foV,a /]pr,/3,

from equation (2.201) it is possible to write

- 2
E, = (&) %2 ) (3.5404)
where f;u denotes the wave energy. Also, from equations
(2.203) and (3.207), the background curvature may be estimated
to be of order Z;_z . Einstein's equations imply that the
tackground curvature is proportional to the total energy

source curving the background. Hence
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~ §my(8r) & + E},
L ) a2 F SF

w here f;a represents the order of magnitude of tho energy

of the material fluid. From equation (Z ,01l), this becomes

(8/7) ~ on {(57”)’/;%2 ks j (3.405)

If an 'order of magnitude'! argument is employed, it is
possible to.interpret physiéally the mathematical differences
between the treatments of Isaacson and Madore. The original
work of Isaacson (1968a,b) involved the &acuum case only,

so that equation (3.405) reduces to

2 2
y 22 L. | (3.406)

Comparison of equation (2.203%) with the left hand column
of Isaacson's equations (2.402) implies that L == | , B8O
that equation (3.406) gives =~ A . Indeed, for simplicity

Isaacson chose

L::/ ?\:é

7
If the extention of Isaacson's treatment to cases in which
matter is present is considered, then this new situation is
not inconsistent with the use of a single smallness parameter,
since equations (3.405) and (3.406) are compatible provided

that

o .2
< (@m) 7’%2 ' (3.407)

Thus, from equation (3.404), the Isaacson approach applied
to the general formalism of Section 3.2 implies a situation

in which the order of magnitude of the energy of the radiation
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is at least comparable with the energy of the material medium.

The worlk of Madore in deriving the absorption results
mentioned previously depended upon the additional conditions
(3.402). Consideration of equation (3.405) shows that these
conditions, interpreted physically, imply that the radiation
energy is regarded as negligible by comparison to the energy
of matter.

(11). The effective energy in matter - the Madore method.

Equation (3.215) states that the effective field energy
of the radiation in matter is given by »

eﬁ (6?/6’71') [(’Q(Z) — = ()//W)/Q(z)

<

@) /3 @)

If the Madore approach is emplcyed, then equations (2.201),
(2.203) and (3.203%) imply that

sz ’é QE(z) m _ O(}Vz’
hpo h R g = O('L"Z).

Since the definition of high frequency demands that [_;>>’;\

the last term on the RHS of equation (3.215) may be neglected

and therefore

S (/5 ) f/?/(i),; Y XHVE@)"‘ZI’A/Z);JJ’
for the wave energy in matter. The additional conditions
(3.402) imposed by Madore in the treatment of cquation
(3.216) are abandoned here, The imposition of equations
(2.602) and (2.507), and the definition (2.807), arain gives

the result that
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p)

¢ - 2 v v
B 2 Epo” ) = (B S 52, )

(0]

(3.4

—~

where CZB is a constant. This result is not derived by
Madore (1973). But in obtaining an expression for the rate
of entropy production in the fluid, he assumes that the wave
energy in matter is indeed given by equation (3.403), with
the constant of proportionality taking the value

665 = (,Ci7%il/(1?/9\véa:/) . Using this assumption,

{adore provides a verification of the thermodynamic relation

T o2 = dH

for a closed system, where CX;zl denotes the entropy per
unit volurie supplied to the fluid in unit time, Cﬁ%f is

the heat content per unit volume of the fluid, and §f7 is the
temperature (OK). The dependence of this result upon
equation (3.408) may be regarded as a Jjustification for the
assumption (3.215) of Section 3.2.

In conclusion of this chapter it is possible to say that
the general formalism of Section 3.2 for the description of
high frequency gravitational radiation in matter, is of
sufficient flexibility to contain the results of Isaacson

and Madore.,
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Chapter 4.

Gravitational radiation in cosmology: a description of

the radiation in a Friedmann universe,

T Preliminaries.,

Attention will now be turned to the problems encountered
when gravitational radiation is introduced into relativistic
models of the Uniﬁerse,'

To provide a basis for the following discussions, it is
postulated that gravitational radiation exists as an active
component of the energetic content of the physical Universe.
This radiation, and the effects it may have upon the large-
scale dynamics of the Universe, will be described by applying
the high frequency approximation scheme which has been
reviewed and developed in the preceeding chapters. | To
demonstrate that this scheme is well suited to the task,
it is necessary to determine what is meant by high frequency
radiation in the context of cosmology. Recalling the
definition of Section 2.2, radiation is said to be of high
frequency provided its wavelength is very much smaller than
the characteristic length over which the background geometry
changes significantly. Thus, radiation propagating upon
a cosmological background may still be regarded as high
frequency even if the wavelength is of the order of, say, a
galactic diameter. The high frequency approximation is
therefore applicable for a large range of possible values of
the wavelength, ?\ -

To describe the dynamic properties of the physical

Universe, the general relativistic formalism of cosmological
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models developed by Friedmann (1922, 1924) will be used.
Thus the background metric of the Isaacson scheme, denoted
by Z&LQ , Will be associated with the metric of a Friedmann
universe. Since the material content of these cosmological
models is represented by a perfect fluid distribution, clearly
the theory extending Isaacson's vacuum treatment to matter,
discussed in the last chapter, is applicable.

For simplicity, it will be assumed that

L =1, A =0C (4.101)

where L 5 A are as defined in'Chaptér 2 The physical
situation implied by this choice of 'smallness parameter’
is discussed in Section 3.4. The consequences of this éhoice
for a perfect fluid distribution are equations (3.352),
(3.356) and (3.214). It is the intention in this Chapter
to investigate the cosmological radiation by using the
equations (3.352) and (3.356), employing a WKB analysis.
Then in a subsequent chapter, it is hoped to show how the
radiation affects the evolution of the cosmological model
using equation (3.214), and to speculate upon possible gen-
eration mechanisms for the radiation.

Work on the cosmic effects of gravitational waves has
been tackled recently by several authors. In this Chapter,
however, our attention will be confined to the work of
Isaacson and Winicour (1972, 1973). They have shovmn that,
provided certain reasonable assumptions are made, the age
of a world model containing gravitational radiation is not
in conflict with the lower bounds set on the age of the physical

Universe by other dating methods. To provide a starting
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point for their investigation, Isaacson and Vinicour suppose
that an isotropic gravitational radiation field in cosmology
may be represented by a homogeneous perfect fluid of energy

density /97. , and pressure [2r = é‘/oy- ‘

Earlier Ehrenfest and Tolman (1930) had shown that the -
energy contributed by 'disordered electromagnetic radiation!
in a cosmological‘model, could be represented by a perfect “
fluid distribution. Since Isaacson(1968a,b) has shown
many similarities between gravitational radiation treated
in the geometrical optics limit, and electromagnetic radiation,
perhaps the assumption of Isaacson and Winicour is not
unreasonable.

However, the theory of monodirectional gravitational
radiation in a vacuum cannot be expected to give results
applicable in an isotropic field situation with matter,
without deserving some justification. Thus, the primary
motivation in this chapter is to show that Isaacson's and
Winicour's assumption is indeed reasonable, and thié is done

by the use of an example.

L.2 Discussion of the perturbation, and the background

metric.
Let the total metric, ézuv, be of the form given by
equation (2.102), and let

_ i
A/u.v = Real {Jf‘q/m) . f ’ (4.201)
where , 2/“9 and ¢ are as defined in chapter 2.

To represent the physical Universe, the homogenous,

isotropic cosmological models of general relativity are
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employed.

Physically, the assumptions of homogeneity and isotropy,
which collectively constitute what is usually referred to
as the 'cosmological principle', reflect the widely accepted
view that macroscopically the Universe is the same to an
observer wherever’he may be within it. Mathematical form-
ulations of these concepts provide the means of deriving
the Friedménn model line element by symmetry arguments
alone, which was originally shown by Robertson (1929) and
Yalker (1935). For a concise acdount, éee also Peebles
(1971).

S0, without need of reference to Einstein's field equations,
it can be shown that the line element of cosmological models
whose large scale features are homogeneous and isotropic is

given by
2 2 Rz(t) ’ b 3k

where ;2(%) is a scale factor describing the dynamics of

‘the models, C 1is the local velocity of light, K. 1is the
space curvature constant and T = ng; (x‘;)z i
Conveniently scaled, #C mnay take either of the values -1,
O or +1, depending upon whether the space is said to be
hyperbolic, flat or spherical respectively. Here (L, i;
have the physical dimensions of time, XZ. the dimensions
of length, and C the dimensions of velocity. |

The particular background metric, 5;x9 , to be considered
is the flat space model, characterized by fC = 0, with
line element

2 3 Y
2 AN
0&1,2:: ot~ P:CT/ t) )f 2 (f/“ b) e (4.203)

c =t
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Inherent in this choice, however, is the assumrtion
that a Friedmann line element can be used to describe a
model containing both gravitational radiation and matter,
Thet this is so, is apparent from equation (3.214), which
displays both radiation and matter energy as sources of the
background.

By inspection of equation (4.203), it can be seen that

/ 2 3
x , X , X are dimensionless coordinates. A dimension-
less temporal coordinate, T , 1s introduced, as follows.
Let XzoEEXE(%q) be an arbitraryvconstant length.  Thus, if
t = )CL/‘ , T = }—C_ : and >/£ E/Eo , then the application

of the transformation
'—"4‘ (:__ —— 'q___ la
(EO/C) > k) ? (l 7’"".’_!.)
to the background metric (4.203) will give
-2 2 2 3 g &
oz = ozt~ yw) [ 27 (a<)f
(;:I 2 J o(_ P

where

-

(¢/Rs) .

The non-vanishing components of this background metric =are
&5 &

therefore given by
— — — . . >
a:u.;. =0 a/., B 4 g O KRy 5. (4.206)
WWilth this metric, the surviving Christoffel symbols are
/'—7(’ = F [:. = s _(:./a-y
e e = ¥ de (4,207
A o oy
[74 = >/ —(1—")’/ ? ¢ = /" 4’ 3

b/
G AT
vri t‘ aNe } ~ 3 2 - ! 2 - 3 (g et
with respect to the coordinates 2C , 2, X7, T .

Repeated indices in equations (4.2C8) and (4.207) do not
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imply summafion. Moreover, the components of the background
metric, and the Christoffel symbols, are of zero physical
dimensions.

The choice /= O 4is made on the grounds of simplicity.
Consideration of Einstein's field equations (see Section 5.1)
implies that the results for the cases WK =—/,+] are
essentially similar to the results for the =0 case

provided that (CJAZ//Cin) >> [+C/ . That is, during

the early history of the models.

L,?% Solution of the linear 'wave eocuation'! in a Fricdmann

universe.

The equation describing the propagation of gravitational
radiation in a perfect fluid is given, to lowest order, by
equation (3.352). In the discussion following this equation
in Chapter % we observed that it gave rise to the equations
(2.716) and (2.717), which are expressions identical in
form to those found to describe gravitational radiation in the
vacuua case. Thus, the problem of solving equation (3.352)
in this section reduces to the task of obtaining solutions
to the set of vacuum equations (2.716), using the metric
(4.206) and heeding the conditions-(2.7l7). The first

equation of (2.716) is expressible as

b//AVJqé,}b gé,»> = 0

which will Ye referred to as the 'eikonal equation'. It
will be assumed that qﬁ takes the form

2

b = 2 ngxi-;— &D(”C‘), (4.301)
(=1
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where the ﬂé are constants, and the coordinate identifi-

cations

/ I
x = 2x , X = Y4, X = 2Z,

are made. This cholce of gﬁ , Which is dictated by the

character of the null geodesics of the particular Friedmann
background, ensures that the wavefronts of the radiation are
'plane! in each of the family of spacelike surfaces, T = constant.

Substitution of the metric (4.206), and the equation (4.3CL),

into the eikonal equation gives

AP~ 8K |
AT j;7” (4.302)

where

83 A~
= o= *]. .
/4: ‘?;, 16; o (4.303)
Since it is supposed that jf;b:= CD(Qi"') , we define
~/

{afﬁﬁa , K= K : =/ 2 3
6 8" ’ L s =9 Y

so ‘that equation (4.303) becomes

3 2 /
Z— { B ~ (4.304)
=/ = '

Then, from equations (u 201) and (4.302), gﬁ takes the form

_ K{Z f x 90(7(’7’_7(_ C)/ .

where (: is a constant of integration. If the definition
of the ray vectors given by equation (2.701) is recconsidered,

then equation (4.305) gives
jzﬁ_zf_ S =9K ;=123 ,
s ) 3% (4.306)

Nou coander the second eguation of (2.716) given by

(A€7).. = ©.
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From equations (4.207), this may be written explicitly as

- e i \=
2?5’§%2f§§ + S, + 24, - yRoAg,
dx Y SZ oT

24 (4.307)

- 3/—7,4, n j = O.

This is an equatién in fhe amplitude L74 of the radiation,
since the eikonal equation has provided suitable expressions
for the ﬁi& . Is it now possible to restrict the functional
depeﬂdence of L7% upon the coordinates in a manner which is
physically reasonable, to simplify eguation (4.307)?

In the traditional treatments of relativistic cosmology
the important property of homogeneity, which is implicit
in the metric (4.202), is reflected in the behaviour of
the fluid density and pressure of the Friedmann models.
Einstein's equations imply that those variables must be
functions of time alone, In a situation of this type, the
energy distribution is described as being 'uniform'. This
concept can be usefully employed by assunming that ¢7% is a
function of T alone. Physically, this implies that at

any instant T = T, , the amplitude of the plane wave is
on o surface of constant phace.

)]

the same ¥ o
B 5, Additionally, this assumption provides the
simplest way of obtaining a uniform energy distribution for
the radiation, which can be seen by inspection of equation
(3.356) and of the solutions (L4.306) for gib .

It is hemceforth assumed that A = g74(7;>. Further,
substitution for the . from equations (4.306) and for the

Christoffel symbols from equations (4.207) into eguation
g i
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(4.307) gives
/ / )
God+ F4-0,
al'C ) dT
so that
T /V Cod
i <,)- ST, (4.208)
where Qﬁp is a constant of integration.
Now consider the polarization field tensor ngUQ, which

is governed by the third equation of (2.716),

Quoip $7= O

subject to the additicnal conditions (2.717) given by
y22% v
%*‘)9 = s s ?//w)_ o,
e
Zr/ 62/L97'_ (:)'

The general form of the third équation of (2.716) is
ST = T Qoo = 75 Qe f

+ 52{ SR /7,:; Do [ %w*j

5 T _ 5 G = T Qs

_,)/,zijf@%@ M—i‘"” - o C,Z/Lw’j = O,

where /oa,\) =1, 2, 3, 4 and where GZ/‘Q::slﬁpb .
If it is again avgued that (] ,» = 2#,(’6) , then equations

(4.,207) and (4.306) imply that

59>/§Z_ L :g C/>/
df;i -+ o Z fu Pen= O, (4.309)
0y dq iy - 8___ Q s dy (4.310)
u&z ol o y 8 ?,.4 |
! :‘_"ly > -ﬂ 2 -
Y T /f: eGie = O,




rdg: — 28 fi.?’cz (4.312)
T

where
(”:#J :/,2,3.
Moreover, if the coordinate conditions (2.717) are considered

Vv
it is found that g\,u." § = O becomes

3
27;:, fé%cp B Qy%“f‘w (4.313)
3 .
2/‘;" zf/c: (iké = chl“* L= 72,8, (4e314)
=1
and that 2/"") X’w) = ) - reduces to

3
Z YT - 244- | (4.315)
Solutlons to the equations (4.309) to (4.312) will now be
sought, employing the conditions (4.313%) to (4.315). The
substitution of condition (4.313%) into equation (4.309)

gives

Thus 624#_ is given by

2
YT Clasy Y ", (4.316)

where CK¢4 is a constant of integration.
The combination of the equations (4.310) with the conditions

(4.314) gives
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Byﬁd€L+ {fé yc%/:g ?wu,/‘ =0, ¢=123

Thus, substitution for 2,7,_4 from the equation (4.316)

leads to
d9iv = L yn o (L)
so that

CZW‘: (92[61,;@'—!/- e o(c.,?,.} , L=432 %

" (4.317)
where the X 4 are constants of integration. | 4
If this solution for the §254, is now substituted into

equation (4.311) then

dqf;c(-fylz) = szawc%/-y—’l + 275’&.09%0%(5/-’-)'

Therefore the fZ“ are given by
. 2
Q= K V" 2 L oy Y (4.318)
92 .-
. f{: O(L/_L,L = /’ 2) 3 ?

?

where the X are constants of integration.

LE
Finally, if the solution (4.317) is substituted into

equation (4.312), then it is found that
"
- ) -
2{{/' - g& fJ 0(4,,4'*({‘;0{}44- f\/ o(“1L,/’)/7LO('5/' 7 (4.319)
where

(: 5EL/ = 7, 2L ;3,

and the de- are constants of integration.

74
The TT coordinate conditions (2.507) impose restrictions

upon the constants CX/AQ . The substitution of the

polarization tensor 7 ,,», into the equations (4.313) to

Fa
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(4.315) provides the following conditions,

3 =
Z;:, i =, (4.320)
3 -
Z 0l O = Oy = 12,54, )
¢ =/

Moreover, further restrictions are imposed upon the Cqu),

since the polarization tensor is also required to satisfy
Mo In th sround : iderati

CZ/"L\’) CL 2= . n the background under consideration,

this condition becomes
/ 3 52 2 2 2
L, 727 Qh+ 2(9a + 95495 ) ]
2 5,2 &
B R

Consideration of the solutions (4.316) to (4.319), and the
conditions (4.320), (4.321), implies that

3 2 2 2 2
Z/ O(CL+’2(O(IZ+O(/3 v 0(23) = /
= ,
Thus, the third equation of (2.716), and equation (2.717),

(4.322)

governing the polarization field have a general solution
given by the equations (4.316) to (L4.319), subject to the
restrictions (4.320) to (4.322).

The polarization tensor <iﬁ°) may therefore be regarded
as a I X 4 symmetric matrix possessing, in general, ten
independent comvonents. It will now be shown, however,
that only two of these represent physically significant
degrees of freedom, and this arises by virtue of the non-
uniqueness of the coordinate system, which was briefly
discussed in Section 2.5. To distinguish between the
physical manifestations of the radiation and spurious
'coordinate ripples' due to possible non-inertial motions

of the reference frame, the components of the Riemann-
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Christoffel tensor, X24L655 , for the total field are
examined. Only those components of Cifhg which provide a
non-vanishing contribution to ngﬁig may be regarded
as physically 'real', in the sense that these components can-
not be made to vanish by a suitable choice of coordinate
transforﬁation.

Consider again the monodirectional gravitational radiation,
and choose an orientation of the coordinate axes such that
radiation flows in the 2 direction only. Thus equation

(4.305) becomes

= Kg['(fx—/— QC/OCT-;L C)} e, 5%,

where the degree of freedom provided by 8==%] corresponds
to whether the radiation is positively or negatively directed

along the X axis. Now since

., =1, ¢ = € = 0O, (1. 324)
for radiation directed along the X axis, then

S = 25 S = 'g , 258 = O, (4325

Employing the equations (4.324), we find that the conditions
(4.321) reduce to

O(/u,f = O ’ /L’(’: /le S)LTL’ (4.326)

whereas similar considerations with respect to the condition

(4.320) imply that

0(2” = - C\/‘\/

< 33 (4.327)

Now consider the Riemann-Christoffel tensor. Substitution
5 15 . S - 55 "

of the total metric (2.4C1) into Kggsé provides a

o

power series in C given by




where

)Q(Zﬁafs B /Qaﬂb’g(bj*‘));

@
Rd/o’zf'& = Zl(/L?ﬁb’;Ofé + Nasi p

= IL?ﬂé‘;C’(b/ - Aaa';ﬁé (4.329)
@) o © =
+/€cxo~a'5é/e,+£/w‘a’8/7 ot ).
For the sake of brevity the remaining coefficients are
not expressed explicitly. By a similar argument to thi%

7
applied to the Ricci tensor in Chapters 2, 3, the érﬁz,oqﬁag
term dominates the other terms on the RHS of equation (4.328)

-/
by a factor € . Thus the total Riemann-Christoffel

tensor may be expressed as

(1)
Ro«/szrs = & R aprs, (4.330)

to a good degree of approximation.
Moreover, if the VKB form of A is substituted into
equation (4.329), and the conditions (2.702) imposed, it

is found that equation (4.330) becones

Ra/&’b’& = zl’éf?o(\sea A/sb’+ %6;3?3’/7018
- §o< §>X/7/38 = §?ﬁ ?S/Mb’}’

where quantities an order of { smaller than the §2‘5i3‘L7KS
terms are ignored.,

T

How 1f the ray vectors given by equations (4.325) are
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employed, then of the possible twenty independen9éomponents

of %QGﬁgg , hine are non-zero. These are given by

Ruiyv = 5 ¢ o §»>)ALJ ; (4.331)
where |

N =L g, Y,

i = 22, 23., 33
Since h‘;j _is related to qu
only components of s&fka which contribute to the non-vanishing

{

by the equation (4.201), the

components of the approximate Riemgnn—Christoffel tensor
are szz ; C.Zzg and Q% . It follows that by the use

of a suitable choice of coordinates all the components of
€Zﬁ“” with the exception of those mentioned above, may

be made to vanish. From the equations (4.318), (4.319)

and the conditions (4.326), (4.327) the surviving components

of QZ/A> may be expressed as

2
Fa2 = — Qa3 = Ol ¥

9&23 = szg >th

where, from equation (4.322) the fouy must satisfy
2 /

2
Kpy + Oy = 3
To demonstrate the 'transverse' nature of the radiation
reconsider the total fundamental form of the space-time

manifold given by
ols? = AT+ (D/w +<§/)aj)d>c&oéx‘/
= af- R (L= 1.2,8.

2
The coefficient of T  is such that 69””= Zf~JL€}1~[= / 3

e

since a reference frame may be chosen in which <qu_: L2,
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In each of the 3%-spaces, C = constant, the separation

of neighbouring points is given by
2 2 2 L] - 2
AR = )V dx"+ (Y-éhzz)ag o
P P (4.332)
Y = C‘/ \’-
-+ (:/ -#(f/522/>CAZ - 4254023 C%ﬁchAL g

where g
hzz = ”h\.ﬁ = 0(22\)()0/\/\8“ ,

/723 = O(L3Jﬁ0)y’€i6§b7
for radiation travelling in the > direction, Here k7%9
is a constant of integration. From equation (4.3%2) it

may be seen that the separation of two events along the

. . . ~ % - / —-—
direction of wave propagation ( CL&‘# O, dy=0cz = 0O

is determined only by the instantaneous value of Y , the
expansion scale factor. Points located in a plane perpen-
dicular to 'the X direction ( ¢t = O, C%§f=# , dz+ O)
however, experience maximum relative accelerations due to

the radiation, superimposed upon the effects of the COSH0-
logical expansion, thus demonstrati_ng the transverse

character of the waves,

L.4 The stress energy of monodirectional gravitational

radiation in a Friedmann universe.

The conditions (4.101) adopted throughout this Chapter are
characteristic of the Isaacson approach, which was discussed
at length in Section 3.3. It was shown there that the

Isaacson approach gives rise to equation (3.356),
_ | £ B 2 42 , Y —~
Fro 2 (B ) = (A 647m) S0 50 + O(E)
for the energy tensor of rravitational radiation in matter.

In this Section, the energy teansor ﬁf};v of monodiir-
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ectional gravitational radiation in a Friedmann universe
is briefly considered. It is important to point out
before doing so that the result (3.3%56), and the associated
conservation laws given by equation (2.822), arise only
in the event thot the equations (2.716) and (2.717) are
satisfied. However, employing a I'ricdmann background,
we have already found a solution to these equations in
Section 4.3, which possesses all the necessary properties
to be consistent with the derivation of equation (3.356).
Thus, it is supposed that the energy tensor of the postu-
lated cosmological radiation may be obtained from equation
(3.356).

By the use of equation (4.308), equation (3,356) becomes

o 2
é?fLy = %g;% éiA Ei)

where

I = jfz/é/,wr.

If the solutions for the ray vectors §ZA given by

’ (4.401)

equations (4.3%06) are reconsidered, the energy tensor of
the cosmological radiation may be presented as a 4 X 4

array in the following manner,
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(4.402)

8 lz

>/3
ﬁ,fS Z_z\fg L3 Q__fg
A Y LR

O 12 (9£3 .
\ >/8 3 >/3 >/‘+-

Some points to note about this tensor are, firstly that

P
E «= O. . - (4.403)
Verification of this result is straightforward. Since
o ol ‘
it follows, by inspection of equations (4.206) and
(4.402), that :

Eééz —?Kzfaz/)/#, c=1/,2,8,

where no summation is implied by repeated latin indices.

By the same token
s B A
R :
Thus, using equation (4.304), we have
2 3 p2
o
Ecx:__‘%_/_{{/"z ‘E‘;jzo.
V4 c=/
/
Secondly, it is possible to attribute the quantities

of radiation pressure }3 y and radiation energy density

/Or_ y to the components of this tensor in the folloving

way. Define
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— 2
= - .. = s
t ! / O ] E Z, e P.jff ) (1}..[.{0[{)

78 _

533'—:- .—'Pzz s e = /or ’

with the off-diagonal components denoted by
3

/ 2 _ /—- =
Ez=£/:"/"”.‘:j , £ 2% L2 T [z (4.405)

2 8 —
i ;
The significance of the Zf 4, ¢ =1, 2, 3 components will
become apparent in the course of discussion later. It
must be emphasised that the identifications (4.404) and
(4.405) refer to monodirectional radiation only. As
may be expected in this situation, the diagonal pressure

components are unequal,

’7%<x.:# 7?%3 = 'fDZZ ”
except in the'particular case when the wave-front normal
makes an equal angle with each of the coordinate axes,
That is, when {, - fz = 63 :

The operation of identifying the physical quantities,
77 and /C; , with the components of E;*Q may be
elucidated by consideration of the energy tensor of the
null electromagnetic field. Although such a method of
comparison is not, in general, adequate in bridging the
gulf that exists between the theories of gravitation and
electromagnetism, never-the-less it has played a useful
role in clarifying the theory of gravitational radiation
throughout its development.

™ . 1~ ] . ARV Fpagde = w4y >
For electromezgnetic radiation propagating alons the X
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direction, in a flat space-time with metric 71*“) = +1,
-1, -1, -1, the surviving components of the electromag-

—r._-"/"’)

netic energy tens [ uy are

e.m.
e

,L
21
e.m.
T /LI,L" T = —5JHZ" (L. LOG)

s0 that

Pe,m. /Oe.m,

Here, E:(Ex,Ej,Ez) and ,/t/z(f’/x,/'{y,/"/z)
are the electric and magnetic field strengths respectively.
Since the X - axis is the direction of propagation, £

NS

and fj/ have been chosen such that

Zim.: zié ue /54: o fVE/ = O f%liﬁ C:l /7;.7é C:x

J

Note that the parameter fDCJh' is the pressure exerted
by the electromq gnetic radiation in the 2C direction,
and that /C’ & represents the energy density of thé
electromognetic radiation. For a description of the
total tensor ‘7aeln see, for example, Tolman (1934).

We return to the gravitational case. For gravitational
radiation propagating in the X direction, equations (4.324)
are satisfied, In this event, the surviving components

of f;»d are

E', = —FK/7% 2 - pex
E's = FK/ Y= o,
Ew = Fu = 05KY°

il

(4.407)
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so that L

. (4.4C7)
P)(,x - /OY". J

The similarities between the gravitational and the
electromagnetic situations for monodirectional radiation
are immediately apparent, by comparison of equations
(4.406) and (4.407). This strongly suggests that the
interpretation of E;MQ given by equations (4.404) and
(4.405) is acceptable. |

A further point of interest, manifesting itself in
the preceeding treatment of gravitatioﬁal radiation, is
the functional dependence of the energy density (C%,, upon
Y , the scale factor of the Friedmann model, From
equations (4.407)

o Y

The factor >/ o is what should be expected for the free

expansion of any wave representing a massless particle.

L.5 The energy tensor of an isotropic gravitational

radiation field.,

In the preceeding Section, the VKB approximation has
been employed to find an exprecssion for the energy of
monodirectional, plane waves in a Friedmann universe.
It should be emphasised, however, that the monodirectional
theory is not well suited to the task of solving problems
related to the macroscopic structure of the cosmological
background, since its application would require the radiation
field to be globally aligned in a preferred direction.

This unrealistic situation would be in conflict with the




cosmological principle since the aligned field would
introduce a degree of anisotropy into the energy distrib-
ution of the resulting world model. Thus, in what follows
an isotropic radiation field will be examined.

In this Section, the question posed ia Section 4.1 is,
reconsidered. It is wished to develop the theory
required to provide a'justification for the Isaacson and
Winicour hypothesis that an isotropic gravitationa
radiation field may be represented by a perfect fluid energy
distribution.

Consider a field of radiation containing more than a
single plane wave perturbation. It is assumed that if
the field contains bi different wave components, the prin-
ciple of the superposition of waves applies. That is,

%
the total perturbation to the metric fﬁﬁy may be written

-\ _ Jog (k)
/’7/.,(,\) - _, L)/U“) ) (4.501)

A

vhere

v £ ¢
'l/)(/") = Real {A,;u € } d

*) _ *®) (&)
A/,ov— \74 CL/W) ’ ‘ (4.502)

(%) (k) ) .
flfw ";/) Py ’é— /’2"'7J'
(k) g
Since each ;7/AQ 5 /g, - /,‘27.._) J is a solution

~
of the wave equation (3.352), then ;7ﬁy? must also be

a solution by virtue of the linearity of the wave equation.
It is further supposed that the energy tensor of a

»
'multiple field!' of this nature may be written as
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(5 32"(-)(/7 5 /)/o‘cf,'))/B E C(/((:/)

the

o

If the equations (2.507) and (2.702) are adopted, an

L0.3

averaging procedure of Secticn 2.6 used, this becomcs

ars

A - ,/’ (‘!’_) 7
B 57N 4 (e¥e2n) 75 T AT A,
~=l b=l (=1

(k#¢) (1.503)

\o(/& \o(.) . 1 (C
S &) Gintin g | 4+ O(e),

where

g *k) e k)
(@“/32#) ( /’7 &)pf'./uv /L7/ /Q’C; \3>_

It is apparent that the double summation of 'cross-terms!
in equation (4.503) prohibits, in general, the possibility

of a superposition principle of the fornm

A J o) .
E/ou) = %l E/u.\) T O(C) P (4.504)

-

for the total energy tensor. This result may have been
expected by virtue of the nonlinearity of equation (3.356).
However, there is a particular case when eguation
(4.504) is indeed valid. If it is supposed that the
phase relations between the different wave components
are random, then the offending double summation in
equation (4.503) may be set equal to zero. Thus, the
assumption that the wave components be generated by
incoherent sources allows the total energy tensor f;fxa
to satisfy equation (4.504). Equation (4.504) may be

written
A o ASRONON .
£ = &57644705; H, ) 855, S U (€). (4.505)
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This is a result which has been obtained previously
(Isaacson, 1968b). ~In the case of gravitational radiation
in a Friedmann model, the summation in equation (4.501)
will be identified with a sum of monodirectional, plane
wave components, each in one of‘/' different directions.
It will be supposed that each comyponent of the radiation
is generated by'one of U/ independent and therefore
incoherent sources, SO that equation (4.505) may be used
to describe the total energy tensor.

From equation (4.308), each component of the total

radiation field will have an amplitude given by
J?" — 3 ﬂ ) , , ,...,J'

: v%ﬁ®9 ' o :
where the / are constants of integration. Hence,

equation (4.505) beconmes

A _ é;z_ J ~/(k) é) *340
Epw = vz .2:_, 7 52(, v, (4.506)

where

E?T4k):’ (/;ﬁﬁﬁéi)i7§él#7r', Aé = fo ’L/'

Moreover, from equations (4.306), the ray vectors may

be expressed as

e h %) _plk
§(5> K()f‘;) ,

v (k) &)
IS - OK ;

i

Aren am——

* g ,
where ( = /,2, 3 and /'\9_-"—‘ /, 2,---,J . Thus

the total energy tensor describing a 'j - fold! gravit-
ational radiation field in a Friedmann background is

given by
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A ) Y Qd(g)/,/(é) (\,) ~
A i J O-(é)/ (k) /’(/))
£?°U7 = B < /> Z?

k=1

J 4) gg) (4.507)
2_ \Cjif‘(//,<(" C

3 /(Z':/
i L k)2
E‘:L#;: b Z):_:; % (K ) ,

where

[ #m=1,23.

If an isotropic field of radiation in a cosmological
background is desired, the value of /é, in equations
(4.507) may be allowed to run from one to infinity, each
value of /Q, corresponding to a different direction of
flow. Thus, the energy tensor of an isotropic gravitation-

iso
al radiation field, f;ﬁL; , may be denoted by the following

(i)(L A7 (L))
{
— O 7)) 2 kY plk
zg.\?@%%@ﬁfffy,

2=
= o0 //\ I/L (/2 ( . 08)
25 - ()) f) (4.5

- v”?%%@>

Loy )/7" £

expressions

¢so

B =

vl

]\ |~
N

E (So _

on

tSo
Ein ©

f-

-\

I~ Xl X

i . F b - ' :
where once again ¢ + M = /; 2; 3 . It must be
emphasis rd @Otc?or, that the infinite sum is only a

notational device to express the notion of adding over
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all directions to obtain the desired isotropic field.
The sum itself cannot contain the necessary information to
uniquely evaluate the contributions made by the summands.
In order to do this, it is necessary to express the infinite
summations of equations (4.508) as integrals

From the eikonal equation, it is known that

Zi(tP) =7,

L=/

(&)

. ( .
for each value of /2 , where the 'lf(-/ g & = [,2 3,
are given by

3 (=)

f_ s o5 O(O .
v (4.5G9)
k) ' .

Here O(L is the angle subtended by the direction of

£ ;

propagation of the wave /7(ﬁu) and the > © axis, where
the coordinate identifications employed in equation (4.301)
are adopted.
Now consider one wave component of the total field
~which, locally end in the 3-space T = constant, has its‘
wave front normal passing through the coordinate origin.
In order to establish an integral representation of eguations
(4.508), the polar angles J 90 are introduced in
Figure 1.
FEach value of /é, is assigned to one of an infinity
of different directions of radiative flow. So, as Aé
varies, the continuum variables W , yb change accordingly.
The propagation vector considered in Figure 1 corresponds
(k)
to a wave component /vfka , for a particular value of kl.
Thus the superscript (/é7> is suppressed for convenience.
From equation (4.509), the direction cosines of the prop-

agation vector may be expressed in terms of the polar




Direction of
propagation.

[ A G I

Fig, 1.
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angles J~ , 99 as follovs,

ol O = Snw cos ¥

Sin wr sin &,

S
i

i

‘é o= EO8 0(3 = CCS§ W,
3 .

(4.510)

(8o

Finally, before.evaluating the components of t;%AV ’

quantities SEYZ() )
consider the euantios :%ﬁf <’ appre

ing in the equations
_ L 7

(4.508). From Section 4.3, S;TLJ and /<“') are, of

course, constants for any onc particular value of Ai.

However, the assignment of superscripts to these constants

implies that the values they may take are allowed to

change, as éi varies, or equivalently, as the direction

of radiative flow changés. That 1s
®) - k) _ L )
FP= gw,y) , KY= Kl ¢).

In the following, however, it will be supposed that

—*) 7 o (R) z _ 7 & - o ot
FOK ) = & COMERAT L (hu511)

for all fi.
tSo
The components of E;&Q may now be determined by
expressing the summations in equations (4.508) as integrals,
and then integrating over all directions. Firstly,

So
consider ﬁf” 3 given by

(So )7 (&) ’/\J
éz oo >/2 /E» :zj fK% />

If we employ the quwtlons (4.510) and (4.511), this

may be written




(So
E,

th

Ak Ao
= 7T &L ‘ré‘/?’) . C?&,J - ﬂ‘i“
>/2 ¢ 3>/2.
£So
Proceeding in this way, we may express é;z as
2 B4
E ;,O = ;/2 Jy ﬂ‘ fo szsfn Za,J 5.in2¢ ( §in uJ (}‘(,55 Jéof)

- (i\ TTr \f/o\ 2.
< 7-1-1 sinw clwy = 4Tl
e 3%
Similarly
XYe) / T L2 A2
553 = ;zf _fo oL cooPuT (th wJ cli O(a)‘)
oA ,

T 2 s - /) »/\2
— Coo WJSin wJ Ol = ALTT O
)/2 o \3)/2
250
The remaining diagonal component 554;4, nay be evaluated

in a similar fashion,

'S¢ 2 HZ
57 = ;/Lq ]’r/ & (gmu)“c—ic/& C&.o’)
S

4
A2 52
= ;27T'Ciu Srn W Aud”T = {ééfz;gfm .

YF © Y&
To complete the calculation, the off-diagonzl commonents

CSo
of £ "7 are given by

£
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A /\2
Sir aJ‘SU79§<xm 9& YeleT = O,

i

é?;zo )/2 u/ﬂ_)[

2mr A2 2
2 Sin‘w covas Il Lfolur = O

cso  _ m
z;’s - be; v/:
S0 IT 2fTA?_
C2L3 3 /2/ ] O\,o/n w coowd” o/n% {,gﬁoéuj’ = O}
(S0 9 m 2 A2 2
Fr= 2 [ [ Lsintr emtpolipolar = O,

m

N

LS
n

™ ~om A%
Q3/ f (% Sinzu)‘5l'n¢ Ay da” = O,
o o ) .

£ ff

L&o
where E E \;/M, .

an isotropic gravitational radiation field in a Friedmann

AL
J‘/nuf ccao\)'(;qﬁd,af: O,

Thus the energy tensor of

universe may be represented by the following 4 X 4 array,

/
5 o
, ‘3>,z / @, O
Fo= o 5= oo 0
J‘ ’ (l+' 12
/
O 0 O Iz
where
2 N2
L= U = constant.
From ecuations (4. 404), we may write
LSO (,Sol
f ¢ B e ; /E 2 = PJ,] )
65.03 _ C\SZL o
g = = /Ozz . E $4 = /'Or.
¥ssure couponents

inspection of equation (4.512)
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for the isotropic field tensor satisfy

Prx = Fgy = P== = Pr,

— (S0
may be written

A3

so that the components =
€50, o2
E b(: - e ..ié E —.’@y’ 5 | o
% / (4.513)
£So \,1;2
544-: ;\/_"-l- Ep”’ C:/,Z;S,
implied by repeated lalin indices.

where no summation is
Moreover, from the equations (4.513) it is found that

6500(
E x = O )
which implies that the radiation pressure 79y of the iso-
tropic field is related to the radiation energy density

/ADY in the following menner
(4. 514)

N
T3P

P =
Properties of an isotropic gravitational radiation

L.6
field in a Friedmann universe,
Now that we have the results (4.512) and (4.514)

the equivalence of fz ﬁfp and the energy tensor of a
perfect fluid distribution is easily demonstrated. Let
the perfect fluid energy tensor be denoted by
T,ui = (P*'F/O*) “,j Wl = 5,/»v‘ P (4.601)
where ¥ is given by equations (4.206), and where 73%6 ;
1/396 and LL?; represent the pressure, density and energy
flow vector respectively of the medium described by 7r;§;.
The

This is not to be confused with equation (3.308).

- 26
components of TZfLQ are given by



- 101 -~

Cp*+ o Nwi) =+ " p%, N
o= (P FNwl)- P
"'Jj = (PF+pp*) wy wf

* s+ > *
(P"+p0 )w,; Uy,
where ¢ J = / 2 \5 and L#-‘J N If the

(6‘ ()
components of fifyg given by equation (4,512) are

s 8
equated to the corresponding components of [;&y , the

(4.602)

\i

following relationships result,

((/(’ ) {3)/2 B )/Zf:)f (P%”}' /O%)"/) Lo
wi)= [ £ PPt
*

LT U«J = 0, (14.605)
wrwy = O, (4.606)
where again (/)J =/,2,3 and ¢ FZ-J' + = Thus, if
we let
2
- <

then equation (4.603) is satisfied provided that cx,f'= C),
¢=1,2,3 . This result also ensures that equations
(4.605) and (4.606) are satisfied. From equation (4.607),

the remaining equation (4.604) becomes

((/Lﬁ)?—: ira ( Po+ /0 ) ( - (4 608)

K s "
.
”Lﬁ.




Finally if we set
2
* 2 &
/O"/O"_S/—q-’

then equation (4.608) gives

le#)

Thus, the energy representation given by ecuation (4.,601)
TATo)
may be shown to be equivalent to f;¢p provided a comoving

coordinate system is chosen in which

x ®* - .
(/(/1,4_ - / (JIJ - O s L = /_7 2; 3- . (44609)

’ L
This implies that the coordinates are adjusted to ensure
that the 'spherical' surface 1 = constant moves with
the fadiativo energy distribution as it expands in the
cosmological model, Thus the energy of an isotropic
gravitational radiation field may be described by a
perfect fluid energy tensor in a comoving system, where
the equation of state is given by equation (L.51k) .

A further property of the radiation field may be
demonstrated by consideration of the gravitational 'Poynting

vector! proposed by Isaacson (1968b),
’ x (ob) ot (ob) ) - p¥°  (0b)
= (= LT JETT W a0
It is introduced by analogy with the Poynting vector of
' o
" electromagnetism, Here jED describes the flow of

gravitational energy measured by an observer with a time-

. |
C® 1 E&

like L4-vector Lifﬁg . in equation (4.610) is

given by equation (4.512) and the observer is regarded
as participating in the universal expansion, that is

b
(ju_): (,LQ;JV , then
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P* - (E“o“~ EASZ"‘) = 0,

' éso,

P'= E* =0 L =12, 3.

Therq:fore at each comoving point there is no net energy
transfer from one region of the model to another, a
property to be éxpectéd of an isotropic cosmological
radiation field.

The results obtained in this Chapter have been derived
using a Friedmann background specified by HK=0 , and
apply only to free radiation since no interaction occurs
between the radiation and the perfect fluld medium in
this approximation, as shown in Section 3.3.

However, the conclusions drawn will be regarded as
sufficient justification for the Isaacson and Winicour

hypothesis.
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Chagter éo

Gravitational radiation in cosmology: a description of

the effects of an isotropic gravitational radiation ficld

upon a Friedmann universe,

5.1 The cosmological field ecuations.

In the preceeding Chapter a study of a cosmological
gravitational radiation field has been attempted by consid-
eration of the equations (3.352) and (3.356); Now we
undertake an investigation of the effects that such a
radiation field may have upon tﬁe cosmological model
egontedning it. However with our present meagre knowledge
of the mechanisms by which gravitational radiation is
generated, we should point out that this analysis must
necessarily be of an exploratory nature.

The manner in which the background curvature of space-

time manifold is influenced by its material energy content

©) eF
—T;Lw , and by its radiative energy content é;#u) g A8
described by the equation (3.214), which is rewritten as
(o) @) 78
/u,\) = = 8”6(7-/,0)7[‘ E/uc\/
©

Here &, is defined by the equations (3.207) and
(2.405). It is convenient to abandon the dimensionless
treatment adopted in Section 2.2. Henceforth natural
C.8.s5. units will be employed so that the Newtonian
gravitational constant & , and the local velocity of

light € are given by

/ ~2

el _
s 6668 x 10 cmaoqm Sec

/

fo -/
c = R.99%x |0 cm Sec )
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To discover the appropriate form of equation (3.214), it
is necessary to discuss briefly what reprcsentations of

T(O) -~ &ff

the energy sources JA and Ll—v , and oi the
background metric 5;Lw , are suitable in a cosmological
model., - |

The matter content will again be regarded as a perfect

fluid given by .
T oo (/Om+ Er) Y c e T T Zf ' (5.101)

where 5 /an and 7, are the L-velocity, density
and pressure respectively of the material medium

Now we consider the radiative energy content of the
model., From Section 2.8 we know that it is the averaged
effective field energy f;Av </é;¢ /> which 1is
physically significant by virtue of its invariance properties
in the high frequency limit. Therefore, the averaging
technique defined by the equations (2.807) and (2.808) is

applied to equation (3.214) to give
@) ®) =
(T mv ) = —8mG T+ By ).

Since this average is taken-effectively over a locally
Euclidean region Sb of the manifold in which the
background quantities 2;49 , O@f‘, /Qﬂ and P, remain
approximately constant, the above equation may be written

as

G = era (TR CES)),

or
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SO
) B _ ( (O) _7,‘ L )
G o = —EmE (5.102)
if the gravitational radiation field is isotropic.
Afe] ‘

The form of ey for an isotropic field of free radiapion
in a Friedmann universe has been investigated for the case
fC=0 in Chapter 4,_Where }o is the space curvature
constant.  There it was possible to demonstrate that
[;:io could be ronresented by a perfect fluid energy
tensor in a comoving system, with the equations (4.513)

and (4.514) describing the radiation energy density /C;,
and the radiation pressure /2. In what follows it is
assumed that an isotropic gravitational radiation field
which actively interacté with the matter content of a
Friedmann model with /C = -1, O or +1 may also be described

by a perfect fluid in a comoving systen. That is

£ = (o E)wivg - Gw BT 50w
where the flow L-vectors Cljf of the radiation energy
distribution, given by the ecuations (4.609), correspond
to the same comoving system as that which describes the
material flow. For an interacting radiation field the
/Or aC KETQL relationship is abandoned for reasons which

will become evident later, wherecas it is assumed that the

equation of state given by
- 1L 2 '
Pr= 365 (5.104)
is preserved.

For a general value of the space curvature constant
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£ , the background metric 5;Av represenﬁing the cosmo-
logical model is given by equation (4.202). In terms of
spherical polar coordinates 7" , «w , ( and cosmic
time T , this becones
C{ILZ,: A2
,Q(t) Ar 'f‘//u(JJ + rism J’G(,fé
o= (/+/€/§Ag) /

where the mean motion of energy in the model is given

Z (5 10))

by the space-time geodesics 7" = constant, & = constant,
¢/ = constant. Substitution of the.equations (5.101),
(5,103) and (5.105) into the eguation (5.102) gives the

cosmological field equations,

QDJLG( /Om + (97 ) = ( i %(‘: ’ (5.106)

EmG p, - — 2 _ %c
P = (

relating the scale factor Z\(f;), to the energy content
of the model. Here KZ =:Cjﬁi/€jfi and the conditions
Fm% O and /A =0 are assumed, where /A is the

(5.107)

cosmical constant. If equation (5.106) is multiplied
3
by 22 , differentiated with respect to time and then

combined with equation (5.107), it is found that

- -t s - —
'0'(6{(/0”'/0”)7?'}* 2t C(Zf 0. (5.108)

This will be referred to as the 'conservation of energy!
equation.
We now introduce four parameters which will be useful

in the subsequent analysis of the equations (5.106) and

(

(5,107). Let ff:”td be sone preassigned instant in

cosmic time. The Hubble vparameter at tinme t‘z'f; is
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defined as follows,

R(t:) i ‘
where fJé has the dimensions of sec ! . If ZZL e 3

~/
the 'Hubble time! ffg may be regarded as an avnnroxinmaste

i

value of the age of the cosmological model at the instant

E=1;.
The acceleration parameter at time 't'='t¢ is given

by

R./R:)”
Pe7 Eb(ﬁ'c) T | (5.110)

where €Z¢ is a pure number. Thus if

e O (5.111)
then the expansion of the model is decelerating at time

t = f:(', , Whereas

9. < O,
implies an acceleration at time € = 'Cd .

Finally, it is convenient to introduce the following

density parameters,

- 4G
O, = 3/_/2 [Ore (5.112)
Ome = 2 G /Pme (5.113)

dH;*

where

Pre = pr(t) , [Omi = fOm (7‘:0-).
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5«2 On the origin of gravitational radiation in a

Friedmann universe,

-

If the total mean density of the cosmological =

6
S
@
l_l

Q.

is denoted by

/O:'ﬂm"t'/Or',.
then at the present epoch t =% , the equation (5.106)

may be written

2.
gTrG/‘g ( l‘ ._.}C_E’z ? .
o 5 201)
EO & (\ JL)
where a subscript zero implies that the variable to which

. 3 . . ,.-— - ) i |
it is assigned is evaluated at T = Lo, Let the total

density parameter at the present time be given by

O_ w}“ C:T;O 2 ( [- R £ )f)::‘). 3\

mao

|
|
S

[} 2 2
3H,
where ffg is the Hubble parameter defined by equation

(5.,109), evaluated at time ffz t@ 5 Rearranging equation

since
_ EO H 2 o

Thus, if the density parameter satisfies U, £

Mo
~a
-
©

model will be an open one in which the expansion phasec
continues indefinitely. On the other hand, if the density

. / o -
parameter is such that Cg:>jz the resulting model will
be closed, and will recontract after reaching some

maximum 'radius!. The critical value that corresponds

to the AC=0 case is given by
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- 10
If a Hubble time of f%; = 2x/0 years (Sandage and

Tammann, 1974) is emnloyed, this implies that the critical

density is ) s -3
o ofa 3/“/0 ~ Y - )
/g(ﬁywﬁnm€> = s x~ 4.x]O gmem
g G (5.204)
In an effort to determine whether the observed moan

density paraneter of the Univcrse is larger or sualler -
than the critical Valﬁe, Oort (1958) and Shapiro (1971)
among others, have estimated its value for luminous matter
with the result that

(ﬁz (17aéa%%€$/) ~ 0.0/.

In a more recent study however, Field (1972) concludes that
the density parameter of inter-galactic matter could be as

high as

G (M) == 0.5,

where
Ome = G (gotaxits) + &5 (1.M.).

Further, the density parameter of the electromagnectic
radiation content of the Universe has been estimated to
—4f ; ;

be of the order /(O . Throushout the remainder of this
discussion however electromagnetic radiation will not be
considered,

Thus, the evidence from observations of the galactic
material content of the Universe alone suggests that

y
O; < 2 ?
which implies, from equation (5.203), that /G =—1/.

At this point in the discussion however the so-called
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'missing mass! problem arises, This is adequately summar-
ised by Partridge (1969) when he comments that "some cosmo-
logies feel that the Universe is, of philosophically
ought to be, closed", Those who subscribe to this idea
argue that there must therefore be 'missing matter! in
amounts sufficient to bring Cg up to a value greater than
the critical value, to ensure that fC=+/, The notion
that a gfavitational radiation field may pervade the cosmos
has from time to time bgen regarded as a way to resolve
this !'problem!', since the radiation field may be attributed
with an energy density sufficient to ensure that O, > jé :
Kafka (1970), Bertotti and Cavaliere (1971) and
Isaacson and Winicour (1972, 1973) have presented studies
of the cosmological effects of gravitational radiation,
In each of these, a large radiation energy density has
been adopted although not for any reason related to the
missing mass enigma. During the early 1970's theoretical
models of this kind were influenced by the only observational
evidence then available, that obtained by Veber (1967,
1969, 1970) from his system of two radiation detectors,
one sited at the University of Maryland and the other 1000
kilometers away in Chicago. He had reported strong
bursts of gravitational radiation which appeared to be
eminatﬁ:pg from the Galactic Centre, and which suggested
that the Galaxy was being converted into gravitational
waves at a rate of approximately /O sz jr—/ .  Thus,
as well as accounting for the common use of large radiation

density parameters in models, Weber's recults also provided
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stimulus to the hypothesis that the postuiated Universal
gravitational radiation field had been generated by
processes occuring within geslaxies. e will henceforth
refer to this as the 'galactic hypothesis?, If the
radiation field was created in this way, contributions
of the radiative energy to the evolution of the Universe
can be significant only during the galactic era. We will
have reason to consider the galactic hypothesis in more
detail later,

An alternative to the galactic hypothesis is that of
the 'cosmologicél hypothesis', which supposes that the
gravitational radiation field was created during the
'fireball' phase of the Universe and has thus had an
influence upon the cosmological evolution ever since.
This alternative hypothesis has, however, been forcibly
argued against by Kafka in light of the large radiation
density parameter suggested by \leber's experiment. Adopting
the cosmological hypothesis, and assuming that Cj}g = 5
and A=0 , he assessed the present age of the resulting
cosmological model to be 67324L /fé—/ . This corresponds
to an age of approximately 4.8 X 10°? years which
Kafka concluded was an uncomfortably short estimate, In
further defence of the cosmological hypothesis, he then
invoked the possibility that N#0 in order to find models
with ages compatibie with other dating methods. However,
an investigation of these models uncovered further
difficulties in that they exhibited antipoles at redshifts

Z < O°'S . Assuming the large radiation densit
g J
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suggested by Veber'!s observations, Kafka found no way
to reconcile the cosmological hypothesis with models
possessing suitable age estimates, and therefore concluded
"that a cosmological origin of gravitational radiation
should be avandoned'. This gave a further, theoretical,
impetus to the galactic hypothesis which was later vnersued
by Bertotti and'CaValiere, and Isaacson and Vinicour.
The present observational climate suggests that Kafka's

stimate of O,, was undugfly large. HMany experiments in
gravitational radiation detection have been attempted
since Weber's pioneering efforts, with instruments cof
greater sensitivity, and as yet Weber's results have not
been confirmed. In fact, null results have been reported,
see for example Tyson (1973). Hence if we abandon Kafka's
premise that Cﬁvz 5 , his objections to the cosmological
origin of gravitational radiation are overcome, and the

3 sy .

question as to whether we adopt the cosmological hypothesis
or the galactic hypothesis is again an open one,

In what follows both possibilities will be considered,
although the galactic hypothesis will receive the greater

attention.

543 Some remarks on the Isaacson and Winicour model

of the Universe.

The numerical analysis presented by Isaacson and
Winicour (IW) in their 1973 paper was a thorough investi-
gation of the consequences of the galactic ijotheslo in
a cosmological model for the range of cosmic time up to the

present epoch. Although the results of such a treatment
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will depend to some extent upon the way in which the
galactic hypothesis is expressed mathematically, the

initial assumptions of IW prov&de a sufficiently general
formulation of the problem in light of the present ignorance
of the rate at which radiative energy might accumulate in
the Universe. To specify the 'profile' of the radiation
energy during the expansion, IW chose the following

functional dependencé of f%. upon time,

2\ V-4
(Pro (;‘5}) , | . (5.301)

where the index ¥ 1is a constant, and where QO 1
present gravitational radiation energy density. This in
itself is not, however, a statement of the galactic hypothesis.

If we define

E.(t)= rO/Q3 , E.®) = PR, (5.302)

to be the radiation energy content and the matter energy
content of the model respectively, then the galactic

hypothesis may be given expression by writing

F_~» O as R—> O. (5.303)

That is, the amount of energy present due to the radiation
at the initial instant is zero.

The equations (5.301) and (5.303) provide the basis of
the IW model. The second of these imposes a restriction

upon the value of ¥ in equation.(B.BOl) given by

Vv >/
’ (5.30L4)
which may be regarded as a statement of the galactic hypothesis

in these models.
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What is the physical significance of assigning a value
to the parameter V' outside this range? To answer this
we consider a mass /Yl of the materizl content of the model,
which is contained within a coordinate volume /b/. Here
T/, is a time independent quantity, once the values of 7 ,
et 90 defining its boundary are specified. The physical

volume U~ corresponding to /V/ is given by
3
- = T
?/<(6) Av (t) W/’-

‘If a situation is :nvisaged in which matter energy does
not undergo conveq{ion into any other form of energy,

then IV/ will always contain a mass /V\ of material.
Thus, consideration of the volume U gives the density of

matter as a function of time,

({;) = ./.Zl = .{,\«/-L——-
i U(t) ,U(t)v

Hence,

g :
fom R = L4 = constant. (5.305)

The substitution of equation (5.104) into equation (5.108)

modifies the conservation of energy equation to give

/‘/( 3 . /r\/

e e o e G D/ /)

Z(pmR3) + 5 Z(PR) =0 (0
If equation (5.305) is now substituted into this, then

YO &+ = c nStrnt
[ R. - J (543077

which, from equation (4.513), is the time dependence of
the energy density of a 'free!' isotropic gravitational
radiation field, Comparing equation (5.301) with (5.307)

we may conclude that - the value V=0 correzsponds to a

model in which there is no conversion of matter into
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radiation, and in which radiation contributes to the
energy content throughout its entire history. Moreover,

restricting 1%

o< v g [/ (5.308)

in equation (5.301) provides a condition representing the
imposition of the cosmological hypothesis in an IW univérse,
since the statement (5.303) is not satisfied.

Following Iii, in the remainder of this hépter we will
restrict our attention to the galactic hypothesis. That
is, Vo is given by (5.304). |

Some information regarding the ultimate fate of an IW
mcdel universe may be obtained by consideration of equation
(5:306) . If equation (5.301) is introduced into equation

(5.306) it is found that
Vol
oa':(/o"’ 2 ael’ T\ Rs ,’

which becomes

0(’ 3 ﬁ?’o O(E O.
Ze(p”’?e)+ A V"/ ot

This may be integrated to give
v/
0, R+ /O’“’ (_,)73 = R,

where /65 is a constant of integration given by

Y
/80 = //O‘,.”O -+ (\)_/)/O)’G

_ (R3S o
pn= (%) Zr/o o9 (5.209)
'f'/‘“’(,),/ [/_(/’Z |
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It follows from this equation that the continued generation
of the radiation at a rate given by equation (5.301)

could lead to a negative matter density in the model..

To see this, we observe that there exists an instant € = ﬁc
in cosmic time at which the matter density Pm falls to

zero, provided that the scale factor satisfies
B(t) >0, t.st £t ,

and given that both (Opo , /Oro are positive. This type
of scale factor behaviour will certainly be exhibited by
models in which FC = O , =/ | as well as in some rC=+/
cases., From equation (5.3%09), the value of 7E2ﬁég)-5 %ZC

is given by
/

: V- / + YV Oro { V-I
.= Ro{( ) Ome 2 j . (5.310)
Y (O,

By the definition of the radiation energy density (5.301),

'generation' will continue in the IW model for values of
R > 1. and, provided that K. continues to increase,

equation (5.3209) implies that

[omE) <O, £ >t (5.311)

So, although the model has proved to be an adequate des-
cription of the situation examined by IW, its final fate
under certain circumstances is one of physical unaccept-
ability.

If such a generation of gravitational radiation was
occuring in the physical Universe, a situation character-
ized by egquation (5.311) would be unlikely to arise in any

case, since it would be difficult to conceive of any
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mechanism capable of 'driving' the generation as the value~
of the density of matter approached zero. In an attempt
to account for this, and to overcome the problems outlined
above, the following scheme is proposed to produce a model
containing gravitational radiation which is physically
acceptable for all values of the cosmic time.

We will enviéage a point source cosmological model in
which the condition (5.3%03) is satified. As the model
exXpands, the radiation energy density will be described by
a 'profile' equation of th%;Z;.EOl) until some moment
t = ﬁ/ < €_ 1is reached. At this instant it is supposed
that the generation of radiation ceases, and this is follow-
ed by a period of time . € > &, during which the remaining
matter and the radiation coexist in a noninteracting state.
In IV models which formally suffered from problems of the
type expressed in equation (5.311), in particular the
ICc = O, - | cases, the instant % ='t/ would presume=-
ably correspond to an epoch in the model's history by which
time much of its material content had finally settled into
'dead' condensations - dark dwarfs, collapsed stars, perhaps
even collapsed galaxies. A schematic representation of
the proposed model is given in Figure 2.

Since the energy distribution of the proposed model is
different on either side of the time boundary t= t/ ’
correspondingly the model's behaviour on either side of this
boundary is described by different solutions of the cosmo-
logical equations (5.106) and (5.306). That is, the
Universe is represented by two different Friedmann modeis,

one describing the 'generation era' up until t = t, and




TIME AT WHICH
R(0) = O. GENERATION
CEASES.
E.(0) = O.
FORMATION OF THE MATTER AND RADIA-
 GALAXIES. THE TION COEXIST IN
MATERIAL CONTENT NONINTERACTING
OF THE MODEL IS  STATE.
CONVERTED TO GRAVI-
TATIONAL RADIATION,
AS IN IW UNIVERSES.
t = 0. t=t,. t=t, <t COSMIC TIME —>
L H

Fig. 2. The proposed model.
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the other describing the 'noninteraction efa' thereafter.
Thus, before we may begin to construct the model universe
outlined in Figure 2, it is necessary to discuss the
continuity conditions required to 'mate' the two Friedmann

models at € = ﬁ,.

5.4 Continuity of two Friedmann models at any instant
t =1 .

Let the region of space-time bounded by O

t <€

be denoted by E; , and let the region for which t>t
be denoted by K; . We will suppose that the energy distri-

bution that specifies the geometry of E; differs from that
of f; , and that both f; and = possess the properties
of homogeneity and isotfopy. Thus, in f; , the space~time

interval may be expressed as

da® = dfz L | (5.401)
R (t) iy viduwr + 7’26‘/?7200‘0651/2
c? C1+ Kriy)*

where it will be supposed that ,AD(&) . 7D(%) represent

the total density and pressure respectively for O S't < f,.

~~

Similarly, the metric in f; will be given by

Z
oot = ot
(5.402)
R 2()S 7™ 72lis + FositiT AL "f ,

~

c (I EXF74L)

where the total density and pressure in :; will be

denoted by /Stﬁi), f?(é) .

It is assumed that, in equations (5.401) and (5.402),

tne cosmaic time ¢ 1s continuous. In the tinterccnnecting!
~

three dimensional space T t, , Which we shall ccll o,

-
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it will be supposed that each point may be uniquely spec-
ified by three spatial coordinates 7; ,&J; , ¥, . In
addition, the space curvature constant and the fundamental

velocity will be required to satisfy

Vad

¢ =C SN (5.403)
We now consider a comoving observer O in the space S
at the point P(O)( 7,(0)) w/(o): %(of t(O)). as T
increases, the coordinates of O will be given by
(7/kv, QJ’&? QQQD,'61> so that as
£~ ZZ Mfaﬁﬂﬂ S | 7?(°)”€> fy?ﬂ ,

@ )
where 7D ;, 1s a point belonging to ;SO with the coordin-

ates

— GY) @) 0)
(v, e, ¢, )= (ro,uf : 3&().
Now at some time T = 'E/(o) > €, , the observer O is
located at a point P (o)( ?/(o), (:«V)"(O), % (o); t(o))

belonging to ;3 . To define a suitable continuation of
~~ LG

)
the coordinate system in f; , the point P will be

chosen such that
= (o) ®) &
P2 = P as €>1 frem S,
~

This implies that the position of O at all times in O

is given by

(7, &, §, %)= (rOwT ¢ ¢),

7 b

P P g ~
since 7 , wW | 90 are comoving coordinates.  Hence,
a single coordinate system <,7ﬁ_CLf; SL, ta) may be employed
to specify space-time positions for 2ll values of the cosmic

time.
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It is now suprosed that the space-time interval between
. ’ . : @ .
two comoving observers O and O 1is given by &° in S

N(G =
and by & b a5 . If

a® — CL(,O) as € - T, j‘rfm S

Pl
~©) . .
then the value of Q@ ° in A; is chosen so that

~ ) o
Cb(b)“a' Gf as t - f; v/;th f;,

7
thus ensu}ing the continuity of Q@ at the boundary t::.tp
Adopting these results and suppositions, we may rewrite
equation (5.402) as |

da? = At”

T—-f(. ) Zf 0(.7’ A '(27"' r25in wr Oégéz
(/ + Ky )
/\/

(5.404)

for the metric of space-~time in AS . From a comparison
of equations (5.401) and (5.404), it is possible to infer
that the scale factor is continuous at t:"t, as a

consequence of the continuity of @ at € = ﬁ . That is

o
R(t) > RE) as t =t £ f -
E&%*R&)wé~%d%wg
For the sake of brevity, we will henceforth adopt the
following notation. If a function ZE(Qi) in ﬁ; and
its continuation Z::\;,) in 5 , is continuous at €=t

such that
EE(Gf) —F (ﬁ}) as £t -» fy\)4vnﬁ f; 3
Z@) = 2() ost 2t fom §

then we write
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—~

Z = 7

Thus, the continuity of the scale factor as expressed in

;-

equation (5.405) is written as

R = R
4 AV (5.406)
. . ad

The transition from the space S to the space S
will be regarded as physically acceptable provided that
the densily and the pressure of the energy distribution
are continuous at T ='t/. The continuity conditions at
t= L, required to ensure such a transition will now be
discussed, The cosmological field equations for the
density are

87’{6/\ ( -t /‘(/C % OS'LI":<’[S

{ 9

(5.407)

o 2

ﬁJ y 2
86 5 - /4_K@, t >t ,
L

whereas those tn describe the pressure are given by

§mG o . - 2R _ KC ( <
c? = ’ S % 6”(5.408)
S”QP:'-@—@— ) £ > £,

I 72, I

Hence, given equation (5.406), a sufficient condition to
ensure that the density is continuous at '6=:fﬁ is, from

the equations (5.407),

=
k="K . | (5.409)
Similarly, by an inspection of equations (5.408), the

equations (5.406) and (5.409) imply that the pressure is

. o = . ,
continuous at U=+, proviced that

S A (5.410)
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Alternatively, by consideration of the conservation of

energy equation,

3
3 o ol R &
2L(oR’) = ~B S5 o5t <t
r‘--//e\g) N d€3 5 -6 > .t/,
ctt c cct

and given equations (5.406) and (5.409), another
condition that prcvides a continuous pressure at 15‘212 is

given by

: A
o = P s - - (5.411)
which is a statement equivalent to the condition (5.410).
Thus the continuity conditions (5.403), (5.406), (5.409)
and (5.410) or (5.411) are those required to ensure a
physically acceptable passage from the space , S to the
space E? "

The problem of Jjoining two solutions of Einstein's

equations across a boundary
<% constamt = O , &= I, 2, &, 4,

has been examined previously. For instance, Lichnerowicz
(1955) has claimed that suitable junction conditions are
that the metric tensor ZiQM , and all of its first partial
derivatives 5}4q,d , should be continuous at the boundary.
A similar investigation led O'Brien and Synge (1952) to

the conclusion that the U and the Oy , with the
possible exception of 5;4qu; , should be continuous at
the boundary. Robson (1972) has, however, demonstrated
that these sets of junction conditions are equivalent to

one cnothe r provided that the 'bound:ary srezce' is a nonnull
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three dimensional space defined by an equation of the
form

& — comstant = O,

o~

Since the transition from t; to ﬁ; is of this nature,

we need only discuss one set of conditions, say the
Lichnerowicz set, to describe the junction of two Friedmann
models ay T = ﬁ,.‘ By an inspection of the metrics

(5.401) and (5.404), the junction conditions of Lichnerowicz

impl that
£
I\'/

, KR,= R, (5.412)

R, = K,
With reference to our discussion of 'physically accept-
able' continuity conditions, the equations (5.412) show
that the Lichnerowicz conditions require only the density
of the Friedmann models to be continuous at t =% .

That is, in general they do not imply that the pressure
need be continuous at the boundary.

However, in the particular case of the model universe
proposed in Figure 2, the imposition of the Lichnerowicz
conditions (5.412) are sufficient to ensure continuity of
the pressure. To see this, we note that the radiation
density in this model is defined by the following equations

/O-,, & ,,/:\?‘\)-4- OS‘C <-t/

By « R™F , Tt

Hence, from equations (5.412) we have that

= Oy, (5.413)

iorecover the pressure in this model is defined by



— __,- = oy s -+ > [{
f)r - O /O/(./ 7 e~ 7 ]

0
!

Thus, froum the condition (5.413) it is possible to conclude

Previously we have demonstrated that this result leads to
the condition (5.410), or the equivalent statement (5.411).
Hence the imposition of the Lichnerowicz conditions (

at ﬁ'=1§, in the particular case of the model proposed in

[
(4]

Figure 2 automatically ensures a physically acceptab

§ @ (o] /
transition from ) to 55.

5.5 Uniform models of the Universe containing matter

nd gravitational radiation.

(I) Introduction.

In this Section we investigate further the model of
the Universe outlined briefly in Section 5.3. Wiith
reference to Figure 2, the cosmological pzrameters def-
ined previously are now expressad in terus of time €=

the instant at which the generation of gravitational

radiation ceases. We bave

ﬁif%/) » 75,
= (5.501)
R &) R

- - é//gl = ’ _ (50502)
N\

i

i -O— ":7
I‘\’l' /’\—/
~ /1 (5 o~ = '_/\y‘*f‘:'“ ’/: e, A (50505)
@) = kil Y o , N e Ay
my 3 /_7, 2. /Tmi I \3 ;'}_"1[ 2
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At the instant f:='ﬁ, » the cosmological field equations
(5.106) and (5.107) become

5(/C3%,'+ Cﬁfy) = 3 = 5!529 2’

- - 9~ - Ko ;
which imply that

2
”C(f?%/—;’,) == (@l = 3T 4T ), (5.504)

;ZJ = Ci;w . ”2<:ﬁ%" ‘ (5.505)

Substituting equation (5.505) into equation (5.504), we

find that

(& Ve -t +2(0mron),

so that the sign of A in the model is now determined

by the value of the total energy density
at time T = &, . Thus

oK = = / QF Tony 7+ CﬁZ < 2{ é

A

O if Ot + Oy = o (5.506)

1

<
- 2

K=+l i Oyt On 25

To describe the generation of radiative energy during

the period C7$'€’<'f}, the IW equation (5.301) is expressed
in terms of the instant € :'6) as

V-4
/OT' = I/or/ (%) ’ O { t < t‘/ J (5.507)

and it is further assumed that the condition (5.304) is
satisfied. That is, the galactic hypothesis is adopted.

This immediately gives rise to questions as to which
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sources of gravitational waves within galaxies are capable.
of generating a significant Universal energy density.

A number of astrophysical processes which are promising
candidates in this respect have been investigated by many
authors. Boccaletti, De Sabbata, Gualdi and Fortini

(BSGF) (1968) have provided a review of the situation, and
have made an esﬁimate of the energy density of gravitational
radiation resulting from such processes. Although many
possible sources were discussed, including QSOs, super-
novae, orbital encounters between stars in densely
poéulatcd stellar regions and 'gravitational bremsstrzhlung!

due to thermal motions within stellar interiors, the authors

Q.

conclude that the main contributors to the postulate
gravitational radiation field are close binary systems.
Working with the assumption that each galaxy contributes
similar amounts of radiation in this way, BSGF estimate
the mean energy density of gravitational radiation to be
4.0 _.3

approximately /10 gm cm for the present epoch, a value
insignificant by comparison with the present mean density
of matter.

It is reasonable to suppose, however, that this value
represents only a lower bound. For instance, how reliable

an estimate may be obtained of the rate at wvhich gravit-

ational waves are generated within QSOs when there is no
real appreciation of their physical nature? Further,
other likely candidates such as neutron stars and blackholes

have been omitted from BSGF's discussion. The former of

these has been examined in rreat detail by Thorne (1969),
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who has concluded that neutron stars which pulsate in a
nonsphérical manner can give rise to considerably stronger
gravitational emission than binary stars. It shoula be
admitted however that, since there is no reliable way of
assessing the spatial distribution of such objects within
the Galaxy, their contribution to the Universal radiation
field is difficult to estimate.

The latter candidate, the black hole, is predicted by
general relativity theory,-but as yet it has not been
detected observationally. Despite this however, the
presence of massive black holes in the nuclei of galaxies
has been suggested many times. For example Hills (1975)
discusses the possibility that the observed energy output
of QS0s and Seyfert galaxies is supplied by violent astro-
physical events associated with the presence of a black hole
at their centres. Although Hills neglects effects due to
the emission of gravitational radiation, a crude estimate
of the radiative power of such objects is forthcoming from
his calculations. If the observed velocity dispersion and
density of the stellar population at the centre of our
own galaxy are adoptéd, then Hills' argument suggests that
a 'seed blackhole' of mass 10/7g , formed in the early
history of the Galaxy, has had sufficient time to accum-
ulate a mass of at least 3. 102/770. Any massive object
in orbit around this blackhole woﬁld be expected to spiral
slowly inward, because of loss of energy through the releasé
of gravitational radiation, before being captured.

Ruffini and Wheeler (1971) have shown that the rest mass

of the material accreted by the blackhole would be converted
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into gravitational emission with a minimum efficiency of
5%. Hence, the contribution to the mean energy density
of gravitational radiation of this very modest ot ject can
be estimated to be at least.of the samne order of wmagnitude
as the combined emission of 211 the afore mentioned hinarg
star systems.

Another example cited by Hills is the Seyfert salaxy
NGC 4151, This object, being considerably denser than
our own galaxy, provides an enviroment in which a blackhole
with an initial mass of 10 /7o has had time to grow into
a blackhole 6f mass 10 8/77@. Again, assuming a modest
5% efficiency for the radiative process, we may conclude
that NGC 4151 has a gravitation wave luminosity some six
orders of magnitude larger than the binary system lumin-
osity of our own galaxy.

Hence it is possible to infer that the galactic hypothesis
may have provided an amount of gravitational radiation
which is cosmologically significant at the present epoch.
Moreover, during the period of time Co < C< t', , gravi-
tational radiation energy will continue to accumulate since,
as BSGF point out, "the destruction rate of the gravitons

is exceedingly smaller than the production rate",

(I1) On the conversion of mass energy into gravitational
radiation (O < €< t/ ).‘

As we have seen from Section 5.3, the use of equaticn

(5.507) to describe the gravitational radiation energy
density in the model implies, from equation (5.3C9), that

the matter density is given by



E 2 \,"‘)"[7 ?
K
( /{m/ /Or’/(\) //[/ /’;’/ j/
B - (5.508)
Hence the matter energy content of the model during the

'generation era' is governed by the equation

(&
3 S NG )v—f*
PnR= R P P (55 )10~ (5
From this equation, the amount of material ensrgy present

initially may be expressed as

3 3 - 7 ’_‘::“ Y 2 % 5
(/O” ¥ E’) ¢ R Z(/Om’ v /o { \J/ ! ,,/‘,i, , vl

since we have supposed that Am{a;/- = C) . Moreover,
A

the amount present at time U, |, when the generation

ceases, is given by
e 3 o O '{95
prnﬁ, /"‘/rrn/g,,
Hence if we express the mass energy lost to radiation during

the generation era, as a fraction of the initial mass

energy P
3 K
f = ()C%n /) (1/2W" /! ;
then

_ Y /Py .
/(,L - {(‘\)*/)/Om, -+ \)/Or/}{ (5.510)

We note that this equation is not valid if P /3,1

are such that
G- D)oo + PP = O

Since ¥ 2> !/ | this situation may only arise in one of
the following ways. Either (a) one density is negative
and tie other positive, of (b) both density values are

ZEIrQ The former situation we may dismiss on physical
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grounds., If the latter statement is true, then equations

(5.507) and (5.508) imply that /C%ﬁ&a and /Of(%J will
be zero for all values of time OS € < €, . This can

Y
occur in ¥~ / models only in the event that (/Qﬂ ﬁz ,)d

ilence equation (5.510) is sound provided that we restrict

our attention to models in which

(/Om Rs)/; > 0.

This initial matter content acts as an energy source for
the subsequent generation of gravitational radiation, so
that some of it will be converted to radiation during the

period O <€ <<€, . Hence

(/On') gg)(, > (/o”” E3)/ > &,

wnich in turn implies, from equation (5.509), that

O<pe g /. (5.511)
The case (//quX2§)l = O arises in the event that
't,‘:f% , Where the instant't‘“ﬁc corresponds to the epoch
in the model's history at which the matter density falls to
zero by virtue of the generation process.

Finally, multiplying equation (5.510) top and bottom
by ‘4UN'C5//(13f{,%) , we may express fL in its most

convenient form,

_ Y Tt
M= Zf(v—/)o:,,, - wo:,,] (5.512)

This equation, and equation (5.505), provide a set of

simultaneous equations in Gy, Oy given by

1 (V=1) Oy + V(1) O = O,

N o 7 a3

Yy 7 <L O r - (‘%I



-

Their solutions are

glll)(//°‘/l’)

O = L5 v

T [2p(-1) = V(1) ] (5.513)
oR . C?///(' (V- /) ,
Yi T ' - - ~
/e = —_ L, = [5,51k)
271y~ D0 T =

where, given the conditions (5.3%04) and (5.511),
/\/‘ Q/J!,(V"“ /) - VX 1,",-“/) > O
If the matter and radiation densities are to be non-

negative at t =t , equation (5.505) or equations (5.513)},

(5.514) inply that

7 2 O .
Yo Z ’ (5.515)
in these models, That is, the expansion is decelerating

: / . R C
at the instant T:=’f, , when the generation of radiation

ceases., Models in which
?,<O,

are possible if the cosmical constant A is nonzero.

(IITI) The scale factor E(ﬁ) af the motels for DS € £ Ty,

The cosmological field equations are given by (5.106)
and (5.306). We have seen tat if /97- is given by
(5.507), then equation (5.306) implies that (Om 1is given

by equation (5.508). Thus, the total density is given by

/O ? (T = (E,)3erm, («/—/)[\)~ (’e )\)/]}

We now use this result to solve equation (5.106) for
<€ <¢,.

If the dimensionless variables

o 7E>//FZ/ ,}( 5 {;f{l P

b
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are introduced, then the total density becomes

/Orn+/3f = j{g{ﬁ)m/ i /Or'/ [\)_j\) l]j (5.516)

Similarly, a change of variables in the field equation

(5.106) gives

/sev@(/om.f/or) (cﬂ'j . /c( H,)

Intlodu01ng (5.516) into this equation, and using equations

(5.503) and (5.504), we find that

;‘fZO’m, #'(\;2_7;: [\) -y ‘)”’]j

(a,uz) q, - | + JO’m, AL Ty

)\
A further substitution from equation (5.513%), (5.514)

reduces this eauation to its most convenient forn,

cly 2 {/’Q /,(, V=2
C/% TN éj S (5.517)

-—j%l/(x)—/u) .

which describes the behaviour of the scale factor as a
function of time, during the period O £ € < ‘ﬁ'/
Particular models are svecified by assigning a value to
each of the parameters (éZ”fL’Ej/) , where the permitted
ranges of values they may take are given by (5.515), (5.511)
and (5.30L4) respectively. The value of the space curva-
ture constant /C  in each model may be found by the use of

equations (5.506), (5.513) and (5.514).

P
(IV)  The sesle factar AE)  of the models for L 25

During the period following the termination of radiation

generation, we have supposed that the matter and radiation




w LBH

do not interact. As discussed in Section 5.3, this

implies that

/a—nész/om/'e/ > ﬁr;éI%:/OTIE/-

These relationships may be seen to satisfy the field

equation (5.306). -Introducing the dimensionless variables
~ i A
g = R/ARy » X =TH:

we may write the total density as

Bt = T ot éf

’.
Hence the remaining field eguation (5.106) for T 7 fa

becomes

S L= (H)"+ ()

Finally, the substitution of equations (5.504), (5.513)
and (5.514) into this equation gives - |
oty )?_ 2 f\)(/ M) o p(V=1)
X 9’2‘
—2‘7»(\)—/1) + /
e - ,
N

which describes the behaviour of the scale factor during

(5.518)

the period 'é > '(7/ 5

(V) Continuity conditions at t=10 .

It was shown in Section 5.4 that a physically acceptable
transition from S(O\< €< é’/) to g(t 2 /C/) is
ensured provided that the scale factor, and its first tinme
derivative, are continuous across the poundary S, (t =t/).

The vehaviours of XE(%J in é; , and ﬁéz%) in £§f,

are described by the equations (5.517) and (5.518) respectively.
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Since it is supposed that the models have a point source
origin, the constant of integration associated with the
first order eqguation (5.517) is chosen to ensure that
R(o)= O. then
o

e
a number /<, 1in aJs such that
R(t) > R, as € =T, from S.

The continuity of the scale factor across

, as time increases, there will exist

—'ﬁ. 18 ensured

by choosing the constant of integration that arises in the

o~

solution of equation (5.518) for ﬁi(f) in O , in such

a way that

3 o~
R(t) = B, o € = € fom .
Moreover, the equation (5.517) is a direct s _

~
of the behaviour of CJE;/E(t in ﬁb , Whereas eguation

~ 5

o~ P / B

1./ 7 { L
1/ 7/ C

(5.518) is the corresponding statement for 5%\4' (R in

S~

ﬁS " From equation (5.517), since Jj > [ as ¢ sl Lo

()]

from S , it follows that

dR/dt — £ H, E: as £ =% Qf;mVs S,

where the positive sign is taken if the scale factor is
increasing at t =€, . Consideration of the eguation

(5-918) far %é(ﬁ) in Ey’shows that
dR At - EHR, as €t >t fiom 5.

Hence, the first derivative of the scale factor is 2lso
continuous across t » so that the conditions (5.412) are
satisfied by the models. As a consequence of this (see
Section 5.4), both the density and the pressure in the models

are continuous across the boundary space C= t/.
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5.6 Solutions.

(D) Comments on the method of solution for L!CX) in

S(C)S’(/:<tl)_ -

An inspection of equation (5.517), which describes the
in S
behaviour of j/ in ~ , shows that for general values of
C

the index VY , analytic solutions of this equation are
not available, Hence, the solutions will be sought
numerically. The remainder of this subsection is devoted
to a brief description of the iterative technique used to
obtain these.

For the sake of brevity, let equation (5.517) be denoted

by<§3%z;)2:: qu;y’)‘

To generate the numerical solution, the éf axis of the
X )y plane is divided into intervals of cqual width A,

' 1R
so that the boundary values of the C " interval satisfy
e+l PA

y -9 =4 -
where Cy “= (‘7()( (') é Now, if the values of (X “:Cy b)

on the solution curve of eguation (5.517) are known for

»

o+l
some value of ( , then the value of X may be found
by the use of the following Taylor expansion,
CFi ¢ i, L 2
X2 X+ AdX(y)+ 0(4%), (5.601)
dY LY,
where the value of :7 at )( —-)( is given by
" (i é
g :,y +A
O+ LAy
Hence, another point (i)( ;(ﬁ/ ‘/ on the solution

curve of equation (5.517) has been obtained. By repeating
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these operations a sufficient number of times, we are able

to obtain the numerical solutlon of J/ E; .
Since a value of A = /C> was chosen to perform the
- ‘ X e
calculation, the error per evaluation of by the use

of equation (5.601) may be expected to bte of the order of
ZXZ = /C)—é. ~ lMoreover the range of é/ in f; is
(Diféj < [/ so that the number of such evaluations made is
of the ofder of /C)g - Hence, we may estimate that the
maximum deviation of the computed solution,‘jf(>()gyﬂP .
from the true solutioncj/(>() of equa{ion (5.517) will be

given by
-3
= X ) - (/O .
Cy(X)Cf‘n)p (y( /> r O
Combining equation(5.517) and (5.601), we find that the
computed solution is generated by

XHI: X+ 10 fdﬁ_ﬁ(cy j }(5602)

L4

é/ L*J.: C7’L + O -3 ,
where the positive square root of equation (5.517) has
been taken, To provide a starting point for the calcu-
lation, suitable initial values (ﬁ)(‘i éf i) are required,
Although we have asserted that the models have a point
source origin, the initial values (XO’CY o) = (/O, O)
are of no use in general since the explicit form of Qj?}/)
is not well behaved at,dj =0. To overcome this problem
it is observed from equation (5.517) that, if Y2 2 5
the value of é/ as X = C) is governed by the differ-
ential equation
()" 24

—

/
\ X N j
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which has a solution

(9120)( 5

Hence, if we choose an initial é/ value of \:/ oii /O
ana substitute it into the above equation, we obtain a
suitable initial )( value of
' i
X = (ﬁzﬁf x /O,—9) - (5.603)
9 #NZ/
If values are assigned to the parameters ( V)/Jg(2 )

a value for >((? is found from eqn“tlon (5.603). The
ubstitution of (/)( u/ /) into equations (5.602) then
gives another, subsequent point ( )<l(:/,/ on the solution

curve, By tnc repeated use of equations (5.602) the
numérical solution(é/ in f; may be generated. The
iterative process is terminated when f;z'é, which, from
the definition of é/ , corresponds to the instant at which

g, X = X, (B Q) = CH
As indicated by the notation, the value of X at éf =
is dependent upon the parameters (/»%/Ligezh). The value
of the dimensionless time variable )<, , should not be

confused with the superscripted X values associated with

the equations (5.601).

(I1) Analytic solutions of L/(X) in S (t >€/)

The analytic solutions of equation (5.518) are readily
available. Rearranging this equation slightly we find

that

~2 L s o ~2 ~
/ = aF+a, 7+ a;s,
L«-/\
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where
a, = [ - f;?/(p_w,
_ Q — L
A, = Ug"r”)(’ ) (5.605)
P 7 5 1Y
a - ,—4__ N /QV—//-
3 N ~ //

From the equations (5.513) and (5.514), it is noted that
the CL@ may be re-expanded in terms of the density para-

meters U, , U7, as follows

(,L, = / - 2(0777/ i CI’?’/) ) 7
Oy, = 2Omi (5.606)
0—3 = 2 Cr?’l

The equation (5.518) is conveniently expressed as

v g9y ,
jd/{ ) n/%a/y?—'f'o.»zg'f" 0,3)2 ’ (5.607)

where the positive square root has been taken (i.e. the

solution curves of equation (5.607) will describe the

expansion phase of the models). To solve equation (5.607)

we ccnsider two cases.

Case A. Models in which (O,,, = O.

This condition applies to madels in which the initial

matter content has been completely converted to gravitational

radiation during the period CDS't < fﬁ . From equations

(5.503) and (5.512), /0,,,= O implies that

o_m,:O,/(X,::/,

Hence, from equations (5.605), the coefficients CLd

becone




wi THO =

a, = 1/- gll , Q, = U A, = Q, ,

? F

so0 that equation (5 607) may be written

Sex = /(U Qd&, 79,4

This integral is most conveniently performed if the cases
CZ, b / s 91, = /, gll < / are considered separately.

The value of the space curvature constant f(/ for each

M
—~~
(S}
L]
(o)

O
o
g

solution is easily calculated by the use of equations
(5.504) to (5.506). Solving eQuation.(5.608), we find

that for

K_::-/—/(%>I) 7

\
where the constants of integration /<}7Q) are arranged sO

as to produce continuity of the scale factor at ffz'tl

X(+/)= [E_,)'/'X,(‘),/,Cl,)j'
KXoy = :21 - X (1), (5.610)

X = — A (“; /) 9//\
(,) — / 2 JA o

(CZ)
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Here the numbers )(I</\)?/7€ll) are as defined in

equation (5.604).

Case B. Models in which /Qﬁw > O,

This condition applies to models in which the initial
mass content has only partially been converted tc gravit-
ational radiation before the generation ceases at € = Ty s
From the equations (5.503) and (5.509), ,Om, > O will

imply that
CSpy 2> O, p(< /..

Hence the conditions (5.506), combined with the equaticns

(5.606), provide the following statements,

a, < 0O & K= +1,

GL/:O = = 0O ,
a, » O & = =1,
a, > O,
o, > O.

Using these conditions to solve (5.607), we find that for
o= 4 I
(+1) / ~2 ~ >
X+xe L(aFraf+a): )
/4
I~
PGt O /
— QA2 , Sin '222’3/ : 2-.L ’ /
2(-04 )= (a'z. T4y a’3)<

K= 0O,

3
7’ 5\ (o)__ 2 /9 U—f— O«z z (
)\ ‘ /< a Qz g’,\ 2/ = > (5.611)
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X(r*’)
where tbe constants of integration are arranged soO

as to ensure continuity of the scale iaotor at (, j’, 5
,X(J): L - @z Sl'n[r )/7«/'7‘0“2-
a., 2(—-&) (ﬂ L., (L/J
\ '
Ny (‘))/U’) QJ) ;
N (Beb12)

X7 = 2, (0u-20,) = X,(2149,),

3<
(-‘f)h J, - 92 (n Z(CL, 2-/—20' F Qlz
X N a’/ ,’(a’)“’ / ) /
“'X/(‘))/(’(’)Ql).

For the case FfC =+ [/, the principle values of sin™! ,
between "7T/2 and 7T/2_ , are to be taken,

The numbers X, (V)//L) Cl;) are as defined in equation
(50601‘*')‘
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Fig. 6. The time dependence of the scale factor for a
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PB. The curve PQ tends asymptotically to ¥ =v2X.



| o

o:0

1 2 _ 3

X = tH;
Fig. 7. The time dependence of the scale factor for a model
in which KX = +1 (q1 = 2). The mass density satisfies Py > O

along OP, P, = O along PQ, and Pp < O along PB.




-
R = -1
Ry Vo= 2 (a; = 2)
o= b

2
1 A C K= +1 K= +1]

B (a; = 2) (q; = 1)

| ! | | | | | | |
H 1 2 3 4 5 6 7 8 2
X = ‘cI*I1

Fig. 8. The time dependence of the scale factor. The points A, B, C mark the
instants at which the radiative generation ceases for each curve.




- ;
R = =1
sz 1
—Izl Vo= 5 (ql - i)
b = 3
2 =
1| Afhfc (K 0 e o)
ql 5] 4

B
, ' | | L [ ! ) ! | | 1

1 2 3 4 5 6 7 8 9 10 x -,

Fig. 9. The time dependence of the scale factor.

The points A, B, C mark the instants at
which the radiative generation ceases for each curve.




|

<
I
%)

K = +1
(o, = 2)
— A G
B
| | \l ]
1 2 3 -
X = tHl
Fig. 10, The time dependence of the scale factor. The points
A, B, C-mark the instants at which the radiative generation .
ceases for each curve. The curve OBP has a maximum at y = 3.408,

X = 10.188.




el

= |s
X t.I1
Big, 11. The time dependence of the scale facter.
The points A, B, C mark the instants at which the
radiative generation ceases for each curve. The
curve OBP has a maximum at ¥ = 2.647, X = 6.032.
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(TV) Discussion.

In the preceeding subsection, I have set out a number of
solution curves of the equations (5.517) and (5.518) to
exhibit the difficulties that can arise if the IW models of
the Universe are temporally extrapolated, and to demonstrate
how the new formulation of the models can overcome these,

Figures 3 and 4, each of which is labelled by the appro-
priate vélue of the radia£ion index ¥ , show the behaviour
of the scale factor as a function of cosmic time for IW
models. Figure % displays thevnature‘of the 'negative
mass! difficulty associated with these models, in that the
curve represents an acceptable solution, in which /9”,3 o
only for values of X < X, . A similar situation occurs
in Figure L. The solution curves exhibited there indicate
that the IW model universes may be 'closed! independently
of whether the space curvature constant #C takes the value
+1l; Q oF =i,

In contrast to these resuits, Figures 5 to 7 provide
examples of IW models in which the generation of radiation
has been terminated at the instant € = t(; when the matter
density has fallen to zero. The continuous lines describe
the behaviour of the scale factor for the physically
acceptable models in which ﬂm >0 for 0Lt X< tc,
and ,0,,= (O for t?tc. The dotted lines, on the other
hand, exhibit the behaviour for the models if the radiative
generation is sustained beyond the instant € =f£ . The
accentable socluticns néw possesg the open or closed behav-

iour aprropriate to the value assigned to A in each case.
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The remaining graphs, Figures 8 to 11, are each labelled
by values of V and M These figures represent the
behaviour of the scale factor for models in which the rad-
iative generation is terminated at some arbitrary time t= t
where O < é/ < tc . The energy distribution in these
models is such that radiation is created during the period
O< €< é,. Thereafter the generation ceases, and th
remaini1r_matexlal energy. content of the model /jnq "
is conserved.

Ve would now like to demonstrate how a particular model
nay be specified by inserting numerical values of the para-
metersjﬁla, Y into the formulae. Moreover, by assigning
values to Opp, Oyo and Flp , we will be able to show how
the present epoch t= t is related to the future time
t;* L, at which the postulated conversion of matter into
gravitational waves ceases.

From equations (5.508) and (5.510), the matter density

in the models may be expressed as

O (8) = ZEZUS (1= pry™").

If the value of f/ at €=to is denoted by

C?g b E2°///ﬁzl ’

then the present mass dcnsity is given by

-

/CLYM) = _~._l2_ﬁz_ (’ — MFYo /).
(V- //2)
Multiplying both sides of this equation by !+7rCi/?<3 o /s

we find that
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which becomes, from equation (5.514),

: /Qfﬁfo ) o T =y o
C-;hc N H‘- /> [ /sz -] . (5.613)

A similar procedure avvlied to equation (5.507) leads to
the following exnression for the radiation density parameter

at {fz'f:o,

H
Ore = (—KNT_T’)/!’[\) /7ﬂ° ' (5.614)

If the equatlons (5.613) and (5.614) are now combined,
by the elimination of the expression in round brackets
from each, then

_J L ¥V Oro 5o
Jo Z[/““ (V=1) Omo 4 ¥ Gy (5.615)

0 4 .
A rearrangement of this equation expresses ifa.uf in

terms of /e,(lfo)
R = Ro Zf/u [(¥=1) Tmo + -?“roJ}

~...,‘

VT o
which is a generalisation of the equation (5.31

U1

\Ui
<

S

Furthermore, as a consequence of the equations (
and (5.505), we find that
Ho _ L § 2(0m +0n )~ j
H2 Yol 2(Gnot0ve) =1
and if equation (5.614) is rearranged, then
q H° oo N
H! f{,za/g¢(32ﬂ/,)éﬁ;)

Now, by choosing values for the parsmeters AL , Vv §
/

{5.617)

and U, , the equation (5.615) allovs us to cslculate =
value ford/o . The system of equations (5.513), (5.514),
(5.616) and (5.617) then provides a means of evaluatinr the

= 2
unknovns ,c///yf, 3 <2/ . CI;V and O, . \fter sonme

/
straigntforward uanipulation we find that
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g, = Now, /U, (5.618)
where

2L = 2(v-p) O (5.619)
+ (V- /)j:—.zf/mZ(o’m =5 U;o)j ,

From this result, equations (5.513) and (5.514) thaen give
Ot = Oy V(/—M)/'(LL ¥ (5.620)
Cr = Cro /l'(\)'" /)///ch; (5.621)

so that equation (5.616) becomes

Ho" Sy g 7 |
;/_/g_ = /LL(V /)jo /U, , 5 558)

These results, howvever, are mathematically and physically

acceptable only in the event that

U > O. (5.623)

An inspection of equation (5.619) reveals that this
condition is automatically satisfied for models in which
K = 0, -1, and also for rnodels in which K = +1 provided

that the inequality
e (V-
O__. -{‘ O.— < re ( M) + _/_
mo Yo /(,(,(\)—- /) q v-2 2 )
uO

holds. When considering particular examples we will

suppose that the cessation of the radiative generation

occurs at some future time in the model's history, so that

> K.

Hence, frou equation (5.615), we will restrict our attention

to o = O, =1 models the parameters of which satisfy
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Cro (¥ 1)
O, .+ Oro 2 o ( —
(v-1) |
M |
and to /C = +1 models in which
V= il ; Cro (V) = )
O.ro( / )< O—mo'/-g.‘/0< v( \/ /"‘_ oL 1
- v
i (V=1) m(Y=1) Y, 2
We will now consider some examples. If a Hubble time
-1 1a . -]
of Ho = 2%10" years is used, the value of F/, is
easily computed from equation (5.622). This provides a

means of evaluating t&, and fﬁ for a particular model,
since

~ -1
to:)(o/./ll 5 -é:/::/\(ll—/l:

where )<o is the value of )( corresponding to Jszdﬂj,
and )K, is again the value of.)( corresponding to Lyir/
on the solution curve of equation (5.517). Tables 1

and 2 set out examples of models in which the present epoch
(t-’to) is specified by the values assigned to the para-
meters T,,, , Oyo . In Table 1 a value for O, that
corresponds to Oort's and Shapiro's observational estimates
of luminous material in the Universe is used, whereas in
Table 2 a value of ten times this is employed. In both
cases the density parameter for gravitational radiation at
t=4, is /0. Tnis value, which incidently is of a
similar order of magnitude to the contributions due to
electromagnetic radiation, has been regarded as reasonable
in light of the discussion contained in Section 5.5(I).

It is however very much smaller than the values considered

by IW.
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Table 1.

Hs'= 2x10"yr, Opo= 001, 0= 0-000/,
fk V|G x 107*| 07, x 1074 T, 10 o | £, 104
Bk 3 35,56 2.63 1.9% 5elf

L 46.86 .91 1.93 2,87

5 54 147 L, 84 1.9% P |

10 71.52 ?7.15 1.93 2.49

0.2 3 22.41 3,7% 1.9% 7.3
A 32,14 6.21 1.93 L, 89

5 40.80 8.16 1.93% 3,95

10 58.94 13.26 1.93 2.69

0.3 % 16.03% 4.58 | .1.93 8.98
I 25.36 8.15 1.93 5 b

5 32,29 11,07 1.93 4,38

10 49,3l 19,03 1.93% 2.82

Table 2.

Hy =2 x /O’°5r, Teng & 2 § Crg= OFODO0],
A V|G x 10|, x 10 %10 | £, %10gr
o Pl 3 133.95 9.92 1.69 17.18

L 252.46 21.04 1.69 8.52

> 348.07 20.94 1.69 5.87

10 593.94 59.39 1.69 3.02

0.2 3 84.97 14.16 1.73 24,66
L 180.35 33.82 1.69 10,91

5 263.69 52.73 1.69 7.09

10 494,19 111.19 1.69 3.29

0.3 3 60.96 17.42 1.73 30.41
n 138.75 44,59 1.69 12.59

5 210.02 72.01 1.69 7.91

10 416.09 160.49 1.69 3,47
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If indeed the matter content of the Universe is under-
going a process of conversion into gravitational radiation
by the acretion of material into black holes at galactic
centres, then the efficiency of the process would lie in
the range 5% to LOY (Ruffini 2nd "heeler, 1071). Fronm
equation (5.5C9) the value of‘/A in the model would be
numerically equal to the efficiency of the emission vrocess.
Hence, we have considered models in which/}k takes the
values 0.1, 0.2, 0.3.

In conclusion of this chapter, I would like to point
out that the technique of joining two Friedmann models
may also be of use in situatiocons other than that examined
here. Indeed, if the equations of state describing the
energy distribution in a model universe change at some
instant T in its history, for any reason, then the
cosmological equation may be solved on either side of
the time boundary. The models that result from this
procedure may then be !joined' together by the use of the

Jjunction conditions set out in Section 5.4.



- 150 -

REFERENCES.
BXL, L., 1959. Compt. Rend. Acad. Sci., 243, 1297.
BEL, L., 1959 Ibid., 2561.

RERTOTTI, B. & C'VALIERE, A., 1971. Nuovo Cim., 2B, 223.
BOCCALETTI, D., DE SASBATA, V., GUALDI, C. & FO:TINI, P.,
1968. Nuovo Cim:, 54B, 134.

BONDI, H., PIRANI, F. A. E. & KOBINSON, I., 1959. Proc. Roy.
Soc., A251, 519.

BONNOR , W. B., 1959. Phil. Trans., 251, 233.

BONNOR, W. B. & ROTENBERG, M. A., 1966. Proc. Roy. Soc.,
4289, 247.

BRILL, D., 1959. Ann. Phy., 7, 466.

BRILL, D. & HARTLE, J. B., 1964. Phy. Rev., 135, B271.
BRILLOUIN, L., 1926. Compt. Rend. Acad. Sci., 183, 24.
CARMELI, M., 1967. Phy Rev., 158, 1243.

CHOQUET-BRUHAT, Y., 1969. Commun. math. Phy., 12, 16.
EDDINGTON, A. S., 1923, The Mathematical Theory of
Relativity (Cambridge Univ. Press), p. 185.

EHRENFEST, P. & TOLMAN, R. C., 1930. Phy. Rev., 36, 1791.
EINSTEIN, A., 1916. Sitzber. Preuss. Akad. Wiss., 1, 688.
EINSTEIN, A., INFELD,.L. & EOFFMANN, B., 1938. Ann. Math.,
39, 65.

EINSTEIN, A. & ROSEN, N., 1937. J. Franklin Inst., 223, 43.
FIELD; G. B., 1972, Ann. Rev, Astron. and Astrophy., 10, 227.
FRIEDMANN, A., 1922. 2. Physik, 10, 377.
FRIEDMANN, A., 1924. Ibid., 21, 326.

=

IIATRISON, E. R., 1965. Astrophy. J.,

<

fp D Lol Z
412, 1643.

)

l}

T AT OO0 A T N LE T an At T e Al 177 e
LA LOUL, E. itey l‘ju?. 40, L1LOT. e ASLIr. 0O0C., Lo/, 9.




- 151 -

HARRISON, E. R., 1969. Ibid., 140, 281.

HAWKING, S. W., 1966. Astrophy. J., 145, 54k,

HILLS, J. 8.y 1975, Nature, 254, 295.

IYFFLD, L. & MICHALSKA-TRAUTMAN, R., 1969. Ann. Phy.,
55, 576.

ISAACSON, R. A., 1968a. Phy. Rev., 166, 1263.

ISAACSON, R. A., 1968b.  Ibid., 1272.

ISAACSON, R. A. & WINICOUR, J., 1972. Nature, 239, 447.
ISAACSON, R. A. & WINICCUR, J., 1973. Astrophy. J.,

134, 49.

ISHAM, C. J., SALAM, A. & STRATHDEE, J., 1974. Phy. Rev. D,
9, 1702.

JACKSON, J. C., 1972. Mon. Not. R. astr. Soc., 156,1P.
KAFKA, P., 1970. Nature, 226, 436.

KRAMERS, H. A., 1926. Z. Physik, 39, 828.

LEGROS, A. & MADORE, J., 1974, J. Phy. A, 7, 1887.
LICHNEROWICZ, A., 1955. Théories Relativistes de la
Gravitation et de l'ﬁlectromagnétisme (Masson, Paris)
Chapt. 1, 3.

LICHNEROVICZ, A., 1960. Ann. Math. pura ed appl., 50, 1.
MACCALLUM, M: A. H. & TAUB, A. H., 1973. Commun. math,
Phy.y; 30, 153.

MADORE, J., 1972. Commun. math. Phy., 27, 291.

MADORE, J.; 1973, Tbid., 20, 335.

MADORE, J., 1974. Gen. Rel. Grav., 5, 169.

O'BRIEN, S. & SYNGE , J. L., 1952. Comm. Dublin Inst.
Adv. Stud. 4, 9.

CORT, J. H., 1958. La structure et 1'Evolution de 1'Univers

(Institut International de Physique Solvay, R. Stoovs,




- 152 -

Brussels) p. 163.
PARTRILGE, R. B., 1969. American Sci., 57, 37.

EEBLES, -P. J. E., 1971. Physical Cosmology (Princeton
Univ. Press), p. 164.
PETROV, A. 2., 1954.  Sci. Not. Kazan State Univ., 114, 55.
PETROV, A. Z., 1969, Einstein Spaces (Pergamon Press,
London).
PIRANI, F. A. E., 1957. Phy. Rev., 105, 1089.

PRICE, R. & THORNE, K. S., 1969. Astrophy. J., 155, 163,

2]

REES, M. J., 1971. Mon. Not. R. astr. Soc., 154, 187.

e eren

ROBERTSON, H., P., 1929, Proc. Fational Acad. Seci,, 15, 822.
ROBINSON, I. & TRAUTMIN, A., 1960. Phy, Rev. Lett., 4, 431,

ROBSON, E. H., 1972. Ann. Inst. Henri Poincaré, 16, 41.
RUFFINI, R. & WHEELER, J. A., 1971. Phy. Today, 24, 30.
SANDAGE, A. & TAMMANN, G. A., 1974. Astrophy. J., 190, 525.
SHAPIRO, $. L., 1971, Astronomical J., 76, 291.

SYNGE, J. L., 1956. Relativity: the Special Theory (North
Holland Publishing Co., Amsterdam), Chapt. 9.

THORNE, K. S., 1969. Astrophy. J., 158, 1.

TOLMAN, R, C., 1934. Relativity, Thermodynamics and
Cosmology (Oxford Univ. Press) p. 99.

TYSON, J. A., 1973. Phy. Rev. Lett., 31, 326.

VL:DIMIROV, Yu. S., 1%64. soviet Poy. J.E.2.P., 10, 176.
WALKER, A. G., 1935. Quart. J. of Math (Oxford), 6, 81.
WEBER, J., 1961. General Relativity and Gravitational
Waves (Interscience Publishers Inc., New York).

WEBER, J., 1967, Phy. Rev. Lett., 18, 498,

WEBER, J., 1969. Ibid., 22, 1320.

WIBER, J., 1970. Ibid., 24, 276.




- 153 -

WEINBERG, S., 1972. Gravitation and Cosmology. (John Viley

& Sons, Inc., New York). Chart. 2, Sec. 11. Chapt. 15,
secs 10,

WEINBERG, S., 1972a.  Ibid., Chapt. 2, Sec., 10.

wenl2eL, G., 1926. Z. Pnysik, 33, 513.

WHITHAM, G. B., 1971. Studies in Applied lathematics (ed.
A. H. Taub), vol. 7. Mathematical Association of American

Studies in Mathematics,

ZEL'DOVITCH, Ya. B., 1962. Soviet Phy. J.E.T.P., 1k, 1143.



..15[_1_...

Comments on the wrimeval origin of gravitationol rndiatiocn

in a Friedmann universe.

AL, Introduction.

In this Appendix tne cosmological hypothesis is briefly
considered. Thaﬁ 18, é situation is envisaged in which the
postulated universal gravitational radiation field is gener-
ated during the early, pre-galactic era of the Universe, as
opposed to the view, investigated throughout Chapter 5, that
the radiation was galactic in origin.

Although the subsequent analysis is broadly based upon
that contained within Chapter 5, a number of differences in
detail are imposed upon the model, The primary differences
between this and previous work may be summarised as follows,
Firstly, it will be supposed that the radiative generation
takes place during the period in the model's history usually
referred to as the prestellar of 'fireball! era. Secondly,
to describe the energy field in the model a particulate des=
cription of matter will be adopted, and finally it is assumed
that the pressure of matter may no longer be regarded as
negligible during this phase. An examination of the result-
ing model leads us to draw conclusions about the rate of
entropy production, and the particle number density.

Although the analysis of the model is not fully developed
here, a check is made to ensure that it satisfies the criteria

of physical acceptability, which were introduced in Chapter

5.



- 155 =

Run The description of energy in the model.

A model of the Universe is considered in which gravit-

D

ational znd els

(

ctromagnetic radiation and amatter are present,
For simplicity, the material content will be envisaged as a
distribution of a single svecies of varticle of mass 77
and of its corrcsponding antiparticle. The number densities
of the particle and antiperticle populations are denoted by
ff—(ﬁ) and.f7+(%a) respectively, where the total number
density of the matter field is given by
Az — - o .

n(t)= N+ 0T (h.201)
Although this arrangement does not rule out the possibility
that the particle gas may possess a net charge per unit
volume, we will henceforth neglect the small gravitational
effect due to the electromagnetic energy of such a charge
distribution (see Eddington, 1923).

The electromagnetic and gravitational radiation components
of the energy field will be taken to be isotropic, The
energy of the gravitational radiation will again be represented

by a perfect fluid of density /9, and pressure 73r , where

)
=
H .
i
(0]

equation (5.104) is assumed valid. In addition, we d

O = ,ﬁ(x’v)/cz , (4.202)

so that

f%’ = éé'ig(ﬁé) ?

where ;zg(ﬁ) is a general function of the cosmic time fj'
Similarly, the electromagnetic radiation will be described by
a perfect fluid of density//ﬂ3 , pressure 739 and blackbody

temperature Y; s Where
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e
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o = 7564 x /O eﬁ;mg3d?~ 

The specific energy of the material particles, that is
their energy per unit mass, is given by
f)
o ~ - ;
Em = CT+ Cut (A.204)
where ﬁzbt; denotes their specific internal energy in ergs
per gram. We will assume that each particle possesses an

internal energy of

kTw /(¥5-1)

L = [. 38/ % /O.-/@ef’j C‘/ej“l;

~o

where A is Boltzmann's constant, Z,n is the temperature
" o] Z{ . ,. i
of the matter in , and is the ratio of the specific

heats of the particle gas. Then, since there are numerically

+if

m particles per unit mass, the specific internal energy

may be written

GL't = *52[1’ "
7 m(b/"/) (A.205)

The matter energy density is related to the specific energy

of the particles by the following equation,
QYT - 3
2 = (o . G
“m [Fm ¥ g (A.206)

where j\, is the specific volume, given by

]
j[ = (mn) . (4.207)
Thus, introducing equations (4.204), (A.205) and (A.207) into
equation (A.206), we find that

Oy = I +c3(b”“ 0 - (1.208)
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Moreover, the pressure of matter will be given by
Prn =-.0 Iét E{)

+ Since the early history of the Universe is to be examined,

(4.209)

it will further be assumed that the electrouagnetic radiation

1 v

Ny
Mo e Adia

and matter contents of the model arg in thermal cquili
with one another, As a consequence of this, we are able

to write

T, =1, = I, (£.210)
Hence, by the substitution of this condition into the equations
(A.203%), (A.208) and (A.209), the total pressure and density

in the model are given by

T -

P = nk'T" + 3{' s 51 /3 (A.211)
= mn + nkl a’ o 3 fﬁ

/O )(b/_/) ) 62 ' C (A.212)

Finally, if the metric (5.105) is assumed valid, the
equations governing the model are given by equations (5.106)
and (5.108), where the pressure and density contribytions

are now given by (A.211) and (A.212).

A5, The conscrvation of energy equation, and the particle

nunber density.

By an arguement similar to that following equation (5.304),
it may be shown that if particles are neither created, nor
destroyed, during the history of the model the particle

number density satisfies
3 3
1 E = n-. E?.

) P
viere

(£.301) -




- 158 -

222 = K ({%1) : n, = r7(Q%2-) )

are the values of the scale factor and the number density
respectively, at some arbitrarily chosen instant € .= ifz
in cosmic time,

In what follows we wish to consider a model in which the
gravitational radiation content interacts with the particle
content, ‘In thisg situatioh the equation (A.3%01) is not
valid, since we require the material particles to act as a
source to enhance the energy of the gravitational radiation.
e shall now investigate how the time dependence of /7(é) is
modified in this situation.

The introduction of the new pressure and density equations,
(A.211) and (A.212), into the conservation of energy equation

(5.508) gives

3
C%{(/om +/Qe + ﬂr) /5 } ( L50)

3
4 (Pt Pe +pPr) 952 O
2 At

Since it is wished to examine the interaction between the

material and gravitational radiation components of the energy,
it is assumed that the electromagnetic radiation field is

noninteracting. This assumption may be exvressed as

3
L 2°) + Pe dR" = O
oét(/oe/\' / c2 At ' (4.303)

When (4.203) is substituted into this equation, it is found

that the temperature has a time dependence given by

TE = T; Ez . (A._z/og)

Now, if the follovwing definition is made,
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V= E?(%z//,ﬂ2z ;

then the equation (A.303) implies that (A.302) reduces to

% (Putor) + S onipr B + ) = O.

///

a 7

From the equations (A.Ell) and (L.Zla), this equation becones

d $mn+ NR A 3@ f
o . c?‘(b/—/) Gt

-5 szmlf;-,l— ﬂ—f"gg -+ C?i’;T—/»_f _j: O
7 cXg-1) & ¢ 3

Substituting for :Z from equation (A.304), we find, after

'\

(-

ﬁ*
A

|

O
P31 %

some calculation, that the number density has a time depen-

dence of the form

g ( / //)7+ b)“’ (A.305)
“4p
,0_)47()7/76) o7 + bgj

- kT,
& @-mc?
b, = (m Cz) N y

bs = constant 9(: l'ntegrafl'on,

Moreover, since it is reasonable to supvose that the

'primeval gas' was extremely relativistic, we may assign the
’ &

J - 4/3 g (A.306)

to the ratio of the specific heats (seelieinberg, 1972a)

Thus equation (A.305) reduces to



- 160 -

ny /(777@)0’//7‘5 .

(£.307)

i wéjpf -b,) LY

where A% now becomes
2
b = 36Ty /(mc?).

The equation (A.307) fherefore provides a relationship

between the densiﬁy of the gravifational radiation and the
particle number density in the early history of the model.
Although it is difficult to make a physically significant
choice of the function 5%3(%;) , which describes the radiation
density, we may impose restrictions upon it by introducing

thermodynamical considerations.

A.4. Entropy vproduction through the mechanism of

gravitational radiation generation,

For a change from one thermodynamical state to an

immediately neighbouring one, we have

Tell. "= de + p dIC (A.401)

% _
where AZ: and € are the specific entropy and the total
specific energy in the model respectively. Since the total

density and the total specific energy are related by
2.
/O%G
the equation (A.401) implies that

T dE7_ I de £ P
c? AV o/>/ + (P )dY/ CR-0R)

However, the conservation of energy ecuation (A.302) implies

that




g

/4 4

If this equation is now combined with equation (L.402), it
is found that 2 2
T o - s NI N
Lo = —-(/,o + 6%/)/ “_/33/ u/( A |
2 T av\or A, 1403
c2 oY | \ YW/ dX\TT / (A, 403

B TN
o2 1 CIra ) 1 3 9% 4 4=
Since the specific eﬁuropy‘2” must satisfy

of T ™

e > O

pafhies o ! A LOL
Y (A.LO4)

the equation (A.403) implies that

&
3 / );f'/ -
U PO £ &£ O
Ci/// \ j Z: [ h ’
- \
provided that Ziﬁ3~%<?ﬁy/t‘>t] 2 (O is satisfied.
Hence, from equation (A.207) the condition (A.404) is

satisfied provided that

o 73) ¢ O.
Cy//(ﬂ )/) O 0

Also, by inspection of equation (A.307), the function %k?(%ﬁ)

governing the gravitational radiation density must satisfy

(%(yq/ﬁ) 2 O ? (A.406)

in order that the entropy be constant or increasing.

If the equality holds in the condition (A.404), then
correspondingly the equalities in the conditions (A.405)
and (A.406) also nold. Thus, a model in which the entropy
remains constant has, by an inspection of equation (A.3C1l),
particle conservation, and a radiation energy density of
the form ,%za & 27/-4. . On the other hand, if the entropy

is strictly increasing, then there will be an annihilation

a

of particles accompanied by a corresponding enhanccient in

che density of the radiation.
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The reactions that are envisaged as taking place in the

model are the anninilation of particle - antiparticle pailrs,

[

»

PRSI % 1
( FENVLET

A ~tional
ons (g8r: atiena

\
s
Cr

doa omag f e - e
which result in the production of gravi

£

radiation). This category of event has been considered by
Vladimirov (see Vladimirov, 1964) on the basis of a quantiz-
ation of the weak (linearized) gravitational field. Although
this framework is-not well suited to examine the situation
under discussion, it does provide some indication of the
probability of such reactions occuring,. Vladimirov concludes
that the reaction cross section of, say, the annihilation of
an electron - positron pair, to produce two gravitons, is
very small indeed. However, the reaction rate may still be
significant since the probability of such an event occurring
is considerably amplified by a very high number density,
which is to be expected during the early 'fireball phase! of
the model. Other reactions, such as particle annihilation
to produce a photon - graviton pair, have a consicderably
higher probability of occuring, but the assumption, expressed
in equation (A.3%303), of the non-interaction of the electro-
magnetic radiation with the other energy components forbids
any concideration of these in such a greatly simplified
model.

However, despite its shortcomings in this respect, the
model dictates that particle annihilation must take place

rovided that entropy increases. This result is valid

)(j

independently of the extent to which the three energy fields,
matter, electromagnetic radiation and gravitational radiation,

are alloved to dinterasct with one another.
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In conclusion of this Section it is interesting to examine
what the conditions (A.404) and (A.4C5) imply about

of JB/ ) used throu ’O.,Lt r'h““'*”\”" 5. Froa equatio

plad
. 59
ct
l,l
Q
3
U

-

N

O
~J
p—

wve write
) V=4
7B = B v -
/ /o ’ (A.407)
where -0
2- . - )
//Zgzzpnc(—'g—") z O,
. fEJ
so that
2 2 v
o ()= d (V) e B
ady C///

Thus, with a radiation 'profile' of the form (A.407), it
can be seen from equation (A.406) that the model possesses

a satisfactory thermodynamical behaviour provided that

Y 2> O.

ReDs The termination of radiation generation.

In a situation, envisaged in the preceeding Section, when
gravitational radiation is generated by the mechanism of
particle annihilation, it can be foreseen that the particle
number density will ultimately fall to zero if the process
is allovwed to continue indefinitely. Thereafter, ﬁé%) will
take a continuum of physically unacceptable negative values,
which may be demonstrated by the following simple example,
Suppose the radiation density is described by equation (A.407),

where the index Y takes the value unity. Then
C{ i
= (VA3 :

so that equation (A.307) beconmes
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2 oY
nYy = V/’(EZST;;:> 7 é@ ;

Integrating this equation, we find that

3 !+ B, :
s f /
n Y/ /3 o + Mz
NSRSy S

, Y4 |

Thus, as 7 becomes greater than unity the logarithmic
. \/7
term on the RHS becomes negative. Indeed, as # continues
u) 3

to increase’ there exists a range of 27 given by

> exo {;—j—;(z;g Z“i’)z - /?’J;l,j,{/zgz(h (/-;“,b/)Jj e A[.)/

27 . . ’

for which

n < O,
The difficulties encountered here are similar to those found
in Chapter 5, and we use the techniques developed there to
help overcome them, It is supposed that at the instant
characterised by kyz / , the generation of gravitons in the
model ceases., Hence for W</ , When there is particle
destruction, we impose a number density of the form (A.307),
whereas for ,%7> / , when there is particle conservation,
we impose equation (A.301).

By an appeal to equations (A.,211) and (A.212) it can

be appreciated that the cosmological equations will give rise
to different models of the Universe on either side of the
boundary 3-space t:{'q_ . Ve will conclude this Appendix
by briefly demonstrating that the description of a universe
in which the 'cosmological hypothesis! is adopted satisfies
the necessary continuity conditions at the boundary 't‘=fil .

The pressure }3 , and the density /3 , are now shown to

be continuous at 'é=’6¢ & If the quantities in the swnace

Cme - RS
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€t <€, anda t> €, are distinguished from each other by
the use of a tilde, for example

y = E/\JP 5 {: o '62_

2

5\/// £ %//Q?_ y 't ) .tz- 3

and 1f the notation of Section 5.4 is used, then the density
5 b k. .
for € <{, is given by
X - JY)
wa(%) ¥t '}’T; A - 0;,.7—;,__1 -+ ,,_O_‘
/ /\/.../ {/0 2.
JCo c* w* c
.
Here f?(ﬁf) is chosen arbitr arily provided that equation

. . ) Jy<? . .
(A.405) is satisfied, and 7&” is the corresponding radiation

vrofile satisfying equation (A4.3%07). At C=T, , the constant
]

of integration4é@ in equation (A.307) is chosen such that

n(t:) = n, , 70 (t2)

Thus, as G > €, from the space € <&
2. 9

X
/O = N, + - --—T"’- - __ﬁ?ﬂ- - (A.501)
> (c,‘ /)c &=

Now, in the space {,>'éé, the number density and radiation

profile are given by

N_3 ~ K N—"—f-
nN pemd f/}g_ >// P /% = 4(32.}7
so that equation(A.212) becomes
v L
o= M kL L3, o ds =, 12 L
4 &=1)c*> 7 ) o= X ct 77
lience, as € tg_ from the space T > €.,

0,2 /o, - (4.502)

Moreover, a similar argument, based upon the equation (A.211)

leads to the result that
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" .
PZ = P?_ . (f\.;ﬁ@})
Upon substituting the new pressure and density distributions
(A.211) and (A.212) into the cosmological equaticns (5.106)
and (5.107), we find that the conditions (A.502) and (A,503)

imply that

. A .
o

ﬁia = .Ezz_ 2 Ezzf: ﬁa«z .

N

given that the scale factor satisfies

o~ ‘
RZ - EQ_ . g ' (“'\.9-:{\“’:‘)

The condition (A.504) may be arranged by a suitable choilce

of the constant of integration associated with the solutlon

of equation (5.108).

L
(2

e t<t, to t>ts is physical
Hence the transition from \T2 to T7T42 is physically

Q-

acceptable in the sense discussed in Section 5.l.




