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ABSTRACT

This thesis is concerned with the decoding aspect of linear block 
error-correcting codes. When, as in most practical situations, the 
decoder cost is limited an optimum code may be inferior in 
performance to a longer sub-optimum code' of the same rate. This 
consideration is a central theme of the thesis.

The best methods available for decoding short optimum codes and 
long B.C.H. codes are discussed, in some cases new decoding 
algorithms for the codes are introduced.

Hashim's "Nested" codes are then analysed. The method of nesting 
codes which was given by Hashim is shown to be optimum - but it is 
seen that the codes are less easily decoded than was previously 
thought.

"Conjoined" codes are introduced. It is shown how two codes with 
identical numbers of information bits may be "conjoined" to give 
a code with length and minimum distance equal to the sum of the 
respective parameters of the constituent codes but with the same 
number of information bits. A very simple decoding algorithm is 
given for the codes whereby each constituent codeword is decoded 
and then a decision is made as to the correct decoding. A technique 
is given for adding more codewords to conjoined codes without 
unduly increasing the decoder complexity.

Lastly, "Array" codes are described. They are formed by making 
parity checks over carefully chosen patterns of information bits 
arranged in a two-dimensional array. Various methods are given for 
choosing suitable patterns. Some of the resulting codes are self- 
orthogonal and certain of these have parameters close to the optimum 
for such codes. A method is given for adding more codewords to array 
codes, derived from a process of augmentation known for product 
codes.
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ABBREVIATIONS

Primitive element of a Galois Field.

A.R.Qo Automatic Repeat Request.

B.CoH. Bose-Chaudhuri-Hocquenghem.

c. Channel capacity, or a Code.

C(G). Code described by generator matrix G .

nc = n =r r = n! 
(n-r)! r!

d. Hamming distance.

d . min Minimum Hamming distance.

F.E.C. Forward error correction.
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g(x) Generator polynomial.

GF (q) Galois Field with q elements.

H Parity check matrix.

h(x) Parity check polynomial.

I/P Input.

k Number of information digits in a block code.

n Block length of a code.

(n,k) Block code with parameters n, and k.

(n,k,d) Block code with parameters n, k, and d.

0/P Output.

Pe Probability of a random error occuring..

P.R.O.M. Programmable read-only memory.

R.A.M. Random access memory.
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INTRODUCTION

Shannon (1948) provided a mathematical basis for the 

theory of communication. He showed how a sequence of n 

symbols, each chosen from a set of q symbols, may contain 

a certain maximum amount of information. If only a subset 

of the possible sequences of n symbols are allowed then less 

information is containable by that subset. Each sequence 

contains less than the maximum possible amount of information, 

and is said to contain "redundancy". If the subset of 

sequences is carefully chosen, it is possible to recognise the 

sequences even when some of the symbols have been corrupted.

In the practical situation of transmitting information 

over a noisy channel, it is therefore possible to map sequences 

of information symbols onto longer sequences which contain 

redundancy and then to recognise these sequences after they 

have been corrupted by the channel, subsequently recovering the 

original information sequences. The ratio of the length of 

the information sequences to the length of the longer sequences 

is termed the "rate" of the code, or the "transmission rate".

The set of longer sequences is termed a "code", and each 
member of the set is a "codeword". The number of symbols in 

a codeword is its "length", and is also the "length" of the 

code.
Shannon (1948) showed that for transmission rates less than 

a figure C, (the "channel capacity") it is possible to recognise 

corrupted codewords (or to correctly "decode" corrupted codewords) 

with an arbitrarily high certainty, provided that the code is

V



sufficiently long and is well chosen. He did not give any 

method for chosing the code.

Coding theory is concerned with methods of chosing codes 

with desirable characteristics. In practical situations it is 

not always necessary to find codes fulfilling Shannon's 

"promise" of negligible error rates at channel capacity; what 

is required are codes capable of giving desired maximum error 

rates at specified transmission rates, with economical decoding 

algorithms. It is unfortunate that the codes with economical, 

and so simple, decoding methods tend to be of lower rate than 

other codes giving the same output error rate.

The two main goals of coding theory are to find codes with 

as high a rate as possible for a given length and error correcting 

power; and to find simple decoding algorithms for codes or codes 

with simple decoding algorithms.

This thesis is concerned with codes which are msily decoded. 

Consideration is confined to the "block" codes, and in chapter 

one a background is given of the basic properties of those codes, 

together with the terms used in their description and evaluation. 

At the end of chapter one the importance of any trade-off in 

codelength and ease of decoding for a given transmission rate 
and output error rate is discussed.

In chapter two the area of interest is further narrowed to 

include only linear codes, and their properties are reviewed.

At this stage consideration is narrowed again to include only 

binary codes, and important classes of such codes are reviewed, 

together with known decoding techniques for short codes of this 

kind. Chapter three draws upon these techniques, and adds others,
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when the best available methods for decoding short codes with 

moderate error correcting power are discussed. Decoding methods 

for selected longer codes are then briefly discussed in chapter 

three, then chapter four is devoted to a consideration of 

decoding methods for one of the most important known classes 

of codes, the long BCH codes (Bose (1959) Chaudhein Hocquengen 

(I960)). Particular attention is paid to double error correcting 

BCH codes.
Chapter five discusses the importance of a class of codes 

which claim to be easily decodable for high rates, lengths, and 

error correcting powers - the nested codes discovered by Hashim 

(1974).
There is certainly a need for codes which, although not the 

best in terms of rate for a given length and error correcting 

power, are asily decoded. This requirement, discussed in 

chapter one, is met by the codes described in chapters six and 

seven.
Chapter six describe* conjoined codes, which are codes 

formed by a combining operation on two or more other codes. A 

simple method of decoding these codes is given, and their 

relation to the Reed-Muller (1964) codes is demonstrated.

Chapter seven describes a class of codes with higher rates 

and a more interesting structure - the array codes. The codes 

are based on a two dimensional arrangement of the information 

symbols - redundancy being added on the basis of selected 

patterns over the two dimensional array. Various types of 

construction are given, with varying trade-offs between decoding 

complexity and transmission rate for a given length.



At the end oi the thesis is a summary of the work

presented, and a discussion of possible topics for further 

research based upon this work.
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CHAPTER 1

Basic Properties of Error correcting block codes

1.1, The Coding Theorem
Shannon (1948) lias shown that for any transmission rate less 

than a figure C, the "capacity" of the channel, it is possible to 

transmit data with a probability of error at the receiver which 

tends to zero. This rate, C, depends upon the noise on the channel.

The derivation of Shannon's discovery does not give any clue as 

to how the channels capacity may be fully used in practice. One 

solution might be to transmit data as extremely long blocks of 

digits, and then to use a correlation process at the receiver.

This method has severe problems in realisation, however, in terms 

of the storage required at the transmitter and receiver, and in 

terms of the delay inevitable at the decoder.

The more promising approach is to add redundant digits to 

information digits, in order that these redundant digits may help 

the decoder at the receiver to recognise which information digits 

were transmitted. This concept is the basis of coding theory. In 

the case of block codes, information digits are divided into blocks 

of k digits and then redundancy digits are added to these k digits. 

The redundant digits are a function of the information digits only.

In the case of non-block or convolutional codes the redundancy 
digits still follow information digits, but this time are not 

dependant on any one block of information digits.
Much work has been done (e.g. Viterbi (1967), Wozencraft (1968) 

and Forney (1969)), on convolutional codes, but they are not 

considered in this thesis. At present convolutional codes are
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extremely attractive for situations in which it is acceptable 

to have rates (i.e. ratios of transmitter information digits 

to total number of transmitted digits) of 1/N where N is an 

integer. For higher rates than 1/2 block codes are of most 

interest since the process of decoding convolutional codes then 

rapidly becomes more complex.

1.2. Definition

An error correcting block code consists of a set of N n-tuples, 

called the codebook, where an n-tuple is a row vector of n symbols

chosen from a set of q elements (the code alphabet)^ and is 

termed a codeword.

1.3. Metrics
In order to correct errors in a corrupted codeword it is 

necessary that each codeword is sufficiently different from all 

others in the codebook that the corrupted codeword is "closer" 

in some sense to the uncorrupted codeword than to any other in 

the codebook. It is this quality of "closeness" that is termed 

the "distance" between codewords, and the manner in which the 

distance is determined is called the "metric".
If codewords are corrupted in such a way that symbols are 

changed at random by a random degree, then the "Hamming distance" 

is a useful metric. The Hamming distance between two codewords 

is defined as the number of symbols by which they differ.
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The Hamming metric is not the only type of metric.

Depending upon the nature of interference to codewords - for 

example the form taken by the channel interference and the way 

in which the channel carrier is modulated by the codewords - 

various other metrics may give a more useful definition of 

distance between codewords. As an example, the Lee metric gives 

the "Lee distance" between two codewords where symbols are chosen 

from a field of q elements. The Lee distance between the codewords 

is defined as the sum of the distances between each respective 

symbol of the codewords, where the distance oetween each symbol 

is the modulo -q sum of the values of the symbols (Lee 1958, 

Berlekamp 1968).
The Hamming metric is suited best to orthogonal modulation 

schemes, whilst the Lee metric is best suited to phase modulation 

systems. Either metric is only an approximation to the perfect 

metric for any practical situation, but such approximations are 

generally adequate to provide practical solutions.

In the binary case; that is, when the symbol alphabet consists 

of two values, the Lee and Hamming metrics are identical. In this 

thesis only the Hamming metric will be considered, and in the main 

only binary codes dealt with.

1.4. Minimum distance and error correcting power

The two codewords which are closest together set a limit to 

the error correcting power of a given code. The distance between 

those two codewords is called the "Minimum distance" of the code, 

and is often written "dmin".
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If a code has minimum distance dmin then, errors will be

correctable provided they number at most dmin -1, since the
2

nearest codeword to such a corrupted codeword will be at least

a distance of dmin + 1 away, except for the uncorrupted 
2

codeword which will be at most dmin -1 away.
2

1.5. Detecting Errors

This thesis is concerned with the correction of errors. It 

is nevertheless possible to use codes to detect errors. A code 

with minimum distance dmin can detect up to dmin -1 errors in a 

codeword, since by definition a codeword cannot be corrupted into 

another codeword without at least dmin errors occurring. In fact 

the power of a code to detect errors is generally much greater 

than this. If a codeword is corrupted by any number of errors 

into an n-tuple which is not a codeword then the error will 

clearly be detected. Since there are q11 n-tuples and only qk of 

these are codwords, it is to be expected that the majority of 

errors will be detected for codes with n > k.

As an example, Peterson & Weldon (1972) state that a 

particular binary block code with n = 1023 and k = 1002 (usually 

abbreviated to (1023,1002)), will not only detect any error pattern 

of weight 5 but also any error pattern confined to 21 cyclically 

consecutive positions of the codeword, and all but 0.00005 percent 

of all other error patterns.
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This property of codes makes the "Automatic Repeat Request"

(ARQ) method of data transmission attractive whenever practicable.
1

In this method, data is transmitted in block-coded form, and 

whenever errors are detected within a block a repeat is requested 

of that block, and a repeat continues to be requested until an 

error free block is received. Many variations on this theme are 

possible, the most importance perhaps being that where a small 
number of errors are corrected at the receiving end, larger number 

of errors just being detected and a repeat requested. By this 

method the data rate is increased at the expense of increased 

error rate. The trade-off is decided upon by a knowledge of 

the channel characteristics. If the code used has minimum distance 

dmin, and up to t errors (t ¿(dmin -l)/2) are to be corrected, 

whilst up to e errors (e ̂ t) are to be detected then dmin = 2t + e +1. 

(Peterson & Weldon 1972).

1.6. Bounds on n, k, and dmin

It is clearly of interest to know the maximum value of dmin 

possible for given values of n and k. In order to do this many 

bounds on dmin have been found. Given here are the most important 

of these bounds. Three give upper bounds on dmin, and one gives a 

lower bound.

1.6.1. Hamming Bound
This bound was first found by Rao (1947) in connection with
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experimental designs, it was applied to coding theory by 

Hamming in 1950 and is sometimes known as the "Hamming-Rao 

Volume Bound".
Consider a block code of length n and with symbols chosen

from an alphabet of q symbols. If the code has an information
uRrate of R then there are q codewords, whilst the total number 

of possible n-tuples is q11.

The number of n-tuples which are not codewords is
J, _ n nRtherefore q _q

If the code is to be capable of correcting all error 

patterns of weight t or less then each of these error patterns 

applied to each codeword must be associated with a distinct 

non-codeword. Then V(t) ^ q*1̂ 1 ^  where V(t) is the number of 

n-tuples which are at a distance of less than or equal to t from 

any codeword in the code.

1-6.2. The Plotkin Bound

The Plotkin (1960) bound is based upon the observation that

the minimum distance of a code cannot exceed the average distance

between all pairs of distinct codewords. The result obtained by
Plotkin for the Hamming metric is

(n - k) v Q (dmin -1) Log (dmin -l)
K ' ------------ q

(q-l)

This bound is tight for high rate codes but weak at low rates.
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1.6.3. The Elias Bound

This bound, first given by Elias (lySO) and later refined 

by Wagner (1965) combines the Plotkin and Hamming bound to give 

a bound which is tight at medium rates. The bound shows that 

the Plotkin observation is a weak one, that in fact the average 

distance between pairs of most distinct codewords is considerably 

smaller than the average distance between ail pairs of codewords. 

In the binary case, over the Hamming metric, the bound is

This is a constructive lower bound on drain, found by Gilbert 

(1952) and Sacks (1958), is a refinement of a bound proposed 

by Varshamov (1957). It gives drain bounded by:-

d$21 (1 ~ l/n)(m/(m-l)

where 1 is an integer such that
j=0

and m is the smallest integer for which

1.6.4. The Varshamov Gilbert Bound

drain -2

i = o
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1.6.5. Bounds for specific n, k, dmin

The above bounds are clearly useful in defining what it 

is possible to achieve with codes of given parameters. For 

specific values of n, k, and dmin it may be possible to tighten 

these bounds considerably by taking into consideration known 

optimum codes. That is, when it is known what is the best 

dmin achievable for some values of n and k, it is possible to 

give bounds on codes with other n and k because of known methods 

of or limitations on the combination of codes with one another 

to make new codes. This aspect of bound on dmin has been used 

by Helgert & Stinaff (1973), to give a table of bounds or 

dmin for values of n up to 63 and t up to 11 for binary codes,

and a similar table has been compiled by McWilliams & Sloane
\

(1977) for binary and ternary codes of linear or non-linear 

construction.

1.7. Perfect Code3
Perfect codes are those codes which meet the Hamming bound 

with equality. Therefore they are codes which will correct all 

errors of weight up to a maximum of t, and none of higher 

weight. There are only a few known perfect codes. The only 

perfect codes with medium rates are short, and the only long 

perfect codes are of either very high or very low rates.

Examples of perfect codes are the Hamming codes (Hamming 1950); 

the repetition codes; and the Golay (23,12) binary triple error 

correcting code and (11,6) ternary double error correcting

8



code (Golay 1949).

Tietavainen (1977) has shown that there are no unknown 

linear perfect codes, and that if the code alphabet is of q
r  gsumbols and q= p p where p , p0 are distinct primes and r,s 

are positive integers then no perfect codes exist over this 

alphabet for error correction power t^3.
For other non power of prime values of q it is still an 

open question whether perfect codes exist.

1.8. Quasi-perfect codes

Quasi perfect codes are those which correct all errors 

of weight t, a maximum of weight t + 1, and none of higher weight. 

As an example, all double-error-correcting BCH codes are quasi

perfect. (Gorenstein et al 1960) . Other examples are given 

by Peterson & Weldon (1972).

1.9. Optimum Codes
"Optimum" is a much confused term when applied to codes.

One definition follows that of perfect and quasi-perfect codes, 

and terms optimum any code that corrects all errors of weight 

t or less with t as large as possible and as many errors as 
possible of weight t + 1. (See for example Bose and Kuebler 

(1958)).
A more lax definition, but one perhaps more useful is that 

an optimum code is that code with the shortest length for a given 

number of codewords and minimum distance (see for example 

Berlekamp 1968).
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By this definition, codes formed by puncturing subspaces

of different dimensions from a maximal length feedback, shift 

register code are optimum (see for example Solomon, and Stiffler 

(1965) and work on anticodes by Farrell & Faraq (1970, 1974 and 

1976)).

The strictest definition of optimum is that given, for 

example, by Peterson and Weldon (1972) which is that an optimum 

code is one which gives the lowest probability of error over 

a random channel, for a given length and number of codewords.

1.10. Good Codes

For many practical applications of error correcting codes, 

where the decoding scheme now corrects up to (dmin -l)/2 errors 

and no more, it is most useful to know which codes have the 

maximum number of codewords for a given length and minimum 

distance of the code. For the lack of a better term, these 

codes may be called "good codes". See for example page 123 of 

Peterson and Weldon (1972) and the table of McWilliams and 

Sloane (1977).

1.11. The practical importance of optimality

It is easy to overestimate the importance of optimum codes, 

as defined in the previous paragraphs. In very many cases of 

practical data transmission there are three major considerations: 

the rate of transmission of information, the probability of errors
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in recovered data, and the cost of recovering the data. From 

the above bounds on drain it may be deduced that the longer a 

code the greater the rate may be for a given error rate in the 

recovered data. By sacrificing the gain available in rate it 

is often possible to construct a code which is not optimal but 

which nevertheless allows data to be recovered more cheaply 

because a particularly simple decoding scheme applies, even 

though for a given rate the code will be longer.
The major argument against this design philosophy is that 

a longer code incurs a greater delay before received data can 

be output from the decoder. If such a consideration is important 

in an application, then obviously the use of optimal codes 

must be considered; although even in this case it is possible 

that the decoding scheme required is so computationally lengthy 

that less decoding time is required by a longer, non-optimal 

code. ,
In conclusion, if the decoding cost of a data transmission 

system is limited then an optimal code may not provide the best 

solution - a non-optimal code of greater length but the same 

rate may afford a lower error output rate for the same decoder 

cost. If decoder cost is of no consequence, however, then 

the longest optimal code (in the sense of best error rate 

performance) should be used commiserant with acceptable delay 

in recovery of the data.
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CHAPTER 2

Review oi Linear Block Codes

2.1 Introduction

This thesis is almost entirely concerned with linear 

block codes. These codes have a mathematical structure which 

simplifies the calculation of their properties, and allows 

comparatively simple encoding and decoding processes to be 

devised.

A definition of linear block codes is as follows:

A linear block code of length n has symbols chosen from 

a field of q elements, and is a subspace, of order q of the 

linear vector space of all n-tuples; where k is the number of 

information symbols in the code.

Note that since the symbols of the codewords must be chosen 

from a field, q must be a prime or a positive integral power 

of a prime.

In this thesis, codewords and other sequences will be 

described variously as vectors, n--tuples, and polynomials.

The vector description is self explanatory. An n-tuple is 
simply a sequence of n symbols. When a sequence is described 

as a polynomial it v/ill be termed a function of a variable, 

e.g. f(x), and each symbol in the sequence will be identified 

as a coefficient of a power of that variable.

E.g. the sequence 32103 would foe written and treated as

12



4 3 3 2f (x) = 3x x 2x + 2x + x +9.

The number of non zero symbols in a sequence will be 

termed its Hamming weight, being identical to the Hamming 

distance of the sequence from the all zero sequence.

2.2. Generator Matrix
1cSince the codewords form a subspace, of the order q , it 

is possible to describe the entire code by any k linearly 

independent codewords. Any codeword can be formed by any 

linear combination of these codewords. Equivalently, if k 

independent codewords are arranged as row vectors in a k x n 
matrix then the rowspace of the matrix is the c.odebook of 

q codewords. Such a matrix is termed the generator matrix 

of the code.

If the matrix is put in its reduced echelon form and 

a k symbol row vector is multiplied by the matrix, the result 

is k symbols identical to the original row vector, followed 

by (n-k) other symbols. The codebook formed by the matrix 

is then said to be systematic, and the first k symbols are 

information symbols. The remaining (n-k) symbols are often 
tei’med parity check symbols, although strictly speaking they 

are only checks on parity when q=2.
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2.3.
A second important matrix used in the description and 

analysis of codes is the parity check matrix, v/hich is defined 

as the matrix v/hich has the codebook as its nullspace. That 

is, codeword vectors multiplied by the transpose of the 

parity check matrix give an all zero vector result, whereas 

all other n-tuples give a non-zero result.
If the generator matrix, G, of a code is given by

G = [Ik ' P]
then the parity check matrix, H, is given by

The Parity Check Matrix.

or

|pT lln-kl

P

In-k

where P has dimension k x (n-k) 

In has dimension n x n 

and Ik has dimension k x k. 

Therefore it can be seen that

= 0

2.4. The Syndrome
TIf an n-tuple is multiplied by H , the effect is as if 

the first k symbols are encoded by the generator matrix, 

and the "parity" symbols so obtained are added symbol-by

symbol to the remaining (n~k) symbols to given an (n-k) 

symbol result. It can be seen that if those remaining

14



(n-k) symbols, are the parity check symbols of tho encoding 

of the first k symbols then the result is all zero, and 

otherwise it is non-zero. This confirms the assertion 

that the result is zero if the n-tuple is a codeword, and 

non-zero otherwise. Such results are termed the "syndromes" 

of the n-tuples.

The syndrome of an n-tuple is related to the difference 

between the n-tuple and codewords. If a codeword is described 

by a vector c, and the vector e represents "errors" added 

to this codeword to give a "received" n-tuple r, then

r = c + e

then since the syndrome s, of the n-tuple, r, is given by

s = Tr H = T(c + e) H

thus s = Tc H + Te H .

but, since, TcH = 0

s = Te H

this relationship between a syndrome and an error vector is 

the basis of almost all decoding methods. A received, 

corrupted, codeword is decoded by finding s, and then 

satisfying the equation with a vector e of lowest possible 
Hamming weight in the case of random errors. There are as 

many solutions of the equation as there are codewords, and 

it is by finding the minimum weight solution for e that 

the codeword closest to r is found.
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The set of possible solutions for e is called the "coset"

of s, and the minimum weight solution is termed the "coset 

leader" of s. Thus the coset leader of a syndrome of an 

n-tuple is the vector which when added to the n-tuple 

gives as a result the nearest codeword.

2.5. Minimum Hamming distance of linear codes

The Hamming distance between codewords is defined as 

the number of symbols by which they differ. Thi3 is 
equivalent to the Hamming weight of the sum of the two 

codewords.

Tne minimum Hamming distance of a code is defined as 

the minimum Hamming distance between any two different 

codewords. This, then, is equivalent to the minimum Hamming 

weight of the sum of any two different codewords. It is a 

property of linear block codes that the sum of two different 

codewords is also a codeword. Therefore the minimum Hamming 

distance of a linear block code is equal to the minimum non-zero 

Hamming weight of any codeword in the code.
It is easier to find the minimum weight of a codebook

than it is to find the minimum distance, since only N weight
Ncalculations are then required, compared to = N (N~l)/2

weight calculations required to determine minimum distance 

directly. Furthermore, methods of analysis of the weight
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distribution of linear codes have been found (e.g. MacWilliams

(1963a), Berlekamp 1968) and from these may be deduced the 

distance properties of the codes. In the case of many 

specific linear block codes the weight distribution may 

be determined by mathematical analysis, again giving 

information about the distance properties of the codes.

2.6. Important classes of binary block error-correcting-codes

2.6.1 Repetition Codes

A binary repetition code has only two codewords, the 

all zero n-tuple and the all one n-tuple. There is therefore 

but one information bit, and the minimum distance of the code, 

dmin, is equal to n. A repetition code with n odd is a 

perfect, t= (n-l)/2, error correcting code of rate 1/n.

2.6.2 Hamming Codes

These codes, described first by Hamming (1950) are capable 

of correcting single errors.

The columns of the parity check matrix comprise all 

possible distinct non-zero n-tuples.

For any code, if one error occurs in a codeword then the 

syndrome is equivalent to one column of the parity check 

matrix, corresponding to the position in which the error 

occurred. Since the parity check matrix of a Hamming code 

consists of distinct n-tuples as columns, it is possible 

to identify the error position within a codeword from the 

syndrome provided only one error occurs.
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If more than one error occurs then the syndrome

obtained will be the bit-by-bit modulo-2 sum of the respective 

columns of the parity-check matrix. Clearly the modulo-2 bit 

by bit sum of n-tuples will give another n-tuple, either all 

zero or else an n-tuple corresponding to a column of the 

parity check matrix (since all n-tuples are represented as 

columns). More than one error can therefore only be 

interpreted by any decoding scheme as either no error at all 

or one error only.

The code is seen to be perfect, since it is capable of 

correcting exactly one error per codeword; no errors of weight 

greater than one being correctable.

2.6.3 The Golay Codes
The Hamming bound, in the linear binary case, reduces to

\=0

Golay (1949) noticed that for n = 23, k = 12, and t = 3 this 

bound is met exactly, suggesting the existence of a perfect 

(23, 12) triple error correcting code. Such a code was 

indeed found by him. It is a code which, as might be expected, 

has many connections with important aspects of combinatri cs, 

notably the Mathieu group.
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Golay also found an (11,6) ternary code, which is a perfect 

double error correcting code, following a similar observation on 

the Hamming bound in the linear ternary case.

Generator matrices for these two codes are given in fig.

2.1 and fig. 2.2.

1 0 0 0 0 0 0 

0 1 0  0 

0 0 1 0  

0 0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Fig 2. 1.

1 0  0 
0 1 0  

0 0 1 

0 0 0 

0 0 0 

0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 1

0 0 0 0 1 0 1 0

0 1 1 1 0 0 0 1  

1 1 0 0 1 0 0 1  

1 0  0 1 0 1 0 1  

0 0 1 1 1 0 1 1  

0 1 1 0 1 1 0 0  

0 0 1 1 0 1 1 0  

1 0 0 1 1 0 1 1  

1 0 1 1 1 1 0 0  

1 1 0 1 1 1 1 0  

0 1 1 0 1 1 1 1  

1 1 0 0 0 1 1 0  

1 1 1 0 0 0 1 1  

(23,12) Golay Code.

0 0 0 

0 0 0 

0 0 0 

0 1 0  0 

0 0 1 0  

0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Generator Matrix of the 

0 0 0 1 1 1 1  1* 
0 0 0 1 0  1- 1-1 

0 0 0 - 1 1 0  1-1 

1 0 0- 1-1 1 0 1  

0 1 0  1-1-1 1 0 

0 0 1 0  1- 1-1 1

Fig 2.2. Generator Matrix of the (11,6) Golay Code.
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2.6.4. Reed Muller Code3

(n, k, d) Reed Muller codes (Muller (1954), Reed 

(1954)) exist for any m and r m for which 

n ~ 2m = length

= no. of information bits

= redundancy

d = 2 = minimum distance

The generator matrix of a Reed Muller (R.M.) code comprises 

k linearly independent rows, each row is a 2m - tuple.

The i th row of the matrix consists of alternate 

groups of 2m * "ones" and 2 m  ̂"Zeros", the row starting 

with the "Ones". (The first row is therefore all ones; 

and the last, mth, row is a row of alternate ones and 

zeros).
The R.M. codes formed a basis for the much wider 

class of "Majority logic decodable" codes, and have been 

found to be equivalent to cyclic codes with an added 

overall parity check.

2.6.5. Finite Geometry Codes

It is possible to construct codes based upon the 

properties of finite geometries. The codes may be 

constructed using Euclidean geometries or projective 

geometries- (Weldon 1967, Kasami et al, 1966). The 

properties of the finite geometries allow the codes to
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be majority-logic-decoded as outlined in Section 2.7.4.

For short code-lengths the finite geometry codes are equivalent 

to the BCH codes (section 2.6.8.) and far greater lengths are 

related to the BCH codes (Kasami et al 1966). Reed Muller codes 

are a subset of the projective geometry codes.

Short geometry codes are easily decoded, and are often the 

best known codes, or close to the best known. As the length 

increases, however, the rates of the codes become considerably 

worse than other known codes and the decoding algorithms become 

much more complex than those for other, better, codes, (for 

example the BCH codes see Chapter 4).

The Majority logic approach to decoding finite geometry 

codes was first introduced by Rudolph (1967) and a considerable 

simplification for certain of the codes has been found by L. E. 

Wright (1977).

2.6.6. Cyclic Codes
Cyclic codes are to date the most extensively studied 

class of error correcting codes. This class does not promise 

to contain good long codes, that is,codes that meet or even 

approach the Varshamov-Gilbert bound. In fact the most 
attractive feature of cyclic codes, their considerable mathematical 

structure, suggests that long cyclic codes may be relatively 

poor. Nevertheless, this structure enables codes to be 

constructed for many parameters, and enables good codes to be 

formulated which have practically achievable encoding and
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decoding procedures for quite large block lengths.

A cyclic code is a code in which if a codeword 
" v  ic(x) = is a codeword then itsi:o o-l,cyclic shift c(x) = y q is also

iTo ^ ’) 4 r \ A
a codeword. The codewords of any cyclic code of length n may

k  11all be described as the 2 distinct multiples, modulo x +1,

of some polynomial g(x) where g(x) is a divisor of xD - 1, See,

for example, Petersen and Weldon (1972). The polynomial g(x)

is known as the generator polynomial of the code, and has order

(n-k), where k is the number of information bits in the codewords.

The polynomial (x11 - l)/g(x) has order k and is the generator

polynomial of the dual of the code generated by g(x).

The generator matrix of a cyclic code may be written as in

fig. 2.3, since x1 g(x) is clearly linearly independent of

x^g(x) for all i, j.< n, i^j. The reduced echelon form of this

matrix is given in fig. 2.4; see for example Lucky et al (1968)

for a detailed explanation.

% Vl $ ( x )

« I
• .

% ft t o

fig. 2.3 Generator matrix of code described by g(x).
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Xk_1(g(X)+Xn"k)mod g(X)

X1(g(X)+Xn k)mod g(X)

X2(g(X)+Xn k)mod g(X) 
X(g(X)+Xn"k)mod g(X)

g ( x )+x n" k

Fig 2.4 Reduced Echelon form of generator 
matrix of code described by g(x)



2.6.7. Quasi-cyclic codes

A code with n= mn , and k = mk is a quasi-cyclic code 

if every codeword shifted cyclically by M bits is also 

a codeword. Very powerful quasi-cyclic codes have been 

found for medium rates by Chen (1969) and the existence 

of very long quasi-cyclic codes that meet the Gilbert 

bound has been shown by Chen, Peterson and Weldon (1969).

It is not easy to construct quasi-cyclic codes. Townsend 

and Weldon (1967) presented self-orthogonal quasi-cyclic 

codes, which are formed from difference sets; the codes 

are of low power but the ease with which the self-orthogonal 

codes may be decoded makes them of some interest nevertheless. 

Other work on quasi-cyclic codes has been published by 

Karlin (1969) and Hoffner and Reddy (1970).

2.6.8. B.C.H. Codes

B.C.H. codes are an important sub-class of the cyclic 

codes (Bose & Ray-Chaudhuri (1960), Hocquengam 1959). They 

are specified for a very large range of block lengths and 

rates, for all error correcting powers. For block lengths 

up to sixty-five there are only seventeen cyclic non-BCH 
codes which have a larger minimum distance than a BCH 

code of the same length and rate. Although for very long 

codes it has been shown that BCH codes are relatively 
poor (Lin & Weldon 1967), it is reasonable to
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assume that for moderate lengths the BCH codes are generally 

the best cyclic codes.

Due to their wide range of parameters, and their good 

performance, the B.C.H. codes have become a "standard" against 

which other classes of error correcting codes are compared; 

also the decoding algorithms for the codes (see Chapter 4) 

are used as a gauge of the complexity of the decoding 

algorithms of other codes.

A cyclic code generated by the polynomial g(x) is a 

B.C.H. code iff g(x) is the lowest degree polynomial

for which c( , ^  , . . . . are an element of

GF (2m), that is^the Galois field of 2m elements.

The length of a BCH code is equal to the lowest common

multiple of the orders of the roots, and the minimum distance

of the code is guaranteed to be greater than the longest

number of consecutive integers, module n, in the set e= (e^, e2»...en-k) 
©2 © n-kwhere c< , o( , .... are the roots of the generator

polynomial of the code.

The most important BCH codes are those for which m^l, 

o( is a primitive element of GF (2m), and do= 2to +1. Then the 
generator polynomial of the code is given by:

g(x) = LCM (m^(x), m3(x)......m2to-l^X))
where m . (x) is the minimal polynomial of

Them (x) have degree at most m, and therefore g(x) is 

of degree at most mt. Such a BCH code therefore has at most 

mto parity checks, and may correct up to to errors.
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The theory of BCH codes is treated in depth by Berlekamp (1968)

and Peterson and Weldon (1972).

2.6.9. Residue Codes

Residue codes are a class of cyclic codes which have been 

shown by Karlin (1969) and Chen et al (1969) to be related to 

quasi-cyclic codes.

If the order of q mod n divides (n-l)/e, then the eth

residue codes of length n over GF (q) are defined (Berlekamp

1968) as the cyclic codes whose generator polynomials are

g,(x) = TT (x -C<r) (augmented code) 
x

and g (x) = (x-l)g (x) (expurgated code)

where Ro is the set of eth residues mod n ando(is a primitive

nth root of unity in an extension field of GF(q).

(Note that if n is prime and if e divides (n-1) then the

integer r, l^.r<n, is an eth residue mod n if and only if 
0the equatron x = r mod n has solutions).

Of the residue codes, it is the quadratic residue codes (i.e.

where e=2) which have been found to be the most important.

For these codes it has been shown (E.g. by Berlekamp 1968)
2that the minimum distance, d, is lower bounded by d > n.

Furthermore, if n = -1 mod 4 then the bound is improved to 
2d - d + l ^ n  (Mattson and Solomon 1961) for the augmented 

codes. In fact quadratic residue codes generally have large 

minimum distances for their length and rate, up to at least 

moderate block length. For example, the (23,12) binary 

Golay perfect triple-error-correcting code is a quadratic residue
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code. A table of quadratic residue codes is given by Berlekamp

2 .6 .10 .

(1968) in which minimum distances are given for block lengths 

up to 97 and upper bounds on minimum distance given for block 

lengths up to 48817.
Quadratic residue codes are invariant under the transformation 
rX —* X where r is a quadratic residue. This enables many 

quadratic residue codes to be decoded by a method known as 

permutation decoding (MacWilliams 1963). This method of 

decoding is nevertheless difficult to design for particular 

codes, and is somewhat complex in its realisation. In general, 

then, quadratic residue codes are hard to decode.

Product Codes
Product codes are formed by encoding information bits 

which are arranged as a two dimensional vector, or matrix.

Each row of the matrix is encoded according to a code 0̂  and 

each column encoded by a code C . The codewords may thus be 

visualised as in fig. 2.5.
Such a product code has a minimum distance equal to the 

product of the minimum distances of C and C , a length equal 

to the product of the lengths of C and C , a rate equal to
J- A

the product of the rates of C and C , and a generator matrix 

equal to the tensor product of the generator matrices of 

C and C . Furthermore, in the case of a binary symetricX A
channel, if C has a probability of decoding error f (p) and C 1 X A
a probability of decoding error f (p) then the product codeA
is capable of being decoded with a probability of error at

28



1 /  

INFORMATION BITS

k

r  i#

C”

CHECKS

ON

ROWS

* l

3

>

f

CHECKS
ON

COLUMNS

*

Fig. 2.5. A Product Codeword.
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most(f2 (f^p)) simply by decoding column by column and then 
row by row.

Elias (1954) has used the above relationships to show that by 

iterating the process of generation of product codes, using as 

each constituent code a Hamming dmin = 4 code, to achieve a 

product code of dimension as large as required, it is possible 

to construct codes whose probabilities of error approach zero 

as the length of the codes approach infinity whilst the rate 

remains finite. Although the rate falls far short of what is 

known to be possible the construction is one of the few known 

with this property.

In certain cases the product of two cyclic codes may be 

cyclic. Burton and Weldon (1965) have shown it to be sufficient 
that

ni P1 + n2P2= 1 m°d "l n2
for g(x) = gcd (a(xP2 n2) b (xPinl), x nl n2- 1) 

to be the generator polynomial of a cyclic code which is the 

product of two cyclic codes of lengths n and n .X A

Product codes have a relatively low rate for a given length 

and minimum distance, which limits their usefulness in many 
applications. Sugiyama et al (1976) have described an 

augmentation process for product codes which raises the rate 

of product codes considerably, at the cost of increased complexity 

in decoding the codes. The codes so formed are the best known for 

certain parameters; furthermore a form of this augmentation 

is used in the development of codes described later in this 

thesis (see chapters 6 and 7). For this reason the augmentation
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process will be described in detail.

An augmented product code is shown in fig. 2.6. A 

codeword from a code with symbols chosen from a field of
(n,-VO2 elements is superimposed on the row parity

check bits, each symbol superimposed in binary form on a 

separated row codeword parity check section. The augmenting 

code has length equal to n&= n^, the length of the column 

code, and the minimum distance, d, equal to that of the 

product code. The augmented code has kkt + (n-k,) k^

information bits where k is the number of informationa
symbols in the augmenting code, since one information symbol \>
from the augmenting code will represent (n-k) binary information 

bits. It will now be proved that the augmented code has 

minimum distance d= 2t +1 when the product code has minimum 

distance d=2t + 1. This will be accomplished by showing that 

if t errors or less occur in the codewords of the augmented 

code they may be correctly decoded.

An augmented code is decoded as follows. Firstly 

the parity check bits of the product code C are "reconstructed" 

by re-encoding the received kk^ information bits of code C.

The reconstructed parity check bits are then added modulo-2 

to the respective received parity check bits to give an 

estimate of the augmenting codeword symbols. It can be seen 

that if at most t errors occurred in the received bits then 

at most t of the reconstructed symbols will be in error; 

therefore the reconstructed augmenting codeword may be 

correctly decoded. The decoded augmenting codeword is then 

added modulo-2 to the received codeword to give the unaugmented
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Fig. 2.6. An augmented product codeword.
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product codeword corrupted in the same positions as the

2 .6 .11.

received codeword. This codeword may then be decoded in the 

normal way, to give a completely decoded word. Since up to 

t errors may be cleared from a received augmented codeword, 

the augmented code must have minimum distance at least 2t + 1.

But if the all zero product codeword is augmented by the 

minimum weight codeword of the augmenting code, then the 
resulting augmented codeword will also have that weight,

2t + 1, and therefore the minimum distance of the augmented 

code is exactly 2t +1.

Further, the augmentation process may be extended to 

include the column check symbols of the product code, by 

superimposing a codeword from a code of length k with symbols 

chosen from a field of 2 k*̂  elements expressed in binary

form, and minimum distance 2t +1, on the column check symbols 

in the same manner as described above for row checks.

Note that the column checks on row checks are not augmented 

since they are already augmented by the previous method.

Proof that the augmentation method is valid follows that of 

the proof for row check augmentation. Decoding is performed 
first on the column check augmentation, to obtain unaugmented 

column checks, and then decoding may be performed on the row 

check augmentation and finally upon the unaugmented product code. 

Concatenated Codes

These codes, devised by Forney (1966) may be visualised 

as two dimensional codes, in a similar manner to product codes.
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Fig. 2.7. A concatenated code word.
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2.7. Information symbols from GF(q) are arranged in K rows 

of k symbols. Each row is considered as a symbol in GF (q ) 

and the K such symbols are encoded into an N symbol codeword 

in a code over GF (q ) called the outer code. Each of the 

additional symbols from this codeword are arranged as rows of 

symbols in GF(q) underneath the information symbols as shown 

in fig. 2.7, and each row of the array is then encoded into 

n symbol codewords from a code over GF(q) called the inner 

code. The entire resulting codewords have length nN, with 

kK information bits. Forney has shown that with correct 

choice of inner and outer codes the probability of decoding 

error of concatenated codes approaches zero exponentially 

with block length for all rates below the channel capacity.

Sugiyama et al (1976) have shown how many more information 

symbols may be added to concatenated codes to give codes which 

are occasionally the best known. The method of augmentation 

is very similar indeed to their method of augmentation of 

product codes described above.

A concatenated code is represented in this way by fig.
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2.6.12. Justesen Codes

The Justesen codes (Justesen 1972) are a generalisation 

of concatenated codes, where the outer code is a Reed-

Solomon code (Reed-Solomon (I960)) over GF (2™) with
mlength N=2 and the Ninner codes are distinct codes which

may be shown to be the codes in Wozencrafts ensemble of

randomly shifted codes (described by Massey (1963)). The
codes are assymptotically good, with

lim inf d > (l-r_1 R) H_1 (1-r)> 0
rv-v 0» n /

where r is the maximum of 1/2 and the solution of

R = r2 \_1 + log2 (l-H_1(l-r)] ~1 

and 0 < R < 1  whilst the rate of the code, Rcfis greater 

than R

(H(x) is the binary entropy function).

Another use of a multi-level code in a pseudo-concatenated 

coding scheme is described in Appendix B.
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2.6.13. Srivastava Codes

2.6.14.

Srivastava cedes are linear codes which are 

algebraically decodable but are not cyclic. The parity 

check matrix of a Srivastava code is given by

n
1-a b 1 1 1-a b 1 2 1-a, b 1 n

n
1-a b 2 1 1-a b 2 2 1-a b 2 n

n
1-a b 1-a ,b d-1 1 d-1 2 1-art ibr,d-1 n

Where 1 is any integer, a , a ...a are distinct
X £j ex'”  X

elements from GF (qm) and b , bn) ... b are the 

elements in GF (q™) - 0 - ^ a ^ 1, a2 1 > •••• 3 1d-l} 
The length of the code is n = qm-d and the minimum 

distance of the code is at least d (Berlekamp 1968)

Goppa Codes

The Goppa codes are a class of linear codes which 

have an algebraic formulation and decoding algorithm, but 

which are not generally cyclic (Goppa 1970). A Goppa code 

is defined as the set of all vectors C that satisfy the 

condition.
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2.6.15.

E
X e  L

2 -r “  O  ôC'2:')

mwhere g(z) is any polynomial with coefficients in GF (q ),
mq a prime power, and L is the subset of elements of GF (q ) 

that are not roots of g(z).

Long Goppa codes have minimum distances which asymptotically 

meet the Gilbert bound (Berlekamp 1973) Primitive BCH codes are 

a special case of the Goppa codes (Goppa 1971) as are Srivastava 

codes.

That Goppa codes may be decoded using the Berlekamp

algorithm for BCH codes is shown by Chien and Choy (1975)

and Retter (1975). The complexity of decoding Goppa codes is

considered by Sanvate (1977) who shows that they may be "erasures
2and errors" decoded in 0 (n log n) arithmetic operations, when 

using a decoding algorithm discovered by Sugiyama et al (1976)

(See also corrections to this paper, 1976). Mandelbaum has 

shown that Goppa codes may be decoded by a method involving the 

theory of continued fractions (1977).

Alternant Codes
This class of codes contains all BCH codes, all Goppa codes, 

and Srivastava codes as well as generalisations of BCH codes 

made by Chien and Choy (1975). It has been shown that by a linear 

transformation of the syndromes, these codes may be decoded by
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the application of the Berlekamp algorithm for the decoding of

BCH codes (Helgert 1977).

2.7. Decoding Technique

There follows a resume of the most useful decoding methods 

found for linear binary codes used over the binary symmetric 

channel. ,

2.7.1. Exhaustive Search
This is the most obvious method of decoding, in which a 

received vector is compared with every possible code vector and 

the "closest" in terms of Hamming distance is considered to be 

that most likely to have been transmitted. This method of 

decoding is suitable only for very short and/or low rate codes; 

the decoder will need to store the entire codebook of 2 n-tuples 

where n is the code length and R the information rate, and even 

for moderate values of nR this becomes very unmanageable in terms 

of storage hardware and of decoding time. Nevertheless, the 

method allows the most likely transmitted codeword to be chosen 

in every case (such a decoding method is termed "maximum 
likelihood"decoding) and so is often preferable to a decoding 

method which corrects only those errors guaranteeed correctable 

by the minimum distance of a code.
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2.7.2. Syndrome Decoding

As previously described, it is possible to form an 

n(l-R) bit syndrome, s, from a received vector, which is 

related to the error vector, e, imposed on it by the 

equation

Twhere H is the transpose of the parity check matrix.

The decoding aim is then to find a vector e of minimum 

possible weight which satisfies the equation. A conceptionally 

simple means of achieving this aim is to compile a table of 

minimum weight error vectors for each syndrome, that is a 

table of coset leaders, aid to use the table when decoding.

To construct the table of 2n  ̂error vectors (which are n-tuples), 

it is generally necessary to follow an exhaustive procedure 

described in detail by Peterson and Weldon (1972) and Lucky 

Salz and Weldon (1968) for example. The decoding method 

then consists of three stages:-
i) form a syndrome by multiplying the received vector 

Tby H .

ii) look up the coset leader corresponding to the syndrome,
iii) add the coset leader to the received vector to give the 

most likely transmitted codeword.

This decoding technique is only suitable for codes which are of 

high rate, small n-k , or both. Again, the method is a

maximum likelihood decoding method. It is less complex than 

exhaustive search decoding iff R < 1/2.

40



2.7.3. Symbol by Symbol decoding

This decoding algorithm, discovered by L.D. Rudolph (1976) 

is the only general decoding method known which makes specific 

use of the linearity of linear codes - that is, it uses the 

property that linear codes have codewords from a subspace of 
a vector space.

The algorithm may use reliability information on each 

received bit, and in this form it is an optimum method of 

decoding. That is, no decoding method is better than symbol- 
by-symbol decoding.

The complexity of the decoder is related to the number of 

codewords in the dual code of the code to be decoded, and 

therefore the method is of most use for codes of extremely 

high rate, i.e. with a small number of parity check bits. 

Unfortunately the application of the algorithm is therefore 

limited to codes with low minimum distance and/or short length.

2.7.4. Majority-Logic decoding

Reed (1954) first suggested majority-logic decoding, 

in connection with the Reed-Muller codes. The technique: 

was refined by others including Massey (1963) and Rudolph 

(1967).
Majority-logic decoding is based upon the concept of 

"orthogonality" defined as follows:

Given a collection E, of parity check equations or 

sums of parity check equations; if a set, P, of positions 

in the codewords is checked by each member of E, but no other 

position is checked by more than one member of E, then the 

set E is said to be orthogonal on P.
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If it is possible to find on each separate information
S

position in a codeword a set of J orthogonal parity - check 

equations or sums thereof, then it is possible to correct 

t= J/2 errors in the codewords. This is seen to be so since 

the parity-check bits of a codeword represent the calculation 

of the parity check equations of the code and so J independent 

estimates of each information bit may be made from the received 

parity check bits. If at most t errors occurred then at most 

half of the estimates can be incorrect. A decoding algorithm 

for such a code is therefore to make the J estimates of each 

information bit and invert a received bit only if it differs 

from more than one half of its estimates.

When the above properties apply to a code, the code is 

said to be one step majority-logic decodable up to distance 

d=J+l. For many codes, some of them the best known, this 

distance is equal to the actual minimum distance of the code. 

Such codes are termed "completely orthoganlisable in one step". 

The estimates of the information bits may be constructed 

directly from the received block (type I decoding) or from the 

syndrome of the received block (type II decoding). The type II 
decoding is preferable for codes with a rate somewhat greater 

than one half in these cases, such as with cyclic codes, where 

the syndrome is particularly early calculated.

If a set of J orthogonal check sums can be made on a 

set, P, of more than one information bit, then it is possible 

to determine the value of the sum of the bits in those positions
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in the same way as described for just one bit in the one- 

step majority-logic case. It may be possible to deduce the 

values of several such sums of bits and then these may be 

used together with the original set of possible parity-check 

sums to give a larger number of known check sums. At this 

stage it may be possible to determine each bit in the codeword 

from J orthogonal sums - in which case the code is said to be 

two-step majority-logic decodable up to minimum distance 

d = J + 1, - or it may be that by repeating the process the 
bits may finally be determined in which case the code is L-step 

decodable where L is the number of stages of majority logic 

required. Again, some codes are decodable up to their actual 

minimum distance. It has been shown by Peterson (1972) that 

for an (n,k) code whose dual code has minimum distance d, a 

maximum number of t̂  errors can be corrected in each codeword 

by L-step majority-logic decoding where

t n - rd/2l
2(d-T(d/2li)

Majority-logic decoding is particularly attractive when it may 

be applied to cyclic codes, since in this case only one 
information position needs to be determined, the remainder then 

found by shifting the codeword cyclically.

Majority-logic decoding becomes more complex exponentially

with L, the number of steps required. Thus it becomes extremely

complex for many codes of even moderate length, and even when

the codes are cyclic. One step majority logic is very simple,

however. Long one -step majority logic codes of moderate or

high rate are longer than other known codes with the same rate;
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nevertheless the simplicity of their decoding may outweigh

this consideration (see e.g. Townsend and Weldon (1967) and

chapter 7 of this thesis). A considerable simplification of

majority-logic decoding has been found for certain majority-
logic decodable codes by L. E . Wright (1977).

2.7.5. Decoding cyclic codes

The considerable mathematical structure ox cyclic codes

is not only useful in the construction of good error correcting

codes; it is also useful in the formulation of decoding algorithms

for them. As a result, the cyclic codes are as a class the most

widely used error correcting block codes.

Two subsets of long cyclic codes have feasible decoding

algorithms - those which are majority logic decodable and those

which are BCH codes. The decoding of BCH codes is discussed in

chapter 4 and majority logic decoding has been discussed in

section 2.5.4. Short cyclic codes may be decoded by methods

which will be briefly reviewed here.

A major simplification of any decoding process for cyclic

codes is that the syndrome of a received sequence may be

calculated in a very simple manner. The syndrome S of a

received sequence r is given by 
Ts = r H 

Twhere H is the transpose of the parity check matrix of the code.
TIn the case of cyclic codes the ith row of H is equivalent to

the remainder from dividing xn_' by g(x) ; therefore the
Tcalculation of rH may be performed by expressing r as a

Tpolynomial and dividing it by g(x). The remainder is rH
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( Ifeterson and Weldon 1972). The division may be accomplished 

in practice by the use of a feedback shift register wired to 

divide by g<.x) as a result of shifting the received sequence 

into the register. Full descriptions and explanations of such 

division circuits may be found in Peterson and Weldon (1972),

Lucky et al (1968) and Berlekamp (1968).

Another major simplification in the case of many cyclic 

code decoders arises from the fact that the syndrome s’*" of a 

sequence r\ where r1 is a single cyclic shift of a sequence r, 

is obtained simply by shifting the syndrome, s , of r once in the 

syndrome forming register. This allows any circuit which is 

capable of correcting just one bit of a received sequence by an 

operation on the syndrome to correct all of the bits simply 

by shifting the syndromes in their registers.

Particular forms of decoder for short cyclic codes may 

now be discussed.

(a) Meggitt Decoder

In this form of decoder, a combinatorial logic 

circuit is used to "recognise" those syndromes corresponding 

to an error in the first bit in a received block. Thus if 

the output of the logic circuit is a "one", the first bit 
in a buffer register containing the received block is 

inverted. The syndrome and the buffer register may then be 

shifted once to enable, by virtue of the properties described 

above, the second and subsequent bits to be decoded. The 

major complexity of the decoder lies in the complexity of 

the combinatorial logic circuitry. (See Peterson and 

Weldon (1972) page 235 but note that the complexity of the decoder.
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for a (23,12) triple error correcting code is overestimated, 

since the number of possible triple error patterns with a 

"one" in the last position is half of that given).

It has been suggested (Rocha 1976) that the combinatorial 

circuit may be replaced by a programmable read only memory 

( HIOM) which with accelerating advances in microcircuitry is 

becoming feasible for ever longer codes. The technique of 

using PROMS may be extended to correct more than one bit of 

a received sequence at a time, depending upon the storage 

capability of the PROM. In the limiting case the decoder then 

becomes a syndrome search decoder in which the minimum weight 

error pattern corresponding to each syndrome is stored.

(b ) Error trapping

This form of decoding Kwi^Ci^relies upon the ability to 

detect when all errors occur in the parity check bits of a 

received corrupted codeword.

For any linear block code, if a codeword is corrupted only 

in its parity check bits then the syndrome of the corrupted 

codeword is identical to the error pattern. This may be seen 

from the construction of the parity check matrix, H , as will 

now be shown.
If the generator matrix, G, of a code is given by

G f i  I p]

where I has dimensions k x k and P has dimensions k x (n-k) then 
TH , the transpose of the parity check matrix, is given by
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The syndrome, S, of a codeword corrupted by an error pattern,

e, is given by
- uT _ s = e n = P

I

therefore, if the first k bits of e are zero, 

s = e" (I) = e"

where e" are the last (n--k) bits of e. Trivially, if at most 

t errors occur then the weight of S is at most t.

Now consider the case where at least one bit of e"*-, the 

first k bits of e, is non zero - say i bits where i > o. Then 

the syndrome, s, is the bit by bit modulo. - 2 addition of eP and

e"I.
If the minimum distance of the code is d, then x G, where 

x is any non-zero k-tuple, must have weight at least d. Let 

xG = c, and c^ , c" be the first k, and the final (n-k) bits, 

respectively, of c. Then clearly c^= x (the code is systematic), 

and if x has weight w so does c^ have weight w. Therefore c" 

must have weight at least d-w.
1 InBut, c" = xP therefore if we let c" = e , it is seen that e P

has weight at least d-i.
Hence s is the bit-by-bit modulo-2 sum of e1 (which has

tlweight at least d-i) and e (which has weight at most t-i provided 

that at most t errors have occurred). This sum has weight at least 
(d-i)-(t-i) = d-t.
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Since d = 2t + 1 the syndrome has weight at least t + 1.

It has therefore been shown above that if and only if all 

the errors in the systemmatic linear block code occur in the 

parity check positions, the syndrome will have weight at most 

t provided that at most t errors occurred, and that the syndrome 

will then be identical to the error pattern.

This fact is the basis of error trap decoding. The syndrome 

of a received block is tested to see if its weight is less than 

t + 1. If so the syndrome is added bit by bit to the parity 

check positions of the block, and correction is assumed to be 

complete. If not, the received block is shifted once, cyclically, 

and the syndrome shifted once in its register to give the syndrome 

of the shifted block. The test is again made on the weight of 

the syndrome, and if possible correction made. This process may 

be executed n times, and if the errors in the original block were 

confined to (n-k) consecutive positions, they will eventually be 

corrected. In order that the errors be guaranteed correctable, 

it is necessary and sufficient that the rate, R, of the code be 

bounded by

R ̂  1/t
The decoding method is therefore seen to be useful only for 

low rate codes.
(c) Error trapping with windows

This method of decoding is a modification of the error trapping 

method, which allows codes of rate higher than 1/t to be corrected.
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It is possible that although all t errors ma> not be 

confined in (n-k) positions, they may be confined to the final 

(n-k) positions and one of relatively few other positions termed 

windows.
The decoding procedure may then be:

(1) test for the syndrome weight ^ t + 1.

(2) if the test is positive decode as for the error trapping case.

(3) otherwise invert each "window" bit in turn repeating step (1) 

each time.
(4) if still the errors are not "trapped", shift the syndrome 

once, and shift the received block one, then repeat steps 

(1), (2), and (3).

The procedure may be carried out n times, by which time if less 

than t + 1 errors occurred on the received block correction will 

have been made.

The additional complexity of "error-trapping with windows" 

over "error trapping" depends of course on the number of windows 

to be tested.

From a design point of view, "windows" decoders are complicated 

in that the choice of window positions is difficult (see Kasami 

(1966)).
(d) Permutation Decoding

As explained earlier, a cyclic shift of a codeword in a cyclic 

code remains a member of the code. Thus a cyclic shift may be 

termed a "code-preserving permutation" and the code may be 

described as being in\ariant under the cyclic permutation.

Some cyclic codes are invariantunder other permutations, 

and if a set of permutations can be found which will in at least
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one case ti'ansform any t errors in a codeword to (n-k) 

consecutive positions, that permutated word may then be 

error trapped as described earlier, and then re-permuted to 

give the original uncorrupted codeword. If a set of i permutations 

(including the cyclic permutation) is sufficient to allow this to 

be done, the code is called i-step permutation decodable 

(MacWilliams 1964).

For i-step permutation where i is even moderately high, 

the decoding process becomes very time consuming because in the 

worst case ni error trapping attempts must be made. Also, it 

is not know in general how to find suitable permutations.

The decoding method is therefore restricted to short codes.
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CHAPTER 3

Decoding of Short Error Correcting Codes 

3.1 . Introduction

In this chapter the best method of decoding linear block error 

correcting codes of length less than 32 will be discussed, for error 

correction ability, t, less than seven. The codes considered will 

be those with the' largest number of information bits, for a given 

length, that are known to the author. A table of these codes is 

given below in Table 3.1• Selected longer codes will also be con

sidered.

The codes will be considered in order of error correcting power.

3.2. Single Error Correcting Codes

The most efficient linear block single error correcting codes are 

the Hamming codes, and their shortened versions.

The immediately obvious method of decoding the Hamming codes, 

which are cyclic codes, is by error trapping. Given at most one error 

per block it is possible to shift the error into the parity check 

section of the codeword when the shifted syndrome will have a weight 

of one and will be identical to the error pattern in the parity check 

bits. Adding this syndrome to the parity check bits of the shifted 

word and then shifting the word back to its original arrangement gives 

a corrected version of the received word.

It is of interest that, for a single error correcting cyclic code, 

the error may be trapped by shifting the received word, and the syn

drome, by r bits at a time where r is the number of parity check bits 

in the codeword. In this way it might be possible to decode a received 

codeword with less delay than in the classical manner - but the clock
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Table 3.1 Codes with largest k for given n and t

k i t
n N 1 2 3 h 3 6

3 1

il 1

3 2 1

6 3 1

7 il 1 1

8 , il 2 1

9 3 2 1 1

10 6 3 1 1

11 7 il 2 1 1

12 8 il 2 1 1

13 9 3 3 1 1 1

111 10 6 il 2 1 1

13 11 7 3 2 1 1

16 11 8 3 2 1 1

17 12 9 6 3 2 1

18 13 9 7 3 2 1

19 111 10 8 ii 2 1

20 13 11 9 3 3 2

21 16 12 10 3 3 »-'i

22 17 13 11 6 il 2

23 18 111 12 6 3 2

2h 19 111 12 7 3 3

23 20 13 12 8 6 3

26 21 16 13 9 7 il

27 22 17 111 9 7 3

28 23 18 111 10 8 3

29 2il 19 13 11 9 6

30 23 20 1 6 12 10 6

31 2 6 21 16 12 11 6
—
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circuitry is made more complex, and the reduction in the delay would 

normally be of little value.

Another method of decoding Hamming codes is by majority logic

decoding (e.g. Peterson & Weldon 1972). A Hamming code of length

2m - 1 is decodable in m - 1 steps by this method. This means that

for anything but the shorted codes the decoding logic becomes
*

rather complex. The decoding circuitry required for the (7 , b ) Hamming 

code is shown in Fig. 3.2., this is a two step majority logic 

decodable (m.l.d.) code.

BITS

Fig. 3.2. - A 2-Step Majority Logic Decoder for the (7,i|) Long Cyclic 
Hamming Code

i>3



A third, and most satisfactory, method of decoding, is that of 

Meggittdecoding (Peterson & Weldon 1972). Here a logic circuit rec

ognises those syndrome patterns associated with an error in the 

final bit of a cyclic codeword. By progressive shifting of a 

received word the errors are cleared as they enter the final bit pos

ition. In the case of single error correcting codes there is only 

one syndrome to recognise, and that is a 'one' preceded by m - 1 'zeros'.

As the length of Hamming code increases, the decoding complexity 

increases only slowly - apart from the syndrome calculating circuit 

and a shift register to store the received word, all that is required 

is an 'm' input 'nand' gate and one inverter. The decoder for the

(7,li) Hamming code is shown in Fig. 3 .3 , and can be seen to be simpler 

than that of Fig. 3.2. whilst also simpler than, but similar in its 

mode of operation to, the error trapping circuit.
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Shortened Hamming codes may be decoded by any o f the preceding methods 

simply by inserting dummy 'zero' information bits in the missing 'shortened' 

positions. A more elegant method of achieving the same object is to 

modify the syndrome calculating feedback shift register such that the 

incoming bits are pre-multiplied by X1  where i is the number of bits by 

which the cyclic code has been shortened. Then, where r(X) is the 

polynomial representation of the received bits, the syndrome of X11 ^ + i

r(X) is calculated instead of the usual X r(X), which then, when

used with any of the decoders described for Hamming codes, causes the first 

received symbol to be the first corrected - no insertion of zeros now 

being required. The technique for modification of the shift register is 

given in detail by Peterson (1972 page 2lj.2). A decoder for the (10,6) 

shortened Hamming Code, using the above method applied to a Meggit decoder 

for the 15,11 Hamming code is shown in Fig. 3 . h .

Fig. 3 .h . - A Meggitt Decoder for the (10,6) Shortened Hamming Code
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In conclusion it may be said that the most efficient type of 

decoder for single error correcting linear codes is the Meggitt type, 

modified when necessary for the shortened codes.
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3.3. Double Error Correcting Codes

Unlike single error correcting codes, the most efficient linear 

double error correcting codes are of varying types. The codes will 

be considered in order of their number of information bits.

(a) The Repetition Code

This is most simply decoded by a majority logic decoder - 

if more than two of the received bits are 'one* then five 'ones' 

are output, otherwise five 'zeros'.

(b) The (8,2) Code

This code is not cyclic. Two possible methods of decoding 

this code present themselves. The first is that of a search, 

since there are only four codewords, of length eight bits. This 

would require either suitable logic circuitry or a 25>6 word pro

grammable read only memory (PROM) - with each address corres

ponding to a possible received word and the eight bit content 

being the corrected word. Suitable PROM's are now readily and 

cheaply available.

The second method is that of one step majority logic decoding.

The circuitry required for this may be determined by first considering 

a possible generator matrix G, for the 8,2 code which is :

G =
1 0  1 1 0  1 0  1 

0 1 0  1 1 0  11

then, if a codeword C, from this code is written C = p̂  P2 P-̂

p^ pg where the k^ are information bits and the p^ are parity check

p i
may be expressed in terms of the k.

X
as follows

p 1 =  k 1 P 2  = k 1 + k 2 >0
u>

II

k 2

p i ; °  k 1 P$ = k 2 p 6  =
k1 + k2
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This defines the majority logic decoding circuiting, which is 

given in Fig. 3.5. The received word is shifted into register A, and 

the corrected information bits shifted out of register B. Register 

B is a two bit parallel-in serial-out register.

Clearly the latter method is the most cheaply implemented, 

requiring as it does only four modulo-2 adders and two majority 

logic gates. As the price of PROM’s becomes lower, however, the 

the former method may become the cheaper.

Fig. 3.5 - Majority Logic Decoder for the 8,2 Double Error

Correcting Code
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This code nay decode by a shortened form of the decoder 

for the 1 1 ,U code.

(c) The (10,3) Code

(d) The (11,U) Code

This code is not cyclic, but it may be constructed to be 

one step majority logic decodable.

The generator matrix G is then given by :

1 0 0 0 0 0 0 1 1 1 1 

G = 0 1 0 0 1 1 1 1 1 0 0

0 0 1 0 0 1  1 1 0 0 1
If a codeword is written as (k^, k^ , k y  k^, p^, . . . .  p^, p^)

then the following equations, orthogonal on the k^, may be 

formed :

fci - p3 + pi*
k1 = Pl + P£

k 1 = \ + p6

k2 = P1 + k h

k2 = p3 + k3

k 2 “  PS + p6

k3 = pi + P2

k 3 = p3 + k2

k3 ’ p 6 + p7 '

k3 " pli + PS + kli

kl,

kl,
kl.
klt

"  p1 +  k 2 

' p 2 + p3 

'  p6 +  k 1 

" Pj, + PS + t=3

hence a decoder of the same form as that in Fig. 

constructed.

3 . 5  may be

(e) The (13i5>) and (1U,6 ) Codes

These are-best decoded as shortened versions of the 09,7) 

code. Peterson (1972) gives methods for modifying the decoder 

as required.
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This code may be constructed as a B.C.H. cyclic code, and as 

such may be decoded by various schemes put forward for B.C.H. 

codes in general. There are, however, much simpler ways of 

decoding this particular B.C.H. code.
1

Since the code is cyclic and of rate less than where t 

is the error correcting power, it may be error trap decoded in the 

normal way. Furthermore, because the code has length 2k + 1 

where k is the number of information bits, the trapping of the 

errors may be speeded up on average by shifting the received 

bits and syndrome by two bits at a time during the trapping 

operation. This improvement is at the cost of complexity of the 

clocking circuitry and, since the maximum number of shifts 

required to guarantee the trapping of a double error remains the 

same as in the conventional decoder, the method would normally 

offer no advantage.

This code may also be one step majority logic decoded, as 

shown by Massey (1963). The parity check matrix of the code is 

given in Fig. 3.6, from which it can be seen that the four 

arrangements of the columns which are orthogonal on k̂  are

P 1 + k2 + k^, P2 + P3 + P5, k5 + P6 + k 3 + k 6 + p 8

where the k^, p^ are as indicated in the figure.

This code is short and of rate less than one half. A Type 

II majority logic decoder is therefore the simplest to construct 

since no syndrome forming feedback register is then required.

Such a decoder is shown Fig. 3.7. Note that feedback from the 

decoder output, to the received bit register is used to allow 

correction of some error patterns of weight greater than two.

(f) The 05,7) Code
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I
Ost-1
I

OUTPUT

Fig. 3.7 A Type I Decoder for the 15,7 Double Error Correcting Code.



k 1 k 2 k3 \ H k7 P 2 p3 ph p3 p 6 P7 p 8

1 0 0 0 0 0 0 1 0 0 0 1 0 1 AI

0 1 0 0 0 0 0 1 1 0 0 1 1 1 0

0 0 1 0 0 0 0 0 1 1 0 0 1
A
1 1

0 0 0 1 0 0 0 1 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 1 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 i 1

Fig. 3.6 - The generator matrix of the cyclic, one step majority

logic decodable (l£,7 ) double error correcting code

(h) The (17,9) Code

This code may be formed as a non-primitive B.C.H. cyclic code.

As the code is of rate only slightly greater than one half 

it may be decoded quite simply by "error trapping with windows": 

in fact only one "window" is required since only one error 

pattern, with its cyclic shifts, is not trappable.

An alternative decoding scheme would be to use the 

Meggit decoder. A PROM could be used to replace the logic
g

circuiting. This PROM would need 2 = 236 locations each cor

responding to one of the possible syndromes of the received 

words. Each location would need to contain only one bit, this 

being the error value of the last bit of a received word with 

the respective syndrome. Since such a PROM is not expensive 

this may well be the cheapest method of implementation of the 

code.
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(j) The (19,10) and (20,11) Codes

These codes may be decoded using suitably modified decoders 

for the (2 1 ,1 2 ) code.

(k) The (21,12) Code

This code may be constructed as a non-primitive B.C.H. 

code. As such it is cyclic, and the "error trapping with 

windows" decoding method may be applied - only one "window" 

is required. Alternatively a Meggitt decoder using a PROM 

may be used, or complete "syndrome decoding" employed using a 

2a(= 5”! 2) nine-bit location PROM. These latter two decoding 

methods are probably comparable in complexity} and both involve 

less decoding delay than the first method. Unfortunately nine- 

bit per location PROMs are not standard items at present. 

Nevertheless, the low cost of PROMs make the "syndrome decoding" 

approach attractive in this case.

(l) The (22,13) Code

This code may be decoded as a shortened version of the 

(2 2,1 li) code.

(m) The (23,11+) Code

This code is not cyclic nor known to be m.l.d. and there

fore its decoding presents considerable difficulty. The code
o

has 2 = 5 1 2  syndromes, and therefore the simplest decoding

method so far known should appear to be a matrix multiplication 

circuit to calculate the syndrome of a received word, followed
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by a PROM of 5>12 locations each of 1l|. bits,which would correct 

errors in the 1 lj. information bits.

It is in cases such as this, where the best known code has 

little known structure and is not very high or very low rate 

that decoding circuits are most complex. It can be seen that 

for codes somewhat longer than this one, a PROM suitable for 

syndrome decoding of the code would be inordinately large.

(p) The (31,21) Code

Again, this may be constructed as a B.C.H. cyclic code.

The standard decoding algorithms for B.C.H. codes are applicable,

but are not the simplest methods of decoding this code.

The code is not error trap decodable, as its rate is

greater than one half. By decoding with error trapping plus

windows, as in the 1 7 * 9  code, it is necessary to have windows in

two positions of the codeword.

An alternative decoding method is that of permutation

decoding. This code is two-step permutation-decodable. To

decode the code in this manner an attempt is first made to "trap"

errors in the normal way, by cyclic permutations of the codeword,

and weighing of the resulting syndromes. If this process is

unsuccessful then a second set of permutations is made, whereby
n — 1if the received word is described as a polynomial a^x +

yi Qa,xn ~ + ........ + a  ,x + a , it is permuted according
1 n - 1 n

i 21to the rule a.x° a. x .
1 1

This permutation guarantees that the errors will now be 

correctable by applying "error trapping" to the newly created 

word, and then permutating back to the original codeword. This 

method would appear more simple than the "windows" method, it
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will also cause less decoding delay.

3.1).. Triple Error Correcting Codes

Again these will be taken in order of the number of information 

bits they contain.

(a) The (7,1) Code

This code may be one step majority logic decoded in the 

obvious manner.

(b) The (11,2) Code

It is possible to form an (11,2) triple error correcting 

code which may be one step majority logic decoded in a cyclic 

manner, even though the code itself Is not cyclic. The generator 

matrix, G, of the code is given by :

G
1 0  1 1 0  1 0  1 0  1 1

0 1 1 0  1 0  1 0  1 1 1  
—  mm

If the information bits k^ and parity check bits p^ are labelled 

as in previous examples, the following orthogonal equations for 

and k^ are obtained :

k1 = P25 PV  P6 ’ p 8 + P 3 ’ p9 + p5> P1 + p 7

k2 = v y  p5 ’  p 7 ’ p 8 + p 2 ’  p 9 + ph ’ P1 + p 6

note that the estimates of k^ are related in a simple way to

those of k^ - if the p^ are changed to p^ +  ̂ (mod 9 ) then the

estimates are obtained from those for k^.

The circuiting for such an arrangement is shown in Fig. 3.8.

It operates as follows :

With S.| closed, the received bits are shifted into register A, 

and the majority logic decodes information bit k^, then switch 

Is opened and the register A is shifted once to give Pq = Pq + -]
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(mod 9) which then allows the same circuiting to calculate 

information bit k^ . The information bit is at the same time 

shifted along register B, so that when k2 has been calculate^ 

the register B contains both information bits, which may then be 

shifted out. Note that the first two bits of register A, con

taining the information bits received, are also shifted so that 

the correct k^ is automatically input to the majority gate for 

each bit decoded.

Fig. 3.8 - 1 Step Majority Logic Decoder for the (11,2)

Triple Error Correcting Code
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(c) The (13,:,) arid (11;,It) Codes
These are best decoded as shortened versions of the 05*1?) 

triple error correcting code.

(d) The (lg,3) Code

This code may be constructed as a B.C.H. cyclic code.

Although the code could be decoded by the various 

algorithms available for the general class of B.C.H. codes, it 

may be decoded for more easily by other methods.

Firstly, since it is a cyclic code of rate exactly where 

t is the error correcting power of the code, it may be error trap 

decoded.

Secondly, it may be two-step majority-logic decoded, as 

shown by Massey (1963). The circuit for this decoder is shown 

in Fig. 3.10, and the generator matrix in Fig. 3.9. Note that 

a total of 1;7 'exclusive or' gates, and four majority gates are 

required, with a 13 bit shift register. This illustrates the 

considerable complexity of L step majority logic decoding even 

for shortcodes with limited error correcting power.

” I

G

1 0 0 0 0 1 1 1 0 1 1 0 0 1 0  

0 1 0 0 0  0 1 1 1 0 1 1 0 0 1  

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0  

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Fig. 3.9 The Generator Matrix of the (l£,E>) Triple- 
Error-Correcting B.C.H. Code

(e) The (17,6), (18,7), (19,6), (20,9), (21,10), and (22,11) Codes

These codes may best be decoded as shortened versions of the 

(23,12) Golay code.
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(f) The (23,12) Code ..

This code is the Golay perfect triple-error-correcting 

code, and may be constructed as a cyclic non--primitive B.C.H. 

cods, equivalent to a quadratic-residue code.

The two most suitable decoding methods for this code are 

permutation decoding, and "error trapping with windows".

Permutation decoding of the code requires four steps 

(see for example Peterson and Weldon ("1972) and Tip el al 

(197l+)) • This method is therefore rather complex and certainly 

time consuming.

The "error trapping with windows" method is less complex - 

requiring only two "windows" and therefore involving less 

decoding time. (Kasami 19610.

(g) The (31,16 ) Code

This code may be constructed as a quadratic residue code, 

in which form it may be decoded by permutation decoding (see 

MacWilliams 1963). In this form the code is also a primitive

B.C.H. code and may therefore be decoded by the means described 

in Chapter Ij. for triple-error-correcting B.C.H. codes. Also, 

as a cyclic code, the (3 1 ,1 6 ) code may be corrected by the 

"error trapping with windows" method (Kasami 1961;).

Furthermore, the code may be constructed as a shortened 

Reed Muller Code; in which form it is two-step majority-logic 

decodable, and may also be decoded in the manner described in 

Chapter (d for augmented conjoined codes of which shortened 

Reed Muller codes are examples.

Permutation decoding is a somewhat slow and complex method 

of decoding, not least in terms of the control circuitry
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required. The "error trapping with windows" method is 

similarly complex and slow in this case owing to the number 

of "windows" required. The majority logic decoding algorithm 

therefore appears to be the simplest available.

As mentioned, the code may be orthogonalised in two steps. 

The decoding circuitry may be realised using one buffer register 

of 31 bits, seven majority gates, and 3 6 modulo-2 adders.

(See Berlekamp 1968). However, it has*been shown by Rudolph 

and Hartmann (1973) how certain cyclic codes, including the 

(31,16) code, may be majority-logic decoded in a somewhat 

different manner involving what they term "sequential code
I freduction^ in this way the decoding time is doubled, but the 

hardware required is reduced to two buffers, two majority gates 

and twelve modulo-2 adders together with the control circuitry 

common to both approaches. A further slight simplification of 

the circuitry required by the sequential code reduction method 

is claimed by Schmandt (1976).

Decoding the (31,16) code as an augmented conjoined code 

required decoding circuits for the (1 5 ,1 1 ) d^.^ - 3 }  (1 6 ,1 1 ) 

d . = li; and 05,5) d . = 7  codes, all of which may be of the

very simple error trapping type, together with some simple 

control circuitry. The decoder is treated in detail in Chapter 

6 and can be seen to be comparable with the complexity of, 

but somewhat slower than, the majority-logic decoders.
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3.£. Four-Error-Correcting Codes

(a) The (9,1) Code

This code may best be decoded by one step majority logic.

(b) The (1U,2) Code

This code may be one step majority logic decoded in the 

same manner as the (11,2) triple-error-correcting code. The 

generator matrix is noti given by :

G
1 0 1 1 0 1 0 1 0 1 0 1 1 1

0 1 1 0 1 0 1 0 1 0 1 1 1 1

and the orthogonal parity check equations are :

k1 = p2 = PU = p 6 = p 8 = P1 + p9 = p10 + p3 = P11 + p5 = p12 + p7
and

k2 = p3 = p5 = p7 = p9 = p2 + p10 = P11 + P1 = P12 + p6 = P1 + p8

the decoding circuiting is arranged in a similar manner to that

for the (1 1 ,2 ) code.

(c) The (17,3) Code

This code may not be constructed as a cyclic code and is 

therefore not decodable by error trapping.

There are only eight possible codewords, and therefore the 

code might be decoded by comparing a received sequence with each 

in turn.

More simply, the code may be decoded with one-step majority, 

-logic. Also, the parity checks may be arranged such that the 

decoding may be performed in a cyclic manner, similar to that 

of the decoding of the (1 1 ,2 ) triple-error-correcting, and 

( 1 iq,2 ) four*error-correcting codes.

The generator matrix of the code is then given by :
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0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1  

G = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0

1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1  

if a codeword, C, is written

C - , k^, P"| j P2* * * * * Pi 3 J Pi

then the orthogonal parity checks are :

k 1

p?II p1 1 > P1 + P8 + P-| 2 ^ + p 6

P 1 0 + P13, P2 + P7> P9 + p1 l;

k 2 = P3> p1 0 > P 1 + P7 J p 8 + P1 l;i P 2 + p5

%  ‘f P 1 2 > p 5  + p6 * P 1 1 + P13

k3 = P2 > p9, Pt + p 6, p 8 + p 13, P^ ■*' V
P11 + P1 V  p3 + P5J P10 + P12

the cyclic nature of these orthogonal equations suggests the 

decoder shown in Fig. 3.1li.

The decoder operates as follows. The received sequence is 

shifted into the Register A, and switches SA are then opened, 

switches SB closed. The logic circuiting is then calculating 

the majority estimate of k^, which is entered into Register B. 

The sections of the Register A marked 'shift* are then shifted 

once, so that now the majority estimate of k^ is calculated and 

entered into Register B. A further shift gives k y  and then the 

decoded information bits may be shifted out of Register B.

(d) The (19,U) Code

This code may be decoded as a shortened version of the 

(20,5) code.
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<1W

Fig. 3.1li - One Step Majority Logic Decoder for the (17,3) Four-Error-Correcting Code



(e) The (20,5) Code

This code is obtained by omitting a parity check bit from 

the (21,5) non-primitive B.C.H. code with minimum distance ten. 

A decoding procedure for this code may be devised as follows :

A (21,5) code is capable of correcting four errors and 

detecting five. When a (20,5) codeword derived from this 

code is received corrupted by at most four errors, an 

erroneous correction will not result from guessing the ,,missing,, 

parity check bit value since this will introduce only one more 

error at most. If the guess is correct, or if not but never

theless at most four errors then exist in the extended word, 

it will be possible to correct all the errors in the word. If 

the guess is incorrect and thereby introduces a fifth error, 

the presence of five errors is detected by the decoder. The 

basis of a decoding algorithm is therefore clear - a guess at 

the missing parity check bit is made, and correction attempted; 

if correction is successful no further action is required, if 

five errors are detected then the "guessed" bit is inverted and 

correction again attempted. Correction will then be possible 

provided at most four errors occurred in the original received 

word.

The problem of decoding the (20,5) code has now been 

reduced to that of decoding the (2 1 ,5 ) code with minimum 

distance ten. This decoding is very simple since the code is 

cyclic and of rate less than one quarter. The code may there

fore be error trap decoded - a failure to be able to error trap 

implying that five errors have occurred.

The final decoding algorithm therefore consists of five 

major sections :-
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(a) Construct a (21,5) vector from the (20,5) received vector by- 

appending the "missing" parity check bit.

(b) Attempt to error trap the (21,5) vector - if successful 

deliver the corrected word to sink, otherwise procede to (c).

(c) Invert the appended parity check bit, and repeat the error 

trapping procedure. If successful deliver the corrected word 

to sink, otherwise five or more errors have been detected.

(f) The (22,6) Code

The existence of this code was shown by Calabi and 

Myrvaagnes (1961|.). No properties of the code are known which 

would enable the code to be decoded in any way other than those 

common to all binary linear block codes. Therefore, since the 

code is of low rate, the simplest decoding algorithm is to 

compare each received block with every codeword in the codebook 

(the "exhaustive search" method), delivering the closest word 

to the sink. Such a decoder would need to store or generate 

2^ (= 6JU) twenty-two bit words and to compare each of these with 

each received block.

(g) The (25,7) and (25,8) Codes

These codes may be decoded most simply as shortened versions 

of the (2 6,9 ) code.

(h) The (26,9) Code

This code has been found by Hashim (19?1|) by a computer 

search procedure. No decoding procedure based upon the structure 

of the code is known and therefore the decoding methods 

available are limited to those common to all binary linear

d
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block codes. As the code is of low rate the least complex 

decoder is the exhaustive search decoder. The decoder must 

store or generate 5 1 2  twenty-six bit words and compare each 

with each received block.

(i) The (28,10) and (29,11) Code
These codes may be decoded most efficiently as shortened 

versions of the (30,12) code. Although the (29,11) code may 
be obtained by removing any two parity check bits from the
(31,11) B.C.H. code with minimum distance 11, but the writer 
knows of no way in which a decoder of the (31,11) code may be 
modified t© decode the (29,11) code.

(j) The (30,12) Code
This code is another which was found by Hashim (19710 as 

a result of a computer search. Again no structure is known 
which would enable a decoder to be designed which is less com
plex than the exhaustive search decoder. For this code an
exhaustive search decoder needs to store or to generate 
122 (= I4.O9 6) thirty bit words for comparison with every received

word.

3.6 Five-Error Correcting Codes
(a) The (11,1) Code

This code consists of the all-ones and the all-zeros 
11-tuples. The decoding algorithm may be to output all zeros 
if more than five received bits are zero, otherwise output all 
ones.

d
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(b) The (17,2) Code

Following the method used for the triple-and-quadruple- 

error correcting codes, this code may be constructed so as to 

be majority logic decodable. The code then has a generator 

matrix, G, given by :

k 1 k 2 P 1 P 2 P3 P 4 P 3 P 6 P 7 p 8 P 9 p 1 0 p 1 1 P 1 2 P 1 3 p1l; P 1 3

1 0 1 1 0 1 0 1 0 1 0 1  0 1 1 1 1
G =

0 1 1 . 0 1 0 1 0 1 0 1 0  1 1 1 1 1

If the information bits and the parity bits are labelled as 

shown, it may be seen that

k1 = p2 = pi; = p6 = p8 = p10 = p1 + p11 = P12 + p3 = P13 + P3 

= p1ii + p7 = P13 + p9

k2 = p3 = p  ̂ = p7 = p9 = Pn = Pi + P10  = P12 + p2 = P13 + PU

= p1li + p6 = P13 + p8
the decoding circuiting may be arranged in the same manner as 

for the (1 1 ,2 ) triple-error-correcting code.

(c) The (20,3) Code

This code may be constructed by omitting any one parity 

check from the (21,3) nom-primitive B.C.H. code with minimum 

distance twelve. It may therefore be decoded in a similar 

manner to that proposed for the (2 0,3 ) four error correcting 

code. That is, the ’'missing” parity check bit may be guessed 

at the receiver and decoding of the resulting corrupted (21,3) 

codeword attempted; if decoding is unsuccessful then the guessed 

bit is inverted so guaranteeing correction provided that no 

more than five errors occurred in the received word. The 

(2 1 ,3 ) code is error trap decodable, and so the entire decoding 

algorithm consists of two error trap attempts; if the first

6

- 77 -



fails then the missing bit is inverted and then the second

attempt is sure to succeed.

(d) The (22,U) Code

This code may be decoded as a shortened (23,5) code.

(e) The (23,5) Code

This code may be constructed by omitting any parity check 

bit from the (2l|.,5 ) code of minimum distance 1 2 found by 

MacDonald (1958). The code may also be formed as an augmented 

conjoined code (see Chapter 6 ). The code is formed by 

conjoining the (1 1 ,1;) double-error correcting code with the 

(1 2 ,U) code of minimum distance six and then augmenting an 

additional codeword from the (11,1) code. The complexity of 

the decoder is only a little greater than the complexity of 

decoders for the three constituent codes.

The code may also be decoded by the exhaustive - search 

method. The thirty two possible codewords would need to be 

stored or generated, and compared with the received block.

(f) The (25,6) Code

This code may be decoded as a shortened (26,7) code.

(g) The (26,7) Code

This code was found by Hashim (1971|) as a result of a 

computer search. Little is known of its structure, and there

fore the only decoding algorithms that may be considered are 

those common to all linear binary block codes. The code is of 

low rate, and therefore the exhaustive search decoder is the

d
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obvious choice

(h) The (27,7), (26,8) (29,9), and (30,10) Codes

These codes may be decode! as shortened versions of 

the (31,11) code.

(i) The (31,11) Code

This code may be constructed as a primitive B.C.H. code.

In this form the code is cyclic, and is decodable by the 

"error-trapping with windows" method, (see Kasami 1961;).

3.7 Six-Error-Correcting Codes

(a) The (13,1) Code

This is the repetition code, with two codewords : the all

zero and the all-one 13-tuples. Decoding is made on a majority 

principle - if more than six bits of a received block are 'one' 

then the all-one codeword is delivered to sink, otherwise the 

all-zero codeword.

(b) The (20,2) Codeword

This code, in common with the (11,2), (11;,2), and (17,2) 

codes already described, may be constructed as a one-step 

majority-logic decodable code, with a pseudo-cyclic decoding 

algorithm. The generator matrix is given by :

[1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1  

0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1  1_ 

and the orthogonal parity check equations are :

k1 = p2 = \  = p6 = p8 = p10 = p12 = P1 + p13 = p3 + P1U 

= p£ + P 1£ = p7 + P16 = p9 + P17 P11 * P 1 8
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k 2 p3 P5 P7 “ %  P11 P 1 3  P 2 + P 11; PU + P 1 3

= p6 + P16 = p8 + p17 = P10 + P18 = P12 + p1

The decoding circuitry arrangement follows that for the

(1 1 ,2 ) code.

(c) The (2li,3) Code

This code may be constructed as a code which is one-step 

majority-logic decodable in much the same manner as the (1 7 ,3 ) 

four-error correcting code. Thus, although the code is not 

cyclic it may be decoded in a cyclic manner.

The generator matrix, G, is given by :

1 0 0 1 0 0 1 0 1  1 1 0 0 1 0 1  1 0 0 1 0 1  1 1  

G = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1  

0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1  

if a codeword, C, is written

C ~ kv  k^, k^, p.j, p£, . . . .  P2 Q, P 2 -j
then the orthogonal parity checks are :

k 1

n
& V4 P-| -] ) P"| 7  ̂ P-] + Pç> p 8 Hh P1 2 ‘’ p3 + p6 5 P 1 0 + P 1 3 > P2 + P7>

Pa + P 1V P1 $ + p2 0* :P 1 6 + p19’ P 21 Jh P 1 8

k 2 P3* p 1 0 * P1 6 ’ p1 .+ P?J p 8 :: P11^! P2 + p^ Pa + P 1 2 ’ pl+ + p6 >

P 1 1 + P 1 3\* p17 + P1 9 ’ P15 4• P18, P 21 + P 20

k3 = P 2 , v a , P15, V, : p6 > p 8 + pi y Ph + P?, P 1 1 + P 1V P3 + p^

p 1 0 + P 1 2 P 1 6 + P 1 8 * P17 + P2 0> P 21 + p19
The similarity to the (17,3) code is readily seen, and a decoder 

will only need circuitry to calculate the additional four 

orthogonal checks, given above for each information bit. This 

additional circuitry may be arranged to be of a cyclic nature 

in the same way as for the (1 7 ,3 ) code.

6
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(d) The (26,U) Code _____

This code may be decoded as a shortened (27,5) code.

(e) The (27,5) Code

This code may be constructed by dropping any parity check 

bit from the (2 8,5 ) code with minimum distance fourteen dis

covered by MacDonald (1958).

It may also be constructed by conjoining the (11;,!;) triple- 

error-correcting code with the 03,1;) code obtained by omitting 

a check bit, and then augmenting with a codeword from the 

(13,1) repetition code, (see Chapter 6).

The code may be decoded by the method shown in Chapter 6 

for conjoined codes, or the exhausive search method may be used.

(f) The (29,6) Code

This code may be constructed as an augmented conjoined code 

(Chapter 6). The constituent codes are the (15,5) triple-error- 

correcting code, a (11;,5) code with minimum distance six 

constructed by omitting any one parity check bit from the 

(15,5) code, and the (13,1) repetition code. As shown in 

Chapter 6, the code may be decoded with a complexity only slightly 

greater than that of decoding each of the constituent codes.

3.8 Longer Codes

For lengths much greater than thirty it becomes considerably 

more difficult to decode optimum codes. It is then more realistic 

to use near-optimum codes with simpler decoding algorithms. For 

example the (6 3,U 1 ) sub-optimum triple-error-correcting projective 

geometry code is generally preferable to the optimum (6 3,-U7) code

<3
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because it is much more easily decoded. Even so, the projective 

geometry code requires 3h3 sets of modulo 2 adders, and 57 seven 

input majority gates to be decoded by a standard majority-logic 

decision method; or 27 majority gates, two counters and three binary 

flags to be decoded by a simpler method, involving’brbits" (L.E. 

Wright 1977). The (255*218) projective geometry triple-error- 

correcting code is even more complex to decode - the simplified 

"orbit" method requires 120 thirty-one input majority gates, three 

binary flags and a thirty-five entry decoding table, whereas the 

standard majority logic decision method needs nearly three thousand 

seven-input majority gates and so is impracticable for most purposes. 

The long B.C.H. codes are sub-optimum in most cases, but they do 

have practical decoding algorithms for the correction of small 

numbers of errors. Chapter 1; discusses the decoding algorithms 

available for these codes, and it is seen that for codes correcting 

more than three errors the decoders required are very complex.

In order that long codes with large error correcting power may 

be easily decoded it is evidently necessary that the codes be of 

considerable worse rate than the best known. For example the one-step 

majority logic decodable codes such as the self-orthogonal quasi- 

cyclic codes discovered by Townsend and Weldon (1967)* are very poor 

in rate compared to even the projective geometry codes - they are, 

however, much more easily decoded. For the same cost a much longer 

self-orthogonal-quasi-cyclic, than projective-geometry code of the 

same rate may be decoded. The increased length code sometimes has 

better performance than the shorter code (particularly /if many 

more errors may be corrected than guaranteed by the minimum distance) 

and therefore is preferable in certain applications to the shorter 

and more newly optimum code.
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3.9 The Use of Microprocessors in Decoding Error Correcting Codes

Since the decoders for many error correcting codes require 

what is in effect a special purpose computer, the microprocessor 

might seem an ideal component for their realisation.

The versatility of microprocessors is offset, however, by the 

considerable time required for the execution of each step of com

putation. It seems reasonable to assume that a programmable system 

will always be slower than a "hand wired" system.

There are three major ways in which the versatility of 

microprocessors may be usefully employed. Firstly they may be used 

in applications where speed is unimportant - for example in paging 

systems and private-line squelch systems in radio communication systems. 

Secondly they may be used in parallel to achieve high speed, provided 

that cost is of secondary importance. Thirdly they may be used to 

control the operation of sub-sections of the decoder which are fast 

"hard wired" computation elements. ,

-  83 -



CHAPTER ^

Decoding; B.C.H. Codes

I4..I. Introduction

In this Chapter the best method of decoding B.C.H. codes is 

considered, for various error correction powers of the codes.

Decoders for double error correcting B.C.H. codes are first com

pared, and then their generalisations to more powerful B.C.H. codes 

are discussed. The decoders described are those considered most 

suitable for long B.C.H. codes - shorter B.C.H. codes may often be 

decoded by other more general methods such as error trapping, 

majority logic decision, and permutation decoding.

ii.2. Decoders for Double Error Correcting B.C.H. Codes 

(a) Berlekamp's Method

The most common form of decoder for a double-error- 

correcting (d.e.c.) B.C.H. code is that described by E.R. 

Berlekamp (1968). This is reviewed briefly here.

The basis of this method lies in the fact that an n-tuple 

c(x) is a codeword polynomial of an (n,k) d.e.c. B.C.H. code iff
O

x and -xt are roots of the generator polynomial, g(x), of the 

code, where x is a primitive n th root of -unity in GF (2m), 

where n = 2m ^.

If a codeword is denoted by c(x) and a corrupting error 

pattern by e(x) then a corrupted codeword, r(x), may be 

written

r(x) = c(x) + e(x)

Since c(x) is by definition a multiple of g(x), x and xJ must 

be roots of c(x). Therefore, by substitution of x and x in 

the above equation, the following two equations are obtained :
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S1 = X1 + X2 

and S3 = X13 +

r(°() = c(o<) + e(c() = e(<*) and 

rO*3) = c(«<3) + e(c<3) = e(o<3)

It is usual to term r ^ 1) the i th syndrome, S^, of the 

corrupted codeword.

If the error positions are labelled as powers of x, 

that is if an error in the fifth bit of a codeword is termed 

X = x \  then the syndromes and give two simultaneous 

equations in the two error positions X-j and X2, viz =

. . . (i)

. . . (ii)

these two equations may be solved for X^ and X2 as follows :

from (i)j X1 = S1 X2 . . . (iii)

substituting (iii) in (ii); = X23 + (Ŝ  - X2)3

hence, S3 = S13 + 2 X2 + S1 X22 . . . (iv)

similarly, S3 = S13 + S12 X1 + S1 X12 . . . (v)

therefore, if X represents either X^ or X2 we have

S3 = + S ^ 2 . . . (vi)

Decoding may then be accomplished by substituting all possible

values for X into equation (vi); those values which are roots

of the equation are the error positions the values of which

must be inverted in order to complete the decoding.

Note that equation (vi) differs from the equation derived

by Berlekamp in that it has not been "divided through" by .
2 3As a result the variables to be calculated are ,

p
and S3 compared to S1, , S y ^ , and S3 required by Berlekamp.

The importance of this difference is that if S y ^  is found by
2 f n \means of a look-up table, 2 storage locations are

3
required whereas a look-up table to determine would 

require only ~ ^  locations. Thus equation (vi) affords a
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considerable saving in storage requirements, or may' allow a 

look up table to be used where a time consuming sequential 

circuit might otherwise have been necessary. Equation (vi) 

has also been suggested as an improvement by Harari (197l+).

It may be shown, for example by Berlekamp (1968), that 

may be calculated by dividing the received sequence r(°<) by JL, 

the minimal polynomial of cX.1 to give r̂ («K) and then transferring 

by a matrix multiplication to r^O*1) which is equal to S^.

These operations may be realised using feed-back shift register 

for the division, and arrays of exclusive or gates for the matrix 

multiplication (see Peterson and Weldon 1972) and Berlekamp 

1968).

In order to solve equation (vi) in practice, the Chien 

search (Chien 1961;) is normally used. In order that the first 

received bit is the first decoded, it is convenient to arrange 

for the equation (vi) to be manipulated to give as roots the 

"inverse locations numbers"; that is, for X =eK1 to be a root if 

the (n - i)th bit is in error; because the first receive bit 

is the highest order co-efficient of the received polynomial.

The equation transformation is very straightforward, with 

the result (after the simplifying multiplication through by ) 

of (S^ + S.j )X + X + =0. The Chien search then operates

as follows .

One feedback shift register is wired to multiply its

contents by with each clock pulse, another is wired to multiply

its contents byc<, with each clock pulse. Initially the first
2 3register is loaded with and the second with + S-j . The

contents of these registers are added together, and added to
3 2 2S.|; the result is the enumeration of (S^ + ) o< + o< + .
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If the result is zero then X = «< is a root of equation (vii) and 
therefore the first received bit is in error. The two feedback 

shift registers are then shifted once, to give the enumeration 

of equation (vii) for X = and if the result is zero the 

second received bit is in error. This clocking procedure 

continues to check all possible roots of the equation. Note 

that at each stage it is necessary also to check that = 0 

since if S = 0 there are no further errors, and no further 

inversions must take place.

A block diagram of a complete decoder of the type described 
above is given in Fig. l|..2(a).

OUTPUT

X o (

-
O/P I IF SUMS 0

. r
L i

INPUT
Fjg 4.2a
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(b) A Simpler Method __
Described here is a somewhat less complex decoder for

double error correcting B.C.H. codes. To understand its
3operation consider first the relationship between and 

in equation (vi) of the preceding section.
If one error has occurred in the received sequence thoiX = 0 

is one root of equation (vi), therefore also  ̂0
and 4 0.

If two errors have occurred in the received sequence then 
since = X ( in fact + X^ from equation (i)) it can

Obe seen from equation (vi) that 4 S^.
Also S1 4 0, S3 4 0.

If three errors have occurred in the received sequence then 
the sequence is at distance of least two from any codeword.

3Therefore, again, S-j 4 and 4 0.
If no errors have occurred in the received squence then both 

S1 and equal zero.
Now consider the effect of inverting one bit of a received 

sequence :
If originally one error had occurred then there now will be

3either no errors, in which case = 0, or two errors in
3which case 4 S^.

If originally two errors had occurred then there will be
3now either one error, in which case = Ŝ , or three errors in

3which case 4 S y

The basic decoding algorithm may now be seen. First,
Syndromes and are calculated. If = 0 then the
received sequence is assumed to be error free and is output to 
the sink unchanged. Otherwise, the first received bit is inverted,
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and Syndromes and recalculated. is cubed, and if
the inverted bit is assumed to have been in error and so left

3inverted; if the bit is assumed to have been correct
and is therefore re-inverted. This process is continued by 
inverting the remaining bits in turn and following the above 
procedure until all of the errors in the received sequence have 
been cleared.

Considerable simplification of the above algorithm is pos
sible because B.C.H. codes are cyclic. As a result the syndrome 
of a cyclic shift of a received sequence may be obtained by shif
ting once the syndrome of the unshifted sequence in the syndrome 
calculating feedback register. Furthermore, as with all linear 
block codes, if a received sequence r, (X) given by r^(X) =
C(X) + (X) is further corrupted by another error pattern
to give r^(X) = C(X) + (X) + e^Cx), then the syndrome of r^(X)
is the sum of the syndromes of r^(X) and (X). Therefore the 
syndrome of a received sequence with its first received bit 
inverted is equal to the sum of the syndrome of the received 
sequence with the syndrome of a sequence of n - 1 zeros preceded 
by a 'one', where n is the length of the B.C.H. code.

Combining the above two facts it can be<" seen that if the 
syndrome of a received sequence is calculated then the syndrome 
of that sequence with its first bit inverted may be obtained by 
adding the syndrome of 'one followed by all zeros' to the cal
culated syndrome, and the syndromes of the sequence with other 
bits invested are found simply by shifting the 'uninverted' 
syndrome in its register and still adding the syndrome of the 
'one followed by all zeros’.

3
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Example
Consider the (15*7) double error correcting B.C.H. code. 

The syndrome of a one followed by fourteen zeros is

1 0  0 1 and so a circuit which calculates the syndrome 

of a received sequence inverted in its first, second, and so 

on to its fifteenth bit position, and gives a 'one' output 

if the result is zero is given in Fig.4./2.

Fig. L/Z.Cb').
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A block diagram is given in Fig. 'I.(c)of a decoder, for a

double error correcting B.C.H. code, using this algorithm.

Note that in this decoder a 'NAND' gate is used to test Ŝ

for 'all zero' - if S., is zero then, provided not more than

two errors have occurred in the received sequence, so will S^

be zero. If no errors have occurred in the received sequence
3then the test = S^ will be positive after an inversion has

been made in the syndromes. Therefore by adding the output
3

of the 'NAND' gate modulo 2 to the output of the = S^ test 

circuit it is ensured that the received sequence is delivered 

to the sink -unaltered, when no errors have occurred during 

transmission over the channel. The circuitry operates as 

follows : Firstly n received bits are clocked simultaneously 

into the buffer register and the two syndrome forming feedback 

shift registers. Thus syndromes and S^ are formed. The 

remaining circuitry then determines whether or not the first 

received bit is correct, and the corrected bit is delivered to 

sink on the next clock pulse. This clock pulse also shifts 

once the syndrome shift registers, enabling the correctness 

of the second received bit to be determined. This process is 

continued until all of the n received bits have been delivered 

to sink, and then a new received block is shifted into the 

decoder. The process is then repeated as above. Note that, 

as with all Meggitt type decoders, the decoder must be clocked 

at twice line rate in order to prevent any buffer overflow.

The advantage of this circuit over that of the decoder of 

section (a) is clearly that of obviating the need to calculate 

and that the Chien Search Stage is effectively performed by 

the syndrome forming registers, thus reducing hardware costs.
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Fig 4.2c
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The decoding scheme presented above may be seen to be 

equivalent to a special case of the step-b7-step decoding 

algorithm for B.C.H. codes given by Massey (l°65), and this 

generalisation of the decoder will be described in the next 

section, as it is a very suitable method of decoding B.C.H. 

codes of minimum distance seven.

i|.3. Decoders for the Correction of Multiple Errors

B.C.H. codes capable of correcting more than two errors are 

considerably more complex to decode than are the d.e.c. versions.

For moderate error correcting power, the simplest decoding technique 

is that of Massey (1965), but for larger t methods put forward by 

Peterson (1960) and Berlekamp (1965, 1968) are preferable. These 

algorithms are described here to illustrate the variations in their 

complexity for differing error correcting powers.

(a) Massey's Step-by-Step Algorithm

This decoding algorithm for B.C.H. codes is based upon two 

theorems.

The first is that the determinant of the matrix

Et = 'si ‘ 1 0 0 . • . 0

S3 S2 S1 1 . • . 0

S5 Sl. S3
•

S2 * • . 0

S2t - 1 S2t - 2

•

S2t - 3 S2t - k
s

•  •

is zero if the weight of the error pattern, e, affecting a 

codeword is t - 1 or less, and non-zero if e is of weight t 

or t + 1; provided the B.C.H. code is t error-correcting.
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The second theorem is that if a syndrome bit is inverted, 

the syndrome becomes that of the original sequence modified by 

inverting one of the parity check bits.

The decoding algorithm based on these two theorems begins 

with the following steps :

(1) The syndromes S^, S2 * . . . .   ̂ are formed

(2) The determinant of Lt is calculated

(3) If det (Lt) = 0 then successive bits of the syndromes 

are inverted until det (Lt) f  0.

Step (3) ensures that, at the following step, the received 

sequence contains exactly t errors (provided that the original 

received sequence does not contain more than t errors). By 

the first theorem, if det (Lt) = 0 then (t - 1 ) or less errors 

have occurred; and so, by the second theorem, the inverting of 

successive bits of the syndromes ensures that when det (Lt) 

first becomes non-zero, there are exactly t errors in the 

modified sequence.

The decoding algorithm continues with the following steps

(i;) The syndromes of the sequence VQ, where Vq is a

sequence of (n - 1 ) zeros preceded by a single 'one', 

are added to the syndromes modified by step (3 ).

The results are used as syndromes in step (3).

(£) Det (Lt) is again calculated.

(6 ) If det (Lt) is now zero, the first received bit is 

inverted and delivered to the sink, otherwise the 

first received bit is delivered to the sink unchanged

Step (U) gives the syndromes of the modified sequence- 

modified a second time by inverting the first received bit 

(which is the first information bit). Therefore, if the first 

bit was in error, the result of step five will be zero since
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the syndromes will be of a sequence with only t - 1 errors.

If, however, the first bit was not in error, the syndromes 

will be of a sequence containing t + 1 errors, and therefore 

by the first theorem the value of det (Lt) will be non-zero.

This explains the step (6 ) which is the error correcting step. 

The algorithm is concluded by :

(7) The syndrome forming registers are shifted once, and 

steps 1; and 5 repeated, step (6 ) is then carried out, 

but on the second received bit.

(8 ) The process continues for the third, fourth, . . . .  

n th received bits.

Steps (6 ), (7), and (8) are possible because of the cyclic 

nature of B.C.H. codes, thus the syndromes achieved by step ( ? )  

are those of the modified sequence shifted by one bit, hence the 

effect of the second execution of step (Ij.) is to calculate the 

syndrome of the modified sequence with the second bit inverted. 

Continuing the process corrects all n received bits in order.

Calculation of the , 0 < i < 2t is straight forward, 

the most complex operation in the algorithm is that of 

calculating det (Lt). This calculation is carried out at least 

n times, and at most n + 2t times. It is the complexity of 

this stage which limits the highest value of t for which the 

algorithm is useful. The terms of det (Lt) are given in the 

table below, for t ̂  5>> from which can be seen the complexity 

of the calculations required for increasing t.
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t det (Lt)

2

3

h

3

S-,6 + s13 s3 + s1 + s32

Sl10 + s 7 s, + + s 3 s„ + s 2 s.1 1 3  1 5  I f  1 3  5
+ S1 s33 + s3 s7 + s32

+ S l 1 2 S3 + S l 8 S? + S. ,7 S3 S3 + S ^  S3 3

. + s.,6 S9 + S32 S ^  S3 3? + S32 S3 + s?

+ s3 s9 + s1 2 s3 s52 + S-j2 s32 s7 + S1 s $ s9
2 2 5 34- S1 S? 4- S3 S9 + S3P + S^

The calculation of det (L^) is quite simple - the only- 

complex operation required is the cubing of . This case 

(t - 2 ) is equivalent to the double-error-correcting decoder 

given in Section l;.2.(b), except that in that section circuitry 

has been included to make the steps (2) and (3) of the Massey 

algorithm unnecessary. This circutry is much simpler than the 

additional inverting and clocking circutry otherwise required to 

carry out those additional steps, and the decoder of Section

il.2.(b) becomes a Meggitt type decoder with very modest clock 

circutry requirements.

The calculation of det(L3), required for the decoding of

triple error correcting B.C.H. codes, is somewhat more complex.
6 3 2To evaluate det (l3) the terms Ŝ  + 5̂  S3 + Ŝ  S^ 4- S3 must

pbe calculated. S3 may be found from S3 using a matrix of 

exclusive or gates as described, for example, by Berlekamp (1968). 

Ŝ  must be calculated either by means of a look up table or by 

a combinatorial circuit. S ^  may then be found, again using a 

matrix of exclusive or gates, from Ŝ  since S-j = (S-j ) . The
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terms S^" 3^ and must be calculated by a combinational

logic multiplier circuit, or by a look-up table. Clearly, by 

using a sequential programme, only one squaring, one cubing, and 

one multiplying circuit need be used for the calculation in this 

case, indeed, by calculating as S1, the cubing circuitry 

could also be omitted. It is important to note, however, that 

the calculation of det (L^) must be made as many as (n + 6 ) 

times per decoded block. Therefore the time taken for the 

calculation is very important, and it is for this reason that 

sequential circuitry for the multimplication of syndromes is not 

considered.

To apply the algorithm to B.C.H. codes capable of correcting 

four errors would clearly require some considerable amount of 

circuitry, since seven multiplications, and three raising-to- 

power operations are required in this case. Certainly, for 

codes correcting five or more errors, the decoding circuitry will 

be excessively complex unless a sequential programme is used 

for the determinant evaluation - which would only be possible if 

the time available for decoding is considerable.

The choice between combinational circuitry and look-up 

tables for the calculation of powers or products of syndromes 

requires some consideration. A look-up table capable of giving 

the product of syndromes requires considerably more storage 

than one giving an odd power of a syndrome. For example, a
Q

code of length 2 5 6 would require 2 = 2 5 6 storage locations 3
3 16for the calculation of , but 2 = 6 5 , 5 3 6  storage locations

for the calculation of the product of two syndromes. There

fore, with present technology, the product of two syndromes 

is best found using a combinatorial logic circuit. In
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Appendix !A' a method of constructing suitable logic circuits 

first given by Bennett & Stein (1963) is described, and 

bounds on the number of gates required for their fabrication 

are derived. Also given are the actual numbers of gates 

required for multipliers of syndromes of certain selected 

lengths.

(b) Error Location Polynomial Decoding

The method described earlier for the correction of double 

error correcting B.C.H. codes by the solution of an algebraic 

equation may also be applied to multi-error correcting B.C.H. 

codes (Berlekamp 1968). That is, a polynomial (the "error 

location polynomial") with algebraic combinations of partial 

syndromes as co-efficients may be formed which has as roots the 

locations of errors expressed as elements of GF(2m) where 

the code has length 2m - 1. Such a method of decoding divides 

naturally into three parts; information of the partial syndromes, 

formation of the co-efficients of the error location equation, 

and solution of the polynomial.

A partial syndrome is formed as in the double-error 

correcting case by dividing the received polynomial by , 

the minimal polynomial of ^and multiplying the remainder, 

r^i6*.), by a binary matrix to give r ^ ^ 1) = S^. For a t error 

correcting B.C.H. code, may be found for 0 < i ^ 2t - 1.

The error location polynomial is more conveniently 

arranged to have the inverses of the error locations as roots, 

so that in a practical realisation of the decoder the first 

received bit may be the first location to be tested as a root 

of the polynomial, and so the decoding delay is minimised.
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The inverse error location numbers may be defined as ,

0 < j ^  t. Then it is known (Berlekamp 1968) that the B. 

and the are related by

S. = 1 B.3
i

and the error location polynomial is defined as :
t 2 t

(PX) = T T  (1 + B.X) = R + R. X + R0x + . . . . RtXj = l J o i ^
from which it is possible to define the R^ in terms of the S^. 

The most efficient means of achieving this relationship is 

the "Berlekamp Iterative algorithm" (Berlekamp 1968). The 

algorithm may be visualised (Lin 1 9 7 0 ) as the filling in of 

a table (see Tablet.I. ) for which the first two rows are 

always as shown. To complete the table, for the (M + 1)th 

row :

(a) If dM = 0 then P^M + 1^(x) = P ^ ( X )

(b) If dM = 0 find a row preceding the Mth, say the Vth, 

where 2V - jM (in the last column) is as large as possible 

with dV non-zero.

Then P^M + 1 ^(X) = PM (X) - dM dV ~ 1 X 2 M̂ ~ V^PV(X)

In both cases j(M + 1) is equal to the degree of P ^  + ^(X)
and d(M + 1) = S + p (M + 1) q + p ^ + 1 qana ) t>2M + ^ b2M + 2 r2 fa2M + 1
+ . . . . +  P. S2„ , - j ( M + 1 )

J(M + 1) 3
then P(X) is given by Pv ' (X).

The roots of P(X) may be found in a 'brute force' way by sub

stitution of each of the n possible inverse error location 

numbers (i.e. non-zero members of GF(2ra) where n = 2ra **) into 

the error location polynomial and testing for a zero result. 

This search, known as the Chien search and described earl >'er for 

double error correcting codes, is easily realised as hardware
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in the form of feedback shift registers (Chien 1 9 6 3 ).

The requirement for inversion in Berlekamp's iterative 

algorithm is eliminated by a modification of the algorithm, 

given by Burton (1971). The simplification of the decoder is 

minor, however.

The Berlekamp algorithm is seen to be very complex in 

every way. Of most importance is the complexity of any 

hardware realisation of such an algorithm. This complexity 

dictates that its use is only advantageous over that of the 

Massey algorithm for values of t of 4 or above.

Peterson (1960) put forward a decoding method based upon 

error location equations in a similar way to Berlekamp. The 

solution of the equations was achieved by the inversion of a 

matrix of syndromes. The method, described in detail by 

Peterson and Weldon (1972) and compared to the Berlekamp method 

by Berlekamp (1968) is more complex than the Berlekamp method 

for large t, but for t less than about five may be preferable.

It is nevertheless more complex than the step-by-step method for 

t less than four.

Applications of B.C.H. Decoding Algorithms

B.C.H. decoding algorithms have importance outside the realm of 

decoding B.C.H. codes. It has been shown by Chien and Choy (1975) 

that Goppa codes and Srivastava codes may be decoded by a B.C.H.

decoder; C.T. Retter (1975) has also published methods of 

decoding Goppa codes with B.C.H. decoders. More recently Helgert 

(1 9 7 7 ) has shown that, by a linear transformation of the syndromes, 

Alternant codes may be decoded by the Berlekamp B.C.H. decoding 

algorithm. The Alternant codes contain B.C.H., Goppa, and Srivastava
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codes as sub classes.

A major advance in the decoding of B.C.H. codes would result 

from an ability to calculate quickly the logarithms of elements of 

Galois fields. At present the most efficient method of realising 

B.C.H. decoders of any type would appear to be microprocessor 

control of PROM type Galois field arithmetic units.
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CHAPTER 5

Hashim’s Nested Codes

5.1. Introduction

Presented here is a description of the Hashim nested codes, which 

differs from that given by Hashim (1974)-

This description gives a clearer insight into the properties of 

nested codes, and the decoding alogorithm applicable to nested codes 

is readily deduced from the description.

The conditions 'under which a nested code will decode a codeword 

corrupted by more than (d - l)/2 errors, where d is the minimum 

distance of the code, are noted, and the consequences of repeated 

nesting of the codes are considered, especially the increase in length, 

rate, and decoder complexity which results.

Further, a decoder algorithm put forward by Hashim for low rate 

nested codes, and for nested codes formed from low rate nested codes, 

is investigated.

5.2. Structure of the Nested Codes

The parity check matrix, H, of a nested code is given by Hashim 

as Fig. 5.1.

Parity check matrix of first, 
(n^,k^) linear block code.

/ w

In - k n
Parity check digits generated
by the second, (ngjkg) linear
block code

V

< ------------------- k = n1---------->

< ---------------------n ------------------------->
li£L 5.1 - Parity Check Matrix of a Nested Code

1 0 2



either a Hamming code with minimum distance it, or another nested code.

The (n^,k^) code has an odd minimum distance d, and then the 

(n^^k^) code must have minimum distance (d - 1). The resulting (n,k) 

nested code then has minimum distance d, with n = n̂  + n^ and k = n^.

5.3. Proof of the Minimum Distance of a Nested Code

Consider first a code with a generator matrix G^ given by :

The first k columns of the parity check matrix of this (n,k) nested

code are therefore codewords of the second, code which is

G.
T .

=[T - h iTJ
where is the transpose of the parity check matrix of another 

code C.j.

It will be proved that if the code Ĉ  has minimum distance d 

then code will correct up to (d - 1 )/2 errors provided that they 

occur only in the information digits of the code.

Proof

Let a codeword, C^, from the code C^, be corrupted by an error 

pattern e^. Let ~ \ e r > where e^ is the error pattern in the

information digits and e^ that in the redundancy digits of the 

corrupted codeword.

Then the syndrome, S^, of this corrupted codeword is given by : 

SA " <CA + eA> HAT
where is the parity check matrix of the code C^. 

hence SA = CA h/  * eA h/  = eA h/  

now eA = ek , ep

and since G, - [ i . h / ]

then Ha =[H1 i i]
Thence e^ is given by

eA HA = eT « e k 1 l H,
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1Now, the row vector has length equal to the column length of 

and e^ = 0 since all errors are in the information digit section of 

the codeword.

T TTherefore s^ = e^ = e^ , provided all errors are in the 

information digits of c^.

If the weight, w(efc) of e^ is bounded by w(ek)^(d - 1 )/2 then the

Tsolution of the equation s^ = e^ is precisely the decoding of a 

codeword from which is corrupted by at most (d - 1)/2 errors. That

is to say, if s^ is treated as a syndrome of a corrupted codeword 

from C.j and an error pattern is found from this by the- decoding 

rules of C.j, then the error pattern so f ound is precisely e^, provi

ded that the weight of e^ is at most the error correcting power of

C.j, i.e. provided w(efc)^.(d - 1)/2.

This completes the proof that will correct up to t = (d —1)/2 

errors provided that they all occur in the information digits of the 

codewords. The manner in which this is achieved is seen from the 

proof to be to use s^ as a syndrome of the code , and the error 

pattern corresponding to this syndrome, found by the decoding 

algorithm of , is the error pattern e^, corrupting the information 

digits.

In order to convert the code into one which will correct 

(d - 1)/2 errors wherever they occur in the codeword, the parity check 

digits may be encoded with another linear systematic block code, C^, 

which has even minimum distance (d - 1). As a result of this 

encoding, the parity
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code C„. Hence if at most t - 1 = d — 2 errors occur in the parity
2

check digits they are correctable - allowing the decoding algorithm 

previously described to clear the remaining errors in the information 

digits - whereas if t errors occur in the parity check digits then 

they are detected and the information digits may be assumed to be 

uncorrupted, 3ince it is accepted that t errors at most have occurred 

overall.

In order to ensure that the parity check digits of codewords from

are encoded according to the rules of code C2, it is sufficient that 

Tthe rows of Ej , in the generator matrix G^, are encoded by the 

(n2,k2) code C2.

The generator matrix, G, of the resulting (n,k) code C is then 

given by :

check digits of the converted codewords are themselves codewords from

G = I digits obtained by encoding rows of 
TH.j with code C2

The last n2 digits of each row are then codewords from code C2< The 

codewords from C are of course simply all the possible combinations of 

sums of rows of G - therefore the last n2 bits of all the codewords of 

C are always the sum of some codewords from C2 and since C2 is linear 

they are always a codeword from C^.

Finally, by manipulating G, the parity check matrix, H, of the 

code C is seen to be given by :
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H = 1 H1

Digits obtained by encoding columns 

of with the code C^
I

where is the parity check matrix of code which has a minimum 

distance one greater than that of the even'minimum distance code

This, of course, describes precisely a Hashim nested code.

The distance properties of the code have therefore been proved as 

required.

5.Ij.. The Decoding Algorithm

Directly from the proof has come the decoding algorithm, which 

is to first decode the parity check bits of a received codeword, 

according to the decoding algorithm of C  ̂ (if t errors are detected 

here then the information digits are considered error-free) and then 

to correct errors in the information digits by treating the first 

(n̂  - k^) digits of the syndrome of the received word as the syndrome 

of a corrupted codeword from . The error pattern corresponding to 

this syndrome, found by a decoder for the code , is the error 

pattern in the information digits of the codeword from the code C.

£.!?.'<• The Optimality of the Construction of Code

The efficiency of the code C can be seen to be dependent upon that 

of the code C, . It will be shown that the construction of as :

ga -  [ J ' hiT]
is the optimum construction for a code capable of correcting error 

patterns occurring only in the information positions of a codeword, 

provided that is the parity check matrix of an optimum random error
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correcting code.

The syndrome S^, when treated as a syndrome of a corrupted code

word from code , has already been shown to correspond to the error 

pattern in the information digits of a corrupted codeword, as long as 

this error pattern has Hamming weight at most (d - 1 )/2 where d is 

the minimum distance of the code .

It may further be seen that any error pattern corresponding to 

a coset leader of the code may be corrected provided the syndrome 

is used by a maximum likelihood decode for code . That is to 

say, those error patterns which are correctable by code are also 

correctable by code if they occur only in the information digits of 

the codewords. Thus if the code is optimum, that is.corrects the 

optimum set of error patterns for use on a Gaussian Channel, then code 

is also optimum in that it can correct the optimum set of error 

patterns occurring in the information digits, when used on a random 

channel.

Hence it has been shown that the code G^ is constructed in the 

most efficient manner possible for use in a random error correcting 

nested code, and so nested codes cannot be made more efficient by the 

choice of a different construction of G^.

Correction of Error Patterns of Weight > (d - 1)/2

The ability of nested codes to correct error patterns of weight 

in excess of that guaranteed by their minimum distances may be seen 

immediately from the decoding algorithm. A received codeword is cor

rectly decoded provided that the following conditions are met :

(a) All errors are cleared from the parity check digits by code C^.

(b) All errors are then cleared from the information digits by code C^. 

Alternatively, a received word is also corrected if the information
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.digits are error-free and the code detects any remaining errors.

Therefore a codeword is correctly decoded provided these are at 

most d = (d - 1)/2 errors in the information bits and at most t - 1 

errors in the parity check bits; and it is also correctly decoded 

when the information digits are error-free and more than t - 1 errors 

occur in the parity check digits, but are nevertheless detected by the 

decoder for code C£•

From the previous section it can be seen that the former require

ment reduces to the need for the errors in the information digits to 

be correctable by code and those in the parity check digits to be 

correctably by code C^.

5.6. Easily Decodable Nested Codes

In order for nested codes to be useful, it is necessary that the 

be easily decodable. Since the complexity of decoding a nested code is 

approximately equal to the sum of the complexities of the decoders for 

the constituent codes, it is therefore necessary that the codes and 

Cg be easily decodable. For this to be so, and C  ̂should be either 

nested codes themselves, or easily decodable in some other way, for 

example majority-logic decodable or error trappable.

As an example, consider a nested code constructed from a (23,12) 

linear binary block code with minimum distance seven, (i.e. the Golay 

perfect three-error-correcting code) and a (21,11) linear binary block 

code with minimum distance six (e.g. a first-order projective geometry 

code). This code will be a (IpU,23) nested code with minimum distance 

seven, and may be easily decoded since the (23,12) code may be decoded 

by the "error trapping with windows" method (Lucky, Salz, and Weldon 

1968), and the (21,11) code is one-step majority-logic decodable 

(Peterson 1972).
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Hashim (1974) implies that for a nested code of rate at most 

one half it is necessary only that be easily decodable, and that the 

information bits of the code may be found by solving the parity check 

equations of the nested code. Hashim thus introduces a class of 

"decodable nested codes" found by nesting such codes with other nested 

codes and then repeating this nesting procedure as often as desired.

It will be shown later that this decoding algorithm is fallacious. First, 

more general properties of nested codes are* examined.

5.7. The Rate of Nested Codes

Hashim correctly states that the decoding complexity of nested codes 

increases linearly with their length. This criterion, however, may 

give misleadingly optimistic view of the power of nested codes. Con

sider for example the (4 4 ,2 3) nested code which was described above.

This code has length nearly twice that of the (23,12) constituent code, 

whilst the decoding complexity is also somewhat less than twice the 

complexity of decoding the (2 3 ,1 2 ) code (to be more precise, approximately 

the sum of the complexities of the decoders of the (2 3 ,1 2 ) code and the

(21.11) code). The rate of the new code, however, is 0.523 compared to 

the (23,12) code which has rate 0.522 and the same minimum distance as 

the new code. Evidently, the (44,23) code, although having increased 

in decoding complexity linearly with the increase in length from a

(2 3 .1 2 ) code, has increased negligibly in rate.

In view of this doubt as to the usefulness of nested codes, a 

calculation is now made of the efficiency, R, of a nested code in terms 

of the efficiencies , R£, of the constituent codes and C  ̂respect

ively.

It is known, from the construction of the codes, that the following 

three relations hold between the parameters of the nested code and its
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constituent codes :

n = n1 + n2 .. .. (i)

k = n^ .. .. (ü)

k2 - n1 * k1 •• •• .. (iü)

Prom equations (i) and (ii)

n = k  + n2 .. .. .. (iv)

and from (ii) and (iii)

k 2 = k  -  k 1

k 2 n 2 = k  -  k  k 1 since k
n2 ^

• n = k (1 - R ) 
* • 2 R9 1

.. (v)

since Rj = and R2 = k^

n 1 n2 

hence, from (iv) and (v)

n = k + k (1 - R, )
r 2

n = 1 + 1 - R

R =
1 — R̂  + R2

since R = k 
n

This gives the required relationship between R, R^ and R2 .

In order that a nested code be useful, it is necessary that it

have a greater rate than that of the constituent code which has the

same minimum distance as itself.

This gives the condition :
R~

1 — R^ + R2
>  *1

i . e .  R2 ^  R^ ( 1  — R.j) + R^ R2

K2 <1 '  V > R1 ( '  " V
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hence, since 1 - 0,

For nested codes with high rates will be much shorter than C^,

and this consideration will overide that of minimum distance, making 

C.j higher in rate than In this situation it is obviously pointless

to construct a nested code, since the code will then have a higher 

rate than, and the same minimum distance as, the nested code and yet be

nested code, on a random error channel, unless the nested code is able 

to construct a considerable number of errors of weight greater than its 

guaranteed error correction capability. Also, would be much easier 

to decode than the nested code constructed from it.

At low rate, however, when code CU will be the same length as, or 

longer than, code the situation is different. Since code has 

a minimum distance one less than that of its rate will be higher

than that of and so the nedted code will also have a rate higher than 

that of C1.

Nested codes which are constructed with a which is the best 

known linear binary block code with minimum distance d and another 

nested code with minimum distance d - 2 extended by the addition of an 

overall parity check bit to give it minimum distance d - 1, are listed 

by Hashim for minimum distances five to eleven.

The longest of these for which nesting gives an improvement in rate 

over that of the code are listed below in Table 5.1.

shorter. Hence would give a lower probability of error than the

Minimum Distance Longest useful nested code 
when C. is best known R TABLE 5.1

5 57,25 0.62

7 58,15 0.39

9 75,50 0.41

11 91,51 0.34
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A similar table has been compiled (Table 5.2.) for nested codes 

constructed from a code which is the best known linear binary block 

code with minimum distance d and a code which is the best known 

binary group code with minimum distance d - 1.

It can be seen that in either case the longest nested codes that 

may be constructed are at best of rate slightly greater than one half.

TABLE 5.2.

Longest useful nested code
Minimum Distance with & C  ̂the best known R

5 37,23 0.62

7 60,31; 0.57

9 89,h7 0.53

11 95, U5 0 .JU-7

As stated above Hashim claims that with nested codes of rate one 

half* or less it is not necessary to decode - the information digits 

may be calculated by clearing the errors from the parity check digits 

by using code and then solving the parity check equations of code 

C.j. This process may be less complex than decoding a corrupted code

word from , in which case nested codes of rate one half or less would 

certainly be useful in that they would have a rate higher than that of 

C.j and may be easily decoded.

Also useful are nested codes in which is a nested code of rate 

one half or less, or in which C-j is a nested code that in turn is con

structed from a nested code, and where in either case code C  ̂is also a 

similarly constructed nested code.

These easily decodable repeatedly nested codes may be constructed 

with high rates and for any desired odd minimum distance. They are, 

however, very long compared to other classes of error correcting codes, 

particularly for minimum distances greater than five and at high rates.
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This is shown graphically in Fig. 5.2. where the decodable nested codes 

with minimum distances 5, 7j and 9 are compared with self-orthogonal 

quasi-syclic codes, and with B.C.H. codes, of the same minimum distances. 

The parameters or the nested codes are taken from a list given by 

Hashim (1971;) which has been corrected for some small arithmetic errors. 

This corrected list is given in Table 5.3.

5.8. Decoding Nested Codes with rate less than or 'equal to half

Hashim’s claim that nested codes with rate at most one half may 

be decoded by clearing the errors from the (n - k) parity check digits 

and then finding the error pattern in the information digits by solving 

k  parity check equations is now investigated.

Hashim (1971;) states that since the (n - k) rows of the parity 

check matrix H of a nested code are linearly independent, then the 

(n - k) syndrome equations are also linearly independent and therefore 

the decoding scheme above may be used. In fact, however, it is necessary 

that the rows formed from k of the first (n - k) columns of the H matrix 

be linearly independent; and this property is not held by the parity 

check matrix of a nested code, as will now be shown.

Consider firstly the parity check matrix, H, of a half rate nested 

code, which may-be written as :

H =[M I i]

Then the equations obtained for the calculation of the error pattern in 

the information digits are given by the solution or the equation :

eHT = Me = s

where e is a column vector representing the error pattern, and s a row

vector which is the syndrome given by multiplying the received, corrupted, 
Tcodeword by H .

Then e is given by the solution of the equation ;

e = sM
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and is uniquely solubleiff :M is a non-singular matriz.

For M to be non-singular, the rows of M must be linearly independent. 

In the case of nested codes, the matrix M is given by

M ■ [  _________________  '
Columns obtained by encoding 
columns of according to code C2

and therefore the lower (n2 - rows of M are linear combinations of 

the upper rows.

Hence the matrix M must be singular, and e cannot be uniquely 

determined - hence the decoding procedure is not valid for codes of 

rate one half.
Furthermore, in nested codes of rate less than one half, the 

matrix M must still contain (n2 - k2) rows which are linearly dependent 

on the remainder, since the k columns must still be chosen from linearly 
dependent rows of the H matrix.

Therefore, whatever the rate of a nested code, the decoding 

algorithm put forward by Hashim is not applicable. This may be illus

trated by a simple example.

A (13,5) nested code with minimum distance five may be constructed 

with code a 5,1 repetition code and code C2 an (8 ,4 ) Hamming code with 

minimum distance 4.

Thus code has the parity check matrix H^ given by :

E1 = 1 1 0  0 0"

1 0  1 0  0 

1 0  0 1 0  

1 0 0 0 1

and by encoding the columns of H^ according to the rules of code C2 

and adjoining the result to an identity matrix of order eight, the 

parity check matrix Ĥ  of the nested code is constructed.

Now the generator matrix, G2, of the (8 ,4 ) code C2 is given by
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Gz = 1 0 0 0 0 1 1 1 

0 1 0  0 1 0  1 1 

0 0 1 0  1 1 0  1 

0 0 0 1 1 1 1 0

and so H is given by :
e 2 = 1 1 0 0 0 1 0 0 0 0 0 0 0  

1 0 1 0 0 0 1 0 0 0 0 0 0  

1 0 0 1 0 0 0 1  0 0 0 0 0  

1 0 0 0 1 0 0 0 1 0 0 0 0  

1 0 1 1 1 0 0 0 0 1 0 0 0  

1 1 0 1 1 0 0 0 0 0 1 0 0  

1 1 1 0 1 0 0 0 0 0 0 1  0 

1 1 1 1 0 0 0 0 0 0 0 0 1  

Thus G, the generater matrix of the nested code, is given by :

1 0 0 0 0 1 1 1 1 1 1 1 1  

0 1 0 0 0 1 0 0 0 0 1  11  

0 0 1 0 0 0 1 0 0 1 0 1  1 

0 0 0  1 0 0 0 1 0 1 1 0 1  

0 0 0 0 1 0 0 0 1 1  1 1 0

G =

In Table 5.4. is given a list of all the codewords in this code, 
i.e. the row space of G, from which it can be seen that any parity 

check vector will always correspond to two different information 
vectors - hence an error pattern in the information vector cannot be 

calculated solely from a knowledge of the uncorrupted parity check bits.
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Information Parity Checks Information Parity Checks
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1

0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0

0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1

0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1

0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 A1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1

0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1

0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1

0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 '  1 1 1 1 1 0 0 0 0 0 0 0 0

TABLE 5.4. - Codewords from the (15.5) Nested Code

5.9» Useful Decodable Nested Codes

It would seem that in order for a nested code to be both useful 

and easily decodable, the constituent codes and C2 should both be 

easily decodable, and of course the rate of code C2 should be con
siderably higher than that of

This latter requirement would normally imply that the nested code 

be of low rate, as has been shown earlier. If the code is a nested 
code, however, then the rate may be increased. In such cases, 

unfortunately, the resultant nested codes will become extremely long 
for only moderate to high rates and small error correction ability.
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5 .10.

This latter requirement would normally imply that the nested code be of 

low rate, as has been shown earlier. If the code is a nested code, 

however, then the rate may be increased. In such cases, unfortunately, 

the resultant nested codes will become extremely long for only moderate 

to high rates and small error correction ability.

An example of a useful nested code would be the (35,15) triple 

error correcting code constructed from the (1 5 ,5 ) triple error cor

recting B.C.H. code, which may be error trap decoded, and the (20,10) 

code of minimum distance six obtained by shortening the Euclidean 

geometry one-step majority logic decodable (21,11) code.

This (35,15) nested code may then be nested with the (31,20) code 

of minimum sistance six, obtained by shortening the (3 1 ,2 1 ) double 

error correcting B.C.H. code and adding an overall parity check bit, 

to give a (66,35) triple error correcting code, which has a rate greater 

than one half.

Whatever codes are used, when they are repeatedly nested the 

resulting codes will tend to become very long compared to other known 

classes of easily decodable codes such as the self-orthogonal quasi- 

cyclic (SOQC) codes and therefore they will be proportionately 

difficult to decode.

Conclusions

The structure and properties of nested codes have been described 

in a clear and easy to understand manner. The codes have been seen to 

be interesting, but evidently of low rate. When of higher rate they 

are of lower efficiency than their constituent codes, hence being of 

no practical value,, or are considerably longer than other easily 

decodable codes.
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Minimum Distance

5
5
5
5
5
5
5
5

7
7
7
7
7
7
9
9
9
9
9

Table 5„3

Length No. Inf. Bits Rate

26 13 0.5
49 30 0.612
105 74 0.704
143 106 0.738
296 238 0.803
608 518 0.851
1626 1468 0.902
3453 3214 0.93

76 C
O

C
O 0.5

161 91 0.565
343 215 0.626
1024 740 0.722
3609 2910 0.806
5336 4415 0.826
94 47 *0.5
793 459 0.578
1301 793 0.609
4425 3054 0.69
6223 4425 0.71

Parameters óf "Easily Decoded" Nested codes
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CHAPTER 6

Conjoined Codes

6.1. Introduction

In this chapter the properties of codes with generator matrices 

of the form G = h  1 g2] are investigated, where G1, are generator 

matrices of other, shorter, linear codes, all having an equal number 

of information bits.

A codeword of such a code will consist of two codewords arranged 

consecutively, i.e. C = Ĉ  ’ C2, and will have length N = + N2,

whilst K = = K2; from which it is easy to deduce that the rate,

R, is given by R = R1R2
Rl + R,

The codes will be termed ’conjoined’ codes.

Theorem

The minimum distance of C (g ) is given by :

d >y d1 -+ d2

Proof

A codeword of C (g ) is given by C = Ĉ  ’ C2

The weight of Ĉ  is either 0 or^,d^

The weight of C2 is either 0 or^,d2

If the weight of Ĉ  is 0 then, since the codes are linear, and 

the information bits of C2 are identical to those of C ^  the weight of 

C2 is also 0.

Hence the weight of C is either 0 or^d^ + d2”, therefore, since 

the conjoined code is linear, the minimum distance of C is^,d^ + d2*

The most useful construction of the type described consists of 

combining a code of even minimum distance with one of odd minimum 

distance. This gives a conjoined code of odd minimum distance, which 

may be increased by one, if required, by adding an overall parity check
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bit

Example

We may choose C (G^) to be the (8 ,4 ) code of minimum distance 4, 

and C (G^) to be an identity matrix - i.e. a (4/4) code of minimum 

distance 1.

The resulting code is a (12,4) code of minimum distance 5.

No linear code of length 12 and minimum distance 5 has more than 

four information bits.

Example

Choose C (G^) to be a (6 ,3 ) code with minimum distance 3i and 

C (G2 ) to be a (7/3) code with minimum distance 4.

The resulting code is a (13/3) code of minimum distance 7.

No linear code of length 13 and minimum distance 7 has more than 

three information bits.

The codes do, unfortunately, become less efficient than some other 

codes of the same length and minimum distance, for increasing values of 

K.

Example

Choose C (G^) to be the (24/12) code with minimum distance 8, and 

C (Gg) to be the (12/12) code of minimum distance 1.

The resulting code is a (36,12) code with minimum distance 9.

This may appear to compare adversely with the best known linear code of 

the same length and minimum distance, which has sixteen information bits. 

Nevertheless, the parameters of the conjoined code are identical with 

those of the shortened code derived from the primitive BCH code of 

length 6 3 and minimum distance 9. The equivalent rate self-orthogonal 

quasi-cyclic code with minimum distance 9 has length 78.

The disadvantage of these codes having low rate is offset by the 

simple decoding algorithm which may be applied to them; which moreover
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is capable of correcting some error patterns of weight greater thant.

6.2. The Decoding; Algorithm for Conjoined Codes of Odd Minimum Distance

A. Decode the two constituent codewords separately, using a suitable 

decoder for each code;

B. If the decoder of the even minimum distance code detects an un- 

correctable error pattern, then the decoded word of the odd minimum 

distance code is considered a correct*decoding;
A  AC. Otherwise attach to each decoded sequence C^, C2, an 'unreliability'

number , Y2 respectively, given by Y^ = + d2 - d1 - 1
2

and Y2 = M2

Where , M2 are the number of bits inverted by the decoders of 

r.j , r2 (i.e. the estimates of the numbers of errors in and C2). 

The decoded sequence with the lowest unreliability number Y is 

considered to be a correct decoding. If Y 1 = Y2 then the decoded 

sequence from the code of largest minimum distance is assumed 

correct. That this decoding procedure is valid will now be proved. 

The decoding situation may be divided into four possibilities :

(a) both decoded sequences are correct;

(b) the code of even minimum distance detects an uncorrectable 

error pattern;

(c) one of the decoded sequences is incorrect;

(d) both decoded sequences are incorrect.

It will first be shown that condition (d) never occurs unless > t 

errors have corrupted the codeword C.

Theorem
A  A

It is impossible for both decoded sequences , C2 to be incorrect, 

given at most t errors in the received sequence r̂  I r2*
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Proof
If C.j is incorrect, then the number of errors, e, in r̂  is 

bounded by :

ei * di + 1
2

and the number of errors in r^ is bounded by :

e2 ^ t - 01

provided t errors have occurred overall. •

i.e. e_ < d. + d_ - 1 - d, + 1
2 2

hence e_ < d_ - 22 * 2
2

A .  Aand therefore, since C2 is correct for e2 d2 “ 1» ^2 must be a
2correct decoding.

Similarly, if C2 is an incorrect decoding, then must be correct.I 

It will next be shown that in situation (b), the codeword from the 

code of odd minimum distance will be correctly decoded, Without loss 
of generality, it can be assumed that C (G^) ha3 even minimum distance 

and C (G2) odd minimum distance.
Theorem

If r.j is found to have an incorrectable error pattern then r2 has 

a correctable error pattern, given at most t errors overall.
Proof

If r.j has an uncorrectable error pattern then e1 >d^/2 
but e2 t - ©j

hence e_ ✓ d„ + d_ - 1 - d,2 v _1____ £____ 1
2 T

i.e. e2 ̂  d2 - 1
2

and therefore r2 may be correctly decoded. |
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Clearly, in case (a), the decoding algorithm cannot fail, since 

whichever sequence is taken to be correct there will be no decoding 

error.
/ \ a aCase Ccj is left, where only one of C^, C2, is correct. It must 

be shown that the unreliability numbers , Y2* will indicate the 

correct decoding. It may be assumed, without loss of generality, that 

C (G^) has the lower minimum distance.

Theorem
A

If Y.| <Y2 then C1 is a correct decoding.
A

If Y ^ Y ^  theiC2 is correct, given at most t errors overall

Proof

Consider the two cases :
. . A A
li; C,| is correct, incorrect
. V A A
Ui; C^ is correct, C^ incorrect

(i) Ĉ  is correct

Then e2 ̂  d2 + 1 
2

and ê  4   ̂“ e 2

but e1 ^ d̂  - 1 
2

hence ^ t - e^

and M2 d2 - e2

then, if d2 - d̂  - 1 is positive - i.e. d? > d1 - 
2

Y^ ^ **■ ^2 —  ̂ *“ ®2 ^2 ** ^
2 2

therefore Y1 d2 - e2 - 1 

and I2 >,, d2 - e2 .
A

hence if C t is correct, Y1 < Y2
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(ii) C2 is correct

then e.j ^ + 2

and e2 4  t - 

hence ^ - ê

and M2 ^  t - ê

but M2 ̂  d1 - 1
2 •

hence d1 - e1 + d2 - d̂  - 1
2

provided d2 - d1 - 1 is positive, i.e. d2 > d1 
2

Therefore Ŷ  ^  d2 + d1 - 1 - ê
2

but y2 ^ d1 + d2 - 1 - 6l
2

^ _so that if C2 is correct Y ^  Y2 I

This completes the justification of the decoding algorithm. Note 

that the algorithm does not require the constituent codes to be linear 

- hence non-linear and linear codes may be conjoined in any desired 

combination.

The practical realisation of the decoders is simple - consider for 

example a conjoined code with d̂  even, d2 odd, and d ^ d ^

r.j is first decoded, and an updown counter is incremented by one 

for each received, bit inverted. If an uncorrectable error pattern is 

detected thaiC2 is decoded and delivered to the sink, otherwise as C2 

is decoded, the counter is decremented by one for each error in r2 

corrected.

If the final content of the counter is found to be greater than 

(d.j - d2 - l)/2 then C2 is output to sink, otherwise is output.
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The counting of errors is particularly simple if, as occurs in 

very many cases, the decoders for and are of the type where the 

received sequence is stored in a buffer register, and the decoding 

logic arranged so as to correct the bits as they emerge - since then 

the output from the decoding logic may be taken not only to the invert

ing gate, for error correction, but also to the counting circuit for 

error enumeration.

Conjoined codes of even minimum distance may be constructed from 

two codes of either odd or even minimum distance.- In this case the 

decoding algorithm must be modified to enable error patterns of weight 

d/2 to be detected. This modification is now described.

6.3. Decoding Procedure for Conjoined Codes of Even Minimum Distance

Whether an even minimum distance conjoined code is formed from 

two odd or two even minimum distance codes, the decoding procedure for 

correcting the maximum number, (d - 2)/2, of errors per block is the 

same as for odd minimum distance conjoined codes except that Ŷ  is 

now given by :

Y = M *1 1 d2 -

and the proof that this algorithm is valid follows through in the same 

way. It remains to give a procedure for detecting d/2 errors. The 

two classes of even minimum distance conjoined codes are considered 

separately.

6.3.1. Class (a) Codes Formed by Conjoining Two Odd Minimum 

Distance Codes

Here it is noted that the number of correctable 

errors is given by :

t = rd1 + d2 -ii^ d1 + d2 - 2  = v - j  + = t, + t2
I 2 | 2 2 2
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t u t ,  d = t  + 1
2

hence d/2 = t1 + t2 + 1

Therefore, given d/2 errors overall, either or 

must be a correct decoding, but not both. We may assume 

without loss of generality that d2^d.j, and then consider 

the two possible cases :
A

Case 1 - is a Correct Decoding 

Then = ê  

and Mg ^  “ e2

but d/2 = e1 + e2

Therefore M2 ^  d2 " (d-| + d2) + e1
2

Therefore M2 ^ d2 - d1 + e1 Hence Y1 = e1 + d? - dL,
2 2 

and Y2 = M, >, d2 - dl + e,
2

hence Y2 ̂ Y^

Therefore, by the decoding algorithm proposed, if Y2 >Y^
A

then C.j is rightly assumed to be a correct decoding.
A  A

Otherwise, Y2 = Ŷ  and Ĉ  / C2 and then d/2 errors are 

detected.
Aw

Case 2 - C2 is Decoded Correctly

The argument here is similar to that of Case 1 above, 

with the result :

V Y2
Aw

So that if Y1> Y2, C2 is rightly assumed to be correct, 

otherwise Ŷ  = Y2 and C2 ^ when d/2 errors are again 

detected.

To complete the justification of the decoding
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algorithm modification it remains to be shown that
/\ Aw

Y2 = and C1 ^ c2 does not occur for less than d/2 

errors overall. This case is covered by the following 

argument.
A .  Aw

For C.j 4 C2 we must have either ê  > t̂  or e2 > t2

If e1 > t1 then Ŷ  > t1 + d2 - d1
2

Therefore Ŷ  > d2 - 1 
—

but y2 = M2 = e2 < t2

hence Y2 < d2 “ 1 
2

So Y1> Y2

Similarly if e2 > t2 then Y2 > Y1 

So for e1 + e2 < d/2 Y1 ^ Y2

6.3.2.
This completes the justification.

Class (b):C onjoined Codes Formed from Codes of Sven 

Minimum Distance

Here the unreliability number Y^ is again modified

to Ŷ  = M.j + d2 - d̂  and d/2 errors are detected if 
** 2* /Ŷ  = Y, and Ĉ  * C2, but d/2 errors are also detected if 

t̂  + 1 errors are detected in r̂  at + 1 errors in r2» 

additional situation arises since : 

t1 = a1 - 2 and t2 = d2 - 2

while t = d1 + d2 - 1 = d1 + d2 - 2 = t1 + t2 + 1

hence d. = t + 1 = t . + t p + 2  
2 1

allowing the possibility, when d/2 errors have occurred, 

of t,j + 1 errors occurring in r^, and t2 + 1 errors 

occurring in r2*

This

128



TABLE 6,1

J

SOME UNAUGMENTED CONJOINED CODES

Conjoined Code 
n,k,d,

C 1 C2

* ̂ 2

Best Known Code
n , k , d ,

1 1 , 2 , 7 5 , 2 , 3 6 , 2 , 4 1 1 , 2 , 7

1 3 , 3 , 7 6 , 3 , 3 7 , 3 , 4 1 3 , 3 , 7

1 5 , 4 , 7 7 , 4 , 3 8 , 4 , 4 1 5 , 5 , 7

2 3 , 7 , 7 1 1 , 7 , 3 1 2 , 7 , 4 2 3 , 1 2 , 7

17, 2 , 11 8 , 2 , 5 9 , 2 , 6 17, 2 , 11

2 0, 3 , 11 7 , 3 , 4 1 3 , 3 , 7 2 0 , 3 , 1 1

2 3 , 2 , 1 5 5 , 2 , 3 1 8 , 2 , 1 2 2 3 , 2 , 1 5

2 7 , 3 , 1 5 6 , 3 , 3 2 1 , 3 , 1 2 2 7 , 3 , 1 5

2 9 , 4 , 1 5 1 4 , 4 , 7 1 5 , 4 , 8 2 9 , 4 , 1 5

4 3 , 1 0 , 1 5 2 1 , 1 0 , 7  . 2 2 , 1 0 , 8 4 3 , 1 1 , 1 5

4 8 , 3 , 2 7 2 1 , 3 , 1 2 2 7 , 3 , 1 5 4 8 , 3 , 2 7

5 2 , 4 , 2 7 2 3 , 4 , 1 2 2 9 , 4 , 1 5 5 2 , 4 , 2 7

nf , n2, N = Length of conjoined code, , C2, best known 
code.

k ,  k.| , k 2 , K = Number of information bits in conjoined code, 
C.J, C2, best known code.

d ,  d ^ , d2 , D = Minimum distance of conjoined code, C^, C2, 
best known code.
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Justification of this algorithm otherwise follows 

the pattern of that for the previous classes of con

joined code.

The constituent codes of a conjoined code are both 

shorter and of a lower minimum distance than the resultant 

code, and are consequently much more easily decoded than 

most codes having the parameters of the resultant code.

The total complexity of the conjoined code decoder is only 

slightly greater than the sum of the .complexities of the 

constituent decoders, and hence at the expense of efficiency 

the conjoined code is easily decodable.

Since the rate of a conjoined code is given by

R — R1R2
i p r  r 2 '

conjoined codes are restricted to R<y. Fortunately the 

codes may be augmented by adding further codewords, in a 

simple manner, to give codes where -5-4: R<1.

A list of unaugmented conjoined codes is given in 

Table 6.1.

6.4. Augmentation

Consider a conjoined code in which contains x columns identical 

to x columns of G2. Then each codeword will contain x bits in which 

are identical to those x bits of C2 in the positions corresponding to 

identical columns in G^ and G2<

Let the two sets of bits related in this way be the x tuples 

x.| and x2»

Now, if such a codeword is received with errors in at most t 

positions, it is clear that x2 will differ from x̂  in no more than
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t positions.

Hence, if a codeword, Cy  from a code of length x and minimum 

distance d̂  + d^, is added modulo- 2 to x^ it may be recovered at the 

receiving end by adding modulo- 2 the received to the received 

©  *2 » ^3 corrupted in at most t bits. may then be

decoded in the normal way.

Having recovered it may be modulo-2 added to the received 

©  x^ to give the original unaugmented codeword, corrupted by no 

more than t bits, which may then be decoded by the algorithm pre

viously described. In this way the original code has been augmented 

by the number of information bits in C^. Note that the augmented code 

is not systematic. The augmentation technique does not require 0^,0^, 

or to be linear, and so again non-linear and linear codes may be 

combined in any way.

Example

Consider the (6 ,3)shortened Hamming code with minimum distance 3 

which has the generator matrix.

V 1 0  0 1 1 1  
0 1 0  1 1 0  
0 0 1 0  1 1.

and the (5., 3) code with minimum distance 2 obtained by puncturing the

final column of , giving :

V 1 0  0 11 
0 1 0  11
0 0 1 0  1

clearly the bits of a codeword, from G^, would be identical to the 

first five bits of a codeword, , from G^ obtained by encoding the same 

data bits.

Hence the code obtained by conjoining Ĝ  and G^ which has minimum 

distance 5 i may be augmented by a codeword from the (5 ,1 ) repetition
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TABLE 6.2

SOME ATOMSNTED CONJOINED CODES

Augmented Conjoint 
Code 

n,k,d,
C1
n,k,d,

C 2
n ,k,d,

°3
n,k,d,

Best Known 
Code 
n,k,d,

11,4,5 5,3,2 6,3,3 5,.1,5 11,4,5

15,5,7 8,4,4 7,4,3 7,1,7 15,5,7
19,6,7 10,5,4 9,5,3 9,1,7 19,8,7
23,9,7 12,7,4 11,7,3 11,2,7 23,12,7
31,16,7 16,11,4 15,11,3 15,5,7 31,16,7
47,30,7 24,18,4 23,18,3 23,12,7 47,31,7
63,42,7 32,26,4 31,26,3 31,16,7 63,46,7

1 6 ,5 , 8 8,4,4, 8,4,4, coco 1 6 ,5 , 8

3 2 ,1 6 , 8 16,11,4 16,11,4 16,5,8 3 2 ,1 6 , 8

64,42,8 32,26,4 32,26,4 3 2 ,1 6 , 8 6 4 ,4 6 , 8

33,10,9 17,9,5 . 14,9,4 9,1,9 33,14,9

41,14,11 2 1 ,1 1 , 6 20,11,5 20,3,11 4 1 ,1 8 , 1 1

47,19,11 24,14,6 23,14,5 23,5,11 47,24,11
63,32,11 3 2 ,2 1 , 6 31,21,5 31,11,11 63,36,11

31,6,15 16,5,8 15,5,7 15,1,15 31,6,15
47,14,15 2 4 ,1 2 , 8 23,12,7 23,2,15 47,15,15
63,22,15 3 2 ,1 6 , 8 31,16,7 31,6,15 63,28,15

3 2 ,6 , 1 6 16,6,8 1 6 , 6  , 8 1 6 ,1 , 1 6 3 2 ,6 , 1 6

6 4 ,2 2 , 1 6 3 2 ,1 6 , 8 3 2 ,1 6 , 8 3 2 ,6 , 1 6 6 4 ,2 8 , 1 6

45,7,19 2 3 ,6 , 1 0 22,6,9 22,1,19 45,7,19

47,6,23 24,5,12 23,5,11 23,1,23 47,6,23
53,8,23 27,7,12 26,7,11 26,1,23 53,8,23

55,6,27 28,5,13 27,5,13 27,1,27 55,6,27
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code with generator matrix given by :

g 3 = [ 1 1 1 1  1]
hence by conjoining G^ and G^ and augmenting with G^ an (11.4) code 

is obtained with minimum distance 5 and generator matrix given by :

G = 0 0 0 0 0 0 1 1 1 1 1 

1 0 0 1 1 1  1 0 0 1 1 

0 1 0  1 1 0  0 1 0  1 1 

0 0 1 0  1 1 0  0 1 0  1

No linear binary code of length 11 and minimum distance 5 may have 

more than 4 information bits.

The complexity of the decoder for an augmented conjoined code is 

little more than the 3um of the complexities of the decoders for C^,

C2, and Q y

The decoder for will generally be the most complex, since it 

has a minimum distance equal to that of the conjoined code. It is, 

however, less than half the length of the conjoined code - and will 

therefore have a lower rate.' This will generally make considerably 

easier to decode. Often, for example, may be an error trappable 

cyclic, or shortened cyclic, code.

A list of some augmented conjoined codes is given in Table 6.2.

The codes listed are of two types - in the first is simply with 

an added overall parity check bit, so that of the columns of Ĝ  and 

G2 are identical, enabling a code of length to be added to the con

joined code, whereas in the second case the augmenting codeword is only 

K bits long and added to the information bits of C2 - the columns of Ĝ  

and G2 being identical in the information positions provided and C2 

are systematic codes.

For low, and very low, rates many of the codes formed are pptimum, 

and even for high rates many good codes may be constructed. Notable
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amongst these are codes with identical parameters to the Reed Muller 

codes, and the connection between the codes will now be demonstrated.

6.5. R.M. Codes and Augmented Conjoined Codes

To begin with, it will be shown that the first order R.M. codes, 

(which are identical to the maximal length shift register codes) , may

be formed by a conjoining and augmenting process, starting with a (2.2) 

code of minimum distance 1, with the generator matrix :

G = ‘1 0 

1 1

and augmenting with (2m ,l) repetition codes of minimum distance 2m , when 

required.

A Reed Muller code of order one has length 2m , minimum distance 
ni 12m ~ and has m + 1 information bits. The columns of the generator 

matrix of such a code consist of each possible m-tuple, preceded by a 

1, as shown below for m = 3.

'1 1 1 1 V 1 1 1*

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0  1 0  1 0  1

Therefore G = 1 1 is the generator matrix of the first order R.M.

code with m = 1 and hence k = 2, n = 2, d = 1.

The remaining R.M. codes may be formed from this as follows :

Firstly it is conjoined with itself :
„1 1 1 1 1  

0 1 0  1

to give a (4,2) code with d = 2

then it is augmented by a (2.1) repetition code G11 = 0 0 1 1  

1 1 1 1  

0 1 0  1

to give
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a (4»3) code with d = 2. This is the first order R.M. code with m = 2. 

This is then conjoined with itself and augmented hy a (4,1 ) repetition 

code to give the first order R.M. code :

G111 '0  0 0 0 1 1 1 1'

0 0 1 1 0 0 1 1 

1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1  

0 1 0  1 0  1 0  1 .

This process may be continued indefinitely, to give all of the first 

order R.M. codes.

Note that G = jj may be transformed to G = ^ ^ by a simple row 

operation - and the latter, more familiar matrix for a 'code' of 

minimum distance 1 may be used to form codes with identical n, k, d, 

and also weight distribution, to the R.M. first order codes.

This explanation will now be extended to show that an rth order

R.M. code of length 2m may be formed by conjoining two rth order R.M.

codes of length 2m * and augmenting with an (r - l)th order R.M. 
in — 1code of length 2

It will be recalled that an rth order R.M. code is formed by using 

as a basis the vectors VQ, , . . . . V and all vector products of 

these vectors r or fewer at a time, (Peterson & Weldon 1972), where Vq 

is a row of 2m ones, is a row of 2m alternate zeros and ones, and 

is a row of 2m alternate groups of 21 zeros and ones, as is illus

trated in Fig. 6.1 for m = 4.

If the for a R.M. code of length 2™ are termed V^(m) then it

is easy to see that if V^(m) is repeated it becomes V^(m + 1).

e.g. V (?) is given by 0 0 0 0 1 1 1 1 

which repeated becomes 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  

which is Vj(4).
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It is also seen that if any vector product V.(m)V, (m) is repeated,
J k

it becomes V.(m + 1) V.(m + 1) by the nature of vector products.J k

e.g. V2(3)V^(3) is given by :

(0 0 1 1 0 0 1 1 ) (0 0 0 0 1 1 1 1 )
=  0  0  0 0 0 0 1 1

which repeated becomes 0 0 0 0 0 0 1  1 0 0 0 0 0 0 1  1 

Now, V2(Ii)V̂ (li) is given by :

(0 0 1  1 0 0 1  1 0 0 1  1 0 0 1  1 ) (0 0 0 0  1 1 1 1 0 0 0 0 1  1 1 1 )

D 0 0 0 0 1 1 0 0 0 0 0 0 1 1 = V2(3)V3(3) repeated

Vo = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V1 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

<3 ro = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

V3 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

\
= 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

V1 V2 = 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

V1 v3 = 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

V1 vl, = 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

V2 V3
= 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

V2 \ = 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

V3 \
= 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

V1 V2 V3 = 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

V1 V3 = 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

V1 72 = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

V2 V3 \
= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

V1 72 V3 VU
= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 6.1 - Basis Vectors for R.M. Codes with m = h 

Therefore it can be seen that a generator matrix composed of rows 

which are vectors VQ(m), V^(m), V2(m), . . . .  V^Cm) and all vector 

products of these vectors r or fewer at a time (that is, the generator
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matrix of an rib order R."M. code of length 2m), when conjoined with 
itself, becomes a generator matrix composed of rows which are the 
vectors VQ(m + 1), (m + 1)f . . . . Vm(m + 1), and all vector products 
of these vectors taken r or fewer at a time.

Now consider rows augmenting the generator matrix in the manner 
previously described. Each will consist of 2m zeros followed by 2m bits 
corresponding to a row of the augmenting code generator matrix.

It is next necessary to consider the effect of prefixing a Y^(m) 
by 2m zeros.

This is seen to be equivalent to the vector product of V^ m  + 1) 
with Vffi + 1(m + 1).

•Z
e.g. V^(3) prefixed by 2^ zeros becomes 

0 0 0 0 0 0 0 0 0 0 0 0 1  1 1 1 

and V^(4)V^(4) is given by
( 0 0 0 0 0 0 0 0 1  1 1 1 1 1 1 1) ( 0 0 0 0 0 0 0 0 0 0 0 0 1  1 1 1)
= 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Similarly, any product V. (m) V, (m) prefixed by 2m zeros is equiva-
J k

lent to the vector multiple of V.(m + 1) with V „(m + 1).
Hence if the augmenting code is an ( r - l)th order R.M. code of 

length 2m ; that is, a code with a generator matrix comprised of rows 
which are the vectors YQ (m), (m), . . . .  Vffl(m) and vector products
of these vectors taken (r - 1) or fewer at a time; then the rows augmented 
to the conjoined generator matrix are equivalent to the vector products

Vm + 1(b+ »  Vo(m+ Vm + ,<m +  »  V "  + ')........ Vm + + '>
V (m + 1) and all vector products of V .(m + 1) with the vector
multiples of V (m + 1), V.(m + 1), . . . . V (m + 1) taken (r - 1) or

(m + 1).fewer at a time. Note that V„ .(m + 1) V (m + 1) = V .
Therefore the row of the augmented conjoined generator matrix will 

now comprise the vectors VQ(m + 1), (m + 1), . . . . Vm + ^(m + 1) 
and all vector products of these vectors taken r or fewer at a time.
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■ This is precisely the definition of an rth order R.M. code of 

length 2m + 1.

Thus it has been shown that an rth order R.M. code of length 2m

may be constructed by conjoining two rth order R.M. codes of length 2m
m — 1and augmenting with an (r - 1)th order R.M. code of length 2

This decomposition of R.M. codes enables simple decoders to be 

constructed for some high order codes.

Consider, for example, the (32,16) secfond order R.M. code with 

minimum distance seven. This may be constructed as two (16,11) 

second order R.M. codes (these are equivalent to the Hamming single 

error correcting double error detecting codes) conjoined and 

augmented by the (16,5) first order R.M. code (which is equivalent 

to the BCH 05,5) triple-error-correcting code with an additional 

parity check bit).

Therefore the (32,16) code may be decoded by decoding two (16,11) 

codes and one (16,5) code, all of which may be error trap decoded.

Clearly, the decoder for the (16,11) code may be used twice, and 

so the decoding hardware consists of little more than an error trap 

decoder for the (16,11) code and one for the (16,5) code.

138



CHAPTER 7

Array Codes

7.1. Introduction

In this chapter, classes of self-orthogonal codes are described 

which are ba3ed upon the arrangement of information bits into two- 

dimensional arrays. Parity checks are then made on certain carefully 

chosen patterns on the arrays. These codes are easily decodable, and 

some are of a rate close to the optimum for self-orthogonal codes.

Moreover, the codes may be augmented with additional codewords, to give 

codes of rate higher than that achievable with self-orthogonal codes of 

the same length and minimum, distance. The extension of the codes by 

annexing additional check bits is also considered - thus increasing the 

minimum distance of the codes at the expense of the ease with which they 

may be decoded.

7.2. Construction A

Consider points on a two-dimensional surface. No two straight 

lines in the plane of the points will pass through more than one common 

point. That is, no two points lie on more than one straight line. This 

is the basis of the self-orthogonal codes to be constructed.

It is well known (e.g. Massey 1963) that a code is self-orthogonal 

with minimum distance d if no two information bits are involved together 

in more than one parity check equation, and each information bit is 

involved in a least ( d - 1) parity check equations.

The analogy is clear. If information bits are considered as points 

on a two-dimensional array* and parity check equations as straight lines 

passing through those points, then a self-orthogonal code of minimum 

distance d is described by a two-dimensional array of points, with sufficient
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straight lines passing through the points such that each point is 

crossed by at least ( d - 1) lines.

In order to make such codes as efficient as possible, each straight 

line should pass through as many points as possible. The least number 

of lines is then used - that is, the least number of parity check bits 

is achieved.

Consider as a starting point, information bits arranged in a square

array. The most efficient straight lines that can be drawn through the
2points are horizontal and vertical lines. If there are S points in

the square, then there are 2S such lines, and each point is crossed by

just two lines. This arrangement therefore describes a self-orthogonal 
2code with S information bits, 2S parity check bits, and minimum distance 

5.

The next most efficient set of lines are the diagonals - which may
be in two directions - where 2S - 1 diagonals in one direction will cover

the entire array. Hence 2S + (2S - 1),2 lines will cross each point
2four times - giving a code with S information bits, 6S - 2 check bits, 

and minimum distance 5.

There are four groups of lines of the next most efficient type -
which are "knights more" lines (as in chess) across the array, as shown

in Fig. 7.1. These lines, with the previous ones, give codes of minimum
distance 7 if two "knights move" lines are taken, or minimum distance

29 if all are used. The number of parity check bits forS information bits 
are 12S - 6 and 18S - 10 respectively.

A table of codes of minimum distances 3, 5, and 7 are given in 

Table 7.1, from which it can be seen that they are of poor efficiency for 

a given length and minimum distance.

This disadvantage is offset by the ease with which the codes may be 

decoded, and the fact that a very large number of errors of weight
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Fig 7 .1.
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TABLE 7.1

CODES OF CONSTRUCTION A

Minimum Distance n k R

3 S2 + 2S s2 k/n
3 3 1 0.333
3 8 ; 4 0.5
3 15 9 0.6
3 24 16 0.667
3 35 25 0.714
3'; 48 36 0.75
3 63 49 0.778
3 80 64 0.8

5 S2 + 6S - 2 s 2 k/n
5 5 1 0.2
5 14 4 0.286
5 38 16 0.42
5 70 36 0.514
5 110 64 0.582
5 158 100 0.653
5 214 144 0.673

7 S2 + 12S - 6 s 2
7 7 1 0.143
7 22 4 0.182
7 58 16 0.276
7 102 36 0.553
7 154. 64 0.415
7 214 100 0.467
7 282 144 0.511
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greater than (d. - 1 )/2 are correctable.

7.2. Augmentation of the Codes

With codes formed as above, the parity check bits may be divided 

into (d - 1) sets, each set represented by lines which pass through 

every point in the array, but each point being passed through by only 

one line in the set. Examples of such sets are the sets of horizontal, 

vertical, diagonal, and "knights move" lines referred to in the examples 

of construction of the codes. Each set will be termed a "direction set".

Within each direction set, all the parity check bits are indepen

dent - which is to say no parity check bit is dependent upon any infor

mation bits which contribute to the determination of any other parity 

check bit within the same direction set.

Let the number of parity checks within a direction set 

(l$i$d - 1) be n.. Then a codeword from a code of length n^ and minimum 

distance d may be bit-by-bit modulo -2 added to the parity check bits in 

the direction set D^, for all i, 1 i d - 1 to give an array codeword 

augmented by k^ information bits, where k^ is the number of infor

mation bits in the code of length n^. The minimum distance of the code 

remains d, and the length of the augmented code is that of the unaugmented 

code.

That such an augmentation is permissible will be shown by explain

ing how the received augmented codeword may be decoded.

First, an estimate of the unaugmented parity check bits is made 

by re-encoding the received data bits. Since each parity check bit is 

independent of others within the same direction set, then given at most 

t = (d - l)/2 errors in the received codeword there can be at most' t 

errors in the estimated parity checks within each direction set.

If these estimated bits are now added modulo -2 to the respective
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received bits, the result will be the augmented codeword bits, corrupted 

in at most t bits in each codeword. These "estimated codewords" may 

therefore be decoded, since they are from codes of minimum distance 

d = 2t + 1. The corrected words may then be modulo -2 added to the 

received parity check bits to give an unaugmented codeword corrupted in 

at most t bits. The unaugmented code is of minimum distance 2t + 1 and 

so the bits in error may be found,

A form of this process of augmentation is used by Kasahara, et al 

(1976) to augment concatenated and product codes ~ but the augmentation 

codewords in this case must in general be from multilevel codes, and the 

resulting code$ although powerful, are not easily decodable.

A list of double-error.correcting augmented codes is given in 

Table 7.2, from which can be seen the great improvement in the achieved 

rate. The complexity of decoding the augmented codes is little more 

than the complexity of decoding the augmenting codes, whose lengths vary 

approximately as the square root of the length of the code, plus that of 

decoding the unaugmented code,

7.3. Shortening of the Codes by Omitting Certain Information and Parity 

Check Bits

When the information bits of a code of construction A are represen

ted by a square array, certain parity checks are very inefficient. The 

diagonal lines passing through comer points, for example, represent 

parity check equations involving only one information bit.

It is possible to avoid these wasteful parity checks, to give codes 

of improved rate, by omitting certain points in the square array so that 

lines passing through relatively few points may also be omitted. This 

process is illustrated in Fig. 7.2 for the case of a code of minimum 

distance 4, where the most efficient shape of array is found to be a
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TABLE 7 .2

DOUBLE ERROR CORRECTim AUGMENTED CONSTRUCTION A CODES

n k unaug na’ ka k aug R aug

25 9 5,1;5,1 11 0.44

58 16 6»1 ; 611 18 0.474

55 25 9,2;9,2;5,1;5,1 31 0.585

70 36 11,4;11,4*,6,1 *,6,1 46 0.657

89 49 13,5;13,5;7,1;7,1 61 0.685

110 54 15,7;15,7;8,2;8,2 82 0.746

133 81 17,9;17,9;9,2;9.2 105 0.775

158 100 19,10;19,10;10,5;10,3 126 0.797

185 121 21,12;21,12;11,4;11,4 153 0.827

214 144 23>14;25,14;12,4;12,4 180 0.841

k unaug = Number of information bits in 
unaugmenteb code.

k aug = Number of information bits in 
augmented code.

R aug Rate of augmented code.

na Lenths of augmenting codes.

ka Number of information bits in 
augmenting codewords.
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hexagon with equal numbers of points on each side. The omitted points

and lines are shown dotted. A table of shortened codes of minimum

distance 4 is given in Table 7*3 together with some of minimum distance

5. The latter are most efficient with the array in the form of an

octagon with an equal number of points on each side. It is conjectured

that the array should be a regular (in the sense that each side has an

equal number of points) 2(d - 1)~ agon for a code of minimum distance

d. ;

The improvement in rate of shortened codes over unshortened codes

is illustrated by the double-error-correcting case. For the unshortened 
2 2case n = S + 6S - 2 and k = S , and the efficiency is tightly lower 

bounded by this expression.

36R (1 - R)"2 < n

For the shortened case, a regular octagon with S points to each 
2side will contain 7S - 10S + 4 points - and the number of horizontal, 

vertical, and diagonal lines required to cross each point four times is 

14S - 10. Hence a shortened code has length rJ and number of information 

bits k^ given by n' = 7S2 + 4S - 6 and k̂  = 7S2 - 10S + 4 from which it 

may be deduced that the length of a shortened double error correcting 

code of given rate R is tightly upper bounded by :

n1 s 8R + 20
> l T V R y 2

which for high rates is 7/9 the length of the unshortened codes.

7.4. Augmentation of the Shortened Codes

The parity check bits are still arranged in direction sets, and so 

augmentation of the codes is carried out in an identical manner to that 

for the unshortened Codes. The rate of the codes for a given length and 

minimum distance is greatly increased as may be judged from the list of 

double-error-correcting augmented shortened codes given in Table 7.4.
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TABLE 7.3

SOME SHORTENED CODES OF CONSTRUCTION A

Minimum Distance n k R

4 3S2 + 3S - 2 3S2 33 + 1 k/n
4 16 7 0.438
4 34 19 0.543
4 58 37 0.638
4 88 61 0.693
4 124 91 0.734
4 160 127 0.765
4 214 169 0.790

5 7S2 + 4S - 6 7S2 - 10S + 4 k/n
5 30 12 0.4
5 69 37 0.536
5 122 76 0.623
5 189 129 0.683
5 270 196 0.726
5 365 277 0.759
5 474 372 0.785
5 597 481 0.806
5 734 604 0.823
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TABLE 7.4

AUGMENTED SHORTENED DOUBLE ERROR CORRECTING A R M Y  CODES

OP CONSTRUCTION A

Length k unaug n , k a’ a k aug R aug

30 12 5/1;5,1 14 0.467

69 37 9,2;9,2;7,1;7,1 43 0.623

122 76 13,5;13/5;10,3;10.3 92 0.754

189 129 l7/9;l7,9;i3/5;l3/5 157 0.831

270 196 21,12;21,12;16,8;16.8 236 0.874

365 277 25/15*,25,15;19/10;10,10 327 0.896

474 372 29,19;29,19;22,13;22f13 436 0.920

597 481 33,22;33,22;25,15;25/15 555 0.930

k unaug = Number of information bits in 
unaugmented code.

n

R aug 

k aug

= Lengths of augmenting codewords.

= Number of information bits in 
augmenting codewords.

= Rate of augmented code.

= Number of information bits in 
augmented code
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Note, however, that the rates of the augmented shortened double-error- 

correcting codes are little better than those of comparable augmented, 

unshortened codes.

7.5. Decoding Unaugmented Unshortened Codes of Construction A

As has been mentioned, the self-orthogonal class of codes is 

decodable with majority logic decision elements, and by this technique 

many error patterns of a weight not guaranteed correctable by the min

imum distance of a code may be corrected.

The codes may be one-step majority logic decoded by virtue of 

the (d - 1) parity checks orthogonal on each information bit, as a 

result of which (d - 1) estimates of each information bit may be made, 

with no more than (d - 1)/2 of these estimates being incorrect.

In practice estimates of each bit are not made, but the parity 

checks are recalculated from the received information bits and compared 

with the received parity check bits - and information bits are inverted 

if a clear majority of the parity check equations in which they are 

involved fail. This is seen to be equivalent to making estimates of the 

received bits and then making a majority decision.

Note that if the received information bits are compared to the 

received parity check bits by modulo -2 addition a '1' result indicates 

failure of the parity check equation, and the operation is completely 

equivalent to forming the usual syndrome of the received word. Thus 

the decoding operation reduces to making majority decisions based on 

the values of selected bits in the syndrome of the received word.

If the received words are decoded sequentially, that is one bit 

at a time, then only one (d - 1) input majority gate is required, 

giving a lo.gical *1 1 output if more than half of the inputs are at 

logical '1'. Arrangements must then be made to apply the correct syn

drome bits to the inputs of the majority gate according which, received
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bit is being decoded.

The description of this process is facilitated if a precise des

cription of the parity check equations is formulated. In order to do 

this the rows and columns of the S x S array are numbered 0 to S - 1.

Each information bit in the square array is now labelled by the row, 

r, and the column, C, in which it lies as k(r,C). Those information 

bits in the same parity check equation, within each direction set D^, 

are then taken to be those where the values of a function, D^ (r,C), 

are equal.

Example 1

Define D̂  (r,C) = r for O ^ r ^ S  - 1 then D̂  (r,C) takes the same 

value for all information bits lying in the same row. The parity check 

equations are therefore those checking rows.

Example 2

. Define D2 ( r , C ) = r + C  for O ^ r ^ S  - 1 and O ^ C < S  - 1, then D^

(r,C) takes the same value for all information bits lying on the same 

diagonal - the parity check equations are therefore those checking on a 

diagonal.

Now the parity check bits may be labelled by the values taken by

the equation describing function D^. For example, in the cases given

in the above examples D̂  = 3 would describe the parity check equation

involving those bits in the third row. To avoid confusion between the

equations and the check bits, the check bits will be described as

P (D. = x). In a similar manner, the syndrome bits, obtained by modulo -2 x
adding the received parity check bits to the recalculated parity check

bits will be described as S(D. = x).x
The decoding procedure may now be described. It is assumed the 

information bits are received in row by row order. That is, k(0,0) is 

received first/ followed by k(0,1) and so on to the last information 

bit, k(S - 1, S - 1).
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As the received bits are clocked in, two binary counters are 

incremented. The first is a column counter, which operates modulo S, 

and the second a row counter which also operates modulo S. The state 

of the counters at any time will therefore give the row and the column 

to which the received information bit belongs.

A total of (d ~ 1) binary arithmetic units now calculate the value 

of D^(r,C) for each direction set, and hence the identity of the (d - 1) 

parity check equations to which the received*bit belongs. The results 

in binary form are used to specify the store locations in a memory, in 

which are kept running modulo -2 totals of received bits relating to 

the parity check equations they represent.

Hence, all of the information bits have been received, the store 

locations contain the recalculated parity check bits required as 

the first step in the calculation of the syndrome.

At the same time as these parity checks are recalculated, the 

received bits are shifted into a dynamic buffer shift register of 

length equal to the block length of the codeword, and continue to be 

shifted as the remaining, parity check bits of the received word are 

clocked into the decoder.

As the received check bits are clocked in they are modulo -2 

added to the contents of the store locations of the respective re

calculated parity check bits - thus the contents of the memory are now 

the syndrome of the received word, and the received word is about to 

emerge from the dynamic shift register.

At this stage, the two binary counters are reset to zero, and, 

as the received bits are clocked out of the register, are incremented 

as before. Again the (a - 1) binary arithmetic units calculate the 

value of D^(r,C) for each, now emerging, received information bit.

These values are now the locations of the syndrome bits relating to 

this information bit. The values are therefore used to access these
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bits from the memory, where they are applied to the imputs of a(d - 1) 

input majority gate. Iff greater than (d - 1 )/2 of these imputs are 

of logical '1' then the output is at 11'. Therefore by modulo 2 adding 

the output of this gate to the emerging received information bit the 

errors are corrected and the corrected bit may then be delivered to the 

sink.

A block diagram of this process is shown in Fig. 7.3. Also given 

are the expressions for D^(r,C) for codes of minimum distance up to 11$ 

the extension to codes of minimum distance greater than this is obvious.

The hardware requirements for such a decoder comprise mainly an 

n-bit serial register, two binary counters, (d — 1) hard wired arith

metic units, and sufficient random access storage for the syndrome 

bits, together with the one majority gate with (d - 1) inputs.

The major complication in the decoder is the routing of the received

parity check bits to the correct recalculated parity check bit locations.

By transmitting the check bits in the correct order, however, they may

be added modulo -2 to the storage locations in a straightforward

sequential manner. That is, the first received parity check bit would

relate to S(D = 0) the next to S(D = 1) and so on to S(D, = maximum o o d - 2
value attained).

The decoding process may be improved in various ways common to all 

majority logic aecodable codes. Feedback of the decoding information 

to the syndrome of a received word may be applied simply by inverting 

not only the emerging received bit when an error is calculated, but also 

the respective syndrome bits, the’ locations of which are of course those 

of the bits applied to the inputs of the majority gate. The decoding 

may also be carried out using a variable threshold majority gate, where 

the threshold is variable from (d + 1)/2 to (d - 1). An attempt to 

decode a received word is made first with the threshold set to (d - 1).

The syndrome feedback technique described is also employed. If no 

corrections are made then the threshold is lowered by one otherwise the 

decoding cycle is repeated until a cycle is executed with no corrections
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made, and then the threshold lowered by one. Another decoding cycle is 

then executed. If corrections are made then the threshold is increased 

by one, after which it is again lowered by one regardless of whether or 

not corrections were made. Otherwise, if no correction is made in the 

decoding cycle then the threshold is again lowered by one and another 

decoding cycle made. This process is continued until the threshold 

reaches (d + 1)/2 at which point decoding is considered complete and 

the information bits delivered to sink. If, after 2(d - 1) complete 

decoding cycles, the threshold has not reached (d + 1)/2 then it is 

assumed that the threshold is ocsillating between two levels, and so 

the threshold is forced to (d + 1)/2 and a final decoding cycle 

made, after which the decoded information bits are delivered to sink.

This modification to the decoding algorithm corrects many more errors 

of weight greater than (d - 1)/2, but at the expense of a considerable 

increase in decoding time - requiring approximately n + (2(d - 1)+I)k 

shifts per decoded block, compared to about n + k shifts of the original, 

fixed threshold version. Even for double-error-correcting codes this is 

nearly a tenfold increase.

Nevertheless, the decoding processes for array codes lend them

selves very well to simulation by computer, using a high level program

ming language. Moreover they could be easily impremented using a 

microprocesser.

7.6. Decoding Shortened Array Codes of Construction A

The basic procedure for decoding the shortened codes is clearly the 

same as above. The process may be modified in two possible ways, in 

order to deal with the shortened case.

Firstly, dummy (zero) information bits could be inserted at the 

receiver, before they enter the decoder. Secondly, the counters in the 

decoder could be hand wire programmed to "skip" those states relating to
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the missing information bits. Neither modification is particularly 

complex.

7.7. Performance of the Codes

In order to check the performance of the array codes, decoders 

for certain examples of the codes with minimum distance 5 have been 

simulated on a computer, using the BASIC programming language. After 

observing that the codes do, indeed, correct all errors of weight less 

than three, the proportion of errors of weight 3, h , and 3 which are 

corrected was found for the random error case; that is, where the 

errors have a binomial distribution.

Fixed threshold decoding schemes have been simulated, and results 

are shown for the algorithm with and without feedback to the syndrome. 

The summary of results is in Table 7.5»

7.8. Contruction B

In this construction, consideration is taken of the fact that the 

lines representing parity check equations, which pass through the array 

of information bits, do not have to be straight. The only requirement 

is that two lines pass through more than one common point.

As a result of this consideration, the parity check equations which 

in construction A codes are inefficient, because they check relatively 

few information bits, may be made more efficient by including more 

information bits without relaxing the self-orthogonal requirement.

To deomonstrate that this is possible, consider the code with six

teen information bits and minimum distance four, described by straight 

lines passing through the rows, columns, and diagonals of a square array 

as shown in Fig. 7.1|.
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TAKLE 7.5 Decoding Results '(Blocks in error/no. of blocks tested)

3 Errors

With feedback :

1*5,25 augmented 1* x 5 263/1000
77,51 augmented 5 x 8 21*9/1000

1 1 0 , 8 2 augmented 8 x 8 211/1000

1*5,20 unaugmented 1* x 5 90/1000
77,1*0 unaugmented 5 x 8 . 109/1000
110,61* unaugmented 8 x 8 96/1000

No feedback •
•

augmented 1* x 5 1*36/1000
augmented 5 x 8 6 1 0 / 1 0 0 0

augmented 8 x 8 1*3 1 , 1 0 0 0

unaugmented 1* x 5 271/1000
unaugmented 5 x 8 2 6 0 / 1 0 0 0

unaugmented 8 x 8 300/1000

Errors

With feedback :

1*2,25 augmented 1* x 5 71*3/1000
77,51 augmented 5 x 8 870/1000

1 1 0 , 8 2 augmented 8 x 8 853/1000

1*5,20 unaugmented 1* x 5 330/1000
77,1*0 unaugmented 5 x 8 . 29V1000
110,61* unaugmented 8 x 8 303/1000

No feedback :

1*5,25 augmented 1* x 5 808/1000
77,71 augmented 5 x 8 891*/1000

110,82 augmented 8 x 8 873/1000

1*5,25 unaugmented 1* x 5 586/1Q00
77,51 unaugmented 5 x 8 - 613/1000

110,82 unaugmented 8 x 8 6 0 5 / 1 0 0 0
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4 3 2 1

The diagonal lines are numbered one to seven. If lines one and 

five, two and six, and three and seven are combined, as shown in 

Fig. 7.5» then it can be seen that the arrangement still has the 

required property that no two points lie together on more than one line. 

Thus a (31»l6)d = 4 code has been improved in rate to a (28/l6)d = 4 

code.

It is not easy, however, to see how extra lines might be economic

ally added to the diagram in order to increase the minimum distance of 

the code represented. A set of lines in the other diagonal direction 

would not be suitable, since then some pairs of points would lie both 

on one of these diagonals and on a "combined diagonal". Neither would
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a "Knights Move" set of lines be adequate. Clearly an intuitive 

approach to the choice of line sets is not effective.

In order to describe a set of self-orthogonal codes with rate 

improved over that of construction A, the numerical description of 

parity check equations and information bits, which was described 

earlier, is again used. Applying this to the above example we have 

the arrangement of Fig. 7.6.

159



D, -.0 
Da :0  

Do =0

D, :  0
Dx -.1
D0 =1

D, 10  

D»-*2 
D.-.2

D,i 0 

Da--3 
q, =3

D| s 1 D| s 1 D ,:1 D, - 1

°xT 1 Dt J2 Dxz3 D4r 0

D«: 0 Do '1 Do -.2 °.r 3

D .-.2 D, = 2 D, i2 D, = 2
D ,,2 Dr 3 D ,:0 D. = 1
D„-0 Do**1 D„ »2 D0 =3

Dt " 3 D, :3 D, = 3 D, -3
D \s 3 Dx » 0 <V 1 D ^ 2

P II o Do i1 D# '.2 Do S3

FIG 7.6.

Clearly DQ(r,C) has been described as DQ(r,C) = C and D^(r,C) 

described as D^(r,C) = r.

It is not difficult to see that DgirjC) is described by D^Cr^C) 

(r + C) mod. ij..

Armed with the mathematical description of the diagrams represen 

ting the array codes, it is possible to give a precise formulation of 

the requirement that the codes be self-orthogonal. Since it is 

required that no two information bits are together in more than one 

parity check equation we have :

I f  IV 1V Cl'; = Dj !'r2jC2  ̂ then Dk^r1,C1 ^ Dk r̂2 ,C2  ̂ j i k *

The codes of construction B, see also Smith (1977), will now be 
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formulated, as codes with = (r + iC)mod S - i < S  where S is the 

number of information bits in the square array.

For a code of minimum distance d, i must take (d - 1) values 

0$ i 41 d - 2.

Therefore, for the construction to be valid, i.e. i<S, it is 

necessary that

d - 2«S - 1

i.e. S ̂ .d - 1 *

It will now be shown that the codes of construction B are self- 

orthogonal .

It must be shown that if (r,C) = (r + iC) (mod S) then when 

V . (r.,,0,) = fr2>C2) - (1)

Dk (r^Ch,) ¥ Dk (r2,C2) - (2)

for all j i  k given j, k<S 

now, (1) implies :

(r.j + jC1) (mod S)=(r2 + jC2) mod S)

(r2 - r1) (mos S)f(j(C1 - C2)) (mod S)

Similarly (2) implies :

(r2 - r^) (mod S) = (k(C^ - C2)) (mod S) 

hence, since r̂  = r2, = C2,

j (mod S)E k (mod S)

i.e., for j, k<S, j = k. This completes the proof of self-orthogonality. 

Note that if S were not prime, the calculations would be invalid.

As shown above, the number, of parity check bits is given by the 

number of values taken by the (r,C). To enumerate this consider 

a column C of the array. Then Ih (r,C)=(r + iC) (mod S) where iC is 

a constant within the column. Hence, since r takes all values 

0 to s - 1, (r,C) must take all values 0 to S -1. This is true of

every column. Therefore it is clear that all (r,C) take just S

values.

2
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There are (d - 1) of the (r,C) and each takes S values, hence 

'the number of parity check bits on S information bits is s(d - l).

The parameters of the codes of construction B are threfore : 

n = S2 + S(d - 1) and k = S2 

from which it may easily be deduced that ; 

n . id - 1)?R
t i  -  i r

which compares well with the best that can be achieved with self- 

orthogonal codes, which is shown by Townsend and Weldon (1967) to 

be

n s R(d - 1), (d-,,,2). + _ J L _
(1 - R)2 1 - R

In fact, for codes of rate greater than one half and minimum distance 

greater than seven, the codes are generally shorter than equivalent rate 

self-orthogonal quasi-cyclic (s.o.q.c.) codes (Townsend and Weldon (1967)) 

of the same minimum distance. Note also that, with a knowledge of the 

prime numbers, codes with construction 3 are entirely constructive, 

whereas s.o.q.c. codes are in very many cases found, only by a computer 

search.

Example

Choose d = 8, S = 29

then n = (29)2 + 7 x 29 = 1047

and k = (29)2 = 841

This code has rate 0.803 and may be compared with the s.o.q.c. code of

minimum distance 8 and rate 0.8 which has a length of 1205.

Note that the requirement, derived above, that S d - 1, together
2with the equality R = k = S

n s(d - 1 ) + S
gives R y 0.5

and therefore the codes may not be constructed for low rates.

A table of selected codes of construction B is given in Table 7.6
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TABLE 7.6

UNAUGNENT5D CONSTRUCTION B CODES COMPARED WITH

SELF-ORTHOGONAL QUASI-CYCLIC CODES

CONSTRUCTION B SELF-ORTHOGONAL QUASI-CYCLIC

n k d min R n k d min R

45 25 5 0.56 26 13 5 0.5
77 49 5 0.64 78 52 ; 5 0.67
165 121 5 0.73 1 56 117 5 0.75
357 289 5 0.81 265 212 5 0.8
437 561 5 0.83 390 325 5 0.85

55 25 7 0.45 62 31 7 0.5
187 121 7 0.65 201 134 7 0.67
391 289 7 0.74 420 315 7 0.79
667 529 7 0.80 695 556 7 0.8
1015 841 7 0.85 ■ 936 780 7 0.85

105 49 9 0.47 114 57 9 0.5
425 289 9 0.68 420 280 9 0.67
713 529 9 0.74 856 627 9 C.75
1209 961 9 0.80 1460 1168 9 0.8

231 121 11 0.52 182 91 11 0.5
759 529 11 0.70 681 454 11 0.67
1271 961 11 0.76 1580 1055 11 0.75

253 121 13 0.49 266 133 13 0.5
805 529 13 0.66 1041 694 13 0.67

351 169 15 0.48 3 6 6 183 15 0.5
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s.o.q.c. codes of similar rates and minimum distances are also listed 

for comparison.

7.9. Decoding Codes of Construction B

Codes of construction B are, of course, one-step majority logic 

decodable by the sane principles used for codes of construction A. The 

same improvements to the algorithm, feedback to the syndrome and variable 

threshold decoding, are applicable to construction 3 codes. In the case 

of these codes, however, the decoding algorithm is particularly simple, 

owing to the following two properties :

(a) Dj_ (r + 1 ,C) S  (1 + D^r.C)) (mod S)

(b) BjL (0, C + 1)s  (1 + i + D±(S - 1 ,C)) (mod S)

These properties may easily be verified by expansion of the terms of 

the equations.

To see how these properties facilitiate decoding, consider received 

information bits being input to the decoder in column by column order.

By property (a) the value of for a particular bit within each column, 

for a particular bit, is given by incrementing by one, modulo 3, the 

value of for the preceeding bit. That is to say that the parity check 

equations to which information bits, in-each column, belong are arranged 

in numerical order, modulo 5. Hence the syndrome may be calculated by 

storing the s(D^(r,C)') in a feedback shift register for each column, and 

modulo 2 adding the received bits to the contents as the information 

bits are input, and finally the received parity check bits, giving 

then the syndrome bits in the register. The arrangement is shown in 

Fig. 7.7.

164



Fig 7.7

Despite the convenient modular arrangement of the D^ for each 

column, when the received bits change columns there is a discontinuity- 

in the progression of values of the D^. The size of the discontinuity is 

dependent upon the value of i, and is given by property (b). In order 

that the shift register contents keep in step with the received bits it 

is therefore necessary for the registers to be shifted by the required 

number of bits between receiving a bit from the end of one column and that 

from the beginning of the next. The number of shifts required is given 

by (b) as (1 + i), and clearly when i S/2 an improvement in time req

uired is given by shifting backwards S - (1 + i) rather than forwards by 

1 + i.

Alternatively the syndrome registers may be constructed in such a 

way that the received bits may enter the register at a variable point in 

the register, as shown in Fig. 7.8 for the D^ register for a code with 

S = 5. The entrance point for the information bits is altered at the 

end of each column.
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Fig 7.8

The same properties enable the same arrangement of shift registers 

and taps to be used to assess the correct (d - 1) syndrome bits for the 

decoding of each information bits as they emerge from the storage reg

isters after the syndrome has been formed.

7.10. Augmentation of Codes of Construction B

Since the parity check bits of codeb of construction B are again 

arranged in direction sets, within which they are independent, the codes
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may be augmented in an identical manner to the augmentation of codes of 

construction A. Again the complexity of the decoding is little more than 

the sum of the complexities of the decoders for the constituent codes.

A list of augmented codes of construction B is given in Table 7.7. 

Note that if desired the augmenting codes could in many cases be array 

codes.

7.11. Construction C

These codes are essentially the same as construction B codes, but
Xare defined with arrays of side S where x is any positive integer and 

S is prime. The are again defined as d^(r,C) = r + iC, but in this 

case the arithmetic is over GF (SX) which, in the case of x / 1, is not 

modulo arithmetic.

As a consequence, the construction C codes may be defined over a 

wider range of values of k, but are not so easily decodable, since the 

property of convenient ordering of values of D, (r,C) is not held by 

these codes. Nevertheless if the codes are to be "parallel decoded", 

that is each information bit decoded at the same time, then these codes 

may well be attractive, since they usually have, for t> 2, a better 

rate than comparable s.o.q.c. codes. Also, as in previous constructions, 

the codes may be augmented by modulo -2 adding an augmenting codeword to 

each direction set of parity checks. (See also Smith, 1977).

A table of codes of construction C, together with some s.o.q.c. 

codes for comparison, is given .in Table 7.8. and a list of augmented 

codes in Table 7.9.

Proof of the properties of these codes follows through in an 

identical manner to that for codes of construction B, save that the 

arithmetic operations are made over GF (SX) and not modulo S.
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TABLE 7.7

AUGMENTED CODES OF CONSTRUCTION B

n k unaug d min na, ka k aug R a\ig

45 25 5 5,1 29 0.64
162 121 5 11,4 137 0.85
357 289 5 17,9 325 0.91

187 121 7 11 ,2 133 0.71
667 529 7 23,12 601 0.90
1015 841 7 29,14 925 0.91

425 289 9 17,3 313 0.74
120S 961 9 31,11 1049 0.87

231 121 11 11,1 131 0.56
1271 961 11 31,11 1071 0.84

805 529 13 2 3 , 2 553 0.69

n

k unaug

d min
Na
ka

k aug 

R aug

=. Length of code.
= No. of information bits in unaugmented code
word.

= Minimum distance of code.
= Length of augmenting codewords.
= No. of information bits in augmenting 

codewords.
= No. of information bits in augmented 

codeword.
= Rate of augmented codeword.
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TABLE 7.8

CODES OF CONSTRUCTION C COMPARED WITH 

SELF-ORTHOGONAL QUASI-CYCLIC CODES

CONSTRUCTION C SELF-ORTHOGONAL QUASI-CYCLIC

n k d min Rate n k d min Rate

52 16 5 0.5 26 13 . 5 0.5
96 64 5 0.67 78 52 5 0.67

3 2 0 256 5 0.8 265 212 5 0.8

775 625 7 0.81 695 556 7 0.8
128 64 9 0.5 114 57 9 0.5

00 256 9 0.67 420 280 9 0.67
825 625 9 0.76 836 627 9 0.75
1280 1024 9 0.8 1460 1168 9 0.8

171 81 11 0.47 182 91 11 0.5
1344 1024 11 0.76 1380 1035 11 0.75

925 625 13 0.68 1041 694 13 0.67

480 256 15 0.53 366 183 15 0.5
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ON

APGMEHTKD CODES OF CONSTRUCTION C

n k unaug d min na, ka k aug R aug

96 64 5 8,2 ' 72 0.75
3 2 0 256 5 16,8 288 0.9

775 625 7 25,12 697 0.90

384 256 9 16,2 272 0.71
825 625 9 25,8 689 0.84
1280 1024 9 32,11 1112 0.90

1344 1024 11 32,11 1134 0.84

925 625 13 25,3 661 0.71

480 256 15 16,1 270 0.56

n = Length of code.

k unaug = No. of information bits in unaugmented 
codeword.

d min = Minimum distance of code.

Ka = Length of augmenting codewords.

Ka = No. of information bits in augmenting 
codewords.

k aug = Ko. of’information bits in augmented 
code.

R aug = Rate of augmented code.
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7.12. Construction tD ’ Codes

7.12.1. Introduction

By the addition of overall parity check bits (i.e. parity 

checks on all information bits), the minimum distances 

of codes of Construction 'A' can be increased. The 

resultant codes are of considerably higher efficiency 

than those of Construction 'A'j but with the exception 

of the double-error-correcting case, the exact minimum 

distances of the codes has not been proved nor a prac

tical decoding scheme found for them. Nevertheless, a 

proof of the minimum distance of the codes has been 

found which relies upon the truth of a strong geometrical 

conjucture, and the codes contain considerable 

mathematical structure. Therefore, since it is possible 

that a simple decoding algorithm might be found, possibly 

based upon a proof of the above mentioned conjecture, 

the general construction of the codes is described here 

together with a proof of the minimum distance of, and a 

description of a simple decoding algorithm for, the 

double-error-correcting case.

7.12.2. Construction of the Codes

The codes of Construction 'D' are formed by simply 

annexing overall parity check bits to the codewords of 

codes of Construction .'A1. The number of additional parity 

check bits to annex is given as (Q - 1 ) where Q is the 

number of direction sets comprising the parity check bits 

of the Construction 'A' code. It will be recalled that 

a Construction 'A' code with minimum distance d^ has 

parity check bits composed of d^ - 1 direction sets.
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It is conjectured here that a code constructed in such 

a way has minimum distance d^ + (q _ i). Thus for example 

a construction 'A' code of minimum distance Jj. would 

become, with the addition of a single overall parity 

check bit, a Construction 'D' code of minimum distance 

5>. A Construction 'A' code of minimum distance 3 would 

become a Construction TD T code with minimum distance 7 

by the addition of two overall parity check bits.

Trivially, a Construction 'A' code of minimum distance 3 

will become a minimum distance 4 Construction 'D' code 

by the addition of one overall parity check bit - this 

Construction 1D ' code is equivalent to the product code 

formed by the product of two single parity check codes.

That the construction method described above is valid 

for the double-error-correcting case will now be proved, 

followed by a description of a simple decoding algorithm 

for this case. The validity of the construction method 

for codes of greater minimum distance will then be 

discussed.

7.12.3 Double Error Correcting Codes of Construction *1'

It will be proved here that by annexing two overall parity 

check bits to the codewords from Construction 'A' codes of 

minimum distance four, double error correcting Construction 

'D' codes are obtained’. Consider first the general case 

of systematic, linear, self-orthogonal block codes.

It will be recalled that a self-orthogonal code is one 

in which not two information bits are found together in 

more than one parity check equation. Also, since the
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codes are linear* a codeword with an information vector 

of weight w is given by the modulo -2 sum of the 

codewords formed by encoding each of those w vector of 

weight one whose own modulo -2 sum is the information 

vector. This latter statement is equivalent to the remark 

that a systematic linear codebook is the rowspace of a 

reduced echelon form of generator matric. A further, 

obvious, property of the codes is that a codeword formed 

by encoding an information vector of weight one will have 

minimum weight d, the minimum distance of the code.

From the above properties it can be seen that parity checks 

formed by encoding two different information vectors of 

weight one will have "ones11 in at most one common position. 

Therefore an information vector of weight two will have a 

minimum weight of (2d - 2) which in the case of d = It is 

equal to six.

As an example of this situation, consider the code having 

a generator matric, G, given by

(G) = 1 0  0 0 
0 1 0  0 

0 0 1 0  

0 0 0 1

1 1 1 0  0 0 

1 0  0 1 1 0  

0 1 0  1 0  1 
0 0 1 0  1 1

the encoding of the information vector 01 1 0 is clearly 

equal to the sum of the two codeirords

0 1 0  0 

and 0 0 1 0

which gives 0 1 1 0

1 0  0 1 1 0
$----- (ones in common position)

0 1 0  1 0  1

1 1 0 0 1 1  which has weight 6.
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In a similar way to the above, the minimum weight of 

codewords having information vectors of weight 3 can be 

deduced. It can be seen that a codeword having an 

information vector of weight one will, in all but at 

most two positions, have parity checks which are 'one* 

in differing positions. For example, consider the 

codeword 1 1 0 0  0 1 1 1 1 0  from the above code and

another : 0 0 0 1 0 0 1 0 1 1 . ’ The ’ones' in the parity

check bits coincide only in the third and fifth positions. 

The sum of these codewords therefore gives a codeword, 

1 1 0 1  0 1 0 1 0 1 ,  which is of weight six. It can

be seen that this is the minimum weight possible for a 

codeword with information bits of weight three, from a 

code of minimum distance four.

It is clear that a codeword with an information vector 

of weight four, when it is from a linear code of minimum 

distance four, will have a weight of at least four. Also, 

that a codeword with information bits of weight five will 

have weight at least five.

Now consider the effect of adding an overall parity check 

to the above codewords. An overall parity check will be 

a ’one’ if the weight of the information vector is odd. 

Therefore codewords with information vectors of odd weight 

will themselves be increased in weight by one. Thus the 

minimum weights of the new codewords will be as given in 

Table 7»10.
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Weight of Information Vector Minimum Weight of New Codeworc

1 5

2 6

3 10

h ; U

5 6

Table 7.10

Therefore, if a self orthogonal code of weight four 

extended in the above manner is to have minimum distance 

five it is sufficient that codewords with information 

vectors of weight four have minimum weight five. It will 

now be shown that self-orthogonal array codes of construc

tion 'A' fulfil this requirement. It will be remembered 

that a Construction 'A' code with minimum distance four 

has checks in three directions across a square array of 

information bits. In order that all parity checks be 

zero it is therefore necessary that all directional checks 

meet on even number of non-zero information bits.

Consider first a single non-zero information bit on the 

array, as in Fig. 7.9. It is clearly necessary for at 

least three more information bits to be a 'one' in order 

that all parity check bits be zero. That is, one more 

information bit in each direction - row, column, and 

diagonal must be a 'one'. See Fig. 7«10 for an example.
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It can be seen that only one of these extra three bits can 

have all of its parity checks zero. In the case of each 

of the remaining two non-zero information bits there must 

be at lease one 'parity check failure', causing two non

zero parity check bits. Thus it is necessary for at 

least two more information bits to be zero in order that 

all parity checks are zero. That six non-zero information 

bits are sufficient can be seen from Fig. 7.11.

0 0
0 0

0 0

' f
Checks in these 
directions.

Non zero 
Information bits Information bits.

Fig. 7.11.

It has been shown, therefore, that codewords, from a r r a y  

codes of Construction 'A' with minimum distance four, 

having information vectors of weight four have minimum
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weight six.

Consequently it can be seen that the Construction 'D' codes 

formed by annexing codewords from sum Construction ’A' 

codes with an overall parity check bit have minimum 

distance five.

7.12.1;. Decoding Codes of Construction tD l

Described here is a decoding algorithm for double-error- 

correcting codes of Construction 'D'.

Correctable error patterns in codewords from such a code 

may be of six basic types.

(i) No errors occur
(ii) One error occurs in the parity check bits.
(iii) Two errors occur in the parity check bits.
(iv) One error occurs in the information bits.
(v) Two errors occur in the information bits.
(vi) One error occurs in the information bits, and one

in the parity check bits.

In order to understand the decoding algorithm, consider 

the parity check failures which occur in each case :

In Case (i) there will be no parity check failures, thus 

the received sequence is recognised as a codeword, and no 

correction is necessary :

In Case (ii) one parity check only will fail, that is to 

say the syndrome of the received sequence will have weight 

one. It is well known (e.g. Peterson 1972) that the weight 

of a syndrome is 1 iff all errors have occurred in the 

parity check bits of a codeword. Thus one parity check 

failure indicates that no errors have occurred in the 

information bits of the received sequence :

In Case (iii), as in Case (ii), the syndrome weight will be
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In fact two parity checks will fail. Hence the 

information bits will be recognised as error free :

In Case (iv) there will be four parity check failures - 

namely those checks on the column, row, and diagonal in 

which the error has occurred, and in the overall check 

bit :

Case (v) may be subdivided into two situations.

Situation (a) The errors do not lie on the same row, 

column, or diagonal :

Here, there will be six parity check failures - two of the 

row checks, two of the column checks, and two of the 

diagonal checks, corresponding to the rows, columns, and 

diagonals in which the errors have occurred. It can be 

seen that all the three directional checks on each of the 

two errors will fail, whereas at most two checks will 

fail on the other information bits. See Fig. 7.12. for 

an example of such a situation.

Fig. 7.12. Two errors in information bits, not lying on 

the same row, column, or diagonal.
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Situation (b) Errors lying on the same row, column, or 
diagonal :
In this case there will be four parity check failures, as 

can be seen in the example shown in Fig. 7.13. Two of 

the parity checks on each of the error positions will 

fail - but also, in general, two parity checks will also 

fail on each of two other information bits. These bits 

are marked with an asterisk (*). in Fig. 7.13.

Consider the situation if all of the bits 'which have twTo 

parity check failures are inverted. The two errors will 

be corrected, but two different errors will be introduced - 

i.e. in those positions in Fig. 7.13. marked with an 

asterisk. The new error positions will always be on 

different rows, columns, and diagonals to one another. This 

may be seen particularly clearly if the array of squares is

V

C h e c k s  in 

these 

d i r e c t i o n s

I n f o r m a t i o n  b i t

—  —  —  —  P arity  c h e c k  fa i lu r e

I I E r ro r  p o s i t i o n

Fig. 7.13 Two errors in information bits, lying on the 

same diagonal.
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transformed to an array of hexagons as shown for the case 

of nine information bits in Fig. 7.11;. The code remains 

unchanged, with an identical parity check matrix. However, 

rows, columns, and diagonals are clearly seen to be 

indistinguishable from one another, and so consideration of 

one situation in which two errors are checked by the same 

parity check bit will cover all possible cases. Such a 

case is illustrated in Fig. 7.15*' and it is easily seen 

that the two information bits on which two parity checks 

also fail do not have any parity checks in common, i.e. 

are in different rows, columns, and diagonals to one 

another. Thus the new error positions have become of 

type (a).

In Case (vi) the overall parity check fails, and either two 

or four other checks. The two situations are illustrated 

in Figs. 7.13. and 7.15. they are :

(a) The parity check in error checkes the information bit 

which is in error, i.e. causes a parity check which should 

fail.to succeed.

(b) The parity check bit in error does not check the 

information bit which is in error.

In Case (a) two of the checks on the erroreous information 

bit will fail, apart from the overall check. There will be 

no other information bits on which two parity checks fail 

(see Fig. 7.16. for an example).

In Case (b) all three checks on the erroreous information 

bit will fail, but also there will be another parity check 

failure. It can be seen, however, that no other information 

will have all of its checks failing, (see Fig. 7.1?. for an 

example.
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Fig. f. lb Two information Pits in error lying in the same 
direction line.

From the above considerations, the decoding algorithm may 

be seen. It may be divided in to k steps.

Step...! - The syndrome is calculated.

Step 2 - If the weight of the syndrome is less than three, 

the information bits are assumed to be error free, and are 

output to the sink;

Step 3 - Otherwise the information bits are considered one 

at a time, and any of which have parity failures on all 

three directional checks are inverted. If any inversions 

are made, then the information bits are considered to have 

been corrected, and are output to the sink;

Step It - Otherwise if no inversions are made, the informa

tion bits are again considered one at a time, and any of 

which have parity failures on two of their checks are
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inverted. Then the syndromes are re-calculated and 

Steps 2 and 3 are carried out again. If, on Step 3 

repeated, no inversions are made, then it is assumed that 

more than two errors have occurred.

Step 2 makes use of the properties of situations (i) and 

(ii), and (iii), i.e. the weight of the syndrome is at
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least three if there are any errors in the information bits.

Step 3 corrects any errors of type (iv), (v)(a); and

(vi) (b), whilst leaving errors of type (v)(b) and (vi)(a)

unchanged.

Step I; corrects any errors of type (vi) a and transforms 

errors of type (v) b to those of type (v) a. Thus 

repeating Step 2, after re-calculating the syndromes, 

recognises that errors of type (vi)a have been corrected at 

Step h i and repeating Step 3 corrects the errors of type 

(v) a produced by Step 1;.

The algorithm may be recognised as consisting of a stage 

of variable threshold majority logic decoding preceded by 

a stage of error trapping. Thus the decoder would be 

similar to that of the codes of Construction 'A', with 

the addition of a variable threshold element, the 

calculation of the overall parity check bit, and the 

weighing of the syndrome before beginning variable threshold 

decoding. The threshold is set to 3 at the first decoding 

run. If no errors are corrected the threshold is set to 

2 and a second decoding run is made. Then the syndrome 

is recalculated, error trapping is attempted, and the 

threshold set to 3 for a final run. The decoding algorithm 

is thus seen to be rather less complex than a variable 

threshold decoder for a code of Construction 'A', and to 

require less time for decoding. It is, of course, more 

complex and more timeconsuming in its operation than a 

fixed threshold decoder for Construction 'A' codes. More

over, a fixed threshold type of decoder for the Construction

185



’D' codes is not realisable. Construction ’D* codes are

nevertheless more efficient than Construction 'A' codes, 

or indeed Construction ’B ’ and 'C' codes, and therefore 

would be attractive in situations where a high rate is 

required.

7.12.5 Simulation of the Decoder

The decoding algorithm described above has been simulated 

on a computer using the BASIC programming language, and 

the results verify that all double-error patterns are 

corrected. Also found were the proportion of triple and 

quadruple error patterns which are incorrectly decoded, 

for the (I;5,25) double-error-correcting Construction 'D' 

code. Of a random sample of one thousand triple error 

patterns, only 397 were incorrectly decoded, that is 

approximately b.0%. Of five hundred quadruple error 

patterns, 358 were incorrectly decoded, i.e. about 72%.

Results have also been obtained for a Construction 'D' 

code formed by the extension of a shortened Construction 

'A' code. The construction of the code is shown in Fig. 

7.18 } and it is seen to be a (20,8) double-error- 

correcting code.

With this code i|11 of 1600 triple error patterns were 

not corrected and 795 of 1000 quadruple errors were not 

corrected.
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Fig. 7 .1 8 . The (20,8) Construction 'D1 Dauble-Error- 

Correcting Code.
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7.12.6. Multi-error correcting construction D codes

For error correction capability greater than two, no proof 

of this construction method exists. However, a conjecture will 

be made which, if true, enables a proof to be constructed that 

by annexing Q-l parity check bits to construction A codewords 

the minimum distance of the code is increased to 2Q.

Let w(i) be the weight of a codeword with i non-zero 

information bits, and f(i) be the number of non-zero parity 

' check bits in that codeword. Then trivially w(i) = i + f(i).

If the minimum distance of the code is d then it is necessary 

that i + f (i) d.

Therefore, to prove that a code has minimum distance at 

least d it is sufficient to prove that for that code 

f (1) >  d-i

-------------->

CHECKS IN 

THESE DIRECTIONS

MINIMUM MINIMUM Ç 1

NON-ZERO INFORMATION BITS _  — — —  NON-ZERO PARITY CHECKS

■fj.G_z.-ia.
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This approach will be that adopted for the proof of the

minimum distance of construction D codes, based upon a conjecture.

The conjecture made is that for construction A codes.

f (Q+j) ̂  2Q-g( Q-j) for 0 ^ j < Q  where g(x) = x(d-x) .

The validity of this conjecture will be discussed later.

Consider f(i) for any self-orthogonal code. It is known 

that no two information bits are involved together in more than 

one parity check equation, whilst each information bit is 

involved in a total of at least (d-1) parity check equations.

It may therefore be seen that:

if i=l f(i) >, (d-1)

if i=2 f(i)>,2(d-2)

if i=3 f(i)>, 3 (d-3)

and in general f(i) ^ i(d-i)

With construction A codes Q + 1 = d 

therefore f(i) i(Q+ 1 - i) . 

and so w(i)^i + i ( Q + l - i )  

therefore w(i)^. i(Q + 2 - i) 

it is easily shown that for 1< i^ Q 

i (Q + 2 - i)£ 2Q

and therefore w(i) >/ 2Q for l<i$Q

Now consider i = Q + j
then from the conjecture; for 0$j<Q

f ( Q + j)^2Q - (Q + 1 - Q - j) (Q+ j )

i.e. w(Q + j)>,3Q + j - (1—j) (Q+j)
2then w(Q + j ) ^ 2 Q  + Qj + j
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Therefore, since 2Q + Qj + j y 2Q for 0£j<Q 

w(Q + j)>/2Q for 0 J j <Q 

hence w(i)£2Q for l<i<2Q

That w (i)>/ 2Q for i>/2Q is trivial. ;

It is known that w(l)^Q + 1, therefore by the addition 

of Q-l overall parity checks to the code, w(l)>,2Q.

Thus it has been shown that the addition of Q-l overall 

parity check bits to a construction A code is sufficient for 

the minimum distance to be increased from Q + 1 to 2Q, 

provided that

f (Q + j) 2Q - g (Q - i) for 0« j <Q 

where g (x) = x(Q + 1 - x) and f(x)^,g(x)

Validity of the conjecture 

(i) consider the case of Q = 2 

g(l) = 2
g(2) = 2

the conjecture implies that f(2)^2Q - g(2)
f(3)>,2Q - g(l)

i.e. that f(2)^,2 and f (3)^2
fig. 7.19 illustrates arrangement of non-zero information bits 

for minimum f(2) and f(3), from which the validity of the 

conjecture may be seen.

2
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(ii) consider the case Q=3

g(l) = 3 g (2) = 4 g (3) = 3

the conjecture implies that f(3) >/ 2Q - g(3) = 3

f(4) >, 2Q - g(2) = 2 

f(5) 2Q - g(l) = 3

fig. 7.20 shows the configurations for minimum f (3), 

f(4), and f(5), and the conjecture is therefore seen 

to be valid for Q = 3.

TYWVV.ÎfWfofV. ^  W > * 3 tV W M rvw r)\. Ç (  l>' 5 2, V TV n Ù Y V M A  Ç "  3

cWcVs \n  

^ « .s e

rvon-xcxo
v«v*.

FIG 7. 20

non - at«"o
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(iii) the case Q = 4

here g(l) = 4<g(2) - 6, g(3) = 6, g(4) - 4 

then the conjecture maintains that 

f (4) >, 2Q - g(4) = 4 

f (5) >, 2Q - g(3) = 2 

f(6) » 2Q - g(2) = 2 

f(7)>, 2Q - g(l) = 4
fig. 7.21 shows the configurations for minimum f(4), f(5), 

f(6) and f(7) confirming the validity of the conjecture

for Q = 4
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Intuitively, the conjecture looks true for Q> 4  but no

proof of this can be offered.

A short list of conjectured construction D codes is given 
in table 7.10.

Table 7.11 gives a list of some codes formed from
shortened <construction A codes, and tablé 7.12 gives a list
of some codes augmented by the technique described previously
for the other array codes.

Minimum distance n k R

7 40 16 0.4

7 112 64 0.571
7 216 144 0.667

11 62 16 0.258

11 158 64 0.405

11 286 144 0.504
Table 7.10 Construction D codes

Minimum distance n k R

7 32 12 0.375

7 71 37 0.521

7 124 76 0.613

7 272 196 0.721
Table 7.11 Construction D codes from shortened construction ,

Minimum distance n k R

. 7 40 18 0.45

7 91 59 0.66

7 214 174 0.813

Table 7.12. Augmented Construction D. Codes.

codes
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7.13. Construction E codes

These codes are pure conjecture. It is possible 

that the addition of overall parity, checks to 

construction B and C codes will increase their minimum 

distance. The only support for this hypothesis is that 

the minimum distance of such codes with various parameters 

have been found to be consistent with this conjecture. 

Example 1■
Adding one overall parity check to the construction B 

code with n = 18 k = 9 and minimum distance = 4 to give a 

19,9 double error correcting code.

The generator matrix of the code is 

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1  

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1  

0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1  

0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1  

0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1  

0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1  

0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1  

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1  

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1  

and the weight distribution is:
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Weight of codeword No. of this weight

1 0

2 0

3 0-

4 0

5 9

6 57

7 18

8 45

9 126

10 126

11 45

12 18

13 57

14 9

19

Example 2

1

The addition of this overall parity checks to the 21,9 

construction B code with minimum distance 5, to give a triple 

error correcting code with n = 2 3  and k = 9.
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The generator matrix is then

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1  

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1  

0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1  

0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1  

0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1  

0 0 0 0 0 1 0 0 0 0 1 0 0 0 1  0 1 0 1 0 0 1 1  

0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1  

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1  

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 2 0 1 1  

and the weight distribution is:
Weight of Codeword Number of codewords of that weight

1

2
3

4

5

6

7

8

11

12

15

0

0

0

0

0

0

9

102

144

144

102

16 9



7.14. Adding overall parity checks to other self-orthogonal codes 

It is reasonable to consider the possibility of 

adding overall parity checks to self-orthogonal codes other 

than the array codes, in order to increase their minimum 

distance.

Codes may certainly be constructed for which the 

process is of no value. For example the 10, 4 code of 

minimum distance 4 with the generator matrix, G, given by

G =

1000 111000'  

0100 100110 

0010 010101 

0001 001011

is self orthogonal. The code does not benefit by the 

addition of overall parity check bits, however, since the 

codeword 1111000000 does not increase in weight as a result.

Nevertheless, the (39,26) code of minimum distance 4, 

one of the quasi-cyclic self-orthogonal codes found by 

Townsend and Weldon (1967) was investigated to see if the 

minimum distance could be increased by the addition of 

overall parity checks. As in the case of the (10,4) code 
described above, a codeword with four non-zero information 

bits and no non-zero parity check bits was found. It is 

concluded that there is no general method of increasing 

minimum distance of self-orthogonal quasi-cyclic codes by 

the addition of overall parity check bits.
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CONCLUSION

It has been seen that short optimum codes are relatively 

easily decoded. Long codes, even when somewhat short of 

optimum, such as majority logic decodable codes or BCH codes, 

are much more complex to decide even for moderate error 

correcting powers. Nevertheless, codes far from optimum but 

easily decoded are a realistic consideration for practical 

systems because when decoder cost is limited it is possible to 

use a much longer simply decoded code. Further, the ability 

to decode well beyond the minimum distance of such codes 

makes them even more attractive.

Townsend and Weldon's self-orthogonal codes were presented 

as a useful set of such codes, whilst Hashim's nested codes 

were shown to be less attractive.

Conjoined codes were shown to be useful easily decoded 

codes where a low rate is acceptable, and they were seen to 

be capable of correcting more errors than guaranteed by their 

minimum distances. By an augmentation process the rate of the 

codes may be increased without making the decoding scheme over
complex. An interesting relationship between the aumented 

conjoined codes and the Reed-Muller codes has shown - providing 

an alternative decoding scheme for those codes.

Array codes have been presented. They may be constructed 

in various ways. The construction A, B, and C array codes are 

self-orthogonal and therefore very easily decoded by one-step 

majority decision methods. The construction B and C codes are
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close to the best achievable for one-step majority-logic 

decodable codes, and may be constructed for any error 

correcting power and for a very wide range of rates above 

one half. All of the array codes may be aumented in a simple 

way - increasing their rate without unduly increasing the 

decoding complexity. Some of the array codes -notable 

construction A codes, may be shortened in a way which 

increases their rate for a given length, but maintains the 

simple decoding algorithm. Construction D codes were presented 

which, except in the double-error-correcting case, have no known 

decoding algorithm. The double-error correcting construction 

D codes were shown to have a decoding algorithm closely related 

to one step majority logic decoding with variable thresholds. 

Construction D codes have rates higher than those achievable 

for self-orthogonal codes of the same rate.

Several areas of the work presented in this thesis 

provide opportunity for further research. The most useful of 

these would probably be an attempt to find a simple decoding 

algorithm for the construction D array codes, this also being 

an attempt to prove the conjecture upon which they are based 

for error correction powers greater than three.

Another area of interest would be the co?fech'L'/\ of burst 

errors with array codes. It is probable that many burst errors 

are ccrrtcfaHt using the decoding algorithms given for the codes.

199



Modifications to the algorithms might allow the codes to 

be burst-only decoded with some advantage; but burst and \rctr̂orf\ 

error correcting codes are an important and perhaps somewhat 

neglected area of coding theory - the characterisation of 

bursts correctable by the random error correcting algorithms 

might be the most useful work.

Conjoined codes, also, might correct many burst errors 

and their similarity to interleaved codes suggests modifications 

to the decoding algorithms to allow burst only correction.

The relationship between conjoined codes and Reed- 

Muller codes has been shown. There is almost certainly a 

connection between the non-linear codes derived from Hadamand 

matrices, and the codes formed by conjoining shorter such 

codes, in an analogous way to the Reed-Muller case. Certainly 

the parameters of conjoined Hadamard matrix derived codes 

augmented with other such codes are identical to Hadamard 

matrix codes of twice the length. It is possible that such 

a connection would provide simplifications of decodings 

algorithms for such codes.
Another useful but perhaps tedious area for work is in 

the simulation of decoders for conjoined codes and for 

construction B and C array codes, in order to assess their 

performance compared to other classes of codes.
Appendix B of this thesis gives details of a forward- 

error-correction scheme for use on the H.F. channel (i.e. 

the radio frequencies between 3 and 30 MHz used as carriers 

for data). The scheme is simple, and lends itself extremely
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well to simulation. It is certainly an interesting

possibility for research.
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APPENDIX 'A'

Combinational Circuits for the Multiplication of Element of GF (2m)

A two level realisation of a combinational circuit for multiplication °f

elements of Galois fields of order 2m would have 2m inputs and m
3output, and require in the order of m gates. It is possible, however, to 

use far less gates by adopting the following method which was put forward 

by Bennet & Stein (1963). In this appendix, the method is described and 

also bounds on the number of gates required for the realisation of suitable 

circuits are derived. The bounds are listed in a table for various useful 

values of m, and the actual number of gates required is given for selected 

m.

Consider an element of GF(2 ), which may be represented as : 

m -  1

Z a. X a
i = 0

another may be represented as m -  1

b .  X J 
J

i = 0

the product is then 

m -  1

a. Xl
i = 0 

= m -  1

i = 0

m -  1z
j = 0

m -  1 ----z
j = 0

b. X" 
3

a. b. X i J
i + j

there are therefore ni products of the kind a. b., and these may be formedU- J
2very simply using m' 'AND' gates, since the a. and b. are either 'O' or-*■ J

' 1 ' .
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.T ,, . _ _ „i + j . „2m - 2Now, the maximum value of X is X so :

m -  1 m - 1 2m - 2
a. b. X i J

i + 3 ck x

i = 0 0 = 0  k = 0

The number of products of the type a. b. which contribute to eachi 0
may be shown to be :

m = k - m + 1

and therefore each may be formed from these products by adding them 

modulo 2. This will require m -  k - m + 1  - 1 exclusive - or gates

for eacg C^. The total number of exclusive - or gates required is 

therefore :

2(m - 1)

m - 1 -  k - (m - 1 ) (m - 1)‘

k = 0

now, for the result to be given as a member of GF(2m) it must be reduced 

modulo the irreducible polynomial used to generate the field. That is to 

say, the co-efficients of XP, p m, must be mapped into sums of Xq, 0 ̂

q<m.

i.e. d. Xi

where d. = 0 or 1l
Clearly, by the properties of Galoisfields, at least two of the d^ must 

be 1, and so the case requiring the least number of gates would have each 

X-P, p ^ m, mapping into a polynomial with only two terms. The most number 

of gates would be required for the case where one of the X̂ * maps to an 

expresion with m terms, and the remaining XP map to expressions with (m - 1) 

terms.

These are two extreme cases - the actual number of terms involved 

depending upon the irreducible polynomial used to generate the Galois field.



The two cases above will, however, give an upper and a lower bound on the

number of gates required to implement the multiplier.

Now, the co-efficients of X1, i < m, are obtained by adding, modulo 2 

those d^ just derived to the co-efficients of X*3, p < m.

The number of exclusive or gates required to form the co-efficients 

of the result is given by the number of d^ which are equal to one.

In the simplest case, the number of these is simply 2(m - 1).

In the most complex case, the number is (m - 1) + (m - l)(m - 2)

= (m -  1 ) 2 .

Hence, the total number of gates required are :

(a) in the simplest case
2 2m two-input ’AND' gates with (m - 1) + 2(m - 1) exclusive - or

2gates making a total of 2m - 1 gates.

(b) in the most complex case
2 2m two input 'AND' gates with (m - 1) + m + (m - l)(m - 2)

2
exclusive - or gates making a total of 3m - Ign + 3 gates.

These bounds are listed in Table A.1 for various valves of m. Also 

listed are the actual number of gates required for selected values of m. 

Example

To clarify the method of multiplication given above, the case of m =
3 3is constructed here. GF(2J) is generated by the irreducible polynomial X

+ X + 1 .
2Writing the multiplication, A, as Aj X + A^ X + Aq and the multi- 

2plicant, B, as X + X + Bq we have the product AB given by :

AB = A2 B2 X^ + (A2 B1 + S1 B2) X3 

+(A2 B0 + A.| B̂  + Aq B2) X2 

+(A1 Bq + B1 Aq) X + Aq Bq ... (i)
2Clearly the formation of the products A^ B^ require the:' use of m = 9  two 

input 'AND' gates.



Q OThe summing cf the A. B.fs required for the co-efficients of X , X
p

and X clearly require Ij exclusive - or gates (= (in - 1) gates).
3' 3Now, since the GF(2 ) is generated by the equation XJ + X + 1, it

may be seen that X^ = X + 1 and X^ = X2 + X.

Labelling the co-efficients of X1 in equation (i) as CL we see that

the co-efficients of the product

AB = P2 X2 + P| X + PQ

are given by ? 2 = C2 + C^, p-] = ^  + C3 + C^, and PQ = Cq + and the 

formation of the P^ therefore requires an additional h exclusive - or 

gates. Notice this total is equal to 2(m - 1) and therefore the number 

of gates required is equal to the lower bound given in Section (a).

The circuit of the resulting GF(2^) multiplier is given in Fig. A.1

M Lower
Bound

Upper
Bound

Actual No. 
Required

3 17 18 17

k 31 35 31

5 k9 58 50

6 71 87 -

7 97 122 99

8 127 163 1l;1

9 161 210 167

10 199 261 -

TABLE A.1,

Bounds on the Number of Gates Required 

for Multipliers of Elements over GF(2m )



= two input 'AND' gate 

= exclusive - or gate

AQ, = co-efficients of multiplicand

Bq, B̂  , B^ = co-efficients of multiplicant 

Pq , , p£ = co-efficients of product
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APPENDIX B

A proposed Forward Error Correction System for H.F. Channels.

Efficient block FEC schemes are difficult to implement on 

relatively high-speed (1-3 Kbits/sec) HF digital channels, because 

it is found that most (50-75%) blocks contain errors. Even with a 

very high interleaving factor, the output error rate is often 

unacceptably high. It is characteristic of the HF channel, however, 

that occasional "clear patches" occur; that is, about 25-30% of 

blocks may be error free, or nearly so. Ir should be possible to 

make use of these error-free periods to transmit data rapidly and 

reliably, so that data received during the noisy periods could then 

effectively be discarded. There are two aspects of the problem: to 

find the clear patches; and to use them efficiently when found.

The proposed scheme is directed towards both these aspects.

In essence the scheme consists of (see Fig. BI also):-

(i) A high-rate binary error-detecting cyclic code, with k 

information digits in a block of length n digits, where 

n is approximately equal to the average length of a 

clean patch.
(ii) Each cyclic code word is transmitted i times, with i 

chosen so that the block length, ni, of the hybrid 

cyclic-repetition code so formed is roughly equal to 

the average number of digits in one clear patch plus one 

noisy patch.

- B.l -



(iii)

(iv)

(V)

(Vi)

(vii)

The information digits in one of the cyclic code words 

in each hybrid block of ni digits (it does not matter 

which, since all are the same) is encoded as a 2 -level 

symbol in a Reed-Solomon (R-S) multi-level erasure- 

correction code (Reed 1954). Thus, C (say) out of every 

N hybrid blocks would consist of i transmissions of n- 

digit cyclic code words, the "information" digits of 

which represent the 2k-level parity symbols of the R-S 

code.

The decoder searches for a clean patch by computing 

syndromes over n consecutive digits, sweeping cyclically 

through the whole of the ni digits of the hybrid code 

word by shifting a digit at a time. Thus ni syndromes 

would be the maximum number of syndromes that might be 

calculated. Since the ni digits consist of i repeats of a 

cyclic code word, the shifting block of n consecutive 

digits within the ni is one of n cyclic translates of 

the cyclic code word, and hence is a word from the same 

cyclic code. Thus syndrome calculation is very simple, 

since the same circuit can be used for all the syndromes. 
As soon as a zero syndrome is found, the sweep can be 

stopped, and the k information digits output (in the 

appropriate order).

Should a zero syndrome not be found, then the cyclic code 

word is labelled as an erasure, and corrected by the R-S 

multi-level code.

Erroneous decoding can occur either if a zero cyclic 

code syndrome corresponds to an undetectable error pattern



or if the R-S erasure code makes a wrong correction.

The latter can be minimised by noting that the number of 

erasures in each block of N R-S code-word multi-level 

symbols can be counted, so that the erasure correction 

capability of the R-S code need not be exceeded.

If K = N-C, then the rate of the coding scheme is given 

by:

R = k K = kK 
ni N niN

For example, if n = 100, k = 90, i = 3, N = 10 and K = 8, then 

R = 0.24. Thus, an overall transmission rate of 1 kbit/sec 

could be achieved by operating at 4.16 Kbit/sec, which is 

less than the binary SSB Nyquist rate for a nominal 3KHz 

bandwidth.

Binary syndrome calculation for cyclic codes is extremely 

simple. Multi-level erasure correction is also relatively 

simple, and is much simpler than multi-level error correction. 

Thus a hardware implementation of the scheme would be 

apparently quite practical. Simulation would be particularly 

easy, because actual erasure correction would not be necessary 
It would also be quite easy to vary the coding parameters, so 

as to find a range of useful values.
The scheme could be applied to serial or parallel channel 

Performance might be improved, at the expense of greater

complexity, by using:



(a) a partial-error-correction cyclic code (bounded 

distance decoding), with or without soft-decision 

detection;

(b) error location within the cyclic code words, so that 

parts of incorrect words could be combined to obtain 

a correct word. This might also permit a reduction 

in the required value of i.
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EASILY DECODABLE EFFICIENT SELF- 
ORTHOGONAL BLOCK CODES

Indexing term: CodesA class o f self-orthogonal block codes is described, which arc easy to decode and to augment. They arc constructed by forming parity-check equations across certain patterns o f information digits arranged in a 2-dimensional array. The codes are o f a rate close to the optimum for self-orthogonal codes.
Introduction: Self-orthogonal block codes for error detection 
and correction are longer than some codes o f similar rate and 
minimum distance, but make up for this defect by virtue of 
the ease with which they may be 1-step majority-logic de
coded, and the fact that they are capable o f correcting far 
more errors than their minimum distance would indicate.1

The codes described here are particularly easy to decode, 
and may be constructed for a wide range of information rates, 
which are close to the optimum for self-orthogonal codes. 
Further, it is possible to augment them in a simple way. They 
are constructed by forming parity-check equations across 
certain patterns o f information digits arranged in a 2-dimen- 
sional array.

Construction: Consider a p x p array o f squares, where p is 
prime. Let each square be labelled by the row r and the 
column c o f the array in which it is situated, 0 r. c <  p -  1, 
and place d— 1 numbers 0,(r, c), 0 =£ / $  d — 2, in each square.

If it can be shown that no two squares have more than one 
D,  o f the same, value, and if each square in the array is 
associated with an information bit, while each value which 
each £)((r, c) takes denotes a parity-check equation involving 
the information bit associated with the square (r, c), then, 
since no two information symbols are involved together in 
more than one parity-check equation, this arrangement 
describes a linear, binary, self-orthogonal block code2 with 
minimum distance d and with /r information bits.

ELEClEtONICS LETTERS 31st Match 1977 Vol. 13 No. 7

It remains to choose the D,(r, c) such that the above 
conditions apply, and such that the D/(r, c) take on a suffi
ciently small number o f values that the codes formed have a 
reasonable rate, bearing in mind that the best that can be done 
for a self-orthogonal binary block code o f length n, rate R 
and minimum distance d is 1

n 2* { R ( d - \ ) ( d - 2 ) } / ( l - R ) 2 +  ( l - R ) - '

Choose D,(r, c) =  (r +  ic) (mod p) with the proviso that 
/ < p, i.e. d <  p +  1. For any square (r ,, and any number 
Dj(rt, C i )  in that square it is required to prove that any 
other square (r2, c2) with Dj(r2, c2) =  Dj(rk, c k) has

D*(r2, c 2) ŷ  Dk(r, ,  iq)

for all k y£ / and /, j  <  p.

Now , if Dj(r2, c2) — Dj(rlt c t),

(r2 +  j c 2) (mod p) =  (r, + j c k) (mod p)

Thus

(r2- r , )  (mod p) =  [j(c, - c 2)] (mod p) 
but if Dk(r2, c 2) =  Dk(rlt c t) this implies

(r2 — r | ) (mod p) =  [A(cl - c 2)] (mod p).

Thus

./(mod p) =  ¿(mod p) 
i.e. j  =  k for j ,  k <  p

Thus it has been shown that Dk(r2, c 2)t£ l)k( r t , c t) for 
j  yi A' provided j , A < />. Note that if p were not prime, the 
calculations would be invalid.

To iind how many values are taken by the 0 ((r, c), consider 
a column c o f the array; then Df(r, r) =  (r + ic) (mod />). 
I lere. ic is a constant and r takes all values 0 to />— I . There-
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fore, since we are working modulo p, D,{r, c) takes all values 
0 to p — 1; this is true in each column.

There are d — 1 of the D,(r, c) and each takes p values; 
therefore the number o f parity checks on p 2 information bits 
is p(d — 1). The parameters o f the codes are therefore

ii =  p2 +  p ( d -  1) and k =  p 2

Thus n =  (d — l)2 R (1 — R )~2, which compares well with the 
best that can be achieved with self-orthogonal codes, par
ticularly for large values of d.

In fact, for codes o f rate greater than one-half and mini
mum distance greater than 7. the codes are generally shorter 
than equivalent self-orthogonal quasicyclic (s.o.q.c.j codes.1 
Also, s.o.q.c. codes are often found only by means of a 
computer search for suitable difference sets, whereas the 
codes described here require only a knowledge of the prime 
numbers.

Decoding:  The codes are easy to decode, owing to the 
properties

fa') D,(r +  1, c) =  [1 +  D/(r, c)] (mod p)

(b) D|(0, c T 1) =  [1 + / +  D d p -  1, c)] (mod p)

This allows parity checks, or syndromes, to be formed using 
only i d — J) p-stage restricted access shift registers, with 
simple check and switching circuitry. Hence a decoder would 
require only a postage serial register, (d— 1) p-stage re
stricted-access shift register and one d — 1 input majority gate, 
together with the clock and switching circuitry.

Example:  Choose d =  8, p =  29; n =  (29)2 +  7x?.9 =  1047 
and k =  292 =  841. This code has a rate of 0-803, and may 
be compared with the s.o.q.c. code o f minimum distance 8 
and rate 0-8, which has a length o f 1205.

Alternative definition: Instead of choosing p prime and 
denning £),(/, c) modulo p, it is possible to choose p to be a 
power o f a prime, with the D,(r, c) now defined over the 
Galois field of p elements. The proofs o f the code properties 
are identical. In this way, many more codes may be formed, 
although the practical realisation of the decoders will be more 
complex.

Example:  Choose d 9 and p =  24=  16;

n =  (16)2 +  8 x 16 =  384 and k =  162 =  256.

This code has a rate o f two-thirds, which may be compared 
with the s.o.q.c. code o f minimum distance 9 and rate two- 
thirds, which has a length o f 420.

Augmentation o f  the codes:  Each parity-check equation 
associated with a value taken by a Dffr, c) is completely 
independent o f every other parity-check equation associated 
with other values taken by the same D f r ,  c), since no in
formation bit is involved in more than one o f the equations 
associated with a particular value of i o f D,(r, c). Therefore, 
given less than ( d— l)/2 errors in the codeword, a reconstruc
tion from the received information digits of the parity-check 
bits associated with any particular value o f i o f D,(r, c) will 
be incorrect in at most (d— l)/2 positions.

This is precisely the property required to augment the 
codes by adding to each set o f parity checks associated with 
a particular value of i o f D,(r, c) a binary codeword o f length 
p and minimum distanced, in the manner shown by Kasahara 
et al.3 for product codes. The complexity of decoding will be 
approximately the sum o f the complexities of the decoders 
for the constituent codes.

Example:  Choose d =  5 and p =  5;

n =  52 +  4 x 5 =  45 and k — 52 =  25,

but d — 1 codewords o f length 5 and minimum distance 5 may 
be added. The codewords could be those from the (5, 1) 
repetition code. Then we have added 4 information bits, 
giving an augmented code with parameters n =  45, k  =  29.
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