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a b s t r a c t .

There is still great reed for more theoretical input in the form 

of information and constraints,derived from basic principles, 

on the main features of physical scattering amplitudes of IT IT 

interactions in the low energy region. We derive new constraints 

on scattering lengths and test the consistency of the experimental 

data in the inelastic region with crossing,analytic!ty and 

positivity- leading to an amplitude of IT IT interaction. To extract 

the scattering amplitude from the cross section and other experi- 

1 mentally observable quantities such as polarisations we perform 

phase shift analysis. Above the inelastic threshold the unitarity 

puts constraints on a scattering amplitude in the form of an 

inequality, and consequently,there exists a continuum of different 

amplitudes corresponding to the same observables. The continuum 

ambiguity is serious,even in ideal phase shift analysis with 

perfect data. In order to remove the continuum ambiguity, we 

need theoretical input of a dynamical nature. And we need data 

of high accuracy,as numerical analytic continuation is always 

involved. However, the scattering amplitude is a complex number 

and the differential cross section is real,it is not obvious 

that the information exists to fix an amplitude. In fact,there is 

as yet no way reliable,in practice,of finding the complex 

amplitude from the real cross section and other measurements in 

the inelastic region.

In the first part of this work,we derive rigorous 

phenomenological new upper bounds on the s-wave IT IT scattering 

lengths. On defining a central family of S,P,.D and F phase shifts 

with associated errors in the energy range 0 .45Gev^Ec.m.^l•9 dev, 
we use maximal amount of available data as directly as possible. 

Also, proper care is taken of the consistency of the chosen 

phenomenology with principles of unitarity,analyticity and 

crossing.Wo have derived some new upper bounds on the T T  IT
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s- wave scattering lengths from rr°TI°-r TI°IT° and rT+TT°-^IT+'IT° 
data in the elastic region (0.45 Gev.<Ec .m.^0.95 Gev) and in the

broad energy region (0.45 Gev<Ec.m.^l.9 Gev). The results show

appreciable improvement over Bonnier’s Bounds £.181 . We have

compared our results with results of BFPt.30]mode 1, satisfying

the low energy s wave phenomenology. Our method is model

independent and is capable of producing new class of upper

bounds on s-wave scattering lengths and their linear combinations

from central family of phase shifts with associated errors in

the low energy region.

In the second part of this work,we have derived new
■ f — -f  —sum-rule inequality on IT TT ->TT TT scattering amplitudes 

in the inelastic region from analyticity and positivity of 

these amplitudes. They connect the real and imaginary parts 

of the amplitude in the region where they are calculated from 

phase shift analysis,and do not require knowledge of these 

quantities at low energies or in the high energy region. The 

experimental inelastic region s-|^is mapped onto the unit 

circle in the v--plane, while remaining parts of the physical 

cuts in this circle. To write the sum-rule inequality,we multiply 

the amplitude by a polynomial P(v) which has zeros at v=0 and 

v=oo,the point which corresponds to infinity in the complex 

s-plane. It is arranged such that ImF(v)P(v) has a constant 

positive sign on the cuts in the v-plane corresponding to the 

cuts in the s-plane. As the phase shifts are known in the 

inelastic region this information can be used in the sura-rule.

The data from Estabrooks and Martin solutions A, B , C , D [8 l] and 
Froggatt SPetersen [68,68aj are used to test the sum-rule 
inequality.Furthermore,the EM-solutions have been rotated
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by Common [82j in a special way, the rotated data are also used to 

test the sum-rule inequality. The local minimisation programs from 

NAG-routines are used to find the minima with respect to zeros 

of P(v).

Violations of our sum-rule inequality would either indicate 

the experimental data being at fault or something wrong with 

our basic properties of the scattering amplitude.

EM's figure give the impressi.on of very smooth Argand diagrams, 

but actual solutions are noisy.On plotting Argand diagrams of 

FP's data,we get smoother curves which agree with results of the 

published papers [j>8,68a] .
There are clear violations of ..our sum-rule, inequality in case 

of EM's solutionsA,B,C,D and their rotated data. However, they 

are of the order of one to two standard deviations(in most of 

the cases) i.e. the order of errors involved in the experimental 

data. Hence, we can not rule out EM-solutions completely on 

the basis of violations of our sum-rule inequality. In case 

of FP-data, our analysis shows much smoother behaviour and 

there is less violation of our sum-rule inequality and we can not 

rule out their solutions either. It shows that as one would 

expect the smoother data is more consistent with analyticity 

properties of the scattering amplitude.

The references are expressed in square brackets

with capital surname of scientific workers.
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C H A P T E R I .

1.0 GENERAL INTRODUCTION TO 1~I IT INTERACTIONS.

The hadron world .is complex and we lack a dynamical theory 

that could allow us to understand and calculate its properties. 

Confronted with such a reality we try to construct models:they 

are limited theoretical descriptions of limited sectors of 

physical phenomena. Although,as yet,there is no established 

fundamental theory of hadrons much progress has been made towards 

understanding their properties and interactions. Many principles 

have emerged which seem likely to be necessary ingredients or 

consequences of any complete theory. This can be regarded as a 

limited objective. Eventually we hope to obtain a theory that 

embraces both hadrons and leptons and which treats all the types 

of interaction in a unified way.

The basic idea in such a model dynamical formulation 

is that forces of interaction are due to the exchange of particles. 

Each particle produces a force of interaction between some pair 

of particles. This force may be attractive or repulsive and 

in situations where this is strongly attractive these two 

particles can form a bound state or a resonance:a bound state 

of two particles has mass less than the sum of the masses of the 

particles so that it can not decay back into two constituents 

and a resonance has a mass greater than the sum of the masses 

and so it can decay.

To resolve the first order model, coming from non-relativi- 

stic considerations of piom-nucleon scattering,Mandelstam 

introduced double dispersion relations and oriented the whole 

idea towards anlyt.icity properties, uni tarity and crossing. On 

this line we have tremendous efforts to understand low and medium 

energy TT IT interactions.



The famous Veneziano models have been successful in producing 

model amplitudes that accomodated -— with certain limitations — :

(A) the low energy amplitudes, (B)natural spin parity mesons 

in exchange degenerate SU3 nonet patterns in reasonable agreement 

with experiment. It has also provided us with the predictions:

(A) relations between masses and coupling of particles with 

different arbitrary spin at the parent level,(B) existence of 

daughter states, (c.) specific behaviours of low partial waves in 

exotic channels. The model,however,lacks unitarity.

The dispersion theory and related ones like Roy equations 

have clarified interaction below 0.9 Gev energies but the main 

problems associated with analyticity and the need for considering 

other TT IT channels at higher energies remain in the inelastic 

region.

The Chew-Low-Goebel suggestion of pion-exchange between the 

incoming meson and the target nucleon laid the solid basis for 

experimental meson-meson studies. In fact, the meson-meson ampli

tude can be factored out in the meson-two-meson transition 

amplitude off a nucleon,which is only possible for the OPE reaction 

cross-section. The statistics of available data has made it 

easier to achieve the goal of a model independent pole extra

polation at expense of some necessary assumptions on the prodution 

mechanism:dominance of OPE,neglect of off-shell corrections,etc. 

are the points of greatest criticism. All inferences from data to 

elastic scattering proceed via some form of extrapolation either 

explicitly or implicitly. The implicit methods habitually under

state the errors or fail to state the assumptions by which errors 

are reduced. Despite the greatest difficulties.elastic phase 

shifts are available with believable errors associated with 

them and various ambiguities have been resolved.

( V
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Attempts to construct interaction Hamiltonian,which one can 

apply in a field-theoretical framework to calculate strong intera

ction processes have been almost entirely unsuccessful. The 

reason for this failure,presumably,being the strength of strong 

interactions which makes it meaningless to treat the interaction 

part of the Hamiltonian as a perturbation. So,this does not 

seem to be a good model for IT TT interactions. Most of the 

progress in TT TT interaction theory has been based on S-matrix 

models using rather general properties of scattering amplitudes.

In the first chapter, we review the present status of Tf TT 

scattering(in light of our work):(a) S-matrix and its mathematical 

framework,(b) Kinematics,(c) analyticity-unitarity-positivity, 

(d)rigorous constraints in unphysical region,(e)models based on 

Roy's equations ,(f) results of model calculations of low energy 

TT IT amplitudes (g) bounds on FT IT scattering lengths.

To extract the TT TT scattering amplitude from the experimentally 

observable quantities such as cross-sections and polarisations, 

we perform phase shift analysis. Unitarity determines the 

unobservable angle-dependent complex phase of the scattering 

amplitude with only a few alternative solutions for elastic 

scattering. And above the inelastic threshold the unitarity 

constraint on a scattering amplitude is only an inequality and 

a continuum of different amplitudes correspond to exactly the 

same observables. Practically, these differences are very important. 

Extra theoretical input of a dynamical nature can remove the 

continuum ambiguity but, because numerical analytic continuation 

is always involved, data of high accuracy is required. Thus 

unique answers can only be found by introducing further model- 

dependent assumptions. In the second chapter,we have reviewed 

some aspects of the principles of phase shift analysis and 

ambiguities of TT TT*interactions.



There is still a great need for more theoretical input in 

the form of information and constraints,derived from basic ■ 

principles,based on main features of a scattering amplitude 

of TT IT interactions. In the third chapter,we derive rigorous 

phenomenological new upper bounds on the s-wave TT TT scattering 

lengths from TT0n°~>rT0rT 0 and TT +TI °— >TT+TT0 in the elastic 
region (0. 45Gev <Ec . m.^,0.95Gev) and in the broad energy region(0.45 

Gev < Ec.m.41.9 Gev); while taking care of the consistency of the 

chosen phenomenology of low energy IT TT scattering with general 

principles of unitarity,analyticity and crossing.

In the fourth chapter, we derive new constraints in the 

form of sum-rule inequalities,to test the consistency of experi

mental data in the inelastic region with crossing,analyticity
-f- — •{' Mand positivity leading to an amplitude of TT IT —>-TI TT 

interaction.

(40
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1.1 Mathetical Framework of Scattering Theory.

As scattering process due to strong interactions may be 

described in terms of initial and final states of non intera

cting particles.Because of the short range of strong intera

ctions the ingoing particles may be assumed to be non-intera

cting a sufficient time before the collision and similarly 

the outgoing particles will be non-interacting a sufficient 

time after the scattering.If we form the Hilbert space H of 

all possible vectors representing any number of non-intera

cting particles and if 1"V> andlftare any two normalized vectors 

of ii ,then a typical scattering amplitude is the amplitude 

for an initial state |i)of n^non-interacting particles to be 

found, after scattering has taken place, as the final state 

containing n̂  non-interacting particles. V.’e write this ampli

tude as <f I Sit) .The set of all such amplitudes for all the 

normalized vectorsii^^of H may be regarded as the matrix ele

ments of an operator S which is then fully defined by these 

matrix elements. S may be called the scattering operator and 

its matrix elements can be written as

U.l. 1)

The set of all these scattering amplitudes,that is the matrix 

defined by the operator S,is called the S-matrix.

The conservation of probability requires that the

S-matrix is unitary:
+ «- , 

fv'r y\ 'r‘v 
an .X

( t. t>J



It is convenient to separate off the amplitude associated 

with no interaction, and work in terms of a T-matrix defined 

by

S»I+iT (1.1.3)

Studies of the S-matrix with the strong interactions 

use theoretically based relations between S-matrix elements. 

These relations are from rather basic properties,in parti 

-cular analyticity,unitarity and the invariance properties 

such as Lorentz invarince,time reversal,etc. The analyticity 

properties of the S-matrix are thought to be connected with 

causality. The unitarity comes from the conservation of pro

bability. An important group of relations between scattering 

amplitudes which are deduced from the analytic properties 

of the S-matrix are those known as dispersion relations.

Theoretical investigations of strong 

interactions using the S-matrix fall into two categories.The 

first of these uses relations involving S-matrix elements 

to correlate experimental data.By inserting experimental 

data on one side of such an equation deductions can often 

be made about the results of some other experiments.Or we 

can use these relations to check on the consistency of these 

results of different experiments. The other type of calculation 

involving the S-matrix is based on the philosophy that the 

S-matrix is in fact fully determined by rather general 
properties. It amounts to postulating a dynamical S-matrix 

theory in which all the elements of the S-matrix could be 

calculated in terms of little or no input data.In such a 

s-matrix theory the dynamical postulate of quantum mechanics

(6)



involving the Hamiltonian has been replaced by a dynamical 

postulate about the S-matrix.Now,since we have a complete 

set of states in> we can always make them orthogonal,in 

particular the momentum states are orthogonal. Then the total 

number of events of all types,including no scattering at all 

as a final event, is from the completeness 

£<fj n>fol fi):̂ | fi> (1 .1.4)
But the total number of final events is,from the conservation 

of probability or the fact that each initial state will 

give rise to just one final event,just the total number of 

particles in the beam;so

<f.|£i>:(iU> (1-1.5)

Then from (i . 1. 4) and(l . 1.5)

<i| Sr Si (1.1.6)

As it is true for alllil, we can write it as an operator 

equationi.e. the unitarity of the S-matrix:

£ S=I (1.1.7)
In terms of the T-matrix the unitarity relation becomes

(7)

i" . +T -T  = i V  T (1.1.8)

or T m n ^ l T ^ r . . (1 • 1 < 8 a)
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1.2 KINEMATICS.

We consider the two-body process n+n-^-TT+TT and introduce 

(Fig.l) the four ingoing four-momenta > q2 >^3 > ̂ 4 th
v a 2 2qi=(Ei,qi),(i = l,2,3,4) and the metric q^=E..-q^ =m^ . The three 

relastivistically invariant quantities s ,t,u(MandeIstam variables) 

are defined as:

s =(q1+q2) 2=(q3+q4) 2 (1.2.la)
t=Cqi+q3)2==Cq2+q4)2 (1.2.1b)
u= Cqi+q4D 2= Cq2+q3)2 (1.2.1c)

In the case of FI TT scattering ,the relation between these three 

variables is

s+t+u=4mr^=4, (1.2.Id)

where m ^  = 1 is the pion mass. The three related channels are

S-channel: rr+IT-vIT+IT (1.2.2 a)

t-channel:ff+TT ->TT + n  (1.2.2b)
u-channel: n  + rT-^IT + rT (1.2.2c)
In the c.m. frame, the total 3-momentum of the ingoing particles 

and hence also the outgoing pair of particles is zero (Fig.2).

This frame of reference is the most suitable for a theoretical 

analysis of any kind of scattering process since in this frame we 

do not have to separate off a part of the total 4-momentum 

corresponding to the overall motion of the system,which is irrele

vant to the interaction itself.

Relation between the q^ and the physical four-momenta p^ 

in the s-channel is

q r P l

V P 2
P3=-P3
q4=“P4

For the simple case of equal masses m.. =mn  :

(1.2.3a)

(1.2.3b)

(1.2.3c)

(1.2.3d)



cs;

(1.2.4a)

t=-2p2 (l-cosG ) _< 0 
u=-2p2 (l+cosö^)< 0 
cos0s=l+t/2p2 ,

(1.2.4b) 

(1.2.4c) 

(1.2.4d)
where WS >PS and are total energy »momentum and scattering angle 

in the c.ms (respectively) for the s-channel reaction.

The range of values of variables s,t.u which corresponds to a 

physically possible process is called the physical region for that 

channel or process. As there are only two independent variables 

the physical regions can be easily depicted on a two dimensional 

plot with these two variables as coordinates. To display the 

symmetry between the s,t,u channels,we draw the s=o,t=o,u-o axes 

so that they form an equilateral triangle of heights

s + t+u=2 (mjjj: +m2-̂ (1.2.4e)

For equal mass elastic scattering,the physical regions in the 

s-channel are given by equations(1.2.4a,b,c). And this case has 

boundary curve decomposing into three straight lines(Fig.3)

In the t-channel, for equal masses,we have

(1.2.5a)

(1.2.5b)

(1.2.5c)

(1.2.5d)
And the physical region for s,t,u in the t-channel is given

by (Fig. 3):

(1.2.6a) 
(1.2.6b) 
(1.2.6c) 
(1.2.6d)

where w. ,p. and Ö are t t t are total energy,momentum and scattering angle
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in the c,ms respectively for the t-channel reaction. 

In the u-channel for equal masses,we have

qr pi (1.2.7a)

q2=_P2 (1.2.7b)

q3="P3 (1.2.7c)

q4=P4 . (1.2.7 d)

and the physical region for s,t,u in the u-channel are given by

(Fig.3):

s=-2p^(l+cos©u) < 0 (1.2.8a)

t:="2pu (l-cos0 ) <0 (1.2.8b)
2 . ( 2 2 -, . 2 u=w =4(p + m „  ) >  IniT-- u . U u n  J ^  n (1.2.8c)

cos0 =l+t/2pu 1 u , (1.2 .8d)

where w , p , 0 are total energy,momentum and scattering angle in u u u
the corns respectively for the u-channel reaction.

The physical regions for s,t,u in the three channels are 

displayed in the Mandelstam diagram by figure 3(shaded areas).

The three physical regions do not overlap.
2We can eliminate u by the relation s + t+u=4m-j-j-:

2s - eh ann e 1 : s >,4 m._j (1.2.9 a)

t=-2p2(l-cos0s)=-2(s/4 -m-j-2) (1-cos0̂ .) (1.2.9b)

=o for cos0 =1 max. s (1.2.9c)
?t . =-s+4m" for cos© =-l min. FI s (1.2.9d)

, ? t-channel: t>4mj-j- (1.2.9e)

s=-2(t/4 -m^2)(l-cos©t) ( 1.2.9 f)
s =0 max. (1.2.9g)
s . =-t+4m2 m m . FI (1.2.9h)

u-channel: s <0 (1.2.9Ì)

t (1.2.9j)
The physical regions are shown in figure 4.
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1.3 ANALYTICITY'.UNITARITY AND POSITIVITY.

The TI FI scattering amplitude for fixed physical t within

a finite interval -t < t < 0 is the boundary value of an analytico
function of s:

F-p, T1- (s , t) = limit F(s+i£,t) 
iL 11 E-vO

(1.3.1)

F(s,t) is' an analytic function in the complex s-plane with right
2 1cut is realms =4111.™) and a left-hand cut -t-s>s . v o F F  o

And along the left-hand cut,we have

Limit F (s-iE>t)=Fri+^ _ >ri + ̂  , (1.3.2)
2 _ _where (Ec.m.) of the reaction FT+H->FT+FI is given by

2u= ( ) - s -1.
The discontinuities of F across the cuts are given by the 

absorptive parts in the s-channel and the u-chanhel- respectively, 

As (s,t) = l/2i [ F(s+i£,t)-F(s-i£,t)J (1.3.3)

Further, if the scattering amplitude is polynomially 

bounded,which is true in Lehmann-Symanzik-Zimmermann formalism:
N

F(s,t,u) = TT J
oo Ag (s 1 , t) ds ' + uN oo Au (u',t)du' +

s ' ̂  ( s ' - s ) IF u'K (u'-u)
u

+polynomial in s and u, (1.3.4)

for t fixed ,-t<t^O.’ o
For s physical and cosO^ outside the interval -1<c o s©s < 1, 

LehmannClJ has proved that F(s,cos©s) is analytic inside an 

ellipse in the cos6s-plane with focii cosGs = + l,which means that 
inside this ellipse its Legendre polynomial expansion converges 

uniformly and absolutely.

The pion-pion scattering amplitude has the following 

extended analyticity domain[16a"] :

js , t ,u[ s + t-!-u=4m^ ;t 6 $ ) , s f cf + 4m -j-j , u f {£"+ 4 m ̂  r e a lj ,(1.3.5)

where the domain tS$contains in particular 

it| <. 4mj_j. and -28m.j-i ̂  t̂ . 0.



We can expand the scattering amplitude for equal mass and spin 

zero particles (FT FT —> F I TI) in the s-channel into partial

waves at fixed physical energies:
J Q£> IF (s,t)= f z Q (21 + l)f1(s) P1(cos0s) (1*3.6)

e2i<iì (s) -1)/2i f(s)

below the inelastic threshold 7^ (s)=1,and so 
f^s) =sindj (s) e2*^l ̂ / ^ ( s )

(1.3.7)

(1.3.8)

f(s)= ( (s -4) /s) (1.3.9)

The partial wave amplitudes,f*(s),for orbital angular momentum 1 

and isospin I are related to the real phase shift ¿J(s) and 

elasticity coef ficient (s) ( 0.£T^(s)$l ) by equation . (1.3.7)
Scattering lengths a* are defined as

al=Limitf1(s) /2k (1.3.10)
s-M' 

k2=l(s-4)
and aI=f^(4)=FI(4,0,0) for I=0and 2 

The optical theorem becomes

Im F1 (s , 0) = (s(s-4))i.CiJotal /16IT 

The partial wave can be projected into the form[laJ:

(1.3.11) '

(1.3.12)

(1.3.15)

fi (s) =- 1 F(s,t ',u ' ) (cos0s) d(cos0s) (1.3.14)

There are two possible sources of singularity in f^(s) .

The first one occurs when F(s,t',u!) has singularities in the 

s-plane whose positions are independent of the values of t' or u ’. 

Secondly,we get possible source of singularityFes in f^(s) at 

values of s for which,as cos0e moves along its path of integration 
-1 to +1, one of the variables t ? or u' might take a value for

which F(s ,tJu’) is singular.



2ilm f.(s),where 
1

. Im £1(s)= ij Ag (s , t ' (cosG^) d(coses)?̂ (CQSes) (1.3.15)

So, £-j(s) has a right-hand branch cut together with possible 

poles on the positive real axis and these singularities correspond 

directly to the s-channel singularity in F(s,t',u'). Also, f^(s) 

is singular along the negative real axis from s=o to s=-oo.

These singularities are branch point singularities (at each point 

along the negative axis) coming from the second source mentioned 

above.

The discontinuity in f"̂ (s) across right-hand cut is simply

The linear aspect or the positivity property of the 

unitarity condition gives results:

(a) the positivity property,

I in f (s)£ |f1(s)l “>  0 (1.3.16)

(b) the boundedness aspect

l'^Im f (s) >. |f x (s) | 2 >  0 (1.3.17)

In the elastic region, we have

(f 1 (s) 1 2 = Im f^s) (1.3.18)

Some immediate consequences of the positivity property 

can be expressed in the following way [l6a] :
(i) The imaginary -or the absorptive-part of the scattering

amplitude in the forward direction is a sum of the positive-

terms and hence it is positive:

Im F(s+i£, cos© =!.)= A (s,c.osQ =1)>0 (1.3.19)s s s
(ii) From the expansion of the scattering amplitude into partial

waves at fixed physical energies, we have extremely important

relations:
’ , \n

Ag (s , cos0g) >  0 , (n = o , .1, . . .) (1 .3 .20)

COS0 =1

dcosG < s



and
n

d cos©
A (s,cos9 )

s
COS0 =1s

\ n
\

d cosG,

A (s.cosO )
s  ' S'

for n=o,1,... 

n
_d__) A^ (s , t)

Vdt
^  0, for n=o,1,

,(1.3.21)

1<cos6<1

(1.3.22)

t = 0

n \nAs (s,t)

r+ II O
V (df) V s , for n=o, 1, . (1.3.2 3)

-4k < t<0

The constraints (i) and (ii) put linear constraints on the 

scattering amplitude.



1.4 CROSSING SYMMETRY.

The amplitudes describing each of the three related channels 

for IT IT elastic scattering are represented by one and the 

same set of analytic functions. The three related channels are: 

s-channel: T T + n - j-TT+TT (1.4.1a)
t-channel: FT+IT-yn +TT (1.4.lb)
u-channel: fl + n  -^fT + ri , (1.4.1c)

The pion is its own antiparticle and we write FT only to indicate 

which pions have been crossed. In terms of these amplitudes 

we have for instance

U5J

o(s,t,u)=l/3.(E°(s,t,u)+2F2(s,t,u)) (1.4.2a)

(1.4.2c)

where F*(s,t/u) is the total amplitude for the s-channel isospin I.

This crossing symmetry can be expressed in terms of

F1 (s, t,u) = f ,  Cj j t (se-t) F1 (t,s,u) (1.4.3a)'

= ̂ ' CII' Cŝ u) pT (u,t,s) (1.4.3b)

> , Cn l (U»u) F1 (s,u,t) (1.4.3c)
where crossing matrices are

(1.4.4a)

(1.4.4b)

(1.4.4c)



The crossing property, of IT TT scattering amplitudes plays a

fundamental role and it has the features of relating al] partial

wave amplitudes to one another. In certain cases, it can be

used directly to infer some structures of these partial-wave

amplitudes. Using the s«-*u crossing properties of the n ° n ° - > r i 0ri 
amplitude,we can write a twice subtracted fixed t dispersion

relation for 4>t>-28 in the form
1 oo

F(s,t,u)= g(t) +y j J ds u
, 2 s '-s s'-u/

A(s\t), (1.4.5)

where g(t) is a constant in s and only contributes to the 1=0, 
partial-wave in the t-channel.
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1.5 RIGOROUS CONSTRAINTS IN UNPHYSICAL REGION.

The search for the properties of the partial wave, amplitudes 

on the unphysical interval O^s ̂  4 is justified by the hope 

that it may lead to limitations on the low energy behaviour 

of the phase shift problem of pion-pion interactions.

Balchandran and Nuyts[2] discovered implications of crossing 

alone, and later on Roskies [3_1 and otiers[4] established their 

practical usefulness. Martin et al. [5] initiated a new approach 

incorporating also analyticity and unitary properties. We get 

sets of inequalities for partial waves in the unphysical region. 

GMNf6]have shown that knowledge of the 1=1 p-wave and of some 
high-energy parameters practically limits the possible s-waves 

in a very restricted domain.

Wanders [7] and Roskies [8] have obtained crossing 
constraints for higher waves,excluding s- and p-wave amplitudes 

on physical partial waves. On the other hand, Roy[9]has 

discovered TT TT equations with the properties of (i) expressing 

each partial wave amplitude in the physical region (including 

s and p waves) as an integral over physical absorptive parts, 

and (ii) being well-defined up to 1100 Mev,giving us direct 

consistency tests for experimental data. BGN[lO]have shown 

how the Chew-Mandelstam equation can be obtained as a first 

appoximation . Love 1 ace[ 11] proved that the Chew-Mandelstam 

equations have no solutions if the p--wave absorptive part does 

not vanish, and therefore in order to construct ŝ - and p-wave 

TT II amplitudes which satisfy unitarity and crossing, we have 

to incorporate some informations about higher waves and 

asymptotic contributions. The Martin inequalities and sum rules 

are well suited for this.



o'—
Wandes [12] has introduced the constraints in the unphysical 

region in the following way:

Introducing

T*(s,t,u) = Lim F1 (s+i£,t,u-iE). 
£—>0

we have
Jds du T (s , t, u) Q (s , t, u) -0,

(1.5.1)

(1.5.2)

where Ais the., tringlejs, t,u| s^o, t̂ ,o, u)oj and the polynomial
Q(s,t,u) is antisymmetric if 1=0,2 and symmetric if 1=1 in 
s,t,u under s-f̂ u crossing.
Expanding Q(s,t,u) in the Legendre polynomials:P,(z)(z=l+2t/(s-4)) 

N
Q(s,t,u)=^- q, (s) P;(z), we get (1.5.2) in the form 

l = o 1 1

J o  j ds (4-S) qps) j  dz Tl(s.t.lO PjCO

N
ds (4-s)q (s) fi * (s) =0 

= l = o I ' 11 J 1 1
(1.5.3)

As q^(s) are polynomials in s, (1.5.3) is a linear relation 

between moments of a finite number of partial waves over the 

unphysical interval [o, 4]. There are two (and only two) conditions 

involving s waves only, and three (and only three) conditions

involving both s and p waves only: 
ds (4-s)(3s-4)(f°(s)+2f2(s))=0

ds(4-s) (2f°(s)-5f2(s))=0

ds(4-s)s(2f^(s) -5f^(s) ) = -3j ds (4-s)2f}(s)
o

(1.5". 4a) 

(1 .5“. 4b)

(i . 5.4c)

f  , r
£ ds (4-s)2s(2f°(s)-5f2(s))=-3j ds(4-s)sfJ(s) (t.5.4d)

o
f ds(4-s)ds(2f° (s)-5f2(s))-3i ds O ' O  5  C3s-4) £d (s)J v ' v O v  ̂ 0K J J o

(l *5 • 4e)

Balchandran and Nuyts [_2] have shown that it is convenient to 

expand
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(s) in Jacobi polynomials P ( 21+ 1,0
n

oc
f s 1 = 21n=0 Ijn

,(21 + 1,0)
( 5 S - 1 )

ils-1) : 

(1.5.5)
And this series converges for o<s<4. The crossing conditions

relate the coefficients f,* with constant (1+n):1, n v J

I ¿ n £ B n>I»;[/ l' (1.5-6)
£l,n" 1=0 j/ 1,1' f l\ 1+n -1'

Martin[5J started the investigations of the constraints 

imposed by positivity and crossing symmetry on the S and P waves 

in the interval [0,4], his coworkers followed his methodCi3] . 
Wanders [i 2] has derived the following inequalities*.

T (s ,t ,u )> T (t )+ 3T, (t ) (1- 2so ) o’ o ’ o x o o' l v o v ■£—-— J
o

T ( s.,t ,u )<T (s 3 + 3T. (s ) (l-2to •, o’ o o o o 1 o ),
' o

where (s t , u ) are points of the triangles.

(1.5. 7a) 

(1 .5 . 7b)

Furthermore, the inequalities comparing the values of S and P 

waves ( or their first order derivative) at two points s q and t

of the intorval[o,4]are:

f°°(o)> f°°(3.l55) (1.5.8a)

fo00 (0.2134)>f 00(2.9863) (1.5". 8b)

1.844f|(0.2937)+3.765fJ(2.4226)<fOo (0.2937)-fOo(2,4226)-

f°?o.2937)+f°°(2.4226) (1.5.8c)

0.6146fJ(0.2937)+2.SlOfJ(2.4226)

> f°° (2.4226)-f°(o.2937)+|f°°(o.2937), (i.$'.8d) 
where (s)=|f^(s)+^f“(s) are theT n->TUhmplitudes .

1.494 f°2(0.537)-i.623f°°(2.363) < f°?0.537)-f°°(Z.363)

<i.5i0f°° (o.537) — 3 .622 f°°(2. 363) (i.5.8e)

These inequalities lead to tlie coclusion that f00 '(0.537)(/
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o ois equal to £ (2.363), up to D-wave corrections.

Thirdly, we have inequalities relating the derivatives 

of S and P wave amplitudes: .

gsf°?s) C O  for 0<s ̂  1.12 7 (1.5".9a)

3sfo°(S)^° for (1.5.9b)
d2 fo°(s)>0 for 0 < s s<1.7 , (1 .5.9 c)
dsz ° 0Q
showing that fq u(s) has a unique minimum in the interval [(0,4] 

located between s=1.127 and s=1.7. 

f°°(3;i55) <f°°(o) < f°°(4) (1.5. loa)

f°O (2.9863)<f°O (0.2134)<f°°(3.205) (1 .5.10b)
From these inequalities, we get a fairly good idea of the 

shape of 17c rT° s-wave in the interval [o, 4j . However, it is 

difficult to judge which inequalities are the most constraining 

and which ones are re dun dfinit. Both Roskies* ana Martin's 

inequalities are very useful ways of building up phenomenological 

models,but they hold in the unphysical region 0<;s^4 .

Common and Pidcockf(l4] have used crossing and positivity 

of the scattering amplitude to (i) improve the constraints 

on the derivative of the d wave previously obtained by one of 

the authors ,and (ii) to derive an infinite set of inequalities 

between the values of the d-wave at three points in the un

physical region. They checked these inequalities against a number • 

of models,and some qualitative conclusions have been drawn.

By using more restrictive crossing inequalities they have been 

able to derive constraints on f^fs) i*1 w^°le interval [o,4] .
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Their general effect is to ensure that f? (s) is a smooth 

function of s in this interval, and although it can have 

a maximum for s<1.47,it cannot become too small as s~»-0.

Common,Hodgkinson and Pidcock Q$J have investigated 

constraints on the derivative of the G~wavef°° (s) for 

iy°fi?->liVusing crossing sum rules which follow from quadruply 

subtracted dispersion relations.In particular,they have 

shown that

df4(s)
ds 0 for 4 > s x i . 4 8  8. ( 1.5.Uj



c ̂

In constructing low energy models, one intends to present the 

complete set of amplitudes consistent with recent high stastics

pion-pion experiments and with the theoretical constraints 

of analyticity,crossing and unitarity.Then the implications of 

these results and future experiments, which would remove the 

final ambiguities in the low energy]!!! amplitude, are considered. 

The experimental UN information is much more accurate and 

abundant,while theoretical constraints onirn-HTtr,which is a closed 

system under crossing, are more stringent. Our basic starting 

point consists in the rigorous equations, expressing the crossing 

property directly on physical partial wave amplitudes,derived 

by Roy £243.Roy's equations,which are non-diagonal but linear, 

give relationships between the real and imaginary parts of the 

partial wave amplitudes,provide us with a check that the phase- 

shifts deduced from the data are consistent with crossing

and analyticity properties [253 “— 1 at least within the limited 

energy region in which they are valid. The smaller the errors

on the data the more restrictive are Roy's equations-- therein

lies their power to discriminate between different phase-shift 

solutions and analyses.

Several groups of workers like FP [26], BG [23,GB [283,

PP£293 ,BGN[10]have analysed the situation and the results may 

be considered qualitatively similar. In future, it is absolutely 

necessary to supplement crossing and unitarity with very precise

dynamical properties-- and not just a few low energy parameters

in order to specify themamplitude .

1.6 LOW ENERGY MODELS BASED ON ROY"S EQUATIONS



We write the dispersion relation for ir°1T%-Ti°IT in the form:

1cOO, . -, <F (s , t, u) = a

1_
Ï1

, t(t-4) r  oo
A°°u rT - dx

4 x(x-4)

dx A°° (Xj t)r 1x-s + 1X

(x , 0)F —~’ jx -1 x + t-4 

1
x + t-4

( 1 - 6 . 1)

where a°° is the s-wave scattering length, the absorptive part 

can be expanded in partial waves:

A 00 (x, t) - ™  (2 L+1) Imf£°(x) P t (l+
L=< x-4 (1.6.2)

Using t^u symmetry in the direct channel and proj ectigF00 (s , t, u)
onto partial waves, we have£ldj

A r l
f^s)= l  \ F00(s,t,u) Pt(z)dz=j F00 (s , t, u) PL(z) dz

2 -1 o
4 ' f  4_sF0 0 (s,t,u) P£, a +- ~ 4-  )dt, (1.6.3)

We obtain a set of relations for partial wave amplitudes on using 

equations Q.ff.l) and (i.fi.2):
f‘°°(s)= a°° <fto . f, ( 21+1) J  ds/,.t,'/0 -4 ds'K^s^x) Imf£°(x), (1.6.4)
r rwhere d, is the kronecker delta and the kernels K. (s.x) can be ?;0 L

deduced from the above equations, provided fi/ converges in the 

range -4^s^60.

Roy has argued that if the absorptive parts Imf^(s) are known 

in the inelastic region s_̂ 16, the elastic unitarity relation 

Im f^ (s) = p ( s) (Ref£(s))2 +(Imf^(s))f  (1.6-5)
provides a system of non-linear singular equations defining Imf Us)
and hence the amplitude in the elastic region.
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In case of charged pions,the equations have the
form [30]

1 ^  -SvKs-4

W t o
a2o

1
1' =0

IL ' I '
Kt,l (s»x) ImfL (x) dx + J[,(s),

(1.6 .6)
where a° and a^ are the s-wave scattering lengths for I=o,2;
Oj(s) is a well defined sum of higher wave contributions (L ’>2)

CPO

,I ' T 1
(1.6.7)ti4s)

2z.
I '= 0

00

t'=2
j,j (s,x) Im f̂ , (x) dx

The kernels are given by BGN [loj. The first term in (1.6.6)
is a polynomial subtraction term, satisfying all crossing
constraints.. The second term is an integral over s and p waves
satisfying all Martin inequalities and Roskies relations for 

t ' .all Im f̂ , ,t'=I'=0,l provided they are positive.
Introducing some cut off parameter N, we split the x 

integral into two parts:

d.cs)
2

S .T .+
I '=0

1
Z
(L'=o

r 1 *1• i> i r .
J KLi (s ,x ) Im f^(x)dx + d ^ SJ 
4

(1 .6.8)
where S.T. is the first order polynomial subtraction term in
(1.6.6) and d^(s^ is called a driving term: 
d[(s)= d^(s) +d2 (s) (1.6.9)
The first term in (1.6.9) is the contribution of all waves 
for x>N, whereas the second- term d2d (s) is the contribution 
of higher-waves l!<>2 for x<N:
A TJ  SC/ JL

di (s)- I ' =0
op.

L'=0
(X)
j
N

à 1 t  «

Kti ,x) Jm
• j,
f^,(x) dx (1.6 ..10)

dp (s) =
2

I '=0
op■>
i d  - 2

NJ4.
L' i '

K|,T (s,»x) Im f, (x)
±t'

dx (1 -6.11)



We choose for N an energy squared above which a Regge repre

sentation of the amplitude is convenient.

On computing the Regge contribution in the dispersion relation 

(i . (5-1) and projecting the result on partial waves, the driving

(25)

term for the
IttV

amplitude is

df (s) = 5 J dz PL(z) J dxja(x,t) A°°(x, 0)+b (x, t, s)A°?x, t)l 
"1 N (! .(5.12)J ’

where one can read off a(x,t) and b(x,t,s) from equati on (1.6\ 1) 

In S and P-waves, the resulting driving terms can 

be approximately parameterized between threshold and N by

Cl. (T. 13)d[(s)= (s -4) fs-4')n"1
L n=l dt,nlS 4J

where d, are coefficients. t>n
Once we know the driving terms d^(s), equation (l.d".8) 

becomes a system of non linear singular integral equations 

for the amplitude in the region 4 ^ s  $N when put together

with the unit.arity condition

Imf[(s)= p(s) | fps)|I i-(Ups))2
4p(s) (i.<?.i4)

After determing S and P-wave amplitude, higher partial

waves are computed directly by equation (1. (J. 8) : 
2 1 N

' 1  .....  -
4

1/ N

i u t ' JV ijY

f*- (s)" % o  l o  \  Kil(s-x:i Imf^ x)d3C +

(s-4)
—  J  dx ImfL(xj_______ + dÎ((s), 1^2, ( 1 . 6 .  15)TT

* (x-4)t/(x-s)
where the driving term contribution is redefined in order

to extract the direct channel right hand cut contribution.
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In the region 4<s^ 60,unitarity is a very weak constraint on 

these waves,we define the phase shift by the approximate relation 

tan <£*(s) = ((s ~4)/s) zRe f ̂ (s) (1.6.16)

The crossing constraints,which relate the d and higher waves, 

together with positivity imply that the size of the d-wave (in 

some defined average sense) controls the size of the imaginary 

parts of the higher waves. These constraints imply that as far as 

the s and p waves are concerned Roy's equations&nbody the full 

content of this limited s*e>t crossing provided the so called 

'driving terms/ satisfy these subsidiary crossing conditions.
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In addition to the asymptotic bounds,rigorous limits 

on the pion-pion amplitude have been obtained by Martin[16] for 

finite values of the argument:

1.7 BOUNDS ON SCATTERING LENGTHS AND AMPLITUDES .

> “2 » ̂ )l <tOG (1.7.1)
Using the axiomatic analyticity and unitarity we 

can show that in the region s<4, t<4 and u<4 the ̂ scattering 

amplitude cannot be arbitrarily large.The upper and lower limits 

have the merit to exist.

At a fixed t,-t $t^4, a. dispersion relation for

a scattering amplitude, which is symmetric in s and u, is
_2

F(s,t)=g(t)+ -jj \ As (s/, t)ds/ u2 r T °

* fT~s' “ ( s'-s ) AA ^ 7 du/(1.1.2) 
f2 /

Introducing the variable z-(s-2 + t/2) ̂  , the right4 an&u left

cuts may be folded to give Cl6a] :
oo

ImG (z »t) d z' (l.*1 . 3)F(s,t)=G(z t)=g(t)+i=r
11 7(2 + t/2p- z'(z'-z)

This function,G (z , t) , becomes a Herglotz function [l6b] if it is

regular in lmz>0 and Im__G \ £ . j z \ q
Im z /

Now, from (1.7*3) we have
n

0  .*1.3A)

dt
G(z,t)]>0 for z real<( (2+t/2) and 0<t<4 (171.4a)

/1 \ n v~~j F(s,t) ^>0 for fixed t, 2-t/2^s<;4 (l.r1.4b)

From crossing symmetry, we have 

d \ n
f r q tl ,dt ) F(s,t)]>0, for fixed s and 2-s/2 <. t < 4 (1)1.5 a)

n
dt F(4-u-t, t,u) 0 , for fixed u and 2-u/2.<t^4 (1.1.51»)
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Jiii and Martin[l7] have shown that inside the triangle 

s<4,t<4 and u <(4 , the point s=t=u=4/3 is an absolute minimum of 

F(s,t,u). As we know that atleast two out of the three variables 

s,t,u are positive,one can take s,t positive. For s>t>u, we 

have two distinguished cases:

(A) if t > 4/3,i .e . s)>4/3,
4. 4

F (s , t, u) = F(s,t,u)-F(s,|,|-s)+F(s,^,|-s)-F(|,|,|)+F(i>3,3-)
( 1 / 1 . 6 )

The first two terms on the right-hand side, taken together, 

core positive on the basis of (1.1.5a) , and the third and the 

fourth terms together are positive on the basis of (irl.4b). 

Consequently, we have

F (s , t, u) > F (4/3, A-/3,4/3). (1.1.7)

(B) if t<4/3i.e .u <4/3,

F(s,t,u)=F(s,t,u)-F(8/3-t,t,4/3)+F(8/3-t,t,4/3) -

F(4/3,4/3,4-/3} +F(4/3,4/3,4/3)

The first four terms taken together are positive,we have

F(s,t,u)> F(4/3,4/3,4/3) (1.1.8)

This result is true in all parts of the triangle. Also, F(s,t,u) 

increases along any straight line originating from the symmetry 

point inside the triangle.

Using partial-wave expansions , Lukaszuk and Martinfl7j 

have found a function (j) ( ¡F(s,cos<|)j , s,t) such that

Ag (s , t) ,> (j) ( IF(s , cos^)( , s , z) for -1<c o s0<1, t>0. (1.1.9a)

\F(2,2,0) | <37 (1.1.9b)

-100<F (4/3,4/3,4/3) < 1 6 ( l.'l .9c)

Tlie n° IT °s catte ring length has the lower bound

n  n o> - 23m -1n
(i n  .to)

Ignoring subtractions, we have much better absolute bounds: 

°4F(4/3,4/3,4/3) < F(2,2,0) < 3.6 u a . i t )
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Bonnier and Vinh Mau C 1 '/} have improved the bound t

an° no> . 5m -În c i n .12)

Bonnier[l8] has developed a new approach to derive 

rigorous phenomenological bounds for the s-wave scattering 

lengths. A new class of upper bounds on s-wave scattering lengths 

appear and the lower bounds are improved. The best result at 

present given by Bonnier is (in units of the pion mass): 

a°°>-3.3. (1.1.13)

We discuss Bonnier's bounds in chapter III,in detail,since 

our method is a new development over his.



j . %  LOPEZ. AND MLNin'ESS 1ER BOUNDS.

Lopez [t9] has developed a new method for finding a new
o olower bound on the (Iff S-wave scattering length in terms of the

D-wave scattering length. The main ingredients of the method are

the Roy exact partial wave equations and an extensive use of

unitarity in the physical region.For a value of a ^ ^  . 3X10"^

he gets the bound a08/)^-o.33. This is an improvement over the

earlier results by Common and De Witt,a° ° y  -i.t6;Dita,a0®)-o.7t;

Furmansky, a°° y -o . 56 arid Grassberger, a°°)-o. 42 |~20J

As the basic idea is to use Roy's equations as a way

of imposing analyticity and crossing constraints, the method

is in principle applicable to other waves by using the corresponding

Roy's equation.The result for an Experimental" value a2 = i.6;<10  ̂
is a ^ ^  -0.23 [ t9aj

Furthermore,Bonnier,Lopez and Mennessier have used 

axiomatic properties^i”]to derive new absolute boundson the n ° n °  

amplitude in the Mandelstam triangle. In particular, if the ampli

tude is so normalized that its value at threshold is the scattering 

length, the value at the symmetry point, which is considered as 

a measure of the IT IT coupling, is shown to lie between -t 3.5 and 

2.75:

—13.5< F (4/3,4/3,4/3)< 2,75

-4.85 < F (2,0,2) < 2.9. (l.fc.l )

Lopez and Mennesier[22] have improved substantially the
O Oprecedent absolute lower bounds on the FT IT S-wave scattering 

length. The main feature in their derivation is the exploitation 

of the known sructure of the partial wave left hand cut disconti

nuity,explicitly exhibited by Roy equations. Their final result is

oo y - 1.75- ( i . Z . Z )d xo

(30)
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1»9 EXPERIMENTAL RESULTS.

The picture of the nucleon which is implied by Yukawa model 

is of a particle continually emitting and reabsorbing pions
y

so that it is effectively surrounded by a pion cloud.If we 

consider the various inter-nucleon forces in terms of the 

exchange of the Yukawa quanta,pions, we obtain the following 

results(fig.6).For proton-proton and neutron-neutron scattering 

exchange of a neutral pion is required, unless exchange of 

two-charged mesons is allowed.For neutron-proton scattering, 

however, we may have exchange of both neutral and charged 

pions.The equality of the n-n,n-pand p-p forces indicates 

that all are due to the same type of exchange,so that we must 

suppose that neutral., as well as charged, mesons should exist. 

This extension of the original Yukawa proposal was made in 

1938 by Kernmer.

The Yukawa picture would suggest that it should be 

possible to produce pions in nucleon-nucleon collisions if 

the bombarding energy is high enough.We may picture the incident 

nucleon interacting with a pion in the " cloud" and actually 

knocking it free(fig.7).

The pion has spin -parity 0 and is called pseudo-
scalar particle .There exist three •TT-meson s which are almos t
identical excep t for their charges .Thus we write 21 +IT 1=3,
so that isotopi c spin Î_.j. = l and we assign:

(In ~) 3~ ~1> (̂  j”j o ® ? C'rr+y + 1.



information differs from the other low energy process in the

sense that there is no direct data and one has to rely on indirect

evidence based on the following special features f as reviewed by 
Morgan and PisutiT25a]:

(a) The piom is the lightest hadron therefore dipion systems 

often feature among reaction products

(b) One pion exchange(OPE) is pervasive, which leads to the 

possibility of extrapolation to the pion-pole (Chew Low)

from the analysis of peripheral dipion production in T1N-*TT TT N 

and also in TT N -^TT T T  A, n  d-tNN TT IT.

(c) The structure of TT IT elastic scattering is especially 

simple.In fact up to 1GEV, IT IT scattering appears to be des- 

cribable by the five phase shifts -(notation ciJ) and inelasti

cities (notation ) :

The extraction, of IT 11 elastic phase shifts from experimental

ci°, d2,1 j , ̂ 2 ,^2o’ o’ l ’ ’

o 2 1 o 2

A few partial waves are excited,'(1IT-^3IT because of G parity

and TT TT-rdT! does not set in until high energies.

(d) IT TT scattering is a crossing-symmetry in a relevant

way.

We can classify reactions yielding information 

on the IT IT system into those in which just two pions appear.

Kê , decay:e+e —s-TT' IT ,K° ^->2 TT, TTN—vTIfi (extrapolated to 

the t-channel)^ ITN-^TI TTN with the GPE term successfully 

isolated. There are seme reactions in which three or more pions 

appear or two pions appear in company with another hadron:

1̂ ,K°,K± , N N I T h - > I 1  TT N with OPE term not isolated.
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BFP[32aJhave used the crossing conditions cn physical 

region IT II partial wave amplitudes to study the implications 

of the existence of the p.They have shown that the mere existence 

of the p does not constrain appreciably the s wave scattering 

lenghts and that no correlation from crossing between the p  

and the 1=0 ^resonance can be established without further 

physical assumptions.They have been able to draw the following 

conclusions:

(a) The uniqueness claim,made by GMN and BG,is a failure.

(b) Their findings are somewhat similar to thoseo^Morgan and 

Shaw [33] , barring a few differences.

(c) Their findings are also similar to those of Piguet and 
Wanders' results with the unphysical region constraints.

(d) They find the absence of any crossing correlation between 

the p  and £ resonances.In particular, crossing does not cons

train the striking features of low energy n  H  s and p waves.

On making further investigation of HIT phenomenology 

below 1100 Mev, BFP [32b] have ine orporated the following 

information:

(a) For the p wave we fix the mass and width of the rho meson

M/> =765Mev,T^=135Mev,but allow the scattering length a| 
to be arbitrary.

(b) The isoscalar s wave phase shift in the mass range 

500<M^^<(900 Mev must lie in the between-down or between-up 

bands[ 34j.

(c) The 1=2 s wave phase shift d has a rather smooth behaviour

with a value at the rho mass in the range d (M )=-15°+5°° p-



(d) Inelasticity due to 4TT production below iGev is negligible,
* obut there is a strong cusp or S effect causing d to accelerateo

rapidly through I80°and a sharp onset of inelasticity, at the 

KK -threshold.

Commenting on IT II dynamics, BBSFP[35] have made conclud 

ing remarks:

(i) that once a given set of data is chosen for d° and once a0o o
is fixed the Tlli amplitudes below 900 Mev are determined practi

cally uniquely. And a very strong correlation is put by crossing 

symmetry between the various partial wave amplitudes.

(ii) In order to reduce the remaining ambiguities, the direct

procedure would require (a ) an accurate Ke^ experiment with

known small systematic errors and ( li ) a reliable determination

of d°. o
6'n) Owing to the correlations, several other pieces of infor

mation constitute direct counter checks to any assignment

for a°( and <V°(m ). o^ vO^ p
(jv) As the s-wave scattering lengths are concerned, it is 

not at all established at present that Weinberg's predictions, 

a°^0.16 and a^'-'-0.045 , are supported by experiment.

(v) If aQ and aQ turn to be noticeably different from Weinberg's 

values, either the structure of SU(2)XSU(2) breaking or the PCAC 

smoothness assumption will have to be considered.

(Vi) The exact values of a^ and a^ are of little importance 

for the IT TT amplitude as we depart from the threshold region, 

since we can produce phases with different scattering lengths 

but which are very close above,say,500 Mev.
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At present the most accurate and detailed information on II IT- 

scatteriiag above 1 Gev comes from the 17 Gev/c CERN-Munich 

experiment on 371 p— * n +n  n [36] .However, there are several ambi

guities involved in obtaining the T1 11 scattering amplitude 

from the data. Broadly speaking, there are 3 different classes 

of ambiguities in reconstructing the ampltude from experiment C.2C]

(a) it pertains to production amplitudes neither containing

the one pion exchange signal nor affecting it in the observables,

(b) it pertains to production amplitudes describing (or affecting) 

off-shell TI T1 scattering,

(c) the third class of ambiguities contain those one would have

if experiments on a real pion target (rather than a virtual one)
-I. i . , . an ordinary scattering experiment onlycould be carried out--- - &  n j

measures the absolute magnitude of the amplitude.

In the second chapter,we discuss these ambiguities in detail.
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CHAPTER II: PHASE-SHIFT ANALYSIS OP TI TT SCATTERING.

Z.O. INTRODUCTION.

The scattering amplitude is the most important object at 

the interface between theory and experiment. Theories are supposed 

to predict scattering amplitudes,while experiment gives some 

informations about observables like the scattering cross section 

and other quantities such as polarisations. Phase-shift analysis 

is the extraction of the scattering amplitude from scattering 

cross section and other experimentally observable quantities.

In the case of energy dependent elastic scattering, unitarity 

gives us. the un-observab] e angle-dependent complex phase of the 

scattering amplitude with a few choice of solutions. On the 

contrary, above the inelastic threshold the unitarity nuts cons

traint on a scattering amplitude in the form of only an inequa

lity, and consequently, there exists a continuum of different- 

amplitudes corresponding to the same observables. The continuum 

ambiguity is serious,even in ideal phase 

perfect data.
shift analysis with
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9-1. PROBLEM OF AMBIGUITIES.

In the elastic region unitarity directly relates 

real and imaginary parts of the amplitude for each partial wave, 

but in the inelastic region it only provides an inequality 

constraint between them,demanding each partial-wave ampli

tude to lie inside or on its unitarity circle.

The basic continuum ambiguity is defined in the 

following way.At fixed energy

F(z) =ei(̂ Z'* F(z) , $(z) real,-1< z<l, (2.1.1) 

gives the same cross section as given by F(z) for any such 

function <H(z) . This continuum ambiguity is serious. This phase 

factor h-as nothing to do with the unobservable phase of wave

functions in quantum.mechanics where,
i k t*

'fix)- e1-*- + F(0)^;---, r—^oo, (2.1.2)

but the phase of the scattering amplitude is the relative phase 

of the incident and scattered waves. The phase function (j)(z)12Gdj 

is restricted by the normal theoretical assumptions of phase 

shift analysis,namely:

(L) Lorentz invariance: it restricts the kinematical variables

to two , e . g . , ene rgy-Ts and 0 or z = cos0
5' £>

(U) Unitarity: f^(s) is on a unit circle in the elastic region 

and inside it in the inelastic region; it is this weakening of 

the unitarity constraint to an inequality that gives the conti- 

-n<um ambiguity.

(R) Finite range:for large angular momentum

f](s)-0(e_1/kR), l-*oo, (2.1.3)

where R is the range of the longest force.

The theoretical assumption of finite range is extended to 

general analytic structure in z: there is a cut plane of 

analyticity in z with z^ and z r corresponding to the lightest
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t-channel and u-channel exchange respectively ( Ftp?)'-

Z = 1 + o
1

7 7
2 k k

(2.1.4)

The unitarity restriction has to be explored numerically 

on the line of a few general remarks:

(i) An inequality constraint normally allows a contimnn of 

solutions.

(ii) The partial waves lie near the centre of the Argand diagram 

in the inelastic region, for small inelastic amplitudes (fig. 8a) .

So, the unitarity constraint is unimportant.

(iii) As the high partial waves lie near the edge of the circle 

in elastic processes, it puts restrictions over (j) near : (j)(Zo) r-0 

ensures f^ to be real. The z-discontinuity of F(z) to be real

up to the spectral function boundary z^,ensuring that f^-yO 

as l—^oo along the proper quadratic curve(fig.8b),it puts more 

restrictions over

The ambiguity continuum corresponds to an area,or areas, 

on each partial-wave Argand plot, each point of which is connected 

to a point in a similar area for each partial wave. These areas 

are called islands of ambiguity. If the islands of ambiguity 

cover a significant fraction of the Argand circle for some waves, 

it is called a serious ambiguity and if the areas are small the 

ambiguity is not serious — even if there are infinite set of 

solutions.

None of the criteria, described above, restricts(j)(Z) 

to a finite set and there is a continuum of scattering amplitudes 

for each set of perfect data measurements,corresponding to 

different functions (j)(Z) . The question. arises as to how large 

is the ambiguity continuum.



I£ the ambiguity continuum is a functional of the phase function 

<j)(2=:Cos(p , one has to explore the whole of an infinite dimensional 

function space in order to find its true boundaries. There have 

been explorations in particular directions in the function space 

which gives at losst a lower limit on the size of the ambiguity 

continuum. However, a simple analytical way of approaching the 

problem qualitatively has not been done. The main results for 

perfect data with zero errors are essentially of the following 

types: (a) the ambiguity is discrete with, at most, a finite 

number of discrete solutions, (b) if all partial waves, except

the s-wave, are not too large the amplitude is unique, apart
*

from the trivial ambiguity(F=-F ) corresponding to changing the 

sign of all phase shifts,(c) if the partial waves are large,then 

in a number of situations there is Crichton ambiguity [37]] .

The trivial ambiguity corresponds to reversing the 

sign of all real parts and thus of all phase shifts. We can 

remove it by observation of Coulomb interference,in the case 

of charged particles. It can be also removed by the inclusion 

of extra dynamical constraints on the amplitude of TT TT scattering
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2.2 THE MODULUS AND THE PHASE OF THE SCATTERING AMPLITUDES.
The scattering amplitude F(s,Cos tp for the reaction

n + T T —* n  + n  is a function of two variables :s and 0.s
The scattering amplitude F(s,cos0) is a complex number and the

differential cross section
2dcr

d.n-
4
s

F(s ,coso) (2 . 2 . 1 )

is real, it is not obvious that the information exists to fix 

F(s,cos9s). In practice, the modulus is most of the time the only 

possible and accessible quantity, the phase and the modulus 

are linked by very general relationships based on things,which 

are : conservation of probability, called unitarity implying in 

particular certain positivity properties,and causality(as expresse 

by an underlying field theory). It follows that the physical 

scattering amplitude is the boundary value of an analytic function

For any function <j) of energy and angle, which is real 

in the whole physical region,we have

F (s,cos©) = F(s, cos0) exp i(j)(s,cos^) (2.2.2)

both sides giving exactly the same cross section.

F(s,cos6)) is the modulus of the scattering amplitude, (j)(s, cos©) 

is the phase.
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2,3 PHASH SHIFTS IN ELASTIC REGION.

If Ec.m.=/s is low enough, all inelastic channels are 

closed and unitarity takes the simplest forsmn3$J

f(s,-lr2 )= ~  F (s , cos0) , (2.3.1)
/s

where 1^ and 1^ are unit vectors in the initial and the final

directions of the colliding particles, so that cos9=l1.l0s — 1 — Z •
We can express unitarity by equation[38j;

Im f(s,l1,l2)
\J

d-0-3 (s,lr l3) f(s‘,l3,l2) (2.3.2)

One can expand F in terms of convergent partial waves,
oo

F(s,cos0s)= -ĵ q (21 + 1) f 1 Cs) P1(cos 05) (2.3.3)
and unitarity equation becomes

I»i = iqts)!1- (2.3.3a)

f exP(i^1) sind-j (2.3.3b)
1 2 k

It is the unitarity which guarantees that the phase shift,d , 

is real.

We can consider equation (2.3.2) as a non-linear 

integral equation for the phase;once we know the modulus,

f(l.pl2)= \ H l 1 tl2)| e x p i f H l ^ l ^  (2.3.4)
it is sufficient to find the angular dependent phase (j)(s,cos(|) 

of the whole amplitude, which is obtained as the solution of

the non-linear integral equation

or Sin ^¡(1-.1?) =

COS

i—  &J03
4 TT 1 -,f(lr

f(lr -cos

(2.3.5)

- 1 í -3-,_¡K-2,-Í

(2.3.6)



Any function (j) substituted in the right-hand side of (2.3-6) 
yields another function (j/ on the left-hand side, and each of 
these functions is a point in a suitable space so that (j)=0(<j)) .
If the output region of the function space (j) produced by the 

mapping lies entirely within the input region for any choice 

of (j), and any pair of points are brought closer together by the 

mapping, we call it a contraction mapping. On applying such 

successive mappings, we get smaller regions and so there can 

always exist a fixed point, which-is mapped onto itself. The 

fixed-point value of the phase function (j) is the unitary solution

These fixed -point theorems in non linear analysis have been 

applied to the problems by Klepikov [38 aj,Newton [39j,Martin [40j 

and Atkinson [4lj.

In order to have at least one point fixed in 

the mapping (2.3.6), we need a limit on 

SincC s Max A S H £(ii,i35|i£(i3>i2)!
411 |f (i1, i2) | (2.3.7)

For the slowly varying phase, (2.3.6) goes roughly to the 

maximum value of sinoC.And this to be physical we should have 

siWjfl, which ensures that (2.3.6) is a contraction mapping and so 

we must have at least one fixed point. Its phase gives us the 

guarantee that elastic unitarity is satisfied.By iteration 

procedure on a computer, one can find out convergence to give 

the solution. The condition sinAsl is very restrictI ve; for an 

example, due to the presence of the denominator of (2.3.7) 

it excludes differential cross sections with deep dips.

In order to remove the trivial ambiguity, we require 

that the real part should be positive,then

0< d)(coŝ )<pC < n/2 (2.3.3)
OV "Rc-f (Cos 6J > o , tCoscp > O c 2.-3 ■%<*)
and there are no sign changes. For 1^1,

Re f Be f 7 dz Ref(z) [ 1± P (z)]>0, (2.3.9)
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as(P^(z)i<l and similarly for the Im(f +f^). These partial waves 

are on the unitary circle in the elastic region and we have 

Imf 1 < l orj <Jj<n/2, (2 .3. 10)

it has been improved to

|dj <rr/6 , 1} l (2 .3.11)
In sliort, all the waves except the s wave must be fairly small, 

and certainly non-resonant for these results to hold good.

It is possible to prove, on the basis of analyses 

of authors[.38a , 39, 40, 4l] ,that the iterative solution converges 

if
Sup r
over

all a „ 4 e ! n  ' | f < 4 3 0 1

d-0-3 ¡f(i1,i3;)(]f(i2,i3)/ / 0.79 (2 .3.12)

Therefore, in a situation where we are close to a resonance 

Cci-L—  ri/2) , the condition (2.3.12) will be violated. The partial 

wave amplitudes are exponentially decreasing, even then the 

existence and uniqueness of the solutions is not clear; different 

sufficient conditions of some stronger and some weaker nature are 

obtained. However,it has been shown by Martin [. 40)]that for 

sink<l/7T the solution is unique.

Crichton[37l has shown that there exist the two sets 

of phase shifts which give identical cross sections without 

violating the Martin uniqueness theorems:

6  =-23° 20' o
cf = 98 °50 f 0

d’1 = - 4 3° 2 7 4 2e°
d-j = - 2 6° 33 d2=20° (2.3.13)

One may hope that the Crichton ambiguity could be the only sort 

of ambiguity w'hich can be found in the elastic unitarity 

situation. It has been shown by Martin £40 J in the form of a

relationsh i n :

15 e xp ( 16 2 j s in <f2 . [<: os 0- x ( d ) ±i y ( )1 ( cos 0- ~~ + \ i c o t d„ ̂  2•1- c* i. L. i O b £ .3.14)



Atkinson et al.[42] and Cornille and Drouffe [43] have extended 

Crichton ambiguity to the case of four fold and five fold ambi

guities. On the other hand, Itzykson and Martin [44] have found 

the same result for entire functions, which are not polynomials.

Berends and Ruysenaars [45j put forward the idea 

that there can be,at most, a two fold ambiguity. And one can 

choose the option of writing the amplitude as a product over its 

zeros :
L

F(Z)= B TT (z-z.) (2.3.15)
•' i = l 1 »

where the coefficient of z^ is proportional to F^,

6= exp (idT)sinci (2L+1) — (2.3.16)
i l  l 2L(Lt)z

And the cross-section can be written:

= Î !pi2 h  (2-2p(--*o (2.3.17)
Xv 1 — 1

Gersten L46J observed it for the first time that the cross section 

would be unaffected if we replace any of its roots by its 

complex conjugate.
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1.4 PHASE SHIFT SOLUTIONS IN INELASTIC REGION.

When the collision energy of Tf and JT is sufficiently 

high other reactions compete with the elastic reaction 
TT+IT*—~>lf+"H.

Then the conservation of probability is not so simple expression 

and we do not have anymore an integral equation for the phase. 

Unitarity ,which in the elastic region directly relates real 

and imaginary parts of the amplitude for each partial wave, now 

only provides an inequality constraint between them,requiring 

each partial-wrave amplitude to lie inside or upon its unitary circle 

If all partial waves lie inside and at finite distance from the 

edge, there is a whole family of phase functions (j>(Z) of limited 

magnitude but of infinite variety of functional form, which 

does not move any wave outside its circle. One must make, sure 

that the transformation (j) keeps the waves inside their circles.

There is a continuum of scattering amplitudes for 

each set of perfect data measurements, corresponding to different 

functions (j>(Z) . The ambiguity continmm corresponds to an area, 

or areas, on each partial-wave Argand plot, each point of which 

is linked to a point in a similar area for each partial wave.

If the islands of ambiguity cover a fraction of the Argand circle 

for some waves, it is clearly serious, which is the usual 

situation in inelastic region. The ambiguity continuum is a 

functional of the phase factor <̂ >(Z) and to find its true 

boundaries is a very difficult problem, which involves exploring 

the whole of an infinite dimensional function space.

The partial, wave amplitudes should lie inside the

unitary circle:

Imf,(s)> 0.and
O- 4-.1)

( 2 ,4-2 )



Cosequently; Imf (s } 1 , l^) i's a function of positive type over the 

rotation group and for any reasonable function Q of the direction 

lv, we have £ 38j :

j V t i p  ImF (5,1-L.l2) Q(120 d-fL2 dill ̂ 0  , (2.f.3)

which is obtained by inserting the partial wave expansion of 

ImF for every 1 by taking Q (1^)=P^(1 .1^ with 1 some fixed 

direction.

In the forward direction (©s-0) ,we have 

ImF (s,cos^=l)- 1(31 + 1) imf (s), (2.4.4)

a sum of positive terms, which is positive. ImF (s, cosGs= 1) can 

not vanish unless the scattering ampltude is identically zero 

at all energies and all angles. Hence,we have 

ImF"- sin(f)lFj>o

and O<(J)(s,cos0=l) < IT (2.4.5)

At a particular energy s q , one has 0< (j)(sq, cos0=]) < TT to 

remove the 2IIn ambiguity. This phase satisfies inequality (2.4 .5) 
On the other hand, in the physical region (-1< c o s6|<-*1) 

the imaginary part of the amplitude is not necessarily positive, 

even3at very close to the forward direction.

From the result IP- (cos0)\-\P1 (cos6~-l) = l, we have the

inequality

(im F(s , c o s Q j j <ImF(s , costal) . (2.4*6)

Kinoshita and Martin [)47] have derived an inequality

ImF(s, cosOJ \ - 2, cos0> (2-4.7)
Im F(s,cos%=ir

This inequality gives new information on the phase.

We measure (ddyd-O) (cos^) as a continuous function of cos Q..



d*TL (c ° s ̂) >  ( c o s 0s= 1) (1.4.8)

and | F (s , cos0) j> \ ] F (s,l)(>l ImF(s,l) (1.4.9)
In the case of 0q < 211/3, we have

ImF(s,cos6)> ImF(s , cos^=l) (2.4-10)
It is obvious from the equations(2. 4.10) and (2,4.9) that 

Re F=0 ImF<(0. So, the phase factor ^)(s,cos^) can not be equal to 

-IT/2 + 2nn. For the forward scattering,we have 

0 < (j) (s , 1)< Tl and on using continuity in (|,we conclude that 
-XT/2 <  <j)(s, cos(|) <311/2 for 211/3 (2.4 .11)

Although this information about the phase comes from the modulus, 

it is considered to be a weak one.

By considering detailed properties of Legendre 
polynomials, Corniie and Martin 1)48] have found the result :

|<1> (s,cosep|<n>0/141_ g u g e -j4i;(s,coses=:L)
---------------  (a.4- 12)
a C'
~— (s,cos0')
d-fl

There is some angular interval (0<^<6q) in which

Here we no longer have restriction 0s<2H/3.

Bowcock et al. [493 chose partcular forms for (j)(z) 

and varied the coefficients of expansion until the unitarity 

limit is found out in some partial waves:

$(z)-£^(jii (z) (2.4.13)

They made a very limited exploration of this phase ambiguity 

on selecting a particular form of (j), with one parameter b*

(z)= b (1-z 2/1.5)^ -(3-1/1.5)*] (2.4.14)
Satisfying the restrictions (L),(U)-(iv) and (R). However, the 

method is limited to only one direction of (J) space with the neigh

bourhood of b=0. Theycôn-clude that,while no resonance''



is created or destroyed, quite large quantitative changes in 

resonance parameters are possible.lt has since been extended 

by Pietarinenf 50J .

Bowcock and Hodgson[5l] model amplitude is in the form:

F ^2  ̂ ('¿dvpv- z)
(5L.4-.lsD

It has been observed that for values of cT between -2 and 1 all

waves (s,p,and d) lie inside the unitarity circles and corresponding 

points on arcs represent allowed partial waves.

The ambiguities form lines only because the phase function (j)(z) 

has one parameter.

of the partial waves which rests on the fact that there is no conti-. 

mam ambiguity in elastic region,where the inelasticities are fixed 

and then using the latter as variables with which to parameterize 

the contin^am. The method is systematic and powerful. They have 

applied the method to cC,* e lastic scattering at 35-Mev. The results 

show clearly the islands of ambiguity. The ambiguity is as large 

as a third of the circle for the s-wave but it has a tendency to 

become more one dimensional in the higher waves. Recently, they 

have extended this work to pionuiucleon scattering [5 3],

The islands are , in general, smaller than inc£<< scattering, and 

in some cases remarkably small.There is the real possibility of 

suppressing the resonancein some cases where small resonance 

circles are involved.

ambiguity which actually varies the speed on the Argand diagram 

and so none of the usual structures should be taken seriously as

Atkinson[52] and ■ co-workers have developed a new method

The situation is more .ambiguous in the case 

of n +p and k+p,as oberved by Van Driel£54j. There are islands of

r e s on an ce s ,



Atkinson et al. [55] have constructed H  ' p continuum 

ambiguities from 1974 Sclay phase-shift analysis. It leaves 

unchanged the total cross-section, the differential cross-section 

and the polarization.They find that most of the resonant structures 

are stable, but that alternative solutions are possible that lack 

the second S ^or The resonance. Further, they suggest that

disagreements between different groups concerning the existence of 

the weak resonances,or concerning the masses and widths of stronger 

ones, may be caused by the existence of the continuum ambiguity.

In conclusion, we can obtain the scattering amplitude 

from the experimental data in the elastic region with only a few 

discrete alternative solutions at most. On the other hand, 

there has not been developed any reliable inelastic phase-shift 

analysis which gives convincingly justified results. The uncer

tainties in the amplitude produced by the continuum ambiguity are 

serious. Methods based on energy smoothing to find a unique 

amplitude are quite arbitrary, while the method of multi^. 

energy analysis based on fixed-momentum dispersion relations 

seems to be a sound route to unique amplitude. It is most desi

rable, but very difficult,to find a sound procedure which 

can be justified by analytic argument and error analysis.



( 5 0 )

i . S  ANALYSES OP MARTIN AND ESTHBROOKStfed

In the low energy region (M̂ . jj.<2Gev) , the presence of
■ f — *f -f- —the p(l (1 )--),f(0 (2 )+) and g(l (3 )-) resonances with masses

and full widths (770+ lOMev,150+10Mev),(1270+10,170+30Mev)and 

(1686+20Mev,180+30Mev)respectively is clear from the high statis

tics n “p-^TT+ri+nC5 6] and IT+P - > H +rr" dataf57] . The study 

by Flatte et al.£58}has shown the existence of the S (0 ) resonance 

near the k R threshold . Although the Frascati e+e — >2TT(4IT) 

data [59] is not conclusive, there is definite evidence for a 

p 1 (1600) from , the photoproduction prucess Y Be ~7*2IT(4 IT) Be 

observed at FNAL[60] .The p ' is also evident in IT TT partial 

wave analyses of the CERN-Munich high statistics TT p—»IT TTri
data£61] .

Using Barrelet zeros £62],Martin and Estabrooks ([63]

have made an -energy independent IT II partial wave analysis in

the energy range 1.0< M j_j_ ^^1.8 Gev, to examine in detail the
- +possible ambiguities, and to study the resulting XT TT resonance 

spectrum. The study has been done with a motivation for a possible 

£' resonance [64j under f, and p' resonance under g resonance.
— T  —Before extracting IT TT partial waves from TT p-e»

IT IT+n data, we have the moments<Y^>,J=o,1, ....2L, of the

TT. TT+— > n  TT1 angular distribution where L denotes the highest

non-neglible partial wave.<Y'^> determine the magnitudes and relative

phases of the first L+l partial waves,but not the overall phase.

In addition to that , we have a discrete 2 fold ambiguity,

expressed in terms of Barrelet zeros Z_. (s) of the TT TT*

scattering amplitude in the .complex Z = cosG-plane:
L 5

F (s , Z) -  f ( s )  n  ( Z - Z  ) ,  (0-.6-.1)
i =] JL—>(3o .in general. This ambiguity is due to the fact that the 

signs of ImZj cannot be determined from the angular distribution.



In the low energy region,- elastic unitarity may resolve this ambi

guity; whereas in the inelastic region the unitarity constraint
__ j.

is no longer as powerful. As the TT IT partial wave resonates 

(p,f , g z e r o s  are close to the physical region. It is clear 

from the study of Gstabrooks [65j and Hyams [6 6 ] that the zero contours
•k _

Z^(s) are extremely smooth in S except the S near the KK 

threshold. So, Barrelet zeros have found to be very useful in 

the phase shift analysis of IT TT+ scattering in the following 

sense:

(i) one can find all the 2^ solutions at a given s:

(ii) One can keep track of the physical solution by continuity 

of the 1 . (s) v/ith increasing s, and can find the values of

s,where alternative solutions arise (ImZ^O) ;

(iii) one can investigate the resonance spectrum for searching 

the existence of daughter resonances, and determine their 

parameters.

In E M ' s Cb3j study, for each ^  ,the data

determine the values of eight parameters, namely the magnitude

and relative pha.ses of S ,P ,D ,F n ., . ny o’ o’ o ’ o and the parameter C. The

amplitude Lq is given by
M.L - ( N . ) IT H. F iT T ?  c0 Jr----- - /n>± £l , U .5.2)

where the partial wave amplitudes are defined by
I i ?i rf1 (2. S'. 2-^

=  (n{, e 1 c 1 " I  ) / 2 p
( N.) = the overall normalisation factor. 2-h)
k= TT momentum in IT IT' C.m. frame. L t - S - CJ

f ^ C 2fj + f£) for even L 
I S.2.^f I = jdEor odd L ., Mj-j = dipi on mass 

This ( N.) is determined by the elastic P wave phase shift to

go smoothly through 90° at the p resonance. In equation (2-. 5.2)I
it is assumed that the IT exchange amplitudes L have common
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t dependence, which is independent of . This method has been

used by Hyams et al.[66_] , which gives reliable results below 1.4 

Gev.

The solution A is defined by the magnitudes and

relative phases of y2L+l f^ and the parameter C, which determines

the non TT exchange production amplitudes. The complex zeros, Z.3 >

M i

are obtained from the solution:

L %  <2L+1> V z) |£l! e l V L = a hJ=1 JOne can find alternative solutions at each by replacing

Im Zj by -ImZj for one or more of the zeros, calculating a new 

set of magnitudes and relative phases of the Lo amplitudes from 

equation (2..E>.4), and then fitting to the data. So, one obtains 

eight solutions at each energy. As the existence of the f resonance 

requires the second zero to approach the physical region with 

Im and similarly the g resonance requires ImZ^O, the ambi

guity due to overall 2L solutions at a given s is immediately 

reduced. Hence, one has a two-fold ambiguity depending simply on 

the sign of ImZ^ at each in the f region ( M ^ ^ l . 4Gev) . The

solution A with ImZ-j>0 leads to a better description of the n° TT° 
mass spectrum in this region,resolving the ambiguity in the f re

sonance region. Their solutions are classified as follows:

Solutions

A

B

C

Sign of ImZ. Sign of ImZ?

D +



It is found in their study that ImZ^itO around 

M^j.= 1.24 Gev. They define solution B in which ImZ^ does not 

change sign at M^^.1.24 Gev.

The overall phase has. been chosen to give 

reasonable continuity of the partial waves consistent with the 

existence of the f and g resonances, and with unitarity. It 

appears that solution A shows no evidence for daughter resonances 

in this region; whereas for solution B the S partial wave in the 

region of the f resonance and the P wave in the g region follow 

approximately circular contours in an anticlockwise direction in 

the Argand plot. The speed of rotation of these lower partial 

waves is not clear indication of resonant behaviour and these 

daughter resonances must be relatively broad (T*— 400 Mev), and 

are difficult to be established. According to EM's observation the 

S wave of solution B is outside its unitary circle for 1.25£Msl.5
• np

Gev, consequently, the relatively large errors on this partial 

wave make it possible to use unitarity to definitely eliminate 

this solution.

For further EM'sL^tudy, the energy dependence 

of the solutions is needed in terms of zero contours, which is 

suggested by the smoothness of Ẑ  in S . The Ẑ  (s) is parameterized 

as a ratio of polynomials in S and determine the complex coeffi

cients from the relative magnitudes and phases of f^. Further, 

Zj(s) is parameterized in the g region such that at 1.5Gev it 

joins onto the value calculated in the f region on using the f 

and g resonance forms. The resonance form is expressed by

f = XR V s)Li

where Yr =Yq+ Y1(S_MR )
M^-s-iYR (s)» C^.5)

( Z.5. 6)
The overall magnitude is specified by fitting jf̂ j in the range
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1 < Mpj- p-£<1.4 Gev, !fp| in the region 1.5Gev<Mjy ^.<1.8 Gev to 

(2.5“. 5) and (a. 5\ 6). Excellent fits to the amplitudes are 

obtained.

Now, it is clear from EM's study that s-dependence 

of Im Zj(s) indicates the main ambiguity between solutions A 

and B. On changing the sign of Im z ^ in solutions A and B for 

M rx yj>1.4Gev ,we get two other solutions C and D respectively. 

The resonance parameters and values of the zeros at complex 

pole positions show that solution C like A has only leading 

resonances;whereas solution D appears to have a broad D-wave 

resonance in the g region. The solution A shows no resonance 

structure other than the leading f and g resonances. However, 

solution B having a broad p' resonance (TU400 Mev) in the g 

region, violates S wave unitarity in the f region.

Em’s published figures give the impression of very 

smooth argand diagrams,but actually solutions (plotted from 

tables) are very noisy. On the other hand,the problem of 

truncation at L=3 introduces spurious uniqueness and there 

are continent ambiguities clearly present. ~

In EM's [.63J notation, on the question of the existence 

of a p wave p ’(1500) resonance their solutions divide into two 

categories:(i) solutions B,D have a p' coupling relatively 

strongly to IT IT (elasticity 25l);whereas (ii) solutions A,C 

show no evidence for a p' signal (elasticity 4 b)- These two 

categories arise because the first zero,z^(s),to enter the phy

sical region has Im Z-j = 0 near s= Mpj -j—j- = 1.25 Gev and so a 

bifurcation of solutions is possible. Above this energy, 

solutions of type(i)and (ii ) correspond to ImZ^)> 0 and InlZ^CO

respectively.



Recently»Johnson,Martin and Pennington£67jhave exploited 

analyticity to distinguish between classes of fl+ TT partial 

wave solutions. In their view, fixed-t and fixed-u dispersion 

relations determine the overall phase of the amplitude and 

clearly select solutions with a p'(1600) resonance of 25% 

elasticity. The relevant question of existence of p ’ , W  and 

({M vector mesons, with the advent of new ijj particles, is out

standing. There is so far only information on the p' resonance.

On the assumption that the truncation of the partial 

wave series at L=3 (and moment series at J=6) is exact, 

so that the unknown phase (j)Q depends on s and is independent 

of t, Johnson et al [_67j conclude that analyticity overwhelmingly 

favours the TT TT partial wave solutions(B and D) with a sizeable 

p' coupling to TT TT and determines the overall phase of 

these solutions. Further work is continuedt6jto resolve the 

remaining ambiguity between the B and D solutions. It is 

more complicated in the sense that it depends on Barrelet 

zeroCz^j, which unlike z^, is near the physical regionJs" >1.45 

Gev (where the bifurcation of Im actually occurs) and so 

just outside the range of validity of fixed momentum transfer 

dispersion relations.



l.G ANALYSES OF FROGGATT AND PETERSEN.

Froggat and Petersen[68] have used extrapolated TT+n  
moments from amplitude analysis of the 17Gev/c CERN-Munich

experiment on n  p — *~rT+n  n, and reduced phase-shift ambiguities

by imposing fixed-t and fixed-u analyticity. The result and

solution agree qualitatively with semi-local duality. A phase-

shift analysis by constraining the result to be compatible with

fixed-t(-u) amplitudes have been performed. Consequently, a smooth
f

phase-shift solution is obtained, which shows a clear p signal.

Broadly speaking, we face 3 different classes of 

ambiguities in reconstructing the amplitude from experiment, 

described earlier. FP C68J have concentrated their work to class 

3rd ambiguities (in lack of a real pion target an ordinary scatterin 

experiment only measures the absolute magnitude of the amplitude)-, 

while using the results of Estabrooks and Martinfe3] .

We can write the IT+IT —>-IT+IT elastic scattering

amplitude as

. . 2
|p "(Mx x x t , cos §)| = \  (2L+1) AL (Mn  n  )PL (cos0),

(2.6.1)
f

where A s are real coefficients given by the Clebsch-GordonLi
series as bilinear functions of the f^'s with known coefficients. 

Using the EM solutions[63]the first 7 A^ ’s can be calculated.

These values are independent of the overall phase ambiguity.

It seems that the most promissing 

proposal for dealing with the phase-shift ambiguity problem 

consists in demanding compatibility with fixed-t and fixed-u ana

lyticity. FP [68] introduced a crossing symmetric energy variable
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with v=vro (t) and v=v(t) the s-channel physical threshold and 

the start of the s-channel physical region respectively:

voCt)"mn +t/4l"n
vCt) 1/41X1̂ —̂. (2.. 6. 3)

If we have the following information about an amplitude

F(v,t) for fixed t:(a) ImF(y,t) is known on the unphysical

cuts such that -y (t).< v^-.v (t) and v (t)<y^.v(t), (b) \F(y,t)|0 o
be known throughout the physical regions - o o C  -v(t)and 

y(t)<y<oo and (c) at infinite energies the growth of|F(y,t)j
oTbe under control i.e . \F(y, t)|< M. |v| for |y|^N, y real + i£

(M,¿(finite) ; then F(y,t) is uniquely defined up to a finite

dimensional ambiguity [69]. The method for imposing fixed- 

momentum transfer analyticity on amplitude analysis,developed 

by Pietarinen[69] , has been used. The input is assumed 

to consist of numerical information at a finite number of 

energies. It is optimal and capable of providing unbiased 

error-estimates.

We can expand the fixed-t (or fixed-u) amplitude 

F(y) in terms of a suitably chosen set of functions (j>n (v)j , 

each possessing the desired analyticity properties:

f ( y ) -  ¿ f c k c v )
i = o L

The expansion coefficients are found by minimizing

(2.6.4)

XZ(F)= X 2 (F) + ij)(F) , (2.6.5)

where X .2 (F) is for the experimental data and (j)(F) is the 

convergence test function in order to give a penality for 

lack of smoothness.

Theyfe^have presented two analyses of n +TT scattering 

between 1.1 Gev and 1.8 Gev. The first one results in a set 

of fixed momentum-transfer amplitudes satisfying analyticity 

properties exactly and the second one has correspondingly good



properties at fixed energies: Smoothness in cos Qs  and 

unitarity. The two analyses agree to the extent that we can talk 

about one solution.

The FP [68J solution has the following salient features:

(a) It reproduces the experimental Legendre-moments [AJ-.

(b) It not only has good smoothness properties, both as a function

of energy and cos 05 , but it satisfies crucial analyticity re

quirements.

(c) It agrees reasonably with unitarity.

However, the solution does not satisfy semi-local 

duality. And, the amount of remaining ambiguity has not been 

determined.

In constructing the Argand diagrams from the rr+n  
partial wave amplitudes an arror has been made by FP[68] in the
case of 1=1. Indeed,P^and F^as given in their figures 8&9 as well

as their values reconstructed from tablel are too large by a factor

3/2. secondly, the asymptotic cross- section corresponding to

their fig.7 should be 4mb. These corrections have been made by

FPC68ti] .
It is observed that FP's partial waves are much smoother 

than EM's , on plotting Argand diagrams.



P A R T  O N E
CHAPTER III : BOUNDS ON IT TT SCATTERING LENGTHS.

3.0, INTRODUCTION.

Martin[70j demonstrated that the constraints imposed on the 

scattering amplitude by the results of axiomatic field theory 

limit the strength of the strong interactions, at least for the 

case of IT H  scattering. From the requirements of analyticity, 

unitarity, and crossing symmetry he proved that within its analy

ticity domain,including the symmetry point, the TT TT scattering 

amplitude is bounded above and below as a function of the pion 

mass alone. Martin's numerical results were improved by-Tukaszuk

and MartinQ7l] using a refinement of Martin's original method.
These bounds are rigorous consequences of axiomatic 

field theory. Unlike the asyptotic bounds on scattering-amplitude 

(e.g. the Froissart [72j and Jin-Martin [17] bounds) they contain 

no arbitrary constants and represent, quantitative restrictions 

on the size of the amplitude at finite energies. It is there

fore desirable to see if they can be improved by making better 

use of analyticity,unitarity, and crossing symmetry.

In the real world there are no bound states in the 

n-rr system,and their absence has been explicitly incorporated 
in the analyticity assumptions used to derive the bounds on 

the TT-TT amplitude.

A nice development is that rigorous phenomenology 

leads to some improvements over the axiomatic results.

Recently,on this line of approach the lower bounds of the IT IT 

S-wave scattering lengths have been developed on the basis of 

some estimates of the D-wave scattering lengths [20]

Bonnier[18] has derived rigorous upper and lower 

bounds on the IT TT S-wave scattering lengths,starting from a 

given phenomenological input(upper and lower boundsof the real
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O 0 "J* Qand imaginary parts of the TT IT and IT FT amplitudes

on the region 0.45Gev<E 4 1.9Gev,0<t>$ 4 mil .° . c . m . ’ W
o oLopezC13j has found a new lower bound to the irrr

S-wave scattering length in terms of the D-wave scattering

length. The main ingredients of the method are the exact

Roy partial-wave equations and an extensive use of unitarity
-4in the physical region. For a value of .3/10 ,he gets

the bound aQ>)>-0.33. Further, Lopez and Mennessier[2|have 

improved substantially the precedent absolute lower bounds
o Oon the xx xx S-wave scattering length. The new feature in 

their derivation is the exploitation of the known structure 

of the partial wave left hand cut discontinuity, explicitly 

exhibited by the Roy equations. The result is

a00 >  -1.75n S
(3-0-lJ

Furthermore,Bonnier,Lopez and Mennessier[2y  have 

used axiomatic properties to derive new absolute upper and

lower bounds on TT TT amplitude in £he Mandelstam triangle.
In particular, if the amplitude is so normalized that its 

value at threshold is the scattering length ,the value at the 

symmetry point, which is considered as a measure of the TT TT 
coupling, has been shown to Tie between -13.5 and 2.75.
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3.1. BONNIER'S BOUNDS ON THE TI T~I S WAVE SCATTERING LENGTHS.

■%.7- Introduction.

Bonnier [is] has developed a new approach to derive 

rigorous phenomenological bounds on the S-wave scattering 

lengths, but he adopts the position of using the maximal amount 

of available experimental data as directly as possible, 

and not only through the D-waves. As a result a new class of 

bounds appear (upper bounds) and the lower ones are improved. 

However, in this approach we have to take care of the consisten

cy of the chosen phenomenology with general principles ,In the 

energy range o.45Gev^E c.m.^1.9 gev, the main features of 

TI IT scattering are common to most of the analyses and one 

can define a " central" family of S,P,D,F phase shifts with 

associated 'errors’. In order to cover the spread of the 

data, he has multiplied the errors (between 0.45Gev and 1.9 Gev) 
by a scaling factor £ (0 4 841) such that 8=0 gives the central 

family and E=1 the band of maximal expanse. This £ is not 

a measure of the errors in a given analysis, but an estimate 

of the discripancies between various analyses. In this way, 

for any fixed value of £ one can easily compute the lower 

and upper bounds of the IT TT amplitudes and then derive the 

bounds on the scattering lengths.



5.3 NOTATIONS AND SUM-RULE INEQUALITY.

We can write the S-channel partial wave expansion of the 

S-channel isospin (I) TT IT amplitude F^‘^s,t,u) in the form;

( 21+ 1)

fj(s) P1(l+2t/(s-4)), (3.3.1)

f*(s) = (t^(s) e2lcii(s)-l)/2ip(s) ,p(s) = ((s-4)/s)1 (3 -3.2)
and the optical theorem is in the form,

Im Fi(s,0)= ((s )/(s-4))2 (5^tal(s)/16TT (3-3.3)

The s-wave scattering lengths for 1=0,2 are simply 

aI = fJ(4)=FI(4,0,0) (3-3.4)

At fixed t=tQ , 0 < t Q44 the elastic amplitudes have the 

combinations:

f°+2f 25fn , for n°+rT°— *n?rr°
f 1+f2=fs , for t t V i t 0— > r r i n 0 (3-3.5)

z=((s-u)/(4+to))2= ((2s+tQ-4)/(4+t0))2 (3 -3-6)
We find that s-w-u crossing even amplitudes are real analytic 

functions in the complex z-plane cut for z ^1. One can assume 

safely that on some part (s^,S2) of the physical region (4<s^<s?) 
mapped onto (z^,Z2)> the available data are sufficiently reliabl 

to give us upper and lower bounds of the real and imaginary 

parts of F^ and F . Also, the chosen data should satisfy the 

sum-rule inequality of Common [74] which expresses s+-Hi 

crossing and positivity. So,it appears that this kind of 

information can be rigorously used in a powerful way on general 

lines.

F ^  (s,t,u) =
oo

1=0

l+(-) 1+1
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Mapping: v= 1 - S T
l+/w

whe re (3.3.7)

It maps the cut z-plane onto a unit disk Dv of the v-plane

such that the low-energy region l < z < .  z  ̂ goes to the cut 

v^v<l, the intermediate energy region z^<z< z^ (where both 

the real and imaginary parts of the amplitudes and Fs 

have phenomenological bounds) goes to the circumference of 

an unitary circle:

v=v(eie), v(z = z2)= -1 (3.3.8)

and finally the high-energy region z > _ z ^ goes to the cut 

- l < v <0 in order that when z —>-oo,v-^o like:
v(z j- (Xiii

4z
(z2~zd  ^  -(22-z1)C4.to)
4z 16s‘

The mapping is shown in fig.9.

The union of the regions[-1,0] and [ v ^, lj i s denoted 

by I . If P(v) and Q(v) are two real analytic functions, one 

can construct a function L(v) which is real and analytic in 

the unit disc and bounded on its boundary:

L(v) =v[ P(v)Fn (v)+Q(v) Fs(v)J . (3-3.10)
Now,if v=0 we have corresponding point infinity 

in the s-plane. The Froissart-Martin bound for the ampli
tudes can be written as

2|L(v)/ ^ const. Gfivflog JV! ) as v~0 (3-3.11)

From (3.3.9) and (3.3.11) it follows that 

L(0) =0.

For any point v q inside the unit disc Dv (0 < v q< v )̂ , 

we can write from Cauchy integral:
L(V ) = ^ , f e i l l d v :v o J 2Tlt v -v •J o
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or L(v )= v o n

♦ * r

n —  * ___

f Re L(e10)eie
| ioe -vJ 00 J

de

i * Ï
v ' dv (P(v'.) ImFN (s (v') ) +Q(v' ) ImFs (s (v')
v « _ i

or L(v )=L (v )+L (v ), ô  o o I o' ’

(3.3.12)

(3.3.13)
where L (v ) and LT (v ) are the contributions of the circle o o' I o
and the region I respectively. As the absorptive parts of F 

and Fs on I are positive, it follows from (3-3*12) that the
N

contribution Lj (v q)^0 or Lj (v q) 0 according as P and Q ̂  0 or 

4-0 respectively. In this sense,P and Q are not arbitrary.

The intermediate energy region (experimental) is 

on the circle and its contribution,Lq (v ), can be computed for 

all such P and Q to a certain accuracy, accordingly one can 

calculate upper and lower bounds:

Lm (v ) ¿ L  (v ) 4 LM(v ) ov o o o o K o
(3-3.14)

On combining the results (3. 3.13) and (3. 3.14) we obtain

Bonnier's sum-rule inequalities for any t and v ,

o<t 4.4, o<v 4  v.. :^ o ’ cT~ 1

L(v ))> L™(v ) P.,Q^0 for all points on I (3.3.15)

ML(v q )̂ .Lo(v ) PjQ4 0 for all points on I (3.3.15a)
They are true for any unphysical values,but here is a focus on

the scattering lengths.
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3.4 BOUNDS ON THE SCATTERING LENGTHS.

The S-wave scattering lengths for 1-0,2 are

ao=f°(4)=F°(4,0,0) (3.4.1)

a2=f4=FZ (4,0,0) with s-<>u symmetry. For old bounds, with the

choice t =0,w =v,,we have the combinations o * o 1*

FN Cvi:i-FOc4’0)+2F2(4’0)=ao+2a2
Fs (v1)HF1(4,0)+F2 (4,0)=a2

(3.4.2)

(3.4.24)
Then,we have bounds

L (wo)=a0viP(vi)+a2vi ^ i vi ^ 2P(vi ^  (3.4.3)
Applying inequalities (3.3.15) on (3.4.3), we get information 

about some combinations of aQ and a2 • Equation (3.3.15) 

needs P Q ^ O  on I and since v^ belongs to I as end point it is 

impossible to bound aQ alone,that would require 2P(v^Jl Q(v^)=0. 

However, this is possible on a2 Jp"(v )̂ =0,Q(v^) = ij but then 

Q(v1)=l implies P,Q2>0 on I which allows us to compute only 

lower bounds. This is true for a +2a_. In this way we recoverO L*

here the lower bounds, already obtained by Common [XQ), Goebe 1 

and Shaw[75j and Basdevant et al. [35]. These lower bounds can 

now be positive and optimized owing to the freedom allowed 

in the weight functions P(v) and Q(v).

Now on applying s<— >-t crossing, we have a noticeable 

improvement over the bounds. Choosing t =4,v q=v (z =o)

(o<:vo<v^) ,we have the combinations of the amplitudes

FN (vo)=FO(0’4)+2F2c0,4}=F° C4j0:) + 2F2(4,0)=ao+ 2a2 C3-4-;4)
Fs (vo)= F1(0,4)+F2(0,4)=2/3 F°(4,0)-F2 (4,0}) =2/3(aQ-a2)

and the bound
o

(M. 50

L(„o)= a0v0 (P(v0).2/3.Q(v0))+2a2v0 (P(v0) - a i V ) (■3.4.6)



As V do not belong to I, the values of P and Q at v can o o
now be prescribed independently of their required behaviour

on I. With the help of equation (3 .4*6), we can compute upper
and lower bounds for any linear combination of the scattering

lengths, and in particular for the scattering lengths themselves.

Bonnier [18) has selected to bound a ,a.,2a -5a„ and a +2a„J o 2 o 2 ■ o 2
with corresponding values of P(v q) and Q(v ).

To make choice of the weight functions P(v) and 

Q(v),we can select a finite subset of the infinite set of polyno

mials which give necessary and sufficient conditions for the 

solutions of the associated 'moment problem',
n r, 1

JlX n= j v g(v)dv + j" v g(v) dv > n=0»l»2.... (3.4-.7)
-1 vo

with g(v) a non-negative function of vT76j .For the purpose, 

Bonnier [18] has constructed ;

P(v)= P(vJR (v) TT (v-vj) (v-vj)
P jc-J— 7— V— .-- ^ --- ^j.IT^Cv -*MviV)(vo’vJ) (v0- vJjieK'“ o VJ

, i j ie-* — i j -ie-* , r-1 >. 0, (X0^<TT for all jwhere v-’=rJ e p ,v-' = rJe p ’ x> * p Jp p  P P

Cv-vp)lt (3.4-.8)

V Vv 4.-1 or v >1 for all k values P P ̂ CM'S)

R =1 or v(v-v,)/v (v -v,) according to the sign of P(v ) p 1 o o 1 J o
and Q(vq) and to the nature of the wanted bound.

This parameterization (3.-4.9) gives the most general

expression for a polynomial of fixed degree [p^LJ+K)submitted

to the constraints. The number and location of real and

complex zeros entering these representations are parameters

which are optimized to give the best bounds for a given set

of data. Bonnier has applied MINUITL to obtain the extrema

of Lm (v ) and L^(v ) with at most 48 parameters. 
o K o o v o
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3.S' PHENOMENOLOGICAL INPUT.__

Bonnier Cl 8] has pointed out that these types of bounds,
M

o ^Vq) anc* Lq CVo). can not be constructed from any set of

data. Firstly, they should fulfil the obvious constraints

Lm (V ) < LM (V ) co v o ' ov o J (3 . 5 . 1)

Secondly, the chosen data must satisfy the sum-rule inequa

lity of Common U74],satisfying s<-»u crossing and positivity. 

Thirdly, we can also add to these requirements some s-̂ -t 

crossing sum-rules for all 0£tQ<4.

In the energy range 0.45 Gev^Ec.m.^ 1.9Gev,the 

main features of TT TT scattering agree with the recent 

analyses [77]. We can define the whole situation by a central 

family of S,P,D,F phase shifts with assocated errors.

In order to cover the spread of the data,it is convenient 

to select a scaling factor £ (0^£ ^1) such that the central 

family (£=0) is obtained^and £=1 gives the band of maximal 

expanse. This £ is not a measure of the errors in a given 

analysis, but it is an estimate of the discrepancies between 

various analyses. We can compute the lower and upper 

bounds oil TT IT amplitudes, thereby, the bounds on the scattering 

lengths for any fixed value of E. Phenomenologically, 

the results with £=1 should only be taken with confidence.



3.6 CONCLUSIONS AND REMARKS.

The computed upper bounds on s-wave scattering lengths vary con

siderably with three values of E and with different combinations 

of the scattering lengths. However, the lower bounds remain 

always small, in particular, for £=1 stay rather on a firm 

basis. It has already been pointed out by Basdevant et al[35] 

that they can increase considerably if some peculiar phase-shift 

analysis of Estabrooks et al.[7$ are used to rule out the Weinberg 

values of the scattering lengths. On the contrary, this smallness 

of the lower bounds in all cases weakens the phenomenological 

interest of their present axiomatic values.

The upper bounds for £=1 are weak and surprisingly 

constraining for E= 0. Bonnier has suggested that in order to 

obtain a better estimate of the scattering lengths one can 

stay rather far from threshold (450 Mev), then one has to reduce 

the errors.

It is a fortunate situation that on a definite 

set of coherent data,Bonnier ' s method[18] yields a model-inde

pendent measurement with true errors of scattering lengths.

Bonnier [18] has selected three values of E(E^ 0, \ andl.O).



3, 7 NEW UPPER BOUNDS ON THE TT IT S-WAVE SCATTERING LENGTHS.

3 .& Introduction.
Asymptotic bounds represent asymptotic properties 

and it is difficult to settle at what energy asymptotics 

really sets in. Therefore one can hardly over-emphasize the

importance of devising rigorous bounds on closed curves in the
\

complex plane of the energy.

In this work we derive rigorous phenomenological 

upper bounds on the s-wave TT TI scattering lengths. On defin

ing a central family of S,P,D,E phase shifts with associated 

errors in the energy range 0.45Gev< Ec.m.^ 1.9gev, we use the 

maximal amount of available experimental data as directly as 

possible. Also, proper care is taken of the consistency of the 

chosen phenomenology with general principles of unitarity, 

analyticity and crossing. As a result we have derived some new 

upper bounds on the TT TT S-wave scattering lengths.

Starting from notation and normalization, sum-rule 

inequalities are derived. The zeros of the TT TT scattering 

(amplitudes and properties of analytic behaviour are discussed.

The expression for the upper bounds is derived in detail.

The bounds are computed in elastic(0.45Gev.$ Ec .m.^0.95Gev) 

and in the broad energy (0.4-5Gev4 Ec .m .< 1.9Gev) regions fom 

rr0r T ^ T T 0rT0 and TT+n ^ n  + n 0 interactions. A suitable 

minimization program from NAG-routine manual is adopted to find 

the minima of the bounds with respect to parameters,for different 

combinations of IT TT scattering lengths in the two regions.

We compare our results with-Bonnier's bounds[18] .The results 

show improvement over Bonnier's bounds. Finally,

we compare our results with BFP [’30] mode 1 results.
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3. 9 NOTATION AND NORMALIZATION.__

The S-channeT partial wave expansion of the s-channel

isospin (I) n. n  amplitude reads (mri = c=ti=l) :
i" T Ì QP(s,t,u)= 1r-0 (21 + 1) fj1}(s) P1(cos6s ), (3.9.1)

where f^(s)= (ti*(s) e2i<Ìì(s)-1)/2ip(S) (3.3.2)

</) V.—
2 II "Ì
1 (3.3.3)

7s= Ec.m. (3-2.4)

cos0£ =l + 2to/(s-4) (3.3. .5)

t = 4m 2 = 4n t î (3-3-6)

Partial wave amplitudes f*(s) for orbital angular momentum 1 

and isospin I are related to the real phase-shift d*(s) and 

elasticity-coefficient (s) by equation (3.9.2).

The scattering lengths are defined as

ai= Lim +fi(s)/k21, a^=f^(4) (3.9.7)
1 s - M  1 o o

where k is the c.m. 3-momentum:

k2= l (s-4) (3. 9.8) .

The s-wave scattering lengths are given by

ai = fJ(4)= FI(4,0,0), 1=0,2, (3-9.9)
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3.10 SUM RULE INEQUALITIES.

In the following we consider (t=t =4mp-|. = 4) 17 TT-- >-TT T7C

and n  + ri-5— >I7+n °  e lastic amplitudes and the corresponding

s-wave scattering lengths:

(3.10.1)
(3  . 10. 2 )

these s<—j-u crossing are analytic functions in the complex z- 

plane cut for z^l, where^

(3 .10.3)

F (s, 4) = 1/3. (F0{s,4)+2F2(s,4)) = 1/3.(a 6+ ^■n°Trl>n0ir°
F ( s  4 ) = H F 1 ( s , 4 ) + F 2 ( s , 4)) = i / 3 . ( a 0- a , )

2s + t -4m7-. o TT

X 4 m2 +1 rr o

On defining G(z)=F(s,t^ , it follows from the symmetry 
of amplitudes (3.lo.l) and (3 .10-.2) under s^u interchange that 
G(z) is a real analytic function of z in the whole complex z- 
plane cut from 1 to oo.

We then assume that on some part[s^,s^ of the physical 

region (4<s1<S2), which through(3.1». 3) is mapped o n t o [ z ^ , z ^ J  

(1<z^<z^),the available data are sufficiently reliable to yield 
upper and lower bounds on the real and imaginary parts of 

amplitudes. We can use this information in a powerful way in 

the framework of general principles.

?irst we introduce the mapping:

V 7. -  7. _ 7

with A/>0 (3 .1 0 .4 )

We wish to map w=o to w=-oo onto circumference of a unit disc D
in v-plane such that the point z^ goes to w=o in the w-plane,

and to v- 1 in the v~plane; the point z2 goes to w=-oo in the

w-plane, and to v=-l in the v-plane. Also,the point z=o

should go to w= A (-1)in the w-plane, and corresponding to

v=v f-l^v <1) in the v-plane. o  ̂ N ov



We can express this mapping by

(3.10.5)V -v B + /w 9 / Z1
b'7

A "where v = 
0 2 (3.10.6)

B + /a t̂

Taking A= Z 2
/  z 2

/Zl_we have vo=B+1 ¡(3.10.7)

hence, B= 1+v0 . (3 .10.8)
1-v0

Substituting these values of A,B,w and V into (3 .10.5), we 

get

v=

1+v . (
1 - v
1+v
1-vo

1+v. o -
1-V. .

■1 ( Z-ZjJ

'1 LZ-Z0)

1+v +
j

z - z

z - z .

(3.10.9)

For threshold energy z=l,oo we have

(3-10.10)

(3.10.11)

The mappings are shown in figure 10.
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3.11 ZERO OF THE AMPLITUDE.

If G(0)>0 corresponding to the scattering length,we can

prove that G(z) has exactly one zero between z = o and z = -oc>.
2At a fixed t = to = 4mjJjl=4, a dispersion relation for a scatter- 

--ing amplitude (symmetric in s^u) can be written in the form:

o©
A (s',t ) ds 1

F(s,to)>g(to)+ h
4 s 'z( s ' - s ) rr

oo
A (u',t )du' u ' * o J

^u'<u' -u)

(3.11.1- )
Introducing the variable

2s+V 4” h
, 7- +14mrT o

the right and left hand cuts may be folded to give
oo

G (z) = G(zo) - ^
(z-z ) Im G (z ' ) dz '

I  ~(z'-Z  i i z ' - z j
( 3 11.2)

where z Q is a pole,as shown in figure 11.
oo-I

or G(z)=G(zo) + y j  Îj ImG(z') 
1 (z'-z)

Z '  -  7.0
d z

( 331.3)

As we have defined G(z)f F(s,4), ImG(z')= ImF(s , 4) )>0,where

l<z'<c>o. Taking imaginary part of ( 3.11.3), we have

ImG(z)= ImG(zo)+
-, o© 1 r ImG(z’) Im(l/(z'-z))dz'-

o©
J
1

■ b ImG(z') Im (1/(¿~zQ))dz' ( 3.11.4)

Now,Im(l/(z'-z))= Im( 1/ ( (z ' - (x+iy) ) =Im( (z ’ -x+iy) /((z ' -x-iy) (z ’ -x+i^ 

= Im( (z '-x+iy) / ( (z '-x) 2+y2) ) ) :=y/( (z f-x) 2+y2) . ( 3.11.5a)

ImG(zQ) = ImG(x+i0)=0 ( 3.11.5b)
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Im^

= Im
¿-z0 = Im

z 1 H O  -x

z'-x+iO
z ' - (xo+iO)y Tm^  (z ' -x-TO) ("z ' - x + iO) y
Or Im(1/(z'-zQ))=0. ( 3.11.5c)

(z'-x) +0

Putting the results ( 3,1l.5a,b,c) into ( 3.11.4), we get

Im G(z)
 ̂ o o

Tl S  Im G('Z '-) ~(z^-x) 2+'y‘
dz ( 3.11.6)

so, we see that Im G(z) is positive or negative as y is positive 

or negative respectively: 

y > 0, Im G(z)) 0 

y<0, Im G(z)<0

Therefore G(z) can only have zeros for z real, -oo<z<l.

Again,
i -t ^  t™ re, m

C 3.11.7)

AS the denominator is always positive and Im G(z'))0 for y>0, 

hence the integral is positive i.e.

-oo<2 < 1. 1 3 - U 7 0

It is obvious that G(z) can have only one zero on the cut.

On the other hand, if G(z) has no zeros then

1 . oo. i r Im(l/G(z')) dz'
oo

- 1 f Im G(z ')dz’
G (z) n  J 1

(z'-z) n  J 
1

G(z ') |2(z '
-<°

( 3.11.8)

As we are looking for upper bound to G(0) so we can assume 

safely G (0),>0,

Hence, G(z) has exactly one zero between z=0 and z=-oo.
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Owing to our special mapping, we can define a function 

G(z)=g(v), which has exactly one zero between v=vo and v=v

at v=v^(say). Then we can construct a function

oo

h(v)=g(v) 1-V-^V
v-v1 J

( 3.11.9)

which has no zeros inside the circle.

Also, on the circumference of the circle iy=l, we have

|h (v)|= |g (v)l ( 3.11.10)

3.12 DOMAIN OF ANALYTICITY OF THE FUNCTION.

We have defined the function 

h(v)=g(v) 1-v^v
L v - V f

and this function h(v) has no zero inside the circle.

On the circumference of the unit circle, on which the experi

mental region is mapped, the absolute values of the functions 

h(v) and g(v) are the same:

|h(v)|=|g(v)| on |vj=l ( 3.12.1)

Furthermore, we take log of the function h(v), and introduce 

a new function H(v) in its place

H(v)= logh(v) ( 3.J2.2.)

As we have observed that h(v) has no zeros inside circle,the 

new function H(v) has the same domain of analyticity i.e. the 

cut circle D
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3.13 DERIVATION OF THE UPPER BOUND.

On using Cauchy theorem forJiiXL_ .keeping v q* constant ,

round the contour indicated in figure 10, we have

v
H(yl
1-vv* o 2rr i

H(v1)dv1
■ ¿ y i-v'v0)(v,-v)

Disc H(v')dv1

2 i n  i

oo

J
-1

2 n  i ( 1 “ V 1 Vq*• ) (v' -v)

Pis c H(v1)dv1 
(1-v'v*)(v'-v)

(3.13. l)

Vn

o ^0 inside or on circle,and v =v
’ o o

It is to be noted that 1-vv 

being real.

Taking v =v q which is real and introducing v'=e for the unit

circle, we can write (3.13.1) in the form 
‘2

H(v ) = r ^ 1 u r i^t ,o" 2 Hie__)_e__d £ _
J ri i* w Di^ -vo (1-e v )(e -v )

v
+ (1-v ) v o J

-OO
DiscH(v')dv'

2rr i -1 (l-v’v0)(v'-v0)
2, 1 -V ) r 
°- Disc H(v')dv'

2ir i J 
VT (1-v'v ) (v'-v ) v 0  ̂ 0

(3.13.2)

Now the real parts give

2fx

log |h(vQ)| = Re H(v q)= ( 1-v )̂
2rx

2rr

Re H(ex̂  Re

0

( l ^ O
2rr

(1-V'oytTT

Im H ( e x°) I m
e

0
v 1

j- -, 1^(l-e v ) (e -v ) o o -

cU

dc£

î d . , i»C . (l-e v0)(e -vQ)

J M Pis clip H(v’) dv 1 (3.13.3)

VUjjl-v' v0)(v-v0)+
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As we are interested in the real parts, the integrand of the 

second integral

over the 

limit of

i»C
Im wrir.. > =0 (3.13.4)

limit of integration. The second integral over the 

integration vanishes and we have,

rr
l o g |  h ( V Q )| =

a - v p
TT

2 TT

log [hfe1̂  )| doC

Now Im H(v’±ie)= Arg h(v±.ie) and at the beginning of the right 

hand cut (v=v^,-e), we have

h (v) = 1 - V - ^ V

v-v. -] g ( v) >0, since g(v)>0. (3.13.6)
For v=v^,+e +ie with c>0 , Im h(v))>0 and Re h(v)_>0 from 

continuity so that fT/2^Argh ( v) 0.

As Re(v) increases Reh(v) may change sign but lmh(v)^>0 since 

lmg(vi>0, from unitarity condition:Im F(s,4)>0.

Therefore, TT^Argh(v+ i<r)>0. Similarly, for v=Rev-iC-, we have
ic

0 >arg h(v))>-rT. Also, from reality of h(z), h(v+i£-)=h (v-ic-) , 

then for the range l > v > v T ,Arg h(v+ic-) =-Argh(v-ifr).

Therefore) Disc Im H(v')= Arg h(v+i&)-Argh (v-iC-) =2Argh(v+i6)

= 2Arg ' g ( v+iGr) . (3.13.8a)

Hence, on the right hand cut, we can replace

Disc ImH ( v ' ) =2Arg g ( v + (3.13.7)

Similarly, on the left hand cut of the Disc-D^ (-l$v^v ) we

Disc Im H(v')=Arg h(v+it).-Arg h(v-ic) = 2Arg h(v+ic-)

:2Arg [ J L a i Z î J > ) ]  g ( y * - ) ?
L V  +  l é  - V - ,  _  j

have



(3.13.8b)

And on both cuts of the disc D , we have

0<:Arg g(v+ie)< n, (3.13.9)

since Im g(v+i&)>0.

Now, substituting the results of Disc Im H(v') from (3.13.8a) and 

(3.13.8b) into the second integrals of (3.13.5),. we have

or Disc Im Hfv'^-ZArg g(v+ifr)

(l-v20)

_ v

2 n

=(l-v2) v 0 J

oo 1
+

■1 “V,

Disc Im H(v')dvl 1

2 n

VOO

-1 '1

l(l-v'vo) (v'-vo )

2 Arg g (v'+iGr) dv1
/(l-v,vn)[v,-vo |

(3.13.10)

. I
On the circumference of unitary circle:

log |h(e1<<)(= log |g(elĉ)|,but in the general case

log |h (v q)I - log! 1 - V, Vl o
vo'vl

g(v0) (3.13.11)

substituting (3.13.10) and (3.l3ill) in (3.13.5), we get

IT
log I r 1-v,v i 1 0 g(v)1 v -v, -

u
(1-v2 ) f log I g (e 1dC )| _  j _ d<A

0 1+ v -2v cos^Ao o

Tl-v )+ v cr
TT

voo

-1

We have defined G (z) =F (s , t ) =F(s , 4) =g (v) , 
a r . . . - i r i m F ( s , 4 )so Arg g(v)= tan _________ r x r$ mL Re F (s, 4) J L3.U.13J

and on the circumference of-the circle

\g(ei1l' | F ( s , 4 ) l  (3.1114)

Since the zero occurs between z=0 and z = -oo, we can write (3.13.12)

in the form:
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TT

. ./Max r v -v. Ip f (1-vh 1 LOG |q(e^ )|tV.
SCV°) 4 v ^ vl<Vl - 2- L ' P 1 - T T ^ -  J (l+vS-2voc c s ^  

^  1-v‘lv0J i  0

Now Max

(l-%>
r vr  .

1 1f Argg(v'+ ifr)dv'
IT _ -1 J

VT. j. U-v'vp |v'-vo|

< v. < V 1 0

c o < I—1

—
---

-1 vo Voo
1-v,1 0 J ^ V o o

J

( 3 . 13 . 1 5 )

( 3 . 1 3 . 1 6 )

Hence, we obtain the expression for the upper bound

g(vot<
v - v  o oo Exp.

1 - v  v oo o

C l-v 20)
TT

rr

l ,

( 1 - V Q) n  lo g  j g ( e  )] doC

0 |^l+v^-2 v q c os«CJ

(00 + f j Arg g(v'+i€-) dv' | ?
- _1 v [ l - v ' v 0) l v ' - v 0 | j j

3.13 .17)
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Later we w^ll try to improve our bounds by the replacement

(v)—* §.(v)~ g(v)+ i = 0 Ai + i(y vô  ,where are arbitrary real para

meters adjusted to give the best bounds.However,g^(v) may have 

more zeros than g(v) in the unit circle. We will show that the 

inequality (3.13.17) still holds when g(v) is replaced by g^v). 

We have to consider two interesting cases (i) if there are

N number of zeros introduced between v=v and v=v , (ii) ifo oo
there are N^-pairs of complex conjugate zeros inside the circle 

as well as N real zeros.

(i) Firstly,we suppose that g^(v) has N real zeros

..... ,v^ (say) . Then webetween v=v and v=v „ at v=v.,v0,v7, o oo 1 ’ L ’ 3 ’
can construct a function

N
h(v)= g1(v) TT f 1-vivX v-v.1 X -*

(3.13.18)

which has no zeros inside the circle and on the circumference 

of the circle |vi=l, we have|h(v)| = |g(v)j.The function H(v)=log h (v) 

has the same domain of analyticity as h(v) i.e. the cut circle Dv « 

Now Im H(v'+ie)=Arg h(v+ ie-) and at the beginning of the right

r i-viv
IL v-v. .

g^(v)>o, since we can assume g^(v)>o
hand cut (v=v^,-e),we have 

h(v) _
otherwise we would 1get a better bound.For v=vT+ e+ie-with e>o,

Im h(v) >o and Re h(v)>o from continuity so that TTj^Arg hiv+ie)^
On the left hand cut of the disc (-l<v< v ) we haveoo

Disc H(v)= Arg h(v+ie)-Arg h (v-i e) = 2Arg _h (v+i &)
N 1-v. (v+ie)
TT 1= 2Arg i=1 v+ie-v^

g1(v+i&)

, N(-1)” 2Arg g1(v+i&) (3.13.19)

On the circumference of unitary circle log |h(e1̂')| = log J g -̂ ( e 1o<̂ )j ,

while at v=v , o’
log I h ( v q )| = log

N 1-v.v
r Ti 1 0

/—> c>tsO

i=l v -v.0 X
_L W (3.13.2o)

ï
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log ft 1 -Vj Vo ~1
i=1 vo“vi J

M V
( 1 - v 2) V  108 | 8 l (eit<)l ^

l+v2 -2v cos<£_ o o o
r v

+ d - vP
TT

0O(-l)1NT±Arg g1(v'+ie)dv'N+l

-1 (l-v’vo) |v’-vo \

, r1 a W v '*1» ^ ;

V r
(l-v'vJ U ' - V  |

or gi(vQ) <-
Max. TT.Vo-vi

voo<M V2>v3’ * VN^\) l-viv0

n

ExP< (l~Vn)

TT

log\g1 (e^)|

(l+vZ -2v cosiA) o „ o o
+ _(l-Xo) TT

v.
(-11N+1 Arg gj_ (v 1 + i e-) dv 1

J x (l-v'v0) |v’-vo| 

1 Arg (v 1 + ie-) dv'

(l-v'vo) |v'-v0|
(3.13.21)

Vr N

Max.

r ^  "A
r V -vN v -v. 0 oo
T1 0 1 =

^ 1 - V . V 1-v v 10 1 0 . . „  0 0 0 J

(3.13.22)

;nce,we obtain the expression for the upper bound
r  V 0 " V O O  i N  E v r > f  0 - V „ )  U  l o „ | g ,  f e * | | d

8 A V ' 1-v V oo o
Exp

TT * -  J
logl gT (e^ld^

o [ 1 +Vq -2 v ocosc^]

+ d - V
TT

^(-1)N+1 Arg g1 (v'+ie) dv’

•-1 (l-v*vJ Iv’-vl

+ Arg gi (v' + ieQdvJ
“I

vT (l-v'v0) U'-vJ
(3.13.23)



(79c)
N

If N>1 ,
v -v 0 o o

1 - V Voo o

<
V -v o oo
l-v V oo o

N+l

(3.13.24)

(3.13.25)and (-1)"'^ Arg g^v'+iG) 4  Arg g (v'+ie), 

and consequently, we get lower value of the bound numerically. 

As we are looking for the upper bound,the inequality (3.13.17) 

holds when g(v) is replaced by g (v).

(ii) If as well as the above real zeros g (v) has

pairs of complex zeros v^,v^,i=N+l,N+2.........,N+N^,then we

construct the function,
N, +N

h(v)= g1(v) -|y

i=N + l

'l-v. V 1 1-v.v Pii
V-V. V-V. V1 L 1 J

1-v^v (3.13.26)

which has no zeros in the unit circle.

Now l-v 1-v^v

v-v.X

is real positive when v real so that for

- l < v < v  we again have oo 6
Ndisc H(v)= (-1) 2Arg g (v+i&) and for vT<v<l,

disc H(v)= 2Arg g^(v+ie) 

Also on the unit circle l-v . V 1-v.v1 1
v-v- v-v.1 1

= 1 .

So we can this time replace (3.13.12) by, 

r N
log TT 

i = l

l-v. V 1 o

V -V. 0 1

flNl+N :
/1-v.v \ 1 o 1 ( 1-v-v 1 . o

P n+i| •
H

>o> ( v -v. JV o i 7
r v

d-v£)
n

TT
log |g1 (e3̂ )|d^L 

2l + V -2v COS c£ O 0 0

. (1-v^
TT

iv7-l)N+1Arg 8 i C ^

L -1
(1-v'v ) |v'-v I

J
V

Arg g-j^v'+ie) dv'

(l-v'v ) \v’-v 1 o ' o'

(3.13.27)
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Exponentiating and using the fact that

for all v^inside unit circle,(3.13.23) 

inequality (3.13.17) holds when g(v) is

(v. -v ) (v-r—v J v 1 0 J K 1 0#

again holds so that the 

replaced by g (v) .
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3.14-NUMERI CAL CALCULATIONS .

We calculate lg(e1<*')i= |F(s,4)[ from phase shifts, and

.1 —  can be calculated,o (l+v^-2vocos<*0

Above/s~2Gev ,1m F (s,4)>>Re F(s,4) so in this region 

Arg g(v'+ic- ) ~ n / 2 ,  and we can evaluate the integral 

v
1 00 Arg g(v'+ie) dv1 by varying the arg F between
-1 (l-v'v0)/v'-v0|

0 to n / 2  in the high energy region (Vs -~2Gev) .

Finally,, we need an estimate on upper bound for

. The amplitude can be expanded

in terms of partial waves in the two regions. In the region

4 ^ s4500 Mev]2, Re f [ (s) —  (s-4) (21+1'/2 and Im £1(s)~(s"4)- 
Hence we can approximate the ratio

i . Arg g(v'+ie)dv'
(1-v'v ) |v'-v I  ̂ o '  o'

Im f^Cs) o vIm F ( s , 4)

Re F1Cs , 4) ^ ( 2 1  + 1) Re f{(s) 3
(3.34-.1)

For certain isospin combinations, Limit^e^l
s -»4

(s-4) (21 + l)/2

= X 1>0*,1 = 2 , 4 , 8 ,  . . .  ( 3.  If. 2)
We expect from Froissart-Gribov formula that Ref^(s)>0 in 

the range^5 00^5^s >  4 for 1=2,4.8,....
„, ^ r  ̂ 2 o ^  \  0, and henceAlso,we assume F(4,0)= X = ----- 1-------X  */ * ' o

x 4 4

Im F1fs ,4) /

Re F1 (s , 4)

Im f (s)

I
Ref (s) o v J

, 4<Ç s<^500MevJ (3.14. 3)



Now, fq (s) = l/3-(f^(s)+2f (s)) and f 

\ d $ \ 6 2J  ,we expect the order fQ(s)>^ 

these results, we obtain the ratio

l , -, ia(s) ~ e o o
l/3-(f°(s)).

sind1 and o
Considering

1 ImF(s,4') T ro, ..
Arg F (s , 4) = t a n _____________ <; tan-1 Im fQ (s)

Re F (s,4) Re f°(s)

~i°(s) (3.H.4)
Looking at the data, it seems to be a good approximation to 

take d°(s)^TT/6 for 4^s <: (,500Mev) ̂  . Then in the low energy 

region: O^Arg F(s,4)^ TT/6 and in the high energy region: 

0<Arg F(s,4)-$ IT/2 seem to be truet If one does not want to 

make such assumptions rigorously, we can apply O^Ar-gF (s , 4)^IT , 

and can get bound to

fl Arg g(v'+ic-) dv'
VT ----------------  .

(1-v'v ) [v'-v I o ' o'

Putting all these conclusions together, we can evaluate, the 

upper bounds on the s-wave scattering lengths:

*(\A<
r v -v o oo E'jkpJ
1-V VL oo o J

it

n
l o g J& C e**  )ldc<

[1+vo-2V os<J

+ (l-v ) v o  J
it

T 1 1OO
+

'

-1 VI

Arg g(v'+ie-)dv' ( 3 . If- 5 )
(l-v'v ) v'-v [ .

o J 1 o' U

t We define Arg F(s,4)=Arg g(v) = GR for computational purpose 

and select the set of arguments^GR=TT/6,GR=TI/2j ,^GR=IT/6, GR=ri|, 

|g r =TT/2 ,GR=Tl| andjGR=TI ,GR=rrj-according as ^v=X>VI = vo,X<Vl| for 

the function g(v)=F(s,4).The above arguments suggest that 0<ArgF(s,^ 

<TT/6 do not apply to the case TT +n°-*-n +TT° since in that case

the 1=1 contributions to Re F(s,4) can be negative.
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We replace

g(v)— ^g(v) + A 1+ fsi Ai + i(v_v0) 1 =h O) (3.Ü6)
so that the central wave has the upper bound 

|h(v)U<|hc (v)| +Kg(v)| (3.M-.7)

The first expansion coefficient A^should be selected to 

give an upper bound J g(vQ) +A^j^ M(A^) , and 

0^g(vo)¿M(A1)-A1.

The amplitude has a band of variation on the plot 

of energy (E )against phase (d ):

F (s , 4 ) = Fc ±£AF, (3.31$)

where Fc corresponds to the central case with positive and 

negative errors. The intregral over the bound involves 

lots of internal cancellations,which lead to stable upper 

bounds.

In order to improve the upper bounds further ,we

include four coefficients to replace
g(v)+A1+A2(v-vo)+A3(v-vo)2+A4 (v-vo) ¿ C3.&89

in (3 . If. 5) . On the other hand, the arguments (GR) of the

amplitude are varied between sets:

^GR=n,GR=n/2j and [GR= IT, GR=TTj-according as

jX>VT=v orX< Vlj respectively. The last set should give the

worst valuesjwhereas the first set should give the best

values. The set of arguments are selected accordingly.
We can not use the more restrictive bounds 0<Arg g (v' +i &■).$ TT/6 

in this case because the real part of g1(v) on the cut is modified 
by the addition of a real polynomial.

We Keep iixed at value corresponding to

yrs':f450 Mev,and vary two parameters ( v q  and z . This z2 is

varied from values corresponding toTs“ = 950 Mev to 1900Mev

at lOOMev intervals. Also, v is varied from v =-0.9 to 0.5

at intervals 0.1. The first two coefficients A^ and A 2 are

varied from 0.05 to 1.0 at intervals 0.05;and -0.05 to -0.096

at intervals-O.05 respectively.



To find the amplitudes by interpolation, we apply

inverse mapping: 
ß-iw

v= ---- =e on unitary circle.
dtJW

or vB+v/w = B-_/w 

or/w= B

w=
1+v

Cl-v)
(1+v)

Hence z =

» J 2

z -z,
=A. ----z-z2

-wz2 -2 z 
li__

, A > O.

A-w

I (2s + to-4) 
: \ 4 + to

£* o-2 -w 
2i

=(2s/8) 
2

(3.14,9)

(3. If. 10)

Z j Z 2 (1-w)

2 2 _WZ1

zr  tsi/4J > (s 2/4)

( s / 4 r  , t Q-4 . ( 3 -H - l l )

(3. If. 12)

SOjif we are given a vie1̂ ) point on the unitary circle, we

have to follow the following order of calculations: 
l+v_

(i) B= —
(ii) w= 1 -  V

ltv
B v -

B - J v i

B + J w

(iii) za
z1z2 (1-w)

2 2 -V,Z 1

(3 . It. 15a) 

(3.». 13b)

( 3 . If. 13 c)

(iV3.s =
(4+to)jT - (to-4)

(3 . If. 13d)

(v) Given this s, we calculate the amplitude F(s,4)= G(Y) 

by interpolation.



3.15" UPPER BOUNDS IN THE ELASTIC REGION.

In order to include errors in phase shift

measurement, Adj, we suppose that they are all correlated

to give error in total amplitude in the elastic region: 
pi _ ^  I 'dF Ifadjj .where are in radians.

' 1=0,1 1

Hence, AF1 =£je2l<L| | Pl (cos^i l̂ l̂l (3.11.2)
(.2 0,1

Taking the right combinations for n°+rT° - > n 0+n°
scattering, we have error,

AF'= (1/34f °+2/3«AF2 ) = 1/3-1 e2lciol|Po ('COS^ ^ Acio^9
+ 2/3-| e2i<̂ol I V C0SW d^ 3)

Now, we replace

|g (e1̂  )| _^lg(v)+A 1+A2(v
where &

LOOoll’ and 1.

Consequently, we have

ANSI =
- v -v 0 oo 1 Exp

OO 0 J

TT , c.
r l0s {1gCe1̂ )
o +A 4 (v

(3.15.4)

+ C-A F
' I  «

ANS 2 =

ANS3=

(1+v -2v cospC ) o o

r v -v o oo ExpJ (1-v2) V
r

1 - V VL oo o ) n J
(3.IS. 5)

v -v - 0 oo id:Vo)Exp/
p Arg gj(v ' +ÌG ) dv '

1-v V L oo o j i 17 ^  (1-v'v )1v '-v 1 J 
V r V Ô  1 O' J

(1-Vv0) I v'-v0|
(3 .IS'6)

(3-IS. 7)

g(v0) A FI NANS. = ANS 1+ANS 2 -I-AN S3 (3.1Î.8)
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the upper bounds in the elastic region (o.45 Gev^ Ec . m . <0.95Gev).

For the function (3.1C4), we have 0<cf<IT for v^,<v<l.

The data for central values and errors used,to 

compute the bounds for the real and imaginary parts of the 

amplitude, are given in table 1 [ 18j. The phase shifts are 

given in degrees and the inelasticities fulfil 

sup|0, T\-Ai\j<Ti<Inf|l,

The computational results of upper bounds are given 

in table 2.

So, equation (3 .1^ 8 ) computes equation (3.H-.5) to give

For n ++rr°- -yIT+ + rr0scattering, we

combination Ffs,4) = ifF^+F^l. If erroTr+n^nVV L J t
AF1 = io.l |e2i4 l | Pl(cOS« Adl)

rs are

take the

correlated, 
(3-19'. 9)

A f 1= |e2iĉ i Pi(cose)!^i)

2
A F 2=le2icio Po (cos^)|(Ad2 )

a F'= J(AF1+ a f 2) = l \ e 2 l à l  P1(cos0)K+i\ e 2 l 6 o PQ (cos(p(4d2 )

(3.<10)
The amplitude should be successively replaced by 

F (s,4) 5 gCe1̂  )

IgCe1̂ )!---> |g(v) +A 1+A2 (v - v q) +A3 (v - v o) 2+A4 (v - v q) 3( -t&F,

(3.19". 11)

• <2

e=0,0.5 and 1.0. The computational results of upper bounds 

are given in table3. The sets of arguments are ^FT,TT/2j- 
and^n,rrj according as^X > v q , X<v £ f or this combination.



Table 1

Ec .m. Gev 0.45 0.5 0.55 0.6 0.65 o . 7 1.75 0.8 0.85 3.9 0.95

4o + 9 44 + 9 50 + 9 58+9 63 + 11 70+11 75 + 11 82 + 11 89 + 13 97 + 14 130+36

-d20 7 + 3 lo + 4 .2 + 4 14 + 5 15 + 5 16 + 5 17 + 5 18 + 7 19 + 7 20+ 7 20+7

*1 3.5 + 1 6.5+1. »10+1.5 15.5 + 1*525+1.5 42 + 2 75 + 2.5 115 + 3.! 140 + 2-5 L50 + 2 .5154+2.!
Ec. m. 
Gev 1.0 1.05 1.10 1.2 1.3 1.4 1.5 1.6 .1.7 1.8 1.9

< 180+60 240+20 250+15 270+15 290+15 312+15 332+15 358+15 380+15 400+15 405+15
0 0-2 5+0-2E 0-5 + o-2 5 0-7 + 0*2 5 o9 + o-3 00 5 + o-3 0-9 5 + o-3 o9 + o-3 0-8 5 + 0-3 0-75 + 0-3 ). 7 + o*3 o . 6 + o-3

-d20 20+7 20 + 7 21 + 7 21 + 9 22 + 9 22 + 11 2 3+11 23 + 11 24 + 15 >5 + 15 25 + 15

^0 1 1 1 1 1 1 1 1 1 1 1

154+lc 157+10 159+10 163+11 165+11 166+11 L67+11 168+11 169+11 169+11 169+11

1+0.15 1.0+o*l!¡005 + 0-13 o*3 5 +*15o . 9 + o-l E0-8 5+*15 o. 7 + o*l 5o-5 + o-l 5 o-8 5 + o-l il + o-15 1 + 0-15

8 + 5 12 + 6 17 + 6 + 2 + 10 100+13 142+11 157+11 160+11 160+11 160+11 160+11

^2 1+0.2 1 + 0.2 1.0+o*2 0.9 + o*2o . 6 5 + o\ o.75 + o-! o-8 2 + oo8 6-o-2 o.9+o. i-9 4±o-2 00 8 + o-2
1 + 3 1+3 2 + 3 2 + 3 • 3 + 3 4 + 3 6 + 3 lo + 3 5 + 3 -10+3 -8 + 3

A
1+0.5 1 + 0.5 1 + 0.5 1 + 0.5 1 + 0.5 1 + 0.5 0.92+O° o . 8+.0E»o-5±ao5 o . 7+.o5 0-9 + 00 5



TABLE 2:
( 8 7 )

Funct. e-
m i t vo Ai A 2 A3 Upper Bounds(Minimum )

\LL
<
Vi)

+

0
T L / t J h 0.172 0.7595
TT.n/a o. 088 11.73
n / 6.n 0.235 l.o476
it, n o. 088 14.74

D . 5 n f t . n s 0.171 0.847
n . n /2 o. 08 7 13.0 8

n/6.n 0.17 l.o64
n . n o. 08 7 16.44*-/

\

&=>

l.<
n f ^ u / z o. 08 5 0.935
> n n / 2 o. o89 14.43
n/6jr o. 08 5 1.174
n, n o. 08 9 18 .13

4c4-
«:+
, u- 
b  «
;aL̂

3 rr,rV2 o. lo8 -o.o39 -0.472 3.o77o94o
n . n o.lo8S-o.o39 -0.472 3.8 6 6I006

o.!TT.rt2 0.532 o. o9 1 -0.769 5.0187147
ir.n 0.532 o. o9 1 -0.769 6.3o55 74o

S'
&

l.<>n.n /2 0.532 o.08 61 -0.766 6.55o2428 1
n . n 0.532 o. 08 6 -0.767 8.2298o45+ ̂^ LL * <i &ri + --

0 n , n ¡7 o. 1 oo -o.o31 -0.471o. oo68i 2.933o533
n rn o. loo -o.o31 -0.471 o.oo69 3.6848775

cn "ov i 

+ 1

% ?

Î
~N

o. 5 

1.0

n f r/2 0.463 o. 08 3 VUVOC1 o. o51 5.o462178
n rn 0.517 o. o92 -o . 75i o. ol9 6.2955831
n, n /2 0.5199 o. 088 -o.75e 0 . Oil' 6.5478322
n , n 0.5199 o. 088 -0.757 o.oll4 8.2267758

J
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TABLE 2 (CONTINUED):

Funct. e
»VI : GR= ;
X<VI : GR=

V 0 A i A 2 A3 A4 Upper Bounds. 

(Minimum)

i  Î  

3 ?
t £«. iP .■f V v
Z t  iJr
b £ <
5 +  1
t
5
S&

o n,n/2 o . o9 8 -0.031 -0.471 0.0068Î -0.0009 3.0566328

n , n 0.098 -0.031 -0.471 0.0689 -0.0009 3.8374145

0.5 n ,n/2 0. 144 0.065 -0.639 0.1398 -0.163 4.1947098

n . n 0.144 0.065 -0.639 0.1398 -0.1629 5.2702844
1 n ,n/2 0.144 0.067 pO.637 0.141 -0.161 5.8221501

n , T i 0.14 0.067 -0.637 0.141 -0.161 7.315099



Table 3: (Set of a r g u m e n t s ;G R = n ,TT/2 )
££jrXL

Functior £ V0 A i A2 A3 A4 Upper bounds 
(Minimum').

0 o. ior 8 779~5 018 6

“O.To'J 117050168
•

0.5 0.101 977196570
< 0. lol 12.211895

1.0 ■ u. lor 10.6 (TOO 76
<D
bo 0.101 13T3~IFO_64_

0 0.4239 0.0799 -0.269 9.3249948 _+r—t< 0.42 0.079 -0.269 11.716036+
> S 0. 5 0. 464 -0.094 -0.318 12.093706

f k 0.464 -0.09 3!> -0-318 1 5_. 19 4679 .
r-y >
* '

• H  > 1 -00.568 -- oo28 -0.459 14.392596 ...0 W  
v— / CMGO < 0. 568 -0.02 78 -0.459 .18.08 3038
CN1 +< 0 0.468 o!02 5 6 ■• o4 3 9 9 3.0304 3.2810942+ CM rH f— \< O 0.4 68 00256 ■•0.4399 0.0305 4.1093775+ r>

/----N 1> > 0.5 0.531 0.093 -1.166 1.08 2 6.8624974J20. tO
t i 0.531 0.093 -1.166 1.080 8.622125
f~\ t----\

O  •

• H  >0 1 lu-

>  <1 
0 0  ^  ^  

------  Jr

1 . 0 0.524 0.154 -1.283 1.222 8.7712799

0.523 0.15 2 -1.277 1.213 11.02o651.
CM

<  +
0 0.025 0.081 •■0.264 0.0008 3 -o.00: 3, 9.7238868

+  CM 
r H  ✓ — \ P - i

<  O  < 0.02 5 0.081 -0.264 3.0008 -0.002: 12.217233
« r-* 0  

/— \ 1 +

>  >  _____
v— j  t o

0. 5 0.310 0.158 -1.008 1.164 -05 65 5.6873326
O f l  t o
A  <£, f— y1 +  o 0.3105 0.143 -1.094 1.146 -0.565 7 . 1331543

O  1
• H  i >  i > 1 . 0, 0. 64S 0.198 -1 .  748 1.586 0.918 8.4311597

w  >  
o o  ' — '  < ;  

—  +
0.649 0.200 -1.749 1.589 0.919 10.584160

X
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3.1C UPPER BOUNDS IN THE ’BROAD ENERGY REGION*

In order to calculate the upper bounds in the energy 

region(0.45 Gev^Ec.m.^l .9 Gev), we assume the errors to be 

correlated for two combinations of amplitudes.

i-E? |AXillH 7 |

2 ci1so, ^F1 =?(s/(s-4)) *(21+1)[ r i ] 2ie2cil ]/2i.P1(X)
®dï Uo L

or £ F J
rl

*9^

O O  i  T  o  A  j f ^
^  (s/(s-4))5 (21+l)nJ ezidl .Px(x)

1  = 0 2 
2mn

where X= (1 + 4.— ) v s-4m JU

r o • j  I ■
Similarly,^ 1 = ^-(fi(21+1) e 1

3i\î

/2i.P1(x)

( 3 . 16. 1)

(3.16.2;

(3.16.3)

Putting the results (3.16.2) and (3.16.3) into (3.16.1), we have

oo - i l

AF- 1=0,1,2,3
(s/(s-4^ (21 + l^n.J e2l<ilP1ix) .Ad^l +

2idï IH e 1 P-l Ĉ cD j
' 2i

(3.16.4)

Now a f ’ü (i/3.a f ° +2/3. a f ^) for n un u— > rrun
2id°

,2\ O rr O O t—, O

= 1/3. (s / (s-4)) î r r  o 2id°
!\> e °Ad° 2i

P (x) o J

+5 _ o 2ido fOi ^2 ®  ̂ 21
2 i do

- —Wl] p2 (x) j2i

H  2 2id2 2, A e2lcio ?______ An+ 2/3. (s/(s-4)) 2/|n0 e uo ^ j +
uo 2i

;l)-Po
Cx)

(3.16.5 )



And for n +n ° — *-n + rT° scattering,

a f ' = !(a f 1+^ f2 )
2i ¿ }

1[ (s/Cs-43j| 3 jjn.J e 2itiL<iJ| +1-®—

.y[\n] e 2i<J3A<i2l ♦  | £ ^ i - ^ | j p 3 (X) +

■ 2 2 i d 2 ,2 ,
1^0 6 0 a 6oI +

¿2 2i d  e o

2i
-An., P0 (X)

J

(3-16.6)

In the elastic region,we assume t\=1 and the partial wave

amplitudes are calculated by1 J*- rJ 2 e ^ l s i n d ^ ( s )  ,q(s)= (s/(s-4)) 
whereas in the inelastic region we use equation (3 .9 .1)

(3.16. 7)

and (3.9.2). On calculating amplitudes in the respective 

regions, we apply the same mapping and the expression (3.1J-.5) 

to calculate upper bounds on s-wave scattering lengths in 

the broad energy region with 0,0.5,1.0. Errors (3.16.5) 

and (3.16.6) are taken into due consideration. The results 

are given in tables 4 and 5.



TABLE 4: (92)

Funct e X>VI :GR= /
K<VI : GR=

vo A i A2 A3 A4 Upper Bounds 

(Minimum.)

VU_
<

+

cN*

t
T  ■—» çf°

0 n/6, n f : 0.235 0.9904

n , n / ; 0.236 14.7303

n/6.n 0.112 1.163
rr.rr 0.236 15.5811

Ov5 n/6, n/2 0.112 1.099

n,n/2 0.112 16.35
n/6,rr 0.113 2.43
rr.n 0.112 17.29

1.0nkr/; 0.224 4.1759
n.n/2 0.112 17.49

n/6, n 0.224 4.242
n , n 0.112 18.50

?

<
"f
<C
\ * LL

è> <3
* ï

__s& .

0 TT,lt2 0.123 0.005 -0.479 3.73156
n, n 0. 123 0.0052 -0.475 3.9471

0.5 n,n/5 0.111 0.0067 -0.475 4.3402
n . n 0.111 0.0067 -0.475 4.5909

1.0n, n/2 0.111 0.0068 -0.475 4.7302
n. n 0.111 0.0067 -0.475 5.0034

+ rÇ

' ¿ g

k
i t'̂r' U. 

\!)Ô=>

f
3-
2?

0 n, n/2 0.102 -0.019 -0.482 0.012 3.8445
n, n 0.101 -0.019 -0.482 0.012 4.06661

0.5 n,n/2 0.101 -0.020-0.482 0.010 4.6501
n, n 0.101 -0.020-0.482 0.010 4.9187

1.0 n,n/2 0.101 -0.020-0.481 0.010 4.8753
n, n 0.101 -0.020-0.481 O.Olo 5.1569

f



'/ d V -i> +
I ’¡0

‘A ~A) ̂ V +^(o/\-/Cj ̂ V + 
-̂/P-V +' V 4- ( ̂

 >g |. -s-
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TABLE 4 (CONTINUED): 
X>V I : CTTi

Funct S-
X<VI : GR= =

v Upper bounds 

(minimum. )_____

0 n , r y 2 0.108 -0.019 -0.48: 0.012 0.003 3.7461

r r ,  n 0.108 ■0.019 -0.48: 0.012 0.003 3.9625

o . 5 n , n/2 0. 113 ■0.02C -0.481 O.olO 0.006 4.53618

n,n 0. 113 -0.02C -0.481 0.010 0.006 4.7982

1 . C TT , n/2 0.112 - 0.020 •0.481 0.010 0.005 4.98216

T T ,n 0.112 - 0.020 -0.481 0.010 0.005 5.26993



( V v )

Table 5:
Funct £ X>VI: 

GR=,
m i:

vo 0 A2 A 3 A 4 Upper bounds 
(Minimum).

VLL
$4-
5
3=
7
f

0 ", "/5 0099 "TO. 09~65‘4 9 ---- -
», u 0099 "TO 767 972 2

15
—r—— —
K  > TVz UTTT2 11.115231------
n, \\ 0.112 IT . 7T> 72 4 3

1
■" "

’ll, %Jo. 112 11.8 9 84" 2 4 ~
urn-

~
(J. IT2 TZ.SZ 5 6T3

T ~

k t
r

c  ■

0 3T,Ti/2 0.078 0.15 3-0-2 5 7 7.1247006
IT, if 0.078 0.153 -0*2 5 7 7.5362216

35 tt.tt/20.07 7 0.15? -02 5 7 7.9012722
TT,TT 0.07 7 0.152 -0-2 5 7 8 . 3579170

1 TT, 7\(x 0.078 0.152 -02 5 7 8 .4747998
TT,T 0.078 0. 152 -0-2 5 7 8 .9642957

t  +. ?<£ + x+ y “• ■
S' ̂

0 TT,TT/a 0X37 7 0.154 -0-2 5 700002 7.1711222
TT, IT 0.07 7 0.154 -0-2 5 7 OoQo 7.5853239

>5 TT ,TT/a 0.07 7 0.154 -02 5 700002 7.9918524
TTfTT 007 7 0.154 -0-2 5 700002 8.4534586t

•? 1 tt.T/2.0.07 6 0.154 -0257 !§ jo p l-E> 8.4901218
TT. IT 007 6 0.154 -02 5 7

—WooQo 8.9805088_S rCfes -a t}
« U- .

0 TT ,TT/'i007 7 0.154 -0-2 5 700001 0.0002 7 7.0290661
TT,TT 0.07 7 0.154 -02 5 700001 000027 7.4350620.4- . 

t * +
35 TT.TF/z0.07 7 0.154 -02 5 700009 0.0002 7 7.8803580

TT,TT 0.07 7 0. 154 -0-2 5 700009 000027 8 . 3355271I
5i<£=»

1 rr, tt/2.0.07 7 0.154 -02 58 00002000002 8 .472979 7
TT,ir 007 6 0.154 -0-2 5 800002.00002 8 .9623751

Table 6 :
8=0 LOoIItu 6 = 1.0

U.B. 0.86 6.8 12.2

a L . B .n -0.07 -0.31 -0.47
U.B. 0.60 2.65 4.5

a2 T,.R. -0.07. -0.17 -0.7 7
U.B. 1.71 17.2 32

2a -Sal8,o /
-2.8 -9 -16

U.B. 1.2 8 7.2 12.5

a + 2 a i?' B ’o 2 0.126 ' -0.12 -0.22
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3  .17 DISCUSSION OF RESULTS.
In the present work, we have adopted the main 

features of IT IT scattering in the energy region 0 .45Gev4 
Ec.m.<: 1.9 Gev,defining the same central family of S,P,D and 

F phase shifts with associated errors. Furthermore, we have 

also defined and multiplied the errors in the (A)elastic 

region and in the (B) broad energy region by the same scaling 

factor £ (O464I ) such that £=0 gives the central family 
and £ = 1 gives the bands of maximal expanse. For any fixed 

value of E , we compute the upper bounds of IT IT amplitudes 
in the two regions of energy for n° + TT0— >n°+TT° and 
IT + n 0-*:rT + n  interactions. We have used Bonnier ' s [18] 

normalization factor:

p(s)= j(s-4)/s] 2 (3.17.1)

In the elastic region for TT° + IT0 ^IT0+ n 0,we have—T

selected one third and two third combinations of amplitudes 

for isospin zero and two respectively. For FI+ + IT ̂ T I  ■+IT0 
we have taken half and half combinations of amplitudes for 

isospins one and two.

For comparing the results,Bonnier ’ s bounds[18] are given 

in table 6. Numerical values(for different values of £) 
of the bounds on a ,a~,2a -5a-, and a +2a-have been obtained 

by him on using data(table 1). Bonnier's bounds [18j are 

approximately linear with E (O^E^l). Our results are to 

be compared with the upper bounds on aQ+2a2With different 

values of £= 0,0.5 and 1.
2 The bounds given in tables 3&5 are upper bounds fori(F^(0,4)+ 
(O,4))=l/3.(ao-a2)(.see 3.4.5)
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(A) Elastic region (0.45Gev^Ec.m.^0.95Gev ):
n ° + n ° — v n ° + n ° :  In the beginning, we select stoe sets of
— — — — -----  (Tg TT/zJ £ (ir,Tj)
arguments,namely (n/^FT/2) ̂  (Tl /(>TT')4 then we have sets

of .arguments: ( n , l T / 2 )  and (IT, FT).

The first set ,in the latter case,should give the best resets
9

while the last one should give the maximum, value. The minimum

is found at v *0.08 consistently. Firstly,in the best case o
of arguments ( n , r T / 2 )  the numerical values of the bounds 

are 11.73,13.08 and 14.43 for •£= 0,0.5 and 1 respectively.

In the worst case of arguments (!T,n),the numerical values 

are 14.74,16.44 and 18.13 for £= 0,0.5 and 1.Orespectively, 

which can be compared with Bonnier's result 12.5.

On expanding the total amplitude in terms of powers 

of (v-v ) with the help of certain coefficients,like A^and 

A2 ,we find' lots of cancellations going on and finally it 

leads to stable bounds. The numerical values of the bounds 

drop to 3-oi73 5".019 and g -ST corresponding to the set of

arguments (FT ,IT/2) and E= 0,0.5 and 1.0 respectively.

In the worst case , the numerical values are 3.866,6.306 

and 8.229 which show considerable improvement over Bonnier’s 

result 12.5. On inclusion of more coefficients of expansion, 

the bounds improve a lot down to our numerical value 7.31 

in the worst case of arguments, which shows a considerable 

drop of 41.6’/ as compared to Bonnier's value 12.5.
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n  ++ n °  n + n ° :  We select same sets of arguments (11,11/2.) (TT,TQ

for this isospin combination. We find that the numeri

cal values of the upper bounds are 8.79,9.72 and 10.6 for

£=0,0.5 and 1.0 respectively with the argument(II,n / 2 ) . The

minima are found consistently at v =0.1ol. In the worst case

of arguments (n,n),the numericai values are 11.05,12.21 and

13.32 for £=0,0.5 and 1.0 respectively. On inclusion of .

coefficients of expansion for (v-v ),we have considerable

improvement over the previous numerical values of bounds,

down to our result 10.58 in the worst case of arguments with

E=1.0,which is still lower than Bonnier's result[18J.

(B) In the second part of this work,we have

selected the broad energy region with the same mappings and

expression for the upper bound. The central family (E=0)

shows some increase in the values of upper bounds as compared

to our initial results in the elastic region. There is the

reverse case with other values of E,the bounds improve as

compared to corresponding cases in pure elastic region.

It is a remarkable observation that minimum values of upper

bounds are found at v ~0.1 in almost all cases of expansion -o
with different values of £ (0,0.5,and 1.0)in this case;while

in the elastic region the minimum values of upper bounds are

found at values of v varying from v =0.08 to v =0.53 ino o o
different cases of power expansion of the amplitudes.

n ° + n ° — * n ° + n ° :  In the beginning, we have selected four sets 

of arguments CTtjTr/o.j.g,or,ttj ;and then -two sets of
arguments (FT,n/2) and ( n , n )  are sele

cted. In the case of central family (E=0),the numerical 

values of upper bounds are 14.73,16.35 and 17.49 for the set

of arguments ( n , n / 2 )  ;while the numerical values for the set
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On inclusion of different power expansion of (v-vQ)in

terms of coefficients,the bounds improve a lotand the best

value is 3-73 at v = 0.12-3^,= 0.0 0 5 ,  A~=-0.473o ’ 1 L

after minimization;while the worst value is 5.269

at v =0.112,A ,=-0.020,A =-0.481,A,- 001 and A.=0.005.o ’ 1 * 2 ’ 3 4
Both results show great improvement over Bonnier's results.

TT+r i ° — *-n+n°: We have selected same sets of arguments 

of the amplitude for this combination: (.IT, TT/2-) & (JTVTT).

In the former case,we have numerical values of the bounds 

10.09,11.115 and 11.898 for £=0,0.5 and 1.0 respectively; 

whereas in the latter case of arguments their values are 10.679 

11.757 and 12.586 respectively. They show considerable improve

ment over the corresponding results in the elastic region.

On inclusion of the power series in (v-v ) with 

four coefficients,we get the best numerical values 7.029,

7.880 and 8.473 for £=0,0.5,1;whereas in the case of arguments 

(nr,n) their values are 7.435,8.335,8.962 for E = o,0.5and 

1.0 respectively on minimization. All these results show 

much more improvement over previous results.

of arguments (n,ri) are 15.58,17.29 and 18.50.
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3 . CONCLUSIONS.

We find that all values of upper bounds,given in

tables (2,3,4,and5),depend strongly on £ and the set of

arguments used. The best values of upper bounds on

s-wave scattering lengths are obtained for £=0 and arguments

(n/6,rr/2) or (n,rr/2)
jwhereas the worst upper bounds are . y

obtained for £=1 with arguments (n,rT). On replacing

g(elci)= F(s,4) by a power series in (v-v ) , the integrals

over the upper bounds involve lots of internal cancellations

and lead to stable, upper bounds.

In the elastic region (0.45Gev.<: Ec.m.40.95Gev) ,

the upper bounds get stabilised" on introduction of coefficients

/ll,̂ 2,/l3,̂ 4 of the power series. There is much improvement

over Bonnier' s [18] results with same normalisation

factor in all cases of E-values.

On selecting broad energy region with the same

mappingand expression for upper bounds,the central family

(£=0) shows some deteriation. However, reverse is the case 
. 0 i bounds improve as compared to those

in the elastic region. The minima are almost stable at

v q -0.1, except in few cases of E-values; whereas in pure

elastic region they are found at values of v q varying

from v -0.08 to v =0.53 under different conditions of o o
parameterization .

Finally, our method is model independent and it 

gives new upper bounds on s-wave scattering lengths and 

their any linear combinations,on defining central family 

of S,P,D,F phase shifts with associated errors.
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We would like to compare our results with general s-wave 

phenomenology based on BFP mode 1^30] with the same normaliza

tion factor.

Both Saclay and Berkeley data restrict the

isoscalar s-wave scattering length to the range

-0.05 < a0 < 0.6, o
while the CM-EM1 phases require a°>0.15. The BFP modelC30j 

gives the following s-wave parameters for Saclay and CM-EM1

phase shifts,as s 

Table 7:

hown i]i tab 1-e 7:

Sacia
data:

0an

y

?
an \(a?2 a2"V- n r )

CM-EMI
data: 0 an

2an 1/3. (a°+2a2) ' v n n J

-0.056 -0.108 -0.087 0.17 -0.066 0.013

0.16 -0.037 3.029 0. 31 -0.030 -0.083

0.30 -0.006 0.09 6 0.40 -0.010 0.127

0.58 0.04 7 0.224 0.59 0.028 0.178

From BFP modelL30], it is apparent that

-0.08 7 < 1/3. (a° + 2a^)< 0.224 for Saclay data 

and -0.083<1/3.(a°+2a2) < 0.178 for CM-EM1 data.

On the basis of our model,the best results 

on s-wave scattering lengths in the (A)elastic and (B) broad 

energy region are^witln a-rcju-mê ts vrr.-n/a.j cwi c_-0y  
(A) Elastic region : 1/3 t (a°+2a^) ̂  "3 .657 *> vQ=0.098,A^=-0.0312 ,

A 2=-0.4709,A3=0.006S,

A 4=-O.OOQ9.
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A 2=-0.479.

On the other hand,the upper bounds on s-wave scattering 

lengths with arguments (TT/6,rT/2) and 6=0 are :

(A) Elas tic Region:l/3.(aQ+2a2)^0.7595,v q=0.172

(B) Broad Energy Region:1/3.(aQ+2a2) < 0.9904,v q =0.235.

The upper bounds from BFP[303modeIs for Saclay and CM-EM1 data 

are 0.224 and 0.178 respectively. As compared to BFP results from 

Saclay and CM-EM1 data our bounds for arguments (TT/6,rT/2) with 
6=0 are 3.39 and 4.27 times higher in the elastic region respect

ively ;while in the broad energy region our bounds are 4.42 and 

5.56 times higher.

For rT+n ° - * n  + n°scattering) our bounds are higher with 

the set of arguments ( n , n / 2 )  and 6=1:

(A) Elastic Region : 1/3 . (aQ-a2) 8.43, v q=0.649, A-̂  = 0.198, A 2 = -1.748,
A 3=1.586,A4=0.918.

(B) Broad Energy Region : 1/3. (aQ-a2)<8 .47, v q = 0 .077,A4=0.15 4, Ay0'2̂
•.V V. A, = 0 .0002 ,

V- A. =0.000002.

The corresponding upper bounds from BFP L30J mode Is for Saclay 

and CM-EM1 data are 1/3.(a -a?)<0.177 and 0.190 respectively.

As compared to these bounds our bounds are much higher in both 

the elastic and broad energy regions. However,our model shows 

closer bounds to BFP results.

This method is model independent and is capable of 

producing new class of upper bounds on s-wave TT IT scatteing 

lengths and their linear combinat-ions,defining central family 

of S,P,D and F phase shifts with associated errors in the low

(B) Broad Energy Region:1/3.(a +2a?)^3.73,v =0.123,A,=0.005,

energy region.
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4.0. INTRODUCTION.

P A R T  T W O
CHAPTER IV:TT IT SUM-RULES AND PHASE SHIFT

SOLUTIONS IN THE INELASTIC REGION.

We can derive sumrules for pion-pion scattering 

amplitudes using analyticity,crossing symmetry and rigorous 

bounds. If they involve integrals only over physical 

quantities ,t.hey are called superconvergent. Ordinarily, 

superconvergent sum rules involve only absorptive parts of 

amplitudes. WandersCT] superconvergent sum rules differ 

from the simplest superconvergent relations because absorptive 

parts as well as derivatives of absorptive parts with respect 

to the momentum transfer appear in the integrals. On the 

basis of the three basic ingredients of the imaginary parts 

of the partial wave amplitudes, 'RoskiesC8j has derived inequ- 

lities on integrals involving the low partial waves of elastic 

r T ° n °  scattering in the physical region. The integrals 

have been found sensitive only to the low-energy region,and 

they can be tested once we know a phase shift analysis.

Also, the relations can be used to discriminate between 

various proposed n ° n ° p h a s e  shifts. On expansion of the 

work,RoskiestS] has obtained sum rules involving the absorptive 

parts of all partial waves for each isospin. Using these 

absorptive parts,we can re-obtain the sum rules as inequalitie 

involving integrals of the low partial-wave amplitudes which 

are sensitive only to the low-energy region. Furthermore, 

it is observed that the necessity for subtractions in the 

dispersion relations implies that no results can be obtained 

for s and p waves. It has been proved by different authors 

that two subtractions are necessary in IT TT dispersion 

relations. This is confirmed by axiomatic field theoryClT] .
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On the other hand,sum-rules on pseudoscalar meson-meson 

scattering amplitudes in the physical region have been 

studied by Grassberger[ 79j to show that a broad £ is preferred 

by sum rules which are derived from crossing and analyticity.

A class of sum-rules dominated by the p,f,gmeson and the p 

regge amplitude has emerged. Furthermore, Grassberger[79j 

has observed that in the absence of the Pomeron,there is 

perfect agreement if both the f and the g are as narrow as 

given by Veneziano model,to some extent narrower than experi

mentally observed;but on inclusion of the high-energy 

contribution due to the Pomeron,one sees that the f must 

be much broader to get .saturation.

Common/^ jhas derived sum rule inequalities on the 

n  n  scattering amplitudes from analyticity,s«->u crossing 

and positivity of these amplitudes,connecting the real and 

imaginary parts of the amplitude in the energy region where 

they may be calculated from phase-shift analysis,and they 

do not require knowledge of these quantities at low energies 

or in the high energy region. These inequalities are obtained 

by mapping the region,where the phase shifts are known
*

experimentally,onto the circumference of the circle,while

the remaining parts of the physical cuts are mapped onto

cuts in this circle. They put constraints,over the forward

amplitude for the process n +n ° - * - n +n °  and n ° n 0- > n ° n °

which are violated by the two solutions for the phase shifts

given by Estabrooks{8Qj. However, the violation. ' .

is found to be of the order of experimental errors,so neither

solution can be ruled out completely. The results are in

favour of solution l,in agreement with n  + n  -* -n °n °a n d
*

the behaviour of the amplitude at the S threshold.
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4-.1 Description of sum-rule and sum-rule 

We can write the sum-rules in the most 

A(s,ti)Q(ti,t,,tk ,s)ds -0 ,

Inequalities. 

general form

(*.l .1)

cyclic permutations 

of i,j,k=l,2,3

where A(s,t) is the absorptive part of the fl IT scattering
2amplitude,Q is a known function of its arguments and |t^4mj-p 

These types of sum rules have b-een derived by wanders [7j 

and Roskies[8] from dispersion relations containing derivatives 

of A(s, t) .
On selecting s*->-u symmetric combinations of the

amplitudes for different isospin-s and transforming to the
2 2symmetric variable z = (s-2mp-j- ) and defining G(z)h F (s , 0) 

it follows that G(z) is a real analytic function of z in the 

whole complex z-plane cut from 4m̂ -[- to oo. Common [ 7 4j has 

used the mapping for the sum-rule,

where the region z^z^z^ is mapped onto the circumference 

of the unitary circle. The high energy region (z^z£) is 

mapped onto the cut -l<v^0 and the low energy region z^z^
4is mapped onto the cut v<v<l with v q — *-z=4nij-j- .
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If w (V ) is chosen to be a polynomial, which is positive 

for -l^v^O and v < v 41>one gets a sum-rule inequality:

TT
"Re J  f(e10)w(e10)eied0 ̂ 0 fc-1.3)

0

From this mapping,we can prove the convergence

T m  f(v+i£)w(v) dv A(s ,0) ds as s— K>o,v- 
3

■0 (£.1.4)

There can be an infinite set of polynomials to test the 

inequality (4-.1.3),but we should be sure about necessary 

and sufficient conditions of the connected moment problem, 

described by equation (3.4-.7) in chapter III.

Furthermore, if we know either Imf(v+i£) on part of the 

real axis ,or have a lower bound for it ;the inequality can 

be improved:

-Re

where

Imf(v+iE)^ h(v)^ 0,

rr
r ,  i 0-, , i0. , nf(e )w(e )d9

-1

h(v) is a known function

-1-5 v ̂ v j< 0

h(v)v/(v) dv^ 0, (4--l>5)

like h(v)^ Imf(v+i£)hA(s ,0)

According to Commor|74} ,the data of Estabrooks et al(80j 

on IT FT phase shifts up to/s = 1.38Gev for their two solutions 

(land 2) are normalised for 1 = 0 s-wave to 2/3,to ( 2 /3 ) j5 ~ for 

the D-wave and 1 = 1 P-wave to J z . The region 0.45 Gevi./s^'0.9 7 

Gev(elastic) is mapped onto the circumference of the circle 

in the complex v-plane with v q = 0 . 7 .  There is an overall phase 

ambiguity due to inelasticity, but the ambiguity is not large.
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For the process FT '+ n 0->n + + rT°, the inequality (4-. 1.5)
are

should be non-negative. They satisfied better by solution 1 

than by solution 2. More precisely, for the latter solution 

many of conditions are violated by less than one standard 

deviation. In the case of the process rT°+rT°— t-rT° + rT°the 

constraints are violated in a number of cases by both solution 1 

and solution 2 . This violation is always smaller than one 

standard deviation in the former case, while in the latter case 

some constraints are violated up to 1.5 standard deviations.

So, Common[74] observesthat solution 1 is more likely to be 

correct than solution 2,but we cannot rule out solution 2.

In this way , it has been found by Common[74] that this 

violation of constraints is of the order of experimental error 

so neither solution of Estabrooks[80] can be ruled out 

completely.
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4-,2. INTRODUCTION. .

In the present work, we derive sum-rule inequality 

on n > n  — > n  +T1 scattering amplitudes in the inelastic 

region from analyticity and positivity of these amplitudes.

They connect the real and imaginary parts of the amplitude 

in the region where they are calculated from phase shifts 

analysis,and do not require knowledge of these quantities 

at low energies or in the high energy region. We choose 

a 'polynomial,P(v),so that it has zeros at v=0 and v , 

the point which corresponds to infinity in the complex 

s-plane. It is arranged such that ImF(v)P(v) has a constant 

sign from v=-l to v-o and v=v q to v=+l. The experimental 

inelastic region, s « s< .s  ̂ is mapped onto the unitary circle in 

v-plane. As the phase shifts are known in the inelastic region 

this information canbeused in the sum rule. So,we need definite 

sign of ImF(v)P(v) for -l£v<o and v i v i l .

The data from Estabrooks and Martin solutions

A,B,C,D[81] and Froggatt-Petersen [68,68a] are used to test

the sum-rule inequality. Furthermore,the EM-solutions A,B,

C,D have been rotated by Common[82jin a special way,the

rotated data are also used to test the sum-rule inequality.

The local minimization programs are used to find the minima

with respect to zeros and its parameterizations.

We consider the s+—>u crossingnfffvariant amplitude:

F(s ,0)=2/3.F°(s ,0) + 1/3.F2(s ,0)+F1(s ,0) , (4-.X. 1)

where Fi(s,0) is the forward scattering amplitude in s-channel

with total isotopic spin I. The forward scattering amplitudes
2F(s,0.) are analytic in the complex s-plane cut from 4m "-q  to

o o  and o to -oo. We choose normalization such that oo T
FI ( t 2 . (21*l)f}(s) ppcosq.), (+.1.2)

' ’ > 1=0
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f^(s) = (uj(s)e2lcii(s;)-l)/2ip(s) &
1

l/p(s)= (s/(s-4))2 . We adopt natural units Cc=lT-m^ = 1) in 

our calculations.s,t,u are usual Mandelstam variables. If 

FT+TT" phase shifts are known for a particular energy J s - B c . m. , 

then both the real and imaginary parts of F*(s,0) can be 

calculated. A set of sum rules ,which connect both real 

and imaginary parts,are derived. On using the positivity 

of A(s,0) in the experimental region (1.0lGev< Ec.m.^1.79Gev) 

we deduce inequalities from these equalities by mapping the 

region where the phase shifts are known onto the circumference 

of a unitary circle,while mapping the remaining parts of the 

physical cuts onto cuts in this circle.



(109)

^,3 Derivation of sum-rule Inequalities.

On defining G(s)=F(s,0), it becomes analytic in the 

complex s-plane cuts ,where-/s=Ec.m. . If the phase shifts 

for TI FI scattering are known in the region s^s^s^, 

and s is transformed to the complex v-plane by

, /s^l.Ol Gev andys2 = l • 79Gev,
(4-. 3.1)

2
such that s1"»v= + l,S2*-»-v=-l,s=0—►v=0,7s = 4m^-r— *vo=0.0137,

s = oo— *>v =-0.2786. It maps the cut s-plane onto a cutoo
circle in the complex v-plane of unit radius,centre the

origin as shown in figure 13. The region s^s.^ S2 »where
both real and imaginary parts of the function G(s) are known,

is mapped onto the circumference of the circle. The high

energy region s ^ s ? is mapped onto the cut-l^v <: v and the
2low energy energy region 4mj-j.^s<S2 is mapped onto the cut

v ̂ 1,where v q is determined by the mapping and corresponds 
2to s = 4mj-j- . The left hand cut - 004s  4 o is mapped onto the

cut v ^.v^O, as shown in figure 13.00
The sum-rules are obtained by using the fact that if 

P(v) is any function analytic in the cut circle, then

f(P)P(v)dv=0 (4-. 3.2)

c

where f(v)=G(s)=F(s,0). We consider the simplest case when 

P(v) is a polynomial in v:
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r k-\ (v-v )
P(v)=v(v-voo) n  (v-vi)Cv-vi) TT ---

jc-J p' kC-K <-v~) P
v  j j Ì0-5where v -rJ e p P P

vp“rp e lGp, r ^ O ,  0< 0p<n for all j

(4-.3.3) 

(4-.3.4a)

(4.3.4b)

Vp ̂  -1 or Vp^. 1 for all k. (4--3.4c)

For computation,we have defined

jnN.,,0^ A, Vp=VPK, r=R (4“. 3. 4d)

In our calculation,this parameterization gives the most 

general expression for a polynomial of fixed degree £2J+K+1) 

submitted to our constraints. The number and location 

of real and complex zeros entering these representations 

are parameters,which are optimized to give the best results 

for a given set of data.
2Now, A(s , 0) = Imf (s+ i£, 0) from unitarity for s -Miti ^  , 

so Imf(v+i£) ^ 0 for v q<v 4 +1 and -L<V4;0. If we choose 

P(v) to be a polynomial which has positive values for v^v^l 

and -l-$v^0, thenT.Imf(v+i£) becomes positive.

Then we have

-Re
v

j1 f(e10)P(e10)e10d0j = + j °° Im f(v+i£)P(v) dv+ 
0 ' -1

o
+ Imf(v+iE) P(v)dv+ 
voo 
1

+J" Imf (v+i£) P(v) dv (4.3.5) 
v

The right hand side integrals of (4.3.5) are positive so 

that

•Re
n
f f (e10)P(e1U) 
0

i0, i0in e d0 ^ 0 (43-6)
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4.4 Convergence of s.

In the case of s~0,v=0 the right hand side of (4-.3.5) 

vanishes. For a small negative value of v,we have to prove 

the convergence

0
J Imf(v+iE)P(v)dv 'V
oo

M s ,°j-ds
S °

(4 - 4 . 1)

For thatj'lmf (v+i£) P (v) dv= J ~ A  fs , 0) [p (v) dv ds

A(s , O^lv-v^) dv_ ds as s —>qo 

(4.4.2)

The proof is given in the appendix:

0

I
oo

Imf(v+iE)P(v)dv 0)j A (S,

^ A ( s ,0)[(-4-)3J

ds

ds

ds

( 4 . 4 - 3)

From the results of Jin and Martin [ll\ the integral 

of (4.3.5) exist as s-+oo and that on the left hand side as

v—* v . In this way all the integrals of (4*3.5) exist oo



(Ill)

4--.ET Numerical result;

The -EM [81] data is for TT IT partial wave magnitudes (|LI) 

and relative phase (4T) in the inelastic region (l.olGev^Js^*■ i-i
1.79Gev). The amplitude is expressed by 

(s,t)= - -  ^ o ,Ll-e PL (cos05)p̂+") 2k " PT (cos0J (4*.5". l)

The four solutions A,B,C,D are classified by the signs of the

imaginary parts of the first two zeros in the g region: 
3 • a 3

L̂ 0 (2L+1) PL(z) IfJe^L =a JI1(z-z.) (4-.5". 2)

The phases are all relative to a 9 0 u D-wave . The combination 

of the signs of Im z^ and Im z2 define the solutions; described 

in chapter II:

Solution

A

B

C

D

Sign of Im z^ Sign of Im z^

(4-. S'. 3)

The partial wave amplitudes U L|)are given at energy values 1.01, 

1.03,1.05 Gev etc. by Martin. The phase shifts are interpolated 

at energy values 1.01,1.03,1.05 Gev etc. Then we add to each 

phase |d -90° of EM [8 l] data . In this special way, Common[82] 

has rotated EM data.
(A)ROTATED DATA: . . .~Trre aTnpTrrtrJe" is expressed m  the form

F ( + _:)(s,t)= (s/(s-4))i[fo + J3f1i/5f?+J7f3| ,

where f = |s| e ^ s . P^fcosGj) 

f1= I Pi el(f’p .P] (cos0s ) 

f2 = Id! el(̂ D.P2 (cosC-p 

f3= |F| exî F. P.5(cos0^)

Cos0= l+2t/(s-4) =lfor t=0,forward scattering.

(A -.S 'A )

f 14.5.5';J



Then,F ̂ ^ ( s ,0) (s/ (s-4)) 2|isl e ^ s . PQ (cos0H- J3',P\ e ^ P . P^ (cosfp

+]5 |D1 e ^ . p 2 (cos0^ + /7 |f( el(i)P.P3 (cos0£)j

If errors are uncorrelated,we have
r -\ 2 N
[f(xi)J =

i = l
^  Xi

(4.5". 6)

(4-.tr. 7)

and

A F ( + _) (s , 0) = Cs/(s-4))
2 2

|ei(̂ 5 . PQ(cos0s)j .|aisi| + jisjie^s . Pq (cos0)j2

+

e ^ p  . P^ (cos^j | 2 . |All|2 + j/3 I Pi i e ^ p  . 

P 1 (cos^)|2 +|/5 e 1(̂ I) . P^ (cos§)l^IDl|2 +

1/5 IDI ie1(̂ D .P2 (cos0)j 2 \a<̂ \ 4 ^ 7 e ^ F .  P3 (c o s ||2|4F||?-

1F| i e ^ f  .P3(cos0)|-VW

(4.* .8)

By defining F^+ ^(s,0)sf(v), we have tested the sum-rule

ninequality
rn

Is-Re \XJ' r f  i 0-v n f iQ-v i0,A
jq f(e )P(e )e d0 + |  |4f(elB)|lP(elW)| d0 > 0

( 4 . 5 “. 9)

We define this equation for computational purpose:

FI NAN S.»AN S 1.+AN S 2 , (4. 5*. 10)

Fortran minimization programs are applied to find out the 

minimum values of the integrals (4-5*". 9) with respect to 

parameterizations (4. 3.3) and (4.3.4 . a,b, c,d) :

0 $ ri£0.99, 0.01^0^ n - 0 . 01, v ^ l . 01 or $-1.01 (4..$". 11)
The rotated data are given in tables 8,9,lo and 11,the 

computational results after local minimization with respect to 

parameters are given in table 12.EM data[8l]are given in tables 

13,14,15*16.



(B) EM"S Unrotated Data:

Now, we use EM data for solutions A,B,C,D

to test the sum-rule inequality for TJ. n  scattering in the

inelastic region. If the errors are uncorrelated,then
2N . 2

Af(Xi)jZ = 'ÔfCXj,)

**i
(4-.5~. 12)

gives the square of the error in function f of x^ . The 

amplitude is expressed by

F( + _)(s,0)= (s/(s-4))2 £ fo+0f1+i5f2-fcl7f3j (4-.‘T-13)

and the error is expressed by (4-.f>'.12). The same program 

is applied to get the minimum values of integrals (̂ . (T. 9) with 

respect to the parameterization. The results are presented 

in table 17.

(C) FP data [68,68 ah
We use FP DATA [68,68 a] to test the sum-rule 

inequlity (4'.b\9). The forward amplitude has the combination:

F( + _:)(s,0)= 2/3.F^0-̂ (s,0)+F^1  ̂(s,0) + l/3.F^2' (s,0) . (4. ¿“.14)

The corresponding errors are supposed to be uncorrelated:

( + - ) 
AF(S,0) = 4/9.|AFf o ) l " + iAF<' 1) I 2 +1/9 .|AF i 2  ̂1 (4-.iT.i5)

The results correspond to smoother behaviour of partial 

waves for S ,D ,P.,Fn,S.AJL. "S " wave is out of unitary 

circle from 1.23Gev to 1.37Gev of energy. However, Dq wave 

is completely inside the unitary circle.. Similar is the situ

ation with PI and FI w a v e s . a n d  D0 are confined to a very 

small region of argand diagrams. The scattering amplitude 

F^+ '(s,0) has similar movement as in the published papei{68,68a]



( 1 1 5 )

The data are presented in table 18. The results of test 

for sum-rule inequality are given in table 19,and our phase 

shift analysis in the inelastic region are given in table 20



Table 8:EM -solution A (Rotated by Common)
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Table 8 (Continued)
U--
r o
j C o

IS 1 +a\si 6s +A. i s IP 1 tAiPI tA <ip IDI +ASDI <% IF 1 +AIFI -fF ±4
| 1.2!) o.63 o . 08 lo9.9 lo. 2 0.53 0.12 172.5

4-5 1.16* o . o3 98.6 0 . o 0.11 ‘ 0.0 5.8 0.0
1.31 o.65 o . 08 lo5.6 14.8 o . 4o 0.13 161.6 13.9 1 .19 o . o3 lo7.6 0.0 0.12 0.0 4.8 0.0
1.3 3

i
o.67 0.13 95.7 18 .1 o.32 0.15 141.3 2 o . 3 1.11 o . o5 114.8 0.0 0.13 0.0 3.8 0.0

1-35 o.62 0.11 116.6 12 .1 o.47 0.12 18o. o 9.3 o.94 o . o4 122.0 0.0 0.14 0.0 4.6 0 .0!
t 1-37 0.54 0 . lo 125.9 14.3 o.53 0.15 192.7 lo. 0 n . 8 7 o . oS 126.8 0.0 0.11 o . ol •4 8»/2 6-8
1-39 o.47 o . 08 134.9 9.5 o . 6o o . 2 o 2 o 1.4 lo. 4 o 7 Q o . o9 131.6 o'. 0 o.ll o . o2 ••45.635-1
141 0.53 o . 2o 132.5 24.8 o.41 o . 3o 191.3 35.7 o 7q o . o9 134.2 0.0 0.13 o . 08 ■1 6-06 o-2
1.4 3 o.57 0.13 132.6 14.6 0.25 o . 06 16 o . 4 9.9 o 7s o . 08 134.6 0.0 o.23 o . o7 Q . ?15-1
14 5 o.53 0.11 137.7 19.1 o.23 o . 06 152.9 46.9 o.72 o . 08 135.0 0.0 0.27 o . 06 2 3-415-0
14 7 o.47 0.12 127.5 18 . o o.45 0.15 189.9 lo. 0 o.51 o . 06 135.4 0.0 0.17 o . o4 -35-22 9*2
149 o . 34 0.18 144.8 37.4 o.47 o.27 199.0 2o . o o.55 0.14 135.8 0.0 0.16 o . o3 -33-92 o-l
1-51 o.36 0.12 132.8 27.2 . o.23 o . o9 174.9 33.4 o.59 o . o7 136.4 0.0 o.27 o . oS 9 .: io-6
ls : o.33 0 . lo 139.7 22.1 0.28 o . o5 162.4 23.5 o.59 o . o7 137.2 0.0 0.32 o . o5 >8 .1 5 ^ 9
1-5 5 o.36

n . n 7
132.7 13.7 o . 3o o . o5 134.4 18 .6 o 5« o . o9 138.0 0.0 0.39 o . o4 S 6.2 4-3

1*5' o,46 0.46 134.3 lo. 0 o.26 o . o4 147.3 14.4 o.62 0.13 14 o . o 3.4 o.42 o . o3 513 0.0
1-5 £ 0.42 o.42 13o. 2 13.2 o.25 o . o5 139 .5 29.0 o.57 0.12 142.0 3.9 o.45 o . o4 4 64 0.0
L 6 o . 39 o.39 129.9 lo. 3 o.33 o . o3 159.3 9.3 o . 64 o.C9 143.6 3.5 o.43 o . o3 ST' 0.0 

—

(Li
t)



Table 8 (continued)
h---ÎT
Cp v

iS( 4-A(S| cfs +Ads IPI t A IP 1 V IDI +AÍDI ¿0 - A  ¿ 0 ¡F 1 +AIFI ■f-ûÇ

1 . 6 2 6.3Í 0.15 124.4 lo. 6 0.29 o . 06 134.8 2 o . 5 0.59 0.11 144.8 3.2 0.57 o . o3 3o.:0.0

1.65 o . 39 o. o5 123.3 8.5 0.29 o . o3 118 .2 12 .4 0.61 0.13 146.0 2.4 0.64 o . o3 D 9 . ‘ 0 . o

1 . 6/ o . 4o 0.13 123.8 11.8 0.25 o . 06 139.1 23.6 0.61 0 . lo 15 o . o 3.7 o . 6o o . o3- 74-7 0.0

1.65 o . 4o 0.13 124.9 13.2 0.22 o . 06 118 .1 28 . o 0.55 0.13 154.0 4.0 0.67 o . o3 7 7.0 0.0

' 1.71 0.43 0.11 124.0 16.1 0.23 o . 06 144.9 32.1 0.58 0 . lo 156.0 5.9 0.64 o . o3 9 6.1D . 0

1.7: o . 4o 0.12 115.5. 2o . 6 0.31 o . lo 153.0 25.0 0.56 o . o7 156.0 6 . o 0.63 o . o3 _______ loi-;
_

b . o
[

1.7: 0.37 0.11 117.8 2 o . 8 0.35 0.11 184.7 16.5 0.49 o . o8 156.0 11.3 0.56 o . o3 118«) 0-0

1.7: 0.38 o . o5 111.9 19 .9 0.29 o . o4 174.2 11.4 0.54 0.11 155.2 5.3 0.5 5 o . o4 112*] 0-0

1.7] 0.42 o . o5 117.4 16.1 0.21 o . 06 95.4 55.3 0.53 o . o6 15 4.4 7.4 0.55 o . o3 loS.D 0-0

f "

cm
)



Table 9 :EM -solution B (Rotated by Common)

1 rF ÎS 1 +£J,S|
-—----
+AçfS IPI ÎAÎPI

/dP

<J + 1 1 Dl +A!Dl -A IF l +AIFI i
—
f 11

l.ol 0.63 o . o7 81.9 6.8 o . 4o 0.11 153.3 4.6 o . 4o o . oS 31.6 0.0 o. o3 3 . 0 2 o.l 0 . c

1. o3 0.64 o . 06 84.4 6.5 o.32 0 . lo 148 . 3 4.2 o.43 o . o5 3o. 8 0.0 o . o3 3 . O L8-1 0 . c

1.0? o.56 o . lo 89.3 5.7 o.46 0 . lo 154.9 4.5 o.4 3 o . o4 3o. o 0.0 o . o3 0.0 .5.8 0 . c

1.0/ o.71 o . 06 81.5 7.1 o.35 0.11 149.9 4.6 o.42 o . o5 3o. 8 o . o o . o4 0.0 14-7 0.0
o.ol o . o9 9o. o 5.4 o.45 0 . lo 155.6 4.6 o . 5o o . o4 31.6 o . 0 o . o4 0.0 13-3 0 . c

1,U o.61 o . lo 92.o . 4.8 o.42 0.11 155 . 6 5.4 o.65 o . o3 34.8 .0.0 o . o5 0.0 138' 0 . c

i . i : o.45 0.16 91.6 12.8 0.46 0.15 145.4 14.2 o.74 o . o3 4 o . 4 0 . o o . o5 0.0 16-o 0 . c

1.1! o.64 o . lo lo4.8 4.3 o.29 0.11 15 3.9 4.1 o . 69 o . o3 46.0 0.0 o . 06 0.0 17-5 0 . c

1.17 o.56 o . lo 97.8 5.3 0.29 o . 08 148.8 3.9 0.8 7 o . o3 49.6 0.0 o . 06 0.0 16.0 0 . c

1.19 o.73 o . o9 lo4.6 4.7 0.18 0.12 141.9 12.8 o .88 o . o4 53.2 0.0 o . o7 0.0 131 0 . c

1.21 0.64 0.14 99.5 lo. 4 0.19 o . 2 o 129.2 33.5 1. o7 o . o3 59.4 0 . o o . o7 0.0 11-2 0 . c

1.23 o . 7o 0.11 lo8 . o 9 . 3 o.23 o.22 14o.3 27.8 1.11 o . o3 68 .2 0.0 o . 08 0 . o lo-l 0 . (

1.25 o.75 o . 06 lo8.3 8.7 0.19 0.11 117 .1 3o. 1 1.23 o . o3 77.0 O . 0 o . o9 0.0 7.6 0 . (

1.27 o.71_______ o . lo 114.1 , 11.9 0.16 0 . lo 93.3 4 o . 1 1.25 o . o5 85 .4 0.0 o . lo 0.0 4 . o 0 . (

1.29 o.89 o . o7 128.5 6.3 o .21 0 . lo 73.9 4o. 9 l.lo o . 06 93.8 0.0 o.ll 0.0 1.0 0 . (

1.31 0.76 o . 08 128.5 lo.S o . 4o 0.16 57.3 17.9 1.13 o . o3 loo.8 P . 0 0.12 0.0 -2-00.0

1.33 
H---

o.67 o . o7 125.5 12.6 o.32 0.11 8 o . 2 27 .o 1.11 o . o2 lo6.4 0.0 0.13 0.0 -4-60.0

(119)



Table 9 (continued)
h---
■*3J 1SI +A(fs IPI 1A!P! t* % 1DI +AjDi 4, tA <rD IF I +AIFI ip

1. ¿5 o.72 0.11 14o.7 lo.8 0.5 4 0.19 61.5 13.1 0.84 ' o . o7 112.0 0.0 <3.14 0.0 5.4 0.0
1.37 0.71 0.11 138.5 14.7 o . 3o 0.26 77.0 3o. 5 o .86 o . o5 114.4 0 . o 0.11 o . o2 -■66.47 ojo

1.39 0.71 0.11 144.6 13.2 o.28 o.29 82.3 4 o . 2 o.79 o . o5 116.8 0 . o 0.11 o . o2 .<'6-1 8 2-3
1.41 o . 64 o.23 141.6 19.9 o . 3o o.25 84.5 3o. 7 o.77 o . lo 119.4 0.0 0.11 o.o2 -ij lo 6 o-6
1.42 o.52 0.17 14o.l 29 .1 o.52 o . 3o 69.8 24.5 o.67 p. 13 122.2 O . 0 o.23 0.08 -! .4 15-o

1.45 o.47 0.16 15o.4 22.6 o.56 o.25 76.0 16.2 0.57 0.13 125 .o 0.0 0.27 o . 06 JLJ 15-7

1.47 o.48 0.18 143.2 31.0 o.41 o . 2o 8 o . o 28.9 o.51 o . oS 129.0 0.0 0.17 o . o2 -5 8̂ 2 6*4

1.4£ o.Sl 0.14 161.5 13.1 o.29 0.16 lol. 6 2 o . 4 0.54 • o . 06 133,0 0 . o 0.16 o . o3 314

1.5] 0.32 0.12 168.0 26.1 0.45 0.13 88.1 15.6 o.48 o . 08 136.2 O . 0 o.27 o . o5
-?rc

12-7

1.5!; o.27 o . o9 178 .o
—

19.9 o.53 0.13 lo6.8 11.0 0.43 o . lo 138 .6 O . 0 0.32 o . o3 ’7.1 7.7

1.5: o . 2o o . 08 16 o . 5 46.4 0.59 0.12 lo9 .1 11.9 o.42 0.13 141.0 0 . o o.39 o . o4 A  .57 .1

1.5 ' 0.14 o. o9 173.9 3o. 5 o.73 o . 08 12o .6 lo. 6 o.32 0.14 141.8 8.2 o.42 o . o5 5 4.4o . 0

1.55) 0.12 o . o7 16o.7 5 o . 2 o.67 o . 08 114.0 6.7 0.33 0.15 142.6 7.2 o.45 o . o4 4 3*60.0

1.6 L o . lo o . o7 16o.5 5 o . 2 0.71 o . 08 124.4 7.3 o.38 0.14 143.0 6.4 o.43 o . o4 49-70.0

1.6 5 o . o9 0.15 99.6 4o. 4 o.68 o . 08 128.2 8.4 o.36 0.15 143.0 7.2 o.57 o . o4 62-c0.0

1.6 ; o. lo
t 0.14 85 .1 45.2 o . 69 o . o7 12o.l 6.7 o.35 0.17 143.0 6.2 o.65 o . o3 59-4 0.0

1.6j? 0.15 
1__ 0.13 68.7 32.9 0.68 o . 06 144.0 7.3 0.34 0.13 144.6 12.6 n . 6o

o . o3 81-9 0.0



Table 9 (continue_4)
L----
Nlff P \5\

—
+AP| +acTs 1PI lAiPi 1 <i_1 P +A cf P

—
ID! +A|D| £A  °D IF 1 +£xlFI 1 

"»H 1
t-H 0.3o 0.12 87.5 2o. 9 0.59 0.o7 ! 168.71 9.9 0.37 0. o9 147.6 17.7 o.64

—  
0 . o3 llOJCVo

1.72 o.33 0.12 91.8 21.5 o.5 2 0. lo 162.4 13.6 o.44 0. lo 148.8 15.0 o.63 <). o3
..

10 (rl' n . r
1.75 0.37 ___ _j 0.13 111.7 2o. 9 0.35 0.11 b78 . 7 16.'8 o.49 0.08 15o. 0 11.5 o.56 0. o3 I

11200. c
1.77 o . 5 6 0.11 lol.9 3o. 8 0.4o p. 18 179.7 21.9 o.49 0.12 . 152.4 2 0.9 o.55 0 . o3 J
'1.75 o.41

_
0.15 lol. 0 29.3 0.46 o.31 187.4 24.1 0.35 0. o7 154,8 61.5 o.55 0. o3 14 61) o-oj

!

_
' \

‘
t
u___11
!

iJ
i1 !
1] i

L____L i

(121)



Table 10:EM-solution C(Rotated by Common)

Cr> V
\S\ +A\S¡ 6 s +A<f

-  s IPI ÍAIPI V IDI ÎA1DI tA iß IF 1 +AIFI
---1

+A.(f- F

1.01 0,63 o . o7 81.9 6.8 o . 4o 0.11 153.3 4.6 o . 4o o. o5 31.6 0.0 o . o3 0.0 2 0-3 0.0

roO
_
zL 0.64 o . 06 84.4 6.5 c . 32 (>.lo 148 . 3 4.2 c .43 o . o5 3o. 8 o'. 0 o . o3 0 . o 18*1 3.0

l.o5 0.56 o . lo 89 . 3 5.7 c .46 0 . lo 154.9 4.5 0.43 o . o4 3o. o 0.0 o . o3 0.0 ■ 15*8 0.0

¡l.o7 0.71 o . o6 81.5 7.1 c . 35 0.11 149.9 4 .6 0.42 o . o5 3o. 8 0.0 o . o4 0.0 ¡14-7 0 . O

1. o9 0.61 o . o9 9o. o 5.4 0.45 0 . lo 155.6 4.6 o . 5 o o . o4 31.6 O . 0 o . o4 0.0 13-3 0.0

ll.ll 0.61 o . lo 92.0 4.8 0.42 0.11
*

155.6 5.4 0.65 o . o3 34.8 0 . o o . o5 0.0 15-8 0.0
:
¡1.13 0.45 0.16

.
91.6 12.8 0.46 0.15 145.4 .14.2 0.74 o . o3 4o. 4 0.0 o . o5 0.0 16-0 0.0

1
1.15 0.64 0 . lo lo4.8 4.3 0.29 0.11 153.9 4.1 0.69 o . o3 46.0 0.0 o . 06 0.0 17-5 0.0
I1-17 0.56 0 . lo 97.0 5.3 0.29 o . o8 148 .o 3.9 0.87 o . o3 48.8 0.0 o . 06 0 . o 15-2 0.0
¡j 1.19 0.7 3 o . o9 lo3 . o 4.7 0.18 0.12 140.3 12.8 0.88 o . o4 51.6 0.0 o . o7 0.0 11*5 0.0
1.21 o . 64 ol4 97.9 lo. 4 0.19 o . 2 o 127.6 33.5 1. o7 o . o3 57.8 0.0 o . o7 0.0 9.6 0.0
1.23 o . 7o 0.11 lo7. 2 9.3 0.23 0.22 139.5 27.8 1.11 o . o3 67.4 O . 0 o . 08 0.0 9 . 3 o . c

1 1.25 0.64 0.13 97.2 17.3 0.36 0.2 4 146.2 14.6 1.26 o . o3 77.0 0.0 o . o9 0.0 7.6 0 . c!
! 1,27 0.62 0.11 lo3.4 19.6 o . 3o 0.22 150.4 23.0 1.27 o . o3 88 . 6 0.0 o . lo 0.0 7.2 3 . 0
; 1.29 0.63 o. o8 111.5 lo.2 0.53 0.12 174.1 4.5 1.16 o . o3 100.2 O . 0 0.11 0.0 7.4 3.0
1.31 0.65 o . 08 lo6.2 14.8 o . 4o 0.13 162.2 13.9 1.19 o . o3 lo8 .2 0.0 o .12 0.0 5.4 3.0
1.33

Ì
o . 67 0.13

...
93.5 18 . 1 0.32 0.15 139 .1 2o. 3 1.11 o.os 112.6 0.0 0.13 0.0 1.6 0 . o

6IZ
 I
)



Table 10 (continued)
m itf
0 p. v

!S1 ->is| +Ads IPI tAlpl -5-A 6  p ID! +A|D| -A IF ! +AIFI fF !t p

1.3!; o.62 0.11 111.6 12.1 o4 7 0.12 175.0 9.3 0.94 'o. o4 117.0 0.0 o . 14 0.0 -cM ) . 0
1.37 o.5 4 0 . 'lo 123.7 14.3 o.53 0.15 19o.5 lo. 0 0.87 o . o5 124.6 O . 0 o.ll 0 . ol -So-c 2 6*?\
1.39 0.4 7 o . 08 135.5 9.5 o . 6o o .21 2 o2 . o lo. 4 0.79 o . o9 132.2 0.0 0.11 o . o2 - 4 5-c 35-]

1.41 o.5 3 o . 2o 134.1 24.8 o.41 o . 3o 192.9 35 . 7 0.79 o . o9 135.8 0.0 0.13 o . 08 J6 o-2
1.43 o.57 0.13 133.4 14.6 0.25 o . 06 161.2 9.9 o.78 o . 08 135.4 o . o o.23 o . o7 1 o . (,15-]
i . 45 o.53 0.11 137.7 19.1 o.23 o . 06 152.9 46.9 o.72 o . 08 135.0 0.0 o.27 o . 06 2 3-4 15o

1.47 o.46 0.42 125.9 7o. 5 0.44 o.41 188.8 58 . 2 0.51 o . o5 136.2 0.0 0.17 o . o2 -35*:; 28-c

1.49 0.51 0.15 lo8 .8 21.5 o.29 0.28 168 .1 54.0 o.5 4 o . o5 137.4 0.0 0.16 o . o3 -4o.<,78-aPJo . 5o o . o9 lo5 .4 2 3.3 0.17 o . 06 lo9.3 5 o . 9 o . 5o o . o9 138 .6 0.0 o.27 o . o5 3.3 12-L

1.5 3 o.55 o . o7 lo3.4 19.5 o.28 o . lo 93.1 37.6 o . 4o o . lo 139 .8 O . 0 o.32 o . o5 21.[9 . ci
1.55 o.54 o . o9 llo.2 2 o. 2 o.34 0.12 95.6 29.8 o . 4o 0.14 141.0 0.0 0.39 o . o4 3 3-8 8 .o

1.57 0.64 o . o9 127.2 14.0 o.32 0.17 98 .5 39 .6 o . 39 0.15 143.8 7.4 o.42 o . o3 5 5-9 0 . Cl

1.55 o.59 o . o7 12 o . 1 ) 9 . o 0.33 o . 06 98.0 14.0 o . 39 o . 2o 14 6.6 5.7 0.45 o . o3 4 6-6 O . 0

1.6. o.65 o . lo 115,9 11.8 0.32 o . lo lo7 . o 37.4 o.39 0.18 145.6 6.2 0.43 o . o4 5 2-4 o . qi

1.6. o.62
i o . 08 121.2 8 .9 o.37 0.11 93.9 22.8 o.28 o . 2 o 14o.8 11.3 o.57 o . o3 62-3 0.0

!--;--
| 1 .6 o.61 o. o7 114.4 8.5 o.41 o . o9 77.5 15 . 7 o.26 0.16 136.c 9 .4 0.64 o . o3 5 4*6 0 . (j)S 1.6 
1----

4 o.64 o. 06 134.3 8.8 o.37 0.11 9 o . 7 21.2 0.23 o . 15 129.6 34.1 o . 6o o . o3 8 o-9 0 . o

(113)



Table 10 (Continued)

N T
Ulead

IS( +A\S| +A<f
- S IPI tAipi -A  6 V IDI +AIDI <*D IF t +AIFI .iF ;

1.69 o.6o o . o5 125.2 7.8 o.36 o . 08 73.9 16.2 o .21 6.12 123.2 15.2 o.67 o . o3 68-8 oo
1.71 o.61 o . o7 15o.6 9.7 o . 35 0.11 96.5 24.3 o.36 o . o5 116.8 35 .'2 o.64 o . o3 lo4-6 0 0
1,73 o.58 o . 08 156.7 12.4 o.36 o . 08 113.4 3o. 6 o.33 o . o5 llo.4 33.5 0.63 o . o3 1194 oo
1.75__ o.54 o . 06 143.8 14.2 o .22 o . o5 133.4 48.1 0.39 o . 06 lo4 . o 23.7 o .66 o . o3 116-8

--
o 0

r.7 7 o.54 0.11 153.8 2 o . 1 o.26 0.14 lo4.1 48.8 o.42' o . 08 lo4.4 3o. 1 o.55 o . o4 121.3 O O

1.79 o.42 o . 15 168 .5 26.5 o.46 0.15 72.5 47.5 o.35 o . 06 lo4.8 51.9 0.55 o . o3 113.0 0-0

r
_

__•_____

1-------

T
T

T
J



Table 11: EM-solution D(Rotated by Common)

fVr
,_GxU£_

(St +*|S| <*s +Acf- S IPI IPi V +A ¿ P IDs +A|D1 4, fA á D
IF 1 +AIFI -̂  i

<-ou-<34-1

1 . ol 0.63 o . o7 81.9 6.8 o . 4o 0.11 153.3 4.6 o . 4o o . o5 31 .6 0.0 o . o3 0.0 2 0-3 0 . C

1. c3 0.64 o. 06 84.4 6.5 0.32 0 . lo 148.3 4.2 0.43 o . o5 3o .8 O . 0 o . o3 0.0 18-1(3 . 0

11. o 5 0.56 o. lo 89.3 5.7 0.46 0 . lo 154.9 4.5 0.4 3 o . o4 3o. o 0.0 o . o3 0.0 15-8 3 . 0

Li. °7 0.71 o . o6 81.5 7.1 o . 35 0.11 149 .9 4.6 0.42 o . o5 3o. 8 0.0 o . o4 0.0 14-7 0 . c
!.
i l.o9 0.61 o . o9 9o. o 5.4 0.45 0 . lo 155.6 4.6 o . 5 o o . o4 31.6 0.0 o . o4 0.0 13-3 3.0

1 1.11 0.61 o. lo 9 o . o 4.8 0.42 0.11 153.6 5.4 0.65 o . o3 32 .8 0.0 o . o5 0.0 11-8-D . 0

li.« 0.45 0.16 85.6 12.8 0.46 0.15 139.4 14.2 0.74 o . o3 34 .4 0.0 o . o5 0.0 lo.o 3.0

! 1.15 0.64 0 . lo 94.8 4.3 0.29 0.11 143.9 4.1 o . 69 o . o3 36.0 0.0 o . 06 0.0 7-5 3.0

¡1.17 0.56 0 . lo 89.8 5.3 0.29 o . o8 140.8 3.9 0.87 o . o3 41.6 0.0 o . 06 0.0 8 . o 3.0

¡1.19 0.73 o . o9 98.6 4.7 0.18 0.12 135.9 12.8 0.88 o . o4 47.2 0.0 o . o7 0.0 7.1 3.0

11.23, 0.64 0.14 94.5 lo.4 0.19 o . 2o 124.2 33.5 1. o7 o . o3 54.4 0.0 o . o7 0 . o 6.2 3.0

p . o . 7o 0.11 lo3. o 9.3 0.23 0.22 135 . 3 27.8 1.11 o . o3 63.2 o . o o . 08 O . 0 5 .1 3 . O

1.25 0.75 o . o6 lo3.3 8.7 0.19 0.11 112.1 3o. 1 1.23 o . o3 72.0 0.0 o . o9 0.0 2.6 3.0

1.25 0.71 o . lo lo8 .7 11.9 0.16 0 . lo 87.9 4o. 1 1.25 o . o5 8 o . o 0.0 o . lo 0.0 -1-4 3.0

1.2S 0.89 o . o7 122.7 6.3 0.21 0 . lo 68 .1 4o. 9 1. lo o . 06 88.0 0.0 0.11 0.0 -4-8 3.0

! 1.31: 0.76 o. o8 123.7 lo.5 o . 4o 0.16 52.5 17.9 1.13 o . o3 96.0 0.0 0.12 0.0 -6‘83.0

F
J

? 0.67 o . o7i------- 123.1 12.6 0.32 0.11 77.8 27.0 1.11 o . o2 lo4 . c 0.0 0.13 0.0 -7-03.0

(S
X I

)



Table 11 (Continuée!)

f\.T
1 hfiv

-
IS ! +A\5( +AcíS IPI ÍAIPI S + A 6 P

IDI +a|D I 6 z IF 8 + F i ,
—
b

1 1.3; 0.72 0.11 140.7 1 n ■ 8 0.54 0.19 61.5 13,1 0.84 o . o7 112.0 0.0 0.14 0.0 ’- 5 . Lo . o
j
[l. .37 0.71 0.11 141.7 14.7 o . 3o 0.26 8 o . 2 3o. 5 0.86 o . o5 117.6 0.0 0.11 o . o2 -6 347 cw)
I
: 1. 0.71 c .11 151 .o 13.2 0.28 o . 29 88.7 4o. 2 0.79 o . o5 123.2 0.0 0.11

—  
o . o2 -5948 ?*3iIÍ 1 .A1.0.47' 0.13 12 6.6 24.9 0.57 0.14 62.4 11.6 0.73 o . 06 127.8 0.0 0.13 o . o5 -3o-:*58-8

o . 4o 0.17 122.1 3o. 2 0.67 0.15 63.7 18.4 0.62 0.12 131.4 0.0 0.23 o . o7 -4-7 1 7-8
.
U-̂ i-5 0.29 0.15 _1.qJ.xJLi. 5 o . 4 0.77 0.12 62 .1 16.6 0.43 0.13 135.0 0.0 0.27 o . 06 h3 7 .5

IjLJLZ 0.44 0.45 146.0 78 .4 0.45 0.41 83.8 56.1 0.51 o . 06 138 .6 0.0 0.17 o . o2 - 5 o.(3 0-7
r
L l A 3 , 0.33 0 . lo 133.1 2 3.0 0.47 o . o4 78 .9 7.4 0.55 o . 08 142.2 0.0 0.16 o . o2 -474 19-9

! 1.51
: H o . 2 o o . o6 113.0 14.4 0.57 o . 06 73.6 11.0 o .'41 o . o7 145.2 0.0 0.27 o . 06 -5-5 1 2-7

.
jJLJjJ 0.25' o . o7 7 7.4 16.4 0.63 o . 06 8 o . 6 5.6 0.27 o . 06 14 7.6 0.0 o . 32 o . o4 LT4. 4-6

1 .53 0.27____ o . o7 9 6.4 15 .1 0.66 o . 06 97.5 4.9 0.26 o . o5 ISo. o 0.0 o . 4 o o . o3 52*3 4-3
1 1.5: 0.28 o . 06 loi. 7 15.7 0.75 o . o5 125.9 6.4 0.11 o . o7 15 o . o 3o. 6 0.43 o . o4 37-4 0.0
I
! 1. 5i, 0.11 o . o7 167.8 6o . 5 0.67 o . 08 121.4 6.7 0.33 0.15 15 o . o 7.2 0.45 o . o4 31-0 0.0ij
1.6. 0.36 o . 08 62.1 14.3 0.72 o . o5 95 .6 : 8.9 0.14 o . o5 131.6 14.8 0 . 4 3 o . o4 32-9 0 . o
1.6 s ° - 4 2 o . o9 88 .2 14.2 0.65 o . 08 117.9 12,1 o . 06 o . o7 94.8 8o . 1 0.57 o . o3 3 3-5 0 . ç

j 1.6 , 0-4° 0.13 84.1 14.9 0.67 o . o7 110.3 11.7 o . o4 o . o3 58 .o loo. 9 0.64 o . o3 3 0-2 0 . oi

L a
i

, 0.48 j o . 06 -lo 7.? _

12.4 0.58 o . o7 143.5 8 .1 0.19 o . o5 58.4 2 o . o o . 6o o . o2 ) 4.6 0.0

(g-
ti)



Table 11(continued)

¡ S r
l G o> v

ISI + A c f
S IPI tAiPl Q.

vo 1 A  <ip IDI +a |DI s IF I u_4 +1

I 1.6i o.42 0 . lo 115.6 15.2 0.57 o . o9 153.4 12 .1 0.19 0.14 58 .8 42 .3 o . 68 o . o3 lo4-20 O 01
< 1 .7 : ; o. 52 o . 06 lo8 .2 14.0 0.42 o . 08 14o.4 14.7 0.37 o . 06 62 . o 12 .4 o . 64 o . o3 98*6o O 0

1 • 7 :5 o.55 o . 06 117.4 17.3 o.35 o . o9 125 .5 31.5 o.39 o.ll 68 . o 21.0 o.63 o . o3 lol-3o 0-0

1 - 75 o.54 o . 06 113.8 13.9 o.22 o . o5 1 o 3.1 49 .9 0.39. o . 06 74.0 23.1 0.56 o . o3 8 6-9 o 0-0
! •1.77 0.53 o . o9 128.8 25.2 0.22 o . o7 114.9 69 .5 o.45 0.12 8 o . 4 24.2 0 . 5  5 o . o3 lo8*2o 0 0
I} 1 7  0. 0.42 0.13 123.6 43.4 o . 2 o o.25 143.8 l o 3 .4 o.53 0.19 86.8 17.7 o.55 o . o3 136-6o 0 0

\
1

i 1 ' *.
l •

}
;jj
|

) |

| |i
i
ii i

I Li |--------
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Table 12: Test of sum-rule Inequality 0f EM'S Rotated solutions
sol■N i R A VPK ANS 1 tns 2 FINANS

A 1 0.99 o .olooool22 1.0000000 -9.0453 4.3329 -4.712

2 0.99 0. oloooooo 1.0000000
0.99 0.oloooooo 1.0174767 ■90.2949 26.3o9 -63.986

3 0.99 0.94988243 1.oooo9 4 -258.8537

0.99 0.olooooo 1.0000004 N

0.99 0. olooooo 1.000008 7 -258.8537 I06.74 -152.11

B 1 0.5438 0.015491386 1.0000006 -6.8938 2.4918 -4.4o2

2 0.99 0 .olooooo 1.0000006 -95.3637 ¡5.8o37 -59.56

0.99 0.olooooo 1.0047628

3 0.99 0.olooooo 1.0000005

0.99 0.ol4o748 1.0000045

0.99 0.olooooo 1.ooooooS -273.9860 151.14. 1*22 .8 39
C 1 0.693 0.olooooo 1.000000 -7.8839 3.6456 -4.238

2 0.99 0.oloooo 1.000615 3

0.99 0.olooooo 1.00000 -94.0818 38.166 -55.916

3 0.99 0.073761499 1.000000
0.99 0.96557566 1.0000II7
0.99 0.olooooo 1.0000032 -335.lo28 168.71 -166.39

D 1 0.4956 0.olooooo 1.0000000 -7.6o83 2.2 o4 3 -5.4o39

2 0.99 0.oloooooo 1.ooooool

0.99 0.olooooo 1.ooooo98 -I.ol.2619 35.269 -65.993

3 0.99 0.olooooo 1.0000079

0.99 1.0769872 1.0000041

0.99 0.olooooo 1.ooooool 289.3262 141.69 -147.6:



Table 13: EM-data for solution A.

M3T
Gev. 1S| £*4Sl cls t-Acis «PI £*IPI dP IDI ±AlD| ±a <îd 1F i 1±A|F( i-Acip

l.ol 0.63 o . o7 14o.3 6.8 o . 4o 0.11 211.7 4.6 o . 4o o . o5 9o. o 0.0 o . o3 0.0 78.7 0.0

1. o3 o.64 o . 06 143.6 6.5 o.32 0.1 0 2o7.5 4.2 o.43 o . o5 9o. o 0.0 o . o3 0.0 77.3 0 . o

1. o5 o.56 o . lo 149.3 5 . 7 0.46 0 . lo 214.9 4.5 o.43 o . o4 9o .o 0.0 o . o3 0.0 75.8 0 . o

1. o7 o.71 o . o6 14o.7 7.1 0.35 0.11 2o9.1 4.6 ' o.42 o . o5 9o. o 0.0 o . o4 0.0 • 73.9 0.0

1. o9 0.61 o . o9 148.4 5.4 0.45 0 . lo 214.0 4.6 o . 5 o o . o4 9 o . o 0 . 0 o . o4 0 . 0 71.7 0.0
1

1.11 o.61 o . lo 147.2 4.8 o.42 0.11 210.8 5.4 ; 0.65 o . o3 9o. o 0.0 o . o5 0.0 69 .o 0.0

1.13 0.45 0.16 141.2 12.8 0.46 0.15 195 .o 14.2 0.74 o . o3 9o. o O . 0 o . o5 0.0 65:6 0.0 _̂

1.15 0.64 o . lo 148.8 4.3 0.29 0.11 197.9 4.1 o . 69 o . o3 9o. o 0.0 o . 06 0 . o 61.5 p . o

1.17 o.56 o . lo 138 .2 5.3 0.29 o . o8 189.2 3.9 o.87 o . o3 9o. o 0.0 o . 06 0 .  o 56.4 0 .  o

1.19 0.73 o .  o9 141.4 4.7 0.18 0.12 178.7 12 i 8 0.88 o .  o4 9o .  o 0 . 0 o .  o7 0 . 0 49 .9 0 . 0

1.21 o.64 0.14 13o.] lo.4 o .  19 o .  2 159.8 33.5 1. o7 o .  o3 9o .  o 0 . 0 o .  o7 O .  0 41.8 0 .  o

1.23 o .  7o 0.11 129.8 9.3 0.23 o .22 162.1 27.8 1.11 o .  o3 9o .  o 0 . 0 o .  08 0 . 0 31.9 0 . 0

1.25 o.64 0.13 Ilo.2 17.3 o.36 0.24 159.2 14.6 1.26 o .  o3 9 o .  o 0 . 0 o .  o9 0 . 0 2o .  6 0 .  o

1.27 0.62 0.11 lo4 .  ? 19 .6 o .  3o 0.22 151.8 23.0 1.27 o .  o3 9o .  o 0 . 0 o .  lo 0 . 0 8 .  6 0 . 0

1.29 0.63 o .  o8 loi . ! lo .  2 o.53 0.12 163.9 4.5 1.16 o .  o3 9o .  o 0.0 0.11 0 . 0 -2.8 0 .  o

1.31 0.65 o .  o8 88.0 14.8 o .  4o 0.13 144.0 13.9 1.19 o .  o3 9o .  o 0 . 0 0.12 0 . 0 -12.8 0 . 0

1.33 o.67 0.13 7o .  9 18.1 o.32 0.15 116.5 2 o.3 1.11 o .  o5 9o .  o O .  0 0.13 0 . 0 -21. l 0.0

(1 23]



Table 13 (Continued) »—1 
sDO----

FIT
(Tp v

\SI +A\S| +A.(fS IPI tAiPI 6p -A ¿p
—  

1D* +A1DI ¿D IF I +AIFI .fr.r 4A<fu j " Jr

1.3! o.62 0 . 1 1 84.6 1 2 . 1 o,47 0 . 1 2 148.o 9.3 o.94 *o. o4 9 o . o 0 . 0 0.14 0 . 0 -27.4 0 . 0

r  —  
1.37 o.54 0 . lo 89.1 14.3 o.53 0.15 155.9 l o . 0 o.87 3 . o5 9o . o 0 . 0 0 . 1 1 0 . ol -85.5 26.8

—------------------

1.39 o.47 o . 08 9 3.3 9.5 o . 6o o . 2 1 159.8 l o . 4 o.79 o . o9 9o-o 0 . 0 o.ll o . o2 -87.2 35 .1

1.41 0.53 o . 2 o 8 8 .3 24.8 o.41 o . 3o 147.1 35.7 o.79 o . o9 9 o . o 0 . 0 0.13 o . 08 -61.1 5 o . 2

\  a : o.57 0.13 88 .o 14.6 o.25 o .  06 115.8 9.9 0.78 o .  08 9o .  o 0 . 0 o.23 o . o7 -35 .  4 15 .  lo |

| 1.4! 0.55 0 . 1 1 9 2.7 19.1 0.23 o .  06 l o 7 .9 46.9 o.72 o .  08 9 o .  o 0 . 0 o.27 o .  06 -2 1 . 6 15.0

1.41 o.47 0 . 1 2 82.1 18.o o.45 0.15 144.5 1 0 . 0 o.51 o .  06 9 o .  o 0 . 0 0.17 o .  o4 - 8 o .  6 29.2

1.45
! o .  34 o .  18 99.0 37.4 o.47 o.27 153.2 2 o .  2 o.55 •0.14 9 o .  o 0 .  o 0.16 o .  o3 -79 .  7 2 o .  1

; 1.5: o .  3£ 0 . 1 2 86.4 27.2 o.23 o .  o9 115.2 33.4 0.59 o .  o7 9 o .  o 0 . 0 o.27 o .  o5 -37.1 lo .  6

1.5 3 o.35 o .  - 0 92.5 2 2 . 1 o.28 o .  o5 86.4 23.5 0.59 o .  o7 9o .  o O .  0 o.32 o .  o5 -19 .1 5 .9

- -  1 . 5d o.36 o .  o7 8 :4. 7 13.7 o .  3o o .  o5 97.3 18 .  6 o.58 0 .0 , 9 o .  o 0 . 0 o .  39 o .  o4 - 1 1 . 8 4.3

, 5 1 0.46 o .  06 8 4.3 l o .  0 o.26 o .  o4 87.5 14.4 o.62 0.13 9o .  o 3.4 o.42 o .  o3 1 .  3 o .  o
—

! 1 .55 0.42 0.16 78 .2 13.2 0.25 o .  o5 l o 5 . 7 29.0 o.57 0 . 1 2 9 o .  o 3.9 o.45 o .  o4 -5.2 0 . 0

1 .6'
o. 39 o .  o4 76.3 l o .  3 0.33 o .  o3 8 o .  o 9 .3 o .  64 o .  o9 9o . o 3.5 0.43 o .  o3 -1.9 0 . 0

1 . 6
o .  385 0.15 69.6. l o .  6 o.29 o .  06 62.2 2 o .  5 o.59 o.ll 9o .  o 3.2 o.57 o .  o3 5 .4 0 . 0

¡ 1 . 6
. o.39 o .  oS 6 7 . 3 8.5 0.29 o .  o3 79.1 1 2 . 4 o.61 0.13 9 o .  o 2.4 o.64 o .  o3 3.7 0 . 0

1
| 1 . 6

oo---------- 0.13 6.3.8
J________

1 1 . 8 0.25 o .  06 54 . 1 23.6 o.61 0 .  lo 9 o .  o 3.7 o .  6o o .  o3 14.7 
--------------- ■

0 .0



Table 53 (cookntA.ecJ.j
4

\ S V +A<fs IPI ÍAIPI r
°P +A ¿  P IDI 4> ÏA dj, IF 1 +AIFI >

--A
ip + A Í f

1.6¿ o.4o 0.13 6o . 9 13.2 0.22 o . 06 54.1 28 .o 0.55 0.13 9o. o 4 . o 0.67 o . o3 13.0__ 0.0
^  1 
1.71 ! 0-43 0.11 58 .o 2 o . 6 0.23 o . 06 78 .9 25.0 0.58 o . lo 9o. o 6 . o 0.64 o . o3 0.0

OoKjr-rH 0.12 49.5 16.1 0.31 o . lo 87.0 32:1 0.56 o . o7 9o. o 5.9 0.63 o . o3 0.0

1.75 0.37' 0.11 51.8 2 o . 8 0.35 0.11 118.7 16.5 0.49 o . 08 9o. o 11.3 0.56 o . o3 32.0 o.o ;
«
1 . 7 7

0.38 o . o5 46.7 19.9 o . 29 o . o4 lo9 .o 11.4 0.54 0.11 9o. o 5 . 3 0.55 o . o4 47.6 o.o !

',.79 0.42 o . o5 53.0 16.1 0.21 o . 06 31.0 55.3 0.53 0.0Ó 9o . o 7.4 0.55 0.033 -4a «J5L
10.0 \ ---- .—If—»

— p

' 5 1
•—

•
-------
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Table 14:Data for EM-solution B

M
G ¡ F /si ±\^s\ ¿ s ■i- Acf“ s 1PI ±A\Pl á P -t-AcfX P

IDI ±AlD|
t A ! F 1 t¿iF| 1±A

l.ol 0.63 o . o7 14 0*33.8 o . 4o 0.11 1 11.7 4.6 o . 4o o . o5 )o. 0 3.0 3.0 3 0.0 78 .7 . 0
1. o3 0.64 o . 06 143.6 6.5 0.32 0 . lo 2o7 .5 4 . 2 o .43 o . o5 9 o . o o . o o . o3 0.0 77.3 0 . o

l.o5 0.66 o . lo 149 . 3 5.7 0.46 0 . lo 214.9 4.5 0.43 o . o4 9 o . o 0.0 o . o3 0 . o 75.8 o . 0
1. o7 0.71 o . o6 140.7 7 .1 0.35 0.11 2o9.1 4.6 0.42 o . o5 9o. o 0.0 o . o4 0 . o 73.9

i
0.0

1. o9 o . 61 o . o9 148 .4 5.4 0,45 0 . lo 214.0 4.6 o . 5o o . o4 9 o . o 0.0 o . o4 0.0 71.7 0.0

1.11 0.61 o . lo 147.2 4.8 0.42 0.11 210.8 5.4 o .65 o . o3 9o . o 0.0 o . o5 0.0 69 . o 0.0

1.13 0.45 0.16 141.2 12.8 0.46 0.15 195 .o 14.2 0.74 o . o3 9o. o 0.0 o . o5 0.0 65.6 0.0

1.15 o . 64 o . lo 148.8 4.3 0.29 0.11 197.9 4.1 0.69 o . o3 9 o . o 0.0 o . 06 0'. 0 61.5 0.0
1.17 0.56 o . lo 138 .2 5.3 0.29 o . 08 189.2 3.9 0.87 o . o3 9 o . o 0.0 o . 06 0.0 56.4 0.0
1.19 *o.73 o . o9 ¡141.4 4.7 0.18 0.12 178.7 12.3 0.88 o . o4 9 o . o 0 . o o . o7 0 . o 49 .9 O . 0
1,21 o. 64 0.14 ¡13o.l lo.4 o . 19 o . 2 o 159.8 33.5 1.07 o . o3 9 o . o 0.0 o.o 7 . 0.0 41.8 0.0
1.23 o . 7o 0.11 ¡129.8 9.3 0.23 0.22 162 .1 27.8 1.11 o . o3 9 o . o O . 0 o . 08 0.0 31.9 0 .0
1.25 0.76 o . o6 121.3 8 . 7 0.19 0.11 130.1 3o. 1 1.23 o . o3 9o. o 0 . o o . o9 0.0 2 o . 6 0 .0
1.27 0.71 o . lo .18 . 7 11.9 . 0.16 3 . lo 97.9 4o.1 1.25 o . o5 9o. o 0.0 o . lo 0.0 8.6 0 .0
1. 29 0.89 o . o7 124.7 6.3 0.21 3.1o 7o.1 4o.9 1.1o o . 06 9 o . o 0.0 0.11 3.0 -2.8 0.0
1.31 0,76 o . o8 :.17.7 lo.5 o . 4o 3.16 46.5 17.9 1.13 o . o3 9 o . o 0 . O 0.12 3.0 -12.8 0 .0

(132)



Tab le 14 (continued)r
Mrr tí
Ge V .

isl ±  1¿S| ás ±  A<ís IP! ±A'P! ' 6p tAÍp ID| + A|D| ¿D :t^D IF! I ±A|FI 4 X

1. 33 0.67 o . o7 lo9.1 12. 6 o . 32 0.11 63.8 27.0 1.11 o.o2 9o. o 0.0 ). 13 0 . 0 -21.0 0 . o
1.35 0.72 0.11 118 . 7lo.8 0.54 0.19 39.6 13.1 0.84 o . o7 9o. o 0 . 0 p.14 0 . 0 -27.4 o .  0

1. 37 0.71 0.11 114.1 14 . 7 o . 3o 0.26 52.6 3o. 5 0.86 o . o5 9o. o 0 . 0 0.11 o . o2 -9 o . 8 7o. o

1. 39 0.71 0 . 11 117.8 13.2 0.28 0.29 55 . 5 4o.2 0.79 o . o5 9 o . o 0 . 0 0.11 o . o2 -92.9 82.3

i
i
I

i

j

1 . 41 0.64 0.28 i112.2 19 .9 o .  3o 0.25 55 . 1 3o.7 0.77 o .  lo 9 o .  o 0 . 0 0.11 o .  o2 -9o.7 6o .  6
1.43 I 

1.45

0.52 0.17 jlo7 .9 29.1 0.52 o .  3 o 37, 6 24.5 0.67 0.13 9 o .  o 0 . 0 0.23 o .  08 -41.6 1  c15.0 j

0.4 7 0.16 115 . 4 22.6 0.56 0.25 41,0 16.2 0.57 0.13 9o .  o O .  0 0.27 o .  06 -27.8 j15.7 !

1.47 0.48 0.18 lo4 . 2 31.0 0.41 o .  2o 41.0 28.9 0.51 o .  o5 9o .  o 0 . 0 0.17 o .  o2 -97.3 26.4

1.49 0.51 0.14 L18 .  5 13.1 . 0.29 0.16 58.6 2o.4 0.54 o . 06 9 o . o 0.0 0.16 o . o3 -91.7 31.1

1.51 &. 32 0.12 L21.8 26.1 0.45 o .13 41,9 15.6 0.48 o . 08 9o .o 0.0 0.27 o . o5 -48 .2 12.7

1.53 0.27 o . o 9 129.4 19.9 0.53 0.13 58.2 11.0 0.43 o . lo 9 o . o 0.0 0.32 . o . o3 -26.5 7.7

1.55 o . 2o o . 08 Lo9 .5 46.4 0.59 0.12 58.1 11.9 0.42 0.13 9 o . o 0.0 o . 39 o . o4 -16.5 7.1

1.57 0.14 o . o9 .22.1 3o. 5 0.73 o. 08 68 .8
t
1 o . 6 0.32 0.14 9 o . o 8 .2 0.42 o . o5 2 .6 0.0

1.59L . 0.12 o . o7 lo8 . 5 o . 2 0.67 o. 08 61.4 6.7 0.33 0.15 9 o . o 7.2 0.46 o . o4 -9o . o 0 .0
1.61 0 . lo o . o7 lo7 .F 5o.2 0.71 o. 08 71.4 7.3 0.38 0.14 9o. o 6.4 0.43 D . o4 -3.3 0.0
jl.63
<
i1__

o . o9 0.15 46.6
l
J____

4o. 4 o . 68 o. 08 

1

75.2 3.4 0.36

1

0.15

1

9 o . o 7.2

L

0.57 3 . o4 3 . o 0.0



Table 14 (continued)

Mnrr
Ge\r

\s\ +JAS) 6 s ± A 0S 1P1 t m P P IDl t \Di 1 F| + A1F1 ip' fA ip

1.65 o . lo 0.14 32 . 1 45 .2 o . 69 o . o7 67.1 6.7 o.35 0.17 9 o . o 6.2 o . 68 o . o3 6.4 0 .  O
1.67 0.15 0.13 !

14.1 32.9 o.68 o . 06 89.4 7.3 o.34 0.13 9 o . o 12.6 o . 6o o . o 3 27.3 0 . 0
1.69 0.18 0.11 o . 1 3o. 6 o.64 o . 06 84.3 16.2- o.29 o . 14 9 o . o 15 .6 o.67 o . o3 26.7 0 . 0
1.71 . o . 3o 0.12 29.9 2 o . 9 o.59 o . o7 111.1 9.9 o.37 o . o9 9o . o 17.7 o.64 o . o3 52 . 4 O .  0
¡1.73 0.33 o .13 33.0 21.5 o.5 2 o . lo lo3 . 6 13.6 o.4 4 o . lo 9o .  o 15 .o o.63 o .  o3 47.6 0 . 0
1.75 o.37 0.11 51.7 2o .  9 o.35 0.11 118 .  7 16.8 0.49 o .  08 9 o .  o 11.5' o.56 o . o3 52.o 0 . 0
1.77 o.36 0.15 39 .5 3o .8 o .  4o 0.18 117 .  3 21.9 o.49 0.12 9o .  o 2 o .  9 o.55 o .  o3 5 5.5 O . 0
1 . 79
i

o.41 o .  2o 36.2 29 .  3 o.46 o.31 122.6 24 . 1 o.36 o .  o7 9 o .  o 61.5 o.55 o .  o3 31.2 0 . 0

1

i
\

\
i1_____________ i 1 i___ . i i!

I)



Table 15‘.Data for EM-solution C

M__ _n î
Gev ISI ±\^s\ ¿5 ±^ s

'
IP! ±41 PI V ± A Î p \ D \ ±AlD| a* IF! t  a \f | + ¿ 4— r

l.ol o.63 o . o7 4o. 3 6.8 o . 4o c3.11 11.7 1.6 o . 4o o . c5 9 o . o 0 . o o . o3 0.0 78 .7 3.0

l.o3 o . 64 o . 06 4 3.6 6.5 o.32 3 . lO . o7 .5 1.2 o . o5 9 o . o 0.0. o . o3 0 . o 77.3 0.0

1. o5
i

0.56
1

o. lo jl49 . 3 5 . 7 o.46 0.10 ’14.9 4.5 0.43 o . o4 9o. o 0.0 o . o3 0.0 75.8 o . 0
j

*

l.o 7 o.71 o . 06 3_4o . 7 7 .1 0.35 0.11 ol. 1 4.6 o.42 o . o5 9o. o 0.0 o . o4 0.0 73.9 0.0

1. o9 o.61 o . o9 j.48 .4 5.4 o.45 0 . lo ’14.0 4.6 o . 5 o o . o4 9 o . o 0.0 o . o4 0.0 71.7 0.0

L. il o.61
!|0 . lo .47 .2 4.8 o . 42 0.11 n o .8 5.4 o.63 o . o3 9o. o 0.0 o . o5 0.0 69 .o 0'. 0 |

1.13 o.45 o.l6 L41.2 12.8 o.46 0.15 .95.0 14.2 o.74 o . o3 9o. o O . 0 o . o5 0.0 65.6 o . o
1.15 o.64 o . lo 148 A 4.3 o . 29 0.11 197 .9 4 .1 0.69 o . o3 9 o . o 0.0 o . 06 O . 0 61.5 0.0
1.17 o.56 0.1 0 1382 5 . 3 0.29 o. o8 L89.2 3.9 0.8 7 o . o3 9 o . o 0.0 o . 06 0.0 56.4 0.0
1.19 *0.7 3 o . o9 141. 4.7 0.18 o. 12 L 7 8 .7 12.8 o .88 o . o4 9 o . o 0 . o o . o7 0.0 49 .9 0.0
1.21 0.64 0.14 13o. lo. 4 0.19 o. 2o 159.8 33.5 1. o7 o . o3 9o. o 0.0 o . o7 0.0 41.8 0.0 1
1.23 o . 7o 0.11 129 .159.3 o.23 0.22 1.62.1 27.8 1.11 o . o3 9o. o 0.0 o . 08 0.0 31 .9 0.0 1

| 1.25i o.64 0.13 Ilo. 17.3 o.36 0.24 .59.2 14.6 1.26 o . o3 9 o . o 0.0 o . o9 0.0 2o . 6 0.0
i ,7 o.62 0.11 lo4 .= 19.6 o . 3o 3.22 51.8 23 .c 1.27 o . o3 9 o . o 0.0 o . lo 0.0 8 .6 0.0!

j 1.29 0.63 o . 08 loi. 2 10.2 0.53 3.12 .63.9 4.5 1.16 o . o3 9o. o 0.0 0.11 0.0 -2.8 0.0
1.31

\
!i.

o.65
!_i__

o . 08 88 .o

.

14.8 o . 4o 3.13 144 .o

.

13 .£ 1.19

_____

o . o3 9 o . o 0.0 0.12 0.0

;

-12 .?
1

0.0

(5
2.
1)



Table 15 ( Continued)

M niT
Gev.

isi +>sl ¿s' ± Atfs \v\ ± w 1D1 ± AlD| hAĈ c 1 FI WIFI ip .

1. 33 o.67 >. 13 ?o . 9 18 .1 o.32 o.32 116.5 2o. 3 1.11 o . o5 9o . o 0.0 0.13 . 0 ■21.0 3.0

1.35 o.62 ). 11 8 4.6 12.1 o.47 o.47 148.0 9 . 3 o.94 o . o4 9o. o 0.0 0.14 O . 0 -27.4 0.0

1. 37 o.54 . lo 8 9.1 14.3 3-53 o.53 155 .9 lo. o o.87 o . o5 9 o . o 0 . o 0.11 0 . ol -85.5 26.8

1.39 o.47 o .'lo 9 3.3 9.5 o . 6o o . 6o 159.8 lo. 4 o.79 o . o9 9o. o 0.0 0.11 o . o2-.8,7.,. 2. 35 .1

1.41 o.53 o . 2 o 88.3 24.8 o.41 o.41 147.1 35.7 o.79 o . o9 9o. o 0.0 0.13 o . 08 -61 .1 6o . 2

1.43 o.57 0.13 8 8.o 14.6 o.25 o.25 115.8 9.9 o.78 o . 08 9o .o 0.0 0.23 o . o7 -3.5.. 4- 15 .1

1.45 o.53 o.ll 92 . 7 19.1 o.23 o.2 3 lo7.9 46.9 0.72 o . 08 9o. o 0.0 o.27 o . 06 -21.6 15 .o

1.47 o.46 o.42 79.7 7 o . 5 o.44 o.44 142.6 58.2 o.51 o . o5 9o . o 0.0 0.17 o . o2-81 .5 28 .9

1.49 o.51 0.15 61.4 21.5 ' o.29 o.29 12o.7 54,o o.54 o . 06 9o . o 0.0 0.16 o . o3 -87.4 78 . 4

1.51 o'. 5o o . o9 56.8 23.3 0.17 0.17 6o . 7 6o . 9 o . 5 o 0.0“ 9o . o 0.0 0.275 3 . o5 -4£_3_ 12 .4

1.53 o.55 o . o7 53.6 19.5 o.28 o.28 43.3 37.6 o . 4o o . lo 9o. o 0.0 0.32 3 . o5 -28.7 9 . o

1.55 o.54 o..' o9 59.2 2o . 2 o.34 o.34 44.6 29.8 o . 4o 0.14 9o . o o . o 0.393 3 . o4 -17.2
l

8.0 |

1.57 o.64 o . o9 7 3.4 14 .o o.32 0.17 44.7 39.6 o.39 0.15 9 o . o 7.4 0.424 3.0 3 7 1
i

0.0

1 .59 n.59 o . o7 63.5 9.o 0.33 o . 06 41.4 14.0 o.39 o . 2o 9 o . o 5 .7 o.45 3.0 3 -lo. C 0.0
!
1 . 61 o.65 .... o . lo 6o . 3 11.8 o.32 o . lo 51.6 37.4 o . 39 0.18 9 o . o 6.2 o.43 3 . o4 -3.2 0.0

1.63 io. 62 
1
J______

o . 08 7o. 4

’

8.9

1
o.37 0.11 43.1

l______

22.8 0.28 o . 2o 9o. o 11.3 0.57 3.0 3 11.5 0.0

(9
£l
)



Table 15(continued)

M nTr
Gev.

|S| ±\*s\ Js 1PI :tA[P| dP 1 P ID| -A&F ! FI tA|F| ^F + p

1.65 o.61 o . o7 68 .4 8 .5 o.41 o . o9 31.5 15 .7 o.26 o.l5 9 o . o 9.4 3.64 o . o3 8.6 0.0
1.67 o . 64 o . 06 3 4.7 8 .8 o.37 0.11 51.1 21.2 o.23 0.15 9o. o 34.1. 3. 6o o . o3 41.3 0.0
1.69 o . 6o o . o5 32.o 7.8 o.36 o . 08 4 o . 7 16.2 o .21 0.12 9 o . o 15 .2 3.678 o . o3 35 .6 0.0
1.71 o.61 o . o7 123.8 9.7 o . 35 0.11 69 .7 24.3 o . 3o o . o5 9 o . o 35 .2 o. 64 o . o3 77.8 0.0
1.73 o.58 o , 08 136.3 12.4 o.36 o . 08 9 3.0 3o. 6 o.33 o . o5 9o. o 33.5 o.63 o . o3 99.o 0.0
1.75 o.54 o . 06 129 .8 14.2 o .22 o . o5 119.4 48 .1 o.39 o . 06 9o. o 2 3.7 3.663 o . o3 lo2 .8 0.0
1.77 o.54 0.11 139.4 2 o . 1 o.26 0.14 89.7 o . 8 o.42 o . 08 9o. o 3o. 1 3.5 o . o4 lo6.6 0 . o
1.79 0.42 0.15 153.7 26.5 o.46 0.15 5 .7.7 47.8 o.35 o . 06 9o. o 51.9 3.5 o'. o3 98.2 0.0

—

-

.



Tab le 16 : Data for EM-solution D

Mn n
Ge V . \si

T
tûlsl ¿_s \PI : 1P1 P IDI £ a-IDI ¿D IFI + a |F| ¿F =tA <íp

l.ol 0.63 o . o7 L40.3 6.8 o . 4o 0.11 211.7 4.6 o . 4o o ,o5 9o . o n . n . o3 0.0 78 .7 0 . O

1. o3 0.64 o . 06 14 3.6 6.5 0.32 0 . lo 2o7 .5 4.2 0.43 o . o5 9o. o 0.0 o . o3 0.0 77.3 0.0

1. o5 0.56 o . lo 149 . 3 5.7 0.46 0 . lo 214 .9 4.5 0.4-3 o . o 4- 9o . o 0.0 o.o 3 0.0 75 .8 O . 0

1. o7 o .71 o . o6 140.7 7.1 0.35 0.11 2o9 .1 4.6 0.42 o . o5 9o. o O . 0 o . o4 ... Q.1..Q_ 73.9 0.0

l.o9 0.61 o . o9 148.4 5.4 0.45 0 . lo 214.0 4.6 o . 5 o o . o4 9 o . o 0.0 o . o4 0.0 71.7 0.0

1.11 0.61 o . lo 147.2 4.8 0.42 0.11 210.8 5.4 0.65 o . o3 9o. o 0.0 o . o5 0.0 69 . o 0.0

1.13 0.45 0.16 141.2 12.8 0.46 0.15 195.0 14.2 0.74 o .o3 9o . o 0.0 o . o5 0 ■ 0 65 .6 0.0

1.15 0.64 o . lo 148 .8 4.3 0.29 0.11 197.9 4.1 0.69 o . o3 9o . o 0.0 o . 06 O . 0 61.5 0.0

1.17 0.56 o . lo 138.2 5.3 . 0.29 o . 08 189.2 3.9 0.87 o . c3 9o .o 0.0 o . 06 -0.0 56.4 0.0

1.19 0.73 o . o9 141.4 4.7 0.18 0.12 178.7 12 . 8 0.88 o . o4 9o. o 0.0 o . o7 0.0 49.9 0.0

1.21 0.64 0.14 13o. 1 lo. 4 0.19 o . 2o 159.8 33.5 1. o7 o . o3 9o. o 0.0 o . o7 o . 0 41.8 0.0

1.23 o . 7o 0.11 129.8 9.3 0.23 0.22 162.1 27.8 1.11 o . o3 9o. o 0.0 o . 08 0.0 31 .9 0.0

1.25 o . 75 o . o6 121.3 8 . 7 0.19 0.11 130.1 3o.1 1.23 o . o3 9 o . o 0.0 o . o9 0.0 2o . 6 0.0

1.27
I

0.71 0 . lo 118.7 11.9 0.16 0 . lo 9 7.9 4o. 1 1.25 o . o5 9o. o 0.0 o . lo o . o 8 .6 0.0

1.29 0.89 o . o7 12 4.7 6.3 0.21 0 . lo 7o.1 4o.3 1.1o o . 06 9o. o 0.0 o.ll O . 0 -2.8 0.0

1.31 0.76 o . o8 117.7 lo.5 o . 4o 0.16 46.5 17.9 1.13 o . o3 9o. o 0 .0 0.12 0.0 -12 .8 0.0

C
S

£T
)



Table 16: Data for EM-solution D

Mnir - 
Ge v .

ls\
[

dfs +a î s IP! ± m V ± AÎP !D| + M D  | IF| ±AIF| ±4 < v

1.53 ■o.67 o . o7 _Llo9 . ]12.6 o.32 o. i: 63.8 27.0 1.11 o . o2 9 o . o 3.0 0.13 0.0 -21.0 0.0
1. 35 o.7 2 0.11 118.7 lo. S o.54 0.19 39.5 13.1 o.84 o . o7 9 o . o 0.0

i
o . 14 0.0 -27.4 0.0

1.37 1i i o.71 0.11 114.1 i/i 7-i ' ■ * / o . 3<'> o.26 52.6 3n . 5 o .86 o . o5 9 o . o 0.0 0.11 o . o2 -9o . 8 7o . o
J

1.39 j 0.71. 0.11 117.8 13.2 o.28 o.29 55.5 4 o . 2 o.79 o . o5 9o. o 0.0 0.11 o . o2 -92.9 82 . 3—  
1.41 j0.47 0.15 88 .8 24.9 o.57 o . 14 24.5 11.6 o.73 o . 06 9o. o 0.0 0.13 o . o5 -68 .1 38 .8

1.43 o . 4o o,17 8 o . 7 3o . 2 0.6 7 0.15 22.3 18 .4 o.62 0.12 9o . o 0.0 o.23 o . o7
i

-46.1 12.8

L
O
.-j.i—i 0.29. 0.15 56.1 5 o . 4 o.77 0.12 17.1 16.6 o.43 0.13 9 o . o 0.0 o.27 o . 06 -37.7 7.5

1.47 0.44 o.45 97.4 78 .4' o.45 0.41 35.2 56.1 0.51 o . 06 9 o . o 0.0 0.17 o-. o2 -99.2 3o. 7

1.49 o.33 o . lo 8 o . 9 23.0 o.47 o . o4 26.7 7.4 o.55 o . 08 9 o . o 0.0 0.16 o . o2 -99 .9 19 .9

1.31 0.2o o . c6 57.8 14.4 o.57 o . 06 18 .-4 11.0 o.41 o . o7 9o. o O . 0 o.27 o . 06 -6o . 7 12.7

1.53 0.25 o . o7 19 .8 16.4 0.63 o . 06 23.1 5 .6 o.27 o . 06 9o . o 0.0 o.32 o . o4 -46.2 4.6

Il  5 s 0.27 o . o7 36.4 15 . 1 o .66 o . 06 37.5 4.9 0.2 6 o . o5 9 o . o 0.0 o . 4o o . o3 -27 . 7 4.3
‘

¡1.5 7 0:28 o . 06 41.7 15.7 o.75 o . o5 65 .9 6.4 0.11 o.o 7 9 o . o 3o. 6 o.43 o . o4 7.4 0.0

1.59 0.11 o . o7 lo7.É 6o . 5 o.57 o . 08 61.4 6.7 o . 33 0.15 9 o . o 7.2 o.45 o . o4 -9.0 0.0

1 .61 o.36 o . 08 2o. 5 14.3 o.72 o . o5 54.0 8 .9 0.14 o . o5 9o. o 14.8 o.43 o . o4 -6.7 0.0

1.6 3

L----

o.42 o . o9 83.4

.

14.2 0.65 o . 08 

___ ___

113.1 12.1 o . o6 o . o 7 9 o . o 8 o . 1 o.57 o .o3 58 .7

i

0.0



Table 16 (Continued)

M nrr
Gev. l si tAjS| V IP1 ±AlPl ciP

■
v cit P 1 D l ±A|Di ±AdD

"T
IF! ±A\F1 ^F ±^dF '

1.65 o . 4 o 3.13 L16.1 14.9 o.67 o . o7 142.3 11.7 o . o4 o ..o3 9 o . o Loo.9 3.64 o . o3 92.2 0.0
1.67 o.48 3.06 139 . 3 12.4 o.58 o . o7 175.1 8 .1 0.19 o . o5 9 o . b 2o . o 3.6 0 o . o2 126.2 0 . o
1.69 o.42 3 . lo L46.8 15.2 o.57 o . o9 184.6 12.1 0.19 0.14 9 o . o 12.3 o.58 o . o3 135.4 0.0

i ' 71 o.52 3.0 6 136.2 14.0 o.42 o . 08 168.4 14.7 o.37 o . 06 9 o . o 12.4 o.64 o . o3 126.6 0.0
1.73 0.55 o . 06 139.4 17.3 0.3 5 o . o9 147.5. 31.5 o.39 0.11 9 o . o 21.o 0.63 o . o3 12 3.3 0.0
1.75 o.54 o . 06 129.8 13.9 o .22 o . o5 119.1 49.9 o.39 o . 06 9 o . o 2 3. T o.56 o . o3 lo2 .9 0.0
1.77 0.53 o . o9 138 .4 25.2 0.22 o . o7 124,5 49 .5 o.45 0.12 9 o . o 24.2 o.55 o . o3 117.8 0.0
1.79 o.42 0.13 126.8 4 3.4 o . 2o o> 25 147.0 lo6.4 o.53 0.19 9 o . o 17.7 0.55 1.03 139.8 0.0

i

.

- 1______ J______

(140)



(141)

Table 17:To test sum-rule inequalities(EM-data:sols.A,B,C&D)

“7
N i R A VPK ANSI ANS2 FINANS.

A 1 o.38 o .oloooo 1.00000 -7.0227 1.5159 -5.5068574

2 o.99 o .oloooo 1.ooooo
o.99 o .oloooo 1.oool5 -68 .6928 26.5347 -42.15 8 o7o

3 0.99 o .oloooo 1.ooooo
o.99 1.188531 1.ooooo
o.99 o .oloooo 1.ooooo -278.892 91.7325 -187.15938

B 1 0.338426 o .oloooo 1.ooooo -6.7689 1.7835 -4 .985397

2 0.99 o .oloooo 1.ooooo
o.99 o .oloooo 1.ooooo -76.4596 35.8887 -4o .57o932

3 0.99 o .oloooo 1.oooo7

0.99 1.o7o246 1.ooooo
0.99 o .oloooo 1.ooool -3o2.lo2144.5777 -157.52438

C 1 0.33861 o .oloooo 1.ooooo -6.o77o 1.9279 -4.1491247

2 0.99 o .oloooo 1.0000
0.99 o .oloooo 1.ooooo -92.8312 38 .1776 -54.653739

3 o.99 o .oloooo 1.ooooo
o.99 0.912435 1.ooooo
0.99 o .oloooo 1.ooooo -4o4.8 25 174.974 -229 .85132

D 1 o. 4o76o6 o .olooco 1.ooooo -6.7681 1.9136 -4.8545553

2 0.99 o.oloooo 1.ooooo
o.99 o .oloooo 1.ocooo -127.825 35.2693 -92.559633

3 o.99 o.oloooo 1. oooo6(
o.99 0.669326 i , oooooc

o.99 o .oloooo 1 . ooooo; -379.59 191. o5o -188 .54578



Table 18 : FP data [68,68a]

Mn  n
Ge V .

2 2
d° ?

---2

U 2
V

4

4

<

V A0

--- j----

V̂
1 £̂

2
*2° o 

¿2

1
^3i

i i

2
X

1 -23.5 1 -l.o o . 34 14.0 0.97 -24.1 0.83 14.0 1.00
-- _g---
0.0

1. olo 0 0 0 0 + 0.26 21.4 o . 08 4.7 o . o7 2.3 0 . ol o . 3 9.1
1 -23.7 1 -1.0 0.28 8 .8 0.94 -22.8 0.79 15.6 1.0 0.0

1. o3o 0 o 0 0 0.25 26.0 o . 08 4.9 o . o7 2.5 0 . ol o . 3 8 .8
1jL -23.8 1 -1.1 0.12 52.7 0.98 -21.3 0.86 16.1 1.00 0.0

1. o5o 0 __Q_____ 0 O ,.-5.1 ...7 n . r>8 4 . 7 n n 7 ? , ? n nl 3.9

1 -24.0 1 -1.2 0.35 75.4 0.97 -2o . 6 0.81 16.6 1.00 0 . o
1. o7o 0 0 0 0 0.22 17.9 o . o7 4.1 o . o7 2.4 0 . ol o . 3 8 . 3

1
JL -24.1 1 -1.3 0.37 79.8 0.98 -19.4 0.83 2 o . 3 1.00 0.0

1. o9 o 0 0 0 0 0.22 16.8 o . o7 4.1 o . o7 2.3 0 . ol o . 3 3.0
1 -24.3 1 -1.4 0.48 82.3 0.95 -18.2 0.83 26.8 1.00 0.0

1. Ilo 0 0 0 0 0.21 12.7 o . o7 4.2 o . o7 2.4 0 . ol o . 4 3.8
1 -24.4 1 -1.5 0.43 82.9 0.89 -15.9 o . 8 o 31.2 1.00 0.0

IJ3,q „ 0 0 0 0 0.21 14.8 o . o7 4.5 o . o7 2.5 o . o2 o . 4 3.4

(H2-)



Table 18 (Continued)
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^2

A0
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<*?
U 3
1
TV 7

4
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x2
1 -24.5 1 -1.6 o.51 -86.6 0.88 -14.3 o.78 3o. 8 1.00 0 . o

1.15 0 0 o 0 o.21 11.9 o . o7 4.5 o . o7 2.6 Q. 0-2__ o . 4 2.5

1 -24.6 1 -1.7 o.49 89 . 3 0.89 -13.4 0.77 39.7 1.00 0.0

1.17c 0 0 0 0 o .21 12.1 o . o7 4.5 o . o7 2.7 o . o2 o . 4 2.2

1 -24.7 1 -1.8 o.69 -83.5 o.89 -13.2 o.72 43.3 1. oo 0.0

ll. 19c 0 0 o 0 o.21 8.6 o . o7 4.5 o . o7 2.9___ o . o3 o.5 2.2

1 -24.8 1 -1.9. o.64 -83.2 o.88 -12.9 o.71 55.3 1.00 0.0

1.2loo 0 0 0 o.21 9.4 o . o7 4.5 o . o7 3.0 o . o3 o . 5 1.8

1 -24.8. 1 -2.o o.92 -76.1 o.91 -12.5 o.65 61.5 1.00 o . o

1.23c 0 0 0 0 0.19 6. o o . o7 4.4 o . o7 X J ___ o . o3 o . 5 1.0
I-—--

1 -24.9 1 -2.1 l.lo -72.1 o.92 -12.2 o.67 76.1 1.00 0.0

1.25c 0 0 0 0 0.19 5.5 o . o7 4.3 o . o7 5. o___ o . o3 o . 5 1.8

1 -25.o ± -2.2 1.14 -63.6 o.95 - lo. 3 o.64 89.o 1.00 0 .0
U 2 7 _ o 0 0 0 0 o . 2 o 5.6 o . o7 4.2 o . o7 3.2 o . o2 o . 6 2.2
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Table 18 (continued)
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0
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1
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A 3

----±---
<<3 1 X 2

' 1 -25.1 i -2.4 o.99 -55.7 1.01 -11.3 o.61
L

-76.3 1.00 0.0
11.29 o 0 0 0 0.18 5.2 o . o7 4 . o o . o7 3.3 o . o2 o . 6 8 .8

1 -25.1 1 -2.5 1. o5 -49.2 0.93 -9.6 o.75 -65.2 1.00 0.0
1.31 0 0 0 0 0.18 5.2 o . o7 4.3 o . o7 2.8 o . o2 o.7 8.6

1 -25.1 1 -2.6 1.08 -42.0 o .86 -8 .3 o.81 -56.4 1. oo 0.0
1.33 0 .0 0 o 0.19 5.3 o . o7 4.8 o . o7 2.6 o . o3 o.7 lo. 5

1 -25.1 1 -2.8 1.18 -38.0 o.83 -5.3 o.77 -46.9 1.00 o.7

L. 35 0 0 0 0 0.19 5.5 o . o7 4.8 o . 08 2.9 o . o3 o . 6 21.6

1 -25.1 -11 -2.9 1.00 -38.1 o.77 -3.8 o.76 -4o. 6 1.00 1.5

L. 57 0 0 0 0 o .22 6.4 o . o7 5.2 o . 08 3. o o . o3 o.7 3o. 3

1 -25.2 1 -3.1 1.00 -35.1 o.71 -3.1 o.78 -35.8 1.00 1.9

L.39 0 0 0 0 o .21 6. o o . o7 5.6 o . o7 2.7 o . o3 o . 8 2o . o

1 -25.2 1 -3.2 1.00 -32.3 o.65 -3.6 o . 8 o -32.8 1. oo 1.2
1.41 0 o 0 0 o .21 6. o o . o7 6.2 o . 08 2.7 o . o3 o . 8 11.5
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Table 18 (continued)
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4  0 
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1
¿3 x2

1 -25.2 1 -3.4 1.00 -3o. 2 o.61 -4.2 o . 8 o - 3o. 6 1.00 3.3

1.43 n 0 n o o .21 6. o o . o7 6.6 o . 08 2.7 o . o3 o . 9 lo. 8

1 -25.2 1 -3.6 1.00 -27.o 0.57 -4.5 o.76 -27.4 1.00 3.8

1.45 o . n o o o .21 6.1 o . o7 7 . o o . 08 2.9 o . o3 o . 9 6.3

1 -25 . 2 1 -3.8 1.00 -21.9 o.56 -4.5 0.74 -21.1 1.00 4.0

¡1.47 . o. n o _Q_ o .22 6.2 o . o7 7.1 o . 08 3.0 o . o3 1.0 5.9

1 -25.2 1 -3.9 1.00 -18.8 o.52 -4.2 o.74 -2 o. 2 1.00 4.6

1.49 o n n n o .22 6.2 o . o7 7.7 o . 08 3. o o . o3 1.0 3.7
I •
ji 1 -25.3 1 -4.1 1.00 -14.5 o.51 -4 . o 0.75 -18.8 1.00 5.7

1.51 o n Q___ n o .22 6.2 o . o7 8.5 o . 08 5. o o . o3 1.0 3.9

1 -25.3 1 -4.3 1. oo -12.7 0.47 -8.4 o . 69 -17.4 o.95 6.2

1.53 n n O n o .22 6.2 o . o7 8.5 o . 08 3.3 o . o3 1.0 1.7

1 -25.3 1 -4.5 1.00 -lo. 4 o.43 -12.1 o.65 -17.6 o.92 7.2

1.55 o n n o o .22 6.2 o . o7 9.3 o . 08 3.4 o . o3 1.0 1.7

1X -25.3 1 -4.7 1.00 -8 .2 o . 39 -15.0 o.61 -16.7 o.87 7.7

1.57 0 o 0 0 o .22 6.2 o . o7 lo .7 o . 08 3.7 o . o3 2.2 3.8

(14$)



T a b l e  1 8  ( c o n t i n u e d )

M uir 
G e v .

^ 0

£
2

^ 2Z 2
a 2

4

k

<

A 0
0 j(0 

0
%

^ 1

0
^ 2

0TV.2
«*2 °
V

1
^ 3  1

k
X 2

1 -25.3 1 -4.9 1 . 0 0 -4 . o o . 4 o . -17.4 o.67 -15.1 0.87 8 . 6

1.59o o 0 0 0 o . 2 2 6 . 2 . n . o7 9.9 o ...q 8___ _3_̂ 5____ o . o 3 . ...2 . JL____ [_U5____
-1X -25.3 1 -5.1 1 . 0 0 - o .6 0.42 -23.2 o . 64 -14.4 0.84 8.7

1.61o 0 0 o 0 o . 2 2 6 . 2 o . o7 9.5 o . 08 3.5 o . o3 2.3 1 . 1

TX -25.3 1 -5.4 1 . 0 0 4.3 o.45 -25.3 o.63 -13.4 0.77 lo.l

1.63o 0 0 0 0 o . 2 1 6 . 1 o . o7 8 . 8 o . 08 3.5 o.o3 2.5 4.3

1 -25.3 1 - 5 . 6 1 . 0 0 8 . 6 • 0.49 -28.0 o.69 -12-.3 0.72 1 1 . 2

1.65o 0 0 o 0 o . 2 1 6 . 1 o . o7 8 . 1 o . 08 3.2 o . o3 2.7 7.7

1 -25.4 1 -5.8 1 . 0 0 13.3 0.5 7 -27.8 o.62 -9.2 o . 69 9.6

1.67o 0 0 o 0 o . 2 2 6 . 2 o . o7 7.0 o . 08 3.6 o . o3 2 . 8 3.9

1 -25.4 1 -6 . 1 1 . 0 0 18.6 o.65 -27.1 o . 68 -6 . 6 o.63 9.5

1.69 o 0 0 0 0 o . 2 2 6.3 o . o7 6 . 1 o . 08 3.3 o . o3 3. o 8 . 2

1 -25.4 1 -6.3 1 . 0 0 23.7 o.71 -25 .6 o.52 -4.7 o . 6o 7.2
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Table 18(continued)
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Table 19: Test o£ sum-.rule inequality for FP[68,68aJ data

FP' s 
P.S. N1

R A VPK ANSI ANS 2 FINANS.

1-T
CO
\D•kCO
¿3
a.Ph

1 3.81238 o .olooooo 1.0000008 -9.6389 3.185!1 -6.4534856

2 3.99 o.o277ooo 1.ooooool

3.99 o .olooooo 1.ooooool - 9 7.4 7 (.25.98 > -71.4932o2

3 3.66792: o .olooooo 1.ooooo4 7

0.99 o.olooooo 1.0000000

o . 99 .0 . olooooo 1.oooolol -139.03 98.81 -40.21967



Table 20: Phase-shift analysis of FP 'data [68,68 a} for rT+n~ scattering(l. olGevto

¡Nor CX)______ Do P F s2 D2 FTi , 0) = FA. ERROR

.He al,_ leS___0— ImS___ 0__ ReD o ImDn ReP-j ImP1 ReFl ImFi ReS^ ImS 2 Rep2 ImD2 Re FA ImFA. in FA
1. ol 3.0 8 10 0.3629 o .1978 0.1364 - o:. 368 o.1757 J . 0

-±--
0.0 -o.37'2 70.1574 -0.017: o .ooo3 -0-5463 1.2767 0-345

1. o3 3.0 4 2 9 o.38 o3 o .2 o7 5 o .1654 -0-3416 o . 17 o 6 p . 0 0.0 -0.3746 0.1597 -o.ol8 o . ooo3 -0.4588 1.37oS 0-34 7
l.o5 oo6o7 0.5321 0.2321 0.1377 -0.3367 0.1379 3.0 0.0 -0.3753 o .16o7 -o.ol9'lo.ooo4 -0.3533 1.2818 o34o
S 1. o 7 ao99o 0.6696 0.2243 0.1634 -0-32 37 0.1338 0.0 0.0 -0.3772 o .163o -o.o21:o .ooo4 -0.3182 1.4475 0-312
1. o9 0.0 7 9 5 0.6911 0.2733 0.1861 - 0-31 o 5 0.1166 O . 0 0.0 -0.3779 0.1641 -o.o2 3 o .ooo5 -0.1318 1.4867 0-312
I 1.11 oo8 35 0.7499 0.3337 0.2538 - 0-2 8 4 6 0.1168 0.0 0.0 -0.3798 0.1665 -o.o25 o .0006 0.1634 1.7527 o313
¡1.13 0.0 7 o4 0.7262 o . 3 6 o 2 0.3144 -0-2 363 0.1222 0.0 0.0 -o.38oS 0.1676 -o.o2 6 0.ooo7 0.368o 1.9557 0-3 2 0t
! 1.15 - 0.0 SIE o. 7 7 3 o 0.3481 0.3143 -0-2119 0.1144 0.0 0.0 -0.3813 0.1687 -o.o28 0.0008 0.3165 1.9637 0-318
1 1.17 0.0 2 6 5 0.7656 0.3867 0.4279 - 0-2 o 16 o .lo34 0 . o 0.0 -0.3821 0.1698 -o.o29 0.ooo9 0.5251 2.3o4 7 0-3 2 0• .
¡1.19 -o-lo5 /0.8529 c .368 4 0.4778 -0-198 6 o . lol9 0.0 0.0 -o.3828 o .17 o9 -0.031 0. oolo 0.3819 2.5255 0-332
1.21 - o-l o 120.8266 0.3474 0.6248 -0-19 2 o o .lo44 0.0 0.0 -o . 3837 0.1721 -o.o32 0. ooll 0.3315 3.0062 c-331
1.23 -0-2 48E 0.9148 0.2895 0.6791 -0-19 2 6 0.0877 0 . o O . 0 -0.3833 0.1719 -0.035 0 .0012 0.o357 3.1961 0-32 7
1.25 - 0-359/ 0.9479 o.18 08 o.8o5o - o*l 9 o 1 o .08 lo O . 0 0.0 -0.3841 0.1731 -o.o37 0.003-3-0.3962 3.6183 0-32 6
1.27 - 0.4 8 4; 0.8382 o. o 3 7 8 0.8382 - o-l 6 7 o 0.0552 O . 0 0 . o -0.385c 0.1742 -o.o38 0.ool4 -0 .89o4 3.5788 c-32 2
1.29 -o48 o' 0.6729 -0.163 0.7787 -0-19 38 0.0326 0.0 0.0 -0.3847 0.1741 -o.oo4 0.ool7 -1.6416 3.2 o3o 0-319
1.31 -0-5 34¿•0.5664 -o.3o6 0.7427 -0-152 6 o .o6o9 0.0 0.0 -o .3855 0.1753 -o.o43 0 .00I8-2 . o563 3.09 74 0-3 2 3
1.33 - 0-5 4 6 (t o.4327 -0.389 0.6521 -0-12 24 o.08 9 o 0.0 0.0 -0.3853 0.1752 -o.o45 0.oo2 0-2.2337 2.79 06 0-338
1.35 -0-5 79 jo. 345 o -o.39 3 o .5 2 o3 - 0.0 7 6 o o . o9 37 0.0122 o .oool -o.385c o . 17 5 o -o.o49 0.oo2 3-2.0497 2.3o8 8 0-341
1.37 -0.4914o. 3718 -o.381 0.4372 - 0.0 5 o 7 o . 12 o 7 o .o2 6o o .ooo7 -0.3848 0.1749 -o.o5o 0.oo2 5-1.7796 2.1344 0-347
1 -X. 0X % O ̂ -0.4 74 lo.3223 

í _ _ --------------------------
-0.373 0.3725 -0.0 38 1 o .15oo 0.0329 0.ooll --- --- -0.3857 0.1761 -o.o54 0.oo28 -1.6628 1.9773 0-3 37

CP



Table 20 (continued)

Mfir So D_Q_ n Fi S? Da______ F+Js,0)=FA. ErrorJJ I1 
Gev,Re. -Sq- Im S -©—le D----@-- Im D ---- 0— Re P-, Im P-, Re F1 Im Ft ReS? ImS? Re D2 Im Dy in FA.

1.43 -0.454:.0.2779 -0.3664 0.33o5 -0.o4o5 0.18lo0. o2 08 0.ooo4 -0.385^ 0.17 6o- o.o554 0. oo3o -1.72o<>1.8965 .0.346
1.4 ]j-0.4361 0.2459 -0.3518 0.3o34 -0. o443 0.2 o2 00.o5 7 1 0.oo32 -0.3852 0.1759 -0.o5 8 60. oo34 -1.422: I.8680 o*3 5 0
l . 45 - o.4 o 4 7 o.2 ooo -0.31o7 o.2785 - 0.o4 4 30.2225 0.o65 6 0.oo42 -0.385c 0.1758 -o.o622 0. oo38 -1.21o: 1.8236 0.3 5 0
l . 47 -0-34 51 0.1348 -0.2447 0.2253 -0.o435 0.2274 0.o69 0 0.oo4 7 -0.3848 0.1757 -0.o65 60. oo42 - 0-9 4 0 5 1.6214 0 .354
-.49 -o-3o36 o .loo5 -0.2388 0.2177 - 0.0 3 7 70.2 4 7 0o.o793 o.oo62 -0.384( 0.1757 - 0.0 6 7 30.oo45 -0-79 68 1.6431 0.355
L . 51 - o-2 4 o 8 0.0606 ro. 2 2 7 6 0.2o25 -0 .o35 2o.2517 0. o9 8o 0.oo9 5 -o.385t 0.1769 -0.o7o7 0.oo49 - o-5 8 5 2 1.6o42 0.366
. .53 -0-2128 0.o467 -0.1957 o.2172 -o.o673 0.2792 0.loll 0.o361 -0.385^ 0.1768 -o.o741 0.oo54 - 0-5 4 0 5 1.9136 0.353
l.SS -o-176o o.o314 -0.I86I 0.2353 -o.o874 0.3 0 7 90.1133 0.o5 46 -o.3852 0.1767 -0.o7 7 50.oo59 -0.4641 2.18 ol 0.351
1.5* -0-1398 0.ol9 6-0.1667 0.2568 -0.o967 0.3351 0.1144 0.0811 -0.385] 0.1766 -0.08 08o.oo65 - o.4 012 2.4783 0.411
1.55

—
-0-0689 0.oo4 7 -0.1671 0.2114 -0.1133 0.3392 0.1274 0.08 48 -0.3849 0.1766 -0.08 42 0.oo7 0 - o-3 2 0 0 2.3896 0.4o4

1.63 -o.olo4 0.oool -0.1528 0.22o9 -0.1513 0.3574 0.1243 0.o99 7 -0.3848 0.1765 -0.08 760 . oo7 6 -0-3741 2.5783 0.4o6
i.e: o.o7 39 0.oo5 4 -0.14o7 0.22o4 -0.1731 0.3585 0.1316 0.1395 -0.3846 0.1764 -0.o9 2 60.008 5 -o-3oo6 2.8633 0.4o3

-
i .g :0-14 62 o.o215 -0.1421 0.1874 - 0.2 o2 50.3631 0.1357 0.1682 -0.3848 0.1764 - 0.o9 6 0.oo9 2 -0-3217 2.9797 0.4oS
1.6/0-2 216 0.o5lo - 0 . o9 6 7 0.2 0 7 9 -0.2343 0.3378 0.1122 0.1757 -0.385: 0.1776 -0 . o99 30.oo9 8 -0-38 64 3.o458 0.4ol
1.65 0-299 6 0.o98o -0.o7 67 0.17o9 -0.2624 0.3o77 0.1014 0.2 o41 -0.3852 >0.1776 -0.lo44 0.olo9 - 0.4 3 6 0 3.0636 0.4o2
1.7:.0-365 6 0.1558 -0.o419 0.2466 -0.2757 0.2749 o.o737 0.2118 -0.3852 0.1775 -0.lo7 70.0II6 -0-5134 3.3112 0.443
i.7io.414 3 0.2423 -0.o3o5 0.2653 -0.2695 0.2461 0.o5 7 5 0.2 08 1 -0.3862 0.1788 -0.1127 0.ol2 7 -0-5481 3.3218 0.446
1.7i 0.4138 0.3o37 3.000 0.2785 -0.25o5 0.2 ole 0.o44o 0.2007 -0.3862 0.1787 -0.116c 0.ol35 -0.48 99 3.2 2 o4 0.456
1.7' 0-39 79 o.388o 3.008 0.2888 -0.2 3o2 0.185/ 0.o346 0.1892 -0.387 0.18 00 -0.121c0.ol47 -0.48 39 3.1863 0.46o

jo-3813 ♦ -- — 0.4553 3.0 2 5 8 0.2697 -0.2116 0.1669 0.o29o 0.1784 -0.387<^1799. - Ol̂ .1-2 6 r o ..cil 59 -0.4 3ol .3.058 5 ...o.4 65
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4.6 Discussion of results.
We have derived the constraints of sum-rule inequality 

(■f.5\9) on the basis of unitarity and positivity with pheno

menological input of data in the form of EM's solutions A,B,C,D 

and FP's analysis togetherwith the experimental errors 

involved therein. If the constraints are satisfied we should

get positive values of integral (4.5". 9).
(A) Rotated Data:

In case of rotated data for solution A,we find minima

of sum-rule inequality (4.519) consistently for the set-^R- 0.9^,

which is almost at the boundary of the unitary circle

vi =r^e*®p . The minima are found consistently for set of 
P P

angles in the radian measure|0~ O.Oljj , except in one case of

polynomial of order 3.Also, we find the minima vfilry consistently 

for ^Vp- 1.000001f, just at the beginning of the cut outside the 

circle. There is some violation of our sum-rule inequality 

(4~. 5". 9) : the higher is the order of polynomial P(v) the higher 

is the degree of violation of our sum-rule inequality.

The results are very sensitive to input values of v^ in 

polynomial ( 4 - 3 ) , in general.

There is similar situation with solution B. The minima 

are found for 0.5 45^ , |©= 0. oisj-and | v^= l.OOOOOOôjin case 

of polynomial P(v) of order 1. The error integral shows 

less numerical value than that in case A.

In case of solution C, the error integral of sum-rule 

inequality (4.5*. 9) shows larger value than that in case of 

solution B. However, total value of the sum-rule inequality 

(4.i>“.9) for solution C is less than that in case B.Consequently, 

there is less violation of unitarity in case of solution C 

than in case of solutionB for polynomials of order 1 and 2;

The reverse is the case with polynomial of order 3.
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As the error integrals are concerned, the solution D shows

less error than solutions A,B$C for polynomials of order 1& 2 ,

but the total value of the integral (d-.í'.í)) is more negative

for solution D than for solutions A,B and C. 
fB~) EM'S Unrotated Data:

In case of EM'S solutions A,B,C and D (imrotated) ,we 

have less values of error integrals than the corresponding 

values with rotated data. The minima are found consistently 

for the set | v ^ l . 000000^ ,^A-0. Olj. and^R= 0.99̂ , with a few 

exceptions in case of polynomials of higher orders.

Solution A shows the least values of error integrals 

in (̂4- • 5”. 9) followed by solutions B,C$D. However, solution C 

shows the least violation of our sum-rule inequality for the 

polynomial of order 1, followed by solutions D,B and A.

(C) FP'S Data:
In case of FP data, the minima are found almost 

consistently for the setjv^l .OOOOOij- ,jA-0.01^ and-|R~ 0.99^ , 

except in one case of polynomial where it is for the set 

|r =0.81 or0.63j. The errors in integral f4-.íT.9) aré less in this 

case than those for EM'S solutions. However, the data show 

much more smooth behaviour and the violation of our sum-rule 

inequality (4.ÍT.9) is of the order of experimental errors 

involved in the data,thereby, we cannot rule out completely 

the FP-solution.
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4- .7 CONCLUSIONS.
We have derived the sum-rule inequality (X.^.9) on the basis 

of unitarity, analyticity of n +n  amplitude and positivity 

of its absorptive part A(s,0) with phenomenological input of 

experimental data in the inelastic region. Its violation 

shows either a clear indication of the experimental data at 

fault or something wrong with our basic properties of the 

scattering amplitude. The chosen data satisfy the sum-rule 

inequalities of Common[74] • EM'S figures give the impression 

of very smooth argand diagrams,but actual solutions are very 

noisy. However, the problem is not solved by changing and 

rotating the overall phase. On the other hand, the problem of 

truncation at L=3 introduces spurious uniqueness and there are 

contiiiium ambiguities clearly present. On plotting argand 

diagrams of FP's data, we get smoother curves which agree with 

the published papers [68,68a] .

On the basis of our computational results,after 

local minimization with respect to the zeros of the parameters, 

we find that there are clear violations of our sum-rule 

inequality (4-. 5". 9) in case of EM's solutions A,B,C and D.

This violation is found to be less pronounced in the case of 

unrotated data than in the case of rotated data. However, they 

are of the order of one to two standard deviations,in most of 

the cases, which is the order of errors involved in the 

experimental data. Hence we cannot rule out EM-solutions 

completely on the basis of violations of our sum-rule 

inequality.

In case of FP-data,the analysis shows much more smooth 

behaviour and there is less violation of our suSl-rule

inequality and we cannot rule out the two solutions. So,the 
smoother data is more consistent with analyticity properties
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Appendix
1.Convergence of s: ---In order to prove

f  Im £(v+i£)P(v) dv-^ A(s,0)[v(v-v ) dv ds„
v J L 00 J ds

00
we proceed as follows:

‘Avoids,

' I  _ 1_
S s 2

1 _ 1
S' s-

v=
11

s — >-00, V

1 +
s S-l

-1 -1
S •

00

- L  7
1
s.

• / I T T
v= _S2_ Z1- li

Ii_ s _  + 1 -  S
S o  / S .

u

( Al)

=-0.2786. (A2)

(A3)

.C ,

T l/ s- l/S o ]4- (l/s -1/s t)] - ( i - s ^ - d l 2 1
(1/Sl -1/S23 (1 / 3 ,- l/ s P

(A4)

A$)

where A=
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B =

- V
f l / s - l / s j

- 1-
( I / S - I / S 2 )

i ( 1 / S - 1 /S 2 ) s 2 _ ( 1/ s _ 1/s 2 )

1/A

( A.« )
a* •.

( A7)

Now we consider these factors separately:

A=
(l/s-l/s7+l/s-l/si-2{'l/s-l/s?)^fl/s-l/s-|)^ 

( l / s  1/s 2)

( - 1 /S 2-1 /S 1r 2 ( - 1 / S 1s 2) i )

(l/s-ĵ -l/S2)

2 / s - 2 / ( s 1s 2 ) i | ( H ( s 2 / s ) - 1 / 8 ( s 2 / s ) 2 )  (1- 5(s j / s )  -1/8 (s ̂ s ) 2- l j

( l / S j ' - l / s ^

2 / s - 2 / ( s 1s 2 ) ' * [ - H s 1/ s +s 2/ s ) + 0 ( 1 / s ) 2J

---------- 1 ,neglecting higher order

terms
{1/s r 1/ s 2 >

2/s + 2/(s1s „ ) 2. (1/2s)-(s , +s 2) 9
----- ------LJ --- --------------±---£---- + 0 (1 / s) -,. ( 1/s2 ~ 1 /s2)

=A'/s +0(1/s)2,where A'= 2 +- s l + s 2

B= I/S2

(s 1 s 2 D
lA . t - l / s A l - s J s )  

-l/s2(l-s2/s) \ . 2/s.
M

,- i/s.j c i t y ' s  y - l / s 2 ( l - s 2/s)

(A8 )

= l/(s]s2f> -l/2s (s2-S2) +l/2s (S2"S2) + 0(l/s) ,neglecting

higher order terms
>» <sl- s2} +0(l/s)= 1 /(s 2 S 2* ̂

or B= B'/s + 0(1/s)" ,where B'=
sl”s2 (A9)
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C=l/<

= l/s

= l/s

(l/s-l/s2)5 +(l/s-l/s1)
[ ( 1/ s-1/s9)2-(1/s-1/Si)

(-l/s2+l/Sl)

-l/s? -1/si -2/(s-|S?)
( 1 / s 2 + l / 5 1 )

=C'/s + 0(l/s) ,
-1/S2“1/S2“2/(S2S2̂

where C'=
(-l/s 2 +1/5^

+ 0 ( 1 / s )

Putting the values from (A8)}(A9) and (A. 10) we have

A.B.C * (A'/s +0(l/s)2) (B ’/s +0(l/s)2)(C'/s + 0(l/s)

-A'B 1C ' ~TS--- +0(l/s) as S' -00

i.e. for/s^=1•olGev, S2-l*79Gev, A.B.C ~ 13.7(l/s)

Putting the result (A12) into 1A14), we have 

v(v_voo:i -13.7 (l/s)3 +0 ( l/s) 4

Hence Imf(v+iE)P(v) dv ~  \A(s,0) V t v - v ^ ) ^ ds'
J

(Alo)

(All)

+0(l/s)4 
(A12 )

(Al 3)

A(s ,0) ds 
3

S (A14)
is true for small negative values of v.
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2. Table Captions.

1. The central values and errors used to compute the bounds for 

the real and imaginary parts of the amplitude on the inter

mediate energy region 0.45 Gev^E ^1.9 Gev. The phase 

shifts are given in degrees and the inelasticities fulfil [l8]

Sup |o, V  Inf|l>'I\+Al\j-
2. Upper bounds on Fj-j-o+-j-j-o _^j-jO+j-j-o (s , 4)= '1/3. (F°+. 2F^)

-1/3. ( +2a^ j for s-wave in the elastic region(0.45 Gev^E

Q . 95 Ge v ) .

3. Upper bounds on F(s,4) = l (F^+F2)=4(aQ-a,) in
n +n u->n +n°

the elastic region.

4. Upper bounds on F ^ 0 j-jO_^-j-j Oj-j.'o (s , 4) =1/3 . (F°+2F2) =1/3 . (ao+2â )

for s-wave in the broad energy region(0.45 Gev$E ^l.SGev).. c • in •
1 25. Upper bounds on Fj-j + pj^>p7 + pp 0 +F ) =i,(a0-a2 ) 

for s-wave in the broad energy region.

6. Numerical values for different £-values of the bounds on

a , a0,(2a -5a0) and (a + 2aT) obtained by Bonnier [18] . The o 2 o 2 o 2' U -J
bounds are approximately linear with £ (O^E-Sl) .

7. Low-energy s-wave parameters calculated for the Saclay and 

CM-EM1 phase shifts by BFP|j5o) .

8. EM'S datafSl] rotated by Common£82_] for solution A

9. Do for solution B

10. Do for solution C

11. Do for solution D

12. Test of our sum-rule inequality for EM'S (rotated by 

Common) solutions : A, B,'C6 D

13. EM's data [S.l] for solution A

14. Do B

15. Do C
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16. EM'S data [81] for solution D

17. Test of our sum-rule inequality for EM’S solutions:A,B,C&D.

18. FP data [68,68aj:Mj-j. is dipion mass in Gev. For orbital

angular momentum t  and isospin I, ¿1 and

in degrees and elasticity coefficients. For 1=2 numbers represent

fixed input into the analysis.The other column is a measure of
2uncertainty. The last column gives the X  for a fixed energy 

to 7 Legendre moments of elastic cross-section.

19. Test of our sum-rule inequality for FP data[68,68a]

20. Phase shifts analysis of FP data [68,68a] for TT n  scattering 

in the inelastic region.

are phase shift
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3.Figure captions.

I. SCATTERING PROCESS:Four lines representing four ingoing 

free particles.

2. The scattering process: TT + TT—> n  + TT in the cms .

3. Mandelstam diagram:Physical regions for s-,t- and u-channels.

4. Mandelstam diagram: t vs u .

5.Singularities of the scattering amplitude in z=cos0s-plane.

6. Feynman diagram for nucleon-nucleon scattering with pion 

as an exchange particle.

7. (a) Nucleon-nucleon scattering in c.m. frame.

(b) Feynman diagram for proton-proton scattering with pion as 

an exchange particle,producing a pion and a nucleon.

8. (a) Argand circle for small inelastic amplitudes : the pariai 

waves lie near the centre of the circle.

(b) Argand circle for elastic processes,where the high partial 

waves lie near the edge of the circle.

9. Bohnier's Mapping [18] from (a) z-plane to (b) v-plane.

10. Mappings :z-plane to w-planef and w-plane to

v-plane.

II. Complex z-plane: right hand cut and a pôle z q on the real 

axis.

12. Complex h (v)-plane : (a) 0=Arg h(v+i£),(b) contour near v̂ ,.

13.Special mapping from complex s-plane to v-plane with 

contours of integration.
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