
Short, Leslie (1977) The approximation of functions with branch points. 
 Doctor of Philosophy (PhD) thesis, University of Kent. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94648/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94648

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. 

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open 

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line 

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ... 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/94648/
https://doi.org/10.22024/UniKent/01.02.94648
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


THE APPROXIMATION OF FUNCTIONS WITH

BRANCH POINTS.

LESLIE SHORT.

A dissertation submitted for the degree of Doctor 

of Philosophy at the University of Kent at Canterbury

December 1977



To my Parente,

In Gratitude for Everything.



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS

CHAPTER 1 PADE APPROXIMATES AND THEIR ONE VARIABLE GENERALISATIONS I-
§1 INTRODUCTION 2.
2 DEFINITION OF THE APPROXIMATION SCHEMES 4.
3 BASIC PROPERTIES OF PADS AND QUADRATIC APPROXIMATES 6.

REFERENCES 20.

CHAPTER 2 CONVERGENCE THEOREMS AND NUMERICAL EXAMPLES 21.
§1 CONVERGENCE THEORY FOR PADE APPROXIMATES 22.
2 SINGULARITY STRUCTURE OF PADE AND QUADRATIC APPROXIMATES 25.
3 NUMERICAL. EXAMPLES 27.
4 THE AN-HARMONIC OSCILLATOR 30.
5 SOME FURTHER APPLICATIONS OF QUADRATIC APPROXIMANTS 31.

REFERENCES 36.

CHAPTER 3 CALCULATION OF FEYNMAN INTEGRALS IN THE PHYSICAL REGION 38.
§ 1 REPRESENTATION OF FEYNMAN INTEGRALS 39.
2 METHOD OF CALCULATION 40.
3 CALCULATIONAL PROCEDURE FOR FEYNMAN INTEGRALS ( 42.
k SECOND ORDER SELF ENERGY AND ZERO MOMENTUM VERTEX PART

(ka) SECOND ORDER SELF ENERGY 43.
(ifb) ZERO MOMENTUM VERTEX PART 46.

5 THREE POINT FUNCTIONS
5(a) THE TRIANGLE GRAPH AND ANOMALOUS THRESHOLDS 45.
5(b) A THREE POINT PRODUCTION PROCESS 48.

6 FOURTH ORDER SCALAR BOX GRAPH 49.
7 FOURTH ORDER SCALAR SELF ENERGY GRAPH 5C.
8 CONCLUSIONS 51.

APPENDIX 1 SECOND ORDER RENCRMALISED SCALAR SELF ENERGY 55.
APPENDIX 2 THREE POINT FUNCTIONS 59.
APPENDIX 3 FOURTH ORDER SCALAR BOX GRAPH 64.
APPENDIX k FOURTH ORDER SCALAR SELF ENERGY GRAPH 68.
APPENDIX 5 NATURE OF THE LEADING SINGULARITY OF FEYNMAN GRAPHS 69.

REFERENCES 71.

CHAPTER k MULTIVARIATE APPROXIMANTS
§ 1 TWO VARIABLE DIAGONAL CHISHOLM RATIONAL APPROXIMANTS 
2 DIAGONAL TWO VARIABLE QUADRATIC APPROXIMANTS

2(a) DEFINITION OF THE APPROXIMANTS 78*



2(b) PROPERTIES OF THE APPROXIMANTS 83.
2(c) CHOICE OF WEIGHT FACTORS 88.

3 DETERMINANT FORMULAE FOR, AND DEGENERACY OF, THE TWO VARIABLE 
DIAGONAL QUADRATIC APPROXIMANTS
3(a) DETERMINANT FORMULAE 94.
3(b) DEG LITERACIES IN THE APPROXIMANTS 98.

if EXTENSION TO ARBITRARY "t-POWER APPROXIMANTS" 100.
5 TWO VARIABLE t-POWER OFF-DIAGONAL APPROXIMANTS 103.
6 NUMERICAL EXAMPLES 108.

6(a) EXAMPLES (I) 109,
6(b) EXAMPLES (II) 111.

7 CONCLUSIONS 112.

APPENDIX 1 CAIJCHY-BINET THEOREM U 5
REFERENCES 116

APPENDIX 2 FORTRAN COMPUTER PROGRAM FOR THE CALCULATION OF TWO VARIABLE 117,
OFF-DIAGONAL QUADRATIC APPROXIMANTS

CHAPTER 5 QUADRATIC APPROXIMANTS AND LEGENDRE SERIES 118>
§1 PADE APPROXIMATES TO LEGENDRE SERIES 119>
2 QUADRATIC APPROXIMANTS TO LEGENDRE SERIES 123 •
3 COMPARISON OF THE LEGENDRE PADE AND LEGENDRE QUADRATIC 125•

APPROXIMANTS
if THE LEGENDRE PADE APPROXIMANTS OF COMMON 126.
5 EXTENSION TO QUADRATIC APPROXIMANTS 128.
6 THE INVERSE SQUARE AND COULOMB POTENTIALS 129.'
7 CONCLUSIONS 131.

REFERENCES 133‘



ABSTRACT

In recent years Pade approximants have proved to be one of the most 
useful computational tools in many areas of theoretical physics, most notably 
in statistical mechanics and strong interaction physics. The underlying 
reason for this is that very often the equations describing a physical 
process are so complicated that the simplest (if not the only) way of 
obtaining' their solution is to perform a power series expansion in some 
parameters of the problem. Furthermore, the physical values of the para­
meters are often such that this perturbation expansion does not converge and 
is therefore only a formal solution to the problem; as such it cannot be 
used quantitatively. However, the relevant information is contained in the 
coefficients of the perturbation series and the Fade approximants provide a 
convenient mathematical technique for extracting this information in a 
convergent way. A major difficulty with these approximants is that their 
convergence is restricted to regions of the complex plane free from any branc 
cuts; for example, the (N/H+j) Pade approximants to a series of Stieltjes 
converge to an analytic function in the complex plane cut along the negative 
real axis. The central idea of the present work is to obtain convergence 
along these branch cuts by using approxinants which themselves have branch 
points.

The ideas presented in this thesis are expected to be only the beginning 
of a large investigation into the use of multi-valued approximants as a 
practical method of approximation.

In Chapter 1 we shall see that such approximants arise as natural 
generalisations of Pade approxinants and possess many of the properties of 
Pad? approxiraants; in particular, the very important property of homo- 
graphic covariance. We terra these approximants ’algebraic' approximanta 
(since they satisfy an algebraic equation) and we are mainly concerned with 
the 'simplest' of these approxiraants, the quadratic approximants of Shafer. 
Chapter 2 considers some of the known convergence results for Pade 
approximants to indicate the type of results we nay reasonably expect to 
hold (and to be able to prove) for quadratic (and higher order) approximants. 
A discussion of various numerical examples is then given to illustrate the 
possible practical usefulness of these latter approximants.

A major application of all these approximants is discussed iu Chapter- 
3, where the problem of evaluating Feynman matrix elements in the physical 
region is considered; in this case, the physical region is along branch 
cuts. Several simple Feynman diagrams are considered to illustrate (a) 
the potential usefulness of the calculational scheme presented and (b) the 
relative merits of rational (Pade), quadratic and cubic approximation schemes

The success of these general approximation schemes in one variable (as 
exhibited by the results of Chapters 2 and 3) leads, in Chapter b, to a 
consideration of the corresponding approxinants in two variables. We shall 
see that the two variable scheme developed for rational approximants con 
be extended in a very natural way to define two variable "t-power" 
approximants. Numerical results are presented to indicate the usefulness 
of these schemes in practice.

A final application to strong interaction physics is given in Chapter 
5 1 where the analytic continuation of Pegencire series is considered.
Such series arise in partial wave expansions of the scattering amplitude.
We shall see that the Pade Legendre approximants of Fleischer and Common 
can be generalised to produce corresponding quadratic Legendre approximants: 
various examples are considered to illustrate the relative merits of these 
schemes.
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1. INTRODUCTION

The central theme of this thesis is the extraction of quantitative 

information, about the solution of certain field theory problems, from 

perturbation series expansions. The motivation for considering such 

expansions is that they often provide the only feasible method of solution 

of a problem. Such series expansions have at best only a limited region 

of convergence and, more often than not, the region of interest in a 

particular problem lies outside this convergence domain; in certain cases 

the generated series has a zero radius of convergence and can only be 

considered as a formal series. The problem considered here is that of 

obtaining useful information from such series expansions; we clearly have 

to analytically continue the function under discussion beyond the circle of 

convergence of its pov/er series.

In principle such a process is relatively simple (l). Ue compute the 

value of the function and as many derivatives as necessary, and to as high 

a degree of accuracy as required, at a new point within the circle of 

convergence which is closer to the point of interest than the original 

origin. In this way we generate a new convergent series expansion of the 

function and, by sufficient repetition of this process, the desired function 

value at the point of interest can be obtained (provided this is a non­

singular point). There are obvious practical objections to this process:

(a) the amount of computation involved may become prohibitive,

especially if the point of interest lies far from the convergence region of

the series; excessive computation may lead to loss of accuracy, especially 

if the power series coefficients are not known exactly (which is invariably 

the case in practice);

(b) having obtained a convergent power series near the point of interest

the rate of convergence of this series may be so slow as to be of little 

practical use. Even if the point of interest lies within the convergence 

region of the original series, this slow rate of convergence may still be a

problem. In such a case we require a method of accelerating the rate of

convergence within the region of convergence;
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(c) if the power series has zero radius of convergence the above 

process is inapplicable.

Any method of continuing a Taylor series outside its circle of 

convergence can be regarded as a summation procedure for divergent series. 

Many methods are available for defining the sum of a divergent series (2); 

one of the more well known is that due to Borel (3), which uses the formal 

identity

where the series on the right hand side may converge even if the left 

hand side series does not. However, there is no useful way of truncating 

the integrand on the right hand side and the previous objection (a) still 

holds to some extent; at each point of interest we may have to perform 

a large number of integrations.

The most fruitful method of summing divergent series is based upon the 

idea of Pade (rational) approximants (^,5,6); we shall give the 

definition of these approximants in the next section. We can motivate the 

use of these approximants by considering Euler's method (2), which 

represents one of the simplest methods of analytic continuation. We 

suppose that v/e have a function f(z), analytic in the z-plane cut from 

-ooto -1 along the real axis (for example, ln(l+z) ), and v/e wish to 

evaluate f(2). Since the Taylor series for f(z) converges for 

the point z=2 lies outside the circle of convergence. We make the 

transformation

which is an example of an Euler transformation. The cut is mapped onto 

[l,<ao] and z=2 is mapped to y=2/3, which is inside the convergence circle 

of g(y)=f(y/l-y). We can therefore use a convergent Taylor series to 

evaluate f(2), provided we use the nomographic change of variable (1.2). 

For the particular example of ln(l+z) we obtain -ln(l-y) and the result is 

trivial; however, the result holds for any analytic function cut on

( 1. 1)



By making the more general transformation
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(1.3)
I =

we can map any part of the domain of analyticity into the convergence 

circle.

The major drawback with transformations such as (1.3) is that we do 

not in general know the location of all the singularities of the function 

being studied. What we seek to do is to generate a sequence of approximants 

to the function which are invariant under the (restricted) group of nomo­

graphic transformations

1 +  &U)
(1.4)

We expect that such a sequence will converge at least as well as the best 

power series obtainable by making transformations such as (1.2), and will 

hopefully accelerate the rate of convergence with the circle of convergence. 

More important, such a sequence should automatically produce the analytic 

continuation to any point not isolated from the origin by singularities 

of the function. This is in contrast to (l.l), where we have no "automatic" 

method of choosing n. 'We shall see (7) that Padg approximants, or at 

least a subsequence of them, have the required invariance property under the 

homographic transformations (1.4).

Now suppose that for the logarithmic function ln(l+z) we v/ish to 

evaluate f(-2), that is, along the branch cut. Then it is not possible to 

choose X  and in (1.3) such that z=-2 is mapped inside the convergence 

circle in the y-plane; for example, the transformation (1.2) maps z=-2 

to y=2, which lies outside I Vj | ̂ -1 . The basic reason for this behaviour is 

that f(z) has a discontinuity at z=-2 and (i.3) represents a continuous 

transformation; (1 .3) cannot map z=-2' into where there is no

discontinuity in g(y). This illustrates that, using Padg approximants, we 

can only obtain convergence in regions free of branch cuts. Furthermore, 

and more important, if we wish to obtain convergence along branch cuts we 

should use approximants with branch cuts "built-in" to their definition.

V/e shall see (7) that such approximants Cirise as natural generalizations
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of PadS approxiraants. The potential use of these approxiraants is enhanced 

by the fact that they also satisfy the property of homographie invariance (8) 

as well as the important properties of reciprocal convariance and unitarity 

(8) satisfied by the Pade approxiraants; these properties are discussed in 

section 3.

2. DEFINITION CF THU APPROXIMATION SCHEMES

In this section we define the Padé approximant and the generalizations 

designed to incorporate a branch cut structure into the approximation scheme.

We assume given a function f(z) with the (formal) Taylor series 

expansion

(2.1)
oC = 0

DEFINITION 2.1; The (N/M) Pade appreximant to f(z), denoted by 

f(N/,.,)(z)i is the ratio of the polynomials Pj,j(z) and Q^(z), of degree at 

most N and M respectively, which has the same N+M first derivatives of 

f(z) at z=0:

0 U Nt"“ J
Qnh.) J

( 2. 2)

or equivalently

where

fWQHii)-P.1W - O U * +M+,j
(2.pa)

(2.3b)

We can interpret (2.3b) as defining f^j (z) as the solution of an 

equation linear in f(z). Shafer (?) has suggested using approximants which 

are solutions of higher order equations; he gives the following definitions: 

DEFINITION 2.2: The (p/q/r) quadratic (Shafer) approximant to f(z),

denoted by f (p/q/r) ■'■n berms of the polynomials P(s), Q(z)

and R(z), of order at most p,q and r respectively, by the equation

where

2P W  + R y  =  0
P w }  vi) t  Q i d j - U )  + R u )  = 0 | t p ^ )

(2.^a)

(P.**b)
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DEFINITION 2.j5: The (p/q/r/s) cubic approximant to f(z), denoted by 

^(p/c[/r/s)̂ z  ̂' c*e -̂'-ne^ terms of the polynomials P(z), Q(z), R(z)

and S(z), cf degree at most p,q,r and s respectively, by the equation

D U) J'VpV*'7S)W +0 ^  } l ?Vr/s)W 4-R̂ )J'lp/«,L/r/s)^ +Su) = 0
(2.5a)

where

Pu)J3w  + Q u p u  +RwJ-^+Su)=0( p+^-vr+S+3) (2.5b)
2 3The above two definitions involve f (z) and f^(z); from (2.1) we see

that

where
p u )  =  J2

c<-»0

W  ~  ^  1 C*-/i

(2.6a)

(2.6b)
n-0 3

together with a similar expressing defining f (z). However, it should be 

remembered that since the power series expansion (2.1) of f(z) may only be 

formal, (2.6a) may only be a formal series; we have only performed a 

"formal multiplication" of the power series (2.1) with itself.

It is clear that we can define approximants which are solutions of 

equations of arbitrary degree in f(z); we give here only the definitions 

for the two simplest approximants (quadratic and cubic) since it is with 

these approximants that we shall be mainly concerned. We can see that these 

approximation schemes do indeed produce approximants with a branch cut 

structure built in; for example, from (2.*+a),

=[-Qvd±(tfm-M>wBi#]/2IHd <2-7)
so that quadratic approximants are two-valued functions with square root 

branch points, in addition to poles and zeros.

We can define other classes of approximants in a natural way. Suppose 

we have a function g(z) which is known to have a logarithmic branch point; 

then we can form the (formal) series exp( g(z) ) and form Pad6 approximants, 

gp(z), (or quadratic or cubic approximants) to this series. We night then 

expect In g^(z) to provide a good representation of the logarithmic branch 

point. This idea can be generalized by, instead of the exponential and
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logarithraic functions, considering a general invertible operator 0. If we 

denote by P the formation of a suitable approximant, then we can form the 

general class of approximants

0"' P  0  j-h) <2-8)
By choosing the operator 0 appropriately, we may hope to "build in" to our 

approximant whichever type of singularity seems suitable for the problem 

under consideration.

It is also possible, for example, to use approximation schemes of the

form

P L w  ^  + Q k W  f ll+ R*te> = O U ^ ) (2'9)

Approximants of this form have been used, for example, in critical 

phenomena (8).

We shall not be greatly concerned with some of these more general 

schemes and shall mainly consider the generalizations of Fade approximants, 

exemplified by quadratic and cubic approximants. For the class of 

approximants to v/hich these latter two approximants belong we shall use the 

general term "algebraic approximant", since they are the solution of 

algebraic equations. The approximants defined by (2.9) are therefore not 

algebraic approximants.

3. BASIC PRCPTHTITS OF PADS AND QUADRATIC APPBCXIKANTS

We now consider some of the basic properties of the (one-variable)

Pade and quadratic approximants; we shall also indicate the extension of 

these properties to the higher order algebraic approximants.

(I) NORMALISATION CONDITIONS

(2.3b) produces a linear system of (II+II+1) equations to determine the 

(N+M+2) unknown coefficients of PN(z) and QM(z). If we impose no extra 

conditions on this system (which leads to the approximants defined by 

Frobenius (5) ) the following situation can occur (9). Consider the (l/l) 

Pads approximant to

Using (2.3b) we find

J-W -!+%*■» Oil*) (3.1)
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R i i )  = Q ,U) = A n
where A is an arbitrary constant. Then,

t-u) - -144 = o u 2)
" Q»U)

instead of 0(z ); this occurs because Q.(O) = 0

This undesireable feature is eliminated by imposing the normalisation 

condition (9)

Q n 10)=| (3.2)

for all non-negative integers N. The disadvantage of (3*2) is that not all 

entries in the Fade table need exist (10) (for example, the (l/l) Fade 

approxiraant to (3*1) does not exist according to this definition); using 

the Frobenius definition (that is, Qj,(z)40) all approximants must exist (p). 

However, for those entries which do exist

t w  -  - & W  =  0 U M ^ ' )  U.3)
J Qwll)

We shall always use the condition (3*2).

The above situation is also encountered with quadratic approximants. 

(2.^) produces a system of (p+q+r+2) linear equations for the (p+q+r+3) 

unknown coefficients of P(z) , Q(z) and R(z); again we have the choice of 

imposing no extra conditions on this system or of adopting a normalisation 

condition of the form (3.2). If we choose the former alternative and 

consider the (l/l/l) quadratic approximant to

j-U) =  | + 12 + 0 U 5)
we find

PU) = A i  ;Qti)=-2Ai,p,y=A*
where A is again arbitrary. Then,

- i u / i / o ^ O U 2)

instead of O(z^). This situation occurs because either F(0) = 0 or 

Q(0) = 0; in this particular case both vanish. Me can overcome this 

difficulty by adopting one of the normalisation conditions

P N (0) =  | (3-5a>

or

Q n i w  = (3.5b)
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for all non-negative integers N. Again, if we adopt (3.5a) or (3*5b) not 

all the quadratic approximants need exist; for example, the (l/l/l) 

approximant to (3.*+) does not exist for either (3.5a) or (3*5b). However, 

for those approximants which do exist

where f(p/q/r)(z) is by (2.7).

The fact that we have a choice of normalisation conditions can be useful 

For example, the (l/l/l) quadratic approximant to ln(l-z) does not exist 

if (3.5a) is used but is well defined with (3«5b); in fact, for this 

particular example, the even order diagonal approxinants only exist if 

(3.5a) is used and the odd order approximants exist only using (3*5b).

We can now see explicitly that PadS approximants are a particular case of 

quadratic approximants (which justifies calling quadratic approximants 

generalizations of Pad§ approximants). For, using (3*5b) we have from 

(2.^b) with P(z)^0,

Q u ) / i )  +  R W  =  0 U r n "j

which is the defining equation (apart from a minus sign) for the (r/q)

Padg approximant (since Q(0) = 1). Also, using (3.5a), we have when 

R(z) =  0 the equation (after cancelling a factor f(z) ),

P h ) J - h ) +  Q l d  = 0 U P n > ')

which (again apart from a minus sign) defines the (q/p) Pade approximant.

It is clear that the considerations of this section extend to the 

higher order algebraic approximants.

(II) DETERMINANT FORMULAS

Provided the defining equations are not singular, we (ll) can give an 

explicit aeterminantal representation for the (m/n) Pade approxiraant.

With the notation

KU w  =  ¿2
ftd =  = 2

L ' C

0 if 0
and

(3.7a)

(3.7b)
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(3.7c)

the representation is given by the following theorem.

THEOREM 3«Is The (m/n) Pade approxinant, ^(~/n)(z)» has the (not 

necessarily reduced) representation

where

L f \ _

PnvU) =

and

QwU) =

provided

A  = Att

Moreover,

OQ

^  ....... tnx-a('h)

tVl)Q^i)-Pi,U)- l - l A i e b
K=t

n̂vv\ C(V\ . . . . .
tmx-tv Cr*w«\-' * -  • • Cta
1 1 ....................... •• ^C-nv+i t(\V - - - . . - C-xw-tv+l

•̂nv+tv t C-n"v
Cn\ ^nv-i.................. tn\-t\+XtpvH C-rtv.................. • - Cnv-a+1

(-rrwrv-l C(WH\.................. • - • trtv
CftvvX ..................* - * n̂x-a+x
t  rrv+a •i -» - - - - - - C-rn.C-nvx-xx-v-V. tflwvu-W-' • - - - - tn\*k

-f-0 (3.8)

rxx+a+K

The following theorem gives a similar characterization for quadratic

approximants. Using the notation of (3.7) and letting
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where

and

Bui't) =  / Ltic
t*0

W  =  0  ^  tv<0

we have the following representation.

THEOREM J>,2: The (p/q/r) quadratic approximant, ^(p/q/jA2 »̂ has

the(not necessarily reduced) representation

J > / y o u )
_  - Q a t ) ± 7 o ii w - H - p l, w R a i )  

2  Ppu )
where

i - - ..................... I ?  o ------------- 0
br+i ........................  W-p+1 trv i - - - - - -

PP U ) = t a t

bp^r+i - - - - - • -  (-pyc r̂-H - - - - - kp+v-v'

o  • ..........................  0  | .  -  -  . * • A

Wv» - . W-p+l Cry' - - - C-r-ĉ +i

C ^ t i )  = k V

A+<\+r+' - - - - -  \>ĉ -re\ tpvc^-rvV - -  - - tp+r+l
and

B r U ) - -  - * * - i r Br-pU) W t )  - - - - t  Pr-c ît)

W+i - - - - - -  \>r-p+| Cn-I - - -  - Cr-< .̂l

R r W = - ^

1

......................... C.pvĉ r+1 - - - - •̂p+rV-l
p rovided

W-i - - - - -  k-.p-*., t-r+i C-r - - - - C-r-î +l

V>r+» \>r - W-p*£ Orvl  CrV» - - C.r-cy 2̂

A  -  kfc
^ P 1

i

^ p+<\+r

1 *
1 1 * *

. •

^pti^vr-i • - - - bqfr-H tpv<\+r -

i { 
1

- - Cp+r*t
and

(3*9a)

(3.9b)

(3.9c)

(3-9d)



11-

=

>r+2
v -
Wvi

W-pvl C-r C-r-i
W-pi-2 Cr̂ i Or

C-r-ĉ -t
Cr-<\VL

\><i^+r+l >̂{H\+r
are not both zero.

bqvrvl tpt<̂ K - - - - C-ptr+l

(3.9e)

Furthermore,
8 l i )PPfc) + t l i )  Q ^ l i ) R rli)

=(-i)p^ ‘

uo
XT' 'to
k=i

>r+i . _ - * • W-pt' tr-vt C-r-■v»

> p-.ĉrr *1 

)p+(̂ vr+k.+'

t(^-rvi C.pvc\+r*l - - -  -  - -  C.p*-rv> 

V^+rvK+l Cpr«̂ tr+K+> ... - - Cp-vr + W+l

(3. 9f)

PROOF; We show that (3«9a), (3«9b) and (3.9c) imply (3«9f). From

(3.9a),

and from (3*9b)

Rll) Qn U) “  ̂

B b .)---- • - i? B W  o ....... • 0

W^i - - - - - - W-p+l frv» - - - - tr' v ‘

- - - - CpV^KV» - ---- tfK-r-i-»

0 --------- • 0 Cli) - - - - iHli)
W+l - - - - - W-pvi Cr+t - - _ . . C-r-ĉ V'

(3.10a)

tp+̂ +r+i

(3. 10b)

• - - - b^+r+l Cp*qyrv\ - - - - Op*-t>)

For i=l,2,....,(p+q) multiply the (i+l)st.row of (3.9c) by zr+1and add to 

the 1st. row. This gives

p+̂ t-r-vill) —  • - • lp R r+(̂ l) - 1̂ " Cp+rit)

W + i ........... W-pvi -r+i

p̂+̂ -tr+i - - - - tĉ +r-vt C-pvĉ v+l

Then, from (3.10a), (3.10b) and (3.10c), we obtain
Cp+rtl

(3.10c)
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Blt) VphJ +
00 o-3 oo oo1  > v ^ . . . E v / <p :>: . . . e ^ u v

K:p-t̂ vr+Z V-=ĉ +r-v« k-Vr<\,+rii- k-p*r+<W -M ......................... - W-{>+l t r u ------- - -  - - Cr-Q + I
= k b  ; • i

V>p*-<j+r+> - - - - - bĉ +r+l Cp+o^vv'........ tp-K+i

» H f V V t

where

W v l ----------- ----- W - p + i C r + i  - - -
C r ' V l

W * Z  -  -  .
I

t

W - 9 V I -  -  -  -

b p - r t ^ - r + i  *  ‘
-  -  \>c^4 r + i

1

t p ^ r + i  .  -  . _ . .  C p + r + t

O O

k ? . k = I k = i

0 0!>•
V--I

cr -  p + ̂ + r  + W+|

Clearly (3.11) is equivalent to (3.9f).

The non-vanishing of A p andA^, defined by (3-9d) and (3.9e), exrresse 

the non-vanishing of P (0) and Q (0) respectively; this is clear frcr (3*9
Jr

and (3*9b). Thus, i f  bothA and A  are zero, we cannot impose either of

the normalization conditions (3-5s) and (3-3k) and so, according to cur

definition, the (p/q/r) quadratic appreximant does not exist. IfAp = 0

and A  ^ 0  then we must choose (3*5b) as the normalization condition and if
9

A  = 0  with A  =h 0 then (3»5a) must be chosen,
q P

This completes the proof of the theorem.

An important point to note is that the proof of Theorem 3*2 does not 

make use of the relation between B(z) and C(z):

C i i ) = 4 W  , o.i2)

The theorem will therefore apply to any class of approximants satisfyingP ii)  B y  + Q it)C u )  + pxii) -  0 { i ? ^ * z )

and not just for the choice of B(z) and C(z) given by (3.12). For exanple, 

we may choose Cli.) = [U) , Bb) =r expl [h))



which, in our terminology, would define a class of "transcendental" 

approximants.

Theorem 3« 2 extends in a straightforward way to the higher order

approximants. For example, the polynomials defining cubic approximants will
2 3be represented by determinants containing coefficients of f,f and f ;

explicitly, with the notation of Definition 2.3 and with
©o

K.=0
we obtain, for example,
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I ......... rfcp 0 - -------0 O ----------- 0
\>S*a - - - - ■ b s-p+i - ---À-s+i - -------------- à'S-r+t

.....b^-rVS+b -̂pt̂ +ns+l- d-p+̂ +rtS+i----A-P+\*S+Z

(III) RECIPROCAL CCNVARIANCE

Pad£ approximants satisfy the property of reciprocal convariance which 

ensures that if f(r//n) Is the (m/n) Pad6 approximant to f(z) then, provided 

f(0)^0, V f ( / )is the (n/m) Padfi approximant to the reciprocal series 

l/f(z) (12).

For quadratic approximants the corresponding convariance property states

that if f(p/q/r)% is the (p/q/r) quadratic approximant to f(z) then, provided

f(0)^0, l/f(p/q/r) (whtch we denote by (f^ ^ ^ rj) )̂ is the (r/q/p)quadratic

approximant to l/f(z) (which we denote by f~^(z)) . To see this we have, by

definition (and using the notation of Section 2),

t U 1 _ - q *
J  ip V ' i w  2.p

(3.13a)

where

P P +  Q f  + R  = 0U pn K rt) (3. i 3b)
From the series (2.1) for f(z) we form the form the formal series for

f-1(z), defined by
CO

r ' w  = z Ï (3.1*0

¿ 0 =  to
where
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and

~  0 10< S<
fi-0

define the coefficients ; since, by assumption, f(0) = Z0^  0,At> is wel1 

defined. We now multiply (3«13b) formally by f~̂ (z) = (f~^(z) )^ 

(obtained from (3-1^) by formal multiplication) to give

r  i r w f  t r w + p =  o u ^ * )
Thus, denoting by f (^/^y^the (oc/A/i\ )quadratic approximant formed from 

the reciprocal series f'^Cz), we have from (3.15)

=  - Q r l Q M - P R ) ^  (J.16)
J U/^/p) m

Finally, from (3.13a) and (3.16), we have[K p/w eA f = 2-P/C-Q * (q2- m-pr)'̂ ]= [ -Q + lb l - ‘t-PR)y']/^R
which proves the result.

For higher order approximants the corresponding result is clear; for 

example, if ~(p/q/r/s) the A/lA/s) cubic approximant to f(z) then 

^f(p/q/rA)^ ^ :''S (sA/q/p) cubic approximant to f'^iz).

Since the above approximants are many-valued we must interpret the 

reciprocal covariance property as being true provided we remain on a given 

Riemann sheet. Thus, for quadratic approximants, we choose a particular 

sheet of f(p/q^/r) (determined by the requirement that ^(p/ü//r) snd f(z)

'agree' on this sheet) and a particular sheet of (chosen so that

^(r/q/n) anc* * ^s) 'agree' on this sheet); then, provided we identify

f(p/q/r) and f "^(p/q/p) with their appropriate values on these chosen sheets, 

the reciprocal covariance property is valid.

(IV) HCKOGRAPIIIC COVARIANCE

For all t>0, the diagonal "t-power approximants'' of Section 2 (where 

t=l,2 and 3 correspond to Padé, quadratic and cubic approximants respectively) 

are invariant under the homographie transformation

l  =
R b J__| (3.17)
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We shall prove the result for t=2 (o); the generalisation to arbitrary t 

is immediate.

Consider the (N/N/N) quadratic approximant to f(z) and letRw \^  i (77BVO
and denote by AN(f(z) ) the (N/N/N) quadratic approximant to f(x). Homo­

graphie invariance requires that

A n I()W ) =  A w l f - W )

Now A ( f(z) ) is defined by the equation

1 = (3.18)

C=0 / \j=0 J MO

(3.19)

where p , q^ and r. (04i«N) denote the coefficients of P(z), Q(z) and H(z) 

respectively. Substituting for z from (3.17) into (3.19) and multiplying 

through formally by (l+Bw)1' gives

t il*/P f e )  s’U  *11 ■ * ) ■ « •
which establishes (3.18) (since the coefficients of g^(w), g(w) and 1  

are polynomials of degree N).

It is precisely this homographie covariance property which we expect 

will make the 111-power approximantsu of practical use, since this ensures 

the invariance of the approximant under the Euler transformations (which, 

as we have seen in Section I, provide a means of analytic continuation).

(V) UNITAPITY

The application of the PadS approximant method in Quantum Field Theory 

is motivated by the fact that the diagonal Pade approximants to the 3- 

matrix are unitary (13). In (8) the following result is proved for 

quadratic approximants: if f(z) is a unitary function (so that f(z)f*(z)=i 

for z real, where * denotes complex conjugation) then the (N/M/N) quadratic 

approximant to f(z) is unitary. The cited proof is very unclear and seems 

to omit (or at least to explain) several important steps; it is hoped that 

the following argument clarifies the proof.

Let denote the (p/q/r) quadratic approximant to f(z); we
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seek to prove that

Ì\p/<yVj [ [ \p/^M

when p=r. By definition

\ \ f b j r )  ~ i?
where

P M f + A - O U ' * ' ™ )
p

Multiplying (3.21b) formally by (f*) ' and using the identity

1- U ) f M l )  =

( 3 . 20)

(3.21a)

(3.21b)

we obtain

R l f ‘) S Q f ‘ + P (3.22a) 

(p/q/r) byas the equation defining f*(r/q/^)* Sut v/c cari also define f* 

the equation

P ‘ \ p  )* + Q ‘ f’ + R ‘ =  0  o . » )

obtained by conjugation of (3.21b). If the quadratic approximant to f*(z) 

is to be uniquely determined, (3.22a) and (3.22b) imply that

P ' = R  apA (3-23)
Finally, from (3.21a),

F U/\/r) (3.2*0

In (3-2*0 we have written + as opposed to - to indicate that, whatever sign 

is chosen in (3.21a), the opposite sign must be chosen in (3.2̂ f). This is 

necessitated by the requirement that both f(z) and f*(z), and hence

f(p/q/r)^ Gnd f*(p/q/’r) ̂ ’ tend to unit*v a5 ^  (since f(z) is unitary). 
The required result (3-20) now follows from (3.21a), (3.2*0 and (3.23).

Having discussed some of the more important properties common to Pad£ 

and quadratic approximants, we now illustrate some of the differences between 

the two approximation schemes.

(VI) THE C-TABLE

The determinant ̂ defined by (3.8) is more usually written in the form

CW/iO-tó
-pa-

r ------Civhv-1

(3.25)
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so that, from Theorem 3*1» we can see that C(L/lO#0 is a sufficient 

condition for the existence of the (L/M) Fade approxir.ant. The table built 

up from the determinants of (3-25) is called the 'C-table'; this table is 

useful in that it enables one to examine the general structure of the Pade 

table itself (1*0. The main feature of the C-table is that any zero 

entries occur in square blocks entirely surrounded by non-zero entries; 

this property enables one to prove the "block theorem" of Fade (1*0:

THEChTli 3«3 (PAD-): The Pade table can be completely dissected into 

rxr blocks with horizontal and vertical sides, r>l. if (ft//0 denotes the 

unique minimal (ft+/i = minimum) member of a particular rxr block, then:

(i) The (ft //t) exists and the numerator and denominator are of full 

nominal degree.

(ii) (ft+p//x+q) = (ft//t) fcr p + c^t 0

(iii) (ft+p//!+<\.) do not ex.sV- r<

(iv) The equations for the (ft+-p//-t)i 0 ̂  p i  r-1 , cxnd. /il+ '\ ), 0-*

r-1, are nonsingular, and those for the other block members are singular.

(v) C U + p / k + 0 = G

The "block theorem" thus shows which entries in the Pade table are 

non-singular, which entries are equal and which entries have singular 

consistent/inconsistent equations associated v/ith them.

We can define a similar table for quadratic approxinants; in fact, 

since there are two possible normalisation conditions associated with 

quadratic approximants, we can define two tables. If we set

A p = Cqlp/^/rJ (3.26)

whereZX is defined by (3*9d), then we can generate a "C -table" (the P w
subscript Q denoting that we are dealing with quadratic approxinants). We 

might hope that the "C .-table" would have the property that any zero entry 

in the table occurs in a cubic block entirely surrounded by non-zero entries 

Unfortunately this is not the case; if we consider Gragg's example (ll)

R U )  - I - * + v+ i l

then we find no discernable pattern amongst the zéro entries of the MC -tableV*
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(except when r=0 when the zero entries occur in square blocks entirely 

surrounded by non-zero entries). This seems to indicate that the table of 

quadratic approximants will probably not have the block structure of the 

PadS table.

(VII) RECURSION DELATIONS

One of the basic starting points for deriving recursion relations 

between elements of the Fade table is the result (l̂ f)

where the subscripts denote the rows and columns to be deleted from the 

matrix A.

If we apply (3.28) to (3.26) we run into difficulties - essentially

because' the C -determinants contain both b and c coefficients (the 
2 .coefficients of f and f) and the row and column deletions prescribed by 

(3.28) affect these sets of coefficients in an unsymmetrical way. As yet, 

it appears that no simple relation of the form (3-27) exists for the 

"C -table".

(VIII) ALGORITHMS

For Pad6 approximants the existence of simple relations of the form

(3.27) leads to the possibility of generating the approximants recursively. 

The most widely used algorithm in this context is probably the £ -algorithm 

((15) and (16)) but many more algorithms are known ((ll) and (17)). For 

quadratic approximants no such algorithms are yet known. Computationally, 

this presents no difficulties; indeed it is sometimes preferable to solve 

the system of linear equations directly and the algorithms used for PadS 

approximants can converge slowly for high order approximants.

The method employed here for calculating the quadratic approximants is 

to solve the system of linear equations (as opposed to using the determinant 

formalism)

(3.27)

which follows from Sylvester's determinant identity (l̂ f)

di,V:|R|(W:|Rrs<n|= Aet|Rr?l < k f c | R | R r ^ l  &b|&sp| (3.28)
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where

0 0\>, o 0  
t* V»,

c,̂
 C, o 0

W ...............- V 0- - cn= V 1 (3.29)•c*

0

cp+r*2

(for definiteness we have assumed p =1).o
Alternatively we can solve for the coefficients of P and Q and then 

determine the coefficients of R. Whichever method we adopt, the practical 

calculation of quadratic approximants is straightforward (since, as with 

Padé approximants, it is a linear system of equations that we have to solve) 

provided the order of the approximant is not "too large". This latter 

requirement is a common feature of all Padé type schemes and is attributable 

to loss of accuracy resulting from inverting the matrix A of (3«29).

Although lack of recursion relations for quadratic approximants presents 

no problems from a practical point of view, theoretically it is a great 

problem. The proofs of most of the theorems presently known for Padé 

approximants depend at some stage on the existence of relations of the form

(3.27). It is hoped that the results presented in this thesis will 

encourage the search for such recursion relations and enable the formulation 

of convergence theorems for quadratic approximants.
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CHAPTKR 2 : CONVERGENCE THEOREMS AND NUMERICAL EXAMPLES
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1. CONVERGENCE THEORY FOR PADff APPROXIMATES

A review of the known convergence theorems for PadC approximants is 

given in (i) and proofs of many of these results can be found in (2).

We shall content ourselves with only the more important results in an 

attempt to indicate the type of convergence theorems we may reasonably 

expect to hold for quadratic (and higher order) approximants.

One of the earliest results (3) is

THEOREM 1.1 (de Montessus): Let f(z) be regular inside the circle 

|z|cR, except for (possibly multiple) poles ẑ ,z._,, .,z<N inside the 

circle. Then

uniformly on any compact subset of

- { V - U - i , ........ ,N)|

Extensions of Theorem 1.1 have been given by Wilson (4), Saff (5) and 

Gragg (6).

When f(z) is entire, Beardon (7) and 3aker (8) have investigated the 

properties of rows of the Fade table.

THEOREM 1.2 (Beardon): If f(z) is analytic in (z) V p , then there 

exists an infinite subsequence of (l/l) Pad£ approximants which converge 

uniformly in any disc |z| sSR, for Rp>l, to the function defined by the 

pov/er series.

Further details can be found in (2).

The above results are only concerned with convergence of rows or 

columns of the Pads table. We now discuss the important diagonal and 

paradiagonal sequences of approximants (their importance being related to 

their invariance under homographic transformations). As yet, there is no 

theorem of the form

"The diagonal sequence of approximants to a function f(z) converges to 

f(z), with z in a domain D, if and only if..."

and Gamnel (8) and Wallin (9) have produced counter examples to any 

straightforward general theorem. Essentially their examples show that an 

entire function can be constructed for which many diagonal Pads approximants
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have poles in arbitrarily prescribed places. However, Baker (8) has shown 

that for these examples there exists an infinite subsequence (m/N) of 

Pade approximants (N—*oo) which converge uniformly in any closed, bounded 

region of the complex plane to the entire function defined by the power 

series. These (and other) considerations have led to the formulation of the 

following conjecture (10); there are no known counter-examples nor any 

valid proof of it.

PADS CONJECTURE: If f(z) is a power series representing a function

which is regular for |z|$l, except for m poles within this circle and 

except for z=+l, at which the function is assumed continuous as z—tl from 

the region |z| «1, then at least a subsequence of the (N/N) Pade approximants 

converge uniformly to the function (as N tends to infinity) in the domain 

formed by removing the interiors of small circles with centres at these 

poles.

Certain rigorous convergence theorems can be obtained if we impose 

conditions on the function f(z), or equivalently on the power series 

coefficients K V  For series of Stieltjes (ll) it is possible to 

completely characterize the location of the poles and zeros of the Pade 

approximants, to prove certain monotonicity properties and finally to 

establish convergence properties. Below we give a brief summary of these 

results, further details being obtainable in (2) and (12).

We define

-  £  f j i - i P

to be a series of Stieltjes if and only if there is a bounded, non­

decreasing function 0(u), taking on infinitely many values in the interval 

O i u c o o  such that

f. = ] u'W(u)
3 Jo

Then the following theorems hold:

THEOREM 1.3* If is a series of Stieltjes, then the poles of

the (N/tl+j), j^-1, Pade approximants lie on the negative real axis. 

Furthermore, the poles of successive approximants interlace, and all the 

residues are positive.
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THEOREM 1.'f: Any sequence of (N/H+j) Ptide approxiraants to a series 

of Stieltjes converges to an analytic function in the cut complex plane 

(-eQ ) . ̂ »  in addition,
oo |p=ldiverges, then all the sequences tend to a common limit. If the fj, are a 

convergent series with a radius of convergence R, then any (N/N+j) sequence 

converges in the cut plane(— cos ̂  £ -R)to the analytic function defined by 

the power series.

The convergence of general sequences f^q-) of Padg approximants is 

a much more difficult problem; the theorems so far proved in this context 

only establish weak types of convergence, that is convergence in measure and 

capacity. We quote the following two theorems (see (13) ana (14)respectively) 

in this connection:

THEOREM 1.5 (Nuttall): Let P (z) he the (N/N+j) Pade approximant

to a meromorphic function F(z), and D be a closed, bounded region of the

complex plane. Then, given any $ > o  there exists N such that, for all

N > N , o
|p (z) - F(z) I <  C I N  I

for all z f D where D C  D and the measure of D-D is less than $.N .N N
THEOREM 1.6 (Pommerenke): Let £  be a compact set with cap E=0, 

and let f(z) be (single-valued and) analytic in the complement G of E.

Then, for £=*0 ,^>0, r => | , ̂  =» | there exists m! such that

Tor Elraa where caP E <T) ând ^mn is the Pade

approximant to f(z)).

The major limitation of the previous two theorems is that convergence 

in measure or in capacity does not exclude non-convergence at a countably 

infinite number of points; however, the study of a large number of examples 

has indicated that, in practice, points of non-convergence appear to be very 

limited. It appears that stronger forms of convergence can only be obtained

The roots of the numerator also interlace those of the denominator.



by imposing conditions on the power series coefficients.

2. SINGULARITY ST3UCTU3S OF PADS AND QUADRATIC APPHOXIMABTG 

The distribution of the poles and zeros of Pade approximants play an 

important role in determining the region of convergence of the approximants. 

From the study of a large number of examples, the following general picture 

has emerged (2). Given a particular sequence of Padg approximants the great 

majority of the poles and zeros, beyond those required to represent the poles 

and zeros of the function being approximated, tend to cluster along curves 

which cut the complex plane in such a way as to leave the function single 

valued in that part of the plane connected to the origin. For horizontal 

(or vertical) sequences of approximants the boundary curve is usually a circle 

centred at the origin; for diagonal sequences, the locations of the curves 

where the extraneous poles and zeros cluster is determined by the homographic 

invariance properties of the approximants. In the case of a function with 

a natural barrier, such as a branch cut, the poles and zeros of the diagonal 

approximants are clustered along the natural barrier.

We can illustrate these remarks, and indicate their possible extension 

to quadratic approximants, by considering the specific function
In(Ul)fte) =

which is the function considered by Baker ( (2),p.223). If we consider the 

(4M/M) Fade approximant then, from general considerations (see (2) p.223), 

we expect convergence of the approximants from z < if.p; confirmation of this 

is provided by Table la. In Fig.la the extra zeros of the approximants, 

not associated with poles lying along the cut, are plotted; we can see that 

these zeros do appear to mark out the boundary of.the region of convergence.

To see if these considerations extend to quadratic approximants we have 

repeated the above procedure (with the results given in Table lb and Fig.Ib) 

for the (M/O/t-M) quadratic approximants. Again the region of convergence of 

the (quadratic) approximants does seem to be determined by the corresponding 

zeros of the approximant. This example also indicates (as is evident from 

Tables la and lb) that it is only with the diagonal (and possibly paradiagonal 

approximants that we can expect to obtain convergence in the whole complex



Fig. Ia: THE ZEROS (NOT ON THE NEGATIVE REAL AXIS) OF THE (4M/m) PADE APPROXIMANTS TO z 11(1+z)
I m i



Fig. Ib: THE ZEROS (NOT ON THE NEGATIVE REAL AXIS OF THE ^M/0/4m) QUADRATIC APPROXIMANTS TO z^ln (1+z)



TABLE la: (4m/!î) PADS z “^ln(l+z)

^ 7 1 2 3 4 2 -nnCl+z)

1 0.6924 0.693149 0.69314718 0.69314718 O .69314718

6 -0.8 2.I5 -2.6 5.1 O .32

9 -4.4 PJ OO • O -177 1092 0.26

TABLE Ib: (M/0/4M) QUADRATIC APLROXIÎIANT3 TO 2 Hn(l+z)

1 2 3 z"1ln(l+a)

-4 o.o8-l.3i 0.027-1.441 -0.008Îl.8i -O.28ÍO.8Í

-1 13 8 40 00

T_L 0 .49 0.68 0 .6 7 0,693

6 0.44 0.0lÎ0.6i Í0.98Í O .32

9 1.13 0.003Í2.7Í Í7.31 0.26
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piane (cut along -ooizs-1 for the Pad6 approxinants); clearly, the above 

non-diagonal approximants do not even converge in measure outside the heart- 

shaped regions of Figs.la and lb.

For certain functions with branch points Nuttall has recently obtained 

convergence theorems for the corresponding Pade approximants. In Chapter 3 

we shall describe a method of evaluating Feynman integrals based on the idea 

of rotation of branch cuts; in this type of problem we are interested in the 

location of the poles of the resulting Pads approximants and Nuttall's 

results are of use in this connection. In fact, although the following two 

theorems have only been proved for a certain class of functions (see below), 

in Chapter 3 we will assume that the concepts contained in the theorems are 

true much more generally.

Nuttall's first result (15) is concerned with a function F(Z) with two 

branch points:

where a,b,w(z) are complex. Provided the weight function w(x) satisfies 

certain conditions, the following theorem holds:

THEOREM 2.1: The (N-l/M) PadS approximant to F(Z)(defined by (2.1))

converges uniformly, as in any closed, bounded region of the Z-plane

cut along the arc

f  . ^ 1 *  (2.1)
J «. l - Z *

2  —  X  >x + ta+bjj , - 1 « t « |

The second of Nuttall's results (l6) deals with a function with an even 

number of branch points with principal singularities of square root type.

The function, f(t), considered is defined by

fi t )  = r ¿ t 'X 'j l t 'M t 'M fc '- f c r '

where

(i) = ...yEL)denote the branch points of f(t)

X W - f j  l t - d j
-4 1=1and X * denotes the .Limit from a particular side of 3 and

(ii) the set S consists of L analytic Jordan arcs joining pairs of

branch points; in general, the L arcs are non-intersecting.
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Again, if the ’.weight function <r(t) satisfies certain conditions, the 

following theorem holds:

THEOREM 2.2: If 3 consists of L non-intersecting arcs, the sequence

of (N/N) Pade approximants to f(t) (defined by (2.2)) converges in capacity 

to f(t), as N-*©o, in any closed, bounded domain not intersecting 3.

This theorem shows that the diagonal Fade approximants converge in 

capacity away from a set of arcs whose location is completely determined by 

the location of the branch points; the location of these arcs is related to 

the "principle of minimum logarithmic capacity" (13)« In Figs.2a and 2b 

we illustrate the concepts contained in Nuttall's results by considering a 

function with two (B^jB^) and four (3^,3^,3^,3^) branch points respectively. 

In Fig.2a the expected region of non-convergence (of the diagonal Fade 

approximants) is the arc B^30 of the circle passing through 0,3^ and 3„; 

in Fig.2b (where Bj, is at infinity) the non-convergence region is contained 

within the shaded area.

The behaviour of quadratic approximants in the presence of branch points 

is somewhat different. For example, for the function f(z)=ln(l-z) , Pads 

approximants simulate the branch cut at z=l by clustering poles along the 

real axis below z=l; quadratic approximants, however, do not need to 

simulate the branch cut in this way since they have an "in-built" (square 

root) branch point. The poles of these quadratic approxiraants are in this 

sense "redundant"; where then do the poles of the quadratic approximants 

lie? From (2.7) of Chapter I we see that the approximants have poles when 

F(z)=0 provided the negative square root is chosen. For the above example, 

whenever P(z)=0 it is the positive square root which is used in the 

approximant; in a sense, the approximants place the poles cn a sheet of the 

function in which we are not interested. From a study of many examples it 

seems that this behaviour is a general feature; quadratic (and presumably 

the higher order) approximants do not produce "unwanted" poles.

3. NUMERICAL EXAMPLES

To illustrate the nature of the results we may expect to obtain with 

quadratic approximants, we consider the examples of Baker ((2) and (l?)).



FIG.2a EXPECTED NON-CONVERGENCE REGION FOR A FUNCTION WITH TWO

BRANCH POINTS AT B AND B .

FIG.2b: EXPECTED NON-CONVERGENCE REGION FOR A FUNCTION WITH FOUR BRANCH 

POINTS AT B, ,B ,B AND B, =«• .±. c. j 4-

ïnv s
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In Tables 2a and 2b we compare Pads and quadratic approximants to the 

following four functions:( i)  = 11 -  e '1) / z

(ii) fe U M  - e ’ *

( i n )  F5 i * M l  + ^ V ( l  + z )

and (iv) = (l-aa" '/ ? ) 2

In each case the approximant is evaluated at infinity. If we denote the 

(N/N) Pads and (N/N/H) quadratic approximants, evaluated at infinity, to the 

function f^z) (i=l,2,3 ,̂ ) by f(l|N^  } and f(l)(q/q/q) respectively then we 

can make the following observations

(a) f ^  ̂(N/N) converSes like l/(N+l) whereas converges

considerably faster.

(b) f(2 \ m/N) ^oes n°t converge whereas f ^  (q/q/q) conver£es fairly

rapidly.
,(3)

, ( 3 )

(c) f (ĵ /q) does not converge and the remarkable convergence oi

(N/N/N) attributable to the fact that, for N^-2, f 

to see this we only need chooseQ U i= 0 , PUJ ■ =[ U  zj2 > Ri*M +
(3)

(N/N) “ f3(z);

(d) The function f^(z) is regular in the complex plane cut from z=-l
(4)to z=-oo, and it is apparent that f (q/q/q) converges much more rapidly 

(4)
than f (q/q)» the notation (a,b) of Table 2b means a+ib and we shall adopt 

this notation throughout the remainder of this thesis. This example also 

illustrates the convergence of the quadratic approximant along branch cuts; 

in Table 3 we give the errors in the real and imaginary parts of the 

(4/4/4) quadratic approximant for z<-l. In this region the PadS approximants, 

being the ratio of two real polynomials, must yield real (and hence non- 

convergent) results.

We thus see that, for this particular example, the quadratic 

approximants

(a) exhibit better convergence properties than the corresponding Pads 

approximants within the domain of convergence of the Pads approximants and

(b) converge outside the convergence domain of the PadS approxiraants



TABLE 2a: FADE AND QUADRATIC APPROXIMANYS TO f^z) and f (z) ,
AT INFINITY

’TTf ' :d



TABLE 2b: PADfi AND QUADRATIC APPROXIMATES TO f^(z) AND f^(z), EVALUATED

AT INFINITY.



TABLE J: ERRORS IN THE ( W ;0 

FOR 7j <—1 •

QUADRATIC A?}- ROXIMA!* > rrry m.O ■e
"AU),

z

ERROR IN REAL PART OF 

( 4 A A )  QUADRATIC 

APPROXIMANT

ERROR III IMAGIILiRY FART 

OF ( W ' O  QUADRATIC 

APPROXIMANT

-10 6xlo“"’ 2xlO“7

-9 6xl0“6 lxlO“6

-9 5xlO"6 3xl0“6

-7 4xlO"6 9xl0“6

-6 1x10“” 6xl0“6

-5 3xl0“6 9xl0“°

-if 7xlO“6 -61x10 J

-3 ifxlO“6 -69x10 °

-2 2xlO“5 lxlO“5
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and, most important, converge rapidly on the branch exit.

Throughout the remainder of this thesis we shall present results to 

suggest that these properties are a general feature of multi-valued 

approximants.

In Table b we list values of the limit as z-^co of the (N/N) Fade and 

(N/N/N) quadratic approximants to the functions:

These functions all have the property that they tend to a constant on every 

ray except the negative real axis as z —*co; g^(z) .and g^iz) are both series 

of otieltjes and hence the (N/N) Fade approximant must converge arid gr(z) is 

the reciprocal of a series of Stieltjes. Although we cannot establish 

convergence of the quadratic approximants, it is evident from Table b that 

they are converging more rapidly than the Pads approximants. Furthermore, 

using the (6/6) Pads approximant, we calculate the value of Euler’s 

divergent series (given by g^(l)) to be O.5968, compared with the exact value 

0.5963; the (b/b/b) quadratic approximant yields the value 0.59636.

When a function does not tend at infinity to a constant times an 

integral power of z, then no Pade approximant can represent the function in 

the neighbourhood of infinity. Quadratic approximants can represent a larger 

class of functions than Pade approximants a.t infinity in that a function 

behaving at infinity like a constant times a half-integral power of z can 

be represented by a quadratic approximant.

To conclude this section we consider the two functions

(i) V\,u) = ( ! - * )  J

and (ii) K^ll) - ( I - r

Using cubic and quartic approximants we can approximate hn(z) and h„(z) 

exactly; however, as the results of Table 5 indicate, we can obtain very 

good representations of these two functions using quadratic approximants. 

Again we note that, in the region of convergence of the Pads approxinants 

to h^ and » the quadratic approximants still appear to converge more



TABLE k; FADE AND QUADRATIC AFPRÜXUÎÀNTS TO g ^ z )  , g ^ z )  ATE g (z) ,

EVALUATED AT INFINITY



THE AFKRCXIKANT DOES NOT CONVERGE

TABLE 5: PADS AND QUADRATIC APPROXIMA] h,(z) ANDh2(z).- INDICATE

FUNCTION z ERROR IN (6/6) PADS 
APPROXIMAHT

ERROR(REAL AND IMAGINARY 
p a r t) i:;(VV)) .jj.u x m t i c 
APFROXIMANT

h1 (s) -2 ifxlO-8 2xlO"1C

p (8x10"", 8xio"")

A (lxl0" \  5x10"-')

' 6 — ——«_ (l>:10" \  2xlO~H)

8 (3xl0" \  2x10"-’)

hp(z) - 2 '<xlO-8 io" 10

2 (Bxic"5, 8xl0~5)

k
i

(2xlO"'+, 5x10°)

6 (1x10"^, 2x10"")

8 ('fxlO"^, 5x10"^)



rapidly than the corresponding Pads approximates.

In practice, as well as calculating f, , , N(z) from (2.6) (of Chanter(p/q/r;
I) it is sometimes advisable to also calculate f /q /r) (z) by

f  l p /^/r)^  -  - ? R i ? y  Q li)  -  l  Q»z l*) + F M l* ] (2.3;

This can be important if, for example, ^(s) R(z)<$Q (z) and the positive 

square in (2.6) is required. Reformulation of (2.6) (of Chapter l) as

(2.3) ensures that no loss of accuracy occurs in this case (and also in the 

case when 2P(z) <?-Q(z)- (Q2(z)-i+P(s)R(s))'£;). 

it. THU AN-HARrXNIC OSCILLATOR

As an indication of the range of applicability of the multi-valued 

approximants previously discussed, we consider the problem of determining 

the energy levels of the an-harmonic oscillator. The Hamiltonian for this 

system is
U  =  p- /3i'

and the analytic properties of£ £  are discussed in (l8). For fi real end 

positive u  is well defined, and the energy levels are analytic functions o 

fi in a neighbovirhood of the positive real axis. The point /?=0 is a singula 

point; it is in fact a limit point of singularities. Also

(a) the nth-energy level E^03) has a "global" third-order branch goin 

at/3=0; by this we mean that any path of continuation which winds three 

times around /1-0 and circles clockwise about all branch points, returns 

Ŝ (/3) to its starting point and a path that winds one (or two) tines around 

does not and

(b) on the three-sheeted surface, is not an isolated singularity;

there are therefore infinitely many singularities.

In view of (a) and (b) we nay expect the multi-valued approximants to 

be of use in calculating E (/3). We v/rite

e» =  E  <  rP
(n)

p=0

where the coefficients a are tabulated in thep
quoted here we use the coefficients of (19). We

(i) In Table 6 we compare the (lC/iC) PadS,

literature; for the resu 

tabulate the following: 

(5/5/3) quadratic and



TABLE 6: PADÌ, QUADRATIC AND CUBIC APPROXIMATES Tü E (ß), THE NTH

ENERGY LEVEL OF THE AN-HARMONIC OSCILLATOR, FOR VARIOUS N 

AND fi (<1).

N G

ERROR IN 

(10/10) PADH 

APPROXIKANT

ERROR IN 

(5/5/5)QUADRATIC 

APPROXIKANT

ERROR IN 

(3/3/3/3)cubic

approximant

1 0.25 6xlO“6 5xl0”8 lxlC"7

0.50 3x10 *fxlO“6 6xlO“8

0.75 2xlO“ 3 lxiO“5 2xlO” 5

1.00 5x10“ 3 7xlO“3 -k1x10

3 0.25 2x10 2xlO“3 7xl0“6

0.50 6xlO”3 -k3x10 1x10

0.75 3x10“ 2 IxlO”3 IxlO“3

1.00 6xlO“ 2 3xio“3 2x10” 3

3 0.25 1x10“3 7x10 5xlO“3

0.50 2x10“ 2 4xl0~3
L

6x?u0

0.75 1x10“ 1 1x10“ 2 2x10“3

1.00 2x1o” 1 * 2xl0-2 * 5xlO“3 *

7 0.25 lxlO”2 2x10 5x10

0.50 7xlO“2 2xlO~3 5x10“ 3

0.75 3xlO_1 lxlO”3 lxlO” 2

1.00 8x10 2x10“2 ¿telO“ 2

9 0.25 3xlO“2 8xlO-3 2x10“ 3

0.50 2x1o" 1 * 8xl0”2 * 2x10“ 2 *

0.75 9x1o”1 * 2x1c"1 * 6x10” 2 *

1.00 1.9 0.5 0.1



TABLE 7: FADE AND 

FIGURES ;

QUADRATIC APFROXIHANTS TO E (|3) 

QUOTED IN BRACKETS HAVE NOT YET

FOR (1>1. 

CONVERGED.

a

(20/20) FADE 

APPROXIMANT

(5/3/3) QUADRATIC 

APPROXIMANT

i 1.39234 1.3923(5)

2 1.6071 1 .607(6)

3 1.767 1.76(98)

A 1.897 1.9(03)

5 2.00(5) 2.0(19)

6 2.10(0) 2.1(22)

7 2.18(2) 2.2 (16)

8 2.25(0) 2.3(0)

9 2.31(3) 2.3(8)

10 2.37(0) 2.4(5)



(3/3/3/3) cubic approximants (requiring respectively 21,17 and 15

coefficients a ^ n^)for various values of n and /3, with £sl. The exact

values of E (/3) used to calculate the tabulated errors are those given in n
(19); an entry with an asterisk denotes that the 'exact' value of E^(£) 

used is only an upper bound to the eigenvalue.

(ii) In Table 7 we quote results obtained for/3»l for the ground 

state energy Eq (/3). The quoted values for the (20/20) Pad<5 approximant 

are those given in (l8); the results obtained for the (5/5/3) quadratic and 

(3/3/3/3) cubic approxinants are almost identical and we only quote the 

former. Figures quoted in brackets must be regarded as unreliable, since 

they do not yet appear to have converged.

From these results we can see the usefulness of the quadratic and 

cubic approximants; for B<1 they appear to give about two more significant 

figures than the corresponding Pad§ approximants. For/?>l the ajjproximants 

compare favourably with the Fade approximants, remembering that in Table 7 

the quadratic approximants use less than half the number of terms required 

by the Pad© approximants. In particular, for /3=1, the two approximation 

schemes give almost identical accuracy, the Pade approximants with hi terms 

and the quadratic approximants with only 17 terms.

Finally, we remark that the method of Borel sumnability (discussed in 

Chapter I) can be applied to the multi-valued approximants to obtain 

improved convergence, as is the case with Fadg approximants (l8). The one 

disadvantage is that in order to perform the required numerical integration, 

we need to know which branch of the approximant to choose and there appears 

to be no general method of doing this.

5. SOME FURTHER APPLICATIONS OF QUADRATIC APPROXIMANTS

(i) SEQUENCE EXTRAPOLATION

As mentioned in Chapter I, even if a series converges it may converge 

very slowly and PadS (and hence quadratic) approximants can be used to 

accelerate convergence. Given a sequence a.pa2,..,(generated, for 

example, during an iterative procedure to solve an equation) we form the
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series (20)
2Q.̂ 2.) — Cl, + t  -+ l^-ü-2.) i  + (C 7 ̂

where, by definition, the exact result is Uca =G(l). Generally, provided

G(z) is regular at z=l, PadS approximants to G(z) at z=l will give a better

estimate of the final answer than the last computed term a .n
To compare the usefulness of Pads and quadratic approximants as sequence

extrapolation devices, we give the following tv/o examples:

(i) If a.=i \  so that G(l)=C, we obtain 1
01,4. = 0.07

G W 7)ii) - o.oi

GrU*'/4'/4j ~ 0.0OG

(ii.) A major application of the sequence extrapolation technique (using 

Pad6 approximants) is in numerical quadrature (21); here the sequence (a ) 

is normally generated by successively halving the integration step length.

For the function _ j
An

F  lx ) :-
J

JL JL

TLl + 7-
and using the mid-point trapezoidal rule, we obtain

and
F(S/5)l*) F W l

k«/3fe)W “ F w |  =ri+'xl0

-6

However, for difference integrands extrapolation with Fade approximants is 

preferable; for the integrands considered in (21) the two extrapolation 

methods give comparable results.

(ii) APP'ROXIHAHTo CF TYPiü II

When G(z) in (5.1) is not regular at z=l the following procedure can 

be used (2C), which we illustrate for. the series
oo

Let

!

a

(5.2)

(5.:
w~\

The series (5*2) converges slowly and we can accelerate the convergence using
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the previously considered sequence extrapolation method; for example, the

(l/l) Fade approximant gives the result 1 .^5 » compared with the exact result

S= TT /6 = 1.6bho. We can, however, improve upon this estimate whilst still

only using the first 3 terms of (5.2). We consider the 3 as functions ofI?
the variable Vp, E° that 3 =F(^/p), with the exact sum as F(0). This 

method gives, using only the terms 3 , 3„ and S_, of (5*3) (which incorporate*± p
the same amount of information as the (l/l) Fade approximant)

G-U /i)l0) — 1 • G5
We can obviously employ the same procedure with quadratic approximants; 

as a comparison we give the results
-5

and
rS

From this type of example we are led to the following definitions

DEFINITION 5>1 (23)J let z^,...,z be p complex numbers. We define
IIthe Fad§ approximant of type II, f (j>j h;) ̂  > to the function f(z) by

Cn  w  -  i a M

with

......p)

p = N + M  + j

11

and

where P^(z) and Qj,(z) are polynomials of maximum degree N and V. respectively. 

D3CFINITI0N 5.2: Let z , ...,z be p complex numbers and PT (z) ,CL,(z)■1. J) iw * *
and RfT(z) polynomials of maximum degree L, M and N respectively. Then we 

define the quadratic approximant of type II, (z), to the function

f(z) by the equation

Pi*)  + O W  + = 0
,1* f-II

i-IlIL/iW|li) =  F W  U * 1. * . ......

with
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and
p =r L +  M  + N  + 2

A practical application of type II Pade approximants is the Bulirsch-

Stoer method in numerical quadrature (22). A sequence (S^) of approximants

corresponding to division of the integration region into sub-intervals of

length h , are generated (by, for example, the trapezoidal rule). Pade P
approximants of type II, denoted by R(h), are then formed according toRiKp) = S ?  tpr l>2; ............,M+N + l)
where

&c f CL, + ....... ~t &n K
| A \), K2 + ....... +

The integral is then approximated by

R lo) — Q-o
Again we can use quadratic approximants in place of PadS" approximants in thi 

procedure; in practice, the two methods give similar results for the 

examples so far considered.

(iii) SINGULAR INTEGRALS

We have in mind the numerical evaluation of integrals, the integrands 

of which have a branch point within the interval of integration; for 

example,

( x -  /Z (ou^c<)
OL

with /2 an integer. Generally, we consider the problem of evaluating_L - p 5 f lx) &$. ( M )

Using the method more fully explained in Chapter 3» we expand f(x) in a

Taylor series about a point x in the complex plane:
00

Then, from (5»*+) and (5*5)1

fix) =  ̂  ix-X’c)
fco a -

a (5.5)
C OT  = y  r w  [ x . x r >

1  u  ^
x = b-Xc

(5.6)

V/e now form approximants (Pad? or quadratic) to the power series defined by
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(5.6); denoting the approximant by G(x), we obtain as an approximation to 

I

X  2 Grlb-*o) ~ G U -*o)

To illustrate the use of this method, we consider the following three 

integrals:

(a) I, U - #  
1

(b)
I 2 = P  H i - * )  ^

Jo

(c)

In Table 8 we compare the results obtained using Pade and quadratic 

approximants for these three examples; the method itself appears to work 

reasonably well and again the quadratic approximants provide a better method 

of approximation than the Pads approximants.



TABLE 8: PADS AND QUADRATIC APFR0XIKANT3 TO THE INTEGRALS I1 ,1.

AND I_.3

INTEGRAL AND 

EXACT VALUE N

(N/N) FADE 

AFPROXIMANT N

(N/N/N) QUADRATIC 

APFROXIMANT X
O

1^(0.23570226,

0.23570226)

6 (6xlO“3,8xlO“2) 3

--
.

0010

oc1O »—1
■—

/ -1+i

Ip=(-2,Tf) (^xlO**^,8xlO""3) 5 (2xlO"6,2xlO_6) 1+i

I7=0.66 ( 3xlO~if, 1x10”'̂) if ( 1 x1 0 " 7 , 6 x1 0 "°) 1+1
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CHAPTER 3: CALCULATION OF FEYNMAN INTEGRALS IN THE PHYSICAL REGION.
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1. REPRESENTATION OF FEYNMAN INTEGRALS

The purpose of this chapter is to extend the methods used in (i) to 

calculate Feynman integrals in the physical region. The general para­

metric representation of Feynman integrals is v/ell known ((2) and (3)).

For interacting scalar fields the representation is of the form
n  n-lim.

6->D+ J T M l  t * r) LD -TTf-
o *>=> L J

1. 1)

where C is a real polynomial in the Feynman parameters W  

D is a polynomial in { which is also a linear function of

the invariants s,t,...of the physical process being considered 

(where, as usual jz- denotes the total energy ana t the four- 

momentum transfer); r is the number of internal lines in the 

graph (which represents the particular physical process being 

considered);

1 is the number of internal momenta in the graph and 

n is the number of vertices in the graph.

We do not prove (l.l) but, by considering certain specific examples, we 

shall later illustrate the general features of the proof.

In general, the singularity structure of the integrands in (l.l) is 

very complicated, but they possess some standard features (3). A typical 

set of singularities in the s-plane is illustrated in Fig I, and consists 

of a pole P and a series of branch points on the positive real

axis; for clarity, in Fig I the branch cuts associated with these branch 

points have been displaced from the positive real axis, where standard 

techniques of calculation (3a) place them. The variable s is essentially 

the energy of the system, and we wish to calculate (l.l) for real positive 

values of s, exactly where the discontinuity in the function is normally 

placed. The limiting process £ — >Q+prescribes that we calculate (l.l) 

as s approaches the real axis from above, as indicated in Fig I; this 

procedure corresponds to calculating (l.l) in the "physical region".

The basic problem is therefore the calculation of a function, in this



FIG.I: TYPICAL SINGULARITY STRUCTURE OF (1.1) IN THE RIGHT-HALF 

OF THE s-PLANE.
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case that given by (l.l), in a region where the function has one or more 

branch points. Before discussing the method used for Feynman integrals 

we first illustrate the procedure applied to a 'simpler' function, which 

we choose as ln(l-z).

2. METHOD OF CALCULATION

The calculational procedure is based on the idea incorporated in the 

following theorem of Van Vleck (4).

THEOREM 2.1: Consider the S-fraction

Ol,^ ~ (2.1)

Then: (a) i ̂  ,
'lfiV (X p -  0  0 )
p

the S-fraction converges to a meronorphic function of z. The convergence 

is uniform over every closed, bounded region containing none of the poles 

of this function.

(b) if .
i»rcv cup = ol ^  0

p - >  P O

the S-fraction converges in the domain exterior to the rectilinear cut 

running from /̂ks. to oo in the direction of the vector from 0 to ^Aa, to 

a function having at most polar singularities in this domain. The 

convergence is uniform on every closed, bounded region exterior to the cut 

which contains no poles of the function.

We can illustrate this theorem for the function 3.n(l-z), which has

the continued fraction expansion (A-)
lrvU-5.) _ _____ ;

|-
? -  -Hi.

( ̂\ C . * /

1 -

from which it follows that, in the

a '¿p + i
U+p)

i U W p )

notation of Theorem 1.1,

lit- p)
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so that
l i t w

p—»oo
a P

H*

Theorem 1.1 therefore shows that the 5-fraction to f(z)=ln(l-z) converges 

uniformly in the entire z-plane cut from z=l to z= co along the real axis. 

Since the 3-fraction (2.1) is equivalent to a diagonal and a paradiagonai 

sequence of Pad? approximant-s (4), we are assured of uniform convergence of 

these approxiraants in the cut z-plane.

Now suppose we move our origin to the point z^, which lies in the 

iipper half of the z-plane. Then, according to Van Vleck's theorem, the S~ 

fraction (2.2) will converge uniformly in the z-plane cut from z=l to 

z= c*o along the line .joining z=zq and z=l. This situation is illustrated 

in Fig 2; the S-fraction (and the equivalent Fade approximant) new 

converges on the real z-axis (except possibly at z=l). In effect, we have 

rotated the cut by moving our origin from z=0 to z=z^.

For the particular example In(l-z) we can see this behaviour explicit 

Expansion about z=0 gives OO

and, if v/e calculate the (m/m) and (n/m-l) Pad? approximants to f(z), the 

poles and zeros of the approximants will simulate the cut on the reel axis 

00. Ve move the origin to the point z^ by writing

lrvlt-l)= W t - i j -  I -

-m-*»-Sites)
a=l

If we now calculate the Pade approximants to the series 

(2.3a) the poles and zeros will now lie on the point set

|  l-i-o =

(2.3--)

a
(2,3b)

(2.3b) then, from

and this set is just that part of the straight line through zq and 1 which 

lies in the lower half-plane; the branch cut has thus been rotated into the 

lower half-plane.

Originally (l) Pad? approximants to the series (2.3b) were used to
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calculate f(z) at real positive values of z.. both for z<l and z»l; for 

z>l, the branch is defined by approaching the real axis from above, giv: 

the value
ITTl a  | - Z

Other re-sumning procedures can, however, be used. In Table I we compare 

the results obtained with the (8/8) Fad? and (5/5/5) quadratic approximants 

(both requiring 17 terms of the series (2.3b)), and with the expansion 

point zo=l+i. The main observation from Table I is that the quadratic 

approximants reduce the errors by roughly two orders of magnitude as

results will show that this

articular example. The incre

occurs because the lomarithn

unbounded at z=l whereas the square root function is bounded in the 

neighbourhood of the branch point. We also note that reasonable results 

can be obtained even for zq=0 when quadratic approximants are used; the 

discontinuity across the cut, now simulated on the real z-axis (z»l), can 

be represented by the square root tern associated with the quadratic 

approximants. In contrast, the Pad? scheme cannot work for zq=C.

3. CALCULATIOHAL FROCTDIJIG POP PhYIIiiAI? INTEGRALS

We adopt the following method of calculation (see (l)):

(i) For the graphs considered here, D (of (l.l)) is a function of 

at most the two invariants s and t (in the usual notation). We expand D 

about (s-s ,t) or (s-s ,t-t ), where s and t lie in the uoper half of the 

complex s and t plane; this expansion is easily performed since D is a 

linear function of its invariants.

(ii) Perform the e>c-integrations for a given number, li, terms cf 

the series.

(iii) Approximate the sum of this series by a suitable type of 

approximant.

This scheme has the following features:

(a) If the concepts of Huttali's theorems (see Chapter 2) hell more 

generally, then the simulated branch cuts for the singularities of Fig I will



TABLE 1: LADE AND QUADRATIC APPROXIMATES TO In(l-z), UITH z =1+1. o

z

ERROR IN (8/8) FADE 

APPROXIMATE

ERT.OR IN (5/5/5) QUADRATIC 

APPR0XI1 IaIE

0.1 (2xlO"6,6xlO"7) (5x10"9,3x10"9)

0.3 (3x10“6 ,6x10~8) ( 3xlO-9,1x10*" )

o.5 (1x10~3 ,3x10~7) (1x10“7 ,2x10"B)

0.7 (^x10"5 ,3x10"5) (lxlO~7 ,2xl0~7)

0.9 (8xlO“if ,7xlO-7) (%10_6,3xl0~3)

l.l (2x10_3,5x10"3) (3x10-3,2x10""3)

1.3 (1x10"5 ,8x10"3) (7x 10“8,2x10“B)

1.5 (7x10_6,3x10"6) (2x10"8,2x10~8)

1.7 (3x10"6 ,1x10_6) (5x10"9 ,1x10"8)

1.9 (1x10_6,5x10_?) (2x10~ 9,9x10~ 9) |
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lie within the shaded region of Fig 3.

(b) The new denominator D (where, for example, D =D(s) (s=s ) iso o o
linear in the complex variable s^, and is complex for real cC. Hence, there 

are no singularities in theoC-integrals.

(c) The same denominator D occurs in all the terms of the series,o
and need only be calculated once at each quadrature point; computationally 

this is a very important point.

(d) The final results should be independent of the choice of the 

expansion point sq , thus giving a check on the calculations. The problem 

then arises of making the optimal choice for s^; later in the chapter we 

shall discuss this problem more fully.

(e) Since it is assumed that the branch cuts have been moved into the 

lower half s-plane, the limit processC->0+ cf (l.l) can be omitted, the 

integral being available directly on the real axis, except at P and possibly 

at the branch points.

To illustrate the nature of the results we may expect from this 

method, we now consider individual Feynman graphs. For each graph 

considered, the explicit form of (l.l) is derived in an appendix at the eni 

of this chapter; the singularity structure of the graphs is also considered 

in the appendices.

k. SECOND ODDER SELF ENERGY GRAPH AND EERO KCKCNTUM VERTEX FART 

(a) SECOND ORDER SELF ENERGY

We first consider* the renormalized second order self energy of a 

scalar particle of mass m, emitting and absorbing a scalar particle of mass 

fi. The matrix element for the process is proportional to

F i s ) -

F(s) has a branch point at

la <L<*
(if.l)

S>, =  Im-f-M'J2

lying on the physical sheet; (and corresponding to in Fig I) and nr 

unphysical singularity (that is, one lying on an unphysical sheet) at

S, * ( r a - K )1
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together with a 'second-type' singularity at s=0 (see Appendix I).

Before giving any numerical results for this graph, we discuss the 

integration method used. In the original paper (l) two quadrature methods 

were considered:

(i) the mid-point rule and

(ii) the composite two-point Gauss rule.

In all the graphs studied these two methods have been found to be not the 

most efficient, in the sense of accuracy obtained compared to the number of 

quadrature points used. In general, Gauss-Legendre quadrature appears to 

be the most efficient method and, unless explicitly stated otherv/ise, this 

is the quadrature rule used in all the following examples.

Table 2 gives a typical selection of the results obtained; here we 

compare the (6/6) Pade and (4/4/4) quadratic approximants obtained with the 

mass parameters m=l andfX-l/6, which produces a branch point at s=1.36 on 

the physical sheet. The integration rule has a maximum of 23 points in 

each dimension. The improved convergence obtained with the quadratic 

approximants is evident; we again find that we obtain roughly two more 

significant figures compared with the Fade approximants. The optimal choice 

of sq seems to be given by

Re. $6 ~  S, , i m S o  * I

Results of a similar nature are obtained with cubic approximants, as can be 

seen from Table 3j here v/e tabulate the (3/3/3/3) cubic approximant with 

SQ=l+i, again with the mass parameters n=l and fl=1/6.

V/e now turn to a consideration of the un-physical sheets. The method 

of § 3 is expected to produce results only on the physical sheet, since the 

power series expansion of (4.1) only incorporates information about F(s) 

on the physical sheet; using multi-valued approximants, however, v/e may hope 

to obtain convergence on more than one sheet. The self energy matrix 

element has infinitely many Riemann sheets, since the logarithm has, and 

essentially we have, for s>s^,

Fi$) = F, is) + (£a-*•)c'»i'Fi is)
where n is an integer and F^ and F„ are suitable functions of s. The



TABLE 2: COMPARISON OF THE (6/6) PADÉ AND (A/A/A) QUADRATIC APPROXIMATES TO THE SECOND ORDER RENORMALIZED

SCALAR SELF ENERGY, FOR VARIOUS VALUES OF s .o
s =l+i 0

•H+.f—1IIOto s =1.8+i 0 EXACT VALUE
s MODULI OF ERRORS MODULI OF ERRORS MODULI OF ERRORS OF F(s).

P. A. (lxlO~3,2xlO"3) P.A. (AxlO~\AxlO"if) P.A. (9x10“3,2x10"3)
1.00

Q.A. (2x10"7 ,1x10"7) Q.A. (9xlO~6 ,7xlO~6) Q.A. (6xlO"3 ,5xlO“6)
(0,0)

P.A. (7xlO~U ,lxlO~3) P.A. (AxlO~3 ,6xlO~3) P.A. (1x10~7,5x10“2)
1.25

Q.A. (5xl0“ò ,5xl0-6) Q.A. (8xlO"3 ,5xlO"3) Q.A. (1x10 ,1x10 )
(0.58520611,0)

P.A. (8x10 3,2xlO P.A. (2xlO_i|,5xlO~3) P.A. (6xlC“-5,7xlC“if)
1.50 q q 1, L (0.8776A128,0.70055158)

Q.A. (1x10 ',2x10 ') Q.A, (5xio -%5xio"-?) Q.A. (1x10" \ 2x10" )

P.A. (6xlO~\lxlO"3) P.A. (6xl0"\6xl0"7) P.A. . -A -A,(5x10 ,2x10 )
1.75

Q.A. (5x10"7,5x10"6) (IxlO-3,5xl0-3)
(0.72505A92.1 .15017822)

Q.A. (Axio ,5xic b) Q.A.

P.A. (Axl0“,f,2xl0“S P.A. . -A -S(2x10 ,6x10 2) P.A. ( lxlO"if, 1x10" A
2.00 - 7 A (0.57577^76,1.A5A59801)

Q.A. (2x10 ,AxlO b) Q.A. (5x10 ' ,2x10 ) Q.A. (2xl0“d  2xl0“O

P.A. (5xlo-/\5xlo-i4) P.A. (2xlO-/f,6xlO-5) P.A. (lxlO~\2x10"^)
2.25

(2x10“6 ,5x10"7) q q (0.A5055756,1 .6A1851A5)
Q.A. (AxlO ,1x10 ) Q.A. Q.A. (5x10 ^,5xl0"p)

P.A. (lxlO^AxlO"^) P.A. ( 2xlO~3 ,2xl0~ ') P.A. (7xlO"5 ,lxlO"S
2.50 , -6 -6. -6 -6 q q (0.29715650,1 .80200A91)

Q.A, (5x10 ,7x10 ) Q.A. (1x10 ,1x10 b) Q.A. (6xl0-:?,Axl0“;?)

P.A. —A _ q(5x10 ,6xio -j P.A. _ -A _q (5xio ,5x10 O P.A. (2xlO"/+,lxlO"i+)
2.75

Q.A. (6xlO~6,7xlO_6) Q.A. (6xlO"7,2xlO“6) Q.A. (5xlO~3 ,lxlO~/f)
(0.17555695,1.95025880)

P.A. (2xlO",f,5xlOJ4)' P.A. ( 8xl0~3 , Ax10“,f ) P.A. (9xl0",f,5xl0“if)
5.00

( 2x10 “3, AxlO ~?) -6 -6 -5 -A (0.05905556,2.O5559A03>
Q.A. Q.A. (1x10 ,5x10 ) Q.A. (5x10 ,1x10 )



TABLE 3: (3/3/3/3) CUBIC APPROXIMANT TO THE SECOND ODDER RENCRMALIZEE

SCALAR SELF ENERGY, WITH s = l+ i.’ o

s

ERROR IN (3/ 3/ 3/ 3) CUBIC 

APPROXIKANT

1.00 ( lx lG ~ 8 , 2xlO~9)

1 .2 5 (1x10“ '7, 2x10~'7)

i .50 (2x10- 7 , 1x10- 6 )

1.75 (5x10- 7 , 2x10- 7 )

2.00 (3x10" 7 , AxlO~7 )

TABLE b :  QUADRATIC AND CUBIC APPROXIMANTS TO THE SECOND ORDER

RENORMALIZED SCALAR SELF ENERGY ON THE UNPHYSICAL SHEET,

WITH s =l+i. o

s

ERROR IN (6/6/6) 

QUADRATIC APPROXIMANT

ERROR in (3/3/3/3) 

CUBIC APPROXIMANT EXACT VALUE

l . b (5xl0-5,3xl0-if) (^xlC'^xlO“ )̂ (0.93516,-0.371?)

1.5 b k (9x10 , b x l O ) (5x10 ,2x10 ) (0.8777,-C.7'.O6)

1.6 (2xlO_if,2xlO~5) , -L - b  (2x10 ,5x10 ) (0.81730,-0.9132)

1.7 (3xlO"3,2xlO“3) , - b  - b s  (1x10 ,7x10 ) (0.7559,-1.0788)

1.8 (5xlO"3,2xiO~3) (6x10^ , 5x10"^) (O.69M+,-1.2157)

1.9 (^xlO-^,6xlO-3) (lxl0~3,2xl0~^) (0.6335,-1.3327)
2.0 (lxlO~3,lxlC~2) (IxlC-3,2xlO~^) (0.57^,-1.13^0)



physical sheet is defined by n--l and the first unphysical sheet by n=C; 

it is this unphysical sheet with which we are concerned. On thin sheet 

we have three regions to consider:

(i) s>s^: In this region both quadratic and cubic approxinants give 

convergent results, as shown in Table 4 (which corresponds to the sane 

parameters as Table 2). A noticeable feature is that the rate of 

convergence of the approximants is markedly less on the unphysical sheet 

than on the physical sheet. This is not surprising; it is rather more 

surprising that we obtain any convergence at all on the unphysical sheet. 

Although the values of ImF(s) on the physical and unphysical sheet differ 

only in sign, we cannot expect this sign difference to be exactly 

reproduced by the sign difference associated with the two branches of the 

square root tern in the quadratic approximants. This is because all the 

power series coefficients of F(s) are complex; if, for example, we choose 

5^=0 (thus making the coefficients real), then the quadratic approximants 

would produce exactly the same errors on the physical and unphysical sheet. 

It is the complex nature of the coefficients which make convergence on the 

unphysical sheet a non-trivial result.

(ii) Sp<s<s^: In this region we obtain only very limited convergence 

typically one or two significant figures, as compared with at least six 

figures on the physical sheet.

(iii) s<ŝ : In this region the approximants do not converge and do 

not indicate the presence of the 'second-type' singularity at s=0.

Thus we nee that, using multi-valued approximants, we can obtain a 

limited amount of information on the unphysical sheet together with very 

good results on the physical sheet.

This is a remarkable result; using only information about a function 

on one Riemann sheet, we have obtained (using the quadratic and cubic 

approximants) information on a second sheet of the function. Effectively, 

the quadratic (and cubic) approximants perform an analytic continuation of 

the function from one Riemann sheet to another; this is a very powerful 

form of analytic continuation.
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(b) ZERO MOMENTUM VEHTEX PART

The zero momentum vertex part is obtained by differentiating the 

unrenormalized scalar self energy graph with respect to m. (We need only 

consider the unrenormalized self energy graph since the ensuing differentia­

tion is equivalent to the introduction of a zero momentum particle into the 

graph; the resulting graph is not divergent.) The matrix element is

easily derived from F(s) ofl^+a, and is a multiple of
ic< ad*

. mV> -

G(s) has the Taylor expansion (about s )
co

ft-0 ^
As shown in Table 5 (again with m=l and ¿1=1/6) the results obtained for 

G(s) exhibit the same features as those found for the self energy graph of 

§ ̂ a.

r\

~ HY2* -<*((-<*) SCJiv+l

5. THREE POINT FUNCTIONS 

5a. THE TRIANGLE GRAPH AMD ANOMALOUS THRESHOLDS

With the notation of Appendix 2, the matrix element for this process Is 

proportional to
r'i

Mis) =
r  i ttav

V^vi^vls + w.U-uJ K 2 - nv'2'
(5a.l;

If we write
Dis) = (JbVUk +uAUÜM*-n\1

then the expansion of D(s) about sq, a point in the upper half s-plsns, is

Dls) = \)0 uMl-vHs-s©)
where D^=D(s(_)); no higher order terns occur in this Taylor expansion since 

D(s) is linear in s. We then obtain the following expansion for M:
CXJ

^ }- l) r ts-s,)r
ri

r-0

r>
u_

Jd u r+i

The singularity structure of the triangle graph (see Appendix Z) shows 

that we have two cases to consider:



TABLE 5: COMPARISON OF THE (6/6) PADS AND (A/A/A) QUADRATIC APPROXIMANTS TO THE SECOND ORDER ZERO MOMENTUM
VERTEX PART, FOR VARIOUS VALUES OF a  .o

, s

8 =l+iO
MODULI OF ERRORS

s =l.A+i o
MODULI OF ERRORS

s =1.8+i o
MODULI OF ERRORS

EXACT VALUE 

OF G(s)

P. A. (2xlO“3 ,6xlO“3) P.A. (AxlO-3,AxlO“3) P.A. (2xl0~2,lxlO“3)
1.00 , -6 -6 A 6 (1.91613928,0)

Q.A. (1x10 ,7x10 °) Q.A. (1x10 ,2x10 Q.A. (6x10 ,5x10“ )̂

P. A. (lxlO~3 ,lxlO"2) P.A. (lxlO”2 ,lxlO-1) P.A. (2xl0-1,7xl0"2)
1.25 -7 L ■Z *z (3.^9105878,0)

Q.A. (1x10 ,8x10 ) Q.A. . ( 3x10“^, lxlO**'5) Q.A. (8x10°, 7x10"*)

P. A. (7xlO“2,AxlO”2) P.A. (6xlO"2,2xlO-2) P.A. ( 2xl0~^, lxlO-*1)
1.50 *Z "Z ¡L T* O 7 (0.26A80516,3.30A67088)

Q.A. (2x10 ^,1x10°) Q.A. (1x10 ,3xi0"O Q.A. (2x10 ,6xlO~p)

P.A. (3xlO"3 ,7xlO"3) P.A. (2xlO-3,AxlO“3) P.A. (5xl0-3,2xlO-3)
1.75 c II A A (0.0A698211,2.I79285O5

Q.A, (7x10 ^ , AxlO :?) Q.A. (5xlO“'?,2xlO~ ) Q.A. (1x10“ ,6x10 )

P.A. (7xlO"Zf,3xlO“3) P.A. (lxlO“3 ,lxlO-3) P.A.
2i

(1x10 ^,3x10 )
2.00 n c. (-0.07913A01,1.76770078 »

Q.A. (3x10 ^,3x10 p) Q.A. (3x10 -\6xl0~O Q.A* ( 1x10°, 3x10 )

P.A. (3xlO“3 ,2xlO"3) P.A. ( lxlO-3,2xlO-Zf ) P.A. (7xl0"Zf,Axl0“Zf)
2.25 q q C c (-0.1566738A ,1 .5172A66A )

Q.A. (1x10 ^ ,1x10 O Q.A. (5xlC-:?, 5x10 °) Q.A. (1x10 r,lxlO“^)

P.A. (2xlO“3,2xlO“3) P.A. ( 1x10“^ ,8x10“^) P.A. ( 2x10“^, lxlO-Z+)
2.50 q __q __q c C Ji (-0.20613282,1 .338825A1)

Q.A. (1x10 ^ ,1x10 p) Q.A. (1x10 ,7x10 " O Q.A. ( 2x10°, 3x10 )

P.A. (2xlO“3 ,2xlO“3) P.A. (lxlO“3 ,3xlO_Zf) P.A. (lxlO0 ,5x10"^)
2.75 q q q q A A ( -0.23833397,1.2019 7737

Q.A. (2x10 ^,3x10 O. Q.A. (AxlO dQxlO"-7) Q.A. (AxlO“ ,1x10"^)

P.A. (lxlO“3 ,3xlO“3) P.A. ( lxlO“3 ,6xlO-Z+ ) P.A. (2xlO-3,lxlO“3)
5.00 (-0.259*0861,1 .C92A11911

Q.A. (AxlO“^ ,1x10°) Q.A. (6xlO“5 ,lxlO“5) Q.A. (6xl0"^,lxl0"f)



(i) M >2m : There Ik an anomalous threshold on the physical sheet at 
2 2 2 2 2s^ra (l-r ), where r=(2m‘-M')/2m , lying below the normal threshold at 
2

s=^m .

In Table 6 we compare the (7/7) PadS, (.k/k/h) quadratic and (3//3/3/3) 

cubic approximants to (3a.1), using the series expansion (5a.2). The mass 

parameters used are M=1 and m=0.6, producing the normal threshold at 

s=l.Mt and an anomalous threshold at s=1.22. Since we have no exact result 

for (5a.1), the number of figures quoted in the results indicate the 

agreement between successive approximants. The expansion parameter used 

is so=l+i, and for all the results quoted in this (and the following section) 

the quadrature rule used in (5a.2) had a maximum of 25 integration points 

in each dimension.

The results show that, compared to the Fade approximants, the quadratic

(and cubic) approximants give roughly two more significant figures below

threshold; above threshold roughly one more significant figures is obtained. 
2 2(ii) M <2m : The anomalous threshold lies on the unphysical sheet

reached by passing through the normal threshold branch point and, for 
2 2M "=2m , it emerges through the normal threshold branch point.

As with the self-energy graph of §b the multi-variable approximants

can be used to obtain information on the unphysical sheet, and in particular

to trace the path of the anomalous threshold. Tables 7 and 8 illustrate the

situation for the mass values M=1 and m=0.9-(still with s =l+i); thiso
produces the normal threshold at s=3.2^ and the anomalous threshold on the 

unphysical sheet at s=2.77* With reference to Table 7» the most striking 

feature of the results is the tremendous improvement in convergence obtained 

with the quadratic and cubic approximants, especially above threshold.

Again the number of figures quoted in the results indicate the agreement 

between successive approximant; for all the examples of this chapter, for 

which we have no exact result available, we shall adopt this presentation of 

the results. The results of Table 8 illustrate the nature of the accuracy 

obtainable on the unphysical sheet; we note that the branch cut starting at 

s=4rn (l-r) is placed by the approximants from -ooto ¿fmc'(l-r). Along

-i+7-
? 2

the



TABLE 6: (7/7) P A D ^ C W M  QUADRATIC AND (3/3/3/?) CUBIC APPROXIMATES TO TIIE TRIANGLE GRAPH, ON THE PHYSICAL

SHEET, IN THE PRESENCE 07 AN ANOMALOUS THRESHOLD LYING ON THE PHYSICAL SHEET, WITH EXPANSION POINT

s = l+ i.o

s (7/7) PADS APPROXIMANT ( W O  QUADRATIC APPROXIMANT (3/3/3/3) c:jbic approximant

o.k (-3.60755,0.00002) (-3.607531,-0.0000005) (-3.60753103, -0.000c -c 009)

0.6 (-^.11176,-0.00007) (-Q.111773,-0.00000Q) (-Q.1117728,0.0000005)

0.8 (-^.8918,0.000^) (-h.8918Q1 ,-0.000008) (-A.8918399,-0.000002)

1.0 (-6.379,-0.006) (-6.37889,-0.0001) (-6.37891,-0.000006)

1.2 (15,-D (-13.1 ,0.10) (-13.2,0.09)

l A (_3.54,-10.26) (-3.99,-10.8) (-3.90,-9.57)

1.6 (-1.067,-6.89 )̂ (-1 .095,-6.87^) (-1.105,-6.892)

1.8 (-0.586,-5.651) (-0.5819,-5.6576) (-0.578,-5.6562)

2.0 (-0.2759,-^.939) (-0.27^3,-^.9350) (-0.2753,-^.9337)



TABLE 7: (8/8) PADÉ, (5/5/5) QUADRATIC AND (5/5/3/5) CUBIC APPROXIMATES TO THE TRIANGLE GRAPH, IN THE FHYGICAI

REGION, WHEN THE ANOMALOUS THRESHOLD LIES ON THE UNPHYSICAL SHEET, WITH r = l+ i .o

s (8/8) PADE APPROXIMANT (5/3/5) QUADRATIC APPROXIMANT (3/3/3/3) CUBIC APPRCXIMAN?
2.3 (-1.1952361,-C.4xlO“10)* ( -1.195236126, -0.2x10“1,7) * (-1.I95236I26,0.lxlO“19)*
2.5 (-1.2769717,0.2xlO“8)* (-1.276971668,-0.7X10“11)* ( -1.276971668, -0.8x10“1:1 ) *
2.7 (-1.383686l,0.6xl0“7) (-1.383686O29,-0.2x10“10) (-1.383686O29,-0.3X10"11)*
2.9 (-1.53588,-0.4xl0“S (-1.535875788,-0.IxlO“9) (-1.535875788,-0.4xl0“lü)
3.1 (-1.8OI44,-0.3x10"̂ ) O(-1.80136557,0.4xio) (-1.8OI36557,C.2xlC“9)
5.5 (-2.8,-1) (-2.39689,-0.64639) (-2.39688,-0.64639)
3-5 (-2.24,-1) (-1.976224,_l.120416) (-1.976225,-1.120416)
3.7 (-1.6,-1.1) (-1.677079,-1•2830256) (-1.677079,-1•2830257)
3-9 (-1.6,-1.4) (-1.4503496,-1.352197) (-1.4503495,-1.352197)
4.1 (-1.2,-1.5) (-I.271293,-1.379320) (-1.2712933,-1.379320)



UNPHYSICAL SHEET, WHEN THE ANOMALOUS THRESHOLD LIES ON THE

UNPHYSICAL WITH s = l+ i.o
--------  INDICATES THE APPROXIMATE HAS NOT CONVERGED.

TABLE 8: QUADRATIC AND CUBIC APPROXIMATES TO THE TRIANGLE GRAPH, ON THE

s (5/5/5) QUADRATIC APPROXIMANT (3/3/3/3) CUBIC APPROXIMANT

2.5

2.7

2.9 (-7.30,0.004) (-7.36,-0.01)

3.1 (-4.318,-0.0001) (-4.319,-0.0003)

3-3 (-2.39689,0.64639) (-2.39689,0.64639)

3-5 (-1.97622,1.12042) (-1.97622,1.12041)

3.7 (-1 .67701,1.28302 (-1 .67708,1.28303)

3.9 (-1 .45035,1 .35220) (-1.4503509,1.35220)

4.1 (-1.27129,1.3793236)
_

(-1.27129,1.37932)



cut generated by the anomalous threshold convergence is not yet attained, 

in the region between the two branch points three to four significant 

figures are obtained and along the normal threshold branch cut roughly six 

significant figures are available.

The matrix element (apart from constant factors) for the three point 

production process under consideration is given in Appendix 2b. In this 

section we are only concerned with the one variable situation in which t

be treated in Chapter b. In the present case, from (A2.ll), the matrix 

element has the expansion

The singularity surface is given by (A2.12) and Fig b (of Appendix 2) 

indicates the singularities lying on the physical sheet. V/e can again use 

the multi-valued approximants to simulate the unphysical-sheet singularities. 

For the results quoted in Tables 9il0 and 11 we have used the mass values 

M=m=l and expansion point so=l+i; in Tables 9 and 11 we have, with t=l, 

the anomalous thresholds at s=0 and s=3 on the unphysical sheet and the normal 

threshold at s=b on the physical sheet. We make the following observations:

(i) In Table 9 v/e again find that the Fade approximants do not converge 

above threshold (cf, §5a) whereas the quadratic and cubic approximants 

produce roughly seven significant figures in this region.

(ii) In Table 10 we see that the position of the anomalous threshold 

on the physical sheet is reasonably well approximated by all the 

approximation schemes. However, as in (i), the Padg scheme is not 

converging above threshold in contrast to the quadratic and cubic approximants 

which converge well in this region.

(iii) In Table 11, with t=l, the unphysical singularities occur at s=0

is fixed and an expansion is formed in (s-s^); the two variable case v/ill

whei’e
= v^vU-\»)s0 -«-'Jl-v U-va.) t. ■+ nva

and s~3 and it is only the singularity at s=3 which is simulated by the



TABLE 9: PADS, QUADRATIC AND CUBIC APPROXIMANTS TO THE THREE POINT PRODUCTION PROCESS, ON THE PHYSICAL SHEET, WHEN

THE ANOMALOUS THRESHOLDS LIE ON THE UNPHYSICAL SHEETS; WITH t=l and s =l+i.o

s (8/8) FADE APFROXIMANT (5/5/5) quadratic APPROXIMANT (3/3/3/3) CUBIC AFPROXIMANT

0 (-0.60^599788, -0.2x10“lif) * ( -0.60^599788, -0.4x10"1/f ) • ( -0.604599788,0.3xlo"1-:>) *

1 ( -0.6712531057,0.1x10"li+) * (-0.6712531057,-0.9x10"15)• (-0.6712531057,0.5xl0"16)*

2 ( -0.768^71355,0. 4xlO"15) * (-0.768471555,0)* (-0.768471355,-0.2xlO~i5)*

3 (-0.93779031,0.8xlO"9)* ( -0.937790.5074, -0.3xlO"12) • (-0.9377903074,-0.2xl0"13)*

3.5 (-1.IOI658,-0.4xlO"6) (-1.101657276,0.9X10"11)* (-1.101657276,0.9X10"11)*

4 (-1.66,-0.22) (-1 .8144,0.0008) (-1.8144,0.0002)

^•5 (-1 .1 ,-O.9) (-1.3413969,-0.849204318) (-1.3413971,-0.8492042)

5 (-1.1,-1) (-1 .0467752,-0.97384596) (-1 .0467750,-0.97384605)

5.5 (-0.9,-0.9) (-0.843689823,-1 .0022043) (-0.84368981,-1 .0022041)

6 (-0.8,-l) (-0.6949563,-0.99633121) (-0.6949565,-0.99633118)



WHEN THERE IS AN ANOMALOUS THRESHOLD (AT s=3.66) ON THE PHYSICAL SHEET: WITH t=3.8 AND s =l+i.o
----- INDICATES THE ENTRY HAS NOT CONVERGED.

TABLE 10: PADS’, QUADRATIC AND CUBIC APPROXIMATES TO THE THREE POINT PRODUCTION PROCESS, ON THE PHYSICAL SHEET,

s (8/8) PADS' APPROXIMATE (5/5/5) QUADRATIC APPROXIMATE (3/3/3/3) CUBIC APPROXIHANT

2 (-1.6376068296,0.lxlO"11)* (-1.6376068296,0.lxlO-11)* (-1.6376068296,-0.1x10“lj)

3 (-2.4992187,0.2xl0“6) (-2.49921828,0.4xlO-8) (-2.49921837,0.3xlO “ 7 )

3.5 (-4.320,-0.003) (-4.3201,-0.0004) (-4.3209,0.0002)

3.6 (-5.83,-0.06) (-5.876,-0.01) (-5.896,0.004)

3.7 (-1 .25,-10) (-5-7,-5.?-) (-6.3,-5.24)

4.1 (-0.796,-3.997) (-0.736,-4.03)

4.6 (-----,3.19) (-3.180,-2.7634) (-3.21,-2.761)

5.1 ( ,-2.01) (-1.238,-2.2728) (-1.242,-2.2740)

5.6 ( ,-2) (-0.0155,-1.970765) (-0.0149,-1.9712)

6.1 (---- ,-1.7) (0.05222,-1.75765) (0.0527,-1.7575)



TABLE 11: QUADRATIC AND CUBIC APPROXIMATES TO THE THREE POINT PRODUCTION PROCESS ON THE PHYSICAL AND UNPHYSICAL

SHEETS, WITH t= l; ON THE UNPHYSICAL SHEET THERE IS AIT ANOMALOUS THRESHOLD AT s=3?

s

(5/5/5) QUADRATIC 

APPROXIMATE ON PHYSICAL 

SHEET

(3/3/3/3) CUBIC 

APPROXIMATE ON PHYSICAL 

SHEET

(5/5/5) QUADRATIC 

APPROXIMATE ON UNPHYSICAL 

SHEET

(3/3/3/3) CUBIC 

APPROXIMATE ON 

UNPHYSICAL SHEET'

3 (-0.9377903074,-0.3xlO-12) (-0.9377903074,-0.2xlO-15) (-12.36,-0.4) (-14,-2)

3.5 (-1.101657276,0.9X10"11) (-1.101657276,-0.1x10“10) (-4.3896,-0.003) (-4.394,-0.002)

4 (-1 .8131,0.0008) (-1.8132,0.0002) (-1.8145,-0.0008) (-1.8144,-0.0002)

4.5 (-1.3413969,-0.849204318) (-1.3413970,-0.8492042) (-1 .3413968,0.849203) (-1.341398,0.8492033)

5 (-1.0467752,-0.97384596) (-1.0467751,-0.9738461) (-1.0467761,0.9738452) (-1.046787,0.973851)
j



approximants. As Table 11 indicates, we can obtain remarkably accurate 

results on the unphysical sheet for s=>3; in contrast, for s<3, convergent 

results cannot be obtained and for this reason we do not tabulate any 

results for s<3*

We again conclude that useful information on the unphysical sheet can 

be obtained with the quadratic and cubic approximants.

6 . FOURTH ORDluR SCALAR BOX GRAPH

The fourth order scalar box graph is a function of the two invariants 

s and t (see Appendix 3) and, since we are only concerned with one variable 

approximation schemes in this chapter (two variable schemes being considered 

in the following chapter), we consider t to be fixed and consider 

expansions in (s-sq). From (A3.6) we then obtain the following expansion

for the matrix element M;
C O

àu-

■v 1 p

Jo jd

k\H U-U-U-) [u5vü-viT

where Do = v^vU-v)sc+i\-vb)*wll~VA>)fc — ll-a) M  — U-tW

Because of the complicated nature of the singularities of this graph (3a)

we do not attempt to produce results on the unphysical sheets and we only
2consider the physical sheet containing the normal threshold at s=hM .

Some typical results are shown in Tables 12 and 13, where we compare 

the Pade, quadratic and cubic approximation schemes for t=0 and t=-l, with 

expansion point SQ=3+3i* The mass values used are M=m=l (producing the 

normal threshold at s=^) and the quadrature rule places a maximum of 25 

points in each dimension. The exact values quoted in the tables are 

derived from (A3.7) and (A3.8); for t=-l no exact values are quoted above 

threshold and in this case the number of figures quoted for each approximant 

is based on the values of the next lowest order approxinant. Again the most 

noticeable feature of the results is the tremendous improvement in 

convergence above threshold obtained with the quadratic and cubic approximant 

We can obtain an idea of the class of functions for which the rotation

method of this chapter will be of value by looking at the poles of the Fade



TABLE 12: PADS, QUADRATIC AND CUBIC APPROXIMATES TO THE FOURTH ORDER SCALAR BOX GRAPH WITH t=0 and s =3+3i.o

2
ERROR IN (7/7) PADE 

APPROXIMANT

ERROR IN (b/k/b)  

QUADRATIC APPROXIMANT

ERROR IN (3/3/3/3) 

CUBIC APPROXIMATE EXACT VALUE

0 (lxlO_9,3xlO~7) ( 10"9,-8x10-9) (7xlO“9,6xlO“9) (0.2636001^+1,0)

1 (9x10"8 ,2x10"7) (^x10"9,2x 10“9) (5x10-9,3x10-9) (0.30229989^0,0)

2 (¿+xlO~7 ,-lxlO“7) (5x10-9,2x 10-9) (¿+xiO_9/+xlO“9) (0.361596751,0)

3 (5x10"6 ,5x10-6) (9x10-9,2x10"8) (2xlO”8,-5xlO~9) (0.¿+72799717,0)

k (0.16,0.1 ) (6x 10~3 ,8x10~3) (3x.10_3,8x10"3) (1.2092,0)

3 (Ixl0_3,lxl0-i+) (6x10~7,7x 10"7) (1x10“6,3x10-7) (0.3893953,0.702^815)

6 (Ixl0"^,2xl0-Zt) (¿+xlO-7,lxlO-7) (6x10"7,1x10_6) (0.1 +̂96179,0.60 +̂5998)

7 (Ixl0"if,lxl0_i+) (3xlO"8 ,3xlO"7) (1x 10-6,5x10-9) (0.0't 587218,0.51^+163791)

8 (3xlO“5 ,lxlO_if) (2x 10-6,^x10-8) (8x 10~8 ,1x10"6) (-0.007^5018 ,0. w + 28830)

9 (lxlO-\6xlO-5) (lxlO-7,¿+xlO-7 ) (2x 10“6 ,6x10~7) (-0.03758282,0.3902675)



TABLE 13: PADS, QUADRATIC AND CUBIC APPROXIMANTS TO THE FOURTH ORDER SCALAR BOX GRAPH WITH t=-l AND SQ=3+3i.

s

(7/7) FADE 

APPROXIMATE

(if/ifA) QUADRATIC 

APPROXIMANT

(3/3/3/3) CUBIC 

APPROXIMATE EXACT VALUE

0 (0.2357113,0,3xl0-8) (0.235711282,-0.2xlO-8) (0.235711282,-0.6xlO“12) (0.235711282,0)

1 (0.271009560,0.2xl0"9) (0.271009560,0.2xlO-1°) (0.271009560,-0.9xlO-11) (0.271009560,0)

2 ( 0.325389313,-0. if xio"10) (0.325389313,0.2xlO_1°) (0.325389313,-0.lxlO“11) (0.325389313,0)

3 (0. if28303305,0.8xlO_1°) ( 0. if28303305, -0.3xlO~10 ) (0. if28303305, -0.7xlO'12) (0. if 28303305,0)

(l.03,0.0if) (1.1382,-0.0003) (1.1390,-0.0007)

5 (0.33,0.6if7) (0.32802186,0.6if 923075) (0.3280217,0.6if92306) •

6 (0.ll6,0.5if) (0. liii 3077,0.5if52639) (0. ilif 3079,0.5if526iflif7)

7 (0.023,0.if6) (0.0256293,0. if5820if 9) (0.0256287,0. if582052)

8 (0.019,0.389) (0.0186903,0.3931^875) (0.0186909,0.3931^77)

9 (-0.038,0.3if) ( -0 . Oif 312853,0.3^37376) (0. oif 312767,0.3if3736)



FIG.if: LOCATION OF THE POLES OF THE DIAGONAL PADE APPROXIMANTS TO THE FOURTH ORDER SCALAR BOX GRAPH, WITH EXPANSION

POINT s =l+i. o



for example, whether it is a series of Stieltjes and so we cannot be certain

of the location of the poles of the corresponding Padt; approximants (see

Theorem 1.3 of Chapter 2). Go, after rotation, we cannot be sure that the

poles lie in the region indicated by Van Vieck's theorem (and indeed we are

not sure that Van Vleck's theorem is valid for the function representing

the box graph). We can therefore regard the location of the poles of the

(diagonal and paradiagonal) Fade approximants as an indication of the

validity of Van Vleck's theorem for functions whose S-fraction expansion is

not readily (if at all) computable. In Fig h we have plotted the positions

of the poles of the diagonal Fade approximants obtained with expansion point

so=l+i. The great majority of the poles lie almost exactly on straight

lines, in the lower half s-plane, passing through s^ and the normal threshold

branch point, as indicated by Van Vleck's theorem. Certain poles,

especially of the higher order approximants, do not conform to this scheme;

however, the residue at these poles is extremely small. For example, the

residue at the "well-behaved” poles of the (9/9) Fade approximant is of the

order of 10 , whereas for the remaining "badly-behaved" poles the residue
-8is about 10 . For the box graph this behaviour of the poles occurs for

all the values of s^ so far investigated; in practice, however, these 

anomalous poles do not cause any trouble.

If we consider the multi-valued approximants the situation is rather 

different. In contrast with Pade approximants, the approximants do not 

need to simulate the branch cut by a sequence of poles; in general, the 

poles of these multi-valued approximants are placed on one of the ' unphysical 

sheets of the approximant (as explained in § 2 of Chapter 2) and hence cause 

no difficulties. This behaviour is clearly a desirable feature for the 

type of calculations discussed in this chapter.

7. FOURTH ORDHR GCAIAR GULF FIIFRGY GRAPH
From (Â t.l) (of Appendix h) we obtain the following expansion for the 

fourth order scalar self energy graph:

approximants. Regarding the box graph as a function of s, we do not know,



TABLE lA: PADS, QUADRATIC AND CUBIC AND LOGARITHMIC QUADRATIC APPROXIMATES TO THE FOURTH ORDER SCALAR SELF

ENERGY GRAPH, WITH so=3+3i.

z

(8/8) PADS 

APPROXIMATE

(5/5/5) QUADRATIC 

APPROXIMATE

(A/A/A/A) CUBIC 

APPROXIMATE

(5/5/5) LOGARITHMIC 

QUADRATIC APPROXIMATE

0 (-0.78128A,o.5xlo"5) (-0.781275,0.3x10'^) (-0.781263,0.2x10'^) (-0.781270,0.2x10” )̂

1 (-0.92362,O.lxlO'S (-0.9236A,0.6xl0~5) (-O.923637,0.2x10'4) (-0.92363^1,0.2xl0~4)

2 (-1 . ^ 6811,0.1x10'**) (-1.1A6793,o.3xio"5) (-1.1A67992,0.5xl0'5) (-I.1A68017,0.8x10'^)

3 (-1 .5756,0.1x10'^) (-1 .5755,0.3xlO'S (-1.57553,O.ixlO'S (-1.575^8,0.2x10'^)

. 3-3 (-2.0315,0.6x10'^) (-2.O328,0.Ixl0~3) (-2.0325,O.Ax 10"3) (-2.0331,0.3xl0'3)

A (-3.8,0.39) (-3.967,-0.27) 0 0•010 •1v-/ (-3.81,-0.20)

A.5 (-2.38,-2.779) (-2.3877.-2.80AO) (-2.3899,-2.8080) (-2.3889,-2.8338)

3 (-I.2A7 ,-2.9A9) (-1.2506,-2.9A35) (-1 .2501,-2.9A19) (-1 .2577,-2.9313)

6 (-0.085,-2.521) (-0.0832,-2.519A) (-0.0821^,-2.5203) (-0.076,-2.5188)

7 (0.^33,-2.025) (O.A317,-2.0260) (+O.A310,-2.C2Al) (+0.A28,-2022)

8 (0.662,-1.6091) (O.66AO,-1 .6050) (o .6609,-1.6o6A) (0.6607,-1 .607)

9 (0.750,-1.27^) (O.7A9A,-1 .2710) (0.7A92,-1 .2757) (0.7A88,-1.27A8)

10 (0.76,-1.017) (0.759,-1.017) (0.7633,-1 .021) (0.761,-1.021) i
15 (0.56,-0.^2) (0.566,-0/(280) (0.569,-0.^20) (0.577,-0.A20)

i



-hl-

where^T, C and Do=D(s=So) are functions of the integration variables u,v,w 

and z and are explicitly defined in Appendix k. As in the case of the box 

graph of 6, we confine our attention to the physical sheet containing the 

normal threshold.

The results of Table 1^ correspond to the mass values M=m=l, so that 

the normal threshold is at s=*f; the quadrature rule used places a maximum 

of 23 points in each dimension. We have compared the Pad£, quadratic, 

cubic and also the logarithmic quadratic approximants (see (2.8) of Chapter 

I); the corresponding logarithmic Pade approximants have also been used 

but these produce relatively poor results and we do not tabulate them here. 

The basic trend of the results is as before, with the multi-valued 

approximants producing more accurate results than the single-valued Pade 

approxirnants. A comparison with the previous tables shows that the results 

obtained for this fourth order graph are noticeably less accurate than the 

results for the diagrams previously considered. This loss of accuracy 

occurs because the power series coefficients (given by the four dimensional 

integrals of (7-1)) are determined considerably less accurately than for the 

previous graphs. Improved results could possibly be obtained by employing 

more sophisticated integration routines (see § 8).

8. CONCLUSIONS

From the examples considered in this chapter we draw the following 

conclusions:

(i) Tiie proposed method of calculation (described in §3) of Feynman 

matrix elements in the physical region certainly appears to be a feasible 

method of calculation. For higher order graphs certain difficulties in 

performing the numerical integration over the Feynman parameters are 

encountered, as exemplified by the self energy graph of § 7. Also, for the 

box graph of§ 6, difficulties arise in integrations when the external 

particles are off the mass shell and it has not yet been possible to 

reproduce the anomalous thresholds which arise in this case (ll). However,



in such instances it is not the basic idea of the method which is at fault 

but rather that the numerical integration routines used are not sufficiently 

reliable. It may be that adaptive integration routines (12), where the 

assignment of quadrature points is based upon the behaviour of the integrand, 

will prove to be of use in this context. Another possibility is to inte­

grate directly over the simplex, instead of introducing the Feynman 

parameters to convert the problem to one over the pypercube (and then using 

the standard Gauss-Legendre quadrature). In this context, the integration 

formulae discussed in (13) have been applied to the triangle graph of 

though at present without any real success.

(ii) The use of multi-valued approximants is to be recommended.

Naively, we would expect to be able to approximate a function with a branch 

point by an approximant which itself possesses a branch point. we can

interpret the results of this chapter with this point of view. In Appendix

5 the nature of the leading singularities of the Feynman graphs discussed in 

this chapter are given. In particular, the fourth order box graph of § 6 

possesses a leading square root singularity and, in fact, it was this 

observation (1*0 which i^roduced the original use of quadratic approximants 

in this context. For this graph the quadratic approximants (especially 

above the normal threshold) produce dramatically better results than the- Pade 

approximants; essentially, v/e can regard the quadratic approximants as 

approximating a square root branch point by.a square root branch point. 

Continuing with this line of reasoning, we would expect the logarithmic Fade 

and quadratic approximants to work well for the triangle graph, whose 

leading singularity is logarithmic. However, the numerical results 

obtained with these approximation schemes are disappointing; the logarithmic 

FadS approximant is not noticeably better than the ordinary PadS approximant 

and the logarithmic quadratic approximant is definitely worse than the 

ordinary quadratic approximant. The explanation of this behaviour is net 

clear and it appears that more numerical study of these approximation schemes 

is required.

(iii) A feature of the methods discussed in this chapter is the arbitrary



nature of the expansion parameters s^, which allows a consistency check to 

be made on the results. The question of the optimal value of this para­

meter then naturally arises; here we attempt only to ¿jive a qualitative 

discussion of the problem. In Fig 5 we illustrate the expected rotation

of the branch cut, for various values of s , of, for example, the functiono
f(s) =ln(l-s). If we wish to calculate values of f(s) both for s<L and

s>l, then we would expect the optimum value of sq to be directly above the

branch point s=l; in practice, sQ=l+i seems to provide an optimum (or at

least a near optimum) choice. If, however, we wish only to calculate f(s)

for s»l then an optimum value of s with Res>l would seem more reasonableo o
(although the actual value of sq is not at all obvious). Thus, even with 

the 'simple' function ln(l-s), the optimum value of sq is dependent upon 

exactly where we are interested in approximating the function.

For the Feynman diagrams the situation is very much more complicated.

Now the value of sq not only determines the angle through which the branch 

cut is rotated, but also determines the accuracy to which the multi­

dimensional integrals can be evaluated. However, the exact relation between 

the accuracy obtainable and the value of s^ is not at all clear. In 

practice, if we wish to evaluate the Feynman matrix element both above and 

below the normal threshold (at s=sn i say), we have found that choosing 

Re sq slightly less than s^ (and Im ŝ ssRe s ) generally produces reasonable 

good (though undoubtedly not optimum) results. For example, for the box 

graph of 6 with En=^, we choose SQ=3+3i and Tables 12 and 13 indicate the 

type of results this choice produces. The actual determination of an 

optimum value for sq is clearly a very difficult problem.

(iv) A priori, the only information we have about the particular graph 

under discussion is that the imaginary part of the matrix element is zero 

along the real axis below the normal threshold (or perhaps below fin 

anomalous threshold). It should be possible to incorporate this information 

into the method of calculation. For example, we can modify the equations 

defining the Fade approxinant so as to make the imaginary part of the 

approximant zero at certain pre-selected values below threshold. However,
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in practice, such alterations seen to destroy the homographic invar iar: 

properties of the approximates and lead to relatively poor results. 

Nevertheless, it does seem desirable to incorporate any available info 

ation into the computational scheme.

(v) The graphs of sections b and 5 illustrate the very powerful 

method of analytic continuation exhibited by the quadratic (and cubic) 

approximants; namely, the continuation cf a function from one Niemann 

sheet to another. In this connection we expect the multi-valued 

approximants considered here to prove very useful in the many areas of 

mathematics where multi-valued functions commonly arise.
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appendix I: SECOND ORDER RENORMALIZED SCALAR SELF ENERGY

(a) EXPRESSION FOR THE MATRIX ELEMENT

FIG I.

The Feynman graph (5) for this process is given in Fig.I, the incoming 

particle (of mass m) having four-momentum p and the emitted particle (of 

mass ji) four-momentum k. The matrix element for this process is given by

the usual Feynman rules (5) and is proportional to

J-b) =
% cO

(Al.l)

To the mass of each particle occuring in an internal line of the graph a 

small negative imaginary part is added; this is the Feynman prescription 

(5) for obtaining physical amplitudes. It is equivalent to the limit 

obtained by approaching the branch cut of F(s) (see below for the 

definition of F(s)) from the upper half s-plane; the Feynman prescription 

allows (Al.l) to be evaluated with real external four-momenta (that is, with 

s real).

To evaluate (Al.l) we combine the denominators using the Feynman 

formula (5)

'  1  b *

to give

i*s)-Utl)= f  c U j V - l k p *

We diagonalize the denominator by introducing the variable k:

k' =
to give

where

i 'i f»CO , .

C J—00

|_ ~  p2 1 <*) +■ f^  + ^  -¡P)*

(Al.2)
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To evaluate (Al.2) consider
rtO

J  « J M k M a c e )
-3

J - c O

The path of the ^-integration is along the real kQ axis, the poles having 

been displaced by the Feynman prescription. We can rotate the integration 

path byTT/2 in the complex plane so the integration is along the imaginary 

axis from -ioo to -fico. This procedure is permissible since, during the 

rotation, we never cross any singularities (these being located above the 

negative real axis and below the positive real axis) (6). We therefore 

introduce the integration variable k^:

Then (using the metric of (6))

W  =  C -  k *  =  -1 ^  +

so that the integral now becomes one over Euclidean four-space:

r “  <jA.A5k
T - - i

Introducing four-dimensional spherical polar co-ordinates, we find (6)

T - -E /  »
roo cVcc

u + u *
_ ine l (A1.5)

Since f(s) is logarithmically divergent we must consider the renormalize 

second order (scalar) self energy F(s), defined by
Rs)=

v;here

Noting that

f a .
poo . r

A V -

J 0 _oO

z 2-

Fk)= - l

and using (A1.5) we obtain

L0 -  L ip 1-mV =
Lo

J  i t

r~( \~ -'i
a .  U $r  isi L

j 0 H? {.[-<<) + fTV̂ (ki.L)

(b) SINGULARITY STRUCTURE OF F(s)

Although we can determine the singularity structure of F(s) directly 

from (Al. 6) we shall find it more convenient to employ the Landau - C u t k o si:;
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rules ((7) and (8)); these rules are very useful for determining the 

singularities of a graph (especially for complicated graphs), and provide 

a simple method for deciding which of the singularities lie on the physical 

sheet.

To define these rules we write the Feynman integral (after intro­

ducing Feynman parameterscC_) in the form
•I ^

I -
'oO

0

i i i i M (Al. 5)

'loo y
where 1/ and r are defined in^l, and the q̂. are the independent "loop 

momenta". The k_̂  are internal momenta, and are determined by the momentum 

conservation delta functions as linear functions (with coefficients +1,

-1 or 0) of the q. and the external momenta (and the iG has been absorbedci
into the n O  . The Landau-Cutkosky rules then give the following conditions 

for I to have a singularity:

(i) lv- = ̂ /-- -| J

and

[\\) < ^ , =  0  U  =  l,.... ,r)

for each independent loop of the diagram. The sign is plus or minus 

according to whether the direction of k^ is with or against a chosen 

direction around the loop. The leading singularity of the graph (that is, 

a singularity not shared by the contracted graphs) is then given by a 

solution of (i) and (ii) with cC^O for all i; furthermore, the singularity 

lies on the physical sheet providedc</>0 for all i (3a).

For the graph of Fig I, writing k_̂ =k and k^=p-k, conditions (i) and 

(ii) give

and
dc,k, -  < ZK  = 0

(A1.6a>

(Al. 6b)

Multiplying (Ai.6b) in turn by k^ and k^ we obtain the system of equations

«r, Y.} —  cc- k, k*. —  0 

,̂k,k2. —  —  D

(A1.7)

which have a non-trivial solution if and only if
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Using the relation
S = pi =. lk,+Ki)i;=

(obtained from (A1.6a)) this condition reduces to

s = (A1.8)

To determine which of the singularities given by (A1.8) lie on the 

physical sheet, we have from (A1.7),

2
For s=(m-ji.) this gives

2so thatc<| and c<0 cannot both be positive (as they can for s=(m+ft) ).
2

Hence, only the singularity at s=( m+fi) lies on the physical sheet.

Finally, we note that, in order to obtain all the singularities of a 

Feynman integral, we must permit 'solutions' of the Landau-Cutkosky 

equations in which the momentum vectors may become infinite (8). Such 

solutions give rise to "second-type singularities", ana it can be shown 

(3a) that the second order self energy graph has such a singularity at s=0.
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appendix 2: THREE POINT FUNCTIONS (9)

2a THE TRIANGLE GRAPH AND ANOMALOUS THRESHOLDS

(i) FEYNMAN REPRESENTATION
Pc

FIG. I

The triangle graph (or three point function) matrix element is, from

a n

Fig. I, proportional to 
f '  oo

1  = &pot+Pb+^ [i'Pc+^ 2_nvZJ
(A2.1)

*/w oO

where p ,p, ,p and n, are the external four-momenta and k is the internal a b e d
loop momenta. For simplicity, we take all internal masses to be m and all 

external masses to be K and we incorporated all i£ factors into the mass 

factors; again, we only consider scalar particles. V/e therefore have

= =  (A2.3

Pa+ Pb +pc +  U  =  0
and

S -  +

To evaluate I we proceed as in Appendix I; we combine the denominators 

in (A2.1) using the Feynman formula

f K = £| I Y t m i -  t * i ]  s'31=1 L  ui /
where

S - J kjBc
1= I

and then diagonalize the resulting denominator with the substitution

W  =  k +  ( Pa-"*" Pbl^z ~ Pc^3
Using (A2.2) and (A1.3) we arrive at the result

f 1 3
ITT21 =  L*"2 f i  < ^ M z - h ) d '

0 i = l V C--I 7

(A2.3)
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where
D  Vs) =  cSc^s +  * 3(*» +^.)h2~nv2

We remove the ^-function from (A2,3) by introducing Feynman parameters (5) 

u and v, where

and

= U-V
*1 = ~vi

^  = I - u-

Then I is proportional to

I>4 : A.v..
V x N W s  + \JtU-uL)|vVt-f5vx

(A2.*0

(ii) SINGULARITY STRUCTURE 

With the notation

lC|=-W(VLj= Pc~k ; ~ l pa.-tpb-»-V0 (A2.5a)

the Landau-Cutkosky rules, applied to Fig I, give

Kf =  k^= ̂  (A2.5b)

and

^ 1^ 1+  ĉ sk3 —  0 (A2.pc)

Multiplying (A2.3c) in turn by k^,k^ and k^ we obtain the system

<*,nv + t = 0

*S +■ eS.v[' + ^k^k* = 0 (A2.6)

+  csAk* + cr3 =  0

which has a non-trivial solution if and only if

=  0 (A2.7)

and

m 1 k,k, k^i

&eA: m*

Vxkj n*
conservation conditions

P<v + Pb +• - k,

Pd.4- kj_ =

PC T k( = kt

(A2.7) reduces to
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I r
r* I

- b  ?

- JL
Ei*1

=  0

where
r =■ ^nv2- ̂  

cLm1
The stability of the particles requires that

r \ l  c w
so that

- < r <

(A2.8)

On expansion, (A2.8) reduces to the two solutions

S -  0

and

S - V U - r 1)

(A2.9a)

(A2.9b)

From (A2.6), the solution s=0 leads to

cC t cĈ  = 0

so that bothoCj andot;-,. cannot be positive; the s=0 singularity thus does 

not lie on the physical sheet. The solution (A2.9b) leads, from (A2.6), to

2 r <£, =• — i “̂i -
and so thecc's are all positive if and only ifr < 0
which is equivalent to

>

Thus, when (A2.10) holds, we have an additional singularity on the physical
2sheet lying on the real axis below the normal threshold at 4m . This is

referred to as an anomalous threshold since the position of the singularity

does not correspond to the mass of any physical intermediate state.

We can follow the path of the anomalous threshold singularity as the
2 2external mass H is varied; when M <2a the anomalous threshold lies on the

unphysical sheet reached by going through the normal threshold cut and it
2 2emerges through the normal threshold branch point at M =2m . This situation 

is shown in Fig 3> where the path on the unphysical sheet is indicated by a .



FIG.2:
/ 2AS THE EXTERNAL MASS INCREASES THROUGH -/2m .

THE PATH OF THE ANOMALOUS THRESHOLD OF THE TRIANGLE GRAPH

I m s

-  - Y r\  HNOtABUXXS THfctSttCU)
W s = W l V - r ^ )

FIG.k: THE REAL SECTION OF THE LEADING LANDAU CURVE FOR THE THREE 

POINT PRODUCTION PROCESS. THE UNBROKEN LINE SHOWS THE 

SINGULARITIES LYING ON THE PHYSICAL SHEET.

Re sÛL

s-HW'

s--C

♦ R e t
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broken line and the anomalous threshold is displaced off the axis for 

clarity.

2b. A THREE POINT PRODUCTION PROCESS 

(i) FEYNMAN REPRESENTATION

FIG. 2

The Feynman diagram for the process is shown in Fig 2, and the matrix

element is proportional to
r°"o

[ift-i-Pb-Wf-nv1] [lpcTpA-rK)1-
^*-00

I can be evaluated using the methods of Appendices I and 2a, and we obtain

1 =

n I p

b l d v L

V 6 - l

<w (A2.ll)
Uo’vU-vJS + u\'Ü~a)t +

where
$ =  Ip^+pb)1

t =  +

and the Feynman parameters u and v are introduced according to

or, = a v  

ccL = aU-v)
and

^ 3  =  1-a

(ii) SINGULARITY STRUCTURE

For this process the equation corresponding to (A2.8) is

I I -

Id^b

t - -^-T

i ' i ?

=0 (A2.12)

which, provided r<l, is the equation of an ellipse and is illustrated in



FIG.5: THE PATH OF THE ANOMALOUS THRESHOLD OF FIG.3 AS t

IS INCREASED THROUGH REAL VALUES.

TrftS



-63-

Fig li. By using the criterion that all then's be positive, we can show 

that only the part of the ellipse shown by a full line in Fig is singular 

on the physical sheet.

The path of the anomalous threshold as t is increased through real 

values is clear from Fig.4, and is shown in Fig.5. The part of the Lardau- 

Cutkosky curve which goes into the complex plane and is attached to the 

singular arc of Fig.*f gives rise to a complex singularity for real positive 

t>^m^.



APPENDIX 3: FOURTH ORDER SCALAR BOX GRAPH
(i) FEYNMAN REPRESENTATION

FIG .1

The Feynman diagram for the fourth order box graph is given in Fig.I; 

the mass of the particle associated with each line is given in brackets next 

to the line. For the external particles on the mass shell,

, P ; ' = M 2 U=l....A )

E =°
i=l
s -  Ip. + Vi)1

and we also have

(A3.1)

and

t = V?. + pdz

The matrix element is proportional to
OoO

1  =
Fa n M l W i P - M 1] (« - 2)

—  C O

The process of evaluation of (A3.2) by diagonalization of the denominator and 

subsequent use of the Feynman formulae to perform the integrations of the 

loop momenta, as described in Appendices 1 and 2, can be formulated for an 

arbitrary Feynman graph (2). For a graph v/ith L internal (loop) momenta, 

denoted by k^,...,k^ and r internal lines, the integration over the internal

momenta gives
-r f- 2\L ir-£L-i)!

pi
T i .  H  i *  \ C

r -2 L  ~ l

t A -Z
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where

Q h „ . ,K) +  c
is the denominator obtained by combining the propagators, and

Vl „ n . i ......  w > u

Rii R n .........

(A3.^a)

C  =  < U b

R u  R\.i.........P LL

(A3.‘Vb)

and

D = (Kb
nn R > i. . . . . . . . . . . . Rit- R*
P ii  R u .................. Ri.L Rz

R u  R u ......... R l l  R l

R i R j l ......................... R u  t
For the box graph r=^ andL=l so that, neglecting constant factors, 

(A3.3) gives

(A3.ifc)

1  =

r 1 u-

‘1
¿ = 1 V •>*! '

(A3.5a)

where

0  =  deb

Ql^) *  ^ lv ^ )+ ^ [(p ,n )2- ^ J  + cc3pp^Pzn)‘-n\z]+̂ [i-p^\j-rii] 

= (\i -E ^[^P <+^lp-+?J-cC‘tPj+
using (A3.1). Thus, from (A3.^c) and (A3-1),

I cbj.p. + ̂ l ^  + pJ _^pH-

^2?'+ ^Ipt+pi)-‘S-P* ^ ls-^x)

Introducing Feynman parameters u,v and w by

<*, - m v

cCj = iUi-v)

<̂ 2. ~  11~U-)

(A3.5b)

and
— 11 ~U/) l̂\ ’ 3
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we obtain, from (A3.5a) and (a3*5b),

r _
M

uA W ) Ax

- l

<Vv1~
E^vU-v/is -  U - » J ^ K u U ' v o ) f c v u n V * * ]

V 0 J 0 J

(A3.6)

The singularity structure of the box graph is complicated and details

can be found in (3a).

(ii) DISPERSION RELATION FOR BOX GRAPH 
2For s >hM , the following dispersion relation (due to Mandelstam (10)) 

is valid for the box graph of Fig.I (il):

'̂o0 r co

m x

W  0tKj
(A3.7)

5-nv
v;here

and

K U ' A ' i  =  l s ' - W H ' t ' - W )  - A m 1*

G l x ) = { 1 , x > 0
\o , * < o

For the special case of forward scattering we (11) can obtain an

explicit representation for T^. in this case

I r id g U , k -0 )=  J L  /. S - w 1 , 
2, v S r n H s + i ^ - l f f )

and we can evaluate the single variab.le dispersion relation (t fixed)

t b u ,  v = o ) = ^  r ̂ w = o )

to give, for s>^M ,

W = o ) =
lmls+A)

!
/~oO

e ls '

-"jW
U - s J

v R ,r  +
looT 6

e «
4-

where

(A3.8}

A  =  

R  = C -

and
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- A

M'Atv' +  A

For we can obtain 7g(s,t=0) by analytically continuing (A3.8)

in s.
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appendix k: FOURTH ORDER SCALAR SELF ENERGY GRAPH

FIG. I

The Feynman diagram for this process is given in Fig.I, where p is the 

external four-momenta and k, k/ the internal loop momenta; for each line the 

mass of the corresponding particle is given in brackets by the line. 

Evaluating the matrix element I using the method of Appendix 3 we obtain,

neglecting constant factors,
r i

1  = u
i r t

0
ä d CD

where •

and

and

C =  R E - H 2

£  = C u  +  S P G H  - R F 2- ß & 2

&• =  VA-^-v + vw)

F  =  w l l - v w )

R  =  &  +

6 =  F +• U -a )
C =  s \l +  C 

C =H = itU-v)

(A*t.l)



APPENDIX 5: NATURE OF THE LEADING SINGULARITY OF PZYNI1AN GRAPHS

The discussion here follows that of (3a). For a Feynman graph G with 

N internal lines, the result of integrating over the L independent loop 

momenta is, apart from constant multiplicative factors,

1  =
rl

o 0 , = l d N '2L

(A5.1

(see (A3.3))« Consider the singularity corresponding to v contractions

(C$vcN-l) of G. The Landau-Cutkosky rules can then be written as

D  =  0
and

<*¿, =  0  1 = 0,1,...... ;v (A5.2

or

— ^  = 0  , v+2,.... , N

Performing theintegration in (A5.1) has the effect of changing

D(z;c^ . ,. .. ,cc ) to 
1 ND U ; * . ,. ^ N - * / i . .  °s m) = f) U -

(where z represents the invariants s,t and so on of G). Then (A5-2) 

becomes

(a)

OII
¿3

(b) *i, =  0 <r 
• it a < (A5.3

(c)
« ' - 0

i
u = v + i ,N~ \

If (a) and (b) have solution, for a given z^,

^ U r )
then (a) gives the singularity surface of (A5«l) as

D ' U r , ^ U r ) ) = 0  (A5-'*
In the neighbourhood of z^ (satisfying (A5.4-)) we can expand D by Taylor's 

theorem; retaining only the lowest order terms we have

D' k,;*.) - D'hr; ) + ) , K -  -s.)z_,i=i

N-l

l/_} \
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Although we are only concerned with a finite segment of hypercontour 

in the neighbourhood ofe< soothe singular part will be unaffected if we let 

eachoc-integration extend from -ooto + 00, provided the power (N-2L) of the 

denominator in (Ap.l) is sufficiently large. Explicit integration then 

shows that the singularity is the same as that in

[D' U r i  SMlr))
(A5.5)

provided

i  = | [ N - v t l j - 2 L > 0
the infinite extension of the hypercontour is invalid. In this case 

we replace D/ by D/+l\ and differentiate the integral with respect to Tj 

sufficiently so that the infinite hypercontour extension becomes valid.

Then (A5.p) is replaced by

(Ap.6)

where^ is a negative integer. When is half-integral and negative (A5.5) 

again holds.

APPLICATION TC THE GRAPHS OF CHAPTER 3

We can apply these general results to determine the nature of the 

leading singularity of the following graphs discussed in Chapter 3:

(i) SECOND ORDER SELF ENERGY GRAPH: In this case, and in all the

following, we have v=0. Here, N=2 and L=1 so

f  = -5-\N-v-i)tSL

Then (Ap.p) shows that the leading singularity is a square root singularity, 

(ii.) TRIANGLE GRAPH: Here 11=3 and L=1 so

i = D
and (A5.6) shows that the leading singularity is a logarithmic singularity, 

(iii) FOURTH ORDER BOX GRAPH: Here 11=1» 1=1, giving

and hence 

(iv)

a leading square root 

FOURTH ORDER SELF EN

singularity

IRGY GRAPH: Here N=5 and l =2, so that

i — I

and hence a leading logarithmic singularity.
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CHAPTER k i MULTIVARIATE APPROXIKANTS
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1. TWO VASIABLS DIAGONAL CHILIIOLM RATIONAL APPROXIMANTS

In the previous chapters we have considered certain types of multi­

valued approximants in one variable; the success of these approximation 

schemes makes it worthwhile to investigate the possible extension of the one 

variable schemes to N>2 variables. In this chapter we shall concentrate on 

the case N=2 and, at the end of the chapter, we shall indicate the possible 

extension to three and more variables. In analogy with the one variable 

case, these two variable (multi-valued) approximants are defined by extending 

the method used to define the corresponding two variable rational approximants 

for this reason we first consider these latter approximants. It is also 

convenient to consider diagonal approximants initially because

(a) by analogy with the one variable approximants, it is the diagonal 

approximants which we expect to be of greatest use computationally, and

(b) the necessary generalizations to multi-valued approximants are most 

easily seen in terms of the diagonal approximants. We shall later see that 

the off-diagonal approximants can be defined in a natural way from the 

diagonal approximants.

Given a two variable power series

r--1 (l.l)

N  =  Z c s  A ~

where v/e use the notation

and
_ ‘”'2

I  "  l .  h

Chisholm (l) has defined two variable diagonal rational approximants in the 

following manner. The (m/m) diagonal approximant (where rtpCm^m^)) to

f(z) , written f, , (z) , is the rational function(m/m)

[
'y' -̂sS iL

y  = ^

cK (1. 2)

&-QIf v/e adopt the conventional normalisation
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then, to define (-) ’ we neec* to £ive a prescription for calculating the

2(m+l)'~-l unknown coefficients -[a^ , -fb̂ jr ^n (^»2). These coefficients are
2determined by requiring that they satisfy 2(n+l) -1 homogeneous linear 

equations, formed by equating to zero certain linear combinations of 

coefficients in

E w - I e i i 1

I

e=o
~ Sk

—

(1.3)
0<5

-

c*=0
With this notation, the linear system of equations becomes

e . _  0 (l.W

6 ^ —  0 ( 0 = s \ +  ; \ > m  tr n\) (1.5)

+  ..... - )  (1-a
The relative weighting of the symmetrizing equations (1.6) is determined by

the ratio w. : w.ft;2 The original choice (l) was w. ,=wA =1 and, in

order to avoid the complication of introducing specific weights, we adopt

this choice. We shall later consider possible schemes for choosing the

ratio w. , : w.ft; i ft;2
We can understand equations (l.4)-(l.6) , and their method of solution,

in terras of a lattice space diagram in the<s_=Cs«^,«^) plane (see Fig.l).

This diagram indicates the terms z^ 1 z^ 1 of (l.l) and (1.2) which are to

be matched; matching occurs on the triangle *>C^O,cc^O,o<q +e«n,£2rn, together

with the symmetrization of (1.6) which is represented in Fig.l by the

numbered crosses along the line 0ĉ +«c,=2rn+l. An important point is that

(1.5) and (1.6) can be solved independently of (1.4); we first solve (1 .5)

and (1.6) for the denominator coefficients -[b \ and we can then solve (1.4)V cm
for the numerator coefficients {aj|. In the lattice space diagram this 

corresponds to matching terms in the triangles T and T to determine |b V 

and then matching terms in the square 3 to determine iao}‘

The equations (1.5) and (1.6) are solved by the so-called ’’prong method”



FIG.I: LATTICE SPACE FOP EQUATIONS (l.'0-(l.6) ; TIL 

DENOTE SYMHETRISATION AND PRONG 3 IS REPRESE 

AND HORIZONTAL LINES MARKED 3.

E NUMBERED CROSSES 

LUTED BY THE VERTICAL

FIG. 2: ORDERING FOR {b^}.



-75-
(2); this is essentially a block by block method of solution and, especiall 

for large m, greatly reduces the amount of computation and storage required. 

Define, for 0$j<m,

Then Pj is referred to as "prong j". The matching of coefficients along 

prong zero produces the linear system

G nv+ I (1.8a)

where

..........0  ; 0 .........0, I ]

(l.8b)

(1.8c)

(l.8d)

If we represent the coefficients K d  on the square 0«a«m,CiX£n (see 

Fig.2), then the ordering adopted is that indicated by the L-shaped line 

marked zero (which is, in effect, prong zero of Fig.I). The important 

point is that the (2m-l) coefficients represented by the segment

labelled I in Fig. 2, can be expressed in terms of the represented by

the segment labelled 0 (which have already been determined). The 

equations come from matching terms on prong I together with the symmetrised 

equation obtained from the points (l,2rn) and (2m,1). V/e can write the 

equations on prong I in the form

R[yy ■+ Drtv\>i= 0  (l-9a)

where
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Drw

and

segment labelled 2 can be expressed in terms of the (already determined) 

"ib«rx\ on the segments 0 and 1. This prong structure illustrates the 

important fact that, at each stage, the number of equations in (1.5) and

(1.6) introduced exactly matches the number of new unknowns. It is now 

clear that the equations (1.5) and (1.6) produce the following block syster 

of linear equations:

r̂iTv
Q

0

( 1 . 10)

where the D. are square, of order 2i-l, and have the same structure as D : l . in’
the b_̂  have dimension 2m-2i+l and their general form follows from that of 

bQ and b^ given by (l.8c) and (l.9c).

By writing (1.5) and (1.6) in the form (1.10), we can see that the 

{°<rx) can be found by a block by block process provided none of the D.

(i-1,2,...,m), nor is singular. The inversion process then produces
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<
(1. 11)

To make a comparison of the two variable approximation schemes 

considered in this chapter, we illustrate the appropriate prong structures 

collectively at the end of the chapter; the prong structure for the diagonal 

rational approximants of this section is given in Fig.3*

Having defined the Chisholm rational approximants and indicated how 

they can be determined efficiently in practice, we now discuss the main 

properties of the approximants. The system cf equations (l.4)-(l.6) are 

chosen because they produce approximants satisfying a number of projuerties 

which are considered desirable. These properties (proofs of which can be 

found in (l)) are:

PI: SYMMETRY PROPERTY

The approximants are symmetric in z^ and z  ̂ (provided we choose the 

weights w ,=w _=1 in (1.6)).
V»1

P2: PROJECTION PROPERTY

If z^=0 or z =0, the approximants reduce to one variable Fade 

approximants in the other variable.

P3: RECIPROCAL COVARIANCE

The (m/m) approximant derived from the formal reciprocal of the seriei

(1.1) iIS

■f

1-1

F4: HCr.OGRri.PKIC COVARIANCE

The (m/m) approximant is invariant under the transformation

R v r | , )
~r = lr= 1,2/ (1 . 12)



where A(#0),B^ and are complex numbers.

For a certain choice of weights (3) , can be extended to include the 

relative scale transformations

U)r = K r^ r tr= U  ; K.KZ=() (1.13)

Properties Pl-P;f extend to the N-variable diagonal approximants (h), and 

properties P1-P3 hold for the ¡¡-variable off-diagonal generalisations (5) 

of the Chisholm approximants. In defining the two variable multi-valued 

approximants we seek to preserve properties Pl-P't, together with the prong 

method of solution.

2. DIAGONAL TWO V-tRIABLE QUADRATIC APP50XII¡AIJ'TG

(a) DEFINITION OF TIP] APPPCXIHAIJTS

The extension of rational two variable diagonal approximants to two 

variable diagonal approximants with branch cuts has been given by Chisholm 

(6). The general type of branch cut we are trying to build into the 

approximants is a t^'root (t=2,3,...); for the one variable situation, we 

have already considered in detail the cases t-2 and t=3> which give rise to 

quadratic and cubic approximants respectively. In general, for approximants 

with a t̂ *1, root branch point, we refer to "t-power approximants".

Before defining two variable "t-power approximants" we have to make an 

important (though seemingly trivial) alteration to the definition of the 

corresponding one variable approximants. The one variable "t-power 

approximants" satisfy an equation of the formtz
k=0

P u . U ) f  u )  =  0 U ° r)

where £

*  =  Z  Pr. +  t ( 2. 2) .

k=0
and p, is the degree of P (z). The required modification is to let

V  =  Z I (2.3)

k=0
There are thus (t-l) coefficients which must be determined initially; we

shall later consider methods for doing this.
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We now consider the specific case of two variable quadratic 

approximants, as these approxirnants illustrate the basic features common 

to all "t-power approximants". In this case we write (2.1), taking account 

of (2.3), in the more familiar form

P h )  r  y  +  Q y  fVii 1- R h )  -  ) (2.4)

where P,Q and H are all of degree n and q0o is assumed known. Given f(z)

defined by (l.l) we form the formal square of the power series
E&

where

We define the polynomials

c*-Q

^  = 1

(2.5)

(2 . 6 )

m

PU) = X
£=SL

Q w  = §  < u
i =0

RU) = )  r^ r
«•*0

with coefficients defined over the square (0,m) of Fig.4 (at the end of this

and

chapter), by equating to zero a certain set of coefficients in
po

E i i )  - X !  % = p y  + o w  [ y + R y (2.7)

e=o
To satisfy the projection property P2 (o f§l) to the one variable approximants

(2.4), prong 0 must consist of the points

£ =  U . o l . U . o ) , ...................  A V o )
and

£  =  lo,l) ( W,2),............. ,l0,3m)

With reference to Fig.4, the set of equations corresponding to the solid 

sections of prong 0 will then normally determine the sets

and
(pbO ) ------ - - ; Rqdj  - - - -------

• 1 1 -------/ - - - - - • / ^ n v
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uniquely in terms of p00 and qft0, where qop is assumed known and isice oc oc
fixed by the normalisation condition

I
It is now clear why Shafer's definition needed to be modified; extension of 

prong 0 to the points (3ra+l,C) and (0,3m+l), necessary to satisfy the 

projection property to Shafer's approximants, would produce an extra equation 

and hence two (probably different) values of qoe•

The broken part of prong 1 corresponds to (2m-l) new ips) and (2n-l) 

new {q£1

and

P*.«,— - --)Pnv(l ; pt,i, •......

, - -■ - - îwp ( i - ....

The solid section of prong 1 must thus consist of 2(2m~l) points, and hence 

must correspond to vanishing e£ with

£  = i) , ........... ......... .............. , U r t v - l j )
and

£  -  U , n v + l ) >................ ................. , U , 3m-0
Then clearly prong 2 will consist of (2m-3) points in each direction, and so

on, until (p . ,,p , ,p , ;q , .,q , ) are determined withn-l,n-l’ n,m-l,-tm-l,m’ *m-l,m-l’ hn-l^

£  -  Im -i >nv+l) f Vrcv— I + Inv-1 ,^ + 3 )
and £ = (nv+1,trv— l) t , n\~ l) f lvrv+3 ,nv-1)

On the final prong, prong m, we have a slight difficulty. To determine

P and q we would expect to use the points (m+l,n) and (m,m+l). m,m nm,m
However, at these points, the parts of e. containing p and q sire-*■ ° *n,ra Ti,m

t 1,0 = î.o( ̂ CC(CpWirtv +  )
and

t*. + top ̂ r̂ rr. ~ top Pnv,n\ 4-

v/hich obviously produce linearly dependent equations and, in general, will 

give rise to an inconsistency. Three procedures for avoiding this incon­

sistency, whilst preserving symmetry, have been suggested;
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Ci) Omit prong m; this is equivalent to setting

Prn-,n\ =  = rnvlOv=0 (2.8a)

In this case we must omit the lattice point (m,m) at the corner of the square 

in Fig.b.

(ii) Set q =0 and. use the equations (2.8b)
to determine p and r'm,m m,m‘

(iii) Use the double symraetrisation scheme

(2.8c)

The relative merits of these schemes will be discussed in 52(b). The 

prong structure is illustrated in Fig.̂ f, where crosses denote the points 

contributing to the symmetrised equations in (2.8b) and (2.8c). Me note

required on the internal prongs (prongs 1 to n-l), This occurs because of 

the coincidence of the power t(=2) with the number of variables N; in 

general, the existence of symmetrised equations depends upon the relation 

between t and N.

The preceding system of equations, over the lattice of Fig.A, will 

normally determine P(z.),Q(z) and R(z) uniquely, once poc and q ^  are given. 

The diagonal two variable quadratic approximant, ^(rn//n/m) +;̂ en defined

As can be seen from the above prong structure, the method of determining 

the diagonal quadratic approximants is very similar to the procedure adopted

(l.ll) hold for the quadratic approximants, where (adopting (2.8c) on prong 

m for definiteness):

that, in contrast to the approximants of§I, no symmetrised equations are

by

(2.9)

for the diagonal Chisholm approximants of §1. In fact equations (1.8)-

0,
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b , c  -  -  •

i

»

i

'  ' ^ - > , 0  -  -  -  -

i ;

»

^ n v . o

»

*

1 0 .

b i V H . C

1

1 1

W < f t , 0  -  ■

1 !

S r \ c  ^ , 0

W j i  -  •  - b c . r r w  ..............................  t c , r o ^ e , < f t + i  d c .  r u v l

_ 0

1

1

i  r  i 

1 * *■

1

i  '

b c . i i f t  -  ■

1

W , ■} ,-&-> -----------------v h l M b o , 1 m  - c d r o

o  -  -

^ M + I , c  -

- 0  0 - - - 0 0 ------------------ O  0 -----------------------0 \  o

b j m . O  , 0  ■ '  * ‘  ‘ ^ m . O W / i m + l - - b o , l i f t  -  •  6 r , q r ( \ +  t c ,  j r n e l

( 2.1 0 )

V , 0 ---------------- V - i . O  ^ m - 1 , 0

1 | 1 *

«

b n v . o  C i f t , c

:  :  ;  

i

» i

I
O

* '  i t i
• t '

W n \ - l , 0  -  -  C M 4 ( 0

!

C 1 k W . , 0

b c . i -------------- W , m - '  C © , * -------------------

i  t i  '

b o , ( f t  Ç - C , i T V  

1

0
1 1 «

• \ ‘  '  

,  I '

:

1 1

, f

• ;

;  :  ! 

b o ^ Z m - l  -  -  b o , 3 n \ - 1

,  • '  

u o . l m q .  k r q . w - l

(2.11)

b» [W.» i -  -  i p2(, ; V .'  > - •* V.» i Pm*, - /P‘.2 i  Wiw —  i Pm > * lu j
and the D_̂  are square of order hi-2 and the b have dimension ^m-^i+2; the 

coefficients b_̂  occuring in the above formulae are the of (2.5) and 

(2.6) .

We again have the result that the x ; <̂ ..t can be found by a block

by block process provided that none of the D.(i=l,...,n), nor G ,, isi m+1
singular. The only minor modifications necessary are:

(a) the precise form of depends upon the scheme adopted on the 

final prong, and

(b) the precise form of G ^ depends upon the method used for deter­

mining qoc; the form of G^+1 given by (2.10) corresponds to determining 

q 00by the symmetrisation

We shall discuss this scheme in % 2(b).

0



(b) PROPERTIES OF TKE APPRCXEiANTS

The approxiinants of §2(a) were defined in such a way as to ¡./reserve, to

as large an extent as possible, the properties P1-P4 of §1; we now examine

the degree to which these properties have been preserved (6).

By their very definition, the approximants satisfy PI and P2. To

discuss P3 (reciprocal covariance) we assume that cc e*°. so that we can

define a unique formal reciprocal f ^(z) of (l.l), and a corresponding
_2unique formal reciprocal f (z) of (2.5)* Multiplying (2.7) formally by 

f- (&), we obtain the expression

G U ) =  Rtfc)f~2UJ +  QiiJPli) + P W J  (2-12>
Nov/ we make use of the rectangle rule ((l),(4) and (3)); this rule 

imposes a geometrical condition cn the lattice space (on which the 

approximant is defined) which is equivalent to the covariance properties 

P3 and F^. Essentially, the rule states that if^is a symmetrised point 

(that is, a point contributing to a symmetrised equation), then no other 

points in the rectangle, with diagonal joining 0 and eg, can be symmetrised 

points; if this condition holds, then P3 and P*+ are valid. This rule 

ensures that coefficients in G(z) corresponding to a point on the lattice 

of Fig.**, will depend linearly on the coefficients e^ in (2.7) with 

(r=l,2). We have two cases to consider:

(a) For the choices (i) and (ii) (equations (2.8a) and (2.8b)) on. 

prong m, the system of equations e^=0 and (2.8a) (or (2.8b)) applied to 

E(z) and G(z) , produce equivalent sets of equations for anc* "Gvr}*

It is also clear that f is defined through (2.12) from f in

exactly the same way as is defined from f(z). The approximants

will thus satisfy reciprocal covariance, provided we can choose qoc in a 

consistent way. To preserve symmetry, the most natural choice for qco 

is given by the symmetrisation

This scheme produces the circled points of Fig.'f.

(2.13)

A disadvantage of (2.13)

is that the projection property P2 no longer holds; despite this, the
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choice (2.13) seems a natural one and, for the numerical results quoted 

later in the chapter, this is the method used for determining q^.

(b) For the choice (iii) (equation (2.8c)) on prong n, the equations 

arising from E(z) and G(z) are equivalent only if

C0|i =  ti|0 <2- ^
To see this, let

gg
\ U) = V

where

and
à-oo =  Coô

- n,

Zoc-0 =0 (2.15)

the summation extending over the lattice rectangle with diagonal joining 

0 and (i . If we write
OQ

F H s ) -  £  1 *
ffs:=0

then, multiplying E(z) formally by (2.16),

EU) - f] 4  ir = Wi) f'2 W  + Q tei f W  + P taJ
g = q

The rectangle rule now shows that 

/

(2.16)

(2. 1?)

(2.18)
^00 ■+ A-1,0 £ 6r,|Cz + ........

is a linear combination of with e< restricted to the rectangle (0,t) .

Hence, for all unsymmetrised points in Fig.̂ t,

e€ = o
implies

=  0  (2.19)

at the same points. For the first pair of symmetrised points in (2.8c), 

using (2.l8) and (2.19),

^n\+t.rtv ~ **■  £.nv(rtv+t) =  Q

For the second pair of symmetrised points in (2.8c),

= ^-o,c ^nv+2,tiv + Gp\(rm-i) +  d-t.o^nv+l.pv +  -̂0,1



-85-

which is zero if

( ^ 1,0  ~  ^ 0,1 ( 2 . 20 )

But, by definition,

d -\,0 =  J  ^ 0,1 =  ^.<^0,0 <^0,1

and
C0|i d i|0 —  C-i.o ̂ 0,1

Thus (2.20) implies

C 10 =  C-O, I

which is (2.1M-), as required.

The condition (2.1^) is equivalent to a choice of the relative scale 

of the variables z^ and z^, and does not seem an unreasonable choice to make 

We shall see in § 2(c) that other choices of the scale are possible.

l/e now discuss the homographic covariance property P̂ f, defined by

(1.12). Define polynomials ?/(w),Q/(w) and H /(w) by
■A- " n n

Hi VJ1p ' y =  U - e .w r )  p
r=l

(2.21)

with two similar equations for <4 (w) and RX(w). Substituting (1.12) into
2

(2.7), multiplying by T T < i  -Bj-Wf)171 and formally expanding the inverser=l
powers of (l-Bryjr), we arrive at

E'lw) - p'y r2y  + Q'y f 'y +r'u
where f7(w) is the formal expansion of

(2.22)

F I -

We now have three possible cases to consider, depending upon the scheme 

adopted on prong m:

(a) With choice (i), the rectangle rule again ensures that the 

equations derived from E(z) and E (w) are equivalent. Thus, from (2.9) and

( 2 . 22) ,
■, / 72

+ Q y  + ~  ^
with
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taArv/nO ^ W / nv/rrO
R i w  j R 2. i (2.23)

which establishes homographie covariance.

(b) With choice (ii), covariance under (1.12) is only obtained with

R , =  £^ (2.2*0

This is because the inclusion of relative scale transformations (1.13) in 

the group (1.12) depends upon the absence of symmetrised equations (l).

V/e shall prove (2.2*0 in (c) below.

(c) With choice (iii), the covariance group is even further restricted 

we now require

R,=Ri ; 6,= B2 (2.23)

t f w p d - w r " '
In this expansion,

-l>rK' e 1-BrJ* ' v rim - ' r
ar-̂ o r,lthe coefficient of vr f}r*<Zr V^r- cCr

Remembering that

v/e see that

£S=Ql
Clearly eg=0 implies e^

Z

r-
-0, and

R r r l-8r)
{=r~*r (2.26)
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m.rcv-H (8.27)

since only the terns with Cf=)G = (m+l,ra) and£_ =(m+l,m) contribute to the sun 

in (2.26). Clearly (2.27) vanishes if (v/hich verifies (2.2*0).

Also

This verifies (2.25).

The additional symmetrised equation (2.13) is also covariant under the 

group with restriction (2.2*0. Thus, with (2.13) included, the choices

the restricted group (1.12). The introduction of weighting factors into

(2.13) provides a possible method of ensuring relative scale covariance (3); 

in the following section we shall consider this possibility.

We conclude this section by suggesting another method of choosing q00 

(6). Our initial power series expansion (i.l) corresponds to function 

values defined on a single Riemann sheet. If we have information concerning 

the analytic continuation of the function onto other sheets, we may fix q00 

by requiring that the function takes the correct value at the origin on 

another Riemann sheet. The advantage of this procedure is that the 

projection property is preserved and, with choice (i) on prong n, we have 

covariance under the full group (1.13). We then have an approxinant which 

incorporates information about the analytic continuation of (l.l). Another 

point in favour of this scheme is that it extends to arbitrary ,!t-power 

approximants". The possibility cf using several terms of the series on a 

second sheet, to define an approximant incorporating information on more 

than one sheet, also suggests itself. Although these ideas may prove to be 

useful, we have not yet investigated any of these methods from a practical 

point of view.

=  0
if

B, =  CtuA- H  —

(i) and (ii) on prong m satisfy reciprocal and homographie covariance under
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(c) CHOICE OF '.-"EIGHT FACTORS
The symmetrised equations on prongs C and m allow the possibility of 

introducing weighting factors .to, for example, try and ensure relative scale 

covariance of the approxinants (3)• Since prong m is not expected to be 

too important in determining the behaviour of the approximants (since prong 

m only determines the higher order coefficients), we shall mainly be 

concerned with prong 0. If we adopt the symmetrisation scheme to determine 

q00, then we can write (2.13) more generally as

+  (2.28) 

The method of choosing a suitable r a t i o :ji depends upon being able to 

give an explicit representation for the determinant of G of (2.10) (with 

suitable account being taken of (2.28)). The matrix, Dep, occuring on 

prong 0 has the form

D,00

EwC-O 0 X0‘"

0

3 0Ui yUJ

K< So (2.29)

where

F U1L-0

> i , 0 ---------- - W . O  t|,0 - t n\,o
1
1

10T

(2.29a)

Wm,0 - ----Wft-hO ------ 0

^tn+hO !^1,0 ;-------- - (2.29b)

Wnv+*,0 > 1 Wlfc.O 1 --- (2.29c)

S 0 ^ c (2.29d)■>0 "**

and the corresponding entries with superscript 2 are obtained from those 

with superscript 1 by interchanging the indices on the b and c coefficients.

Following (7), we now factorise D 0q astc- S S H v . n J E
r<r (2.30)r=  I

where p and cr refer to the block indices of (2.29). In block form the 

matrices S and E are
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with

and

v/ith

S  l h> ‘ lO -

$ " = $ * =

•3?

S * =  S ' ' »  0

s" s*
SL‘ s22
.$*' s “

1 . 0

0
■ N ! 0

(o.o, - • ! 0 1 )
10,0,

1 \

E -
E" E'2 E'v  E21 E22 E23

E " -

\>S(0 - - - - b>n,o Cj.O

(2.31)

(2.32)

-

¿«\,0 - - -  - -^rtv-1,0 ^ i ° ............................ ^3n\-\,D
Wrrv^.o--- - bjm.O Cl^vl.O - ------C-j^o

E  ....... i^nx+i.o]

E  ~ Ĵ C-Ĉ nv+l , -■ - - - - - -1 ̂'C>3i'rv+ *j
I*

-,22 .
I" -  E = 0

ii by interchanging the indices on the b andand E being derived from 

c coefficients.

From (2.3O) we have, using the Cauchy-Binet theorem (see Appendix I) 

the determinant result

<Uk D-c -  %  F f  A A E . “  4- ft. Ait F0‘" iet F„'
-U) U) U) (2.33)
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where
r U»
1 C “

r  ̂ y  It) 
A cw 0

.. ui 0 u)
u *

U = U )

and
1

III C, I 320 vlnY+l,6

We can use (2.33) in tv/o possible ways:

(i) Following (9), we note that we can always choose the ratio^o :|iQ 

so as to make prong 0 of any approximant indeterminate; by this we mean 

that in (2.33) there is a unique value of the ratio which causes

det Dee=0, and results in degenerate equations. We seek to choose 

so that the opposite situation is produced and |det is a maximum; in

this way we hope to move any spurious singularities of the approximants as 

far from the origin as possible. Maximising jdet Docj subject to

leads to the choice

Ad. = -0
A« toe f a

u) (2.3*0

For symmetric functions this reduces to M e ,  as expected; the ratio

\ :LL for antisymmetric functions, however, is unclear.
0 0

(ii) Following (3) we seek to choose ̂  in order to produce scale 

covariance of the approximants. Let
(W

Ç W >  X V i
and *=0

m
1Ÿ U - Y  h  1

Is 0V/e make the scale transformations

2 i = K . Z i  L = U ) (2.35)

with

Define

K, ^  0

^ Z liZ J 4 ( K . Z „ K sZ J



-91-
«V

1=0
where

'i vV K . ’ Kt
Similarly,

with

!CV

1=0

(2.35a)

W = k !' w (2.36b)

It is clear that any unsymnetrised equations are scale covariant. For 

example, within the square lattice of Fig.4, we have the following system

(2.37)

of equations:
C K  f i

S  S  [  Po’x ̂ «-0-,/vt + V x Ctf;-cr/ l 0  ̂  ^ vn)
cr=0 X=0
Under the scale transformation (2.35), the approxirnant will be invariant if 

the polynomials P, Q and R are invariant. Let

PlZ„2i)-PlK21,K,Zl)
nv

- X f c z
where

s s - Q .

h (2.38)p* = K ,'K 2>
together with similar relations for q^, and r̂ . Scale covariance requires

a ~

2_. zX L P°'x ̂  + V x ̂ -03n-x] ~ ~ ̂
c= 0  T’ O

Using (2.38) this reduces to 
c r  f i

X  X  [ l O c r i r i u w + i f K i r i C V ^ ]cr̂ O X=0
= - K r  Ki° r«„

which is just (2.37).

It is therefore only the symmetrised equations which prevent scale

covariance. On prong 0, the symmetrised equation determining is 
nv _ in-

+ '\r..OC'5itu-i-«,(oJ ■+ ^ o ^  *
fi-0 /VO

In the scaled co-ordinates 2, (2.39) becomes

(2.39)
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X  ( X o W * M - f i l(o +Cl«,.ocînu»-B,.o] +  N K a  X  i
_  , / W  J2E,Z_,

nt*0 r^o (2.40)
Pe,/̂  Wîm+1-i^ f = 0

with the appropriate weight factors Ç\q ,jt0. From (2.39) and (2.40), scale

covariance requires -r -  i , 3 r M - l\>K. ,
rr 1/ înv+l

(2.41)

R K , 5 3 " ’ X
We can guarantee that (2.41) holds by choosing :p such that the two 

terns in (2.33) are equal:

_ Act Eo deb. F f  (2.te)

’  Act i f  A *  Fcw
(which is the reciprocal of the choice (2.34)). To see that (2.42) does

indeed imply (2.4l) we must look at the structure of the matrices F ando
E ^  (i=1.2). Suppose that, under (2.35) > S F ^  and S ^  trans-o o o o
form to Fq^^ and S respectively (i=l,2). The matrix structure

then implies

Act F f 1 S f  A A  k F

\&  E ô

- K sovr ^

** E0lil s!J I t  LF>0 
, 3i»+ I U» (2.43)Act E ''1

In the scaled co-ordinates (2.42) becomes

i  = A c t f F  t o F 0ulSo A ct Act Fo“ 1
Thus, from (2.42)-(2.44),

^  _ Act F f  ActE0ul 
" Aetfo11' Act Fo“1

(2.44)

_ K,W  A c t F f  A A E f
K,W ‘ Act fcf Act F0ul

I k,/ m*
which is (2.Hi). Again the choice (2.42) reduces t o f o r  symmetric

functions.
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We finally give a brief discussion of the corresponding situation on 

prong m. For choice (i) (equation (2.8a)), since no symnetrisation is 

required, we can produce overall scale covariance with the choice (2.42). 

For choice (ii), we cam write (2.8b) more generally as

^nv,tYv~0 0UftA- + /̂ ra ~ 0  (2.45)
This gives

^mnv ~  ̂ rcvV>ij0 + o,i

= t-Ce.o I^Ce,»)

Maximizing |det D^j produces the choice

A P (2.45a)Am _ m ,o
P-ltv *

whilst scale covariance requires

V  _ tc,i (2.45b)

For symmetric and antisymmetric functions (2.45a) and (2.45b) reduce to the 

expected results withÀ m=/lfn and s-jî  respectively.

For choice (iii), we write (2.8c) more generally as

and

(2.46)

This gives

If we choose

(kt IXmtv- + fAq.Cc, i)

V  n = I

then the ratio ̂ 1: Mi reduces to (2.45a) or (2.45b). Choosing

v - 4 , - i
we obtain as the maximised determinant choice

1, (t,.0 xi

and
M-z \to1 •,

^  _ ( ^Ct > 
i c , (c

(2.46a)

(2.46b)



as the scale covariant choice. life note that neither (2.^6a) nor (2„^6b)

give the expected result for antisymmetric functions.

3. DETKRKINANT FORMULAE FOR, A UP DEGENERACY OF, THE TW 0 VARIABLE 
DIAGONAL QUADRATIC APPROXIMAIITS 

(a) determinant FORMULAS

We consider the diagonal approximants of §2 subject to the conditions

(i) Po,e =  I

(ii) M»eo,3m.l =  0 on prong 0, and

(iii) on prong in, the double synr.ietrisation

•nvvi(m 'rn,n\+l =  0
and

^m+2,vw ^

For other choices of (i), (ii) and (iii) wo obtain minor differences in th 

following results.

Define, for CscCsm (where m denotes the order of the approximant)-- iP<*+l(*  JW */--- .  ---- /pcv*+l ¡V i^»---- O . i )
Then the equations defining the approximants take the form

PRONG 0: 

PRONG e*: hoc A» =  (o,o,......,i,o,....... ,0)T

Dcq<̂  **■ &-ß =  0  (O-^ecént)

(3*2)

(3*3)

where o

(i) in (3*2) the entry 1 on the right-hand side occurs in the 

(2m+l)st. 2)OSi'fcion, and

Dco=

E “  =

r [üto 0 X“ rl»lto 0 v„w I0 r 11) y tt) t 0 A0 0 rU)to viTo\C U#ul Si" V,“ vr Q ll) oo0 0 1 0 0 0r k c - --- - - ^ ¡ 0

t
1 t£%*)



r- W  _ 
U

C.i(o - - - - - —  - - - -

Ĵirv-Ze's+Qî ljO - - - - - - -  _

x ^ T = Ckrt\H-<*(0, - - -------- --------

x r - Lc tn+i-e^O ---- . * * ^3m-‘3's+

t t ?  = i . _W nv*l,0 ( --------- -------- - « ^ , 0  J

u i11 = fa - -----------  - . .

% , * ------------------ -1
v “ = [ £-©,2n\n t ...........- - - -/

f i l l  „  
^0 V WnH-»,o + ^ ° k 03n\+i

So2> = X ^ m + 1 , 0  +  fa ̂ i M - l
and the remaining entries with superscript 2 and obtained from the 

corresponding entries with stiperscript 1 by interchanging the indices on 

the b and c coefficients,

( i i )  ^

The matrix G^g is a little difficult to define concisely; we write it in 

the block form

l ?  0
y U) 
A«K r  10 rv 0

o  tjf
v it»A<K 0 p ti*

r*n H * a c V Ù « & £ a
u
n o r B

c h S

A  1 1

W g

u «n<srft

If we denote byTTV(rxs) the class of matrices with r rows and s columns, and

the elements of a matrix by i=l,2, ..,r and j=l,2,..,s, then

e T i l U n v -l* * i X nv- 1 ^ b )^  = W + j - 4« «c-ft

\. GvrB ) ~ k>nv-B+-t m -\ +j

fa 0 iG-cirn)tj ~

Çr^B e T f t U r i ' - i L ^ U m - f t ) CG~c<fl ) oj ~ W-n\-l+j j n\-B-n

g S j e T K v U m - ^ + l  xr^ B ) W - b , Wj-i

g 4 b £ m  l + 1* i) ^ ¿ t b ) ^ = W-fl, m-B+i
kl

is obtained from by replacing the b coefficients by c coefficients,«73
and
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(iii)
b 1(0 ■+ W. i + Co,i

^rob^o4 ̂ bo/i r̂i'̂ Llc+}-Wb‘C(2

6- =mfi

<*. H /\ 2-'
W r +  «-, r̂t\Cî + V W c  + cnvfi  ̂ n «\a + f'ttNfi W-mr* + ï̂tva Wmn +

r̂r» ̂ tnfi+  fbp\ irtwY*" Htft ÎW Knfi + fVbVft

Hrt\̂  + Hn\n

^  H m B +  l̂ nkbrnaT r> »1 = «

where 5 ) indicates that +1 should be added to the 1st.) index (subscript) 
1 ) 2nd.)

)
of G.

For choices other than (iii) (of 83(a)) on prong n, G _ assumes a consider- 

ably simpler form.

To give an explicit determinant representation for P,Q and R v/e must 

first separate the contributions arising from the b and c coefficients. V/e 

use, for example, the notation D^^ib) to represent that part of D,*-̂

containing only the b coefficients:

t w u -
E<" 0  >C"

0 e f ' X U) l o < cc < r a i

and we also define Doc to be D co minus the last row. We can then write the

system to be solved in the matrix form

Dm M

kiCb>) D^lb) 0

G-p\0W ( r ^ b )ro\o 

where

t b c ^ )

1~
5

-

3
r

«

’  0 '

D u U )

1

0
•

i n v t p )

1
i

1

1

1 s 1

*

G t ix c A c )  b " n \ t i c ) ' i W d

1

. 0 .ip) — [PfN,<* / ........... J  Pcr̂ tv , ............................ I  f«C(i*:+l]
is the component of d^ (defined by (3.1)) containing the p coefficients (of 

P(z)) and d^q) the component containing the q coefficients.

V/e now finally have the definitions

\ L  ~  nt'aas Vta [X^ $CUI] coUtna
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m

and, for OsoĈ rn,
F  -  0 «  | I J e t  D«/-

cC=l

cv

i «-  (

1 * =  (5
ro- << X ^ , (¡r+l cS rf' tT'

- ( X  j x  )
«r tr-j-l c*

I *  H 'X )
• • >'̂cc+<)cr;S<?rrn i *-- - / '̂c*r<«f.+l /

where
2 * =  —  * ‘V + h *  A*** ‘ »1W i'1 A * * )

m  nv

v ^ - x ^ r
and

fJL-C V = x

. f*x mV '  =  1  1  V ^ - ,  * V
f l = c r  v=X

Then

and

\ im/nv/Qv)

P M  -  p V j>/fQ M  = Q0M / f RU,^) = R“U«j)/ F, , -Q V ^ ± riQ 0U jf-F -P ,>U^)R”U .^  
W -------------------- i P Y , )

where

Doolb)
c > )  o u iv>) o

ĉcAt)
£ > )  Di(U) 0

^■(WO^--------- CW^ k*x0U) “ "
£ o -----------5 m  0 ------------------ 0

Q%<^)=<k\r

Doctb)
M W  Dulb) 0 ^olcl DwU) 0

i
kfwoiA) 
0  -

X •
' UnmAA) klTlClcJ

- 0  1, -

and



W M

R V , ) = - ^

t,eW  0,Ak)
f

0 G-,ĉ £-5 lc) • i
V

»
1(rtftota.)~7(i>- - 7 E-)

¿ - 0

(b) DEGENERACIES IN THE APPROXIMAHTS

0

The two variable diagonal quadratic approximants will always exist 

provided in

F  = 7 ^ 0
Ĉ s(j

Approximants with F=0 are termed degenerate; degeneracy occurs when

(i) <kt DoO= 0  cr

(ii) 0 ^ = 0  1 | $ C-: ̂  m.)

In both (i) and (ii) the equations can be either consistent or inconsistent. 

When the equations axe inconsistent, the approximant does not exist. For 

consistent equations, degeneracy occurs when a polynomial factor is common 

to P(x,y), Q(x,y) and R(x,y). Such a situation occurs when f(z) is a 

symmetric function; to see this, consider the (2/2/2) approximant on prong 1, 

since it is only a degeneracy of type (ii), on the internal prongs, which 

occurs in this situation. On this prong we obtain the two systems (both 

comprising three equations)

F, [ Pi, , ̂ 21 , p,i j ̂ 11) ~ Q
and

Now if f(z) is symmetric, these two equations will imply that

(3«Fa)

(3.^b)

so that the two equations effectively reduce to the single system

F,( p i p W . u v F o
However, this represents a system of three equations in four unknowns; this 

gives rise to degenerate but consistent equations. This example dees seem

to illustrate a rather undesirable feature of the diagonal approximants, for
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we would not expect symmetric functions to cause any type of degeneracy. 

Theoretically, this presents no problem since it merely produces an 

arbitrary polynomial factor common to P(_z) , P(jz) and R(z;) , and hence does 

not alter the value of the approximaat. This difficulty is encountered 

on all internal prongs; no such difficulty occurs on the first and last 

prong because these prongs involve symmetrised equations, which relate 

(3*^a) and O.^b). For this same reason the above difficulty is not 

encountered with the two variable rational approximants.

A possible practical solution of this difficulty (12) is, for the 

approximant considered above, to obtain an extra equation by setting

r > 0  C3*5a)

and retaining the equation

e M* 0  (3.5b)

Equation (3»5b) does not now determine r ^  but instead provides a relation 

between p ^  and q^. Alternatively, we can sidestep this difficulty and, 

for example, instead of calculating the (2,2/2,2/2,2) diagonal approxinant 

we could calculate the (2,2/2,l/2,2) off-diagonal approximant, with the 

hope that this off-diagonal approximant will not greatly violate the hcmo- 

graphic covariance property of the diagonal approximants. In fact, in §6 

we shall adopt this point of view when dealing with symmetric functions.

Although we have not yet defined the off-diagonal two variable 

quadratic approximants, it is convenient to illustrate here a type of 

degeneracy which can occur with these approxiraants. In (9) it was noted 

that the genuine two variable rational approximants behave differently from 

the one variable Pad? approximants. The example given to illustrate this 

behaviour is

flM ) »  |-X+X*-*?+Cc,^ +Ctlx ^  + ........

It is easily shown that

0-^IQ +■ f,-oi 4- X
i t x )  [l + ibc--l)x]

where b ^  is arbitrary; this means that, unless c,^+c^=0, the approximant
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A similar type of degeneracy can occur for the two variable quadratic 

approximants. If we let

I - X  + X2 - D ? + X4"+ + Ck,Xvj +

we find thatU.oA>,o/.,0 ■
where

PU ,^) = ( U ^ ) l U  lf,c- i W  
QU*̂ ) = -12 +
R U . ^ H  II + c^)- [ pt0+cP;)x +eci1vj-t[2ccl-tCi,c0f-2cttkp10] x ^

Again the approximant can take almost any value for p^Q arbitrary.

We can in fact overcome this difficulty by employing the hypothesis of 

maximum analyticity lying behind all PadS type methods; we fix the para­

meters, b1Q and p10 above, by maximizing the distance of the nearest move- 

able singularity (that is, a singularity of the approximant not required to 

simulate a singularity of the function) from the origin. The choices

K o =  \\o - 1
both send this singularity to infinity.

4. EXTENSION TO AR3ITRARY "t-POV/EP APPROXIMATES" (6)

The scheme of §2 for quadratic approximants can be fairly easily 

extended to arbitrary t(>2)-power approximants. For diagonal two variable 

cubic approximants, we define the four polynomials P(z), Q(z),R(z) and S(z), 

assuming that

PlS) = Poc i QlS)=VC *00
are known. We then equate to zero certain coefficients inEw=pis) pu) +■ Ois) EW + Ry i-ii) + Sii)
In Fig.5 the prong structure is indicated. Prong 0 extends to the points 

(^m,0) and (0,^m); we can determine qcc snd r ^  (assuming we choose pco=l) 

by extending the prong to include the points (circled in Fig.5) (^+1,0) and

can take almost any value. This type of behaviour cannot occur for the one

variable Pad6 approximants.
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(0 ,^+m+l). An advantage of this scheme is that these approximants will

project to the (normal) Shafer approximants. On prong 1 there are 3(2m-i)

unknown variables , { q ^  and these are determined by the

equations

with

£ =  (nv-+l;l) ; ......- - - - - , l)

and

£=■ ( ......... ------, [ |
together with the symmetrised equation

^ - 1 , 1  +  - 0
Prong 2 contains six fewer variables, so that each arm of the prong is three

units shorter than in Prong 1, together with a symmetrised equation. This

pattern continues till prong (m-l) is reached. The natural scheme of

determining o , q_ and r by unsymmetrised eauations at (m+l,m) and ■ mm hnm mm
(m,m+l), and a symmetrised equation from (m+2,m) and (m,m+2), produces two 

linearly dependent equations corresponding to the unsymmetrised points.

This situation is similar to that encountered with the quadratic approximants 

of § 2, and we again have three possible methods of avoiding this degeneracy, 

whilst still preserving symmetry:

(i) Omit prong m, setting

= = W  = 0
Since the rectangle rule is obeyed, the approximants will satisfy reciprocal 

covariance and covariance under the restricted homographic group (1.12).

(ii) Set

\̂nvrs\=  ̂ rnn\= 0

and determine p ^  and s as in (2.8b). Reciprocal and homographic 

covariance under (1.12) are both ensured.

(iii) Use (2.8b) together with

As with quadratic approximants, this choice weakens the covariance

properties.
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By a suitable choice of weighting factors we may be able to ensure 

homographic covariance under (1 .13).

Comparison with §2 shows that there are cei'tain characteristic 

differences between the two variable approximants formed for even and odd t. 

We can now give the basic definitions and general properties for t-power 

approximants; since prong m will always produce inconsistencies if the 

points (m+l,m) and (m,m+l) are used (for all values of t), we must make a 

specific choice of the schemes available on prong m. For simplicity, we

choose to omit prong m (scheme (i) above); other choices on prong m will 

produce the appropriate modifications in the properties listed below.

GENERAL PROPERTIES OF t-POWER APPHOXIMAWTS

(i) With the t constants P(0), Q(0),... given, |e (0)]. ^ is 

determined by prong zero, which extends to the point (t+l)m along each axis.

(ii) The approximants project to modified Shafer approximants when 

either variable is equated to zero.

(iii) For all internal prongs (that is, all prongs excluding prongs

0 and m), the number of points on each arm of a prong decreases successively 

by t.

(iv) Reciprocal covariance is satisfied, provided the constants in 

(i) are chosen appropriately.

PROPERTIES FOR t EVEN

(v) Choosing P(0) =1 (which we can normally do), the (t-l) constants 

Q(0), R(Q),... can be determined by extending prong 0 by (t-2)/2 points 

along each arm, and incorporating a symmetrised equation on the next two 

points. This final equation violates the projection property to the one 

variable approximants, but reciprocal covariance is preserved.

(vi) The sections of prong r (lsr«m) lying outside the square (0,m) 

determine the t(2m-2r-l) new variables arising; each arm thus consists of 

■Jt(2m-2r-l) points. Assuming the constants Q(0),R(0),... are given, full 

homographic covariance is preserved.

PROPERTIES FOR t ODD
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(v) Choosing P(0) =1, the (t-1) constants Q(Q), can be

determined by extending prong 0 by % (t-l) points along each axis, with no 

symmetrisation being required. Such an extension preserves the projection 

and reciprocal covariance properties. This would seem to suggest that, 

when the problem itself suggests no natui'al approximant to use, odd t-power 

approximants may be more useful than the corresponding even-t approximants.

(vi) The sections of prong r(is-r<m) outside the square (0,m) determine 

t(2m-2r-l) new variables; since this number is odd, symmetrisation is 

required. The arm of each prong consists of -g-(t(2m-2r-l)-l) points, 

together with the symmetrised equation obtained from the next point on each 

arm. With equal weights associated with these symmetrised equations, 

homographic covariance is restricted by An=A? in (1.12), but full covariance 

may be possible with suitable weight factors.

We finally note that, as mentioned in ^2(b), the possibility of 

including information on more than one sheet of the function extends 

naturally to arbitrary t-power approximants. The method of fixing the 

constants Q(0), R(0),... by using the value of the function at the origin 

on (t-l) sheets has the advantage of preserving the projection property.

These considerations are certainly worth further study.

5. TWO VARIABLE t-POWER OFF-DIAGONAL APPRCXIHANTS

The extension of t-power diagonal approximants to off-diagonal 

approximants has been given in (10), and is based upon the off-diagonai 

extension (3) of the diagonal rational approximants of §1.

We define the formal kth. power of (1.1) by

(5.1)

The (t+1) polynomials, denoted by P ^ ( z ) ,  required to define the off-diagonal 

approximant are defined by

where denotes the rectangular lattice



-1 0 k -Sic= 0* =* m.. Â = u | (5-3)

inHere and m̂ .̂ . denote the maximum powers of z^ and z^ respectively i
(k) * 1 (k)P (z). The coefficients (P ') in (5*2) are determined by equating to

zero certain coefficients, or linear combinations of coefficients, inE U - ] T p Wh ) f %  + P \ ) (5.*0

The coefficient of z~ in (5.*0 is
k=i

- I

where

Ik) Ik)

k=l (_S c SkaS£

Site S0) =
+ p“ $ U cS°)

(5-5)

I . C c S o

(5.6)

0  , £  + So
and denotes the rectangular lattice

$ e =  { ^ !  O s
As in §2, the definition, and method of solution, of the linear system of

(k)equations defining the P (z) is based upon the prong structure of (2); 

’•prong oJI, emanating from the point (<r,<r) ,is defined to be the set of lattice 

points
r , 

TXr= i ^ \
where 0.

> <rj‘ 5l| oc, ̂  0-, crj- (5.7)

Consider prong 0, denoted byTT0 . We assume that the coefficients

P ^ ' , t = < U .... ,t} (5.8a)

are given, except for P , which is to be determined byTT^ 

remaining coefficients occuring in

The

{ v -  e c T f cj

are {p‘wpr|k=C,l,...,t; <SCiro<s£4 0

0(
l t

The number.n , of unknown coefficients onTT^ is o °

« S . - E  L

(5.8b)

(5-9)i=t k=0
These nQ unknov/n coefficients are determined by the equations
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A
(5.11)

for the set £ £ c i  * ^  ^ rtvtjK * U=\,b)
k-0

Now consider a general prong "IT^ with vertex (o-,cr) lying in the region

S  =  S o v S  , u  ..... v S t (5-12)
This set extends the class of prongs of (5); in Figs.3 and 3*2 of (5)» we 

allow prong vertices in both S^ and Ŝ _. In dealing with the off-diagonal 

t-power approxiraants we have in general (t+l) distinct regions to consider, 

as compared to the simpler two region structure of the off-diagonal rational 

approximants; use of the above extended class of prongs leads to a uniform 

treatment of the equations in each of the above (t+l) regions. Trie vertex

(cr,cr) will, in general lie in a subset of S; we denote this subset by

S k I k C R a \  (5.13)

where Rp. denotes the corresponding subset of (0,1,...,t). On prong <r the

new coefficients introduced are

plU Ik' W  UJ IK> 1 (5.1k)
Ve-<r ,  Pr+^cr,............../ W,.*/<r ;  Pc-,<r+i 1 ................y

where kcRp.. The number, n_ , of these new coefficients is
<rX ! ( m,'K+ nkliK-lo-+t)

kcRc
If n denotes the number of integers in R ^ t h a t  is, the number of regions

containing (cr,cr), then

(5.15)

The expressions e^ corresponding to points on prong o~must therefore provide

n_, equations; below we see that this necessitates the introduction of cr
symraetrised equations when n^ is even, but not when n̂ _ is odd. Specifically 

ncr ODDi The equations (5-10) have £  ranging over the following points: 

(o',07 , the prong vertex; (5.16a)

(5.16b)....................- [ X  1 <rj
(a-,o- +1),......... , j

V kcRcr /

(5.16c)
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The number of these points is clearly n̂ , .

n EVEN: The equations (5*10) have £  ranging over the following points 

(o-,ct) , the prong vertex; (5.17a)

(5.17b)

(5.17c)

The number of these points is n-. -1, so that we require one more equation;"<r
this is provided by the symmetrised equation

^esqlo*)i(T ĈTjeRĵ c") ^
where

ct,(tr)= 2 ]  m.,ik + i  - [(r--i)l(V-l)
kcRc-

and

"»W = X " V  + j  -(<r- iRiv-l)
RcRff

In (5.18a) we do not include any arbitrary weighting factors; here we do 

not consider the problem of choosing weighting factors.

We illustrate the prong structures of this section by considering the 

specific cases t=l, 2 and 3.

t=l: This case corresponds to rational approximants; in this case 

there are only two rectangles 5^ and of the form (5*3), as shown in Fig.6.

Prong cr has vertex in SjxS^, 60 that r.^2 and a symmetrised equation

(denoted by two crosses) is required on c . Increasing cr by one within
v'

this region,oc^(o-) andoc^icr) in (5.18) decrease by one, so that the

symmetrised points lie on lines with unit slope. The remaining prong shown

lies in Sq , but not in S^, so that 0^=1 and no symmetrised equation is

necessary on this prong; the end points of the prong sire (a.. # p) andl;<r
(cTjiî .g.), which lie on the edges of Sq , and we say that these lines have 

"zero slope".

(5.18a)

(5.18b)

(5.18c)

t=2: For the two variable quadratic approximants there are three 

rectangles (Fig.7) Ŝ ,S_^ S^. Successive prongs have n^3,3»2 and 1,

so that only in one instance is there a symmetrised equation (except for the
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optional symmetrisation on prong zero, as discussed later).

t=3: The prong structure shown in Fig.8, together with Figs.6 and 

7, illustrates the general prong structure for arbitrary t. The vertices 

of the prongsTf^. occur in groups with n^ fixed within each group; n takes 

the values 1,2,..., (t+l). The prongs with n̂ =;l cover a rectangle in the 

corner of one of the rectangles (5*3)5 in this region, the edges have "zero 

slope" and there are no symmetrised equations. The prongs having ^ = 2  

define a region with edges of unit slope, and each prong has an attached 

symmetrised equation. As n increases to (t+l), the slope increases to 

t(=3 in Fig.8). Alternatively the edges do and do not correspond to sets

of symmetrised equations, depending upon the parity of n̂ ..

Having illustrated the general prong structure associated with t-power 

off-diagonal approximants, we now consider how to choose the constants 

(5-8a). As with the diagonal approximants of §2, two possible choices 

naturally suggest themselves:

(a) If the only information available about f(z) is that contained 

in (l.l), then we can obtain the required (t-l) extra equations by extending 

prong 0. For t odd, -J(t-l) unsymmetrised equations are produced on each 

arm of the prong, which thus extends to the points on each axis with co­

ordinates

This set of points ensures the projection property to the Shafer approximants

For t even, we obtain unsymmetrised equations corresponding to points

on the axes up to those with co-ordinates
t

together with a symmetrised equation involving the next point on each axis. 

This choice, as for diagonal approximants, violates the projection property, 

(b) If f(z) has an analytic continuation to at least (t-l) distinct

t

t - l

Riemann sheets, we may fix the constants (5«8a) by using the function values
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f C O ,...,f (0) at the origin of the (t-l) sheets, provided these valuesJ.
are distinct and not equal to f(0). The extra (t-l) equations can then be

written

and such a choice satisfies the projection property.

Whichever choice ((a) or (b)) is made, the approximant f(z;S^) defined 

from f(z), and corresponding to the regions of (f>.3)i is defined to be a 

solution of the equation

XP\)[fu,sj]k+P\) = o
M

In practice, the approximants of this section can be determined from 

matrix equations of the form (l.8)-(l.ll). At the end of this chapter we 

give a computer program, written in Fortran, for generating off-diagonal two 

variable quadratic approxiraants. The numerical results of §6 are obtained

from this program.

We conclude this section with the following remarks:

(i) The linear* dependence arising on the final prong for diagonal 

t-power approximants does not occur for the truely off-diagonal approximants.

(ii) The reciprocal and homographie covariance properties of the 

off-diagonal approximants can be discussed in exactly the same as for the 

diagonal approximants of §2; for this reason we do not repeat the arguments 

of §2(b) for the off-diagonal approximants of this section.

(iii) The generalization of diagonal and off-diagonal appreximants 

to the case of N>2 variables has been discussed in (6) and (10). Here we 

do not repeat these discussions and we merely remark that only for N$j5 can 

fully symmetrised schemes be defined for diagonal and off-diagonal approxi­

mants. In Fig.9 we illustrate the prong structure for three variable 

diagonal approximants.

6. NUMERICAL EXAMPLES

The previous sections of this chapter have been devoted to the
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definition, method of construction and general properties of the two 

variable generalizations of the approximants cf Chapter 1. In this section, 

by considering specific numerical examples, we attempt to illustrate the 

usefulness of these tv/o variable approximation schemes. The examples we 

consider are of two types:

(a) EXAMPLES (I)

These examples consist of the following five functions with branch 

points, the first three of which are symmetric:

(i) Ii-X-V})/3

(ii)

(iii) f*u,y) = 1 +  ln.( l-x-tj)

(iv) | + £ x  + la{|-x-vj)

(v)

In Tables 1-5 we tabulate the results obtained for the above functions using 

the two variable rational and quadratic approximants. For each table the 

third and fourth column provide a comparison between the two approximation 

schemes, both tabulated approximants requiring roughly the same number of 

coefficients of the series (l.l); the final column is included to indicate 

the degree of accuracy obtainable on the branch cut of the function. When 

no entry occurs in a table, this indicates that at this particular point the 

approximated function is complex-valued and that the single-valued (real) 

rational approximant cannot represent the discontinuity across the branch 

cut of the function. For the diagonal quadratic approximants cf Tables b 

and 5 the scheme (2.8c) is used on the final prong.

From the results of Tables 1-5 one general point emerges; the quadratic 

approximants approximate, often very accurately, well beyond the radius of 

convergence of the series (l.l). More specifically:

(i) The functions f^ and f^ are infinitely many-valued, but their 

series expansions (l.l) correspond to a single Riemann sheet. The quadratic 

approximant is consistently more accurate than the rational approximant, in 

some cases four orders of magnitude more accurate. At points "on the branch



TABLE I :  D ia g o n a l  r a t i o n a l  and o f f - d i a g o n a l  q u a d r a t ic  approximants
1/3to  f  ( x ,y )  = ( 1 - x - y )  '

E r r o r  in [6 ,6 / 6 ,6 7 E r r o r i n  [ 4 ,4 / 4 , 3/4,47 E rr o r in [ 6 ,6 / 6 , 5 / 6 ,6 ]
X y r a t i o n a l approximant q u a d r a t ic  approximant q u a d r a t ic  approximant

- 3 - 4 2 X i o " 1 5 x 10- 6 2 x 10 6

- 1 1 X l c f  4 1 X 10“ 6 3 x 10~9

1 2 X i c f 4 1 X 10- 7 < 10" 9

3 2 X i o ”  3 < 10-9 < 10"9

- 3 - 2 6 X i c f 5 7 x l ( f 7 2 x 10~9

- 1 6 X ic f8 4 x 10~8 < i o ~ 9

1 4 X 1 0 -6 < 10- 9 < IO”  9

3 4 X 10~1 (8 X 10~2 , 8 x 10 2) (6 X 10 X 10 2)

- 3 0 1 X 10~6 4 x l o " 8 < 10-9

- 1 < 10~ 9 -9< 1 0 < 10-9

1 2 X i c f 1 (8 X 10- 2 , 8 x 10" 2) (5 X 10‘ 2 ,  6 X i o ~ 2)

3 (2 X - 410 , 3 x l o " 4) (5 X 10 X 10" 7)

- 3 2 2 X i c f 4 < i o ~ 9 < 10"9

- 1 3 X i c f 1 (8 X 10- 2 , 7 x 10“ 2) (5 X 10- 2 , 5 X
- 1

10 )

1 (2 X - 410 , 3 x 10-4) (6 X 10 X 10- 6 )

3 (3 X 10- 4 , 9 x 10-4) (2 X 10 X 10~5)

- 3 4 4 X H f1 (6 X - 210 , 3 x 10 ' 2) (4 X 10
— 0

 ̂ ' l X 10~2)

- 1 (3 X 10- 4 , 4 x i o ~ 4) (8 X 10 X 10- 6 )

1 (3 X 1 0 ~ \  1 x 10”  3) (2 X 10 X l o f 5 )

3 (2 X l o " 3 , 7 x 10" 4) (3 X 10"5 , X l o " 2)



TABLE II: Diagonal rational and off-diagonal quadratic approximants
to f2(x,y) = (I-x-y)*

[-----

X y
E r r o r  in [§,6/6,6] 
r a t i o n a l  a p p r o x i m a n t

I E r r o r  in [4,4/4,3/4 ,4_[ 
q u a d r a t i c  a p p r o x i m a n t

E r r o r  in [ 6 , 6 / 6 ,5/6 ,6| ' 
q u a d r a t i c  a p p r o x i m a n t

-2 -6 , -7-3 -4 1 x 10 5 x 10 ° 3 x 10
-6 -6 , “9-1 1 x 10 1 x 10 3 x 10

1 -42 x 10 1 x l o " 7 < io-9

3 2 x l o " 3 -9<10 < io-9

-3 -2 5 x lo“ 5 7 x l o " 7 2 x l o " 9 j

-1 5 x l o " 8 4 x lo“ 8 < I Q ' 9

1 3 x lo"6 -9<10 < 10-9

3 5 x 10_1 (2 x 10_ 1 , 1 x 10- 1 )
-1 -2(1 x 10 , 8 x 10 )

-6 -8 , -9-3 0 1 x 10 3 x 10 < 1 0
-1 -9<10 -9<10 < io-9

1 3 x 10_1 (2 x lo“ 1 , 1 x 10- 1 ) -1 ~2(1 x 10 , 8 x 10 )

3 (3 x l o " 4 , 3 x 10- 4 ) (5 x lo"6 , 2 x 10- 6 )
-4 , -9 , -9-3 2 2 x 10 <1 0 <1 0

-1 4 x 10_1 (2 x 10_ 1 , 1 x 10_ 1 )
-1 -2(1 x 10 , 8 x 10 )

1 (3 x 10- 4 , 3 x l o " 4 )
/* r

(6 x 10 , 3 x 10 )

3 (8 x l o " 4 , 1 x 10” 3 ) (2 x 10- 5 , 1 x 10- 5 )

-3 4 6 x lo” 1 (1 x 10_ 1 , 5 x l o " 2 ) (1 x 10_ 1 , 5 x I Q " 2 )
-4 - 4,-1 (4 x 10 , 4 x 10 ) (7 x 10 , 4 x 10 . )

1 (2 x l o " 5 , 1 x l o " 3 ) (1 x lo"5 , 2 x 1 0 ~ 5 )

3 1 (2 x l o " 3 , 7 x l o " 4 ) (4 x lo"5 , 4 x l o " 6 )



TABLE III: Diagonal rational and off-diagonal quadratic approximants
to f3(x,y) = l+ln(l-x-y)



TABLE IV: Diagonal rational and quadratic approximants
to f^(x,y) = l+|x+ln(l-x-y)

Error in [§»6/6,6] Error in [4,4/4,4/4,4] Error in p7,7/7,7/7,7~[|
X y rational approximant quadratic approximant quadratic approximant i
-4 -4 1 1 x lo"4 3 x lo"8
-2 -25 x 10 1 x 10-5 3 x lo'9

-5 -6 -90 2 x 10 1 x 10 0 <10
-2 -42 1 x 10 1 X 10 q 4 x 10
-1 -1 -24 1 x 10 1 X 10 4 x 10
-1 -5 -8-4 -2 2 x 1C) 2 x 10 3 1 x 10

„ , -3 -6 “9-2 3 x 10 2 x 10 < 1 0
„ , ~7 i -8 -90 2 x 10 1 x 10 < 1 0
, -4 -4 -6

2 6 x 10 2 x 10 1 x 10 ;i
! (4 x lo-3, 9 x 10-3) -4 -4(7 x 10 , 2 x 10 )
| -5 -6 -9-4 0 5 x 10 5 x 10 0 <10
-2| 4 x lo"7 5 x lo“8 -9<10
0 0 0 0
2 (8 x 10~\ 2 x lo”3) (3 x 10-6, 4 x lo"6)

, -3 -2s -5 -5s I! 41 - - (4 x 10 1 x 10 ) (2 x 10 , 2 x 10 ) I
1 -2 -4! -4 2 5 x 10 2 x 10 4 x 10 °
1 -3 . -7! “2 1 x 10 4 x 10 2 x 101 0 (2 x lo"3, 6 x lo“4) (5 x 10~7, 5 x lo“6)1

2 (1 x lo“3, 4 x 10-3) (1 x lo"7, 9 x lo”7)
4 (2 x io~2, 6 x lo"3) (7 x 10-5, 3 x 10'6) :

-2 -3 -41 "4 4 8 x 10 4 x 10 J 6 x 10 i

-2 (2 x lo”3, 2 x lo"4) -4 -4 ! (7 x 10 , 4 x 10 ) !
o (1 x 10~3, 3 x 10~3) — f. -tr(4 X 10 , 2 X 10 ) |
2 (1 x 10~2, 2 x 10-3) (3 x lo”5, 1 x lo“5)
4 (1 x 10-2, 3 x lo“2) (2 x lo"4, 2 x lo"4)



TABLE V: Diagonal rational and quadratic approximants
to f5(x,y) = ln(l-x-y)/(2.5-y)

X y
Error in [§,6/6,6j 
rational approximant

Error in [4,4/4,4/4 ,4] 
quadratic approximant

Error in [6,6/6,6/6,6Jj 
: quadratic approximant-4 -4 2 x lo"2 3 x l o " 3 5 x l o " 3

-3 -2 -3-2 2 x 10 J 1 x 10 2 x 10-90 6 x 10 1 x 10 < 1 0
-1 -3 -32 1 x 10 2 x 10 J 6 x 10

1 -9 -9 -94 < 1 0 < 1 0 < 1 0

-3 -3 -3-4 -2 1 x 10 2 x 10 1 x 10
-2 2 x 10-4 1 x 10-4 8 x 10~5

-7 -9 -90 1 x 10 8 x 10 < 1 0-9 -9 -92 < 10 < 1 0 < 1 04 (1 x lo“ 2 , 7 x 10~ 3 ) (1 x 10- 2 , 6 x lo” 3 )-5 -6 -9-4 0 1 x 10 1 x 10 < 1 0
-8 -7 . ~9

1 -2 8 x 10 1 x 10 < 1 0

0 0 0 0

2 -4 -4(8 x 10 , 2 x 10 ) (6 x l o " 6 , 4 x l o " 6 )1 4 (4 x 10-4, 2 x 10-3) (2 x lo'5 , 3 x l o " 6 )

-1-4 2 6 4 x 10 (1, 2)-9 -9 -9"2 < 1 0 < 1 0 <10
0 (5 x 10_1, 2 x 10_1 (1 x 10-2, 5 x lo“3)
2 (4, 6) (1, 3)4 (1, 6) (3, 5)

-Q -9 -9-4 4 < 10 <10 <10
-2 (1, 6) (7 x lo"1, 4)

-1 -1 -3 -3.0 (lx 10 , 2 x 10 ) (2 x 10 , 2 x 10 )

2 (3 x 10"2, 2) (6 x lo“1, 9 x 10_1)4 (6 x 10 \  2) (7 x 10_1, 2)



TABLE VI: Diagonal and off-diagonal quadratic approximants
to f^(x,y)

!------ Error in [3 ,5/5,5/5 ,5] Error in [3 ,5/5 ,4/5 ,5 1 !
X y quadratic approximant quadratic approximant-4 -4 7 X lo-6 I X 10 5 j

-2 6 x 10-7 3 X 10-7
0 6 x io-8 7 x lo“8
2 2 X 10-5 2 x 10*"54 2 X 10-3 4 x 10~3-4 -2 2 x 10-6 4 x lo"6

-2 2 x 10_7 4 x 10 7
0 -91 x 10 < io-9
2 5 x lo-7 1 x lo"64 (7 X 10~5, 8 x 10 4) (3 X 10"5, 3 x io-4)-4 0 5 x lo"6 4 x lo"7 111

-2 -9<10 < 10~9 i
!

0 0 0
2 (4 X 10-5, 3 x -410 (1 X 10~4, 2 x 10 4)4 X 10~3, 5 x io"3) (1 X 10~3, 3 x lo"4) j| - 4 2 1 x lo"6 2 x lo"6 :

! -2 5 x lo"8 5 x 10~7 1

0 (1 X 10~4, 9 x io‘5) (2 X -410 , 9 x io-5)
2 (6 X 10-4, 2 x 10 4) (6 X 10~4,. 5 x 10-4)

4
(5 X -410 , 2 x 10-3) (5 X -410 , 2 x lo"3) |

| -4 4 -43 x 10 3 x 10~3
-2 (2 X -410 , 3 x lo"5) (1 X h“* o

1
N#

X 10-5)
0 (2 X -410 , 3 x io'4) . (2 X 10 4, 5 x 10-4)
2 (4 X 10-5, 1 x 10-3) (7 X -410 , 1 x 10-3)

1 41 (4 X 10"3, 1 x 10-3) (2 X 10”3, 3 x 10-3)



TABLE V II : Comparison of the three schemes on the final 
prong for the [5/5/5] diagonal quadratic approximant 
to f4(x,y)

E rro r u sin g E rro r  u sin g E rro r  u sin g
X y Scheme I Scheme I I i Scheme I I I

-4 -4 1 7 x 10-6 7 x lo ” 6 6 X 10- 6

-2 6 x lo ” 7 6 x 10~7 4 X l c f 7

0 6 x l ( f 8 6 x 10~8 6 X lo “ 8

2 2 x 10-5 2 x 10-5 2 x l ( f 5

4 2 x l ( f 3 2 x 10-3 9 x l ( f 4

-4 -2 2 x lo " 6 i 2 x lo " 6 2 x 10-6 Ij
-2 2 x l ( f 7 2 x l ( f 7 2 x l c f 7 !

0 -91 x 10 *
i -91 x 10 * -91 x 10 5

2 5 x lo " 7 4 x lo “ 7 9 x 10-7

4 (7 X 10- 5 , 8 x 10 4) (8 X 10- 5 , 8 x i < f 4) (1 X 10~4 , 8 x i c f 4)

-4 0 5 x lo " 6 5 x l c f 6 5 x lo " 6

-2 < io ~9 -9< 1 0 -9< 1 0
1
1I

0 0 0 0 1
t

2 (4 X 10~5 , 3 x 10- 4 ) (4 X lO "5 , 3 x io “ q) (4 X 10" 5 , 3 x io - 4 ) |

4
1 (1 X l ( f 3 , 5 x l o ' 5) (1 X 10- 3 , 5 x 10- 5 ) (1 X 10- 3 , 5 x 10- 5 )

-4 2 1 x l c f 6 1 x l ( f 6 2 x lo " 6

-2
!

5 x lo " 8 1 x l ( f 7
. : 8 x 10~7

0 ! (1 X -410 , 9 x i c f 5. (1 X Xcn

1orH i o ' 5 ) (1 X -410 , 9 x lo “ 5)

1 2 (6 X -410 , 2 x lo  4) ; (6 X -410 , 2 x l o ' 4) (6 X 10~4, 2 x 10- 4 )
1
I 4

r1 (5 X -410 , 2 x io~ 3) 1 (5 X 10- 4 , 2 x
-3

10 ) (5 X -410 , 2 x lo ” 3)I

-4 4 1
-43 x 10 < io -9 3 x lo ” 4

1
-2 (2 X -410 , 3 x io - 5 ) ! (2 X -410 , 3 x io - 5 ^ (2 X 10” 4 , 2 x K f 5 ) ;

0 (2 X -410 , 3 x i o " 4) 1 (2 X -410 , 3 x 10- 4 ) (2 X
— ¿110 , 3 x 10 4)

2 (4 X 10" 5 , 1 x io - 3 ) j (4 X 10” 5 , 1 x 10- 3 ) (4 X 10- 5 , 1 x 10~3) |

4 (4 X 10- 3 , 1 x i o " 3) (4 X 10” 3 , 1 x lo"’ 3) (4 X K f 3 , 1 x l o " 3)
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cut", where x+y>l, roughly six figure accuracy is obtainable with the 

quadratic approxiraant. The introduction of only one extra Riemann sheet 

has thus produced a dramatic improvement in the representation of these 

infinitely sheeted functions.

(ii) The functions f^ and f have a finite number of Riemann sheets. 

The quadratic approximant is again consistently more accurate than the 

rational approximant and, on the "cut", the quadratic approximant provides

a good representation of the functions on two Riemann sheets. So, starting 

from the power series (l.l) defined on only one Riemann sheet, the quadratic 

approximants are approximating f-^f^f^ and f^ on two Riemann sheets. In 

addition to analytically continuing a function on a given Riemann sheet, 

the quadratic approxirnants thus provide a practical method for the 

continuation of a function from one Riemann sheet to another.

(iii) The function f^ has a pole surface in addition to a surface of

infinitely-sheeted branch points, and this function illustrates the 

limitations of the methods of section 2. Away from the pole surface the 

results of Table 5 exhibit the same general features of (i) and (ii) above. 

However, near the pole surface, with y=2 and y=*f, neither approximation 

scheme represents the function at all adequately.

In Table 6 we examine the conjecture, made at the end of §j(b), that we 

would expect the diagonal and 'slightly1 off-diagonal quadratic 

approxircants to produce similar results. For the example given in Table

6, this is seen to be the case; the errors in the two tabulated

approximants are almost always of the same order of magnitude and are very 

often equal.

For the diagonal quadratic approximants the three suggested methods of 

setting up rhe equations on the final prong, given by (2.8a),(2.8b) and 

(2.8c), are considered in Table 7« Here we make a comparison of the errors 

arising from each of the schemes. Again we see that the errors are almost 

always of the same order of magnitude and very often are equal.
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(b) EXAMPLES (II)

The examples considered here are the following two Feynman graphs of 

Chapter J>‘.

(i) the three point production process of §5b and

(ii) the fourth order box graph of §6,

where (i) and (ii) are considered as functions of the two invariants s and 

t.

(i) THREE POINT PRODUCTION PROCESS

From Appendix 2(b) of Chapter 3 we obtain the following two variable 

expansion for the three point production process:

where

D 0=  u M \ - v )$ 6-H \AA\-Jvfc0 +  *AlnO U -u)M *-rTV*’

and s , t are the expansion parameters. In contrast to the one variable o o
situation of Chapter 3 t we have no working rule for assessing ’good’ values 

of these parameters and in the following results the values chosen for s^ 

and t are really no more than guesses.

We note from (6.1) that the method of expansion produces the terms
c< n

(s-so) (t-t ) , where (e*T,/2) lies in a triangular region. From the 

preceding sections (see especially Figs.3-8) it is clear that it is in 

precisely this type of region that we require the power series coefficients 

in order to calculate the two variable approximants; the expansion (6.1) 

thus does not produce unwanted coefficients. In Table 8 we tabulate results 

comparing

(a) the (6/6) rational approximant and

(b) the (.k/k/b) quadratic approximant,

with mass values M=m=l and expansion points s =3+3i and t =l+i. 'We makeo o
the following comments:

(i) For t<^, we can obtain reasonably good results with the rational 

approximants. Although these results are not as accurate (see Table 9 of



TABLE 8: TWO VARIABLE DIAGONAL RATIONAL AND QUADRATIC APPROXIMATES TO

THE THREE POINT PRODUCTION PROCESS OF CHAPTER 3,§5b.

s t
(6/6) RATIONAL 
APPROXIMATE

(4/4/4) QUADRATIC 
APPROXIMANT

0 1 (-0.6046001,-0.4xlO-7) (-0.60452,-O.lxlO-5)
2 (-0.768472,-0.2xlO"6) (-0.76832, -o.5xio-J+)
4 (-1.65,-0.1) (-1 .60,-0.06)
6 (-0.6951,-0.997) (-0.681,-0.992)
8 (-0.361,-0.89̂ 1) (-0.365,-0.883)

10 (-0.204,-0.7888) (-0.22,-0.785)
0 3 (-0.822473,0.7xlO"7) (-0.8213,0.3xl0-2)
2 (-1 .II7896,0.1xl0~k) (-1 .1126,0.4xlO~2)
4 (-4.1,-0.983) (-1.7,-1.9)
6 (-0.420,-1.1522) (-0.6,-1 .5)
8 (-0.1203,-1.1610) (-0.14,-1.31)
10 (-0.0071,-0.955) (-0.08,-1.1) |
0 4.5 (-1.4,-0.44) (-1.2,0.39)
2 (-2.1,-1.2) (-1 .2,-1 .3)
4 (-0.2,-0.5) (-0.8,-2.2)
6 (-0.2,-0.8) (-0.65,-2.0)
8 (0.42,-1.020) (0.84,-1.08)
10 (0.356,-0.834) (0.65,-0.66)
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Chapter 3) as those obtained with the one variable approxiraants (and t 

fixed), we do not have to compute the integrals in (6.1) anew for each value 

of t when using the two variable approximants. The results obtained with 

the quadratic approximants are disappointing, especially in view of the 

results of §6(a).

(ii) For t>A, the results are not very much in agreement. The

explanation of this is provided by Appendix 2(b) of Chapter 3> for real 
2

positive t>Am (=b) there is a complex singularity on the physical sheet. 

This has the consequence that we cannot write single variable dispersion 

relations, with integrations along the real axis, for production processes 

- at least not in simple variables (see (ll) for further details). If we 

fix t (>k) and form one variable approximants in (s-sq) as in Chapter 3» 
the resultingcC-integrations become difficult to perform due to the presence 

of singularities in the integration region; again we cannot obtain 

convergent results.

(ii) FOURTH ORDER SCALAR BOX GRAPH
From Appendix 3 of Chapter 3 we obtain the following two variable 

expansion for the fourth order box graph:

a =  vjCS/U-v ) 

b - (l-af wil-w)
and

In Table 9 we compare the (6/6) rational and {k/k/Q quadratic 

approximants for the mass values M=m=l and with sQ=3+3i and to=l+i. Again 

we obtain good results using the rational approximants but disappointing 

results with the quadratic approximants.

7. CONCLUSIONS
In this chapter we have seen that the ideas underlying the definition



TABLE 9: TWO VARIABLE DIAGONAL RATIONAL AND QUADRATIC APPROX BLUNTS TO

THE FOURTH ORDER SCALAR BOX GRAPH OF CHAPTER 3,§6.

6 t
(6/6) RATIONAL 
APPROXIMATE

(**/*+/*+) QUADRATIC 
APPROXIMATE EXACT VALUE

0 -1 (0.235711^,-O.lxlO'6) (0.23566,-OOxIO'S (0.2357113,0)

1 (0.2710095,0.IxlO“6) (0.271003, -o.3xio_Zf) (0.2710096,0)

2 (0.3253897,0.7xl0-7) (0.325^1,0.3xl0-5) (0.3253893,0)

3 (0. *+28310,-0.*+xl0“5) (0.*+2826,0.*+xl0" S (0. *+28303,0)

*+ (0.98,0.09) (1 .1 1 , -0.0**)

5 (0.327,0.6**921) (0.3275,-0.6**99)

6 (0.11**2,0.5**55) (0.ii39,0.5*+50)

7 (0.0257,0.**581) (0.02557,0. **579)

8 (-0.01872,0.3933) (-0.0186**, 0.3930)

9 (-0.0*03,0.3*+366) (-0.0**367,0.3**360)

0 0 (0.2636002,-0.2xlO"6) (0.26361,-0.2x10"^) (0.2636001,0)

1 (0.3022998,O.lxlO-6) (0.30251,0.2xl0"5) . (0.3022999,0)

2 (0.3615971,0.8xlO-7) (0.361595,0.1xlO_i+) (0.3615968,0)

3 ( 0. *f 7281, -0. **xlO~^ ) (0.**7277,-0.2x10"S (0.**7280,0)

*+ (1.05,0.1) (1.25, -0.0**) (1.21,0)

5 (0.3883,0.70255) (0.3891,0.702**3) (o.389*+,o.702**8)

6 (o.i*+9*+9,o.6o*+3) (0.1** 965,0.60***+) (0.1**962,0.60**6)

7 (0.0**60,0.51*t0) (0.0*+60,0.51**10) (0.0**58,0.5i**l6)

8 ( -0.007*+7,0. *+*+*+5) (-0.00733,0. *+*+**33) (-0.007**5,0.*+***+29)

9 (-0.0377,0.39019) (-0.03752,0.3903**) (-0.03758,0.39026)
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and construction of the two variable rational approximants can be extended 

in a natural way to quadratic apprcximants, The approximants defined in 

this way have been shown to possess many of the properties of the 

corresponding two variable rational approximants.

The main object in defining these two variable "t-power" approximants 

is to try and extend the advantages of the one variable Shafer approximants 

to two variable series. Indeed the results of §6(a) indicate that this has 

been achieved; the two variable quadratic approximants do seem to provide 

a (sometimes considerably) better method of approximation than the currently 

used two variable rational approxirnants, especially to functions possessing 

branch points. However, the results of §6(b) are rather unsatisfactory 

and at present the explanation of this behaviour is not very clear.

If we confine our attention to real series then, on the basis of the 

results of §6(a), the two main conclusions we can draw are:

(i) The two variable quadratic approximants do seem to considerably 

increase the accuracy in two variable calculations. The functions f^,

f^ and f^ of §6(a) were considered because they exhibit commonly occuring 

types of branch points. V/e have not explicitly considered the function

which has a square root branch point, since the quadratic approximants of 

§2 and §5 are obviously exact for this function. Since the quadratic 

approximants approximate these functions so well, and considerably better 

than the corresponding rational approximants, we expect the basic trend 

in the results of Tables 1-7 to be reproduced for many of the multi-valued 

functions which occur in practice.

(ii) Starting from a function with a power series expansion valid 

on only one sheet of the function, we can, using the two variable quadratic 

approximants, obtain information about the function on a second sheet.

The approximants permit the analytic continuation of a function from one 

Riemann sheet to another.

On the basis of (i) and (ii), we expect the two variable quadratic
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approximants discussed in this chapter to be of great value in the many 

areas of theoretical physics where perturbation methods are commonly 

employed. We also expect the "t-power" approximants (t>2) of this chapter 

to be of great potential use.

As a final point we note that, although the two variable quadratic 

approximants produce disappointing results in this connection, the methods 

of Chapter 3 for calculating Feynman integrals in the physical region can 

certainly be used in conjunction with the two variable rational approxiraants 

to produce reliable results.



FIG. 3: PRONG STRUCTURE FOR THE (m/m) DIAGONAL CHISHOLM RATIONAL APPROXIMANT
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FIG. 4: PRONG STRUCTURE FOR THE (m/m/m) DIAGONAL QUADRATIC TWO VARIABLE APPROXIMANT



FIG. 5: PRONG STRUCTURE FOR THE (m/m/m/m) DIAGONAL TWO VARIABLE CUBIC APPROXIMANT



FIG. 6: PRONG STRUCTURE FOR THE (m , m„ /m ,m ) OFF-DIAGONAL TWO VARIABLE RATIONAL (t=l) APPROXIMANT1;o 2 ; o l;l 2 ; 1



FIG. 7: PRONG STRUCTURE FOR THE (2,5/3,4/1,2) OFF-DIAGONAL TWO VARIABLE QUADRATIC (t=2) APPROXIMANT



FIG. 8: PRONG STRUCTURE FOR THE (5,2/3,6/6,5/7,8) OFF-DIAGONAL TWO VARIABLE CUBIC (t=3) APPROXIMANT



FIG.9: PRONG STRUCTURE FOR THE (ra/rn/m) THREE VARIABLE DIAGONAL QUADRATIC

APPROXIMANT
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APPENDIX Is CAUCHY-3INET THEOREM (8)
Let the determinant formed of elements taken from rows cc, ,cCI E  n

and columns B. , B_,...,B of a matrix M be denoted by 1 2 , n

M
fi, / v

•rv
rv

Then if M=AB--- RS, where A,B,...,R,S are of order kxn,mxn,...,rxs,sxk (so

that M is of order kxk), we have

where the summations are over all sets of k columns taken independently 

from the columns of A,B,...,R or, alternatively, over all sets of k rows 

taken independently from rows B,....,R,S.

The expansion will vanish if any one of the following inequalities are

true:

k=*m,k>n,...., k>r,k»s
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APPENDIX 2: FORTRAN COMPUTER PROGRAM FOR THE CALCULATION OF TWO 

VARIABLE OFF-DIAGONAL QUADRATIC APPROXIMATES

The following subroutine, GQA2V, calculates the two variable off- 

diagonal quadratic approximants defined in Chapter k; the routine is 

written in Fortran, uses double precision arithmetic throughout and has 

the following parameters:

C: A 25x25 matrix containing the coefficients of the power series 

expansion of f(z).

IPX,IPY,IQX,IQY,IRX,IRY: These integers define the (IPX,IPY/IQX,IQY/

IRX,IRY) quadratic approximant.

P,Q,R: These 10x10 matrices contain the calculated coefficients of 

the polynomials P(_z) ,Q(z) and R(z) respectively.

IPRONG: This integer parameter defines the prescription to be used 

on the final prong for diagonal approximants. The values 

IPR0NG=-1,0,+1 correspond to the schemes (2.8c), (2.8b) and 

(2.8a) respectively.

For off-diagonal approximants the value of IPRONG is

immaterial
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CHAPTER 5: QUADRATIC APPROXIMATES AND LEGENDRE SERIES.
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1. PADE APPROXIMANTS TO LEGENDRE SERIES

In many situations, especially in scattering theory (see, for example, 

(l)), it is more usual to expand a function f(z) as a Legendre series, 

rather than as a power series. In this chapter we look at the possible 

uses of quadratic approximants in relation to Legendre series; the methods 

used here can be extended in a straightforv/ard way to the case of cubic and 

higher order approximants. In particular, we hope to define approximants 

which will converge along branch cuts of f(z).

Given the power series
eo

the (M/N) Padë approximant to f(z) is given, with the notation of Chapter 

1, by

t U) = -fexll1
r (h/N A T 3 (i.D

\u 1*)

where

(1.2)

(1.3)

fU) «  0  U * +N+l )

Given the corresponding Legendre seriesM  ~ f  KPuW
1=0

three types of "Legendre Padé approximant" have been defined:

(i) Fleischer (2) and Holdeman (3) have defined the (M/N) Legendre 

Padé approximant by the requirement that

fU)<^Nw) -  [vil) =  O l P * +Ni+l w ) ci.'*)

in analogy to (1.2), where

anA. ^
k=o 1=0

are respectively the denominator and numerator of the approximant. 

(ii) Fleischer (k) has given the alternative requirement

K+N It)) (1.5)“ OlP,
(iii) The Legendre-Pade approximants cf Common, which we discuss in

K
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(1.5) is not equivalent to (1.^), as are the analogous equations for 

the ordinary Padé approximants; essentially this is because of (1.8). In 

fact (1.5) leads to a system of non-linear equations which cannot be 

guaranteed to have a unique solution (or indeed any solution at all). The 

motivation for considering (1.5) is that the "linear Legendre Padé 

approximants" defined by (1.A-) (so called because they lead to a linear 

system of equations) do not have the property that their first few expansion 

coefficients agree with the first few coefficients of the original series; 

the "non-linear" approximants have this property.

Because of the computational difficulties associated with the non­

linear approximants of (1.5) (see (4) for a discussion of these), we shall 

only consider the linear approximants defined by (l.**). Given the Legendre 

series (1.3)1 the (N/M) Legendre Padé approximant is therefore defined by

(2)

Ç t _ floPcU) + - ....t-hupN^)
S M  l PVt )) doPoi*)-*----  -■ -P&n Pm W

( 1 . 6 )

where

fU>SMl P L » - 1 U ? W ) =  O lP M, N+1W )  Cl-7>

The product f(P(z)) S^(P(z)) in (1.7) is evaluated using the following

expression for the product of two Legendre polynomials:
n - i

P iW P 4W -  X ]  P t W
(1 .8)

where the oC, (iij)
^=I »-—41

can be written in the symmetrical form (2)

with
c 0  / Ô Ke-rwisa.

eva-f

R t k )  = k - f

Because more than one term appears for each product on the right hand side 

of (1.8), the coefficients f^ (0*L<2M+N) of (1.3) contribute in the
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construction of the (N/M) approximant. In contrast, for the Pade 

approximants defined from the Taylor Geries, the maximum index contributing 

to (N/M) is N+M.

In analogy with the ordinary Pade approximants, we set

<Lo- I

the remaining (N+M+l) coefficients n. (OsjsN) and d. (lsi<M) are determined0 *
by the requirement

co

Pw S k I p w ) - R n I p ^ ) fc-M+N+t
so that

( £  a*Pa >) -  f \ P t w
\ 4 -0  /  \  k=0 j  £ lo

and

£  pkp. u ) -  £  » A w  -  k  £  p0u i  p a )
k-iA-N-» k=0 i=o

(1.9)
j-0 M O
o=> pa j+k

- Z  fc ¿ >  Z  ^  V )¿=0 M O U-lj-k |
using (1.8). The summations on the right-hand side of (1.9) are such that

and

(i)

(ii)

j  < 2M-*-N + I
V  <  M  + N  + |

Multiplying (1.9) by P^Cz) (Osa<M+N+l) and integrating between -1 and +1,

we have

a ^ L  X !  h  ^

(1. 10)MO
provided

|j-k|^<TiC j + K ( l . n )

In deriving (1.10) we have used the result
4r

P, U )  P « v W
0 L^tTV

t= n*v
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l<r-kl ^ j^cr+k

The summation limits on j in (1.10) are defined by (l.ll). Rewriting (l.li)

as

(1.10) becomes
k.

k=0 j=|cr-Kl

(1. 12)

If we define
t + l

11,0-1 (N (1.13)

tv=|L-ll 

W

Ŷ-
( 1 . 1*0

then (1.12) becomes

n^ScrV =  ‘
M O

(since <)̂ ( 01k)_<̂ ( k i j)) ̂ Thus, the requirement (l.*0 leads to the following 

system of linear equations:
f  H

(1.15)
kv/u =  0  i N + I ^ U N + V * )

V  k  =  w u l ( H t ^  n )L ¡*=0
The analogy between the linear Legendre Pade approximants, defined by

(1.6) and (l.7)i and the normal Pade approximants can be clearly seen from 

the following representation (obtained from (1.15)) of the (N/M) Legendre 

Pad5 approximant:

^N+lrt--- ------ -------

( n /m) =
— -----------------------------------

........ ..................
(1.16)

deA;

a N-H.tA k-t**-V,0

----------

r) - - - -
%+tA,0

-
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2. QUADRATIC APPROXIMATES TO LSG3HDRE SERIES

The results of §1 can be readily generalized to the case of quadratic 

approximants. We define polynomials Q(z), R(z) and S(z) by

(2.1a)

which is to be compared with the representation of the normal Pad? approx-

imants given by Theorem 3*1 of Chapter 1.

QW -  > . tfiW  
Rti) ° E

(2.1b)

and
k*0

S

Stt) s LPt i i )
1=0

(2.1c)

where q,r,s are the degrees of Q,R and S respectively.

The (q/r/s) Legendre quadratic approximant to (1.3) is then defined to be 

the solution, g=(q/r/s), of the equation

+  Sllr) = 0  (2.2a/

where Q,R and S are determined by

+ PUt) pta) +  SUr) =  O^P^+r+s+eW) (2.2b)

(2.2b) leads to a system of linear equations, which we shall now determine: 

we do not consider the "non-linear" case arising from an equation 

analogous to (1.5). Defining
oo _

'2, \ t— i r ^ , v (2.3)

we have, from (2.2b),

oo _

Fw= E  KPtW 
1=0

£  U N - E M ^ < )  f U y

(2.4)
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and

( i i )  t  <  r  + S +2

Multiplying (2.^) by ?c_(0fCr<q+r+s+2) and integrating between -1 and +1, we

have-sj ^  + E  k- ¿ r- 4 a'
r\. k=0

mi

n. rtvO
provided

(a)

and

(b)

k - M  c  c~< n — k.

1̂ -  n\|$ cr < a -  ra. (O^nv^rj
Since (a) and (b) imply that|cr~ k U r v <  c r + k
and

| cr-m-l <rv'< cr t nv
(2.5) can be written

V

M 3 n.= |c--kl r
=  Y  V  ■+ Y  ^  a cr,

jt'=0 n.J» 1er—W |
where k^o k'=o

l+l
a,

, * - E

and
L + L

(2.5Ï

(2. 6)

(2.7a)

(2.7b)

Hence, from (2.6) the linear system of equations defining the (linear)

Legendre quadratic approximant isA - „ rr--
r + > S i1=0AV i
2_, v  ^i-0 f

-  E ri S i
(2 .8)

and
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terns of the series expansion of f(z).

From (2.8) it is possible to write down an explicit determinant 

representation for the Legendre quadratic approxinant, in analogy to (1.16) 

for the Legendre Pade approximants. This will lead to a representation 

similar to that contained in Theorem 3*2 (of Chapter 1); we do not give 

the results here, since we shall make no use of them, and their form is 

apparent from Theorem 3*2.

3. COMPARISON OF THE LEGENDRE PADS AND LEGENDRE QUADRATIC APPROXIMAHTS

We make a comparison of the approximation schemes of § 1 and§2 by 

considering the following two functions, both of which are considered by 

Fleischer in (4):

We note that the (q/'r/s) Legendre quadratic approximant to (1.3) requires

ĉ t r + $+ Z + mo^U^r)

I- 0. (3.1)

Qoi¿)-Q,tijai*> - Y, k  it) - Qt-.is)]puW
where 1/^=1.8l6 gives the beginning of the cut, and Q^(x) is the Legendre 

function of the second kind.

In Table 1 we compare

(a) the linear (2/2) Pade approximant of §1, requiring 7 terms of 

(3.1), and

(b) the linear (l/l/l) quadratic approxiraant of ̂ 2, requiring 6 terns

of (3.1).

Also tabulated is the partial sum of the first seven terms of (3*1). The 

results indicate that scheme (b) is preferable, especially near the branch . 

point. More important, though, is the possibility of using scheme (b) for 

z(> along the branch cut. In Table 2 we give results for the (5/5/5) 

quadratic approximant for z>l/cu. Although the accuracy obtainable on the cut 

is not comparable to.that obtained off the cut (see Table l), it is possible 

to obtain roughly four significant figures along the branch cut.



TABLE 1: COMPARISON OF THE (2/2) LINEAR PADS AND (l/l/l) LINEAR QUADRATIC APPROXIMANTS TO THE LEGENDRE SERIES 

EXPANSION OF f(z) = In WITH l/a = 1.8l6.JL— 9l

z PARTIAL SUM

LINEAR PADS 

APPROXIMANT

LINEAR QUADRATIC 

APPROXIMANT f (z)

-3.5 DIVERGENT 1.865 1.8756 1.8734

-1.75 1.42 1.4735 1.4743 1.47416

-1.0 1.23797 1.23806 1.238082 1.238078

-0.5 1.04262 1.042655 1.0426543 1.0426536

0.0 0.79953? 0.799521 0.7995279 0.7995276

0.5 0.47765 0.47765 0.477624 0.477628

1.0 0.0020 0.00018 -0.00006 0.0

1.5 -0.854 -O.907 -O.966 -0.947

1.75 -1.57 -1.90 -2.55 -2.51



\

f(z) = In ~ — , FOR z>- = 1.816.1-a a

TABLE 2: LINEAR (5/5/5) LEGENDRE QUADRATIC APPROXIMATE TO

z

(5/5/5) LEGENDRE 

QUADRATIC APPROXIMANT f (z)

1.75 -2.5065 -2.5057

2.0 (-1.^88,^3.138) (-1.^9^,13.1^159)

2.5 (-0.17796,-3.1^32) (-0.1782,13.1^159)

3.0 (0.3719,^3.1^06) (0.3709,13.1^159)

3.5 (0.0722,1 3 .1^ ) (0.0723,13.1^159)

k.O (0.982,13.1^18) (0.983,13.1^159)

^.5 (1.1883,13.1^3) (1.1896,13.1^159)

5.0 (1.360^7,13.1^4) (1.360^5,13.1^159)



1
TABLE J ï (2/2) LEGENDRE PADÉ AND ( l/ V D  LEGENDRE QUADRATIC APPROXIMATES TO f(z) = /1 -2az+a'2’

WITH a=0.3.

s PARTIAL SUM

LINEAR PADS 

APPROXIMANT

LINEAR QUADRATIC 

APPROXIMANT f ( z)

-3.5 DIVERGES 0.561 O.56OO8 0.5599

-1.75 0.77 0.6838 O .68362 0.68359

-1.0 0.76940 0.769236 0.769233 0.769231

-0.5 0.84824 0.8481884 0.84818876 0.84818893

0.0 0.95781 0.957829 0.957828 0.957826

0.5 1.12505 1.125080 1.1250865 1.1250879

1.0 1.4283 1.42849 1.42859 1.42857

1.5 2.13 2.26 2.298 2.294

1.75 2.82 3.19 5.19 5.00



. 1
f(z)= f WITH a=0.3•

7l-2az+a

TABLE 4: LINEAR (3/3/3) LEGENDRE QUADRATIC APPROXIMANT TO

z

(3/3/3) QUADRATIC 

LEGENDRE APPROXIMANT f (z)

1.75 5.0000008 5

2.0 (2x10_6,Í3.015116) (0,^3.015113)

2.5 (4xlO“6 ,-1.5617372) (o,ii.5617376)

3.0 (5xio"7,ii.1867823) (o,ii.1867817)

3-5 (3xl0-8,to.9950378) (0,io.9950372)

4.0 (-3xlO~7,10.87370^6) (0,io.87370^1)

*f.5 (-5xlO“7,ÍO.788IIO8) (0,io.7881104)

5.0 (-8xlO“7 ,io.72357^8) (0,io.72357^6)
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(ii) oo

t w - 7 n f c r 5 r t y

(3.2)

Choosing a=0.3, the branch cut starts at xc=(l+a£')/2a=1.8l6, as in (i) above.

In Table 3 we give the results obtained using schemes (a) and (b) above

for x<x . We again find that (b) is ^referable, especially near to the c
branch point. For x>x , we tabulate the (3/3/3) approximant in Table 4;c
in this case the great accuracy obtainable along the cut reflects the fact 

that we are essentially approximating a square root branch point by a square 

root branch point.

4. THE LEGENDRE PAPE APPR0XIKANT3 OF COMMON

Common (5) has defined Paae approximants to Legendre series in the 

following way. The analytic properties of the Legendre series

(4.1)
CO

¿C fn-
iv-0

are related (6) to those of the corresponding power series
bo

<V-0
If g(z) has radius of convergence r(r=»l), then the Legendre series f(z)

(4.2)

converges in an ellipse with foci at il and with semi-major axis ^(r+^). The

important relationship we require between f(z) and g(z) is (6)
nr

pk) -
i
ir j~z - U 2- !f2 v (4.3)

The importance of (4.3) lies in the fact that it relates the problem of the 

analytic continuation of the Legendre series f(z) outside its ellipse of 

convergence to the corresponding problem of the analytic continuation of 

the power series g(z) outside its circle of convergence.

The most natural way of approximating f(z) is to replace g(w), where 
2 4

w=-z-(z -1)^ cosv, in (4.3) by its Pade approximants (N/ii+j). In (5) the 

case when g(w) is a series of Stieltjes was studied; in this case the 

(N/N+j) approximants have known convergence properties. The extension of 

this work to a general power series g(w) is given in (?). To define the 

Common approximants we write
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“ f  \ +  >
(k.k)

P-< U + *>.„«) ¿_i " v
0|*O

where the e< ,R  and cr are expressible in terras of the seriesP»N’ q,N p,N
coefficients f (0,*i<2N+j). If we denote the approximant to f(z) obtained 

by replacing gCw) by (N/N+j) in (^.3) by f,, . (z), then, using (*+.**),it is

^  (k .5 )

straightforward to show that
N

I
p = l

^F-PJ

0  + °P.i?
t,

+

V s0
where the branch of (l-2o* z+o- )* is chosen to be positive for z<0.P,-N p,N

An alternative derivation of (*+.5), not making use of , is given

in (7). Consider the (N/N+j) Paae approximant to g(z), denoted by g .(z);N» J
then, from (^.2) and (^.*0,

V .  W  - £  T f ^ T  + Ì  V  J
V O

Then, from (k.l),

p = l • ~ cr?,N^-  2  ^p.nZ  ^ * i  ' V  iX
M r=0

OO
Hr0

P u , j W  = J-'f.N J  <rf.<» ^  +  i  ̂
p=l r*o

= V  -f----- S - M -----™ .  -  Rq,N Pq b)
[I -i<rrMl + < W ]  ‘

which is (*f.5) . In this derivation we have made use of the fact that 
2(l-2tx+t ) is the generating function for the Legendre polynomials:

©o
1

y  ti p t W = ^ = ________ T
u o  y . ' - g b x + t

The approxiraants defined by (^.5) are those introduced by Common.

For the case when g(w) is a series of Stieltjes, the following theorem is 

true (5):

THEOREM 4.1: For all z in the complex plane cut from ^(r+^) to °o , 

where r is the radius of convergence of the series of Stieltjes (¿f.2) and 

r>l,

N
llrrv fN -U) =  f t ó
J— >OQ
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5 . EXTENSION TO QUADRATIC APPROXIMATES

An important point to note from Theorem 4.1 is that, although the 

approximants defined by (4.5) appear to have a square root branch point built 

into them, the approximation scheme (4.5) only converges at points not on 

the cut of f(z). We (see also (8)) propose to replace g(w) in (4.3) by its 

quadratic approximant, in an attempt to obtain convergence on

the branch cut; we can obviously extend this idea by replacing g(w) by any 

'suitable' approximant. However, once we choose to approximate g(w) in 

(4.3) by a multi-valued approximant, in preference to a Pade approximant, we 

have no longer any equation of the form (4.4), and we are not able to give an 

explicit representation (of the form (4.5)) for these multi-valued 

approximants. In practice, the integration in the formula

f l p M r ) 1*) = 7  l l - U ^ c r f v j A v  (5.1)
Jo

is performed numerically. The following method of performing this numerical 

integration is due mainly to T. Stacey (8), who performed most of the 

numerical computations associated with this method.

To illustrate the method, we again consider the logarithmic example of 

^3. The power series with the same coefficients as (3*1) will have a 

singularity at

The convergence is uniform in any finite closed region of the complex z-

plane which does not include any point of the cut of f(z).

a  +
Let

1=0
where the fT are given by (3«l), ana consider

o0-  T,
(5.3)

(5.4)

The branch points of the (N/N/N) quadratic approximant to g(z) are then (in 

the usual notation) given by the zeros of the 2Nth. degree polynomial 

(Q -4ER). In Table 5 we tabulate these zeros for N=2 and N=5, and we find 

the following features. Apart from the (unstable) zeros at great distances



TABLE 5: LOCATION OF THE BRANCH POINTS OF THE (N/N/N) QUADRATIC

APFROXIKANT (N=2,5) TO (5.A).

ZEROS OF THE (2/2/2) 
QUADRATIC APPROXIMANT

ZEROS OF THE (5/5/5) 
QUADRATIC APPROXIMANT

-202 -2212

C -2.653+0.002i r  -67
-

\ - 2.653-0.O02i 1  -65

3.32 f  -2.88829+1.20877i
■<
 ̂-2.88820+1.2087 1̂ 

r  -2.88829-1.208771 

-2.88820-1.2087 1̂ 

r  0.6275321 

\  0.6275517 

3.33332
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frorn the origin and those near z , all the zeros occur in very close pairs.s
Moreover, for all the examples so far studied, this occurence of very close 

pairs of zeros is always found and does seem to be a characteristic feature 

of this quadratic method of approximation. This is a very desirable feature 

since we can join these adjacent zeros by cuts and produce a ’’maximally 

analytic" approximant. For, if we draw cuts which do not connect nearest 

neighbour branch points, we produce an approxinant containing discontinuities 

in large regions where the original function f(z) is analytic.

For z away from the branch cut the evaluation of ^(n/N / N ) ^  from (5*1)

is straightforward; for z on the branch cut the situation is not so simple.

The poles of the approximant all lie far from the origin or on what we might

call the "unphysical" sheet of the approximant and present no problem, except

for the pole close to z . The presence of this pole forces us to modifys
(5.1) to the form

• i  +  Z i ’ - l

which is obtained from (5*1) by making the substitution

X  = 7. 4 W 2- if* cssv*

(5.5)

The path of integration in (5«5) is chosen as a path in the complex plane 

which avoids the pole at zg.

For z not on the branch cut, the results obtained using (5*1) are 

comparable to those produced by (^.5) (see (8) for further details). In 

Table 6 we give results, using (5.5), for z along the branch cut. These 

results indicate that we can obtain very good convergence a long way from the 

branch point. This method is clearly far superior to that of Fleischer (k), 

who attempts to use the residues of the poles of the Pad? Legendre 

approximants of % 1 to obtain information about the imaginary part on the cut.

6 . THE INVERSE SHUARS AND COULOMB POTENTIALS

In this section we apply the method of § 5 to the following two examples

from potential scattering.

( i )  INVERSE SQUARE POTENTIAL



TABLE 6: ERRORS IN THE (5/5/5) QUADRATIC APPROXIMATE OF 5 TO (j.l) ; THE

BRANCH POINT OCCURS AT z=1.82.

z

ERROR IN THE (5/5/5) 

REAL PART

QUADRATIC APPROXIMANT 

IMAGINARY PART

1 .8 *fxlO~5 2xlO-6

2 .0 2xlO~5 9 x lO '6

2 .2 *fxlO*"10 2xlO "5

2xlO "5 3xlO “ 6

2 .6 lx lO -5 lx lO -5

2 .8 4xlO” 6 2xlO "5

3 .0 2xlO“ 5 lx lO -5

3 .2 3xlO “ 5 3xlO “ 6
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Having a long range, the repulsive inverse square potential

V lr )  4 r ' M  Oj (6.1)
has many of the features of several potentials of physical interest; most

notably, a very slowly convergent partial wave expansion of the scattering

amplitude. Also, the corx'esponding phase shifts may be obtained exactly

for this potential, allowing a comparison of the various approximation, sche

For the potential (6.1) we have (9)oo
where

Oleoso) - ̂
l o

tu-UW) eSwS (6.2)

and

(tvk is the momentum of the scattered particles which are of unit mass).

In Table 7 we compare the following approximants:

(a) the linear Fade Legendre approximant of Fleischer; the values 

quoted are those of (9),

(b) the diagonal Pads' Legendre approximants defined by (4.5); the 

values quoted are those of (7),

(c) the diagonal quadratic Legendre approxiraants defined by (5.1). 

The approximants in (a), (b) and (c) are denoted in Table 7 by (N/N),

f(N/N) f(N/N/N) resPec4ively. In each case we only quote the 

approximant to the real part of (6.2) (the imaginary part giving similar 

results) for^=fif and lc=10. The "exact" values quoted for f(cos6) at the 

end of the table are those obtained by directly summing the partial wave

series, using sufficient terms to ensure stability.

The main conclusion we can draw from Table 7 is that the schemes (b) 

and (c) give very similar results and are both appreciably better than 

scheme (a).

(ii) COULOMB POTENTIAL

The scattering amplitude for the Coulomb potential



TABLE 7: APPROXIMATES TO THE REAL PART OF THE SCATTERING AMPLITUDE FOR THE INVERSE SQUARE POTENTIAL V (r)= V~ 2.

NUMBER

OF e=4° 0=18° 0=58°

COEFFICIENTS Re f(N/Tl) R° f(N/M/N) Re (N/M) Re f(N/N) Re f(n/n/M) Re (N/N) Re f(N/N) R® f(N/N/N) Re (N/N)

5 -1.96 -0.330 -O.O383I

7 -2.02 -1.26 -0.3373 -0.37 -O.O3823 -O.O3817

11 -2.059 -2.063 -0.3368 0.3368 -O.O3824 -O.O3824

13 -2.063 -0.3368 -O.O3824

14 -2.064 -0.3368 ' -O.O3824

25 -2.064 -2.12 -O.3368

43 -2.066

f(cosO) -2.064 -0.3368 -0.03824
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has the exact form (10)

where k is the momentum of the particles being scattered, 

expansion is

The partial wave

where

UW l)
L 0

(6.3)

¿'Sv. r(ui
'n u i - i i

The slow convergence encountered with (6.2) is even more extreme here; in

fact, the partial wave expansion for fc(z) is divergent everywhere, and

f (z) also has a branch cut from +1 to to. c
For z<l, the approximants (4.5) and (5.1) give comparable results for

f (z); further details of the former approximants can be found in (11). c
Along the branch cut (z»i) the approximants (4.5) do not converge whilst

the approximants defined by (5.1) produce the results of Table 8. Again

we only tabulate the approximants to the real part of f (z) with k=10. Thec
results show that very good convergence can be obtained a long way along 

the branch cut.

7. CONCLUSIONS

From the results presented in this chapter, we draw the following 

conclusions:

(i) From the linear Pad? Legendre approximants of Fleischer we can 

readily define linear quadratic (and higher order) Legendre approximants; 

in practice, these quadratic approximants can be generated as easily as the 

corresponding Pade approximants. Numerically, the quadratic Legendre 

approximants exhibit slightly better convergence properties than the Fade” 

Legendre approximants away from any branch cut of the function; more 

important, though, is the convergence of the quadratic Legendre approximants



TABLE 8: THE (5/5/5) QUADRATIC LEGENDRE APPROXIMATE (OF 5) TO THE REAL

OF THE SCATTERING AMPLITUDE FOR THE COULOMB POTENTIAL V(r)=e2/r 

FOR z=cos6>l.

(5/5/5) QUADRATIC LEGENDRE
z APPROXIMANT EXACT VALUE

1.05 ( 5.312+xlO-2, -6.212xl0"2) (5.317xl0-2,-6.211xl0"2)

l.if8 (6.2ifxl0_if, -6.6787xl0"5) (6.25x10“^,-6.6784xio"3)

1.90 ( -if. OifxlO-^, -3.5494 xlO"3)
, -,

(-if.05xl0-1+,-3.5if98xl0'0 !1
2.51 (-6.005x10 ,2.112x10 p)

li *z
(-6.008x10' ,-2.108x10 p) 1

5.37 ( -5.79xl0_if, -1.3367xlO“3) if 1 (-5.81x10 ,-i.336ifxl0 ?)

if.56 ( -5.0if6xl0_if, -8.850xl0_i+)
. .

( -5.053xlo“4, -3.828xl0"'4) )

6.21 ( -if. 22xlO-i+, -6. OlxlO'S ( -if . 21x10“^, -5.99xl0_i+)

8.48 ( -3. ifóxio-^, -if. 14 7xlO_i+)
» 1

(-3.^3xl0 ,-if.lifOxlO'f)
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along branch cuts of the function. These quadratic approxiraants therefore 

allow the calculation of scattering amplitudes (in the form of partial wave 

expansions) along branch cuts of the scattering amplitude.

(ii) The quadratic Legendre approximants defined by (5»l) seem to 

provide a powerful method for the analytic continuation of Legendre series. 

Away from branch cuts they compare favourably with the Legendre-Pade” 

approximants of Common, and also they produce very good results along branch 

cuts of the function. The disadvantage of the method is that the required 

numerical integration is a little difficult to perform, requiring 

integration along a path in the complex plane. Furthermore, the 

prescription given in §5 for joining up the branch points of the approximant 

by cuts is seemingly arbitrary, although the choice ensuring maximal 

analyticity of the approximants seems a natural one.
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