
Sparrow, Malcolm K. (1986) Topological coding of single fingerprints. Doctor
of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94669/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94669

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94669/
https://doi.org/10.22024/UniKent/01.02.94669
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Topological Coding
of

Single Fingerprints.

Malcolm K. Sparrow,

June 1986

T í í QH5

ABSTRACT.

The motivation for seeking topological descriptions of single fingerprints is provided
by the elasticity of the human skin; successive impressions from the same finger will in
variably have suffered a degree of relative distortion (translation, rotation and stretching).
Topology based systems should be free from the detrimental effects of plastic distortion.

This thesis is divided into three parts: part I outlines the traditional use of finger
prints as a basis for personal identification and gives detailed explanation of the arguments
in favour of topological coding. Methods for the extraction of topology based digital codes
are suggested and the ‘placing of lines’ is introduced as an effective means of ordering
topological information.

In part II specific systems are described for the extraction of simple topological
codes from rolled impressions of the pattern types ‘ loops’ , ‘whorls’ and ‘arches’ . The gen
erated codes take the form of vectors or simple digital arrays. The nature and frequency
of changes that may occur in such codes is investigated and fingerprint comparison algo
rithms, based on these topological codes, are developed. The objective of such algorithms
is to draw a score derived from the degree of ‘nearness’ of the topological codes in such
a manner that it intelligently reflects similarity or dissimilarity in the two prints under
comparison.

Part III examines the special problems relating to fragmentary ‘scenes-of-crime’
marks. It describes methods of coding fingerprint patterns by a variety of ‘topological
coordinate schemes’, with fingerprint comparison being performed on the basis of localised
topological information which is extracted from the recorded coordinate sets. Further
more, a method for pictorial reconstruction of a complete fingerprint, from its coordinate
representation, is demonstrated.

Comparison of fingerprints on the basis of digital topological descriptions is shown
to offer a substantial improvement in performance over existing (spatial) techniques.

ACKNOWLEDGEMENTS.

The author is indebted to the Institute of Computer Science and Technology at the
National Bureau of Standards for its hospitality and for the use of its excellent facilities.
More particularly he is most grateful to Ray Moore (NBS) for sharing the benefits of
his vast experience in this field; to Mike McCabe (NBS) for his invaluable advice on
computational problems and his expert assistance in negotiating the foibles of Fortran; to
Bob Stock (FBI fingerprint automation and research) and his staff for their advice, their
cooperation in providing the many hundreds of fingerprints required, and for allowing
access to, and use of, their automatic scanning facilities; and to Dr. Gordon Makinson
(University of Kent at Canterbury) for his support, encouragement and guidance.

Most of all he is indebted to his wife Penny who acted as research assistant through
out the experimental stages — doing all of the laborious manual preparation of databases
for these experiments. Without her patience, diligence and competence this work would
have taken very much more than twice as long.

It is almost certain that this research would never have proceeded beyond Part I
had it not been for the provision of a Harkness Fellowship from the Commonwealth Fund
of New York; it w7as that award which afforded the opportunity to continue this project in
the U.S.A.

Note — Patents and Publications

All of the methods for coding and comparing fingerprints on the basis of extracted
topological data which are described or mentioned in this thesis are solely the inventions of
the author. Each specific algorithm mentioned (with the exception of the M82 matching
algorithm — which is a traditional matcher using spatial information) was written in
Fortran ’77 by the author.

The coding and comparison methods associated with the algorithms MATCH4
and LM6, together with an image retrieval system based on the pictorial reconstruction
algorithm PLOTl, are the subject of a U.S. patent application which has been filed with
the U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington D.C..

The following publications consist of material contained wholly or mostly in the
stated chapters of this thesis

1. SPARROW, Malcolm K. “Digital Coding of Single Fingerprints: A New
Approach for the Computer Age.” Journal of Police Science and Adminis
tration. June 1982, pages 206 -217.

— chapters 2 and 3

2. SPARROW, Malcolm K. and SPARROW, Penelope J. “Topological Coding of
Single Fingerprints for Automated Comparison.” Carnahan Conference on
Security Technology, University of Kentucky, Lexington, Kentucky, May 1985.

— chapters 7 - 1 1 (condensed)

3. SPARROW, Malcolm K. and SPARROW, Penelope J. “A Topological Ap
proach to the Matching of Single Fingerprints: Development of Al
gorithms for Use on Rolled Impressions.” N.B.S. Special Publication 500 -
124, U.S. Department of Commerce, May 1985.

— chapters 7 - 1 1

4. SPARROW, Malcolm K. and SPARROW, Penelope J. “A Topological Ap
proach to the Matching of Single Fingerprints: Development of Algo
rithms for Use on Latent Fingermarks.” N.B.S. Special Publication, U.S. De
partment of Commerce, September 1985.

— chapters 12 - 15

TABLE OF CONTENTS

Introduction ... 1

PART I. Fingerprints and their classification ...3

Chapter 1. The nature of fingerprints and their classification....................................... 5
1.1 Friction, skin and perspiration...5
1.2 Ridge pattern and identification...5
1.3 The two bases for differentiation of prints... 6
1.4 Pattern t y p e .. 7
1.5 Ridge characteristics.. 9
1.6 D e lt a s .. 10
1.7 Number of characteristics required for identification......................................10
1.8 Number of characteristics required for searching..10
1.9 Finer division of the eight pattern types ..10
1.10 Ridge counting ...11
1.11 Core t y p e ...11
1.12 Ridge t r a c in g ...12
1.13 The Henry s y s te m ...13
1.14 Computerisation of combinatorial techniques ..13
1.15 The ‘Battley’ single-print system ... 13
1.16 C on clu sion ...15

Chapter 2. The need for a new approach...16
2.1 Deficiencies of ‘pattern-type’ classification ..16
2.2 Current research into coding characteristics..17
2.3 Deficiencies of the ‘spatial’ approach ..18
2.4 Sophistication of coding, rather than of co m p a rison 18
2.5 Topological information in fingerprints..19
2.6 Topological information already in u s e ..20
2.7 The problem of o r d e r in g ... 21

Chapter 3. The ordering of topological in form ation... 22
3.1 Avoiding ‘spatial’ orderings... 22
3.2 Topological progression from a fixed point ..22
3.3 Reasons for rejecting ‘coding by progressive characteristic association’ . . 23
3.4 Problems of topological m utations... 24
3.5 Topological exploration ordered by lines — or the ‘fishbone’ method . . . 24
3.6 Comparison of digitally coded p r in ts ... 26
3.7 The placing of l i n e s ... 28
3.8 Accuracy in placing l in e s ... 29
3.9 Coding d e lta s ...30

3.10 Coding the various types of pattern ... 30
3.11 Coding plain arches ...30
3.12 Scenes of crime marks ...31
3.13 Advantages of the ‘fishbone’ m e th o d ... 31

Chapter 4. Non-ordered coding sy stem s ...33

4.1 Introduction .. 33
4.2 The need for non-ordered sy stem s ... 34
4.3 The two dimensional nature of completely unordered system s...................... 35
4.4 The need for physically denser information recording......................................35
4.5 Relationship tables...36
4.6 The searching p rob lem ...39

Chapter 5. Partially ordered s y s te m s ...40

5.1 Introduction .. 40
5.2 Local o rd erin gs ...40
5.3 The use of unordered collections of local orderings..41
5.4 Summary.. 42

Chapter 6. Other ridged areas of the b o d y ...44

6.1 General extension to other ridged areas... 44
6.2 Palm prints.. 44

PART II. Topological com parison o f rolled im p re ss io n s 47

Chapter 7. Background, aims and anticipated p ro b le m s ... 49

7.1 Introduction ...49
7.2 Aims of the work on rolled impressions... 49
7.3 Selection of raw data rather than enhanced im ages..51
7.4 Selection of ulnar loops for initial experiments..52
7.5 Selection of line based system ... 52
7.6 Selection of digital c o d e s ... 53
7.7 Method and apparatus for tracing and coding p r in ts 56
7.8 Dependent p a irs ...58

7.9.1 Frequency analysis : a im s .. 59
7.9.2 Frequency analysis : re su lts .. 59
7.9.3 Frequency analysis : conclusions.. 61

7.10 Anticipated problems in vector com p arison ..61
7.11 Description of databases ... 62

Chapter 8. Description of basic matching algorithms ... 64

8.1 Relationship between the various matching algorithm s.................................. 64

8.2 Description of M A T C H l... 64

8.2.1 Preliminary stage 1 — fileset analysis...64
8.2.2 Preliminary stage 2 — setting up the score-reference matrix 65
8.2.3 Comparison stage 1 — formation of file and search matrices 67
8.2.4 Comparison stage 2 — comparison of file and search matrices . . . 68
8.2.5 Properties of the initial score m a t r ix ...68
8.2.6 Comparison stage 3 — filtering for dependent pairs......................... 70
8.2.7 Comparison stage 4 — condensing digit pairs to a single score . . . 71
8.2.8 Comparison stage 5 — product calculation and score formulation . 73

8.3.1 Performance of M A T C H l...73
8.3.2 Parameter variation ... 73
8.3.3 Conclusions.. 74

8.4 Series length / density experim ent...74

Chapter 9. Algorithm developments : MATCH2 and M A T C H 3................................... 76
9.1 Need for new performance m easures.. 76

9.2.1 Desirable basis for performance m easures... 76
9.2.2 MATCHl : Match and mismatch score distribution......................... 77
9.3.1 Performance measures adopted...80
9.3.2 Minimum total error (M T E)...80
9.3.3 P99 and P999 .. 81

9.4 Description of MATCH2 improvements..82
9.4.1 Array operations made integer addition ... 82
9.4.2 Final score evaluation...83
9.4.3 Score normalisation procedure...83
9.4.4 ‘Hopping’ in the condensed m a tr ix ...84
9.5.1 MATCH2 performance on l o o p s ...86
9.5.2 MATCH2 performance with w horls...87
9.5.3 MATCH2 performance with plain a r c h e s ... 87

9.6 Description of MATCH3 improvements..89
9.7 Performance of MATCH3 — versions 1 and 2 ..90

Chapter 10. The introduction of distance m easures... 91
10.1 M otivation ..91

10.2.1 Methods of coding and recording distance... 91
10.2.2 The new databases.. 92

10.3 The three tests to be a p p lie d ...92
10.3.1 Absolute distance t e s t ...93
10.3.2 Differential distance t e s t ...93

10.3.3 Summed distance test ..93
10.4.1 Building these tests into the algorithm — M A T C H 494
10.4.2 Omission of distance tests...94

10.5 Performance of MATCH4 on ulnar loops (TESTSET4)..................................95
10.6 MATCH4 performance on whorls and a r c h e s ... 96
10.7 Use of shortened vectors — results on loop s... 97

Chapter 11. Comparison of topological and spatial approaches................................... 99
11.1 Aims and method of the comparison...99
11.2 M82 and MATCH4 performance...99
11.3 Conclusions.. 100

PART III. Coding and searching of fragmentary latent marks 101

Chapter 12. Introduction to the coding of latent m a r k s ...103
12.1 In trod u ction .. 103
12.2 Problems of interpretation and system design assum ptions........................ 103
12.3 Referencing and incompleteness problems... 105
12.4 Early approaches and their drawbacks... 106

12.4.1 Local characteristic co d e s ... 106
12.4.2 Series of radial l i n e s ... 108

12.5 Ultimate objectives for file collection data s to ra g e ..110
12.6 Sweeping-line sy s te m s ...110
12.7 Radial scanning...I l l

Chapter 13. Early latent searching a lg orith m s...115
13.1 Latent entry by vectors ...115
13.2 Details of the latent e n q u ir y ... 116
13.3 Details of the file-print coding... 117
13.4 The algorithm “LATENT-MATCHER 1” (or L M 1) 119
13.5 Improved latent-matching algorithms.(“LM2” , “LM3” and “LM4”) . . 120
13.6 Testing algorithm perform ance... 121
13.7 Latent enquiry by vector: shortcomings ..122

Chapter 14. Latent searching: topological coordinate systems................................... 124
14.1.1 The 4th coordinate... 124
14.1.2 Dispensing with boundary v e c to r s ... 125
14.1.3 ‘Wrap around’ 360° sector ..125

14.2 Topological reconstruction from coordinate s e t s ...126
14.2.1 The ‘continuity’ a r r a y ... 126
14.2.2 Opening the continuity a r r a y ..128

14.2.3 Associations, entries, and discoveries in the continuity array . . . 129
14.2.4 Properties of the completed continuity array 130
14.2.5 Final stage of topological reconstruction ... 131

14.3 The matching algorithm L M 5 ...132
14.4 The vector comparison s t a g e ...132
14.5 Final score formulation...134

14.5.1 The notion of ‘compatibility’ ... 134
14.5.2 Score combination based on compatibility..135
14.5.3 Candidate promotion schem es... 136

14.6 Performance of L M 5 ...137
14.7 Computation t i m e s ...138
14.8 File storage space — defaulting the ‘edge topology’ 139

Chapter 15. Associated applications and conclusions ... 140
15.1 Derivation of vectors for rolled print comparison..140
15.2 Image-retrieval systems ...141
15.3 Outline of further work to be done... 147
15.4 C onclusion.. 148

References.. 150
Bibliography.. 153
Appendices A - P

INTRODUCTION.

This project was born in December 1980 on the occasion of an informal visit to the
fingerprint department at Kent Police Headquarters. The author was somewhat surprised
to find a completely manual operation in existence, and enquired as to the reasons for
this apparent technological backwardness in the fingerprint world. The deficiency, it was
explained, was not in the available hardware but in the coding processes; there was, in
fact, no known method for reducing a single fingerprint to a concise digital code containing
sufficient information to identify it uniquely.

Subsequent enquiries into current automation projects showed that significant and
substantial efforts had been made towards development of automatic fingerprint identifi
cation systems. Research in that field had been undertaken in Britain, the United States,
West Germany and Japan dating back, in some cases, as far as the early 1960’s. At the
present time systems for conducting automatic fingerprint searches are manufactured by
at least three industrial companies, and several other companies will probably enter the
rapidly growing market within the next few years.

It could be considered too late, therefore, to be developing new fingerprint coding
schemes suitable for automation. Indeed, anyone who believes that present day systems
offer all that is desirable in terms of accuracy, speed and cost-effectiveness will undoubtedly
not be interested in any such new schemes. However, very few in the field believe that
to be the case. There has been, of late, a growing tendency to look for fresh approaches
to this whole problem in the hope of achieving very much greater accuracy, speed and
cost-effectiveness.

Virtually all existing automated systems have one property in common — they
perform single print comparison on the basis of spatial information (i.e. the coordinates
of the ridge characteristics). This remains the case despite a variety of forays, at various
times and by a variety of people, into topological coding of fingerprints. Those forays
were presumably born out of conviction that topological coding ought really to offer much
in terms of distortion-independent data, and thereby ought to facilitate automation and
render it more effective. Those past efforts at topological coding have all been shortlived
and have come to little or nothing. Some studies have explicitly concluded that ‘topology
has nothing to offer’ in this field.

It is certainly true that schemes for coding the topology of a print have been
devised in the past, and that they have not worked! That does not show us that ‘topology

1

has nothing to offer’ ; rather that application of some imagination is likely to be required
before we find an effective solution. This project is intended to fill a gap in the history of
automation research by devising topological coding methods that are neat and effective,
and by demonstrating the value of such an approach.

The research has been spread over a considerable period of time — but falls into
three natural parts. Part I was written in 1981 and presented to the National Police Staff
College, Bramshill, Hampshire. It contains ideas, ideas, and some more ideas. As such it
carried little weight, having been completed without any supporting experimentation, and
having been written by a complete ‘outsider’ to the world of fingerprints and fingerprint
automation.

Parts II and III describe the practical experiments designed to test those ideas, and
give an account of the development of matching algorithms based on them. This phase
of the work was conducted at the Institute of Computer Science and Technology, Na
tional Bureau of Standards (U.S. Department of Commerce) in Washington D.C. between
September 1984 and August 1985. Part II describes the application to comparison of clear
rolled impressions (as in 10-print card searches) and Part III describes the application to
latent marks.

Some consideration was given to disbanding Part I as a separate entity and pref
acing Parts II and III with the relevant ideas — but Part I was eventually left intact for
the following two reasons : firstly, that it provides a convenient vehicle for explanation of
the nature of fingerprints, the conventional classification systems and the motivation for
seeking distortion-independent descriptions : secondly, that it traces the development of
ideas prior to the need for substantiation by experiment. Part I shows which ideas evolved
by processes of reasoning, rather than by experiment.

Part I is not, however, in its original form. It has been extensively edited in view
of the change of audience. It was originally written to be read by Police Officers with no
detailed knowledge of Mathematics, Computer Science or of the Science of Fingerprints.

Perhaps an advance apology is appropriate for the comfort of true Mathematical
Topologists — the use of the word ‘topology’ in this whole project has almost nothing to
do with the subject of mathematical topology, nor is any substantial use made here of any
of the results from that subject. ‘Topology’ is simply a good word (if not the best word)
for making clear the fact that we are dealing with an elastic world where distances and
directions mean very little.

The author went into this research with a severe warning from an experienced
British automation researcher to the effect that “ideas are all very well — but real finger
prints always behave far worse than you could possibly imagine” . Having experimented
with a great number of ‘real’ fingerprints, both rolled impressions and latent marks, the
conclusion which must be drawn from this research is that, in this field, a topological
approach has a great deal to offer.

2

PART I

Fingerprints
and their classification

CHAPTER 1.

THE NATURE OF FINGERPRINTS AND THEIR CLASSIFICATION.

1.1 Friction, skin and perspiration.

Nature, it seems, intended us to be able to pick things up without there being any
excessive danger of them sliding out of our hands. To that end, all the primary contact
areas of our hands and feet are covered with ridges of elevated skin. These ridges are
perpetually moistened by sweat pores positioned near the midline of the ridges. Ridged
skin affords a far greater degree of friction between skin and object grasped than would
completely flat skin — just as a well treaded tyre grips the road so much more effectively
than a bald one. The slight moistening of those ridges by the sweat pores studded along
them adds a helpful degree of ‘stickiness’ . In fact we are not alone in being provided with
such apparatus; it is common to all primates.

A sectional cut across such a ridge would reveal a structure as illustrated in figure 1.

Figure 1. Sectional cut through the skin.

1.2 Ridge pattern and identification.

The usefulness of these ridges as a means of identification is a simple corollary of
a few basic properties:—

5

Firstly: the pattern formed by the ridges is permanent and invariable. It will
remain the same throughout the entire life of the individual, from its formation during the
third and fourth months of pre-natal development until its decomposition after death.1 The
pattern of these ridges has been found to survive the process of body decomposition long
after every other identifiable feature of the body (with the possible exception of the teeth)
has been eroded. The only occasion on which the pattern will change is as a result of deep-
seated injury to the area — deep enough to disturb not only the epidermis (surface layers)
but the dermis (sensitive tissue).2 In this case scar tissue will form and be visible within
the pattern. Normal superficial injuries will only temporarily alter the ridge formation, as
the skin will always grow back into its original shape as determined by the positions of the
sweat glands in the dermis.

Secondly: these ridge patterns are unique. So far, the only part of these patterns
to be recorded extensively have been those parts falling at the fingertips (i.e. on the distal
part of the finger). Uniqueness of those patterns has not yet been, nor ever can be, proved;
but it is assumed, in the light of the experience that nobody has ever yet found two the
same.3

Thirdly: the presence of the sweat pores along the ridges keeps the ridges slightly
moist. It is that moisture which remains on any object touched — leaving therewith an
impression of the ridge pattern from the contact area of skin. Methods of recovering that
‘latent’ impression and restoring it to a visible form are many and varied. New techniques
have now been pioneered whereby latent prints can be ‘lifted’ (developed) from surfaces
such as the flesh of another human being, tissue paper and cloth.4 Those methods are
not the subject of this study and are consequently not examined here. It would be true to
say, though, that advances in these development techniques make advances in coding and
searching techniques all the more important.

1.3 The two bases for differentiation of prints.

Prints have a variety of features by means of which they may appear similar or
dissimilar to others. Firstly there is pattern type. This can perhaps best be described as the
general appearance of the pattern — or the nature of the flow of the ridges. Secondly there
are the ridge minutiae — the intricate detail of the pattern. One particular ridge may end
abruptly, or divide into two; the point at which it does so is called a ridge characteristic.
There are, on average, roughly one hundred such characteristics visible on each clear rolled
print.

It is as well to be reminded at this stage that pattern type has been the traditional
basis for classifying prints — and that it is only ridge characteristics that can identify a
print uniquely.5 This paper is concerned with the existence, or otherwise, of methods for
actually coding the ridge characteristics, as opposed to pattern type.

6

1.4 Pattern type.

Various people, in the past, have described a variety of divisions into pattern
classes. The most useful for our purposes are the classes devised and employed by Sir
William Henry as the basis of his ten finger system, as these are the ones currently most
widely used. Some of the boundaries between these eight types have been adjusted from
time to time - according to different sets of rules relating to borderline cases.

The eight basic types are:—

1. ARCHES (plain), (see figure 2.) Here the ridges run from side to side in an arch
like fashion, without turning back on themselves. These are of particular interest,
and will raise their own particular problems in chapter 3.

Figure 2. Arch. Figure 3. Tented arch.

2. TENTED ARCHES, (see figure 3.) These are similar to arches, but the ridges near
the centre tend to have a vertical direction on either side of an axis towards which
adjoining edges converge. They therefore give the impression of a tent supported
by a pole.

3. LOOPS (Radial or ulnar), (see figure 4.) Here the ridges near the centre of the
pattern double back on themselves and form a type of hairpin structure. These are
subdivided into Radial and Ulnar loops, depending on whether the hairpin slopes
away from, or towards, the little finger of the same hand. 4

4. WHORLS, (see figure 5.) The central ridges form a circular pattern, giving the
appearance of a vortex.

7

Figure 4. Loop. Figure 5. Whorl.

5. ‘DOUBLE’ or ‘TWINNED’ LOOP, (see figure 6.) Where two hairpin-like loops
appear wrapped around each other, each originating from opposite sides of the
print.

6. LATERAL POCKETS, (see figure 7.) Where two loops appear on the same print,
but they originate from the same side of the print.

Figure 6. Twinned loop. Figure 7. Lateral pocket.

7. COMPOSITES, COMPOUNDS and ACCIDENTALS. Prints comprising more
complicated combinations of the above types. These are relatively uncommon.

8

1.5. Ridge Characteristics.

The ‘ridge details’ , ‘ridge minutiae’, ‘Galton details’ , or ‘points’ as they are vari
ously referred to, are the tiny irregularities in the ridge pattern by which a print can be
identified. There are eight types which are generally recognised; they are shown in figure 8.

1. Ridge ending. ----------------------------

2. Bifurcation or fork. ------------------- -----------------

3. Enclosure or lake. ------------ ---------------------------- --------------

4. Dots. - • • • • •

5. Isolated or short ridge. —

6. Ridge break.

7. Ridge crossing. ------------------------ --------- ---------------------

8. Ridge trifurcation. --------------------------------^ --------------- -

Figure 8. Ridge minutia.

There are a number of less common and more dubious features that some experts
recognise as being characteristics in their own right;6 they include those shown in figure 9.

9. Spur. -----------------------------<=-______
10. Double fork. -------------------------- *rd _ -------------------- -

11. Bridge.

12. Triradius.
---------------------------------<

13. Crossover.

Figure 9. Additional ridge minutia.

Many are of the opinion that these should not be regarded as basic features, as
they are compounds of other features: for example, a spur is a bifurcation with a ridge
ending, and a double fork could be seen as two bifurcations.

9

These characteristics are not connected with the pattern type at all; they may
appear practically anywhere on any one of the eight types of print.

1.6 Deltas.

The triradius ((12) above) is of interest in that it usually occurs at a delta. Deltas
can be seen on figures 4,5,6 and 7. They are points where the general flow of the ridges
diverges drastically — giving a triangular appearance. It is interesting (and will be very
useful to us) to note that every loop pattern has one delta at varying distances from the
core or heart of the loop; every whorl, twinned loop, lateral pocket, composite or accidental
has at least two deltas appearing 7 — and it is only plain arches that have no deltas at
all.

Exact rules for determining the precise positions of deltas are already in existence
as they are widely used for classification purposes. 8

1.7 Number of characteristics required for identification.

The ‘Standardisation Committee of the International Association for Identifica
tion’ reported in 1973 (after a three year study of the subject) that there was “no valid
scientific basis for requiring a minimum number of ridge characteristics to be present in
two fingerprints in order to establish positive identification” . In Britain 16 points of sim
ilarity are necessary for proof of identification in court — or 10 points on each of two
different fingers. Most European countries require 12. The origin of the standard of 12 is
unclear; one theory suggests that 12 points were necessary if the use of fingerprints was
to be a better means of identification than the Bertillon system of body measurements,
which recorded 11 features. 9

The chance of two distinct individuals having a print with 12 points in similar
relative positions has been estimated to be in the order of one in ten million million. 10

1.8 Number of characteristics required for searching.

It may be necessary to find 12 or 16 points of similarity for proof of identification
in court — however the fingerprint expert will be convinced that he has found the right
print if he finds 5 or 6 in the correct place, and he’ll be fairly sure with only 3 or 4. 11 This
fact will be referred to many times in the following chapters.

1.9 Finer division of the eight pattern types.

Wherever substantial collections of prints have been kept it has always been nec
essary to break down the eight basic pattern types further. This has traditionally been

10

done by closer examination of some particular features of the print. The three principal
methods used are :—

(a) Ridge counting. (Used for loops and whorls.)

(b) Classification of Core type. (Mostly for loops.)

(c) Ridge tracing. (For whorls and composites.)

1.10. Ridge counting.

Loops account for 60 to 65% of all prints,12 and so the sub-division of this, the
largest class, is vital. As mentioned in para 1.6 every loop has a core and a delta. Ridge
counting is simple determination of the number of ridges that cross an imaginary straight
line drawn from core to delta. There are numerous rules for determining the precise
position of the core and delta.13 The expert uses a magnifying glass with a line printed
on it to help him. Ridge counts may vary from 1 to 50, or occasionally even more. The
count in figure 10 is 20.

Figure 10. Loop with a ridge counting line superimposed.

1.11. Core type.

The ‘heart’ of a loop takes a large number of distinct forms and these have been

11

divided into groups for subclassification purposes.14 Figure 11 shows some common ex
amples.

1.12. Ridge tracing.

The second largest group are the whorls, accounting for 30 to 35% of all fingertip
patterns. As mentioned in para 1.6 these always have two deltas, one on either side of the
core and both below it. ‘Ridge Tracing’ divides whorls into three groups 15 according to
the following instructions :—

Find the lower ridge of the left hand delta and follow its course from left towards
the right. If it stops (ridge ending) drop to the ridge immediately below and continue.
Should the ridge fork, take the right hand limb and carry on. That course will either take
us above, straight to, or below the right hand delta. See figure 12.

Figure 12. Ridge tracing in a whorl.

12

Whorls are then classified as T , if the ridge trace passes three or more ridges
‘inside’ (above) the right delta, ‘M ’ if within three either side, and ‘O’ if it passes three or
more ‘outside’ (below) it. That divides whorls into three classes of comparable size.

In the case of composites, ridge tracing can also be used — but attention would
be limited to the two outermost (lowest) deltas.

1.13 The Henry system.

The ‘Henry’ system — together with all other ten and five finger systems — is a
means of combining and recording the pattern types (together with the subclassifications
mentioned above) of the ten fingers, and of filing them in a manner suitable for quick re
trieval. 16 The actual mechanics of the Henry system, or of any of the other combinatorial
systems are of no interest to us here.

1.14. Computerization of combinatorial techniques.

In the United States of America the National Crime Information Centre (NCIC)
is a computerised information handling service available to all the various law enforcement
agencies. It includes a computerised ten-finger classification system whereby each of the
ten fingers is categorised by the methods described above, and then the digital codes
for the ten classes so represented are simply written down in order — giving one long
number.17 These numbers are stored, together with the individual’s name, date of birth
and criminal record number. Given an unidentified set of ten prints these numbers can be
used to reduce the field of search to just those persons with all ten fingers of the correct
classifications.

This must not be confused with attempts to computerise a single print index —
nor to code the ridge characteristics. It is simply a kind of computerised ‘Henry’ system,
a convenient method of recording the conventional information. The NCIC system does
nothing towards breaking down the pattern types sufficiently to facilitate single fingerprint
identification.

1.15 The ‘Battley’ single-print system.

Harry Battley’s system is much used in Great Britain and abroad, and is, with
out doubt, the most practical of the traditional attempts to classify single prints more
finely.18 His system relies on the taking of a number of physical measurements.

The features used in his system are, in order, as follows:—

(a) Basic pattern type — as per para 1.4.

13

(b) Subclassification as per para 1.9.

(c) For loops and whorls: physical measurement from the core to each delta.

(d) For loops and whorls: the ridge count from the core to each delta.

(e) For whorls: physical measurement from the summit to the bottom of the innermost
recurving ridge. See figure 13.

Figure 13. Core height of a whorl.

(f) For whorls: the core type. (He defined five classes of core.)

(g) For double loops and whorls: the ridge trace category, as per the Henry system.
See para 1.12.

(h) For tented arches: physical measurement from the crest of the arch, to the closest
point of the highest platform ridge. See figure 14.

Figure 14. Tent height of a tented arch.

14

The Battley system does not subdivide the type ‘plain arch’ at all: there is nothing
reliable to measure. Notice also that it makes no attempt to record any of the ridge
characteristics themselves.

1.16 Conclusion.

This chapter has provided a brief outline of present methods of classification used
the world over. Each system varies slightly in the precise demarcation of the classes, but
all use the same basic approach.19 It is only an appreciation of the nature of the methods
used, rather than a knowledge of the details, that will be required in order to appreciate
the significance of the following chapters.

15

CHAPTER 2.

THE NEED FOR A NEW APPROACH.

2.1 Deficiencies of ‘pattern type’ classification.

A stranger to the world of fingerprints will probably have become aware just how
thoroughly visual the origins of fingerprint classification have been. Present day methods
remain basically visual — and ‘methods, measurements, rules and devices’ are employed
only to classify borderline cases, or to subdivide classes more finely. Visual, in this context,
means ‘as readily discerned by the human eye’ — the sort of descriptions that, through our
experience, spring readily to the forefront of our minds when confronted with a pattern.

Naturally enough, pattern type is the feature of prints that strikes us first. Human
beings have a pretty good idea what a ‘whorl’ or a ‘loop’ means in the natural world, and
are quick to recognize anything of that appearance in complex patterns.

The mistake we are prone to make, in approaching computers, is to assume that
the most effective way of using them is to programme them to ‘think’ in the same way that
we do — and hope that they will be able to do the same task faster. We fail, sometimes,
to recognize two things :—

Firstly: that it may be incredibly complicated to reduce the sort of con
ceptual discernment that we have to a tightly defined set of operations
comprehensible to a machine.

Secondly: that computers are eminently well suited to performing intricate
detailed analysis by ‘number crunching’ in a manner that we would never
dream of attempting manually.

Therefore, if we hope to make the best possible use of computers in fingerprint
identification, we should avoid blundering into the assumption that traditional classifica
tion systems are going to lend themselves to automation.

John Fitzmaurice of Cambridge, Massachusetts was one of the pioneers into re
search with the use of computers and optical scanners in the early 1960’s. He arrived at
the conclusion that no headway towards computerisation could be made so long as the tra
ditional methods of classification and interpretation of patterns remained the cornerstone
of fingerprinting. Machines could not be effectively programmed “to make distinctions
among questionable pattern types, which are based on arbitrary rules of interpretation on
which technicians often disagree” .20 Fitzmaurice and others concluded that interpretation
of pattern type could profitably be bypassed if a machine could be devised to catalogue,

16

file and compare fingerprints by their individual characteristics alone — precisely for the
reason that identity is established by characteristics and not by pattern.

Parduman Singh actually states21

. . nevertheless one thing remains for certain for ever: no change takes
place in the sequence of their ridge characteristics. The whole secret of
identification thus rests solely on the order in which these minutiae appear
in the two prints under comparison, and it need not be emphasized that
exact measurements, or exact shapes, have no place in the identification
of fingerprints ... ” .

We cannot possibly hope to have a computerised single print index dependent on
pattern type alone when, for instance, the class ‘plain arches’, which represent about 5%
of prints, are not subclassified at all.

2.2 Current research into coding characteristics.

The bulk of the current research being conducted into the coding of prints (by
characteristics) is largely following the lines pioneered by Fitzmaurice.22

Once Fitzmaurice had appreciated the difficulties of trying to programme a ma
chine to spot patterns, and had realised that it was time to start coding characteristics,
he then fell into the next most natural trap! He made the assumption (as many have done
since) that the way to record the characteristics was by looking to see where they were (i.e.
their position in space). Why? — probably because that is the natural way for human
beings to observe them. It is not, however, the only way of recording the details.

That basic assumption, it seems, has never been questioned — let alone ‘thrown
off’ . It pervades the techniques of all current automation projects. For example, the FBI’s
approach to automation has been described23 thus :—

“The general approach adopted by the FBI’s automatic fingerprint identi
fication system is to duplicate, insofar as possible, the human technician’s
visual and mental processes as he performs the task of fingerprint identi
fication.”

Hence the FBI endeavour to programme machines to identify pattern type, to
align the two prints under comparison and then to compare the spatial positions of the
characteristics visible.

17

2.3 Deficiencies of the ‘spatial’ approach.

Moenssens states “the most critical test of any automatic classification system is
the capability of the apparatus to allow for pressure distortion” 24 The skin of the fingers
is soft and flexible. If two Police Officers take the same man’s fingerprints, even under ideal
conditions, they will come out slightly dissimilar. Each will apply differing distributions of
pressure, and may tilt or twist the print to varying degrees. Moreover, if a latent print is
lifted from an object at the scene of a crime, then its precise shape will depend not only on
the pressure applied, but also on the shape of the object touched and the manner in which
it was held. Comparison of two prints, therefore, must allow for considerable variations in
the distances and angles observed within the print.25

Description of the position of characteristics is through the use either of Cartesian
or polar coordinate systems — using some standardised rules for selection of an origin and
for determination of the ‘correct’ orientation. Of course, one has to rely on the origin and
orientation being identical each time, or close enough to identical.

The likelihood of incorrect re-registration of a print, combined with some spatial
distortion, almost certainly ensures that most, or all, of the minutia coordinates will change
from one impression of a finger to the next. Thus the automated comparison of prints by
this method is an incredibly complicated process. The number of operations currently
required for spatial comparison of the ridge data of two single prints, using sophisticated
statistical techniques, is in the order of six million.

Proponents of such systems — Fitzmaurice included — have to allow a degree
of leeway in their comparison of coordinates.26 Unfortunately the greater the degree of
leeway allowed (in order to prevent the machine from missing correct matches) the less the
power of resolution (efficiency at rejecting incorrect matches) becomes.

Attempts have been, and are being, made to find ways of enabling a computer to
systematically ‘un-distort’ two prints under comparison in order to cut down the amount
of leeway required. Some promise has been shown by the employment of ‘Analogue Video
Reshaping Systems’ — which were developed to compare biological and geological material
and to remove distortion from crushed or distorted geological specimens.27

Such are very sophisticated comparison methods indeed — but it is my contention
that comparison procedures must be made simple even if the initial coding procedure has
to be made more complicated.

2.4 Sophistication of coding, rather than of comparison.

Suppose you have a database, in an automated system of 100,000 prints, recorded
in a coded form. Suppose, then, that you are given an unidentified print to check against
your file: you have first to code that print, and, second, to compare the code with those
in your file. It is quite obvious that you have to do the coding process once, and the

18

comparison process up to 100,000 times. Economically speaking, therefore, it is foolish to
have a simple coding process that requires a sophisticated comparison; wiser to prefer a
sophisticated coding process that allows for a simple comparison.

Now the simplest comparison of all, for a computer, is straightforward checking
of two numbers to see if they are the same. So our ideal aim would be to find a coding
process that generates one number (albeit a long one) for each print. If we could find such
a thing the computer, to compare two prints, would simply have to check the two numbers
against each other — if they agree, then the prints represented by them would be the same
(provided the numbers were unique to each print).

Using a ‘topological’ approach to the problem, this aim outlined above is virtually
attainable.

Topological descriptions of fingerprints are those descriptions whose information
content reveals how the characteristics are connected up, and how the various ridge seg
ments are joined — rather than where the characteristics are, or in what direction the
ridges flow.

The beauty of topological descriptions lies in their complete immunity to variation
through the distortions of stretching and twisting. Moreover (in relation to computers)
topological descriptions are of a purely digital, rather than analogue, nature.

2.5 Topological information in fingerprints.

The question which immediately springs to mind is how to record a concise topo
logical description of a pattern so complex as a print. That will be dealt with in the next
chapter. For the time being let us recognise that there is a vast amount of topological
information within each print just begging to be extracted.

Suppose figure 15 is a small portion of a print — near the core of a loop. A, B, C,
D, E, F, G and H are just some of the ridge characteristics present.

We can write down a few of their topological relationships simply, like this :—

“A is a ridge ending and B a lake. They are directly linked by one ridge (never
mind how long that ridge is or which way it slopes). B is also linked to C — a bifurcation.
C is linked, further, to F (ridge ending) by the right fork, and to G by the left fork” .

We could continue for some time writing down the wealth of topological detail
contained just in this small segment.

Notice that every one of the topologically descriptive comments made above will
not change at all, however much figure 15 was rotated, twisted or stretched. This will

19

always be so provided we never mention how long a link is, nor at what angle lines meet
or slope. Such measurements are distance dependent, and therefore subject to change.

2.6 Topological information already in use.

The use of ridge-tracing as a means for subclassifying the class of ‘whorls’ is es
sentially a topological description of the relationship between two deltas. The rules for
ridge-tracing (see para 1.12) say, for example, “Follow this ridge, and should it fork, turn
to the right and carry on” . There is no mention of how far you may have to go before the
ridge ends or forks. It is a purely topological set of rules — hence ridge-traced subclas
sifications are invariant under the types of distortion mentioned. The idea of ‘following a
ridge and seeing what happens along it’ will be used extensively in later chapters.

It is worth pondering the amount of topological information that is discarded every
time ridge-tracing is done. If the ridge-trace, obeying the rules, drops twice onto a lower
ridge, then has to fork right twice at bifurcations before passing outside the right hand
delta — why not classify the whorl in question as a type ‘DDFF - O ’ rather than just an
‘O ’ ? (‘D ’ for a drop, ‘F ’ for a fork, written in the order in which they occur). Preserving
and recording that information would divide whorls into about 100 classes, rather than
just three.

20

Remembering that, ideally, we would like to devise a system which would generate
a simple digital numeric code for each print, we must try to find a way of getting the vast
amount of topological information contained in a print into some semblance of an order.
Then, when we have coded the topological relationships between characteristics we will
know in what order they must appear in the code.

Finding such orderings is a substantial problem, and has been, almost certainly,
the major stumbling block for previous attempts to devise topology based coding systems.
The following chapter gives some ideas for solution of the ordering problem.

2.7 The problem of ordering.

21

CHAPTER 3.

THE ORDERING OF TOPOLOGICAL INFORMATION.

3.1 Avoiding ‘spatial’ orderings.

Having gone to such pains to eliminate spatial considerations from the actual
information to be recorded, it would seem a shame to have to use them to ‘order’ the
information. We may feel drawn towards a spatial ordering simply because it is, once
again, the natural approach. It is clear that you could put all the characteristics in order
by, for instance, starting at the left hand side of the print and working over towards the
right — or from top to bottom; maybe one should start at the core and work outwards?

It is best to avoid all such spatial orderings, and the reason for this should, by now,
be fairly clear: all such orderings are distance dependent and therefore subject to change.
It is no good being able to record the right information if it turns up in the wrong order.
We should therefore reject spatial considerations as the basis for any efficient ordering
system.

3.2 Topological progression from a fixed point.

Having rejected spatial orderings we should next consider using topological progres
sion from a fixed point. The fixed point could be determined by rules already in existence
under the Henry system28 for pinpointing the core of any pattern other than an arch
(which has no core).

Having established the ‘starting point’ by such a set of rules, we would code the
nature of the core itself, first of all. Suppose it were the core of a loop — we could code
that ‘L’. That point would lie on a ridge — so we can ‘look along the ridge’ to see what
is the first characteristic that we would arrive at by ‘walking along’ it, in either direction.
Suppose that, one way, it came to a fork, and the other way to a crossover. We could then
record our findings so far thus:

Then, from the fork we could follow the other two ridges away from it (a fork can be
regarded as the meeting of three ridge segments) and see what happens: we’ll assume
that one goes ‘out of sight’ (i.e. off the print without passing through any characteristic)
and the other comes to another fork. Also assume that the other three ways out of the
crossover come, respectively, to a fork, a ridge ending and a bridge. If we continue using

22

the capital letters as the codes we now have:

This could be stored as L/FC/(OF)(FRB)/ . . . and progressive exploration could be con
tinued for as long as necessary.

The computer, to compare two prints, then merely has to compare one string of
characters against the other, and if they agree for more than the first five or six letters
then there are 5 or 6 characteristics in similar topological relationship to each other and
we can then be fairly sure that a ‘correct match’ has been found. (See para 1.8 re number
of characteristics required for searching.)

3.3 Reasons for rejecting ‘coding by progressive characteristic association’.

In retrospect, however, this method has to be rejected in favour of more effective
ones. The method described has four principal drawbacks :—

(a) The need for a starting point excludes arches from the system.

(b) Exploration by progressively following ridges sends us all over the print, collecting
fairly sparse topological information. (‘Sparse’ in the sense that it will often record
information a long way from the core before getting to characteristics which are
much closer to it.) That is less efficient than a denser system because it would
require us to have available a comparatively large physical area of print from the
scene of a crime before we could use it for identification purposes.

(c) The frequency with which ridges run ‘out of sight’ without passing through charac
teristics is disconcertingly high — and often an exploration as described will ‘run
out’ in the sense that all ridges currently under investigation run ‘out of sight’ .
We then would have to devise rules for jumping from one ridge to another in order
to be able to explore further. It gets a little complicated at this stage!

(d) Misinterpretations of characteristics can and do arise — and will certainly do so
in automated systems. The effect of one single error in a progressive system is to
throw all the subsequent entries into disarray — hence if we have one error in the
coding we will not get a ‘close’ match at all — it will change a large proportion of
the character sequence.

The problems posed by possible topological ‘mutations’ of characteristics are more
fully dealt with in the next section.

23

We have said a great deal so far about the variations that distortion will cause in
any spatial information — but nothing, until now, about topological variation. Fortunately
topological variation is less frequent — but, nevertheless, any usable system will have to
allow for it. Let us explain what is meant by ‘topological variation’.

It is a fact that a change in pressure applied can alter a ridge ending to a bifur
cation, or vice versa.29 In figure 16 a decrease in pressure applied could lead to the line
segment AB disappearing, consequently changing a bifurcation into a ridge ending.

3.4 Problems of topological mutations.

A B

Figure 16. Bifurcation / ridge-ending mutation position.

Also, subsidiary ridges may appear, with increased pressure, that were not there
before. These are thinner, lighter lines that sometimes appear between the principal ridges.

Such changes are relatively uncommon — but we should devise sufficient leeway
into any digital system to allow for several such changes in each print.

This new factor effectively banishes all hope of finding an ideal, unchangeable,
unique, digital code — with its simple one-move comparison. It means that we have to
be able to identify close matches (in terms of topological information stored) as well as
perfect matches.

3.5 Topological exploration ordered by lines — or the ‘fishbone’ method.

The origin of the idea of using lines lies in the special problems presented by the
‘arch’ pattern. A plain arch has no identifiable core, nor any deltas,30 but a central line
is fairly easily placeable. (See figure 17.) This line has been placed on the arch simply by
joining the summits of the upcurving ridges.

We have available to us a number of other ways of placing lines on various types
of pattern. For instance, the ridge-counting system (described in para 1.12) places a line

24

Figure 17. Line-placing by ridge summits on an arch.

from the delta to the core of a loop. We can define rules for the placing of lines (either
straight ones or flexible ones) on all the types of pattern.

Provided we find a way of placing the lines across the flow of the ridges, that line
will determine for us a series of points of intersection with ridges; i.e. an ordered set of
points on adjacent ridges. In fact, as will become evident later, the precise positioning of
the line need not be critical provided it runs roughly orthogonal to the flow of the ridges.

Such an ordered set of points can now act as a basis for the generation of ordered
digital codes. Figure 18 represents the ridge-counting line drawn on a loop pattern. The
points of intersection with ridges are labelled A,B . . . N as we go away from the core. From
each of the points we can look left and look right along the ridge to ‘see what happens’ .
If we code the possible events (i.e. what characteristic does exploration along that ridge
come to first) this will yield an ordered string of characters or digits where each is not
dependent on the correct interpretation of the previous characteristic.

Let me illustrate this method more fully by coding the loop shown in figure 18.
We will use the set of digital codes shown in figure 19 for possible events as we look along
the ridges :—

So, in figure 18, starting at point A — first look left (downwards) and see that the
ridge runs out of sight (coded 0), looking right (and following the ridge round) we come
to a ridge ending (coded 3). Then point B; left — out of sight, right — ‘see’ a new ridge
starting on the left (coded 6). So far, then we have 03 06. Continuing in like manner as
far as point J we can generate the 20 digit code :—

25

Figure 18. Ridge-counting line showing intersection points.

03 06 72 33 37 33 06 83 42 27

We have thereby systematically recorded 20 pieces of interrelated topological information
about characteristics, which is ample to identify the print uniquely!

3.6 Comparison of digitally coded prints.

To compare two prints so coded, a computer simply needs to compare the two
strings of digits. However, bearing in mind the presence of possible topological mutations
we could expect two or three of the digits to have been altered. Moreover, if the print was
distorted the line drawn might cross some of the ridges in significantly different positions
to its previous intersections. These changes may, in effect, introduce new points to the
set of points of intersection. That would shift part of the sequence along by two places
(remembering that there are two digits for every ridge crossed).

Code Description.

0. The ridge goes out of sight without meet
ing any characteristic.

1. Not allocated.

2. Ridge meets a bifurcation as if from left
fork.

3. Ridge ends.

4. Ridge meets a bifurcation as if from right
fork.

5. Ridge returns to its starting-point without
any event occurring.

6. Ridge meets a new ridge starting on the
left.

7. Ridge bifurcates.

8. Ridge meets a new ridge starting on the
right.

9. Not allocated.

A. Ridge encounters scarred tissue.

B. Ridge encounters blurred or unclear print.

C. Ridge meets a compound (e.g. a cross
over).

D. Not allocated.

E. Not allocated.

F. Used for vector padding.

Figure 19. Table of ridge exploration event codes.

27

03 03 07 47 26 46 48 03 33 05 might, if badly distorted, appear:
03 03 33 07 47 26 06 26 03 05.

We would need the computer, therefore, to be able to recognise such facts as that
these two codes have 7 pairs of digits in common (03, 03, 07, 47, 26, 03 and 05) — and 3
blocks of four digits in common (0303, 0747 and 4726) — or 1 block of six (or 6-block, as
it will be known) in common, namely 074726.

Any one of these observations above is statistically most unlikely to arise in the case
of incorrect matches. One block of six alone represents six similarly placed characteristics
— enough for us to know that we have found the right print. The chance of a block of six
recurring elsewhere by accident is extremely small.

The number of matching pairs, 4-blocks and 6-blocks can be determined in well
under a hundred simple digital comparisons as follows :—

To allow for ‘shifts’ in the positions of the 2-blocks (due to appearance or disap
pearance of ridge intersections with the line) each pair of digits should be compared to the
pair in the corresponding position, the pair one to the left, and one to the right. That can
be done in 28 simple digital comparisons for the 10 pairs, 25 for the 9 4-blocks and 22 for
the 8 6-blocks. (The ten pairs are each compared with three other pairs, except the two
end ones which are only compared with two. Hence 28 comparisons. The 25 and 22 are
similarly derived.)

This compares very favourably indeed with the spatial approach — where the
number of operations currently required to compare two prints is of the order of six million.
That could make the topological method in the order of 60,000 times as fast!

The precise number of matching pairs, 4-blocks or 6-blocks needed to indicate a
match remains to be determined by empirical experiment. Suffice it to say here that the
method’s power of resolution (ability to distinguish matches from non-matches) should be
considerable.

So, given a fairly severe set of mutations, a print that had been coded :

3.7 The placing of lines.

The position of the line used in para 3.6 is by no means the only possible position
for it. We could, for example, have extended it beyond the core of the loop on the opposite
side to the delta — and recorded some information about that far side of the loop as well.

Alternatively we could forget about the delta altogether for now, and draw the
line through the core at 90° to the slope or direction of the core. (See figure 20.)

Let us use this line, and take, firstly, five points of intersection on the left hand side of the

28

Figure 20. Line-placing orthogonal to core slope in a loop.

core (yielding ten digits) and then 5 points of intersection on the right hand side of the
core (yielding a further ten). We would always use the left branch of a ridge before the
right one, and left and right are determined as if you were looking away from the core. We
always work outwards from the core.

Thus we can produce a 20 digit code of the core itself without reference to the rest
of the print.

For figure 20, using the same digital codes as before — the core would give 42 46
22 27 36 (from the five ridges to the left of the core) and 70 32 74 20 83 (from the five
ridges to the right).

By this method we can digitally code any core — whatever pattern it appears in
— sufficiently to identify it uniquely.

3.8 Accuracy in placing lines.

The angling of the line is not critical, as it does not usually pass through areas of
high characteristic density. The irregularities of the pattern tend to be concentrated more
along the axis of the core. For this reason, movement of the line by even as much as 20 or
30 degrees will only change 2 or 3 digits of the code, and should preserve at least one or
two 6-blocks intact.

29

3.9 Coding deltas.

Likewise we can digitally code any delta, the only difference being that we draw
three lines rather than one, and thereby generate 30 digits (assuming that we still proceed
over five ridges in each direction). First we have to define a central point in the delta; in
fact this has already been done for the purposes of ridge-counting. (See para 1.10.) Then
draw three lines radially outwards from that central point, each roughly perpendicular to
the flow of the ridges in that sector — as per figure 21.

Figure 21. Line-placing on a delta.

Thus 30 digit codes for deltas can be generated — again, enough information being
stored to make each quite unique.

3.10 Coding the various types of pattern.

With these techniques for coding cores and deltas lengthy digital codes could be
prepared for all the various types of print that have either cores or deltas — that is, all
prints with the exception of plain arches. They, as previously pointed out, have neither
core nor delta.31

3.11 Coding plain arches.

The problem presented by ‘arches’ can be solved by using a central line as illus
trated in figure 17. There is, however, no well defined starting place (as we would have
with a core or delta). However let us start at the bottom of the line drawn on figure 17

30

(where the ridges begin to curve upwards) and work our way upwards; we can generate
one long continuous string of digits by a similar method to those described above. (Simply
look left and right along each ridge crossed etc.)

The line in figure 17 crosses 28 ridges, and therefore yields the series of 56 digits

04 43 22 34 03 03 42 22 22 42 24 00 33 33 00 30 43 26 28 02 37 83 62 04 72 34 33 36

Each one of these 56 digits represents one piece of topological information — each
being the coded reply to the now familiar question “What is the first characteristic that you
would find if you walked along each of the 28 ridges crossed — in the specified direction?” .

Had the arch been coded using a slightly different starting point (and there seems
to be no practical way of assuring that it would be the same each time), then the order of
the majority of these digits will not be changed — but they would be shifted a few places
to the left or right by reason of the addition or omission of some digits at the beginning of
the series. For comparison purposes the computer will again have to check for matching
pairs, 4-blocks and 6-blocks. [Rather than try all the very many possibilities it would be
a short cut for the computer to align the two sets of digits for comparison by reference to
the positions of appearances of the rarer codes — i.e. ‘C ’s (compounds) if there are any.]
By this method it is quite possible to identify plain arches automatically — and thus the
particular problems posed by this class of prints are solved.

3.12 Scenes of crime marks.

The ‘fishbone’ method described above clearly makes possible the rapid automated
identification of single fingerprints, provided we have available on each print to be identified
certain localised areas of information; for instance, to identify a loop, we will need a fairly
clear impression of areas either close to the core or close to the delta.

The application of this method, therefore, to scenes of crime marks is restricted to
those marks where one of these particular areas appears, and is clear enough to be digitally
coded for comparison. The following two chapters examine ways of dealing with scenes of
crime marks that contain no such focal points.

3.13 Advantages of the ‘fishbone’ method.

The fishbone method (so called because of the similarity of the ordering lines
to the principal backbone of a fish, with the ridges to be explored fanning out from the
points of intersection) overcomes all four of the difficulties stated earlier in connection with
‘progressive association of characteristics from a fixed point’. It can be applied to arches,
it records more localised information, it never ‘runs out’ , and it does allow for topological
variation.

31

As such it represents a highly effective method of coding and recording topological
information. The coding can be done fairly quickly by hand, but it was always intended
that it should be done by automatic scanners. All the technology is currently available,
and in use, whereby such data could be gathered automatically. No new equipment is
needed — just a few new algorithms.

32

CHAPTER 4.

NON-ORDERED CODING SYSTEMS.

4.1 Introduction.

The aim of this research has always been to find coding methods suitable for
automation that could do everything that manual fingerprint systems can do at the present
time.

Chapter 3 manifestly falls short of this goal; none of the methods described there
can cope with the matching of partial scenes of crime marks that contain neither cores,
deltas nor the central strip of an arch pattern.

Such prints are currently identified by manual systems. In fact roughly 5% of
successful identifications made by the Kent Fingerprint Department are of this type This
5% is a significant enough proportion to be catered for, even if it involves a substantial
amount of further research.

By way of example, figure 22 shows one fingermark from the scene of crime which
has been identified (in Kent) with a portion of the left thumb impression of a known
criminal. The SOC mark is on the left and the portion from records on the right.

Figure 22. A latent mark and its matching file print.

33

The mark in figure 22 contains a wealth of topological information but no central
reference points such as we have been using. We clearly need something more sophisticated
than the ordering methods described so far if we are to be able to deal with those occasions
when we have no core or delta to work from.

4.2 The need for non-ordered systems.

The purpose of chapter 3 was to find methods of ordering topological information
so that, when coded, it appeared as ordered digital codes. Such orderings were determined
by reference to the print as a whole, or by reference to some particular parts of it. They
relied on cores or deltas to provide a framework within which to work — the only exception
being the coding of an arch, where the ordering required us to be able to see the pattern
or shape of the print, without which we would not have known where to place the line.

Now the special problem posed by the scene of crime mark that contains none of
our fixed reference points (cores or deltas) is that even if the characteristics appearing on
it had been coded, we might not be able to glean enough information from the mark about
the rest of the print to find out in what order those particular pieces of information had
been coded.

Here is a very simple example for demonstration purposes: suppose a scene of
crime mark appeared as represented by figure 23.

Figure 23. Tracing of fragmentary latent mark.

This contains four characteristics — 2 bifurcations, a ridge ending and one lake.
They have certain topological relationships ta each other, for example :—

“The bifurcations face in opposite directions and are on adjacent ridges. Also you
can travel from the lake to the ridge ending by moving along the ridge to the left and then
jumping over one ridge” .

All that is good topological information, invariant under distortion. However if
it had been coded as part of the coding of a whole print, the codes would probably have

34

been ordered by reference to the position of these characteristics in relation to the core, or
delta. The only information we have available in figure 23 is their topological relationships
to each other — and not to any other feature of the print. Hence any digital coding
methods ordered by reference to fixed points or pattern types are useless in this context.

What alternatives do we have then? How else can we record the information?
Broadly speaking, there are just two possibilities :—

Firstly: we could use a completely unordered system — which, as will be explained,
involves the use of matrices and fairly complicated matrix searching techniques.

Secondly: we can use unordered collections of locally ordered information.

Both of these possibilities have been investigated, and it has become clear that the
former leads us to searching methods that are neither quick, nor simple. In retrospect it
must be rejected (at least for the time being) in favour of the second, which appears to be
more workable.

Consequently, the former will be described in detail in the remainder of this chap
ter, purely because it contains some interesting ideas that would not appear elsewhere.

Chapter 5 contains a detailed explanation of the latter (and more hopeful) ap
proach.

4.3 The two dimensional nature of completely unordered systems.

The benefit of ordering by line was that codes appear as strings of digits; these
can be regarded as one-dimensional arrays of numbers.

Now, if we choose to record each characteristic’s relationship to every other char
acteristic we cannot avoid storing that information as a two-dimensional array of digits,
rather than a one-dimensional array.

Non-ordered systems, therefore, concern us with the use of matrices.

4.4 The need for physically denser information recording.

A scene of crime print may be comparatively small in area, and the smaller it is
the less likely we are to find direct ‘ links along ridges’ (of the type used in chapter 3)
between two visible characteristics. (Figure 23 has no such links.)

However if we widen our scope slightly we notice that we can often find two char
acteristics separated by only one or two ridges (as in figures 22 and 23). To extract the

35

maximum possible topological information from such a mark we must therefore be pre
pared to code these pieces of information as they tend to be physically denser within small
areas. If we ignored them, the fact that figure 23 ‘has two bifurcations, a ridge ending
and a lake with no direct topological links along ridges’ would be nowhere near enough to
identify the print from which it came.

4.5 Relationship tables.

Let us now find a way to code the relationships of characteristics to one another.
For this purpose, and for the sake of simplicity, we will only recognise bifurcations, lakes
and ridge endings as being the ‘basic’ types of characteristics — and will view the others
as compounds. The task we have is to devise a set of rules for digitally coding the type
of topological relationships discussed in para 4.2. That is not difficult — but it has to be
done separately for each of the three types of characteristic under consideration.

The ridge-ending. If there is another characteristic near to a ridge ending we
could ask ourselves the question “by which, if any, of the following routes can we travel
from the ridge ending to that other point?” :—

1.

2 .

3.

4.

5.

6.

7.

8.

9.

Jump two ridges to the left and then go backwards along that ridge.

Jump one ridge to the left and then go backwards along that ridge.

Just go backwards away from the ridge ending without jumping.

Jump one ridge to the right and then go backwards.

Jump two ridges to the right and go backwards.

Similarly, two ridges left, but forwards.

Similarly, one ridge left and forwards.

Similarly, one ridge right and forwards.

Similarly, two ridges right and forwards.

These rules can be shown thus :—

1 <----------------------------
2 < - -------------------------
3 ------------------------------
4 <------------------------- --
5 <----------------------------

* 6
-» 7

36

* 8
->9

This shows the nine routes that we will consider leading away from a ridge ending. If none
of the above routes lead us to the other characteristic, then a zero coding would be used.

The bifurcation. Similarly a set of routes away from a bifurcation can be con
structed, as represented by the following diagram :—

1 <-
2 < -
3 ^
4 <■
5<r

^ 6
> 7

8
^ 9 10
-^11

The lake. Likewise — the codes being as follows :—

1 --------------------------------
2 <----------------------------- --
3 < _ -----------------------O
4 <--------------------------------
5 <r-------------------------------

Notice the rotational symmetry in this last case — as a lake does not determine
‘direction’ for us, and we may not be able to tell from the scene of crime mark which
way the print was orientated. Also notice that it may be possible to arrive at a particular
bifurcation by more than one of the routes specified — in which case the lowest appropriate
code will be chosen.

Now let us have another look at figure 23.

Figure 24. Characteristics on a latent mark.

The points 1, 2, 3 and 4 are respectively the bifurcations, the ridge ending and
the lake, which we will code ‘B’ , ‘B’ , ‘E’ and ‘L’ . We can then draw up a table of the

37

topological relationships between these 4, using the route-codes described above :

To
B B E L

B(l) / 10 0 0

B(2) 10 / 0 1
From

E(3) 0 6 / 9

L(4) 0 1 0 /

This tells us, for example, that to get from point 3 (ridge ending) to the lake, one follows
the route no.9 specified on the ‘ridge ending’ diagram. All the other entries convey similar
information. The digits underlined involved the choice of ‘lowest code’ from two possible
routes (e.g. one can get from point 2 to point 1 by using either route 10 or route 11 on
the ‘bifurcation’ diagram.)

The leading diagonal is free, as it would be meaningless to speak of a character
istic’s topological relationship with itself. So we can slot the characteristic type code into
that gap and obtain the simple four by four matrix :—

(B 10 0 ° \10 B 0 1
0 6 E 9

V 0 1 0 LJ

If we had seen ten characteristics on the scene of crime mark we could have con
structed a 10 by 10 matrix in the same way.

Remember that this is an unordered system, and we might have taken the four
characteristics in a different order. Had we done so, the coding process might have yielded
the table :—

(L
0 1

° \
0 B 10 0
1 10 B 0

V 9 0 6 e J

This is the same table — except that the order of the rows and columns has been
changed.

38

4.6 The searching problem.

Suppose an entire single print collection had been similarly coded. On average a
single print reveals in the order of 100 characteristics, and so their relationships to each
other would be stored in coded form as a series of large matrices, roughly 100 square.
(These are effectively ‘sparse matrices’ as the vast majority of entries would be zero.) The
problem of searching for a match with a mark from the scene of crime becomes analogous
to the problem of searching large matrices to see whether a given smaller matrix lies within
it.

Suppose, for simplicity’s sake, that figure 23 is actually part of a loop pattern which
only showed up 20 characteristics when coded, giving the following 20 by 20 matrix:—

(L 2 5 1 7 0 6 0 0 0 8 9 0 0 0 0 0 0 0 0\
0 L 0 5 0 2 1 1 8 0 0 0 4 0 0 0 0 0 0 0
3 0 L 1 2 4 0 0 0 0 8 9 0 0 0 6 0 0 5 0
4 2 0 E 1 0 5 0 0 0 0 0 9 0 0 7 0 0 0 3
4 0 0 0 B 1 0 10 0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 B 0 0 0 6 0 0 0 7 0 0 0 4 0 0
1 3 4 0 0 0 B 0 0 7 0 0 0 0 8 0 0 0 6 0
0 1 0 0 10 0 0 B 0 0 0 0 3 2 4 0 0 0 0 7
3 0 0 0 0 0 0 0 E 0 0 7 0 0 5 0 0 0 2 0
0 0 0 4 0 0 0 0 0 E 0 0 0 0 7 0 0 0 0 0
0 0 0 0 6 9 8 0 0 0 B 3 0 0 0 5 0 0 0 0
0 9 0 0 0 0 0 6 0 0 0 E 8 0 0 0 5 0 0 0
0 0 0 0 6 5 9 0 0 0 0 0 E 4 0 0 0 7 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 B 0 7 9 5 0 0
0 0 6 4 2 0 8 9 7 0 0 0 0 0 B 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 5 3 6 7
3 1 4 6 0 0 0 0 0 0 0 7 9 0 0 0 B 0 0 0
4 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 B 0 0
0 0 0 0 0 0 0 0 0 0 8 9 7 5 6 0 0 0 E 0

U 0 0 0 0 7 8 5 0 0 0 3 0 0 0 0 0 0 0 BJ

The figures in bold type reveal the presence of our 4 by 4 matrix for figure 23.

Finding economical techniques (algorithms) for identifying these sub-matrices is a
formidable task and the need to be able to identify close matches as well as exact ones
(because of the possibility of topological variation) greatly compounds the difficulty.

The mammoth searching problems thrown up by such a coding method may not
be insoluble — but there is no obligation to solve them here as the alternative approach
is far more appealing.

39

CHAPTER 5.

PARTIALLY ORDERED SYSTEMS.

5.1 Introduction.

Chapter 4 has shown us just how lengthy, and therefore costly, a procedure the
use of a completely unordered system might be. The system described there recorded the
maximum possible amount of topological information — in recording every characteristic’s
relationship with every other one.

Chapter 4 leads us to realize that this is simply too much information. Some of
it has to be discarded. The question we have to answer now is, ‘Which information can
we discard? Which of the topological relationships are of least value to us in identifying
scenes of crime marks?’ .

It would seem sensible to discard the information about each characteristic’s re
lationship with all those other characteristics that are a long way away (physically) from
it, and to record only localised relationships. Why so? The reason is that the further
apart (physically) two characteristics are, the more likely their mutual relationship is to
suffer topological change (i.e. intervening ridges appearing or disappearing and so on)
and, more importantly, the less likely both are to appear on the same scene of crime mark.
Consequently if two characteristics are far apart their relationship is of little or no use,
and would appear usually in the matrices of chapter 4 as yet another zero code.

It is these factors that lead towards consideration of localised orderings.

5.2 Local orderings.

Any non-symmetrical characteristics (i.e. bifurcations and ridge endings — but
not lakes) could be used as focal points for a local ordering in much the same way as deltas
and cores were used as focal points for general orderings.

For the time being let us use bifurcations, and bifurcations alone — as the basis
for forming collections of local orderings. (The choice is arbitrary. It could have been ridge
endings, but it would seem superfluous to use every visible characteristic.)

Wherever a bifurcation appears, other than within 5 ridges of a core or delta, let
us draw a line through it, at 90° to the ridge flow (in much the same way as we did for

40

Figure 25. Line placing for local ordering around a bifurcation.

the core in para 3.7) and let it extend just two ridges either side of the bifurcation, as
illustrated in figure 25.

Now, by looking left and right along the five ridges crossed we can, once again,
code the replies to the question ‘what characteristic do we come to first?’ , and thereby
generate an eleven digit code for that bifurcation. (There are eleven ridges to look along
altogether, rather than ten, due to the extra ‘prong’ of the bifurcation itself.)

If we use the same digital codes as we specified in para 3.5 for the possible ‘events’ ,
and take the eleven ridges in the order represented below :—

< --------------------------------
< :-----------------

------------------------------->

---------- s

\

4 ----------------------- ---
^ 5

\ -------
<----------------- ---------------

-------------------------------7
------------------------------->

6
7
8
9
10
11

then the bifurcation used as focal point in figure 25 gives the code 46624386073.

That eleven digit code represents the ordered topological information most local
to that bifurcation. It is a coding of the bifurcation itself in relation to its own immediate
neighbourhood.

5.3 The use of unordered collections of local orderings.

We now have a method of ordering topological information locally without any
reference to fixed central points of the whole print pattern.

Suppose, when coding a print, that we picked out every bifurcation which appeared
on the rolled impressions (except those very close to cores or deltas) and coded their

41

relationships to their immediate neighbourhoods; then we would have a collection of 11-
digit codes, one for each bifurcation spotted.

The problem of finding matches for scenes of crime marks that contain no cores
nor deltas is therefore solved by picking out the visible bifurcations on the scene of crime
mark, coding them in relation to their immediate (visible) locality, and then comparing
those codes with the 11-digit ‘bifurcation-codes’ in our database.

We would use the rule that a B, A or 0 in the scene of crime mark code is equivalent
to any digit in the corresponding position — as characteristics may be unclear or out of
sight on the mark whilst they were quite distinct on the rolled impression. The finger may
also have been scarred since the rolled impression was taken.

On the scene of crime mark shown in figure 22 there are roughly 10 visible bi
furcations. We’ll choose one roughly central in the mark, as such will be the most useful
for searching purposes (their neighbourhoods will not be ‘out of sight’ if they are central
enough).

The bifurcation labelled no.10 in figure 22 gives the code 00007303838 on the scene
of crime mark and gives exactly the same code on the portion of the rolled impression. That
is sufficient information for positive identification of the mark.

The code 00007303838 would be one of, perhaps, 25 or 30 such codes for ‘out
lying’ bifurcations spotted on the complete rolled thumbprint. The search for a match
would be by simple, straightforward comparison of the scene of crime mark code with each
bifurcation code in the database, in turn.

If no matches were found (perhaps due to topological variation) another search
could be done very easily by coding up one of the other bifurcations visible on the scene
of crime mark. Also, searching by a second 11-digit code could be used if the first search
threw up several possible matches and distinction between them was required.

5.4 Summary.

This method of locally ordering information should never be used in isolation : the
first choice is always to use cores or deltas as fixed starting points. Those are, after all,
few in number (at most two cores and three deltas to a print) and therefore provide the
fastest possible search.

A complete record in an automated system based on these ideas would comprise
the following elements :—

(a) Descriptive (demographic) data relating to the individual — to be used for limiting
the field of search.

42

(b) Traditional pattern type classification, if known.

(c) (i) In the case of an arch — one long sequence of digits as per paragraph 3.11.

(ii) Otherwise — for each core a 20-digit code as per paragraph 3.7 and, for each
delta, a 30-digit code as per paragraph 3.9.

(d) An 11-digit code for each outlying bifurcation as per paragraph 5.2.

Such a system would be capable of performing all those tasks currently accom
plished manually. It could effectively identify any scene of crime mark whether or not it
was possible to tell from which part of the print, or from what type of pattern, the mark
came.

It was mentioned previously (paragraph 4.1) that currently 5% of successful iden
tifications do not depend on the presence of cores or deltas. The system described above —
with the use, if need be, of the localised bifurcation codes — not only caters for that 5%,
but might vastly increase the proportion of times when such marks are matched. There
is no doubt that many more such marks could be matched, if only the present searching
methods did not take so long.

43

CHAPTER 6.

OTHER RIDGED AREAS OF THE BODY.

6.1 General extension to other ridged areas.

The purpose of this brief chapter is to point out that the use of the methods
developed in chapters 3 to 5 is by no means restricted to the coding of the ridge pattern
on the fingertips. They can be applied to any part of the body where ridge patterns are
found — for example, on the second and third joints of the fingers, on the palms of the
hands, the heels and the toes.32

In order to use the ‘fishbone’ method of chapter 3 on any area one needs to either :

(a) isolate cores or deltas and code the locality of these, or

(b) determine the placing of a physical line across the ridge flow by any means whatso
ever, whether spatial, topological or anatomical (e.g. by fixing the line’s position
in relation to flexion creases), and then code from that line as we did for a plain
arch.

To be able to use the locally ordered methods of chapter 5 we need only specify a
restricted physical area for coding and to code all the bifurcations visible therein.

This opens up many possibilities for the keeping of toe-print indices, heel-print
indices and so on - in each case with the intention that scenes of crime marks from those
areas of the body should be rapidly checkable against sizeable computerised collections.

6.2 Palmprints.

Palmprints merit particular attention here on the grounds that they are already
extensively recorded and stored, but efforts to classify them have been, on the whole,
inefficient and unusable. There are very few palmprint collections that are used for any
other purpose than the checking of scenes of crime marks against those of a known suspect.
Little actual searching of them is done.

The attempts to classify them have embodied the same approach as the conven
tional attack on fingerprints by ‘pattern type’ . The vast range and lack of regularity in
patterns that appear on palmprints makes that task extremely difficult.

44

Figure 26. Thenar, hypothenar and base areas of a palmprint.

The palmprint itself can be divided into three distinct areas (these are the ones
employed by the ‘Brogger-Moller’ pattern-type classification system)33 : see figure 26.

The Brogger-Moller system, in common with other such systems, looks at the
three areas in turn and tries to classify the types of pattern that occur therein. The three
types of pattern represented on the three respective areas of the print are then formed
into a combinatorial code, in a similar way to the combining of fingertip pattern types in
the 10-finger Henry system. The categories of palmprint so formed are then broken down
further by the recording of a variety of physical measurements, in a manner very similar

45

to the subclassification system of the Battley single print index.

Complete palmprints are hardly ever left at the scene of a crime; it tends to be
part of the hypothenar area pattern that is usually left.34

Therefore an automated palmprint collection might well concentrate on the hy
pothenar area, and the following are simple suggestions as to methods of coding the topo
logical information thereon :—

(a) Where there appears a delta (nearly always) code that as per paragraph 3.9.

(b) Where a loop or whorl pattern appears — code the core as per paragraph 3.7.

(c) Where neither (a) nor (b) above can be applied, draw a straight line across the
hypothenar area from the flexion crease at the wrist to the ‘outside’ of the base of
the 5th finger — and apply the method used for arches as per 3.11.

(d) Use the locally ordered method of chapter 5 on the whole or specified part of the
hypothenar area.

Moving straight to topological coding of palmprints, heelprints, or toeprints com
pletely avoids the need to classify the multitude of pattern types that do appear.

46

PART II

Topological comparison
. °f

rolled impressions

47

CHAPTER 7.

BACKGROUND, AIMS AND ANTICIPATED PROBLEMS.

7.1 Introduction.

The motivation for seeking topological descriptions of single fingerprints is provided
by the elastic nature of the human skin. That elasticity causes substantial variation in the
spatial descriptions of successive impressions of the same finger. Consequently comparison
algorithms based on spatial information (i.e.information which principally records distances
and directions) have to fall into one of two broad categories: either they will be unreliable,
or they will be sufficiently sophisticated to recognise, and compensate for, the innumerable
types of twisting, stretching, tilting and translation caused by changes in the physical
circumstances under which the impressions are formed. Such sophistication will produce
comparison algorithms that are highly complex statistically and which will invariably be
expensive to implement.

The theoretical appeal of coding fingerprints topologically (in a way that omits
reference to distances and directions) lies in the expectation that such topological infor
mation will be relatively free from the effects of plastic distortion. Detailed explanation of
this motivation has already been given in Part I.

This phase of the experimental work seeks to establish whether or not a topological
coding system can be found, together with a suitable matching algorithm, that provides a
sound basis for reliable and efficient single-print comparison. If such a scheme can be found
then we will certainly want to know under what circumstances, if any, it will perform better
than coding and comparison techniques based on the more traditional (spatial) approach.

It is exactly these questions that we will hope to answer in the following chapters.

7.2 Aims of the work on rolled impressions.

There are already a variety of automated systems available that appear to ad
equately perform the function of comparing rolled impressions. This is usually in the
context of the comparison of record cards each showing clear rolled impressions of all ten
fingers of one individual. (These will have been taken, for example, when a suspect was
arrested — or, in the case of some civilian applications, when an individual applied for a
job of a particular kind.) Matching these cards by comparison of some or all of those ten
impressions forms an important part of the ‘identification of persons’ problem faced by a
wide range of law-enforcement agencies. The fingerprint comparison part of the procedure

49

t

becomes of prime importance when the stated name and date of birth cannot be relied
upon.

For example the FBI (Federal Bureau of Investigation) automated fingerprint di
vision (based in Washington D.C.) handles in the order of 20,000 10-print card enquiries
per day. The database to be searched in each case comprises some 23 million cards. With
such a colossal workload it is necessary to use all the available demographic information
(such as the physical description of the individual, his stated name, address and date of
birth, the type of crime and the geographical area of its commission) to reduce the field
of search quite drastically before any fingerprint comparisons are performed. The held of
search is reduced, in fact, from the 23 million possibilities, to a maximum of 256 most
likely candidates. Only then does computerised fingerprint comparison take place.

When a ‘match’ is indicated (by a high score from the comparison algorithms) the
appropriate card is extracted from the collection and checked against the ‘search’ (enquiry)
card manually by a fingerprint expert. If a ‘match’ is not suggested by the comparison
scores there is absolutely no question of a manual search being conducted to ensure that
the individual represented by the search card is ‘not known’ (i.e. that his prints do not
appear in the collection.)

The FBI system is almost certainly the largest automated collection in the world.
Smaller (more local) agencies have a variety of similar systems available to them, and
several are in use.

With this situation in mind one could surmise that research interest should now
confine itself to the problems of ‘latent mark’ identification (that is the matching of marks
left at the scenes of crime) against a file collection of rolled images. Latent marks tend to
be fragmentary and of relatively poor quality. They have to be ‘developed’ by chemical or
other means and then are normally photographed to facilitate comparison.

There are several good reasons why research into topological coding must start
with its application to rolled impressions :—

(a) Topological coding may well provide neat and concise digital codes that would
provide a more economical, and perhaps more reliable, basis for ten-print systems.
If an appropriate degree of simplicity and speed can be achieved then such methods
could make feasible the use of inexpensive microcomputers for the storage and
searching of small (local) collections.

(b) Contemplation of massive collections (e.g. for international missing person identi
fication) only becomes possible with extremely fast comparison methods (witness
the operational constraints imposed on searching by the FBI’s workload). The
advent of parallel processing systems should suggest that we look for comparison
methods which consist largely, or entirely, of sequences of array operations. Algo
rithms so composed, when run on parallel processing facilities, should be capable

50

of achieving phenomenal speeds. The type of comparison algorithms explored here
do consist almost entirely of sequences of array operations — indeed they have all
been designed with the capabilities of array processors in mind.

(c) A proper knowledge and understanding of the behaviour of topological codes un
der the ordinary plastic distortions can best be gained in experiments free from
any other difficulties or complications. Such investigation is therefore, in a sense,
preparatory to any later application of topological coding to latent mark identifi
cation.

(d) Other commercial applications (security access devices and personal authorisation
verification) may well benefit from a quick and effective single-print comparison
technique.

7.3 Selection of raw data rather than enhanced images.

The current processes of automatic scanning of fingerprints and automatic ex
traction of ridge detail therefrom necessarily involves an image-enhancement step. The
original grey-scale image (in matrix form from the scanners) is ultimately converted to
a binary picture. This involves some smoothing operations using ridge-valley filters, and
some steps to compensate for ink-density variations. These methods, and their continuing
development, are not the subject of this paper — even though the ideas expressed here
cannot lead to any operational systems without the use, and further sophistication, of
digital image-interpretation techniques.

The availability of enhanced images, however, poses an early question for this
research; should experiments be based on images read and interpreted by machine (i.e.
enhanced prints) or should raw fingerprints be used? Despite the obvious appeal of work
ing from clear binary images, raw fingerprints were selected for this reason: automatic
enhancement algorithms have not been developed with topological coding in mind. The
systems in use by the FBI and by the Home Office research team (London) do not dif
ferentiate between ridge-endings and bifurcations. They simply identify the presence of
a ridge-flow irregularity and record its coordinates (after application of various tests to
make sure it really is a genuine characteristic). The enhancement stages of the algorithm
will most probably have a degree of bias towards some types of topological structure in its
interpretation. As that degree of bias is both unknown and undocumented it was deemed
unwise to incorporate it into experimental databases at source.

Although election of raw prints made for very slow and tedious data collection
(direct from projected images of fingerprint cards), that penalty was mitigated somewhat
by the value of much good practice in fingerprint interpretation. That experience was to
prove invaluable, later, when attention was turned to latent marks.

The skill of the human brain in pattern recognition as a noise elimination filter
during manual encoding also goes to set a standard by which automatic interpretative

51

algorithms can be measured hereafter. The extent to which these experimental results
could be reproduced when using machine-gathered data would be a significant test of the
data collection process’ ability to make the correct topological decisions.

7.4 Selection of ulnar loops for initial experiments.

Of all the various single-print pattern types the category of Loops is by far the
largest. It accounts for roughly 65% of all fingerprints. Next most common are the Whorls
(30%) and then the Arches (5%). Approximately 1% of prints have some other, more
complex, pattern type — being known variously as accidentals or composites.

The loops are divided into radial loops and ulnar loops depending on the direction
of the ridge flow from the base of the loop. Ulnar loops account for the vast majority of
loops and are certainly the most common pattern class. (The ulnar loops have the delta
on the thumb-side of the finger.)

For this reason ulnar loops were selected as the basis for initial experiments —
and the developed techniques were applied to both whorls and arches at a later stage.

7.5 Selection of line based system.

The stated aims of the work on rolled impressions (para 7.2) make it plain that a
quick, easy coding method is sought. It should provide information sufficient to identify
each single print uniquely, and should be easily reproduceable. The coding method selected
was the ‘ordering of topological information by lines’ as described in chapter 3. This is a
simple process which leads to formulation of an ordered digital sequence (vector).

(a) Rules are established, dependent on the pattern type, for the superposition of a
line on each print.

(b) The placing of lines forms an ordered set of intersection points (where the line
crosses a ridge), each one located on one of the ridges of the print.

(c) Each point of intersection gives two ‘directions’ for topological exploration of that
ridge: imagining oneself (just for a moment) to be a tiny insect capable of ‘walking
along a ridge’ — then one could walk each ridge in each of two directions from
the point of intersection. We stipulate that the walking (or exploration) will cease
as soon as one of a number of specific ‘events’ is found. These events could be
ridge-flow irregularities (characteristics); they could be the coming upon scarred
tissue where the ridge flow pattern has been completely destroyed; they could be
the ‘walking off’ the edge of the visible print.

(d) Assignment of digital codes to the different possible ridge-exploration events leads
to formation of a pair of digits for each point of intersection. Writing them down

52

in order generates a digital vector of length equal to twice the number of points of
intersection.

In theory it would be desirable for the rules governing the line placement to be
entirely independent of spatial considerations so that the points of intersection used to
generate the vector were themselves free from the effects of spatial distortion.

In practice it is much quicker and simpler to allow some spatial concepts to be
used in placing the lines — and it will be seen that the actual position and orientation of
the lines (relative to the print) is not critical provided it runs roughly orthogonal to the
ridge flow.

The exact orientation of the line would be far more important if the line’s direction
was close to that of the ridge flow. The effect of small changes in relative orientation of
line and print would then be to shift the points of intersection considerable distances, and
perhaps move some of them to the opposite side of some characteristics which were close
to the line. Severe corruption of the generated vectors would then occur.

A line placement rule that satisfies the requirements fairly well for loops is this :—

(a) By looking at the whole available print, and with particular reference to the first
flexion crease and the directions of ridges which run close to it, estimate a ‘hori
zontal’ orientation for a straight line. (‘Horizontal’ means parallel to the apparent
direction of the flexion crease.)

(b) Place a horizontal line through the loop core-centre, using the conventional rules
for precise location of the core-point.35

Figure 27 shows a typical ulnar loop pattern with horizontal line superimposed
according to these rules.

These line placement rules are by no means the only possible for loops. There
are innumerable possibilities; some centred on the core, some on the delta, and some
independent of both. Experiments using the selected line placement are, however, quite
sufficient to answer most of the pertinent questions as to the behaviour of topological codes
under spatial distortion.

7.6 Selection o f digital codes.

Figure 28 shows the digital codes selected to correspond to possible ridge-explor
ation events (It is the same as figure 19, repeated here for convenience). In each case the
ridge being explored is marked with an arrow to show the direction of the exploration. In
excess of 500 prints have been coded using these codes and they have been found to cover
all eventualities.

53

Figure 27. Horizontal line placed on ulnar loop.

Code 5 (where the exploration returns to its starting point without having encoun
tered any other event) was not encountered in any patterns other than whorls — and then
only very rarely.

The digital codes take the form of hexadecimal integers, and are always processed
as such. Storage space required for each one is therefore only 4 bits, making it possible
to compress one pair of digits into one byte. Not all 16 hex-digits are used; 1, 9, D and
E being ‘spare’ . ‘F ’ is used for padding the vectors up to a certain length for storage in a
standardised data format.

Codes 6 and 8 record events that do not actually occur on the ridge being explored.
They record the start of a new ridge either on the immediate left or the immediate right
of it. The main reason for their inclusion in the scheme is that they record the presence of
ridge-endings which would otherwise be ignored by the coding process. (This is because

54

Code Description.

0. The ridge goes out of sight without meet
ing any characteristic.

1. Not allocated.

2. Ridge meets a bifurcation as if from left
fork.

3. Ridge ends.

4. Ridge meets a bifurcation as if from right
fork.

5. Ridge returns to its starting-point without
any event occurring.

6. Ridge meets a new ridge starting on the
left.

7. Ridge bifurcates.

8. Ridge meets a new ridge starting on the
right.

9. Not allocated.

A. Ridge encounters scarred tissue.

B. Ridge encounters blurred or unclear print.

C. Ridge meets a compound (e.g. a cross
over) .

D. Not allocated.

E. Not allocated.

F. Used for vector padding.

Figure 28. Ridge exploration event codes.

55

the ridge-ending belongs to a ridge that does not have a point of intersection with the
generating line.)

The allocation of particular digits to particular events is not quite arbitrary. The
tendency of inking and pressure differences between successive impressions of a print to
cause topological change is well known. Bifurcations will mutate to ridge-endings, and vice
versa (see para. 3.4). In anticipation of this phenomenon the digital codes are selected in
order that some sense of closeness is carried over to them. The extent of that closeness is
only that event 3 is liable to change to or from either of events 2 or 4; likewise event 7 is
liable to change to or from events 6 or 8.

The frequencies of these topological variations, and their effects on digital code
vectors, are among the objects of this study.

7.7 Method and apparatus for tracing and coding prints.

The original data took the form of inked impressions on standard FBI ten-print
cards. These were positioned in the projection plane of the ‘Graphic-pen’ (a device built at
NBS for semi-automated data entry from a projected image36). This projects an enlarged
image (lOx enlargement) of a single print onto a horizontal screen. The available window
size on the screen is 7.1" wide and 7.8" high. The cores of loops (and, later, the centres
of whorls) were located at a fixed reference point on the screen 3" from the top of the
screen and equidistant from the left and right edges. Prints were positioned upright by
reference to the flexion crease — no regard whatever being paid to the orientation of the
print within the relevant printed ‘box’ on the fingerprint record card.

Prints were positioned once and once only — so the portion of each print viewed
was a rectangle measuring 0.71" by 0.78". Anything outside this rectangle was regarded
as out of sight and ignored by the coding process.

The projected image was traced manually onto tracing paper — the tracing of
each ridge being continued only as far as was necessary to establish which of the possible
events was encountered first in the exploration of that ridge. The traced image, therefore,
gives a clear indication of just how much of the print pattern (and which characteristics)
are accessed by a particular coding process.

Figure 29 shows the tracing of an ulnar loop generated by exploration from a
horizontal line through the core. Points of intersection are shown numbered outwards
from the core, and characteristics accessed are highlighted with a small ‘blob’.

With print positioning as described, a horizontal line through the core rarely in
tersected more than 20 different ridges on either side of the core. Consequently a standard
length for digital vectors was set at 82 digits — that is, 41 pairs — of which 20 pairs
represent up to 20 ridges on the left hand side of the core, one pair represents the ridge
on which the core itself is located, and the other twenty pairs represent up to 20 ridges

56

intersected on the right of the core. Whenever less than twenty ridges were intersected on
the left or the right hand side of the core (which was usually the case) the 82 digit code was
padded with ‘F’s, as mentioned above, to bring it up to the standard length. The padding
was done at the extreme ends of the vector in such a way that the digit pair representing
the core-ridge remained in the central position (i.e. the 21st digit pair).

The convention was established that the digit representing exploration along a
ridge upwards from the line was to be written first (of the pair), and the digit representing
exploration downwards along the same ridge would be written second. Adhering to that
convention, the 82 digit vector generated from the tracing referred to above (figure 29) is
shown in figure 30. To facilitate interpretation the intersection point numbers (from figure
29) are shown also, with their corresponding digit pairs. (These intersection point numbers

57

are not normally recorded, and they form no part of the topological code.) Digit pairs
are juxtaposed, and each pair separated from the next. It is important to remember that
each digit pair is just that — a pair of digits; they should never be interpreted together as
being one number.

Ridge number: 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code: 70 00 80 63 00 00 37 80 63 20 36 33 36 46 28 83 60 23 83 63 33
Ridge (cont): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Code: 33 30 72 83 86 63 78 30 83 60 00 73 80 60 80 30 FF FF FF FF

Figure 30. Vector generated from figure 29.

After some experience had been gained the average total time taken to manually
trace a print and to generate and record the 82 digit vector from it, was roughly seven
minutes.

7.8 Dependent pairs.

“Dependent pairs” of digits occur in a line-generated vector whenever the same
characteristic is observed during the exploration of two adjacent ridges. If, for instance,
one ridge runs into a bifurcation arriving as if from the left hand fork (coded ‘2’), then
it is quite likely that an adjacent ridge (on the appropriate side) will run into the same
bifurcation as if from the right hand fork (coded ‘4’). Such pairing is not guaranteed,
however, as some other event may occur first on either of the two ridges in question and
effectively stop the exploration getting as far as that bifurcation.

Consequently, there is a marked tendency for ‘2’s and ‘4’s to occur within the
vectors in the combinations “4* 2*” or “*2 *4” . (The asterisks simply mean ‘any code’ .)
The first combination (“4* 2*”) appears when a bifurcation is doubly accessed above the
generating line, and the second combination when it happens below the generating line.
Similarly combinations “*8 *6” and “6* 8*” are also ‘dependent pairs’; they appear when a
ridge-ending which faces towards the generating line is doubly accessed from two adjacent
ridges.

In comparing two vectors the aim will be to identify digital substrings which are
identical (or almost identical). The occurrence of dependent pairs requires that any scoring
system adopted (as a measure of ‘closeness’) allow for the fact that a dependent pair of
digits refers to only one characteristic, rather than two. Their preservation (i.e. appearance
in the same combination in the other vector) is therefore less significant (as an indication of
a possible ‘match’) than preservation of two non-dependent digits in similar circumstances.

58

7.9.1 Frequency analysis : aims.

Some sort of frequency analysis experiment is a necessary preliminary to develop
ment of any effective vector comparison algorithms. The aims of such analysis are :—

(a) To establish the frequencies with which the various selected ‘event codes’ occur
within the vectors.

(b) To determine if those frequencies are uniform over different physical regions of the
prints — and, if they are not, to determine the extent of the variation.

(c) To determine how often ridge event codes appear in dependent pairs.

7.9.2 Frequency analysis : results.

152 prints were coded according to the scheme described above (para 7.7). All
of those prints were ulnar loops from right hand fingers. No selection was made on the
basis of ridge-count, or of any other characteristics. Analysis of the generated vectors by
computer yielded the following results :—

(a) Length of vectors: ignoring the padding (‘F’s), the average number of digit pairs
from the left hand side of the core was 18.7 (maximum 20, minimum 14). On the
right hand side of the core the mean length was 15.2 pairs (maximum 20, minimum
10). These figures give an indication of how many ridges were intersected by the
generating line within the confines of the central rectangle (0.78" by 0.71").

(b) Dependent pairs: Altogether the code ‘2’ appeared 1078 times. Of those appear
ances it was accompanied by a code ‘4’ in the dependent position in 63.5% of cases.
Conversely code ‘4’ appeared 1111 times and had an accompanying dependent ‘2’
61.7% of the time. Code ‘6’ appeared 1235 times, with a dependent ‘8’ in 60.7%
of cases. Code ‘8’ appeared 1241 times, with a dependent ‘6’ in 60.4% of cases.

(c) Global frequencies: Figure 31 shows the global frequencies of the various event
codes. (‘Global’ here means without any breakdown into different physical regions
of the print.)

Figure 32 shows those frequencies divided into two classes — looking upwards from
the generating line and looking downwards. That division shows up significant variations
— the most obvious being the frequency with which ridges run ‘out of sight’ (code “0”).
It is 8.1% when exploring upwards, and 38.8% when exploring downwards.

More detailed analysis was performed for four distinct physical areas of the print:
appendix A deals with the ridges on the left of the core, looking downwards; appendix B
with those same ridges but looking upwards. Appendix C deals with ridges on the right of

59

Code.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Total

Meaning (summary)

Runs out of sight
. . . Not allocated
Meets bifurcation (left fork)
Ridge ends
Meets bifurcation (right fork)
. . . Not allocated
Faces ridge-ending (on left)
Ridge bifurcates ahead
Faces ridge-ending (on right)
. . . Not allocated
Runs into scarred area
Runs into unclear area
Meets compound
. . . Not allocated
. . . Not allocated
. . . Not allocated

Frequency Percentage

2415 23.5
0 0.0

1078 10.5
1676 16.3
1111 10.8

0 0.0
1235 12.0
1280 12.4
1241 12.1

0 0.0
93 0.9

123 1.2
38 0.4
0 0.0
0 0.0
0 0.0

10290 100.0

Figure 31. Global code frequencies.

Code.
Frequency

Upwards Downwards Code.
Percentage

Upwards Downwards
0 419 1996 0 8.1 38.8
1 0 0 1 0.0 0.0
2 707 371 2 13.7 7.2
3 906 770 3 17.6 15.0
4 719 392 4 14.0 7.6
5 0 0 5 0.0 0.0
6 703 532 6 13.7 10.3
7 816 464 7 15.9 9.0
8 725 516 8 14.1 10.0
9 0 0 9 0.0 0.0
A 47 46 A 0.9 0.9
B 74 49 B 1.4 1.0
C 29 9 C 0.6 0.2
D 0 0 D 0.0 0.0
E 0 0 E 0.0 0.0
F 0 0 F 0.0 0.0

Total 5145 5145 Total 100.0 100.0

Figure 32. Upwards and downwards code frequencies.

60

the core, looking upwards and appendix D with the same ridges, looking downwards. In
each case the ridges were divided up into 4 separate ridge-bands (using numbering from
the core outwards). The upper table in each of the figures is a simple frequency ‘count’ —
and the lower table is the expression of those counts as a percentage of the total number
of times that a code (rather than an ‘F’) was found in that ridge band.

7.9.3 Frequency analysis : conclusions.

Detailed scrutiny of these tables can be interesting. For instance one observes, in
appendix A, the peaking of the incidence of facing ridge-endings (codes ‘6’ and ‘8’) when
looking downwards from the generating line on the left hand side of the core. This occurs
in ridge-bands 6-10 and 11-15. The physical interpretation of this is the high incidence of
ridges which run from the area of the delta and which end as they approach the area of
the core. Also notice that the frequency of the code ‘0’ varies from 85.8% (appendix D,
ridge-band 16-20) to just 1.2% (appendix C, ridge-band 1-5).

There is only one general and important conclusion to be drawn from these results
and it is this: variation of code frequencies over different areas of the print is so marked
that it will be impossible to construct one single global frequency chart (or a derived global
scoring system) that bears any meaningful relationship to actual code frequencies. The
two directions (upwards and downwards) need to be distinguished in any scoring system,
as do the different ridge-bands.

7.10 Anticipated problems in vector comparison.

There are various types of change that should be expected to occur between topo
logical vector codes representing successive impressions of the same finger. Some have
already been touched upon.

There are four principal causes of change :—

(a) Topological mutation : the changing of characteristic types from bifurcation to
ridge-ending and vice versa (as explained in para. 7.6). This change will alter
some digits from one vector to the other. However its effect will be local to one or
two ridges.

(b) Core misplacement : the core may be placed or interpreted differently, especially if
the two impressions are coded by different operators. Such core misplacement will
produce shifting of the entire vector either to the left or to the right. For example,
a misplacement by two ridges to the right, will produce a shift of the entire vector
by two digit-pairs to the left.

(c) ‘Subsidiary’ (or ‘incipient’) ridges: appearance or disappearance of these extra
ridges between principal ridges will, if they intersect the generating line, cause

61

introduction or deletion of one digit pair — and a resulting shift of all digit pairs
outside (i.e. further from the centre).

(d) Line placement errors: it would be foolish to expect orientation of the horizontal
line to be exactly repeatable as it involved some subjective judgements. It also
depends to an extent on the clarity of the flexion crease in the print. It would
be more reasonable to expect it to be repeatable within, say, 20°. (In fact, when
substantial numbers of mated prints had been coded using this scheme it was
found that line orientation differed by less than 5° in 73% of pairs, by 5°-10° in
21% of pairs, by 10°-15° in 5% of pairs, and by over 20° in only 1% of pairs.) If
the line is drawn to pass the wrong side of a ridge-ending or bifurcation, then the
number of ridges intersected by the generating line will change (from 1 to 2 or vice
versa in the case of a bifurcation, and from 0 to 1 or vice versa in the case of a
ridge-ending). Exactly the same effect will be produced if plastic distortion of the
print causes some characteristics to move from one side of the generating line to
the other.

Any comparison algorithm must be capable of recognising similarity between two vectors
whilst allowing for any or all of these types of change. Most importantly, the combined
effect of several different, but superimposed, substring shifts must be catered for in the
formulation of any score (or other indication of closeness) when two vectors are compared.

7.11 Description of databases.

The evaluation of various matching algorithms has to be conducted by testing
them on various databases. This is a brief description of the preparation and use of the
early databases :—

The first database (hereafter called ‘TESTSET.l’) comprised 100 mated pairs of
coded ulnar loops. All were taken from right hand fingers. All were manually encoded from
FBI record cards — and the encoding processes, and data entry steps, were all checked for
accuracy. One hundred fingers were selected where two different impressions of that finger
were available. In every case the two impressions had been taken by different officials,
with the intervening time lapse varying from a few days to 9 years (and with an average
of 2.2 years.). Relatively clear prints (i.e. ones that were not badly smudged) were chosen
to give maximum information. Scarred prints were not avoided — in fact several badly
scarred prints were included in TESTSET.l.

The prints were divided into an ‘A ’ set and a ‘B’ set. Each of the 100 prints in the
‘A ’ set had a mate in the ‘B’ set. (Mate print or matching print are useful brief ways of
saying ‘a different impression from the same finger’ .) Each impression is identified by its
set (i.e.‘A ’ or ‘B’), by its card number (representing the owner of the finger in question),
and by its finger number (nos. 1-10; fingers 1-5 are on the right hand, 6-10 on the left.
Numbers 1 and 6 are the thumbs.) Each of these 200 prints was traced and coded, and
the resulting vectors also referred to by these same indices (e.g. Card 32 A, finger 3).

62

In each test the ‘B ’ set of vectors would be used as the file set as if they were an
established fingerprint collection. The ‘A ’ set would be treated as search enquiries, being
taken one at a time and compared with every one of the ‘B! set in turn. ‘A ’ set vectors
were never compared with other ‘A ’ set vectors; nor ‘B’s with other ‘B’s.

Each experimental algorithm test using TESTSET.l therefore involved ten thou
sand vector comparisons — of which 100 were matches and the other 9900 were mismatches.

63

CHAPTER 8.

DESCRIPTION OF BASIC M ATCHING ALGORITHM.

8.1 Relationship between the various matching algorithms.

What follows here is a description of the original vector comparison algorithm. It
served well as a basis on which to build all later improvements. A proper understanding
of each of the distinct stages of this algorithm will act as a framework within which to
understand all subsequent developments.

The algorithm described in para 8.2 is, in some particulars, comparatively crude:
it is, nevertheless, surprisingly effective. It is called ‘MATCHl’ , and will be referred to as
such.

8.2 Description of M ATC H l.

There are seven distinct phases to this algorithm; two are preliminary and five
form the actual comparison process. Each will be described in turn.

8.2.1 Preliminary stage 1 — fileset analysis.

Suppose that the statistical analysis of para 7.9 had led to the creation of a fixed,
permanent scoring system. Suppose further that an algorithm incorporating that scoring
system had been tested against the same dataset that had been used to devise the scoring
system. Quite proper objections could then be raised as to the ‘correctness’ of scientific
procedure. Parameters derived from one set of data should not be tested against that same
set. It would seem objectionable, therefore, to use a scoring system derived from one file
set of prints on that same set of prints. Indeed so — unless that was to be the approach
taken in practice.

There is no reason at all why an operational fingerprint system should not periodi
cally re-evaluate its scoring system in the light of the information (prints) currently stored
within its memory. In fact one would expect any ‘intelligent’ system to do just that. The
frequency with which such réévaluations should take place would depend on the rate of
change of the collection’s size and content. As the collection became larger the various
code frequencies would tend, asymptotically, towards certain stable limits. Those limits
would correspond to the natural distribution (i.e. over all fingerprints) of code frequencies.
Consequently once the collection had attained a certain size (i.e. large enough) periodic
réévaluation of the scoring system would become unnecessary.

64

Fileset analysis is the first preliminary operation conducted by MATCHl before
any individual vector comparisons are made. The analysis is of the fileset alone (the ‘B’
set) with no knowledge of the search enquiries (the ‘A ’ set) being assumed. The vectors
stored within the fileset are of length 82 digits, representing up to 41 ridges. No specific
distinction is made hereafter between ridges that fall to the left of the core and those that
fall to the right of it: rather the 82 ridges (in order, from left to right) are divided up into
ridge bands.

The ridge-band width for this analysis is to be a parameter of the programme.
(It was ‘5’ when the tables in appendices A-D were produced.) Let us suppose that this
parameter (which will be called ‘BANDWIDTH’) is set at 5. Then, with vectors of length
82 digits, derived from 41 ridge intersection points, there will be 9 ridge bands. (These
cover ridges 1-5, 6-10, 11-15, .. . 36-40, and 41-45 respectively. Ridges 42-45 do not
‘exist’ , and so the ninth ridge band only contains the last (41st) pair of digits in each
vector.)

Each ridge band is to be analysed separately, as are the two directions (upwards
and downwards from the horizontal line). Simple code frequency analysis conducted on
all the vectors stored in the fileset ultimately yields a real matrix P, of three dimensions
thus :

3 = 0,15
k = 1,9
1 = 1,2

j represents one of the hexadecimal ‘event’ codes.
k is the ridge-band number (numbered from left to right).
/ shows one of two ‘directions’ .

(/ = 1 for ‘upwards’: i.e.first digit of a pair.)
(1 = 2 for ‘downwards’ : i.e.2nd digit of a pair.)

The combination of any value of k with a value of l specifies one of 18 possible
‘ridge areas’ . P{j ,k , l) is the proportion of codes in the (A:,/) ridge area that had the
value j .

Clearly 0 < P(j ,k, l) < 1 for all (j , k , l). Also P[j ,k, l) = 1.0, for any fixed
pair (k,l).

8.2.2 Preliminary stage 2 — setting up the score-reference matrix.

From the three dimensional frequency matrix P, a four dimensional Score-reference
matrix, S, is constructed. S is to be regarded as a ‘look-up table’ of initial scores to be
awarded during the vector comparison process.

A score S[i, j ,k, l) will be awarded initially when code i appears in the search
vector opposite code j in the file vector, in corresponding (digit) positions which fall in
the (A;,/) ridge area.

65

That score S(i, j ,k,l) is an indication of the value of such a coincidence in indi
cating that the search and file vectors under comparison are matched. It could also be
regarded as a measure of the unlikelihood of that coincidence occurring by chance had the
file vector been selected completely at random from the population of ‘all fingerprints’ .

The calculation of the matrix S is done according to these rules :—

(a) For each i,j, k, l such that i = j and i , j G {0, 2, 3,4,6,7,8, C} then

S{iJ,k, l) = min(BOUND, ¡ ^ ¡ j)

where BOUND is another parameter — it is an imposed upper bound on the values
taken by elements of the matrix S.

These elements of S are the ‘exact match’ scores.

(b) For all i , j ,k, l such that at least one of i and j is either 10, 11 or 12 (i.e. hexadec
imal A, B or C), except for the case i = j = 12, then

S(i , j ,k , l) = 1.0

These elements of S represent all the appearances (either in the file vector or in
the search vector) of the codes for scarred or unclear areas, and for compounds.
The reason for allocation of a score of 1.0 will become apparent in para 8.2.5.

(c) Paragraph 7.5 described the phenomenon of topological mutation and related this
to the selection of event codes. The pairs of codes {(2, 3), (3,4), (6, 7), (7,8)} can
be regarded as ‘close matches’ as they could be observed in corresponding positions
within mated vectors as a result of such topological mutations.

Consequently if the comparison algorithm is to recognise close matches as indi
cations of a possible match (albeit not as strong an indication of this as exact
matches would be) that policy can be effected by allocating positive values to the
subset of S defined :

\S(i, j ,k, l) such that the unordered pair (i,j) belongs to the set of unordered
pairs {(2 ,3),(3 ,4),(6 ,7),(7 ,8)}}.

This set of elements within S are hereafter called the close match scores. For any
particular (k,l) they will appear as entries in the {i,j) table which are just off the
leading diagonal. The entries of the leading diagonal itself are the exact match
scores.

(d) For all i , j ,k, l not covered by one of the rules (a), (b) or (c) above :

k,l) = 0

66

The matrix S (when there are 9 ridge bands) could be regarded as 18 different
comparison tables each one of which might typically appear as shown below. (Here the
close match scores have been set to 2 and an upper bound of 15 applied. Also the exact
match scores have been rounded to the nearest integer for ease of presentation.)

3

0 1 2 3 4 5 6 7 8 9 A B c D E F

0 2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 8 2 0 0 0 0 0 0 1 1 1 0 0 0
3 0 0 2 9 2 0 0 0 0 0 1 1 1 0 0 0
4 0 0 0 2 7 0 0 0 0 0 1 1 1 0 0 0
5 0 0 0 0 0 15 0 0 0 0 1 1 1 0 0 0
6 0 0 0 0 0 0 10 2 0 0 1 1 1 0 0 0
7 0 0 0 0 0 0 2 11 2 0 1 1 1 0 0 0
8 0 0 0 0 0 0 0 2 9 0 1 1 1 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0
B 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0
C 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table of S(i , j ,k , l) for a fixed (k,l) with upper bound 15
and close match scores 2.

8.2.3 Comparison stage 1 — formation of file and search matrices.

The vector comparison process itself begins with a file vector (B(i) : i = 1,82), a
search vector (A(i) : i — 1,82) and the established score reference matrix S.

An important parameter not yet introduced is “MAXSHIFT” . MAXSHIFT is the
maximum number of ridge shifts (either to left or right) that is to be anticipated by the
comparison algorithm. Such shifts are likely to have occurred as a result of the types of
distortion described in para 7.10 subparas (b), (c) and (d).

Let us suppose that up to 5 ridge shifts should be anticipated (i.e. MAXSHIFT=5).
Then comparison of vector A with vector B will need to allow for relative shifting by up
to five digit-pairs. This is accomplished by use of standard array processing techniques as
follows :

(a) The search vector A is used to construct the search matrix “C” . C will have 82
columns and the number of rows will be given by [(2 xMAXSHIFT) + 1]. Each

67

row will be a copy of the vector A, but the copy will be progressively shifted to
the left or right by from 0 to MAXSHIFT digit pairs. The central row will be an
exact copy of A. The top (first) row will show A shifted 5 digit pairs to the left;
the second row .. .4 digit pairs to the left; the bottom row .. .5 digit pairs to the
right. Some digits of A may be ‘lost’ off the ends of some of the rows — and gaps
caused by the shifting are padded with pairs of ‘F’s. Such a search matrix can be
seen in figure 33.

(b) The file vector B is used to create a file matrix, D, of identical dimensions to C. It
is formed by faithful duplication of the vector B, without shifting, the appropriate
number of times. Every row of D is an exact copy of the vector B. No padding
is needed, and no digits are lost from row ends. Figure 33 also shows such a file
matrix.

8.2.4 Comparison stage 2 — comparison of file and search matrices.

The search and file matrices, C and D, are then compared element by element,
and the initial score matrix is formed as the result. The initial score matrix will be called
E. E has the same dimensions as C and D.

For each value of r and s the element E(r,s) depends only on C(r, s) and D(r,s).
Each element E(r,s) is evaluated by ‘looking up’ C(r,s) and D(r,s) in the score reference
matrix S :

E(r,s) = S(i , j ,k , l) where i = C(r,s)
j = D(r, s)
(k,l) are determined by s.

k and l are picked, for each s, to represent the ‘ridge-area’ to which the ‘s’th
element of a vector would belong. Thus k will increase from 1 to 9 as s varies from 1 to
82, and l will be 1 if s is odd, 2 if s is even. In other words C(r, s) and D(r,s) are ‘ looked
up’ in the ‘book’ of comparison tables called ‘S’ . The values (k,l) are evaluated (from s)
just to make sure that the appropriate table is ‘looked up’ .

8.2.5 Properties of the initial score matrix.

The feature of the initial score matrix E that begins to suggest whether or not
vectors A and B are a matching pair is the presence (or absence) of horizontal strings of
non-zero scores. Such a string within one row of E represents similarly placed rows within
matrices C and D that were similar, or identical. Such strings, in turn, represent parts
of the vectors A and B that were similar or identical. Where a high scoring continuously
non-zero string occurs in the central row of E then vectors A and B are probably mates,
and are correctly aligned. If such a high scoring string appears in one of the other rows of

68

Figure 33. A
 search m

atrix, C
, file m

atrix, D
 and

initial score m
atrix, E

.

S E A R C H S E R I E S (V E C T O R) I S :
F F 70 30 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6

F I L E S E R I E S (V E C T O R) I S :
F F F E 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6

S E A R C H M A T R I X I S : -

30 3 0 3 0 3 0 8 0 6 6 3 8 8 6 6 8 3 6 3 6 4 8 2 6
6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6 6 8 3 6 3 6 48
8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6 6 8 3 6 3 6
3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6 6 8 3 6
70 3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6 6 8
FE 7 0 3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8 8 6
F F E E 7 0 3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6 3 8
F F F F F F 7 0 3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0 6 6
F F F F F F F F 7 0 3 0 8 0 6 0 3 0 3 0 3 0 3 0 8 0
F F F F F F F F F F 7 0 3 0 8 0 6 0 3 0 3 0 3 0 3 0
F F F F F F F F F F F F 7 0 3 0 8 0 6 0 3 0 3 0 30

(N O T E : T H I S I S A H E X A D E C I M A L , S I N G L E - D
(DO NOT B E C O N F U S E D B Y J U X T A P O S I T I O N .)

F I L E M A T R I X I S

F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6
F F F F 3 0 8 0 6 0 6 0 3 0 4 0 3 0 7 0 3 6 3 8 8 6

(N O T E : T H I S I S A H E X A D E C I M A L . S I N G L E - D
(D O NOT B E C O N F U S E D B Y J U X T A P O S I T I O N .)

I N I T I A L S C O R E M A T R I X I S

0 0 0 0 51 01 01 C 0 40 0 0 0 0 0 0 4 4 0 5 0 4
0 0 0 0 51 01 01 0 2 0 0 0 0 0 0 0 0 4 4 4 0 0 0
0 0 0 0 51 01 01 0 2 0 2 0 0 4 0 0 0 0 0 4 0 0 4
0 0 0 0 01 01 01 0 2 4 2 0 2 0 0 0 0 0 4 0 5 0 4
0 0 0 0 01 01 01 0 2 4 2 0 2 0 2 0 0 4 0 0 0 0 0
0 0 0 0 51 71 81 0 2 4 2 0 2 4 2 0 2 0 4 4 5 F 4
0 0 0 0 01 01 01 C 2 42 0 2 4 2 0 2 0 0 0 0 0 0
0 0 0 0 0 0 01 01 0 2 0 2 0 2 4 2 0 2 4 0 0 0 0 4
0 0 0 0 0 0 0 0 01 0 2 0 2 0 2 4 2 0 2 4 0 4 0 F 0
0 0 0 0 0 0 0 0 0 0 0 2 42 0 2 0 2 0 2 4 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 4 0 4 0 0 0

(N O T E : T H I S I S A H E X A D E C I M A L , S I N G L E - D
(D O NOT B E C O N F U S E D B Y J U X T A P O S I T I O N .)

68 36 36 48 26 0 8 8 7 32 64 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 30 8 0 6 3 37 20 B 0 F F F F F F F F F F

4 8 3 6 3 6 48 27 0 7 8 7 3 2 6 4 7 0 8 2 6 4 34 8 6 6 8 7 3 6 3 30 8 0 60 36 B 8 B 0 0 0 F F F F F F F F

0 8 87 3 2 64 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 30 8 0 6 3 3 7 2 0 B 0 F
26 0 8 8 7 32 64 8 0 8 2 64 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 3 7 20 B0 F F F F F F F F F F F F F F F F F F
48 26 0 8 8 7 32 6 4 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 3 7 20 B 0 FF F F F F F F F F F F F F F F
36 48 26 0 8 87 3 2 64 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 3 7 2 0 8 0 F F F F F F F F F F F F F F
36 3 6 48 26 0 8 8 7 32 64 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 37 20 6 0 F F F F F F F F F F F F
68 3 6 36 4 8 2 6 0 8 8 7 32 6 4 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 37 2 0 B 0 F F F F F F F F F F
86 68 36 36 48 2 6 0 8 8 7 3 2 64 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 30 8 0 63 3 7 20 B 0 F F F F F F F F
3 8 8 6 68 36 36 4 8 26 0 8 8 7 32 6 4 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 80 6 3 37 2 0 B 0 F F F F F F
6 6 3 8 8 6 68 36 3 6 48 2 6 0 8 8 7 32 6 4 8 0 82 6 4 3 3 8 6 8 8 6 3 6 3 30 8 0 6 3 3 7 20 B 0 F F F F
8 0 6 6 3 8 8 6 6 8 3 6 3 6 4 8 26 0 8 8 7 32 6 4 8 0 8 2 6 4 3 3 8 6 8 8 6 3 6 3 3 0 8 0 6 3 3 7 20 B 0 F F
3 0 8 0 66 3 8 8 6 6 8 3 6 3 6 4 8 26 0 8 8 7 32 6 4 8 0 8 2 6 4 3 3 8 6 8 8 63 6 3 30 8 0 6 3 3 7 2 0 8 0

G I T M AT R]I X .)

4 8 3 6 36 4 8 27 0 7 8 7 32 64 7 0 8 2 6 4 3 4 8 6 6 8 73 6 3 30 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
48 3 6 3 6 48 2 7 0 7 8 7 3 2 6 4 70 8 2 64 3 4 8 6 6 8 7 3 6 3 30 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
4 8 3 6 3 6 4 8 2 7 0 7 8 7 3 2 6 4 70 82 6 4 3 4 8 6 6 8 7 3 6 3 30 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
4 8 36 3 6 4 8 2 7 0 7 8 7 32 6 4 70 8 2 6 4 3 4 8 6 6 8 7 3 6 3 3 0 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
4 8 36 3 6 4 8 27 0 7 8 7 32 6 4 70 8 2 6 4 34 8 6 6 8 7 3 6 3 3 0 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
4 8 36 3 6 4 8 27 0 7 8 7 32 6 4 70 82 6 4 3 4 8 6 6 8 7 3 6 3 30 8 0 6 0 36 B 8 B 0 0 0 F F F F FF F F
48 3 6 3 6 48 2 7 0 7 8 7 32 64 7 0 82 6 4 3 4 86 6 8 7 3 6 3 3 0 8 0 60 36 B 8 B 0 0 0 F F F F F F F F
48 36 36 48 2 7 0 7 8 7 32 6 4 70 8 2 6 4 3 4 86 6 8 73 6 3 30 8 0 60 36 B 8 B 0 0 0 F F F F F F F F
4 8 3 6 36 4 8 27 0 7 8 7 3 2 6 4 70 8 2 6 4 3 4 8 6 6 8 73 6 3 30 8 0 6 0 36 B 8 B 0 0 0 F F F F F F F F
48 36 3 6 4 8 27 0 7 8 7 3 2 6 4 70 8 2 6 4 34 8 6 6 8 7 3 6 3 30 8 0 60 3 6 B 8 B 0 0 0 F F F F F F F F
48 3 6 36 4 8 27 0 7 8 7 32 6 4 70 82 6 4 34 8 6 6 8 7 3 6 3 30 8 0 60 36 B8 B 0 0 0 F F F F F F F F

G I T M AT R]IX .)

0 5 0 0 50 0 0 0 0 0 0 0 0 D0 0 0 0 0 0 0 60 D0 5 0 5 0 0 0 0 0 12 0
0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 5 0 6 0 0 0 0 0 0 0 0 6 0 0 0 2 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 4 0 0 0 0 0 0 0 0 A0 0 5 6 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 6 A0 01 1 1 00 0 0 0 0 0 0 00 0 0 0 0 0 0
0 0 0 0 0 7 0 8 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 01 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 44 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 6 0 0 0 2 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 44 57 5 8 4 0 E0 A 5 D5 6 5 0 5 5 5 6 5 D0 5 F 0 F 0 6 5 6 A2 91 70 70 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 5 6 00 01 01 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0
05 0 4 01 00 1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 4 0 0 7 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 5 6 5 0 0 5 0 5 0 0 6 0 0 0 0 0 0 7 0 70 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 5 5 0 0 0 0 0 0 6 0 0 9 0 70 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 7 0 8 0 0 0 0 0 0 D0 0 0 0 0 0 0 0 0 D0 0 0 0 0 0 0 5 0 A0 9 0 0 0 0 0 1 0 1 1 01 0 0 0 0 0 0 0 0

G I T M A T R I X .)

E, then A and B were probably mates, but incorrectly aligned (i.e. there had been some
shifting error).

If, on the other hand, the matrix E appears to be a random scattering of scores
with no discernible concentrations of non-zero scores, then it is likely that A and B were
not mates. Figure 33 shows a typical initial score matrix which, in this case, has come
from a mated pair of vectors.(For demonstration purposes, and to facilitate writing down
this matrix, all the elements of E have been rounded to the nearest integer and written as
hexadecimal digits. Otherwise display would be exceedingly cumbersome.)

The task facing the remainder of the algorithm is to calculate a single score which
will show whether significant strings are present in the matrix E, or not — and thus provide
an indication of whether A and B are mated vectors.

The methods used to do this are based on the idea of multiplying together all
the digits of each continuously non-zero horizontal string within E. Remember that the
scores allocated (S(r, s)) for each exact match (when C(r, s) = D(r,s)) were measures of
the unlikelihood of such coincidence occurring by chance. Consequently the product of a
continuous series is a measure of the unlikelihood of that whole series occurring by chance.
Typically non-matches are unlikely to display any continuously non-zero series of length
greater than 6 digits. Matches can produce such series of lengths up to 50 or 60 digits.

Anticipation of this ‘multiplying together’ was the origin of the rules used in setting
up the score matrix S. The significance of scores of 1.0 (rule (b) in para 8.2.2) is that their
appearances within the initial score matrix E do nothing to the product of a series, but
they do preserve its continuity. Thus, appearance of scars, or inability to determine what
does happen first during ridge exploration, is not given any significance in indicating a
match — but it is not allowed to break up an otherwise continuous non-zero sequence
that would be indicative of a match. Hence the 1.0 allocation to any comparison involving
codes ‘A ’ or ‘B’ . Comparisons involving code ‘C’ were also allocated scores of 1.0, because
true compounds are very rare and what normally appears as a compound is usually an
ambiguous characteristic of some other sort.

8.2.6 Comparison stage 3 — filtering for dependent pairs.

As explained in para 7.8 the repetition (from the search vector to the file vector) of
a dependent pair of digits is less significant in indicating a possible match than independent
repetitions of those two codes would have been. There may then be scores E(r,s) and
E(r, s + 2) within the matrix E that form part of a continuously non-zero series, but whose
appearance stems from repetition of a dependent pair of codes. Whenever such scores
occur, their product [E(r, s) X E(r, s + 2)] is more weighty than is appropriate in view of
that dependence.

The matrix E is therefore filtered, and the filtered score matrix (F) created. F
has exactly the same dimensions as E, D and C. The filtering step involves a reduction of

70

scores stemming from repetitions of dependent code-pairs. It is accomplished by reference
to the matrices C and D (to identify exactly where such pairs appeared in both).

The rule for score reduction is wherever E(r,s) and E(r,s + 2) are exact-match
scores derived from a dependent pair then :

F(r,s) — min {E(r,s),E(r,s + 2))
F(r,s + 2) = 2.0

Elsewhere F(r,s) = E(r,s).

This reduction of scores gives a more reasonable weighting to the scores derived
from dependent pairs, in the light of the results of the analysis on pair dependency given
in para 7.9.2 (b). The step typically reduces about 2 entries per row of the matrix E.

8.2.7 Comparison stage 4 — condensing digit pairs to a single score.

Careful examination of a large number of filtered score matrices derived from mated
vector pairs revealed that the fairly long continuously non-zero strings were not the most
telling feature of the matrices; as well as revealing these completely non-zero strings they
also exhibited much longer mostly non-zero strings. These longer strings, even though they
were interrupted by isolated zeros, seemed to be a better indication of match or mismatch
by their presence or absence.

Often one digit of a pair (e.g. the 2nd digit) would be positive for several successive
digit pairs, while the other digit of each pair scored zero. This will happen whenever the
ridge pattern on one side of the generating line is well preserved, whilst being corrupted
on the other side.

Prior to product evaluation the matrix F is therefore condensed into a matrix G
(which has the same number of rows, but only half as many columns) in a manner which
moves the emphasis onto the much longer mostly non-zero strings.

The condensing rule applied in MATCHl is :

{0 if F(r, 2s — 1) and F(r,2s) are both zero;
Maximum(F(r,2s — l),F (r,2s)) if one, and only one, is non-zero;

F(r, 2s - 1) x F(r,2s) if both are non-zero.

Thus isolated zeros cease to break up the long series that result from mated vectors.
The products of these long series from matches are expected to far outweigh the products
of any continuously non-zero series which occur by chance (i.e. from a vector mismatch).

A condensed matrix from a mismatch is shown in figure 34 (once again the integer
equivalent is displayed for ease of presentation). Note that there are no non-zero horizontal
strings of length greater than 4.

71

F
IL

T
E

R
E

D

S
C

O
R

E

l î Q ^ ^ ® Q © ©
Q Q Q Q S) O C) G) Q (j) 0
(5 G) Q G> ® © © © Gi O ®
<Q ^ Q ® G) G9 © Q ®

Q © © Q © © © © © © ©
© © © © © © © © © © ©

© © © © © © © © © © ©
© © © © © © © © © © ©

© © © © © © © © © © ©
G) G G I G S 5) G I S G > S S

S G i G > G S M S G 5 9 G G
© © © © © © © © © © ©

© © © © © © © © © © ©
© G l O S G S G S G l S S

© © © © © © © © © © ©

© © © © © © © © © © ©
© © © © © © © © © © ©

© v— *— © © •— *— © © © ©
© *— © G S O l G O G O i O l

C N C N ® ® < N < N ® ® © ® ®
*“ © < © © < © © © © <
< N © © < N C N ® ® ® ® ® ®
Li. © © © © © © © © © ©

® (0 ® ® (D © ® ® (0 ® ®

< 0 ® ®(0 (0®®< f i ®® ®

® ® ® ® ® ® ® m ® ® m

® ® ® ® ® ® ® (N ® ® (N
© © © © © © © © ® ® ®

© ® ® ® ® ® i D ® ® m ®
(o m ® ® ® t n ® ® © ® ®
© Ll. © © © ® © © © © Li.
® c N i n ® © f N i r > ® ® m ©
l i © © © © © © © © Li. ©
© © © © © © © © © © ©

(N © © ® ® ® ® ® ® (N ®
© © © © © © © © © © ©

© © ® © © © Li. © ® ® ©
© © © © © © © © [/) © ©

© © U. ® ® ® ® © © © ©
® ® © © © © © ® C N ® ®

® ® ® © l O © © ® ® ® ©
< < ® ® < ® ® ® © ® ®
Ll. © © © © © © © © © ©
< © © < © © © © © © <
rs © © © © © © © © © ©
®in®©s>©inu-)®®u~)
© ® ® © © © © © © © ©
® ® ® ® ® ® © Ll. ® ® Li.

(O ® ® ® ® © ® ® ® © ®
©©©©*■**•©©*■©©
© © © © © © © © © © ©
© © © © © © Lu © © 11 ©

© © © © © © © © © © ©
® © ® © ® Ll. ® © U. © ©

• « T ® ® - * ® ^ ® ® ® ® ®
© ’t f -*-®©^’ ®®*-^- ' *-
C N ^ - ® < N © < N © ® ® ® ©
- i - - *-®®*-®®*-*- -«-*-
® © ® © ® © © © © © ©© © © © © © © © © © IP
© © © © © © © © © © ©
® © ® ® ® © ® ® © © ®
© C D ® ® ® ® ® ® ® ® ®
® ® ® ® ® ® ® ® ® ® ®
C D ® ® ® ® ® ® ® ® ® ®
® © © ® ® ® ® ® ® ® ®
© © © © © © © © © © ©
® ® ® ® ® ® ® ® ® ® ®
© © © © © © © © © © ©
® © © ® © © © i p © © ©

--*-*-*-*-*-*- © © ©
© © © © © © © © © © ©

* - ® ® ® ®
© © ® ® ® ® ® ® ® © ®

•• *— *— •— T— © © © © ©
m m s s i n ® © © ® ® ®
» - » - - - » ■ * * © ® ® ® © ® © © N © ® ® ® © © © ©

© CD O CD ® © © © © © ip

© © © © © © © © © © ©
© ® ® © ® ® © © © ® ©
© © © ® © ® ® ® © © ©
© © ® © © © © © ® © ©

© ® ® ® ® ® ® ® © © ©
® © © © © ® © © © © ©

© © ® ® ® © © © i p i p ^

®»- * - ©©©* - ©®0 >0 >

< N C M ® ® (N ® ® ® ® ® ®
* - CN * -

® ® ® (N CN © ® ® © ® ®
® (0 ® ® (0 (D ® © © ® ®

(D ® ® (O I O ® ® I O ® ® Q

® ® ® ® ® ® ® i O ® ® l O

® © ® ® ® ® © C M © ® C N

l o i n s s s m i o s i o i o ®

® © i n © © (N i n © ® m m
* -

i n ® ® ® ® ® ® ® ® m ®

(N ® ® © ® © © ® © (N © X

CL
® ® ® ® ® ® m ® t n ® ® *—

r - <
2

® ® m ® ® ® ® ® C N ® ®
*- c>

Ld
® ® ® ® ® ® ® © ® ® ® CO
— — lO z

UJ
© © © © © ® © © © ® © o
if) — «- z
*— o

-—- r ^ i r) ® ® ® ® m m ® ® L n o Ld
CL

X o
•—< ® ® ® ® ® ® ® i n ® ® m o
CL z CO

•—1 r - o> »- r *
< © © © © * * ■ © © * ■ © © 1 C C O O -
2 o CN © CD

CO z CN
h- ® © ® ® ® ® m ® ® m ® a . 3 < *—

UJ o ►-
o o u . o
« ® © © ® © m ® © m ® ® Ld H*
Q ^ h- CO
1 • Z t -

UJ Z » o
- i O 3
o — o
Z h- © © © C N ^ C M © ' * * - ' * - * - < o

• i—1 2 a :
co co >— CL ©

O ® © ® ® ® © © © © © © O ©
* 0 . Ld o CO

- i < Q z Id •—
< h- © © © © © © © © © © © — o — © <£>
2 X Ll. a . z fO —
— 3 o t— Ld
O -5 © » — © f f i ® © © © ® © © CO CL
LlJ X l CL
o >- 1 «— to 3
< CD ♦— © © © © © © © © © © o : 3 O
X h~ O O
Ld Q CO < 3 o
I Ld ►— © © © © © © © © I P I P © 2 Z

CO
< 3 X < *-

U. © © © © © © © © © © © Z
CO z cl . CO o CO
- o » u X •—

u < H-
CO 2 CO u . o UJ
— UJ «— o z - c j n >«■ a :
X CD Q I Ld o
h- Ld (— CO _ J o

t— CO CO
•• O z l O l D T - T - m ^ © ® ® ® ® CO o

Ld r Ld Ld >- z —i
►— O t— _J — <
o o Z C”» * — *— ® © © ® ® © o < CL h-
Z Q o z z »— o
N- 'N—' o < CO »—

Figure 34. A filtered score matrix, F, condensed matrix, G
and final score evaluation.

72

8.2.8 Comparison stage 5 — product calculation and score formulation.

Formulating a score from the condensed matrix G provides a further variety of
options. MATCHl calculates the product of each continuously non-zero string, and then
sums those products for all strings detected in G. Derivation of final score from the con
densed matrix is also shown in figure 34.

8.3.1 Performance of M ATCH l.

At this stage there are two obvious ‘performance indicators’ for a comparison
algorithm available after each test :

(a) The percentage of ‘mates’ ranked 1st. (abbreviated to “M Rl” hereafter). A mate
is ranked 1st if, for a given search vector, its mate vector (in the fileset) scored
higher than any other vectors in the fileset.

(b) The lowest rank obtained by a mate (hereafter “LMR”).

Both of these have some practical significance. Conducting a search enquiry against
a file collection on a computerised system should, hopefully, throw out the mate as the
top score — if not top then it should be close to the top in order that little or no manual
checking is required to identify it. The number of mates ranked first, and the lowest rank
obtained by a mate are clearly crucial questions in determining the efficiency of the system
as a labour saving device.

When MATCHl was run on TESTSETl (the 100 pairs of ulnar loops) with these
parameter values :—

BOUND = 50.0 (Upper bound on exact match scores)
MAXSHIFT = 5 (Maximum number of ridge-shifts anticipated)
CLOSE MATCH SCORES = 1
BANDWIDTH = 5 (Ridge band width for frequency analysis)

the results were : MRl = 90% (No. of mates ranked in first place.)
: LMR = 25 (lowest mate rank.)

To appreciate the nature of the scores produced by MATCHl it is worth pointing
out that the highest mate score achieved was in the order of 1043. The lowest mate score
was 3.9 x 105. Most mate scores lay between 1015 and 1025. The range of the mismatch
scores was from 100 to 1013, with most around 104.

8.3.2 Parameter variation.

The performance was improved with adjustment of the parameters. The best

73

results for MATCHl on TESTSETl were :

Parameters: Performance:
BOUND = 15.0 MR1 = 95%
MAXSHIFT = 2 LMR = 8.
BANDWIDTH = 2
CLOSE MATCH SCORES = 0

A complete table of parameters/performance for MATCHl is given in appendix E.

8.3.3 Conclusions.

The fact that the parameters given in para 8.3.2 should give the best results is
quite revealing :

(a) That MAXSHIFT = 2 gives better performance than MAXSHIFT=5 suggests that
ridge-shifting errors had not been too severe.

(b) Use of a smaller ridge band width (2, rather than 5) produces 21 different ridge
bands (rather than 9). The degree of variation of code frequencies over these ridge
bands can be seen in appendix F. (This is part of the programme output which
shows the ‘exact-match’ scores within the score reference matrix S after the fileset
analysis. The table displays only the exact match scores (i.e. for which
i = j .) and could be imagined to be a diagonal slice out of the S matrix. The
presence of the two tables is a consequence of the two ‘directions’ (/ = 1 or 2).)

(c) Reducing the close match scores to zero aided performance. This is somewhat
surprising — but shows that the predominant effect of allowing for topological
mutation in the scoring system is to boost mismatch scores.

The overall performance of MATCHl is encouraging. Any “MR1” value greater
than 90% is very good. (See chapter 11 for comparison with a matching algorithm based
on the traditional ‘spatial’ approach.)

8.4 Series length / density experiment.

Examination of some of the higher scoring mismatches, in detail, showed that when
mismatches achieved high scores it was often as a result of very long strings of relatively
low scores (notably containing a lot of ‘ l ’s).

In order to find out if a string ‘score-density’ test could be used to aid discern
ment between matches and mismatches, statistical analysis of the products from strings
of different lengths was conducted — both for matches and mismatches — and the results

74

compared. The mean product yielded by a string of length n in the case of matches only
varied significantly from the equivalent mean for mismatches when n exceeded 6. Therefore
for all values of n from 6 to 41 (the greatest series length possible in a condensed matrix)
cutoff scores M n were evaluated such that a product less than Mn, from a string of length
n, was significantly less likely to have come from a match than from a mismatch.

MATCHl was adapted to implement these cutoff values for all values of n greater
than 6 — the rule being applied was that any product from a series of length n which
scored less than M n was ignored (i.e. it was not added into the final score).

The performance of MATCHl with such a score-density test incorporated was no
improvement: in fact it was worse than before. Consequently score-density testing was
rejected, for the time being, as an aid to differentiating between matches and mismatches.
The details of the series-length analysis and calculation of cutoff points are not included
here.

75

CHAPTER 9.

ALGORITHM DEVELOPMENTS: MATCH2 and MATCH3.

9.1 Need for new performance measures.

Testing MATCH1 with different parameter sets produced a variation in perfor
mance, as described in para 8.3. That variation in performance was signalled by the two
performance measures in use at this stage, namely —

M Rl — Percentage of mates ranked first. LMR — Lowest mate rank.

These measures would have been quite efficient in showing changes in performance
had the original performance been much worse. If early tests had given MRl values of
40% or so, then a change in the algorithm that raises MRl to 65% is quite clearly a
significant improvement. However, with MRl already at 95% it is questionable whether
future adaptations can be properly assessed by, say, a change in MRl to 97%. Such a
small increment in MRl is quite probably not significant statistically.

Moreover LMR can be changed dramatically by a programme alteration that just
happens to boost the one match score on which the worst ranking depended. Such a change
could be sheer fluke — from which one could not reasonably infer that performance on a
much larger collection would be improved by that particular amendment.

For algorithms producing MRl values greater than 90%, changes in MRl and LMR
actually depend on very few of the 10,000 comparisons done in each test. They depend only
on the lowest match scores, and on the highest few mismatch scores. They are inadequate
bases from which to draw meaningful conclusions about the value, or otherwise, of various
algorithm adaptations.

9.2.1 Desirable basis for performance measures.

The most reliable performance indicators to use on data from necessarily limited
tests would take into account a large part of the available data — if not all of it. In
considering match and mismatch scores the points of critical interest, however, are the
right hand tail of the mismatch score distribution and the left hand tail of the match score
distribution. Especially important is the extent of their overlap, and this will only concern
relatively few data points (hopefully).

The proper way out of this apparent dilemma is to base performance measures on
deductions about the behaviour of the tails that can be made from the whole observed

76

distributions. Such deductions can only be made if the natures (shapes) of the underlying
distributions are known. (We are assuming that mismatch scores are from a population
of independent identically distributed random variables. The same assumption is made
about match scores.) If the shapes of these distributions are known then predictions about
the behaviour of the tails and their overlap can be made with some degree of confidence.

For these reasons significant efforts have gone into the study of the distributions
of match and mismatch scores. Most interesting is the question whether the match and
mismatch score distributions are examples of probability density functions that are already
known and understood. If they are, then percentiles and other details of the tails can be
read from tables, or calculated. If they are not ‘pdf’s with which we are familiar, then
study of the distributions may not, ultimately, be much help.

9.2.2 MATCH1 : Match and mismatch score distributions.

Each test with MATCHl on TESTSETl produced 100 match scores and 9900
mismatch scores. The match scores can be presumed to be independent of each other, but
there is certainly a degree of dependence within the mismatch scores as they are derived
from a total of just 200 different prints.

The vast range of scores from MATCHl (from 102 to 1043) would make nonsense
of any attempt to plot histograms or density functions — and so the exponents alone were
used for this purpose. [In effect each score was re-expressed as its logarithm (base 10).]

Histograms of the logarithms (base 10) of the match and mismatch scores from
MATCHl are shown in figure 35.

The histograms were then converted into density functions and attempts made
to fit known pdf’s to the plot. The most likely known pdf’s (judging by the shape of
the histograms and raw density plots) were the gamma, lognormal and Weibull distribu
tions. Of these three a lognormal was found to give a fairly good approximation to the
observed mismatch score distribution — but no reasonable fit was found for the match
score distribution.

The best lognormal fit for the observed mismatch score distribution is shown in
figure 36. Sadly the right hand tail (which is the crucial area) is the part of the distribution
most badly fitted. Figure 36 shows an enlarged section of the right hand tail.

Fortunately one of the earliest amendments to MATCHl (the score-normalisation
procedures described in para 9.4.3) altered the mismatch scores in such a way that a
lognormal curve became a handsomely good fit (as was later confirmed by use of the ‘Chi-
square goodness of fit’ test). However it still did not improve the situation for match
scores.

Even where familiar probability density functions could not be fitted, behaviour

77

HISTOGRAM OF LOGS OF MISMATCH SCORES (SAMPLE SIZE 1000)

LOGS OF SCORES OF MISMATCHES

HISTOGRAM OF LOGS OF MATCH SCORES (SAMPLE SIZE 100)

Figure 35. Histograms of logio of match and mismatch scores from MATCH1

78

-c
o

z
m

c
o

m
a

j-
n

<
 H

H
l/

iï
d

lt
J

<

 H
 w

 <
- 1

-i
 W

 J
>
W

 O
 3
0
"0

<

H
M

ÏI
2

|I
|D

<

 H
 m

 r
 m

 W
 I
>

a>
 O

 3
0

T)
LOGNORMAL FIT FOR MISMATCH SCORE DISTRIBUTION

LOG (BASE 10) OF TOTAL SCORE

Figure 36. Lognormal fitting for mismatch score distribution with blown
up portion showing the badly fitting right hand tail.

79

u
>

:z
m

o
-c

-i
H

H
t—

t-
ic

o
i>

oo
o

/O
 t

j
<

 h
m

u
)

im
o

<

 h
m

 r
 h

 o
o

j>
 c

o
o

 *
j u

in the tails of score distributions could be estimated by use of non-parametric density
estimation techniques37 ; a non-parametric density function can be derived from the
observations by summing a series of small kernel distributions centred on each observed
value. The sum of the kernel functions approximates the underlying distribution. Practical
use of this technique would be laborious — and its value in drawing inferences from just
100 observations would depend somewhat on a fairly arbitrary choice of kernel shape.
Use of this technique might have been essential nevertheless had not the mismatch scores
behaved ‘nicely’ in turning out to be lognormally distributed.

9.3.1 Performance measures adopted.

The performance measures eventually used to evaluate changes in the matching
algorithms were :—

(a) MR1 and LMR as already described.

(b) Minimum total error (MTE) — see para 9.3.2

(c) The percentage of observed match scores exceeding the 99th percentile of the
lognormal distribution that best fitted the observed mismatch score distribution
(P99) — see para 9.3.3.

(d) The percentage of observed match scores exceeding the 99.9th percentile of the
fitted lognormal mismatch distribution (P999) — see para 9.3.3.

9.3.2 Minimum total error (MTE).

Operational computerised fingerprint comparison schemes often employ a threshold
score; for a given search print, any fileprint scoring above the threshold in comparison is
considered a likely candidate to be a true mate of the search print. Normally any file print
scoring below the threshold would not be examined.

Such a system has two types of error — namely ‘substitution’ and ‘rejection’ errors
(known variously as type 1 and 2 errors, or as ‘false drops’ and ‘misses’ in the fingerprint
world). Substitution errors occur when a mismatch score exceeds the threshold. Rejection
errors occur when the true mate scores below the threshold.

For each test run with any particular matching algorithm we can define the per
centage substitution error to be the observed percentage of mismatches which scored above
a given threshold value. Likewise define the percentage rejection error to be the percent
age of match scores below it. These two percentages will vary as the threshold score is
altered. The minimum total error is defined as the minimum value taken by the sum of
the percentage substitution error and percentage rejection errors — as the threshold score
varies over the whole possible range.

80

The optimum cutoff point is the threshold score for which the minimum total error
is achieved. The optimum cutoff point corresponds exactly to the point at which the match
and mismatch score density functions cross. See figure 37 for a pictorial representation of
this.

Figure 37. Theoretical match and mismatch curves showing
optimum cut-off and minimum total error.

It is important to remember that minimum total error (MTE) is calculated from
the observed match and mismatch scores only — not from any fitted probability density
functions.

9.3.3 P99 and P999.

These are based on the lognormal probability density function best fitting the
observed mismatch scores. They still depend on the raw match scores, however, as no
curve has fitted the match score distribution with any degree of reliability in the tails.

P99 and P999 are the observed percentage of match scores that exceed the 99th
and 99.9th percentiles, respectively, of the lognormal curve fitted to the observed mismatch
scores.

These two measures do, once again, have some practical significance for an op
erational system: there may well be a specified upper limit on the number of possible
‘candidates’ that can be manually examined for any one search enquiry (due to constraints

81

on time and labour). Suppose one was not prepared to examine more than one print per
thousand in the collection. Then the threshold would have to be set as least as high as
the 99.9th percentile of the mismatch score distribution. Then the point of concern be
comes the proportion of matches that will be missed by selecting such a threshold score.
P999 represents the percentage of matches that would not have been missed, had such a
threshold been set during the particular test run.

Higher percentiles would be relevant to larger collections (i.e. the 99.99th and
99.999th percentiles) but to use these experimentally would be to stretch the reliability of
the lognormal fitting beyond reasonable limits.

9.4 Description of MATCH2 improvements.

MATCH2 used the same basic techniques as MATCHl, but several important
modifications were made. (They are described in paras 9.4.1 to 9.4.4.)

9.4.1 Array operations made integer addition.

It was clear from the results of MATCHl tests that it made better sense to use
the logarithms of scores produced than the raw scores themselves. It would also make
very good computing sense if all the array operations that involved multiplication of real
numbers could be transformed into additive operations on integers.

All this good sense is realised in MATCH2 by the use of ‘log-based’ integers in
the array operation stages of the comparison algorithm (i.e. from the initial score matrix
onwards). Product evaluation is to be replaced by summation. It is a far quicker and
simpler approach.

The particular details required to effect this change are :

(a) In the score reference matrix S the exact match scores [S(i,j,k,l) : i — j] are now
defined thus :

S(i , j : k,l) =minimum (BOUND , INT [10 x — log 10P(j,k,l)])

where INT[...] means the integer part of [...]. The factor 10 appears to avoid all the exact
match scores being either 0 or 1. The inclusion of this factor gives a reasonable spread
of exact match scores, based on code frequencies, despite the integer rounding. Typically
these scores range from 1 to 15 or so.

(b) In the score reference matrix S all entries that were 1.0 are now changed to zero.

(c) In the score reference matrix S all entries that were zero are now set to an arbitrary
negative number (-1) which will be recognised as ‘no score’ by the algorithm.

82

(d) The condensing step rules are appropriately altered to add the two digits together,
or to take the non-negative one if only one is non-negative.

(e) Evaluation of any string product now becomes evaluation of the string sum. The
ends of strings are marked by negative entries rather than by zeros.

9.4.2 Final score evaluation.

Final score evaluation is made dependent on the single highest-scoring series in
the condensed matrix rather than on the sum of all the different string products. The
best series invariably scored so much higher than all the others that it rendered them
almost insignificant. Ignoring strings other than the best one is most unlikely to affect
mate rankings at all. (It also obviates the need to take antilogs, add, and then reconvert
to logs.)

The final score thus obtained is already logarithmic in nature. It is left in that
form (i.e. the antilog is not taken) in order that the score distributions can be plotted and
analysed as already described.

9.4.3 Score normalisation procedure.

Examination of the lower match scores from MATCH1 showed that they were
often produced when the search prints had been of relatively low quality: some were badly
scarred (producing many ‘A ’s in their vectors) and others were not clear in parts (producing
many ‘B’s). With high proportions of ‘A ’s and ‘B’s present — and perhaps with a high
proportion of ridges running ‘out of sight’ — large scores were just not possible, even if
that vector had been faithfully reproduced within the file set.

The intention of score-normalisation was to adjust scores from each comparison ac
cording to the amount of, or lack of, good information in the search print. The justification
for such a procedure lies in this argument: if a search vector contains little information
and a large part of it is found in a file vector, then this may be just as significant (in
indicating a possible match) as had the search vector had plenty of information, only a
little of which had appeared in the file vector. A mediocre score from a poor print is better
than a mediocre score from a good print.

How then can the quantity of information in a search vector be measured? The
method used in MATCH2 was to compare the search vector with itself (using the matching
algorithm) and see what score was obtained. That score is a very meaningful indication
of the quality (i.e. rarity) and quantity of information in the search vector. It represents
the sum of one continuous string in the condensed matrix which covers the whole length
of the search vector. It is, for that vector, the perfect score. It is the maximum that could
possibly be achieved by any file set vector compared to it.

83

All subsequent comparisons of that search vector with fileset vectors have their
final scores expressed as a percentage of that perfect score. Scores thus normalised appear
as real numbers in the range 0 to 100. Real numbers are only used at this very last stage
of the comparison process. The raw score (before normalisation) was an integer.

This normalisation cannot, of course, alter any rankings as all scores for any one
search vector are expressed as percentages of the same perfect score.

A notable effect of the change, however, is that it does make the overall distribution
of mismatch scores appear to be genuinely lognormal. Figure 38 shows a lognormal curve
superimposed on a raw density function of mismatch scores from MATCH2. This change
(in the shape of the mismatch distribution) gives a good basis for use, hereafter, of the
performance measures P99 and P999.

pR
0BA
BIl
IT
YDEN
SIT
V

Figure 38. Lognormal fit for the mismatch scores from MATCH2.

9.4.4 ‘Hopping’ in the condensed matrix.

Final score evaluation in MATCH2 depends on the single highest-scoring series
found within the condensed matrix. One possible effect of this is that some matches may
have produced very long strings which were broken up by isolated negative entries or
ridge-shifts.

These string breaks may have occurred as a result of two topological mutations
(one on either side of the generating line) that just happened to affect the same ridge; that
would cause an isolated negative entry in an otherwise continuously non-negative string in

84

the condensed matrix. Alternatively ridge-shifting (with its variety of causes) may have
occurred; this will break the string as a result of inclusion or deletion of a digit pair from
one of the vectors under comparison. The result will be that part of the string in the
condensed matrix is displaced either to the row above, or to the row below (as shown in
figure 39).

. -1 1 -1 -1 -1 1 2 -1 -1 0 0 -1 -1 -1 0 .. .

. 0 2 5 6 -1 -1 2 -1 0 0 -1 0 -1 -1 -1 .. .

. 75 30 50 10 5 6 45 30 5 3 -1 0 -1 -1 -1 .. .

. - 1 10 -1 -1 -1 3 0 -1 2 -1 -1 26 75 30 11 ...
1 0 3 4 -1 -1 2 1 0 -1 -1 -1 0 0 -1 ...

Figure 39. Part of a condensed matrix showing a suitable ‘hopping’ place.

An intelligent algorithm would recognise this phenomenon, and would be able to
put these broken strings back together again (i.e. to evaluate their sums as if they had not
been broken). To this end a hopping section is introduced to the algorithm after formation
of the condensed matrix, but before final score evaluation. A parameter “HOPS” is used,
which indicates the maximum number of breaks which can be overlooked in evaluation of
any one series score.

The score evaluation will then find the highest scoring string that can be found in
the condensed matrix if up to HOPS number of breaks (of specified kind) can be ignored
in each string.

The parameter is called “HOPS” because, in effect, the programme is allowed to
hop from the right hand end of a series onto another point where that string is thought to
be continuing. The permissible hops in the condensed matrix G are from any point g(r,s)
to any one of these three points :—

(a) g{r, s + 2): this simply bypasses an isolated negative element in an otherwise
continuously non-negative series.

(b) 9{r + 1,6 + 2) or g[r — l ,s + l): these are the hops required to repair a string break
caused by insertion or deletion of one digit pair from the search or file vector. (To
see why these particular hops are appropriate one must study the effect of ridge
shifting on the staggered search matrix C.)

These three particular hops are not the only ones that could have been allowed;
hopping from g(r, s) to either of g(r + 1,6 + 3) or g(r — 1,6 + 2) can be useful in repairing
breaks caused when the generating line passes the wrong side of a bifurcation. The selection
of the three described above, however, has been found to be the most effective selection in
aiding match scores without unnecessarily aiding mismatch scores.

85

These three different types of hop can be combined in any one string — although
compounding hops simultaneously to make longer hops is not allowed! If, for example,
HOPS = 5, then the final score should represent the sum of the highest scoring string that
can be found in the condensed matrix G, allowing up to five different hops per string, any
one of which can be of any one of the three types described.

The calculation of such scores is accomplished by a further series of simple array
operations. They are not described here. It is worth pointing out that the number of
operations required for this step increases linearly with the value of HOPS, and not expo
nentially as might have been expected. In the algorithm for MATCH2 the hopping section
is one single iterative loop, which is repeated HOPS times. It is bypassed whenever HOPS
is set at zero.

9.5.1 MATCH2 performance on loops.

MATCH2 was run on TESTSETl with a variety of different parameter sets. A
table of results is shown in appendix G. (It includes tests run on other sets of data.)

Particular observations that can be made from the results are :—

(a) That MRl was highest when HOPS = 0 i.e when no hopping was allowed (95%
in first place on test 1).

(b) That LMR was lowest (i.e. best) with HOPS = 1 (lowest mate rank was 3 on
test 2).

(c) That more than one hop seemed to worsen the results by boosting mismatch scores
too much (presumably joining up bits of disconnected noise into high-scoring se
ries).

(d) That the rankings for MATCH2 in test 1 were not significantly different from
those for MATCHl in test 6. This shows that the conversion from real number
multiplication to log-based integer addition preserved the discriminating power of
the algorithm — moreover that use of the highest scoring series only, as opposed
to summing all the products, had little practical effect.

(e) That the four different performance indicators (MTE, P99, P999 and MRl) are
fairly consistent (with each other) in their appraisal of performance.

[Tests were also conducted with a variety of different condensing rules — i.e. rules
for forming the condensed matrix from the filtered score matrix. None were found that
gave better results than the rule originally adopted, and so it was retained.]

86

9.5.2 M ATCH2 performance with whorls.

TESTSET2 comprised core-centred vectors from 53 pairs of mated whorls — and
it had the same form as TESTSETl. The precise location of the ‘core’ of the whorl was
determined by a simple adaptation of the rules used for loops. A sample whorl tracing
generated during the coding process is shown in figure 40.

Figure 40. Sample tracing of whorl generated during coding process.

The performance of MATCH2 when applied to TESTSET2 was very similar to
its performance with loops (TESTSETl). Again some of the performance measures sug
gested the best value for HOPS was 1, others suggested the best value was 0. (Refer to
appendix G.)

All but one of the mates were ranked 1st in every test conducted on TESTSET2.
The lowest value achieved for the minimum total error was 3.59% (which comprised 1.71%
substitution error and 1.89% rejection error around an optimum cutoff point of 15.66%).

9.5.3 M ATCH2 performance with plain arches.

A few plain arch prints were available — and 23 mated pairs were selected. These
were to form TESTSET3.

87

The method of placing a lint on an arch is quite different to that used for both
loops and whorls. There is no central reference point (such as a core). Instead the print is
oriented, once again, so that the flexion crease appears horizontal. Then a flexible line is
drawn vertically through successive summits of the ridges — as shown in figure 41. The
line starts at the lowest visible ridge above the flexion crease and follows the ‘summit’
route to the top of the available picture. The digit pairs for each ridge intersection point
were formed by looking left and right along the ridges, rather than up and down. The same
set of event codes were used. The digit pairs were ordered from the ‘bottom up’ — i.e. in
the order of the numbered intersection points shown in figure 41.

Figure 41. Sample tracing of plain arch generated during coding process.

The resulting vectors varied in length, and were padded up to the standard length
of 82 digits (with ‘FF’s). On this occasion, however, the padding was a single-ended
operation rather than double-ended, because the vector was not generated around any
fixed central reference point (as the vectors for loops and whorls had been).

Because of this lack of any central referencing a larger value for the parameter
MAXSHIFT is anticipated — as comparative ridge shifting of the whole vector (caused by
changes in the starting point of the generating line) may well be more severe.

The performance of MATCH2 on TESTSET3 is shown in appendix G (tests 13—
17). All 23 mates were ranked first when MAXSHIFT was 5 or more (tests 13 and 14)

88

indicating that relative mate-vector alignment had not been ‘out’ by more than five ridges
in any case.

Again the various performance measures favour either HOPS=0 or HOPS=l.

9.6 Description of MATCH3 improvements.

The score normalisation procedure described in para 9.4.3 adjusted each compar
ison score by reference to the amount of information contained in the search vector. That
amount of information was determined by self-matching the search vector to give a ‘per
fect’ score; subsequent comparison scores involving that search vector were expressed as a
percentage of that perfect score.

The one thing that such a score normalisation scheme clearly fails to do is to take
account of the amount of information in the file vector.

MATCH3 was an attempt to redress the balance, and to include a second correction
factor based on the file vector. The amount of information in the file vector was measured
just as it had been for the search vector in MATCH2 — by self-matching. This meant
that another preliminary stage, to be executed before any search vectors were processed,
was introduced to the algorithm. This preliminary step was to self-match each file vector
in turn and record the perfect score obtained in each case. (This would not need to be
done every time a search was conducted; each file vector would have its self-mate score
calculated just once when it was introduced to the collection; the self-mate score would
then be stored along with the file vector, and it would be referenced each time that file
vector was used in comparison. A file vector’s self-mate score would have to be recalculated
only when the scoring system, for that file, was reappraised by a new fileset analysis.)

Suppose there were n vectors in the file — called B i . . . Bn. Suppose perfect scores
obtained for each by self-matching were called Rt, i — 1, n. Let the calculated mean of the
J?i’s be R. Suppose, further, that a particular search vector Ay gave a perfect self-match
score of Qj, and that Ay compared with Bt gave a raw score (i.e. not normalised in any
way) of Tjy.

Then the normalisation described in para 9.4.3 gave a final score of:

which is a percentage.

Tî; x 100
Q 3

Two different ways of incorporating Rt into this normalisation formula were tried.
MATCH3 version 1 used the formula :

Tij x 100 x R
Qj x Ri

89

(where the ratio of Rj to the mean file perfect score (R) is used as the second correction
factor.)

MATCH3 version 2 used the formula :

Tij x 100

\/Qj x Ri

Both these formulae give final percentage scores, although the first one is capable of pro
ducing scores over 100% (which suggests over correction). The second cannot produce
scores over 100% as cannot possibly exceed either Qj or Rt.

9.7 Performance of MATCH3 — versions 1 and 2.

The normalisation procedure used in MATCH3 version 1 seemed to overcompen
sate for print quality. It succeeded in bringing mate ranks for poor quality prints to the
top (i.e. to mate rank 1) but it also boosted some mismatch scores involving poor quality
prints so that they scored higher than matches involving good prints.

The approach used in MATCH3 version 2 seemed to be a more balanced one
altogether, and performance was improved by its use. A complete table of results using
MATCH3 versions 1 and 2 is shown in appendix H.

The best values achieved for MTE were:

3.48% on TESTSETl (Loops) — test no.3.
3.08% on TESTSET2 (Whorls) — test no.5.
1.78% on TESTSET3 (Arches) — test no.9.

With MATCH3 version 2 P999 values above 90% were achieved on all three test-
sets.

However, any algorithm improvements that would raise MR1 above 95% (i.e.put
the remaining five mate-scores into top place) had, thus far, been elusive.

90

CHAPTER 10.

THE INTRODUCTION OF DISTANCE MEASURES.

10.1 Motivation.

Despite the various improvements described in Chapter 3, designed to improve
discrimination between matches and mismatches, it was noticeable that some mismatched
pairs consistently scored high, and did so whichever matching algorithm was used.

Examination of some of these high-scoring mismatched vector pairs showed that,
on occasions, they really did have very similar sequences within them. For example here
are short sections of the vectors representing two entirely different prints from different
fingers:

Card 32, set A, finger 2 73 71 22 74 41 21 81
Card 21, set B, finger 4 73 71 23 73 41 21 83

In comparison of these two vectors these substrings scored very highly indeed
(approximately 25% of the perfect score for the search vector.)

The actual prints represented by such high scoring mismatches were scrutinised
to see if they really were so similar. Topologically speaking they were indeed very similar.
However they could easily be told apart by the very crudest of spatial measurements.

It was hoped, therefore, that incorporation of some single spatial measure into the
topological coding scheme could be used to break up these high scoring mismatch series.

Recognition of this need is, perhaps, recognition that topology alone is not quite
strong enough. Introduction of some sort of crude distance measure is not reversion to
a spatial approach — as will be seen. It is the ‘taking of a little help’ from distance
measurement to enhance the performance of a topology based system.

10.2.1 Methods of coding and recording distance.

The measuring scheme adopted is quick and simple. It gives one hexadecimal
integer as a ‘distance measure’ for each hexadecimal event-code.

The measurement was performed on the ridge tracings generated during the orig
inal coding process. The distance was measured from each ‘ridge event’ to the generating
line. The measuring was not as the crow flies but rather as the insect walks (assuming that

91

insects walk along ridges). Distances are measured along the relevant ridge from generating
line to ridge-event. A flexible ruler is therefore required for the manual operation!

The distance was measured (on the 10x enlargements) in centimetres, and was
then rounded down to the nearest integer, and an upper bound of 15 imposed. On the
actual print, therefore, the distance measures would represent the distance, measured along
ridges, from generating line to ridge-event, rounded down to the nearest millimetre. Thus
the only possible distance measures are the integers 0,1, 2 ,. .. 15.

If the ridge-event codes were any of the set 0, A or B then the corresponding dis
tance measures were set to a default value of 15. These codes 0 (‘out of sight’), A (‘scarred
tissue’) and B (‘unclear’) cannot really have meaningful distance measures associated with
them; all the other event codes can.

Restriction to hexadecimal distance measures does mean that an event code, to
gether with its distance measure, can be stored in 1 byte of memory. The storage require
ment for each print code is therefore 82 bytes.

10.2.2 The new databases.

All of the testsets were reformulated to incorporate one hexadecimal distance mea
sure for every event code in the original vector. A single print was thus represented by an
array (size 82 x 2) rather than by a vector. (The ends were padded with ‘F’s in the same
way as the vector had been.)

TESTSET4 corresponds to TESTSETl (Ulnar Loops), but with distance measures
inserted.

TESTSET5 corresponds to TESTSET2 (Whorls), but with distance measures in
serted. TESTSET5 was also expanded from 53 pairs to 100 pairs of whorls. It was found
that the coding of a single fingerprint, manually, to include the required distance measures
took approximately 12 minutes. (It had been 7 minutes without distance measures).

TESTSET6 corresponds, in the same way, to TESTSET3 (Plain arches).

10.3 The three tests to be applied.

During a print comparison (which is now an array comparison rather than a vector
comparison) the distance measures will be used in the application of three different tests.
All three tests are applied to the initial score matrix in such a way as to reduce (to -1)
any positive initial scores that the distance measure tests indicate ought to be so reduced.
This will occur if the distance measure tests show that the matched event codes (which
gave that positive value) are from ‘events’ that are not roughly in the same area (spatially)
of their respective prints.

92

These three tests are described in the next three paragraphs.

10.3.1 Absolute distance test.

Before the matching algorithm accepts an event code in a file print array as possibly
being correctly matched with an event code in the search print array — it now has to ask
not only ‘are the event codes the same ? ’, but also a number of questions relating to their
distance measures. The first is called the absolute distance test:

‘Is the distance between the generating line and the ridge-event adequately pre
served ? (i.e. is it preserved within a given tolerance)’ .

The tolerance allowed becomes a parameter of the programme and is called the
absolute distance tolerance (ADT).

10.3.2 Differential distance test.

If two events from adjacent ridges on the file print seem to match two events on
adjacent ridges on the search print (where, in each case, both events lie on the same side
of the generating line) then we should ask the question:

‘Is the difference in their distance measures adequately preserved ? ’

The tolerance allowed in this test is another parameter, called the differential
distance tolerance (DDT).

The difference between distance measures on adjacent ridges, looking in the same
direction (i.e. the same side of the generating line) is a measure of the distance between
the two events seen on those ridges — and is independent (except for rounding errors) of
the exact position of the generating line. If this differential distance is not preserved then
one, or other, of the two events cannot be correctly matched; they cannot both be right.

10.3.3 Summed distance test.

If two events on the same ridge (i.e. both halves of a digit pair) seem to be matched
from search to file print, then the sum of their distance measures should be preserved
(within certain tolerance). That sum represents the total distance, along the relevant ridge,
from one event to the other. The measures are added because the events are appearing on
opposite sides of the generating line. Again, if this sum is not preserved then one event,
or the other, is not correctly matched; they cannot both be.

The tolerance allowed in this case is called the summed distance tolerance (SDT).

93

MATCH4 incorporates these three tests into the comparison algorithm. It operates
on datasets having distance measures included. The bulk of the algorithm is completely
unaffected — operating on the topological event codes only, and ignoring the distance
measures.

The distance tests are applied as the first filtration step for the initial score matrix
E — before the filtering for dependent pairs. (See chapter 8 for the sequence of phases in
comparison.) The manner of their application (briefly) is as follows:—

10.4.1 Building these tests into the algorithm — MATCH4.

(a) Absolute distance test: every positive element, E(r,s), of the initial score matrix
E is derived by comparison of C(r, s) and D(r,s) — elements of the search and
file matrices. Each element of C now has a corresponding distance measure, as C
is composed of several staggered repetitions of the search vector A. Likewise each
element of D has a related distance measure, being derived from the file vector.

We call these related distance measures C'(r,s) and D '{r,s) respectively.

The rule for the absolute distance test is:—

If |C'(r, s) — D'(r, s)| > ADT then change E(r, s) to -1.

(b) Differential distance test: whenever E(r,s) and E(r,s + 2) are positive elements
within E then

If \(C'(r, s) — C'[r, s + 2)) — [D'(r, s) — D'(r, s + 2)) | > DDT then change one
of E(r,s) and E(r,s + 2) to -1. (Which of the two is reduced depends on other
neighbouring elements within E.)

(c) Summed distance test: whenever E(r, 2s) and E(r, 2s—1) are both positive elements
within E, then

If |(C'(r,2s) + C"(r,2s — 1)) — (D'(r,2s) + D'(r,2s — 1))| > SDT then one of
E(r, 2s) and E(r, 2s — 1) is reduced to -1. (In this case the largest of the two is
reduced.)

10.4.2 Omission of distance tests.

The algorithm was prepared so that any or all of the three distance tests could
be omitted by entering the appropriate parameter value as ‘99’ . This was an essential
provision if the effect of each test was to be evaluated. Consequently where ‘99’ appears
in the tables of results it shows that a test has not been applied.

94

10.5 Performance of MATCH4 on ulnar loops (TESTSET4).

The inclusion of these simple digital distance measures, and the related distance
tests had the most startling effect on the performance of the matching algorithm. The pre
vious ‘best performance’ on TESTSETl had been test no.3 with MATCH3 (see appendix
H) — producing performance measures:—

MTE = 3.48%
P99 = 97.0%
P999 = 91.0%
MRl = 95.0%

The best performance with MATCH4 on the same set of ulnar loops (now TEST-
SET!, with the distance measures) was that given in test no. 34 (see appendix I). This
time the performance measures indicated ‘close to perfect’ discrimination between matches
and mismatches. They were:—

MTE = 0.05%
P99 = 100%
P999 = 100%
MR1 = 100%

Appendix I gives a result summary for MATCH4 on TESTSET4. There are a
number of particular observations that should be made from this table:—

(a) From tests 1 to 5 it can be seen that all three distance tests helped performance,
and that the optimum value for all three parameters (ADT, DDT and SDT) was
1. One would expect these parameters (tolerances) to be at least 1 just because
of the effect of rounding the distance measures down to integers (see para 10.2.1).
The fact that they can be set as low as 1 without detrimental effect on mate scores
suggests that the distance measures (measuring along ridges) are surprisingly ro
bust.

(b) For all previous algorithms (MATCHl to MATCH3) it had been better policy not
to recognise ‘close matches’ — consequently close match scores had been set at -1
(or zero, in the case of MATCHl). The predominant effect of scoring positively
for possible topological mutations had been to boost mismatch scores, worsening
the discriminatory performance of the algorithm. (See para 8.3.3(c)). However,
once the distance tests are applied, results are improved by positively scoring close
matches — the optimum value for close match scores being +1. This is a positive,
but not very significant, weighting for close matches. A reasonable inference to
draw from this observation would be that any high scoring series inadvertently
formed in the score matrices of mismatches are adequately broken up by the dis
tance tests. The predominant effect of recognising, and positively scoring, possible
topological mutations now becomes that of boosting match scores — as had been

95

originally intended.

It is important to note that the mismatch score distribution produced by MATCH4
is still lognormal. (See figure 42.) It is also interesting to see just how far down the right
hand tail is the appearance of the lowest of the observed match scores (21.62). In fact with
9900 mismatch scores, and 100 match scores output from the test, a M TE value of 0.05%
means that just 5 of the 9900 mismatch scores exceeded the lowest of the match scores.

V)z
LlI
o

m<
m
oae.
a .

Figure 42. Lognormal fit for MATCH4 with lowest match score shown.

10.6 M ATCH4 performance on whorls and arches.

(a) W HORLS: MATCH4 was tested against TESTSET5 (100 pairs of whorls, with
distance measures included) and the summary of results is given in appendix J,
tests 56 — 58. Once again all 100 mates were ranked 1st, and P99 and P999 values
of 100% were obtained in tests 57 and 58. The lowest value for M TE was 0.1%
(test 57).

(b) PLAIN ARCHES: the algorithm was also applied to TESTSET6 (23 pairs of mated
plain arches) and the results summary is given in the upper portion of appendix J.
All four performance measures registered ‘perfect’ performance on this occasion —
but 23 print pairs could be said to form a significantly smaller database than one
hundred pairs. It was heartening, nevertheless, to see that (in test 54) the highest
mismatch score (of 506 observations) was 20.81 while the lowest match score (23
observations) was 27.11.

96

10.7 Use of shortened vectors — results on loops.

Tests 17 to 33 (see appendix K) used progressively less and less information from
the database TESTSET1: the purpose of the experiment was to see how rapidly perfor
mance dropped off as the print codes were pruned more and more severely, and thereby to
determine just how much information was actually needed from each single print to form
a reliable basis for identification.

The standard size of a code array in TESTSET1 was 82x2. The length (82) was
progressively shortened by symmetrical pruning (i.e. off both ends) — leaving a shorter
and shorter, but still core-centred, array. Figure 43 shows how the performance measures
MR1, P99 and P999 vary with array length. Figure 44 shows how the performance measure
MTE varies with array length.

F igu re 4 3 .

97

35

30

25

20

15

10

5

0

%

v e c t o r l e n g t h

Figure 44. Graph showing how MTE varies with vector length reduction.

It is worthwhile to note from these results that:—

(a) the array length can be reduced from 82 to 62 with virtually no worsening of the
results at all.

(b) P99 and P999 only dip below 90% at lengths 26 and 34 respectively.

(c) the percentage of mates ranked in first place (MRl) still exceeds 90% when the
length of array used is 26.

(d) the percentage of mates ranked first exceeds 50% even when the shortest arrays
(of length 6) are used.

98

CHAPTER 11.

COMPARISON OF TOPOLOGICAL AND SPATIAL APPROACHES.

11.1 Aims and method of the comparison.

A direct comparison of performance between an algorithm using the conventional
(spatial) techniques and the topology-based algorithm, MATCH4, was sought. The algo
rithm M82 was selected to represent the spatial approach, and both algorithms were run
on the same set of prints. (These were the 100 pairs of mated ulnar loops that had been
used for TESTSET4.)

The M82 algorithm is one of the most reliable spatial matching algorithms that
has been developed. It recognises, and corrects for, translational errors — and it is so
phisticated enough to apply tensor corrections for ‘stretching’ . It was developed at the
National Bureau of Standards and is used by the FBI. A full description of it is given in
the reference.38 The version of the algorithm used for the test was written in FORTRAN
and run on a VAX-ll/780. (MATCH4 was also written in FORTRAN and run on exactly
the same machine.)

The particular fingerprints comprising the selected TESTSET were read by the
FBI’s automatic scanning system — and the cartesian coordinates (x,y) of each detected
minutia, together with an angle, 6, for the ridge flow direction at each minutia, were
extracted. That data was fed into the VAX-ll/780 as the representation of the 100 pairs
of mated ulnar loops, in the form required by the M82 algorithm.

11.2 M82 and MATCH4 performance.

The M82 output scores were analysed in exactly the same way as the MATCH4
scores had been — and the performance measures used were MRl, LMR and MTE (‘Mates
ranked 1st’ , ‘Lowest mate rank’ , and ‘Minimum total error’). P99 and P999 could not be
used as a chi-square test indicated that the M82 mismatch score distribution was, most
definitely, not lognormal, and no other known pdf could be found to fit it adequately.

The performance measures were:—
MATCH4 M82

MRl 100.0% 91.0%
LMR 1 40
MTE 0.05% 6.34%

The CPU times taken (on the VAX 11/780) were respectively:—

99

MATCH4 - 16 minutes 21.23 seconds. M82 - 1 hour and 35 minutes.

These times are for the whole test. i.e. 10,000 comparisons plus some administra
tive calculations. In the case of MATCH4 only, the time given includes detailed statistical
analysis of the scores — which was always done routinely during the test. Moreover it
should be borne in mind that none of the advantages of the ‘array’ nature of the MATCH4
algorithm have been realised here; the array operations were all conducted element by
element in the VAX 11/780.

Another interesting comparison is the storage space required per print for the
two different methods. The spatial descriptions (required by the M82) fill 3 bytes per
characteristic (x,y and 6) — and up to 100 characteristics are recorded per print. The
maximum storage requirement for the minutiae information is therefore 300 bytes per
print. The 82 x 2 arrays used by MATCH4 each require exactly 82 bytes per print. They
can also be shortened to 62 bytes (see para 10.7) with no appreciable drop in reliability.

11.3 Conclusions.

It should be borne in mind that the comparative test described gave the M82 the
initial disadvantage of working from machine-read data.

It would be fair, nevertheless, to conclude from these results that a topological
basis for fingerprint coding can provide a fast, economical and extremely reliable basis
for computerised single-print comparison. Providing scanning and pattern recognition
techniques can be developed to extract this type of topological data automatically (or
even semi-automatically) then the schemes described here can provide a sound basis for
relatively inexpensive and highly efficient ten-print systems.

Investigation of techniques for use on clear rolled impressions has also led us to
a clear understanding of the behaviour of topological codes, and a good idea of which
approaches are likely to be most successful when attention is turned to latents.

100

PART III

Coding and searching
°f

fragmentary latent prints

101

CHAPTER 12.

INTRODUCTION TO THE CODING OF LATENT M ARKS.

12 .1 Introduction.

At the commencement of the work on rolled impressions it was stated (para 7.1)
that such work could be regarded as preparatory for tackling the problems of latent marks,
and that it could be expected to provide general education as to the behaviour of topological
codes under conditions not much worse than ‘ideal’ . We should consider, therefore, which
of the major lessons learnt we can expect to apply to any topological coding scheme for
latent searching. In fact there are just two such major lessons worth recalling at this
stage :—

Firstly: that the ‘placing of lines’ is a neat and efficient basis for the ordering of
topological information provided, of course, that sufficient global information is available
to determine the ‘correct’ placing.

Secondly: that the greatest power of discrimination between mates and non-mates
will be realised by algorithms that use a combination of topological and spatial information.

12.2 Problems of interpretation and system design assumptions.

It would also be prudent to remind ourselves of the special problems posed by
latent marks. Some of those problems stem directly from the physical nature of the marks
themselves — usually being chemically developed (and subsequently photographed) ver
sions of a perspiration deposit on some object that has been handled. These are :—

(a) that the image will usually lack the clarity of an inked impression.

(b) spatial distortion will be exaggerated and unpredictable as it will be dependent on
the shape of the object handled and on the direction and magnitude of pressure
exerted upon it.

(c) the surface of the object itself may well give an interference pattern superimposed
(rather ‘sub-imposed’) on the ridge detail and which needs to be filtered out from
it.

(d) the fingerprint image may well be smudged if (as is usually the case) there was a
degree of lateral movement at the moment the impression was left.

103

Figure 45. Sample latent marks. (Approx. 5x)

The sample latent marks shown in figure 45 illustrate these problems very well.

These problems sound as if they ought to be the very meat of some image en
hancement process. One could expect that two-dimensional Fourier transforms would be
used to remove the effects of lateral movement and to utilise the periodicity of the ridge
pattern in order to separate it from the background interference.

Perhaps, at some time in the future, image-enhancement techniques may be so
much improved as to render them capable of doing a reasonably good job of interpreting
latent prints; for the time being, however, they are nowhere near effective enough for this
application. Current research methods are, just now, bringing such processes close to
the point where we can rely on them to make a fairly accurate interpretation of clearly
inked rolled prints from a scanned image, and to automatically extract the positions of
characteristics from that interpretation. However the degree of success with which even
the most sophisticated systems can handle rolled impressions of poor quality is highly
questionable — and nobody seriously expects machines to be able to read latent prints
effectively without a great deal of human (interactive) assistance. (Some systems provide
for technicians to make a tracing of the latent — the tracing then being read by automatic
scanners. In this case the interpretative stage is completed in the process of making the
tracing.)

Indeed the reading of latent marks requires the very highest level of interpretative
filtering that the human brain can provide. The job of reading and searching latents is
the most difficult task asked of the fingerprint expert and is, in many organisations, the
preserve of only those technicians with the greatest amount of experience and expertise.

It is currently the case, therefore, that when minutiae data representing latent
marks are fed into an automated system (for searching against a large file collection) the

104

data are already the outcome of a human (and usually manual) interpretative process.
This ‘state-of-affairs’ is, in fact, perfectly reasonable. A latent mark is usually found by
a painstaking and thorough search of the scene of a crime by highly trained personnel.
It is then developed by a variety of means (the use of LASER being the most publicised
recent development) but always with great care — for the information content within the
mark is both scant and fragile. One could expect a similar degree of care to be exercised
in entering that information into an automated system lest any of it be lost. The whole of
the information-gathering process is a ‘once only’ process, as opposed to the comparison
against file-prints, which is a repetitive process. There is therefore very little to be gained,
and much that could be lost, by automating the latent entry process.

For these reasons the fact of manual human encoding of latent marks is an underly
ing assumption of this project. We should endeavour to ensure that any method devised for
coding a latent mark by topological means can be carried out manually by a human techni
cian both easily and quickly, and without requiring any detailed mathematical knowledge.
This requirement is met by all the coding schemes described hereafter.

Quite a different assumption pertains to file collections — namely, that automatic
file conversion (by scanners linked to processors) is a prerequisite for establishing ma
jor computerised systems. The data requirements for topological coding schemes for the
file-prints are therefore limited to those which demand little or no advance on existing
automatic-reading techniques.

12.3 Referencing and incompleteness problems.

Once the latent has been traced, or otherwise interpreted, to the best of the tech
nician’s ability some special problems remain which make significant demands on any
searching algorithm :—

(a) It may not be possible to determine the ‘pattern type’ classification of the finger
which made the mark.

(b) ‘Referencing’ or ‘registration’ of the mark to some standard orientation may not be
possible as referencing features (such as cores/deltas/creases) may not be visible.

(c) Ordering of information within a latent mark according to any standardised global
scheme will not be possible. Frequently one cannot tell precisely from which part of
the finger the latent comes, nor can one always accurately determine its orientation.

It is clear that problems (b) and (c) above render the topological schemes used
on rolled impressions wholly inappropriate and that either an unordered or a locally or
dered information system is required as a basis for topological comparisons involving latent
marks.

105

Two possible methods of coding prints for latent searching arise out of the pre
ceding chapters. Neither of them are really satisfactory as self-contained schemes (as will
be explained), but they were both important stages in the evolution of the eminently sat
isfactory solution to be described in chapter 14. It was the bridge built between these
two ideas that pointed the way firmly towards development of a ‘topological coordinate
system’ . The two foundation ideas are described in turn.

12.4 Early approaches and their drawbacks.

12.4.1 Local characteristic codes.

The idea was expressed in chapter 5 that a fingerprint could be coded topologically
by recording an unordered selection of local topological codes. Each topological code would
be a vector generated by systematic exploration from short straight lines drawn through
a characteristic, and orthogonal to the local ridge flow direction. Searching a latent mark
against a collection so coded would then be by extraction, from the latent, of a similar
vector (or vectors), followed by vector comparison of the kind well established in Part II.
Chapter 5 suggested the use of bifurcations alone as bases for local vector extraction — and
derived eleven digit codes by allowing the line to span two ridges either side of the selected
bifurcation. Such an information gathering process could be represented pictorially as in
figure 46.

There are a number of adaptations to this basic idea which would help to bring it
into line with the work of Part II, and to make it compatible with those vector comparison
algorithms already developed. They are :—

(a) that lines placed should be imagined to be offset by an infinitesimally small dis
tance, so they pass right by the bifurcation rather than through it. The reason for
this is that it gives an even number of topological exploration paths (rather than
an odd number) yielding an even number of digital codes.

(b) that the order of topological exploration shall be changed to the convention work
outwards from the core, and always look left before you look right. *

(c) that each topological event code shall have a distance measure associated with it.

Such an updated version of local bifurcation coding would provide digital ar
rays compatible with the array comparison techniques incorporated into the algorithm

* The core itself may not be visible. There are, however, very very few latent marks
where the ridge curvature does not give away a very rough location for the core (or, in
the case of an arch, an idea of the print orientation). To order these vectors correctly in
the absence of a visible core one needs only to be able to determine which is the inside
of the mark and which is the outside. On those few occasions when this is not possible a
double-entry facility would be needed to cover both possible interpretations.

106

Figure 46. Local bifurcation-based vector coding (schematic).

MATCH4. The new order for the ridge exploration event codes would be as shown in fig
ure 47. Note the slightly offset line, and the fact that the 5th exploration runs immediately
(i.e. at zero distance) into the central bifurcation where it would give digital code 7 (for
‘bifurcation ahead’).

F igure 4 7 . ‘ O ffse ttin g ’ o f gen eratin g lines.

107

If the bifurcation had faced in the opposite direction then we would choose to offset
the line to the right, as before, rather than to the left. We thus add a further convention
regarding the placing of characteristic-centred lines namely that lines based on minutiae
should be marginally offset in a clockwise direction (clockwise with respect to the assumed
position of the core) for the purpose of ordering topological information, but by a negligible
physical distance so as to make the distance from the characteristic to its line effectively
zero.

Furthermore, in the light of previous experience with topological code vectors, the
following generalisations ought to be made to this scheme :—

(a) All true characteristics should have their topological neighbourhoods coded rather
than bifurcations alone. The inclusion of ridge-endings is essential in view of the
increased frequency of bifurcation/ridge-ending mutations observed when dealing
with latent marks whose interpretation is so difficult.

(b) Vectors should not be limited in length by the span of the generating line being
set at just two ridges: rather the span should be a parameter of any comparison
algorithm.**

The principal drawback of this coding scheme is its data storage requirement. Having
accepted the desirability of using longer vectors, let us suppose a standard span of 10 ridges
was chosen: there are then 20 ridge intersection points (ten each side of the characteristic)
yielding 40 topological event codes, and forty associated hexadecimal distance measures.
The storage requirement for file collection prints is therefore 40 bytes per characteristic,
which is quite unreasonable. It is particularly unreasonable when account is taken of the
very high degree of redundancy that there would be in such a set of data. The relationship
of one characteristic to a near neighbour would be recorded many times over.

Shortening the vectors stored (by reducing the parameter SPAN) would certainly
reduce the data storage requirement but would be expected to worsen performance. Facing
such trade-offs between data storage requirements and performance is a situation that we
can, and should, avoid.

12.4.2 Series of radial lines.

The second fundamental approach to file-print coding for latent searches is a simple
extension of the line-based coding system used in Part I for rolled impressions. One single
line superimposed on the rolled print was used to generate 82-digit vectors, and the lines

** We already know that discrimination between mates and non-mates improves sub
stantially with vector length up to size 30 x 2 (i.e. 15 ridge intersection points) as can
be seen from figure 43, para 10.7. The assumption that vector comparison algorithms
would be implemented on array processors removes any concern that there might be over
increases in processing time that could result from the use of longer vectors.

108

were placed (except in the case of arches) by reference to the central core. Topological
information was thereby recorded mainly from those parts of the print close to that line,
and not from the entire print.

It is essential, in any latent scheme, that information from every part of each
fileprint be recorded in order that information from a latent mark will have some repre
sentation in the matching file-print data irrespective of which part of the finger made the
latent impression.

If a whole series of lines were drawn radially from the core, as shown in figure 48,
and vectors derived from each of them, then topological information would be recorded
from all over the print. In figure 48 the spacing of the lines has been set at 30°. Given
a latent mark one could then draw a line centrally across it at such orientation as was
deemed most likely to pass through the core (assuming the core is not visible). Then one
topological event code vector can be generated from that line according to established
conventions (i.e. working outwards, and looking left before right).

F igure 4 8 . R a d ia l line cod in g schem e.

109

Provided the radial lines on the matching file-print were sufficiently close together
one could expect some portion of one of those file vectors to be very similar to some portion
of the latent vector. The degree of similarity would depend, to a certain extent, on how
lucky one was in choosing the position for the line on the latent. If it corresponded within,
say, 5° of the position of one of the radial lines on the mate file-print then a very good vector
comparison score would result. If the latent line fell half way between the corresponding
positions of two of the file-print radial lines, and in an area of high characteristic density,
then vector comparison scores would be very poor.

Use of a greater number of radial lines (e.g. with 10° spacing) would raise latent
mate scores but would, once again, increase data requirements for file-prints to unaccept
able levels. Moreover, use of line-placement, on a latent, that is not tied either to a core or
to any visible characteristic effectively rules out the use of distance measures as a means
of enhancing the performance of topological vector comparison (except, perhaps, careful
use of summed and differential distance tests. These tests measure distance between two
characteristics not directly associated with the line placement - see para 10.3).

12.5 Ultimate objectives for file collection data storage.

The two methods described above appear cumbersome; there is neither speed nor
reliability to be obtained through their use. No substantial experiments were conducted
on either of them as the data requirements (and therefore the time taken in a manual
encoding process) were prohibitive — especially if any attempt was to be made to obtain
the maximum reliability. Consideration of their use did, however, help to formulate an
objective for the design of a workable topology-based latent scheme, namely that we should
find :—

a method for recording a complete topological description of a print (so that the
topology of any part of it can be inferred) subject to the constraint that each characteristic
be recorded once, and once only.

12.6 Sweeping-line systems.

The key to attaining the objective stated above lay in the realisation that charac
teristics could be seen as small changes in the otherwise laminar flow of the ridge pattern.
That realisation leads onto the idea that the whole topology of a print is merely the sum
mation of a series of small changes in an otherwise smooth ridge flow pattern.

For the sake of a more practical understanding of this statement suppose that a
topological code vector (of the type with which we are now familiar) had been generated
by a line placed in some particular position on a print. Now suppose that the line was
displaced by a small translation in the direction of the ridge flow so that it now passed the
other side of one characteristic (in other words — the line passed over one characteristic),

110

Figure 49. ‘Sweeping line’ system.

and a new code vector generated to represent the new line position. (See figure 49). How
would the two vectors differ? Certainly they would be very similar, and the differences
(which would all be local to the characteristic passed over) could all be deduced from
certain knowledge about that one characteristic. In order to detail those changes you
would need to know:—

(a) what type of characteristic was it, and which way was it facing?

(b) which ridge, or ridges, was it on?

(c) what can we now see (looking right along ridges) that we could not see before
by virtue of the presence of that characteristic? (i.e. we now have new ridges to
explore — two new ones in the case shown in figure 49.)

A set of rules can be built which would detail all the vector changes that are caused
by each particular type of characteristic when they are passed over by a sweeping line.

In figure 49 the new (displaced) line vector can be seen as the original line vector
‘plus’ the changes caused by passing over that characteristic. Further displacement of the
line (i.e. a continued sweep) will add further changes to the vector as other characteristics
are reached and passed over. This is a very general introduction to the basis of what could
be called ‘sweeping line systems’ .

12.7 Radial scanning.

The ‘radial scanning’ scheme is one particular case from the broader class of sweep
ing line systems. It provides a method for recording the whole topology of any sector of a
fingerprint. It has two principal determining features:—

111

(1) that a central observation point on the fingerprint is selected.

(2) that the sweeping line used is a straight one, and it scans radially as if it were
pivoted from the observation point.

Figure 50. Sample sector for radial scanning.

The similarity of such an idea with the appearance of a radar screen is quite
obvious, and may well be a helpful aid to understanding the application. To demonstrate
the use of radial scanning let us consider the 180° sector of the fingerprint shown in figure
50. (In effect this means the half of the print above the horizontal line; that part of the
print should be regarded, however, as a sector enclosed by two radial lines.) The topology
of the whole sector can be described by recording the following information:

(a) 2 boundary vectors: these are the topological code vectors generated from the
boundary radial lines.

(b) a complete listing of all of the characteristics, together with any other irregularities
in the otherwise laminar flow, that occur within the sector. Each irregularity must
be listed in a manner which shows the nature of the irregularity, the order of their
appearance, and on which ridge each one occurs.

The form of data contained in the boundary vectors can be assumed (for the
purpose of this section) to be our standard format for line-generated vectors with their

112

associated distance measures. The listing of flow irregularities, however, is quite new —
and takes the form of a coordinate set. The coordinates for each irregularity consist of

(i) a hexadecimal digital code (T) representing the type of the irregularity.

(ii) the angular coordinate (0) of the irregularity. This is sufficient to specify the order
in which they are passed over by the sweeping radial line. We will use angular
measures that increase clockwise, with 0° being coincident with the left boundary
line. Thus 6 will range from 0° to 180°, in the case of figure 50.

(iii) the ridge-count (R) between the irregularity and the central observation point.
This is sufficient to specify on which ridge it occurs.

A most valuable observation can now be made, namely that

a list of coordinate sets of the form (T,0,R) specifies the topology of a sector
uniquely.

F igure 5 1 . C h a ra cteristic -b a sed rad ia l lines.

113

That statement could be presented as a theorem, requiring proof — but it is
hardly necessary. The best proof of the assertion that the whole ridge structure can be
reconstructed unambiguously from such a set of data, is to describe the method for doing
just that. In chapter 14 appears a detailed explanation of the mechanism for topological
reconstruction from such a topological coordinate set. Such detailed description is not
included here as the purpose of this chapter is purely to recount the evolution of ideas
which led to development of topological coordinate systems.

In order to show just how closely related this coordinate system is to the two
foundation ideas described earlier (para 12.4) let us adapt figure 48 slightly. Figure 51
shows the same print with a radial line drawn marginally offset from every visible ridge
flow irregularity. The lines span the whole visible ridge structure (rather than being
limited to just a few ridges), and their spacing is determined by the angular position of
the irregularity (rather than by a fixed, regular interval). A set of coordinates of the
form (T, 6, R) can then be seen as the most economical method of recording the sequence
of changes in topological code vectors that occur between one radial line and the next.
The diagram (figure 51) bears an interesting resemblance both to figure 46, and also to
figure 48, and could be taken to be a hybrid of the two.

114

CHAPTER 13

EARLY LATENT SEARCHING ALGORITHMS.

There are two different ways of describing a chicken. The first is to describe an
egg in detail and then to trace all the changes that take place as it develops into a chicken.
The second is to describe the fully grown chicken in detail and, perhaps, make a few brief
comments about the egg just to put things in context.

In describing latent matching algorithms we shall follow the second of these two
paths. Chapter 14 is the detailed account of the fully-fledged solution, and these next
few paragraphs are intended merely as an overview of the early stages of development.
Consequently the intricacies of these algorithms are not explained here, and there may be
nagging questions in the mind of the reader as to some of the finer points of topological
reconstruction. All those questions will be answered in due course.

13.1 Latent entry by vectors.

All of the algorithms to be mentioned in this chapter have certain basic features
in common. They are: —

(a) That the entry of data from the latent mark is by way of characteristic-centred
vectors which are manually encoded from a traced image of the latent.

(b) That file-print data is entered and stored in the form outlined in paragraph 12.6
(i.e.by two boundary vectors plus topological coordinates (T,6,R) for all interven
ing characteristics and other ridge flow irregularities).

In order to perform a comparison each algorithm first topologically reconstructs
the file-print from its coordinate set, and then automatically extracts characteristic-centred
topological code vectors from its reconstruction. Vectors centred on all ‘suitable looking’
characteristics (i.e. characteristics of the right type that lie within an area of the print
which is specified at the time of latent data entry) are then compared with the latent
vector and a score is obtained in each case. The highest score obtained by an extracted
file-print vector is taken as the score for that file-print. It is assumed to be the score from
the characteristic (on the file-print) whose topological neighbourhood most closely resembles
that of the characteristic on the latent mark upon which the latent vector’s generating line
was centred.

The vector comparison itself is practically identical to that used on rolled impres
sions (i.e. as per the algorithm MATCH4).

115

13.2 Details of the latent enquiry.

Figure 52 shows the tracing of a latent mark (at 7x magnification) with a gener
ating line placed on it. The placing of the line requires some subjective judgement on the
part of the operator. Firstly a characteristic should be chosen which is fairly central on
the mark. Secondly a line should then be drawn across the ridge flow, oriented so that it
points at the assumed position of the core (or actually through the core if it is visible on
the mark), and spanning as many ridges as are considered useful in gathering information
from the latent. The line is to be marginally offset from the central characteristic, as dis
cussed in para 12.4.1. The topological code vector generated by this line is entered as the
latent enquiry vector, complete with its associated distance measures (which are manually
measured by the operator.)

Figure 52. Selected line placement on latent mark.

Also certain information about the selected central characteristic (hereafter re
ferred to as the central feature) is entered as part of the latent enquiry. Its type code is
required, as are angular and ridge count bounds within which it is deemed to lie with

116

respect to the assumed core position. (These bounds are solely for the purpose of limiting
the number of vector comparisons to be performed. If they cannot reasonably be specified
then they are ‘defaulted’ so that the whole file-print sector is searched for suitable match
ing characteristics.) A complete latent enquiry is shown at appendix L, where the data
appears on a form prepared for the purpose.

13.3 Details of the file-print coding.

The sector chosen for early experiments was a 180° sector that covered the upper
half of each file-print. (This is the part of the finger that most often appears on latent
marks.) Limiting the data recorded to a 180° sector was for convenience alone, due to the
time consuming nature of the manual coding operation.

The observation point was selected to be adjacent to the core in the case of loops
and whorls, and at the base of the upcurve (the point at which a ‘summit line’ can begin
to be seen) on arches. Figure 50 shows a typical position for the observation point and
boundary lines on a print with a central core, and Figure 53 shows a suitable placing for
these when used on a plain arch. Notice that the observation point is always placed in
a valley rather than on a ridge: this is so as to give unambiguous ridge counts in every
direction.

All of the irregularities in the sector between (in this case above) the boundary
lines are then recorded by sets of topological coordinates of the form (T,6,R). The type of
irregularity is shown by a single hexadecimal digit — and the allocation of digits is closely
related to the allocation already in use for ridge-exploration events. The list of possible
irregularities, with their hexadecimal codes is given here. The descriptions can best be
understood clearly if you think of these irregularities as being passed over by a pivoted
radial line which is sweeping in a clockwise direction.

Code 0 — ridge runs out of sight.
Code 1 — ridge comes into sight.
Code 2 — bifurcation facing anticlockwise.
Code 3 — ridge ending.
Code 4 — ridge recurves with the effect of losiny two ridges.
Code 5 — ridge recurves with the effect of gaining two ridges.
Code 6 — facing ridge ending (i.e. facing in the opposite direction to a ‘3’ .)
Code 7 — bifurcation ahead (i.e. a ‘2’ reversed).
Code A — ridge runs into scarred tissue.
Code B — ridge runs into an unclear area.
Code C — compound characteristic (2 ridges in, and 2 ridges out).
Code D — ridge emerges from scarred tissue (‘A ’ reversed).
Code E — ridge emerges from unclear area. (‘B’ reversed).

Figure 54 shows a completely artificial fingerprint pattern which just happens to
have one of each type of irregularity shown on it, spaced at 25° intervals. Radial lines are

117

Figure 53. Boundary lines and observation point
on a plain arch.

used to identify each of the irregularities with its hexadecimal code. It gives an adequate
illustration of each different type.

On the print shown in figure 50 there were a total of 77 such irregularities be
tween the boundary lines. The complete data representation of that file-print is shown
in Appendix M — there you will notice the inclusion of some numbers referred to as
distance conversion measures. These give an approximate ridge spacing wavelength at
four sample orientations (0°,60°, 120°, 180°) which enable the comparison algorithms to
convert angular information into an estimate of ridge-traced distances for the purposes of
vector comparison. You may also observe, in Appendix M, that the boundary vectors are
one-sided (as opposed to the more normal double-sided form). This is because it is only
necessary to provide the reconstruction algorithm with the parts of the boundary vectors
that represent information from outside the coordinate sector. The algorithms are quite
capable of working out for themselves what happens when ridges are traced into the sector
— as this can be deduced from the coordinate information.

118

:6

Figure 54. Irregularity types, and their codes.

13.4 The algorithm “LATENT-M ATCHER 1” (or “L M l”).

The first algorithm tested was an interactive one, in the sense that one vector
enquiry was entered at a time and immediately searched against a prepared file collection
database. It enabled experiments to be done quickly and easily to find suitable values for
the many programme parameters and to give an idea of what sort of latent enquiry vectors
worked, and which ones did not.

Several valuable lessons were learnt from its use :—

(a) It rapidly became clear that entry of a single latent enquiry vector was a most
unsatisfactory way of doing latent enquiries. Frequently the central feature upon
which the vector was centred was spurious (i.e. it did not exist on the file-print,
and had appeared on the latent tracing as a product of misinterpretation of the
latent mark) and so no characteristic-centred vector even remotely similar could
be extracted from the mate file-print data. It was found to be much more reliable
to enter two or three latent vectors per latent mark, each centred on a different
characteristic, and to combine their individual scores in formulating an overall

119

score for the latent mark’s comparison with each file-print.

(b) Inferred distance measures (see para 13.3) were unreliable, and demanded that
distance tolerances in the vector comparison stages be set much wider than was
desirable. Their use helped very little in aiding discrimination between mates and
non-mates.

(c) A 180° span for the file-prints (i.e. coding the upper half only) was inadequate.
There were several cases where the information available from the latent fell largely
outside that sector, and the latent could not be identified by the fragment of
information that lay within the sector. (Nevertheless, in the vast majority of
latent marks all, or most, of the useful information lay within the sector, and
usually towards the tip of the finger.)

13.5 Improved latent-matching algorithms.(“LM2” , “LM3” and “LM4”)

In the light of these difficulties the following alterations were made to the algorithm
LMl.

(a) To cover those cases where the latent mark was comparatively low on the finger,
it was made permissible to enter an approximated boundary vector, rather than a
characteristic-centred vector, as a latent enquiry vector. An approximated bound
ary vector was generated from a line placed at what appeared to be a horizontal
orientation on the latent, and which did not need to be centred on any visible char
acteristic. The comparison algorithm would then recognise this vector as such, and
compare it to the file-print boundary vectors rather than comparing it with any
extracted characteristic-centred vectors.

(b) Facility was built into algorithms LM2, LM3 and LM4 for several latent enquiry
vectors to be entered per latent mark. Each vector would then be first treated in
isolation, and the best matching vector score from the file-print obtained. LM2
then simply added up the individual scores to give a combined score for the latent
mark. LM3 and LM4 added the slight sophistication of combining the individual
latent vector scores if, and only if, their relative angular orientation was matched
(within specified angular tolerance) by the relative angular orientation of the file-
print characteristics upon which the high scoring extracted vectors were centred.
That procedure tended to prevent the combination of ‘fluke’ scores from non-mates.

(c) Distance tolerances were treated linearly (i.e. greater tolerance was allowed for
greater distances) rather than absolutely.

(d) LM4 allowed a different set of distance tolerances to be used in vector comparisons
involving boundary vectors than those used in comparing characteristic-centred
vectors. The boundary vectors always required greater distance tolerances due to
the uncertainty in the positioning of their generating lines.

120

Each of these modifications appeared to improve performance somewhat — and it
was time to get some idea of the overall discriminatory power of the algorithm.

13.6 Testing algorithm performance.

A collection of 56 latent marks (of varying quality) was provided by the FBI.
All of these were interpreted and traced using the ‘Graphic Pen’ (see para 7.7). Latent
enquiry vectors were extracted from each tracing using a degree of subjective judgement
as to selection of central features, and the latent enquiries formed together into a single
database. The mate file-prints (rolled impressions taken from standard FBI ten-print
cards) of the 56 marks, together with 44 other randomly selected prints were all traced
and coded according to the scheme already described (para 13.3) to give a database of 100
file-prints.

Batch tests were then run, in which each latent search enquiry was compared with
each of the 100 file-prints, and a score obtained in every case. For each latent enquiry
the file-prints were then ranked according to score, and the position of the mate in the
list was noted (the mate rank). Performance was then measured by the percentage of
mates that were ranked in first place (which is the performance measure ‘MR1’ described
in para 8.3.1). Attention was also paid to the number of mates that were ranked in the
top three places (‘MR3’) and in the top ten places (‘MR10’).

As performance for latent marks is clearly very much worse than it was for clear
rolled impressions, it is unnecessary to use the kind of sophisticated performance measures
developed in Part II. The indicators M Rl, MR3 and MR10 provide an adequate picture
of comparative performance — and will continue to do so until such time as MRl exceeds
90% .

In order to get some feeling for what levels of performance are desirable, the
same set of latent marks and the same set of 100 file-prints were encoded in the traditional
coordinate form for use with spatial matching algorithms. Once again the Graphic pen was
used, and the data entered from the same interpretative tracings as were used for extraction
of the topological information. Thus the performance of spatial matching algorithms could
be measured on precisely the same dataset. * The best performance by the M82 matcher
(see para 11.2) gave the following rankings :—

MRl — 26.8%
MR3 — 37.5%
MR10 — 48.2%

* Latent marks vary so greatly in quality that it is not possible to quote meaningful
performance statistics without reference to a specific set of latent marks. In this case, not
only is the same set of prints used, but the same interpretation of those prints was used
for the testing of both the topological and spatial matching algorithms.

121

A series of tests was conducted, both with LM3 and with LM4, to try to tune the
various algorithm parameters. Complete tables of the test results are given in appendices
N and O. The best results achieved (by LM4 in test number 39) gave the rankings

MRl — 58.93%
MR3 — 67.86%
MR10 — 83.93%

This clearly represents a fairly substantial improvement on the level of performance given
by the spatial approach. Special significance can be given to the raising of MRl from
26.8% to 58.93% as it is the mates ranked in first place that tend to have scores way clear
of the field and they are the only ones which would be likely to be correctly identified
irrespective of the size of the file collection. Those mates that do not come in top place
in a collection of size one hundred are most unlikely to come even in the top fifty places if
the file collection were of size one million.

13.7 Latent enquiry by vector: shortcomings.

Despite its fairly impressive performance there remained something inherently ob
jectionable about the method of latent enquiry by manual extraction of vectors. The pro
cess of selecting central features on which to base the enquiry vectors was too subjective:
success or failure of any particular vector enquiry depended very heavily on the reliability
of its central feature — and vectors based on spurious latent characteristics (those that
arose from false interpretation of the mark) invariably scored abysmally against the mate
file-print.

An analysis of the 23 latents (out of 56) that had their mates ranked in a position
other than first (in test no.39 on LM4) revealed the following

(a) in three cases — the central feature selected was spurious.

(b) in two cases — the central feature was in an unclear portion of the file print and
so apparently did not exist.

(c) in two cases — an unclear area of the file print lay close to the central feature
chosen, thus reducing vector comparison scores dramatically.

(d) in three cases — the central feature selected on the latent corresponded to a feature
below the boundary lines on the mate file-print, and thus could not be correctly
matched.

In at least 10 cases out of 23, therefore, the failure was directly attributable to
unlucky (or unwise) central feature selections. In all of these ten cases there were other
characteristics visible on the latent which would have served much better as centres for
topological coding.

122

The sensible deduction from such observations is that it is unwise to base a com
plete latent search on a small number of extracted vectors. Presumably the greater the
number of vectors entered, the greater the chances are of limiting the effects of unlucky cen
tral feature selection. The ideal policy might well be to enter every possible characteristic-
centred vector that can be obtained from the mark; that means one vector per visible
characteristic. The obvious difficulty with that proposal is the resulting complexity and
tedium of the manual data extraction process.

The next step forward now becomes very clear: we must enter latent enquiry data
in the highly economical topological coordinate form, and allow the comparison algorithm
to do all the work involved in extracting the required vectors. The treatment of the latent
mark data will then be virtually identical to the treatment already being given to the
file-print data. Topological reconstruction of both prints (latent and file-print) becomes
the essential preliminary for comparison based on characteristic-centred vectors.

123

CHAPTER 14.

LATENT SEARCHING: TOPOLOGICAL COORDINATE SYSTEMS.

The problems caused by unfortunate choice of central feature have shown the need
for latent enquiry data to be less selective and less subjective. The most desirable latent
data form is therefore a complete and objective description of the latent tracing. The
tracing process itself still is, and always will be, substantially subjective — but it ought to
be the last stage requiring subjective judgement. A set of topological coordinates of the
form (T, 0,72), (showing type, angular orientation and ridge-count) provides a complete
topological description, and it therefore becomes the basis for latent data entry. The latent
mark data can then be presented in much the same form as the file print data.

The manual latent data preparation process is fairly simple: first the mark is
traced (enlarged to 10x magnification). Then the position of the central observation point
is guessed by the fingerprint expert, and its position marked on the tracing. The guessed
core point position may be some way away from the ‘visible’ part of the latent. Then
the correct orientation of the mark is estimated by the expert, and the coordinates of the
characteristics, and other irregularities can then be written down.*

There are a number of very major changes in the use of topological coordinates
that have to be made in order to enhance their versatility and usefulness. These changes
are described in the following three sections.

14.1.1 The 4th coordinate.

Bearing in mind the unreliable nature of inferred distance measures (see para
13.4.b), and bearing in mind also that the topological coordinate scheme already records
angular orientation of each characteristic, it would seem to be a very sound investment
to include a 4th coordinate — namely a radial distance (D) measured from the central

* An extremely useful tool, for this operation, is a large board with a pin hole at its
centre. Around the circumference of a 7 or 8 inch circle the angular divisions are marked
(i.e. much like an oversized 360° protractor). A transparent ruler is then pivoted at the
pinhole in the centre. When the tracing has been made it is placed over the board, the
pivot pin pressed through the guessed central observation point. The tracing falls entirely
inside the protractor markings, and the ruler is long enough to reach those markings.
Radial movement of the transparent ruler (which has one central line on it) over the
tracing makes it very easy both to count the ridge-counts for each irregularity, to measure
radial distances (these are marked on the ruler in the appropriate units), and to read off
the angular orientations from the circumference of the inscribed circle.

124

observation point. The combination of angular position and radial distance (8 ,D) for each
characteristic gives a complete spatial description of the positions of the characteristics in
space. A set of coordinates of the form (T,9, R, D) therefore gives a complete topological
and spatial description of a print. It records everything that a comparison algorithm might
need to know about the positions of the characteristics and their topological relationships
to each other. The data storage requirement for such a description is a mere 4 bytes per
irregularity.

We shall record radial distances in units of 0.5mm (or 0.5cm on the 10 x enlarge
ment) and round to the nearest integer. No greater accuracy is either required or useful.
These distances then appear as integers in the range 0 to 50.**

14.1.2 Dispensing with boundary vectors.

Whatever the sector chosen for description by coordinates the boundary vectors
can be made null by pretending that all the ridges inside the sector go ‘out of sight’ just
before they reach the boundary lines. Thus the boundary lines cross no ridges and are
therefore empty. The imaginary appearance of each ridge just inside the sector can then
be recorded by coordinates. The resulting data is now pleasantly uniform and easier to
handle. Boundary vectors, in the earlier algorithms, had been something of a nuisance.

14.1.3 ‘Wrap around’ 360° sector.

The sector to be recorded can be enlarged at will by moving the radial boundary
lines, until such time as the internal angle reaches 360°. At that stage the two boundary
lines coincide and where they coincide will be called the cut. Provided our topological
reconstruction algorithm can cope with the fact that, at the cut, some ridges effectively
leave one end of the sector and reappear at the opposite end, then we can forget about
boundary lines and boundary vectors altogether.

The reconstruction algorithm will need to be told how many ridges need to be
connected up in this way — and that number (which is the number of ridges that cross
the cut) will be recorded as a part of the fingerprint data. It is convenient to specify that
the cut will be vertically below the central observation point, and that the ridges which
cross it be called moles (as they pass underneath the observation point).

The coordinate system can now be used to describe the complete topology of a
whole fingerprint.

** The type code (T) is a hexadecimal integer, the angular orientation (0) an integer
in the range 0 - 360, and the ridge count (R) an integer in the range 0 to 50. The total
storage space required for all four coordinates is, in fact, closer to 3 bytes; to be precise,
it is 25 bits.

125

14.2 Topological reconstruction from coordinate sets.

It is time to reveal the mysteries of topological reconstruction from a set of coor
dinates of the form (T ,6 , R, D). The method to be described here is certainly not the
only way it could be done — but this one does work very well, is probably as fast as any
could be, and leads directly to the point at which no further work is required to be done
in order to extract characteristic-centred vectors from the reconstruction. In fact all the
characteristic-centred code vectors can be simply lifted out of the array formed by this
method.

It will be noticed that the fourth coordinate (D) is ignored throughout this section
as it plays no part in the reconstruction process. It is used in the comparison algorithms
only after the topology has been restored.

Let us suppose that the print to be reconstructed has m moles and n topological
irregularities, whose coordinates are the set {(Tj, 6t, Rt, Di) n}.

14.2.1 The ‘continuity’ array.

This reconstruction method involves the systematic development of a large 3-
dimensional array, which will be called the ‘continuity’ array (C) comprising elements
c(i,j ,k). To understand the function of this array it is necessary, first, to examine fig
ure 55: it shows a (simplified) fingerprint pattern with selected central observation point
and the radial cut vertically downwards. A radial line from the central observation point
is drawn marginally to the clockwise side of every topological irregularity in the picture
(whether it be a true characteristic or not). If there are n irregularities (which we will call
{ / i , . . . In}, then there are n + 1 radial lines in total (this includes the cut). Calling the
cut line l0, and numbering the lines consecutively in a clockwise direction gives the set of
lines .. . ln).

Now re-order the topological coordinate set by reference to the second coordinate
[6) — so that the coordinate set satisfies the condition :—

< 6 i+\ for all i E {1 ,2 ,.. . n — 1}

There are then simple 1-1 mappings between the lines { / 1 , . . . ln}, the irregularities
{ / 1 , . . . In} and their coordinates {(Tj, 0¿, R%, Dr) : i — 1 . . . n}.

Each of the lines { /o , . . . /„ } intersect a certain number of ridges, giving an ordered
sequence of ridge intersection points. Let the number of ridges crossed by line /, be called r,.
Further, let the ridge intersection points on the line /, be called points {p(i, j) : j = 1 ,... rt}
— point p(i, 1) being the closest to the central observation point and p[i,rr) being the
closest to the edge of the visible print.

126

Figure 55. Radial irregularity-centred lines, with the
‘cut’ vertically below observation point.

The continuity array C is then set up with a direct correspondence between the
ridge intersection points p(i,j) and the elements of C, namely c(i, j ,k). k takes the values
1 to 4, and thus there is a 4 to 1 mapping of the elements

{c(i , j ,k) : i = 0 , . . . n : j = l , . . . r t : k = 1 , 2 , 3 , 4}

onto the set of ridge intersection points

{p{i, j) : i = 0 , . . .n : j = l , . . . r t}

The array C can therefore be used to record four separate pieces of information about
each of the ridge intersection points.** The meanings assigned to each element of C are
as follows :—

c(i,j , 1) — “what is the first event that topological exploration from the point p(t,j) in an
anticlockwise direction will discover?”

** The part of the matrix C which will be used for any one print is therefore irregular
in its 2nd (j) dimension.

127

c(i,j, 2) — “which of the irregularities I i , . . . I n is it that such anticlockwise exploration
will discover first?”

c(i,j, 3) — “what is the first event that topological exploration from the point p{i , j) in a
clockwise direction will discover?”

c(i,j, 4) — “which of the irregularities I \ ,. . .I n is it that such clockwise exploration will
discover first?”

c(i,j , 1) and c(i,j, 3) should, therefore, be ridge-tracing event codes in the normal
hexadecimal integer format (not to be confused with the different set of hexadecimal codes
currently being used for the irregularity type (Tt)).

c(i,j, 2) and c(i,j, 4) are integers in the range 1—n which serve as pointers to one
of the coordinate sets. They are a kind of substitute for distance measures (being associated
with c(i , j , 1) and c(i,j, 3) respectively) but they act by referring to the coordinates of the
irregularity found, rather than by giving an actual distance. They will be called irregularity
indicators in the following few sections.

14.2.2 Opening the continuity array.

To begin with, the whole of the continuity array is empty (and, in practice, all the
elements are set to -1). It will be filled out successively starting from the left hand edge
(f = 0) and working across to the right hand edge [i = n).

Starting with i — 0 (at the cut) we know only that ro = m (the number of ridges
crossing the cut is the number of moles recorded in the data.) Nothing is known (yet) about
any of these ridges. The first set of entries in the continuity array is made by assigning a
dummy number to every possible ridge exploration from the line /0.

The dummy numbers are integers in a range which cannot be confused with real
event-codes.* Each dummy number assigned is different, and the reconstruction algorithm
views them thus :

“I do not yet know what happens along this ridge — I will find out later —
meanwhile I need to be able to follow the path of this ridge segment, even before I find
out where it ends.”

This first step in filling in the continuity matrix is therefore to assign dummy
numbers to each of the elements {c(0,j ,k) : j = 1 ,... ro : k — 1 or 3}.

The elements {c (0 ,j, k) : j = 1 ,... r0 : k — 2 or 4} are left untouched for now.

* In practice dummy numbers start at 100 and, whenever another one is needed,
the next free integer above 100 is used. Obviously a record is kept of how many different
dummy numbers have been assigned.

128

14.2.3 Associations, entries, and discoveries in the continuity array.

The next stage is to consider each of the coordinate sets (Tt, 0t, R{, Dt) in turn
starting with i = 1. We know that the irregularity I\ is the only change in the laminar
flow between lines Iq and l\. We also know its type (Ti) and its ridge-count (Ri)- Depending
on the type T\ there are various associations, entries and discoveries that can be made in
the continuity array.

Suppose, for example, that T\ = 3 (i.e. a ridge ends — according to the table of
irregularity types, para 13.3). We can deduce that

ri = r0 - 1

(i.e. line l\ crosses one less ridge than line /o), and we can make the following associations
in the second column [i ~ l) of the continuity array. (Associations occur when one element
of the array is set equal to another.)

c (l ,l , 1) = c(0,j, 1) for all 1< j< Ri - 1,
c(l,j',3) = c(0,i,3) for all 1< j< Rx.

(i.e. ridges below the irregularity pass on unchanged) also

c(l,y, 1) = c(0,y + 1,1) for all Ri + 2< j< r1;
c (l ,i , 3) = c(0,j + 1,3) for all Ri + 1< j < rx.

(i.e. ridges above the irregularity pass on unchanged, but are displaced downwards by one
ridge, due to the Ri + l ’th ridge coming to an end.)

Thus many of the dummy numbers from the (i = 0) column are copied into the
[i = 1) column — and their successive positions show which ridge intersection points lie
on the same ridges.

Further information is gained from the immediate vicinity of the irregularity and
this allows us to make entries in the array. (Entries result directly from the coordinate set
being processed, rather than by copying from another part of the array).

c { l ,Ri , l) = 8,
c{l ,Ri,2) = 1,

c{l ,Ri + 1,1) = 6,
c{l ,Ri + 1,2) = 1.

(i.e. the line / 1 is drawn marginally past the ridge-ending 1 1 , and so that ridge-ending
appears as a facing ridge ending in anticlockwise exploration from ridge intersection points
p(l,Ri) and p(l,/2i + l). The event seen, in each case, is 11 itself.)

We also have discovered what happened to the ridge that passed through the point
p(0, Ri T l) : it ended (code 3) at irregularity / j . That discovery enables us to note the fact

129

that the ridge exploration clockwise through point p(0, Ri + 1) ended here. The existing
entry in c(0,i2j + 1,3) is a dummy number, and the new found meaning for that number
is recorded in the dummy number index. Suppose the dummy entry had been the number
107: then we store its meaning thus:

index(l07) = (3,1)

Eventually all the appearances of the number 107 in the array will be replaced by
‘3’ , and, at the same time, all the associated irregularity indicators will be set to ‘ 1’ .

Knowledge of T\ and R\ has therefore enabled us to make a particular set of
associations, entries and discoveries — from which it has been possible to place something
(either entries or dummy numbers) in all of the elements of the set

{ c { l , j ,k) : j = l ,2 , . . . r i : k = 1 or 3}

The process now begins again, with examination of irregularity I2 , followed by I3 . . . In-
Each different possible type code Tx generates its own individual set of associations, entries
and discoveries. Each set allows the next column of C to be filled in. ** It should be
pointed out that whenever association is made of event codes (as distinct from dummy
numbers) then association is also made of their respective irregularity identifiers.

After all the n coordinate sets have been processed (and entries thereby made in
the whole of the continuity array) a few last associations need to be made in order to
account for the fact that ridges cross the cut. These associations are that :—

c (0 ,i ,l) is equivalent to c(n,j, 1) for all 1< J< r0,
and c(n,j, 3) is equivalent to c(0,j, 3) for all 1< j< r0-

(Of course tq = rn = m)

which effectively ‘wrap around’ the ends of the continuity array by sewing up the cut. As
each of these elements of C already has some sort of entry in it, the mechanics of making
these associations are more akin to the normal mechanics of discovery, in that they involve
making entries in the dummy number index. They may, in fact, enter dummy numbers in
the dummy number index thus indicating that two different dummy numbers are equivalent
(i.e. they represent the same ridge exploration).

14.2.4 Properties of the completed continuity array.

Once this process is complete the continuity array will have acquired some very
important properties:

** Some of the entries may well be new (unassigned) dummy numbers. This occurs
wherever new ridge segments start at the irregularity. It did not happen in the case of the
ridge ending.

130

(a) all the elements {c(i , j , k) : 0 < i < n : 1 < j < r{ : k = 1 or 3} contain either ridge
exploration event codes (hexadecimal) or dummy numbers (integers over 100).

(b) wherever c(i,j , 1) or 3) is an event code, then the corresponding entries,
c(i,j, 2) or 4) respectively, will contain an irregularity identifying number
that shows where that ridge event occurs.

(c) all the different appearances of a particular dummy number in the continuity array
reveal all the intersection points through which one continuous ridge exploration
has passed. (Hence the name for the array.)

(d) a discovery has been made in respect of every dummy number that has been
allocated, and there is, in the dummy number index, an equivalent event code and
associated irregularity identifier waiting to be substituted for all the appearances
of that dummy number. The dummy number index is therefore complete. This
simply must be the case as a discovery has been recorded every time that a ridge
ran into an irregularity. There can be no ridge explorations that do not end at
one, or other, of the n irregularities — consequently there can be no outstanding
‘unsolved’ ridge explorations by the time all n irregularities have been dealt with.

14.2.5 Final stage of topological reconstruction.

The final stage of the reconstruction process is to sweep right through the conti
nuity matrix replacing all the dummy numbers with their corresponding event codes from
the index. The related irregularity identifiers are filled in at the same time, also from
information held in the index. This second (and final) sweep through the elements of the
continuity array leaves every element in the set

{c(i , j , k) : i — 1. . . n : j = 1. . . : k = 1 or 3}

as an event code, and every element of the set

{c(i , j , k) : i = 1. . . n : j = 1. . . rt : k = 2 or 4}

as an irregularity identifier.

For any particular line /t the entries of C in the *th column correspond exactly
to the elements of a topological code vector generated by that line. The only difference
in appearance is that we have irregularity identifiers rather than distance measures to go
with each exploration event code. The later vector comparison stages of the matching
algorithm are adapted with that slight change in mind.

This completes a somewhat simplified account of a rather complex process. There
are other complications which have not been explained in full — such as how the algorithm
deals with sequences of dummy numbers that are all found to be equivalent, and the special

131

treatment that ridge recurves have to receive, and how the algorithm copes with multiple
irregularities showing the same angular orientation. Nevertheless this explanation serves
well to demonstrate the methodical and progressive nature of this particular reconstruction
process. It also makes clear that only two sweeps through the matrix are required — which
is surprisingly economical considering the complexity of the operation.

14.3 The matching algorithm LM5.

The algorithm LM5 was the first to accept latent data in coordinate form, rather
than by prepared vectors. Topological reconstruction was performed both on the latent
mark (once only per search) and on each file print to be compared with it. The continuity
matrix generated from the latent coordinate set will be called the search continuity array,
and the continuity array generated from the file set will be the file continuity array.

There are two distinct phases of print comparison which take place after these
topological reconstructions are complete. Firstly, the appropriate vector comparisons are
performed and their scores recorded — secondly, the resulting scores are combined to give
an overall total comparison score.

It is most important to realise that the observation points selected on the two prints
under comparison do not need to have been in the same positions. The reconstructed
topology will be the same no matter where it was viewed from. Just as two photographs
of a house, from different places, look quite different — nevertheless the house is the
same. The final comparison scores will be hardly affected by misplacement of the central
observation point provided they lie in roughly the right region of the print. The reason for
approximately correct placement being necessary is that the orientation of the imaginary
radial lines, which effectively generate the vectors after reconstruction, will depend on
the position of the central observation point. The effect of misplacing that point (in a
comparison of mates) is to rotate each generating line about the characteristic on which
it is based. Such rotation is not important (as we learnt in part II) provided it does not
exceed 20 or 30 degrees. Slight misplacement of the observation point is not going to
materially affect the orientation of these imaginary generating lines, except those based
on characteristics which are very close to it. Specifying that the central observation point
should be adjacent to the core (in the case of whorls or loops) and at the base of the
‘upcurve’ (in the case of plain arches) is a sufficiently accurate placement rule.

14.4 The vector comparison stage.

From the search continuity array a vector is extracted for each true characteristic
on the latent mark. Vectors are not extracted for the other irregularities (‘ridges going out
of sight’ , ‘ridge recurves’ , etc.) If the latent mark shows 13 characteristics we then have
13 vectors, each vector based on an imaginary line drawn from the central observation
point to one of those 13 characteristics, and passing marginally to the clockwise side of

132

it. Let us now forget about all the other topological irregularities in the coordinate list
and number the characteristics 1,2,3,. . . k. If the number of coordinate sets, in total, was
n then certainly k < n. The extracted search vectors can now be called Si . ..Sk- In a
similar fashion the extracted file vectors, each based on true characteristics, can be called

For each search vector a subset of the file vectors is chosen for comparison. The
selection is made on these bases :—

(a) that the characteristic on which the file vector is based must be of similar type
(either an ‘exact’ match or a ‘close’ match) to the one on which the search vector
is based.

(b) that the angular coordinates of the characteristic on which it is based must be
within a permissible angular tolerance of the angular coordinate of the character
istic on which the search vector is based. The permissible angular tolerance is a
parameter of the algorithm.

This selection essentially looks for file print characteristics that are potential mates
for the search print characteristics. The vector comparison that follows serves to compare
their neighbourhoods. It is quite obvious that allowing a wide angular tolerance signifi
cantly increases the number of vector comparisons that have to be performed. If a small
angular tolerance is permitted then a badly misoriented latent mark may not have the
mated vectors compared at all.

The vector comparison itself is much the same as used hitherto — except that the
vectors contain irregularity identifiers rather than distance measures. At the appropriate
stages of the vector comparison subroutine the actual linear distance (‘as the crow flies’)
from the central characteristic to the ridge-event is calculated by reference to the appro
priate coordinate sets. Thus ordinary spatial distances can be used rather than inferred
ridge-traced distances, and a much greater degree of reliability can therefore be attached
to them.

For each search vector Si, and candidate file vector Fj, a vector comparison score
qij is obtained. For each search vector St a list of candidate file vectors, with their scores,
can be recorded in the form of a list of pairs (j,q ij)• There are typically between 5 and
15 such candidates for each search vector when the angular tolerance is set at 30°. These
lists of candidates can then be collected together to form a table, which will be called the
candidate minutia table. An example of such is shown overpage.

Each column is a list of candidates for the search vector labelled at the head of the
column. In each case the first of a pair of numbers in parentheses shows which file vector
was a candidate, and the second number is the score obtained by its vector comparison.

133

Si S2 s 3 Sk
(5,89) (6,45) (25,41) (15,138)
(14,29) (10,40) (34,12) (23,12)
(15,0) (16,35) (37,19) (28,65)

(52,19) (21,92) (41,84) (36,71)
(55,81) (35,5) (48,91) (37,103)
(61,34) (36,0) (53,101) (47,82)
(79,0) (41,3) (65,180) (56,41)

(0,0) (46,85) (0,0)
......................

(0,0)

14.5 Final score formulation.

We are now left with the problem of intelligently combining these individual can
didate scores to give one overall score for the print. If the file print and latent mark are
mates it would be nice to think that the highest candidate score in each column of the
candidate minutia table indicated the correct matching characteristic on the file print. If
that were the case then simply picking out the highest in each column, and adding them
together, might serve well as a method of formulating an overall score. However that is
not the case. Roughly 50% of true mated characteristics manage to come top (in score) of
their column — the others usually come somewhere in the top five places.

14.5.1 The notion of ‘compatibility’ .

We learnt from earlier experiments with latent entry by vectors that combination
of scores was best done subject to conditions — and, in that case, the condition was correct
relative angular orientation (see para 13.5(b)). It will make sense, therefore, to combine
the individual candidate scores when, and only when, they are compatible.

If (i, <7iy) is a candidate in the Si column, and (i,q2 i) is a candidate in the S2
column — then there are various reasonable conditions that can be set in respect of these
two candidates before we accept that they could both be correct. We will say that these
two candidates are compatible if, and only if, these three conditions hold true :—

(a) i is not equal to j . (Obviously one file print characteristic cannot simultaneously
be correctly matched to two different search print characteristics.)

(b) The distance (linear) between file print characteristics numbered i and j should
be the same, within certain tolerance, as the distance between the two search

134

print characteristics that they purport to match. That tolerance is an important
programme parameter.

(c) The relative angular orientation of the file print characteristics should be roughly
the same as the relative angular orientation of the two search print minutiae that
they purport to match. The tolerance allowed, in this instance, is the same angular
tolerance that was used earlier to limit the initial field of candidate minutiae.

14.5.2 Score combination based on compatibility.

The application of the notion of compatibility in formulating a total score was
originally planned as follows :—

Step 1: Reorder the candidates in each column by reference to their scores, putting the
highest score in each column in top place.

Step 2: In each column, discard all the candidates that do not come in the top five places.

Step 3: For each remaining candidate check to see which candidates in the other columns
are compatible with it.

Step 4: Taking at most one candidate from each column, pick out the highest scoring
mutually compatible set that can be found. A mutually compatible set is a set of
candidates each pair of which are compatible.

Thus a set of file print characteristics is found, each of which has similar topological
neighbourhood to one of the latent mark characteristics (as shown by their high vector
comparison scores) and whose spatial distribution is very similar to that of the latent mark
characteristics (as shown by their compatibility). Spatial considerations are therefore being
used in the combination of topological scores — as is already the case at a lower level,
when distance measures are used in the vector comparison process.

The algorithm LM5 was originally written to perform the steps described above.
Unfortunately it ground to a halt completely when it tried to do the comparison of a very
good latent with its mate! The reason for this is that the algorithm will examine every
possible mutually compatible set in turn. Certainly non-mates have very few mutually
compatible sets of any size. However, if a good quality latent gives a largest compatible
set of size N (i.e. N characteristics match up well with the file print) then there are 2N — 1
subsets of that largest set, each of which will be a mutually compatible set. The total
number of such sets is therefore at least 2N, and probably much greater. In some cases N
exceeded 25 and, consequently, the computer did not finish the job!

Acceptable shortcuts, or approximations, to this method had to be found.

135

14.5.3 Candidate promotion schemes.

The following method accomplishes much the same sort of candidate selection, but
very much faster, and without requiring complete mutual compatibility in the selected set.
The first three steps are the same as before :—

1. Reorder the candidates in each column, by their scores.

2. Discard all candidates not ranked in the top 5 places in their column.

3. Check the compatibility of all remaining candidates with the remaining candidates
in each other column.

The fourth step is calculation of what will be called a compatible score for each of
the remaining candidates. Here are two possible alternative methods for doing this :—

(a) For each individual candidate add together all the scores of top-ranked candidates
in other columns with which that candidate is compatible. Finally add the candi
date’s own score to the total.

(b) For each individual candidate find, in each other column, the highest scoring com
patible candidate. Add together those scores (one from each column), and then
add the target candidate’s own score to the total.

On the basis of these compatible scores, rather than on the original vector com
parison scores, reorder the remaining candidates in each column.

This 4th step can be regarded as a promotion system based on compatibility with
other high-ranking candidates. The difference between options (a) and (b) is this: in
rule (a) promotion depends on a candidate’s compatibility with those already in top place
(and could be called a ‘bureaucratic’ promotion system). With rule (b) a whole group of
candidates in different columns, none of whom are in top place can all be promoted to
the top at once by virtue of their strong compatibility with each other (a ‘revolutionary’
promotion system). Both were tried and the ‘revolutionary’ system was found to be the
most effective.

The promotion stage could be repeated several times if it was considered desirable
(to give the top set time to ‘settle’) — in practice it was found that one application was
sufficient. Mate scores improved very little, if at all, when second and third stages of
promotion were introduced.

After the promotion stage is complete all but the top ranked candidates in each
column are discarded, and the compatible score for the remaining candidate in each column
is then recalculated on the basis of only the other remaining candidates.

The final score is then evaluated by adding together all of these new compatible

136

scores that exceed a given threshold. That threshold is a programme parameter, and is
expressed as a percentage of the ‘perfect’ latent self-mated score.

The use of these compatible scores, rather than the original vector comparison
scores, in evaluating the final score has the effect of multiplying each original vector score by
the number of other selected (i.e. now top-ranked) candidates with which it is compatible.
The more dense the compatabilities of the final candidate selection, the higher the score
will be.

14.6 Performance of LM5.

The latent mark data file was converted to the form of coordinate sets, and the
fourth coordinate (distance) was added into the file print collection data set. A series of
tests was then performed using the algorithm LM5 — and the results and parameters used
are shown in full in appendix P.

The best test results obtained gave the following rankings :—

MRl 80.36%
MR3 82.14%
MR10 85.71%

These indicate a vast improvement over the performance of the traditional spatial methods
(recall that the M82 algorithm gave test results with an MRl value of 26.8%).

It is worth saying a few words about some of the parameter values that gave the
above results :—

(a) Exact match scores were set to be 5, with close match scores (CMS) set to be 3.
Thus close match scores were given a higher relative weighting than previously used
in the comparison of rolled impressions (where the optimum ratio had been 5:1 —
see para 10.5(b)). The higher weighting can be attributed to a higher incidence of
topological mutation in the interpretation of latent marks.

(b) The distance tolerances were set at 10% (of the distance being checked) with a
minimum of 1. (PDT, in appendix P, stands for ‘percentage distance tolerance’ ,
and MDT for ‘minimum distance tolerance’ .) The same distance tolerances were
used in the vector comparison stage of the algorithm and in the score combination
stages (where correct relative distance was one of the three conditions that needed
to be satisfied for two file print minutiae to be compatible.)

(c) The ridge span used in vector comparison was 10 ridges — this means that vectors
of a standard length of 40 digits, with 40 associated irregularity indicators, were
used whenever vector comparisons were performed. The results were no worse
with longer vectors, but the smaller value for SPAN gave faster comparison times
on a serial machine.

137

(d) The minimum angular tolerance (MAT) was 20°. This is almost inconsequential
as the true angular misorientation limits were set individually for each latent mark
(by subjective judgement) and written as a part of the latent search data.

(e) The candidate minutia selection depth (‘DEPTH’) was 5 throughout. This means
that, for each search minutia, only the top 5 candidate file print minutia would
be considered. This parameter was set to 5 as a result of observation, rather than
experiment (see para 14.5)

(f) The compatible score cutoff point (‘CUTOFF’) is the percentage of the latent
mark’s perfect self-mated score that must be attained by the final compatible
score of a candidate file print minutia before it will be allowed to contribute to the
final total score (see para 14.5) The best value for this parameter was found to be
15%, which is surprisingly high. The effect of this setting was to ensure that the
vast majority of file print minutiae that were not true mates for search minutia
contributed nothing to the score; the net effect of this was to make most of the
mismatch comparison scores zero. In fact, for 28.6% of the latents used, the true
mate was the only file print to score at all — the other 99 file prints all scoring
zero. Of course such a stringent setting also made things tough for the mates, as
shown by the fact that 7% of the mate scores were zero also. However, these 7%
were mates that had not made the top ten places in any of the tests, and were
therefore most unlikely to be identified anyway. It is also worth pointing out that
on each occasion when one file print alone scored more than zero (i.e. exactly 99
out of the 100 in the file collection scored zero) that one was the true mate. (These
are the 28.6% mentioned above.) This represents a surprisingly high level of what
might reasonably be termed ‘doubt-free identifications’ .

14.7 Computation times.

The foregoing description of the algorithm LM5 will have made it quite clear
that this is not, in its present form, a particularly fast comparison algorithm. The CPU
time taken on a VAX 11/780 for the above test (5600 comparisons) was 12 hours and 11
minutes. [Hence the absence of any extensive parameter tuning.] That means an average
CPU time per comparison of 7.8 seconds — which is a somewhat disconcerting figure when
the acceptable matching speeds for large collections are in the order of 500 comparisons
per second.

However 7.8 seconds per comparison is not quite so alarming when one considers
the extensive and multi-layered parallelism of the algorithm. At the lowest level, the vector
comparisons themselves are sequences of array operations. At the next level, many vector
comparisons are done per print comparison. In the score combination stages calculations of
compatibility and compatible scores are all simple operations repeated many many times.
There is, in this algorithm, enormous scope for beneficial employment of modern parallel
processing techniques. It is hardly appropriate to take too much notice of the CPU time

138

in any serial computer — where each operation is done element by element.

Moreover, in the area of latent searching, the primary area of concern for law
enforcement agencies is shifting from the issue of speed onto the issue of accuracy. The
FBI, for example, is certainly prepared to obtain the necessary speed through ‘hardwiring’
(with its associated cost) for the sake of matching algorithms that will actually make a
substantial number of identifications from latent marks.

14.8 File storage space — defaulting the ‘edge topology’ .

It is noticeable that the need to include all topological irregularities, rather than
just the true characteristics, significantly enlarges the volume of the file print data. In the
100 file cards in the experimental database the average number of irregularities recorded
per print was 101.35. The majority of irregularities that were not true characteristics fell
at the edge of the print; they recorded all those places where ridges ‘came into sight’ or
‘went out of sight’ . Thus a significant proportion of the file data storage requirement is
spent in describing the edge of the file print.

In practice the edge of the file print is not very important — as the latent mark
invariably shows an area completely within the area of the rolled file print. The edge con
sequently plays little or no part in the print comparison process, and the edge description
serves only to help the topological reconstruction process make sense of the ridge pattern.

For the sake of economy in file size, therefore, the algorithm LM6 was prepared
by adapting the reconstruction stage of LM5 slightly. It is adapted in such a way that the
reconstruction will invent its own edge topology in the absence of an edge description. The
default topology selected is not important; it is only important that the algorithm does
something to tie up all the loose ridges around the edge.

The file collection was then pruned substantially by elimination of all of the edge
descriptions, and this reduced the average number of coordinate sets per print from 101.35
to 71.35. * The test reported above was then rerun using the algorithm LM6 and the
condensed file set. The rankings obtained were exactly the same as before (see para 14.6)
— so a saving of 30% in file data storage was achieved with absolutely no loss of resolution.

* The pruning operation was not performed on the latent mark data file for two
reasons. Firstly, latent mark databases (where these are kept) are tiny in comparison to
rolled file print collections, and so storage requirements are not a major concern. Secondly,
the edge of a latent mark does play an important part in the comparison process.

139

CHAPTER 15.

ASSOCIATED APPLICATIONS AND CONCLUSIONS.

15.1 Derivation of vectors for rolled print comparison.

The ability to perform topological reconstruction from a set of coordinates has
some rather interesting ‘by-products’ . The first of these relates to the fast comparison of
rolled prints on the basis of a single vector (as per part II.)

As the data format for a latent mark and a rolled impression is now identical,
it would be possible to use the latent matching algorithm (LM6) to compare one rolled
print with another. (One of the rolled prints would be acting as a very high quality latent.)
However, to use LM6 in this way on rolled prints would be ‘taking a sledge hammer to crack
a nut’ . We know, from Part II, that one single vector comparison deals with comparison of
two rolled prints perfectly adequately — so it would be madness to use this latent matching
algorithm, with its hundreds of vector comparisons, in this application.

Nevertheless there is a significant benefit to be gained from the topological re
construction section of the latent matching algorithm. The data-gathering requirements
from Part II included the need to track along ridges, in order to find the first event that
happened. Although that, in itself, is not a particularly demanding programming task —
the ability to reconstruct topologies from coordinates renders it unnecessary. A topological
code vector representing a horizontal line passing through the core of a loop can be lifted
out of the continuity matrix after reconstruction. The left half of it (i.e. the part that falls
to the left of the core) and the right half will be extracted separately. Each half is extracted
by selecting the column of the continuity matrix that corresponds with an imaginary line
just to the anticlockwise side of horizontal, (i.e. just below for the left side, and just above
for the right side). Amalgamating these two halves, reversing the ‘up’ and ‘down’ pairs
from the right half, gives a single long vector of the required format.

There will be two minor differences between these extracted vectors and the design
originals :—

(a) the core point, which was to be on a ridge, is replaced by the central observation
point which is in a valley. The central observation point will, however, be only
fractionally removed from the core in the case of loops and whorls.

(b) the vector has irregularity identifiers rather than ridge-traced distance measures.
Consequently the vector comparison algorithm has to be adapted to refer to the
appropriate coordinate sets when the time comes to apply the various distance
tests.

140

In the case of arches the extracted vector will have to be a vertical, straight line
as opposed to the original flexible one which followed successive ridge summits. *

In an operational system the maximum speed would be obtained by performing
topological reconstruction, and vector extraction, at the time each print is introduced to the
collection. The extracted ‘ long’ vectors could be stored in a separate file so that they could
be used for fast vector comparison without the need to perform topological reconstruction
each time. That would obviously increase the data storage requirement per print by the 60
bytes required for such ‘long’ vectors (see chapter 10). The coordinate sets, and topological
reconstruction would then only be used when a latent search was being conducted.

If the derived long vectors were to be made completely independent of the coordi
nate sets, it would be necessary to replace the irregularity identifiers with calculated linear
distances at the time of vector extraction.

15.2 Image-retrieval systems.

The second by-product of the development of the latent matching algorithms is
an application in image-retrieval systems. There is a significant demand for automated
identification systems to be linked with an image-retrieval facility for all the prints in
the file collection. The system operator obtains a list of the highest scoring candidates
each time an automated search is conducted — these candidates have then to be checked
visually by the fingerprint expert to determine which of them, if any, is the true mate.
This visual checking can be done much more easily if the fingerprints can be displayed on
a screen, rather than having to be fetched from a cupboard. Much research is currently
underway with the aim of finding economical methods for storing the two dimensional
pictures (fingerprints) in computer memory so that they can be called up and displayed
on the terminal screen.

There are two distinct paths for such research. The first aims to record the original
grey-scale data which is output from automatic scanners, with no interpretative algorithms
ever being applied to the print (although data compaction techniques will, of course, be
used). The second uses interpretative algorithms to identify the ridges and valleys within
the grey-scale image, to resolve the picture into a binary (black and white) image, and
then finally to reduce the thickness of each ridge to one pixel by a variety of ridge-thinning
techniques. What is then stored is sufficient data to enable each thinned ridge segment to
be redrawn (i.e. start position, end position, curvature etc.).

* The performance of MATCH4 on such derived vectors has not been tested. This
is because of the incredibly time consuming nature of manual encoding according to the
latent scheme (up to 1 hour per print for clear rolled impressions). The time for such
tests will be after the development of automatic data extraction techniques, when large
numbers of prints can be encoded automatically according to the latent scheme, and then
have derived vectors extracted after topological reconstruction.

141

The data requirements per print are in the order of 2,000 to 4,000 bytes for com
pressed grey-scale images, and between 1,000 and 2,000 bytes for a thinned image.

We know that the 4-coordinate system used in the latent scheme records, in be
tween 300 and 400 bytes, a complete topological and spatial description of the character
istics. It should therefore be possible to redraw the fingerprint, in the style of a thinned
image, from that data. Firstly topological reconstruction has to be performed, and then
the elastic (topological) image has to be ‘pinned down’ at each characteristic, by reference
to their polar coordinate positions contained in the coordinate sets.

The substantial problem in such a process is the business of generating a smooth
ridge pattern that accommodates all the pinned points. The problems raised are not
completely dissimilar to those in cartography — when a smooth contour map has to be
drawn from a finite grid of discrete height (or depth) samplings.39 40 Certainly if a
satisfactory redrawing process could be devised, the 4-coordinate system would, almost
certainly, be the most economical method of image storage available.

Development of adequate smoothing algorithms was not adopted as a part of this
research; it is a fairly major research problem in itself. However one fairly crude recon
struction algorithm was written, simply because generation of a picture from topological
coordinate sets provides a most satisfying demonstration of the sufficiency of such coordi
nate descriptions.

The algorithm PLOTl was written as a Fortran programme: its input was the
set of coordinates representing a specified print, and its output was a file of ‘QMS-QUIC’
instructions for the graphics display facility of a QMS LASERGRAFIX 1200 printer. The
algorithm first performed topological reconstruction in the normal manner, and then as
signed polar coordinates to every ridge intersection point in such a manner that all the
topological irregularities were assigned their own (real) polar coordinates. A series of
simple linear smoothing operations are applied, coupled with untangling and gap-filling
procedures that make successive small adjustments to the radial distances of all the inter
section points that are not irregularities. These processes continue until a certain standard
of smoothness is attained. Finally the picture is output as a collection of straight line
segments between connected ridge intersection points.

A sample reconstructed fingerprint image is shown in figure 56, together with its
descriptive data. The picture is made up of 4,404 straight line segments, and it almost
looks like a fingerprint! Certainly the topology is correct, and each irregularity is prop
erly located: it is just the intervening ridge paths that have suffered some unfortunate
spatial distortions. For the sake of comparison, the original print tracing from which the
coordinate sets were derived is shown in figure 57 (it has been reduced from 10 x to 5x
magnification). Detailed comparison of figures 56 and 57 will reveal a few places where
the topology appears to have been altered. In fact it has not been altered — but, at this
magnification, some ridges appear to have touched when they should not. This tends to
occur where the ridge flow direction is close to radial. In such places the untangling sub-

142

FINGERPRINT RECONSTRUCTION DATA:

Card number 6. Finger number 8
Window size: 6"
Magnification : 5.00
Downward displacement of origin : -700
Number of line segments drawn: 4404
Fingerprint data size : 526 bytes.

Figure 56. Fingerprint reconstruction.

143

Figure 57. Copy of fingerprint tracing.

routine, which moves ridges apart when they get too close together, has not been forceful
enough in separating them.

Figure 58 shows the tracing of a latent mark, together with its reconstructed
picture. In this case the latent data comprised 32 coordinate sets (filling approximately
100 bytes), of which 21 make up the edge-description. There are ten genuine characteristics
shown, and the remaining topological irregularity is the ridge recurve close to the core.
The reconstructed image is made up from 780 straight line segments.

The facility for reconstruction also affords the opportunity to actually see a ‘default
edge-topology’ . Figure 59 shows two further reconstructed images of the print in figure
56. The upper picture is the same as figure 56, except for a reduction in magnification
(to 2.5x). The lower picture is a reconstruction from the condensed data set for the same
print, after all the coordinate sets relating to ridges going ‘out of sight’ have been deleted.
All the loose ends have been tied up by the reconstruction algorithm in a fairly arbitrary,
but interesting, way. The lower picture does, of course, show some false ridge structure in
areas that were ‘out of sight’ . However the data storage requirement for the corresponding

144

Figure 58. Latent tracing, and its reconstruction.

145

Figure 59. Reconstructions with, and without,
defaulted edge-topology.

146

coordinate sets was only 354 bytes for the edge-free description, as opposed to 526 bytes
for the original description.

From these pictures it is fairly clear that more sophisticated smoothing techniques
will need to be applied before really reliable images can be retrieved. These pictures are
quite sufficient nevertheless to demonstrate the potential for such a scheme. They are also
a fine demonstration of the effectiveness and accuracy of the topological reconstruction
algorithms. *

15.3 Outline of further work to be done.

The work outlined in this paper has lead to development of systems which could
be implemented now — but which would require a manual file-print encoding process. It
was, of course, the intention that such datafile conversion should be an automatic process;
consequently development of such necessary data extraction algorithms would be desirable.
A list of possible areas for further research is given here :—

(a) Automatic data gathering algorithms should be designed which are capable of
extracting the required forms of data from the grey-scale output from automatic
fingerprint scanners. For the reasons given in paragraph 15.2 the ability to track
along ridges is not required. However the ability to locate every interruption of
the otherwise smooth ridge flow in the print is needed. Moreover each interruption
has to be typed according to the table of possibilities laid out in paragraph 13.3.
‘Unclear’ areas, rather than simply being rejected, must be fenced off— and all the
places where ridges run into the fenced area, or emerge from it, must be recorded.
This is a substantial departure from current practice; normally unclear areas would
simply be rejected.

(b) Once such data-gathering algorithms have been written, and sizeable experimental
databases built up — then the various parameters of the matching algorithms must
be tuned finely by extensive experiments. Optimum parameter values for use on
automatically read data are unlikely to be identical to their optimum values for
manually prepared databases.

(c) Some investigation should be conducted in order to determine if there is any value
in including a fifth coordinate, namely ‘ridge direction’ , for each characteristic.
No use of ridge direction data has been made in any of these topological schemes,
even though it is the standard third coordinate for all the existing spatial methods
(where (X,Y,6) is the coordinate format for each characteristic, and 6 is the ridge

* remember that the path of the ridges plays no part in the comparison algorithms
LM5 and LM6; only the topology, and the positions of the characteristics are used. The
defects in these pictures are not, therefore, a reflection of defects in the latent searching
algorithms.

147

flow direction local to each particular characteristic.) There are a number of places
within the various topological matching algorithms where tests on ridge direction
could be applied in conjunction with consideration of angular misorientation. It is
felt, however, that sufficient spatial information is already in use, and that the div
idends would be too small to justify the 25% increase in data storage requirement
that such a change would inevitably produce.

(d) An appropriate parallel architecture for the algorithms MATCH4 and LM6 has to
be developed in conjunction with selection of the most suitable of the available
parallel processors.

15.4 Conclusion.

The results obtained in these experiments show, beyond any reasonable doubt,
that a topological approach to fingerprint coding offers a great deal in terms of improved
accuracy and cost-effectiveness. It is also clear that topology based matching algorithms are
greatly improved by utilising some spatial information. The power of resolution between
mates and non-mates given by the combination of topological and spatial information is
vastly superior to that which can be obtained by use of spatial information alone.

The greatest benefit that has been obtained is accuracy. With rolled impressions
there is also a clear increase in speed and a massive reduction in storage requirement. With
the latent searching scheme the question of speed has to be left open until the benefits of
LM6’s extensive parallelism have been realised.

It is certainly not ‘too late’ in the development of automated systems for use of
these techniques to be made. In fact the time is probably ripe. Only in very recent years
have national law-enforcement agencies begun to contemplate international fingerprint
searching facilities; new initiatives to standardise the formats of fingerprint data on an
international basis are now being taken.* This initiative results from an expectation that,
with available computing power increasing so rapidly, it will not be very long at all before
international fingerprint searches will be a practical proposition.

Whilst such ‘dreams’ are seen as only a few years off, it still remains the case
that the vast majority of law-enforcement agencies worldwide do not have any automated
searching equipment at all. Britain only has a small pilot scheme (in parts of London),
and does not have plans for establishing a national scheme until 1990. France has just
opened a pilot scheme (in Versailles). Germany is currently considering buying its first
automated system — and so is Australia. Sweden recently purchased one. A few of the

* The National Bureau of Standards is accredited by the American National Stan
dards Institute for the development of an American National Standard for fingerprint data.
Participants in the development process include virtually all major users and manufactur
ers of automated systems worldwide.

148

provincial American Police forces have operational systems, but most are fairly small. The
Federal Bureau of Investigation has an enormous automated system — but is currently
very uncertain as to the quality both of its data and of its matching techniques. At the
time of writing this paragraph the total number of latent marks ever identified by computer
at the FBI does not exceed 10.

The difference between what is now, and what will be in a few years is quite
startling. It suggests that the next few years are going to be years of rapid growth in
fingerprint automation. The anticipation of massive national and international systems
throws the research emphasis fairly and squarely back onto two essential system ingredients
— accuracy, and speed.

The development of more and more powerful computers (at steadily diminishing
cost) may well provide all the speed that such systems require. However it is practically
certain that conventional spatial comparison methods cannot provide the corresponding
increase in accuracy.

That is why this project is not too late.

149

REFERENCES.

1 Andre A. MOENSSENS, “Fingerprint techniques” , (Chiltern Book Company
1971), page 33.

2 MOENSSENS, page 52.

3 Robert D. OLSEN, “Scott’s Fingerprint Mechanics” , (Charles C. Thomas
1978), page 11.

4 OLSEN, pages 405 - 426.

5 OLSEN, page 26.

6 OLSEN, page 9.

7 D. VENKAIAH, “Laws of Prints and Impressions” , (Law Book Co. Alla
habad 1979), page 84.

8 FBI, “The Science o f Fingerprints” , (U.S. Government Printing Office 1979),
pages 8 - 13.

9 MOENSSENS, page 16.

10 OLSEN, page 28.

11 Frederick R. CHERRILL, “The Fingerprint system at Scotland Yard” ,
(Her Majesty’s Stationery Office 1954), page 25.

12 MOENSSENS, page 64.

13 FBI, pages 8 - 17.

14 CHERRILL, pages 83 - 84.

15 CHERRILL, page 22.

16 CHERRILL, pages 33 - 78.

17 FBI, pages 113 - 115. Also, Anthony L. CALIFANA, “Simplified version of
the N C IC technique for coding fingerprints” , Parts I, II, III, Law and Order, March,
April, May 1974.

18 MOENSSENS, page 192 ff.

150

19 MOENSSENS, chapter 8.

20 MOENSSENS, page 243.

21 Parduman SINGH, “Pressure distortions in fingerprinting” , Police Jour
nal, February 1963, page 82.

22 Conrad S. BANNER, “The state of development of the FBI’s automatic
fingerprint identification system” , FBI Law Enforcement Bulletin, June/July 1973.

23 Conrad BANNER & Robert STOCK, “The FBI’s approach to automatic
fingerprint identification” , FBI Law Enforcement Bulletin, January 1975, pages 2 - 9 .

24 MOENSSENS, page 244.

25 SINGH.

26 MOENSSENS, page 244.

27 Dr.R.M.APPLEBY, “AVR: a new approach to some problems of finger
print comparison” , Police Journal, January 1979, pages 57 - 60.

28 CHERRILL, pages 83 - 84.

29 VENKAIAH, pages 98 - 99.

30 VENKAIAH, page 91.

31 VENKAIAH, page 67.

32 VENKAIAH, pages 252 - 253.

33 MOENSSENS, page 199 ff.

34 OLSEN, page 36.

35 FBI, pages 8 - 17.

36 R.T.MOORE and J.R.PARK, “The graphic pen, an economical semi
automatic fingerprint reader” , 1977 Carnahan Conference of Crime Countermeasures,
Lexington, Kentucky, pages 59 - 62.

37 Emanuel PARZEN, “On estimation of a probability density function
and mode” , Annals of mathematical statistics, volume 33, pages 1065 - 1076, Institute of
Mathematical Statistics, 1962.

38 Joseph H. WEGSTEIN, “An automated fingerprint identification sys
tem” , N.B.S. Special Publication 500 - 89, February 1982.

151

39 Thomas M. DAVIS and Angelo L. KONTIS, “Spline interpolation algo
rithms for track-type survey data with application to the computation of mean
gravity anomalies” , (U.S. Naval Oceanographic Office 1970).

40 R.J.VANWYCKHOUSE,“Synthetic bathymetric profiling system (Syn-
baps)” , (U.S. Naval Oceanographic Office 1973).

152

BIBLIOGRAPHY.

APPLEBY, Dr.R.M. “A.V.R : a new approach to some problems of fingerprint
comparison.” Police Journal, January 1979, pages 57 - 60.

BANNER, Conrad S. “The FBI approach to automatic fingerprint identification.”
Conrad S.Banner &: Robert M.Stock. FBI Law Enforcement Bulletin. January
1975, pages 2 - 9 & 24.

BANNER, Conrad S. “The state of development of the FBI’s automatic finger
print identification system.” FBI Law Enforcement Bulletin. June and July
1973.

CALIFANA, Anthony L. “Simplified version of the N CIC technique for coding
fingerprints.” Parts I, II, III. Law and Order. March, April and May 1974.

CHERNOFF, Herman. “Some applications of a method of identifying an element
of a large multidimensional population.” Multivariate Analysis — IV, edited
by P. R. Krishnaiah. North-Holland Publishing Company, 1977.

CHERRILL, Frederick R. “The fingerprint system at Scotland Yard.” Her Majesty’s
Stationary Office, London, 1954.

DAVIS, Thomas M. and KONTIS, Angelo L. “Spline interpolation algorithms for
track-type survey data with application to the computation of mean
gravity anomalies.” Technical Report 226, U.S. Naval Oceanographic Office,
Washington, D.C., 1970.

ERIKSSON, Sven Arne. “The application of computerised information retrieval
to fingerprint identification.” International Criminal Police Review. August
1976, pages 194 - 201.

FBI. “The science of fingerprints.” U.S. Government printing office, 1979.

FLETCHER, T.A. “Fingerprinting techniques.” Police review. 19/8/1977, pages 1104
- 1106.

GODSELL, J.W. “A method for converting regional main fingerprint collec
tions.” Home Office, Police Research and Planning Department, 1967.

GRANT, Douglas. “Why the unknown dead?.” Police Journal. July 1977, pages 248
- 251.

153

HANKLEY, W.J. and TOU, J.T. “Automatic fingerprint interpretation and classi
fication via contextual analysis and topological coding: Pictorial pattern
recognition.” Thompson Book Company, Washington, D.C., 1968.

KAWASHIMA, Misao and HOSHINO, Yukio. “Automatic reading and matching
method for fingerprint identification.” Internationa] Conference on Finger
prints, London. November 1984.

MACLEAN, George. “Searching single fingerprints.” Identification Bureau, City of
Glasgow Police, 1970.

MENZEL, E.R. “Fingerprint detection with lasers.” Marcel-Dekker Inc., New York,
1980.

MILLARD, K. “Developments on automatic fingerprint recognition.” International
Carnahan Conference on Security Technology, Zurich, Switzerland, October 1983.

MOENSSENS, Andre A. “Fingerprint techniques.” Chiltern Book Company, 1971.

MOORE, R.T. and MCCABE, R.M. “An overview of algorithms for matching fin
gerprint minutiae in latent searches using relative positional information
of the minutiae.” International Conference on Fingerprints, London, November
1984.

MOORE, R.T. and PARK, J.R. “The graphic pen, an economical semiautomatic
fingerprint reader.” Carnahan Conference on Crime Countermeasures, Univer
sity of Kentucky, Lexington, Kentucky, 1977, pages 59 - 62.

OLSEN, Robert D. (Snr). “Scott’s fingerprint mechanics.” Charles C. Thomas, 1978.

PARZEN, Emanuel. “On estimation of a probability density function and mode.”
Annals of Mathematical Statistics, volume 33, Institute of Mathematical Statistics,
1962, pages 1065 - 1076.

SCHENDEL, U. “Introduction to numerical methods for parallel computers.”
Translated by B.W.CONOLLY. Ellis Horwood Ltd., Chichester. 1984.

SINGH, Parduman. “Pressure distortions in fingerprinting.” Police Journal. Febru
ary 1963, pages 79 - 82.

SNYDER, Richard E. “Automated fingerprint identification.” Police Chief. October
1977, pages 58 - 61.

SPARROW, Malcolm K. “Digital Coding of Single Fingerprints: A New Approach
for the Computer Age.” Journal of Police Science and Administration. June
1982, pages 206 - 217.

154

SPARROW, Malcolm K. and SPARROW Penelope J. “Topological Coding of Single
Fingerprints for Automated Comparison.” Carnahan Conference on Security
Technology, University of Kentucky, Lexington, Kentucky, 1985.

SPARROW, Malcolm K. and SPARROW Penelope J. “A Topological Approach to the
Matching of Single Fingerprints: Development of Algorithms for Use on
Rolled Impressions.” N.B.S. Special Publication 500 - 124, U.S. Department of
Commerce, May 1985.

SPARROW, Malcolm K. and SPARROW Penelope J. “A Topological Approach to
the Matching of Single Fingerprints: Development of Algorithms for
Use on Latent Fingermarks.” N.B.S. Special Publication, U.S. Department of
Commerce, September 1985.

SPIVA, Wayne E. “Microfilmed fingerprints — an automated system for latent
fingerprint files.” Police Chief. February 1971.

STANWIX, W.D. “Fingerprint classification and identification.” Police Surgeon.
April 1975, pages 46 - 60.

STOCK, Robert M. “Research and development program for continued automa
tion of the FBI’s identification division.” International Conference on Fin
gerprints, London, November 1984.

VANWYCKHOUSE, R.J. “Synthetic bathymetric profiling system (Synbaps).”
Technical Report, U.S. Naval Oceanographic Office, Washington, D.C., 1973

VENKAIAH, D. “Laws of prints and impressions.” Law Book Company, Allahabad,
1979.

WEGSTEIN, Joseph H. “An automated fingerprint identification system.” N.B.S.
Special Publication 500 - 89, U.S. Department of Commerce, February 1982.

WEGSTEIN, Joseph H. “A semi-automated single fingerprint identification sys
tem.” N.B.S. Technical Note 481, U.S. Government Printing Office, Washington
D.C., 1969.

WEGSTEIN, Joseph H.“The M40 fingerprint matcher.” N.B.S. Technical Note 878,
U.S. Government Printing Office, Washington D.C., 1978.

155

Appendices.

R I D G E - B A N D S (N UMB E R E D FROM THE CORE C E N T R E)

F R E Q U E N C Y A N A L Y S I S FOR C ODES FOUND ON THE L E F T HAND S I D E OF THE C O R E , L O O K I N G DOWNWARDS

CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 79 59 26 6 451 1 38 7 1 7 8 5 5
1 0 0 0 0 0 0 0
2 72 68 22 8 1 40 30 1 70
3 1 63 1 33 51 34 2 9 6 85 381
4 67 70 1 7 7 1 37 24 161
5 0 0 0 0 0 0 0
6 1 02 1 40 1 57 33 2 4 2 1 90 4 3 2
7 1 80 1 1 1 87 6 291 93 3 8 4
8 84 151 1 35 1 7 2 3 5 1 52 3 8 7
9 0 0 0 0 0 0 0
A 8 1 1 1 5 2 1 9 1 7 36
B 3 1 7 8 5 20 1 3 33
C 2 0 0 0 2 0 2
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0

TOTAL 7 6 0 7 6 0 7 5 8 5 6 3 1 5 2 0 1 321 284 1

F R E Q U E N C I E S E X P R E S S E D AS P E R C E N T A G E OF T OT A L S FOR EACH R I D G E - B A N D

R I D G E - B A N D S (N UMB E R E D FROM THE CORE C E N T R E)
CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 1 0 . 4 7 . 8 35 . 1 80 . 1 9 . 1 5 4 . 3 30 . 1
1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
2 9 . 5 8 . 9 2 . 9 1 . 4 9 . 2 2 . 3 6 . 0
3 2 1 . 4 1 7 . 5 6 . 7 6 . 0 1 9 . 5 6 . 4 1 3 . 4
4 8 . 8 9 . 2 2 . 2 1 . 2 9 . 0 1 . 8 5 . 7
5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
6 1 3 . 4 1 8 . 4 2 0 . 7 5 . 9 1 5 . 9 1 4 . 4 1 5 . 2
7 2 3 . 7 1 4 . 6 1 1 . 5 1 . 1 1 9 . 1 7 . 0 1 3 . 5
8 1 1 . 1 1 9 . 9 1 7 . 8 3 . 0 1 5 . 5 1 1 . 5 1 3 . 6
9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
A 1 . 1 1 . 4 2 . 0 0 . 4 1 . 3 1 . 3 1 . 3
B 0 . 4 2 . 2 1 . 1 0 . 9 1 . 3 1 . 0 1 . 2
C 0 . 3 0 . 0 0 . 0 0 . 0 0 . 1 0 . 0 0 . 1
D 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

A
P

P
E

N
D

IX
 A

.

F R E Q U E N C Y A N A L Y S I S FOR CODES FOUND ON THE L E F T HAND S I D E OF THE C O R E , L O O K I N G UPWARDS

CODE 1 - 5 6 - 1 0 1 1 - 1 5
R I D G E - B A N D S
1 6 - 2 0

(N U MB E R E D FROM
1 - 1 0

THE C ORE C E N T R E)
1 1 - 2 0 1 - 2 0

0 34 47 79 80 81 1 59 2 4 0
1 0 0 0 0 0 0 0
2 1 66 1 63 1 09 76 32 9 1 85 5 1 4
3 1 42 2 1 4 192 92 3 5 6 2 8 4 6 4 0
4 1 74 1 54 1 1 9 81 3 2 8 2 0 0 5 2 8
5 0 0 0 0 0 0 0
6 54 61 89 67 1 1 5 1 56 271
7 101 47 66 68 1 48 134 2 8 2
8 71 61 83 75 132 1 58 2 9 0
9 0 0 0 0 0 0 0
A 0 9 5 4 9 9 1 8
B 2 3 1 6 20 5 36 41
C 1 6 1 0 0 1 7 0 1 7
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0

T OTA L 7 6 0 7 6 0 7 5 8 5 6 3 1 5 2 0 1 321 2841

F R E Q U E N C I E S E X P R E S S E D AS P E R C E N T A G E OF T OT A L S FOR EACH R I D G E - B A N D

R I DGE - B A N D S (N U MB E R E D FROM THE CORE C E N T R E)
CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 4 . 5 6 . 2 1 0 . 4 1 4 . 2 5 . 3 1 2 . 0 8 . 4
1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
2 2 1 . 8 2 1 . 4 1 4 . 4 1 3 . 5 2 1 . 6 1 4 . 0 1 8 . 1
3 1 8 . 7 2 8 . 2 2 5 . 3 1 6 . 3 2 3 . 4 2 1 . 5 2 2 . 5
4 22 . 9 2 0 . 3 1 5 . 7 1 4 . 4 2 1 . 6 1 5 . 1 1 8 . 6
5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
6 7 . 1 8 . 0 1 1 . 7 1 1 . 9 7 . 6 1 1 . 8 9 . 5
7 1 3 . 3 6 . 2 8 . 7 1 2 . 1 9 . 7 1 0 . 1 9 . 9
8 9 . 3 8 . 0 1 0 . 9 1 3 . 3 8 . 7 1 2 . 0 1 0 . 2
9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
A 0 . 0 1 . 2 0 . 7 0 . 7 0 . 6 0 . 7 0 . 6
B 0 . 3 0 . 4 2 . 1 3 . 6 0 . 3 2 . 7 1 . 4
C 2 . 1 0 . 1 0 . 0 0 . 0 1 . 1 0 . 0 0 . 6
D 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

A
P

P
E

N
D

IX
 B

.

F R E Q U E N C Y A N A L Y S I S FOR CODE S FOUND ON THE R I G H T HAND S I D E OF THE C O R E , L O O K I N G UPWARDS

CODE 1 - 5 6 - 1 0 1 1 - 1 5
R I D G E - B A N D S
1 6 - 2 0

(N U MB E R E D FROM
1 - 1 0

THE CORE C E N T R E)
1 1 - 2 0 1 - 2 0

0 9 36 89 45 45 1 34 179
1 0 0 0 0 0 0 0
2 66 61 57 9 1 27 66 193
3 72 85 89 20 1 57 1 09 2 6 6
4 67 56 57 1 1 1 23 68 191
5 0 0 0 0 0 0 0
6 1 33 1 76 1 03 20 3 0 9 123 4 3 2
7 2 6 6 1 45 1 00 23 41 1 1 23 5 3 4
8 1 34 1 77 1 04 20 31 1 1 24 4 3 5
9 0 0 0 0 0 0 0
A 2 1 7 1 0 0 1 9 1 0 29
B 1 7 20 5 8 25 33
C 1 0 0 0 2 1 0 2 1 2
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0

TOTAL 7 6 0 7 6 0 6 29 1 55 1 5 2 0 7 8 4 2 3 0 4

F R E Q U E N C I E S E X P R E S S E D AS P E R C E N T A G E OF T O T A L S FOR EACH R I D G E - B A N D

R I D G E - B A N D S (N U MB E R E D FROM THE CORE C E N T R E)
CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 1 . 2 4 . 7 1 4 . 1 2 9 . 0 3 . 0 1 7 . 1 7 . 8
1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
2 8 . 7 8 . 0 9 . 1 5 . 8 8 . 4 8 . 4 8 . 4
3 9 . 5 1 1 . 2 1 4 . 1 1 2 . 9 1 0 . 3 1 3 . 9 1 1 . 5
4 8 . 8 7 . 4 9 . 1 7 . 1 8 . 1 8 . 7 8 . 3
5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
6 1 7 . 5 2 3 . 2 1 6 . 4 1 2 . 9 2 0 . 3 1 5 . 7 1 8 . 8
7 3 5 . 0 1 9 . 1 1 5 . 9 1 4 . 8 2 7 . 0 1 5 . 7 2 3 . 2
8 1 7 . 6 2 3 . 3 1 6 . 5 1 2 . 9 2 0 . 5 1 5 . 8 1 8 . 9
9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
A 0 . 3 2 . 2 1 . 6 0 . 0 1 . 3 1 . 3 1 . 3
B 0 . 1 0 . 9 3 . 2 3 . 2 0 . 5 3 . 2 1 . 4
C 1 . 3 0 . 0 0 . 0 1 . 3 0 . 7 0 . 3 0 . 5
D 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

A
P

P
E

N
D

IX
 C

.

F R E Q U E N C Y A N A L Y S I S FOR C ODES FOUND ON THE R I G H T HAND S I D E OF THE C O R E . L O O K I N G DOWNWARDS

R I D G E - B A N D S (N UMB E R E D FROM THE C ORE C E N T R E)
CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 1 73 342 4 9 3 1 33 5 1 5 6 2 6 1141
1 0 0 0 0 0 0 0
2 1 09 74 1 5 3 1 83 1 8 201
3 193 1 40 53 3 3 3 3 56 3 8 9
4 1 05 1 00 21 5 2 0 5 26 231
5 0 0 0 0 0 0 0
6 45 36 1 7 2 81 1 9 1 00
7 64 1 0 5 1 74 6 80
8 61 44 1 6 8 1 05 24 1 29
9 0 0 0 0 0 0 0
A 2 4 4 0 6 4 1 0
B 7 4 5 0 1 1 5 1 6
C 1 6 0 0 7 0 7
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0

T OTAL 7 6 0 7 60 6 2 9 1 55 1 5 2 0 7 8 4 2 3 0 4

F R E Q U E N C I E S E X P R E S S E D AS P E R C E N T A G E OF T OT A L S FOR EACH R I D G E - B A N D

R I D G E - B A N D S (N U MB E R E D FROM THE CORE C E N T R E)
CODE 1 - 5 6 - 1 0 1 1 - 1 5 1 6 - 2 0 1 - 1 0 1 1 - 2 0 1 - 2 0

0 2 2 . 8 4 5 . 0 7 8 . 4 8 5 . 8 3 3 . 9 7 9 . 8 4 9 . 5
1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
2 1 4 . 3 9 . 7 2 . 4 1 . 9 1 2 . 0 2 . 3 8 . 7
3 2 5 . 4 1 8 . 4 8 . 4 1 . 9 2 1 . 9 7 . 1 1 6 . 9
4 1 3 . 8 1 3 . 2 3 . 3 3 . 2 1 3 . 5 3 . 3 1 0 . 0
5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
6 5 . 9 4 . 7 2 . 7 1 . 3 5 . 3 2 . 4 4 . 3
7 8 . 4 1 . 3 0 . 8 0 . 6 4 . 9 0 . 8 3 . 5
8 8 . 0 5 . 8 2 . 5 5 . 2 6 . 9 3 . 1 5 . 6
9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
A 0 . 3 0 . 5 0 . 6 0 . 0 0 . 4 0 . 5 0 . 4
B 0 . 9 0 . 5 0 . 8 0 . 0 0 . 7 0 . 6 0 . 7
C 0 . 1 0 . 8 0 . 0 0 . 0 0 . 5 0 . 0 0 . 3
D 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

A
P

P
E

N
D

IX
 D

.

Maxshift Band Bound CloseMatch
Test l 5 5 50 1
Test 2 5 5 50 0
Test 3 2 5 50 1
Test 4 2 5 50 0
Test 5 2 2 50 0
Test 6 2 2 15 0
Test 7 2 2 5 0

MR1 LMR Ranks not equal to 1.
90 25 25,17,11,3,3,3,2,2,2,2
93 15 15,6,5,3,3,2,2.
91 14 14,13,9,3,2,2,2,2,2.
94 10 10,4,3,3,2,2.
94 9 9,4,3,2,2,2.
95 8 8,3,3,2,2.
95 8 8,3,3,3,2.

A
P

P
E

N
D

IX
 E

.

E X A C T M A T C H S C O R E S A L L O C A T E D A F T E R F R E Q U E N C Y A N A L Y S I S OF F I L E S E T .

S C O R E S F OR THE F I R S T D I G I T I N E A C H P A I R , B Y R I D G E B A N D S

C O D E . 1 - 2 3 - 4 5 - 6 7 - 8 9 - 1 0 1 1 - 1 2 1 3 - 1 4 1 5 - 1 6 1 7 - 18

0 8 . 7 7 . 4 9 . 4 10 9 1 1 . 6 1 4 . 3 1 5 0 1 5 . 0 1 5 . 0
1 0 . 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
2 9 . 6 6 . 7 7 8 6 8 6 2 5 0 3 . 8 4 . 4 3 . 8
3 5 6 7 0 3 8 4 6 3 . 5 3 . 6 4 . 1 3 . 9 6 . 7
4 6 9 7 . 4 7 0 6 4 5 . 2 4 . 9 4 . 3 4 . 3 3 . 8
5 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 . 0
6 8 0 6 . 2 8 2 7 . 0 1 1 . 0 1 1 . 8 12 . 5 15 . 0 1 5 . 0
7 5 6 1 2 . 3 1 4 5 9 8 10 4 1 5 . 0 15 0 1 0 . 5 7 . 1
8 7 4 6 . 4 6 3 8 . 6 15 . 0 1 1 . 1 15 . 0 14 3 15 . 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0
A 1 0 1 0 1 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0
B 1 0 1 0 1 0 1 . 0 1 . 0 1 0 1 0 1 . 0 1 0
C 1 5 0 15 0 1 5 . 0 1 5 . 0 15 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0
D 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0
E 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 . 0
F 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0

S C O R E S FOR S E C O N D D I G I T

C O D E . 1 - 2 3 - 4 5 - 6 7 - 8 9 - 1 0 1 1 - 1 2 1 3 - 1 4 1 5 - 1 6 1 7 - 18

0 1 1 1 2 1 6 2 5 3 . 5 8 . 0 1 5 0 8 . 7 9 . 5
1 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0
2 1 5 0 1 5 0 1 5 0 1 5 0 15 . 0 1 4 . 3 7 . 1 1 0 . 5 1 0 . 0
3 1 5 0 1 5 0 1 1 1 1 5 0 1 5 . 0 6 . 3 6 . 5 5 . 0 5 . 4
4 1 5 0 1 5 0 1 5 0 1 5 0 1 5 . 0 1 5 0 8 0 10 . 5 1 0 . 5
5 0 . 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 0
6 1 5 0 1 5 0 7 0 5 8 4 8 4 . 1 6 . 5 5 . 7 7 . 1
7 1 5 0 1 5 0 1 5 0 9 4 6 . 2 6 . 9 7 . 7 5 . 7 4 . 9
8 1 5 . 0 1 5 0 1 5 0 5 5 4 8 5 0 5 . 1 7 . 7 5 . 9
9 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0
A 1 . 0 1 0 1 0 1 0 1 . 0 1 0 1 . 0 1 . 0 1 . 0
B 1 . 0 1 0 1 0 1 0 1 0 1 0 1 . 0 1 . 0 1 . 0
C 1 5 . 0 1 5 0 15 0 15 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 15 . 0
D 0 0 0 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0

R I D G E B A N D S .
1 9 - 2 0 2 1 - 2 2 2 3 - 2 4 2 5 - 2 6 2 7 - 2 8 2 9 - 30 3 1 - 32 3 3 - 34 3 5 - 3 6 3 7 - 3 8 3 9 - 4

1 5 . 0 15 0 15 . 0 1 5 0 15 . 0 1 5 . 0 1 1 . 6 9 . 5 5 . 8 4 . 1 2 .
0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0
4 8 5 . 7 1 0 . 5 12 . 5 1 5 0 1 1 8 1 4 . 1 7 . 5 1 3 . 8 1 5 0 1 5
4 4 4 . 3 14 . 3 1 0 0 9 . 1 9 . 1 6 . 4 6 . 9 8 . 6 6 . 4 8
5 . 3 1 2 . 5 9 1 1 0 5 1 5 . 0 1 1 . 1 8 6 1 1 . 2 1 3 . 8 1 4 0 5
0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0

1 5 0 8 . 7 6 . 9 4 9 3 . 8 4 . 5 7 0 4 . 7 5 . 8 7 . 0 3
8 . 3 3 8 2 . 9 3 6 4 . 8 4 9 6 . 0 8 . 2 5 . 3 5 . 8 1 5
8 . 7 1 0 . 0 5 . 0 4 . 4 3 9 5 . 4 4 . 8 6 . 4 7 . 3 7 0 1 5
0 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0
1 0 1 . 0 1 . 0 1 0 1 0 1 . 0 1 . 0 1 . 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 . 0 1 0 1 . 0 1 0 1 . 0 1

1 5 0 1 5 0 1 5 . 0 1 5 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 15 . 0 1 5 . 0 1 5
0 . 0 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 . 0 0
0 0 0 . 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0
0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 0 0 0 0

I N E A C H P A I R

R I D G E B A N D S .
1 9 - 2 0 2 1 - 2 2 2 3 - 2 4 2 5 - 2 6 2 7 - 2 8 2 9 - 3 0 3 1 - 3 2 3 3 - 3 4 3 5 - 3 6 3 7 - 3 8 3 9 - 4

9 . 1 1 0 . 5 4 . 8 3 . 6 3 . 2 2 . 1 1 . 5 1 . 3 1 . 3 1 . 2 1
0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0

1 0 . 5 8 . 7 7 . 4 5 . 6 7 . 7 1 0 . 5 15 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5
4 8 3 . 7 3 . 6 3 9 4 . 3 6 . 1 7 . 3 15 0 1 5 . 0 1 5 . 0 1 5
9 . 5 8 . 0 5 . 6 7 . 4 6 3 7 . 4 15 0 15 0 1 5 . 0 15 0 1 5
0 . 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0
6 . 7 1 3 . 3 1 5 . 0 15 0 1 2 . 5 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5
4 . 0 5 . 9 15 0 15 0 1 5 . 0 15 0 15 0 15 0 1 5 . 0 1 5 . 0 1 5

1 3 . 3 8 . 0 1 4 . 3 15 0 1 5 . 0 1 5 . 0 15 0 15 0 15 0 15 0 1 5
0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . 0 1 0 1
1 0 1 0 1 0 1 0 1 . 0 1 0 1 0 1 . 0 1 0 1 0 1

1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5
0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0

Parameters fixed throughout these tests are: Bound=15 Close match score=0
Band=2 Vector length=82

Test Testset Testset Hops
Size

Maxshift MR1 LMR Optimum
Cut-off

MTE
%

P99
%

P999
%

1 1 100 0 2 95 8 17.54 4.13 97.00 87.00
2 1 100 1 2 93 3 19.95 5.13 95.00 84.00
3 1 100 2 2 95 10 24.93 5.44 93.00 86.00
4 1 100 3 2 95 22 27.76 6.83 92.00 83.00
5 2 53 0 2 52 16 15.66 3.59 94.34 86.79
6 2 53 1 2 52 9 21.42 4.90 96.23 88.68
7 2 53 2 2 52 10 21.46 5.95 94.34 86.79
8 2 53 3 2 52 8 25.21 5.59 88.68 86.79
13 3 23 0 5 23 1 16.52 4.55 95.65 82.61
14 3 23 1 5 23 1 20.76 5.93 91.30 86.96
15 3 23 2 5 22 2 26.48 3.95 95.65 73.91
16 3 23 1 2 21 2 20.76 8.10 86.96 82.61
17 3 23 1 10 23 1 20.76 8.50 91.30 82.61

Table to
(Tests 9

show
- 12

MATCH2 results on various test sets and with
were experiments using different condensing

various parameters
rules.)

A
P

P
E

N
D

IX
 G

.

Parameters fixed throughout these

Test Match3 Testset Testset HopsVersion Size
1 1 1 100 0
2 1 1 100 1
3 2 l 100 0
4 2 1 100 1
5 2 2 53 0
6 2 2 53 1
7 2 3 23 0
8 2 3 23 1
9 2 3 23 2

are: Bound=15 Close match score=0
Band=2 Vector length=82
Maxshift=2

LMR Optimum
Cut-off

MTE
% P99

% P999
%

6 16.06 5.17 95.00 87.00
10 24.15 6.30 94.00 80.00
4 16.67 3.48 97.00 91.00
7 22.81 4.88 96.00 88.00
14 16.38 3.08 98.11 92.45
9 24.32 4.03 96.23 94.34
1 17.41 2.57 95.65 91.30
1 21.88 3.75 95.65 91.30
1 27.90 1.78 95.65 91.30

tests

MR1

94
90
95
92
51
52
23
23
23

A
P

P
E

N
D

IX
 H

.

Parameters fixed throughout these tests are : Vector length== 82 :Band=2

Test Hops Close ADT DDT SDT Bound MR1 LMR Optimum MTE P99 P999Match Cut-off % % %

Tests 1-5 examine the effect of the distance measures

1 0 -1 2 99 99 15 98 3 13.47 0.70 100 962 0 -1 2 1 99 15 98 3 13.47 0.48 100 973 0 -1 2 1 1 15 97 3 13.47 0.41 100 974 0 -1 1 1 1 15 99 2 13.47 0.22 100 985 0 -1 1 0 0 15 98 5 10.87 1.70 99 93

Tests 6-16 examine the effects of various HOPS and Close Match Scores

6 1 -1 1 1 1 15 100 1 15.60 0.39 100 987 2 -1 1 1 1 15 97 2 18.05 0.31 100 968 1 0 1 1 1 15 99 2 18.66 0.09 100 1009 1 1 1 1 1 15 100 1 19.44 0.08 100 10010 1 2 1 1 1 15 100 1 20.02 0.09 100 10011 2 0 1 1 1 15 98 2 20.77 0.13 100 9912 2 1 1 1 1 15 98 2 21.48 0.13 100 9913 2 2 1 l 1 15 99 2 22.18 0.13 100 9914 0 0 1 1 1 15 100 1 13.72 0.20 100 9815 0 1 1 1 1 15 100 1 14.44 0.15 100 9916 0 2 1 1 1 15 100 1 15.40 0.09 100 100

Tests 34-36 examine the effects of BOUND

34 1 1 1 1 1 5 100 1 21.67 0.05 100 10035 1 1 1 1 1 3 100 1 21.77 0.07 100 10036 1 1 1 1 1 8 100 1 19.96 0.07 100 100

A
P

P
E

N
D

IX
 I.

Parameters fixed throughout these tests are: Close match score=l
Band=2 Vector length=82
Absolute distance tolerance=l
Differential distance tolerance=l
Summed distance tolerance=l

Test Pattern
Type

HOPS Maxshift Bound MR1 LMR Optimum
Cut-off

MTE
%

P99
%

P999
%

53 Arches 1 5 5 23 1 26.68 0.00 100 100
54 Arches 2 5 5 23 1 27.10 0.00 100 100
55 Arches 0 5 5 23 1 19.17 0.00 100 100
56 Whorls 1 2 5 100 1 18.15 0.11 100 99
57 Whorls 1 2 20 100 1 17.80 0.10 100 100
58 Whorls 1 2 15 100 1 17.80 0.11 100 100

A
P

P
E

N
D

IX
 J.

APPENDIX K.

Parameters fixed throughout these tests are:
Bound=15 Close match score=l
Band=2 Hops=l
Absolute distance tolerance=l
Differential distance tolerance=l
Summed distance tolerance=l

Test Vector MR1 LMR Optimum MTE P99 P999Length Cut-off % % %
9 82 100 1 19.44 0.08 100 100
17 70 100 1 19.06 0.09 100 100
18 66 100 1 19.75 0.09 100 100
19 62 100 1 20.03 0.09 100 100
20 58 99 2 19.21 0. 20 100 98
21 54 97 3 19.54 1.24 99 98
22 50 97 4 18.24 1.74 99 98
23 46 97 10 23.80 2. 12 98 96
24 42 97 18 20.76 2. 80 97 94
25 38 96 29 27.27 3. 15 97 90
26 34 94 26 23.94 3. 95 96 84
27 30 92 30 26.08 3. 99 95 79
28 26 91 61 28.01 5.69 89 72
29 22 88 77 28.17 7. 78 79 58
30 18 85 78 32.50 11 . 99 68 25
31 14 71 67 35.90 17 . 22 35 0
32 10 68 74 41.02 19 .81 0 0
33 6 51 96 34.17 32 . 59 0 0

APPENDIX L

FORM FOR LATENT INFORMATION.

LATENT REF • NO: . PATTERN TYPE: FINGER NO:

NO. OF EXTRACTED VECTORS:

CENTRAL FEATURE C O D E : (p. . ,

I

ANGULAR LOWER BOUND: .P. . . .

ANGULAR UPPER BOUND: m .

CENTRAL FEATURE RIDGE-COUNT LOWER BOUND: .j 3 .

X I
CENTRAL FEATURE RIDGE-COUNT UPPER BOUND:

NO.OF RIDGES CROSSED BY GENERATING LINE:

NO.OF FIRST CENTRAL FEATURE RIDGE: . . . I X . .

EVENT CODES (LEFT), 10 AT A TIME, UNIT * 0.5 cm

CODES. 6 & 3 & 3 b 6 b B 3 CP (o l B b 7 3
DISTANCES. G 7 % i 1 C| 7 °l 10 10 lo 0 10_L / to II 1 » 3 l|
CODES.

5

DISTANCES. 10

EVENT CODES (RIGHT), 10 AT A TIME, UNIT - 0.5 cm

CODES. 3 & lo $ G8 ß 3 b 3J G % 6 /•Ö ß X
DISTANCES. 1 ? (7 X Ô. 1 j ? 5 <2 o? 'i /O '0 10 7 7

CODES. 1
—

DISTANCES, /

APPENDIX M.

PROFORMA FOR FILE PRINT INFORMATION IN LATENT SCHEME.

CARD SET: CARD NUMBER: FINGER N O 51 . PATTERN TYPE :

BOUNDARY ARRAY LENGTHS: LEFT. . . Ä 4 : . . RIGHT. . 3 3

BOUNDARY A R R A Y (L E F T) : (NOTE - DISTANCE UNIT IS 0.5 cms)

CODES. a. 3 8- 3 c <L 4 a. A c é 6 7 £
DISTANCES. \lc Ifc ¿4 7 ? ! 8 A a 1 8- 7 7 $ 3 /Ö
CODES. (ç T 0 o ! o O o o
DISTANCES. 10 8- IO 7 A c2 / a
C O D E S .

DISTANCES.

BOUNDARY ARRAY(RIGHT) : (NOTE - DISTANCE UNIT IS 0.5 cms)

CODES. 4 3 7 4- 4 3 6 4 7 4 ? a
DISTANCES. ‘ if 3 4 c ! 1 1 ¿ 4 .6.. A d fT S'
CODES. 3 % r G r in r 0 Ö 7 3 o o
DISTANCES. X 8 IV 7 7 10 /o ‘t 4 // 1 S' 4 7 ?
CODES. o o o
DISTANCES. 4 3 a

DISTANCE CONVERSION MEASURES: (NOTE - DISTANCE UNIT IS 0.5 cms)

DEGREES FROM LEFT BOUNDARY:

DISTANCES MEASURED:

RIDGE COUNT COVERED:

0 60 120 180

ai*4 /9-8 aj-A W
¿4 A4 S3

EVENT CODES OVERLEAF.

EVENT CODES. (TOPOLOGICAL COORDINATES.)

NO. CODE. THETA. RC. NO. CODE. THETA. RC. NO. CODE. THETA. RC.

1 SL 1 / 5 " 26 1 8 3 a . 51 1 ' 3 4 . ¿ S r .
2 1 <3 27 to 3 4 Ÿ 52 7 (3C 2 2

3 1 r * 4 28 £ 8 7 IS 53 / <3.? 3 o
4 1 r Ä 5 29 E Q o i s 54 7 /V o 3 o
5 ~7 30 Ê. 7 o in- 55 / 'V O 3 2

6 3 /Sr . . A t .
31 7 2 J ± _ 56 3

7 7 n f i . r 32 7 i*t 57 / ' V 4 3 ?
8 (o 2 2 / O 33 e : 1*7 , j ± . 58 (

M
9

4 4 o . . ¿ 7 -
34 2 7 ? 5 59 1 Ar 7

10
, _ 3 S l .

35 l o z 4 60 (14 7
11 0 ___4_7__ . . A 7 . .

36 t / o f i i 61 i
%

12 0 5 4 37 i IOC, 2 0 62 1 ISO j j -
13 0 4 1 2 1 38 1 10e) 2,1 63 4 ISO 3 4
14 _ _ _ § 2 2 4 39 III 64 / I S I 3 1 ,
15 6 . . . r l . . . i t . . .

40 ___L_ H4 3 / 65 __2L_ / S t 3 2
16

. . O - J
41 / . - L U .

66 4 /T V - J 9 -
17 0 a i 42 (

il 7 67 2 . /< T 4 . 3 . 1
18 £ _ _ _ 4 Ü . / 6 43 /

. . T r t .
68

. . 2 L . _ / 6 3 3 7
19 0 ! /<?

44 <5 / L 5 /5 ~ 69 0 / è f 37
20 0 !_ 4 4 - _ IS 45 7 / z ^ IO 70

7

<5*-"
-4? 33>

21 0 41 H 46 1 /23) I S 71 o 37
22 0 4 8 K 47 1 /3ù 2 4 72 3 /7/ 5V
23 72 IS 48 1 4? 73 3 /7<2 3/
24 7 e) IS 49 3 ISLf 74 __i?__ 34
25 SO T i . 50 7 7 | 75 o 1/ 7 * 33

7 4 _ o C I e] \32

—
i

■~4

& IXO IV

APPENDIX N.

T a b le o f results o f tests perform ed using L M 3 .

No. Parameters Performance

BOUND CMS HOPS MAXSHIFT ADT DDT SDT MR1 MR3 MR10
1 15 1 1 1 5 3 3 44.64% 62.50% 82.14%
2 5 1 1 1 4 2 2 46.43% 60.71% 82.14%
3 5 2 1 1 4 2 2 44.64% 64.29% 82.14%
4 5 3 1 1 4 2 2 46.43% 66.07% 83.93%
5 5 -1 1 1 4 2 2 42.86% 60.71% 75.00%
6 5 1 1 1 7 5 5 46.43% 53.57% 78.57%
7 5 1 1 1 10 5 5 42.86% 51.79% 75.00%
8 5 1 0 0 4 2 2 50.00% 69.64% 78.57%
9 5 1 2 2 4 2 2 44.64% 55.36% 83.93%

10 5 -1 0 0 2 2 2 42.86% 60.71% 71.43%
11 5 -1 0 0 2 1 1 44.64% 64.29% 73.21%
12 5 5 1 1 4 2 2 46.43% 60.71% 85.71%
13 5 5 1 1 7 5 5 42.86% 51.79% 80.36%
14 10 1 1 1 4 2 2 46.43% 58.93% 82.14%
15 15 0 1 1 4 2 2 41.07% 60.71% 80.36%
16 5 0 1 1 4 2 2 41.07% 60.71% 80.36%
17 5 0 0 0 4 2 2 42.86% 64.29% 76.79%
18 5 0 0 0 5 5 5 44.64% 58.93% 76.79%
19 5 1 2 2 4 2 2 44.64% 55.36% 83.93%
20 5 3 0 0 4 2 2 53.57% 67.86% 82.14%
21 5 4 0 0 4 2 2 53.57% 66.07% 80.36%
22 5 5 0 0 4 2 2 48.21% 67.86% 82.14%
23 5 2 0 0 4 2 2 53.57% 66.07% 78.57%
24 5 3 0 0 2 2 2 50.00% 67.86% 80.36%
25 5 3 0 0 3 2 2 53.57% 73.21% 82.14%
26 5 3 0 0 6 2 2 50.00% 64.29% 78.57%
27 5 3 0 0 10 2 2 42.86% 53.57% 76.79%
28 5 3 0 0 99 2 2 33.93% 53.57% 80.36%
29 5 3 0 0 3 1 1 51.79% 73.21% 80.36%
30 5 3 0 0 3 3 3 55.36% 73.21% 83.93%

Appendix N continued.

No. Parameters

BOUND CMS HOPS MAXSHIFT
31 5 3 0 0
32 5 3 0 0
33 5 3 0 0
34 5 3 0 0
35 5 3 0 0
36 5 3 0 0
37 5 3 0 0
38 5 3 0 0
39 5 3 0 0
40 5 3 0 0
41 5 3 0 0
42 5 3 0 0
43 5 3 0 0
44 5 3 0 0
45 5 3 0 0
46 5 3 0 0
47 5 3 0 0
48 5 3 0 0
49 5 3 0 0
50 5 3 0 0

Performance

DDT SDT MR1 MR3 MR10
0 0 50.00% 66.07% 83.93%
2 1 53.57% 73.21% 82.14%
1 2 51.79% 73.21% 80.36%
4 4 57.14% 71.43% 82.14%
3 2 55.36% 73.21% 83.93%
2 3 53.57% 73.21% 83.93%
1 0 48.21% 67.86% 82.14%
0 1 53.57% 71.43% 82.14%
2 0 50.00% 67.86% 82.14%
0 2 57.14% 71.43% 82.14%
5 5 57.14% 69.64% 82.14%
6 6 53.57% 69.64% 82.14%
7 7 53.57% 69.64% 82.14%
2 4 53.57% 73.21% 80.36%
3 5 57.14% 71.43% 82.14%
2 6 53.57% 73.21% 80.36%
3 6 57.14% 71.43% 82.14%
0 4 58.93% 71.43% 78.57%
1 4 51.79% 73.21% 78.57%
4 2 53.57% 71.43% 83.93%

ADT
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

APPENDIX O.

T ab le o f results o f tests perform ed using L M 4 .

In tests 1-24 the following parameters were fixed: BOUND=5, MAXSHIFT=0.

The following parameters were fixed for the non-boundary vectors only: CMS=3, HOPS=0,
ADT=3, DDT=3, SDT=5.

Tests 1-23 were performed only on the subset of 25 latents that included at least one
boundary vector. Tests 24, 25, 30-42 were performed on the whole latent set. Tests 26-29
used the subset of latents that contained no boundary vectors.

Tests 1-23 used the original 59 file prints and tests 24-42 used the expanded set of 100 file
prints.

No. Parameters Performance

CMS HOPS ADT DDT SDT MR1 MR3 MR10
1 1 1 6 4 8 44.00% 72.00% 84.00%
2 3 1 6 4 8 52.00% 72.00% 88.00%
3 3 0 6 4 8 56.00% 68.00% 80.00%
4 2 0 6 4 8 56.00% 68.00% 80.00%
5 1 0 6 4 8 52.00% 68.00% 76.00%
6 0 0 6 4 8 48.00% 60.00% 80.00%
7 -1 0 6 4 8 52.00% 60.00% 76.00%
8 1 0 4 4 8 52.00% 60.00% 68.00%
9 1 0 8 4 8 48.00% 64.00% 80.00%

10 1 0 10 4 8 48.00% 60.00% 80.00%
11 1 0 6 3 5 52.00% 68.00% 76.00%
12 1 0 3 3 5 52.00% 60.00% 84.00%
13 3 1 8 4 8 44.00% 68.00% 80.00%
14 3 1 6 3 5 52.00% 68.00% 88.00%
15 3 1 3 3 5 60.00% 68.00% 80.00%
16 3 1 6 4 6 52.00% 72.00% 88.00%
17 3 1 4 4 4 52.00% 68.00% 84.00%
18 3 1 5 3 5 48.00% 64.00% 80.00%
19 3 1 3 3 3 56.00% 68.00% 80.00%
20 3 1 2 2 2 52.00% 68.00% 84.00%
21 3 1 2 2 4 56.00% 68.00% 84.00%
22 3 1 2 3 4 52.00% 68.00% 84.00%
23 3 1 3 2 3 56.00% 68.00% 80.00%
24 3 1 3 3 5 48.21% 67.86% 80.36%

Appendix O continued.

In tests 25-42 the following parameter was fixed: BOUND=5.

The following parameters were fixed for the boundary vectors only: CMS=3, HOPS^l,
ADT=3, DDT=3, SDT=5.

Tests 25, 30-42 were on the complete set of 56 latents and the 100 file prints. Tests 26-29
were on the subset of latents that contained no boundary vectors and the 100 file prints.

No. Parameters Performance

CMS HOPS MAXSHIFT ADT DDT SDT MRl MR3 MR10
25 3 0 0 2 1 4 44.64% 71.43% 80.36%
26 3 0 0 3 3 5 50.00% 76.67% 83.33%
27 1 0 0 3 1 2 54.84% 74.19% 80.65%
28 3 0 0 2 1 2 54.84% 77.42% 80.65%
29 0 0 0 2 1 2 38.71% 54.84% 67.74%
30 3 0 0 2 1 2 51.79% 71.43% 80.36%
31 2 0 0 2 1 2 55.36% 71.43% 80.36%
32 4 0 0 2 1 2 51.79% 73.21% 82.14%
33 3 0 0 2 2 2 50.00% 71.43% 82.14%
34 3 0 0 1 1 1 48.21% 62.50% 82.14%
35 3 0 0 2 1 1 51.79% 73.21% 80.36%
36 3 0 0 3 1 3 51.79% 67.86% 80.36%
37 3 0 0 2 1 3 51.79% 69.64% 80.36%
38 3 1 1 2 1 2 58.93% 67.86% 83.93%
39 3 1 1 4 2 2 53.57% 66.07% 80.36%
40 3 1 1 2 1 4 51.79% 69.64% 80.36%
41 3 1 1 2 1 2 53.57% 67.86% 83.95%
42 2 1 1 2 1 1 58.93% 67.86% 85.71%

APPENDIX P.

T ab le o f results o f tests perform ed using L M 5 .

The following parameters were fixed in these tests: BOUND=5, HOPS=0, MAXSHIFT=0,
MDT=1, PDT=10, DEPTH=5.

No. Parameters Performance

CMS MAT CUTOFF SPAN MR1 MR3 MR10
1 3 20 20 30 71.43% 78.57% 83.93%
2 3 20 5 30 75.00% 76.79% 80.36%
3 3 20 15 30 80.36% 82.14% 85.71%
4 3 20 13 10 78.57% 80.36% 85.71%
5 1 90 15 10 69.64% 80.36% 82.14%
6 3 20 15 10 80.36% 82.14% 85.71%

