University of

"1l Kent Academic Repository

Short, Leslie (1977) The approximation of functions with branch points.
Doctor of Philosophy (PhD) thesis, University of Kent.

Downloaded from
https://kar.kent.ac.uk/94648/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94648

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open
Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)
licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line
with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%200pen%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/94648/
https://doi.org/10.22024/UniKent/01.02.94648
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

THE APPROXIMATION OF FUNCTICONS WITH

BRANCH POINTS.

LESLIE SHORT.

A dissertation submitted for the degree of Doctor

of Philosophy at the University of Kent at Canterbury.

December 1977.



To my Parents,

In Gratitude for Everything.



TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER 1
$1

2
3

CHAPTER 2

81

& W

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5

CHAPTER 4

81

2

PADE APPROXIMANTS AND THEIR ONE VARIABLE GENERALISATIONS
INTRODUCTION

DEFINITION OF THE APPROXIMATION SCHEMES

BASIC PROPERTIES OF PADS AND QUADRATIC APPROXIMANTS
REFERENCES

CCNVERGENCE THEOREMS AND NUMERICAL EXAMPLES

CONVERGENCE THEORY FOR PADE APPROXIMANTS

SINGULARITY STRUCTURE OF PADE AND QUADRATIC APPROXIMANTS
NUMERICAL EXAMPLES

THE AN-HARMONIC OSCILLATCR

SOME FURTHER APPLICATIONS OF QUADRATIC APPROXIMANTS
REFERENCES

CALCULATION OF FEYNMAN INTEGRALS IN THE PHYSICAL REGION
REPRESENTATION OF FEYNMAN INTEGRALS

METHCD OF CALCULATION

CALCULATIONAL PROCEDURE FOR FEYNMAN INTEGRALS

SECOND ORDER SELF ENERGY AND ZERO MOMENTUM VERTEX PART
(4a) SECOND ORDER SELF ENERGY

(4b) ZERO MOMENTUM VERTEX PART

THREE POINT FUNCTIONS

5(a) THE TRIANGLE GRAPH AND ANOMALOUS THRESHOLDS

5(b) A THREE POINT PRODUCTION PROCESS

FOURTH ORDER SCALAR BOX GRAPH

FOURTH ORDER SCALAR SELF ENERGY GRAPH

CONCLUSICNS

SECCND CRDER RENCRMALISED SCALAR SELF ENERGY

THREE FOINT FUNCTIONS

FOURTH ORDER SCALAR BOX GRAPH

FCURTH ORDER SCALAR SELF ENERGY GRAPH

NATURE OF THE LEADING SINGULARITY OF FEYNMAN GRAPHS
REFERENCES

MULTIVARIATE APPROXIMANTS

TWO VARIABLE DIAGCNAL CHISHOLM RATIONAL APPROXIMANTS
DIAGONAL TWO VARIABLE QUADRATIC APPROXIMANTS

2(a) DEFINITION OF THE APPROXIMANTS

38.
39.
40.
&2,



o\ &

7
APPENDIX 1

APPENDIX 2

CHAPTER 5
g1

2

3

N o\

2(b) PROPLRTIES OF THE APPROXIMANTS

2(c) CHOICE OF WEIGHT FACTORS

DETERMINANT FORMULAE FOR, AND DEGENERACY OF, THE TWO VARIABLE
DIAGONAL QUADRATIC APPROXIMANTS

3(a) DETERMINANT FORMULAE

3(b) DEGENERACIES IN THE APPROXIMANTS

EXTENSION TO ARBITRARY "t-POWER APPROXIMANTS"

TWO VARIABLE t-POWER OFF-DIAGONAL APPROXIMANTS

NUMERICAL EXAMPLES

6(a) EXAMPLES (I)

- 6(b) EXAMPLES (II)

CONCLUSIONS

CAUCHY-BINET THEOREM

REFERENCES

FORTRAN COMPUTER PROGRAM FCR THE CALCULATION OF TWO VARIABLE
OFF-DIAGONAL QUADRATIC APPROXIMANTS

QUADRATIC APPROXIMANTS AND LEGENDRE SERIES
PADE APPROXIMANTS TO LEGENDRE SERIES

QUADRATIC APPROXIMANTS TO LEGENDRE SERIES

COMPARISON OF THE LEGENDRE PADE AND LEGENDRE QUADRATIC
APPROXIMANTS

THE LEGENDRE PADE APPROXIMANTS OF COMMON

EXTENSION TO QUADRATIC APPROXIMANTS

THE INVERSE SQUARE AND COULOMB POTENTIALS

CONCLUSIONS

REFERENCES

94,
98.
100,
103,
108.
109,
3 & WS
112.

115.

116.
1175

118.

119.
123,

125

126.
128.
129.-

131.
133.



ABSTRACT

In recent years Padé approximants have proved to be one of the most
useful computational tocls in many areas of theoretical physics, most notably
in statistical mechanics and strong interaction physics. The underiying
reason for this is that very often the equations describing a physical
process are so complicated that the simplest (if not the only) way of
obtaining their solution is to perform a power series expansion in some
parameters of the problem. Furthermore, the physical values of the para-
meters are often such that this perturbation expansion does not ccnverge and
is therefore only a formal solution to the problem; &as such it cannot be
used quantitatively. Hoyever, the relevant information is contained in the
coefficients of the perturbation series and the Padé approximants provide a
convenient mathematical technique for extracting this information in a
convergent way. A major difficulty with these approximants is that their
convergence is restricted to regions of the complex plane free from any branch
cuts; for example, the (N/N+j) Padé approximants to a series of Stieltjes
converge to an analytic function in the complex plane cut along the negative
real axis. The central idea of the present work is to cobtain convergence
along these branch cuts by using approximants which themselves have branch
points.

The ideas presented in this thesis are expected to be only the beginning
of a large investigation into the use of multi-valued approximants as a
practical method of approximation. ~

In Chapter 1 we shall sece that such approximants arise as natural
generalisations of Padé approximants and possess many of the properties of
Pad€ approximants; in particular, the very important property of homo-
graphic covariance. We term these approximants 'aigebraic' cpproximante
(since they satisfy an algebraic equaticn) and we are mainly ccncerncd with
the 'simplest' of these approximants, the quadratic approximants of Shafer.
Chapter 2 considers some of the known convergence results for FPadé
approximants to indicate the type of results we may reascnably expect to
hold (and to be able to prove) for guadratic (and higher order) approxirants.
A discussion of various numerical examples is then given to illustrate the
possible practical usefulness of these latter approximants.

A major application of all these approximants is discussed iun Chaptler
3, where the problem of evaluating Feynman matrix elements in the physical
region is considered; in this case, ‘the physical region is along branch
cuts. Several simple Feynman diagrams are considered to illustrate (a)
the potential usefulness of the calculational scheme presented and (b) the
relative merits of rational (Padé&), quadratic and cubic approximation schemes.

The success of these general approximation schemes in one variable (as
exhibited by the results of Chapters 2 and 3) leads, in Chapter 4, to a
consideration of the corresponding approximants in two variables Wle shall
see that the two variable scheme develored for rational approx"M°nts céh
be extended in a very natural way to define two variable '"'t-power"
approximants. Numerical results are presented to indicate the usefulness
of these schemes in practice.

A final application to strong interaction ohysics is given in Chavter
5, where the analytic continuation of Legendre series is considered.
Such series arise in vartial wave expansions of the scatterinzg amplitude.
We shall see that the Padé Legerdre anproximants of Fleischer anﬂ Comrmon
can be generalised to produce corresponding quadratic Lepgendre aprroximants
various examples are considered to illustrate the relative merits of thesa
schemes.
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1. INTRODUCTION

The central theme of this thesis is the extraction of quantitative
information, about the solution of certain field theory problems, from
perturbation series expansions. The motivstion for considering such
expansions is that they often provide the only feasible method of solution
of a problem. Such series expansions have at best only a limited region
of convergence and, more often than not, the region of interest in a
particular problem lies outside this convergence domain; in certain cases
the generated series has a zero radius of convergence and can only be
considered as a formal series. The problem considered here is that of
obtaining useful information from such series expansions; we clearly have
to analytically continue the function under discussion beyond the circle of
convergence of its power series.

In principle such a process is relatively simple (1). We compute the
value of the function and as many derivatives as necessary, and to as high
a degree of accuracy as required, at a new point within the circle of
convergence which is closer to the point of interest than the original
origin. In this way we generate a new convergent series expansion of the
function and, by sufficient repetition of this process, the desired function
value at the point of interest can be obtained (provided this is a non-
singular point). There are obviocus practical objections to this process:

(a) the amount of computation involved may become prohibitive,
especially if the point of interest lies far from the convergence region of
the series; excessive computation may lead to loss of accuracy, especially
if the power series coefficients are not known exactly (which is invariably
the case in practice);

(b) having obtained a convergent power series near the point of interést,
the rate of convergence of this series may be so slow as to be of little
practical use. Even if the pcint of interest lies within the convergence
region of the original series, this slow rate of convergence may still be a
problem. In such a case we require a method of accelerating the rate of

convergence within the region of convergence;



P

(c) if the power series has zero radius of convergence the above
process is inapplicable.

Any hethod of continuing a Taylor series outside its circle of
convergence can be regarded as a summation procedure for divergent series.
Many methods are available for defining the sum of a divergent series (2);
one of the more well known is that due to Borel (3), which uses the formal

0
i o 2 =J°° o Z oy )™ die .13
0 n=0 nt

identity

n=0
where the series on the right hand side may converge even if the left
hand side series does not. However, there is no useful way of truncating
the integrand on the right hand side and the previous objection (a) still
holds to some extent; at each point of interest we may have to perform
a large number of integrations.

" The most ffuitful method of summing divergent series is based upon the
idea of Padé (rational) approximants (4,5,6); we shall give the
definition of these approximants in the next section. We can motivate the
use of these approximants by considering Zuler's method (2), which
represents one of the simplest methods of analytic continuation. We
suppose that we have a functio; £(z), analytic in the z-plane cut from
-ooto -1 along the real axis (for example, 1n(l+z) ), and we wish to
evaluate f(2). Since the Taylor series for f(z) converges for

the point z=2 lies outside the circle cf convergence. We make the

transformation

z (1.2)

= t —-g_
which is an example of an Euler transformation. The cut is mapped onto
[i,oo] and z=2 is mapped to y=2/3, which is inside the convergence circle
of g(y)=f(y/1-y). Ve can therefore use a convergent Taylor series to
evaluate f(2), provided we use the homographic change of variable (1.2).

For the particular example of 1n(1l+z) we obtain -ln(l—y) and the result is

trivial; however, the result holds for any analytic function cut on
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By making the more general transformation
- igj_ (1.3)
| +'>\z‘j

we can map any part of the domain of analyticity into the convergence
circle.

The major drawback with transformations such as (1.3) is that we do
not in general know the location of all the singularities of the function
being studied. What we seek to do is to generate a sequence of approximants
to the function which are invariant under the (restricted) group of homo-

graphic transformations

1 = '_H“’B__ (1.4)
+Bw

We expect that such a sequence will converge at least as well as the best
power series obtainable by making transformations such as (1.2), and will
hopefully accelgrate the rate of convergence with the circle of convergence.
More important, such a sequence should automatically produce the analytic
continuation to any point not isolated from the origin by singularities

of the function. This is in contrast to (1.l1), where we have no "automatic"
ﬁethod of choosing n. We shall see (7) that Padé approximants, or at

least a subsequence of them, have the required invariance property under the
homographic transformations (1.4).

Now suppose that for the logarithmic function 1n(1l+z) we wish to
evaluate f(-2), that is, along the branch cut. Then it is not possible to
choose‘k,and k; in (1.3) such that z=-2 is mapped inside the convergence
circle in the y-plane; for example, the transformation (1.2) maps z=-2
to y=2, which lies outside |3|$|. The basic reason for this behaviour is
that f(z) has a discontinuity at z=-2 and (1.3) represents a continuous
transformation; (1.3) cannot map z=-2 into |5|$| where there is no
discontinuity in g(y). This illustrates that, using Padé approximants, we
can only obtain convergence in regions free of branch cuts. Furtherrore,
and more important, if we wish to obtain convergence along branch cuts we

should use approximants with branch cuts "built-in" to their definition.

We shall see (7) that such approximants arise as natural generalizations
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of Padé approximents. The potential use of these approximants is enhanced
by the fact that they also satisfy the property of homographic invariance (8)
as well as the important properties of reciprocal convariance and unitarity
(8) satisfied by the Pade approximants; these properties are discussed in

section 3.

2. DEFINITION OF THD APPROXIMATICN SCHIMES

In this section we define the Padé approximant and the generalizations
designed to incorporate a branch cut structure into the approximation scheme.

We assume given a function f(z) with the (formal) Taylor series

Ha) = ic 2"

DEFINITICN 2.1: The (N/M) Pade approximant to f(z), denoted by

expansion

7 i
ro
-
—
~

f(N/M)(Z)’ is the ratio of the polyncmials PN(Z) and QM(Z), of degree at
most N and M respectively, which has the same N+l first derivatives of

£(z) at z=0:

— p 3’ ~ NyM i 5
J:\N/”)h) Qn ) JCH olz"™) —

or equivalently

o [;[\?:) k_,":l)
Fiupod = Qniz) i

f\z) Quiz) = Pyla) = O™ ') (2.7b)

We can interpret (2.3b) as defining f(N/M)(Z) as the solution of an

where

equation linear in ©(z). Shafer (7) has suggested using approximants which
are solutions of higher order equations; he gives the following definiticns:

DEFINITION 2.2: The (p/q/r) quadratic (Shafer) approximant to £(z),

denoted by f(p/q/b)(Z)’ is defined in terms of the polynomials P(z), q(z)

and R(z), of order at most p,q and r respectively, by the equation

P\‘E)D‘-‘P/%/r)\l)]z-f- Qm}(P/qu}{?‘) +R\‘£) -0 (2.4a)

P\z) 5'?”\1) T Qiz)j—\z)'ﬂ“ R =O\£P*c¢r*2) (2.4b)

where
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DEFINITION 2.3: The (p/q/r/s) cubic approximant to £(z), denoted by

is i i t i Z R(z
f(p/q/r/s)(Z)’ is defined in terms of the polynomials P(z), Q(z), R(z)

and S(z), cf degree at most p,q,r and s respectively, by the equation

3 2
P\l)“\vi‘\"@)\lﬂ +Qk) B‘x\,/&/r/s)"*)} +P\\1)J:(p/vr/s) 2 +S =0

where
PQ) }3\1) + le)}zlz) +R\L)}\1)+Sh)=0(1P+v”s*3) (2.5b)

The above two definitions involve fz(z) and fj(z); from (2.1) we see

) = i b 2 (2.62)

<=0

(2.5a)

that

where

b = i Cala-n (2.6b)
together with a similar expressing defqzing f3(z). However, it should be
remembered that since the power series expansion (2.1) of f(z) may only be
formal, (2.6a) may only be a formal series; we have only performed a
"formal multiplication'" of the power series (2.1) with itself.

It is clear that we can define approximants which are sclutions of
equations of arbitrary degree in f(z); we give here only the definitions
for the two simplest approximants (quadratic and cubic) since it is with
these approximants that we shall be mainly concerned. We can see that these
approximation schemes do indeed produce apprdximants with a branch cut
structure built in; for example, from (2.4a),

f (pi ) (2) =[—th( Q*m-terRw)"‘] / 2 Pla) (2.7)
so that quadratic approximants are two-valued functions with square root
branch points, in addition to poles and zeros.

We can define other classes of approximants in a natural way. Suppose
we have a function g(z) which is known to have a logarithmic branch point;
then we can form the (formal) series exp( g{z) ) and form Padé approximants,
gp(z), (or quadratic or cubic approximants) to this series. We night then
expect 1ln gp(z) to provide a good representation of the logarithmic branch

point. This idea can be generalized by, instead of the exponential and
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logarithmic functions, considering a general invertible operator O. If we
denote by P the formation of a suitable approximant, then we can form the
general class of approximants
O-I P O j,h:) (2.8)

By choosing the operator C appropriately, we may hope to '"build in" to our
approximant whichever type of singularity seems suitable for the problenm
under ccnsideration.

It is alsq possible, for example, to use approximation schemes of the

form
' Q}E - +M N+ , S e
PLh) d_}'zl}) t QM\?-) %1) +RN\2:) = O(}_L ) (2.9)

Approximants of this form have been used, for example, in critical
phenomena (8).

We shall not be greatly concerned with some of these more general
schemes and shall mainly consider the generalizations of Padé approximants,
exemplified by quadratic and cubic approximants. For the class of
approximants to which these latter twoc approximants belong we shall use the
general term "algebraic approximant'', since they are the solution of
algebraic equations. The approximants defined by (2.9) are therefore not
algebraic approximants.

3, BASIC PROPCRTILS CF PADE AND QUADRATIC APFROXIMANTS

e

We now consider some of the basic properties of the (one-variable)
Pade and quadratic approximants; we shall also indicate the extension of
these properties to the higher order algebraic approximants.

(I) NORMALISATICN CONDITICHS

(2.3b) produces a linear system of (l+!l+1) equations to determine the
(N+¥+2) unknown coefficients of Py(z) and 7u(z). If we impose no extra
conditions on this system (which leadé tc the approximants defined by
Frobenius (5) ) the following situation can occur (9). Consider the (1/1)
Pad€é approximant to

S-l“t) = +2+0l3) (3.1)

Using (2.3b) we find



o,

Pial= Q) =Az

where A is an arbitrary constant. Then,

_ P _
}-h;) Q) = 0l3?)

instead of O(ZB); this occurs because Ql(O) =0
This undesifeable feature is eliminated by imposing the normalisation
condition (9)

Qulo)=| | (3.2)
for all non-negative integers N. The disadvantage of (3.2) is that not all
entries in the Pade table need exist (1C) (for example, the (1/1) Pade
approximant to (3.1) does not exist according to this definition); using
the Frobenius definition (that is, {,(z)$0/ all approximants must exist (5).

However, for those entries which do exist
9

fw) - Q‘t)) Ol™™) :
N

We shall always use the condition (3.2).

o
-
\N
o

The above situation is also encountered with quadratic approximants.
(2.4b) produces a system of (p+q+r+2) linear equations for the (p+g+r+3)
unknown coefficients of P(z), Q(z) and R(z); again we héve the choice of
imposing no extra conditions on this system cr of adopting a normalisation
condition of the form (3.2). If we choose the former alternative and
consider the (1/1/1) quadratic approximant to

S—\z) = |+ % +3 « 0lef) (3.4)
we find
Piz)= Az ; Qw=-2Az,Pl)=Az
where A is again arbitrary. Then,
S’\'E) “}U /i /1){'1') =O l’f.a)
instead of 0(z ) This situation occurs because either P(0) = O or
Q(0) = 0; in this particular case both vanish. Ve can overcorie this

difficulty by adopting cne of the normalisation conditions

PN 10) = ' (3.5a)

Qnloi= , (3.5

C
H



B, -
for all non-negative integers N. Again, if we adopt (3.5a) or (3.5b) not
all the quadratic approximants need exist; for example, the (1/1/1)
approximaﬁt to (3.4) does not exist for either (3.5a) or (3.5b). However,

for those approximants which do exist
T2
fr “S’\?/vr)\"“)zow ) .

where f(p/q/r)(z) is defined by (2.7).

The fact that we have a choice of normalisation conditions can be useful.
For example, the (1/1/1) quadratic approximant to 1n(1l-z) does not exist
if (3.5a) is used but is well defined with (3.5b); in fact, for this
particular example, the even order diagonal approximants only exist if
(3.5a) is used and the odd order approximants exist only using (3.5b).
We can now see explicitly that Padé& approximants are a particular case of
quadratic approximants (which justifies calling quadratic approximants
generalizations of Padé approximants). For, using (3.5b) we have from

(2.4b) with P(z)=0,
Qufiz) +Rw = 012"

which is the defining equation (apart from a minus sign) for the (r/3)
Padé approximant (since Q(0) = 1). Also, using (3.5a), we have when

R(z)=0 the equation (after cancelling a factor f(z) ),

Plz) f1z) + Qw =07t
which (again apart from a minus sign) defines the (gq/p) Pade approximant.
It is clear that the considerations cf this section extend to the
higher order algebraic approximants.

(II) DETERMINANT FORMULAE

Provided the defining equations are not singular, we (11) can give an .
explicit determinantal representation for the (m/n) Padé approximant.

With the notation

k »
CK‘E) == Z C-&L (3.72)
=0
.R'lc) = C\Z) = i C-‘Zi : (3.7b)
: i=C

Ca=0 ifn<O

and



(3.7¢)
the representation is given by the following theoren.

THEOREM 3,1: The (m/n) Pade approximant, £ m/n)(z), has the (not

necessarily reduced) representation

_ Pl
Flnmt) = s

where
th.) T ‘;n\—\kl) ot 'iifntm-n\-l’-)
Lo S Cin-na
Pm\‘t) = d.Qt
CS*n. cm.n\-\' s CR\
and
| Tovre s e s e B
Cone o - - - - - - Lnenad
Qt\\l) = (.LQ.\: . ‘
c“.\“\ t“;*!\-’l © @ & &5 & Cm
provided
Cm Cm-| S B 'cn\-w\»\
c\"*\ Con S SE oS o cm-m-?.
A\ = 0k : R N E2VRER
Conrnat Q‘;\H\ ----- Cen
Moreover,
Conny L I Con-aan

o0 . :
Cla) Qula-Pute)= H)E dekb ; : :mequ |
k=\

Crman Cmrpet o= = = - - Cm

Cmanak  Comnak-) - - - - - Lmak

The following theorem gives a similar characterization for quadratic

approximants. Using the notation of (3.7) and letting



=10=

mM=sz
‘P\I)*:- Bl = i b, 2"

i=Q

B‘\E 0 i‘— n<0

where

and

we have the following representation.

THEOREM 3.2: The (p/q/r) quadratic approximant, f(p/q/r)(Z)’ has

the (not necessarily reduced) representation

}\ o) = ~Qqlz)* JQd ) - Ppie) Rel2)
PR 2 Pl
where
l.--_..-.. :1? 0-_--.....0
bf'«H s W & 3 R & s \)'r,?*q C\TH S tr—\_ﬂ (3.9a)
bp.K\.ﬂ'ﬂ = = = =g S 50\_;\'*\ (-pq»(\j\"&\ e -cp:ﬂw\
D R < =S =TI O '- - - . e . 2“
| - - - br—pﬂ Gt - - - - . Crgqn (3.9b)
\)pk‘_\v\'a—\ - - - - . ‘q.;nr\ tp;ﬂ:ﬂ'*\ & = = = t?'ﬂﬂ\—\
and
Br\’t) R 2rRr’-P'\'i) Qr\’!:) = = = 'i.rtr-q_h:)
br“ T \)r—‘»l Cvel - - = . cr-(\_{-l
- - k . . :
P\rll) de . . , . (3.9¢)
bpﬁvxfl- S S Lq}r+l téwb¢+l- - -‘tp;ryi
provided .
br br-i PR T b‘,_?_,“ trgq Qf S G, ® ,tr..chq
bra b w=nm br-pi"{ Criz Cem - - - Crqa?
A; M| | : | ,' : (3.94)
\>P'+‘B' \’p;q_w-t « =%y bq,;r«n Cptcwn Loroar - - - Copury)

and



= i -

l’n\ \):-- = - == e \Jr—pu Cr Ce=t - - - = . t"“k"‘
br+2 Sexs - % e s br—pfz Cewi C.r c - - cr—f\ﬂ.
A{: an : ' : .
hwc;_ﬂ'ﬂ \5?:.,%\— - - - ‘)q'_q-rn T.p“v( Q?wﬁr—u - = - - Cheenn
are not both zero.
Furthermore,
Biz) Ppix) + Tle) Qqla) + Rl
\"f*‘ s e \’r—eﬂ Cem - - = cf-_\_ﬂ
oo . : j
=(_|)P"t" dek
k=1 . :
b?"’L*”‘ e == Dgyen Covqeryt - - - - —- Corral
bwq‘«rnkd\»l =i e ‘>q_+rn<.+| Cpﬂ\_«rn\wl R e C"»r{.\g*l
PROCF: Ve show that (3.9a), (3.9b) and (3.9¢) imply (3.0f).
(3.9a),
Bla) ---- -— #*B) O ------ 0
\i‘{rl === A3 # b\"Pi" tr*,‘ - Q‘._‘\'*J
' | i 1
Bf =tk | | | |
"p;»q_w-n = == S bq}rn Corqery) - - - 'Q-p-'.—r.;\
and from (3.5b)
O === § () - - - -2
beyr- - - brapw Erdt » = = = Qr-c\:\—\
Q) Q) = dee | . | :
‘)p[u\jnl L ox = s bq;r\'ﬂ Cp«q_fn-\ - - = - Corrn

(3.91)

From

(3.10a)

%.10b)

For i=1,2,....,(p+q) multiply the (i+l)st.row of (3.9¢c) by z* *and add to

the 1st. row. This gives
BMfFﬂh') T =LP B‘.‘iﬂ_\l) CMH’*\"{) B \'CP‘"’\Q
Begy < = = brpn Coar - - - - - Crogn

Rolz)=-dek| !

bp;c\?rq-l- - - - kq_‘l:f‘ﬁ\

Corqarel - - - - - Copryl

Then, from (3.10a), (3.10b) and (3.10¢), we cbtain

(3.20¢)
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Blz) Polw) + () Qqla) + Relz)

) . 29,
Z | Z\okzy“" Z_, E LN }:Lkz
Repaqers2 k=giea ke prqiril P+ ‘
‘3\'+| e bl.‘-p#l CT"H o el D) aets el cr.oc‘q ‘
=& | ~ J :
\’9*'.‘1“’“ S bc\:\»v-\rl CW\'\-\ - - - - - Cp;ﬂr\
b\'\'l $ @ o oo § \)r—p&l Cr*" 4 B = == e F 3 Cr‘ﬂj‘
\"',*'7- I \’rTP‘\"?- Qr'*?. = % = = Ceaq2
. ‘ o {3.11)
SR | | f :
\)??}L-yn-l PR bq}rﬂ V—p'warﬂ — oo - - Coernn
o0 o« o =2 (-2
P St Sor S
Wt k=] K=t Y=
where
?1—%+-r+-k-r‘

Clearly (3.11) is equivalent to (3.9f).
The non-vanishing onBP andé&q, defined by (3.2d) and (3.9e), ex=resses

' 4

the non-vanishing of PP(O) and Qq(o) respectively; this is clear freo- (3.9

)

and (3.9b). Thus, if bothllp andZSq are zero, we cannot impose either of
the normalization conditions (3.5a) and (3.5b) and so, according to ocur
definition, the (p/q/r) quadratic apprcximant does not exist. If[kp =0
and A\ #ﬂ)then we must choose (3.5b) as the normalization condition zxi if
Aq: O w1thA.P=l=O then (3.5a) must be chosen.

This completes the proof of the thecrem.

An important point to ncte is that the proof of Theorem 3.2 does =not
make use of the relation between B(z) and C(z):

Clz)=a) , Bla)=Ff4) (3.12

The theorem will therefore apply to any class cof approximants satisf;

P(‘t) B\'k) * Q\zz)th} + P\\E) - O\iPﬂfﬂ-Z)

and not just for the choice of B(z) and C(z) given by (3.12). For exz=nle,

S’

"')
21
1
i

we may choose

Cl)=fk) |, Bl)=explfz)
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which, in our terminology, would define a class of "transcendental"
approximants.
Theorem 3.2 extends in a straightforward way to the higher order
approximants. For example, the polynomials defining cubic approximants will
be represented by determinants containing coefficients of f,faand f3;

explicitly, with the notation of Definition 2.3 and with
o) .

k
Pl=) e
=0
we obtain, for example,
I 0------ 0 0------ 0
SR bspn  Cns oy den- - dse
' ! : : ‘ :
bp«pnsn ------ ‘)q_+n5+?_ Cotqinisiz- - "Cparased d’Mﬂ'fS*Z - - —Apiqysed

(III) RECIPRCCAL CONVARIANCE

Padé approximants satisfy the property of reciprocal convariance which
ensures that if f(m/h) is the (m/n) Padé approximant to f(z) then, provided
£(0)+0, %/f(m/n)is the (n/m) Padé approximant to the reéiprocal series
1/£(2) (12).

For quadratic approximants the corresponding convariance property states
that if f(p/q/r) is the (p/q/r) quadratic approximant to f£(z) then, provided
£(0)#0, l/f(p/q/r) (which we denote by (f(p/q/r))-l) is the (r/q/p)quadra?ic
approximent to 1/f(z) (which we denote by £71(2)). To see this we have, by

definition (and using the notation of Section 2),

_0+ (g pR)%2 (3.13a)
Bt = Q+ (@-K
Ph/r) 2P

where
PP*- Qf +R = OHWUM) (3.13b)

From the series (2.1) for f(z) we form the form the formal series for

f-l(z), defined by
-

}"\1-) = Z daz” (3.24)

«z0
where -l



=4 {1

and

QS-Bd’R= V) ‘0<S<°°)

R=0
define the coefficients de; since, by assumption, £(0) = CoF 0,4, is well

defined. We now multiply (3.13b) formally by £2a) » M) )°
(obtained from (3.14) by formal multiplication) to give

R\}"\?;))2 + Qf12) + P = O(zPrr™?) (3.15)
Thus, denoting by f—%“/n/a>the (/B /A )quadratic approximant formed from

the reciprocal series f-l(z), we have from (3.15)

F' _ -Q=(g*-1PR)" (3.16)
(/o o) 2R

Finally, from (3.13a) and (3.16), we have
[}(p/‘\_/r)\‘k)]-‘ = EP/[‘Q +(Q*- L"PR)VZ]
= o= (@-4PR)%] /2R
= .;'(r/q»/p) \2)

which proves the result.

» For higher order approximants the corresponding result is clear; for
example, if f(p/q/f/s) is the (p/q/r/s) cubic approximant to £(z) then
(f(p/q/r/s))—l is the (s/r/q/p) cubic approximant to f—1<z).

Since the above approximants are meny-valued we must interpret the
reciprocal covariance property as being true provided we remain on a given
Riemann sheet. Thus, for quadratic approximants, we choose a particular
sheet of f(p/q/r) (determined by the requirement that f(p/q/r) and f£(z)
'agree' on this sheet) and a particular sheet of f—%r/q/p) (chosen so that
f(r/@/p) and f-l(z) 'agree' on this sheet); then, provided we identify
f(p/q/r) and f—l(r/q/p) with their appropriate values on these chosen sheets,
the reciprocal covariance property is valid.

(IV) HCMOGRAPHIC COVARIANCE

For all t»0, the diagonal "t-power approximants' of Section 2 (where
t=1,2 and 3 correspond to Padé, quadratic and cubic approximants respectively)
are invariant under the homographic transformation

% - _n\_k;__ (3.17)
| +Bw
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We shall prove the result for t=2 (8); the generalization to arbitrary t
is immediate.

Consider the (N/N/N) quadratic approximant to f£{z) and let

and denote by Ag(f(z) ) the (N/N/N) quadratic approximant to f£(z).  Homo-

graphic invariance requires that

Aw\glw)) = AulHa) L. P (3.18)

Now A ( £(z) ) is defined by the eguation
N N N
i\ i1 N INH? . (3.19)
E :P‘ih P + Zmzl fal + Z"l? = 0lz™"")
"]
=0 j=° w=0
where p., q; and r, (O<isN) denote the coefficients of P(z), ((z) and R(=z)
respectively. Substituting for z from (3.17) into (3.19) and multiplying

through formally by (l+Bw)h gives

(|+B) P(M%g (w) +[|f8w) Q RW)QM.;(I.,.BW R(_B__) ol 3Nf2)

which establishes (3.18) (since the coefficients of g (w), g(w) ana 1
are polynomials of degree N).

It is precisely this homographic covariance property which we expect
will make the "t-power approximants'" of practical use, since this ensures
the invariance of the approximant under the Euler transformations (which,
as we have seen in Section I, provide a means of analytic continuaticn).

(V) UNITARITY

The application of the Padé approximant method in Quantum Field Theory
is motivated by the fact that the diagonal Pade approximants to the S-
matrix are unitary (13). In (8) the following result is proved for
quadratic approximants: if £(z) is a2 unitary function {so that f(z)f*(z)=1

for z real, where * denotes complex Cunsdﬂlthn) then the (Ii/}/N) quadratic

approximant to f(z) is unitary. The cited proof is very unclear ond seems

to omit (or at least to explain

S

several inportant steps; it is hoped that

the following argument clarifies the proof.

Let f(n’q/r) denctc the (p/q/r) quadratic approximant to £{z); we
o/




] o

seek to prove that

* ' :
F\?/‘l/r‘) [;\P/‘l/r)] = (3.20)
when p=r. By definition

_Q = (gr-upr)® .
by = 9 f‘p Gt

PP'*‘ QP +R = Dklpﬂ’*rn) (3.21b)

)2

where

Multiplying (3.21b) formally by (f*

Ha) [* )=

and using the identity

we obtain
R(F’)z +QF*+P = Ohwc"ﬁn) | (3.22a)
as the equation defining f‘(r/q/p)' But we can also define f.(p/q/r) by
the equation
P*¥) + Q* 1 + R* = DLz ™) (3.22b)
obtained by conjugation of (3.21b). If the quadratic approximant to £*(z)
is to be uniquely determined, (3.22a) and (3.22b) imply that
PR wd G*-Q .29
Finally, from (3.21a),

O b1 Ll (3.28)
‘:(phlr) - P*

. - + . .
In (3.24) we have written + as opposed to - to indicate that, whatever sign

is chosen in (3.21a), the opposite sign must be chosen in (3.24). This is .
necessitated by the requirement that both £(z) and £*(z), and hence
f(p/q/r)(Z) and f‘(p/q/r)(Z)' tend to unity as z30 (since £(z) is unitary).
The required result (3.20) now follows from (3.21a), (3.24) and (3.23).

Having discussed some of the more important properties common to Padé
and quadratic approximants, we now illustrate some of the differences between
the two approximation schemes.

(VI) THE C-TABLZ

The determinant/Mefined by (3.8) is more usually written in the form

Cn'\-na-l tm-'m‘l < - .- - C“-\,
Cln)zde | 0 5 e
. Bk~ = < oGl
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so that, from Theorem 3.1, we can see that C(L/1)#0 is a sufficient
condition for the existence of the (L/11) Pad€ approximant. The table built
up from the determinants of (3.25) is called the 'C-table'; this table is
useful in that it enables one to examine the general structure of the Pade
table itself (14). The main feature of the C-table is that any zero
entries occur in square blocks entirely surrounded by non-zero entries;
this property enables one to prove the "block theorem' of Pade (14):

THECREM 3.3 (PADE): The Padé table can be completely dissected into

rxr blocks with horizontal and vertical sides, r2l. If (A/W) denotes the
unique minimal (A+f = minimum) member of a particular rxr block, then:

(i) The (A/JA) exists and the numerator and denominator are of full
noninal degree.

(i1) @+p/u+q) = (A/M) bor prq sv-1,p20,q20

(111) (A+p/h+q) do nok exist for prq2 e, r-l2p2l, r-l2 g2l

(iv) The equations for the (A+p/ie), 0$pér-l , and Vl\/ﬂ*‘\): Oeqs

-

are.

r-1, are ronsingular, and those for the other block members are singu

(v) Chp/h+q) =0 Terlepert, ieqer1;and U0 oherwise.

The "block thecrem" thus shows which entries in the Padé table are
non-singular, which entries are equal and which entries have singular
consistent/inconsistent equations associated with then.

We can define a similar table for quadratic approximants; in fact,
since there are two possible normalisaticn conditions associated with
quadratic approximants, we can define two tables. If we set

D\, =Colplyle) (3.26)
whereZ¥b is defined by (3.9d), then we can generate a "Cq-table” (the
subscript Q denoting that we are dealing with quadratic approximants). Ve
might hope that the "CQ—table” would have the property that any zero entry
in the table occurs in a cubic bleck entirely surrounded by non-zero entries.

if we consider Gragg's exampl

-

Unfortunately this is not the case
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(except when r=0 when the zero entries occur in square blocks entirely
surrounded by non-zero entries). This seems to indicate that the table of
quadratic approximants will probably not have the block structure of the
Padé table.

(VII) RECURSION RELATIONS

One of the basic starting points for deriving recursion relations
between elements of the Pade table is the result (14)

ClL/mer)elL/man) = Cls/m) e li/m) [e(L/m)? (3.27)
which follows from Sylvester's determinant identity (14)

3ok [R] &ek| Pes. | = dek| Prp| dekc| Rsq [ - dek [ Req | det | Rso| - (3.28)
where the subscripts denote the rows and columns to be deleted from the
matrix A.

If we apply (3.28) to (3.26) we run into difficulties - essentially

because the Cq—determinants contain both b and ¢ coefficients (the
k1

coefficients of f2 and f) and the row and column deletions prescribed by
(3.28) affect these sets of coefficients in an unsymmetrical way. As yet,
it appears that no simple relation of the form (3.27) exists for the
"CQ-table".

(VIII) ALGORITHMS

For Padé approximants the existence of simple relations of the form
(3.27) leads to the possibility of generating the approximants recursively.
The most widely used algorithm in this context is probably the € -algorithm
((15) and (16)) but many more algorithms are known ((11) and (17)). Tor
quadratic approximants no such algorithms are yet known. Computationally,
this presents no difficulties; indeed it is sometimes preferable to solve
the system of linear equations directly and the algeorithms used for Padé
approximants can converge slowly for high order approximants.

The method employed here for calculating the quadratic approximants is

to solve the system of linear equations (as opposed to using the determinant

Hx-=b

formalism)
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where
-] [ PSS S YSRPRRR TR SO
hT = [\‘ubzr‘ R P “;\)pav-n-‘a
0 0 ¢, |
v 0 O Ja ¢ O | O
b, b P

'
'
[
'

hi"‘\?"‘" - - "O‘y\'ﬂ. cp‘«t\—nl ---- - cpﬂ"z J

(for definiteness we have assumed pozl).

Alternatively we can solve for the coefficients of P and  and then
determine the coefficients of R. VWhichever method we adopt, the practical
calculation of quadratic approximants is straightforward (since, as with
Padé approximants, it is a linear system of equations that we have to solve)
provided the order of the approximant is not "too large'. This latter
requirement is a common feature of all Padé type schemes and is attributable
to loss of accuracy resulting from inverting the matrix A of (3.29).

Although lack of recursion relations for quadratic approximants presents
no problems from a practical point of view, theoretically it is a great
problem. The proofs of most of the theorems preséntly known for Padé
approximants depend at some stage on the existence of relations of the form.
(3.27). It is hoped that the results presented in this thesis will
encourage the search for such recursion relations and enable the forrmulation

of convergence theorems for quadratic approximants.
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CHAPTER 2: CONVEZRGENCE THEORE!S AND NUMERICAL EXAMPLES.
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1, CONVZRGENCE THEORY FOR PADE APPROXIMANTS

A review of the known convergence theorems for Padé approximants is
given in (1) and proofs of many of these results can be found in (2).
We shall content ourselves with only the more important results in an
attempt to indicate the type of convergence theorems we may reasonably
expect to hold for quadratic (and higher order) approximants.

One of the earliest results (3) is

THEOREM 1.1 (de Montessus): Let f(z) be regular inside the circle
lz) <R, except for (possibly multiple) poles zl,za,u“,zh‘inside the
circle. Then

M—00

uniformly on any compact subset of

{1=|2I<R,2-¢1g e=l,. . ... ,N)}
Extengions of Theorem 1.1 have been given by Wilson (4), Saff (5) and
Gragg (6).

When f(z) is entire, Beardon (7) and Baker (8) have investigated the
properties of rows of the Padé table.

THEOREM 1.2 (Beardon): If f(z) is analytic in (z)‘;4?, then there
exists an infinite subsequence of (L/1) Padé€ approximants which converge
uniformly in any disc |z| <R, for RP>1' to the function defined by the
pover series.

Further details can be found in (2).

The above results are only concerned with convergence cf rows or
columns of the Pad® table. We now discuss the important diagonal and
paradiagonal sequences of approximants (their importance being related to
their invariance under homographic transfcrmations). As yet, there is no
theorem of the form

"The diagonal sequence of approximants to a function f(z) converges to
£f(z), with z in a domain D, if and only if..."
and Gammel (8) and Wallin (9) have produced counter examples to any
straightforward general theorem. Essentially their examples show that an

entire function can be constructed for which many diagonal Padd appreximants
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have poles in arbitrarily prescribed places. However, Baker (8) has shown
that for these examples there exists an infinite subsequence (m/N) of
Padé approximants (N—e0) which converge uniformly in any closed, bounded
region of the complex plane to the entire function defined by the power
series. These (and other) considerations have led to the formulation of the
following conjecture (10); there are no known counter-examples nor any

valid proof of it.

PADE CONJECTURE: If f(z) is a power series representing a function

which is regular for |z| <1, except for m poles within this circle and

except for z=+1, at which the function is assumed continuous as z-+1 from

the region |z| <1, then at least a subsequence of the (N/N) Padé approximants
converge uniformly to the function (as N tends to infinity) in the domain
formed by removing the interiors of small circles with centres at these
poles.

Certain rigorous convergence theorems can be obtained if we impose
conditions on the function f(z), or equivalently on the power series
coefficients {g#}. For series of Stieltjes (11) it is possible to |
completely characterize the lccation of the poles and zeros of the Padé
approximants, to prove certain monotonicity properties and finally to
establish convergence properties. Below we give a brief summary of these
results, further details being obtainable in (2) and (12).

We define

£(z) = zz: }s“l)j
=0

to be a series cof Stieltjes if and only if there is a bounded, non-
decreasing function J(u), taking on infinitely many values in the interval

O suc<eoo such that

w .
f. = J uddg(u)
J o
Then the following theorems hold:

0 .
THEOREM 1.3: If Z Fi\-2)! is a series of Stieltjes, then the poles of
=0
the (N/N+j), j>-1, Padé approximants lie on the negative real axis.

Furthermore, the poles of successive approximants interlace, and all the

‘residues are positive.




The roots of the numerator also interlace those of the dencminatcr.

THEOREM 1.%4: Any sequence of (N/N+j) Pade approximants to a series

of Stieltjes converges to an analytic function in the cut complex plane

(-0 £3<0).If, in addition,

o) ——

> (5™

diverges, then all the sga‘uences tend to a common limit. If the fy are a
convergent series with a radius of convergence R, then any (N/tl+j) sequence
converges in the cut plane(—ooe Z= —R)to the analytic function defined by
the power series.

The convergence of general sequences f(M/I-I) of Pad®& approximants is
a much more difficult problem; the theorems so far proved in this context
only establish weak types of convergence, that is convergence in measure and
capacity. We quote the following two theorems (see (13) and (14)respectively)
in this connection:

THEOREM 1.5 (Nuttall): Let PN(Z) be the (N/N+j) Padé approximant
to a meromorphic function F(z), and D be a closed, bounded region of the
complex plane. Then, given any G,S>O there exists No such that, for all
N>N&
<€

for all z € BN where -ﬁ'NC D and the measure of D--»ﬁN is less than 8

P (z) - F(z)
N

THECREM 1.6 (Pommerenke): Let[Fe be a compact set with cap E=0,
and let f(z) be (single-valued and) analytic in the complement G of L.
Then, for €>O,1\>0,r>l ,'X>l there exists mﬁo such that

| P (z))-Fi] <€ (momo 3 < 8<4)

for Iilsr,lé Em“ where cap Emn <7 (and B (£(z)) is the (m/n) Padé
approximant to f(z)),.

The major limitation of the previ.ous two theorems is that convergence
in measure or in capacity does not exclude non-convergence at a countably
infinite number of points; however, the study of a large number of examples
has indicated that, in practice, points of non-convergence appear to be very

limited. It appears-that stronger forms of convergence can only be obtained
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by imposing conditions on the power series coefficients.

2. SINGULARITY STRUCTURE OF PADE AMND CUADRATIC APPROXIMANTS

The distribution of the poles and zeros of Padé approximants »lay an
important role in determining the region of convergence of the approximants.
From the study.of a large number of examples, the following general picture
has emerged (2). Given a particular sequence of Padé approximants the great
majority of the poles and zeros, beyond those required to represent the poles
and zeros of the function being approximated, tend tc cluster along curves
which cut the complex plane in such a way as to leave the function single
valued in that part of the plane connected to the origin. For horizontal
(or vertical) sequences of approximants the boundary curve is usually a circle
centred at the origin; for diagonal sequences, the locations of the curves
where the extraneous poles and zeros cluster is determined by the homographic
invariance properties of the approximants. In the case of a function with
a natural barrier, such as a branch cut, the poles and zeros of the diagonal
approximants are clustered along the natural barrier.

We can illustrate these remarks, and indicate their possible extension
‘to quadratic approximants, by considering the specific function

e = Inil+2)

¢/

which is the function considered by Baker ( (2),p.223). If we consider the
(M) Padé approximant then, from general considerations (see (2) ».223),
we expect convergence of the approximants from z<.4.5; confirmation of this
is provided by Table Ia. In Fig.la the extra zeros of the approximants,
not associated with poles lying along the cut, are plotted; we can see that
these zeros do appear to mark out the boundary of the region of convergence.
To see if these considerations extend to quadratic approximants we have
repeated the above procedure (with the results given in Table Ib and Fig.Ib)
for the (M/0/LM) quadratic approximants. Again the region of convergence of
the (quadratic) approximants does seem to be determined by the corresponding
zeros of the approximant. This example also indicates (as is evident from
Tables Ia and Ib) that it is only with the diagonal (and possibly paradiagonal)

approximants that we can expect to obtain convergence in the whole complex




Fig. Ia: THE ZEROS (NOT ON THE NEGATIVE REAL AXIS) OF THE (4M/M) PADE APPROXIMANTS TO 2 )
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Fig. Ib: THE ZEROS (NOT ON THE NEGATIVE REAL AXIS OF THE &M/O/4M) QUADRATIC APPROXIMANTS TO zvlln (1+z)
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. A VBEHAFEATIRG i o
PABLE Ia: (4M/A1) PADSE APPRONIMANTS 70 z” "1n(l+z)

2z NI 1 2 3 N o Rl e}
1 0.6924 0.693149 0.69314718 C.6931L718 0.69314718
6 -0.8 2,35 ~2.6 e 0.32
9 A 28.9 <177 1092 0.26

TABLE Ib: (M/0/LM) GUADRATIC APIROXIIIANTS TC z-lln( 1+2)

SN 1 > 3 Z"llr‘.(l-'rz)

A 0.08%1,21 0.027%1. bk -0.008%1.,81 ~0.28%0.81

" ] 13 8 Lo 00
1 0.49 0.68 0.67 0,693
6 0. bk 0,010, 61 I0.081 0.32
9 1.13 0.00322.7i 0.3 0.26
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plane (cut along -oosz<-l for the Padé approximants); clearly, the above
non-diagonal approximants do not even converge in measure outside the heart-
shaped regions of Figs.Ia and Ib.

For certain functions with branch points MNuttall has recently obtained
convergence theorems for the corresponding Padé approximants. In Chapter 3
we shall describe a method of evaluating Feynman integrals based on the idea
of rotation of branch cuts; in this type of problem we are interested in the
location of the poles of the resulting Padé approximants and Nuttall's
results are of use in this connection. In fact, although the following two
theorems have only been proved for a certain class of functions (see helow),
in Chapter 3 we will assume that the concepts contained in the theorems are
true much more generally.

Nuttall's first result (15) is concerned with a function F(Z) with two

branch-points: .

b
F‘(Ez) . -?45%?31 (2.1)
o - X

where a,b,w(z) are complex. Provided the weight function w(x) satisfies
-certain conditions, the following theorem holds:

THEOREM 2.1: The (N-1/N) Padé approximant to F(Z) (defined by (2.1))

converges uniformly, as N—eo, in any closed, bounded region of the Z-plane

cut along the arc
Py =.é.[(b._o,)\:+\o.+b)] -l <t <]

The second of Nuttall's results (16) deals with a function with an even
number of branch points with principal singularities of square root type.

The function, f(t), considered is defined by

HE) = [ v X o le) e (2.2)
where S
(1) b dili=l,2. ,Bl)denote the branch points of £(t)
Xle)= ﬁ (E-4;)
and X =2 somgbes tlie JLE Friow & Uartlcular side of S and

(ii) the set S'consists of L analytic Jordan arcs joining pairs of

branch points; in general, the L arcs are non-intersecting.




P B
Again, if the weight function ¢ (t) satisfies certain conditions, the

following theorem holds:

THEOREM 2.2: If S consists of L non-intersecting arcs, the sequence

of (N/) Pade approximants to f£(t) (defined by (2.2)) converges in capacity
to f(t), as N=oo, in any closed, bounded domain not intersecting S.

This theorem shows that the diagonal Padé approximants converge in
capacity away from a set of arcs whose location is completely determined by
the location of the branch points; the location of these arcs is related to
the "principle of minimum logarithmic capacity" (13). In Figs.2a and 2b
we illustrate the concepts contained in HNuttall's resulis by considering a

function with two (BI’BZ) and four (BI'B Bq) branch points respectively.

21B31
In Fig.2a the expected region of non-convergence (of the diagonal Padé
approximants) is the arc B182 of the circle passing through O'Bl and BZ;

in Fig.2b (where B4 is at infinity) the non-convergence region is contained
within the shaded area.

The behaviour of quadratic approximants in the presence of branch points
is somewhat different. TFor example, for the function f(z)=1n(1l-z), Pads
approximants simulate the branch cut at z=1 by clusteriné poles along the
real axis below z=1; quadratic approximants, however, do not need to
simulate the branch cut in this way since they have an "in-built" (square
root) branch point. The poles of these quadratic approximants are in this
sense ''redundant"; where then do the poles of the quadratic approximants
lie? From (2.7) of Chapter I we see that the approximants have poles when
P(z)=0 provided the negative square root is chosen. For the above example,
whenever P(z)=C it is the positive square root which is used in the
approximant; in a sense, the approximants place the poles cn a sheet of the
function in which we are not interested. From a study of many exanmples if
seems that this behaviour is a general feature; quadratic (and presumably
the higher order) approximants do not produce "unwanted" poles.

3. NUMERICAL EXAMPLIS

To illustrate the nature of the results we may expect tc cbtain with

~\\
?/.‘o

onsider the examples of Baker ((2) and (1

Q

quadratic approximants, we



FIG.2a: EXPECTED NON-CONVERGENCE REGION FOR A FUNCTION WITH TWO

BRANCH POINTS AT B, AND B_.
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FIG.2b: EXPECTED NON-CONVERGENCE REGION FOR A FUNCTION WITH FOUR BRANCH

POINTS AT B,,B,By AND By =co.
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In Tables 2a and 2b we compare Padé and quadratic approximants to the
following four functions:

@ P =l1-¢7/z

G FlE=1- e

(iii) F; (z) = ( I+ ?.Z)Va/“ + Z)
and (iv) Fu (2) = ( u.n:‘ﬁ)z
In each case the approximant is evaluated at infinity. If we denote the
(N/N) Padé and (N/N/N) guadratic approximants, evaluated at infinity, to the
function fi(z) (i=1,2,3,4) by f(i%N/N) and f(i)(N/N/N) respectively then we
can make the following observations

(1)

: (1)
(a) £ (n/i) converges like 1/(N+1) whereas £ (1/n/m) converges

considerably faster.

(2) (2)

(v) f (N/N) does not converge vhereas f (H/N/N) converges fairly
rapidly.
(@) £

(/1) does not converge and the remarkable convergence of
/ﬁ

(2 (3)

: s , -
f (N/N/N) is attributable to the fact that, for N 2, T

to see this we only need choose
2 2
Qlz) =0, Plz) =(1+2#°, Riz)=| + =
(d) The function f4<Z) is regular in the complex plane cut from z=-1

(4)

to z=-e0, and it is apparent that f (N/11,/N) converges nuch more rapidly
than f(u)(N/N); the notation (a,b) of Table 2b means a+ib and we shall adopt
this notation throughout the remainder of this thesis. This example also
illustrates the convergence of the quadratic approximant along branch cuts;
in Table 3 we give the errors in the real and imaginary parts of the
(4/4/4) quadratic approximant for z<-1l. In this region the Padé approximants,
being the ratio of two real polynomials, must yield real (and hence non-
convergent) results.

We thus see that, for this particular example, the quadratic
approximants

(a) exhibit better convergence properties than the corresponding Pads

approximants within the domain of convergence of the Pad& approximants and

(b) converge outside the convergence domain of the Pads approximants




TABLE 2a: PADL AND (UADRATIC APPROXIMANTS TO f.(z) and £.(z), LVALT.T

1 2

T INFIN H\r
"

% 1L -A-
INCTION VALUD Fxc A TNV ot Ay AFN Ay R —~—— {
FUNCTICN v FLULS \T\‘//N> PADI \I:I"I/T‘) ARATT0 4
TV /AT AN TYITWYTIIT YOO LE: f > T
FUNCTION AT INFINITY N APPROXTIIANT APPRONIMANT

fl(z) 0 1 -3 -0.06kL
2 1/3 0.Ch2
3 A -0.008

L 1/5 0.006

o
[
Ne
O

)

(z) 1 1 2 1.2

N

N
no
P—l
.
@)
[O)Y

8 0




TABLE 2b

PADE AND QUADRATIC APPRCXIMANTS TO f3(z)

AT INFINITY,.

AND £, (), LVALUATED

FUNC

FUNCTICN VALU!

AN THMTTY TN
Al Llicd

Wlivad

(N/11) PADE

ADPPROYTMATD
APX A{u.;IA‘Ar’.AI...

(NN QUADRATIC

APPRONIMANT

fj(z)

1

\n

ON

0.33
2.32
0.2
2.412
O0.414151
2.418141

0.414211

2. 414211

0.61

le’(z)

2.46740

2,127
2.188
2.2295
2.2611

2.2850

(2.46736,0,004)




TABLE 3: ERRORS IN THL (4/4/4) QUADRATIC APFROXIMANT T0 fl*(z) 3

FOR z<-1.

ERROR IN REAL PART OF ERROR IN IMAGINARY PART
(/L /L) QUADRATIC r {(&/b/h) QUADRATIC

z APPROXIVANT APPRCYIMANT

<
-0 6x10~° 2%10~7
<9 6310

-9 5x10~
=7 14}(10'"6
-6 fl.xl()'-6

-5 3x10° 5x10
-4 7x10~
-3 bx10™

-2 2%10™7 1x10~°
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and, most important, converge rapidly on the branch cut.

Throughout the remainder of this thesis we shall present results to
suggest that these properties are a general feature of multi-valued
approximants.

AT

In Table 4 we list values of the limit as z—woo of the (I,1) Padé and

(N/N/N) quadratic approximants to the functions:
O R d

|+—1\:
. el Lr [+t At
and \'l]'l) %g[‘{)"—‘ e‘t l+#22t t\2 Al:
) |+ 2t

These functions all have the property that they tend tc a constant on every

ray except the negative real axis as z—sco; gl(z) and gz(z) are both series

of Stieltjes and hence the (N/N) Padé approximant must converge and g.{z

¢ o

W
S’
=0
n

the reciprocal of a series of Stieltjes. Although we cannot establish
convergence of the quadratic approximants, it is evident from Table L4 that
they are converging more rapidly than the Pad€ approximants. Furthernmore,
using the (6/6) Padé approximant, we calculate the value of Zuler's
divergent series (given by gl(l» to be 0.5968, compared with the exact value
0.5963; the (4/4/4) quadratic aporoximant yields the value 0.52636.

When a function does not tend at infinity to a constant times an
integral power of z, then no Padé& approximant can represent the function in
the neighbourhood of infinity. GQuadratic approximants can represent a larger
class of functions than Pad@ approximants at infinity in that a function
behaving at infinity liké a constant times a half-integral power of z can
be represented by a quadratic approximant.

To conclude this seci?on we consider the two functions

(1) h\z) =(1-2)3

-l
and (i1) hole)=(l-%)*
Using cubic and guartic approximants we can approximate h ( z) and h_(z)
exactly; however, as the results of Table 5 indicate, we can obtain very
good representations of these two functions using quadratic approximants.
Again we note that, in the region of convergence of the Pad& approximants

to hl and h?, the quadratic approximants still appear to converge rore




TABLE 4: PADS AND QUADRATIC AFPRONILANTS T0 g,(2), &> (z) A g.(z),

ES
i

TNT 4T A M M OTIDTIITMY
EVALUATED AT .l_uJI's.ET‘l

FUNCTION VALUZ (n/iy PADS  [(NA/N) UADZATIC

FUNCTION AT INFINITY N APPROXINAND APPROXTIANT™
(2) 0 1 % 0.3
E)l 43 2 o)
2 1/3 0,231

. L /5 0,037

0 i 2/3 0.

ny

N

I

N

N

n

o

N L5 |
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N
o
B g
(@)
O
*
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0

e 376/297 1.3




PADE AND QUADRATIC AFPROXIBANTS TC h.(z) AlD 11,)(::), - INDICATZEC
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rapidly than the corresponding Padé approximants.
In practice, as well as calculating f,_, , \(z) from (2.6) (of Chanter
(p/q/x) -
I) it is sometimes advisable to also calculate f(‘),q_,r)(z) by

[’(p/vL/r)‘*' = ‘BR\';)/ Qlz-( Qzli)+LPPli)Rl1)r] (2.3

This can be important if, for example, LP(z) R(z) < (z) and the positive

p—4

square in (2.6) is required. Reforrulation of (2.6) (of Chapter 1)
(2.3) ensures that no loss of accuracy occurs in this case (and also in th
1

case when 2P(z) «-¢(z)2 (\4?(2) “4P(z)n(z))<).

L4, THE AN-HARVCNIC OSCILLATOR

As an indication of the range of applicability of the multl-valucf’

approximants previously discussed, we consider the problem of determining

the energy levels of the an-harmonic oscillator. The Hamiltonian for this

H =p°+ x* + Bx*

and the analytic properties ofj{ are discussed in (18).

system is

1

For B real and
positive % is well defined, and the energy levels are analytic functions of
B in a neighbourhocd of the positiv_e real axis. The point B=0 is a singular
point; it is in fact a limit point of =singularities. Also

(a) the nth-energy level ::. (B) has a '"global" third-order branch roint
at BA=0; by this we mean that any path of continuation which winds thrze
times around B=0 and circles clockwise about all branch points, returns

(B) to its starting point and a path that winds one (or two) tinmes around

does not and

(b} on the three-sheeted surface, B=C is not an isolated singularity;
there are therefore infinitely many singularities.

In view of (a) and (b) we may expect the multi-valued approximants to

be of use in calculating En(B). We write

E= ) o’
(n)

where the coefficients ay are tabuluted in the literature; for the resul

ie tabulate the following:

O

quoted here we use the coefficients of (19).

(i) In Table 6 we compare the (10/10) Paas, (5/5/5) guadratic and




TABLE 6: PADE, QUADRATIC AND CUBIC AFPROXIMANTS TO BN(B), THE NTH

ENERGY LIVEL OF THZ AN-HARMCNIC OSCILLATOR, FOR VARICUS N
AND 3 (£1).
ERROR IN ZRROR IN FRROR IN
(10/10) PaDE (5/5/5) QUADRATI (3/3/3/3)CUBIC

N B ADPROXTMANT APPROXTMANT APPROXTMANT

1 0.25 6x10™° 5x10 1x10™7
0.50 3;:10‘L+ 4x10“6 6x10‘6
0.75 2x10™° 1x10™7 2x10™7
1.00 5x10™> 7%x10™7 o™t

3 0.25 2x10-4 2x10™7 7x10‘6
0.50 6x10™> 3x10'l+ 1x10'L+
0.75 3x10™2 1x10™> 1x10™
1.00 6x10™% 310 2x10™°

5 0.25 1510~ %10~ 5x10™°
0.50 55107 Lx10™ 6x20™"
0.75 ;T (4 i 1502 2x10™°
1,00 2x107% 21072 * 5x107°  *

7 0.25 Gl 2x10~" 5x10~"
0.50 7%x10™% 2x10™° 5x107
0.75 3x107" 1x10™3 11075
1.00 8x10~" 2x10™2 102

9 0.25 3x107% 810~ 210"
0.50 2x107% * 8x10™° g™ *
.75 gx107%+ ¥ S0~ = 6x1072 *
1.00 1.9 . 0.5 . 0.1 .




TABLE 7: PADE AND QUADRATIC APFROXIMANTS TO Bo(ﬁ) FORR21.

FIGURES QUOTED IN BRACKLTS HAVE 1OT YULT CONVERGID.

(20/20) PADE (5/5/5) UADRATIC

2! APPROXIMANT APPROXTMANT
1 1.39234 1.3923(5)
2 1.6071 1.607(6)
3 1767 1.76(98)

4 1.897 1.9(03)

5 2.00(5) 2.0(19)

6 2.10(0) 2.1(22)

7 2.18(2) 2.2 (16)

8 2.25(0) 2.3(0)

9 2.31(3) 2.3(8)

10 2.37(0) 2.4(5)
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(3/3/3/3) cubic approximants (requiring respectively 21,17 and 15
coefficients ap(n))for varicus values of n and B, with f83sl. The exact
values of En(ﬂ) used to calculate the tabulated errors are those given in
(19); an entry with an asterisk denotes that the 'exact' value of En(B)
used is only an upper bound to the eigenvalue.

(ii) 1In Table 7 we quote results obtained for 351 for the ground
state energy EO(B). The quoted values for the (20/20) Padé approximant
are those given in (18); the results obtained for the (5/5/5) quadratic and
(3/3/3/3) cubic approximants are almost identical and we only quote the
former. Figures quoted in brackets must be regarded as unreliable, since
they do not yet appear to have converged.

From these results we can see the usefulness of the quadratic and
cubic approximants; for B<1l they appear to give about two more significant
figures than the corresponding Padé approximants. For B>l the aprroximants
compare favourably with the Padé approximants, remembering that in Table 7
the quadratic approximants use less than half the number of terms required
by the Padé approximants. In particular, for B=1, the two approximation
schemes give almost identical accuracy, the Padé approximants with 41 terms
and the quadratic approximants with only 17 terms.

Finally, we remark thét the method of Borel summability (discussed in
Chapter I) can be applied to the multi-valued approximants to obtain-
improved convergence, as is the case with Padé approximants (18). The one
disadvantage is that in order to perform the required numerical integration,
we need to know which branch of the approximant to choose and there appears
to be no general method of doing this. |

5. SCME FURTHIZR APPLICATICNS OF GUADRATIC APPROXIMANTS

(i) SEQUENCE EXTRAPCLATION

As mentioned in Chapter I, even if a series converges it may converge
very slowly and Padé (and hence quadratic) approximants can be used to
accelerate convergence. Given a sequence al,aa,..,an (generated, for

example, during an iterative procedure to solve an equation) we form the




Cla) =0+l v lag-g)2®s e (5D)

refany
1 J

% . . " s - . ¥ & ~ - . o s
where, by definition, the exact result is Ues =G{1). Generally, provided

G(z) is regular at z=1, Padf approximants to G(z) at z=1 will give a better
estimate of the final answer than the last computed term a .
To compare the usefulness of Padé and quadratic approximants as senuencs

extrapolation devices, we give the following two examnles:

(i) 1r aizi"l, so that G(1)=C, we obtain
Q.u-":‘ 0.07

G\7/7)“) = 0402

Gt (1) = 0,008
(ii) A major application of the sequence extrapolation technique {using
Padé approximants) is in numerical quadrature (21); here the sequence (2 )
is normally geﬁerated by successively halving the integration step lenztn.

For the function o

Pl = | =

o
e
+
i+

and using the mid-point trapezoidal rule, we obtain

| G- Fa)f =6xi0

I Caizinitl- F(z)}

However, for difference integrands extrapolation with Pad& approximants is

and

= bk \0“7

preferable; for the integrands considered in (21) the two extrapolation
methods give comparable results.

: > AXSTIUSASNIT A PO ™ My TT
(ll) APPRCXIMANTS OF TYPS I

Wnen G(z) in (5.1) is not regular at z=1 the following procedure czn

be used (2C), which we illustrate rcr. the series
)
=
S ,._} A (5.2)
r?
e '
n=i
Let
S 1
p = ? {5.3)
yA— n
n=\

The series (5.2) converges slowly and we can accelerate the convergence using

U
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the previously considered sequence extrapclation method; for example, the
(1/1) Padé& approximant gives the result 1.45, compared with the exact resul:
2 2 Lo nr . i <
S=T"/6 = 1.6449, we can, however, improve upon this estimate whilst still
only using the first % terms of (5.2). ‘le consider the Sp as functicns o
m

; 1 e . . .
the variable ~/p, so that op:r( /p), with the exact sum as F(C). This

10 SL and ”} of (5.3) (which incorporate

tn

method gives, using only the terms S
the same amount of information as the (1/1) Padé approximant)
Wle can obviously employ the same procedure with quadratic approxirznts;

as a comparison we give the results

Gare) (0 - SI = bex10”

and

+
l Gki/:/n“”“s! = Rxlo

From this type of example we are led to the following definitions

DECFINITION 5,1 (23): Let zl,...,zp be p complex numbers. Ve deline
the Pad& approximant of type II, f*I(M,H)(z), to the function f(z) by
i/ 4
11
lg] = Pulz)
(/M) )
Qm (2
with
« LI
= Fa) el )
and

p=N+M+]

where PN(Z) and Qﬂ(z) are polynomials of maximum degree N and !{ respectivelyr.

DEFINITICN 5.2: Let Zl""’zp be p conplex numbers and PL(Z)’QF(:>
and R”(z) polynonials of maximum degree L, M and Il respectively. Then we
- . : . 1T e
define the quadratic approximant of type II, f (L/V/Nﬁ(Z)’ to the function

f(z) by the equation

A A & , ‘
Pl-t [ {L/"\/N}(y' Q\?‘) l-(L/,\q/;*{.)\}'} + Rh‘) :O
with

F \thﬁqﬁ Fl}w) &if“e,-~--~-}P)



At P =L+ M+N+2

A praétical application of tyre II Padé approximants is the Bulirsch-
Stoer method in numerical quadrature (22). A sequence (SD) of approximants,
corresponding to division of the integration region into sub-intervals of
length hp, are generated (by, for example, the trapezoidal rule). Pads
approximants of type II, denoted by R(h), are then formed according to

Rihe) =Sp  lp=l2, - - - MeN+l)

where

= O + Q;\\z*""""+0'Nh2N
P\u'l} '+ \)‘h2+...---~4-‘)n"\.zn

The integral is then approximated by

P\‘O):QO‘
Again we can use quadratic approximants in place of Pad& approximants iIn this
procedure; in practice, the two methods give similar results for the
examples so far considered.

(iii) SINGULAR INTEGRALS

We have in mind the numerical evaluation of integrals, the integrands
of which have a branch point within the interval of integration; for

example,

)% (ace)

(x-
o

with B an integer. Generally, we consider the problem of evaluating

1 = Fb:) dx (5.8)
Qo
Using the method more fully explained in Chapter 3, we expand f(x) in a

Taylor series about a point X, in the complex plane:
o
. elnd s n
Y_(x) s _F__Lﬂ_) \X’xe) (5.5)
Z:: nl
n=0 ;

Then, from (5.4) and (5.5),
x=b-x

— tn)
1= Z Frled o e ! (
: n o

N

n

(n+l)!

=0-X¢

We now form approximants (Pad& or quadratic) to the power series defined by
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(5.6); denoting the approximant by G(x), we obtain as an approximation to

I
I ¥ (}\\s—le) - G(O-‘Dca)
To illustrate the use of this method, we consider the following three
integrals: >
d ]
(a) II =J- \1-33')7 doe
|
e
w1, --j I (1-%) &=
C
and

(C) ]:3 = :c& A)c

(V]

In Table 8 we compare the results obtained using Padé and quadratic

approximants for these three examples; the method itself appears to work

reascnably well and again the quadratic approximants provide a better method

of approximation than the Pad® approximants.




TABLE 8: PADE AND JUADRATIC APPROXIMANTS TO THE INTEGRALS I, I,
"AND I..
2
INTEGRAL AND (N/N) PADE (N/N/N) QUADRATIC
EXACT VALUE I APPROXIMANT | APFROXIMANT %
R 5B o -8 -8 -
Il=(o.2357o(_26, 6 (6x1077,8x107°) 3 (1077, {07 ~1+i
0.23570226)
12=(—2,‘n’) (’+x10—l+,8x10_3) 5 (2x10"6,2x10'6) 1+i
b -3 W, S :
13=O.66 (3x107 ",1x107) L (1x1077,6x1077) | 1+i
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1. REPRESEZHTATICN OF FEVNMAN INTEGRALS

The purpose of this chapter is to extend the methods used in (1) to
calculate Feynman integrals in the physical region. The general para-
metric representation of Feynman integrals is well known ((2) and (3)).

For interacting scalar fields the representation is of the form

\_n n-2L-2
'im 0 1.1)
Praes{i- $e) £
G"O+ r=i l_D"'bG]
0 i=
where C is a real polynomial in the Feynman parameters {dﬁ}

D 1is a polynomial in {<Kr} which is also a linear function of
the invariants s,t,...of the physical process being considered
(where, as usual (S denotes the total energy and t the four-
momentum transfer); r is the number of internal lines in the
graph (which represents the particular physical process being
considered);
1 is the number of internal momenta in the graph and
n is the number of vertices in the graph.
We do not prove (1.1) but, by considering certain specific examples, we
shall later illustrate the general features of the proof.

In general, the singularity structure of the integrands in (1.1) is
very complicated, but they possess some standard features (3). A typical
set of singularities in the s-plane is illustrated in Fig I, and consists
of a pole P and a series of branch points Bl’BZ"" on the positive real
axis; for clarity, in Fig I the branch cuts associated with these branch
points have been displaced from the positive real axis, where standard
techniques of calculation (2a) place them. The.variable s is essentially
the energy of the system, and we wish to calculate (1.1) for real positive-
values of s, exactly where the discontinuity in the function is normally
placed. The limiting processse-—90+prescribes that we calculate (1.1)
as s approaches the real axis from above, as indicated in Fig I;‘ this
procedure corresponds to calculating {(1.1) in the "physical region'.

The basic prcblem is therefore the calculation of a function, in this
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case that given by (1.1}, in a region where the function has one or more

branch points. Before discussing the method used for Feynman integrals

'simpler' function, which

we first illustrate the procedure applied to a
we choose as 1n(l-z).

2. METHOD OF CALCULATION

The calculational procedure is based on the idea incorporated in the
following theorem of Van Vleck (4).

THEORIEM 2.1: Consider the S-fraction

(2.1)

Then: (a) i‘

p—>eo

the S-fraction converges to a meromorphic function of z. The convergence
is uniform over every closed, bounded region containing none of the pcles
of this function.

-

(v) i} ‘
‘Im (],? = L :{:O
P—)OO

the S-fraction converges in the domain exterior to the rectilinear cut

. 1 . . : : 5 # e N
running from ~/4a tc o0 in the direction of the vector from O to ~/ha, to
a function having at most polar singularities in this domain. The
convergence is uniform on every closed, bounded region exterior to the cut
which contains no poles of the function.

We can illustrate this theorem for the function 1n(1l-z), which has

the continued fraction expansion (4)

Inli-2) _ wl (2.2)
2 [

5. 13
;. Bzz

from which it follows that, in the notation of Theorem 1.1,

oy Mep) o L, = Hre)
A (2 A AR TY PPy




e | s
so that
m o, = 1
P
p—rco H-
Theorem 1.1 therefore shous that the S-fraction to f(z)=1n(i1-z) corverges
uniformly in the entire z-plane cut from z=1 to z= o0 along the real axis.
Since the S-fraction (2.1) is equivalent to a diagcnal and a paradizzonal
sequence of Padé zpproximants (4), we are assured of uniforn convercence of

these approximants in the cut z-plane.

Now suppose we move our origin to the point % which lies in the

upper half of the z-plane. Then, according to Van Vleck's theorem, the S-

fraction (2.2) will converge uniformly in the z-plane cut from z=1 to
m

z=oc0 along the line joining 2=2 and z=1l. This situation is illustrated

L)

adé anproximant) now

in Fig 2; the S-fraction (and the equivalent
converges on the real z-axis (except possibly at z=1). In effect, we have
rotated the cut by moving our origin from z=0 to 222 .

For the particular example ln(l-z) we can see this behaviour sxplicit

Expansion about z=0 gives

= n
fw) = —E Z
n
n=i
and, if we calculate the (m/m) and (r/m-1) Padf approximants to f{z), the

poles and zeros cf the approximants will simulate the cut on the rezl axis

(4). We move the origin to the point Z by writing

- - = - (2'2c) ~ 2.
=\ \\-1)_;'1(&“
T Ui b

If we now calculate the Padé approximants to the series (2.3b) then, from

(2.32) the poles and zeros will now lie on the point set

{l-lo = o (1-2) ;:xﬂ}

and this set is just that part of the straight line through zg and 1 which
lies in the lower half-plane; the branch cut has thus been rotated intc ths
lower half-plane.

Originally (1) Padé approximants to the geries (2.3b) were used o




1, -~
"

calculate f(z) at real positive values of z, both for z<l and z>1; I«

z>1, the branch is defined by approaching the real axis from above, givir:

the value

ln,]-z] —iT
Other re-summing procedurss can, however, be used. In Table I we compars

the results obtained with the (8/8) Padé and (5/5/5) quadratic aprroximants

(both requiring 17 terms of the series (2.3b)), and with the exp

3

Avats

point zO=l+i. The main observation from Table I is that the quadratic

approximants recuce the errors by roughly two orders of magnitude zs
compared with the Pad€ approximants; later results will show that this

behaviour is by no rneans confined to this particular example. The increzss=

in the error very close to the branch point occurs because
unbounded at z=1 whereas the square root furction is bounded in ths
neighbourhood of the branch point. Ve also note that reasonable rzsu
can be obtained even for zo=0 when quadratic approximants are uced: the
discontinuity across the cut, now simulated on the real z-axis (z>1), can

oo &

be represented by the square root tern associated with the quadrati:

approximants. In contrast, the Padf sclieme cannot work for zO:C.
3., CALCULATIONAL PROCuEDURE FOR FiViTHAN INTIGRALS

We adopt the following method of calculation (see (1)):

(i) For the graphs considered here, D (of (1.1)) is a functizn of

i

at most the twe invariants s and t (in the usual notation). ‘e expand D
1t £oof the

"y

about (s-s ,t) or (s-s st-t ), where s and t 1lie in the upper half
o o 0 0 0
complex s and t plene; this expansion is easily performed since D is a
linear function of its invariants.
(ii) Perform the o -integrations for a given number, i, terms of
the series.

o

(iii) Approximete the sum of this series by a suitable type of

aprproximant.

Thi

6]

scheme has the following features:

-
i

of Nuttall's theorems (seec Chapter 2) helf mors

i

(a) If the concept:

generally, then the simulated branch cuts for the singularities ¢ Fiz I will




TABLE 1:

= s TNy A - A TANTYY AN PR T TR s o .
PADE AND QUADRATIC APPROXIMANTS 70 1n(l-z), VITH z =1+i.
0

ERROR IN (8&/8) PADE

.....

342

2 APPROXTMANT APPROXIIANT
0.1 (2x100,6x1077) (541077, 3x10™7)
0.3 (ax0~° a0~y (31072 310
0.5 (1x10‘5,3x10'7) (1x10“7,2x10"8)
0.7 (4x10™7, 3%10™°) (1x10°7,2x10”7)
0.9 (8x10’“,7x10‘3) (4x10‘6,3x10‘5>
1.1 (2x1072,5x10) (3x1072,2x107°)
1.3 (1x10~7 ,8x10™) (7x1078,2x10°%)
1.5 (7x10'6,3x10'6) (2x10“8,2x10‘8)
1.7 (3x10~8,1x107%) (5x10~2,1x1070)
1.9 (1x20~ , 5x10°7) (2x10°7,5x10"%)




3.

lie within the shaded region of Fig 3.

(b) The new denominator D (wvhere, for example, D —D( ) (s= ~. is
linear in the complex variable 8 and is complex for real o¢. lHence, there
are no singularities in thed:—ihtegrals.

(¢) The same denominator Do occurs in all the terms of the series,
and need only be calculated once at each quadrature point; computatiocnally
this is a very important point.

(@) The final results should be independent of the choice of the
expansion point 8 thus giving a check on the calculations. The probler
then arises of making the optimal choice for S later in the chapter we

shall discuss this problem more fully.

(e) Since it is assumed that the branch cuts have been moved into ths
lower half s-plane, the limit process€—=0+ of (1.1) can be omitted, the
integral being available directly on the real axis, except at P and possibly
at the branch points.

To illustrate the nature of the results we may expect from this
method, we now consider individual Feynman graphs. Yor each graph
considered, the explicit form of (1.1) is derived in an appendix at the eai

of this chapter; the singularity structure of the graphs is alsc considerszd

in the appendices.

4, SECOND ORDER SELF INERGY GRAPH AND ZZRO MCHMINTUM ViRTZY. FART

(a) SECOND ORDER SELF INERGY

We first consider the renormalized second order self energy of a

scalar particle of mass m, emitting and absorbing a scalar particle of nmass
K. The matrix element for the process is proportional to
|
(5.1)
F(S) = ‘n !L?‘Ud:&)-{'mzﬁ-ﬂ“-&)S] &'cq 1

P-x) + m2<?
F(s) has a branch point at

¢, = \m+p)?

lying on the physical sheet (and correspending to Bl in Fig I) and zn

unphysical singularity (that is, one lying on an unphysical sheet) at

(m-p)®







“4h
together with a 'second-type' singularity at s=0 (see Appendix I).

Before giving any numerical results for this graph, we discuss the
integration method used. In the original paper (1) two quadrature methods
were considered:

| (i) the mid-point rule and

(ii) the composite two-point Gauss rule.

In all the graphs studied these two methods have been found to be not the
most efficient, in the sense of accuracy cbtained compared to the number of
quadrature points used. In general, Gauss-Legendre quadrature appears to
be the most efficient method and, unless explicitly stated otherwise, this
is the quadrature rule used in all the following examples.

Table 2 gives a typical selection of the results obtained; here we
compare the (6/6) Padé and (4/4/L4) quadratic approximants obtained with the
mass parameters m=1 and}4=1/6, which produces a branch point at s=1.36 on
the physical sheet. The integration rule has a maximum of 23 points in
each dimension. The improved convergence obtained with the quadratic
approximants is evident; we again find that we obtain roughly two more
significant figures compared with the Pade approximants. The optimal choice
of s, seems to be given by

Re o= §, ,‘fmSa‘:l
Results of a similar nature are obtained with cubic approximants, as can be
seen from Table 3; here we tabulate the (3/3/3/3) cubic approximant with
so=1+i, again with the mass parameters m=1 and f=1/6.

We now turn to a consideration of the un-physical sheets. The method
cd'%} is expected to produce results only on the physical sheet, since the
power series expansion of (4.1) only incorporates information about F(s)
on the physical sheet; using multi-vélued approximants, however, we may hope
to obtain convergence on more than one sheet. The self energy matrix
element has infinitely many Riemann sheets, since the logarithm has, and
essentially we have, for 528,

- Fuy= F_,ls) + (.?.n~!)LWF,_\S)

where n is an integer and F1 and F, are suitable functions of s. The




TABLE 2:

COMPARISON OF THE (6/6) PADS AND (4/h/4) QUADRATIC APPROXIMANTS TO THE SECOND ORDER RENORMALIZED

SCALAR SDLF ENERGY, FCR VARIOUS VALULS OF s .

O

s =1+1
(o]

MODULI OF XRRORS

s =1.l+i
o}

MODULI OF ERRORS

S =1.8+i
o]

MODULI OF TRRORS

EXACT VALUE

OF F(s).

1.00

1.25

1.50

2.25

no

2475

3,00

P.A.  (1x1072,2x107)
Q. A, (2x10‘7,1x10‘7)
p.A. (72107 ,1x1077)
Q.A. (3x10‘6,5x10'6)
P.A. (8x1072,2x10™")
Q.A. (1x1077,2x107)

P.A. (6x10“”,1x10‘3)

Q.A.  (3x1077,5x1070)
P.a. (bx10™",2x107%)
Q.A. (2x10‘6,4x10'6)
P.A. (3107, 3x207)
Q.A. (4x10‘6,1x10‘6)
P.A. (1x10’4,ux10‘4)
Q.A. (3x10“6,7x10‘6)
P.a. (5x107,6x1070)
Q.A. (6x10’6,7x10'6)

. !
P.A. (2x10771,5x10™")

. - -
Q.A. (2x1077,4x10 G

U U
P.A.  (4x1077,4x107 ")
6
)

P.A.  (hx1072,6x107°)

Q.A. (9x10‘6,7x10’

Q.A. (8x1077,5x107°)

_l -
P.A. (2x10™',5x10™°)

Hedls (3x10‘5,5x10‘5)
P.A. (6x10‘“,6x10'7)
Qulks (4x10'6,3x10'6)
= (2x10‘“,6x10‘5)
Qs (3x10‘7,ax10'6)

= _C‘
P.A. (2x10 4,6x10 =
Q.A. (2x10'6,3x10“7)

-5 =1
P.A.  (2x1072,2x107 )

6

G.A.  (1x10™ ,1x10‘6)

l _5
P.A. (3x107',3x1077)

’ -6
Quh.  (6x1077,2x10™°)

0 pe —t; -1}\

P.A. (8x1077,4x107™7)
-0
,3x10 )

6

Q.A.  (1x10~

P.A. (9x107,2x10™°)
[ o

Q.A. (6x10—),3x10—6)

P, (B0 200"

o 2
Q.. (1x107",1x107 1)
)

). L
Q.A.  (1x1071,2x10™H

-z 1
P.A.  (6x1077,7%x107"

P.A.  (3x107t,2x107)
QuA.  (1x10™2,3x107°)
P.A. (1207, 1x20~)
Q.A. (2x10‘5,2x10'5)
Poi. (10, 2x107)
Q.A.  (3x1077,3x10™°)
P.A. (7x10"5,1x10"“)
Qels (6x10—5,4x10—5)
*

-5 L
QuAe  (3x1077,1x107 1)
Iy

P.A. (2x10'“,1x10'

Ll -
P.a. (9x1077,3x10™ 1)
£ l}

—J —
QeA.  (5x10 ,1x10 )

(0,0)

(0.38520611,0)

(0.87764128,0.70055153)

(0.72505492.1.15017822)

(0.57377L76,1.4:3459801)

(0.43055756,1.64185143)

(0.29715650,1.80200491)

(0.1735%695,1.93025850)

(0.05903536,2.03559403 )




TABLE 3: (3/3/3/3) CUBIC APPRCXIMANT TO Tili SHCOND ORDER RENCEMALIZED

SCALAR SELY =ZHERGY, WITIH SO=l+i.

ERROR IN (3/3/3/3) CUBIC
s APPROXIMANT
1.00 (1x10"8,2x10‘9)
1.25 (1x2077, 2x10™7)
1.50 (2x107,1x107%)
1.75 (5x10'7,2x10'7)
2.00 (3x10”7,uxlo’7)

TABLE 4: QUADRATIC AND CUBIC APPROXIMANTS TO THE SECOND CRDLR
RENORMALIZED SCALAR SELF ENERGY ON THE UNPHYSICAL SiEET,

WITH s =1+i.
o

ERROR I (6/6/6) ERROR I (3/3/3/3)

s QUADRATIC APPROXIMANT | CUBIC APPROXIMANT EXACT VALLS
1.4 (5x10'5,3x10'4) (hxlO“u,hxlo—Q) (0.93516,-0.3717}
1.5 (9x10'”,4x10'“) (5x10-u,2x10-u) (0.8777,-0.7(C6)
1.6 2x10'“,2x10'3) (2x10““,5x10‘4) (0.8173%0,-0,51322)
1.7 (3x10"3,2x10"3) 1x10‘”,7x10‘4) (0.7559,-1.C728)
1.8 (5x1072, 2x10™°) (6x10™", 5510~ (0.69%k4 ,-1,2157
1.9 (ux10'3,6x10“5) lxlO-3,2xlO"4) (0.6335,-1.3327)
2.0 (1x10‘3,1x10‘2) (lxlC-B,leO-u) (0.574,-1.43%5)




k5
physical sheet is defined by n=1 and the first unphysical sheet by n=C;
it is this unphysical sheet with which we are concerned. on this sheet
we have three regions to consider:

(i) 835, In this region both quadratic and cubic approximants give
convergent results, as shown in Table 4 (which corresponds to the same
parameters as Table 2). A noticeable feature is that the rate of
convergence of the approximants is markedly less on the unphysical sheet
than on the physical sheet. This is not surprising; it is rather mnore
surprising that we obtain any convergence at all on the unphysical sheet.
Although the values of ImF(s) on the physical and unphysical sheet differ
only in sign, we cannot expect this sign difference to be exactly
reproduced by the sign difference associated with the two branches of the
square root term in the quadratic approximants. This is because all the
power series coefficients of F(s) are complex; if, for example, we choose
son (thus making the coefficients real), then the quadratic approximants
would produce exactly the same errors on the physical and unphysical sheet.
It is the complex nature of the coefficients wnhich make convergence on the
unphysical sheet a non-trivial result.

(ii) s._<s<s In this region we obtain only very limited convergence;

pad 1:

typically one or two significant figures, as compared with at least six
figures on the physical sheet.

(iii) <5, In this region the approximants do not converge and do
not indicate the presence of the 'second-type' singularity at s=0.

Thus we see that, using multi-valued approximants, we can obtain a
limited amount of information on the unphysical sheet together with very
good results on the physical sheet.

This is a remarkable result; uéing only information about a function
on one Riemann sheet, we have obtained (using the quadratic and cubic
approximants) information on a second sheet of the function. Effectively,
the quadratic (and cubic) approximants perform an analytic continuation of
the function from one Riemann sheet to anotiier; this is a very powerful

ferm of analytic continuation.
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(b) ZERC MOMENTUM VERTEX PFART

The zero momentum vertex part is obtained by differentiatin.: <h

unrenormalized scalar self energy graph with respect to m. (We nee

&

consider the unrenormalized self energy graph since the ensuing diffzrentiz

tion is equivalent to the introduction of a zero momentum particle in%o

graph; the resulting graph is not divergent.) The matrix element

easily derived from F(s) of §ka, and is a multiple of
|

da
ls) = al
G > 0 P U-w)+ mis - <l-al s

G(s) has the Taylor expansion (about so)

=2 \
- ¢ S [Mz “-‘,\) _ r“2‘,‘.‘ _‘(K‘A__JJSCJ[\-*H

As shown in Table 5 (again with m=1 and}L:l, G) the results obtained

G(s) exhibit the same features as those found for the self energy crzph of

gha.

5. THREZ POINT FUNCTICNS

Sa. THE TRIANGLE GRAFH AND ANOMALCUS THRIGHOLDS

With the notation of Appendix 2, the matrix element for this rrccess i

proportional to

\
Mis) = L
du wyll-vls + yl-wd M-

° %

If we write

Dis) = avil-uls + wli-w)m? -

then the expansion of D(s) about s,» & point in the upper half s-pl

Dils) =Dy + w2vil-vits—se)

where DO:D(SO); no higher order terms occur in this Taylor expansic

D(s) is linear in s. We then obtain the following expansion for M:

hse) i \ r 7
ZH Moot | du | wludloal] 4y
=0 é JO Dor"”

The singularity structure of the triangle graph (see Appendix

that we have two cases to consider:

Lz

' 4

~~
u
.
.

¥}




COMPARISON OF THE (6/6) PADE AND (4/4/4) QUADRATIC APPROXIMANTS TO THE SICOND ORDER ZERO MCMENTUM

TABLE 5:

VERTEX PART, FOR VARIOUS VALUES OF s_.
5 =1+ 5 =l.bi 5 =1.8+i EXACT VALUE

s MODULI OF ERRORS MODULI OF ZRRORS MODULI OF ERRORS OF G(s)
P.A. (2x1072,6x107) P.A.  (4x10™2,4x1077) P.A.  (2x1072,1x107)

- QeA. (1x10'6,7x10‘5) Q.A. (lx10-4.2x10-6) Quhe (6x10'“,5x10‘3) e
P.A. (1x1077,1x1072) Phs (1x107%,1x10™%) P.A, (2x107%,7x10™%) ’

— Q.A.  (1x1072,8x10™H) Q.A.  (3x1072,1x10™2) Q.A.  (8x1077,7x1072) ReiBlasiaietd
P.A.  (7x1072,4x10™2) P.A. (6x1072,2x107%) P.A. (2x1071, 13107

150 Q.A. (241077 ,1x107) Q.A.  (1x107",3x1073) QA (2x1072,6x1072) BB
P.A.  (3x107°,7x10°) P.A. (241072 ,4x107°) P.A. (5x107°,2x10™°) |

e Q.A.  (7x1072 lx1072) QA (5x1070,2x10™h Qi (1x107,6x107h L S
Puie  (7x107",3x107%) P.A.  (1x1077,1x107°) P.A. (1x1072,3x10™H

500 Q.A.  (3x1077,3x1077) Q.A.  (3x107°,6x1077) Q.A.  (1x1072,3x10™ e
P.A.  (3x1077,2x10™7) P.A. (1x1072,2x10°1H P.A.  (7x1077 ha10™ )

22 QA (121075, 151075 Q.A.  (5x1077,5x10™0) Q.A.  (1x107,1x1077) RS Rt
P.A. (2x1072,2x1077) P.A.  (1x10~7,8x10™) P.A. (2x107",1x107")

i Q.A. (1x1077,1x10™) Q.A.  (1x167°,7x1077) QA.  (2x1072,3x10~%) (-0'20613282'1'3388?5“1)
P.A.  (2x1077,2x10™°) P.A. (1x1072,3x10™ 1) P.A. (1x1072,5x10™%) |

=7 Q.A. (2x107°,3x107°) Q.A.  (4x10™2 Lx1072) QoA. (0™t 15107 e S
P.A. (1x1072,3x10™°) P.A.  (1x1073,6x10™ P.A.  (2x1072,1x107°)

3.00 _ (-0.259432861,1.C9242191)
Q.A.  (4x1077,1x1072) Q.A. (6x1077,1x1079) QuA.  (6x10™,1x10~")
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(i) Ma>2md: There is an anomalous threshold on the physical sheet at

2—MZ)/Emz, lying below the normal threshold at

s=4m2(1—r2), where r=(2m
stiat

In Table 6 we compare the (7/7) Padg, (4/4/b) quadratic and (3,/3/3/3)
cubic approximants to (5a.1), using the series expansion (5a.2). The mass
parameters used are M=1 and m=C.6, producing the normal threshold at
s=1.44 and an anomalous threshold at s=1.22, Since we have no exact result
for (5a.l), the number of figures quoted in the results indicate the
agreement between successive approximants. The expansion parameter used
is sO=l+i, anéd for all the results quoted in this (and the following section)
the quadrature rule used in (5a.2) had a maximum of 25 integration points
in each dimension.

The results show that, compared to the Padé approximants, the quadratic
(and cubic) approximants give roughly two more significant figures below
threshold; above threshold roughly one rore significant figures is obtained.

(id) M2<2m2: The anomalous threshold lies on the unphysical sheet
reached by passing through the normal threshold branch point and, for
M2=2m2, it emerges through the normal threshold branch point.

As with the self-energy grarh of §hrthe multi-variable approximants
can be used tc cbtain information on the unphysical sheet, and in particular
to trace the path of the anomalous threshold. Tables 7 and 8 illustrate the
situation for the mass values M=1 and m=0.9.(still with sO:l+i); this
produces the normal threshold at s=3.24 and the anomalous threshold on the
unphysical sheet at s=2.77. YWith reference to Table 7, the most striking
feature of the results is the tremendous imnrovement in convergence obtained
with the quadratic and cubic approximants, especially above threshold.
Again the number of figures quoted in the results indicate the agreereunt
between successive apvroximant; for all the examples of this chapter, for
which we have no exact result available, we shall adopt this presentation of

the results. The results of Table & illustrate the nature of the accuracy

obtainable on the unphysical sheet; we note that the branch cut starting at

8y}

2
5 < % 3
ced by the approximants from -oo to Um“(l-r). Along the

2/~ .
s=4m“(1-r) is pl



TABLE 5: (7/7) PADE,(4/h/L) QUADRATIC AND (3/3/3/3) CUBIC APPROXIMANTS TO THE TRIANGLE GRAFH, ON THZ PHYSICAL

SHEET, IN THE PREGENCE OF AN ANOMALOUS THRESHOLD LYING ON THE PHYSICAL SHEGT, WITH EXPANSION POINT

so=1+i.
s ' (7/7) PADE APPROXIMANT (4/4/h) QUADRATIC APPRONIMANT (3/3/3/3) CIUBIC AFPROXIMANTY
0.4 (-3.60755,0.00002) (-3.607531,-0.0000005) (~3.60753103,-0,000(:C009)
0.6 (-4.11176,-0.00007) (-4.111773,-0.000004) (-4.1117728,0.CCCO005)
0.8 (-4.8918,0.0004) (-%.891841,-0.000008) (-4.8918399,-0.000002)
1.0 (-6.379,-0.006) (-6.37889,-0.0001) (-6.37891,-0.000006)
i (15,-1) (-13.1,0.10) (-13.2,0.09)
1.h (-3.54,-10.26) (-3.99,-10.8) (-3.90,-9.57)
1.6 (-1.067,-6.894) | (-1.095,-6.874) (-1.105,-6.892)
1.8 (-0.586,-5.651) (-0.5819,-5.6576) (-0.578,-5.6562)
2.0 (<0.2759,-4.939) (-0.2743,-4.9350) (-0.2753,-4.9327)




(5/5/5) QUADRATIC AND (3/3/3/3) CUBIC APPROXIMANTS TO THS TRIANGLI GRAFH, IN THZ FHYSICAL

TABLE 7: (8/3) PADE,
ROGION, WHEN THE ANOMALOUS THRESHOLD LIES ON THE UNPHYSICAL SIEET, WITH s =1+i.

s (8/8) PADE APEROXIMANT (5/5/5) QUADRATIC APP&OKINANT (3/3/3/3) CUBIC AFPRUXIILNT
2.3 (-1.1952361,-C.bx10710)* (-1.195236126,-0.2x10" %) * (~1.195236126,0.1x10" 0} *
2.5 (-1.2769717,0.2x10'8)‘ (-1.276971668,_o.7x10‘11)' (-1, ?7697166u,_o.8x10'19)*
2.7 (-1.387%6861,0.6x10"7) (~1.383686029,-0.2x10"1°) (-1.387686029, 0. 3x10™--)*
2.9 (—1.53588,-o.ux10‘6) (-1.535875788,-0.1x10'9) (-1.535875788,_o.ux1c“1°)
3.1 (—1.80144,-0.3x10_3) (-1.80136557,0.4x10‘8) ' (-1.80136557,0.2x10“9)

5.3 (=2.84-1) (=2.39689,-0.64639) (-2.39688 ,-0.64639)

3.5 (-2.2h,-1) (-1.976224 ,-1,120416) (-1.976225,-1.120415)
3.7 (-1.6,-1.1) (-1.677079,-1.2830256) (-1.677079,-1.2830257)
3.9 (-1.6,-1.4) (-1.4503496,-1.352197) (-1.4503495,-1.752197)
L1 (-1.2,-1.5) (-1.271293%,-1.379320) (-1.2712933,-1.379320)




TABLE 8: QUADRATIC AND CUBIC APPROXIMANTS TO THE TRIANGLE GRAPH, ON THE
UNPEYSICAL SHIET, WHEN THE ANOMALOUS THRESHCLD LIES CON THL
UNPHYSICAL SHEET; WITH sozl+i.

- INDICATES THE APPROXIMANT HAS NOT CONVIRGED.

s (5/5/5) QUADRATIC APPROXIMANT (3/3/3/3) CUBIC APPROXIMANT
2.5 o .
2.7
2.9 (-7.30,0.004) (-7.36,-0.01)
3.1 (-4,318,-0.0001) (-4.319,-0.0003)
3.3 (-2.39689,0.64639) (-2.39689,0.64639)
3.5 (-1.97622,1.12042) (-1.97622,1.12041)
347 (-1.67701,1.28302 (-1.67708,1.28303)
3.9 (-1.45035,1.35220) (-1.4503509,1.35220)
4.1 (-1.27129,1.3793236) (-1.27129,1.37932)




-L8..
cut generated by the anomalous threshold convergence is not yet attained,
in the region between the two branch points three to four significant
figures afe ootained and along the normal threshold branch cut roughly six
significant figures are available.

5b. A THREE PCINT PRCDUCTICN PROCLSS

The matrix element (apart from constant factors) for the three point
production process under consideration is given in Appendix 2b. In this
section we are only concerned with the one variable situation in which t
is fixed and an expansion is formed in (s-so); the two variable case will
be treated in Chapter 4. In the present case, from (A2.11), the matrix

element has the expansion

Z(-l)j \5‘5(’:)’} u,&wJ M
j=0

Mis-s.)

where 2 2
Dc, = \.@V\\-v)sﬁw\\-u)\: + uﬂ‘u)l\w}l"\ -m
The singularity surface is given by (A2.12) and Fig 4 (of Appendix 2)
indicates the singularities lying on the physical sheet. tle can again use

the multi-valued approximants to simulate the unphysical-sheet singularities.
For the results quoted in Tables 9,10 and 11 we have used the mass values
M=m=1 and expansion point uo=l+ i; in Tables 9 and 11 we have, with t=1,
the anomalous thresholds at s=0 and s=3 on the unphysical sheet and the normal
threshold at s=4 on the physical sheet. We make the following obser Vdu“un“;
(i) In Table 9 we again find that the Padé approximants do not converge
above threshold (cf, §5a)whereas the quadratic and cubic approximants
produce roughly seven significant figures in this region.
(ii) In Table 10 ve see that the positicn of the anomalous threshold
on the physical sheet is reasonably well approximated by all the
approximation schemes. However, as in (i), the Padé scheme is not
converging above threshold in contrast to the quadratic and cubic approximants
which converge well in this region.
{iii) In'Table 11, with t=1, the unphysicel singularities occur at s=0

and s=3 and it is cnly the singularity at s=3 which is simulated by the




TABLE 9: PADE, QUADRATIC AND CUBIC APPROXIMANTS TO THE THREX POINT FRODUCTION PROCESS, ON THE PHYSICAL SHIET, WHEN

THE ANOMALOUS THRESHOLDS LIE ON THE UNPHYSICAL SHEETS;

WITH t=1 and so=1+i.

(8/8) PADE APPROXIMANT

(5/5/5) QUADRATIC APPROXIMANT

(3/3/3/3) CUBIC AFIROKIMANT

(-0.604599788,-o.2x10'14)'
(_0.6712531057,o.1x10'1“)‘
(-o.768471355,o.ux10’13)‘
(<0.937790%31,0.8x10™2) *
(-1.101658,_o.hx10‘6)
(n1;66,—0.22)

(-1.1,-0.9)

(-1.1,-1)

(~0.9,-0.9)

(-0.8,-1)

(—0.604599788,-O.&xlonlu)'
(~0.6712531057,-0.9x10"27) *
(-0.768471355,0)*
(=0.9377903074 ,-0.3x10™12) *
(-1.101657276,0.9x10~11)*
(-1.8144,0,0008)
(~1.341%969,-0.849204318)
(-1.0467752,-0.97384590)
(-0.843689823,-1.0022043)

(-0.6949563,.-0.99633121)

(-0.604599788 ,0. 3x10™+7) *
(=0.6712531057,0.5x10"6) >
(=0.768471355 ,-0.2x10"+7) *
(-o.9377903o7b,-o.leo'13)‘
(-1.101657276,0.9x10" 1) =
(-1.8144,0.0002)
(-1.3413971,~0.8492042)
(=1.0467750,-0.97384605)
(-0.84368981,-1.0022041)

(=0.6949565,-0.99633118)




TABLE 10: PADE, QUADRATIC AND CUBIC APPROXIMANTS TO THE THREE POINT PRODUCTION PRCCKGS, ON THE PHYSICAL SHzET,

INDICATIS THE ENTRY HAS NOT CONVLRGED.

WHEN THLRE IS AN ANOMALOUS THRESHOLD (AT s=3.66) ON THE PHYSICAL SHEET; WITH t=3.8 AND so=1+i.

(8/8) PADE APPROXIMANT

(5/5/5) QUADRATIC APPROXIMANT

(3/3/3/3) CUBIC ARIROXIIZIIT

5.1
5.6

6.1

(~1.6376068296,0.1x10"+1) *

(-2.4992187,0.2x10‘6)
(~4.220,-0,003)
(~-5.83,-0.06)

(~1.25,-10)

( v 3+19)
( =201}
(—,-2)

(""_"'1"'1-7)

(-1.6376068296,0.1x10" 11y *

(-2.&9921828,o.ux10‘8

)
(-4.3201,-0.000k4)
(~5.876,-0.01)
(=5.7,-5.2)
(~0.796,-3.997)
(~3.180,-2.7634)
(-1.238,-2.2728)
(-0.0155,-1.970765)

(0.05222,-1.75765)

(=1.6376068296 ,-0.1x10" %)

(-2.49921837,0.3x10™7)
(-4.3209,0.0002)
(-5.896,0.004)
(-6.3,-5.24)
(-0.736,-4.03)
(-3.21,~2.761)
(=1.242,-2.2740)
(-0.0149,-1.9712)

(0.0527,-1.7575)




TABLE 11:

SHEETS, WITH t=1;

QUADRATIC AND CUBIC APPROXIMANTS TO THE THREL POINT PRODUCTION PROCESS ON THE PHYSICAL AND UNPHYSICAL

ON THE UNPHYSICAL SHEET THERE IS AN ANOMALOUS THRESHOLD AT s=3.

(5/5/5) QUADRATIC
APPROXIMANT ON PHYSICAL

SHERT

(3/3/3/3) CUBIC

. APPROXIMANT ON PHYSICAL

SHEET

(5/5/5) QUADRATIC
APPROXIMANT ON UNPHYSICAL

SHEET

(3/3/3/3) CUBIC
APPROXIMANT ON

UNPHYSICAL SillinT

3.5

4.5

(=0.937790307k ,~0.3x10™12)

(-1.101657276,0.9x10“11)
(-1.8131,0.0008)

(-1.34132969,-0.849204318)

(~1.0467752,-0.97384596)

(-0.9377903074,-o.2x10“13)
(-1.101657276,—O.lxlO_lO)
(-1.8132,0.0002)
(-1.3413970,-0.8492042)

(-1.0467751,-0.9738461)

(-12.36,-0.%4)
(-4.3896,-0.003)
(-1.8145,-0.0008)
(-1.3413968,0.849203)
(-1.0467761,0.9738452)

-2k ;~2)

(=4 .394,-0.002)
(-1.8144,-0.0002)
(-1.3%41398,0.8492033)
(-1.046787,0.973851)
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approximants. As Table 11 indicates, we can obtain remarkably accurate
results on the unphysical sheet for s=3; in contrast, for s<3, convergent
results cannot be obtained and for this reason we do not tabulate any
results for s<3.
We again conclude that useful information on the unphysical sheet can

be obtained with the guadratic and cubic approximants.

6. FOURTH ORDIR SCALAR BCX GRAPH

The fourth order scalar box graph is a function of the two invariants
s and t (see Appendix 3) and, since we are only concerned with one variable
approximation schemes in this chapter (two variable schemes being considered
in the following chapter), we consider % to be fixed and consider
expansions in (s-so). From (A3.6) we then obtain the following expansion
for the matrix element M:

So . . L | ) . J
Z\w) G s-s ) | du | dv ] dw wdiow) [ u :’“1']_.
=0 ¢ Yo Jo D"

MEETE D lse) = wevli-vlse (ewPuli-wlE = (l-a MP -we
Because of the complicated nature of the singularities of this graph (3a)
we do not attempt to produce results on the unphysical sheets and we only
consider the physical sheet containing the normal threshold at s=QM2.
Some typical results are shown in Tables 12 and 13, where we compare

the Padg€, quadratic and cubic approximation échemes for t=0 and t=-1, with
expansion point so=3+3i. The mass values used are M=m=1 (producing the
normal threshold at s=4) and the quadrature rule places a maximum of 25
points in each dimension. The exact values quoted in the tatles are

derived from (A3.7) and (A3.8); for t=-1 no exact values are quoted above
threshold and in this case the number of figures quoted for each approximant
is based on the values of the next lowest order approximant. Again the most
noticeable feature of the results is the tremendous improvement in

convergence above threshold obtained with the quadratic and cubic approximants.

We can obtain an idea of the class of functions for which the rotation

method of this chapter will be of value by locking at the poles of the Padé




TABLE 12: PADE, QUADRATIC AND CUBIC APPROXIMANTS TO THE FOURTH ORDLR SCALAR BOX GRAPH WITH t=0O and so=3+3i.

ERROR IN (7/7) PADE ERROR IN (4/L4/L) ERROR IN (3/3/3/3)
= APPROXIMANT QUADRATIC APPROXIMANT CUBIC APPROXIMANT EXACT VALUE
0 (1x10'9,3x10‘7) ( 10'9,-8x10‘9) (7x10’9,6x10"9) (0.263600141,0)
1 (9x10°% ,2x10™7) (4x10"2, 2x10™9) (5102 3530 ) (0.3022998940,0)
2 (4x10™7 ,-1x10"7) (5x10™2,2x10™7) (4x10™2, 4x10™%) (0.361596751,0)
3 (5x10'6,5x10'6) (9x10‘9,2x10”8) (2x10“8,-5x10“9) (0.472799717,0)
4 {0.16,0:1) (6x10‘3,8x10'3) (3x10“3,8x10'3) (1.2092,0)
5 (131072 ,1x10™1) (6x10™7 ,7x10™7) (1107, 5x10°7) (0.3893953,0.7024815)
6 (110~ , 2x10™) (4x10™7,1x10™7) (6x10~7 ,1x10™°) (0.1496179,0.6045998)
? (1x10~, 1x10~%) (3x10~2 , 3x10~7) (1x207°  5x10~9) (0.04587218,0.514163791)
8 (3x10’5,1x10’“) (2x10'6,4x10“8) (8x10‘8,1x10‘6) (~0.00745018,0.44428830)
g (1xlo'“,6xlo'5) (1x10’7,4x10'7) (2x10‘6,6x10‘7) (-0.03758282,0.3902675)




TABLE 13: PADE, QUADRATIC AND CUBIC APPROXIMANTS TO THE FOURTH ORDER SCALAR BOX GRAPH WITH t=-1 AND so=3+3i.

(0.019,0.3289)

(0.0186903%,0.3%9314875)

(0.0186909,0.3931477)

(7/7) PADE (4/4/4) QUADRATIC (3/3/3/3) CUBIC
s APPROXIMANT APPROXIMANT APPROXIMANT EXACT VALUL
0 (0.2357113,0.3x10'8) (0.235711282,-0.2x10'8) (0.235711282,-0.6x10‘12) (0.235711282,0)
1 (0.271009560,0.2x10™2) (0.271009560,0.2x10™+°) - (0271009560 ,-0.9x10™ 1) (0.271009560,0)
2 (0.325389313,-0. 4x10~1°) (0.325389313,0.2x10"1°) (0.325389313,-0.1x10" 1) (0.325389313,0)
3 (o.u28303305,o.8x10'l°) (0.428303305,-0.3x10'1°) (0.428303305,-0.7x10‘12) (0.428203%05,0)
4 (1.03,0.04) (1.1382,-0.0003) (1.1390,-0.0007)
5 (0.33,0.647) (0.32802186,0.64923075) (0.3280217,0.6492306)
6 (0.116,0.54) (0.1143077,0.5452639) (0.1143079,0.545264147)
7 (0.023,0.46) (0.0256293,0.4582049) (0.0256287,0.4582052)
8
9

(-0.038,0.34)

(-0.04312853,0.3437376)

(0.04312767,0.343736)




FIG.4: LOCATION OF THE POLES OF THE DIAGONAL PADE APPROXIMANTS TO THE FOURTH ORDER SCALAR BOX GRAPH, WITH EXPANSION

POINT s°=l+i.
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approximants. Regarding the box graph as a function of s, we do not know,
for example, whether it is a series of Stieltjes and so we cannot be certain
of the location of the poles of the correspending Pad€ appreximants (see
Theorem 1.3 of Chapter 2). So; after rotation, we cannot be sure that the
poles lie in the region indicated by Van Vleck's theorem (and indeed we are
not sure that Van Vleck's theorem is valid for the function representing
the box gravh). We can therefore regard the location of the poles of the
(diagonal and paradiagonal) Padé approximants as an indication of the
validity of Van Vleck's theorem for functions whose S-fraction expansicn is
not readily (if at all) computable. In Fig 4 we have plotted the positions
of the poles of the diagonal Pade approximants obtained with expansion pcint
s°=1+i. The great majority of the poles lie almost exactly on straight
lines, in the lower half s-plane, passing througﬂvso and the normal threshold
branch point, as indicated by Van Vleck's theorem. Certain poles,
especially of the higher corder approximants, do not conform to this schene;
however, the residue at these poles is extremely small. For example, the
residue at the "well-behaved" poles of the (9/9) Pad& approximant is of the
order of 10_2, whereas for the remaining ''badly-behaved'" poles the residue
is about 10-8. For the box graph this behaviour of the poles occurs for
all the values of s, so far investigated; in practice, however, these
anomalous poles do not cause any trouble.

If we consider the multi-valued approximants the situation is rather
different. In contrast with Padé approximants, the approximants do rot
need to simulate the branch cut by a sequence of poles; in general, the
poles of these multi-valued approximants are placed on one of the 'unphysical'
sheets of the approximant (as explained in§2 of Chapter 2) and hence cause
no difficulties. This behaviour is clearly a desirable feature for the
type of calculations discussed in this chapter.

7. FOURTH ORDER SCALAR 3ZLF THNIERGY GRAPH

Frem (Ab.1) (of Appendix 4) we obtain the following expansion for the

fourth order scalar self energy graph:




TABLE 1h4: _PADE, QUADRATIC AND CUBIC AND LOGARITHMIC QUADRATIC APPROXIMANTS TO THE FOURTH ORDER SCALAR SELF

ENERGY GRAPH, WITH s_=3+3i.

(8/8) PADE

APPROXIMANT

(5/5/5) QUADRATIC

APPROXIMANT

(4/4/4/4) CUBIC

APPROXIMANT

(5/5/5) LOGARITHMIC

QUADRATIC APPROXIMANT

(_0.781284,0.5x10'5)
(-0.92362,0.1x10‘”)
(-1.146811,0.1x10'“)
(-1.5756.0.1x10‘“)
(-2.0315,0.6x10’“)
(-3.8,0.39)
(-2.38,~2.779)
(-1.247,-2.949)
(-0.085,-2.521)

(0.433,-2.025)

(0.662,-1.6091)

(0.750,-1.274)
(0.76,-1.017)
(0.56,-0.42)

(-0.781275.0.3x10‘“)

(-0.92364,0.6x10’5)
(~1.146793,0.3x10™°)
t

(-2.0328,0.1x10'3)

(-1.5755,0.3x10"

(-3.967,-0.27)
(-2.3877,-2.8040)
(—1.2506,-2.9435)
(-0.0832,-2.5194)
(0.4317,-2.0260)
(0.6640,-1..6050)
(0.7494 ,-1.,2710)
(0.759,-1.017)

(0.566,-0.4280)

(-0.781263,0.2x10—4)
(-0.923637,0.2x10'4)
(~1.1467992,0.5x102)
(-1.57553,0.1x10““)
(-2.0325,0.4x107°)
(-4.0,-0.002)
(-2.3899,-2.8080)
(~1.2501,-2.9419)
(-0.0821%,-2.5203)

(+0.4310,~-2.0241)

 (0.6609,-1.6064)

(0.7492,-1.2757)
(0.7633,-1.021)

(0.569,-0.420)

(-0.781270,0.2x10““)

(-0.9236341,0.2x107 )

(-1.1468017,0.8x10-6)

(-1.575&8,0.2x10‘“)
(-2.0331,0.3x10™°)
(-~3.81,-0.20)
(-2.3889,-2.8338)
(-1.2577,-2.9313)
(-0.076,-2.5188)
(+0.428,-2022)
(0.6607,-1.607)
(0.7488,-1.2748)
{0.761,-1.021)

(0.577,-0.420)
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wherezz, C and D0=D(s=so) are functions of the integration variables u,y,w
and z and are explicitly defined in Apprendix %#. As in the case of the box
graph of 6, we confine our attention to the physical sheet containing the
nermal threshold.

The results of Table 14 correspond to the mass values M=m=1, so that
the normal threshold is at s=l; the quadrature rule used places a maximum
of 23 points in each dimension. We have compared the Padé, quadratic,
cubic and also the logarithmic quadratic approximants (see (2.8) of Chapter
I); the corresponding logarithmic Padé approximants have also been used
but these produce relatively poor results and we do not tabulate them here.
The basic trend of the results is as before, with the multi-valued
approximants producing more accurate results than the single-valued Padé
approximants. A comparison with the previous tables shows that the results
obtained for this fourth order graph are noticeably less accurate than the
results for the diagrams previously considered. This loss of accuracy
occurs because the power series coefficients (given by tﬁe four dimensional
integrals of (7.1)) are determined considerably less accurately than for the
previous graphs. Improved results could possibly be obtained by employing
more sophisticated integration routines (see'§§0.

8. CONCLUSIONS

From the examples considered in this chapter we draw the following
conclusions:

(i) The proposed method of calculation (described in 33) of Feynman
matrix elements in the physical region certainly appears to be a feasible
method of calculation. For higher order graphs certain difficulties in
performing the numerical integration over the Feynman parameters are
encountered, as exemplified by the self energy graph of §7. Also, for the
box graph of§€5, difficulties arise in integrations when the external
particles are off the mass shell and it has not yet been possible to

reproduce the anomalcus thresholds which arise in this case (11). lowever,
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in such instances it is not the basic idea of the method which is at fault
but rather that the numerical integration routines used are not sufficiently ‘
reliable. It may be that adaptive integration routines (12), where the ‘
assignment of quadrature points is based uvon the behaviour of the integrand,
will prove to be of use in this context. Another possibility is to inte-
grate directly over the simplex, instead of intreducing the Feynman
parameters to convert the problem to one over the pypercube (and then using
the standard Gauss-Legendre quadrature). In this context, the integration
formulae discussed in (13) have been applied to the triangle graph of 35a,
though at present without any real success.

(ii) The use of multi-valued avproximants is to be recommended.
Naively, we would exvect to be able to approximate a function with a branch
point by an approximant which itself possesses a branch point. We can
interpret the results of this chapter with this pocint of view. In Apnendix
5 the nature of the leading singularities of the Feynman graphs discussed in
this chapter are given. In particular, the fourth order box graph of §6
possesses a leading square root singularity and, in fact, it was this
observation (14) which produced the original use of quadratic approximants
in this context. For this graph the quadratic approximants (especially
above the normal threshold) produce dramatically better results than the Padé
approximants; essentially, we can regard the quadratic approximants as
approximating a square root branch point by a square root branch point.
Continuing with this line of reasoning, we would expect the logarithmic Padé&
and quadratic approximants to work well for the triangle graph, whose
leading singularity is logarithmic. However, the numerical results
obtained with these approximation schemes are disappointing; the logarithmic
Fadé approximant is not noticeably better than the ordinary Pad€ approximant
and the logarithmic quadratic approximant is definitely worse than the
ordinary quadratic approximant. The explanation of this behaviour is nct
clear and it appears that more numerical study of these approximation schemec
is required,

(iii) A feature of the methods discussed in this chapter is the arbitrary
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nature of the expansion parameters S, which allows a consistency check to
be made on the results. The question of the optimal value of this para-
meter then naturally arises; here we attempt only to give a qualitative
discﬁssion of the problen. In'Fig 5 we illustrate the expected rotation
of the branch cut, for various values of Sy of, for example, the function
f(s) =1n(1-s). If we wish to calculate values of f(s) both for s<l and
s>1, then we would expect the optimum value of 8, to be directly above the
branch point s=1; in practice, s°=1+i seems to provide an optirmum (or at
least a near optimum) choice. If, however, we wish only to calculate f£(s)
for s>1 then an optimum value of S with Res6>1 would seem more reasonable
(although the actual value of S, is not at all obvious). Thus, even with
the 'simple' function 1n(l-s), the optimum value of S, is dependent upon
exactly where we are interested in approximating the function.

For the Feynman diagrams the situation is very much more complicated.
Now the value of 5, not only determines the angle through which the branch
cut is rotated, but also determines the accuracy to which the multi-
dimensional integrals can be evaluated. [IHowever, the exact relation between
the accuracy obtainable and the value of Sy is not at all clear. In
practice, if we wish to evaluate the Feynman matrix element both above and
beléw the normal threshold (at s:sn, say), we have found that choosing
Re Sy slightly less than s, (and Im sézRe so) generally produces rea§onable
good (though undoubtedly not optimum) results. For example, for the box
graph of 6 with sn=4, we choose so=3+31 and Tebles 12 and 13 indicate the
type of results this choice produces. The actual determination of an
optimum value for 8, is clearly a very difficult problem.

(iv) A priori, the only information we have about the particular graph
under discussion is that the imaginary part of the matrix element is zero
along the real axis below the normal threshold (or perhaps below an
anomalous threshold). t should be possible to incorporate this information
intc the method of calculation. For example, we can modify the equations
defining the Padf approximant so as to make the imaginary part of the

approximant zerc at certain pre-selected values below threshold. [IHowever,




FIG. 5 EXPECTED ROTATION OF THE BRANCH CUT OF ln(l-s) FOR VARIOUS VALUES OF so.
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in practice, such alterations seen to destroy the homegraphic invariarce
properties of the approximants and lead to relatively poor results.
Nevertheless, it does seem desirable to incorporate any available inform-
ation into the computational schene.

(v) The graphs of sections 4 and 5 illustrate the very powerful
method of analytic continuation exhibited by the quadratic (and cubic)
approximants; namely, the continuation c¢f a function from one Riemann
sheet to another. In this connection we expect the multi-valued

approximants considered here to prove very useful in the many areas of

mathematics where multi-valued functions cormmonly arise.
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APPENDIX X: SECOND ORDER RENCRMALIZED SCALAR SELF ENLRGY

(a) EXPRESSION FOR THE MATRIX BLEMENT

7 7

FIG I.

The Feynman graph (5) for this process is given in Fig.I, the incoming
particle (of mass m) having four-momentum p and the emitted particle (of
mass[b) four-momentum k. The matrix element for this process is given by

the usual Feynman rules (5) and is proportional to

}[S)= S » 4k (A1.1)
(K2l €)( (p-K*-m? +L€)

To the mass of each particle occuring in an internal line of the graph a
small negative imaginary part is added; this is the Feynman prescription
(5) for obtaining physical amplitudes. It is equivalent to the limit
obtained by approaching the branch cut of F(s) (see below for the
definition of F(s)) from the upper half s-plane; the Feynman prescripticn
allows (Al.1) to be evaluated with real external four-momenta (that is, with
s real).

‘To evaluate (Al.1l) we combine the denominators using the Feynman

formula (5)

I (Y V-
ob X [ca+ (-<)b]?
to give

o)== [ dalic-2hpe \padle- tralp-ig]

. . s 3 . . . v 0
We diagonalize the denominator by introducing the variable k:

k'=k-e«p

to give
HeY) = Jﬂ A&Jw Ay (k’z-bie)-z (A1.2)
¢ -0

where

L = P'ztal_«)»fph [t~ u*) e
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To evaluate (41.2) consider

7= j” 3 (K- Lrie)

-0

3

The path of the ko—integration is along the real ko axis, the poles having
been displaced by the Feynman prescription. We can rotate the integratic=
path by /2 in the ccmplex plane so the integration is along the imaginary
axis from -ieo to +icq. This procedure is perrissible since, during the
rotation, we never cross any singularities (these being located above the
negative real axis and below the positive real axis) (6). We therefore
introduce the integration variable kq:

ko= Ly
Then (using the metric of (6))

k}:z k;:_kgl== '(\L::+'E:)

so that the integral now becomes one over Zuclidean four-space:
)
‘J— . d.k* d}k
= -l THERENTE! 3
kgL

Introducing four-dimensional spherical polar co-ordinates, we find (&)

o P xds __iwm (AL.3)
J= - lx+L )3 AW

Since f(s) is logarithmically divergent we must consider the renormalizesd

second order (scalar) self energy F(s), defined by

Fig= Fis)- Flad)
i S i | - '
o A&J Au\‘ ‘\k:'-L\";G)Z [kx-1, +£G)I
o _oo

where
L° = L('\’z“’ 2) = wri-«! st
Noting that | L
F.\S)-:' -EJ\ &J\ j» d..\_
0 Lo
and using (Al.3) we obtain |
Flo= 'LJ’ da |, | fU-a)+ mia - <l-als

) qu-"(l, + ﬁ\L‘(L

(b) SINGULARITY STRUCTURE COF F(s)

Although we can determine the singularity structure of F(s) directly

(@]

from (A1.L) we shall find it more convenient tc employ the Landau-Cutkosky




=57~
rules ((7) and (8)); these rules are very useful for determining the
singularities of a graph (especially for complicated graphs), and provide
a simple method for deciding which of the singularities lie on the physical

sheet.

To define these rules we write the Feynman integral (after intro-

ducing Feynman parameterscc.) in the form

_ Ve, (a1.5)
T- [ TTee TT«.\‘*H[ Snkf“ LJ)]V

o v Zoo )=l

where U and r are defined 1n§l, and the q are the independent ''loop
momenta'', The ki are internal momenta, and are determined by ﬁhe mozentum
conservation delta functions as linear functions (with coefficients +1,
-1 or O) of the g, and the external momenta (and the i€ has been absorbed
into the mi). The Landau-Cutkosky rules then give the following conditions
for I to have a singularity: .

W ki=m? liab o)
and

\n)zi < k=0 (i=l.....r)
for each independent loop of the diagram. The sign is plus or ninus
according to whether the direction of ki is with or against a chosen
direction around the loop. The leading singularity of the graph (that is,
a singularity not shared by the contracted graphs) is then given by a
solution of (i) and (ii) withec,#0 for all i; furthermore, the singularity
lies on the physical sheet prov1ded<c >0 for all i (3a).

For the graph of Fig I, writing k;=k and k,=p-k, conditions (i) and

2
(ii) give k,z‘-‘ }La
'k: _ mz (ﬁ;.e_a}
and
&k —=zle =0 (A1.60)

Multiplying (A1.6b) in turn by kl and k2 we obtain the system of equations

x»k;&_ szh\-{l: ¢ Al.7)
’ﬁkwkl = &i};? 2=

which have a non-trivial sclution if and only if
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kitkg =k k,)*=0

Using the relation

g = pt = lkpka )P = e W2k,
(obtained from (Al.6a)) this condition reduces to
S =Im+p)* (A1.8)
To determine which of the singularities given by (A1l.8) lic on the
physical sheet, we have from (Al.7),
Dox, 2 = (s (e )
For s=(m-p)2 this gives
ﬂ}def.= -TmP s,
so thate| andcc2 cannot both be positive (as they can for s:(m+#32).
Hence, only the singularity at s:(m+}1)2 lies on the physical sheet.
Finally, we note that, in order to obtain all the singularities of a
Feynman integral, we must permit 'solutions' of the Landau-Cutkosky
equations in which the momentum vectors may become infinite (8). Such
solutions give rise to ''second-type singularities', and it can be shown

(%a) that the second order self energy graph has such a singularity at s=0.
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APPENDIX 2: THRIEE POINT FUNCTIONS (9)

2a THZ TRIANGLE GRAPH AND ANCMALCUS TIHRIICHOLDS

(i) FEMNMAN REPRISENTATION

Ec
Po K
[N l.'Pc'*‘ k) A .
FIG.
2
Ax
Py ) <
Pa

The triangle graph (or three point function) matrix element is, from

Fig, I, prcportional to

. [ e
} (k2-rm?) [lpurpyrk P -] [(-pe K-
-0

(42.1)

where p ,p, ,p_  and are the external four-momenta and k is the internal
a“b’“c

Pa
loop momenta. For simplicity, we take all internal masses to be m and all
external masses to be M and we incorporated all i€ factors into the mass

factors; again, we only consider scalar particles. We therefore have
R ] R 2 2 .
Po'= Py =P =P =M ——
Pat Py + Pc +P4 = 0
and
2
S =patp
To evaluate I we proceed as in Appendix I; we combine the denominators
in (A2.1) using the Feynman formula
| '.].}_l, 3 3
{qL = B! Jﬁ AJR;S’{"' EEIGKL) S
'=' (v} v=1 v=1

where 3

and then diagonalize the resulting denominator with the substitution

k'=k + {Pa'*‘ Pb)""z = Pesi3

Using (A2.2) and (Al.3) we arrive at the result
Iz
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where
D (5) = 1§ + &3(‘*‘1 +°:e.)Mz'—mz

We remove the §-function from (A2.3) by introducing Feynman parameters (5)

u and v, where

= Wy
K= U.«“ -V)
and
Then I is proportional to
| \
du dy (A2.4)
L v : wWvlkuls + wll-u)M™—n? 4

(ii) SINGULARITY STRUCTURE

With the notation

k==K, K= Pk, kg= —(po,ﬂ)vk) (42.52)
the Landau-Cutkosky rules, applied to Fig I, give
ki=k=k = m" (42.5b)
and
s K+ o by + "‘3“3 =0 (A2.5¢)

Multiplying (A2.5¢) in turn by k) 1k, and k3 we obtain the systen
&M + & kke Kk = Q
L A T s L T (42.6)
Kk + Sk + %ﬂ\2 = 0

which has a non-trivial solution if and only if

n\z k»kz. kIKS
dek |k w o k| =0 (22.7)
klkg Vzka m*
Using the momentum conservation conditions
Pt Py kg =K,
P(L + \‘(l. = \(3
and
Pc T k, = kz_

(A2.7) reduces to



[
b (42.8)
delks v | v | =0
, -z v
where "
V= .gﬂfi:LEﬁ_
A
The stability of the particles requires that
2 2
M" < H4m
so that
—I <V <|
On expansion, (A2.8) reduces to the two sclutions
S=0 (A2.9a)

and

S =Hm' (| -¢?) (A2.9%)

From (A2.6), the solution s=0 leads to

K+ & =0

so that bothe«, andek, cannot be positive; the s=0 singularity thus does

3

not lie on the physical sheet. The solution (A2.9b) leads, from (A2.6), tc
ard:l:—d‘-?- j e
and so the «'s are all positive if and only if

Fr<0

which is equivalent to

M >t {A2.10)
Thus, when (A2.10) holds, we have an additional singularity on the physical
sheet lying on the real axis below the normal threshold at 4m2. This is
referred to as an anomalous threshold since the bosition of the singularity
does not correspond to the mass of any vhysical intermsdiate state.

We can follow the path of the anomalous threshold singularity as the
external mass M is varied; when M2<2m2 the anomalous threshold lies on the
unphysical sheet reached by going throush the normal thresheld cut and it
emerges through the normal threshold branch point at M2=2m2. This situation

is shown in Fig 3, where the path on the unphysical sheet is indicated by a .




FIG.2: THE PATH OF THE ANOMALOUS THRESHOLD OF THE TRIANGLE GRAPH
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broken line and the anomalous threshold is displaced off the axis for

clarity.

2b. A THREE PCINT PRODUCTION PROCISS

(i) FEYNMAN REPRESENTATION

FIG.2

<

The Feynman diagram for the process is shown in Fig 2, and the matrix

element is proportional to

I-| -
| (13- m2) [\ P<;+P‘n"k)2' m?'] [\Pc-rmfk)z- mz_l

I can be evaluated using the methods of Appendices I and 2a, and we obtain
| |
]: _ A dv (A2.11)
v wtvill-v) s +uvli-wle + wlhi-wli-viM*-m>
0 o

S = (Po,*‘ Pb)l

where

\: =§Pc+ Pct)l

and the Feynman parameters u and v are introduced according to

o(" =\uV
and

(ii) SINGULARITY STRUCTURE

For this process the equation corresponding to (A2.8) is

- -2

2m

dek | |-%z | ¢ -0 (a2.12)
I=3= T |

which, provided r<l, is the equation of an ellipse and is illustrated in
& 9




FIG.5: THE PATH OF THE ANOMALOUS THRESHOLD OF FIG.3 AS t

IS INCREASED THROUGH REAL VALUES.
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A

N »Re s

t=Pn2ll+r)




Fig h. By using the criterion that all thee«'s be positive, we can show
that only the part of the ellipse shown by a full line in Fig &4 is singular
on the physical sheet.

The path of the anomalous threshold as t is increased through real
values is clear from Fig.4, and is shown in Fig.5. The part of the Landau-
Cutkosky curve which goes into the complex plane and is attached to the
singular arc of Fig.l4 gives rise to a complex singularity for real positive

t>4m2.
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APPENDIX 3: FOURTH ORDER SCALAR BOX GRAPH

(i) FEYNMAN REFPRESENTATION
; 0) S
P )
?\4'\14 ?g
(M
—
% hkm) WI\ B+ P‘.‘.% FIG -I
\g’ﬂ
(-pa+q) P2
P
() ™M)

The Feynman diagram for the fourth order box graph is given in Fig.I;
the mass of the particle associated with each line is given in brackets next

to the line. For the external particles on the mass shell,

pl= M (i=],....,u)
and we also have
(13
P =0
=l (A3.1)

s = ‘?‘ + Pl)z
and

k = \PI+P4‘)Z

The matrix element is proportional to
]

I- L
\(¢-m) UP;* q)*- MIJ “ A n\l] '_(-P... +q)- Ml] (43.2)

-0
The process of evaluation of (A3.2) by diagonalization cf the denominator and

subsequent use of the Feynman formulae to perform the integrations of the
loop momenta, as described in Appendices 1 and 2, can be formulated for an
arbitrary Feynman graph (2). For a graph with L internal {(loop) momenta,
denoted by kl,...,kL and r internal lines, the integration over the internal

momenta gives Cr-ZLfZ

I—W)LELT ]_am (-2 )
<o v=i

W (43.3) -
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where

Qll, k) =D Aokt > Rl + T (43.42)

is the denominator obtained by combining the propagators, and

F\n pl‘l"""‘n‘\_
Hu gn......ﬂ'u
C =del ; : j (A3.40)
F\IL\ H'Lz T - Y
and ﬂ.. nll' el ﬂl\— n‘
Hai By - - Ha W
: ' : : (43.4c)
D =det _ '
Au R -- - -- A By
I R

For the box graph r=4 andlL =1 so that, neglecting constant factors,

- [ TTos-Sa)t @
0 i= =1

L=

‘(AB. 3) gives

Q(({) e dil(%z_ml) + K, [(,P,ﬂuz_M’-] 5 &3[‘\3:*?2*‘\,)’-’- n&]+&w [l—wcu’_ml]
- Q- 2(\‘[&?, +S3\p ) = &‘*P‘t] + [_ . (s—n&)]

using (A3.1). Thus, from (A3.Lc) and (A3.1),

l °’~3.P;+d'3\f.+Pz.) - SuPu

D= dek
Gb 4 SPth) - e e sls o)
. . (A3.5b)
= F K38 + ‘f:zd:q-\: +Mz\"<1+":u—) - k":\"“‘?»)m
Introducing Feynman parameters u,v and w by
*,=uUV
& = ll-wlw

and

&y = L~ ll-w)



we obtain, from (A3Z.5a) and (A3.5b),

& .
IJ W)‘\Jdv \L\'\\ Vs - »L) wil-wie -(1 -wl*M —\UT\:I (A3.6)

The singularity structure of the box graph is complicated and details
can be found in (3a).

(ii) DISPEZRSICH RZLATION FOR BOX GRAPH

For s>4M2, the following dispersion relation (due to Mandelstam (10))
is valid for the box graph of Fig.I (11):
o) (43.7)

_ waa dt’ o(Kk)
Tols k) = . =
. L ls%s) - lt-t) [t K]™

where
Kis' ) = { s'= M) (¥ - tim?) —Hm®
and

e\x)z ' ,x>0
O ,x<0

For the special case of forward scattering we (11) can obtain an

explicit representation for TB' In this case

TnTels, b-0)= L /s —4M" |
4 S mszerl—?.Mz)

and we can evaluate the single variable dispersion relation (t fixed)

To ls v=0)=

IMM 20)

i
T

i

to give, for s>QH2

U tBv  taw'B _n\ /_S_
'I},\s,t—()}—@ e n L»M~ 4M1_| .

where

and
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For s<l+l’12, we can obtain TB(s,tzo) by analytically continuing (43.8)

in s.
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APPENDIX 4: FCURTH ORDER SCALAR SELF ENERGY GRAPH

. | /_/\(‘;_4“\]\ FIG.I
) Sl ) W
P Pk prik+k’ p+K’ ,?
k,\nﬂ

The Feynman diagram for this process is given in Fig.I, where p is the
external four-momenta and K, k’ the internal loop momenta; for each line the
mass of the corresponding particle is given in brackets by the line.

Evaluating the matrix element I using the method of Appendix 3 we obtain,

neglecting constant factors,

i i ) }
= | oli-w Az (Ak.1)
I—L\L\\ )c\\LLVc\v L Aw J; o0

where -
C=RAB-H?
D=Ss+CT
> = Cu~+2F6H-AF-8G?2
and
G = wli-y +vw)
F= wll-vw)
R= G+ (l-Wz
B = F+ U-uwli-%)
L= sw+(
- T =-Mu-nll-v)
H=ull-v)
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APPENDIX 5: NATUREZ OF THE 1DADING SINGULARITY QOF FIVNIMAN GRAPHS

The discussion here follows that of (3a). For a Feynman graph G witZz
N internal lines, the result of integrating over the L independent loop

momenta is, apart fron constant multiplicative factors,
N-2L.-2

I rd& S{Z"‘ _') L@T (45.1)

0 i=|

(see (A3.3)). Consider the singularity corresponding to v contractions
(Cgv<N-1) of G. The Landau-Cutkosky rules can then be written as

D=0

and

& =0 1=01,. .. v (45.2

v

or

%.:0 bmvel, ve2,. ..., N

Performing the o¢~integration in (A5.1) has the effect of changing

D(z;ofl,...¢£ﬁ) to

D\%}‘(nw- I ) D(‘l“ "L"‘I&N“‘)

(where z represents the invariants s,t and soonof G). Then (45.2)
becomes
1
(a) D=0
(b) 5» = O L=O‘\‘...-.'V (h50 04
(c) AV’ |
— =0 v= Vel o N-

If (a) and (b) have solution, for a given z_,
K, = ‘c'i.\-%r)
then (a) gives the singularity surface of (A5.1) as
/
S A ["\'
Dklr,"’ti\-ﬁr),zo (45.4)
In the neighbourhood of z (satisfying (A5.4)) we can expand D by Taylor's

theorem; retaining conly the lowest order terms we have

.

DI h«)"(&) =Dlhr)g;) + \L:‘\":u'zi)ﬂ l'{ - BZ (- (of _aﬁh>

v =i P

-




s
Although we are only concerned with a finite segment of hypercontour
in the neighbourhood of e =og ,the singular part will be unaffected if we let
each €-integration extend from -odto +oo0, provided the power (N-2L) of the
denominater in (A5.1) is sufficiently large. Explicit integration then
shows that the singularity is the same as that in

[DI (41r ;i H‘.r” ]‘y

(A5.5)

provided

Y=%{NW+H~QL>O
If Y<O the infinite extension of the hypercontour is invalid. In this cases
we replace p’ by Dl+1\and differentiate the integral with respect to'ﬂ
sufficiently so that the infinite hypercontour extension becomes valid.

Then (45.5) is revlaced by
i 'xl i =)
= o)
[0 (& ®lar))] log D L
wherey'is a negative integer. When ¥ is half-integral and negative (A5.5)

again holds.

APPLICATICN TC THI GRAFPHS CF CHAPTIR 3

We can apply these general results to deterriine the nature of the
o

leading singularity of the following graphs discussed in Chapter 3:

-~

(i) SECOLD ORDER SIELF BENIRGY GRAFH: In this case, and in all the

follewing, we have v=0. Here, N=2 and L=1 so
:L\N—V—\)+EL '=-..'_.
= )
Then (A5.5) shows that the leading singularity is a square root singularity.
(ii) TRIANGLED GRAPH: Here N=3 and L=1 so

and (AS5.6) shows that the leading singularity is a logarithmic singularity.

(iii) FOURTH ORDLR BOX GRAFH: Here l=4 and L=1, giving

¥-3

and hence a leading square root singularity.

(iv) FOURTH CRD:IR SULF LiiIRGY GRADPH: Here N=5 and .=2, so that

y=-1

and hence 2 leading logarithmic singularity.
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1. TWO VARIABLZ DIAGCHNAYL CHISHCLM RATIONAL APPROXIHANTS

In the previous chapters we have considered certain types of multi-
valued approximants in one variable; the cuccess of these approximation
schemes makes it worthwhile to investigate the possible extension of the one
variable schemes to N22 variables. In this chapter we shall concentrate on
the case N=2 and, at the end of the chapter, we shall indicate the possible
extension to three and more variables. In analogy with the one variable
case, these two variable (multi-valued) appfoximants are defined by extending
the method used to define the corresponding two variable rational approximants;
for this reason we first consider these latter approximants. It is also
convenient to consider diagonal approximants initially because

(a) by analogy with the one variable approximants, it is the diagoenal
approximants which we expect to be of greatest use computationally, and

(b) the necessary generalizations to multi-valued approximants are most
easily seen in terms of the diagonal approximants. VWle shall later see that
the off-diagonal approximants can be defined in a natural way from the
diagonal approximants.

Given a two variable power series

= o (1.1
Hz) = Z (2 1

where we use the notation

i"‘\%ulz) i 9‘—’-&“1:"‘-2), Q'—“O;O); 0—°=‘°°/°°)

and
K K <

=14

Chisholm (1) has defined two variable diagonal rational approximants in the
following manner. The {m/m) diazo-al approximant (where gF(ml,mz)) to
£(z), written f(m/ v (z), is the rational function

J }

m m )
Z U i‘— (1.2)

F (m /m) 2 = =

by 2

. 8=Q . .
If we adopt the conventional normalication



« Pl
beczzl
then, to define f(m/n)(g), we need to give a prescripticn for calculating the
.‘\.2 N S o . 2 \ « /= P .
2(m+1)“=1 unknown ccefficients {a;}, {bé} in {1.2). These coefficients are
s . y2 . .
determined by requiring that they satisfy 2(rm+1)“-1 homogeneous linear
equations, formed by equating to zero certain linear ccmbinations of

coefficients in

[ \1)—

(1.2

With this notation, the linear system of cquations becomes

ey= 0 l0<,4<m) 1.4)

~

1:5)

er=10 \05 N+ Aasam;'r\pm . m)

= 1.6
W 'x,’l e"\;?ﬁ\*l-k+wﬁ;geem+'_a‘%=0 \;\-I,E, ..... ,m) 1.6)

The relative weighting of the symmetrizing equations (1.6) is determined by

the ratio w The original choice (1) was w, .=w, .=1 and, in

1\1 Yas2 Asl As2

order to avoid the complication of intrcducing specific weights, we adopt
this choice. We shall later consider possible schemes for choosing the

ratio w

a1t "pse
We can understand equations (1.4)-(1.6), and their method of solution,
in terms of a lattice space diagram in theg;:@ﬁl,agD plane (see Fig.l).

This diagram indicates the terms zf" zéﬁl of (1.1) and (1.2) which are to
be matched; matching occurs on the triangleo<i>0¢x220,¢3+¢?$2m, together
with the symmetrization of (1.€) which is represented in Fig.l by the
numbered crosses along the linec<l+«é=2m+1. An important point is that
(1.5) and (1.6) can be solved independently of (1.4); we first solve (1.5)
and (1.6) for the denominator coefficients {bo} and we can then solve (1.4)

for the numerator coefficients {an}. In the lattice space diagram this
v

corresponds to matching terms in the triangles T, and 7. to deternine {bc}
4

M

and then matching terms in the square S to determine {ao}.

The equations (1.5) and (1.€) are solved by the so-called '"prong method"’



AR
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(2); this is essentially a block by block method of solution and, especially
for large m, greatly reduces the amount of computation and sterage required.
Define, for Ogj<m,
PJ = {(dﬁ ,'j): m+’$0‘| s?,m.-]} U{\j,*‘z) s . tm-J} (1.7)
Then P. is referred to as '"prong j". The matching of coefficients alcng
J o J o (&)

prong zerc produces the linear system

Gust bo= W (1.8a)
where
B - = = = ==l S
f 3 0 |
Cap- = - - ~=Lini,0 | Camo
G-ﬂ\.*! = C-o‘\ o Q})m- (—c‘m+| l-gb)
Q : : |
Com- - - - - - -Cozm-r | Coam
O ----- -0 | O-eennnin 0 |
- ) _
b::k\')m‘o,..-....\)"g ' bo‘n\. ....... O'l; \)c,o] 1.80)
and

Eaforatigy Genneene03 1] G

If we represent the coefficients {bvé} on the square Osos<m,Cs{¢n (see
Fig.2), then the ordering adopted is that indicated by the L-shaped line
marked zerc (which is, in effect, prong zero of Fig.I). The importanti
point is that the (2m-1) coefficients {‘Nat}$ represented by the segment
labelled Ibin Fig.2, can be expressed in ternms of the {btrt} represented by
the segment labelled O (which have already been determined). The
equations come from matching terms on prong I together with the symmetrised
equation obtained from the points (1,2m) and (2m,1). We can write the |
equations on prong I in the fornm

Rmbg+bm§ﬁ=g | (1.9a)

where



Co

' (1.9b)

c'““o “““ Cim2,0 Com - - - - - - - Coam-2 Coam-t
and - +Coma,0 J

Y P N A (1.90)

Continuing the process of matching terms, the {pvt} represented by the

segment labelled 2 can be expressed in terms of the (already determined)
{b.rr} on the segments O and 1. This prong structure illustrates the

important fact that, at each stage, the number of equations in (1.5) and
(1.6) introduced exactly matches the number of new unknowns. It is now

clear that the equations (1.5) and (1.6) produce the following block systen

of linear equations:

= N o -

Gm'H

)JU"'
1=
3

(1.10)

>
3
=
2
IO
_..I.d'
- - o

~ |

R, 5,

o --

mn _J

where the Di are square, of order 2;—1, and have the same structure as Ds
the bi have dimension 2m-2i+l and théir general form follows from that of
b and b, given by (1.8¢) ard (1.9¢).

By writing (1.5) and (1.6) in the form (1.10), we can see that the
{bc..& can be found by a block by block rrocess provided none of the Di

(i=1,2,...,m), nor Gm+l’ is singular. The inversion process then produccs



(1.11)

m-1!

To make a comparison of the two variable approximatiocn schemes
considered in this chapter, we illustrate the appropriate prong structures
collectively at the end of the chapter; the prong structure for the diagonal
rational szpproximants of this section is given in Fig.3.

Having defined the Chisholm rational approximants and indicated how
they can be determined efficiently in practice, we now discuss the main
properties of the approximants. The system cf equations (1.4)-(1.6) are
chosen because they vroduce approximants satisfying a number of properties
which are considered desirable. These properties (proofs of which can be
found in (1)) are:

Pl: SYMMETRY PROPERTY

The approximants are symmetric in 24 and z, (provided we choose the

i 5 =\ = i ° \-
weight w“;l da;a 1 in (1.6))
P2: PROJECTICH PROPTRTY

1f Zl=0 or z2=o, the approximants reduce to one variable Fad@

approximants in the other variable.

P3: RECIFROCAL CCVARIANLCE

The (m/m) approximant derived from the formal reciprocal of the series

[F\‘&/m’ \2) r

Flii: HCMOGRAFPHIC COVARIANCE

The (m/m) approximant is invariant under the transformation
Fq\ﬁr - e he)
2T - \F:l,Z) (1.12)

I“ Brwr
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where A(#O),Bl and B, are complex numbkers.

2

For a certain choice of weights (3), P4 can be extended to include the
relative scale transformations

We = Kewre (e=1,2 Kike=l) (1.13)

Properties P1-Ph extend to the li-variable diagonal. apvproximants (4), and
properties P1-P3 hold for the li-variable off-diagonal generalisations (5)
of the Chisholm approximants. In defining the two variable multi-valued
approximants we seck to preserve properties P1-P4, together with the prong
method of solution.

2. DIAGCNAL TVWC VARIABLI) QUADRATIC APPROXIIIANTS

(a) DEFINITION OF TiIE APPROYIMAINTS

The extension of rational two variable diagonal approximants to two
variable diagonal approximants with branch cuts has been given by Chisholn
(6). The general type of branch cut we are trying to build into the

. . th. . . .
approximants is a t root (t=2,3,...); for the one variable situation, we
have already considered in detail the cases t=2 and t=3, which give rise to
quadratic and cubic approximants respectively. In general, for approximants

. th. . P . i
with a t root branch point, we refer to "t-power approximants'.

Before defining two variable '"'t-power approximants' we have to make an
important (though seemingly trivial) alteration to the definition of the
corresponding one variable approximants. The one variable "t-power
approximants" satisfy an equation of the form

i P (z) fk\i) = O\zq)

(2.2)

where

k
k=0

and Py is the degree of Pk(Z)' The required modification is to let

£ (2.3)
o = Z P + {
k=0

There are thus (t-1) coefficients which must be determined initially; we
v 3

shall later consider methods for deing this.
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Vie now consider the specific case of two variable quadratic
approximants, as these approximants illustrate the basic features comumon
to all "t-power approximants'.. In this case we write (2.1), taking account
of (2.3), in the more familiar form
Pia) [21e) + Qi) bl + Rlz) = Ol ™) (2.5)
where P,Q and R are all of degree m and : - is assumed known. Given f(z)

defined by (1.1) we form the formal square of the power series

where

Ec& s c,. ¢ ' (2.6)

We define the polynomials

Pia) = i P 2™

Qlz) =

13
il
(<]

M=
'
I
1
IR

13

JEN

and

1%

Rlz) = T 2

lﬁl

G

=

with coefficients defined over the square (Q,m) of Fig.4 (at the end of this

chapter), by equating to zero a certain set of coefficients in
oo
€ - s o\
E(z) = Z eE-_ L = P\_?_) FQ\i) +®k—1-)¥\:£_) + R\z) _ .7
€=0

To satisfy the projection property P2 (of§1) to the one variable approximants

(2.4), prong O must consist of the points

E=00), ko), .. _ . \3m0)

and

€= (o, w0R) .. . ... _,\03m)
With reference to Fig.4, the set of equations corresponding to the solid
sections of prong O will then normally determine the sets

(P‘,oz -------- Pmo ; QUe, - - - - ---Am,o)

and



=80~

. 9 3 + - “ - 3% o " [ o z 1 s
uniquely in terms of Poo @14 Qg Where q. . is assumed known and Peo 15

fixed by the normalisation condition

Peo=|
It is now clear why Shafer's definition needed to be modified; extension of
prong O to the points (3m+1,0) and (O,3m+l), necessary to satisfy the
projection property to Shafer's approximants, would prpduce an extra equation
and hence two (probably different) values of gg,-.

The broken part of prong 1 corresponds to (2m-1) new {pﬁ} and (2m-1)

new {qg}

= it

The solid section of prong 1 must thus consist of 2(2m-1) points, and hence

must correspond to vanishing e with

€= (me\, 1), ... ____ ... . , Bm-t,)

and
g= (‘)m-,")l-- T S (‘,zm"\)
Then clearly prong 2 will consist of (2m-3) points in each direction, and so

- ( . - . .
on, until ‘pm-l,m~1’Fh,m-l’Pm—l,m’qm-l,m—l’qm-l,m) are determined with

€= {m-t,m+l), -1 ,m-+2), (n-1,m+3)

and
€ = (m+\.m-\),\m+2.ﬁ\—‘), (m,+3,m«-‘)
On the final prong, prong m, we have a slight difficulty. To determine
Pm,m and U e would expect to use the points (m+l,m) and (m,m+1).

However at these oints the arts of e containing and are
] P b £. (&] P
mem ,m

E"o P + C“°(\-""‘“ = c""lacc.e Pom + Q\.n,m)

and

Con P + Cou Amm= Coyu \2%,0: P, + ‘\m,m)
vhich obviously produce linearly dependent equations and, in general, will
give rise to an inconsistency. Three procedures for avoiding this incon-

sistency, whilst preserving symmetry, have been suggested;
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(i) Omit prong m; this is equivalent to setting

(o}

Prm = Qmm =M= 0 (2.8a)

In this case we must omit the lattice point (m,m) at the corner of the square
in Fig.h.

(ii) Set q, rv‘=O and use the equations
o1

Q
Crom= Cmi,mt+ €m,mu =0 (2.85)
to determine p and r s
m,m m,m
(iii) Use the double symmetrisation scheme
(2.8¢)

Cmr,mt Cnymel = Crmezm T em,mﬂ:O

to determine pm,m and qm,m' |

The relative merits of these schemes will be discussed in §2(b). The
prong structure is illustrated in Fig.4, where crosses denote the points
contributing to the symmetrised equations in (2.8b) and (2.8¢c). Ve note
that, in contrést to the approximants of‘glq no symmetrised equations are
required on the internal prongs (prongs 1 to m-1). This occurs because of
the coincidence of the power t(=2) with the number of variables N; in
general, the existence of symmetrised equations depends upon the relation
between t and N.

The preceding system of equations, over the lattice of Fig.h, will
normally determine P(z),Q(z) and R(z) uniguely, once pg, and Qop are given.

. . e . " Y‘" f 7 . ‘t i i)
The diagonal two variable quadratic approximant, (E/E/E)(i)' is then defined

by ;
P\l)ﬁ@/m/n_\)kg)] + Q‘g)‘z\m/m/m)\ﬁ .2 R\l) =0 (2.9)

As can be seen from the above prong structure, the method of deternmining
the diagonal quadratic approximants is very cimilar to the procedure adopted
for the diagonal Chisholm approximanﬁs of'§1. In fact equations (1.8)-
(1.11) hold for the quadratic approximants, where (adovting (2.8¢c) on preng

m for definiteness):

b;r=[pmo'_ s P iQmey - Qe %““': ---Po i Yem, =290, Po,c.“gs,C]
wm=[0, - - . 00 D0 ]



0 1

‘)'0 - - \)m,c Q—i,o - —~tm,o b.wn.c Qmu.o
i ' ' ) ' ‘
1 ' 1
: . : : ! _Q_ ' '
L ' . '
b?_;“‘o - - “b'sm-\,D (—?_m.o ~ 0 (‘-35-1,0 b’!t\.ﬁ Q;n,o
bC.' - e- ~Mbeln\ Cq;‘\ ----- Cc.m bo‘m‘}i ﬁc, ma-l
' ' ' . } .
v O ; : : ‘ ; ; (2.10)

. !
\)c,‘!.m - -\)c,"sm-\ Ceam- - - Coan-]| boam Lo

O ----- 0O O0----- O | 0---- O  0----. 0] \ Y
biner,0 Cami,0

L\iz:ui,c - \’5m‘0 Gan O 'C-;m‘o bc,'?.m+l- \OOAm Copmat - - -Co3m +be, 3m+t +Qc,3m+_!_
\)u,o i \)m.\.o c\.o g C«\—I,O bm‘o Co0
\ ] ] | ) '
| : : \ O : [
S B |
! ‘ ' ' ’ 4 ,
\)?-‘“".0 - ‘\’3.1\-3.0 clﬁ\-l.o i -(:3:!\-3,0 Em-?.,o c’&n\-l,o ( 1
2:1
m \)o‘l -- - \)sm—! o -G \)o,m C—‘:.f‘\

'
{
f
i

O

T
b‘ =[Pm,l .- 4..JP2,| ;%,lr --nqg_,l }Pl,m‘ - % ;P‘,z ) (\_l.m, - 4.'R_|’2 ) P,‘.,q"h;]

and the Di are square of order 4i-2 and the 't_)i have dimension 4m-4i+2; the
coefficients bi ~ occuring in the above forrulae are the Eﬁ of (2.5) and
(2.6) .

We again have the result that the {Pc‘,xiq_s";r} can be found by a block
by block process provided that nonc of the Di(i=l,...,m), nor Gm+l' is
singular. The only minor modifications necessary are:

(a) the precise form cf Dl depends upon the scheme adopted on the
final prong, and

(b) the precise form of Gm depends upon the method used for deter-

+1
mining qp¢; the form of Gm+l given by (2.10) corresponds to determining
q go by the symmetrisation

e%m+4.o+ Coam+ =0

We chall discuss this schene in%E(b).
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(b) PROPERTIZS OF "M APPRCAINANTS

The approximants of §2(a) were defined in such a way as to preserve, to
as large an extent as possible, the properties P1l-Ph of ﬁl; we now examine
the degree to which these properties have been preserved (6).

By their very definition, the appreximants satisfy Pl and P2. To
discuss P3 (reciprocal covariance) we assune that<%ef0, so that we can
define a unique formal recivrocal f_l(g) of (1.1), and a corresponding
unique formal reciprocal f—z(g) of (2.5). Multiplying (2.7) formally by
f-z(g), we obtain the expression

Giz)= Rig ) + Qi ['2) + Ply) (2.12)
Now we make use of the rectangle rule ((1),(4) and (5)); this rule
imposes a geometrical condition cn the lattice space (on which the
approximent is defined) which is equivalent to the covariance properties
P3 and Ph. Besentially, the rule states that ifegis a symmetrised point
(that is, a point contributing to a symmetrised equation), then no other
‘points in the rectangle, with diagonal joining C and«, can be symmetrised
points; if this condition holds, then P3 and P4 are valid. This rule
ensurés that coefficients in G(z) corresponding to a pcint on the lattice
of Fig.lt, will depend linearly on the coefficients eﬁ_in (2.7) with E(<€<r
(r=1,2). We have two cases to consider:

(a) For the choices (i) and (ii) (equations (2.8a) and (2.8b)) on.
prong m, the system of equations eg=0 and (2.8a) (or (2.8b)) avplied to
E(z) and G(z), produce equivalent sets of equations for {Eg}’(ﬂﬁ} anda {%ﬁ}’

-1

It is also clear that £ , y is defined through (2.12) fron f-l(g) in
(r/ri/'m) -

exactly the same way as f(ﬂ/m/“) is defined from f(z). The approximents

= 2

will thus satisfy reciprocal covariance, provided we can choose gq¢ in a
consistent way. To preserve symmetry, the most natural choice for qgo
is given by the symmetrisation

== (’\.l.
e%m+h0'+ em3m+;"°0 2:13)

. < . - . - o o~ - £~ -
This scheme precduces the circled points of Fig.h., A disadvantage of (2.13)

i

is that the projection property P2 no longer holds; despite this, the



Q
—() -

choice (2.13) seems a natural one and, for the numerical results quoted
later in the chapter, this is the nmethod used for deternining q,.
(b) For the choice (iii) (equation (2.8¢c)) on prong m, the equations

arising from E(z) and G(z) are equivalent only if

Con=0C0 (2.14)
To see this, let
=2 [
-1 o8
) = Z le 2
==0
where
-1
d-oo = Cod
and

é"sﬁ =0 (2.15)

Mo
(gr]

i

%

x=0
the summation extending over the lattice rectangle with diagonal joining

O and 3. If we write

then, multiplying E(z) formally by (2616 5

Elo= e 18 =Rl 2l + Qub'la)+ Pl (27
€=0

The rectangle rule now shows that

§ o= - - (2.18)
Ees d‘°.°e§+ d‘N Ce, G-t T 3o efs.-‘.Cz"'"“"" |

is a linear combination of 18 Y, with & restricted to the rectangle (0,€).

Hence, for all unsymmetrised points in Fig.h,

€c=0

implies

/
€. =0 (2.19)
at the same points. For the first pair of symmetrised points in (2.E&c),

using (2.18) and (2.19),

/-

!
em+l,.m+ Crmei = \e mat,m Qmm-n) =0

For the second pair of symmetrised points in (2.8c),

/ / o -—
en\*z‘m"f eﬂ\,“\+2 =E°'c \em,‘,’a.m ’1‘ em.ml) -+ d_“oem+l‘m+ C\'O‘,l em.m+‘
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which is zero if
d»\,o = d.o,' (2.20)

But, by definition,

. a,\‘oz e,(\—o‘o a—l,o , a-cﬂ = aAvo,cC\»O,l
and

cO" A’\.O = CI.O A’O.\

Thus (2.20) implies
C|'°=Co.|

which is (2.14), as required.

The condition (2.14) is equivalent to a choice of the relative scale
of the variables Zq and Z5s and does not seem an unreasonable choice to make.
Ve shall see in.%Z(c) that other choices of the scale are possible,

We now discuss the homographic covariance property P4, defined by
(1.12). Define polynomials P’/ (w),3 (w) and R’(w) by

Plad= | | (1-Bowe) P B, “
e l - B;Wa ' - BZW;

with two similar equations for & (@) and R’(g). Substituting (1.12) into
2

(2.7), multiplying by l l(l—Bryk)m and formally expanding the inverse
r=)
powers of (1-B,W;), we arrive at

F'(w) = Pl ) + Q' Flad + Rl (a2

where £'(w) is the formal expansion of

‘: Riw, ﬂw‘z
’
l—Y%VJ| |—I3z“hj
We now have three possible cases to consider, depending upon the scheme
adopted on prong m:
(a) With choice (i), the rectangle rule again ensures that the
equations derived from E(z) and E’(ﬂ) are equivalent. Thus, from (2.9) and

- 1]

/ 2 : I . /

with
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2Y
ﬂ\w. R, w, (2.23)

‘:(m/m/n\) F\m/m/n\) — '_ Bow,

which estaﬁlishes homographic covariance.

(b) With cheice (ii), covariance under (1.12) is only obtained with

R=W, (2.24)

This is because the inclusion of relative scale transformations (1.13) in
the group (1.12) depends upon the absence of symmetrised equations (1).
Ve shall prove (2.24) in (c) below.

(¢) With choice (iii), the covariance group is even further restricted;
we now require

A=0, ; B=8, (2.25)

To see this, we have

-
E'\\;’)= l U_Brwr)mE Prwe
| - Brwr
r=1
_ 2 oo p
. 3 ! <
| U ] )
el €0 ra ad

"
N
lgb)
1A
s
£
g;
I
-
fos)
<
N
3
\
R

;"“:“Q' (]
=X 2 m-&¢
< Be-%r B .
e T R ST (oo
<=0 =1l € 32K Br-Kr
In this expansion, the Goefficient of w~ is & ¢
£ P
Kr Gr—%¢ (K\—dﬁ')
eél l He '~ -8) B eiis
==0 .
Remembering that -
f = 7/ ﬁ
Fl=) ezw
&=0
we see that ]
€
N 3 Ta_ g \er-ﬂr(m_&r) (2.26)
g = (o8 ' \_'\l" ~%¢) \Gr-'xr‘
==Q s '
)

Clearly eG:O implies
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€m+|‘m+ En\'(m,., =\ﬂ.ﬂz)“‘[n‘gm,‘m+ “;_('am‘mﬂ] (2.27)

since only the terms with =)€=(m+1,m) and€ =(m+1,m) contribute to the sum

in (2.26). Clearly (2.27) vanishes if A=Ay (which verifies (2.24)).

Also
! / -1
eiM'Z,m + en\.m+2 == (ﬂ‘ﬂl)m[ﬂ,&t ! ) Canmt nlB‘l H) e‘“t“‘“"]
2
4‘(“;nzf“[ij Ghn+lgn‘+ ‘q:<é“‘ﬁ“*2]
=0
if

E%== BQ, qulr FQ,::Y‘I

This verifies (2.25).

The additional symmetrised equation (2.13) is also covariant under the
group with restriction (2.24). Thus, with (2,13) included, the choices
(i) and (ii) on prong m satisfy reciprocal and homographic covariance under
the restricted group (1.12). The introduction of weighting factors into
(2.13) provides a possible method of ensuring relative scale covariance (3);
in the following section we shall consider this possibility.

We conclude this section by suggesting another method of chcosing qg,
(6). Our initial power series expansion (1.l) corresponds to function
values defined on a single Riemann sheet. If we have information concerning
the analytic continuation of the function onto other sheets, we may fix (g
by requiring that the function takes the correct value at the origin on
another Riemann sheet. The advantage of this procedure is that the
projection property is preserved and, with choice (i) on prong m, we have
covariance under the full group (1.13). We then have an approximant which
incorporates information about the analytic continuation of (1.1). Another
point in favour of this scheme is thét it extends to arbitrary "t-power
approximants". The possibility cf using several terms of the series on a
second sheet, to define an approximant incorporating information on more
than one sheet, alsc suggests itself. Although these ideas may prove to be
useful, we have not.yet investigated any of these methods from a practical

point of view.
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(c) CHOICE Or' VEIGHT FACTORS

The symmetrised equations on prongs C and m allow the possibility of

introducing weighting factors to, Tor example, try and ensure relative scale

covariance of the approximants (3). Since prong n is not expected to be
too important in determining the behaviour of the approximants (since prong

m only determines the higher order coefficients), we shall mainly be

concerned with prong O. If we adopt the symmetrisation scheme to deternine
then we can write (2.13) more generally as

,AO e%mﬂ.o + H" Cozma = v (2.28)

The method of choosing a suitable ratio 3 depends upon being able to
o o o & IS 15

qoo!

give an explicit representation for the determinant of G . of (2.10) (with

suitable account being taken of (2.28)).  The matrix, Dgp, occuring on

prong O has the form

E ) O Xo“)

0
= 2) ()
Doo=| © Eo X (2.29)
U] (YY)
_XO“’O [Lcue SOJ
where _ . }
L‘no -0 - == bm.o Qi.o - - - (_mio
i e | 1
i ]
E? = : : ' (2.292)
: ; |
_\)2“\.0 -t = 5375\'\.0 z“\lo —————— C3m'\|o
)(UYT_- B =
0o = _Cn\ﬂ,(') : Y—(\%?.,O PR , ("%ﬁ\,o:l (2.29)
W [ . (2.29¢)
\La = hzmu,@,---- -"\)3“‘;01‘\1&\%.01 o -~Ic3ﬁ\,0] 2. 29¢C)
‘ i
SO = A‘:CENHG + He t"‘%m-i'l (2.(-91)

and the corresponding entries with superscript 2 are obtained from those
with superscript 1 by interchanging the indices on the b and ¢ coefficients.
Following (7), we now factorize DOO as

2
chc'z z SPr('i\:,Ho)E”r (2.30)

r=1|
where p and o refer tc the block indices of (2.29). In block form the

matrices £ and £ are



E - EY E™ EB (2.22)
T len F22 g2

K
with
\)i,o - \)m.o Lho----.. - G0
1 )
e | : :
= [ ; i i
bm.o ----- \’3:{‘-\.0 Cuno - - Bim-0
Lbsz\.o = bgm.o G0 - - - — - ('3\'\\.0
3 _ ¢ N
E =LEMN0, - oo »B3man,0

HOL i ; AL ; < .
and E7 being derived from L~ by interchanging the indices on the b and

¢ coefficients.

From (2.30) we have, using the Cauchy-3inet theorem (see Appendix I),

the determinant result

det Dog = N det FY ek ELY 4 o deb By det B



S

where = W X w
. L) C‘.) \'\.=‘,?.)
uoc Sott

and ) a3
« . A
S() = LBmwl,O ) $¢ = Lol

We can use (2.33) in two possible ways:

(i) Following (9), we note that we can always chcose the ratioﬁozuo
so as to make prong O of any approximant indeterminate; by this we mean
that in (2.33) there is a unique value of the ratio'),o:ilo which causes
det Dge=0, and results in degenerate equations. e seek to choose Ao:u‘o
so that the opposite situation is preduced and Ic’et Deol is a maximum; in
this way we hope to move any spurious singularities of the approximants as
far from the origin as possitle. Maximising Edet Doel subject to

2
',’\OI e “'Lo'l=l
leads to the choice
u) v -
A _ det F det Eg (2.3%)
Fo dok Fg¥ dev EM

For symmetric functions this reduces to ﬁ‘b:p'é 25 expected; the ratio

') IJ for antisymmetric functions, however, is unclear.
oo
(ii) TFollowing (3) we seek to chc:-ose'Ao:}Lo in order to produce scale

covariance of the approximants. Let

and 3=0
I
=) by 2
Y=o
We make the scale transformations™ .
ZL=KLZ‘\' ii.:\.a) (2.35)
with
Define



=0
where g g
t! 'Ku‘ Kza(‘:§ (2.36a)
Similarly,
. T o)
¢\2)=> b2
= -
with

- Y,
b§= Kn K? \)I | (2.36b)

It is clear that any unsymmetrised equations are scale covariant. For
example, within the square lattice of Fig.4, we have the following system
of equations:

& (2.37)
Z z [ PO‘T bc&-c',l?v‘t + %a'*(_ cd:-o‘, 3‘1] = - r“ﬂ \ OS W,B S\'ﬂ) 23

=0 =0
Under the scale transformation (2.35), the approximant will be invariant if

the polyncmials P, { and R are invariant. Let

where

- &, , K (2.38)
P95='-'K| |<2 ZFES

together with similar relations for aacand iy Scale covarience requires

o
o< B
Z [P”\’ -o,B-T +(\°‘Qw—o n-t]"‘rd"k
=0 7T=0

Using (2.38) this reduces to

o<

Z i [KTK:K Kﬂ tf’n Yy +K°-Kt f\‘,f l'\z Qo Lo, p,--c]

o=0 7<T=0 "
7 ol

which is just (2.37).
It is therefore only the symmeirised equations which prevent scale

covariance., On prong U, the symmetrised equation determining qg,q is
m.

QPL_ I_Pﬁuo 3m+i=3,,0 + QB..0C3mH-B.. ] "fJ'O [P@ BZ\)C 3m-'|-32
= bl'

Qan, tORmf\"BZ] 0

In the scaled co-ordinates Z, (2.39) beconmes

(2.39)
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x 3“\4" 3;\“-‘
6\° \| i [P;:,,O Ia+l- B..O +qr6uc! C;l““ BH@] + }‘LOK Z [‘

B=0

(2.40)
o, bO,«?m-H-Gz (\b,rzz e 3m - 32] = 0
with the appropriate weight facters ,u From (2.39) and (2.40), scale

covariance requires

— Imt)
'Ao K|n+ % (2.b1)

p;l(23m+l - o

We can guarantee that (2.41) holds by ,hoosimgﬁozﬂkjsuch that the two

terms in (2.33) are equal:

e dek Eu) c\QLF (2.42)
Po  dor B dek EY

(which is the reciprocal of the choice (2.324)). To see that (2.42) does

(.
indeed imply (2.41) we must look at the structure of the matrices Fo‘l) and
Eo(1> (i=1.2). Suppose that, under (2.35), - (l) 0(1) and So(l) trans-
(1), 7 (1) and 8 (i)

o 0

fornm to Eo respectively (i=1,2). The matrix structure

then implies

dek \:M - h' &o,\: | i)

det EgV A gk g W
= K?‘“" dek Fo‘f”’ (2.43)
t AQ‘: Eo“'

In the scaled co-ordinates (2.42) beccmes

& A BV Y (2.54)

Ko dek B der B
Thus, from (2.42)-(2.44),

1l

ek Fo = det BV
A EY  dek B
K%M &tFm AEEN

2

K?EM—I A . \: =) C)Qh \.l)

v \3m#
] (ﬁ) A
K Ho

-~ \

which is (2.42). Again the choice (2.42) reduceS'UJAO:ﬂo for symmetric

Ao
e

functions.
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VWle finally give a brief discussion of the corresponding situaticn on
prong m.  For choice (i) (equation (2.82)), since no symmetrisation is
required, we can produce overall scale covariance with the choice (2.42). ‘
For choice (ii), we can write (2.8b) more generally as

| - 1
Cam=0 and AnCaum* HmCman =0 (2.45)
This gives
Dm“\_ - ﬁm¥\.0 + ’lmbo,l
= ECQ.O k’)\mché + ’Ln\ cco‘)

Maximizing ldet Dmm, procduces the choice
’ !

(2.45a)

h i} Ce _ 2
P Cop

whilst scale covariance requires
')m Ce, (2.45b)
Ken Cuo

For symmetric and antisymmetric functions (2.45a) and (2.45b) reduce to the
expected results withﬁm=p,m and 'sz-p.m respectively.
For choice (iii), we write (2.8¢c) more generally as
oy . !
Ixﬁemu,m- + p‘em,mﬂ =0 (2.46)

and

7\3 Cmiz,m + Pz em,m+2 =0

This gives

dek D =- Vt\act,o‘*”kcan) Uche + p-lcc):x)

If we choose
'>\2= u:=|

then the ratioﬁl: }.ll reduces to (2.45a) or (2.45b). Choosing
ﬁ‘-—-ul: I

we obtain as the maximised determinant choice

ﬁz R (2.46a)

and 2

=|— (2.461) .
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as the scale covariant choice. We note that neither (2.46a) nor (2,46b)

give the expected result for antisymmetric functions.

- STMATIT TV\DAMTIT AT TN Vot NTIYIIPITNY A Y ) T - FTYT A TT T
3. DETERMINANT FORMNULAL FCR, AlND DIGLNERACY CF, THE TUC VARIABLE

DIAGONAL QUADRATIC APPROXNIVANTS

(a) DETERNMINANT FCRIULAE

Ve consider the diagonal approximants of §2 subject to the conditions:
(1) Po.e =1 |

(i) Il\o 93m+\,o + Meeo,?,m-\.l =Q on prong O, and

(iii) on prong m, the double symmetrisation

Carym + Emmer =0

and
’f\m Caem + faCmmaz =0

For other choices of (i), (ii) and (iii) we obtain minor differences in th

()

following results.
Define, for Os<sm (where m denotes the order of the approximant)

T - =
idz =(me$ Jror =~ aP«MI,A }qﬁ.&:—« - ‘{Ml,&;]’ar,m,-- —-iPer gt ) ;(L"‘:ﬁ\»- _ -z%f,em; P"F'q_ﬁf“) ().i)

Then the equations defining the approximants take the form

PRONG 0: Do do = (0,0, ... . A0, . 'O)T (3.2)
«-|

PRONG o< Decer dos .,Z' G.adp=0 (0<w Sm) (2.2)
A=0

where
(i) in (3.2) the entry 1 on the right-hand side occurs in the

(2m+l)st. positicn, and

[ ] W
o 0 X' K O Y

0 EX X o R’ WY

. ) )
0) ) el Wy L
U"o) W, 0 ¢ Vo 0

o o | © 0 °0

Voo™

1)
Eo<. =

'
1
'
'
'

_bZﬁ-lﬁ 0,0 - - - - bé{\-’%d -1—%:1—!,0_



Fh - e - s = - - Cm-s,0
W_ ' :
® = : :
Camzk+ewno ------- N
-
lﬂT
[bﬁ\*l &0, c - - - -y b}m-}g{-l ol-&), 0]
N1'
) [cm'ﬂ‘ O ;- - - - - - - n, c}“:&&*l ~-ol-«) 0]
u
e = 'r\o r_\lzm\ o, - - - -:Bsmp]
w — ]
uol__uo bO?J\\i'\l-'—-~—----tkC,3m
ON =% [QZtM-\,O ITT T s ' Q3“‘.°
w_ i
Ve = Peo| Coamn - -~ - - - - ! Qof‘“‘]

Sg, = ko \>3m+|,o + Pobsama

Q)
S = 7\ t3m+\ 0 * P.c QC'B!'\H
and the remaining entrles with superscript 2 and obtained from the

corresponding entries with superscript 1 by interchanging the indices on

the b and ¢ coefficients,

34 u W n) W
(ii) D = B O Xz FM 0 Ya
o = YRRNH
O t& _ O F& Y&
The matrix GoﬁB is a little difficult to define concisely; we write it in

the block form

i 0 3
S Hen Gen Hen Guen We
«n

62 WY GF WA G M
If we denote byM(rxs) the class of matrices with r rows and s columns, and
label the elements of a matrix by i=1,2,..,r and j=1,2,..,s, then
G;B Gm\?.m-?_d:a-l X - B) KG‘:G)L’J = b'ﬁ.s_a,x-r&
.::rz Q”T“\Em-zowl X m-B) ( Gt 0= bagei,m-m-lv)
G2 e M R+ 1 x ) G n)uj = bo-pri,s-R
! em\im-?.mlxm-ﬂ) i )"= | WP
(}izﬂ Q’W\\?.m-?.&-*l X"“‘B) (G, B)\'J ‘b«-rs. L4y-1

G’?ﬁ Em\?.i\\-?.fﬁ‘fl’(') \ (; "»\ \mr; m-Bte
kl KL

Hf{s is obtained from G‘B by replacing the b coefficients by ¢ coeffi cients,

and




G,

(iii)

Dmm“

~-86-

bh°+hql

Cio +Coy

Araby o+ Pabsy  Am Lot Mabopn

1 2 | 2L 33 0
B Gapt Gme Hin + Hia Cma + G
- - =2 wil =210 ™ =22
p ’/\m ‘rﬁk\‘g + R (rmrs '}m\“mn + M Han /r\m KT;:\R*' "l'mt’m.%
RS 3
GmB"’ Gon

where g ) indicates that +1 should be added to the 1lst.) index (subscript)

)

21
H(:n‘f- HO’\R

ﬁm‘\j\«\zﬁ + Hon t\ﬂ-\l(?i

R PR3
Hm(i + \‘\n\n
=13

oy p -
Ikmcfmm'“m(rn%?! p H&x(ﬁ }J\“ng_

2nd.)

G
)
of G.
For choices other than (iii) (of §3(a)) on prong m, G

ably simpler form.

To give an explicit determinant representation for P, and R we rust

assumes a consider-
mb

first separate the contributions arising from the b and ¢ coefficients.

use, for example, the notation Dy «(b) to represent that part of Deck

containing only the b coefficients:

= w u)
< O X¢\ ]

Ab) = -
D) 0 B X&)

~S
and we also define Doo to be Dao minus the last row.

system to be solved. in the matrix form

Bl T L] o]
L) 0 O el O | |
: ) .S ‘ ) . dalpl - :
i A . | ’ é@(ﬂ) i
__Gm;\\,) G, b Dinmlb)  Gmole) Gile] i‘}mm\c{ el | 6J
where

i«t?) = (P(‘h.& PEEEL --iPo«.rl,v: o 7 SRR

is the component of d. (defined by (3.1)) containing the p ccefficients (of

(0 <o« <m)

We can then write the

P(z)) and d_(q) the component containing the q coefficients.

We now finally have the definitions

~

/% .
Dy = U, minus the [ X X S&T cohemn




-97-

and

)Y
F o= oD [ ] ook Das
and, for Osxgn, d=2 o e e
: Z_g.c% (1“‘\&(,.------,&0” ‘{k,'x—vb&m) ..... ,l.\{‘? <y )
(LU
Z"(: Lgm‘f"‘ T "S‘“,",&fm T | -Sx'cf:{»l “Sd‘d)
| Z:{:K Ll a i o 4'1\"’;"“ it ! ,{\"r"q" ’1‘\‘#‘:)
where
mo
Se - Z Z )
p=c v=T
and
N m
Nee = Z z Cpor v &H‘dv
H=c =T
Then
Bl = PPuegd/ b
Qlxy) = Q%ﬁ,g)/F
R Ly)= R/ F
and
A L
b e =@ (1@ = P ) RO
mfm f )Y T —
\mén b ?.Pnkx.g)
where 5
Deolb) Dec el 1
G0 Dy ib) @) Goled Dile) O | 1
PPlay) =det | S : .
Q—‘.“o\%) S - 'bfr\mm Gﬁ;o'\c) LT Drnm\.c)
R Zm C----ee - ©
Doclb) Tege) |
Gl Dy O Grolel Dule! 0
Qp\gg)ﬂ\e\: : ; ! U
G - — - -ty Gogled - - - - - - Dl
Ol i 0 R -e s B
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6wlb). Toold)
Grelbl Dutb) 0 Croled \)‘.lcj 0
Rv\h%):-&z\: ; : . ; \\\\
G“'\o\\) SRl T ¢ T G-mo\c) -------- Dinnle)
- 3 b'
LR M.

(b) DEGENERACIES IN THE APPROXIMANTS

The two variable diagonal quadratic approximants will always exist

rovided
o m

F =] ] awbe =0

CK:O ;
Approximants with F=0 are termed degenerate; degeneracy occurs when

C(4) det D:o=0 o
(11) &t D=0 llgegm)

In both (i) and (ii) the equations can be either consistent or inconsistent.
When the equations are inconsistent, the approiimant does not exist. For
consistent equations, degeneracy occurs when a polynomial factor is common
to P(x,y), Q(x,y) and R(x,y). Such a situation occurs.when f(z) is a
symmetric function; to see this, consider the (2/2/2) approximant on prong 1,
since it is only a degeneracy of type (ii), on the internal prongs, which
occurs in this situation. On this prong we obtain the two systems (both
comprising three equations)

Fl ( Pll ' (\ll ’ Pn ) ‘\_u) = O (3.4a)

and

Fz ( P2, %2, Pn,q'u) = O (3.4b)

Now if f(z) is symmetric, these two equations will imply that

Par=Pa and L=

so that the two equations effectively reduce to the single system

E ( P :q_ll,?tu‘{u)= O
However, this represents a system of three equations in four unknowns; this
gives rise to degenerate but consistent equations. This example does seem

to illustrate & rather undesirable feature of the diagonal approximants, for
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we would not expect symmetric functione to cause any type of degeneracy.
Theoretically, this presents no problem since it merely produces an
arbitrary polynomial factor common to P(z}, P{z) and R{z), and hence does
not alter the value of the approximant. This difficulty is encountered
on all internal prongs; no such difficulty occurs on the first and last
preng because these prongs involve symmetrised equations, which relate
(3.4a) and (3.4b). For this same reason the above difficulty is not
encountered with the two variable rational approximants.

A possible practical solution of this difficulty (12) is,‘for the

approximant considered above, to obtain an extra equation by setting

r.=0 (3.52)
and retaining the equation

e,=0 (3.50)

Equation (3.55) does not now determine r but instead provides a relation

i
between Piq and 497 ° Alternatively, we can sidestep this difficulty and,
for example, instead of calculating the (2,2/2,2/2,2) diagonal approxirant
we could calculate the (2,2/2,1/2,2) off-diagonal approximant, with the
hope that this off-diagonal approximant will not greatly violate the hcmo-
graphic covariance property of the diagonal approximants. In fact, in §6
we shall adopt this pcint of view when dealing with symmetric functions.

Although we have not yet defined the off-diagonal two variable
quadratic approximants, it is convenient to iliustrate here a type of
degeneracy which can occur with these approximants. In (9) it was noted
that the genuine two variable raticnal epproximants behave differently from
the one variable Padf approximants. The example given to illustrate this
behaviour is

Pley) =[x +2* = ey +oumge oo
It is easily shown that
F( b \x,3)= “+&‘D-o‘|.)x][!*tc=q]+’xf\lc\s+tcs)
e (1+) [] + (b))

where blO is arbitrary; this means that, unless ¢

11+col=0, the apprCXImant’
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can take almost any value. This type of behaviour cennot occur for the one
variable Padé approximants.
A similar type of degeneracy can occur for the two variable quadratic
approximants. If we let
ﬂx.ﬂ)-—- | ~x 4+ - 3§+ x4 CaY +Cixy + '\52
we find that

\ = ~00t)2[Pog) = WPl Ry
(200041 2 Plny)

where

Play) = (1s) {1+ Lge-ihx)

Qly) = -2+ ¢2)

P\\X.\j) = ” + co?f) - ( P\o‘f‘(:of)x 'H?g.\j 'fl:eccl*'(‘ico?‘ec\n?xo *Y
Again the approximant can take almost any value for Pio arbitrary.

We can in fact overcome this difficulty by employing the hypothesis of
maximum analyticity lying behind all Pad®& type methods; we fix the para-
meters, b10 and P10 above, by maximizing the distance of the nearest move-
able singularity (that is, a singularity of the approximant not required to
simulate a singularity of the function) from the origin. The choices

bm=?m=|
both send this singularity to infinity.

L4, EXTENSION TO ARBITRARY ''t-POWER APPROXIMANTS" (6)

The scheme of §2 for quadratic approximants can be fairly easily
extended to arbitrary t(>2)-power approximants. For diagonal two variable
cubic approximants, we define the four polynomials P(z), Q(z),R(z) and S(z),
assuming that

P\Q)" Poo Q[Q)‘—"bo and RU0)=1,
are known. We then equate to zero certain coefficients in
’5 . 2 . \
Fa-=Ple)ia) + OWPld + Rinfa) + Stz) (4.1)
In Fig.5 the prong structure is indicated. Prong O extends to the points
(4m,0) and (0,4m); we can determine Qgp 8R4 Tog (assuming we choose pg,=1)

by extending the prong to include the points (circled in Fig.5) (4m+1,0) and
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(0,4m+1). An advantage of this scheme is that these approximants will

project to the {normal) Shafer approximants. On prong 1 there are 3(2m-1)

unknown variables {pﬂ}, {qd3 and {qﬁ 3 these are determined by the
= = —

equations
with

and

E=(lmel), U m2)

together with the symmetrised equation
Cimt,t ' €t =0

Prong 2 contains six fewer variables, so that each arm of the prong is three
units shorter than in Prong 1, together with a symmetrised equation. This
pattern continues till prong (m-1) is reached. The natural scheme of
determining pmm’ " and rmm by unsymmetrised equations at (m+l,m) and
(m,m+1), and a symmetrised equation from (m+2,m) and (m,m+2), produces two
linearly dependent equations corresponding to the unsymmetrised points.
This situation is similar to that encountered with the quadratic approximants
of%EL and we again have three possible methods of avoiding this degeneracy,
whilst still preserving symmetry:

(i) Onmit prong m, setting

[%“N\=’qnun’=‘}mﬁ==snwn==o

Since the rectangle rule is obeyed, the approximants will satisfy reciprocal
covariance and covariance under the restricted homographic group (1.12).

(ii) Set

qnwn==rﬁw“:=o

and determine p  and s o 85 in (2.8b). Reciprocal and homographic
covariance under (1.12) are both ensured.

(iii) Use (2.8b) together with

en\«y‘Z,m‘*‘ em,m+2 ol 0

As with quadratic approximants, this choice weakens the covariance

properties.
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~ By a suitable choice of weighting factors we may be able to ensure

homographic covariance under 4 1 I
Comﬁarison with §2 shows that there are certain characteristic

differences between the two variable approximants formed for even and odd t.
We can now give the basic definitions and general properties for t-power
approximants; since prong m will always produce inconsistencies if the
points (m+l,m) and (m,m+l) are used (for all values of t), we must make a
specific choice of the schemes available on prong m. For simplicity, we
choose to omit prong m (scheme (i) above); other choices on prong m will
produce the appropriate modifications in the properties listed below.

GENERAL PROPERTIES OF t-POWER APPROXIMANTS

- (i) With the t constants P(0), Q(Q),... given, 'E(Qﬂ;so is

determined by prong zero, which extends to the point (t+1)m along each axis.

(ii) Thé approximants project to modified Shafer approximants when
either variable is equated to zero.

(iii) For all internal prongs (that is, all prongs excluding prongs
O and m), the number of points on each arm of a prong decreases successively
by t.

(iv) Reciprocal covariance is satisfied, provided the constants in
(i) are chosen appropriately.

PROPERTIES FOR t EVEN

(v) Choosing P(Q) =1 (which we can normally do), the (t-1) constants
Q(Q@), R(Q),... can be determined by extending prong O by (t-2)/2 points
along each arm, and incorporating a symmetrised equation on the next twc
points. This final equation violates the projection property to the one
variable approximants, but reciprocal covariance is preserved.

(vi) The sections of prong r (ler<m) lying outside the square (Q,m)
determine the t(2m-2r-1) new variables arising; each arm thus consists of
3t(2m-2r-1) points. Assuming the constants Q(Q),R(Q),... are given, full
homographic covariance is preserved.

PROPERTIES FCR t ODD




) B

(v) Choosing P(Q) =1, the (t-1) constants Q(Q), R(Q),... can be
determined by extending prong O by # (t-1) points along each axis, with no
symmetrisation being required. Such an extension preserves the projection
and reciprocal covariance properties. This would seem to suggest that,
when the problem itself suggests no natural aporoximant to use, odd t-power
approximants may be meore useful than the corresponding even-t approximants.

(vi) The sections of prong r(l$r<m) outside the square (Q,m) determine
t(2m-ér-l) new variables; since this number is odd, symmetrisation is
required. The arm of each prong consists of %(t(2m-2r-1)-1) points,
together with the symmetrised equation obtained from the next point on each
arm. With equal weights associated with these symmetrised equations,

homographic covariance is restricted by A =A_ in (1.12), but full covariance
1

2
may be possible with suitable weight factors.
We finally note that, as mentioned in %2(b), the pecssibility of
including information on more than one sheet of the function extends
naturally to arbitrary t-power approximants. The method of fixing the
constants Q(Q), R(Q),... by using the value of the function at the origin
on (t-1) sheets has the advantage of preserving the projection property.

These considerations are certainly worth further study.

5. TWO VARIABLE t-POWER OFF-DIAGONAL APPRCXIMANTS

The extension of t-power diagonal approximants to off-diagonal
approximants has been given in (10), and is based upon the off-diagonal
extension (5) of the diagonal rational approximants of %1.

We define the formal kth. power of (1.1) by

= 0 & (5.1)
M=) ta 2 |

<=0

The (t+1) polynomials, denoted by P(k)(g), required to define the off-~diagonal

approximant are defined by

k) y
F(k(i)=z Pi‘s” 125 \k-‘=0,‘;~-~~;t) (5.2)

e < 3y

where Sk denotes the rectangular lattice



~10k-

SKz {f’i‘[ O~ Kp=My.g )1:4,?_} | (5.3)

Here m and My denote the maximum powers of z; and Z5 respectively in
9
z). The coefficients (P (k)) in (5.2) are determined by equating to

zero certain coefficients, or linear combinations of coefficients, in

k
-y P'wi’e +Pl)

The coefficient of 2& in (5.4) is

eg_ z 5—‘ Pa: C_e_ & +P£ SKQCS) e

k=l « CSKf\Ss

(5.4)

where
|, €S,
0, €¢5

and Sg denotes the rectangular lattice

S( Ce So) =

Se= {2‘-, O=xi5€; ;L:l,%} (5.6)

As in%Z, the definition, and method of solution, of the linear system of
equations defining the P(k) (z) is based upon the prong structure of (2);
"prong ¢, emanating from the point (o,0),is defined to be the set of lattice
points
Tfo--‘-‘ '{ﬁlﬂ,=0‘,cﬁ.;>c‘} V{C:I w.gg-'gcz_:o-} (5.7)
where 020. ,
Consider prong O, denoted byT,. We assume that the coefficients.
{ m,'k—-O,i,---...,t} (5.8a)
are given, except for P , which is to be determined bjT"o. The

remaining coefficients occuring in

{eg‘- (_;‘,_C*ITO}

are
{ K k=0, 1,. S 4 ; ¢, gio} (5.8b)
The number, nos of unknown coefficients onT 4 is
e
& (5.9)
Mo = z L M+
i=l k=0 '

These a unknown coefficients are determined by the equations
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egzg (5.10)
for the set )
E _Q_CSDIG;é}EmHK \L=\,3) (5.11)
h=0
Now consider a general prong Mg, with vertex (o,0) lying in the region
S=SeuSiu vy (322
This set extends the class of prongs of (5); in Figs.3 and 3.2 of (5), we
allow prong vertices in both Sl and S5. In dealing with the off-diagonal
t-power approximants we have in general (t+l) distinct regions to consider,
as compared to the simpler two region structure of the off-diagonal rational
approximants; use of the above extended class of prongs leads to a uniform
treatment of the equations in each of the above (t+l) regions. The vertex
(o00) will, in general lie in a subset of S; we denote this subset by

{U SK. k c Ro-} (5.13)

where R, denotes the corresponding subset of (0 lsnsest)s On prong c the

new coefficients introduced are

(9 A i ) K ) (5.14)

Pore i Pones by e Pen oo B myy,
)

where kcR. The number, Ny of these new coefficients is
c

“r\c.= Z(m‘i“+ mm—iml)
ke,

if n_ denotes the number of integers in R ,,that is, the number of regions

S, containing (o,0), then

oy > (e ) -0 (2 )

kCRd-

The expressions ei'corresponding to points on prong o-must therefore provide

(5.15)

n. equations; below we see that this necessitates the introduction of
&
symmetrised equations when nc_is even, but not when nc_is odd. Specifically:
n_ODD: The equations (5.10) have € ranging over the following points:

(0,09, the prong vertex; (5.16a)

N

(oo, ool Mo el
(0‘,0‘--:-‘),. S s e omes ) C"',z n‘\,aik_[c'-%.j[ng_]] (5.16¢c)

h

(5.165)
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The number of these points is clearly Dy -
a
no_EVEN: The equations (5.10) have € ranging over the following points:

(o,0), the prong vertex; (5.17a)

| '(0'+|,0')i ---- Z m,. T3 i 0"- ]Lh -U ) 0-) (5.17b)
(o, osl), - - - ( Z“mz L[ 'z][“c-l] (5.17¢)

The number of these points is nIT -1, so that we require one more equation;

this is provided by the symmetrised equation

egﬂ,(o-)'o- + eV;“dO‘) = 0 . (5.18a)
where |
= (o-)= Z My + la - (o-__;)l(\,_l) (5.18b)
keRe
and
Nz(o-) = Z mzi“_;_ %_ (0"" ‘;‘)(“-c"") (5.18¢c)
keRg

In (5.18a) we do not include any arbitrary weighting factors; here we do
not consider the problem of choosing weighting factors.

We illustrate the prong structures of this section by considering the
specific cases t=1, 2 and 3.

t=1: This case corresponds to rational approximants; in this case

there are only two rectangles S and S, of the form (5.3), as shown in Fig.6.
Prong o has vertex in SJ\Sl’ so that n°;2 and a symmetrised equation
1

(denoted by two crosses) is required on o . Increasing o by one within

this region,zcl(o9 andc<2(03 in (5.18) decrease by one, so that the
symmetrised points lie on lines with unit slope. The remaining prong shown
lies in So, but not in Sl' so that na;l and no symmetrised equation is
necessary on this prong; the end points of the prong are (ml;oﬂoa and
<°3m2;o)’ which lie on the edges of So, and we say that these lines have
""zero slope'.

t=2: For the two variable quadratic approximants there are three

rectangles (Fig.7) SQA,S:L and S Successive prongs have nc;3,3,2 and 1,

2'

80 that only in one instance is there a symmetrised equation (except for the
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optional symmetrisation on prong zero, as discussed later).

t=3: The prong structure shown in Fig.8, together with Figs.C and
7, illustrates the general prong structure for arbitrary t. The vertices
of the prongsch.oqcur in groups with no_fixed within each group; nc_takes
the values 1,2,...,(t+1). The prongs with no;l cover a rectangle in the
corner of one of the rectangles (5.3); in this region, the edges have 'zerc
slope'" and there are no symmetrised equations. The prongs having nc;Z
define a region with edges of unit slope, and each prong has an attached
symmetrised equation. As no_increases to (t+1), the slope increases to
t(=3 in Fig.8). Alternatively the edges do and do not correspond to sets
of symmetrised equations, depending upon the parity of n .

Having illustrated the general prong structure associated with t-power
off-diagonal approximants, we now consider how to choose the constants
(5.8a). As with the diagonal approximants of §2, two possible choices
naturally suggest themselves:

(a) If the only information available about f(z) is that contained
in (1.1), then we can obtain the required (t-1) extra eéuations by extending
prong O, For t odd, #(t-1) unsymmetrised equations are produced on each

arm of the prong, which thus extends to the points on each axis with co-

\: |
Z M+ (b-l) =)
k=

This set of points ensures the projection property to the Shafer approximants.

ordinates

For t even, we obtain unsymmetrised equations corresponding to points

on the axes up to those with co-ordinates

k
> et Sle2) ea2)
k=|

together with a symmetrised equation involving the next point on each axis.
This choice, as for diagonal approximants, viclates the projection property.
(b) If f(z) has an analytic continuation tc at least (t-1) distinct

Riemann sheets, we may fix the constants (5.8a) by using the function values °
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fl(Q),...,ft l(Q) at the origin of the (t-1l) sheets, provided these values

are distinct and not equal to f(Q). The extra (t-1) equations can then be

written
|4
Z P.;k) ﬁ'r\Q)Jk +P(§) =0 \esl,. ... e-l)
k=1

and such a choice satisfies the projection property.
Whichever choice ((a) or (b)) is made, the approximant f(g;Sk) defined
from f(z), and corresponding to the regions of (5.3), is defined to be a

solution of the equation

> P fes] P -0
k=l

In practice, the approximants of this section can be determined from

(5.19)

matrix equations of the form (1.8)-(1.11). At the end of this chapter we
give a computer program, written in Fortran, for generating off-diagcnal two
variable quadratic approximants. The numerical results of §6 are obtained
from this program.

We conclude this section with the following remarks:
(i) The linear dependence arising on the final prong for diagonal
t-power approximants does not occur for the truely off-diagonal approximants.
(ii) The reciprocal and homographic covariance properties of the
off-diagonal approximants can be discussed in exactly the same as for the
diagonal approximants of §2; for this reason we do not repeat the arguments
of §2(b) for the off-diagonal approximants of this section.

(iii) The generalization of diagonal and off-diagonal apprcximants
to the case of N>2 variables has been discussed in (6) and (10). Here we
do not repeat these discussions and we merely remark that only for N<3% can -
fully symmetrised schemes be defined for diagonal and off-diagonal approxi-
mants. In Fig.9 we illustrate the prong structure for three variable
diagonal approximants.

€. NUMERICAL EXAMPLES

The previous sections of this chapter have been devoted tc the
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definition, method of construction and general properties of the two
variable generalizations of the approximants cf Chapter 1. In this section,
by considering specific numerical cxamples, we attempt to illustrate the
usefulness of these two variable approximation schemes. The examples we

consider are of two types:

(a) EXAMPLES (I)

These examples consist of the following five functions with branch
points, the first three of whic? are symmetric:

(1) F"\x,xj)=“-x-\3)/3

1) Folea = Ll-x-y)™

(111) falx.g)=] + ‘“U‘x“i)

(iv) F»kx,\g)=|+éw+\nli—x-\5)

™ gley) = |nu—ﬁf—-"j)/(?..5—j)

In Tables 1-5 we tabulate the results obtained for the above functions using
the two variabie rational and quadratic approximants. For each table the
third and fourth column provide a comparison between the two approximation
schemes, both tabulated approximants requiring roughly the same number of
coefficients of the series (1.1); the final column is included to indicate
the degree of accuracy obtainable on the branch cut of the function. When
no entry occurs in a table, this indicates that at this particular voint the
approximated function is complex-valued and that the single-valued {real)
rational approximant cannot represent the discontinuity across the branch
cut of the function. For the diagonal quadratic approximants cf Tables 4
and 5 the scheme (2.8c) is used on the final prong.

From the results of Tables 1-5 one general point emerges; the quadratic
approximants approximate, often very accurately, well beyond the radius of
convergence of the series (1.1). More specifically:

(i) The functicns f3 and f4 are infinitely many-valued, but their
series expansions (1.1) correspond to a single Riemann sheet. The quadratic
approximant is consistently mere accurate than the rational approximsnt, in

some cases four orders of magnitude more accurate. At points "on the branch -



TABLE I:

to fl(x,y) = (1-x-y)

1/3

Diagonal rational and off-diagonal quadratic approximants

Error in 5,6/6,61

Error in [4,4/4,3/4,4]

Error in 5,6/6,5;’6,@

x | v |rational approximant | quadratic approximant quadratic approximant
-3 |-4 2 x 10t 5 x 10°° 2.x 10 °
-1 1x 104 1 x 10°° 3x 10 2
1 2 x 10 % 1x 10/ < 107°
3 2 x 10 2 <107 <107°
=3 |=2 6 x 10 ° 7 x 107 2 x 1077
-1 6 x 10 0 4 x 108 <10°
1 4 x 10°° <10°° <107°
3 4x 10 * (8 x 1072, 8 x 10 %) (6 x 102, 5 x 10 %)
-3 o0 1x 10 ° 4 x 108 <107
-1 <1077 < 107° <107
2 x 10! (8 x 102, 8 x 10°%) (5 x 102, 6 x 10°2)
3 2 x 1074, 3 x 100% (5x10°, 6x 107y
-3 |2 2 x 10 % <107 <107
-1 3x 10 1 (8 x 102, 7 x 10°%) (5 x 1072, 5 x 10°2)
1 2 x 104, 3x 1074 6 x 10°°, 2 x 1079
3 (3 x 10°%, 9 x 1074 (2 x 1072, 1 x 10°°)
-3 | 4 4x 101 6 x 1072, 3 x 10 %) 4 x 1072, 3x 102
-1 (3 x 1074, 4x 10°% (8 x 10°°, 2 x 1079
1 (3 x 1074 1x 10 (2 x 10>, 1 x 107}
3 (2 x 103, 7 x 10°%Y (3% 10 °, 4 x 107°)




TABLE II:

to fz(X:Y)

1
w (I~xey)*

Diagonal rational and off-diagonal quadratic approximants

1

' Error in [6,6/6,6]

Error in [4,4/4,3/4,4]

H
Error in [6,6/6,5/6,6] '

X | y | rational approximant| quadratic approximant quadratic approximant
=3 | =4 | 1x 10 2 5 x 10°° 3 x 107/ |
=1 1x 10 ° 1x 10° 3x 10 °

2 x 10°% 1x 10/ <10°

3 2 x 1073 <107 <10°
-3 | -2 5 x 10 ° 7 x 10/ 2 x 1077
= 5x 108 4x 108 <107°

1 3x 10°° <107° <107°

3 5x 10 ! 2x10% 1x10h (1x107L, 8x102
=310 1 x 10_6 3 x 10-8 < 10'9 :
-1 <107 <10? <102

1 3% 10 * 2x 10 1x 100 (1x10", 8x102%

3 (3x10% 3x10% (5 x 10, 107 |
-3| 2 2 x 10 ¢ <107 <1079 |
-1 4x 10! 2x10%, 1x10h (1x107%, 8x10%) |

(3 x 104, 3% 10% 6 x 10°°, 1076 |

3 (8 x 1074, 1 x 10°3) 2x10°, 1x10°)
-3| 4 6 x 10 1 (1x10%, 5% 102 (1x10% 5x10% |
-1 4 x 1074, 4 x 104 (7x 10, 4x 100

1 (2 x 102, 1 x 10°%) (1x 1072, 2x 10°)

3 2x10°3,7x10% | (x107°,4x100




TABLE III: Diagonal rational and off-diagonal quadratic approximants

to f3(x,y) = 1+In(l-x-y)

:Error in [5,6/6,61 Error in [@,4/4,3/4,41 AtiError in [5,6/6,5/6,61
rational approximant| quadratic approximant . quadratic approximant
3 x 10 2 2 x 10> 4 x 10 |
4x 1078 4 x 10°° 8 x 107 i
6 x 10 * 5x 10’ <10 |
6 x 10—3 2 x 10'-9 < 10_9 ;
9 x 10 ° 3x 10 ° 6 x 10 ° ;
1x 107 2 x 107/ <107 |
1x10° <10’ ' <107° |
2x103, 5x10% | (4x10°, 3x 10 )
4x 10°° 2 x 10/ < 102 |
1x10° <107 <10 |
1x10°2, 6x10% | (2x10°, 1x10°) |
(2 x 1073, 1 x 10°% (1 x 10_5, 3 x 10°) '
2 x 10> 3 x 1078 5x 100 §
6 x 10 <107’ <10 |
(2x 103, 1x 10% (8x10° 3x10°) |
Bx10°,3x103%) | (7x10° 9x107)
2 x 10 2 1x 102 7 x 1078 |
(3x 103, 1x 10°% (2 x10°, 5x 10°) |
(4 x 103, 4 x 1072) (2 x10°°, 1x 10°%
(7 x 103, 3 x 10) (2 x 104, 7% 107°)




TABLE IV:
to £, (x,y)

= 1+ix+In(1-x-y)

Diagonal rational and quadratic approximants

Error in [5,6/6,61 Error in [2,4/4,4/4,41 ~ Error in [i,7/7,7/7,i1
Xy ;rational approximant | quadratic approximant | quadratic approximant |
oty § =k 1 1 x 104 3 x 1078
-2 | 5% 10 2 1x 10 ° 3x10°
0 2 x 10°° 1 x 10° <10?
2 | 1 x 10 2 1 x 10 x 107°
4 | 1x 10! | 1x 10! x 10 2
-4 -2 2 x 10 ¢ | 2 x 10 ° 1x 10 8
-2 3x10° | 2 x 10 ° <107’
1 — } — -
0 2 x 10/ | 1 x 100 < 167
2 6 x 10 2 | 2 x 1074 1% 100
4 | (6x 10°, 9 x 100) (7x 104, 2% 10%
-4 | 0 x 10> | 5 x 10°° <10
-7 -8 -9
-2 x 10 5 x 10 < 10
0 | 0 0 0
4 (8 x 104, 2 x 1079 (3 10'6, 5% 10
! i -3 =2 -5 =5
A i (4 10 7, 1 x 10 %) (2 10 7, 2 x 10 7)
L B |
=4 | 21 5 x 10 2 2 x 104 4 x 100
—5 1x 103 4 x 10°° 2 x 10/
0 (2 x 103, 6 x 10°% (5 x 107, 5 x 1078
(1 x 103, 4 x 10°9) (1x107,9x107)
4 | (2 x 102, 6 x 109 (7 x 1072, 3 x 1079
-4 | 4 g x 10 4 x 1073 6 x 10"
-2 (2 x 10 3, 2 x 104 (7 x 104, 4x 1074
: -3 =3 =6 -5
0 (1 x 10 °, 3 x 10 °) (4 x 102, 2 x 10 °)
2 (1x 102, 2 x 10 9) (3x10°, 1x 10 °)
-2 . =2 -4 -4
4 (1 x 10, 3 x 10 %) (2 x 10 ¥, 2 x 10 1)




TABLE V:

to f5(x,Y)

Diagonal rational and quadratic approximants
= In(l-x-y) /(2.5-y)

Error in [5,6/6,61

Error in [§,4/4,4/4,41 ; Error in [5,6/6,6/6,61|

X | y | rational approximant| quadratic approximant quadratic approximant
~4 |=4 | 2 x 10 2 3x 103 5x 10 2
-2 2 x 102 1 x 1072 2 x 1073
; -6 -6 -9
0 { 6 x 10 1 x 10 < 10
| 1x 10 F 2 x 103 6 x 10 3
& ’ <10° <107° | <10°
-4 | =2 1x 10 ° 2 x 10 ° 1x 10 °
-2 ; 2 x 1,0-4 1x 10 % 8 x 10 °
-7 -9 -9
0 ! 1 x 10 8 x 10 ! <10
| <107 <107 | <107
| (1x102, 7x103 | (1x102, 6x 107
-4 ol x 10 ° 1x 10 ° ; <107
! =~ =7 | =4
=7 § 8 x 10 1 x 10 g < 10
0 i 0 0 ! 0
Bx10% 2x10% | (6x10° 4x 10
4 Gx102 2x103 | @x107°, 3x 109
23 6 4 x 101 (1, 2)
| - - —
-2 <1070 < 107° <107
0 (5x 10, 2 x 10! (1x 1072, 5 x 103
(4, 6) (1, 3)
4 (1, 6) (3, 5)
-t | &1 < 109 < 10--9 <107
-2 (1, 6) (7 x 105, 4 |
-1 -1, | -3 -3, -
0 (1x10, 2x10 ") | (2x10 7, 2 x 10 7) |
- | - - |
(3x10%, 2 6x10t 9x10h
4] | 6 x 10°L, 2 @ x10t, 2 |




TABLE VI: Diagonal and off-diagonal quadratic approximants

to fA(X’Y)

Error in [5,5/5,5/5,5] | Error in [3,5/5,4/5,5]1§
y quadratic approximant | quadratic approximant |
- 7 x 1070 1x 1072
6 x 10/ 3x 10/
6 x 100 7 x 10
2 x 10 ° 2 x 10°°
2 x 103 4 x 10 2
-2 2 x 10°° 4 x 10°°
2 x 10/ 4 x 1077
1x 107 <1072 |
5 x 10/ 1x 10°° |
(7 x 10°°, 8 x 10 %) B 1072, 3 x 10 %)
0 5x 10°° 4 x 1077 |
<107? < 107° l
0 0 !
(4 x 107>, 3 x 10 %) (1x 1074 2x10%
(1x1072% 5x10% | (1x10°,3x10 "
2 1x 10° | 2 x 10°° %
5% 100 | 5% 10 %
1x10% 9x107) | (@x10% 9x10°)
6x10% 2x10%h | (6x104 5x10%
(5 x 10 %, 2 x 1079 § Gxi10%, 2x 1070 |
4 3x 10° | 3 x 10 ° |
@x10% 3107 | (1x10% 7x107)
2 x 104 3x10°% i_ 2 x 1074, 5 x 107%
(4x10°,1x103) | (7x10% 1x 10
4x103,1x103 | @2x103, 3x 103




TABLE VII:

Comparison of the three schemes on the final

- prong for the [Slé/éj diagonal quadratic approximant

to £

4(x,}’)

Error using

Error using

Error using

X y Scheme I Scheme II Scheme III
-4 |-4 7 x 100 7 x 10°° 6 x 10 °
-2 6 x 107/ 6 x 107/ 4 x 107
-8 -8 -8
0 6 x 10 6 x 10 6 x 10
=5 -5 -5
2 2 x 10 2 x 10 2 x 10
-3 -3 -4
4 2 x 10 2 x 10 9 x 10 |
-4 |-2 2x 10°° 2 x10° 2 x 10°° |
-2 ! 2 x 10/ 2 x 10/ 2 x 107/ |
-9 -9 -9 |
1 x 10 1x 10 1 x 10 |
. sx 10’ 4x 1077 9 x 107 |
41 (7x10°,8x10%  (8x10°,8x10% ! (1x10% 8x10%|
|
-4 | 0 5x 10°° 5 x 10°° 5 x 10°° |
] -9 -9 -9 ‘
-2 | < 10 < 10 <10 !
0 0 0 f
(4x10°,3x10% | (4x10°,3x10% | (4x107°, 3x 10 H
(1x103,5%x10°) | (1x102,5x%x10°) | (1x10°3,5x10°)
4 | 2 1x 10°° 1x 100 i 2 x 10 ° |
-8 -7 | -7 !
-9 5 x 10 1 x 10 g 8 x 10 |
- - - - | - -5 |
0| | (ax10% 9x107) | (1x10% 9x10°) | (1x10%, 9x10°)
| =4 sy | -4 -4, | -4 =4
(6x10 %, 2x10 ] (6x10 7, 2x10 ") (6x 10, 2x 10
s 1 Gx10% 2x10 ] 5x10%, 2x10) 0 (5x107% 2 x 1070
-4 | 4| 3x 1074 i <107 é 3x 104 §
-4 -5, | -4 -5, | -4 -5
-2 (2x10 7, 3x10°)| (2x 107, 3x10°), (2x 10, 2x 10 ),
o, — H - -y ] - -ty }
0 2x10% 3x10% @2x10%3x10% (@2x10% 3x10%
(4x10°, 1x100) | (4x10°, 1x10°) | (4x10°, 1x 10 ),
Gx103,1x10H x103,1x107) (4x1023,1x10°)
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cut", where x+y>l, roughly six figure accuracy is obtainable with the
quadratic approximant. The introduction of only cne extra Riemann sheet
has thus produced a dramatic improvement in the representation of these
infinitelyvsheeted functions.

(ii) The functions fl and fa have a finite number of Riemann sheets.
The quadratic approximant is again consistently more gccurate than the
rational approximant and, on the '"cut'", the quadratic approximant provides
a good representation of the functions on two Riemann sheets. So, starting
from the power series (1.1l) defined on only one Riemann sheet, the quadratic
approximants are approximating fl,fa,f3 and f# on two Riemann sheets. In
addition to analytically continuing a function on a given Riemann sheet,
the quadratic approximants thus provide a practical method for the
continuation of a function from one Riemann sheet to another.

(iii) The function f_. has a pole surface in addition to a surface of

5
infinitely-sheeted branch points, and this function illustrates the
limitations of the methods of section 2. Away from the pole surface the
results of Table 5 exhibit the same gereral features of (i) and (ii) above.
However, near the pole surface, with y=2 and y=4, neither approximation
scheme represents the function at all adeguately.

In Table 6 we examine the conjecture, made at the end of §3(b), that we
would expect the diagonal and 'slightly' off-diagonal quadratic
approximants to produce similar results. | For the example given in Tabie
6, this is seen to be the case; the errors in the two tabulated
approximants are almost always of the same order of magnitude and are very
often equal.

For the diagonal quadratic approximants the three suggested methods of
setting up the equations on the final prong, given by (2.8a),(2.8b) and
(2.8¢), are considered in Table 7. Here we make a comparison of the errors

arising from each of the schemes. Again we see that the errors are almost

always of the same order of magnitude and very often are equal.
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(b) EXAMPLES (II)

The examples considered here are the following two Feynman graphs of
Chapter 3:

(i) the three point production process of §5b and

(ii) the fourth order box graph of 86,
where (i) and (ii) are considered as functions of the two invariants s and
t.

(i) THREE POINT PRODUCTION PROCESS

From Appendix 2(b) of Chapter 3 we obtain the following two variable

expansion for the three point production ﬁrocess:

\ \ ¢
N X, Fati-] L] €642
T s k=) =S @S (0 ises ™ el | wde | &
Sy (et

[)r+l
r=0 k=0 é (<}

where A
: M2 (2
D°= \).zv“~v)S°+ \L“-w)vko+w“—w)u-v)m -m
and 8, to are the expansion parameters. In contrast to the one variable
situation of Chapter 3, we have no working rule for assessing 'good’' values
of these parameters and in the following results the values chosen for 8,
and to are really no more than guesses.

We note from (6.1) that the methed of expansion produces the terms
(s-sof‘ (t-to)ﬁ, where («,B) lies in a triangular region. From the
preceding sections (see especially Figs.3~8) it is clear that it is in
precisely this type of region that we require the power series coefficients
in order to calculate the two variable approximants; the expansion (6.1)
thus does not produce unwanted coefficients. In Table 8 we tabulate results
comparing

(a) the (6/6) rational approximant and

V(b) the (4/4/4) quadratic approximant,
with mass values M=m=1 and expansion points so=3+31 and t°=l+i. We make
the following comments:

(i) For t<l, we can obtain reasonably good results with the rational

approximants. Although these results are not as accurate (see Table 9 of



TABLE 8:

TWO VARIABLE DIAGONAL RATIONAL AND QUADRATIC APPROXIMANTS TO

THE THREE POINT PRODUCTICN PRCCISS OF CHAPTER 3,§5b.

(6/6) RATIONAL (4/4/4) QUADRATIC

5 t APPROXIMANT APPROXIMANT

o} 1 (-o.6ou6001,-o.4x10'7) (-0.60452,_0.1x10‘3)
2 (-0.768472,-0.2x10'6) (-0.76832,_0.5x10'“)
4 (-1.65,-0.1) (-1.60,-0.06)

6 (-0.6951,-0.997) (-0.681,-0.992)

8 (-0.361,-0.8941) (-0.365,-0.883)
10 (-0,204,-0.7888) (-0.22,~0.785)

0 3 (=0.822473,0.7x10" 1) (=0.8213,0.3x1072)

2 (-1.117896,0.1x10-u) (-1.1126,o.ux10'2)

b (-4.1,-0.983) (-1.7,-1.9)

6 (-0.420,-1.1522) (~0.6,=1.5)

8 (-0.1203%,-1.1610) (-0.14,-1,31)
10 (-0.0071,-0.955) (-0.08,-1.1)

0 4.5 (=1.4,-0.4%) (-1.2,0.39)

2 (-2.1,-1.2) (-1.2,-1.3)

L (~0.2,-0.5) (-0.8,-2.2)

6 (=0.2,-0.8) (=065 ;=2.0)

8 (0.42,-1.020) (0.84,-1.08)
10 (0.356,-0.834) (0.65,-0.66)




-112-
Chapter 3) as those obtained with the one variable approximants (and %
fixed), we do not have to compute the integrals in (6.1) anew for each valu=
of t when using the two variable approximants. The results obtained with
the quadratic approximants are disappointing, especizlly in view of the
results of $6(a).

(ii) For t>4, the results are not very much in agreement. The
explanation of this is provided by Appendix 2(b) of Chapter 3; for real
positive tshm® (=4) there is a complex singularity on the physical sheet.
This has the consequence that we cannot write single variable dispersion
relations, with integrations along the real axis, for production processes

- at least not in simple variables {see (11) for further details). T we
fix t (>4) and form one variable approximants in (s-so) as in Chapter 3,
the resulting«-integrations become difficult to perform due to the presence
of singularities in the integration region; again we cannot obtain
convergenf results.

(ii) FOURTH ORDER SCALAR BOX GRAPH

From Appendix 3 of Chapter 3 we obtain the following two variable

expansion for the fourth order box graph:

[~ -J . . ‘ ‘ l r 3—r
. - R § g5 bt 2P J\AVJ‘A u.(\~u')c» b
Tlss. b-to) 35___0 (j+IN 1)) E kr)(s so) (k- J; W V) " Doé*e

r=0
where

QA= \A}\l “’V)

l) = \\--\.t)lw\bw)
and

Dy= o-so+ b, - M (-w)® - miu
In Table 9 we compare the (6/6) rational and (4/4/4) quadratic
approximants for the mass values M=m=1l and with so=3+3i and to=1+i. Again
we obtain good results using the rational approximants but disappointing
results with the quadratic approximants.
7. CONCLUSIONS

In this chapter we have seen that the ideas underlying the definiticn

-




TABLE 9: TWO VARIABLE DIAGONAL RATIONAL AND QUADRATIC APPROXIMANTS TO
THE FOURTH ORDER SCALAR BOX GRAPH OF CHAPTER 3,$6.
(6/6) RATIONAL (4/4/4) QUADRATIC
s |t APPROXIMANT APPROXIMANT EXACT VALUE
0 |-1 (o.235711h,-o.1x10'6) (0.23566,fo.3x10‘”) (0.2357113,0)
1 (0.2710095,0.1x10‘6) (0.2?1003,-0.3x10'4) (0.2710095,0)
2 (0.3253897,0.7x10™7) (0.32541,0.3x10™2) (0.3253893,0)
3 (0.428310,-0. kx10™) (0.42826,0.4x10™ 1) (0.428303,0)
L (0.98,0.09) (1.11,-0.04)
5 (0.3227,0.64921) (0.3275,-0.6499)
6 (0.1142,0.5455) (0.1139,0.5450)
7 (0.0257,0.4581) (0.02557,0.4579)
8 (-0.01872,0.3933) (-0.01864,0.3930)
9 (-C.0433,0.343266) (-0.04367,0.34360)
0 0 (0.2636002,-0.2x10'6) (0.26361,-0.2x10'“) (0.2636001,0)
1 (0.3022998,0.1x10'6) (0.30231,0.2x10'5)_ (0.3022999,0)
2 (0.3615971,0.8x10"7) (0.361595,0.1x10™ 1) | (0.361598,0)
3 (0.47281,-0.4x10-5) (0.47277,-0.2x10-4) (0.47280,0)
L (1.05,0.1) (1.25,-0.04) (1.21,0)
5 (0.3883,0.70255) (0.3891,0.70243) (0.3894,0.70248)A
6 {0.14949,0,60438) (0.14965,0.60L44) (0.14962,0.50&6)
z (0.0460,0.5140) (0.0460,0.51410) (0.0458,0.51416)
8 (-0.00747,0.,4445) (-0.00733,0.44133) (-0.00745,0.44429)
9 (-0.0377,0.39019) (-0.03752,0.39034) (-0.03758,0.39026)
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and construction of the two variable rational approximants can be extended
in a natural way to quadratic apprcximants. The approximants defined in
this way have been shown to possess many of the properties of the
corresponding two variablg rational approximants.

The main object in defining these two variable ''t-power' approximants
is to try and extend the advantages of the one variable Shafer approximants
to two variable series. Indeed the results of §5(a) indicate that this has
been achieved; the two variable quadratic approximants do seem to provide
a (sometimes considerably) better method of approximation than the currently
used two variable rational approximants, especially to functions possessing
branch points. However, the results of 56(b) are rather unsatisfactory
and at present the explanation of this behaviour is not very clear.

If we confine our attenticn to real series then, on the basis of the
results of’ﬁé(a), the two main conclusions we can draw are:

(i) The two variable quadratic approximants do seem to considerably
increase the accuracy in two variable calculations. The functions fl,

f, and f, of §6(a) were considered because they exhibit commonly occuring

2 3

types of branch points. We have not explicitly considered the function
\

Flxy) =“-a’.—\5)/z
which has a square root branch point, gince the quadratic approximants of
§2 and 85 are obviously exact for this function. Since the quadratic
approximants approximate these functions so well, and considerably better
than the corresponding rational approximants, we expect the basic trend
in the results of Tables 1-7 to be reproduced for many of the multi-valued
functions which occur in practice.

(ii) Starting from a function with a power series expansion valid
on only one sheet of the function, we can, using the two variable quadratic
approximants, obtain information about the function on a second sheet.

The approximants permit the analytic continuation cf a function from one
Riemann sheet to another. |

On the basis of (i) and (ii), we expect the two variable quadratic
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approximants diecussed in this chapter to be of great value in the many
areas of theoretical physics where perturbation methods are commonly
employed. We also expect the '"t-power" approximants (t>2) of this chapter
to be of great potential use.

As a finél point we note that, although the two variable quadratic
approximants produce disappointing results in this connection, the methods
of Chapter 3 for calculating Feynman integrals in the physical region can
certainly be used in conjunction with the two variable rational approximants

to produce reliable results.



FIG. 3: PRONG STRUCTURE FOR THE (m/m) DIAGONAL CHISHOLM RATIONAL APPROXIMANT
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FIG. 4: PRONG STRUCTURE FOR THE (m/m/m) DIAGONAL QUADRATIC TWO VARIABLE APPROXIMANT
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FIG. 5: PRONG STRUCTURE FOR THE (m/m/m/m) DIAGONAL TWO VARIABLE CUBIC APPROXIMANT
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FIG. 6: PRONG STRUCTURE FOR THE (m  _, m, /m ,m, ) OFF-DIAGONAL TWO VARIABLE RATIONAL (t=1) APPROXIMANT
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FIG. 7: PRONG STRUCTURE FOR THE (2,5/3,4/1,2) OFF~-DIAGONAL TWO VARIABLE QUADRATIC (t=2) APPROXIMANT
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FIG. 8: PRONG STRUCTURE FOR THE (5,2/3,6/6,5/7,8) OFF-DIAGONAL TWO VARIABLE CUBIC (t=3) APPROXIMANT
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FIG.9: PRONG STRUCTURE FOR THE (m/m/m) THREE VARIABLE DIAGONAL QUADRATIC

APPROXIMANT
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APPENDIX I: CAUCHY-BINET THECREM (&)

Let the determinant formed of elements taken from rowsa;lﬁc?,...,d

and columns Bl’ BZ""’B of a matrix M be denoted by

@, Ky - Fy
M( "

RI B).,"

Then if M=AB----RS, where A,B,...,R,S are of order kxm,mam,...,rxs,sxk (so

that M is of order kxk), we have
M_:ZZZ n(l 2-- kK B(’;‘ BL'-BK) ______ R({;, PLPK)S(O" c'z.-.G'K)
ﬂaﬁt"BK g, D‘L"‘KK ) Op---Ox )  \l 2---k
where the summations are over all sets of k columns taken independently
from the columns of A,B,...,R or, alternatively, over all sets of k rows
taken independently from rows B,....,R,S.
The expapsion will vanish if any cne of the following inequalities are

true:

kam,k>n,;e..., kar,k»s
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APPENDIX 2: FORTRAN CCOMPUTER PROGRAM FOR THE CALCULATION OF TWO

VARIABLE OFF-DIAGONAL QUADRATIC APPROXIMANTS

The following subroutine, GQA2V, calculates the two varisble off-
diagonal quadratic approximants defined in Chapter 4; the routine is
written in Fortran, uses double precision arithmetic throughout and has
the following parameters:

C: A 25x%25 matrix containing the coefficients of the power series

expansion of f(z).
IPX,IPY,IQX,IQY,IRX,IRY: These integers define the (IPX,IPY/IQX,IQY/
IRX,IRY) quadratic approximant.

P,Q,R: These 10x10 matrices contain the calculated coefficients of

the polynomials P(z),Q(z) and R(z) respectively.

IPRONG: This integer parameter defines the prescription tc be used

on the final prong for diagonal approximants. The values
IPRONG=-1,0,+1 correspond to the schemes (2.8c), (2.8b) and
(2.8a) respectively.

For off-diagonal approximants the value of IPRONG is

immaterial.
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CHAPTER 5: QUADRATIC APPROXIMANTS AND LEGENDRE SERIES.
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1. PADE APPROXIMANTS TO LEGENDRE SERIELS

In many situations, especially in scattering theory (see, for exarple,
(1)), it-is more usual to expand a function f(z) as a Legendre series,
rather than aé a power series. In this chapter we look at the possible
uses of quadratic approximants in relation to Legendre series; the metheds
used here can be extended in a straightforward way to the case of cubic and
higher order approximants. In particular, we hope to define approximants
which will converge along branch cuts of f(z).

Given the power series

F\’L) == Z Q—r\_zn
n=0

the (M/N) Padé approximant to f(z) is given, with the notation of Chapter

1, by

lz) = —pulzl (1.1)
F\M/N) QN \z)

where

Ft") qulz) — Puiz) = 0l N+) (1.2)

Given the corresponding Legendre series

Hi) _ Z E\.PL.\E) {1.3)
L=0

three types of "Legendre Pad€ approximant' have been defined:
(i) Fileischer (2) and Holdeman {3) have defined the (M/N) Legendre

Padé approximant by the requirement that

 PR)q b — k) = (P t2)) (1)

in analogy to (1.2), where

N 2
qniz) =Z by P lz) ond  PwiEl = i o, P2
k=0 L=0

are respectively the denominator and numerator of the approximant.

(ii) Fleischer (4) has given the alternative requirement

M=) —ﬂ%"% = Ol Puann (2) (1.5)
LY

(iii) The Legendre-Pade approximants cf Common, which we discuss in

8u.



(1.5) is not equivalent to (1l.4), as are the analogous equations for

the ordinary Padé approximants; essentially this is because of (1.8). 1In
fact (1.5) leads to a system of non-linear equations which cannot be
guaranteed to have a unique solution (or indeed any solution at all). The
motivation for éonsidering (1.5) is that the "linear Legendre Padé
approximants" defined by (1.4) (so called because they lead to a linear
system of equations) do not have the property that their first few expansion
coefficients agree with the first few coefficients of the original series;
the "non-linear'" approximants have this property.

Because of the computational difficulties associated with the non-
linear approximants of (1.5) (see (4) for a discussion of these), we shall
only consider the linear approximants defined by (1.4). Given the Legendre
series (1.3), the (N/M) Legendre Padé approximant is therefore defined by
(2)

RulPiz)) _nefolale - .. o Pulz) (1.6)
SulPle))  doPoladr - - - +dy, )

where
Fla) SwlPle) = Ry\Piz) = O Py, ) (1.7)

The product f(P(z)) SM(P(z)) in (1.7) is evaluated using the following

expression for the product of two Legendre polynomials:

Pil)P(2)- ZI o((:,p P.lz)

V=i

can be written in the symmetrical form (2)
@) L Rlgkiant)) R (#1i-3+9) Rl -U) e+l even
®L= QUi i) R (#lu++1)

Q , otherwise

(1.8)

where the o:l(l’J)

le)=(k;‘2‘)

Because more than one term appears for each product on the right hand side

of (1.8), the coefficients £, (04L€2M+N) of (1.3) contribute in the
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construction of the (N/M) approximant. In centrast, for the Padé
approximants defined from the Taylor series, the maximum index contributing
to (N/M) is N4M,
In analogy with the ordinary Padé approximants, we set
do- |
the remaining (N+M+1l) coefficients ng (0<jsN) and di (1si€M) are determined

by the requirement

oIS PLe) - RalPial) =S Rt

k=MiN#H
so that
NCEINAT) by ”
BePulz 2 &Pz ] - N n Pile)
k—M*NH ! k=0 ; ©r

oo M
Z BiPulz) - L__. '\KP&@ = Z h Z dy P'- &) Pya) (1.9)

k=M-t-4 =0 k=0
) ™M '+ ‘ k)
7
ORIRPIE LT
=0 k=0 | -K‘

using (1.8). The summations on tbe right-hand side of (1.9) are such that

(1) ] <PM+N+|

and

(ii) L< M+N+|
Multiplying (1.9) by P (z) (O<o<M+N+1) and integrating between -1 and +1,
we have

B }j _ i: {3,k) (1.10)
n‘\, ol ;'J d'K K
i ko

provided

lj-kl<og j+k | (1.11)

In deriving (1.10) we have used the result

J
Pl Ple) = 0 Lem
'f_' LI) * E/QL"‘ ') L=m
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’

The summation limits on j in (1.10) are defined by (1.11). Rewriting (1.11)

as

lo-kl < j<o+k

(1.10) becomes

el k) (1.12)
¥ .
mSam ) b ) R 0 <oatin)
k=0 3=lo-kl '
If we define
Lol (w0l (1.13)
G‘L,l: g <. |:n-
n=|L-il

then (1.12) becomes

M
S = Z e O (1.14)

k=0

(J’k)= . Thus, the requirement (1.4) leads to the following

(since? “L oi(kvl))

system of linear equations:

Z di 0= 0 KN+\$L$N+M)

1

‘s (1.15)
i: A"\. Q—\.,L = 1\, l0$\,$ N) :
=0

The analogy between the linear Legendre Pad& approximants, defined by
(1.6) and (1.7), and the normal Padé approximants can be clearly seen from
the following representation (obtained from (1.15)) of the (N/M) Legendre

Pad& approximant:

Q’N'ﬁ",“ S R OaN‘H‘D
deb | ?

Qnmn," AT i Owem,0
N

( ZQL,MPLh') T 'ZQ'L'C’ hlz)
(e it
\ /M i (1.16)
e

dek | :
o,N:m,M--—— - - - -O-f;m«.o
N SR A T
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which is to be compared with the representation of the normal Pad& approx-
imants given by Theorem 3.1 of Chapter 1.

2. QUADRATIC APFROXIMANTS TO LEGENDRE SERIES

The results of %l can be readily generalized to the case of quadratic

approximants. We define polynomials Q(z), R(z) and S(z) by

Qe = i q;P) | et
320

v o
Rl‘t) . Z VKPV,(?:) (2.1}
k=0
and
S
Stz) =Z s PLiz) \2:305
1=0

where q,r,s are the degrees of Q,R and S respectively.
The (q/r/s) Legendre quadratic approximant to (1.3) is then defined tc be

the solution, g=(q/r/s), of the equaticn

Q) (33\%) +R& 3\1) +Slz) =0 (2.2a)
Qhere Q,R and S are determined by '
Qhﬁ) \:2"‘*) * P\k'k) V'\?) + gk%) = 0\,P1+r+5 +ﬂ,‘?:)) (2.2v)

(2.2b) leads to a system of linear equations, which we shall now determine;
we do not consider the 'mon-linear' case arising from an equation

analogous to (1.5). Defining

F2(1)= i I;LPL[%) | S
L=0 <

we have, from (2.2b),

NALE ZsJP,w [Z; P&)(}fma) pw P lz)
K=0

k= =q-r-s-2
0 . q T
ZL\ Z‘[,\P () R lz) +Z[, Z_‘rKP &P, l2)
““0 k=0 k=0
= , n+k
Z L\i’jﬂ* S 2k Z ﬁiu) Pkl .o
ne= o

L=|n-k

The summation over n in (2 L) is 5uch that
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»  n<mox(2q4r 4542, qeresed)
and
1)  L<qrres+d
Multiplying (2.4) by P (Osbzq+r+s+2) and integrating between -1 and +1, we

have

r / (205)
=3 S" Z hZ‘h e Z Fo Zrm °<;n"m)
n ' m=0

provided

@ Jn-klsocn-k (0<keq)

and

(b) I-m|so<am (O<m<r)
Since (a) and (b) imply that

Io'"klﬁ“-s o+k

and

lcr—ml SnSo+m
(2.5) can be written

r ok 00t
..S Se Z_,%-}j l"n. ZFK/Z‘ | “’ff ﬂ:.“‘k)

K0 p=je-kl K=0 n'=lo-¥| (2.6
A2 r
= Z (\,K O.O_Ik 4 rK/ O"O"kl
where k=0 '=0
. . (2.72)
Q’\—,.D —_ Z «L [:n
L=
and
L+t N
~ .
Q.\-,i, b (‘\'1“) L (2.70'
: : L n
'L"l-tl

Hence, from (2.6) the linear system of equations defining the (linear)

Legendre quadratic approximant is

« S v (2.8)
Z A Qi +§: i (\—\_3 = =35, (OSLSS)
=0

and

3

=0
‘ ¢
Z 0 Gy - Zr < (S+'SL<0L+('+STE)

1=0 3=0
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We note that the (q/r/s) Legendre quadratic approximant to (1.3) requires
q+r+5+ 2+ moxly,r)
terms of the series exvansion of f£(z).

From (2.8) it is possible to write down an explicit determinant
representation for the Legendre quadratic approximant, in analogy to (1.1€)
for the Legendre Padé approximants. This will lead to a representation
similar to that contained in Theorem 3.2 (of Chapter 1); we do not give
the results here, since we shall make no use of them, and their form is

apparent from Theorem 3.2.

3. COMPARISON OF THE LEGENDRE PADE AND LEGENDRE QUADRATIC APPROXIMANITS

We make a comparison of the approximation schemes of‘§1.and§2 by
considering the following two functions, both of which are considered by

Fleischer in (4):

W ) “lnl=02

|- o (3.2
- [ol-aufr - o t)-au]r

where‘/m:l.Blé gives the beginning of the cut, and QL(x) is the Legendre
function of the second kind.

In Table 1 we compare

(a) the linear (2/2) Padé approximant of §1, requiring 7 terms of
(3.1), and

(b) the linear (1/1/1) quadratic approximant of §2, requiring 6 terms
of (3.1).
Alsc tabulated is the partial sum of the first seven terms of (3.1). The
results indicate that scheme (b) ies preferable, especially near the branch .
point. More important, though, is the possibility of using scheme (b) for
z(>f) along the branch cut. In Table 2 we give results for the (5/5/5)
quadratic approximant for z>|/uu Although the accuracy obtainable on the cut
is not comparable to that cbtained off the cut (see Table 1), it is possible

to obtain roughly four significant figures along the branch cut.




TABLE 1: COMPARISON OF THE (2/2) LINEAR PADE AND (1/1/1) LINEAR QUADRATIC APPROXIMANTS TC THE LEGENDRE SERIES

EXPANSION OF £(z) = 1n +=2Z. WITH 1/a = 1.816.

l-a ’
LINEAR PADE LINEAR QUADRATIC
z PARTIAL SUM APPROXIMANT APPROXIMANT £(z)

=3.5 DIVERGENT 1.865 1.8756 1.8734
-1.75 1.42 1.4735 1.4743 1.47416
-1.0 1.23797 1.23806 1.238082 1.238078
-0.5 1.04262 1.042655 1.0426543 1.0426536
0.0 0.799537 0.799521 0.7995279 0.7995276
0.5 0.47765 0.47765 0.477624 0.477628
1.0 0.0020 0.00018 -0.00006 0.0

1:5 -0.854 -0.907 -0.966 -0.947
1.75 -1.57 =1.90 -2.55 -2.51




TABLE 2: LINEAR (5/5/5) LEGENDRE QUADRATIC APPROXIMANT TO
£(z) = In %523, FOR Z’% = 1.816.
(5/5/5) LEGENDRE

- QUADRATIC APPROXIMANT f(z)
1.75 -2.5065 -2.5057
2.0 (-1.488,%3.138) (-1.494 %3, 14159)
2.5 (-0.17796,%3.1432) (-0.1782,%3.,14159)
3.0 (0.3719,%3.1406) (0.3709,23.14159)
3.5 (0.0722,23.140k) (0.0723,%3.14159)
4,0 (0.982,%3.1418) (0.983,13.14159)
4.5 (1.1883,23.143) (1.1896,23.14159)
5.0 (1.36047,23.144) (1.36045,%3.14159)




' 1
TABLE 3: (2/2) LEGENDRE PADE AND (1/1/1) LEGENDRE QUADRATIC APPROXIMANTS TO f(z)= JF==:===i§; WITH a=0.3.

l-2az+a

LINEAR PADE LINEAR QUADRATIC
s PARTIAL SUM APPROXIMANT APPROXIMANT £{z)
| -3.5 DIVERGES 0.561 0.56008 0.5599

-1.75 0.77 0.6838 0.68362 0.68359
-1.0 0.76940 0.769236 0.769233 0.769231
0.5 0.8482h4 0.8481884 0.84818876 0.84818893
0.0 0.95781 0.957829 0.957828 0.957826
0.5 1.12505 1.125080 1.1250865 1.1250879
1.0 1.4283 1.42849 1.42859 1.42857
1.5 2.13 2.26 2.298 2.294
1.75 2.82 3.19 5.19 5.00




TABLE 4: LINEAR (3/3/3) LEGENDRE QUADRATIC AFPROXIMANT TO
f(Z)=f—1_;_;a—_l:,\-?' WITH a=0,3.
- (3/3/3) QUADRATIC
z LEGENDRE APPROXIMANT £(z)
1.75 5.0000008 5
- 2.0 (2x10%,%3.015116) (0,%3,015113)
2.5 (4x1070, %1.5617372) (0,%1.5617376)
3.0 (5x10™7,1.1867823) (0,%1.1867817)
345 (3x10’8,fo.9950378) (0,70.9950372)
4.0 (-3x10"7 ,%0.8737046) (0,%0.8737041)
4.5 (-5x107 ,%0.7881108) (0,%0.7881104)
5.0 (-8x1077,%0.7235748) (0,%0.7235746)
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(ii) (3.2)

l o

- L
“’l)'——-‘/T__'-___._..E S E o P\,h:)
| -Raz +a L=0 ]
Choosing a=0.3, the branch cut starts at xc=(l+a°)/2a=l.816, as in (i) above.

In Table 3 we give the results obtained using schemes (a) and (b) above

for x<x . VWe again find that (b) is preferable, especially near to the

c
branch point. For x>x_, we tabulate the (3/3/3) approximant in Table k4;
in this case the great accuracy obtainable along the cut reflects the fact

that we are essentially approximating a square root branch point by a square

root branch point.

4, THE LEGENDRE PADE APPROXIMANTS OF COMMON

Common (5) has defined Padé approximants to Legendre series in the

following way. The analytic properties of the Legendre series

f)= Z Fo P2 et

n=0
are related (6) to those of the corresponding power series
°0
T e (4.2)
%\}) = Z Y—-n. k'-Z)
n=0

If g(z) has radius of convergence r(r>l), then the Legendre series f(z)
: : . + . : . ; ] ™
converges in an ellipse with foci at -1 and with semi-major axis %(r+%), The

important relationship we require between f(z) and g(z) is (6)

fk) = #ﬂf 3[-2 - \12—|)y2 s v] v (4.3)

The importance of (4.3) lies in the fact that it relates the problem of the
analytic continuation of the Leéendre series f£(z) outside its ellipse of
convergence to the corresponding problem of the analytic continuation of
the power series g(z) outside its circle of convergence.

The most natural way of approximating f(z) is to replace g(w), where
wz-z-(za-l)% cosv, in (4.3) by its Padé approximents (N/N+j). In (5) the '
case when g(w) is a series of Stieltjes was studied; in this case the
(N/N+j) approximants have known convergence properties. The extension of
this work to a general power series g(w) is given in (7). To define the

Common approximants we write




oy )
oo e (b.4)
o e ‘
lN/N*J)‘ § e 4 Bty (2)

L[+ Tp N"") el

P"-" : qzo
where thecﬂp N’Ba X and o% N are expressible in terms of the series
* Y ,

coefficients £ (0=ig2N+3j). If we denote the approximant to f(z) obtained
by replacing g(w) by (N/N+j) in (4.3) oy £y ; (z), then, using (4.4),it is
)

straightforward tc show that

i e,V i | P ( ) (4.5)
' + Bq, 1
o=l [‘—2 O+ O'Plé]’?. = N e

where the branch of (1-2ob bf+cb bf) is chosen to be positive for z<0.
B : ]

An alternative derivation of (4.5), not making use of (4.3), is given
in (7). Consider the (N/N+j) Padé approximant to g(z), denoted by g, J.(z);
]

then, from (4.2) and (4.4),

)
Wile) = }Nj et N TS

= |-z 10
N o 7.
= Z"‘PNZ TonE + XB%NZ
Then, from (4.1), p=l Le |
N o) y 3 ‘
FN.J(?.) = Z“?,N Z O—P‘N Prl’t) b i: BQ,N q_l?:)
P:‘ r=0 ™
J
- <o N _ R NP (2)
Z [, -7t +°‘9.N2] v g LN T4

which is (4.5). In thgg derivation we have made use of the fact that

(1-2tx+t2) is the generating function for the Legendre polynomials:

SR e) - !

L=0 /.‘-E\:mi-\:z

The approximants defined by (4.5) are those introduced by Common.

For the case when g(w) is a series of Stieltjes, the following theorem is
true (5):

THEOREM 4,1: For all z in the complex plane cut from %(r+%) toeo,

where r is the radius of convergence of the series of Stieltjes (4.2) and

r>l,

l"m"— FN,:‘(‘}) = (}l})

N—o
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The convergence is uniform in any finite closed region of the complex z-
plane which does nct include any point of the cut of £(z).

5. EXTENSION TO QUADRATIC APPROXIMANTS

Kﬁ important point to note from Theorem 4.1 is that, although the
aprroximants defined by (4.5) appear to have a square root branch point built
into them, the approximation scheme (4.5) only converges at points not on
the cut of f(z). We (see also (8)) propose to replace g(w) in (4.3) by its
quadratic approximant, g(p/q/r)(W)' in an attempt to obtain convergence on
the branch cut; we can obviously extend this idea by replacing g(w) by any
‘suitable' approximant. However, once we choose to approximate g(w) in
(4.3) by a multi-valued approximant, in preference to a Padé approximant, we
have no longer any equation of the form (4.4),‘and we are not able te give an
explicit representation (of the form (4.5)) for these multi-valued

approximants. In practice, the integration in the formula

W
Flp/«ur)("“”) = ;—J 3(‘3/%/.4(14' (- ])" cow) dv (5.1)
v}

is performed numerically. The following method of performing this numerical
integration is due mainly to T. Stacey (8), who performed most of the
numerical computations associated with this method.

To illustrate the method, we again consider the logarithmic example of
%3. The power series with the same coefficients as (3.1) will have a
singularity at

2 =L+ (-—'—-I)\/z-- 0 (5.2)
S o \e 3 '

Let

Hal = [n % = Z the) (5.3)
L=0

where the f; are given by (3.1), and ‘consider

%h, - Z‘ x\\'?\. (5.4)
L=0

The branch points of the (N/N/N) quadratic approximant to g(z) are then {in
the usual notation) given by the zeros of the 2Nth. degree polynomial

2 : .
(Q"=4FR). In Table 5 we tabulate these zeros for N=2 and N=5, and we find

the following features. Apart from the {unstable) zeros at great distances




TABLE 5: LOCATION OF THE BRANCH POINTS OF THE (N/N/N) QUADRATIC

APPROXIMANT (N=2,5) TO (5.4).

ZEROS OF THE (2/2/2)
QUADRATIC APPROXIMANT

ZEROS OF THE (5/5/5)
QUADRATIC APPROXIMANT

=202
-2.653+0,002i
-2.653-0.002i

3.32

-22].2

-67

{=
-2.88829+1.20877i
-2.88820+1.208741

-2.88829-1,208771
-2.88820-~1,208741i

0.6275521
0.6275517

3433332
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from the origin and those near Z g all the zeros occur in very close pairs.
Moreover, for all the examples so far studied, this occurence of very close
pairs of zeros is always found and does seem to be a characteristic feature
of this quadratic method of approximaticn. This is a very desirable feature
since we can join these adjacent zeros by cuts and produce a "maximally
analytic" approximant. For, if we draw cuts which do not connect nearest
neighbour branch points, we produce an approximant containing discontinuities
in large regions where the original function f(z) is analytic.

For z away from the branch.cut the evaluation of f(N/N/N)(Z) from (5.1)
is straightforward; for z on the branch cut the situation is not so simple.
The poles of the approximant all lie far from the origin or on what we might
call the "unphysical' sheet of the approximantband present no prcblem, except

for the pole close to Zg e The presence of this pole forces us to modify

(5.1) to the form
z2+Jz-1

_
Flplxlr)b) o

Yprair) bl (5.5)
%_m /,-223C+Dcz

which ie obtained from (5.1) by making the substitution
)\&

x=2+\21)  eosv
The path of integration in (5.5) is chosen as a path in the complex plane
which avoids the pole at 2.

For z not on the branch cut, the results obtained using (5.1) are
comparable to those produced by (4.5) (see (8) for further details). Ian
Table 6 we give results, using (5.5), for z along the branch cut. These
results indicate that we can obtain very good convergence a long way from the
branch point. This method is clearly far superior to that of Fleischer (4),
who attempte to use the residues of the poles of the Padé Legendre

approximants of‘%l.to obtain information about the imaginary part on the cut.

6. THE INVERSE SWUARE AND COULOMB PCTENTIALS

In this section we apply the method of§5 to the following two examples
from potential scattering.

(i) INVERSE SQUARE POTENTIAL




=
EA

TABLE 6: ERRORS IN THE (5/5/5) QUADRATIC APPROXIMANT OF 5 TO (3.1);

BRANCH POINT OCCURS AT 2z=1.82.

ERROR IN THE (5/5/5) QUADRATIC APPROXIMANT
z REAL PART TMAGINARY PART
1.8 4x10™7 2x107°
2.0 251077 9%10™0
2P lx10™10 2x10™°
2.4 2x1077 3x1070
2.6 1x1072 1x1077
2.8 lx10™0 2070
3,0 2x1077 1x1077
3.2 3x1077 3x1070
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Having a long range, the repulsive inverse square potential
Vie) =472 (4> 0) (6.1)
has many of the features of several potentials of physical interest; most
notably, a very slowly convergent partial wave expansion of the scattering
amplitude. Also, the corresponding phase shifts may be obtained exactly
for this potential, allowing a comparison of the various approximaticn schemes.

For the potential (6.1) we have (9)

F(COS 9) = k'.Z ‘:\_ PL LCCS 9’
Lo
where
Y
Pu=(2L+1) e sinds , (6.2)
and

e e (T

(fk is the momentum of the scat£ered particles which are of unit mass).

In Table 7 we compare the following approximants:

(a) the linear Padé Legendre approximant of Fleischer; the values
quoted are those of (9),

(b) the diagonal Pad€ Legendre approximants defined by (4.5); tre
values quoted are those of (7),

(c) the diagonal quadratic Legendre approximants defined by (5.1).
The approximants in (a), (b) and (c) are denoted in Table 7 by (N/N),
f(N/N) and f(N/N/N) respectively. In each case we only quote the
approximant to the real part of (6.2) (the imaginary part giving similar
results) forA:RZ and k=10, The "exact' values quoted for f(cos®) at the
end of the table are those obtained by directly summing the partial wave
series, using sufficient terms to enéure stability.

The main conclusion we can draw from Table 7 is that the schemes (b)
and (c) give very similar results and are both appreciably vetter than
scheme (a).

(ii) COULOMB POTENTIAL

The scattering amplitude for the Coulomb potential



TABLE 7: APPROXIMANTS TO THE REAL PART OF THE SCATTERING AMPLITUDE FOR THE INVERSE SQUARE POTENTIAL V(r)=%'-2.

NUMBER

OF o=4° 0=18° 0=58°
COEFFICIENTS|Re £y ny|Re £y ay niy| Re (N/N_) Re £y my| Re £y mmny | Re (N/N) Re foumy | Re foymmy | Re (N/N;m |

5 -1.9 -0.330 -0.03831 !
? -2.02 -1.26 -0.3373 -0.37 -0.03823 -0.03817

11 -2.059 -2.063 -0.3368 0.3368 -0.03824 -0,03824

13 -2.063 -0.3368 -0.02824

14 -2.064 -0.3368 © =0,03824

25 -2.064 -2.12 -0.3368

43 -2.066

£(cos0) -2.064 -0.3368 -0.03824




2
Vir) = 3;
has the exact form (10)

-— —i- - ’——_——k
{ch)~ ¥ Ul Z) E__,“ L)

where k is the momentum of the particles being scattered. The partial wave
expansion is

(6.3

o0 ;S\, .
el > RU+1) 2 P ta)

where

A, _ F(L*-l +i)
N TR
K
The slow convergence encountered with (6.2) is even more extreme here; in
fact, the partial wave expansion for fc(z) is divergent everywhere, and
fc(z) also has a branch cut from +1 to o0,

For z<l, the approximants (4.5) and (5.1) give comparable results for
fc(z); further details of the former approximants can be found in (11).
Along the branch cut (z>1) the approximants (4.5) do not. converge whilst
the approximants defined by (5.1) produce the results of Table 8. Again
we only tabulate the approximants to the real part of fc(z) with k=10, The
results show that very good convergence canAbe obtained a long way along
the branch cut.

7. CONCLUSIONS

From the reeults presented in this chapter, we draw the following
conclusions:

(i) From the linear Pad& Legendre approximants of Fleischer we can
readily define linear quadratic (and higher order) Legendre approximants;
in practice, these guadratic approximants can be generated as easily as the
corresponding Padé approximants. Numerically, the quadratic Legendre
approximants exhibit slightly better convergence properties than the Fadé&
Legendre approximants away from any branch cut of the function; more

important, though, is the convergence of the quadratic Legendre approximants



TABLE 8: THE (5/5/5) QUADRATIC LEGENDRE APFROXIMANT (OF 5) TO THE REAL FART
OF THE SCATTERING AMPLITUDE FOR THE COULOMB POTENTIAL V(r)=e"/r
FOR z=cos€>1.
(5/5/5) QUADRATIC LEGENDRE
e APPROXIMANT EXACT VALUE
1.05 (5.314x10™2,-6.212x10"2) (5.317x10™2,-6.211x10™2)
1.48 (6.24x10™" ,-6.6787x1072) (6.25x10™" ,=6.6781x10™>)
1.90 (-b,.ouxlo’l’,-s. 5494x10™) (-u.osxlo‘l',-y 5498x10™) ;
2.51 (-6.005x10-l+,2.112x10-3) (-6.008x10‘4,-2.108x10'3) i
3,37 (=5.79x10" ,-1.3367x10™>) (-5.81x10",-1.3364x10™) ;
4,56 (-5.046x10‘b',-8.850x10'l*) (-5.053}(10-4,-3.828x10-'2+) ‘
6.21 (-4.22x10-l+,-6.01x10-h) (-l+.21x10‘l*,-5.99x10"l‘) t
8.48 (-3.l+6x10'“,-u.147x10‘“) (-3.l+3x10'l*,-l+.140y_10“") g
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along branch cuts of the function. These quadratic approximants therefore
allow the calculation of scattering amplitudes (in the form of partial wave
expansions) along branch cuts of the scattering amplitude.

(ii) The quadratic Legendre approximants defined by (5.1) seem to
provide a powerful method for the analytic continuation of Legendre series.
Away from branch cuts they compare favourably with the Legendre-Padé
approximants of Common, and also they produce very good results along branch
cuts of the function. The disadvantage of the method is that the required
numerical integration is a little difficult to perform, requiring
integration along a path in the complex plane. Furthermore, the
prescription given in @5 for joining up the branch points of the approximant
by cuts is seemingly arbitrary, although the choice ensuring maximal

analyticity of the approximants seems a natural one.
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