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Abstract.

Five dimensional Kaluza-Klein theory is described from the 

historical viewpoint. This theory is then generalised firstly for a 

non-Abelian group and then for the specific group SU(2) x U(1). The 

calculation of the scalar curvature of the extended manifold is 

performed using Cartan's structure equations. The role of Killing 

vectors is heavily emphasized in this treatment.

Using certain results from this calculation an eight dimensional 

Dirac equation is derived and then simplified. Each term in the 

equation is then discussed.

The thesis ends with some concluding remarks.



Introduction.

Kaluza-Kiein theory originated in the 1920's with Kaluza's attempt 

to unify electromagnetism with Einstein's new theory of gravitation. 

Later, Klein tried to reconcile Kaluza's theory with the new ideas on 

quantisation. Although this aided, by Klein's own admission, in failure, 

Kaluza-Klein theory had been bom. It was comprehensively studied by 

Einstein and Bergmann in their search for the one true unified field 

theory, and, indeed the most complete account of Kaluza-Klein theory, at 

least in its five dimensional form, is given in Bergmann's book.

( Bergmann 1942 ). After this it fell into the doldrums but was revived 

in 1968 with Kemer's proof that it could be extended to 4+n dimensions 

to describe the gauge fields assosciated with Yang-Mills theory.

( Kemer 1968 ). Ihe upsurge in interest in geometrical methods as 

applied to gravitational physics has carried Kaluza-Klein theory along 

too, and it can be safely said that it now stands at its strongest point 

ever.

The exact details of the theory will be found later on but, 

basically, the idea is to extend spacetime to 4+1 dimensions to describe 

electromagnetism, or to 4+n dimensions to describe n gauge fields. A 

special form of the metric tensor is hypothesized on the extended 

spacetime, the curvature scalar of which is used as the Lagrangian. This 

extended curvature scalar decomposes into the curvature scalar 

for gravity and the square of the field tensor for electromagnetism or 

the Yang-Mills field ( or both ).

There are a number of ways of formulating Kaluza-Klein theories. 

Historically, the starting point was to define the special Kaluza-Klein 

metric and to impose certain conditions on some components of this
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metric. The scalar curvature of the extended spacetime could then be 

calculated and could be taken, as in general relativity, to be the 

Lagrangian. Einstein and Bergraann showed however that the special form 

of the metric and the necessary simplification conditions occur 

naturally if a Killing vector field exists. In recent years in the 

treatment of generalised Kaluza-Klein theories the special form of the 

metric has become the centre of attention and the existence of Killing 

vectors is not overemphasized. The modem spirit is to try to describe 

theories in co-ordinate free language and some authors follow this ideal 

and use fibre bundles in their treatment of Kaluza-Klein theories.

( Mclnnes 1982a, 1982b ) Others avoid this approach and use classical 

tensor calculus. Some use both methods. ( Cho 1975, Cho and Jang 1975 ). 

It is worthwhile noting at this point that the theory of fibre bundles 

is a mathematical theory and not a physical theory. The power of fibre 

bundle theory is conceptual but its use is neither necessary nor 

sufficient in the treatment of Kaluza-Klein theory. Most importantly 

there is no a priori way to define a metric on a fibre bundle. Certain 

authors ( Cho 1975, Chang et al. 1978 ) have tried to circumvent this 

"problem" by defining a horizontal lift basis on the bundle manifold, 

and by demanding that the metric is diagonal with respect to this basis. 

It then follows that the metric expressed in a co-ordinate basis has the 

special Kaluza-Klein form. However, we take the view that it is the 

Killing vectors vhich determine the form of the metric and this point 

will be stressed throughout our work.

An increasingly popular developement in relation bo Kaluza-Klein 

theory is the theories of spontaneous compactification ( Cremmer et al., 

1976a, 1976b, 1977a, 1977b, Scherk et al., 1979. ). These theories use 

extra spacetime dimensions as does Kaluza-Klein theory, but the main
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emphasis is on the defenition of fields on the extended manifold. No 

attempt is made to hypothesize Killing vectors. We shall not consider 

spontaneous compactification here, but we do point out in our 

conclusions that such theories will go hand in hand with Kaluza-Klein 

theory in future developements.

The motivation of our work here is to try to unify Kaluza-Klein 

theory with the Weinberg-Salam model, that is to use the extra 

dimensions to describe the specific gauge group SU(2) xU(1).

Accordingly we shall use four extra dimensions so that our extended 

spacetime is eight dimensional. We shall not use fibre bundle theory but 

instead use the more classical methods. Our main calculational technique 

will be to use Cartan's structure equations. This is less time consuming 

than tensor calculus and a further benefit is that 'xhen we go on bo 

treat the Dirac equation we can use some of our previous results.

The structure of this work is as follows: Chapter 1 describes five 

dimensional Kaluza-Klein theory, most of Vvhich has been considered 

already by Bergmann. The second chapter describes the generalisation of 

this to eight dimensions in the particular case of the product group 

SU(2)xU(1). The geometrical calculations use Cartan's structure 

equations. The final chapter discusses the Dirac equation on the 

extended spacetime. The thesis ends with a discussion about the 

prospects for the future of Kaluza-Klein theory.
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CHAPTER 1

FIVE DIMENSIONAL KALUZA-KLEIN THEORY

The Historical Treatment.

We begin with the hypothesis that spacetime is five dimensional 

and that the metric tensor can be expressed in some co-ordinate 

systems, known as K-systems, in the following way :

5 ; ft.

/4 /

( 1.1 )

The indices << A refer to the entire manifold and take the 

values 1» 2, 3, 4, 5, Pereas are spacetime indices and take

the values 1, 2, 3, 4. This means that the above matrix is in block 

form : the top left-hand block is 4 x 4, the top right-hand block is 4 

x 1 , the bottom left-hand block is 1 x 4 and the bottom right-hand 

block is 1 x 1.

The 1 co-ordinate is the time co-ordinate and so the Minkowski 

metric for this five dimensional spacetime is = diag (-1, 1, 1,

1 , 1 ). v  is a four-vector and will, at a later stage, be 

identified with the vector potential of electromagnetism.

The metric (1.1) is a symmetric tensor of rank 2 in five 

dimensions, so it has fifteen independent components; ten of these
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describe gravity and four describe electromagnetism, which leaves one 

extra component. It is usual to put T s V  = 1. It can be shown that 

the sign of "ts* must be positive, that is is a spacelike 

dimension, to ensure that results from this theory are consistent with 

electromagnetism. ( Thirring 1972 ). Some authors put equal to

a scalar function cr(.>0 in order to achieve unification with the 

Brans-Dicke theory of gravitation as opposed to Einstein's theory. 

Although this approach is interesting we shall not pursue it here.

As well as the condition i , we impose the following

restrictions :

*  J S ( 1.2 )

- o ( 1.3 )

We are now in a position to calculate the connection coefficients 

and thence the scalar curvature. The calculations are straightforward 

and easily verifiable.

The inverse of the metric tensor (1.1 ) is :

The index convention and the block convention are the same as 

before and $ is the inverse of the four dimensional metric 

The connection coefficients are given by the formula :
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^  *  *V<T,/5
( 1.5 )

Explicit calculation gives the following results :

r J
2_ £

r S'
J (  ^ ^  >V-"- .)

/ I
5"

r -i / ' 4 Z3

/;r = - r *) 1 s S
- o

( 1.6 )

where

/  ^  r  / t ~  ,

6 *
1



r

( 1.7 )

and is the connection coefficient of the four dimensional

metric q • We are continuing the index convention that Greek

letters near the beginning of the alphabet refer to the extended 

manifold and that those near the end refer to four dimensional 

spacetime.

The final step is to calculate the scalar curvature. This is done 

by contracting the Ricci tensor with the metric tensor :

( 1.8 )

where

( 1.9 )

Summing over and Æ  gives :

7



.A*- r cT

* <r -  r cT 
v  J" rj, re i  - /:

6 
<T /;»(T

( A )

* r - c \ r ' - r fr + r e r  *■
< 1 * - r j r f i^ c &  j» ,

( B )

f 7̂ r rr , r fi ‘ s-? ,<r / v  cT _ r  r
' U j-

r r 6 r f !
J t  <r ' g ^  i

( c )

r<r.-<c ; r j  - r J  i

( D )

Now summation over <T and £  is performed and simplification is 

effected by using formulae (1.2), (1.3), and (1.6) and by noting that:

r  r7 s  <r ~ o
( 1.10 )

For clarity each part is calculated separately. Part (A) equals :
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c r  3 ^  - i  ¿ -  ' V r  *“

( A1 )

and part (D) equals :

c i - r ~ '^ * . '> c - i  { ' )

( D1 )

Now because of the symmetry of both the metric tensor and the 

Ricci tensor, parts (B) and (C) are equal so either one can be 

calculated and then doubled. So part (B) is :

( B1 )

Finally adding (A1) to ’ (D1) to twice (B1) gives the final answer
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_/
9

cr~-

If we take as our action :

( 1.11 )

( 1.12 )

then since Y  = det = det we 0311 866 t*iat

this will give us :

( 1.13 )

from which, by variation, we shall be able to derive Einstein's field 

equations and Maxwell's equations. Thus we are well justified in 

identifying with the vector potential of electromagnetism and

in claiming that Kaluza-Klein theory unifies gravity and 

electromagnet i sm.

Two points are warth mentioning here in passing. Firstly, since 

we have put Y^f equal to the constant unity it cannot be varied. We
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shall see later that this is not a problem in the covariant 

formulation of Kaluza-Klein theory. However Ke and Ying have overcome 

this difficulty using the method of Lagrange multipliers to formally 

prove that Einstein's equations and Maxwell's equations are deriveable 

from the action (1.12). ( Ke and Ying 1981 ).
5

Secondly, since the argument in (1.12) is independent of x , 

the co-ordinate must close on itself after a finite length, 

otherwise the integral is infinite. This is the origin of the idea of 

spontaneous compactification. Some authors state that the radius of 

curvature of the fifth dimension is the Planck length. While this may 

be a trifle rash we can defenitely say that the radius of curvature is 

very small due to its non-observability in daily life, even at the 

microscopic level of electromagnetic phenomena.

Covariant Formulation of Kaluza-Klein Theory

In the above paragraphs we began with a special form of the 

metric tensor and our reasoning continued under the assumption that we 

were still in a K-frame of reference. Although this procedure is not 

incorrect, it is a violation of the spirit of General Relativity where 

all reference frames are equally permissible. Since a co-ordinate 

transformation cannot affect the physics of the system, what must be 

shown is that Kaluza-Klein theory can be cast in a co-variant form and 

that when a co-ordinate transformation takes us out of our K-frame we 

observe no contradictions with our previous deductions. This procedure 

has been extensively carried out by Bergmann ( Bergmann 1942 ) and we 

give here a brief resume of his ideas.

We begin with a five dimensional spacetime with co-ordinates \
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and metric tensor and introduce four functions of these

the derivatives of these four functions are linearly independent. In

in the five dimensional space, and this set of curves is itself a 

manifold, of dimesion four, on vhich can be defined vectors and 

tensors.

Writing the derivatives of these four functions with respect to 

the co-ordinates as :

Si c  ^co-ordinates x ( \ ) where a = 1,2,3,4, with the proviso that

clthis way the four functions define a set of curves x = constant

X oiJ

( 1.14 )

O

( 1.15 )

and ( 1.16 )
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by the following conditions:We can define an inverse *

b

( 1.17 )

A  oc X - O
and ( 1.18 )

Vectors, or tensors, in the five dimensional space will be 

referred to as ordinary vhile vectors, or tensors, in the four 

dimensional space will be referred to as parameter tensors, or 

p-tensors for short. With any ordinary vector V  can be assosciated 

a p-vector and a scalar thus:

( 1.19 )

( 1 . 2 0 )

v -= ^  *
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and similarly for a covariant ordinary vector:

(1.21 )

( 1.22 )

It is natural to take the p-tensor assosciated with the ordinary 

metric tensor as the metric of the four dimensional space thus:

To carry out analytic calculations in the four dimensional space 

it is necessary to define the operation of differentiation. There are 

two inequivalent types of differentiation that can be defined. Firstly 

there is A-differentiation, defined as being the derivative of the 

p-tensor contracted with the A-vector:

( 1.23 )

A-derivative of ( X ^ c d  ) = X a^cd
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Secondly, there is p-differentiation, defined by:

p-derivative of ( X3̂ cd ) = X3̂ cd/e = X3̂ cd, ^  ^ e.

We can now perform analysis in the four dimensional space 

embedded in the five dimensional space. What has to be done now is to 

consider the connection between tensors in this covariant formulation 

and those in the K-frame.

We recover a K-frame by demanding that the first four

co-ordinates ^ * ....  \ are the same as x^....x\ and \ 5"

is chosen so that A"3 = 1. In this case

ir oL - V cL ol = 1,.... 4.

Y K  = o OL = 5.

A ° " =  ( 0,1 ) ( 1.24a )

A k = ( / ^ , 1  ) ( 1.24b )

To go from one K-frame to another can be achieved by the 

following transformations:
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i ' -  .  f ~ ( V )

1' S ’

( 1.25 )

To maintain invariance under these transformations means that 

has to transform thus:

which is the same as a gauge transformation in electromagnetism. 

Kaluza-Klein theory in a K-frame is therefore co-variant with respect 

to the transformations (1.25) which are co-ordinate transformations in 

the four dimensions and gauge transformations for the electromagnetic 

vector potential.

Finally, we must try to express the conditions (1.2) and (1.3) in 

co-variant language. A  simple calculation shows that because of (1.24) 

if the A-derivative of the metric p-tensor is zero, that is if :

then in a K-system this reduces to the conditions (1.2) and (1.3). 

Bergmann has shown that the condition for (1.27) to hold is that the

( 1.26 )

O

( 1.27 )

16



A-vector most be a Killing vector of the metric. This is an important 

fact and will be used to great effect in the next chapter.

Summarising then, Kaluza-Klein theory is built up by assuming 

that spacetime is five dimensional and that its metric tensor has a 

unit Killing vector. In a special frame of reference in which the 

first four co-ordinates of the extended spacetime are identified with 

the co-ordinates of ordinary four dimensional spacetime this Killing 

vector has the form specified in equations ( 1.24a ) and ( 1.24b ), 

which is to say that we identify the first four components of the 

Killing vector with the components of the electromagnetic four-vector. 

Treating the metric for the extended spacetime as the potential for 

five dimensional gravity in the same way that General Relativity does 

in four dimensions permits description of gravity and electromagnetism 

in the standard way. The five dimensional theory in a special frame of 

reference is covariant with respect to general co-ordinate 

transformations in the four dimensions and with respect to gauge 

transformations. The existence of the unit Killing vector maintains 

absolute covariance with respect to arbitrary transformations in the 

five dimensions.

Fibre Bundles

In the preceding discussion classical tensor calculus was used. 

Nowadays the preference is to formulate theories in a co-ordinate 

independent manner. As well as making many calculations simpler this 

carries the additional advantage of conceptual clarity. One branch of 

modem differential geometry which is of particular relevance bo us is

17



the theory of fibre bundles.

A fibre bundle is a manifold which can locally be expressed as a 

product space B x F where B and F are manifolds. B is known as the 

base space and F is called the typical fibre. If m is the dimension of 

the base space and n is the dimension of the fibre then the bundle has 

dimension nrhi. A projection H is defined which maps the bundle 

onto the base space by mapping all the points on a fibre to the 

associated .point on the base space. We can think of the action of the 

projection 7 T  as shrinking each fibre bo a point. Conversely, if x fe 

B then V (*) is the fibre over x and this can be thought of as a 

light shining through a pinprick, the pinprick being the point of the 

base manifold and the light ray being the fibre over that point.

Now consider a point x which is in two different overlapping 

regions IL and IL of the base space B, and consider the 

co-ordinate maps which maps points on a fibre onto a co-ordinate 

system. The mapping (f- ° 4*- maps F to F and it is a requirement that 

the transition functions, defined by

belong to a group G which is called the structure group of the bundle. 

When the typical fibre is a  vector space and the structure group is a 

Lie group, so that each fibre is isomorphic to each other fibre, we 

have what is called a principal fibre bundle.

A cross section is a curve in the bundle which is nowhere 

parallel to a fibre, so when we have a principal fibre bundle a cross 

section defines a vector at each point on the base space, that is a 

vector field on the base space.

It is clear then that Kaluza-Klein theory Can be described using

18



fibre bundles, the base space being spacetime and the fibre space 

describing the additional dimensions. This approach can be 

particularly useful when Kaluza-Klein theory is generalised from the 

U (1) group to some other non-Abelian group. ( Witten 1981 ). Where 

fibre bundle theory comes into its own is in conceptual understanding 

and the reader is referred to the paper by Berm et alia ( Benn, Dereli 

and Tucker, 1980 ) as an example of the strength of this approach. 

However, it must be stressed that there is no standard way bo define a 

metric on a fibre bundle and it is this procedure, or equivalently the 

postulated existence of a unit Killing vector field, which elevates 

Kaluza-Klein theory to the level of a unified field theory. We shall 

not use fibre bundles in our work because having chosen to generalise 

Kaluza-Klein theory for the case where the internal space is bo 

describe the gauge group SU(2) xU(1) our conceptual faculties are 

temporarily suspended and we must use co-ordinate dependant geometry 

to obtain answers. Nevertheless it should be pointed out that fibre 

bundle theory is a valuable aid to the theoretical physicist 

particularly when it comes to general geometric considerations.
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CHAPTER 2

GENERALISED KALUZA-KLEIN THEORY 

Introduction.

The generalisation of Kaluza-Klein theory to 4+n dimensions has 

already been studied in the literature. ( Kemer 1968, Cho 1975, Chang 

et al 1976, Mecklenburg 1980. ) There are a number of ways of 

generalising the theory, all of which are roughly equivalent. 

Initially, it was considered sufficient merely to generalise the 

metric (1.1) and to impose conditions which guaranteed that the 

curvature scalar decomposed into the required additive combinations of 

the scalar curvature in four dimensions plus the Yang-Mills field 

tensor squared plus a term describing the scalar curvature in the 

internal space. Subsequently, the theory was described from a more 

geometric point of view which gave clearer insight into the theory and 

to the nature of the conditions which have bo be imposed to afford 

simplification. It is with the benefit of hindsight that we can now 

pick and choose between these methods to suit our specific 

requirements. As mentioned previously we shall not use fibre bundles 

so our method will be more akin to the historically earlier 

treatments. It is worth pointing out that no ad hoc conditions have to 

be used : all the simplification techniques are rigourously deriveable 

from the hypothesis that certain Killing vectors exist.

The most powerful theory is the one which makes the most 

predictions from the fewest hypotheses. It is important then to be 

clear as to what are our initial assumptions and what the logical 

consequences of these are. The only assumption which has to made is

20



that there exists a unit Killing vector of the metric of the extended 

spacetime, and that vduen we are in a special reference frame then the 

first four components of this Killing vector are identified with the 

Yang-Mills gauge fields. With this assumption, the special form of the 

metric occurs naturally. The authors who employ the more geometrically 

oriented arguments find that this special form of the metric occurs if 

a horizontal lift basis is defined on the bundle manifold and that the 

metric on this basis is diagonal.

The method we shall use to calculate the scalar curvature of the 

extended spacetime will be Cartan's structure equations. This has the 

advantage of being slightly more efficient than classical tensor 

calculus, since many terms drop out of before they actually have to be 

calculated. It has the further advantage that some parts of the 

calculation come in useful in the later chapter on the Dirac equation. 

This method has been used by Thirring in considering five dimensional 

Kaluza-Klein theory. ( Thirring 1972 )

We shall firstly discuss the generalisation of Kaluza-Klein 

theory from five dimensions to 4+n dimensions to describe a 

non-Abelian group, and then in greater detail we shall present the 

specific calculations for the group SU(2) xU(1). The reason for this 

choice is that this is the symmetry group of the Weinberg-Salam model, 

which has recieved much attention recently, and which, at going to 

press, has been well vindicated by the discovery of the intermediate 

vector bosons.
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Kaluza-Klein Theory for a non-Abelian Group.

A group is well described by its Lie algebra ( except for some

global topological aspects ). If we take a linearly independent set of
— •>

left invariant vector fields Vs as a basis for the Lie algebra then 

the vectors satisfy the following relation :

L V's t St J  = C 5 c ^ ''V  / o n

The c's are the components of a tensor, known as the structure 

tensor. They are also sometimes called the structure constants of the 

group.

The crucial point in what follows is that we can chose as a basis 

for the group manifold G either the left-invariant vectors in (2.1) 

which therefore form a non-co-ordinate basis, or alternatively another 

co-ordinate basis. We shall put co-ordinates x1 on the manifold G 

and so we shall use a co-ordinate basis. In this co-ordinate basis 

each left invariant vector field can be written as :

( 2.2 )

where )< ̂  are the components of the vector in the basis

Note that the subscript s here does not refer to components of the

vector: it is the label appertaining to a particular vector. If the 
— >

same vector V± had been expressed in the non-co-ordinate basis it
t

would have components f $ thus:

( 2.3 ) .

22



The A  J are written suggestively in this form because later we 

shall make the hypothesis that they are Killing vectors of the metric.

In Yang-Mills theory a set of gauge fields are introduced which 

act as a representation of the group G. In our language, having 

already described the group by its basis vectors and its Lie algebra, 

this amounts to introducing a vector ( the index refers to

the spacetime component) which has components Ajj. in the 

non-co-ordinate basis of the internal space, or /9^ in the 

co-ordinate basis.

We can now write down the generalisation of the metric (1.1) of 

the 4+n dimensional spacetime, again assuming that we are in a K frame 

of reference and that the basis vectors both for the internal space 

and for spacetime are co-ordinate based :

( 2.4 )

vhere *< indices range from 1 to 4+n, ^  range over

spacetime, that is from 1 to 4, and ^  j ’ range over the internal 

space that is from 4 to 4+n. J^y> is the metric of spacetime and 

3,'J is the metric of the internal space. Notice that at this point 

we have not specified the exact form of the metric tensor of the 

internal space nor shall we do so at a later stage. Some authors 

specify that the internal metric has the Cartan-Killing form but all

23



that we are saying is that there exists a metric in the internal space.

It is not difficult to show that the metric (2.4) has the same

form in a non-co-ordinate basis, thus:

Q  - = co-ordinate basis vectors/*■
= co-ordinate based 1-forms,such that :

A  C> : J>J J

—y
Vs = non-co-ordinate basis vectors :

( 2.5 )

( 2.6 )

6 -0
t

= non-co-ordinate based 1-forms such that :

( 2.7 )

Now let ¿o K. ^ ( 2.8 )

then
—>

- <  K  s £  , K >

= '<i < 3'  ^ J>
^  K  < /< ; <T'y •

K lo ( 2.9 )

and comparison with (2.7) shows formally that the A  • are the

inverse of K

24



Since the metric tensor has components given by ( Schütz 1980 )

« y 3/( £ , )
then the components of the metric in the non-co-ordinate basis are:

= 3  / C = 3 7 /  ( 2 . 1 0 )
J

Now since the vector has components ^ ^  in the

co-ordinate basis and f\ 5 in the non-co-ordinate basis, that is :

— ‘>
f t c  e-

— >
ft ( 2.11 )

and since: ->
K5r K ' s  £

then
ft K ' f t ( 2.12 )

So

K K 3it ft lft l ( 2.13 )

So the metric is :
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which has the same form as (2.4), but the basis vectors of the 

internal space do not form a co-ordinate basis, an important 

difference. Since we will be using the mathematical language of forms, 

which involves extensive lose of the exterior derivative we shall use 

the co-ordinate based metric given by equation (2.4).

We now come to our main hypothesis, which is that the set of left
— y

invariant vectors fields are Killing vector fields of the

metric. A  Killing vector field is a vector field such that the Lie 

derivative of the metric with respect to this vector field is zero :

^  ~> Y  = o ( 2.15 )

which in component notation is :

v  K sA Y %<Y ?A ̂ ~ O ( 2.16)

( For a fuller discussion of the concept of the Lie derivative and a 

proof of the last equation the reader is referred to Appendix Two. ) 

Now the basis vectors Kj of the group have no spacetime 

components, so that in equation (2.16) the 4+n components of V' are :

“ C o > 0 , 0 > 0 , ° > l < s ' )  ( 2.17 )

and K  ̂  is independent of spacetime.

In equation (2.16) the and ¡f indices are free, so we shall in 

turn put them equal to :

a) ^  r  ' which gives :
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O ( 2.18 )0*

*/?; \ 3 > * > v  ; -  o

b) ^  ^txv  ̂ /  - A  v^iich gives

C A  '  Cr<t l< s ̂ < 3

:. A j V  5 S >  /»i i ^ i-j AjL 9a A i - O

C) A  ' J , )S - K which gives :

Ai £>.• i-4 ■* 5-4 £>y Ai * r.-j 9„ /< { r

1

/ < s  ^  is k 4- $ c k %*■'* ^  . p/J ^/Z /< 3 - O

and these equations are satisfied if

where - e i  A
>

and -  O

( 2.19 )

( 2.20 )

( 2.21 )

( 2.22 )

( 2.23 )

( 2.24 )

( 2.25 )
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where the £  . are the "internal vierbiens" given by:

3'j
zr zr

( 2.26 )

with 'Ksj:j = the n dimensional Euclidean metric.

Another set of internal vierbiens relative bo the non-co-ordinate 

based metric tensor can be defined by :

•fst' e ?

and because of equation (2.10) :

T
= /5

We shall return to the internal vierbiens in a later section \hen 

we perform our explicit calculation.

The case for the non-Abelian group being explicitly SU(2) x U(1) 

can now be considered.
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Eight Dimensional Kaluza-Klein Theory for SU(2) x UQ).

The use of SU(2) x U (1) as the non-Abelian group is motivated by

the success of the Weinberg-Salam model. It is also interesting from

our point of view in that it is the explicit product of the U(1) group

with a non-Abelian group. This means that we can use the U(1) part as

a bookeeping device to keep checks on the results, since we already

know the U (1) results from chapter 1.

The first step is to consider the form of the internal metric.

This in turn requires consideration of the Lie algebra of SU(2) x

U(1). There are four left invariant vector fields which we shall call 
— > — >
hr and and they satisfy the following commutation relations :

O

=. D

Cstv' V t

Putting a basis on the group space with co-ordinates x^ and x^

( i =1,2,3 ) means that the Lie algebra can be expressed thus :

*
1 ll

« Ï  ¿ I- + K  -

(I

tbT K s  3 ? *  K s

so that the conmutation relations imply that :
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= a constant which we shall put equal equal to 1 for later

convenience, and

The left invariant vector fields are then :

v£ -
— •>

/  — =?

kT r %

So if we assume that the metric for the internal space, in the 

co-ordinate basis is :

then it has the same form in the non-co-ordinate basis :

This is why fcy was chosen to equal 1



Finally, in the expression (2.4) for the general non-Abelian 

metric, such terms as ,

now become

Sse K  */ + 4-j "  3-j C  * *>  >

A y
and writing /J * simply as /) and /) ' as kk and remembering ^  /**■

that = 0 gives ^  the form of the metric as :

( 2.28 )

v^iere the indices °< A range from 1 to 8, that is over the entire 

space; / ^ J k* range from 1 to 4 and refer to spacetime and i,j take 

values 6,7 or 8 and refer to the group space for SU(2).

The determinant of the above matrix is :

det Kla = det ( >
and its inverse is :
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3 r u r

X/2>
c-v

3 ft

XT v>
- 3  W

^ d pftrftr ]

f f A f w v  / g ' b g ^ i . ^

( 2.29 )

_ >U / |
viiere and J are the inverses, respectively, of J  ^

and ^  0

In the five dimensional Kaluza-Klein theory the Killing vectors

were:

A * -  C0,0, 0 , 0 , 0  /?„ -

and in extending the theory to eight dimensions we make the hypothesis 

that the Killing vectors are :

ft* =  lr o O  ) ? °  °  , °  o

w *  =  ( °> °  , 0 , 0 , 0 '  K 's )

ft*. -  (' ^ , 1 , °  °  ,o  )

-  6 7< -S' W V ,  O ,  )

Substituting these into Killing's equation (2.16) gives the following 

conditions :
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9 r  *</» O and O ( 2.30a )

and d  - /4 - O  ( 2.30b )

( 2.30c )

( 2.30d )

■f-
K

<L • O ( 2.30e )

vdnere
tre

and t±ie are as in equation (2.26) except that indices now take

values 6,7 or 8 for the group space of SU(2).

There is one other condition vhich can be derived from the 

existence of the above Killing vectors. This condition will not be 

needed until the end of this chapter at viiich point it will be 

revealed.

We can now perform our main task viiich is to calculate the 

curvature of the extended space.
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The Curvature of the Eight Dimensional Space.

The curvature of this eight dimensional spacetime is now about bo 

become the focus of our attention. The calculation of the curvature 

can be carried out in the same way as before using Riemann calculus. 

This is the method employed firstly by Kemer and developed by Cho. 

This method is perfectly feasible but is complicated by the use of 

non-co-ordinate bases so that the connection coefficients are no 

longer given by Christoffels formula. This is the reason for the 

slight difference in the results of these two authors. An alternative 

method is to use (Tartan1 s structure equations ( O'Neill 1966 ) :

oityO1 6 *
3

po — O
( 2.31 )

and -  oi A
^  a

A-h c. A i** a ( 2.32 )

vhere d denotes the exterior differentiation operator ( Schütz 1980 )
A

and a  denotes the wedge product. The Us> are the one-forms related 

to the co-ordinate based one-forms ov* by :

( 2.33 )

where the are the vierbien.

This method has been used by Thirring to calculate the scalar 

curvature for five dimensional Kaluza-Klein theory.
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The first stage in the calculation is to calculate the vielbiens

from the metric. They are defined by the relation :

( 2.34 )

where = diag ( -1,1,1 ,1,1,1,1 ,1 ). In the above relation A and

B are tangent space indices which take values from 1 to 8. They will 

be decomposed into tangent space indices for spacetime a,b, tangent 

space index for the fifth dimension, 5, and tangent space indices for 

the internal space I,J. This index convention is summarised in table 

2.1. It can be seen from the table that we shall be using the same 

index, 5, to refer to the fifth world space dimension and to the fifth 

tangent space dimension. However, no ambiguity is incurred, as the 

reader will verify by reading on, since the type of index is indicated 

by position.

To find the vielbiens it is necessary to solve equations like :

* ¡¿X -ej
( 2.35 )

= diag( 1,1,1 ).
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It is not difficult to show that the vielbeins are given by :

p  = 4-d vierbien, that is Q  - n ^ /¡a . ( 2.38 )
Q')? '»Ov'O

= internal vierbein, that is 9 . — £  - * . /U ( 2.39 )
*4 * d T j

e ( 2.40 )

/

( 2.41 )

-e
r

- /
( 2.42 )

and all the others are zero :

Ol Te 5- - -e r CL
-e .. =
s-

$
-

S
O

( 2.43 )

It is also possible to calculate the inverse vielbiens from the 

inverse metric tensor by :
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£

oc
A £

A
â ( 2.44 )

and their values are :

= 4-d vielbein, that is 3
^V> _ v> . Cu'o

' ^  ( 2.45 )

= internal vierbein, that is fl
X 7

( 2.46 )

( 2.47 )

>e
/
<5L

( 2.48 )

( 2.49 )

and all the others are, as before, zero :

-  O

( 2.50 )

We have written these vielbiens with a capital E to emphasize 

that they are inverse vierbiens. The following relationships will be
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* 
p

useful later on :

r ̂  A
^ - eA x  ' a .  e  z  + ^  < e- V r l ~S'

^  X
X  ^ V>

,r > A

- -̂v_ CL
CL -®" v* -  /

<5L ^  ,' ^ f ii r t  •0 *J J- j

( 2.51 )

ZE ' XT Jl*.
<J /

¿L ^ yw
-e A. ^ y  X  t, a *-*- ¿p  x

 ̂z  ^

( 2.52 )

^  . 4- <T

^  _ *
JL . x  - j ^ r  c' f  *  - e j  * 4

( 2.53 )

- e x  _
r x
a j-

( 2.54 )

From these vielbiens we can write down the orthonormal basis 

one-forms. They are :

¿o ^  - -¡xj^ ^
( 2.55 )
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S' - cts* *
( 2.56 )

U> Ay ̂  -h

¿ o A y A S * +■ A y
( 2.57 )

The first step in solving Cartan’s first structure equation for 

the 0, is to find the exterior derivative of the basis one-forms. 

This is quite straightforward :

l̂ > _ A y

so - ^ v 5* <Ay /v ( 2.58 )

since 6 ^  is a four dimensional quantity and so is independent of 

A  and x1 . In four dimensions the following relation is 

satisfied :

oU^ 4 a. 6
h a  ^ <9

( 2.59 )

where, following Thirring, the bar denotes a purely four dimensional 

one-form. The reason for this notation will become clear in due course.
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9 ^ /v ¿¿X ̂

/ ^ - 9 ^  W  v> } C^Y ̂  ¿/C*

r Î

( 2.60 )

Notice in the above that we have antisymmetrised explicitly in 

the dummy suffixes. This practice will be used extensively in the 

calculations which follow. It is necessary to do this since in 

equating the coefficients of two wedge products, the wedge products, 

and hence the explicit antisymmetry, will disappear, and so the 

coefficients themselves must be made explicitly antisymmetric.

Finally
3T x  X  •

^  ~  ^_ ¿by. • ĉ y '

-4 i y t !
~  Wv/ v- o w

Now ¿o

so
£  _

so

1  C&j - Vyi ^   ̂̂  M '

( 2.61 )
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Having thus found the exterior derivatives of the one-forms we 

are now in a position to find the connection one-forms from the 

equation :

/ A  A  &
A> L~'~* " O

The usual method is to guess a solution and see what happens, 

since once a solution is found it is known to be imique. However, in 

our case, because of the plethora of indices and the rampant 

antisymmetries we shall use the method outlined in the tome by Misner
A

et al ( Misner, Thome and Wheeler, 1973 ) on page 358. Once the 

are computed they are arranged in the format :

/ , /4 - _ / r A  $ , C,

The 0311 t̂ len be worked out from :

' i  (  CAG>c +  C'+CZ C /2c a 3

This is what we shall now do.

— 1 — c . a  *—^

— _ / /'l _ b  C-
C 6 c /a ¿~J

-  ^ ¿O /v
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but 9v  -e .

-  A
h>

£>̂ V ✓v

, ^ a_ C, c.
, C^J c ¿o /v

where the bar refers to a purely four-dimensional quantity. By 

inspection then :

4s C_ Cfc ,

c  CL
L x j  -  o -  O

C i > T -  o

The same can be done for C~> '

cJTJ- -  o

( 2.62 )

^  -  _  (x  ¿o 8  /V ^

—  t  f ,  . D  CL . S 
J  ¿o a  — ✓"> , à¿O /V ̂

J n  , IT ,tr^  :r^r ^  a

But i T ^ v V  ¿-X ̂  ~  ^
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I ¿T c\
S O  £  C icch i /V *" x  /*. O^V1

"S- Cufe f ^  ^  ~  -, !■<-* i £ C^% '̂*̂' ̂  <r̂TC

Therefore

c ^ é >  =  -
^  -->7 r
* “ ^  e  ^ j > -- / ¿ o ( 2.63 )

and all the others are zero :

^ c r - o

^  -  O C'TTT °

( 2.64 )

Finally,

d ^ T ~ i  ^ -*%(®yL £j ~

where ~ 0  U/ —  c? -p V^" ( 2.65 )

oU^ x _ ç C<^*> Ca,^ u j^  /\. ¿—i~  L <5l ̂

Cst-CTX  , ^  A j /v
~ ZC 'IT
C- 5~o~ ¿*-i /w

/ - 2: cr v-  £  C JT* /v
*<

In order to solve all these structure constants it is necessary 

to express the orthonormal basis one-forms in terms of the co-ordinate
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basis one-forms :

"  <~~CL y ¿At ̂  /\. C  ̂  ̂  ¿ A  ̂  .y- ¿At -* J

— £ « -c r  ¿ A - a  ^  >> ¿ A  °  ^  J  pCyc J  J

"~ ^ / 4 ^  ¿ A  ''V ¿At^ ) ^  •£ ̂  ¿Ac ^  y  f/oc0 )

"‘'X  *-C77<. ̂  C A  "~V £/(/T A J J ✓x y> cC*^-*- €  ̂ ¿ A ^  )̂

By inspection
^  IX* 3:
^ 0 . 5  ~ £jr^r - O

and

— J- r> 1 ~  6£  Ajufo .e ̂  e

~~ Cja^p &  v» ¿ A ¿At v>

-L ¿A* ¿At

and

“  j  -e • ^  ¿ A A

—  C^r * X  e ^ L  e*/

O

( 2.66 )

( 2.67 )
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and, finally,

/ r J  t  K 
~ X  €,■ ê te A  11, I C % * * -  9i v  ̂ 2 . 68 )

Using equations (2.27) and (2.30e) we obtain :

ef <̂,F
and from above

= K k;<1 * *  ^j s-

S' X  4 K r\
-  °TJ< “  d:

T   ̂ xJ &  h. -  d/v j

so

J~K - £ ' T * k C9j - 9/,, -e 7 )
z ° - *i. X  4~

J ^ / < *>• ' * ;  Cstr

r  - / ? £  / ; *  x  --*J
( 2.69 )

Equation (2.67) is easy to solve

(^£LGT ̂ -- <J =  £  K- cr

- dc^zr X
_  v-U\

=  ~  *  CL

<c ;r 
a  :

<c
Z'

= - v <  c ,ccr

( 2.70 )

45



K  _ ̂  K  I
where W  is shorthand for ¿C n C  W . o~ I

Finally : — ^  Cc^<o " e

T C^crX  e ¿L ^

Cl <>e v
f r
£ ^ J7< k

v*
-  i  * *  / '

so

C-Ĉ L> -&■

'J.
7-

a. <b
£ «>' :

r 1 „ x  k  c.
-  = ' " c j x  K * ,

- c ,  -
zn

C J~K
k T  , x  

e _  e ^  -  £  C j-/c

f  /  ' j_ „ T  /< zr
^ 7 -"— £ 0  cr/< -e -e- v

r T  ^  K
£  j'K -^v

^  /<

e x  /  '~  7 / ^ >  

- /  *  " '

+i(^= s - t
K e „  c r c ; ^c '

r

■i *•; /,

■l 6 r  / '  
2, ^

-i C s t ^  K * t ' s ^  k t  t v j•*■ tl vr --- V*

— ’ {csc * / * ?  e J / < ^

e  T  (  -f :i -  ^  ) J

- 7 ( V7 ^— V

^  S ^+ Cst /ci

^  S ■&c 5-6

:r -  ^
i/■i &  -  ^

rr
where ' is the Yang-Mills field tensor.
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So

\P x  —  ^ X

( 2.71 )

To summarise, then, all the structure constants are zero apart 

from the following :

The reader should notice, in passing, that the structure 

constants are antisymmetric in the bottom two indices and that the 

topmost index occupies a unique position.

It is a straightforward question of substitution to evaluate the 

connection one-forms. The results are :

( 2.72 )

( 2.73 )

( 2.74 )

( 2.75 )
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^  +Î c u X  (2>?6)

Î  /¿U, *o 6  ( 2.77 )

^ « . 1  31 ^  C^ij x  f  C«.z.j- -*- dt^^rzc ) °  ^  ( 2.78 )

£ C ^ X / <  -*- -  Cj-K X  )  ^  K

( 2.79 )

and ^S~T  ~ °  j ^ 5 - ^ — 0  ( 2 . 8 0 )

A  further check could be made by subsituting these connection 

one-forms into Cartan's first structure equation. The details are not 

included here.

We can now calculate the scalar curvature of this eight 

dimensional space. The first step is to calculate the curvature 

two-form using Cartan's second structure equation :

otisO A
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which is related to the Riemann tensor by :

*
A

<S '
/
2. *

A
G e o ( 2.81 )

This enables us to read off the values of the Riemann tensor and the 

scalar curvature is related to the Riemann tensor by contraction :

A  -- A  3
A~ *3 ( 2.82 )

which because of summation is :

A  G
K  -  H 4  a

-  /€
4xy{)

^  *2 /e
CL X

ĉ 2 L

X

+ ¿1 /Z 5 J

^  X

( 2.83 )

The calculation is quite long but not too difficult :

¿?6v j  *- 6 * *° “ c ✓v ¿-U 6

¿'U ̂  X  a . uj

Now

¿¿c *"J ) = oL C tJ «■(, ^  C%«r ̂  J c
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— cL U* ^ L j -h J- p <A * . a _
^  6 ^ ^  ^  ^  + i  c \ > -  oU^*

+ J  n  ct
c "<>x ^  ^ w* o c  ;? ~r ¿T^cJ

valere we have used

¿̂ - C  ̂ ) ~ Ĉ J  ̂ ¿¿Y
*  . A
/\ ¿-J j- /* °L 1 0

and

i  c ^ ia l  ) : 2 ; i  C ^ i  ) — O

Now

/ «- c-
e  a  * 0  ¿> = f £_J i a  ̂  . ,-*S J. JC  ' ^  C 5 i ^ + ' C  __ ¿-̂-L c X )

6a  ( co ^  b + £  C  c  b .- ¿o5' w- ^  e °  ¿, -r i-5

and

, ¿c 3 _ / / „ a,
S~ A  ^  b  ~ \ 'i. C - pt.T

<?C
) /v t S t i  w  0  )

and - Ci cVr -i Ccì j  ~ r  * t J  h  -v 3. <*-a  w  ' j i t  i r  '  c  J\ r  )  ^ ^  )

*  H  ¿ 4 * * ^  - ¿ ¿ c
So adding all these terms gives :

<* /< + - K X  ) U2 ̂  )

R 6  " ^ £ c  bjr oL
l r>°- . . . <?L . S~A  ¿O

’“a  e. %  x  ^  u  ot a  w

" i  t ‘ t r  ( f u
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+ J- r ^ L
2, ° 6 r ' 2_ ^  ¿̂4- *->^  A  ¿O ^

X  ^  d , A

/ ^  X  x  /<
~  i  C J K  ^  ^  ^

(
/\

a o -' C,^c5- o 5- -A 4 c
c

,2. w  c.5" ^  ^ x '-' C l
_ c
^  b O' W

t o

< ^ C 5 b S' ^  + i

* ( iC % < ^  « • * - ) -  i  - ¿ C « , c  a- ~ e  )

-A  ̂ ^ C Æ^  X ^  ^  ^  [  i  C ^  i  x ° ^TI ) t-o

>' Ct 1 ^z  ¿o -  i < r  C 6 K  C  i3 /< J w
/c

But

___ /
h — < rC /) c ê - xi i*~~> cL*

+  X % c £ -  ^o C  A  * /?C  5 6 o X ¿-0 A *--'

So the only term in which we are interested is ^  **"*, ec ,̂ and by 

inspection we can say that

*1 £  6 a d  ¿o C a <~>^ ^  ̂  C ^ b S  (t -fois. t'J Ĉ ,vt~ )
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* X  t  % x  { - £  C ^ x  |

* ¿O ^ c A to C /j

'f(s- c  cL ¿~ w < ^ )  A  f''' Cfco s’ 40 ° .)

^ S. ^  I  i~i ^  /\ ( C-6^ X  i~> e  }

Relabelling dummy suffixes :

5. t e t  ¿-J C a  <o ̂  i~J ^  ¿3 -j- w  ^

*  i  f c ^ t  o % x  e ^ t x  <->

V ^  CL^cls- <^hcs uJC/\^><yL -b C ^ cL j: C^0T

-  oUZ°^b+- *3 *"o* ^  ̂  +  ^  O ^ t r  t o ^ A ' O ^

+ *f C ^ c L r  C'bc - C ^ c i  ^  ̂

¿f C c  ^ t  x   ̂ c<X X  ̂ bJ> C a. i~J ° ^

'*'■% C C ^ c^X C è c  X — C ^ c ^ j : CL i^ e y L ^  ^ ¿O c  /v ^  ^

where we have made the coefficients explicitly antisymmetric. 

Therefore :

J  /O <x_
*  *  6 u t  ' V w  V a  w C i
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- - K / V / f c e -

i F *

2 ( f °~cL r  r  6 C  x

*

x
/ * , £  J)

- r \ x )

that is

CL
A ~ b c ^  =  /?«-

X. r  / zr a
3 X

So ^  eoi>
ö^ o - f u+)

/ r ^ r
>- +  f a *  -iF~~ -  1

/ ‘z-f a, - 1  ̂ r b
cĉ >

 ̂ Cv. <3

/ V bJ
and since

/ *■ - / = *cu - / *- X

«X __
^  \ ' b l  ^

—  O

b « .x  -  F ^  F b  1« . l r  t, J

then

/€ a b  6 =  A llf> - 1  r 4 4  /■ ,  ,
*  r  x

*■ X

cu'

( 2.84 )

Also

*  % -  =
£C

S’ w- 6
*D

a w  5"

cT A
,

CO g~ + £o a ¿~> x  X
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=  ¿ C i  c

] ± * i c\s-«r * %c-% r «-J"1"Kic\f • c-i- \ r.«

< ~ CL .
Î ^  6 * ? J- ^  ✓V*-J

i'-? c£  e  ^  C /V ^  ^  )

e  £  ^  ^  c \ r  ^

But
J £ ^  4 c r  *-> c  |

*  *- =  £

^ ^ £KS'c~S' ^ C a /€ 5- U- X c , X ¿-i ^  t-J

Æ  s^yjr ^  ̂  ̂  ̂ sp <t 3T ,'̂ ri ^  s~ jz j- ^  ̂w

Therefore, by inspection

/€ ¿T C X r. ^ ^ é i -  c. c J-

Therefore

/Z
ô  sr

CUJT ( 2.85 )
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Now

~ ^  ^  6 1 ,  í¿  w  A ‘~° ■*'-L£c C*~x  ~ *  c r r  ; ^

+i c V  r - ¿  . c2- C cc¿ ¿O /V )

^  ^ c ̂  ^  enr ) f „ i - J- ¿¿ £  ̂clhC _/ / -A

 ̂ C ̂  , T   ̂ r  ^ l< <-
eLk‘ *o  to * * o

/ ¿-* a  <5

X  e  ¿ ¿ X  ^  ^-£ £ £  6> °  er T )erjr

£  c ^ 6 J - ^ s ^ i C c ^ Jt< ^ c
3 - " /

£  ¿ c ^ o t x  - ^ x o t 3-;

-t-
C  C X  + A-7 X  ~ C-x n  ̂  ) U?^7

But

-2- ^  j. C-£̂ C 1— * C A - >  ^

C- i *
C j f  ^O a  ^ ^  X  c ex ^  C 'V<~J

* i  r j  ¿  /€ ̂  ^
K
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Therefore, by inspection and relabelling certain dummy suffixes :

/? c1  C J  a ̂ ® i  C cJ  S' ~ c«- j-  r   ̂ trXJ- ^ c X X  c ^  A  U S

■ +- US

fa -

5 x  C C. jT ^  A  i-J

' ( r U
^  <• c  .Ta ? /7 x ^  c c

A7

T U >  A

4 1  C ^ C  /■? • / r ^ x J -  ^  C  J j  C x  J- J  O  A  «o

4
£ ^ ^  x X A 7 )

| £  (  c
/”'"7

c r  c t u ) ¿o e  l
/

It is now necessary to use the explicit form of ^ :

¿o *  , - A X  «6 ' 5_ ( c  -  c  4>o
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Strictly speaking the bars above the c's are not absolutely necessary 

but they are kept for the sake of emphasis .

So

= ic V . )  c

+  S - C - O b c ^ ) (  C •h X  X--)
- l  r «*  C C c _ tS r  M  f r> °~ ^  \i ^ c-cr x m *- c A-» x- )

■b l
*  C c. A7 (  &  ̂  Z-J- +  C  X r X  ~  ^ c T ^ 7 )

1 C C ^  *  L C \s ~ * 1•Xs-1 X  £  C J  - C x  )

Therefore :

* X
a  X - ./ rX I C

d  X
X

--' r«-V  ^  b x  C  i l l  -  i £

-l r CL
u. ¿L A-7 i C M TL ^  j- c

® x \
* C  z  )

( f c ^ x ^ 1 ^ 0  n )
AT x

'i r T ^H I  1 t -T̂ i  ̂C c na.T - c ̂  n )
Now the last term in this equation vanishes because the first 

part is symmetric under interchange of I and M, and the scalar product 

of an antisymmetric and a symmetric tensor is zero. The other terms 

vanish because

CL a-7 " C x x ^  X  _C X - c>
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which are consequences of equations (2.69) and (2.74). 

This leaves us with :

* a. = J p * p ̂ , a -? x- ¿>~r <5^ ar \
-  C-cuj: (_ 4 â \ ̂  CL- J

( 2.86 )

M S ° ^  T  ' ^  ̂ cl * j: ' ^  a ^ ^
A T

X

C ^ :T 3 a  (  & ot j:  t~>ĉ  -i- (c *- c c)jx  ) ¿-'^3

But /£ J  - £  /? S  ^  ^ Cr ^ ^ cL + A  J  O i T  ^  C-  ̂  "

.J'
c p  ^  sz Tp 5'i ^  5 /v ̂  / ? s*

So, by inspection :

j: <T'c
,̂ r , .i— ! ✓v UO

^  ¿ r x  -  ° ( 2.87 )

Finally

/ e 3; — qIaP  J  4- l~J CL A* tP T +- /< A  ^  X

= cL(iCc i r  NT«- 3̂ c r ^ - '  _)

+ H  C ^ ^ - i ( c p K  <- C*.„X J A ) »  ( { c V T ^ d i c V ^ ) « ^

^v- M l i  f  ̂  Kr-l ) )^ 7 1  C c \ , <  -  ^-¿(c

* - ( i C c H d j - c ^ p t + K C ' * '  i - o ^ T  -
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C i C C *--T 'C3 ’cJr') C^J-K +■ c *CJ

A  ^  C  ~ C - J < J r  3 ,  c L  a . t^ > °~

*"i ¿C j ~ Cj-ĉ ̂  ) C ~̂_ c  ̂c °̂ to  b ~  ^  C  )̂

cr/< ^  C"X /^cr ' Cj'/<r~2L3,

x  C ' « ^ b K  fcJ*‘ A',~3 ̂  ^  £«^;r

A7

Now
^  XJ  - Î  ^ /vt-J

^ ^ T c x ï  W ^ / v ^ 5" ^  *  Jc^i<

f  /c 4- J #  XL L . *  ., *“*- k  ^yci_ ^  ^  <~‘

/ X  /<cand so, by inspection : £  /? ,j-^_ ¿o a  i-J

£  X  •* C-ct/< ̂  )("£•*" j -*., *- C ^ ^ t ) ‘o  a  ̂

^  Cc - C - « « X J f  C ^ 3-t ^ c ' 7̂ T - C^ ' ) 40'<A
U>

$  U jv-/ ^ C  ^i(7 ' C Jî**' ) C, t o  ,C

It is now necessary to make explicit the antisymmetry in K and L in
K  t.the coefficients of ¿o and ¿o :

^  ^ r
/? %vJAL t. ¿0 /v tJ " c , ^ M C c ^

■ t ^ j -  - « W ^ V
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' í l C c - x  -K  r ^cL/< ) (  C U  +tK + C

C  ̂c^~ C a í - 2 )C c ̂ x/< +■ c ) j ¿o'̂ /vto4K

+1
e

i
C C M  K *- C /< A-7 '  Caí /< 31 3^

—  C c x m /_ ^ c : ^ 7  * C,

C TL-̂  c *_ 3-
/73̂ c "V/< *■ c  icj- - c j-« n

c M  \
^  ;

>¡ ¿ O  A, l-0

Therefore : /? 3J/C t r ~l ¿ ̂  ^  ̂

V  [ C  c X k  -e t*-L.T  )

<Cj) (,

M  _ a-í \j~<_ c x X  ~ C X*- )

X X  c ^  o'1 /CJ ' C j k  ̂ )  j

C c fcï c^<_x  ) c T<c -*- C

 ̂C r M ÍC A c ~ C^Í<̂ )C<̂ H

-  ¿ C ^ c .  ^ c -^7 ~ <^A1

So
X  z ~ -  ' - l e  Mi  ^ x c r

¿r 7T X  X  \
( c  /-i t  )

Í \ C C ^ T  <- c f c I x ) C c 4- ^ *  c V x )

C < ^ x  ^ c c j r 3 í c
^  X )

V S Ce

So
^ C  j / ^  -  C a 7 ;r ̂  J £ C ai j- ^ c  r  -  c■r _  -t )

/e
X = r

X X i ^ *. X
T  \ / í>- X  G- X  \

3" 3 ̂  C X  ^  C  X  3

- i  C ? J  * Y  C  X 3.A1 - c ' m T '
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~  C + ' CG~z;:̂ ')C c*~ ̂ x  ^ ^  X  'r ^

£  C ^ j ^ n  ̂  C ^ f ^ j  ~ CT ^  )

( 2.88 )

Collecting all these terms together gives us our expression for 

the scalar curvature :

/?(?)- /P*'*3 , o ¿>CLS~ K
A- ~ ayL> ■+ A ,K f  +' ZLP /e X  X

=  / e ^ -
1 / ■ * " V ,Ti?LAp - 3 . r ¡~*Ao r

5. - T I P  z. r
- cx-b X

x - C u x " ' 7

V- ' 
V c ^ j * C clj- 2 :X c '

s-CT
X  +- ^ x T ;)

__ i»
C ^ c r M C +- c-x ^  T  ~~ c ^  x )

=  /?
(%=) ^  l  

pf
^  cub

'f'¿Â '̂ o _  l 
ctl

_  j /" . ¿t R.
11 ¿L- L C  -t o  A-1^ )

_  i
^ v T

>~1 £
C- x < r ^ ^  c 1 zr c j"^i

( 2.89 )
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The final term in this expression looks very much like a quantity 

which depends only on the internal space, and indeed a calculation 

similar to the one above but using only the metric of the internal 

space, that is the metric on page 30, vrauld show that this term is 

exactly the scalar curvature of the internal space. The exact details 

of the calculation can be found in the appendix ; here we shall merely 

quote the result which is that :

Earlier in the chapter we mentioned that there remained one 

further condition vhich could be extracted from the Killing vector 

hypothesis and it is at this point that this condition will be 

revealed. The Lie derivative operator follows the Liebnitz rule 

( Schütz 1980 ) so that :

where X,Y and Z are vectors and g| is the metric tensor. Now 

consider the above equation with X,Y and Z replaced by the left
-> — >  77>

invariant vector fields, that is by Vs , v ̂  and vv 

We have :

( 2.90 )

62



But the Lie derivative of a vector field with respect to some other 

vector field is just the commutator of the two vector fields, so that 

in our case :

Therefore :

it? a ! ) c s l ( < - cst jiC ■?,K )

But the hypothesis that the left invariant vector fields are Killing 

vectors means that the Lie derivative of the metric with respect to 

them is zero, so that :

Cst 3 xv' * Csv J-6 X ~ °

( 2.91 )

This is a very important result. 

Equation (2.69) can be written as :

e 127 T
j -fc

so

Cs-t = -  ? X ̂ e t
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but
l—

e *  e  ^3X V

so
3* ̂  t

L- M ._ x j- 
K  ^ t

K
e * -e v e s £  „  e>r ^ ur-i

_ r  L su n T z r  k
- o K  li_n e  e  3 ^ j -

.. M  x  J“ *e £- ^ x j

^  X  Te  t̂  e 5 e  £ c ^ j/ y

and also

^ 4  »X
Vi -r t  ^

£ t  4 ,  s &  v C j

- - -ê  x  J~
V e  5 -e , £ x  m  j-

therefore

y- -  €
x/ j- cr
^ .5 ^  t

-*- C X  3

so the above equation (2.91) means that :

( 2.92 )

64



This condition will be used from now on to effect simplification 

whenever necessary.

Using the two equations (2.90) and (2.92) gives us our final 

answer :

( 2.93 )

¿ 0 CL, 4>
£ /  7 ^

~  l F'
ck i> r

cuL t -h £ <j~~t)

This shows that if we use as our Lagrangian the curvature scalar 

in eight dimensions that it decomposes into the curvature scalar in 

four dimensions plus the U(1) field tensor squared plus the SU(2) 

field tensor squared plus r<~ , the scalar curvature of the

internal space. This last term is usually interpreted as a 

cosmological constant, but since the internal space is highly 

compactified its value is too large by far. In cosmology, simple 

arguments show that if the cosmological constant is not exactly zero 

it must be very small. ( Misner et al., 1973 ). Note that since :

(i^t)
S rC  ̂ CT/x °

then it is always positive. It is interesting that this term, which 

gives an absurdly high value of the cosmological constant, is also 

responsible for predicting particles of very large mass in the Dirac 

equation. This will become apparent in the next chapter.
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CHAPTER 3.

The Dirac Equation.

Introduction.

So far, we have found that gravity, electromagnet ism, and 

Yang-Mills fields have separated out, as Pauli put it, "like oil and 

water". This is now about to change in considering the Dirac equation.

The position we are in now is that the electromagnetic field and 

the Yang-Mills fields have been absorbed into the space as properties 

of that space. The Dirac equation has, since its original inception, 

been seen in a more geometric light and Cartan has shown that Dirac's 

original equation is one particular example of a general equation 

which exists in an n-dimensional space which may be either curved or 

flat ( Cartan 1966. ). Utiyama ( Utiyama 1956. ) has shown that a 

curved space may be described as a patchwork of flat tangent spaces 

each related to the others by spacetime dependent Lorentz 

transformations, thus showing the exact way to generalise the Dirac 

equation. This means that in our case we can rigorously write down a 

Dirac equation and because .the electromagnetic and the Yang-Mills 

fields are propeties of the space then they will enter into the 

equation naturally.

It was Thirring who first noted the existence of a Fierz-Pauli 

term in the Dirac equation in the five dimensional case ( Thirring 

1972. ) and in extending his work to eight dimensions many more extra 

terms appear. Once the Dirac equation has been found there is a 

certain amount of freedom in interpreting these terms. As always, it
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is wise to proceed cautiously and so we shall make explicit the form 

of the Dirac equation before making any simplifying assumptions.

The Dirac Equation on a Curved Space.

The Dirac equation is generalised to a curved space by 

introducing the vierbein field and by replacing the ordinary 

derivative by the appropriate covariant derivative ( Nieh and Yan 

1982, Utiyama 1956. ) thus :

( 3.1 )

where m is the mass of the particle concerned, is a spinor on

the flat tangent space, is the covariant derivative and

is a set of Dirac matrices vhich satisfy :

-r r b y * ' it X

( 3.2 )

oJz is the Minkowski tensor :
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L = diag ( -1,1,1,1 ) ( 3.3 )

The covariant derivative is given by

D  - @ __ cr

_£X/h
where cr = the generator of Lorentz transformations

( 3.4 )

U~ S' l ^
( 3.5 )

and £̂>.<3^  is the spin connection, vdiich is related to the 

connection coefficients by the formula :

Æ
c~
CK. (  Æl ^  j

( 3.6 )

If we make the assumption that there is no torsion then the connection 

coefficients are given by Christoffels formula :

JL J ' r C  3. a

J > )

( 3.7 )
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and hence is given by :

5 C c -  ^  r̂ _ 3

( 3.8 )

where

y £^0
.X-'v. _ %>
ce ^  h

( 3.9 )

y
These # are sometimes called the Ricci rotation

coefficients, and we now show that they are in fact equal to the 

structure constants which were used in the previous chapter.

In our eight dimensional index notation (3.9 ) reads

Y CL
Æ S jZ *  -  A \  c

«  %  ; ^ * J/3

( 3.10 )

which by relabelling dummy suffixes is equal to :

Y
C-
A Ô 8 A> )

( 3.11 )

The structure constants were defined as follows :

69



-  —  i r £ - Z  '3

But
C-

ot C * %_ ^  ̂  )

-̂«K.- ¿X?. ^  ̂  c^>  ̂

= i * ¿ 0 * * /5
^  ¿'¿'X

( -̂_ C'
2- L /3 , *C -  -€ £, /j J) ✓x

and

C 3 /« '?
X  C/^/G ¿O A W  - -  £  Ca<3 C  ^

A

so

_  f <r C- A  8  -
’A -A  €  ec -€-/* 2_ d e f —  -e

/>,* ~ **

and comparing this with (3.11 ) shows that:

A  n CC A  (l

Notice that the X 5 as they have been written are
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antisynmetric in their last two indices whereas the c's are 

antisymmetric in their first two. Some authors write it one way, some 

the other. Notice in my case, having chosen to use the notation of 

Misner et al., that the lowered top index takes the third place , 

whereas for the V '$ it will take the first place, that is :

^ c a g  ^  c-

The Spin Connections.

As a last step before proceeding to the Dirac equation we need to 

calculate the spin connections for our eight dimensional space.

Formula ( 3.8 ) can, by the arguments of the previous section be 

written in terms of the structure constants as :

£  C  c / * / 3 o  +  £ / ? c - a  ~  3

( 3.12 )

The indices A,B can take the value a, 5, or I, and the <=<. index 

can take the v a l u e ,5, or i so that we shall have connections like 

etcetera. They are presented here in a fairly logical

fashion :

t
-  *

C
e C  ^ '- 'b  c  A ^  —  ^  h  O C v  3

X. C  + C S b  ~~ b 'J 3

A  / T C  x
:r- Ad —  C  <3
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t   ̂ C  C  ̂ C CCcAz ~

"■x 4 -  y u >  ^ Z  ^  x

^  -£ * ~ / U  -I e j / ^ x

( 3.13 )

where ¿ b ^  is the four dimensional spin connection thus :

-  i
e  j l  [  C c J ^ ^  +  °

c - h  '

x
!

^  ¿ V b  b ~  *" 4 2  r  4 ,

/- —  -■'' 
" / ^ < o

•

^ a b  • / r - /
y V

. 4
e y  ^ ^ ^ - 6  X  v  O u j ^ b -  C i

( 3.14 )

/ r

( 3.15 )
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¿o.a / . J C s c C ¿ i o

"1 ( C^s T *- C <L j.f ¿ 5 "  T- )

/*ÓL C-

( 3.16 )

¿
>  fX *

£  C ^ r c  ^ c  " c  )

J -  (  C ^ ss  + '  C rb -1^  3

( c ^ r z *  í V í í  -

c>

( 3.17 )
/ c - 
i -& C CaO. S~c. Cĉĉ C 5-c «̂ 3

^ i ejf £ Ĉ ss' + ' Cj-^ J)

^  - ( C ĉ .s 't  *A. /V ^
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- o

^  - J f  c  ■ r r ^*. C *-¿â x c ^ c «-c,x

*̂ £ (̂ c^jf> C*-xX — 3

'  -¿ € ̂  ^ Ä C X  ^ i  e ^ —  (T C ^ J - X  )

_  / „ C
" 2- e^  A^c X

( 3.19 )

^ z ^  jr r ^ X c  -»- C-o_ cx ~ A ̂  e*. ̂

X i e i ̂  ^ U r r  -  )
^  e ? [ c^-^j t j- C ^ i  - cx t^ 3  

=  O

( 3.20 )

'  ¿ e ,jC f C s - X C  ^ O c o x  -  C x o < 0  

■^X "* C*crz ~ c  j i  <̂- 3

^ ■* c ^ T i  -  )

( 3.18 )
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¿ o /
2.

cr
O 3

' O

 ̂ ^ r
3- ^ *'c~ (■ ^ 3 C -*- crc l - cr c5- ^

€>£ C C S-^T ^ “ CĵSS'')

+ i  ^ ^ ' c r x  - c jrcrjr3

o

( 3.21 )

( 3.22 )

All tiie c's in the above equation are identically zero so :

^  S'Zb" ~  °  and ^b ~ Z j  ~  O  ( 3.23 )

^ • v -  =  i  * - X  ( C-Zj-t. + ^ C J -

(" * C ^ J  ~  3

C ^ZZT ^ (~'Z<^J ~ c 0r/< ^

J. i Xc-vj' —  Q j c j  3

^ P iC C r
*■  ^  C C* 3 * + ^ ~ V  -  Cj-fc x  3
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Now, since c
-  C r o

and since /< < / /c ^  Ia / _p

then i  C C ^ T ) -  d t ^sT/c.Z:^)

j <  /■ x
2. C j f c  3- " C cri<- 3T )

hence

~£- X £ e ̂ C r ( 3.24 )

¿ 0
^ o  ' ^  €, J C C -^ v- C•Tc. ^ ' C vTc-: 3

J" f v ~  ^'Cns'^O

.>
*- C ̂ j k  •* 3

-  < 2

( 3.25 )

¿0
xcr. ^  ^ yv- 6  ^  2: J- c C, 2X37" <~' ¿rc_3r )

ei  C o ^  C ^ ' T  ~  Cjpj-^: 3
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( 3.26 )

/
z.

t<-e • C - c 37C2T

t fC

This completes the calculations of the spin connections. Notice 

that they are antisynrnetrie in their first two indices so that, for 

example, in the above terms like ^°ssS and and are 

automatically zero.

The Eight Dimensional Dirac Equation.

We can now explicitly work out the Dirac equation using the 

results of the previous section.

The equation is a generalisation of (3.1) with replaced by

ot and a replaced by A :

/vv -f - /i y  £  : ' AA
The garnna matrices are a set of matrices \<hich satisfy a relation like

(3.2) but since the Minkowski tensor is now eight dimensional then

there are eight matrices in all. Cartan has shown ( Cartan 1966 ) that

the minimum rank of a Dirac matrix in an n dimensional space is
r rv*> 7Sr a- -* , vhere the square bracket means the biggest integer less

than the argument. Hence in four dimensions the Dirac matrices have
, C*U a.

rank four ( S  -2. ~ H- ) and in eight dimensions they have
-C.uU ¥

rank sixteen ( *- ~ Z  = <«> ).We shall make explicit these

1 6 x 1 6  matrices at a later stage.
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After performing the sumnation :

Av

,Y a£<L 4'-7 - •' 4-^ Jrfei 4-^

since A- A" ~ ¿-~ - /Z —
-i - £_ _  =  o

Now
*  <r- )  "T*9 - - ^  = f < 9 _  - i  ¿0 - - A S
4-

~ ^  ( T ^  __ / ¿O, G~ ~  r

-i- ¿o, cr" ¿»-X
C T ^ ' 7 J

-  f e r  -  * £>~'4j \■> J- <yj^f a~ ̂ J ) 'i'
*-f-

( 3.27 )

-  ( V f
JT 6" ^  Q 3 -7^

( 3.28 )

D~  f  -  C D ;  ^  ;
L-J A  3 ̂

( 3.29 )
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D-i - (%■ ¡X'h) '
T  -l ^0-7-i{ 7~

oSZ-
J- ^ £ £ " CT*r- '■’>* ~ ) £

( 3.30 )

So the Dirac equation in full glorious detail is :

A\ H' -
^  ^  ^  X  c . -  9 , ^

* -* ^

£K-

0L ,-r ̂  - . , T  _.v ̂   ̂ & a. ^ y >v Y C lr fyrpj.- y

- y  d- _ _ _
“t~ y ® r  / )_ ̂  , 1 / cj-- S

^  r 5 . cr - j  o - ^

_ -"■, .
*  tsJe~x-J^  C T —  ^  /—  ¿0 . (T—

. X-r y\
^  ^oJz* £  <J~ J) ^¿y

•f /< pL ^  ' ) t - ‘ Uj ojU
^ J ) ^

£  cr } ̂

+ i C G - ^  j

*, r  _;
£  A  f / , ¿x/'=

'- 5  ^/o^- r r ^
<^zr

' i  H r * *  r
ZTî r f
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Let us look at the part of this equation containing the spin 

connections that is the part which doesn't contain any derivatives :

and the terms underlined in wiggly red lines cancel out as indicated.
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This leaves us with the following spin connection parts :

(¥
(L

* ̂  X )

i ( c i j ^  e K  ̂c - 3  ?
/* S1** s A

■+' A

f~1 '*a Y £r„
! f  *  X ^  a t  I  ^  ̂

* 1  C J - Z  I
Further simplification can be made by noting that :

* r < L e t  <fl c ^ ) =  ¡ r ^ t / L c  t - i  *-*-*) 

=  if L t  (  ^  y ^ v r ' Y r Y * J >

and that

¡U^) =- ^  ^
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Now since
^  A Z

then

4- r> - Z  -  o
¿o'

so that in effect Y  ̂  and anticommute :

ar5 ' ' r r ii^

so

**(- j. f*A <r̂ ) -- l  ( r V > V  y V

r r . U C ^ ^ ' y " '  * * * "  r )
(B)

r Ub
so that :

- , ^ * 0  ^
( Note that in going from line (A) to line (B) above we have used

r “- i r 5 ¡rr  -  y  4 r ‘L r J'

which is true because of dumny suffixes. Alternatively we could have 

said that :
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( ' A * * * ' r
c b

and t±ie last term vanishes since it is the scalar product of a 

symmetric and an antisymmetric tensor. )

A similar calculation shows that :

X d  FoU T r ' i  X^-Go. ^  <r'"  = - i  r "  A<U- ^  tr
A fl-Z

Therefore the Dirac equation in this curved eight dimensional 

space is :

/vo_'if' '  ̂ ^  ~ ^ X ^ * t) cT

r  ■ 'f' - ' / c ^  ^  v  ^

T -

'? *
ct r

j_ i ^ A, ^
$ r  Ae^A x  T

-

K
cL €.- £^  rj-/< cr-

> ^  ^  J h

( 3.31 )
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At this juncture it is worth pointing out that this equation has 

been derived using completely rigorous methods and that no assumptions 

have been made. This then will be the foundation stone of further work.

It is commonly stated in the literature that Kaluza-Klein theory 

predicts particles of very high bare mass because in any matter field 

equation the radius of the curvature of the internal space appears as 

an eigenvalue of the derivative operator, and since this radius is 

very small this means that the particle has very high mass ( Witten 

1981 ). To see how this comes about remember that the scalar curvature 

is given by :

.  ■**■*..
Y  ZTK

Now, the scalar curvature has dimensions of inverse length squared so 

that the structure constants in equation (3.31) will have dimension of 

inverse length and will, if the internal space is highly compactified, 

have magnitude of the order of the Planck length. Accordingly, any 

mass entering into the equation via the last term in equation (3.31) 

will have magnitude of the order of the Planck mass. This point will 

become clearer when each term in equation (3.31) is considered in 

turn. It is easier to do this if we choose a specific representation 

of the Dirac matrices, which is what the next section is all about.
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The Dirac Matrices.

According to Cartan ( Cartan 1966 ) in an n dimensional space the 

Dirac matrices are 2 J * -2 matrices, so that in eight

dimensions tine Dirac matrices are 1 6 x 1 6  matrices. Extending the 

procedures of Mecklenburg and Domokos and Roves i-Domokos ( Mecklenburg 

1980, Domokos and Rovesi-Domokos 1977 ) we shall use the following 16 

x 16 Dirac matrices :

- y & T

Y' -  v &*(- -T- V

( In the above equation the index I 

v  (Kwhere X a x v  = the normal 4 x 4  

(3.2). Explicitly they are :

( 3.32 )

refers to the fifth dimension too.)

Dirac matrices which satisfy

\
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I
y

/ i
~  i

Y
2.

Y
'I

Y
sr

Y  °

so that and

The 1 6 x 1 6  Dirac matrices are therefore :
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It is not difficult to vaork out the generators of the Lorentz 

transformations :

CT A 3

The results are :

k*r<.

O-'l 
/L'*.(<'

(X  *

_  Cf~
CL

v r  V

_c r ¿x. 5

¿>v. b<7"
v k v  .
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( Henceforth the subscripts 1 6 x 1 6  and 4 x 4  will be dropped unless 

special emphasis is necessary. )
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cr (.2

;i_
n

_  T

Ibis concludes all the necessary algebra of the Dirac matrices, 

so that we can now consider each of the terms in the equation (3.31).

1) The mass term ^ 1 X C'Jvczr cr

Ibis term is referred to as the mass term since in the 

( unrealistic ) limit of no U(1) and no SU(2) and no gravitational 

interaction, and a spinor which is independent of the x“* and

the x1 co-ordinates, and m = 0, then this is the only term which 

remains and the Dirac equation (3.31) becomes :

*• A- — 
•>* 0 vT /< r

!<■ , 
C r -oO

Performing the sunmation and using the following relationships :
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T- Y

^  o ;< x0 C7—
/c rẑ ~r 

Y  CT J

gives

Y 9 ^ £ G T J
-7?

S'-

and

and writing

\

y
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For this to be an eigenvalue equation means that 

have the form

and our equation becomes two separate equations :

= 1

= 2

has to

Now since :

J r 67 e
* c =  %  C07z C  ^  1/r2

~  1/r

where r is the radius of curvature of the internal space. If r is of 

the order of the Planck length then any mass arising from this term 

will be of the order of the Planck mass. Note also that if «̂ 6 

does not have the above form then we do not have an eigenvalue 

equation and we cannot interpret this as a mass term.

n- 

then :
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In the literature most authors assume that the spinor has some 

kind of exponential dependence on the internal co-ordinates ( see, for 

example, Souriau 1963, Thirring 1972, Mecklenburg 1 980 ). Carrying on 

this tradition if we assume our spinor has the following dependence on 

the internal co-ordinates :

then these two terms give us the standard covariant derivative terms 

in the equation thus :

e

and

These terms will decompose under the above scheme into :

Notice that, since in our representation of the Dirac matrices
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the elements of % do not lie on the leading diagonal, we have a 

further case of component mixing, the phenomenon we first noticed when 

we considered the mass term.

4) The term
j

Ihis term represents a gravitational interaction term and is 

usually put equal to zero in the literature by demanding that four 

dimensional spacetime is flat.

5) The terms
d-S-

and cr
-

These terms represent contributions from the U(1) and the SU(2) 

field tensors. The first of these terms also appears in the five 

dimensional case considered by Thirring and that author argues that it 

is so small as to be unobservable.

6) The term
cY -

Y
TTK,

-r'c j-

This term represents an interaction from the W-vector. Notice 

again that there will be component mixing in the same way as in the 

mass term.
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The reader will observe that vre have avoided coming to any direct 

conclusions concerning the above Dirac equation : this is because we 

wish to emphasize the degree of freedom there is in the equation. For 

example we have shown that because the radius of curvature of the 

internal space appears in the equation then we expect particles of 

very high mass to appear. However we can "tune" our mass by changing 

the original m which appears in the equation. The phenomenon of 

component mixing awaits interpretation, but may offer us another 

degree of freedom in dealing with the equation.
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Conclusion.

Kaluza's initial hypothesis to extend spacetime from four to five 

dimensions probably seemed highly speculative at the time. Furthermore 

the special form of the metric tensor and the necessity to impose 

certain conditions was more open to criticism than admiration. It was 

the work of Einstein and Bergmann, however, vohich honed the theory to 

perfection, showing that it could now be formulated with only one 

hypothesis namely that there exists a unit Killing vector field on the 

extended manifold. The question as to why there should be such a 

Killing vector field remained unanswered.

In the extension of the theory to 4 + n dimensions to describe 

gauge fields, the concept of a group manifold is introduced. From this 

we take the hypothesis that the basis vectors of the Lie algebra are 

Killing vectors of the group manifold, which in turn leads to the same 

hypothesis for the covariant form of these vectors ( see page 32 ), 

the first four components of vhich are identified with the Yang-Mills 

gauge fields. Hie question as to the origin of the Killing vectors has 

now been answered : they come from the geometric unification of 

spacetime with a group manifold.

The calculation of the scalar curvature of the extended space is 

the cornerstone of Kaluza-Klein theory and chapter two shows the 

result for the particular case where the gauge group is SU(2) xU(1). 

In this calculation the Killing vector hypothesis is used to great 

effect and the fundamental result is obtained using completely 

rigorous methods. No additional hypotheses are necessary. As expected, 

a cosmological term appears in the Lagrangian in the form of the

96



scalar curvature of the internal space. Since the internal space is 

assumed to be highly compactified this means that the cosmological 

term is very large. It may be possible to compensate for this by 

adding in by hand an additional multidimensional cosmological constant.

In chapter three the exact form of invariant equation of the 

Dirac type was derived from the multidimensional metric tensor. Having 

obtained this equation we are faced with the problem of its 

interpretation. We have shown explicitly how Witten's idea of very 

massive particles comes about, but other than that all we can say is

that there exists a great deal of freedom in treating the finished

equation : the fact that the spinor is a sixteen component spinor may 

make it possible for us to describe four particles ( that is four 

four-component spinors ) in one fell swoop but then this freedom is 

reduced by the phenomenon of component mixing. On an optimistic note, 

the standard covariant derivatives of Yang-Mills theory are easily 

obtained by hypothesising that the spinor has an exponential 

dependence on the internal co-ordinates.

In the text it was stated that the reason for choosing SU(2) x

U(1) as the gauge group was to investigate the possible link between

this theory and the Weinberg-Salam model. We have been successful, as 

anticipated, in obtaining the Lagrangian for the U(1) and the SU(2) 

fields and, in chapter three, in displaying the usual covariant 

derivative terms but beyond this no further unification has been 

demonstrated. The measure of the lack of our success lies in the fact 

that the Weinberg-Salam theory goes much further than this : the 

left-hand electron and the neutrino are doublets under SU(2) and the
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right-handed electron is a singlet with U(1) symmetry, this scheme 

being repeated for muons and muon neutrinos and for any other 

generations of leptons, for example the tau leptons ; covariant 

derivatives are defined in the usual way thus introducing the W-vector 

field and the A-vector field, and then the crucially important 

phenomenon of spontaneous symmetry breaking is used to give the fields 

mass, as a result of which some mixing occurs so that the observed 

photon field is :

and the neutral intermediate vector boson is :

where 'Qw is the Glashow-Weinberg angle (Aitchison and Hey,

1982).In fairness though, we could not expect much more than that 

which we have achieved since a complete geometric reproduction of the 

Weinberg-Salam theory from Kaluza-Klein theory would be a major 

breakthrough.

In considering the future of Kaluza-Klein theory we must ask how 

it could be improved. Initial advances will come from the nature of 

the theory itself : the work here has been done to permit 

generalisation to larger groups by extending the dimensions of the 

internal space which, if we are searching for a complete unified field 

theory, will be necessary to describe the strong interactions too. As 

far as the internal space itself is concerned we have treated it as a 

group manifold. Witten, however, has suggested a more economical 

method which is to consider the internal space as a manifold acted on 

by the relevant symmetry group. For example the group manifold of
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SU(2) is the three-sphere vhich has as a symmetry group SU(2) x SU(2),

that is it invariant with respect to both left and right translation.

In his paper " Search for a realistic Kaluza-Klein theory " ( Witten

1981 ) he argues that to effect a complete description of particle

interactions the internal space must at least have SU(3) x SU(2) x

U(1) as its symmetry group, and that the manifold of minimum dimension
2 2 1with this symmetry group is CP x S x S which is a seven 

dimensional manifold. A  Kaluza-Klein theory with this internal space 

would have 4 + 7 = 1 1  dimensions. This freedom to specify the internal 

space exactly will be one area whence improvements to Kaluza-Klein 

theory will come.

In the above paper Witten goes on to point out that supergravity 

is widely believed not to exist in a space of dimension greater than 

eleven. This tentative suggestion of a link between the two theories 

could be a fruitful line of future research and is in fact being 

actively pursued by those authors who study spontaneous 

compactification ( Cremmer et al 1976a, 1976b, 1977a, 1977b ).

One aspect of the theory which has lain dormant is that of the 

gravitational unification. If ultimately the theory meets all its 

demands in the particle sector then interest will be focussed on how 

it is modified by gravity. It should be pointed out though that there 

is a large degree of separation of the interactions in the theory : in 

the calculation of the scalar curvature each term stands isolated from 

its neighbour, and in the Dirac equation there is only one term,

, which represents a gravitational interaction. Chodos 

and Detweiler have looked at the five dimensional theory from the 

cosmological point of view and shown how it could have happened that 

the fifth dimension has become so highly compactified. It would be
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interesting to examine their ideas in the case where spacetime has 

more dimensions.

The theory of fibre bundles will be another tool open to the 

future researcher. The geometrical methods now available to the 

physicist represent a formidable array of techniques and these will be 

particularly useful when the nature of the four dimensional 

gravitation is being taken into account ( see, for example, Eguchi, 

Gilkey and Hanson 1981 ).

Further research is needed and will no doubt quickly come. The 

steady trickle of papers in Kaluza-Klein theory is growing and, indeed 

the two scientists who recently won the Nobel prize for their work on 

unified weak and electromagnetic theory have now turned their 

attention to Kaluza-Klein theory ( Salam and Strathdee 1982, Weinberg 

1983 ).

In summing up our opinions of this theory we point out that it 

has survived for sixty years and, like a good tree, has bent with the 

winds of progress and, although not yet able to "explain everything" 

is still flourishing and looks like continuing to grow for some time 

yet.

100



APPENDIX ONE.

The Curvature of the Internal Space.

The purpose of this appendix is to show that the expression for 

the curvature of the internal space is as quoted in the text. Again 

Cartan's structure equations will be used so that this derivation 

mimics part of the main calculation.
—>

The group is described by the left invariant vector fields 
—^

and Vs vfaich satisfy :

U . Z ] - o

1 if , - o

tlr—» 

&

¿St" V v-

( A.1. )

viiose components on a co-ordinate basis are, as before :

— > — >

( A.2. )
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so that :

Í 3 Í
V/

/<

( A.3. )

Using the metric on page 30 :

( A.4. )

and making the Killing vector hypothesis gives us :

■t
3'v A /< - O

( A.5. )

Decomposing the above metric gives the vierbien as :

iT
s ^  / -  o

jr
^ S' r=  O ?V

( A.6. )
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The above metric can also be expressed in a non-co-ordinate basis :

so that the vierbien in this basis are :

e S - / - o

e T
s' -  C>

) ^  3-

and since

then

$str

The one-forms are :

¿o ̂  =

¿~J2T

( A.7. )
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Cartari's first structure equation is :

Cio^ A
6 fi tJ /I

O

( A.8. )

and defining the structure constants by :

v , fi- i r A  £ , C- - £  C & C ¿O fi IrJ

( A.9. )

gives for the connection one-forms :

¿J I f

T £  f  ~ C  CT/cJT^ ^ /C

( A.10. )

Cartan's second structure equation is : *

( A.11. )
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so / f ^
v/  ̂ ¿zO J -  "f , 3L^  K

= i  C -
or

£- ^ j- CvT^ ^ 3; /i ■

*■ £ C c  V *  *

¡PVo
’

1

£>¿1-0

- Í  (f +
~r

c ~ ̂ Z- /< ~ Ci<l_ ^ ) do 1-

-  £d C K J~ M + & K f~i T

«o

to z\

/C

lO n

K

to

Antisymmetrising :

&  -r- ~ r ! ^ C ^  <Tẑ 7  ̂ A? — ^CT "" *. j ¿ Z7Ô '-T n &  !

c cXj-í- + °  c;r¿.  ̂ 140 a ‘■°

<i  co^XK +■ C r )<r -  O j-x*  K  i  ^ /V *-0

( C C/^UK C/<cX )C  C J ^  C ^ J -  C'J-M K )

- c C X /c^7 «- C~m<. ~ Ci<n̂  )C c O-L. c <_T CT¿- }

* ^  iO
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£ 
K

But /Ç X r - Í fitzr a-?
L. t~l

¿O /» ÍO

so

/e
X  X

x *  =  - r c V -  *  c *T<r - c - T * * ), ¿ <?x

Î C c ^ x  * c ^ X  C T X Z

J ,

), .• - V

X ^ X x  /C C -f r ~[1 ^ J- x.x  X X  ^ ,< +  C  ,c  -  X  K )
(T c \ . / e x

^  /C 77 ^  ^  -r- +/c X u XK L /cr X  ^ C
/c X - C X  K ;

i c x , T  . o W c ^ o ' ^  c ^ < }

But

C  *  I  = C =  O

S O

/? = 'X C:z:X
K  S r x j

C c X  X  X  ^
X  /e —  C- ]< )

"  t K / -  c X x K )^  ^ /KX
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where we have used

or ■f-
K  T  ic \

e X - C x  J  = O

which follows by reasons of symmetry-antisynmetry.

Therefore :

* = ~i ( ° K r  x  °"°  K - c « )
( A.12. )

which is as claimed in equation (2.90).

Note that because of equation (2.92) this expression can also be 

written as :

& - -J r < ^ 3:
^  c' x - x  6  C- /<

' r  /c _ x  5 c ^o- C K

107



This calculation can also be performed by finding the Riemann 

tensor from the antisymmetrised oovariant derivative of a Killing 

vector. The starting point is equation (2.27) :

A J  9
✓cst

and because the connection coefficients are symmetric we can replace 

ordinary derivatives by covariant ones :

^  -  K i  K *  . /<

Multiply by K  ^

<  ^  .
^  J  ^  t\s  ̂k.

K-t K-i -  A i ; k K i '<1

( A.13. )

Now the covariant derivative of the metric tensor is zero

V  ~ °

and using

* - V - **■ *  *

108



gives

«j K*: - h. + K f Kt ■ .u - O^  J  J J  /V ‘ «

where we have written /<. . 33 K t y

Raising the j index :

4 ? ^ / < * '  K t  •
'  -c J; k. -  O

( A.14. )

so that (A. 13.) becomes :

/<; K /< £  k

yS
/<

Now using Killing's equation in the form :

/<
t -  O

gives

W'
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and using (A. 14) once again :

*
J
¿  ; k <^st K

K J
-t' 4. c-st ^  k

j

- A J
S

Therefore :

/<
<J
S J k 2.

V
<^sC K t

k

( A.15. )

Now the Riemann tensor can be found from :

A  '5 j J j k

í  <■

-•A*J kJj ~ ’" A ,  /? -ejfc

; k ~ \J k.

J  ̂ ~ j ^

« U i ~i ¿ a t ' « * l
—  si A.
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~l K's !~é k*! / *  *
( 2.

i C + t V K ?
^  SJ

i x i V
X C ' Y  k  h K Je —  j' <-> k

1 r & X  ; ^f c y  K* ky
te.

4̂ .
C 6tr'/ C ^ y X  , c f  / < /  / e 1' 

‘ <J k )<■

0 <-àk

So, explicitly :

/* -A. - -*Í i '

'¿ C íÍ ^ V " ^  kí K —  ,1 ^

So *  -- X ' * , *

-  » ^  ^  „ -é- X  . j *  ; ^
¿  ^  C  /  /C y< / < £

, ,  , ✓  r *  --Î4  -  fe1 O s  £. C „  y K  T  k  y /<

V' £  X  ,,J ,^-í^ /
/"J- &  y  K  •

^  ^  ú

Kí Ut' ^  ^ k <
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1 s  -ér ?<
-  ~ i  c  r

s y
e  r s

1 y
Cat:  C ^ X -é:

C y c T Î

/ w- X s e r r

" 5 9 c) ^

and the last term vanishes because of the antisymmetry in the first 

two indices in the structure constants.Therefore :

-l Cst^ C ̂  5 t c* 5t
v'

—  -  ' c$-fc * f c fcs . r ^  -6 5v + Cs - c V

5 t 5 t
i- C s t ^  [  -  c  ^  ~ o   ̂ - C 5

v/

because of equation (2.91),

* 4-
£ . 5 6  C- ✓

and because of equation (2.69) this is the same as our previous answer.
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APPENDIX TWD.

Lie Groups and Lie Derivatives.

The point of this brief appendix is to outline some of the ideas 

used in the text concerning group theory, Lie derivatives and Killing 

vectors. It is not intended to be an exhaustive account of these 

topics and for further elucidation the reader is referred to the 

literature ( see, for example, Schütz 1980 ).

A  group is a collection of elements under a binary operation if 

it exhibits the usual group axioms, namely closure, associativity, the 

existence of an identity element and the existence of inverses for 

every element. If the elements are continuous then the group can be 

considered as a manifold. Now any element g of the group maps any 

other element h under left translation to gh and under right 

translation to hg. These mappings will carry tangent vectors at one 

point to tangent vectors at the image point. A vector field is a rule 

which defines a vector at each point so if a mapping carries a vector 

at one point to the corresponding vector at the image point then that 

vector field is said to be invariant under the mapping. In particular, 

if a vector field is invariant under left translation then it is known 

as a left-invariant vector field. Similarly, each vector at a 

particular point defines a left invariant vector field by the 

operation of left translation. If V  and W  are two left 

invariant vector fields then so is [ y  , W '  ] so that the left 

invariant vector fields form a Lie algebra, known as the Lie algebra
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of tiie group. If we take some set of linearly independent 

left-invariant vector fields then we can write :

V- C&£

vhich defines the structure constants of the group. The significance 

of this lies in the fact that every Lie group has its cwn uniqe set of 

structure constants. *

The Lie derivative is a co-ordinate independent way of taking 

derivatives of functions or vectors or tensors on a manifold. Loosely, 

the Lie derivative of a function is the difference in value of that 

function at two points on a curve separated by a parameter value 

, divided by that parameter value A  9^ . Similar 

definitions can be made for vectors, one-forms or tensors. Now a 

vector field defines a set of curves to vhich it is always tangent, 

called the integral curves, so that the Lie derivative with respect to 

a given vector field involves taking the difference along these 

integral curves.

If the Lie derivative of the metric tensor is zero with respect 

to a given vector field then that vector field is known as a Killing 

vector field, and an analytic expression for its components can be 

derived as follows :

The metric tensor is a rank 2 covariant tensor as is its Lie 

derivative, and, furthermore, the Lie derivative operation follows the 

Liebnitz rule, so that :
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¿v 3 ic*,y) = (C- 3 1 ) X ,
+  ( X p * , y  ) +  j / i x ,  ^  y )

( A2.1 )

where X  and y  are two arbitrary vectors. But

vriiich in components is :

U ?  - V/J 3; -  X J 3:
0 u

so that ( A2.1 ) can be written in components as :

C3; k ^  y k) = (¿V  u y k
JL

-f- 3; k ( v k k  yJ - x aA V J 3 Y

j . k x°( / a *  y k - ^
0

k

k

)
Therefore :

A)
k

6 ^  5/ J ^ y *  = ^  y

~  jy c a  ̂ ■a ^ a  ̂ V//
~i:k y ̂ oU vAJ

115



-  ̂ J ; U. )  ^  Y + 3;k v' ' (dj. XJ) Y
W_

y^
■G>

+  V v ' ^ '  y ^ ) * 3 -  1-fc. v ' V ^ x O Y

<2> 0)

\ - 3iU**y/'(W'L) 
-— @

+  ±k ^  y ' f ^ v ^

and the underlined terms cancel as indicated. Changing dummy suffixes 

gives us :

Uz 3i ); k ̂ v/V  ̂j-k  ̂y
<- 5 .  k  i>0 v

3  >; X° y  S l n V

so that finally because of the arbitrariness of X  and Y

3 !  )j k  -  J y ‘ 9 ^ yt

and by demanding that this is zero gives equation (2.16).
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TABLE 2.1 - The Index Convention

WORLD TANGENT SPACE

INDICES INDICES

The extended manifold :
A , £

Four dimensional spacetime : j

The fifth dimension : S

KThe internal space : 4



TABLE 2.2 - Reference Guide to Variolas Quantities

The Vierbien.

The four dimensional vierbien and the internal vierbien are 

defined normally:

e  ̂  ^  >> ~  ^ --->

^  ~ 3-

Most of the others are zero :

^  S' ' ^  ~  - =  -e O

but



The Inverse Vierbien

As expected :

£

d

and

and

-  ¿c <5L l̂ s
I



The Structure Constants

c, -<o c.

C  <K~ 6 <r - c> <Ltacr

r eK~ " o

- o - T ^  =

Cjrcr -  o C ^  cr

-  o C-r3' 0^

C  a ^  ^  6

S ~  ^  ĉ io

*T~

^ X C t k  X  -

o

o

O

o

=■ c>

K



The Ricci Rotation Coefficients

•£- ^ “-V- ^  i - A  A/,

s  — i  A 4
s C  - i e '̂ / ̂ vfa x

^  -
/ C /*' -ê -v i~  < * -c ~

^ _ ~ i

A>r _ J ^  ^ C'^X/<

~  X " A - i  «** ^ T K

- o

— o

x  a - o

A' " ^ j - o

—  o

-  o
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