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Abstract

There is much interest in election forecasting in the UK. On election night, fore
casts are made and revised as the night progresses and seats declare results. We 
propose a new time series model which may be used in this context. Firstly, we 
have statistical models for the polls conducted in a run-up to the election; the 
model produces the distribution of voting amongst the parties. The key here 
is the use of modelling the probability of voting each poll as latent variables. 
Secondly, we use this information in the forecasting of the inevitable outcome, 
continually revising our forecasts as the actual declarations are made, until we 
can actually determine what we believe the final outcome to be, before it actually 
happens. We outline the nature and history of elections in the UK, and provide 
an account of time series analysis. These tools, as well as the theoretical basis 
of our method, the h-likelihood, are then applied to the creation of each of our 
models proposed. We study simulations of the models and then fit the models to 
actual data to assess forecasting accuracy, using existing models for comparison.
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List of Common Notations

yt: observed data for a particular party at poll t

x t: probability of voting for a particular party at poll t

rt: total number of votes at poll t

6t: time interval (days or hours) between poll t and poll t — 1

9: vector of parameters

9\ maximum likelihood estimate vector

9: maximum hierarchical likelihood estimate vector

L: likelihood

l: log likelihood

h: hierarchical likelihood

ARCH(fc, j ) :  ARCH model with k parties and j  lags 

SV(k, j) :  stochastic volatility model with k parties and j  lags 

GARCH(fc, j) :  GARCH model with k parties and j  lags 

i.i.d.: identically and independently distributed 

E(AT): expectation of variable X  

Y ar(X ): variance of variable X  

Cov (X ,Y ): covariance of variables X  and Y
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Elections and polls

Before a general election, various opinion polls are taken, asking samples of the 
electorate for whom they will vote. These are carried out over a certain length 
of time up to election night. Following voting, exit polls are carried out, ask
ing samples of the electorate for whom they actually did vote. The UK is split 
into what are known as ‘constituencies’ . Throughout election night, each con
stituency declares the number of votes per candidate. The winning party in that 
constituency then represents the seat. At the end of election night, the total 
number of seats per party is added, and the party with the majority of seats 
forms the Government. The main parties in the UK overall are now Conserva
tive, Labour and Liberal Democrats, who all have candidates standing in almost 
all constituencies.

Politicians, among other groups, are interested in forecasting the final out
come before it happens; not only for the final result but also broken down by 
constituency. Various organisations seek to produce the best forecasts and to do 
this requires a robust and accurate forecasting method. The forecasts (mainly 
of the final total outcome and for the key parties in the UK) are quoted in the 
media. Also, the country begins to plan for the economy, implications of the 
winning party are made based on these forecasts, and a whole host of ‘what if?’ 
scenarios are widely debated. This has led to various approaches, statistical and 
non-statistical, to satisfy demand.

For instance, UK Elect ([106]) is an online election viewer, forecaster, proces
sor and simulator which can be used at any time to predict the outcome of an
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election. It can take current opinion poll percentages for the main parties plus 
the results of one previous election and predict the results of the next election by 
constituency. It may also be used to extrapolate these results from the results of 
by-elections. In Chapter 4 we will review key statistical approaches to election 
forecasting which have been developed, looking at their specific methodologies. 
These include the poll of polls, the cube law as well as some newer ones.

Lewis-Beck (2005, [74]) distinguishes between two types of forecasting: scien
tific and non-scientific. The former, with which we are concerned, offers estimates 
based on some scientific procedure, such as a simulation, market analysis, sample 
survey or statistical model. The latter are guesses based on hunches, intuition, ca
sual conversation, non-systematic interviews or coincidence. The paper of Lewis 
Beck (2005) reviews the leading scientific approaches to election forecasting, look
ing at models which come from the US, the UK and France. Forecasting from 
statistical models has been popular in the US and France, but has also been ex
istent in the UK, although to a lesser extent. The UK focus has been on using 
opinion polls to forecast. Whiteley (1979, [108]) made the first attempt, with a 
Box-Jenkins model of monthly data based on ‘popularity’.

Lewis-Beck (1985, [75]) concluded that a forecasting method should be com
pared using four criteria: accuracy, lead time, parsimony and reproducibility:

• Accuracy - in classical regression analysis the two measures of goodness-of- 
fit are the R'2 value and standard errors.

• Lead time - this is the time duration between observations of election data. 
For poll data the polls are collected over a short time period. The same 
is clearly true for seat declarations on election night. By contrast, elec
tion final outcomes usually only occur every four years and so lead time is 
somewhat larger.

• Parsimony - other things being equal, a few well-specified variables will 
work better than many questionable ones. Fewer parameters to estimate 
means less error from parameter estimation. Parsimony is important since 
the sample sizes, of poll data for instance, are so small.

• Reproducibility - generally, parsimonious models are easier to understand 
and reproduce. This issue is important if the model is to be used by other 
analysts, for example. This is harder if the measures are costly, in time or 
money, say.

Lewis-Beck (1985) proposed putting these factors into a single formula, known 
as a ‘quality index’ , Q, in order to get a rough idea of the model’s usefulness and
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to compare different models:

(3 A +  P  +  R)L 
^  ~  20

where accuracy A, parsimony P, reproducibility R and lead time L all take values 
between 0 and 2, and the 20 is the maximum possible score of the numerator to 
enable an upper limit of 1 for Q. Note that accuracy has been given three times 
the weight of parsimony and reproducibility. A model which is highly accurate, 
parsimonious, easily reproducible and with good lead time would score Q — 1.0, 
whereas one which is the complete opposite would score Q — 0.0. The limitation 
of this index is that one may only subjectively assign values to each factor, which 
may be difficult to do.

To forecast election night using tools within time series analysis makes sense. 
This is particularly due to the progressive way in which the constituencies de
clare results. It would be useful to adapt models according to declared results, 
rather than just stating a model which remains unchanged as results arrive. It 
is also a natural choice because the polls in the weeks before the night itself are 
implemented at different stages, whose outcomes should be correlated with the 
state of the competing parties, which is prone to variation with time. There is 
considerable evidence that the minds of voters are made up well before election 
day (Bean, 1948, [8]). An average of poll outcomes cannot tell us about swings 
amongst parties for instance, but provides merely a point estimate. By contrast, 
time series analysis can reveal such issues.

1.1.2 Time series

Kendall and Ord (1990, [63]) state that recording occurrences on a graph whose 
horizontal axis comprises equal intervals to represent equal spaces of time must 
have occurred over a thousand years ago. However, until about 1925, a time 
series was regarded as being generated deterministically; evident departures from 
trends, cycles or other systematic patterns of behaviour that were observed in 
Nature were simply regarded as ‘errors’ . In 1927, such irregularities in amplitude 
and distances between successive peaks and troughs were identified by Yule (1927, 
[111]) as a series of shocks which are incorporated into the motion of a system. 
This leads to the theory of stochastic processes of which the theory of stationary 
time series, which includes Box-Jenkins analysis (Box and Jenkins, 1970, [18]), is 
part.

Graphical examination of data series illustrates what is going on generally; 
we aim to identify and explain this formally in a time series analysis. Subse
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quently, analyses may be separated into two classes: time-domain methods and 
frequency-domain methods. Time-domain methods have a model-free subset 
consisting of the examination of auto-correlation and cross-correlation analysis, 
but it is here that partly and fully-specified time series models appear. Frequency- 
domain methods centre around spectral analysis and recently wavelet analysis, 
and may be regarded as model-free analyses well suited to exploratory investiga
tions. Note that in this thesis we focus on the former type.

As shown by Box and Jenkins (1970), models for time series data may have 
many forms and represent different stochastic processes. When modelling varia
tions in the level of a process, three broad classes of importance are the autore
gressive (AR) models, the integrated (I) models, and the moving average (MA) 
models. These depend linearly on previous data. Combinations of these ideas 
produce autoregressive moving average (ARM A) and autoregressive integrated 
moving average (ARIM A) models. Extensions to deal with vector-valued data 
are available. Other extensions are available where the observed time series is 
driven by some ‘forcing’ time series (which may not have a causal effect on the 
observed series); the distinction from the multivariate case is that the forcing 
series may be deterministic or under control. Non-linear dependence of the level 
of a series on previous data points is also of interest, partly to try to account for 
more chaotic behaviour. Empirical investigations can indicate the advantage of 
using predictions derived from non-linear models, over those from linear models. 
Among other types of non-linear time series models, there are models to repre
sent the changes of variance along time (heteroskedasticity). Such models 
are called autoregressive conditional heteroskedasticity (ARCH) (Engle (1982), 
[40]) and they comprise a wide variety of representation (including GARCH  
models). Here changes in variability are related to, or predicted by, recent past 
values of the observed series. There are, however, other possible representations 
of locally-varying variability, where the variability might be modelled as being 
driven by a separate time-varying process, as in a doubly-stochastic model.

In recent work on model-free analyses, wavelet transform based methods (for 
example locally stationary wavelets and wavelet decomposed neural networks) 
have been used. Multi-scale techniques decompose a given time series, attempting 
to illustrate time dependence at multiple scales.

An important feature of time series analysis is to be able to track trends in 
observed data in order to use the information gained to forecast how the time 
series is likely to continue. Attached to this is the need to assess the likely 
forecasting error; for example, providing confidence intervals of the predictions.
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Time series modelling has subsequently seen a growth of popularity recently, 
and there is plenty of theory to deal with the various types of data. As with 
modelling in general, we often have a set of candidate models to which we might 
fit the data, and must examine the underlying features and implications of each 
before choosing the ‘best’ .

In this thesis we will use formal statistical methodology for this important 
type of time series, placing emphasis on the probabilities of voting for each party. 
Our key component is the modelling of voting probabilities, which are latent, in 
that they are clearly unobserved.

The idea of using latent variables in statistical modelling has seen increas
ing popularity. Latent variables are not directly observed, but rather inferred 
through a mathematical model from variables which are observed1. Their uses 
are diverse, appearing in social sciences, medicine, computer science and eco
nomics, but the exact definition varies in each field. Examples of latent variables 
from the field of economics, for instance, include the quality of life, business con
fidence and happiness - all variables which cannot be measured directly. Aigner 
and Goldberger (1977, [2]) contains a selection of papers, published and unpub
lished, which concern latent variables in economic analysis, such as the estimation 
of regression relationships containing unobservable independent variables. Good
man (1978, [49]) considers a wide range of latent-structure measurement models, 
fitting them to particular datasets for illustration. Hagenaars (1993, [54]) looks 
at contingency table analysis, covering latent variables in loglinear modelling, 
causal models and longitudinal models. Bollen (1989, [15]) provides a thorough 
discussion of structural equations with latent variables.

In the context of time series, Bondon (2005, [17]) points out two required 
assumptions, stating first that if a parametric model admits a finite dimensional 
state space representation then it may accommodate such ‘missing’ data. One 
assumption is that the responses on the indicators are the result of an individual’s 
position on the latent variable(s). The second is that the response variables have 
nothing in common after controlling for the latent variable(s), which is also known 
as the ‘axiom of local independence’.

Bondon (2005) investigates the influence of missing data on the linear predic
tion of stationary2 time series. Lower and upper bounds for the prediction error 
variance are established, properties of the predictor presented and asymptotic 
behaviour for the prediction error variance obtained, for short and long-memory

definition from http://en.wikipedia.org/wiki/Latentvariable.
2‘Stationary’ here refers to covariance stationarity, which means that the first two moments 

(and therefore mean, variance and covariance) remain constant in any time space.
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processes, respectively.
Estimation of the latent data will be important. With usual time series data, 

assumed to have Gaussian errors, the exact Gaussian likelihood function may 
be computed via the associated Kalman prediction recursions3 and prediction 
error variances found via the Kalman fixed point smoothing algorithm (a way of 
computing smoothed estimates of the state vector at some fixed point in time). An 
alternative to estimate the missing data involves using explicit formulae of these 
estimates, as proposed by Brubacher and Wilson (1976 [26]) and Ljung (1989, 
[80]), which is often more efficient numerically, especially if the number of missing 
observations is small (Ferreiro, 1987, [43]). [Also, explicit formulae are useful for 
analysing theoretically the influence of the number and positions of the missing 
data on the error variances (Pourahmadi, 2001, [97]).] An expression for the best 
linear interpolation of a finite number of missing data with arbitrary pattern of 
any stationary time series, whose past and future are observed indefinitely, was 
given by Rozanov (1967, [99]). (This involves the inverse autocorrelations of the 
series, which may be expressed themselves in terms of the AR(oo) parameters4.) 
An important departure for us is that our model will not be Gaussian.

1.1.3 Statistical models for election forecasting

Brown and Payne (1975, [23]) go into the problems encountered in the forecasting 
of elections. Firstly, special seats are somewhat independent of the remainder 
of seats in that they cannot be used to predict other seats, nor can they be 
predicted from other seats. The boundaries of constituencies often change, 
whereas previous election results are a vital source of information. Commonly, 
this problem is tackled by imagining that the change occurred before the previous 
election and then recalculating the outcome. However, this is not always an easy 
process. Importantly, the order of declaration is not a representative sample of the 
electorate as a whole; for example, urban areas (which are predominantly Labour) 
tend to declare earlier than rural areas (which are predominantly Conservative). 
Further, many Scottish and Welsh seats where nationalist parties stand tend to 
declare late. Finally, the list of candidates standing is not published until ten

3The Kalman filter is a recursive estimator with two phases: predict and update. The predict 
phase uses the state estimate from the previous timestep to produce an estimate of the state at 
the current timestep. In the update phase, measurement information at the current timestep 
is used to refine this prediction.

4AR(oo) refers to a time series model in which the current observation is an additive lin
ear function of all previous observations as well as a random component; the parameters are 
coefficients of the previous observations.
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days before the election, and so the political scenario may change rapidly in the 
run-up to election night. Therefore, a good forecasting model will need to allow 
for such issues.

Bean (1948) comments on the importance of assessing how business and agri
cultural conditions, religious preferences, nationality and cultural groups, and 
third parties affect the fortunes of the major parties. It should be possible to 
include any such factors into the forecasting method on election night, in the 
form of explanatory variables.

Another avenue of election forecasting is the prediction of transition rates be
tween parties. Miller (1972, [86]) presents cross-tabulation models for swing (the 
net change when there are only two major parties), which includes the estimation 
of transition probabilities via ridge regression5. The key here is to model change 
in which the behaviour of individuals is related to their political environment as 
well as individual voting history. Therefore, the model involves both individual 
and aggregate (national) data.

1.2 The Problem and Our Approach

We have information on voting in the form of polls conducted in the period up to 
a general election. Clearly, this scenario is a time series framework. Therefore, we 
are interested in producing a statistical model which can take this into account 
for two reasons:

1. To be able to summarise statistically what these polls say about the voting 
distribution.

2. To use our modelling in the forecasting of the final outcome. This part 
would be done sequentially; that is to say, each time a constituency declares 
its results we refine our forecast, incorporating into our model all the known 
information, until we eventually have enough backing to declare a final 
distribution of seats amongst all competing parties in the UK. Also, we 
need to determine precisely when it is that we can make this final forecast.

We dedicate more effort on the first of the reasons stated above, since our 
forecasting approach is based on that already developed for the BBC and outlined 
in Brown and Payne (1975, [23], 1984, [24]) and Brown, Firth and Payne (1999, 
[22] ) .

5 Ridge regression is a linear regression technique which modifies the usual residual sum of 
squares computation to include a penalty for large parameter estimates.
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We aim to find parameters which each represent the strength of a party stand
ing in the general election. To achieve this we make use of the collective opinion 
polls conducted by the various organisations in the build up to the election night. 
The polls are conducted at different stages and so, it is hoped, will reflect and 
track the strength of a party relative to others over time. A simple time series 
plot of proportion of votes is fine as an initial picture.

In arriving at these parameters, we rely on latent data. These data are the 
probabilities of voting for the parties at each poll. To be more specific, the 
latent data will be a vector of probabilities, summing to one, which represent the 
support for each party in a frequency sense. Suppose that there are N  parties of 
interest and we have the latent vector (px, p2, . . . ,  p^) then 100pi%, for instance, 
is the percentage of support for party 1 within a constituency or a collection of 
constituencies. Therefore, they correspond with the numbers who vote at that 
poll. We may then assess the change in dynamics between the parties, and infer 
of their relative strength over time.

These probabilities evolve over time, which forms the basis of our time series 
approach. Generally speaking, for each poll we will model the probabilities as 
random variables which follow Dirichlet distributions. Subsequently, we insert 
these probabilities as parameters of a multinomial distribution, along with the 
sample size of the poll, which in turn models the number who vote in that poll. 
Then, for each poll we have a unique mixed Dirichlet-multinomial distribution 
in a discrete-time setting. In time series analysis, we are often interested in 
assessing autocorrelation, that is, the extent to which lags affect the current 
value. If our assumption holds that each is representative of the UK opinion then 
it is possible that voting at some point tends to relate to voting at or up to some 
earlier point.

We focus on these latent probabilities, considering three types of modelling. 
The simplest is the assumption of stationarity of voting, whereby we do not 
consider time interval magnitudes in our modelling and assume that the voting 
pattern of a party does not vary (widely) over the build-up period. The other two, 
by contrast, consider volatility, whereby different time intervals result in different 
marginal Dirichlet distributions. As well as time intervals, these three types 
of model each use different historical information; one uses just observed votes, 
another previous probabilities and the final uses both. Combined with modelling 
lag polls, this means that we have a variety of information to use to determine 
the probabilities of voting, and thus we will have a number of candidate specific 
models to consider for any set of data. Note that we will operate in discrete
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time. However, having latent data raises issues for estimation, in that we cannot 
apply the usual methods of direct maximisation of likelihood. One option is to 
apply the EM algorithm introduced by Dempster, Laird and Rubin (1977, [34]), 
treating the latent probabilities as missing data. However, this depends on us 
evaluating integrals which may prove either difficult or impossible, particularly 
when we make the models more complicated. Therefore, we make use of a similar 
approach, called the h-likelihood method, introduced by Lee and Nelder (1996, 
[69]), which is a double maximisation method. First, we fix the latent variables, 
temporarily treating them as if they were observed, and maximise with a usual 
Newton-Raphson approach. Then, we switch this round to fixing the parameters 
and subsequently maximise a likelihood over the latent variables. We iteratively 
repeat this until convergence, when we simply use the ‘optimal’ parameters and 
formally ‘disregard’ the maximised latent data. However, the latter are still 
interesting to view in a plot with time, because of the fact that they are the 
estimated probabilities of voting at each time point.

Now we must address the second of our two objectives given above. The basic 
idea of our modelling on election night is as follows. For each constituency, we 
assume that there is a prior distribution on the vector of probabilities, which is de
termined by the exit poll information. On election night once other constituencies 
have declared their results we use both these results and the prior information to 
predict the vote outcome of the undeclared constituencies. This method is based 
on Brown and Payne (1975). We then use this information to update the prior 
distribution of each undeclared constituency. This process happens through the 
night, until all constituencies have declared their results.

1.3 Structure of the Thesis

We begin in Chapter 2 by outlining the general election in the UK, including 
the preceding run up to election night, the night itself in terms of the process 
by which the seats declare, a history of outcomes in past elections, the main 
candidate parties and how the UK is divided into constituencies.

Chapter 3 then provides a review of the subject of time series as a whole. 
We look at the history of its development, which covers both its applications as 
well as the key theory, firstly focusing on Box-Jenkins analysis. Next, we switch 
to aspects which we will make use of later in our modelling, which rely on the 
foundations of time series theory described in the first half of the chapter.

Chapter 4 moves on to discuss the statistical forecasting of election outcomes,
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which has been considered by others in the past. These include the cube rule and 
the multivariate structural time series model.

Chapter 5 is a particularly important part, in the sense that it provides the 
theoretical basis behind our main method of estimation, namely the h-likelihood] 
we look at established theory and proofs and give a brief review of its usefulness.

This leads naturally into Chapter 6, in which we take this method and make 
it specific to our problem, that is, put it into a time series environment, which 
involves a subtle check that we can use the method in our case. Here, we in
troduce the generic and then specific models, and outline goodness of fit tests 
available to be able to select the best model for further analysis. The chapter 
includes simulation analysis in order to study model behaviour. We also provide 
comparisons of our simplest model with the EM algorithm.

Chapter 7 is an illustration chapter. We take actual data, poll outcomes in 
the run up to historial elections, and fit each of our models to them in turn 
to summarise the poll information. We next perform various diagnostic checks 
to decide on the best model(s), including simulations and goodness-of-fit tests. 
Finally, here we compare our model with performances of comparative models 
from elsewhere, which were outlined in Chapter 4.

Chapter 8 firstly discusses our forecasting approach in some detail. The 
method adopted by the BBC in its all-night coverage of the election night is 
reviewed. The chapter then goes on to illustrate our method, albeit in a some
what simplified scenario.

Finally, Chapter 9, as well as summarising our thesis, suggests possible future 
work which may develop all that we have discussed.

24



Chapter 2

The General Election

2.1 Introduction and Overview

In this chapter we give a broad account of the entire general election process in 
the UK. The aim of this is to provide a background to the data to which we will 
end up fitting models and data from which we will forecast. We start by providing 
the necessary definitions, and then outline the structure of the UK with respect 
to the general elections, the main parties, and also a history of recent outcomes. 
Finally, the role of pre-polls will become fundamental to our modelling later, and 
so we will discuss these.

In the UK, the general election is an election in which all or most members 
of Government stand for election to the House of Commons. This is to be distin
guished from by-elections and local elections. Each constituency, or seat, in the 
UK elects one MP (Member of Parliament) to a seat in the House of Commons. 
By ‘constituency’ we mean a geographical area of the UK which is represented 
by one MP in the House of Commons. These MPs are elected from a choice 
of candidates by a simple majority system in which each person casts one vote. 
The candidate with the most votes then becomes the MP for that constituency. 
Candidates may come either from a political party registered with the Electoral 
Commission (an independent body accountable directly to the UK Parliament, 
which regulates elections in the UK, promotes voter awareness and works to build 
confidence in the electoral process1), or may stand as an ‘Independent’ rather than 
represent a registered party. The political party which wins a majority of seats 
(not individual votes) in the House of Commons typically forms the Government. 
On two occasions in the post-war period, the party winning the most number of 
votes did not win the most number of seats. Once was in 1951, when Labour

1 Source: http://www.parliament.uk/about/how/elections/general.cfm.
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had a larger vote share than the Conservatives but gained fewer seats, and the 
other was in 1974, when it was the other way round. Since both elections led to 
a change in government, suffice to say it is more important to analyse number of 
winning seats than votes.

These general elections traditionally occur on a Thursday; the last general 
election not on a Thursday was in 1931. They must be held within five years and 
one month of the previous one, but are often held before then, since it is up to the 
parties in government when to call a general election, and not all Parliaments run 
for the whole five-year period. For instance, the current Labour Party government 
has held general elections every four years since coming to power in May 1997 and 
thereafter in June 2001 and May 2005; therefore, another election is not legally 
obliged to occur until June 2010. This five-year limit may be varied by an Act of 
Parliament, as was so during both World Wars; the Parliament elected in 1910 
was prolonged to 1918, and that elected in 1935 lasted until 1945. The House of 
Lords has an absolute veto on any Bill to extend the life of a Parliament.

We collectively define all the people in the UK eligible to vote as the elec
torate. Typically around three-quarters of this electorate vote in what is known 
as the turnout; however, this was only 59 per cent in 2001. Most voting occurs in 
polling stations, but anyone eligible to vote may apply for a postal vote. British 
citizens living abroad are also entitled to a postal vote as long as they have been 
living abroad for less than fifteen years.

2.2 Constituencies and the UK

Currently, there are 646 constituencies in the UK: 529 (82%) in England, 59 (9%) 
in Scotland, 40 (6%) in Wales and 18 (3%) in Northern Ireland. Recall that in 
each constituency there are a few candidates (typically between four and eight), 
from which one is voted to occupy the seat - there was a total of 3,320 in the UK 
in 2001. Constituencies declare their winner at some time in the period during 
election night, at varying rates of flow, which in practice may last a whole day 
after polls close (at 10 p.m.); for example, in 2001 the final seat declared at 10.17 
p.m. the next day. Sometimes, a constituency may have to recount for whatever 
the reason.

Certain parties will not try to win certain constituencies due to location; 
an obvious example is the Scottish National Party, which will not try to win any 
constituencies within the London Boroughs due to their location outside Scotland.

Constituency boundaries are from time to time redrawn, usually to reflect
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changes in the population distribution; there were 630 in 1971. Subsequently, 
major and minor changes may be carried out within constituencies.

Constituencies in urban areas, where ballot boxes are fairly centralised, tend 
to declare earlier than those in rural areas. The urban seats, as well as being 
predominantly Labour, have in the past shown rather different behaviour, in 
terms of movements between parties, from the predominantly Conservative rural 
seats where Liberal also have their strongest support. Many Scottish and Welsh 
seats where nationalists stand tend to declare late. A particular difficulty in a 
close-run election is that many of the seats with contests of a unique character 
are among the latest declarers (Brown and Payne, 1975, [23]).

2.3 Parties

Between 1945 and 1970, the majority of seats were won by Labour or Conserva
tive, and each has put up a candidate in almost every constituency. The Liberal 
party, until 1974, received a small percentage of votes cast and won few seats, 
despite having a large number of candidates. In 1974 however, they received over 
a quarter of the total vote in seats where they contested (517 constituencies in 
1974, compared with 332 in 1970).

Also, since 1964 nationalist parties have had candidates in most of the Scot
tish and Welsh seats, and achieved some notable successes in 1974. In the Ulster 
constituencies political issues have always different from those in Great Britain; 
as a result, contests there are primarily between the Ulster Unionists (taken as 
Conservatives before 1974), a number of significant Independent candidates and a 
variety of local parties representing Republicans and Labour. Consequently, mi
nor parties have become more noticeable in more recent elections - for instance, 
in 1992 all parties excluding the main three accounted for 35 per cent of all can
didates up for election, compared to 18 per cent in the 1987 election (see Table 
2.2). (Table 2.1 shows all parties which stood for election in 2001, as an example.) 
Also, there has been more volatility in voting behaviour.

Essentially now, we have a three-party (and in some places four-party) contest. 
As we have already mentioned, there is interest not only in predicting which party 
will win, but also by how many seats. Figure 2.1 summarises the percentage of 
seats won by the dominating three parties in the last eight elections, as well as a 
combined total for the remainder. We see that a change in government took place 
in 1979; Conservative then remained in power until 1997, when Labour regained 
power and they have held it ever since. From the graph it appears as if it is
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A llia n ce  P a rty  o f  N o rth e rn  Ire lan d P e o p le ’s J u stice  P a rty

B ritish  N a tion a l P a rty P r o -L ife  A llia n ce

C o n se rv a tiv e  a n d  U n ion is t  P a rty R e fo r m  20 00  P a rty

C o m m u n is t  L eagu e R o c k  a n d  R o ll  L o o n y  P a rty

C o u n try s id e  P a rty S o c ia lis t  A llia n ce

C h r is t ia n  P e o p le s ’ A llia n ce S o c ia l D e m o cr a t ic  a n d  L a b o u r  P a rty

C o m m u n is t  P a rty  o f  B r ita in S inn  F in  [W e O u rselves]

C o m m u n is t  P a r ty  o f  G rea t  B r ita in * S co tt ish  G reen  P a rty

D e m o cra t S o c ia lis t  L a b o u r  P a rty

D e m o cr a t ic  L a b o u r  P a rty * S co tt ish  N a tio n a l P a rty

G reen  P a rty S o c ia lis t  O u tlo o k *

In d ep en d en t M r  S p eak er seek in g  r e -e le c tio n

L eft A llia n ce S o c ia lis t  P a rty

L a b o u r  P a rty S co tt ish  S o c ia lis t  P a rty

L a b o u r  P a rty  a n d  C o -o p e r a t iv e  P a rty  jo in t  ca n d id a te S c o tt ish  U n ion ist  P a rty

L ega lise  C a n n a b is  A llia n ce S o c ia lis t  W o rk e rs ’ P a r ty *

L ib e ra l D e m o cra t T h ir d  W a y

M e b y o n  K e rn o w  - T h e  P a rty  fo r  C orn w a ll U lster  D e m o cr a t ic  U n ion is t  P a rty

O ffic ia l M o n ste r  R a v in g  L o o n y  P a rty U K  In d e p e n d e n ce  P a rty

N ew  B r ita in  P a rty U n ite d  K in g d o m  U n ion ist  P a rty

N a tio n a l F ront U lster  U n ion ist  P a rty

N o rth e rn  Ire la n d  U n ion ist  P a rty W o m e n  F or L ife  o n  E arth

N o rth e rn  Ire la n d  W o m e n ’s C o a lit io n W ork ers  P ow er*

P la id  C y m ru  th e  P a r ty  o f  W ales W e sse x  R e g io n a lis t

P rog ress iv e  D e m o cr a t ic  P a rty W o rk e rs ’ R e v o lu t io n a ry  P a rty

P r o  E u ro  C o n se rv a tiv e  P a rty -

Table 2.1: All parties with candidates standing for election in the 2001 election 
part of the Socialist Alliance)

still a two-party contest. However, Liberal Democrats have more recently won 
a continually-increasing proportion of seats, as may be seen in the graph. The 
combined remainder has stayed reasonably stable over the period shown.

Also, Table 2.2 shows the figures for percentage of votes won (which, as we 
expect on the whole, are positively correlated with the percentage of seats won) 
and percentage of candidates standing.
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Figure 2.1: Percentage of seats won by Labour, Conservative, Liberal Democrats 
(Liberal before 1983, Alliance in 1983 and 1987 elections) and all Others in each 
general election between October 1974 and 2005.

2.4 Key Events

2.4.1 A recent history

The October 1974 election was the second one that year, due to a hung parlia
ment (where no one party has the clear majority) in the February that year.

In 1983, the Alliance party formed, which was a pact between the Liberal 
Party and Social Democratic Party. Soon after the 1987 election this evolved into 
the Liberal Democrats. Also, new boundaries were drawn up; for comparison, 
some pollsters worked out how the previous election would have turned out if 
these new boundaries were set then. This is typical practice.

The 1992 opinion polls and, to a lesser extent, exit polls (see next section) sug
gested a hung parliament would occur, whereas Conservative won by a noticeable 
majority of 21 seats. (On the election night, the results-based forecasts moved 
quite lethargically towards the final outcome.) Due to this, the Market Research 
Society in 1994 produced a report analysing the whole election including its run
up. The Society concluded that there was too much reliance on opinion and exit 
polls in the forecasting. This led to considerable scepticism in the media about 
the accuracy of both opinion and exit polls in the run-up to the 1997 general
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E le c tio n N u m b e r  (% ) L a b o u r C o n se rv a tiv e s D e m o cra ts O th e rs T o ta l

O c t  1974 C a n d id a te s

Seats

V otes

62 3  (2 8 )

319 (5 0 ) 
11 ,457 ,079  (3 9 )

622 (2 8 )

27 7  (4 4 ) 
1 0 ,462 ,565  (3 6 )

61 9  (2 7 )

13 (2 )
5 ,3 4 6 ,7 0 4  (1 8 )

388 (1 7 )

26 (4 )
1 ,9 22 ,7 56  (7 )

2 ,252

635
29 ,18 9 ,1 0 4

1979 C a n d id a te s
Seats
V o te s

623 (2 4 )
269 (4 2 ) 

1 1 ,532 ,218  (3 7 )

62 2  (2 4 )

33 9  (5 3 ) 
13 ,697 ,923  (4 4 )

57 7  (2 2 ) 
1 1 .(2 )

4 ,3 1 3 ,8 0 4  (1 4 )

754 (2 9 )

16 (3 )
1 ,6 77 ,4 17  (5 )

2 ,576
635

3 1 ,2 2 1 ,3 6 2

1983 C a n d id a te s
Seats
V o te s

633 (2 5 ) 
209 (3 2 ) 

8 ,4 5 6 ,9 3 4  (2 8 )

633 (2 5 )

39 7  (6 1 ) 
1 3 ,012 ,316  (4 2 )

63 3  (2 5 )
23 (4 )

7 ,7 8 0 ,9 4 9  (2 5 )

679 (2 6 )
21 (3 )

1 ,4 20 ,9 38  (5 )

2 ,578
65 0

3 0 ,6 7 1 ,1 3 7

1987 C a n d id a te s
Seats

V otes

633 (2 7 )

229 (3 5 ) 

10 ,02 9 ,2 7 0  (3 1 )

63 3  (2 7 )

37 6  (5 8 ) 

13 ,76 0 ,9 3 5  (4 2 )

633 (2 7 )

22 (3 )
7 ,3 41 ,6 51  (2 3 )

426 (1 8 )

23 (4 )

1 ,3 98 ,3 48  (4 )

2 ,3 25
650

3 2 ,5 3 0 ,2 0 4

1992 C a n d id a te s
Seats

V otes

634 (2 1 )
271 (4 2 ) 

11 ,56 0 ,4 8 4  (3 4 )

645 (2 2 )
336 (5 2 ) 

14 ,09 3 ,0 0 7  (4 2 )

632 (2 1 )
20  (3 )

5 ,9 9 9 ,3 8 4  (1 8 )

1 ,038 (3 5 ) 
24 (4 )

1 ,9 61 ,1 99  (6 )

2 ,949
651

3 3 ,614 ,074

1997 C a n d id a te s
Seats

V otes

639 (1 7 )
418 (6 3 ) 

13 ,517 ,911  (4 3 )

64 8  (1 7 ) 
165 (2 5 ) 

9 ,6 0 0 ,9 4 0  (3 1 )

639 (1 7 )
46  (7 )

5 ,2 4 3 ,4 4 0  (1 7 )

1 ,798 (4 8 ) 
3 0  (5 )

2 ,9 2 5 ,8 1 7  (9 )

3 ,724
659

3 1 ,2 8 8 ,1 0 8

2001 C a n d id a te s

Seats
V o te s

640 (1 9 )

412 (6 3 ) 
1 0 ,724 ,953  (4 1 )

643 (1 9 ) 

166 (2 5 ) 
8 ,3 5 7 ,6 1 5  (3 2 )

63 9  (1 9 )
52 (8 )

4 ,8 1 4 ,3 2 1  (1 8 )

1 ,397  (4 2 ) 

29 (4 )
2 ,4 7 0 ,4 9 4  (9 )

3 ,3 19

659

2 6 ,3 6 7 ,3 8 3

Table 2.2: Candidates standing, seats won and votes won for Labour, Conserva
tives, Democrats (Liberal before 1983, Alliance in 1983 and 1987 elections) and 
all Others in each UK election between October 1974 (there were two elections 
in 1974) and 2001.

election.
In 1997, due to the unpopularity of Conservative, the governing party, it was 

thought that there would be a lot of tactical voting occurring. New constituencies 
resulted from major boundary changes. The election took place on the same day 
as local elections in some parts of the UK, which meant that Scottish, Welsh and 
urban English (predominantly safe Labour) seats declared earlier than usual.

Boundaries were redrawn again in 2005. Another key feature of this election 
was that the BBC and ITV merged their exit poll data to form one set of results; 
the prediction of the final win result was consequently extremely accurate. Cur
tice and Firth (2008, [32]) cover possible reasons for this, which are summarised 
below:

• There was a shifted focus to estimate change in support rather than the 
level of support, using previous exit-poll data.

• An attempt was made to estimate systematic variation in the change in 
party support.
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• There was a probabilistic approach to forecast the outcome in seats.

• Data regarding postal voters were obtained before polling day.

• Newer graphical techniques were exploited, as well as inference and reesti
mation using new developments in I.T.

• Refusals were estimated by guessing for whom respondents and non-respondents 
would have voted.

Full detail on these issues is covered in Curtice and Firth (2008).
The next general election is legally obliged to take place no later than June 

2010, when new boundaries will be drawn up.

2.4.2 1983 revolution

The 1983 election was a landmark in British politics due to the extent to which 
across the board politicians, the media and voters used polls to inform themselves 
and others about what was happening in the election campaign. Telephones were 
used for interviewing, and there was widespread use of one-day ‘quickie’ polls.
The political parties also commissioned their own polls during the campaign. 
Additionally, there were more potential sponsors, due to the increased realisation 
by newspapers that sponsoring a poll was good to secure free television advertis
ing of the paper the night before. Developments in computer technology made 
it possible for opinion polls to conduct elaborate analyses of their data to check 
sample representativeness, and to provide more detailed breakdowns of the po
litical outlooks of different groups within the population, such as the young and 
elderly, men and women, and different social classes. This was all reflected in the 
somewhat larger number of opinion poll recordings available that year (and so 
will be a natural choice of dataset when we perform our modelling later).

2.5 Sources of Information

We would like our forecasts to be as accurate as possible (and ideally as early as 
possible), to be of use in practice. To help steer our forecast, there are funda
mentally four guides to consider: opinion poll data2, exit poll data, results from 
previous election(s) and the results declared per constituency on election night.

2In this thesis, when we refer to opinion polls we mean polls of the voting intentions of the 
electorate.
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2.5.1 Opinion polls

Bean (1948, [8]) defines ‘polling’ as essentially the art of obtaining from a remark
ably small sample an indication as to how the entire population of the country, 
state, or community reacts to a particular issue or candidate. He refers to polls as 
a scientific device for obtaining a cross section of public opinion at a given time. 
Such a cross section makes it possible to bring historical trends up to date and to 
project them into the future. Thus, polls of public opinion are now widely used 
for general elections, and are a generally accepted feature of political analysis 
and judgement. When concerned with the prediction of elections, as well as the 
historical relationships between parties and past trends, polls provide invaluable 
current information, which supplement and bring up to date these former influ
ences. ‘As the few go, so go the many,’ is the basic principle in public opinion 
polling.

It is important of course that the polls are reliable for use. For example, 
nationality and economic groups often vary greatly in party preferences, and 
have been seen to shift their political allegiances abruptly. Local polls, to be most 
successful, must represent all the elements in a community, geographic, economic, 
and cultural; national polls, to be most accurate, must embrace communities in 
each of the significant regions.

Bean (1948) provides a full discussion on polls. He states that it is after the 
conventions have chosen the candidates that the combination of political history 
and opinion polls find greatest usefulness in predicting the election outcome.

On the whole, polls tend to share common technical features. They typically 
involve a quota sample of about 1000 interviews, selected according to age, 
sex and social class, as well as region and constituency. A concern with speed in 
identifying respondents, as well as a marked deterioration in the electoral register, 
meant that no polling organisation wanted to undertake pure random samples, 
with all the additional expense in time and money.

Since 1970, organisations have taken major steps to accelerate the conduct 
of polls, especially the final poll forecasting the result. Obviously, organisations 
differ in what they do, and there is no agreement about how best to conduct a poll 
quickly as well as accurately. However, the belief with polls is that, in principle, 
different organisations asking the same question ought to get results within a few 
per cent of each other. Despite all this, it is interesting to note that in every 
general election since 1964, polls have consistently overestimated the vote for the 
governing party of the day.

In an election campaign in which there is significant last-minute change in
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electoral opinion, the ability to poll up to election day may be crucial in accurate 
forecasting. Otherwise, superior accuracy of late polls cannot be assumed; rather, 
it would be more reliable to consider as long a period of time as possible, over 
which polls are carried out. A poll of polls is conducted, which is simply the 
arithmetic average of each separate poll conducted over a build up of time. This 
shows far greater stability than the reports of any one poll from week to week. 
However, the volume of polling reflects the willingness of the media to spend 
money. Indeed, the influence of the polls has some (albeit minor) impact on 
steering the final choice.

It has been known that some politicians now read the polls in search of guid
ance for influencing voters, so as to try to change subsequent poll figures to their 
own advantage.

The creation of the Alliance (which evolved into the Liberal Democrats) ex
panded the demand for opinion polls by political parties. An opinion poll is a 
survey of opinion from a sample of the public, which is intended to represent 
opinions of the entire population (by extrapolating generalities in ratio or within 
confidence intervals).

Public opinion polls provide current information, and collectively cover a rea
sonable length of time in the run-up to the election night to be able to assess 
changes. Whiteley (1979, [108]) states that they are the only reliable data avail
able for purposes of election forecasting prior to polling day. They offer politi
cians and voters a chance to improve the steering capacity of the electoral pro
cess, by providing more accurate information about voters’ views than politicians 
could otherwise obtain at the ballot box. As the former Prime Minister James 
Callaghan once remarked, ‘If the people cannot be trusted with opinion polls, 
then they cannot be trusted with the vote (Rose, 1985, [98]).’

Pollsters: Key pollsters (polling organisations) in the UK are MORI (Market & 
Opinion Research International), which only selects those who say that they are 
likely to vote, YouGov (online), Populus (by The Times), Communicate Research, 
ICM (Independent Communications and Marketing) and GfK NOP (National 
Opinion Polls). All the major television networks do their own polling, alone or 
in conjunction with the largest newspapers or magazines, either in collaboration 
or independently. Several organisations try to monitor the behaviour of polling 
arms and the use of polling and statistical data.

Sample and polling methods: In the past opinion polls were conducted via 
telephone or person-to-person contact. Methods and techniques vary, though
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they are widely accepted. Some pollsters such as YouGov use Internet surveys, 
where a sample is drawn from a large panel of volunteers. This is in contrast to 
using a scientific sample of the population, and are they therefore not generally 
considered as accurate.

Failures: Overall, prediction using polls failed to predict the Conservative vic
tories of 1970 and 1992, and Labour’s victory in 1974. However, poll figures at 
other elections have led to generally accurate predictions.

Sources of error:

• Polls are subject to sampling error, which measures the effects of chance 
and uncertainty in the sampling process. We express the uncertainty as a 
margin of error (usually the confidence interval for a particular statistic). 
This may be reduced with a larger sample in theory; however in practice, 
pollsters must balance the cost against the reduction in sampling error; a 
sample size of around 500 to 1,000 is a typical compromise for political 
polls.

• Nonresponse bias - some people do not answer calls from strangers, or refuse 
to answer the poll, and the characteristics of those who are interviewed 
may differ widely from those who decline. In terms of election polls, studies 
suggest that these selection bias effects are small, but each pollster performs 
its own way to minimise the bias.

• Response bias - this is where the answers given do not reflect true beliefs. 
This could be deliberately set up by a pollster to generate a certain result or 
please its clients, but more commonly is a result of the wording or ordering 
of questions. Respondents may seem more extreme than they actually are 
in order to boost their argument, or give rushed and thoughtless answers in 
order to end the survey. Respondents may also feel under social pressure not 
to give an unpopular answer, and thus polls would not reflect all attitudes 
within the population. This effect may be magnified if the results of surveys 
are widely publicised.

• Wording of questions - for instance, the public may be more likely to sup
port a person described by the surveyor as one of the ‘ leading candidates’. 
Comparisons between polls often boil down to this issue. On some issues, 
question wording may lead to quite pronounced differences between sur
veys (Cantril and Hadley, 1951, [29]). This may also, however, be a result
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of conflicted feelings or evolving attitudes, rather than a poorly-designed 
survey. Common techniques are to rotate the order in which questions are 
asked or to split-sample. The latter involves having two different versions 
of a question, with each version presented to half the sample.

• Coverage bias - this is the use of samples unrepresentative of the population 
due to the methodology used. Blumenthal (2008, [12] and [13]) explains how 
this issue came to prominence during the 2008 US presidential election. In 
previous elections, the proportion of the general population using mobile 
phones was small, but as this proportion has increased, the worry is that 
polling only landlines is no longer representative of the general population. 
Pollsters have developed many techniques to help overcome this, to varying 
degrees of success.

• Failure to vote - the people surveyed in the opinion polls may not actually 
vote; the larger this problem is the less useful the opinion poll data will be.

Influence: Opinion polls may sometimes influence the behaviour of electors.
There are three schools of thought:

1. A bandwagon effect is when the poll encourages voters to support the 
candidate shown to be winning in the poll. The opposite is the ‘underdog 
effect’ , when people vote out of sympathy for the ‘losing’ candidate; there 
is less empirical evidence for this than for the former.

2. Tactical voting is when voters choose not the candidate whom they prefer 
but another, less-preferred, candidate from strategic considerations. An 
example was in the 1997 election. The constituency of Enfield Southgate 
was believed to be a safe seat for Conservative but opinion polls showed 
the Labour candidate steadily gaining support, which may have prompted 
undecided voters or supporters of other parties to support Labour here in 
order to remove the Conservatives.

3. A boomerang effect is when the likely supporters of the candidate shown 
to be winning feel that chances are slim and that their vote is not required, 
thus allowing another candidate to win.

A popular example of opinion polls leading to errors was the 1992 general election.
Despite pollsters using different methodologies, almost all polls in the run-up
to the vote, and to a lesser extent exit polls (see next part) taken on voting
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day, showed a lead for Labour but the actual vote gave victory to Conservative. 
Explanations were:

• Late swing - voters who changed their minds shortly before voting tended 
to favour the Conservatives;

• Nonresponse bias - Conservative voters were less likely to participate in 
surveys than in the past and were thus underrepresented; and

• The Shy Tory Factor - the Conservatives had a sustained period of unpop
ularity as a result of economic difficulties and minor scandals, leading to 
Conservative supporters being reluctant to disclose their sincere intentions 
to pollsters.

The relative importance of these factors was, and remains, a matter of con
troversy, but since then pollsters have adjusted methodologies and achieved more 
accurate results in subsequent elections.

Much work has been done to explain erroneous polling results. Some of this 
has blamed the errors on pollsters, some due to natural statistical error, and 
others have blamed the respondents for not giving reliable answers.

2.5.2 Exit polls

An exit poll is taken immediately after the electors have left the polling stations. 
Unlike an opinion poll, which asks whom the voter intends to vote for, an exit 
poll asks whom the voter actually voted for. The final outcome takes hours to 
count and so pollsters conduct exit polls to gain an early indication. Over the 
longer term, exit polls are also used to collect demographic data about voters and 
to find out why they voted as they did. Since actual votes are cast anonymously, 
polling is the only way of collecting this information. As with opinion polls, here 
we get current information on the public opinion, in fact, even more current than 
the former. If we also assumed honesty of answers and a good response rate then 
we would expect a good correlation of the results with that of the final outcome.

Problems: As with opinion polls, exit polls naturally come with a margin of 
error. A famous instance of error was in the 1992 election, when two exit polls 
predicted a hung parliament. The actual vote revealed that Conservative held 
their position, though with a significantly-reduced majority. Investigations into 
this failure identified a number of causes including differential response rates (the 
Shy Tory Factor mentioned earlier), the use of inadequate demographic data and
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poor choice of sampling points. Issues with exit polls have encouraged pollsters 
to pool data to enhance accuracy. For example, during the 2005 election the 
BBC and ITV merged data on exit polls, which led to an exact prediction of the 
number of seats won per main party.

Criticism: Criticism has occurred in cases where exit poll results have appeared 
to provide and/or have provided a basis for projecting winners before all real polls 
have closed, thereby possibly influencing election results. As a result, in the UK 
it is now illegal to release exit poll figures before the polling stations have closed.

2.5.3 Previous election results

The results of previous general elections, particularly the election directly before 
the current, would also help shape the forecast. The main drawback with them is 
that, compared to polling which obtains current information, they are old results, 
whereas public opinions and voting are volatile. However, in a forecasting model 
we could firstly derive forecasts solely using the previous outcomes, and then 
introduce variables, say, to account for any important changes in the period 
between the previous election(s) and the current one, which will or may have an 
impact. This is the method introduced by Brown and Payne (1975, [23]) and 
detailed in Chapter 8.

2.5.4 Election night

The polls close at 10 p.m. Various television channels, including the British 
Broadcasting Corporation (BBC), Independent Television (ITV) and Sky begin 
their all-night coverage. Primarily, this involves forecasting of the results of the 
as yet uncounted votes, to predict the winning candidate in each constituency, 
and from this the number of seats won per party. Particular interest is focused 
on the prediction of the party winning the most seats and its majority over other 
parties. Throughout the night there is commentary on particular constituencies 
as they declare their results, as well as on the subsequent state of the parties. 
Importantly, the forecasts are constantly updated.

These forecasts form the main discussion, involving both psephologists (elec
tion analysts) and politicians. In Chapter 4, we will look at the types of forecast
ing methods in detail, and in Chapter 8 we will concentrate on the BBC method, 
which has on the whole remain unchanged since it began in 1974.
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2.6 Review

This chapter has summarised the nature of general elections in the UK to set the 
scene for subsequent chapters. The process in the run up to the election night 
involves various polls, mainly in order to gauge voting intention. We described 
election night itself, and how in recent years the parties most dominant in the 
voting have been Labour, Conservative and Liberal Democrats. This has led to a 
shift from a two-party contest to a three-party contest, although the former two 
have so far still proven to account for greater proportions of seats (and votes) 
than the latter party. Next, we assessed in some detail the part which polling 
plays, focusing on opinion polls (which ask whom the respondents intend to vote 
for) and exit polls (which ask voters whom they actually just did vote for).

As we have emphasised, there is a great interest in forecasting the number of 
seats won by each party before all seats have been declared on the election night. 
In response, several different approaches are taken to try to do this. Shortly, we 
will review some of these, before introducing our own new method. We outlined 
the various sources of information available to assist in this, and we will make 
use of these data in our approach. To appreciate some of these methods as well 
as the models which we will end up using, we provide next an overall account of 
the subject of time series.
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Chapter 3

Time Series Modelling

3.1 Introduction

Time series is concerned with a number of observations ordered in time. The 
subject has several applications to real life. Examples are numerous, including 
the GNP of a country, sales or profit margins of a business, exchange rates, stock 
prices and insurance claims.

There are quite a few motivations for using time series models, an important 
one of which is forecasting into the future. This is clearly important for the 
examples stated above, as it helps governments and businesses plan the future 
effectively, implementing changes where necessary. For instance, concerning the 
stock price of tomorrow or next year the investor can forecast, using time series 
modelling, to decide whether or not to invest.

Another important use of time series is in testing economic theories. A simple 
yet classic model is the random walk hypothesis,

Ut =  Ut-1 +  eti

with et some random disturbance, where usually E(et) =  0. A more general model 
is

Ut =  a o +  O’lVt-i +  (3-1)

in which ai is known as the root.
Time series may be used for either the sequence of random variables or their 

realisations1. The method involves decomposing the observed data into building 
blocks or components which we can interpret. We aim to forecast each com
ponent and then reassemble all forecasts to forecast the series as a whole. The

T or this reason, note that we will in this thesis alternate between the two.
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d e co m p o s it io n  gen era lly  takes th e  form

Ut — Tt +  St +  It, (3.2)

in which

• Tt is the value of the trend (e.g. Tt — 1 +  O.lt)

• St is the seasonal component (e.g. St =  16sm(i7r/6)); and

• It is the irregular part (e.g. It =  0.7/t_i +  et).

Above, Tt and St are both deterministic or predictable, whereas It contains 
both a predictable part and a random stochastic part, in which the et is the 
random disturbance. Tt, St and It are all difference equations, in which variables 
are expressed as a function of their own lagged values, time and other variables.

Assume that we have observations as a function of a variable t, which take 
discrete and equally-spaced values, i.e. we go from t to t + 1 and so on. Therefore, 
we have a sequence of random variables or their values

{■  • • > U t - 2, V t - 1)  U t , V t + i , D t + 2, • • • } ,

denoted by { y t } ,  and where we let t stand for ‘time’ (measured in any unit such 
as days, months, years). The first difference is the change: A  y t — y t — y t - i and 
the second is the acceleration: A 2yt =  A ( A yt) =  yt — 2g/t_i +  yt_2.

This chapter breaks down into two main parts. The first part focuses on 
general time series theory for what is known as the ‘autoregressive model’, 
which relies on the assumption of covariance stationarity, which we will define. 
We will look in some detail at various properties, including the conditions for 
covariance stationarity, autocovariance (covariance within a particular time series 
dataset), specific types of model and how to choose the best of these types given 
a dataset, methods to estimate parameters, particular inference tests, forecasting 
of future values and volatility in the data. The second part focuses first on a 
time series model with the assumption of strict stationarity, which we will also 
define, as well as more complex modifications of this stationary model to cater 
for non-stationarity. In these latter models we introduce the idea of probabilities 
as latent variables, which will become important in subsequent chapters. Again, 
we study in detail the properties of each type of model, providing illustrations 
for clarity.
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3.2 The Autoregressive Model

3.2.1 Covariance stationarity

Observed time series is a realisation of a stochastic process, that is, any collection 
of random variables y(t), i £ il defined on a common probability space, where 
t denotes time. If SI is a discrete set then observations are only taken at (usu
ally equally-spaced) specific times and we talk of a discrete-time time series. 
Instead, if S2 is an interval then observations are made continuously in time and 
we have a continuous-time time series. We only deal with the former in this 
thesis.

The stochastic process is described by a probability distribution for {yt}, 
where elements are typically not independent. Underlying is a joint density func
tion, say, f(yt, yt-i, y t-2 , • • •)> which is usually expressed as a transition density 
function, say, f(yt\ y t-1 , yt-2 , • • •)• We somehow need to characterise the proba
bility distribution and may do so using moments (E(yf) — y t, Var(yt) =  E [{yt — 
y t)2], Cov(yt, yt_„) =  E[(yt- y t)(yt_s- y t_s)\, Et(yt+i) =  E (yt+i\yt, yt- 1 , yt- 2 , • • •). 
Vi, s, and so on).

To make all this usable in practice for the analysis of time series, we cannot 
have all these moments change with every time period. Therefore, we often 
assume that they remain constant over time.

Definition: A stochastic process with finite mean and variance is covariance 
stationary if, for all t and s,

in which //,, ay2 and 7 ,, are constant parameters. Clearly, y0 =  ay2 and 7 *. =  7 _fc.
A stronger condition is strict stationarity (see later), in which the entire prob

ability distribution is unaffected by a change of the time origin. Under normality, 
these concepts coincide.

E(?/i) =  y  
Yar(yt) =  o 2 

Cov{yt, yt- s) =  7 s,

3.2.2 The basic model

An autoregressive (AR) equation takes the form

v
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in which p is the order (thus the model is denoted by AR(p)), that is, the total 
number of lags we wish to consider and et is the outside influence. One way to 
solve such equations is by iteration.

Condition for stationarity

Equation (3.1), AR(1), converges if and only if

| a j| < l. (3.3)

Now, if we let a0 — 0 =  et then we are left with the homogeneous part, which is 
solved by the homogeneous solution

yt =  Aai ,

for some constant A. If we have a difference equation of order n then there exist 
n roots, which may be real or imaginary.

Generally, stability requires that all characteristic roots lie within the unit 
circle. The homogeneous solution governs the stability of the variable, even after 
we add y0 and et to the process.

Under unit roots (roots equal to unity), the solution will have a polynomial 
time trend, of order equal to the number of unit roots.

3.2.3 White-noise process

Definition: A sequence {e t} is a white-noise process if, for all t,

E(et) =  0

Var(et) — a2

Cov(et, et_s) =  0, Vs 0.

This is the simplest possible time series model. Every identically and indepen
dently distributed (i.i.d.) process with mean 0 and variance a2 is white noise 
(but not conversely). This model is the basic building block of time series models 
because of the following theorem.

Wold decomposition: Every covariance stationary stochastic process may be 
written as the sum of a deterministic part and an infinite moving average (M A) 
of uncorrelated variables

OO

Ut =  h +  ^  A et-i, (3.4)
¿=o
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with ipo =  1 and } a white-noise process. This implies that

E ( y t) =  fJt
OO

Var(yt) =  a2^ ^ 2.
i=0

Importantly, the {et} are uncorrelated but the {y t} are not. Typically, it is 
assumed that | V4  | < oo, so that the variance exists.

The finite version of the so-called linear-filter representation in (3.4) is a 
moving-average (MA) process of order q or MA(q):

9

yt =
¿=0

3.2.4 AR M A models

We now combine the ideas of the AR(p) and MA(<?) to obtain

p 9

yt =  « 0  +  ^ 2  a*yt-i +  (3-5)
¿=1 i=0

which is known as the autoregressive moving average model ARMA(p, q). Obvi
ously, the AR(p) and MA(q) are specific cases of this model. Similar conditions 
for stationarity apply as in (3.3), but now we have more characteristic roots due 
to having more lags:

771 p
Vt =  of Y ]  M l~l +  AiOLi ,

¿=1 i=m+ 1

where a  is repeated m times and the other roots are otm+i, . . . ,  ap. If one or 
more of these roots is on the unit circle then we say that {y t} is an autoregressive 
integrated moving average (or ARIMA) process. Brockwell and Davis (2002, [21]) 
refer to this property as causality, as it implies that yt may be expressed entirely 
in terms of es for s <  t.

Invertibility

We may therefore assert that the MA part does not contribute to the stationarity, 
yet if we want to estimate a model with a MA part then we often impose that it is 
invertible, which essentially means that its parameters are uniquely determined 
by its autocorrelation function (see next part). This would hold if and only if 
the characteristic roots of the MA polynomial are all within the unit circle. Note
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that invertibility implies that the error term et may be expressed as a function of 
ys, for s <  t.

Generally, a stationary finite order AR(p) may be written as an infinite order 
MA with restricted parameters, and an invertible finite order MA(y) may be 
written as a restricted infinite order AR.

3.2.5 Autocorrelation function

We will denote 7 S to represent the ‘autocovariance’ for the lag s. Using this,

P, =  —  (3.6)
7o

is called the autocorrelation between yt and yt- s, which depends only on the 
lag s and not on the actual time t for the stationary series. Clearly, p0 =  1. Then, 
a plot of ps versus s is the autocorrelation function (ACF).

In practice, we have observations (yi, y2, . . . ,  yn) and can estimate the above 
by:

p =  y =  yt j  /n

=  ¿ t o *  -  v f
t= 1

% =  I ^ 2  (yt -  y)(yt-s -  y ) ) /n.
\t=s+ 1 /

These are consistent estimators if observations which are very far apart from one 
another are (almost) uncorrelated.

We may define the sample ACF, rs say, as rs =  7s/7o, and then test for 
significance of each lag.

3.2.6 Partial autocorrelation function

Consider again AR(1). It may be shown that its ACF takes the form

P s  =  « i s , ( 3 . 7 )

and so yt is correlated with all yt_s. This feature will become important in 
Subsection 3.3.1, when discussing one of the key models which we will end up 
using in the thesis. However, for s >  1 the correlation mentioned occurs indirectly, 
through intermediate lags. The partial autocorrelations, represented by </>ss,
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eliminates this effect, whereby we subtract the mean of y and then consider the 
regression coefficient of yt- s in an AR(s).

Generally, partial autocorrelations may be derived from the autocorrelations 
via the Yule-Walker equations: this is where (f>SH is the solution of as, which is 
expressed in terms of pi, p2, • • •, ps of the first s Yule-Walker equations for an 
AR(s).

As with rs, in practice we require a sample partial ACF (PACF), and thus 
make use of rs in deriving it. It may be shown that under the null hypothesis of 
an AR(p) the estimated (j)ss for lags s > p has Var((j>ss) ~  1/n.

Table 3.1 summarises the behaviour of both the ACF and PACF depending 
upon the types of time series models which we have currently considered.

Model ACF PACF

AR(p) 0 Vs; decays to 0 0 for s <  p] 0 for s > p
MA (g) /  0 for s < q-, 0 for s > q ^  0 Vs; decays to 0
ARMA (p, q) 0 Vs; decays for s >  q 7  ̂ 0 Vs; decays for s >  p

Table 3.1: Properties of the ACF and PACF.

3.2.7 Non-stationarity

Many time series which correspond to observed variables are not stationary, how
ever. There are many instances in which series look as though either the variance 
or the mean are not constant over time.

Nonstationarity in the variance

When a variance changes over time, we call this ‘heteroskedasticity’ . Often, a 
transformation such as a logarithmic transformation stabilises the variance. We 
are often interested in modelling these changes in variance explicitly, as will be 
seen in Subsection 3.2.10.

Nonstationarity in the mean

One way to deal with a non-constant mean is to add a simple linear (or higher 
order) trend:

Ut — a  o +  oi\t +  Cf, (3-8)

possibly including more dynamics (ARMA). However, this would imply that the 
trend will continue in the same way over time, which may be unrealistic. This
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is known as a deterministic trend. However, there may exist nonstationarity 
through the difference equation itself, known as a stochastic trend.

For example, consider the random walk model again, but now with a drift a0, 
i.e.

Ut =  « 0  +  Dt-1 +  (3-9)

Its solution (noting that oq =  1) is

t
Ut — ao t +  yo +  Cj,

¿=1

so there is both a deterministic (a0t) and stochastic trend (the sum of all previous 
disturbances). Also,

E(?/i) — yo +  (M)t dependent on t

Var(yt) — to 2 dependent on t

Cov(yt, yt-s) — {t — s)cr2 dependent on t ,

so (3.9) is clearly not stationary.
Furthermore, ps =  (1 — s / f ) 1/2, which decreases slowly (linearly not exponen

tially), which implies the existence of a unit root. However, (3.9) is an integrated 
process, meaning that a first difference produces a stationary model:

Aj/i — cio +  et.

Generally then, if a model needs a dth-order differencing to make it a stationary- 
invertible ARMA(p, q) model then we call it an ARIMA(p, d, q) model, which 
has d unit roots. We use this method of differencing to remove a stochastic 
trend. Such a model is called a difference-stationary model. Reconsider (3.8). 
We would first regress {y t} on a polynomial trend and then estimate the difference 
between the actual and estimated values (detrended process). We use a method 
known as detrending to remove a deterministic trend. Such a model is called a 
trend-stationary model. Often, the realisations of these two types of model look 
very much alike.

The problem is often that stationary and unit-root processes look alike on the 
basis of small samples. It would be helpful to have a formal way of testing unit 
roots. However, the usual asymptotic theory no longer applies under the null of 
a unit-root process. Instead, we use Monte Carlo experiments, where a large 
number of samples is generated from known processes with a unit root, in order 
to investigate the sampling behaviour of test statistics.
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3.2.8 Model fitting and testing

Box and Jenkins (1970, [18]) advocate three steps to choose autoregressive inte
grated moving average (ARIMA) models and estimate from them: identification 
(model selection), estimation and diagonistic checking.

Model selection

First, it may be necessary to stabilise the variance or induce some distributional 
form, via a transformation. Secondly, we need to choose the degree of differencing 
discussed above, so as to induce stationarity. We achieve this by testing for unit 
roots. Thirdly, we then determine the orders of the AR and MA polynomials. 
Tools here include examining the time plot of the series, as well as the sample 
ACFs and PACFs, which we may compare with the ACFs and PACFs of known 
models. A time plot provides useful information on outliers, missing values and 
structural breaks in the data.

Fundamental is the idea of parsimony, that is, a relatively small model produc
ing better forecasts. Forecasting often becomes worse if we have extra regressors 
(lags) which are not really needed, despite the fact that the fit may improve. 
Also, it may happen that the AR and MA polynomials share a common factor. 
We spot this if t-ratios are low whereas there is high correlation between param
eter estimates. Available as model selection criteria are, for instance, the Akaike 
Information Criterion (AIC)

A IC  =  2p -  21nL,

where p is the number of parameters in the model and L is the maximised value of 
the likelihood function for the model and Bayesian Information Criterion (BIC)

B IC  =  p-lnn — 21nL,

where n is the number of observations. For both criteria we select models with 
the smallest such values. It is important to realise that different researchers may 
come up with different models of choice.

Estimation

There are two common methods for estimating time series models: the Yule- 
Walker algorithm discussed earlier, which is particularly for AR models, and 
maximum likelihood (see Appendix B). The estimators of both have approx
imately the same sampling distribution. We saw the Yule-Walker equations in
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a simple case, but note that they may be generalised to consider AR(p) models. 
From now on, we will focus on the maximum likelihood method.

Maximum likelihood estimation: Consider a stationary and invertible pro
cess yt (transformed and differenced appropriately), which we want to express as 
a ARMA(p, q) model. Suppose the p are in some p-variate vector a and q in 
some g-variate vector ,3. We generally use (approximate) maximum likelihood 
and assume that et ~  Ar(0, a2) (i.i.d.). Often, it is easier to write the likelihood 
if we use a recursive formulation.

The general form is

L{a, (3, a2) =  pr(yu y2, . . . ,  yn \ y0, V-i, • •• ;»,/?, o 2)
n

=  X\pr{yt I y t-1 , . . . ,  ; y0, y~i, ■ ■ ■; a, p, a2).
t=i

There are different ways of expressing the likelihood; typically, we will obtain 
some non-linear function of the parameters which needs to be optimised. We 
may write down the likelihood directly in terms of the joint distribution of all 
observables (the method which we will eventually adopt later). Another option 
is to approximate the maximum likelihood estimate by minimising the sum of 
squares; this is known as conditional least squares, where we fix the first p values 
of yt for AR(p), the first q values of et for MA(g), and both for ARMA(p, q), that 
is, enough to make the series ‘self-sufficient’ .

Diagnostic checking

Once we have estimated, we must for instance check whether the residuals cor
respond to what we have assumed them to be, whether the variance is constant, 
and if any residual correlation is gone.

We may check the mean and variance using a residual plot (versus time), and 
check for autocorrelation of residuals by computing their sample ACF and PACF 
and using their asymptotic standard errors.

‘Portmanteau’ tests: These are used to test a group of correlations at once, 
but they do not test against a specific alternative. Generally, we need a lot of 
evidence to reject the null in large samples, but if we do reject then we do not 
know how to change the model. Box and Pierce (1970, [19]) defined the test 
statistic

S

Q* = nyVfc2,
k=1
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which follows an asymptotic x l -p_q distribution if the data come from the ARMA(/x 
q) model.

Ljung and Box (1978, [81]) modified this to

Q =  n(n +  2) ^
k=1

Tk2

n — k'

which converges to a x 2- p~q distribution, and if the value is larger than, say, a 
95th percentile then we question the adequacy of the fitted ARMA(p, q).

Lagrange-multiplier tests: These are used to test for the null of a white- 
noise process for the residuals against the alternative of a AR(s) or MA(s) process. 
Here, we need not estimate the alternative model. A convenient way of computing 
it is generally as n times the R2 of a regression of et on the partial derivatives 
of et with respect to the model parameters evaluated by maximum likelihood. 
Therefore, we test in terms of the actual variable for an ARMA(p +  ,s, q) or an 
ARMA(p, g +  s) versus the null of an ARMA(p, q). The Lagrange multiplier will 
be asymptotically x 2 under the null.

F-tests: We might wish to estimate the model over subsets of the entire sample, 
for instance, split the sample in half and see whether both lead to the same model. 
If we wish to test whether the same ARMA(p, q) specification leads to the same 
coefficients in both subsamples then we use an F-test.

U SSR  denotes the sum of squared residuals for the whole sample, SSR\ for 
the first subsample and SSR 2 for the other then we have

(SSR  -  SSRi -  SSR2)/(p +  q)
(SSR1 +  SSR2) ( n - 2 ( p  +  q)) ’

which follows an Fp+q,n- 2(p+q) distribution under the null of parameter equality.
Alternatively, we may forecast part of the sample not used in the estimation; 

a good model should predict well.

3.2.9 Forecasting

An important aim of time series models is to forecast the future. We assume that 
we know the actual data-generating process, that is, we have the correct model 
and model parameters. Therefore, we know the parameters and the {yt}, and 
then the {ef} are just functions of the two, and so are known.
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Stationary models

Let us now consider that we have n observations and want to forecast the next 
ones. Using the AR(oo) representation

OO
Vt =  +  Ct,

i= 1
as well as the fact that E(en+i) =  0, at time point n we obtain

j —i oo
‘̂niVn+j) ^ d~ ^   ̂ îUn+j—ii (3.10)

*=1 i=j
where the subscript n on the expectation means conditional on all information 
up to and including n. This predictor is called a forecast function, and we 
can see that the first sum comprises the forecasted values whereas the second are 
observed. Thus we must compute recursively, n is called the origin here and 
j  the lead time. Note that it is possible to rewrite this to suit MA or ARMA 
models.

We also need some idea of uncertainty. For this we use what is known as the 
forecast error ( /e )

3 - 1

Un+j !En(yn_)_jf) ^   ̂ — it (3.11)
¿=0

which has mean zero but prediction error variance of

u2(i +  V’i +  ^ 2  +  • • ■ +  'Pj~ i);

this enables us to make prediction intervals, typically using the formula: predictor 
±  2 x standard error.

Unit-root models

When we need to difference a nonstationary process yt into a stationary yl, we 
may use the above to forecast the latter but need another expression to forecast 
the yt. We have here that

i
En { y n + j) — Vn T y  ] ̂ njUn+h)

h=l
and

3  3 h - 1

Ipî n+h—ii
h—1 h=1 ¿=0

where f e n(h) is the forecast error of the stationary process y* as in (3.11).
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Holt-Winters algorithm

However, real data are not often generated by such simple models as ARMA and 
ARIMA, and more heuristic algorithms have been considered. One example of 
such is the Holt-Winters algorithm.

Recall the classical decomposition which we saw in (3.2), but forgetting the 
seasonal part St for now. Note that E (/t) =  0. We focus on a ‘local’ trend, where 
we place more weight on more recent observations:

®n(?/n+j) T bnj ,

where an is the local level and bn the slope of the trend. We update these 
through exponential smoothing, that is to say, for the local level we take a 
linear combination of the observed and forecasted values:

Oit — Ao yt +  (1 — Ao)(o:t-i +  h - 1)

and for the local slope we take a linear combination of the change in level and 
the previous slope:

bt =  Ai(cp — cp-i) +  (1 — Ai)6t_i,

with starting values a2 — y2 and b2 — y2 — Hi-
Smoothing constants A0 and Ai lie in (0, 1], and setting them equal to 1 gives 

forecasts which use only the last two observations (extreme local behaviour):

® n U n + j  —  U n  A  ( V n  V n — l ) j i

by contrast, if equal to 0 then the behaviour will tend to the global-trend model 
(assumed to hold for all t).

It is not difficult to generalise this algorithm to include the seasonal compo
nent, if necessary.

3.2.10 Volatility

Consider Figure 3.1, showing the annual unemployment rate in the US between 
1890 and 1970 (source: Hyndman, 2005, [60]). Time series often displays be
haviour in which some periods seem to have much larger variance than other 
periods in the sample. This does not necessarily mean that the process is not 
stationary (which implies a constant variance over time), but we do need to 
model this heteroskedasticity explicitly. Even though the marginal or uncondi
tional variance is constant for a stationary process, there may still be conditional
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Figure 3.1: Annual unemployment in the US from 1890 to 1970.

heteroskedasticity. There is great interest in conditional, as opposed to uncon
ditional, variance; for instance, an investor who wishes to sell shares in a week 
cares about the near future, not the long-run average variance.

The ARCH  model

Here, we model the changing variance through an AR(g) process on the squares 
of past residuals, that is,

® i ( €i + l )  —  a 0 +  a l +  • • • +  Oiqt2t+l_q,

where we must also introduce some disturbance (stochastics). We do so usually 
in a multiplicative way, for example,

et =  uty/a0 +  aief_i,

where {v t} is a white-noise process with mean 0 and variance 1, independent of 
et- i ,  and where cro > 0 and 0 < aq < 1.

Some properties:

• E(et) =  0;

• Var(et) =  olq/{1 — (constant unconditional variance);

• E(et| et_i, et_2, . . . )  =  0; and
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• E(e2| ei_i, ei_2, . . . )  =  a0 +  a\e%_x (non-constant conditional variance).

From this we see that {ci} has conditional and unconditional mean zero, is 
serially uncorrelated but not independent, since they are linked through second 
moments. Clearly then, this means that {t, } can no longer be normal.

Generally, an (autoregressive conditional heteroskedasticity) ARCH(g) model 
involves a qth-order AR process on the conditional variance.

The GARCH  model

Suppose now that instead of modelling through an AR process, we progress to 
an ARMA process:

ei —

where now

ht — olq +  fliht—ii
i= 1 i= 1

and ht is the conditional variance of et. This is known as a (generalised autore
gressive conditional heteroskedasticity) GARCH(p, q) model. Clearly, this is a 
generalised version of ARCH(l) already seen, in which p — 0 and q =  1.

This model avoids a very high q in ARCH, in turn allowing more parsimonious 
modelling for the volatility. Also, GARCH is stationary when

+  < L
¿=1 i= 1

As before, the ACF (of squared residuals) would be useful in determining q 
and p. Once we obtain an ARMA model for { yt}, we may calculate the squares 
of the estimated residuals et, from which we may derive the large sample variance 
of the residuals:

d2 =
n ¿=i

as well as their sample ACF:

n  £ L + i ( e1 -  * 2)(e?-i -  ^2)
P[Z) £ r =1( £ l - a 2)2

We may also use these in a Ljung-Box statistic for k lags, which again has a x l  
distribution under the null of no ARCH or GARCH.

A more formal test is the Lagrange Multiplier test:

1. Estimate AR(fc) or a regression model with ordinary least squares.
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2. Calculate e2 and regress it on a constant and cy-lagged squared residuals. 
The model is not ARCH only if the constant alone is non-zero, and nR2 of 
that regression converges to a y 2 under the null of non-ARCH.2

Estimation may be done using maximum likelihood.

Remark: Thus far, we have focused on covariance stationarity. This is a weaker 
form of stationarity, in that we only require the first two moments to be constant 
regardless of the time space. A stronger condition is strict stationarity.

3.3 Strictly Stationary Models

3.3.1 Stationary (ARCH) model

Definition: A time series { y t }  is said to be strictly stationary if its spatial 
law is invariant under translation, that is, if random vectors ( y t l , y t2, . . . ,  ytn)' 
and (ytl+c, yt2+ c , • • •, ytn+c)' have the same joint distribution for all sets of indices 
{¿i , ¿2 , . . . ,  tn} and for c £ Z and n >  0.

Introduction and motivation

To begin with, consider the Markov case. As we saw earlier: AR( 1) has the form: 
yt =  a\yt_i +  et, where et ~  iV(0, cr2) and where | a\ | < 1 implies stationarity. We 
may generalise this to

yt -  H =  ax(yt- i  -  y) +  et. (3.12)

However, if yt is not normally distributed then it is not straightforward to ensure 
that the sequence {y t} is strictly stationary (that is, stationary for all moments).

Pitt, Chatfield and Walker (2002, [94]) look at the construction of first-order 
stationary autoregressive models using latent variables. These marginal distri
butions are not Gaussian restricted, but may instead come from the exponential 
family. The models presented are density based and easily adaptable.

The method involves not the conditional density function but rather its ex
pectation. Pitt, Chatfield and Walker (2002) discuss specifying a joint density 
(yt,yt- i ) (or equivalently in the stationary case specifying the marginal density 
of yt and the conditional - or transition - density of (yt\yt_i)), aiming for a linear

2These ARCH and GARCH models are not to be confused with the ARCH and GARCH 
models to which we refer hereafter.
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relationship between yt and yt-\ with respect to the mean, that is:

^{yt\yt-i) =  CLiyt- 1  +  (1 -  ai)n, (3.13)

where p — f  y fY(y) dy and f Y(y) is the required stationary density of yt.
We saw earlier that the autocorrelation function (ACF) of AR( 1) is ps, if 

(3.13) holds (see (3.7)).
We define f ( y t\yt- i )  such that:

JyAvt) =  J fY,)Y,-,(vt\vt-i)iyt-i; and

Jvtfy,\Y,-,(vi\yt-i)dyi = + (l -  p)y.

(3.14)

(3.15)

The key to the approach, from which we will eventually form the basis of our 
own method, is to have a latent variable, say x t, such that the {x t} represent a 
vector of probabilities; by contrast, the {y t} represent a vector of observations. 
We then update the definition of fyt\yt_1(yt\yt-i) to

fYt\ Y t-M yt-i) =  J fi(yt\xt)M x t\yt-i)dxt, (3.16)

which is a formal version of what is shown in Figure 3.2.
In summary, we define f Yt\Xt(Vt\xt), with f i (y t\xt) =  fyt\xt(yt\xt) and 

f 2{xt\yt- i )  =  f x t\Yt^ { x t\yt-i), and where

frXyt) =  J  fYt,xt(yt,Xt)dxt

=  J f x t(xt)fyt\xAvt\xt)d x t.

Note that using the above, we can show simply that

J  fYt\Yt-i{yt\yt-i)fYt-i(yt-i)dyt-i = J  fYuYt_Xyt, yt-i)dyt-i

=  fYt(yt),

as required.

Stationarity

From looking at (3.13), we infer that the oq acts like a weight function between 
the observation directly before and the mean of yt. Therefore, stationarity, i.e. 
| «i | < 1, implies that E(yt \ yt- 1) cannot steer too widely away over a noticeable 
time period, as desired.
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To sample from the transition density, we can simulate from the latent process 
{x t}, that is yt\xt ~  fYt\xt(yt\x t) and xt|yt_i ~  f x t\Yt^Ax t\yt-\)- Use of these two 
densities has links with the Gibbs sampler process.

Also, Pitt, Chatfield and Walker (2002) state it useful both for f Y\x to have 
the same form as f Y and that E(x\y) oc y, in order to satisfy (3.15). Other than 
this, what we decide to be fx\Y does not matter.

ACF

The consequent autocorrelation function takes the form ps, for some s e  N with 
\p\ < 1 for stationarity. This very form implies exponential decay, which seems 
suitable since we may argue that people’s votes are less and less likely to depend 
on the state of the party further back in time, and more likely to based on recent 
happenings. Again, of course, this is an oversimplification.

Application to our scenario

Recall that the {ay} are latent variables, which effectively work ‘behind the scenes’ 
in our modelling. They are the probability of voting for the relevant party, repre
sented by y, at time t. Typically, we would therefore want x  to follow a continuous 
distribution, such as the beta distribution.

The method starts at x\ which we allocate a (continuous) distribution. The 
dependency sequence then begins as shown in Figure 3.2. The underlying idea 
is that the theoretical probability x t is used to determine the actual outcome yt 
for each f, assuming stationarity of voting and constant poll time intervals. We 
have a simple process which alternates between the continuous distribution and 
discrete distribution with time. The benefit of this approach is that we have quite 
a natural arrangement, which progresses with time. Clearly though, stationarity 
is a likely oversimplification, since for example an effective campaign with this 
party compared with those of other parties would affect the proportion of votes. 
This obviously can work adversely too. Also, in reality, polls are not taken over 
constant time intervals. Nevertheless, it is a useful starting point provided that 
we ignore external (and internal) influences.

Use of latent variables

Figure 3.2 shows the relationship between the observed data and the latent data 
in the stationary ARCH model for the simplest case. We see here that a latent
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Figure 3.2: Relationship between observed and unobserved variables in the 
(simplest-case) stationary model.

variable is determined solely by the previous observation and that subsequently 
the forthcoming observation is influenced solely by it.

Example

A  Beta-Binomial model: As we will eventually see, we will use this model for 
our election data. Let yt\xt Bin(r, xt) and x t\yt- i  ~  B e(a + y t- i ,  P + r -y t - i ) ,
and also assume that r remains fixed.

Then,

E(*/t | Vt-i) =  E(E(yt | xt) | yt_!)

=  E (rxt | yt- i )  =  rE(xt \yt~i)
ot +  yt- 1  a  , yt- 1=  r --------------=  r ------------------b r --------------

a  +  ¡3 +  r a  +  ¡3 +  r a-\-(3 +  r

^  0,1 a p  -)- r ’

(where o,\ is as defined in (3.13)) which must imply stationarity, since a, (3 and 
r >  0.

Hence,

//(l - a t )  =  n
oì T  /3 

a  +  (3 +  r
ra

a  +  (3'

ra
a +  f3 +  r

thus implying also that we expect future probabilities E(xt+f) =  a/(a +  (3), for 
/  G N some step in the future, i.e. the time series is stationary.
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Remark: It is important to realise that, with such models, the dependence 
properties of the sequence are carried out only by the latent part of the model, 
fx\y(x \ y), thus enabling independence of the fy (y )- Such a property will aid our 
computation of the likelihood, as we will see later. For a fuller discussion of the 
theory and methodology, see Pitt, Chatfield and Walker (2002).

3.3.2 The stochastic volatility model

Introduction

In the easiest case, these models have the relationship:

We may extend, of course, to consider any lag or a combination of lags, as well as 
multi parties. The idea here is that all the modelling of probabilities x t is done 
in the background, in complete isolation from the actual data, yt. Again then, 
we have x t as unobserved data.

The conditional independence structure of the observations means that the 
marginal density of y is

Pitt and Walker (2005, [95]) actually consider a slightly different version of 
(3.17), in which there is another step: the x t~\ does not directly generate the 
next x t. Instead, there is an implementation of the method described in the 
previous section; that is to say, the x t-\ generates an auxiliary variable, say 
Zt, which is then used to produce the next x t. In our case, however, it will suffice 
to keep to our simplified version without the zt. This is because the main point 
of the stochastic volatility models is to account for variation amongst time series 
data, which we will achieve by defining our fx\ x(x t\ x t - 1) such that the variance 
increases in direct proportion to the time difference between polls. See Example 
1 in Section 3.4 for clarification.

Use of latent variables

Figure 3.3 shows the relationship between the observed data and the latent data 
in the stochastic volatility model for the simplest case. We see here that a latent 
variable is determined solely upon the previous latent variable and that subse
quently the forthcoming observation is influenced solely by it. The observations 
play no role in influencing either the latent variables or other observations.

yt~fy\x(yt\xt) and xt ~  fX\ x(xt\xt-i)- (3.17)
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Figure 3.3: Relationship between observed and unobserved variables in the 
(simplest-case) stochastic volatility model.

3.3.3 The GARCH model

Introduction

The GARCH(1,1) model shown in 3.2.10 is one of the most widely-used models 
for modelling volatility. The observations can feed back directly into predicting 
the next observation, in contrast to the ARCH(l) model shown in 3.2.10, which 
is indirect. Pitt and Walker (2005) keep the marginal density of yt and xt both 
fixed and known. The method involves specifying a joint density

fY,x,z{y,x,z) =  fY\x(y\x) ■ fx(x) ■ fz\x(z\x), (3.18)

in which x  is the latent mixing process, as before. Note also that fy\x,z(y\ x , z) =  
f Y\x(y\x ) so the observation is dependent only on x. The variable z is introduced 
to increase dependence, without affecting the marginal distribution of y. As 
before, the marginal density is simply

fr (y )  =  J fr\x{y\x ) ■ fx (x )  dx.

We want to create a Markov process {y t,x t}. We achieve this by first gen
erating X\ ~  fx (-)  and use this to get yx ~  fY\x(-\xx) and zx ~  fz\x(-\xx). 
Next, for t =  2, 3 , . . . ,  n we generate x t ~  fx\Y,z(-\yt- i , z t-i ) ,  yt ~  fv\x(-\xt) and 
zt ~  fz\x(-\xt).

The resulting sequence {y t, x t, zt} for t — 1, 2 , . . . ,  n is a Markov chain with 
invariant distribution (3.18). Note also that fy ,x {y ,x ) is the invariant distribution 
of {y t,x t,z t} for t =  1,2,

As with the stochastic volatility model, we will disregard the auxiliary variable 
and focus simply on our latent x t to carry out the necessary underlying modelling.
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Figure 3.4: Relationship between observed and unobserved variables in the 
(simplest-case) GARCH model.

This means that we end up with the form fx\x,y(x t\ xt-\,yt-i)- For illustrations 
of the more general type see Pitt and Walker (2005).

Use of latent variables

We define x t as before. The sequence generates as shown in Figure3 3.4. We see 
here that a latent variable is determined both upon the previous latent variable 
and the previous observation, and that subsequently the forthcoming observation 
is influenced solely by it.

3.3.4 The higher-order stationary model

Introduction

Mixture Transition Distribution (MTD) models were introduced in Mena and 
Walker (2007, [83]). They are based on the (strictly-stationary) ARCH models 
already discussed in Section 3.3.1, but extend now to a non-Markov scenario. 
This lets us consider more lags. As before, having latent variables enables more 
flexibility in dependence structures.

Specification

Now let yl*’*! =  (Yt- 1 , Yt- 2 , • . •, Yt-i), the random lagged values down from time 
t to lag i, and similarly let y denote observed points. Then, we define a MTD 
model {UlieN as strictly stationary with marginal density f Y when Vj ~  f Y and

3These diagrams get complex very quickly as we increase the number of lags which we wish 
to model.

60



for all í  >  2
tp 1 tp 1

f(yt\y[t,tp]) =  Y  wkP(yt-k, yt) +  (l -  Y  wM y t - t P, &)> (3.19)
fc=l fc=l

where tp — (t — 1) Ap, iA p  — min{f,p},  Yfk=i <  1 and the transition densities
p(yk, •) take the form based on (3.16). For a proof of this, see Mena and Walker 
(2007, [83]).

We end up with
n

=  E wkp{yt-k,yt)- (3.20)
fc=i

Estimation

We condition on a new latent variable, Zt, taking values 1 ,.. .  ,p  with probabilities 
u>i,W2 , ■ ■ ■ ,wp respectively. Typically, it is assumed that

P r(Z t =  Zt) =  w\xt u>l2t . . .  Wppt.

Obviously, we require that Y7k=i wk =  1- Hence, given Zt — {0 , . . . ,  1 , . . . ,  0), that 
is one in the kth entry, (3.20) ultimately reduces to p(yt-k , yt) for k =  1 ,. . .  ,p.

In practice, it is convenient to work with a p-dimensional latent vector Zkt, 
where Zkt is binary (defined to be either one or zero according to whether the 
lagged value is k or not).

Given a sample y =  {yi, y2, . . . ,  yn}, n > P, the logarithm of the augmented 
data likelihood is

p  n

1(9) =  In LytZ(6) =  EE zkt[\nwk +  Inp(yt- k, yt\0)],
fc=i t=i

where 6 denotes all the parameters in the model. In theory, estimation of param
eters including weights may be done using the Expectation-Maximisation (EM) 
algorithm. For an overview of this algorithm, see Appendix B and Dempster, 
Laird and Rubin (1977, [34]). Furthermore, Mena and Walker (2007) discuss the 
details of this in relation to the MTD model.

The problem is that such an integral as this may not even be available explic
itly, or easy to compute. In such cases, it would be helpful, as before, to consider 
the latent variables X  =  (X i ,X 2, . . . ,  X n), and so we have

p  n

In LXtytZ(9) =  \nfY(yi,0) +  EE zkt{\nwk +  \n[fY\x (ytW , 0) fx\v(xt\yt-k\0)]}.
fc=i t=i

(3 .2 1 )
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Example

A  Dirichlet-multinomial model: Recall Example 2 showing the beta-binomial 
stationary ARCH model. Ultimately in this thesis, we will work with more than 
two parties in the modelling of our election data. We now show how Example 
2 generalises, illustrating with the three-party and two-lag case, with the MTD 
model.

Firstly, with two lags we now have AR {2) : yt — aiyt_i +  a2yt_2 +  U, where 
I +  a2 | < 1 must hold in order to imply stationarity.

Thus we must update equation (3.13) so that now

E ( r / i | y i - i ,  y t-2) —  ctiyt-i +  « 2 ^ - 2  +  (1  —  o i  —  a2)/j,,

where p =  f  y fy (y ) dy and fy (y )  is the required stationary density of Yt.

Now we have that yf|xf ~  M N(r, x t) and xt|yt- j  ~  Dir(a.i +  yi(t-j), ot2 +  
y2(t-j), a 3 +  y3(t-j)), where M N (r , xt) denotes the multinomial distribution with 
trial size r and probability vector of success xt and where Dir(a\ +  yi(t-j)-, ot2 +  
y2[t~j)i a 3 +  y3(t-j))  denotes the Dirichlet distribution with shape parameters aq +  

yi(t-j), ot2 +  y2(t-j) and a3 +  y3(t-j), for j  =  1,2 (the number of lags). We assume 
again that r remains fixed, and have vectors

yt =  {yi(t) ?/2(t) j/3(t))/

with y3(t) — r — yqq — y2(t)> t =  1, 2, . . . ,  n for n observations, and also

xt =  (ah(t) x 2(t) x3(f))'

with x3(t) =  1 -  x 1(t) -  x 2(t).

Then, for k =  1, 2, 3,

E(?A(i) I V k{t-\), y k ( t -2)) =  E(E(?/fc(t) | x fc(i)) | y k (t-\ ) , y k ( t -2))

=  E (rxk(t) | !/fc(i-i), Vk(t-2)) =  rE(a:fc(i) | yfc(i-i), yfc(i_ 2))

— r < w

=  r

a k +  yk(t-1) 

E m = l  a ™ +  7 

Oik

(1 — w) +  yk(t-2)

E L i  «m +  r

+
wyk(t-i) (1 -  w ) y k(t_2)

+

=> ai =

m = l  +  r  E m = l  ”1” r  L r a = l  +

r (l  — w)
E 3 . ’m=1«m +  r

TO

E m = l  A

and a2 =
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which must imply stationarity, since a\, a2, a3 and r >  0.

Hence,

¿¿(1 ~  Q! -  a2) =  1 Q — v~'3
^ m = l  +  r E m = l  a ™ +  r

rak
=  ^ 3 --------- ;

2—im=\ OLm
thus implying also that we expect future probabilities

^ (xk(t+f)) — “ ' )
l^m= 1 OLm

for /  G N some step in the future, i.e. the time series is stationary.

Remark: Here we have seen how to extend the stationary model so as to con
sider multi-lags. We need not make such extensions for the stochastic volatility 
and GARCH models as doing so with them is more direct and straightforward, 
at least with the particular forms which we choose, as we will see in Chapter 6.

3.4 Adaptions to Strictly Stationary Models

With the strictly stationary models outlined, the conditional variance does not 
depend upon the time interval between observations. In order to account for time 
variation, it is possible to adapt the models such that the variance increases with 
the time interval.

Consider the conditional beta density

xt \ it- 2 ~ Be(ctit\, ctit2),

in which 0 <  &i, £i2 <  1 and f tl +  &2 =  1.

Our aim is to have ct such that as the time interval tends to zero the conditional 
variance tends to zero, and as the time interval increases the conditional variance 
increases. One way would be to write

e-<t>st

Ct ~  1 -  e-**‘ ’
in which St denotes the time interval between y, and yt~ 1 and 0 is a positive 
parameter (constant) to be estimated. Here, as St tends to zero ct tends to 
infinity and as St tends to infinity ct tends to zero.
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We now illustrate how we might apply this to the stochastic volatility and 
GARCH models discussed in the previous section. These examples will be of 
particular importance later.

Example 1: a stochastic volatility model

Let
yt\xt ~  B in(m ,xt) and x t\xt- i  ~  B e{ctxt_x, ct( l  -  £t_i))

for t =  2 , . . . ,  n, where ct is as defined above, m is the total number of trials (fixed 
for all t) and where x\ is the starting point which we choose. Here, at each step 
t, it is the previous probability which accordingly splits the current ct amongst 
the two shape parameters, thereby effectively determining the probability density 
function at that stage. The yt are simply independent outputs. We end up with

Var(xt \xt_i) =  Xt-1) . (3.22)

We revisit this in Chapter 6 , 6.4.7.

Example 2: a G ARCH  model

Similarly to before, let yt\xt ~  B in(m ,xt) but now with

x t\ x t — i )  U t — i  ~

Be (c t (u xt_i +  (1 -  u) ^ ~ )  > °t ( w(l -  xt - i ) +  (1 -  u) 1̂ -  ^ - ) ) )

for t =  2 , . . . ,  n, where ct is as defined above, m is the total number of trials 
(fixed for all t) and where X\ is the starting point which we choose. This time 
we also have a weight 0  <  u <  1 , and so end up including both the previous 
probability and corresponding actual outcome; with the latter we have converted 
it into a proportion via employing m, in order to make it comparative to the 
probability. Here, at each step t, it is both the previous probability and previous 
actual outcome which accordingly distribute the current ct amongst the two shape 
parameters, thereby effectively determining the probability density function at 
that stage. To account for variation between events yt we have

Nar{xt\xt_l ,y t- i )
(uxt-i +  i 1 ~  ~  x t- 1 ) +  ( 1  -  u){ 1 -  g ^ ) )

C t  +  1

which we will analyse further in Chapter 6 , 6.4.7.
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3.5 Review

In summary, we have reviewed the theory and progress of time series in a general 
sense. Our account deliberately put focus on modelling and less emphasis on 
technical details and estimation. This is mainly because it is the modelling which 
we will be doing in the ensuing chapters. We firstly outlined the motivations 
for using time series analysis, and showed the general construction of time series 
models. We spent much thought on the covariance stationary aspect, discussing 
its tools which include the ACF and PACF, and also its models (AR, MA and 
ARMA). Next, we outlined methods of tackling nonstationarity of the mean, cov
ering the separate techniques for predictable and stochastic trends; an important 
concept met, here was differencing, thus leading us to the ARIMA model.

When choosing such models, we use intuition and graphs of the data, as well 
as tools such as the AIC and BIC. The next stage is the estimation of parameters 
of our chosen model given the data, for which the maximum likelihood method 
will play an important role, starting with the expression of the likelihood. Then, 
we need to carry out inference to check our assumptions made before fitting the 
model; tools include residual analysis and the F-test.

Having done this, of great interest is forecasting. We have outlined forecasting 
functions for the AR, MA and ARMA models, and shown how it is possible to 
forecast less simple models using the Holt-Winters algorithm. We also looked 
at volatility in the data, introducing the ARCH and GARCH models, which are 
designed to deal with this.

The latter section of the chapter switched to cover strict stationarity, which 
focused on newer models and all of which make use of latent variables. Firstly, 
we discussed in detail the stationary model, which uses certain time series theory 
akin to the former section. We extended this model so as to account for time 
variation between observations, for which we have the stochastic volatility model 
as well as the GARCH model, again analysing in detail their key properties. Also, 
we showed how to extend the basic stationary model so as to deal with more lags 
than just the previous one. Overall, the basic idea is that we have the stationary 
model, but tamper with the conditional variance of the probability component. 
This is to make the model more realistic and to account for the difference in time 
between polls, by conditioning on the time intervals; by contrast, the stationary 
model essentially assumes a unit time interval between each observation. It is 
these three types of model on which we now focus attention for the remainder of 
this thesis.

As we have said, time series has a wide range of applications in the real world.
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It has been used for modelling election data, an example of which is in Harvey and 
Shephard (1990, [55]). However, in subsequent chapters we will introduce and 
analyse a new approach to modelling election data, in order first to interpret what 
the poll data before a general election say and then to predict using our findings 
and interpretations. We will see from plots in Chapter 7 how the development of 
poll voting per party with time offers itself naturally to time series analysis.

In the general breakdown shown in equation (3.2), we will focus on Tt and It 
from now; St may be dropped as the polls will not cover a long enough period 
of time to encounter seasonal variation, or at least we will assume this to be the 
case. We will employ the AR(p) model, starting with the AR(1) case, as part 
of one of our main general models. (Indeed, we could also look at the effect of 
introducing lags in the errors (MA and ARMA models); we make reference to 
this in Chapter 9 as possible further work.) Then, we will borrow ideas from the 
ARCH and GARCH theory already outlined, for the other nominated models. 
This means that we may skip the Box Jenkins model selection stage, and thus 
much of the diagnostic checking outlined. In fact, we will carry out specific model 
selection as part of our diagnostic checking, that is to say, we first fit the data to 
all of our candidate models and then assess which is the best.

Interestingly, Whiteley (1979, [108]) considered monthly opinion polls from 
1947 to 1975, focusing on a two-party contest of Conservative versus Labour, 
with the main aim of forecasting poll movements. He fit AR(1), MA(1) and 
ARMA(1,1) models to each dataset (Conservative popularity and Labour popu
larity) and performed a complete Box-Jenkins analysis. The conclusion was that 
the ARMA( 1,1) models fitted most adequately, thus implying also that the er
rors were white noise. The parameter estimates indicated that each model was 
stationary and invertible, and behaved similarly to each other. Forecasting of the 
next fifty months in the way which we outlined in Subection 3.2.9 showed rela
tively good outputs compared to what happened. In particular, forecasting of the 
polls around the time of each election was extracted to study this more closely. 
It might be important to consider seasonality here due to the wide time period 
covered, as opposed to our environment which is much narrower. This would be 
true not only in the modelling of historical polls but also in the subsequent fore
casting. However, from results of an earlier spectral analysis (frequency-domain 
time series as opposed to time-domain) Whiteley (1979) argued that the latter 
part was only over a fifty-month period and not a significant enough length in 
which any seasonal cyclic behaviour was noticeable, at least given that specific 
data.
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Chapter 4

Forecasting Methods

4.1 Introduction

Time series refers to data observed at different points in time. Time series fore
casting then, is a forecasting method which uses a set of historical data to predict 
the likely outcome of a future event. Usually, these data are spaced equally over 
time (discrete time intervals, t =  1 , 2 , . . . )  and may represent anything from 
monthly profit figures to weekly electricity consumption. The underlying as
sumption is a combination of a pattern and some random error. Subsequently, 
the aim is to separate the pattern from the error by understanding the pattern’s 
trend, its longer-term increase or decrease, as well as its seasonality, that is, the 
change caused by seasonal influences. In Chapter 3, we showed how all these 
may be expressed in a single general formula (see equation (3.2)). We also saw in 
Chapter 3 one way to perform time series forecasting, but note that the method 
outlined there catered specially for the relatively straightforward autoregressive 
model, and in a different (covariance stationary) context, which we will not end 
up using for our forecasting.

The forecasting of elections is extremely complicated. A large range of fac
tors influences voting behaviour, and these factors differ from consituency to con
stituency. The method presented in Brown and Payne (1975, [23]) has since devel
oped into a sophisticated approach to forecasting during election night. Practice 
has shown that the general method can provide accurate results before all seats 
have been declared. For this reason, our emphasis in this thesis is on pre-election 
night data obtained from opinion polls, and using our methodology in essentially 
a modification of the method in the Brown and Payne (1975) paper.

The following section discusses the most basic statistic, the poll of polls, used 
widely in the media to represent the electorate opinion about an upcoming general
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election. We outline a more elaborate method of modelling the opinion polls, 
designed to improve on the poll of polls. This approach lies in the framework 
of time series and simultaneously provides a forecast of the final outcome. Also, 
we provide a brief overview of other methods of forecasting which have been 
employed for election outcomes, such as the cube rule.

4.2 Poll of Polls

Objective: In order to summarise the information contained in all opinion polls 
conducted pre-election, the most known statistic currently available is the poll of 
polls.

Data: As the name suggests, the only data used are the recent opinion poll 
results conducted by various organisations.

The model: This simply comprises the arithmetic means of votes per party 
by combining all opinion polls.

Inference: Essentially, these averages imply the prediction of outcome, or at 
least how the public are likely to vote.

Discussion: The statistic fails to incorporate time; we have already mentioned 
that public opinion - especially more recently - is volatile. Ideally, we would like 
to treat the data as time series, in order to identify and track changes with time.

4.3 Cube Rule Model

4.3.1 Objective

This was first seriously used as an election forecasting method in 1950. The basic 
principle involves turning the total numbers of declared votes, at a particular 
point in time, per party into a forecast of the final outcome. It is designed for a 
two-party contest scenario.

4.3.2 Data

The primary source of information used here is voting data so far declared on 
election night per party.
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4 .3 .3  T h e  m odel

The method works as follows:

1. As each constituency declares the number of votes for each of Labour and 
Conservative, we are able to refine the final forecast, taking in more infor
mation, yet in a cumulative manner. Let Lj denote the number of votes for 
Labour in constituency j ,  Cj the number for Conservative and T} =  L:l +  C j, 
and suppose that there are 607 seats in the UK. Then we construct the cu
mulative number of votes per party known at some time, that is, Ah
Yl'jLi Cj and S j= i  Tji which m seats have declared.

2. First let p — (Y^JLi L j) / (S J l i  ^j) and 9  =  1 — p. If we focus on forecasting 
the number of seats eventually won by Labour, La, with To the correspond
ing total number of seats, then the cube rule states that the ratio of Labour 
seats won to Conservative seats (Co) should be proportional to p3/q3, which 
may be expressed as follows:

La p3 
Co > q3

Using this it is possible to derive

,  . (V 3To
L  1 +  ( E ) 3 '

\ q /

which boils down in our illustration to
607 607p3
ETLiUA3 _  p3 +  q3 '
E?=i C J

and obviously To =  607 =  La +  Co.

La >
1 +

(4.1)

(4.2)

4.3.4 Inference

As may be seen, this is a remarkably simple model; we see from (4.2) that the 
number of seats predicted to be won by a party is just (greater than) the total 
number of UK seats multiplied by a proportion. In the latter, all terms have the 
same power, and it is merely the relative proportion of votes which the party 
has won compared to what every party has won. If the power were one instead 
of three then clearly the forecast is just the total number of seats multiplied by 
the proportion of votes which the party has won (since p +  q =  1 ), which makes 
sense if we were say interested in getting an intuitive, albeit a somewhat crude, 
forecast.
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The cube rule proved to be very accurate for elections from 1935 to 1970. A 
necessary assumption is that the variance of seats is approximately equal to the 
variance of votes in total, both of which are assumed to be Gaussian. However, it 
does carry some important setbacks. Firstly, we have no prior forecasts and have 
to wait for the first seat to be declared before we can provide any kind of forecast. 
The forecast is always only that of the final outcome and offers no forecast per 
undeclared seat. Also, the rule is designed for the now outdated UK scenario 
of a two-party contest. Although it would be straightforward to extend such a 
formula as (4.1) to cover more than two parties, there is no empirical evidence 
on any power being good enough for prediction, in the way that the cube is for 
the two-party case. This predicts less well the less that Labour and Conservative 
collectively account for in votes compared to the total number of votes.

4.4 Pollyvote Model

4.4.1 Objective

Cuzan, Armstrong and Jones (2004, [33]) apply what is known as the combination 
principle to election night forecasting. The model aims to give a combined forecast 
of the incumbent’s share of the two-party vote.

4.4.2 Data

The method was used to forecast the 2004 US Presidential Election and came 
within 0.2 per cent of the actual result. The four forecasting methods combined 
were polls, prediction markets, regression models and expert surveys.

4.4.3 The model

• Predictions within the first three methods were combined, averaging recent 
polls, averaging the mean daily quotes for the previous week, and averaging 
results of the models.

• Then, the forecast vote was averaged across all four methods - the combined 
(averaged) forecasts of the polls, quotes and models plus the predictions of 
the experts panel - assigning equal weights to each:

„ mean(po//.s) +  mean (quotes) +  mean (models) +  experts
Pollyvote = ---------------- ------------- ---------- ------------- ----------- ----------------

4 .3 .5  D iscussion
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• This so-called ‘Pollyvote’ was updated at first once a week and then, as more 
polls were published and the election closer approaching, twice a week.

4.4.4 Inference

The argument made is that different methods are likely to have different biases 
meaning that their forecast errors would probably be uncorrelated and perhaps 
offsetting. Also, more information is used to steer the final forecasts. However, 
five methods should be the maximum number combined; after this point, every 
additional method accuracy normally improves, but at a lower rate. Further, 
previous work suggests that such combinations never harm forecasting accuracy 
and substantially reduces the risk of large forecast errors. As well as five methods 
maximum, different methods and/or datasets should be used, forecasts should be 
combined according to some predetermined procedure, and equal weights should 
be applied, unless there is strong prior evidence of varying accuracy of the compo
nents. Combining is ideal where forecast errors from the different methods have 
negative or zero correlation; otherwise, combining is still useful the further away 
from + 1 .0  the correlation coefficients are.

4.4.5 Discussion

This principle has been shown to give a lower forecast error than those obtained 
by each component method. This model is clearly simple, although just as we 
mentioned with the poll of polls averages only provide point estimates; they 
cannot identify outliers or the impact of shocks should they occur. A time series 
approach would be able to assess both. Also, again it would not be possible to 
perform an analysis per seat in the way that the BBC method (see below) can.

4.5 Whiteley’s Forecasting Model

4.5.1 Objective

Whiteley (2005, [109]) introduced a statistical model which combined informa
tion from both shares of votes in the previous election and the most recent poll 
proportions. The motivation was to focus on forecasting the number of seats 
rather than the number of votes, since previous work has tended to try to predict 
the number of votes. Where there do not exist breakdowns by seat, modelling of 
the latter has been of restricted use, for it is the number of seats not the number
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of votes which determines the ultimate winner. This model also falls into the 
subject of time series; however, it covers an extremely wide time period of years 
rather than days and hours.

4.5.2 Data

Sources of information required are recent opinion poll results per party and 
previous election results in terms of number of seats won per party, that is, for 
all historical general elections.

4.5.3 The model

Unfortunately, the estimation procedure is not spelt out fully, although the 
basic model is

k
s<«>= I p ; m '

3 =1

in which Si(t) is the seat share of party i at election t, Pjp  is party j ’s vote 
share in the poll taken before election t, ct, fi0 and f3j are parameters to be 
estimated and error e* ~  N (0 , a2).

• Obviously, we would want the Pj(t) to be as close to the corresponding 
election as possible; Whiteley uses poll data conducted six months before 
each election.

• Whitely then states the following regression model:
k

lnS'ip) =  lna + /30\nSi(t-i) +  ^  (53\i\Pj{l) +  lne*.
j=1

4.5.4 Inference

One may use maximum likelihood to obtain estimates, 9, for the 9, given the 
fifteen observations (previous election results and corresponding poll results). 
Then, as required, we would arrive at our prediction

k
Sum) =  nUV

3 =1

Whiteley plots the actual values with the fitted values, in order to examine the 
accuracy of the model described. With regression models a standard inferential 
tools is the adjusted R2 statistic. In addition, Whiteley performs x 2 tests for 
serial correlation, normality and heteroskedasticity (variability). With regards to 
the forecast, Whiteley briefly discusses a predictive failure F-test.
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4 .5 .5  D iscussion

Due to poll data before 1945 being unreliable, this means that observations are 
seriously limited in quantity. At the time of writing, there were only fifteen 
observations. This would imply then the need for a parsimonious model, say. 
Using opinion polls instead, we will typically have more data available than this 
with which to work to obtain parameters.

Additionally, Whiteley includes dummy variables for the 1983 and 1987 elec
tions to capture the effect of the divide in the Labour party in 1981 and the 
creation of the Social Democratic party. This had the potential to disrupt the 
usual relationships between seats and votes until the system balanced out overall 
with the creation of the Liberal Democrats in 1988.

This is a Markov model, whereby only the last election directly influences the 
next, although due to its basic construction may easily be extended. The model 
fit slightly well in forecasting the 2001 election, with absolute errors of 18, 24 and 
13 seats for Labour, Conservative and Liberal Democrats, respectively. However, 
its level of simplicity means that we only get a total forecast as opposed to a 
breakdown by constituency. Ultimately, of course, this total is what we wish 
to forecast, but analysts from several areas are interested in breakdowns. Such 
breakdowns will be possible by our method. Also, this model makes no attempt 
to consider the probabilities of voting at any time, which we argue is crucial since 
it governs (and explains) the number of votes and effectively the number of seats 
won.

4.6 Electoral Calculus Model

4.6.1 Objective

Electoral Calculus ([38]) is a website which uses scientific analysis of opinion polls 
and electoral geography to predict what would happen if a general election were 
to happen tomorrow. Therefore, the focus is on a forecast given the current sce
nario. Prediction by seat is based on the latest opinion polls and so is continually 
updated.

4.6.2 Data

Sources of information for the prediction are the latest opinion polls available in 
addition to the previous election results per party per constituency.
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4 .6 .3  T h e  m odel

There are basically two models, the simplest of which is called the ‘additive 
uniform national swing model’ and the slightly more enhanced of which is called 
the ‘transition model’ .

The additive uniform national swing model

Here we try to estimate

A (k ,j)  =  ( P (k ) -E (k ) )  +  C (k ,j) ,

in which: there are k parties and j  constituencies; A(k, j )  is the share of support 
for party k in consituency j ;  P (k ) is the national share of support for party 
k currently (obtained solely using opinion polls); E(k) is the national share of 
support for party k in the last election; and C (k ,j)  is the share of support for 
party k in constituency j  at the last election.

The transition model

This has two parts for the predicted support levels:

1. A l(k, j )  =  C(k, j ) - j ^  if Party &’s support declines; and

2 . A 2(k ,j) =  C (k ,j ) +  S (k )-V (j) if party k's support increases,

in which
S(k) =

max(P (k) — E(k), 0)
E"=i max(P(i) - E ( i ) ,  0)

where n is the total number of constituencies and in which

m  =  E  C (k , ?)-max ( 1
2=1

m
m

,0

Therefore in A2(k, j ) ,  S (k)-V (j) is the product of how much party k has gained 
nationally relative to all gainers and the fraction of voters in seat j  who have 
swung.

4.6.4 Inference

We can see that the simpler model uses the opinion polls in equal weight to the 
last election result. These are both national figures, which are assumed equal in 
importance to the individual figures. To get figures for current party strengths,
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the poll data results are employed as the substitute for not yet having the final 
election results. In the transition model parties who decline are assumed to do so 
multiplicatively, that is if national support drops by 1 0  per cent, then constituency 
support also drops by 10 per cent. Parties who increase in support gain voters 
from the declining parties, in proportion to the amount of that party’s increase 
relative to all increasing parties. Obviously then, votes may only increase in any 
seat to the extent that declining parties have lost votes.

4.6.5 Discussion

Overall, the models have proven to be quite good when fit to past elections, 
despite some noted minor weaknesses in each method. We also get detailed 
breakdowns of the forecast by seat, as well as the overall result. However, we have 
no information on the theoretical side, the probabilities of voting, which we regard 
as useful and interesting in the modelling of election outcomes. [Note that the 
website has since improved on this model by also splitting the voters into strong 
and weak categories, which has meant slight adjustments to the methodology.]

4.7 Harvey and Shephard Model

4.7.1 Objective

Harvey and Shephard (1990, [55]) focus on the modelling of opinion polls in 
order to make a forecast of the final election, based primarily on poll data. The 
underlying motivation was to step up from the simple poll of polls point estimate. 
Their method is a multivariate structural time series approach.

4.7.2 Data

The only source of information used is the recent opinion poll results per party. In 
the paper, Harvey and Shephard model the opinion polls for each general election 
between October 1974 and 1987.
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4.7.3 The model

The model is a continuous-time local level model. In its simplest (univariate) 
case,

t, where t — 1, 2, . . . ,  n and n polls have been conducted. The random walk 
component ¡it is the underlying level of the process and errors et iV(0 ,cri2) 
and rjt ~  iV(0 , a22) imply a two-staged drift.

Since this level varies with time, the optimal forecasts are constructed by 
discounting past observations. The method is an extension of exponentially- 
weighted moving averages, and the model uses the Kalman filter (see below) 
to handle the fact that observations arrive at irregularly-spaced intervals. It is 
relatively simple to extend this to the multivariate case.

Multivariate version

• Let n(t) be an n x 1 vector which evolves according to a multivariate Wiener 
(Brownian motion) process, such that d/r(t) has uncorrelated Gaussian in
crements with zero mean and covariance matrix

for s >  r and where Q is a positive definite matrix. The elements of ¡i{t) 
represent the underlying levels of each of the n processes.

• Observations are made at discrete intervals, at times ir , r  — 1 , 2, . . . ,  t. 
The intervals between the observations are

for r  =  2, 3, . . . ,  t, so ST will be zero if two observations occur at the same 
time.

• The discrete-time process corresponding to the points at which observations 
are made is the multivariate random walk

Vt — Vt +  tt, 

Vt — V t-1 +  Vt

in which { yt}  is a sequence of the number of votes for one of any two parties in poll

/iT Î t—1 T Vt )
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where yT has a multivariate normal distribution with zero mean and covari
ance matrix

Yar(r)T) =  ôTQ.

• Not all the elements of y(t) need to be observed at a particular time, tT. 
Furthermore, those which are observed are assumed to be subjected to 
measurement error. If yT denotes the nT x 1 vector of observable random 
variables at time tT. then

yT Z r//r T- eT,

for t — 2, 3, . . . ,  t, where Zr is an nT x n selection matrix of zeros and 
ones, which picks out the appropriate elements of y T. The nT x 1 vector 
of disturbances is assumed to have a multivariate normal distribution with 
zero mean and covariance matrix

Var(er) =  £ r.

• For given values of the positive definite matrices Q and S T, the Kalman fil
ter yields the minimum mean square error estimators (MMSEs) of the state 
y T based on the information at time tT, while MMSEs of y T based on all 
the information in the sample can be obtained by smoothing. Predictions 
of future observations, together with their mean square errors (MSEs) can 
also be made by the Kalman filter. Finally, maximum likelihood estimators 
of the unknown parameters may be computed via the prediction error de
composition. Note that if n\ — n then the Kalman filter may be initiated 
with an estimated state vector of ¿q and a MSE matrix Si-

• Harvey and Shephard impose a design effect, 0, (assumed constant) to 
act as an ‘inflating’ factor for Var(eT), so that Var(eT) is updated now to

Var(eT) =  0X T.

Fuller detail of implementing sampling theory in the model is given in Har
vey and Shephard (1990).

4.7.4 Inference

• Maximum likelihood is used to estimate the unknown parameters. Given 
that X r is taken to be known, the model has, as unknown parameters, 0  

and the n(n +  l ) /2  distinct elements of Q. The constraint that Q must be

77



positive definite is imposed by working with the lower triangular matrix A  
such that A 'A  =  Q.

• nT — n in general, so that ZT is the identity matrix.

• Fitted values, p.jt\t, for the model are found by the Kalman filter recursions 
below. The starting values are Ai|i =  y\ and Pqx =  0 S i, where is 
replaced by y\. For r  — 2, 3, . . . ,  t we have

1. f l T |r—1 A t —l|r—1

2 . P T|T- 1  =  P T_i|T_i +  5t Q

3. At| t  At| t— 1 T P-7-|T_ lZ rFr (yT ZrAr|r—l)

4. P T|T =  P T|T_ 1 — p t,t_ 1z ; f t 1z tp T|T_1,

where Fr =  ZTP T|r_ 1Ẑ . +

• Diagnostic checks are undertaken on the one-step ahead prediction errors 
of the model. These are transformed using a Cholesky decomposition of 
the prediction error covariance matrix, so that if the model were true and 
parameters estimated exactly then they would independent, each with a 
standard normal distribution. Checks made include a nonparametric test 
for serial correlation, an F-test for heteroskedacity in the residuals, and 
skewness and kurtosis tests for normality.

• Mean-squared errors are calculated. Also, the sum of squares of the forecast 
errors, SSE, is used to measure the overall accuracy of the forecasts; the 
values are compared with comparative figures from the opinion polls of 
major polling companies.

4.7.5 Discussion

Findings and tests show that the model predicts well, and that the gain from it, 
rather than the poll of polls, is likely to be higher during the early and middle 
stages of the campaign, when the data are less frequent.

The overall idea makes sense, since the effects are incremental over the short 
term, yet more noticeable over the longer term. We would expect this kind of 
behaviour with poll data, as we would probably not expect high fluctuations. In 
the event that we do, then it is possible to control the shocks via the variances of 
both et and rjt. Similarly, we will have models which also consider time differences.
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The model presented is Markovian, such that the authors put the case forward 
of having a model which places more weight on recent observations and less so on 
previous ones. We will explore this case by looking at multi-lags, and demonstrate 
how in theory our models can cater easily to involve them. Note that it should be 
possible to extend the method of Harvey and Shephard to the non-Markov case.

The model is based primarily on poll data, but makes use neither of election 
night data nor exit poll data in arriving at its forecast, but instead relies almost 
solely on the results of polls in the run up. This does enable a forecast to be 
made well before the night itself and thus assuming that the results are accurate, 
or modelling acceptable enough, would be of great interest to psephologists and 
politicians. However, since we will also model opinion polls initially we will be able 
to provide such an ‘early’ estimate. We will therefore make such a comparison in 
Chapter 7 with real pre-election data. Our overall approach then goes on firstly 
to use exit poll data and secondly to channel through election night, letting our 
model evolve as the seats are declared.

This multivariate structural time series model assumes the normality of poll 
voting and the authors perform diagnostic tests to accept such a null, but this 
does not mean that this is the best or most suitable model. We will depart from 
the common Gaussian assumption and look at models which appear to suit the 
types of data, that is to say, the probabilities of voting as well as the numbers of 
votes in polls.

Assumptions are made both that the error (et) is purely due to sampling, 
and independent through time. Smith (1978, [104]) makes an interesting point 
that the second assumption would in practice be false, as most opinion polls are 
based on a master sample of constituencies, which then act as a panel of primary 
sampling units. Harvey and Shephard argue that nevertheless the assumption 
still enables a good first approximation, and that the effect would not be too 
influential.

There is no slope component in the model, and so it consistently underesti
mates (overestimates) a series containing a strong upwards (downwards) trend. 
The magnitude of this error is dependent upon the strength of the trend com
pared to the estimated sampling error. If more opinion polls are conducted then 
the lack of slope becomes less important. In contrast, we consider models which 
could track such trends.
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4.8 Review

This chapter has reviewed forecasting techniques which have been proposed for 
election outcomes. We began by looking at the simple poll of polls estimate, 
which provides little scope for deeper analysis, contrast to what psephologists are 
ultimately interested in performing. In response, in 1990 Harvey and Shephard 
presented a more sophisticated model in the field of time series. Here, the focus 
is on modelling the opinion poll data in order to declare from them a forecast. 
These two approaches are prior forecasts. In the remainder of the chapter, we 
broadly outlined some other approaches which have been applied, the most known 
of which is the cube rule.

We will define and illustrate our own method in Chapter 8 . We look also at the 
BBC’s regression-based method, as well as suggested enhancements by Brown and 
Payne (1975 and 1984) and Brown, Firth and Payne (1999), in which the focus 
now is on updating forecasts on election night, as and when seats are declared. 
Some weight is also placed on more historical information, in particular exit poll 
data. First though we must concentrate on how to estimate the parameters of 
our types of model; as we have already stressed, the majority of our work focuses 
on this as opposed to developing a completely new forecasting method.
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Chapter 5

Hierarchical Likelihood

5.1 Introduction

In this chapter we discuss parameter estimation. In Chapter 3 we specified models 
whose likelihoods are based on latent variables. This effectively means that we 
cannot use the standard estimation methods such as direct maximum likelihood. 
The EM algorithm (see Appendix B) is designed to deal with finding maximum 
likelihood estimates (MLEs) in the presence of missing data. However, with 
the type of models which we are using, the integrals which we obtain from the 
expectation stage are difficult if not impossible to solve, apart from a special case, 
which we will see later. An alternative approach would be maximisation using 
Markov Chain Monte Carlo (MCMC). The methodology is detailed in Geyer and 
Thompson (1992, [47]), and involves simulating ergodic Markov chains having 
equilibrium distributions in the model. From one realisation of such a Markov 
chain, a Monte Carlo approximant to the likelihood function is obtained, and the 
parameter value (if it exists) maximising this function approximates the MLE.

Lee and Nelder (1996, [69]) introduced an alternative method of estimation, 
called the hierarchical likelihood, or h-likelihood. Chapter 5 is devoted to the 
theory and application of the h-likelihood, as developed in Lee and Nelder (1996, 
[69]), and discussed in Lee and Nelder (2005, [6 8 ]), Lee, Nelder and Noh (2007, 
[71]) and in detail in Lee, Nelder and Pawitan (2006, [72]).

First, though, it would be useful to review some basic theory on generalised 
linear models (GLMs). This leads nicely into hierarchical GLMs (HGLMs), in 
which there is dependence among two types of variables, one of which is unob
served. There is a wealth of material on HGLMs in Lee and Nelder (1996 and 
2005), including inferential techniques and illustrations. Then, we consider the 
h-likelihood itself, which is used to estimate parameters of HGLMs, studying the
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properties of these estimators. Briefly, the method has similar features to that of 
both maximum likelihood and the EM algorithm; see Appendix B for outlines of 
each.

Under appropriate conditions, maximising the h-likelihood gives us fixed ef
fect estimators which are asymptotically equivalent to those obtained from the 
marginal likelihood; at the same time, we get random effect estimates which are 
asymptotically the best unbiased predictors.

5.2 Generalised Linear Models

GLMs were introduced in Nelder and Wedderburn (1972, [8 8 ]) to unify various 
statistical models under one framework. Part of the motivation was to enable 
a general method for estimation. It is a generalisation of ordinary least-squares 
regression, in which the data y are assumed to be normally distributed, thus 
y G (—oo, oo) and so E (y) can be any real number. However, if the data were 
instead to come from a Poisson distribution, say, then y G No and we must cater 
for the restriction that E (y) >  0.

Let y denote the outcomes, or response, such that y follows a distribution within 
the exponential family. Distributions from this family, including the normal, 
binomial and Poisson, have a probability density (or mass) function of the form:

fy(y\; 0, <j>) =  exp { - ^ ^ ( 0 ) Ĉ  +  d(y, 0) j , (5.1)

where

• 0 is called the canonical parameter;

• 0  is called the dispersion parameter, which is usually known and related 
to Var(?/); and

• a, b, c, d and m are known.

We have that

E (y) =  c'(6),

V ar{y) =  4>c"(9).

We will define A/3 as the linear predictor, that is, a linear combination of the 
unknown parameters (3, in which A  are the explanatory variables (/L1; A2, . . .).  
Also, let

p =  E(y). (5.2)
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The key to the theory is that A ¡3 and (5.2) are connected by the link function, 
g, such that

9 - d{p) =  A/T

It is then a matter of estimating the parameters p, using a tool such as maximum 
likelihood. Chapter 2 of Lee and Nelder (2006) includes the necessary assumptions 
and further properties of GLMs.

5.2.1 Example

We verify that the binomial distribution, y ~  Bin(r,p), is a member of the 
exponential family. We have that

Pr(y =  y ) =  “  pY V

= e x p { inG ) + ÿ ' i n ( î ^
r • ln(l — p)

=  exp
y ’ ln ( n r )  “  ( - r • ln(! -  P)) +

where a(y) =  y, b(6) =  ln c{6) =  - r - ln ( l -p ) ,  d(y, 4>) =  In Q  and m(<f>) =
1. Also, we have that p =  exp(# )/(l +  exp(^)) so that c{0) =  r-ln(l +  exp(#)).

We may rewrite c(0) as

c{9) =  r-ln =  r-ln(l +  ee).

Then,

m  =

\ + e e

r-e
r-p,

1 +  ee
which we know to be the mean of a binomial distribution. We may follow a very 
similar procedure with c"(9) in order to obtain Var(y) =  r-p-( 1 — p).

Here the link function is
g(p) =  ln P

1 - P
This distribution will become important to us later.
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5.3 Hierarchical Generalised Linear Models

Definition: If we keep y  as the response but now introduce x  as an u n o b serv ed  

random component then we update (5.1) so that we get a log-likelihood of the 
form

(5.3)

where

• we write / /  for the conditional mean of y  given x  such that

v' =  9(fi') =  V +  v (5.4)

is the link function for the GLM, which describes the conditional distribu
tion of y | x\

• r\ =  A (3 as for a GLM; and where

• v  =  v ( x )  for some strictly monotonic function of x .

Notice how in rf we have a fixed effects part (in rj) and a dispersion part (in v)  

to describe the overdispersion, each of which requires modelling. Note that Lee 
and Nelder (1996) mention an estimation method using score equations. These 
equations require v  rather than x ,  as v  can assume any real number whereas x  

usually has range restrictions, which may cause problems in convergence. For the 
method which we will eventually adopt we only need to work with x  alone.

Here, x  has its o w n  a ssign ed  d istribu tion . Lee and Nelder (1996) state that the 
distribution of x  (or equivalently v )  is best decided by the properties of the data 
or the purposes of inference, and to try simple forms of random effect estimators. 
It is often assumed that x  is normally distributed, which is unlikely to be always 
the case. Furthermore, Lee and Nelder (1996) concentrate on distributions which 
are conjugate to that defined for the response, y , although this is not essential. 
Then, we call the resultant model a conjugate HGLM ; Lee and Nelder (1996) 
give a formal definition of this, which we summarise in the next section.

5.4 H-Likelihood

Definition: We define the h-likelihood, h , as

h =  l (9,  0; y \ v )  +  l ( a ;  v ) ,  (5.5)
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• where /(ct; v) is the logarithm of the density function for unobserved v with 
parameter vector a; and

• 1(9, 0 ; y | v ) is that for observed y given v.

Remember from earlier that the random component v is a scale on which the 
random effect x  occurs linearly in the linear predictor, but we may derive the 
h-likelihood from the density functions of x  and y\x. We will later work with x 
directly rather than a transformation of it. Lee, Nelder and Pawitan (2006, [72]) 
detail how to go about choosing v , thereby implying that v is not necessarily 
unique.

Therefore, h is the logarithm of the joint density function for v and y. Clearly 
h is not an orthodox likelihood in the sense that the x  are latent and not observed. 
The h-likelihood is a generalisation of Henderson’s joint likelihood, developed for 
normal models with random effects (Henderson, 1975, [57]). In deriving via h 
the ‘equivalent’ to maximum likelihood estimates (MLEs), we obtain estimators 
which we will call maximum h-likelihood estimates (MHLEs) by the process 
described below.

Process

The basic idea is as follows. We first choose an initial value for ¡3^ — fit0'), where 
¡3 denotes the MHLE of (3.

Then, for j  — 0, 1, 2, . . . ,  N, such that at the N th-iteration the system converges:

1. Fix /?b') at /TJh Then maximise h by solving

=  0 =  vu+1\ (5.6)
ov

2. Fix wb+1) at ?)0+1). Then maximise h by solving

=  0 =  /3U+I)- (5.7)

Features

• As with MLEs, the MHLEs are invariant with respect to the transformation 
v ; in other words, if instead of (5.6) we used dh/dx — 0 then we would end 
up with the same random effect estimate. See Lee and Nelder (1996) for 
more.
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• If we integrate out these random effects from h then we get the marginal 
distribution of the observed response. However, this integration will often 
be difficult if not impossible, and will be hard to work with subsequently. 
The key advantage of the h-likelihood is that we avoid the integration which 
is necessary when the marginal likelihood is used; furthermore, h is easily 
available. Random effects may also be of interest if inference is focused on 
individual responses; the double-step structure h enables us to analyse the 
former as well as the latter.

• For estimation of dispersion parameters an adjusted profile h-likelihood 
provides the required generalisation of restricted maximum likelihood. For 
inferences, various test statistics are developed in Lee and Nelder (1996), 
which include the scaled deviance test for the goodness of fit and a model 
selection criterion for choosing between various dispersion models.

5.4.1 Conjugate HGLMs

Let the response be r/y , for i =  1, 2, . . . ,  t (where t is the number of groups) and
j  =  1 , 2 , . . . ,  rq, and furthermore let n =  Yl\=i ni-

Now consider the canonical link model

where oq and a2 are functions of the dispersion parameters, a.

The prior is specified for the random component v only; we need not specify 
priors for (3, 0  or a.

@ij @ij ~b ,

in which 9[j — df//^), 0tj =  O(fMj) and Vi —

Then, using the definition of h given earlier, we have that

{oi. . — W i . .
(5.8)

Assume that the kernel of l{a\v) has the form
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The kernel of h then is

~ y—̂ Q  ̂ +  ^ ( a i ( a ) i ;  -  a2(a)b(v)).
u

Since

and

a m t ))
ae

db(v)

=  //,

=  w,

we have that
dv

dh (:Vij ~ tij)  +  <Mi (« )
dvi (¡)

Setting this equal to 0 and then solving for u gives

E j  Vij ~  E j +  <Mi(«)

-  a2(a)uj.

Ui =

If
E(u) =

4>a2(a)

ai(a)
a 2( a )

and the fixed effects have an intercept term then from (5.8) and (5.9),

E L  Ui =  a i(«) 
t a2(a) ’

analogously to the result for residuals in normal linear models.

(5.9)

5.4.2 Example: the beta-binomial model

Let
y\u r̂ j Bin(m, 7r')

so that
/ /  =  mir'.

We have the following conjugate HGLM (0L =  0^ +  vt):

ff =  In 5

and

Vi =  In
Ui

Ui

9 =  In
7T

1 —  7T
A/3.
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We also let
u ~  B e(a i, 0 :2).

Then, we have that

/(a; v) =  -  ( « 1  + a 2)ln ^  ̂ j

in which ai(o;) =  cq and 0 2 (0 ;) =  cq +  a2.

By equation (5.8) the MHL equations for ß  are

dh

lnB(au a2) ) ,

<9 Ac
^ mijnij ) Akij — 0.
tj

(5.10)

By equation (5.9) the MHL equations for u are

ût =  ^ y ^ (5.11) 
cq +  a 2

When a.\/a2 —* 1 and « 1  —> 0 0 , u* —* 1/2, i.e. 7r' —> 7r. When « 1 , 0 2  —> 0,
E j  yij =  E j  Pij =  E ,  "HiTTy for all i.

Since
,  7TU

7TU T (1 — 7T) (1 —  n) ’
E(y) =  E(rmr') A A4 — m7r) so inference on the marginal mean may not be easy. 
In general, an explicit form of marginal likelihood for beta-binomial models is not 
available.

However, with no fixed effects and only random effects,

-  in ; .  “ •J ' 1 -U i

and the resulting marginal distribution is beta-binomial.

Then, (5.11) becomes

Ej V i j + Qi
«1 + a 2 + Ej  m ij

E(rq| y).

Lee and Nelder (1996) have more examples to illustrate the idea, particularly 
conjugate HGLMS such as the Poisson-gamma and gamma-inverse gamma mod
els.
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5.5 Properties of Estimators

It is important that the MHLEs are useful to us, that is, similar in behaviour 
to MLEs, which have attractive properties. Lee and Nelder (1996) make the 
necessary proofs, the most essential of which are shown below.

5.5.1 Asymptotically best unbiased prediction

Firstly, we require that our MHLE for the unobserved component is reliable. The 
EM algorithm is a way of finding the MLE in the presence of missing data, such 
as unobserved components. In the EM algorithm, the unobserved component 
would be dealt with by taking its expectation. Therefore, it would be helpful if 
the MHLE for the random component were close in value to what we expect it 
to be.

Let v(x) denote some transformation of unobserved variable x. Then E(v(x)| y) 
is the best unbiased predictor for v(x). It is shown in Lee and Nelder (1996), and 
covered below, that as long as v is strictly monotonic then asymptotically

v -> E(u|y),

where v is the MHLE of v and further that

v\ y ~  N(v, D~l), (5-12)

i.e. v fa E(u| y), in which D  is a diagonal matrix such that the ith element

d2h

However, it is essential also that for all i

D C 1 =  0 P ( i )  , (5.13)

where n is the sample size and i ni =  n as we defined in 5.4.1.

It is found that (5.13) holds if the number of groups t remains the same but the 
within group sample sizes > oo at the same rate.

Proof

Lee and Nelder (1996) consider the relationship

hi oc Li +  [(/?, cj), o ; Vi\y),
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where

• hi is the /¿-likelihood of vt and yl3;

• Li is the marginal likelihood of yij; and

• l(/3, 0, a ; Vi \ y) is the conditional likelihood of Vi given y.

Using the power series expansion,

exp (hi) =  exp(/q{l +  c3 (r/j -  V if +  c4(vi -  v^4 +  . . . } ) ,

where c3 and C4 are coefficients with order 0 P(n), Liu and Pierce (1993, [79]) 
showed that

exp =  exp(L j{l +  Op(n~1)}).

Therefore, we may show that

exp(k(P,(j),a- Vi\y)) =  exp fy fi, 0 , a; Vi\y)x

{ 1  +  c3(vi -  Vi) 3 +  c4(vi -  Vi)4 +  . . .  +  0 P(n-1)}),

where h(/3, 0, a ; Vi\ y) is the log-likelihood of the normal density (5.12). 

Therefore,

E(ui| y) =  Vi +  (c3 -  ViCA)E*(vi -  v^4 +  0 P(n_1) =  vt +  Op(n_1),

where E* is an expectation with respect to the normal density (5.12), which proves 
that

Vi — E(vi\y) +  Op(n^1),

as required. □

Illustration

Consider the following beta-binomial model:

yi\Xi ~  Bin(ri} Xi)

Xi ~  B e(a , P),

where j  — 1 , which means both that we may drop this subscript and that now 
Tii — n. Hence i =  1, 2, . . . ,  n, so that there are n observations. Further details 
of the binomial and beta models are provided in Chapter 6 , 6.2.
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Since the mode of the beta distribution is (a  — l)/(a ; +  (3 — 2), when we apply it 
to our model above the explicit form for estimating the MHLE of xi} Xi, is

~ -  a ~ 1 +  yi 
ex. + (3 — 2 +  rj

Also, the mean of the beta distribution is a/(a +  (3).

According to Lee and Nelder (1996), we need to check that D + l — Op(l/n).

The h-likelihood, h, is

n

h oc ^ ( a  -  1 +  yi)\nxi +  ( (3 -1  +  r{ -  yi)\n(l -  Xi).
i=i

Then,

dh _  a -  1 +  yj _  (3 -  1 +  n  -  yj 
dx% Xi 1 — Xi

__ d2h a - l  +  yi 3 - 1  +  n - y i
d x ( ^  ~  x f +  (1 - X i f  ~

Therefore for D + l =  Op(l/n) to hold it is necessary for Dt to increase with n.

Now if we let

00 =  w (a “ 11 +  (TJ i y ('3 _  1,1
which is a constant value, then we may rewrite Dl as

n  i Vi , ri ~  ViDi = C 0  +  -Z7> +

—Co +

x( (1 -  Xi)2
Vi( 1 -  2X i )  +  T j X j

x2i ( !  -  XiY

Thus, as long as we have that rt =  Op(n) the result holds, since :f* is a constant 
and yi will increase with rj.

5.5.2 Asymptotic efficiency for (3

MLEs are appealing to us for many reasons, which are summarised in Appendix 
B; therefore, the closer the MHLEs are to the MLEs the better, and the more 
useful they will be for inference purposes. We now prove that the MHLE (3 is 
asymptotically equivalent to the MLE (3.
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Proof

Consider the Taylor series expansion

where

dh dh . . , A2 , .
W * = d K u‘ <,+ ' ( v~ v) + ( v~ v ) v { v~ v) +  ---

* = ( « ) © ' - - * - ( « )  ( S ) ' -
Since

and, similarly,

then we have that

provided that A\jn —

v =  E(v| y) +  0 P 

Var(u| y) =  Op

E ( w J v)  =  m {v- i + 0 p W
O p(l) =  A2/n.

Now, the marginal ML equation for (3 becomes

EÊ !̂ w) = Â u + 0p(1)'
Since

92/i
0 ^ 7

=  0 P(n),

we can show that the difference between the marginal ML and MHL estimator for 
/3 is of the order Op(n-1), using the inversion of series; see Barndorff-Nielsen and 
Cox (1989, [4]). □

Illustration

Again, we consider the beta-binomial model

Vi ~ B i n ( r i , X i )

Xi ~  Be(a, /?),

for i =  1, 2, so that there are n observations. Now, we compare the
performance of the h-likelihood in terms of getting parameter estimates with 
that of the EM algorithm, the latter of which provides MLEs. Given the previous
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two proofs, and particularly the second, we would expect the MHLEs to converge 
to the MLEs as n increases.

We now consider various simulations of increasing size (fifty different simula
tion datasets for each case). The process involves first simulating data given the 
chosen values for «  and ft and then maximising the likelihood of the model given 
the simulated data, first using the EM algorithm and then using the h-likelihood 
procedure. Just for simplicity, we will keep r* fixed for all i. We will in fact set 
ri — n due to what we found in 5.5.1.

Full details of the h-likelihood and EM algorithm methods for the beta- 
binomial model are given in Chapter 6, when applied in a more complicated 
time-series scenario (see 6.5). Briefly, for the h-likelihood we first maximise {x^} 
explicitly given fixed values for «  and ft, and then we switch to using the Newton- 
Raphson method to update and maximise both «  and ft given the most recent 
values for {x i}. We simply repeat this two-stage procedure until the convergence 
of « ,  ft and the latent {x j}.

n mean MLE mean MHLE absolute error

50 d=2.2345 
/3—5.8825

«=2.3976
¿(=6.7025

+0.1631
+0.8200

100 «=2.4016
¿(=6.5217

«=2.5225
¿(=7.0888

+0.1509
+0.5671

500 «=1.9777
¿(=4.7723

«=1.9782
¿(=4.8016

+0.0005
+0.0293

1000 d=2.0221
¿(=5.0287

«=2.0236
¿(=5.0345

+0.0015
+0.0058

5000 d=1.9284
¿(=4.8613

«=1.9286
¿(=4.8629

+0.0002
+0.0016

10000 «=2.0007
¿(=5.0680

«=2.0008
¿(=5.0683

+0.0001
+0.0003

Table 5.1: EM algorithm versus h-likelihood for simulations of probabilities from
Be{ 2,5).

Rem arks: From looking at both tables we can see that as n increases the 
absolute errors generally get smaller, as required. By the time we get to n  =  500
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the (mean) MHLEs are reasonably accurate, and when n — 10000 they are very 
close to the MLEs (to two decimal places).

There are some other interesting observations. The MHLEs, in all instance 
but one above, give larger values than the MLEs. Also, importantly, the MHLEs 
(and MLEs) are close in value to the starting values allocated, to indicate the 
reliability of the underlying h-likelihood method.

Lee and Nelder (1996) have other proofs which collectively justify the use of 
MHLEs in the absence of MLEs. These include a proof for using particular 
estimates of the covariance matrix of MHLEs, and furthermore the justification 
for using maximum adjusted profile h-likelihood estimators. In our context, we 
are more concerned with the former of these and not the latter, since we will not 
have many different kinds of parameter (but usually three: one set for determining 
party strength, one for identifying stronger time lags and one related to the 
time interval between polls). The estimates mentioned are useful when we make 
inferences about the realised or sample values of our latent data, x. Due to 
the proofs in Section 6.6 of the next chapter, our proof of the estimates for the 
covariance matrix would follow through that shown in Lee and Nelder (1996).

5.6 Review

To summarise this chapter, we recalled the fundamental theory behind GLMs. 
From this, we were able to extend to HGLMs, which involve the use of unobserved 
variables. These unobserved variables actually have their own distributions, thus 
enabling more underlying flexibility overall. Lee and Nelder (1996) specified a 
method of estimation called the h-likelihood method, which may be used to pro
vide estimators called MHLEs. These are asymptotically equivalent to MLEs, the 
latter of which we would use in the absence of latent data; MHLEs also perform 
well enough to use them instead of MLEs. The basic idea is to have a double 
maximisation step within each iteration, the first of which maximises the latent 
data having fixed the parameters temporarily and the second of which maximises 
the parameters given the recently maximised latent data. This happens until 
convergence, at which point we obtain our MHLEs. In the following two chapters 
we will apply this method to a specific case, namely, a time series setting, in order 
to get MHLEs to help describe election voting.
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Chapter 6

The General Model

6.1 Introduction

To summarise so far, chapters have focused on reviewing various aspects: the UK 
general election, statistical election forecasting methods, time series concepts and 
the h-likelihood method. From this point, we apply the knowledge gained from 
these chapters to define and illustrate throroughly our modelling of election data.

This chapter begins by the specification of our time series model in a general 
sense, including justifications as to why we have chosen this form given the poll 
data. We then focus on outlining each specific model, which falls firstly into 
the first-order and higher-order cases and secondly into three different types of 
probability model; this involves their specification as well as basic properties. 
The following part of the chapter focuses on the estimation of parameters via 
h-likelihood, in which we specify the form of the likelihood and then describe 
how to obtain the parameters given the specific model, as the method differs 
from model to model. We show a convenient instance where the integrals from 
the EM algorithm compute tidily for our simplest model; this enables a useful 
comparison of the h-likelihood with the EM algorithm. It is important to check 
that the properties proven in Lee and Nelder (1996, [69]) follow through in our 
time series context; the next section shows the necessary proofs. Following this, 
we move on to our more complex models, the volatility models, and study their 
features using simulations.

Once we obtain the parameter estimates we need to infer about them. The 
next section is devoted to this, showing how to derive approximate confidence 
intervals via approximate correlation matrices. Finally, subsequent inference tools 
- comprising model selection, hypothesis testing and simulation analysis - are 
outlined.
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6.2 General Model

6.2.1 Binomial/multinomial distributions

Recall that for some discrete variable y we write y ~  B in(n,p ), for which n is 
the total number of trials and p is the fixed probability of success, and have the 
probability mass function:

P r ( y ) = /  C M 1 - ? ) " " ’  0 < p < l , ( y , n ) e N , y < n  
1 0  otherwise.

Let us assess the assumptions when adopting the binomial distribution in the 
context of our scenario:

1 . A fixed number of trials - for any t, this will certainly be true, as it is simply 
the total number of votes made (for all parties) in the tth poll.

2. Independence of events - when thinking of general elections, it is an essential 
requirement that the person voting does so purely on his own opinion and 
choice, and with no influence of another person’s vote. The extent to which 
bias creeps in here may have an impact; however, it is an assumption which 
is commonly accepted in election poll analysis. Similarly, we will assume 
that one poll does not influence another, which in reality is unlikely as once 
a poll result is published some dependence upon the errors in successive 
polls may be induced.

3. Only two outcomes - to achieve this, we must focus interest only on one 
party and have an ‘otherwise’ category; here, ‘otherwise’ may be either 
simply the remainder of votes, that is, the combined total number of votes 
for all parties other than the party of interest, or another party of interest, 
that is, where we temporarily neglect the remainder of the data and focus 
just on data for our two parties, by re-scaling. For instance, if for some 
general election we were interested in simply comparing the performances 
of Labour and Conservative, and no other parties, then we would simply 
take all collected data concerning that election for these two parties. We 
would then - without loss of generality - choose the number of votes for one 
of these parties to be our random variable, say Labour.

4. A constant probability of success - we are effectively saying that at the 
very time when the polls were collected, the chance of voting for Labour 
was fixed per individual. Clearly then, we are, one may say, restricted by
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0.2

Figure 6.1: Typical spread of Bin(n,p) with simple examples Bin(20, 0.45) (up
per) and Bin(20,0.65) (lower).

operating within discrete time; a continuous-time model would improve the 
malleability of the probability with respect to time. However, the fact that 
we are letting this probability vary between polls gives us some relief from 
this limitation, that is, we are sequentially modelling the probability of 
voting implicitly in the overall model.

Figure 6.1 illustrates the typical way in which values are distributed when mod
elled by the binomial distribution. As we can see, it looks quite symmetrical and 
bell shaped given the kinds of values of p in which we will be interested (roughly 
between 0.25-0.75). Recall that E(y) =  rip (9 and 13 respectively for our exam
ples), so practically this will mean that for a given poll we would expect np to 
vote for the party represented by y. Also, Y ar(y) =  np(l — p) (4.95 and 4.55 
respectively for our examples).

From this then, it seems justifiable to assume the binomial distribution in 
modelling the number of votes for a specific party at poll t. Goodness of fit to 
chosen datasets will be looked at later.

Extension

In order to deal with more than just two parties, we must extend the binomial 
distribution to the multinomial distribution.
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For some column vector y of discrete variables (yi, y2, • • •, Vk)', in which there 
are k variables, we will write y ~  MN(n,pi,p2 , . . .  ,Pk), for which n is the total 
number of trials and pj, for j  =  1 , 2 , . . . ,  k is the fixed probability of success for 
the j th outcome. Then, the probability mass function is:

Pr(yi,y2, . . . , y k) = yi\vi..yk\Pilp2 ■■■pVk 0  -  Pi -  (%> n) G N> Pj -  n
0  otherwise,

where Yl)=\Pj =  1 and Y^=i Vj =  n-
The assumptions outlined earlier follow through, except that there are now 

not only two outcomes but k.

6.2.2 Beta/Dirichlet distributions

We are working with probabilities, so obviously require the distribution to lie in
[0 , l ] . 1

Let f (x )  ~  Be(a, ¡3) for a, ft >  0. Therefore we have the probability density 
function:

/ ( * )
x a- \ l  -  +  P ) / ( T ( a ) r { 0 ) )  x  G  [ 0 , 1 ]

0  otherwise.

Typically, we would expect individual probabilities of voting for the major parties 
(Labour, Conservative, Liberal Democrats, Scottish and Remainder) to be far 
enough away from either 0  or 1 . Also, it is unlikely that our shape parameters 
will be equivalent (for that would imply equal strength of parties); neither will 
they be small in value, such as below 1, as will be seen later. Therefore, we have 
probability density functions of the form shown in Figure 6.2. Note here that the 
actual shape parameters given are very small, compared to what we will see with 
our model. However, these graphs illustrate the general shape of what we will 
assume the probabilities of voting to look like.

Location and dispersion

mode(a;) =  ** 1 , E(x) =  — Var(x)a +  p — Z oi +  p
a(3

(a +  (3)2(a +  0 + 1 )

1 Note that frequently in this thesis we refer to functions as / ,  but this is not the same /
throughout. We clarify the specific form as and when necessary; here, for instance, /  is a beta 
density.
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be(3,2) be(2,3)

b e (8 ,3 )  b e (4 ,1 0)

Figure 6.2: Typical forms for Be(a, (3) when a >  (3 (left graphs) and a < /3 (right 
graphs).

Extension

In order to deal with more than just two parties, we must extend the beta distri
bution to the Dirichlet distribution.

Let /(x ) ~  Dir{a\ , « 2 , • • •, ®k) for « 1, a2 , • ■ ■, «fc >  0, in which there are 
k variables and let j  — 1 .2 ,. . . .  k. Therefore we have the probability density 
function:

f ( x  i ,x 2, . . . , x k)
x T - 'x ? - 1...  a r ^ T iE jU  a ^ /d ljL i T(a,)) Xj G [0,1] 
0  otherwise,

where xj =  1 -

6.2.3 Model specification

First, consider the simplest two-party contest, say, Conservative versus Labour: 
the Markov case. The first step is to define

yt\xt ~  Bin(rt, x t), (6.1)

for t — 1 ,2 ,. .. ,n, where yt is the number of votes for a party of our choice in the 
election poll conducted at time t, rt is the corresponding total number of votes
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in that poll, xt is the probability of voting for that party at the time of the poll, 
for each individual voter in the UK, and n is the number of election polls recorded.

The second step involves x t, which has its own model. x t will be dependent upon 
previous historical information, represented by U -i, such that

x t\£t_i ~  Be(au bt), (6.2)

where at =  at(&_i) and bt =  bt(£t- 1).

The time series modelling involves having some aq, which is the starting point. 
From this, x\ generates y\, x 2 generates y2 and so on, up to yn. What we are 
specifically interested in here is how to generate the {x t} in order to be able to 
model the {yt}, that is, we require particular probability models for each poll. 
These model the probabilities of voting for parties of interest at the time of, a 
given poll. Recall Chapter 3, in which we considered three particular types of 
probability model: the strictly stationary ARCH model, the stochastic volatility 
model and the GARCH model, the latter two of which are nonstationary. Each 
type of model considers different historical information, and this is the focus for 
the rest of this chapter.

More generally, to deal with more than two parties, we extend to a multinomial 
distribution, that is,

y t | x t ~  M N (rt, [xt]), (6.3)

where y t is p x 1 column vector (yip), V2 (t), • • •, yP(t))\ x t is p x 1 column vec
tor (aqp) x 2(t) . . .  xp($y, [xt] =  {x i(i),x2p ),.. • ,£pp)} and p is the total number 
of parties of interest. This multinomial distribution is just simply a generalised 
version of (6 .1 ) to enable us to consider more parties than just two.

Correspondingly, we need to extend the beta model to a Dirichlet model, that is,

xp)| £t- i  ~  Dir([ak(t){Zk{t- 1))]), (6.4)

with [afcp)] =  {«ip), a2p), ■ • •, dP(t)} and p parties. Again, the Dirichlet distribu
tion is a generalisation of the beta simplification, thus enabling us to progress to 
consider as many parties as we wish.

For computation purposes, we only have to worry about p — 1 variables for both 
x  and y , since we know that for some t, Ylk=i xfc(t) =  an<̂  E aUi Vk(t) — rt-
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Brown and Payne (1986, [25]) apply a Dirichlet-multinomial model to aggregate 
voting data, concentrating on transition probabilities for movements between the 
options available to a voter at each election. In their modelling, they make use 
of ecological regression techniques.

6.2.4 Latent variables

In all our models, we have x, which is a matrix of probabilities of voting for indi
vidual parties at each poll. They are actually latent variables, which work ‘behind 
the scenes’ to assist the time series modelling, in that they provide an underlying 
flexibility. By this, we mean that at each poll we have a unique probability of 
voting for a particular party, which is used to model the actual number of votes, 
yt, for that party in that poll, yet after we have generated all our y the x are 
effectively phased out. In the modelling, as has been seen, the x have their own 
continuous distributions which change within the progressive time series scenario.

Below, we consider the actual models which we will consider fitting to our datasets 
and investigate the simulations of. First, we focus on the first-order (Markov) 
models in the two-party and three-party cases, and then on the higher-order 
(two and three lag) models in the two-party and three-party cases. We specify 
the beta/Dirichlet shape parameters as well as the mean and variances. The 
methodology was covered in Chapter 3 (3.3).

6.3 First-order Models

There are three cases which we will deal with:

• For the ARCH model £t_i =  yt- 1 , that is, the previous observation.

• For the SV model £t_! =  x t~\, that is, the previous probability.

• For the GARCH model £f_! =  (xt-i, yt-i), that is, the previous probability 
and observation, combined in a weight function.

These follow through similarly for the multivariate cases.

W e a im  to  deal w ith  th ree  parties. T h en , p =  3 in  (6 .3 ) an d  (6 .4 ).
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6.3.1 ARCH (stationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.1.

• MODEL 1 - ARCH(2,1)

at =  a +  yt- 1, bt =  0 +  rt-i -  yt-i t =  2, . . . ,n,
d\ — cr, b\ — /?,

with

E(xt\yt-i)
a  +  Vt-1

o î + P  + f’t-1 and

Yar(xt\ yt-i) =

a
oc -{- ¡3

(q + V t - i ) { P  +  r t- \  ~ y t- 1)
(a +  P +  rt_ i)2(a +  (3 +  rt_x +  1 ) ’ 

and

Var(x  i)
a(3

(Oi +  /3) 2 (or +  P +  1)

• MODEL 2  - ARCH(3,1)

cij(t) T  Uj(t—i)) t — 2 , . . . ,  n,

o.j(i) = oij j  =  1, 2, 3,

with

E 0 O'(t) I %'(t-i)) =
E t i  +  n-\

and

V«.r(i1(t)| %,,-n) = + K »--))(£ ti(ai} + / - 1 ~ (Qj +
J<> J< 1 + ri - 1)2 ( E t i { “ i} +  rt-i + 1 )

By their construction, we can see that these are particularly simple models in 
that the shape parameters comprise an additive combination of the parameter 
representing party strength and the poll vote for that party.

6.3.2 SV (nonstationary) models

T h e  first m o d e l is fo r  tw o  parties  an d  th e  se co n d  for three parties. T h ese  are

b ased  o n  th e  th e o ry  p resen ted  in C h a p ter  3, 3 .3 .2  an d  3.4.
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• M O D E L  3 - S V (2 ,1 )

at =  ctxt- 1 , bt =  ct( 1 -  xt_i)),

where ct =  exp(—<fiôt)/(l — exp(—(f>ôt)) t — 2 , . . . ,  n

(a\, b\ are our hypothetical choices)

and with

E(x î| x t- i )  =  x t- i  and 

Var(xt\ x, ,) =  X t l ^ + ^  -

• MODEL 4 - SV(3,1)

®j(t) Ctxj{t-i) j  1)2,3,

where ct — exp(—(f>5t)/(l — exp(—<f>5t)) for t =  2 , . . . ,  n, where cijp) are our 
hypothetical choices and with

E(xj(t)\xj(t-i)) =  xj(t-1) and 

Var(xj(t)l xj(t_ l}) =
Ct \ ±

With these models, the probability of voting at poll t — 1 distributes the value 
of Ct amongst the shape parameters. Notice how the conditional mean is just the 
previous probability of voting, and how the conditional variance increases with 
St, the time interval between polls, thus giving us the nonstationarity aspect:

lim Yar(xt| x t- i )  =  0  St—>o

whereas
lim Var(xt\xt- i )  =  xt-i{\  -  x ^ i).St—>oo

By contrast, in the ARCH models the comparative variance is not a function of
st.

6.3.3 GARCH (nonstationary) models

T h e  first m o d e l is for  tw o  p a rties  an d  th e  secon d  for th ree  parties. T h ese  are

b ased  o n  th e  th e o ry  p resen ted  in  C h a p ter  3, 3 .3 .3  an d  3.4.
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at =  ct(uxt^i +  (1 -  u)yt-i/rt--t)),

bt =  ct(u( 1 -  rrt_i) +  (1 -  u )((l -  yt-i/rt- i ) ) ) ,

where cf =  exp(—(j>8t)/{l — exp(—<j>St)) t — 2 , . . . ,  n 

(ai, b\ are our hypothetical choices)

• M O D E L  5 - G A R C H (2 ,1 )

and with

E(xt\xt_i, yt-\) =  ^uxt- 1  +  (1 -  u)y ~ ^ j  and 

Var(xt\xt- u y t- i )  =

(uxt-i +  (1 -  u ) ^ )  (m(1 -  xt- i )  +  (1 -  u) (l -

Ct + 1

• MODEL 6  - GARCH(3,1)

ai(t) =  ct(«xj(t_i) +  ( 1  -  u)yj(t-i)/rt- i )  j  =  1 , 2 ,3, 

whereq  =  exp(—<j>5t)/(l — exp(—(¡>5t)) t =  2 ,.. . ,n

(aj(i> are our hypothetical choices)

with weight 0  <  u <  1 and with

E 0 O(i)l %(«-!)) =  +  i 1 -  “ )%•(*-i ) /n - i

Var(xj(t)| Xj(t-\),yj(t-\))
(E (^ (t)l ■))(! -E (a ;jWl •)) 

Q +  1

and

With these models, the probability of voting at poll t — 1 and the number of 
votes at poll t — 1 distribute the value of ct amongst the shape parameters. The 
extent to which one dominates over the other in influencing ct depends on the 
weight u. As with the stochastic volatility models, notice how the conditional 
variance increases with 5t, the time interval between polls, thus giving us the 
nonstationarity aspect as opposed to with the ARCH models.

6.4 Higher-order Models

x t will now be dependent upon more previous historical information, represented 
by £t_/, in which l is the number of lags, such that

xt\[&_/] ~  Be(at([£t-i]), &i([6 -i]))> (6-5)
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where [£,t-i] — {£t-i, 6 - 2 , • • •, &-*}• The Dirichlet extension is the same idea.

Second Order:
There are three cases which we will deal with:

• For the ARCH model £t- i  =  Ut- 1 and ^ _ 2 =  yt- 2.

• For the SV model £t_i =  xt_i and £ 4_ 2 =  ^¿-2 -

• For the GARCH model &_i =  (a;t_i, and & _ 2 =  (art-2 , S/t-2)- 

These follow through similarly for the multivariate cases.

6.4.1 ARCH (stationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.4.

• MODEL 7 - (MTD)ARCH(2,2)

at — a  +  Vt-2 , bt — [3 +  rt - 2 — t/t- 2  i =  3 , . . . ,  n,

at — a + yt~\i bt =  p +  rt_i -  yt-\ i =  2 ,. .. ,n ,
ax =  a, =  (3,

which are used in

w f(x t\yt_ 1) +  (1 -  w )f(x t| yt_2), t =  3 , . . . ,  n,

/(rr2| 2/i),

where 0  <  w < 1 .

E(art|j/t_fc) = a +  2/t-fc fc =  1 , 2 , and

Yar(xt\yt_k) =

a +  (3 +  rt_ fc
(a +  yt-k){P  +  rt_k -  yt_k)

E(xi) = a
o. +  ¡3 

Var(xi) —

(<* +  /? + rt_k)2(a +  (3 +  rt- k +  1) 
and

a(3

k =  1,2,

(o: +  /5)2 (o: +  (3 T 1)

• MODEL 8  - (MTD)ARCH(3,2)
Here, we have the same components as with ARCH(3,1), and additionally

aj(t) +  Vj{t—2) 3 — 1; 2, 3, t — 3, ,n,
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all of which we combine using a weight parameter, w (as discussed in Chap
ter 4, 3.3.4), that is,

W(x*| y t-i) +  (1 -  w)/(xt| y t_2), t =  3 , . . . ,  n,

/(x21 Yi),

where 0  < w < 1 .

E (^(i)l %■(*-*)) =  - J  +  !<J(1 ^ ^ — 1 , 2  and
E»=i ai +  rt-k

Yar(xm \yj{t_k)) _  (Qj +  y j ( t - k ) ) { ^ 2 i = i { a i }  d~ T t~ k  ( a j  +  U j ( t - k )))

( E L i W  +  ri-fc)2( E t i M  +  r t ~ k  + 1)

By their construction, we can see that these are particularly simple models in 
that the shape parameters comprise an additive combination of the parameter 
representing party strength and the poll vote for that party. This is true for each 
of the two lags. Then, the two are combined additively using a weight function 
w, to provide the complete probability model.

6.4.2 SV (nonstationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.2 and 3.4.

• MODEL 9 - SV(2,2)

at =  WC^tXt- 1 +  (1 -  w)c(2)tXt- 2,

bt =  WC{l)t( 1 -  Xt- 1) +  (1 -  tu)C(2)i(l -  Xt- 2) t =  3 , . . .  ,n,

a2 =  c2x \, b2 =  c2(l -  xi),

wherec(1)t =  exp (-0 5 (i)f) / ( l  -  exp (-^5 (1)t)) t =  2 , . . . ,  n

and c(2)t =  e x p ( - # (2)t) / ( l  -  exp(-<M(2)t)) t =  3 , . . . ,  n

(ai, b\ are our hypothetical choices).

E(xt| [&_2]) =  wxt- i  +  (1 -  w)x t ^ 2  and
/ I rt n _  (wxt-i  +  ( 1  -  w )xt_2)( 1 -  (wxt-\ +  ( 1  -  w)xt- 2)) 

Var(xt\ [£t_2])  ---------------------------- — jz------- t----- — :-------------------- ■
WC1 (i) +  ( 1  — w)c2 (t) +  1

• MODEL 10 - SV(3,2)

&j(t) 'MC\(t)Xj(t— 1) T (1 Ŵ C2[t)Xj[t—2) j  1) 2,3, t 3 , . . . ,  71,

aj{ 2) =  Cl(2)Xj(\),
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where ci(i) =  exp(-05 i(i) ) / ( l  -  exp(-</x5i(i))) for t =  2 , . . . ,  n, i =  1 , 2 , and 
where are our hypothetical choices. We have now introduced to the 
stochastic volatility model a weight w such that 0  <  w <  1 .

EOj(t)| fe(t-2)]) =  +  ( 1  -  w)Xj(t-2) and
Vdr(xm \ fe(t-2)]) =

(wxj{t-i) +  (1 -  w)xj(t_2))( 1 -  (wXjft-!) +  (1 ^ w)xj{t_2)))
wcm  +  ( 1  -  w)c2(t) +  1

With these models, the probability of voting at polls t — 1 and t — 2 distribute the 
value of ct amongst the shape parameters. The weight w determines which of the 
two dominates. As with the Markov cases, the conditional variance increases with 
St, the time interval between polls, thus giving us the nonstationarity aspect, as 
opposed to the ARCH models in which the comparative variance is not a function 
of St-

6.4.3 GARCH (nonstationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.3 and 3.4.

• MODEL 11 - GARCH(2,2)

at = wcQ)t(uxt - 1  + (1 -  u)j/t_i/rt_i)+
( 1  -  w)c{2)t(ux^ 2  +  ( 1  -  u)r/i_ 2 /r i_2),

bt =  w q i)t(l -  ( « ( 1  -  x t-x) +  ( 1  -  u)( 1 -  yt_i/rt- i ) ) )+

(1 -  w)c(2 )t( 1 -  (m(1 -  x t- 2 ) +  (1 -  m)(1 -  yt-2 /rt- 2))) t =  3 , . . . ,  n, 

« 2  =  C(i)2 («x 1 +  (1 -  u)yi/n )), 

b2 =  C(i)2 (u (l -  xi) +  (1 -  m)((1 -  yi/n))), 

where c(1)t =  exp (-05 (i)i) / ( l  -  exp(-<jM(i)t)) t =  2 , . . . ,  n

and C(2)t =  exp(—05(2)t) / ( l  -  e x p ( -0 i (2)i)) t =  3 , . . .  ,n
(ai, b\ are our hypothetical choices).

E(xt| [6 - 2]) =  w(UXt-x +  (1 -  u) +  (1 -  w) ( ux t _ 2  +  (1 -  u)

Var(xt\ [&_2]) E (^IK «-2] ) ( l - E ( x t|fe-2]))
went) +  ( 1  -  w)c2(t) +  1
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• M O D E L  12 - G A R C H (3 ,2 )

2

aj{t) ^ 'Jwci(t){u%j(t-i) "L (1 u)yj{t-i)/rt-i) t =  3 , . . . ,  n,
i = 1

%(2) =  Ci(2)(«a:j(i) +  i 1 -  w)% (i)/n ) J =  1, 2, 3,
whereQp) =  exp(-0<5i(t)) / ( l  -  e x p ( - ^ i(i))) t =  2 , . . .  ,n

(aj(i) are our hypothetical choices),

with weights 0  <  u <  1 and 0  <  w <  1 .

Efo(t)l fe (i-2)]) =  W +  (1
d - 1  /

+

Var(xm | fe(t-2)])

(1 -  W) ^UXj(t_2) +  (1 -

(IE(̂ W| [̂ (t-2)]))(l -  E(̂ .(t)| [̂ (t-2)])) 
wcm) +  ( 1  -  w)c2(t) +  1

With these models, the probability of voting at polls t — 1 and t — 2 as well as 
the number of votes at polls t — 1 and t — 2  distribute the value of ct amongst the 
shape parameters. The extent to which one dominates over the other in influenc
ing ct depends on the weight u. As with the stochastic volatility models, notice 
how the conditional variance increases with St, the time interval between polls, 
thus giving us the nonstationarity aspect as opposed to with the ARCH models.

Third Order;
There are three cases which we will deal with:

• For the ARCH model &_i =  yt_x, & _ 2 =  yt- 2 and =  yt_3.

• For the SV model £t_i =  x t- i ,  6 - 2  =  %t- 2  and £ t_ 3 =  xt- 3.

• For the GARCH model 1 =  (xt-u  yt- 1), 6 - 2  =  (®t-2 , 2/4- 2 ) and & _ 3 =  
(^<-3 , 2/e-3)-

These follow through similarly for the multivariate cases.

6.4.4 ARCH (stationary) models

T h e  first m o d e l is fo r  tw o  parties  an d  th e  se co n d  for  th ree  parties. T h ese  are

based  on  th e  th e o ry  p resen ted  in C h a p ter  3, 3 .3 .4 .
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at =  a +  yt- 3, bt =  (3 +  r4_ 3 -  yt_ 3 i =

at =  a +  i/t-2 , h  =  [3 +  rt_ 2 -  yt- 2 t =  3 , . . . ,n ,

at — a +  yt- i ,  &* =  /? +  rt_i -  i =  2 , . . . ,  n,

a\ =  a, =  /?,

all of which we combine using weight parameters, and w2 (as discussed 
in Chapter 4, 3.3.4), that is,

w i/(x t| yt_x) +  w2 / ( x t| yt_2) +  (1 -  Wx -  w2) f ( x t | yt_3) t =  4 , . . . , n , 

w i/ ( s 3| y2) +  ( i  -  ^i)/(^3| 2/1),

/(® 2 |yi),

• M O D E L  13 - (M T D )A R C H (2 ,3 )

where 0  <  w\, w2 < 1 .

E(a:t| g/t_fc) =  - .f; y, Vt k ■ A; =  1,2,3, and

Var(xt\yt-k)

a +  (3 + rt~k
{a +  yt-k)(P +  n -k ~  Vt-k)

(a +  P +  rt_fc)2(a +  /? +  rt~k +  1 ) fc =  1,2,3,
a

E0 o )  = a  Ot +  (j

Var(x  i) =

and

a(5
(a +  /3)2(a  +  / ? + ! ) ’

• MODEL 14 - (MTD)ARCH(3,3)
Here, we have the same components as with ARCH(3,2), and additionally

aj(t) ~  ai +  Vj(t-3) j  =  1,2,3, t =  4 , . . . ,n ,

all of which we combine using weight parameters, Wx and w2 (into the format 
outlined in Chapter 4, 3.3.4), that is,

w i /(x t| y i-i)  +  tw2/(xi| y<_2) +  (1 -  iui -  tw2) / ( x {| y t_3), t =  4 , . . . ,  n, 

w i/(x 3| y 2) +  ( 1  -  w i) /(x 3| yi),

/(x2|yi),
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where 0  < w i ,  w2 <  1 .

E(a:t| yt_k) =  ** k k =  1,2, 3, and
ci +  +  rt-k

E(xi) = ------ — and
ci +  ¡3

By their construction, we can see that these are particularly simple models in 
that the shape parameters comprise an additive combination of the parameter 
representing party strength and the poll vote for that party. This is true for each 
of the three lags. Then, the three are combined additively using weight functions 
W\ and w2, to provide the complete probability model.

6.4.5 SV (nonstationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.2 and 3.4.

a3 — WiC(1)3 2̂ +  (1 — Wi)c(2)3X\,

b3 =  WiCW3( 1 -  X2) +  (1 -  Wl)C(2)3(l  -  X\),

a2 =  c2x i, b2 =  c2(l -  xi),

where c(1)t =  e x p ( - # (1)i) / ( l  -  exp(-0<5(1)i)) t =  2 , . . . ,  n,

c(2)i =  exp(-</><5(2) i ) / (1 -  exp(—0<5(2)i)) t =  3 , . . . ,n ,

C(3)t =  exp(—0 <5(3)t)/(1  -  e x p ( -# (3)t)) t =  4 , . . . ,  n
and w3 — 1 — W\ — w2 

(a\, b\ are our hypothetical choices).

• MODEL 15 - SV(2,3)

3 3

at =  ^ 2  wkC(k)txt-ki bt =  '^2 wkC(k)t{ 1 -  x t-k) t =  4 , . . . ,  n,

3

and
fc=i

Var(xt| [6 -s]) (ELi w k X t - k ) (  1 ~ E l i  w k X t~ k )

E k = l  w k c k(t) +  1
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M O D E L  16 - S V (3 ,3 )

3

O j ( i )  ^  ̂w i C - i ( t ) 3 ' j { t —i)  J  =  l j  2, 3, t  —  4 , . . . ,  n ,

i= 1
a j (  3 )  =  U > l C l ( 3 ) X j ( 2 )  +  ( 1  —  ^ l ) c 1 (3 ) ^ ( 2 ) ,  

a3{ 2) =  cl(2)^'(l),

where Q(t) =  exp(—<Mi(t))/(l — exp(—(pS^)) for i =  2 and where 
ajp) are our hypothetical choices. We have the weights W\ and w2 such 
that 0  <  wi +  w2 <  1 .

3

H xm  I fe(«-3)]) -  wkxj(t—k) and 
k= 1

Var(xJ(1)| &(,-„,]) =
2^w=i wWfc(t) +  1

With these models, the probability of voting at polls f — 1, t  — 2 and t  — 3 distribute 
the value of ct amongst the shape parameters. The weights W\ and w2 determine 
which of the three lags dominate. As with the Markov cases, the conditional 
variance increases with 5t, the time interval between polls, thus giving us the 
nonstationarity aspect, as opposed to the ARCH models.

6.4.6 GARCH (nonstationary) models

The first model is for two parties and the second for three parties. These are 
based on the theory presented in Chapter 3, 3.3.3 and 3.4.
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• MODEL 17 - GARCH(2,3)
3

at = Y w kcik)t(uxt_k +  (1 -  u)yt_k/rt- k),
fc=l
3

bt =  Y  wkC(k)t(u(l -  xt_k) +  (1 -  u)(l -  yt-k/n-k)) t =  4 , . . . ,  n, 
k=i

«3 =  WiC(i)3(tta;2 +  (1 -  u)y2/r2) +  (1 -  w i)c(2)3(nxi +  (1 -  « W ri), 
¿3 =  uiiC(i)3(l -  (w(l -  x2) +  (1 -  u)( 1 -  y2/r2)))+

( 1  -  w i)c(2)3(l -  (u(l -  xi) +  ( 1  -  u)( 1 -  y i /n )) ) ,

« 2  =  c(1)2 (mxi +  ( 1  -  w )yi/ri)),

&2 =  c(i)2 (m( 1  -  £i) +  ( 1  -  u )((l -  y i/r i))),

wherec(i)t =  exp (-05 (1)t) / ( l  -  exp(-<M(i)t)) t =  2 , . . . ,n ,

C(2)t =  exp(-0<$(2)i) / (1 -  exp(—0^(2)i)) t =  3 , . . . ,  ra,

c(3)t =  exp (—<M(3)t ) / (1 -  exp(-0<5(3)i)) t =  4 , . . . ,  n
and W3 =  1 — Wi — w2

(ai, b\ are our hypothetical choices).

E(xf| [&_3]) =  Y w* ( u x t - k  +  (1 -
fc=l '  r t —k )

Var(x,| f c -3]) =  g h il-fo -^ X 1 ~  E(^ l fe-»D>
^ 2 k = 1 w k c k (t)  +  1

• MODEL 18 - GARCH(3,3)
3

«ko =  Y  wici(t)(uxj(t~i) +  ( i  -  u)yj(t-i)/rt-i) t =  4 , . . . ,  n,
¿=1

«1(3) =  WiCi(3) (Mxj(2) +  (1 -  u)yj{2)/r2)

+  ( 1  -  wx)cm [uxj{l) +  ( 1  -  u)yj{i)/r i), 

«1(2) =  ci(2) (wxj(i) +  (1 -  tt)%(i)/ri), j  =  1, 2, 3, 
where for i =  2 , . . . ,  n, ci(t) =  exp (-05 i(t)) / ( l  -  exp(-</Wi(t)))

(aj(i) are our hypothetical choices),

with weights 0  <  u <  1 and 0  <  W\ +  n;2 <  1 .
3

E0O(t)l [£l(i-3)D =  ^  wk{uxj{t- k) +  (1 -  u)yj{t_k)/rt_k)
fc=i

V «r(^ i(i)| fo (t_3)]) (E(xip)| [ C j ( t - 3 ) ] ) ) ( 1  -  E0Offll f e ( t - 3 ) ] ) )  

1 wkck(t) +  1
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With these models, the probability of voting at polls t — 1, t — 2 and t — 3 as 
well as the number of votes at polls t — 1, t — 2 and t — 3 distribute the value of 
ct amongst the shape parameters. The extent to which one dominates over the 
other in influencing ct depends on the weight u. As with the stochastic volatility 
models, notice how the conditional variance increases with St, the time interval 
between polls, thus giving us the nonstationarity aspect as opposed to with the 
ARCH models.

Rem ark: It should now be clear from the above how, in principle, it is easy 
to generalise these models to consider any number of lags and parties, but how 
computation in practice gets messy very easily.

6.4.7 Interpretation of parameters

Overall, we have four types of parameter: a, 0, u and w, and so will from now 
write 6 =  (a , w )' for our ARCH models, 0 — (0, w )' for our stochastic volatility 
models and 6 =  (0, u, w )' for our GARCH models.

1. a is employed in the ARCH models and governs the strength of the parties; 
thus the higher the value of a:*, relative to the others in a  the stronger party 
k is.

2 . 0  is employed as part of the stochastic volatility models in ct =  exp(—0<5t) /  
(1 — exp(—0(5t)) whose distribution is shown in Fig. 6.3 . Primarily, this 
function is used because of its implications for the variance increasing in 
direct proportion to St as explained earlier.

3. w is a weight function which determines the dominance of the lags. There
fore, the higher the value of w for the corresponding lag the more influential 
this lag is.

4. u is a weight function which determines to what extent the data tend to
wards the previous probabilities x  compared to the observations y in y/r.

6.4.8 Practical use

The end state of the general model introduced and discussed in this thesis enables 
consideration of up to three parties and up to three lags. At least in principle, it 
is not difficult to extend our models to consider as large a selection of parties as 
we are interested in. The same can be said for the number of lags. However, the
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p h i 'de lta

Figure 6.3: Distribution of ct showing rapid exponential decay.

way in which the programs have been written makes it cumbersome somewhat 
to extend to a greater number of parties and lags, and more efficiently-written 
programs would be ideal. The mathematics involved becomes repetitive, and 
so only poses a slight complication as we increase the number of parties and/or 
number of lags in time. Nevertheless, in practice, in terms of parties analysts 
are generally interested only in the dominant three. For the UK, of course these 
have proven in recent times to be Labour, Conservative and Liberal Democrats. 
Indeed, as we saw in Chapter 4, Harvey and Shephard (1990, [55]) go only so far 
as to analyse its model for three parties. Also, the model in Harvey and Shephard 
(1990) only has a Markovian approach. It may be argued, therefore, that the level 
of sophistication already developed here will suffice for analysis and discussion.
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6.5 Estimation

6.5.1 General idea

The h-likelihood

Consider the univariate case. A simple way to write the likelihood, L, of the 
general model is

n  n

L(9, x ; y, r, S) =  JJ  f ( y t\ x t) • { f { x t\ 9, x )}
t= i t=i+ i

■f{xt\[ 6 - j_ i ] ; 0 , x ) - / ( ® j_ i | [ 6 - i - 2] ; ^ , x )  • . . .  - f (x 21 [ 6 ] ; ^ , x ) - / ( x 1;6 » ,x ) .

Note that, in the above, we express the likelihood as a function of the unknown 
parameters/variables, for it is these which we are concerned with estimating and 
not the y, r and <5, which are known. The latter point allows us to follow most 
of the estimation method outlined in the previous chapter, as if it were outside a 
time series context.

Now let h =  ln(L). Then we have

n

hoc ^  ^t))  +  ln(/(xi| [&_*];9) ) } ,  (6 .6 )
t=k+ 1

where k is the number of lags. Note that we have no unknown components in 
our expression for yt\xt, which simplifies our estimation, as we only need to focus 
on x t\'history'. Note also that, in contrast or extension to (5.5), we now have 
x\ y as opposed to just x. Obviously though, the y are given and known when 
mentioned here, as we are in a time series setting now, and thus may be treated 
as constant values. The multivariate case is a trivial extension of the univariate 
case.

General procedure

We follow the method described in the previous chapter, whereby we iterate 
between

dti
—  \e=eu) = 0 = > x tV\ Vt (6.7)

and

lx*=x(«>= 0  =► eb+1\ (6 -8 )
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for j  — 0 , 1 , 2 , . . until we have convergence between j  and j  +  1 , at which 
point we obtain our maximum hierarchical likelihood estimate (MHLE) vector 9, 
in addition to our (latent) maximised probabilities {x t} of voting.

The parameter estimates for 9 are always obtained using the Newton-Raphson 
method, which we will shortly outline. However, the latent variable estimates are 
obtained in different ways depending upon the type of model. For the ARCH 
models they may be maximised explicitly as shown in the following subsection; 
for the volatility models they are maximised using the Newton-Raphson method.

6.5.2 Estimation of ARCH models

Part 1

1. The parameters 9 are temporarily fixed.

2. We then require the maximum value of the likelihood given the remaining 
unknown component, which is the {xt}.

3. We know from 6.2.2 that the mode of a beta distribution, x t, is
at -  1

X t - -  ------------ :------------- ,
at +  bf — 2

which we obtain for t — 1 , 2 , . . . ,  n.

(6.9)

4. Once we put our fixed values within 9 into (6.9) we have completed the first 
part within one iterative step.

Part 2

1. Now the {x t} are temporarily fixed at {x t}-

2. We then require the maximum value of the likelihood given the remaining 
component, which is 9.

3. We use the iterative Newton-Raphson method in order to get a converged 
maximum, 9, for 9. Briefly, this states that, with 9 =  (9i, 92, . . . ,  9^)', that 
is d parameters, and starting at j  =  0 ,

gti+i) =  qU) _  A - 1( ^ ) g ( 6»0')),

where
/  d2h d2h 82h \

30i2 ddxd02 ■ 30i ôéq
d2h d2h d2h

ddïddi ' 30230d

d2h d2h d2h
\deddex d0dd02 ‘ ' dÔ? J
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and
_  /dh_ dh_ d h Y

g ~  [ w s  d fd)  •

4. Then we have completed the second part within an iterative step.

We simply repeat the above procedure several times, using the most recent con
verged solutions as the next starting values, until convergence of both compo
nents.

M TD  models: For the MTD (higher-order) models we must slightly add to this 
procedure, since we have introduced new dummy variables, {z j}, (see Chapter 3, 
3.3 for details) into the likelihood in order to make computation easier. Consider 
the simplest MTD model, ARCH(2,2) for illustration purposes.

1. The parameters, 9, and {z t} are temporarily fixed.

2. Recall that the {z t} are attached to the lag weight w , having a value of 1 if 
the first lag dominates and 0 if the second lag dominates, for each poll. Con
sequently, the partial derivatives dh/dw and d2h/dw2 are purely functions 
of w \ z. Hence we now maximise w\ z, again using Newton-Raphson.

3. We then require the maximum value of the likelihood given {x t}, which 
involves carrying out Part 1, with the only difference of the {z tj governing 
which lag is used:

- _  a  +  Vt +  Vt- i -  1 

ot +  P +  ft +  ft - 1  — 2

if Zt =  1 and

Xt =
a +  yt +  yt - 2  -  1

a +  (3 + rt +  r t_ 2 -  2 ’ 

if zt =  0, which we obtain for t — 3, 4, . . . ,  n.

4. Once we put our fixed values within 0 into the {¿¿} the {x t} are temporarily 
fixed.

5. We then require the maximum value of the likelihood given the remaining 
component, which is 9. This is Part 2 above, with the only difference of 
the pre-determined { zt} governing which lag is used and appearing in the 
partial derivatives.

6 . The next task is to revise the {z t}:

I f / ( xt| yt-i) > f ( x t\yt-2 ) then zt =  1 .

I f/fa il Vt-\) <  /fa il yt-2 ) then zt =  0 .
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7. In summary, so far we have updated each component: w, { x t}, 0 and {z t}. 
and so have completed the first iterative step.

We repeat the above several times, using the most recent converged solutions as 
the next starting values, until convergence of all components.

EM algorithm estimation

The EM algorithm is a common tool used to produce maximum likelihood esti
mates in the presence of missing data. In the algorithm we:

1 . obtain conditional expectations of missing data given parameters which 
maximise the current likelihood (E-step); and

2 . seek parameters which maximise the revised likelihood given the latest ex
pected values for the missing data (M-step),

until we have convergence of both.

Within each iteration of the fi-likelihood maximisation, we are alternating be
tween:

1 . finding latent variables which maximise the current h-likelihood given fixed 
parameters; and 2

2 . finding parameters which maximise the revised h-likelihood given the re
cently obtained latent variables

until we have convergence of both.

There is clear similarity of the two methods. The similarities are that we treat our 
latent data as missing data, and we have an iterative algorithm which alternates 
in two stages. The M-step is essentially the same for both methods. The E-step 
will be replaced by another M-step; the main difference is that now we do not 
work with what we expect the missing data to be, but instead with values for 
these data which will maximise the likelihood given the fixed parameters. In the 
following section we will verify that the two estimators have an asymptotically 
negligible difference as well as an asymptotically common variance. The basis for 
this proof was shown in Chapter 5. Also, since the MLE is asymptotically most 
efficient and invariant, then so is the MHLE.

The main problem with the EM algorithm is that it is based on integrals, 
which are often difficult if not impossible to evaluate. In our case, the integration
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gets complicated very easily and quickly as we add to the sophistication of our 
model. Nevertheless, we can - in the simplest (Markov ARCH) case - obtain the 
necessary integrals and so forth, in order to derive the MLE vector 6 =  (a, /3)\ 
Later, we will compare the output of a method which has been proven to give 
the (local if not global) MLE with the corresponding MHLE obtained from our 
own h-likelihood method. The closer they are the more valid and therefore useful 
they will be. Now we outline the mathematics to enable this.

Estimating ARCH (2,1) parameters via the EM algorithm: We have
n

h ^  “  +  vt-1 ~ +  (rt - y t  +  P +  n - i  -  yt-i -  i)ln(i -  xt)+
t=2

\nB(a +  yt- i ,P  +  rt- i  - y t~i ) }+
(yi +  a -  l)ln(x!) +  (jq -  yx +  f3 -  l)ln(l -  aq) + InB(a, (3).

Of course, if X t were known then we simply proceed using a regular optimisation 
method such as the Newton-Raphson method. The X t creates the problem in 
that it is latent data; so we may resolve with the EM algorithm by treating the 
X t as if it were missing data. The E-step of the EM algorithm (see Appendix B) 
implies that we must evaluate both2:

In(xt)B e(a  +  yt - 1  +  yt,P  +  rt- i  -  yt - 1  +  rt -  yt] x t\ yt- 1) dxt and

ln(l -  x t)B e(a  +  yt- i  + y t,p  +  r t- 1  -  yt-\ +  rt -  yt; x t\yt^ )  dxt. 

Fortunately, these compute rather neatly into

^ (a  +  yt-\ + y t) -  ^ (a  +  (3 +  rt- i  +  rt) and 

+  n - 1  -  yt- 1  +  n  -  yt) -  T (a  +  P +  rt_X +  rt) 

respectively, in which <3/ (u) is the digamma function3 for some variable u.

What we must do now is choose our starting point, say, 6 ^  (which is effectively 
ih1)). We then substitute this into our formulae above and we have essentially 
‘augmented’ our likelihood, at least within the first iteration. It is just a straight
forward implementation of the Newton-Raphson method to find (h2) (the M-step). 
We re-evaluate the expected values for each x t now (to repeat the E-step for the 
next iteration), maximise this and so on until we have convergence of 6 between 
some step j '  and f  +  1 , as required.

2We have similar cases for the t =  1 special case.
3 VP (i/.) = d(ln(r(u)))/chi.
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Example

Here, we demonstrate step-by-step how to go about obtaining the MHLEs for our 
simplest ARCH model, ARCH(2,1). Consider again Parts 1 and 2 at the start of 
this subsection.

Recall that

Vt\%t ~  Bin(rt, x t) t =  1 , 2 , . . . ,  n

x t\yt- 1 ~  B e(a  +  yt- 1 , P +  rt_i -  yt- 1) t =  2 , 3, . . . ,  n

X\ ~  B e(a , p).

Then, we have the likelihood, which may be written as

L(0 ,x|y ,r) oc Xihî/1+a-i^j _  Xiyi-vi+P-i

nt= 2

Xt*

B(a, (3)
yt+a+yt-i - l ^ j  _

B (a  +  yt_ i, p  +  rt_i -

From this, we derive h by simply taking logs, so that

h oc cdnxi +  /31n(l — a^) +  lnr(o! +  p) — lnT(a) — lnT(/3)+
n

^ { a ln x i  +  /31n(l -  x t) +  lnT(Q! +  P +  rt_a) -  lnT(a: +  yt- i )  —
t= 2

lnr(/3 +  rt_i —

Part 1:

1. We start (at k — 0) by fixing 0 — (a, P)' at =  {o£k\ P ^ ) ' .

2. We now maximise the likelihood given the unknown (latent) component, 
{x t}, to be estimated, {¿¿}. This involves solving dL/dxt =  0 for x t in each 
case. Applying (6.9), our estimates our

2/i +  a -  1 
r i -\- a. P — 2

yt +  a +  yt- 1  -  i 
ft  +  ot +  P  +  Tt—1 — 2 3

t — 2, 3, . . . ,  n.

3. Then, we insert our values of into the above, and thus have completed 
Part 1 within one iteration, to get {x [k̂ }.
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Now the {x t}  are temporarily fixed at }. and we focus on maximising L given 
the unknown 6.

P art 2:

For the Newton-Raphson method, we now require all the partial derivatives4: 

dh
da

=  lnxi +  'S>(a + (3) -  'k(a) +  ^ {ln x *  + ft (a +  (3 +  rt-\) -  +  Vt-i)}
f=2

dh n
—  =  ln(l -  x x) +  tf(a  +  0 ) - ^ ( 0 )  +  ^ { l n ( l  _  +  P +  rt - 1)-

P t= 2

V (0  +  rt_i -  yt- 1)} 

d2h
da2 =  t f ' ( a  +  0) ~  '̂(a) +  +  0 +  r t - 1 )  -  ^'(a +  V t - 1 ) }

t= 2

d2h
dp2

=  tf'(a  +  /3)~ vR'(/3 ) +  ¿ { ^ ( a  +  (3 +  rt- { )  -  V{(3 +  rt_j -  yt^ ) }
t= 2

d2h
da (3

We put the above into

* ' ( «  +  /?) +  +  0  +  r<-i)}
t=2

/ a 0+!)\ _  / a0)\ _  J _  /  <92/i/d/?2 -d 2h/da(3\ fdh/da\
^ 0 + i )J ~  \^0))  ~\A\ y -d 2h/da(3 d2h/da2 )  \dh/dj3J ’

for j  =  0 , 1 , 2 , . . . ,  in which all partial derivatives are evaluated at 9^  and where

14 =
d2h d2h 
d t f 'd p 2

d2h
dap

We insert our values of { x ^  } into the above, and subsequently run the algorithm. 
Following convergence, we have completed Part 2 for k =  0.

We simply repeat the two parts, for A; =  1 , 2 , . . . ,  until convergence of both 
known and unknown components. Note that the values for a  and (3 which we get 
will be typically large, thereby leading to similar values for the xt as the itera
tions progress. Despite this, they do evolve noticeably and so we argue are worth 
modelling in the way in which we have chosen.

4As before, 'b(w) is the digamma function and ’¡/'(it) its derivative with respect to u.
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Although the basic method is similar, this process becomes tedious and com
plicated quite easily as we move on to models with more parties and lags. In 
Appendix A, we show the MATLAB code for the ARCH(2,3) MTD model, which 
is considerably more complex.

6.5.3 Estimation of volatility models

Since the stochastic volatility and GARCH models use previous probabilities as 
historical information we slightly need to modify Part 1 from 6.5.2.

1. The parameters 6 are temporarily fixed.

2. We then require the maximum value of the likelihood given the remaining 
unknown component, which is the {x t}.

3. We first use (6.9) to estimate the most recent probability, xni denoted by
xn-

~ 1
x n =  ------“ 7------ X-

Q"n ~P bn 2

4. From now we work backwards. First we maximise xn-i\xn, denoted by 
xn_i, and filling the rest of the x  vector with the last known values of 
X\, x2, . . . ,  xn- 2 - We illustrate with an example. With SV(2,1) (see 6.3) 
we arrive at the log-likelihood:

n
h oc ^ ^ {c t(xt_ilnxt +  ( 1  - _ i )ln( 1 -  xt)) -  lnr(ctxt_ i) -  lnT(ct ( 1  - x t_ i ))}.

t= 2

After we fill the probability vector as explained above, the remaining un
known X n_i appears only in

cnxn~i(\nxn -  ln(l -  xn)) -  lur(cnXn- i )  -  lnr(cn(l -  xn_i)) 

from the nth term and

cn_ 1x7l_2 (lnxn_i -  ln(l -  xn- 1)) 

from the (n — l ) th term.

Therefore, we proceed applying the Newton-Raphson method discussed ear
lier to h to find xn-\.

5. We repeat a similar process, up to and including the final calculation of 
maximising xi| xn, xn- i ,  . . . ,  x2.
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6 . Once we put our fixed values within 9 into each xt we have completed the 
first part within one iterative step.

Example code demonstrating the general procedure, and the volatility and MTD 
special cases is given in Appendix A.

Exam ple

Here, we demonstrate step-by-step how to go about obtaining the MHLEs for our 
simplest volatility model, SV(2,1). Consider again Parts 1 and 2.

Recall that

yt\xt ~  Bin(rt, x t) t =  1, 2, . . . ,  n

x t\ -  Be(ctxt_ u ct( l  -  x*_i)) t =  2, 3, . . . ,  n,

where x,\ is a chosen value and ct =  exp(—(f)5t)/(l — exp(—<j>8t)).

Then, we have the likelihood, which may be written as
Xtyt+ctxt- 1- 1(2 _  Xiy t - y t+ ct{\-x t~ i) - i

L(9, x| y, r, <5) a  J
i= 2 B(ctxt- i , ct( 1 -  xt-i ) )

From this, we derive h by simply taking logs, so that
n

h oc J ^ {c ixi_ 1lnxi+ c / ( l -a ;t_ 1) ln ( l -x i)+ ln r(ci) - ln r (c ia;i_ 1 ) - ln r (c i( l -a :i_1))}.
t= 2

Part 1:

1. We start (at k =  0) by fixing 4> at <ĵ k\

2. We now maximise the likelihood given the unknown (latent) component, 
{x t}, to be estimated, {x t}. We saw that with the ARCH model this simply 
involved solving dL/dxt — 0 for x t to get an explicit estimate. However, 
now since the historical information is previous probabilities the {x i}  appear 
in powers of terms, effectively meaning that we cannot obtain an explicit 
estimate.

3. First we use (6.9) to estimate the most recent probability, xn, denoted by 
xn, which is explicit:

~ Un T  CjjXfj—i  1 
Xn. — -----------------------,rn +  cn -  2

where we start with some suitable initial choice of values for the vector 
x  =  (xi, x2, . . . ,  x ny.
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4. From now we work backwards. First we maximise xn_i\xn, denoted by 
£n_i, and filling the rest of the x  vector with the last known values of
•£l j *^2) • • • > % n —2 -

As we saw earlier, the unknown xn_i appears only in

cnxn_i(lnxn -  ln(l -  xn)) -  lnr(cnxn_i) -  lnr(cn(l -  xn_x)) 

from the nth term and

cn- i x n- 2(lnx„_i -  ln(l -  x „_i))

from the (n — l ) th term.

Therefore, we proceed applying the Newton-Raphson method discussed ear
lier to h to find xn-\. The derivatives5 necessary are

d h
1

cn(ln(x„) -  ln(l -  xn) -  T (cnxn—î  +  ^(<^(1 -  xn_i))) +

Vn T  Cn—\Xn —2 1 Tn yn -f- Cri—1( 1 %n—2 ) 1
X n — 1 1  X n —\

and

d2h
<k£-i

-C n ^ '(cnXn- l ) )  -  Cn2 T '(cn(l -  Xn_ x) ) -

U n  T  C n — l - E n —2  1

X
2
n — 1

A i  V n  T  Cn — l ( l  2 - n —2)  1

( 1

which we put the above into the Newton-Raphson algorithm in one dimen
sion:

T (3 +1) _  r (j) _•̂ n— 1 ^n— 1
dh/dxn - 1 

d2h/dxn_ 12

for j  =  0 , 1 , 2 , . . . ,  in which the derivatives are evaluated at xn- f i \

We insert our values of cn, cn_i, yn, rn and xn_2, as well as into the 
above, and subsequently run the algorithm. Following convergence, we have 
found i n_i.

5. We repeat a similar process to find each x t, up to and including the final 
calculation of maximising x x \ xn, i „ _ i ,  . . . ,  i 2.

6 . Then, we have completed Part 1 within one iteration, to get

5As before, '!'((/,) is the digamma function and 'F(it) its derivative with respect to u.
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P art 2:

Now the { x t} are temporarily fixed at { x ^ } ,  and we focus on maximising L given 
the unknown <j).

For the Newton-Raphson method, we now require the following derivatives: 
d/i  ̂ dc

=  S  ¿ ^ { x t - iM xt) +  (1 -  a?t_i)ln (l -  x t) +  d'(ct) -  x t- i^ {c tx t- i ) -

( 1  - X t-i)^ (C t(l - X t_ i) ) }

d2h n d2c
y .  +  ( 1  -  xt_i)ln (l -  x t) +  'h(ct) -  xt_ i$ (ctx t_ i ) -dcf)' t= 2

( 1  -  xt_ i)^ (ct(l -  art_ i ) ) }+

m e t )  ~  xf-iV'ictXt-x) -  ( 1  -  ^ t-i)2 vff,(ct(l -  Xt-1) ) }

We put the above into the Newton-Raphson algorithm in one dimension

^
for j  — 0 , 1 , 2 , . . in which the derivatives are evaluated at (ffi\

We insert our values of {x [k̂ } into the above, and subsequently run the algorithm. 
Following convergence, we have completed Part 2 for k =  0.

We simply repeat the two parts, for A; =  1 , 2 , . . . ,  until convergence of both 
known and unknown components.

Although the basic method is similar, this process becomes tedious and com
plicated quite easily as we move on to models with more parties and lags. In 
Appendix A, we show the MATLAB code for the SV(3,2) model, which is con
siderably more complex, particularly in terms of estimating the {x t}, when the 
Newton Raphson algorithm increases in dimension.

6.6 Properties of Estimators in ARCH  Models

Before following our approach to obtain alternatives to MLEs, we need to justify 
the usefulness of the MHLEs. Our proof is similar to that provided in Lee and 
Nelder (1996, [69]) and outlined in Chapter 5 (5.5), except that ours is in a time 
series context. We must check that our MHLE is asymptotically efficient.
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6.6.1 Asymptotic best unbiased predictors

It is simplest to work with the two-party and Markov case for the sake of clar
ity; the principle follows through smoothly for the multi-party and multi-lag case.

First, let

Dt =
d2h
dxt2

evaluated at x t =  x t. Also, let ut denote the complete set of data at poll t, be 
it observed and unobserved, except for the total number of polls (rf); the rt are 
singled out as they will play a crucial role in the justification. Note that gi and 
(j2 are positive linear functions.

Equation (6 .6 ) boils down neatly to the form:

n

h ^  0) ■ ln(xt) +  g2{utl rt; 9) ■ ln( 1 -  xt))
t=i

9h_ _  gi(ujt- 9) _  g2(u}Urt; 9)
dxt xt l - x t
_  _  9\{ut\ 0) 92(ut,rt\ 0)

dxt 2 x t 2 ( 1  -  xt)2

Therefore, Dt~l may be written as:

9i(wi! +92(^t, rt\ 9)jj^j2 P \rt

since the bigger rt is the larger the denominator becomes, assuming we fix 9. We 
will make use of this important result shortly6.

Lee and Nelder (1996) include a discussion about how E(w(a:)| y ) is the best un
biased predictor (BUP) for x , where v(x) is some strictly monotonic increasing 
transformation of x , and has the minimum mean squared error of prediction. It 
then goes on to prove that, under appropriate conditions, v(x) —> E(u(x)| y ), so 
that the MHLEs for v are asymptotically BUPs. We have a simplification here in 
that we work with x  and not some transformation of it, i.e. v(x) =  x, which of 
course is strictly monotonic increasing.

6Note that here linv^oo Op(l/rt) — 0.
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What we must show now is (see Chapter 5, 5.5 for details) that

E(xt\y) =  x t +  Op(l/rt) and 

Var(xt| y) =  Dt~\  1 +  Op(l/rt))

=  Op{l/rt),

such that, as is shown in Lee and Neider (1996), asymptotically,

x t\ y~  N (xt,D t~1),

where Dt~l — Op(l/rt) for all t (already shown above).

The above is easy to show, since

9ixt = 0  as rt —> oo,
9i +  92

remembering that g2 is a function of rt unlike g i , and similarly

amE{xt\y) = 0  as rt —> oo,
al(t) +  a2(t)

where a^t) and a2(t) are the shape parameters of the beta distribution as shown 
in (6 .2 ), and since the latter parameter is a function of rt unlike the former.

Using the same idea, it is trivial that

Var(xt\y) = al(t)a2(t)

(a i (t) +  0 2 ( i) ) 2 ( a i  (i) +  a2 p) +  1 )
0  as rt —i oo,

as required.

6.6.2 Asymptotic efficiency

Chapter 5 (5.5) outlines the general proof to ensure that

\ o - e \  =  o p ( ± t

Therefore, all we must do is verify that each stage holds in our case. This essen
tially means that all we must check is that

-  (  —  
rt \9a
d2h

Q2 Jr̂ \
— j  \x=i =  Op{ 1 ) and

da2
=  Op(r,).

(6.10) 

(6.11) 

(6.12)
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Firstly ,

dh _  / 5i <h \
dxt l - x t )

Hence in order to have these have order Op( 1) we require that

rt =  0 P{n). (6.13)

Finally7,

q2 ̂  q

=  ^  0 n ( X ‘ )  +  ^ ( a l ( t )  +  a 2 ( t ) )  ~  ^ ( a l(t))  -  ^ ( ^ ( t ) ) )9a 2 da . ¿=1

d
-^ 2 ~ qZ ( * ( « K . )  +  ° 2 ( t ) )  -  * ( a l W )  ~  ^ ( a 2 ( t ) ) )

t=i a 
n

= ^  (^'(aqt) +  a2(t)) -  ^'(aqt)) -  d'/(a2(i)))
i = l

-  O p ( r t ),

since in the stationary case we have that a2(t) is a function of rt. □

We have now checked that under appropriate conditions, including (6.13), our 
MHL estimator is asymptotically equivalent to the ML estimator. Although we 
have shown it only for our simplest case, similar results will follow through for our 
other types of model, due to the way in which we define them. Indeed, if Dt~l — 
Op(l/rt) then we may easily modify our results to give asymptotic properties 
of the MHLEs for a HGLM with more than one x  (random and unobserved) 
component. This essentially means when we start to consider more parties than 
just two. For this equation to extend generally, Lee and Nelder (1996) explain 
that we require the total number of random effects, n, to remain fixed. This will 
clearly be true when they are probabilities of voting per poll; each individual poll 
sample size rt is independent of the n, which is also the total number of polls 
recorded.

'Here, vl>(u) =  d(ln(r(tt)))/dti (digammafunction) and ^ '(u ) =  d2(ln(r(u)))/du2 (trigamma 
function) for some variable u.
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Lee and Nelder (1996) discuss the instance when the total number of random 
effects increases with rt; then, the asymptotic results are different from what we 
have shown above, although still quite similar.

6.6.3 Dispersion and interval estimates

Asymptotic results

Simply accepting our MHLEs at face value is not enough - it is important to 
examine the reliability of them, particularly because of our new method of es
timation. We typically do this by calculating their standard errors, correlations 
and confidence intervals. With MLEs, 6, we have that, asymptotically,

d ^ N d(e ,3 1- 1(9)),

where the j-k th element of Jx x(6) is either

- E d2l \dOjdek J or d2l
dOjdOk

and d is the dimension or number of parameters 6. We would use J 1 “ 1 (0) as an 
approximation to Ji_1($), our covariance matrix, and from this may derive our 
correlation matrix.

Lee and Nelder (1996) extend this to MHLEs and so we have that consequently

0 ~ N d{0, J2" 1(0)),

where the j -k th element of J2_1 (0 ) is either

/  d2h \ d2h
\d6jdek)  or dOjdQk

Henceforth, a 99% confidence interval may be found using

0 j±  2.5758 -s.e .(^ ),

in which the standard error s.e.(0j) is either

For our analysis we will use the observed Fisher information matrix, that is, minus 
the Hessian matrix.
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Reparameterisation

Note that in our non-Markov stochastic volatility models we reparameterised the 
lag weights, in order that MATLAB could search in the correct space (of between 
0 and 1, whereas MATLAB typically performs a global search within the space 
( - 00 , 00) ) .

Specifically with SV(2,2) and SV(3,2) we had

and with SV(2,3) and SV(3,3) we had

Wk
eVk

1 +  eVl +  eV2 ’
for k =  1 , 2 .

This means that we need to apply the delta method in order to work out the 
actual estimated variances and covariances. We briefly review the delta method, 
as applied to our case.

A necessary assumption is that the variances of v, Vi and v2 are small, which they 
are for our examples. Then for k =  1, 2 we have that

Yar{w) «  ( ^  ) Yar(v),

Yar(wk) »  

Cov(wi, w2)

dwk
dv\

Yar(vi) +

dw\ \ (  dw■ 
dvi 
dwi 
dvi

dvi
dw2
dv2

dwk 
dv2

Yar(vi)

dwi
+  1

Y  ar(v2) +  2 

dw 1
dv2
dw2
dvi

dwk 
dv\ 

dw2

dwk 
dv2

Yar(v2)+

Cov(v!, v2),

dv2 

Cov(vx, v2).

6.6.4 Comparison with the EM algorithm

ARCH(2,1): «  =  500,/? =  450

Let us consider simulated data yt of different lengths n. We first generate the 
pseudo data (with latent probabilities) and then fit this to ARCH(2,1), to obtain 
the MHLE vector 9. Since the EM algorithm is manageable in this simplest 
case, we will obtain the corresponding MLE to enable comparison. Table 6.1 
summarises the results.
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r =  n mean(0) mean($) absolute error relative error (%)

100 d=589.6 d=599.6 +  10.0 1.7
d —502.7 ,9=508.8 +6.1 1.2

1500 d=547.8 d=553.1 +5.3 1.0
,9=485.7 d=489.8 +4.1 0.8

5000 d=525.5 <5=525.6 +0.1 0.0
,9=472.3 d=472.4 +0.1 0.0

10000 d=516.8 d=516.8 +0.0 0.0
,9=460.0 (9=460.0 +0.0 0.0

Table 6.1: EM algorithm versus h-likelihood for simulations when r — n

Remarks: We may assert that, as the sample size increases with the number of 
votes (1500), the absolute errors of corresponding parameter estimates decrease. 
We can see that the h-likelihood MHLEs tend to overestimate the actual MLE 
values, but that the errors relative to the actual parameter values are reasonably 
small. In our practical terms, we only have a small number of polls, i.e. value for 
n, and so when we eventually obtain our MHLEs we would expect the MLEs to be 
smaller. Put another way, from the MHLE values we are able to estimate roughly 
what the MLE values are. We do not need to worry about slight discrepancies, 
particularly because we are interested in the proportions of the parameters, which 
will be almost identical for MHLEs and MLEs (to about three or four significant 
figures, which should be more than adequate for us). Absolute errors for a  and 
f3 also become similar as n increases. It was shown in Section 6 . 6  that the two 
parameter vectors (MLE and MHLE) are asymptotically equivalent (in terms of 
rt) and the results in Table 6.1 help to illustrate this. Recall equation (6.13), 
which implies that for our r =  1500 we would theoretically need about 1500 polls 
to have this equivalence, or for r to increase with n.

From looking at Table 6.1 we can see that when r =  n is smaller, say around 
100, the MHLEs are less accurate than when r =  n gets larger. This is exactly 
what we expect, since equation (6.13) is an asymptotic result. The simulations of 
size 1500 by contrast is more accurate, albeit less so than those of size 5000, and 
1500 is roughly the location of the number of votes collected for a typical poll. 
The results for n — r =  5000 help to confirm the necessary relationship (6.13).

Interestingly, we found that when we made r =  n much larger, the MHLEs 
started to underestimate (rather than always overestimate) the corresponding 
MLEs, even though these differences were negligible. We can see an instance of 
this behaviour in Table 6.1 when r =  n =  5000, but it also happened commonly
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when we tried trials as far as sizes r =  n =  10000, 20000 and 25000.
Clearly though, in practice there are far fewer polls than this conducted before 

the main election. More realistic is a value around 30 to 50. Lee and Nelder (1996) 
state that the procedures developed may be reliable and useful as an approximate 
inference even in the worst situations, such as here when n <£i rt.

Small vector: In the modelling of election voting, a threat to the application 
of our overall method is the limited number of polls conducted before the election. 
This restriction is commonly known amongst those who have worked in election 
modelling and predicting, and may explain the reason for the absence of time 
series modelling, and prediction, of election data on the whole. Lewis-Beck (2005,
[74]) states that this has precluded ‘sophisticated time series work or elaborately 
specified equations.’ Indeed, with smaller data vectors, say of length thirty or less, 
we find that our models mostly do not converge to give the MHLE vector. What 
happens by stark contrast is that we typically have divergence of the parameters 
as we iteratively seek the latent vectors which maximise the /i-likelihood. This is 
certainly the case, for example, when applying our models to the general election 
of October 1974, for which there were only fifteen polls recorded and suitable 
for use before the final outcome. Our specific models, nevertheless, perform as 
required provided that we enlarge the vector to thirty or forty observations, say. 
Hence we need a sufficiently-large vector of poll recordings for our programs to 
get up and running.

To relieve this, one approach might be to redefine what data we make use 
of. Instead of only using final poll counts, we might also include midway poll 
counts. This would effectively double the number of recordings available for our 
modelling. Obtaining this, quite possibly unpublished, data may not be easy 
though, and even if we had it there may be implications on their quality and 
therefore reliability. For instance, the organisations taking the polls may perform 
certain data cleansing on the final poll recording which they publish. We would 
need to assess this carefully before proceeding in this way.

6.6.5 Typical simulations

Figures 6 .4-6.9 show time-series plots of simulated data for each type of model, 
ARCH, stochastic volatility and GARCH, respectively, each showing progression 
which is typical of the model behaviour. The first three are for two parties and 
one lag and the second three for three parties and two lags.
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Figure 6.4: Simulations of x t in ARCH(2,1) where rt =  1500, a  =  250, ß  
290, n =  35.

Figure 6.5: Simulations of x t in SV(2,1) where rt =  1500,0 — 0.01, n =  3 5 , 0;! 
0.45.
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Figure 6 .6 : Simulations of x t in GARCH(2,1) where rt =  1500,0 — 0.01, u — 
0.9, n — 35, x\ — 0.45.

Figure 6.7: Simulations of x t in ARCH(3,2) where rt =  1500, « i  =  300, « 2  =  
200, « 3  =  150, w =  0.75, n =  35; the upper left combines probabilities of all 3 
parties; the remainder show the probabilities for each party separately.
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0.8

Figure 6 .8 : Simulations of x t in SV(3,2) where rt =  1500, 0 =  0.01, n =  3 5 ,w  — 
0.75, =  0.40, x2(i) — 0.35; the upper left combines probabilities of all 3
parties; the remainder show the probabilities for each party separately.

Figure 6.9: Simulations of x< in GARCH(3,2) where rt =  1500,0 =  0.01, n — 
35, u — 0.6, w =  0.75, =  0.40,2:2(1) — 0.35; the upper left combines probabili
ties of all 3 parties; the remainder show the probabilities for each party separately.
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Interpretation

If we think of polls and the probability of voting for a party, then we would 
generally not expect the probability to vary widely over a short period of time. 
We, therefore, expect the time series plot to be quite smooth over a shorter period 
of time, but possibly to change a bit, though still quite modestly, over a longer 
period of time. We must use this criterion when studying the types of simulations 
we get per model.

It is clear from the ARCH plots that the time series is highly variable, ef
fectively implying that over a short period of time the probabilities vary quite 
noticeably. This is unrealistic, but we should remember that this is only a sta
tionary model. However, the effect of varying the lags is unclear from the graphs; 
we will need to look at alternative ways to assess relative goodness of fit. The 
same is in fact true for all our models.

By contrast, the SV and GARCH plots are much smoother as required, in 
that they vary slightly but in general do not steer off too widely in the given time 
period. It is not easy to differentiate between the SV and GARCH plots. This is 
because when we change our weight u the impact is not obvious, which suggests 
possibly dropping one of these types, and perhaps the GARCH models since the 
SV models are more parsimonious.

These figures also stimulate our intuition in terms of goodness of fit when in 
the context of election poll data (see Section 7.4.3).

Choice of values

• n : we set this at 35 days, which is a reasonable length of time during which 
in practice a set of polls is conducted.

• rt\ we fix this to be 1500 for ease of comparison. This value is roughly the 
sample size taken for each poll.

• a  and ¡3: we consider a > (3 as well as a <  (3 for typical values which we 
actually obtained from maximising using our method.

• (j): we use 0 .0 1  which to two decimal places is the value which we tend to 
get each time when maximising using our method.

• 8t: we fix this to be 1 merely in order to compare with the ARCH models. 
Note that this gives ct ~  99.5.
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• u: we vary this to study the dynamics of whether the previous probabilities 
or observed data dominate.

• Wi and w-2 - we vary these to study the effect of letting different lags domi
nate.

6.6.6 Simulations: volatility models

Recall 6.5.3 earlier. The estimation method for the stochastic volatility and 
GARCH models differed slightly from that presented in Lee and Nelder (1996), 
in terms of how we maximise the latent data. We have no theory justifying the 
asymptotic efficiency of the parameters and latent data in these cases. Therefore, 
it is necessary to check that the MHLE parameters are reliable for use. One way 
to do this is to simulate data from chosen values and subsequently to find the 
MHLE of these data, and so these are given in Tables 6.2 for stochastic volatility 
models and 6.3 for GARCH models. We repeated this fifty times for each model 
and obtained the mean of 9. Ideally, we want the mean MHLEs to be as close 
to the chosen values as possible. Note that we chose X\ =  0.45 for the two-party 
models and xqi) =  0.40, x2(\) =  0.35 for the three-party models. From looking 
at these tables, we can see that the mean MHLEs obtained are reasonably close 
to the original choices of parameter values. This empirical evidence suggests 
that the slight adaptions to the estimation methods outlined in 6.5.3 are reliable 
enough to use.

6.7 Goodness of Fit

We are interested in two aspects concerning the goodness of fit of our models to 
the data, that is, both relative and absolute. Of these, the former is probably the 
easier to discuss and carry out, in which we compare all our models for a given 
number of parties in order to determine which fits best to the given dataset. 
Therefore, what we end up comparing are the broad type of model (stationary or 
stochastic volatility) as well as the number of lags per model. We would perhaps 
expect the stochastic volatility models to outperform the stationary ones, as they 
involve more information than the stationary models, namely the difference in 
time between polls. Recall how for all our models we obtained both fixed effect 
and random effect estimates. Our method of assessing relative goodness of fit is 
via the deviance method.
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Model 0<°) mean MHLE (to 3 decimal places)
SV(2,1) 0=0.01 0=0.009
SV(2,2) 0=0.01 0=0.009

s II p Ü1 w=0.416
SV(2,2) 0=0.01 0=0.008

w=0.9 w=0.756
SV(2,2) 0=0.01 0=0.007

u;=0.1 w=0.091
SV(2,3) 0=0.01 0=0.009pOII9 iui=0.523CO©IICN9 ^2=0.325
SV(2,3) 0=0.01 0=0.008

wi=0.2 wi =0.195
W2=0.3 W2=0-326

SV(3,1) 0=0.01 0=0.008
SV(3,2) 0=0.01 0=0.009

w=0.75 w=0.752
SV(3,3) 0=0.01 0=0.009

wi=0.7 Wi =0.685
W2=0.2 ^2=0.100

Table 6.2: H-likelihood method with stochastic volatility models when fit to 
simulated data.

6.7.1 Relative goodness of fit

The Scaled Deviance Test

In Chapter 3, we mentioned model criteria which may be applied to time series 
models, whether nested or not, namely the Aikaike Information Criterion (AIC):

A IC  =  2 d -  2 /,

where d is the number of parameters and Bayesian Information Criterion (BIC):

D IC  =  In(n)d -  21,

where n is the number of observations (in our case the number of polls recorded). 
These measure the amount of information lost when the model is used to de
scribe reality, and attempt to find the model which best explains the data with a 
minimum number of free parameters. Both reward goodness of fit while includ
ing a penality which is a linear increasing function of the number of estimated
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parameters, thus discouraging overfitting. They effectively judge by how close 
the fitted values of the model tend to be to the true values, in terms of expected 
values. The basic idea is to choose the model with the lowest value therefore, 
where the BIC imposes a greater penality for less parsimony via the ln(n) (typ
ically greater than 2 in the AIC) term. As with estimation, due to the presence 
of latent variables we cannot use these criteria. To relieve this problem, Lee and 
Nelder (1996) introduced a similar statistic to the above, known as the scaled 
deviance, to select the best hierarchical generalised linear model (HGLM). This 
is based on writing

S =  S(y, /*') =  2 {l(y, y | x) -  l(fi] y | x )}, (6.14)

in which y! — E(y|x), l{y'\ y\x) — ln(f(y\x; 0)) and ¡3 are the estimated fixed 
effect parameters, all of whose terminology we introduced in Chapter 5 when we 
described HGLMs. Then, for models with random parameters we may use the 
statistic

D =  2 ( n - E ( S ) - l n f e(y\x)).

However, in our binomial/multinomial models for y | x  there are no fixed effect 
parameters present; our parameters only appear in the x\ y part. This simplifies 
matters for us somewhat, since S =  0  and we are left with

D  =  2{n — lnfg(y\x)),

which we call the deviance.
Note how the x  are now treated as if they were known values and effectively 

left out of further analysis, as their task of probability generation in order to find 
the MHLEs is now over.

The idea is that we choose the model with smallest deviance value.

6.7.2 Absolute goodness of fit

Using the deviance criterion, we can compare within models (ARCH(2,1) and 
ARCH(2,2) for instance) but we cannot compare between models (i.e. ARCH and 
volatility). Hong and Preston (2008, [58]), for instance, consider weak conditions 
under which consistent model selection is possible, regardless of whether the 
models are nested or not. However, it is not known whether we may apply this to 
our scenario, in which there are latent variables. We therefore rely on simulation 
plots using MHLEs obtained in order to determine which of ARCH and SV is 
better for poll modelling.
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Assessing relative goodness of fit does not immediately mean that the models 
actually suit the data well. One useful and simple way to assess whether this is 
so is to look at typical time series simulations of our chosen models. We would 
expect the plots generally to take the shape of the actual proportions obtained 
from the polls in the corresponding pre-elections.

Hypothesis Tests

Lee and Nelder (1996) present a test very similar to the Likelihood Ratio test, 
which is suited to cover HGLMs like ours. For a two-tailed test we have the 
hypotheses

H0 : 9 =  0O 

H x - .0 ^ 0 o

and the test statistic
A =  2 (h — ho),

in which h is the maximum hierarchical likelihood value obtained by using our 
MHLEs and h0 is the hierarchical likelihood value using 0O.

Also,
A

which holds due to the asymptotic equivalence of the MLE and MHLE vectors:

0-01 =  0 ,
Jt

seen earlier in the chapter and also more generally in Chapter 5; that is, because 
0  is asymptotically normal then so is 0 .

We proceed by rejecting the null at 2a%  if

* > X2d{a).

6.8 Review

This chapter has detailed the theory behind our modelling of the opinion polls. 
We looked at various aspects, beginning with the general model specification. 
We fit a Dirichlet-multinomial model to the data, in which the votes (observa
tions) are multinomially distributed and probabilities of voting (latent variables)
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are Dirichlet distributed. Having explained this carefully, we then defined each 
specific model which we are interested in fitting. There are three types: ARCH, 
which is a stationary model, and stochastic volatility and GARCH, both of which 
are nonstationary. For each broad type, we have a two-party and three-party case, 
the latter of which may be easily extended to any number of parties; for each we 
can consider a different number of time lags, which we limit to three in this thesis. 
We gave their basic properties and then expressed the h-likelihood function for 
each model. Next, we discussed the estimation by h-likelihood, specifying how 
the theory from the previous chapter is applied in this time series context. Impor
tantly, we verified that the properties of estimators proved in Chapter 5 follow 
through for us, for the ARCH models, which boils down to requiring that the 
sample size of polls must increase with the number of polls conducted. Further 
theory was given, outlining how we can perform inference, having estimated the 
h-likelihood parameters. This included an approximate covariance matrix and 
thus approximate confidence intervals. We discussed the model selection crite
rion available in the presence of latent variables, which is known as the deviance 
method. Having chosen the best model, we then need to check that it suits the 
data well, for which we have hypothesis tests as well as simulation plots given 
the estimated parameters. We introduced how the EM algorithm may be applied 
for the simplest ARCH model, for the integrals conveniently end up quite simple; 
this made it possible to compare the performance of the h-likelihood with the EM 
algorithm, which in turn showed that the h-likelihood method is reliable enough 
to use. Finally, since we have no comparative theory for our volatility models, 
we studied simulations and found the MHLEs of them, which proved promising 
as the values were similar to the starting values which we chose to simulate using 
initially.

141



M o d e l 0 ( ° ) m ea n  M H L E  (t o  3 d e c im a l p la ce s )

G A R C H (2 ,1 ) 0 = 0 .0 1 0 = 0 .0 0 7
« = 0 . 5 « = 0 .5 1 2

G A R C H (2 ,1 ) 0 = 0 .0 1 0 = 0 .0 0 8
u = 0 .9 « = 0 .8 5 6

G A R C H (2 ,1 ) 0 = 0 .0 1 0 = 0 .0 0 9
w = 0 .5 « = 0 .5 0 0

G A R C H (2 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 8
iu = 0 .5 «1 = 0 .5 0 1
« = 0 . 5 « = 0 .4 5 5

G A R C H (2 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 9
i « = 0 .5 id = 0 .4 7 6

oII3 « = 0 .6 0 2

G A R C H (2 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 9
«1 = 0 .5 «1 = 0 .5 1 5
« = 0 . 1 ii= 0 .0 9 6

G A R C H (2 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 9
« 1 = 0 .7 5 «1 = 0 .7 5 1
« = 0 .7 5 « = 0 .6 8 2

G A R C H (2 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 8
«1 = 0 .2 5 «1 = 0 .2 4 2
« = 0 .7 5 « = 0 .6 7 2

G A R C H (2 ,3 ) 0 = 0 .0 1 0 = 0 .0 0 7
«11 = 0 .6 «1 1 = 0 .5 8 8

S (O II o CO u>2 0 .273

u = 0 .7 5 « = 0 .5 1 2

G A R C H (2 ,3 ) 0 = 0 .0 1 0 = 0 .0 0 8
«1 1 = 0 .6 «1 1 = 0 .5 7 5
in 2 = 0 .3 «1 2 = 0 .2 2 5
« = 0 .2 5 « = 0 .2 0 0

G A R C H (2 ,3 ) 0 = 0 .0 1 0 = 0 .0 1 0
« i i = 0 .2 «1 1 = 0 .2 0 2
«1 2 = 0 .3 «1 2 = 0 .2 2 8
u = 0 .7 5 « = 0 .7 8 7

G A R C H (2 ,3 ) 0 = 0 .0 1 0 = 0 .0 0 8
«1 1 = 0 .2 w\  = 0 .2 2 5

«1 2 = 0 .3 W 2 = 0 .276
« = 0 .2 5 « = 0 .4 5 3

G A R C H (3 ,1 ) 0 = 0 .0 1 0 = 0 .0 0 9
« = 0 . 6 14=0.666

G A R C H (3 ,2 ) 0 = 0 .0 1 0 = 0 .0 0 8
«1 = 0 .6 «1 = 0 .5 8 7
u = 0 .7 5 « = 0 .7 2 8

G A R C H (3 ,3 ) 0 = 0 .0 1 0 = 0 .0 0 9
«1 1 = 0 .6 «1 1 = 0 .5 8 9
«1 2 = 0 .3 «1 2= 0 .2 2 1
« = 0 .2 0 « = 0 .2 5 6

Table 6.3: H-likelihood method with GARCH models when fit to simulated data.
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Chapter 7

Illustrations

7.1 Introduction

Now that we have specified a range of potential models, we will demonstrate how 
they work and assess how useful they are. Our aim is to select the best model out 
of those considered, and then to see how useful it is in reflecting the behaviour of 
the time series. Subsequently, we want to apply our methodology to the actual 
well-established forecasting method adopted by the British Broadcasting Corpo
ration (BBC) on election night.

We consider two datasets, which we introduce in Section 7.2. Section 7.3 is 
devoted to the first of these and Section 7.4 to the second. In each section, first 
we fit our models to the data to find our parameters. After a discussion of their 
meaning we provide approximate correlation matrices for them, which are used 
to give approximate confidence intervals. We then need to select the best model, 
via the scaled deviance test developed in Lee and Nelder (1996, [69]). Following 
this, we concentrate on our models of choice, examining their specific properties. 
Finally, Section 7.5 provides a comparison of statistics from our method with that 
from existing methods.

7.2 Real Data

7.2.1 Components

To work in conjunction with the fact that our model is time series, we require 
data recordings as time progresses. We choose a starting time, which is likely to 
be the point at which fieldwork begins for the first opinion poll recorded for an 
upcoming election. We set this to zero, such that the fieldwork finishes for that
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poll at time ¿1 . We then work in days where, for instance, 3| days after the first 
set of recordings will for us translate into 8 =  3.5. We then include all known 
recording time periods as far as we can; we define the latest poll as ‘current time’, 
n. Note that we will look at stationary models, which disregard the differences 
in time between poll collections, in addition to the nonstationary ones which do 
account for time variation.

At each collection of recordings, we will have the distribution of total votes 
for each contending election party. Of course, we choose only to focus on specific 
parties, and so we can either pool the remainder or ignore them altogether. The 
actual recordings themselves will be the total number of votes for that party at 
that particular poll. Hence, for example, 425 for Labour at 16.5 means that 16| 
days after the first set of recordings, a new set of poll recordings was taken, and 
then 425 people voted Labour.

It is clearly a good idea to convert the nominal data into proportions in order 
to gauge relative strengths at those separate times. This would be useful as it 
is ultimately relative strength - given the data as a whole - with which we are 
concerned. Also, obviously the total number of votes differs amongst polls, so the 
data are of less use in absolute terms.

We will be dealing with three parties only (Labour, Conservative and Lib
eral/Alliance), and so will simply disregard information on the remainder, rede
fine the total number of votes, and rescale the proportions. As we have said, 
we can of course include however many number of parties (and lags) we like, 
though this unnecessarily affects the clarity and simplicity of our computation 
and subsequent analysis.

7.2.2 Elections

We will focus on two historical general elections: 1983 and 1987. The poll data 
for these two are shown at Appendix C and plots of proportions of votes for each 
party are shown in Figures 7.1 and 7.2 for two-parties and Figures 7.3 and 7.4 for 
three parties. The reasons for choosing these elections are both that more poll 
recordings are available here and they are both three-party contests, similar to 
what we generally expect in the UK nowadays. Clearly from the plots, we see 
that the Conservative party has a striking lead in both pre-elections, Labour is 
almost always second and Liberal/Alliance mostly third.

As we have stressed, our main objective is to use these data in order to find 
maximum hierarchical likelihood estimates (MHLEs).
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Figure 7.1: Poll outcomes for the main two parties in the run-up to the 1983 
general election (time in days on x-axis, proportions of votes on y-axis).

Figure 7.2: Poll outcomes for the main two parties in the run-up to the 1987 
general election (time in days on x-axis, proportions of votes on y-axis).
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Figure 7.3: Poll outcomes for the main (three) parties in the run-up to the 1983 
general election (time in days on a>axis, proportions of votes on y-axis); ‘Lib. 
Dems’=Liberal.

Figure 7.4: Poll outcomes for the main (three) parties in the run-up to the 1987 
general election (time in days on x-axis, proportions of votes on y-axis); ‘Lib. 
Dems’=Alliance.
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7.3 Illustration 1: 1983 Data

7.3.1 MHLEs

Table 7.1 shows the MHLE values obtained for all models when fit to the 1983 
data. Also shown are the values for h, which we may interpret in the same way 
that we would with log-likelihood values, that is, the MHLEs found give us the 
maximum absolute value of h.

Model 6 ' h

ARCH(2,1) (d =  1271.7, ¡3 =  826.8) -2160.8

ARCH(2,2) (d =  590.4, /3 =  383.8, w =  0.6250) -1947.2

ARCH(2,3) (d =  530.5, (3 =  345.0, wx =  0.5250, w2 =  0.1250) -1758.6

SV (2,1) (4> =  0.4030) -161.6

SV(2,2) (</> =  0.2797, w =  0.4626) -155.3

SV(2,3) (4> =  0.1176, m  =  0.1863, w2 =  0.1051) -143.4

ARCH(3,1) (di =  1882.7, d2 =  1228.1, d 3 =  941.2) -3338.7

ARCH(3,2) (di =  879.4, d 2 =  573.6, d 3 =  439.6, w =  0.5750) -3043.6

ARCH(3,3) (di =  634.6, d 2 =  413.9, d 3 =  317.3, m  =  0.4250, w2 =  0.1250) -2640.0

SV (3,1) (<j> =  0.1978) -281.8

SV(3,2) (<t> =  0.1303, w =  0.4402) -272.4

SV(3,3) (<^=0.0548, rn =  0.1738, w2 =  0.0408) -252.3

Table 7.1: MHLEs for candidate models when fit to the 1983 poll data.

Inference

A R C H  m odels: We see that the party strength parameters a  are large in 
magnitude, which is due to the large figures for the number of votes in the polls. 
This does not matter since we are effectively interested in the relative strength 
of the parties and so we work with the proportions ag/ X^=i f°r party 9> 
where p is the number of parties. Then, the outputs are similar regardless of the 
model. For the 1983 data and in a two-party contest, all three models suggest a 
distribution of about 60 per cent in favour of Conservative and the remaining 40 
per cent for Labour. In a three-party contest, all three suggest about 45 per cent 
in favour of Conservative, 30 per cent for Labour and the remaining 25 per cent 
for Liberal. These figures reflect what we saw in Figures 7.1 and 7.3, showing
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the poll outcomes by proportions, to suggest that MHLEs a  are very reliable for 
further use; rather than relying on graphs we now have determined values to use.

The lag parameters w vary, depending on the model. First consider two 
parties. ARCH(2,2) attributes 63 per cent of the information to the previous lag 
and the remainder to the second lag. ARCH(2,3) also attributes more to lag one, 
but only 53 per cent now; it attributes 13 per cent to lag two, but the remaining 44 
per cent to lag three. With three parties, ARCH(3,2) like ARCH(2,2) attributes 
more to lag one (58 per cent), whereas ARCH(3,3) like ARCH(3,2) reduces this 
(this time to 43 per cent and less than half). This time, ARCH(3,3) actually 
attributes most (44 per cent) to lag three. Obviously it would be useful to extend 
our models to more lags in order to assess this further. It seems for the above as 
if the models never put much weight on the second lag.

Stochastic volatility models: Recall that

exp(—{f)Ss(t))
°s(i) 1 -  exp(-05s(t) ) ’

where s is the sth lag, is a value which the proportionate strengths of the parties 
divide amongst their corresponding shape parameters inside the beta/Dirichlet 
density. Strictly speaking, it would be the latent probabilities which distribute 
the cs(t), but we decided to replace them with the proportion of votes per party. 
Therefore, the larger cs(t) is the more there is to share out. csp) is governed in 
size by both (f) and 6s(ty. the smaller their product the larger cs(t) is. For all of 
our models here we find that our value of <j) is very small, roughly somewhere 
between 0.01 and 0.1. Typically our values for Ss(t) will also be small; considering 
both datasets the maximum number of days between polls was 3. This implies 
that our value for csp) is reasonably large, say 1 0 0 , and so we have very different 
probability densities at each poll. (When we actually go on to consider the 
election night, seats often declare consecutively in very small intervals.) Note 
also that recent lags are more influential than older lags since A(i) <  <5s(i+i) which 
leads to cyy  >  c2(p >  c-yy for some (f) and poll t.

For the 1983 data and with two parties SV(2,2) attributes only 46 per cent 
to the first lag yet 54 to the second. This contrasts with the comparative ARCH 
models, which put more emphasis on the first lag than the second. Similar is true 
in the three-party case. As with the ARCH models, when we go on to consider 
three parties for the 1983 data all stochastic volatility models attribute a majority 
(about 80 per cent) of weight on the third lag, a reasonable amount on the first, 
and least on the second.
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7.3.2 Dispersion and interval estimates

Now we present the approximate correlation matrices for the MHLEs, as well as 
their approximate 99% confidence intervals.

ARCH (2,1)

/43.2994 0.9778 N 
^ 0.9778 37.5054,

a G (1160.2,1383.2) 
P G (730.2, 923.4)

ARCH (2,2)

/23.9971 0.9549 0 \
0.9549 20.7131 0

\ 0 0 0.3266y

a G (447.6, 571.2)

P G (330.4,437.2) 
w G (0, 1)

ARCH (2,3)

/19.3702 0.9349 0 0 \
0.9349 16.6401 0 0

0 0 0.0790 -0.3974
V o 0 -0.3974 0.0523 /

a G (480.6, 580.4)
P G (302.1,387.9) 
wx G (0.3215,0.7285) 
w2 G (0, 0.2597)
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S V  ( 2 ,1 )

(0.0641)

0 G (0.2380,0.5681)

SV(2,2)

/0.0507 0.4157\ 
yO.4157 0.0173/

<t> G (0.1492,0.4102) 

w G (0.1037,0.7814)

SV(2,3)

/0.0241 0.3732 0.0300
0.3732 0.0664 -0.5519

y0.0300 -0.5519 0.1221

0G  (0.0554,0.1797) 

wx G (0.0153,0.3573) 

w2 G (0, 0.0658)

ARCH (3,1)

/60.1633 0.9660 0.9776 \
0.9660 39.6119 0.9705

y 0.9776 0.9705 25.9207/

ai G (1727.7, 2037.7) 

a2 G (1126.1,1330.1) 

a3 e (874.4,1008.0)
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ARCH(3,2)

/32.7110 0.9312 0.9540
° \0.9312 21.6909 0.9401 0

0.9540 0.9401 14.2935 0
V  o 0 0 0.3198/

ai G (795. 1,963.7)

a2 G (517.7,629.5)

a3 G (402. 7, 476.3)
w e (o, l)

ARCH (3,3)

/21.8766 0.8819 0.9186 0 0 N
0.8819 15.2163 0.8955 0 0
0.9186 0.8955 10.0830 0 0

0 0 0 0.0782 -0.3249

l  0 0 0 -0.3249 0.0523 )

ai G (578.3, 690.9) 
a2 G (374.7,453.1)

«3 € (291.3,343.3) 
wi G (0.2236, 0.6264) 
w2 G (0, 0.2597)

SV (3,1)

(0.0254)

0G (0.1326,0.2631)
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SV(3,2)

/0.0183 0.4180\ 
yO.4180 0.3959J

<pE (0.0831,0.1774) 

w E (0.1889,0.6914)

SV(3,3)

/0.0087 0.3954 0.0185 \
0.3954 0.0489 -0.4872

^0.0185 -0.4872 0.0881 /

(pE (0.0325,0.0772) 

w l E (0.0478, 0.2997) 

w2 E (0,0.1862)

Inference

ARCH  models: The standard errors for the party parameters are quite large, 
but not relative to the parameter sizes themselves. There is strong positive cor
relation between them, but this is to be expected, because if the poll sample size 
increases, then we would expect not only more people to vote one party but all 
parties. Due to the way in which the mixture transition density (MTD) models 
are constructed, these parameters are independent from the lag parameters. The 
lag parameters are negatively correlated, which also makes sense since they all 
sum to one, and so increasing one would mean decreasing the others. In all in
stances above, the confidence intervals tell us (with 99 per cent certainty) that 
overall during the poll period, Conservative was more powerful than Labour which 
in turn was more powerful than Liberal/Alliance. When the model only has one 
weight parameter the confidence intervals are not very useful, at least at the 99 
per cent level. They are more useful when there are several weight parameters; 
for instance, for the 1983 data ARCH(2,3) says with 99 per cent certainty that 
lag one accounts for more of the modelling than lag two.

Stochastic volatility models: The standard errors are suitably low for all
parameters, which will give us better confidence intervals. Again, the weight
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parameters are negatively correlated as would be expected.

7.3.3 Relative goodness of fit

Table 7.2 shows the deviance values for each model as well as the number of 
parameters, d.

Model d D

ARCH(2,1) 2 3791.5

ARCH(2,2) 3 3085.7

ARCH(2,3) 4 2761.3

SV(2,1) 1 389.8

SV(2,2) 2 387.1

SV(2,3) 3 387.1

ARCH(3,1) 3 6080.9

ARCH(3,2) 4 5018.9

ARCH(3,3) 5 4231.6

SV (3,1) 1 711.2

SV(3,2) 2 710.5

SV(3,3) 3 710.6

Table 7.2: Déviances for candidate models when fit to the 1983 poll data.

Inference

For the 1983 data, the deviance method selects SV(2,3) when there are two parties 
and SV(3,2) when there are three parties.

7.3.4 Absolute goodness of fit

We have chosen the best models out of two different sets (ARCH and SV) of 
nested models, that is, of a similar form to one another but with slightly different 
parameterisations; this is relative goodness of fit. However, this does not imme
diately mean that the models actually suit the data well. One useful and simple 
way to assess whether this is so is to look at typical time series simulations of 
our chosen models. We would expect the plots generally to take the shape of the 
actual proportions obtained from the polls in the corresponding pre-elections.
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Figure 7.5: Simulations of probabilities of voting from SV(2,3) using 0 =  0.12, 
u)\ — 0.19 and w2 =  0.11, obtained from the 1983 data.

Simulations

Recall that we saw typical simulations of our models in the previous chapter, but 
now we update them to contain our MHLE parameters. Figure 7.5 shows typical 
simulations obtained using the MHLEs found from fitting the 1983 poll data to 
the best model (SV(2,3)), in a two-party contest of Conservative versus Labour. 
Figure 7.6 shows the best model in a three-party contest, which was SV(3,2), 
with their unique MHLEs when fit to the 1983 poll data.

We firstly note that all plots are clearly smoother than those obtained from 
the spiky ARCH models. The spikes here are by comparison much smaller, and 
are similar to those seen in Figure 7.3, showing the actual poll data proportions. 
This suggests that the models seem to be able to replicate quite adequately the 
type of development expected with polls before a general election. The (latent) 
ever-changing probabilities offer natural progressions of the votes as we get closer 
to the exit poll, and our simulations show how the probabilities of voting can 
reflect changes in power of the parties as time goes on. The simulations for 1983 
with three parties show change of strength of Labour versus Liberal/Alliance (but 
with Conservative clearly in lead). Such changes were apparent in the actual poll 
votes, as we saw at the end of the 1983 polls and the start of the 1984 polls. 
Another advantage over ARCH models is that the stochastic volatility models
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Figure 7.6: Simulations of probabilities of voting from SV(3,2) using 0 =  0.13 
and w — 0.44, obtained from the 1983 data.

consider time differences between polls.
An objective of the modelling is for the actual data to look as if a realisation of 

our best models. It is clear by comparing these simulations with the proportions of 
votes seen earlier in the chapter (Figures 7.1 and 7.3) that the actual proportions 
could indeed be realisations from our best models.

Expected values

Figures 7.7 and 7.8 show the proportion of votes for each party compared with 
the expected values given the best two-party model, SV(2,3), and the best three- 
party model, SV(3,2), respectively. We can see that the model gives generally 
quite accurate expected values, which suggests that the models are appropriate. 
However, our choice at the first poll, t — 1, could have been better.

Hypothesis tests

At this point of the inference, this test would be useful if we wished to assess the 
importance of particular weights representing the lags, especially if we suspected 
that one, say, was almost negligible in size, say only 0.05. For our examples 
though the weights are large enough, so there is little to be gained in performing 
this test.
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Figure 7.7: Proportion of votes for Conservative and Labour versus SV(2,3) ex
pected values.

tim e (days)

Figure 7.8: Proportion of votes for Conservative, Labour and Liberal versus 
SV(3,2) expected values.
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7.4 Illustration 2: 1987 Data

7.4.1 MHLEs

Table 7.3 shows the MHLE values obtained for all models when fit to the 1987 
data. Also shown are the values for h. which we may interpret in the same way 
that we would with log-likelihood values, that is, the MHLEs found give us the 
maximum absolute value of h.

Model O' h
ARCH(2,1) (a =  2879.3, ¡3 =  2245.1) -2451.7

ARCH(2,2) (a =  2066.4, =  1611.2, w =  0.5667) -2418.1

ARCH(2,3) (a =  1081.0, ¡3 =  842.9, wx =  0.3333, ui2 =  0.2000) -2091.4

SV(2,1) (ip =  0.3409) -128.2

SV(2,2) (4> =  0.1716, w =  0.2555) -118.6

SV(2,3) (<f> =  0.0736, wi =  0.0563, u>2 =  0.1924) -109.6

ARCH(3,1) (di =  3584.3, d2 =  2798.6, d3 =  2012.9) -4775.3

ARCH(3,2) (« !  =  2127.6, d2 =  1661.2, d 3 =  1194.8, w =  0.5333) -4597.4

ARCH(3,3) (di =  1287.0, d2 =  1004.9, d3 =  722.8, m  =  0.3667, w2 =  0.2000) -3960.9

SV(3,1) (<(> =  0.2193) -236.7

SV(3,2) (<j> =  0.1033, w =  0.2420) -218.1

SV(3,3) (0=0.0303, wi =  0.0255, w2 =  0.1940) -201.7

Table 7.3: MHLEs for candidate models when fit to the 1987 poll data.

Inference

A R C H  m odels: As before, the party strength parameters a  are large in mag
nitude, due to the large figures for the number of votes in the polls. Then, the 
outputs are similar regardless of the model. For the 1987 data the models sug
gest a split of about 55 per cent and 45 per cent for Conservative versus Labour 
respectively, and about 45 per cent, 30 per cent and 25 per cent for Conservative, 
Labour and Alliance respectively. These figures reflect what we saw in Figures 
7.1-7.4, showing the poll outcomes by proportions, to suggest that MHLEs a  are 
very reliable for further use, rather than relying on graphs we now have deter
mined values to use.

The lag parameters w vary, depending on the model. With two parties only, 
ARCH(2,2) favours the previous lag (57 per cent), but ARCH(2,3) reduces this to
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33 per cent and allocates almost half to lag three. With three parties ARCH(3,2) 
attributes 53 per cent to lag one and ARCH(3,3) attributes 37 per cent to it, but 
43 per cent to lag three. It seems for the above as if the models never put much 
weight on the second lag, similarly to with the 1983 data.

Stochastic volatility models: Again, we decided to replace the latent prob
abilities with the proportion of votes per party. For all of our models here our 
value of 0 is very small, roughly somewhere between 0.01 and 0.1. Typically our 
values for 5s(t) will also be small; considering both datasets the maximum number 
of days between polls was 3. This implies that our value for cs(t) is reasonably 
large, say 1 0 0 , and so we have very different probability densities at each poll.

For the 1987 data SV(3,2) attributes only 26 per cent to the first lag yet 74 
to the second. This contrasts with the comparative ARCH models, which put 
more emphasis on the first lag than the second. Similar is true in the three-party 
case. As with the ARCH models, when we go on to consider three parties, with 
the 1987 data again most weight (about 75 per cent) was placed on the third lag, 
but more on the second than on the first.

7.4.2 Dispersion and interval estimates

Now we present the approximate correlation matrices for the MHLEs, as well as 
their approximate 99% confidence intervals.

ARCH (2,1)

/110.9241 0.9910
y 0.9910 97.2728

a e  (2593.6,3165.0) 

P € (1994.5,2495.7)
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ARCH(2,2)

/75.5363 0.9850 0 \
0.9850 66.1551 0

\ 0 0 0.3684y

a G (1871.8,2261.0) 
ß  G (1440.8,1781.6) 
w G (0,1)

ARCH (2,3)

/32.8767 0.9504 0
° \0.9504 28.6181 0 0

0 0 0.0861 -0.3536
V o 0 -0.3536 0.0730 /

a G (996.3,1165.7) 
ß  G (769.2,916.6)

W! G (0.1115,0.5551) 
w2 G (0.0120, 0.3880)

SV (2,1)

(0.0593)

</> G (0.1881,0.4936)

SV(2,2)

/0.0357 0.3898\ 
y0.3898 0.0096J

(f) G (0.0796,0.2637) 
w G (0.0035,0.5074)
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SV(2,3)

/0.0171 0.3714 0.0789
0.3714 0.0465 -0.3256

v0.0789 -0.3256 0.1017

0 G (0.0296,0.1176) 

w x G (-0.0636,0.1762) 

i u 2 G (0.0725, 0.3123)

ARCH (3,1)

/111.5159 0.9798 0.9851
0.9798 74.4733 0.9827

v 0.9851 0.9827 58.1956

en G (3296.8,3871.2) 

a2 G (2606.8, 2990.4) 

a3 e (1863.0,2162.8)

ARCH (3,2)

/62.7116 0.9579 0.9689
°  ^

0.9579 42.2192 0.9638 0
0.9689 0.9638 32.9577 0

V  o 0 0 0.3660/

«i G (1966 0,2289.1)

q ¡2 G (1552 5,1769.9)

a3 G (1109 9,1279.7)

w G (0, 1)
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ARCH (3,3)

/32.0489 0.8938 0.9194 0 0
0.8938 22.2579 0.9074 0 0
0.9194 0.9074 17.5752 0 0

0 0 0 0.0880 -0.3804

 ̂ 0 0 0 -0.3804 0.0730

c*i G (1204.4,1369.6) 

c*2 G (947.6,1062.2) 

a3 e (677.5,768.1)

W \  G (0.1400,0.5934) 

w2 G (0.0120,0.3880)

SV(3,1)

(0.0296)

</>G (0.1431,0.2956)

SV(3,2)

/0.0158 0.3842\ 
y0.3842 0.0707y

0G  (0.0627,0.1440) 

w G (0.0599, 0.4240)

SV(3,3)

/0.0033 0.2023 0.0265
0.2023 0.0249 -0.4020

v0.0265 -0.4020 0.0599

0 G (0.0219,0.0387) 

w x G (-0.0387,0.0897) 

w2 G (-0.0396, 0.3484)
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Inference

ARCH  models: As we saw with first dataset, standard errors for party pa
rameters are quite large, but not relative to corresponding parameter sizes. There 
is strong positive correlation between them. Again, MTD model parameters are 
independent from the lag parameters. The lag parameters are negatively corre
lated, which also makes sense since they all sum to one, and so increasing one 
would mean decreasing the others. In all instances above, the confidence intervals 
tell us (with 99 per cent certainty) that overall during the poll period, Conser
vative was more powerful than Labour which in turn was more powerful than 
Liberal/Alliance. Confidence intervals are more useful when there are several 
weight parameters.

Stochastic volatility models: As with the 1983 data, standard errors are suit
ably low for all parameters, enabling more accurate confidence intervals. Again, 
the weight parameters are negatively correlated.

7.4.3 Relative goodness of fit

Table 7.4 shows the deviance values for each model as well as the number of 
parameters, d.

Model d D

ARCH(2,1) 2 4507.9

ARCH(2,2) 3 4236.4

ARCH(2,3) 4 3360.0

SV(2,1) 1 524.6

SV(2,2) 2 433.1

SV(2,3) 3 433.3

ARCH(3,1) 3 8765.6

ARCH(3,2) 4 7885.2

ARCH(3,3) 5 6391.7

SV (3,1) 1 554.5

SV(3,2) 2 554.0

SV(3,3) 3 554.7

Table 7.4: Déviances for candidate models when fit to the 1987 poll data.
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Inference

For the 1987 data, the deviance method selects SV(2,2) when there are two parties 
and SV(3,2) when there are three parties.

Remarks: For both pre-election datasets, the best model in a three-party con
test is SV(3,2). If we reconsider the types of simulations in Chapter 6 which the 
ARCH models gave us, the changes with time are too extreme compared with 
those seen in Figures 7.3 and 7.4. The stochastic volatility models by contrast take 
into account time difference between observations, and we ended up with much 
smoother time series plots. Also these models generally have fewer parameters. 
We therefore now drop the ARCH models and focus on the stochastic volatility 
models, firstly, to assess absolute goodness of fit and then in the modelling on 
election night.

One interesting observation is that the best ARCH model for both polls was 
ARCH(2,3), that is, with three lags. For both the two-party and three-party 
contests lag three was allocated a large proportional value. This may mean that 
if we considered even more lags then the deviance values for the corresponding 
models would be even lower, though would still not compete with the stochastic 
volatility models, whose deviance values are far lower.

For our stochastic volatility models, it should be noted that the deviance 
values are close to one another. For example, for the 1983 data the deviance of 
the best model SV(2,3) in a two-party contest is 387.07, whereas the second best 
is SV(2,2) with deviance 387.08. For simplicity we might then choose the latter 
as it is simpler in terms of computation, yet still is not much worse than the best 
model.

7.4.4 Absolute goodness of fit

Simulations

Recall that we saw typical simulations of our models in the previous chapter, 
but now we update them to contain our MHLE parameters. Figure 7.9 shows 
simulations from the best two-party model for the 1987 data (SV(2,2)). Figure 
7.10 shows the best model, which was SV(3,2), with their unique MHLEs when 
fit to the 1987 poll data.

As before, it is clear that all plots are smoother than those obtained from 
the spiky ARCH models. The spikes here are by comparison much smaller, and 
are similar to those seen in Figure 7.4, showing the actual poll data proportions
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Figure 7.9: Simulations of probabilities of voting from SV(2,2) using ^ =  0.17 
and w =  0.26, obtained from the 1987 data.

O
Q_

COa>
o

Q_

Figure 7.10: Simulations of probabilities of voting from SV(3,2) using 0 =  0.10 
and w — 0.24, obtained from the 1987 data.
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Figure 7.11: Proportion of votes for Conservative and Labour versus SV(2,2) 
expected values.

themselves. This suggests that the models seem to be able to replicate quite 
adequately the type of development expected with polls before a general election. 
The (latent) ever-changing probabilities offer natural progressions of the votes 
as we get closer to the exit poll, and our simulations show how the probabili
ties of voting can reflect changes in power of the parties as time goes on. The 
simulations for 1987 with three parties show change of strength of Labour versus 
Liberal/Alliance (but with Conservative clearly in lead).

Also, if we compare these simulations with the proportions of votes seen earlier 
in the chapter (Figures 7.2 and 7.4) that the actual proportions could indeed be 
realisations from our best models.

Expected values

Figures 7.11 and 7.12 show the proportion of votes for each party compared with 
the expected values given the best two-party model, SV(2,2), and the best three- 
party model, SV(3,2), respectively. We can see that the model gives generally 
quite accurate expected values, which suggests that the models are appropriate. 
However, as with the 1983 data, our choice at the first poll, t =  1, could have 
been better.
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Figure 7.12: Proportion of votes for Conservative, Labour and Liberal versus 
SV(3,2) expected values.

Final models:

• SV(2,3) (two parties) and SV(3,2) (three parties) for 1983; and

• SV(2,2) (two parties) and SV(3,2) (three parties) for 1987.

7.5 Comparisons with Other Models

7.5.1 Background

It is worth comparing the performance of our method with other methods. In 
Chapter 4 we mentioned both the poll of polls and the multivariate structural 
time series approach to model polls, each of which provides a prior forecast before 
the exit poll results are known. Although we have just discussed how our method 
may be easily incorporated into the regression-based forecast throughout election 
night, we may use parts of our method to derive our own comparative prior 
forecast. To do this, however, we would need to employ an ARCH model rather 
than the even better stochastic volatility model. This is because the former is a 
stationary model, effectively meaning that in the three party case we have the
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stationary case that

Qi «2 o:3
E3  5 v~^3 5

fe=l a k Z^fc=l a k 2^fc=1

in which « 1  represents the strength of Conservative, a 2 Labour and ct3 Lib
eral/Alliance. Therefore we have fixed parameters to work with, whereas with 
SV(3,2) the probability densities evolve with each poll and without any common 
parameters regarding party strength. We found that our best ARCH model given 
the 1983 data was ARCH(3,3). The same was true given the 1987 data. In Har
vey and Shephard (1990, [55]) the results for the local level model and the poll 
of polls were given; we now contribute our results - these are displayed in Tables 
7.5 and 7.6. Also shown is the actual outcome at the end of election night. It is 
important to realise that these figures involve comparing party strength in terms 
of votes and not seats, when in fact it is the latter which determines which party 
becomes Government.

Model Conservative Labour Liberal
Outcome 44.5 28.9 26.6

ARCH(3,3) 46.5 (-2.0) 30.3 (-1.4) 23.2 (+3.4)

Shephard 46.8 (-2.3) 26.7 (+2.1) 26.5 (+0.1)

Poll of Polls 47.3 (-2.8) 26.9 (+2.0) 25.8 (+0.8)

Table 7.5: Comparison of our best (ARCH) model with other models when fit to 
the 1983 poll data.

Model Conservative Labour Alliance
Outcome 44.2 32.2 23.6

ARCH(3,3) 42.7 (+1.5) 33.3 (-1.1) 24.0 (-0.4)

Shephard 43.5 (+0.7) 34.6 (-2.4) 21.9 (+1.7)

Poll of Polls 43.1 (+1.1) 34.7 (-2.5) 22.3 (+1.2)

Table 7.6: Comparison of our best (ARCH) model with other models when fit to 
the 1987 poll data.

7.5.2 Analysis

We see that our forecasts using MHLEs are similar overall to those of the other 
two methods. In the 1983 election, our result for Conservative was the best of the
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three methods with the least overestimation. Unlike the other methods, we over
estimated Labour, but again the absolute error was the smallest. Our forecast 
for Liberal was somewhat larger than the other two methods, which were both 
quite close in their predictions. With the other two methods the overestimation 
of Conservative was offset by the underestimation of Labour, which led to their 
predictions for Liberal being accurate. In our case, we overestimated both Con
servative and Labour, which meant that the forecast for Liberal had to be more 
underestimated than the other methods.

In the 1987 election, our forecasts were quite good throughout. We underes
timated Conservative only by 1.5 per cent and overestimated Labour only by 1.1 
per cent. This offset meant that we only overestimated Alliance by 0.4 per cent. 
Our forecast for Labour was the most accurate, as was that for Alliance, and our 
forecast for Conservative although the least accurate was not much worse (less 
than 1 per cent compared to both methods).

Regardless of the comparative accuracy of these prior forecasts, both our 
method and that of Harvey and Shephard (1990) provide more information than 
the poll of polls, by operating within time series. This information is often of im
portance to psephologists who carry out trend analysis, for instance, and politi
cians who might use such analysis to adapt their campaigns accordingly.

7.6 Review

We fitted our ARCH and stochastic volatility models to the 1983 and 1987 pre
election poll data; note that we would expect the GARCH models to behave very 
similarly to the latter, just as they did in the simulations seen in the previous 
chapter. Through the h-likelihood approach we obtained estimates in replacement 
of MLEs. Generally, the party parameters for all models had similar implications 
in terms of summarising party strength. What we found varied from model to 
model, however, is the distribution of weight given to the lags. Subsequently, we 
made use of theory given in Lee and Nelder (1996) and Lee, Nelder and Pawi- 
tan (2001, [72]) to perform inference on our estimates. This included deriving 
approximate covariance matrices and confidence intervals, which were not sur
prising in what they showed. It also included the scaled deviance test used to 
choose the best of a set based on comparising a numerical value. This statistic 
chose the stochastic volatility models in all cases, and preferred the multi-lag 
models. Simulations of the chosen models confirmed that the models were reli
able in the modelling of poll data treated as time series. Finally, we provided a
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point estimate prior forecast based on the number of votes, in order to compare 
part of our method with other established methods, for which our results are 
encouraging. We have seen that our general models involve gauging an idea of 
the distribution of popularity for parties, based on observed data. These data 
come from polls and cover a reasonable period of time in the run up to election 
night. Clearly, this is merely the first of two stages. The subsequent stage is to 
incorporate our modelling in the forecasting during election night.
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Chapter 8

Election Night

8.1 Introduction

In this chapter, we firstly provide an overview of how we go about modelling 
each seat, in terms of the number of votes and the probability of voting. In 
Section 8.2 we devote much time reviewing the BBC’s regression-based method 
of forecasting on election night, which has seen much development and revision 
in the experience of recent general elections. Section 8.3 then discusses in detail 
our forecasting method, starting with the simplest two-party contest and then 
developing to a more general three-party contest. Finally, in Section 8.4 we 
illustrate forecasting of a three-party contest in a simplified version of the UK 
election for the 1983 and 1987 data.

8.1.1 Overview

Similarly to opinion polls, once we observe for any seat the number of votes for 
Conservative (without loss of generality) among the total number of votes for 
that seat, we assume the former to be binomially distributed, that is,

Vj ~  Bin{r

where yj is the number of Conservative votes in seat j ,  r3 the total number of 
votes in that seat, and x3 the probability of voting Conservative within that 
seat (which has a separate distribution). This extends straightforwardly to the 
multinomial distribution for more parties than two, so clearly each constituency 
has a unique distribution both for y3 and the latent Xj.

Our general formulation thus has two purposes: firstly to model the opinion 
polls before the election night and therefore to produce an initial forecast, and
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secondly to model the updates of the predictive distributions throughout the elec
tion night to lead to a final forecast, that is, where we recognise a convergence of 
predicted number of seats won for each party, via a series of revised forecasts. In 
the former, the data involve numbers who say that they will vote for a party and 
the latter numbers who did vote for a party. Further, they involve in the former 
national probabilities of voting for a party at that time, yet the latter involves the 
probabilities of voting for a party in a constituency. In both cases, however, these 
probabilities are latent, that is to say, they work in the background to generate 
the numbers of votes per party. The link between the two cases is that mod
elling behind the opinion polls reappears in the election night forecasting, via the 
probability models. Put another way, the modelling of the polls is not confined 
merely to providing a prior forecast before election night. Our general forecasting 
approach is based heavily on that taken by the BBC, which is outlined in Brown 
and Payne (1975, [23], 1984, [24]) and Brown, Firth and Payne (1999, [22]).

Exit polls

Until exit polls are carried out, the results (from opinion poll analysis covered 
in previous chapters) we assume to hold nationally across the UK. (Our theory 
developed thus far may be as broad or as narrow as required, and so it is possible 
to apply this to constituency level using constituency polls, exit polls and previous 
election results.) Once exit polls have been obtained, we focus on revising to local 
level and constituency-specific models. First, suppose naively that it is possible to 
carry out an exit poll for each constituency. Thus each seat has its unique (and 
prior) distribution for the probability of voting in the exit poll. For example, 
suppose that in a two-party contest and with Xj denoting the probability of 
voting Conservative in seat j  in the exit poll

A xj)  ~  Be (qjNj, (1 -  q^N , ) , (8.1)

in which

• Nj is the number of respondents in the exit poll conducted at seat j\ and

• qj is a proportion in order to apportion the Nj among the shape parameters 
of the beta distribution, with the first representing Conservative and the 
second Labour. Therefore,

Cj
“i =  W

in which Cj is the number of votes for Conservative in constituency j.
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From (8.1) we have that E(xj) =  qj, and so we end up expecting a local prob
ability of voting Conservative (and thus Labour), before any seats have declared; 
at the same time though we see that each seat has its unique beta distribution.

Ideally, we would want exit poll data for each constituency, but this is not 
collected due to time and expense. Therefore, we can use what is collected re
garding exit polls by pooling for the UK and apply this to each constituency as 
relevant. This means that lots of constituencies have the same prior; for example, 
the seats in the UK where Conservative is strong will be allocated the same prior 
as those in the exit poll sample where Conservative is strong. See Curtice and 
Firth (2008, [32]) for how to go about pooling exit poll data.

Election night

Next, we concentrate on modelling the election night probabilities of voting given 
the seats currently declared. This clearly means that we must sequentially update 
these probabilities as each seat declares, until either all seats have declared or 
ideally when we are able to give a final prediction. In our revised probability 
models we continue to use the opinion poll methodology as well as the option to 
use the exit poll information above, combined in a weight function for instance. 
We may choose to give the latter less and less weight as the number of declared 
seats increases, since we can then rely more on what the actual declarations say 
rather than what the now somewhat historic exit polls say. Alternatively, we 
could just keep the weight fixed and argue that what an exit poll taken at seat j  
says will be independent from all other seats; therefore, the exit poll at seat 659 
would have as important a role as that at seat 1.

8.2 Brown and Payne Model

8.2.1 Objective

Brown and Payne (1975) discussed a regression-based approach to election fore
casting. As the night goes on and seats are declared, a multiple linear regres
sion modelling of seats so far declared is performed on explanatory variables of 
possible influence. These variables collectively cover a range of factors, including 
previous election votes, regional dummy variables, interaction dummy variables 
and socioeconomic variables. For example, in the 1997 model there were 36 such 
variables. The method is ridge regression in a slightly-modified form, and has 
the advantage of enabling any number of variables to be included even without
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any data (in which case the corresponding coefficients would be shrunk to zero).

8.2.2 Data

A prior forecast is made at the start of election night; that is, before any seats have 
been declared. The BBC method actually makes forecasts of the change in share 
of vote from previous elections per party per seat. The sources of information 
here are chiefly exit polls and also opinion polls. Three seats are chosen and used 
as if they were dummy seats, and their results were turned into artificial votes, 
assuming an 80 per cent turnout of the electorate. Then, all the declared results 
per constituency on the night are used in the regression-based forecasting.

8.2.3 The model

Initial grouping

Brown and Payne (1975) split the seats into three categories: special seats, 
two-party contests (Conservative versus Labour) and three-party contests (Con
servative, Labour and Liberal). For the special seats, no modelling is done as such 
seats will be unreliable if used to forecast other seats and vice versa. Instead, 
they are assigned fixed a priori probabilities of winning (until declared; these 
probabilities are modified manually if needed). Assumptions with the two-party 
seats is that the nationalist parties ‘remain local’ and that Liberal has no chance 
of winning, due to the fact that it received less than 8 per cent of votes in the 
last election.

Seats declared in the two-party contest are used with those in the three-party 
contest to predict the three-party forecast and vice versa for the two-party contest. 
This is achieved by defining two overlapping groups:

1. One group comprising all seats in which Liberal is currently standing; and

2. One group comprising all seats in which Liberal received no more than 30 
per cent of the votes in the last election.

This implies the need for a dummy variable for Liberal intervention in both 
groups.
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Probability matrix

Overall, assume that there are 635 constituencies and 5 parties: Conservative, 
Labour, Liberal, Nationalist and Other. P is a 635 x 5 probability matrix

(  p n P l2  • • P 15 \

p  =
P 2 1 P ‘22 P 25

V^6351 ^6352 • • ^ 6 3 5 5 /

in which the element Pgg is the probability that the j th seat goes to the gth party, 
and where Pjg =  1 (until that seat is declared). Then, the expected number 
of seats that party g wins is simply the sum of the gth column.

Two-party contest (Conservative versus Labour)

• The multiple regression model is

r
Vj =  A> + Pax39 +

.9=1

in which yj is the change in the Conservative share of the Conservative 
plus Labour vote (known as ‘two-party swing’) in constituency j ,  xjg are 
explanatory variables for constituency j , f3g are the regression coefficients to 
be estimated, with /30 a constant, and ~  N(0, a2) are errors. (Brown and 
Payne mention that the normality assumption is well justified empirically.)

• Suppose that there are only five variables of interest (r =  5), in priority 
order:

1. Conservative in the last election (xji);

2. Liberal intervention (.Xj2);

3. Liberal in the last election (xj3);

4. Scottish nationalists in the last election (x^); and

5. South East of England constituencies (xj5).

The method has a staged inclusion for these variables, meaning that the 
number of explanatory variables increases as more seats are declared: when 
5 +  3(d — 1) seats have declared we may include d explanatory variables.
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• ‘Optimum’ estimation for the model with identical design matrices is by way 
of univariate least squares, but this is equivalent to maximum likelihood 
under normality. With different design matrices, the degree of optimality 
depends on the generalised canonical correlations of the sets of regressor 
variates. In the three-party contest (see later) there will be a small degree 
of optimality, especially because two variables are highly correlated.

• We would follow an equation-by-equation approach to estimate the (3 vector, 
ft, and so may drop the subscript defining the specific party. Hence, we must 
solve

ft =  (X 'X ) +  k • Diag(0, 1, . . . ,  l^ ^ X 'Y ,

in which k is a ridge constant. Brown and Payne (1975) set this equal to 
4.0, based on the behaviour of the program in the previous election at the 
time of writing. Obviously, we regress using only the declared results and 
corresponding explanatory variables, the latter of which form the design 
matrix X . Hence, letting n denote the number of constituencies within the 
two-party category,

( e A ( ftA

Y  - 2/2
, € = ¿2

, p  =
ft2

\Vn j v<w \fts)

/ I Xu . ■ Xlb\ ( l 0 . . 0 \

x  =
1 X2\ • ■ X25 , Diag(0, 1, .. •, 1) =

0 1 . . 0

U %n\ ■ x n§) \ o 0 . ■ 1 /

• The explanatory variables are introduced in priority order (except when X  
is nearly singular, when a lower priority variable is fitted).

• Also, we estimate the variance of the errors, a2, by

i.2 (Y  — X /3)'(Y  — X/3)
^ ) n0 -  r

where r is the number of parameters in the model and n0 is the number of 
constituencies which have declared.

• The predicted swing of the j th undeclared seat then is

Vi =  x ' j A
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where xj is the (r +  1) x 1 explanatory variable for that constituency, and 
if we let

H 1 =  (X 'X ) +  k ■ Diag{0, 1, . . . ,  1) 

then the predicted variance a /2 for constituency j  is

a /  =  a \  1 +  x/jH_1Xj). (8.2)

• To estimate the probabilities, for Conservative say, we use

Cj +  V j -  0-5 \ 
a j  J  ’

in which Cj is the Conservative share at the two-party vote in the last 
election, Cj +  yj is the Conservative predicted share, and 0.5 is the tie value. 
Also, $  is the cumulative distribution function of the normal distribution 
and, clearly, Pj2 — 1 — Pj\.

The three-party scenario is more complicated to generate the probabilities. The 
regression model extends to three equations now, and we have {y ji}, {'Ufi} and 

{Vjs}-

Three-party contest

• The multiple regression model is

Yi =  X i/? ! +  ex

y 2 =  X 2 /?2 +  e2 (8-3)
ya =  X 3/33 -f- e3,

w h e r e  y  m (yim >  V2mt • • • > ynm)i £ m ( e lm> ^2mi • • ■ i ^nm) i 

P m  (/^Omi Plm i ■ • ■ i Prm ) a n d  X m (x o m i ^ lm i  • • • i X rm )i a n  Tl X  (v  -|- 1 )  

matrix of explanatory variables, with x(>m a vector of ones, m =  1, 2, 3. 
Now let n denote the number of constituencies within the three-party cat
egory.

Also, E(em) =  0 (a column of zeros) and K(emPq) =  crmgI, where I is an n x n 
identity matrix and m, q =  1, 2, 3 and we assume multivariate normality 
of the error structure. We define the matrix (arnq) by E.

Here y3\ is the change in Conservative share, yj2 Labour and yj3 Liberal for 
the j th seat.
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• Equation-by-equation ridge estimation is applied to give estimates ¡3m, m =  
1, 2, 3. This does not correspond in the Bayesian sense to the components 
Pi, (32, Pa being a random sample from JV(0, cr2p). Brown and Payne (1975) 
show that equation-by-equation multivariate ridge regression has similar 
mean-squared error benefits to univariate ridge regression, but is not a 
Bayesian procedure. Therefore, it is deficient. However, Bayes specification 
of a realistic prior variance-covariance structure for P'  =  {Pi , Pa , Pa) is not 
a great problem given its likely dependence on S.

• For the j th undeclared seat we have a trivariate vector of the predicted 
change in share of the electorate y'm =  {ijj\, yy2, Vja), where

with x 'm the ( r + 1) x 1 vector of explanatory variables for the mth equation, 
m =  1,2, 3.

• The covariance matrix £  is estimated by V  =  (vmt) where

( y  ™ - X m / 3 m ) ' ( y * - X , A )
Vml ,no — r

where n0 is the number of relevant declared seats and m, l =  1, 2, 3.

• If we now let Zj be a random vector denoting the share predicted to go to 
each party for the j th seat, then we estimate that

Z j  ~  W 3 ( C j + ÿ j ,  V ) ,

where cj is the vector of shares at the last election for seat j .

• The variability due to uncertainty of estimation of the parameter (as in 
(8.2)) is neglected; this second-rate contribution would mostly cancel when 
estimating the total number of seats per party.

• We have that

Pjm ~  ^m'i ^m"), Til ^  Ul ^  Til =  1, 2, 3,
=  P r { { z m — z m> > o) n (Zm — Zmn > o ) }

=  P r{(W m, > 0) n (Wm* >  0)},

where (Wmi, Wm») is bivariate normal with mean and covariance matrix 
obtained directly from Zj and V .

This means that the estimation of the probability that the j th undeclared 
seat will go to Conservative, Labour or Liberal involves a bivariate normal 
numerical integration.
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Other issues

Explanatory variables: Multicolinearity between explanatory variables is dealt 
with automatically; when few seats have declared some of the explanatory vari
ables are so correlated that it is difficult with ordinary least squares to get rea
sonably precise estimates of the relative effects of the variables. The ridge mod
ification shrinks parameter estimates towards zero in ill-conditioned directions. 
Brown and Payne (1984, [24]) state that ridge regression has also been shown 
to be very useful for prediction. The explanatory variables are scaled to have 
mean 0 and variance 1. The obvious but important point is made that we must 
be selective in choosing explanatory variables, or else if we try to include all the 
possible information then we will end up with a variety of nuisance parameters 
scattered throughout the model.

Probabilities: The BBC method assumes a multivariate normal distribution 
for the predictive probability that a seat is won by a party. This probability 
is then fed into the BBC’s battleground computer graphic system to get the 
forecasted number of seats in the final outcome. Regarding the prior forecast, a 
covariance matrix is derived for the change in share, using past elections, which 
is used to obtain the probabilities. Therefore, the forecasted number of seats is a 
weighted function of the two types of probability:

Pjm yJnPjm T (1 ^n)^jmi

where Pjm =  the predicted probability that the seat will go to party m and c/?m =  
the prior probability of the same event.

The more value believed to be in the prior information the larger the weight it 
is assigned (which is usually 0 to 3 seats). The prior probabilities are usually given 
larger weight for those constituencies in which declarations are not expected early. 
For instance, in the 1983 election the weight assigned to the predicted probability 
wn, where n is the number of seats which have been declared, was n/(n +  w), 
and w was assigned the value 2 for England and Wales and 3 in Scotland. This 
means that the prior information is essentially equivalent to two declared seats 
in England and Wales and three in Scotland. Thus, for example, when two seats 
have actually been declared in England and Wales the prior and actual results get 
equal measure, but when twenty have been declared the former (1 — w2o) has far 
less influence. This prior forecast is discussed in full detail in Brown and Payne 
(1984). Brown and Payne (1984) point out that these prior probabilities are very 
important in the forecasting, not only due to their entertainment value for viewers,
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but also since they provide a partial solution to a key problem: declaration order 
is unrepresentative of all results, and so bias is present in the early results-based 
probabilities.

Special seats: Non-special seats may, if necessary, be transferred to the special 
type and therefore omitted from future regression. This happens where declared 
results in which at least one major party has a change in share of the vote which 
differs noticeably from the overall pattern of change for that party. Such a device 
traps gross errors in data capture and deals with outliers (Brown and Payne, 
1984).

8.2.4 Inference

Confidence intervals

Brown and Payne (1975) suggest how one might go about getting confidence 
intervals for the forecasted number of seats, although they stress how the method 
is ad-hoc. One assumes that the forecasted number won by party g, Ng, follows a 
normal distribution. Then, all we need are the standard errors of Ng. If we define 
an indicator variable I j g , to take value 1 if party g wins seat j ,  or 0 otherwise, (a 
Bernoulli model) then we end up with

V or(/iff) =  pjg( 1 -  pjg).

Clearly
635 635

E (A y  =  £ E ( / , „) =  £ / > „ .
j=1 j=1

The covariance between two indicator variables for a party is chosen according to 
previous election behaviour, but restricted to being monotonic linear decreasing 
using a simple piecewise function (linear decreasing for the first 100 seats, constant 
between 100 and 500 and linear decreasing to zero for the remainder). Together, 
we can then estimate

War(Ng) =  ^  V ar(/J9) + 2 £  £  Cov (Ij„  h g)
i i<j

and end up with the standard form of

E(Ng) ±  1.96 x y/{yar(Ng))

for a 95% confidence interval for the forecasted number of seats won by party g.
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Prediction curves

When used for the October 1974 election, prediction curves seemed to behave 
very well; they were unstable early on, but soon settled, and were never far 
from the final result. For the 1983 election, for which there were several changes 
including the number of constituencies (see Section (2.4)), the updated model was 
adaptable enough to cope and work well. The revised 1997 model worked well, 
and was one of the best since regression models were introduced at the BBC.

Critical values

It is also possible to calculate probabilities of exceeding critical values of interest, 
such as the probability of gaining a majority.

8.2.5 Discussion

Revisions

In Brown, Firth and Payne (1999, [22]), the model was improved such that exit 
polls were designed to allow for differential refusal and ensured that the model 
was properly responsive to patterns emerging in the actual results. Basically the 
former was relieved by the guessing of experts. For the latter, there was effort on 
a particular exit poll design as well as changes to the design matrix, denote this 
by X  for any party. The main change was to use the BBC exit poll to prespecify 
some tactical and regional regression coefficients.

Exit poll design: The first s columns of X  are now 0-1 dummy variables corre
sponding to an s-category prior classification in order to identify likely cleavages 
in the pattern of change in share of vote. Let 0  =  (A , 02, ■ ■ ■, 0s)', s < r in 
Equation (8.3), which denote the mean changes in share of the vote for the prior 
categories. Then, the prior model is

0 =  h — al — r],

in which b, obtained using the exit poll, estimates 0  +  a, with a  a scalar repre
senting systematic bias due to exit poll methodology (assumed common to each 
of the s components) and with r/sxi a vector of exit poll sampling errors. For 
the 1997 election, there were four groups, that is, s =  4: ‘Scotland’ and then, for 
England and Wales, ‘Conservative versus Labour’ , ‘Conservatives versus Liberal 
Democrats’ and ‘Remainder’.
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In Appendix A of Brown, Firth and Payne (1999) it is shown how to in
corporate this prior design into the overall methodology by data augmentation. 
The conclusion is that the (3 coefficients may still be estimated by ordinary least 
squares and the estimates then used to predict the changes of share in vote in the 
undeclared seats.

Other updates: As well as exit polls, there were various other changes imple
mented in order to improve on the model and also to reflect the many changes (see 
Chapter 2, 2.4) which occurred. Some examples include minimising the number 
of special seats in order to predict winners in this category more accurately and 
greater care with the inclusion of explanatory variables which adjusted for dif
ferences, in Scotland particularly, since it took time to separate general election 
papers from the local election papers which occurred around the same time.

For further details of the methodology and performance, see Brown and Payne 
(1975 and 1984) and Brown, Firth and Payne (1999).

8.3 Forecasting Method

8.3.1 Two-party contest

We will now illustrate our forecasting method, initially in the context of a two- 
party contest and in the simplest-case scenario.

1. First we find qj as described earlier. We employ these parameters in a vector 
of proportions

qi =  fo , 1 -  Qj]\

corresponding with the parties of interest, say Conservative and Labour, 
respectively, for each constituency j .  Intuitively, at the time of the exit 
poll,

P r (voting Conservative at constituency?) =  qj,

and the remainder vote Labour. Until now, we have assumed stationarity 
across the nation, but want to make the probability of voting Conservative 
constituency-specific, in order to correspond with how the UK is divided 
up in election terms.
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2. We combine information contained within qj with the exit poll sample size, 
to define prior probability densities for each constituency, for instance,

(xj) ~  Be{qj Nj , (1 -  qj)Nj), (8.4)

for j  — 1, 2, . . . ,  659 (i.e. for 659 constituencies), and where Nj denotes the 
total sample size of the exit poll for constituency j .  Here, we may infer that 
the proportion qj distributes the total sample size for the exit poll amongst 
the two shape parameters, the former of which represents Conservative and 
the latter Labour. The fact that these sample sizes will differ among con
stituencies provides variation of probability densities as required. The next 
task is to update these densities when seats are actually declared through
out election night, taking into account all the known seat outcomes all the 
while. We now make use of the regression techniques discussed in Section 
8.2. This requires us to observe a sufficient number of declarations, which 
depends upon the number of explanatory variables which we wish to con
sider. As mentioned, this is to ensure that the regression is stable enough to 
provide reliable estimates. In the easiest case, suppose that we only wish to 
consider one explanatory variable, the number who voted Conservative in 
the last election, say. Then we must observe at least five declarations. Sub
sequently, we forecast the remainder in sequence, starting with the sixth, 
before the sixth is actually declared. When the sixth is declared we sim
ply repeat this whole method but now obviously using the sixth declared 
result rather than what we predicted it to be. We aim to state an accurate 
prediction and as early as possible in the election night.

(a) We regress using the currently declared seats as our response and those 
corresponding from the previous election as our regressor:

Vj — A) +  V] (old) Pi +  C'j

for j  =  1, 2, 3, 4, 5, in order to find the least-square estimators $0 and 
and also a2.

(b) From this we compute the predicted total number of Conservative 
votes for seat 6, y6. As with usual linear regression, we assume nor
mality among the errors so that here

i)& ~  Ar(/30 +  yQ(oid)/3i, d2), (8.5)

thereby implying that we would expect y6 to be somewhere around the 
point +  y6(oid)Pi.
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(c) The fundamental part of the forecasting involves obtaining the ex
pected - or predicted - probability of voting given the declared seats. 
For each constituency undeclared, we must update the prior to take 
account of the known results. Our model makes use of the relationship

/ o o  poo

/  7r(*ol Vji 0)^r(%l history)
oo J —OO

x 7r(fj| history) dyjdfj,

which translates into

/ O O  poo

/  Be(a,b ; x6ly6,r6)N(/j,u of; y6,y i , .. .,y5)
oo J —oo

x N (h2, <t|; f 6, r i , . . .,r5)dy6df6.
This shows that we must integrate out the forecasted data in order 
essentially to get a density which only considers the seats declared. 
Note that here we are doing a separate regression forecast for the next 
total number of votes r§. This takes a similar form to that for y6, i.e.

r6 ~  N 0 ( r ) O  +  r 6(old)P(r) 1, ofr))- (8.6)

We do not need to state explicitly a regression model for the Labour 
votes, since we obtain this by subtraction of (8.6) and (8.5); dropping 
one of the groups is standard practice in systems of such regression 
equations. Clearly, we may then obtain proportions, y/r, which are 
more useful for comparison between constituencies than looking at just 
y alone (as r varies between constituencies).

First of all assuming that the double integral were solvable, we would 
then calculate our predicted probability via

E(x6 I history) =  f
Jo

x67r(x6| history) dx6,

whose limits are [0,1] since 7r(xj| history) is a probability.
We have yet to explain the beta density above. We want to incorporate 
the type of modelling which we implemented on the opinion poll data, 
sequentially throughout election night. Of course, this is in addition 
to including the necessary y6 and f 6. Therefore, we choose a form of 
7r(x6| ye, f>;) such that we satisfy

7t(o:6| y e ,  h )  «  7r ( y 6 | x 6)7t(x 6\ y 5 ) ,
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the right-hand side of which is derived from our specification of the 
general model for the opinion poll data; this is covered in Chapter 6. 
If we have that

7t(2/6| ~  Bin(r6\ x6)

^(x e\ 2/5 ) ~  Be(q6N6 +  y5, (1 — qe)Ne +  75 — y5),

in which fa is the total number of votes in the next constituency, then 
a possible choice would be

2/6, r6) ~  Be(q6N6 +  y6, (1 -  q6)N6 +  r6 -  y6), (8.7)

since
x<teN6+y6- 1^ _  X6\(l-qr6)V6+f6-y6- l

B(q6N6 +  j/6, (1 -  q6)NG +  r6 -  j/6) ^
( - 6) z g 6iV8'H'5+i'6~ 1( l  — rr^O -^ lW e+n s-j/s+re-ye-i 

B(qaN6 +  y5, ( 1  — ^ A ^  +  r5 — y5) 

with proportionality constant

( g ) x 6̂ ( l  -  x6)r^ B ( q 6N6 +  y6, ( 1  -  g6 )/V6 +  f 6 -  y6) 
B(qt>N6 -f y5, ( 1  — qe)N& +  75 — y5)

Recall also that
E(x6|y6, f 6) ge-ZVe +  2/6 

Ag +  A>
and so, more generally, K(xj | history) may be expressed as

E(xj | history) E(xj\yj, fJ)ir(yj \ history) 

x Tr(fj \ history) dyjdfj,

as the latter two functions do not contain Xj.

The problem is that the double integral above proves difficult to com
pute on packages such as Maple and MATLAB. An alternative is to 
sample from all the necessary distributions and then to obtain the 
mean of the sample realisations. Therefore, here we would simulate 
from models (8.5) and (8.6) to obtain y6 and r6 respectively, and sub
sequently use them in Be(qs, N(i; y6, re), from which we simulate. We 
would then repeat this process many times, say, K  =  10000 and in
stead obtain

E(x6| history) =
k= 1
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Compared with the prior probabilities earlier (8.4), we might alterna
tively introduce a weight 0 <  u <  1, in order to retain use of the exit 
poll information. Then we would end up with

»"tel ye, fe) ~Be(uqsNe +  (1 -  u)%  «(1 -  +  (1 -  u)(n, -  y,)).
(8.8)

The motivation behind this would be if the exit poll data are hard to 
obtain, so that we could still continue our overall approach (setting 
u =  0).

Here, we would choose the value of u; we could even let it vary, Uj, 
for constituency j  — 1,2, . . . ,  659, such that it has decreasing impact 
as j  —> 659: for instance, we know that u0 (before the first seat is 
declared) will equal 1; by the time of, say, the 600ih declaration u601 
may have been reduced to 0.40. A possible model in this case might 
be

Uè
j  =  0 ,1 ,2 , . . . ,659  

0 otherwise,

for some large positive constant a such as 450, such that when j  — 0 
(no seats have declared) the exit poll has the only influence on the 
probability of voting, whereas limj_>659Uj — 0.4 say, so that by the 
time that all seats have declared the exit poll only has 40% of the 
influence. Several possibilities for Uj are possible, a simpler one of 
which would be Uj — 1 — (3/3295)j for j  =  0, 1, 2, . . . ,  659, which 
is linear and decreases much more slowly than the previous example. 
Of course, our control of the weight is governed by how influential we 
regard the exit polls to be relative to the actual declarations, which 
may change through the night.

Assuming that all exit polls are conducted satisfactorily, we might ex
pect the information contained within them to be correlated positively 
with that within the actual voting patterns. Therefore, an arrange
ment like (8.8) would not ‘hide’ away information. For instance, if for 
a given constituency the exit polls suggest that Labour will win in the 
end, and since the exit polls are carried out close in time to election 
night, then we would expect the actual votes to reflect this.

(d) The product of r6 and E(x61 history) determines y6, the number of 
predicted votes for Conservative (and thus the remainder fe — ye are 
predicted to go to Labour).

185



(e) Finally, the seat is won by the party with the greatest number of votes. 
The program to do such forecasting is outlined in Appendix A.

This is the simplest case for ease of explanation. We are actually interested in 
three parties and a somewhat more complex model for the opinion poll data. 
Furthermore, we would like to incorporate more explanatory variables into our 
regression modelling.

Rem ark: Whiteley (2005, [109]) points out how the forecasting of elections has 
in the past tended to focus on votes won rather than seats, whereas it is the latter 
which determines which party wins overall. The advantage of our approach to 
forecasting is that we actually take both the voting numbers and the number of 
seats, with the underlying interest being in the latter, just as is done on election 
night.

8.3.2 Three-party contest

Brown and Payne (1975) discuss the splitting of constituencies into those in which 
there tends to be a two-party contest and those in which there tends to be a three- 
party contest. However, in Chapter 2 we explained how - since that publication - 
the Liberal/Alliance (now evolved into the Liberal Democrat) party has led to a 
three-party contest almost nationally (forgetting nationalist parties). The Liberal 
Democrats now stands for election in almost all constituencies, and so we may 
focus just on three-party modelling. Where nationalist parties are popular also, 
it is straightforward to extend our modelling to have four parties, or indeed any 
number of parties.

T he m odel

Exit polls: We now have that

7T (x 1{j),x 2{j)) ~  Dir (qijNj, q2jN j, q3jNj) , (8.9)

in which for m — 1, 2, 3 we set

V m j
qmj -  ^

where j  is the constituency number. Nj is the sample size for the exit poll 
conducted at constituency j  and ymj the number of votes in the exit poll at con
stituency j  for party m.
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Then, the probabilities given all known history make use of the following:

7r ( x i y ) ,  ar2 ( j ) |  fity), h(3) hu ) ,  fac # ) )  ~  Dir ( foi >  &2> ¿ 3) ,  ( 8 . 1 0 )

where for m =  1, 2, 3
— V m ( j )  T Q m j N j .  (8.11)

Earlier, we mentioned that we may incorporate the exit poll information via a 
weight function, w, say. Hence, we may choose to extend bm in (8.11) to

¿m U'ym(j) T (1 u)’ (flmjNj') . (8.12)

By this, we are able to let u increase as more seats declare, thereby effectively 
shrinking the influence of the exit polls.

Because the elections which we have used for examples (Chapter 7) are his
torical, we have access to all the number of votes broken down by constituency. 
This permits us to perform the regression-based forecast as if we did not know 
the outcome and then at the same time compare how close we are to the final 
outcome. What we, however, do not have are exit poll data to carry out the 
forecasting using bm as in (8.11). We would hope that such information would 
become available around the time of the election. Nevertheless, it is suffice to say 
that having an arrangement such as (8.9) makes sense and fits in neatly with our 
modelling both of opinion polls and through election night. Therefore, we can 
progress using the special case of (8.11) which is (8.12), obviously setting u — 1.

Explanatory variables: Following the BBC approach, we increase the num
ber of explanatory variables in our regressions as we have more data, according 
to requiring 5 +  3(w — 1) observations in order to regress with v variables. This 
means that the model may only get more realistic when we have more observa
tions. Hence we must observe the first five seat declarations and then forecast the 
remainder, each in sequence, starting with the sixth, y6 =  (yi(e) 2/2(6) 1/3 (6 ))'■ In 
Brown and Payne (1975) the first explanatory variable is that party’s vote count 
(in that seat only) in the previous election.

The regression: Again, we let yi denote Conservative, y2 Labour and y3 Lib
eral/Alliance. Similar to before, we have

r6 ~  N ( $ 0r  +  /3l r r 6 ( o l d ) , V r ) ’

but now also require an estimated time when the next seat will declare and so we 
regress such that

¿16 ~  N(pos +  Pisfa6(oid), &s)-
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Finally, we have the multivariate normal distribution

where

ß o  c +  ß lCyi(6(old)) 
ßol +  ß\iy2(G(oldj)

/  Var{y16)) Cov(yl6),y26))
\Cov(y16),y2G)) Var(y26))

Predictive probabilities: Using the above, we find our predictive probability 
density via1

/ * o o  /»OO /»OO .

7r ( x i 6 , x 261 h i s t o r y )  =  / / / tt i x i (6), ar2(6 )| 2/i(e), 2/2 (6 ) C ( 6 ) ,  U2(6), ¿ 1(6 ), ¿ 2 (6 ))

x 7r(y6| history)7r(f6| history)7r(<56| history) dy6 df6 dig,

whose expectation we may approximate by sampling from y 6, r6 and <56 — 
(¿1(6) ¿ 2 (6 ))' and then using them in tt ( x m ,x 2{6)\ y 1{6), t/2(6) ^1(6), r 2(e) ¿1(6 ), ¿ 2 (6 )) 

from which we also sample. We repeat this 10000 times, say, and calculate the 
average of the samples of both aq(6) and x 2^) ■

Predicted votes: The predicted number of votes, thus is found using

y 6  =  r 6 • E ( x 6 | h i s t o r y ) ,

for x6 — (xi(6) x2(6) x3(6))' and the winner of seat 6 is the party with the most 
votes. Recall that we do not need to regress the Liberal/Alliance voting, since 
we obtain this by subtracting the Conservative and Labour votes from the total 
votes.

Process: We then treat y6 as if it were the declared result and next forecast 
the remaining undeclared seat outcomes in sequence. From this we have our first 
final forecasted outcome. When y 6 actually is declared we revise y 7 onwards and 
follow this routine as each seat is declared. When we have seen eight declarations 
we may include our second explanatory variable, and so we have a new regression 
parameter for the r and y models:

fj ~  N0or +  Plrrj(old) +  forbid), ¿r),

ÿ J N2 (  ( 40C + PteVWW) +  focyi(j(old2))\ .
\V2(j) j  \ \ Â)Z +  Puy2U(old)) +  P2iy2(j{old2)) J )

1When we say ‘history’ we mean any relevant known information used in the specific mod
elling, ri, r2, . . . ,  r,5 for fg, for example.
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Figure 8.1: Proportion of votes for each main party per seat in the truncated 
1983 election.

these variables have a particular order of inclusion. In Brown and Payne (1975) 
the second variable included was the number of votes (in that seat) in the previous 
election of that party’s main rival party. In the fj  model above we would have 
here that (3\r — for since ij(0(d) appears twice, only due to the fact that the second 
explanatory variable introduced here requires the same total as the first, that is, 
because it also concerns the last election. If, otherwise, the second explanatory 
variable were, say, a dummy variable such as a nationalist party’s intervention, 
then we would not have again because it does not concern the last election, 
and thus j3\r ^  far-

We want our forecast of the final outcome at each stage of ‘waiting’ to get 
closer and closer to the actual outcome, which we know to be (397, 209, 23) for 
1983 and (376, 229, 22) for 1987.

8.4 Illustration

We now demonstrate how our approach ties in with the regression just described, 
by forecasting the first fifteen seat declarations. We imagine that there are only 
fifteen seats in the UK, and suppose for convenience that these come from the 
London Boroughs. Obviously we know the results already and Figures 8.1 and 
8.2 show the proportions of votes for each party per seat. We know that in 1987
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Figure 8.2: Proportion of votes for each main party per seat in the truncated 
1987 election.

of these seats, Conservative won 11, Labour 4 and Alliance 0. (Proportionately 
this is different from the final result for the UK.) Table 8.2 shows the number of 
votes won in 1987 while Table 8.1 shows that in 1983 as they are involved in the 
explanatory variables.

8.4.1 Analysis

We must observe the first five declarations:

1. Barking and Dagenham, Barking: Winner LABOUR (0, 1, 0)

2. Barking and Dagenham, Dagenham: Winner LABOUR (0, 2, 0)

3. Barnet, Chipping Barnet: Winner CONSERVATIVE (1, 2, 0)

4. Barnet, Finchley: Winner CONSERVATIVE (2, 2, 0)

5. Barnet, Hendon North: Winner CONSERVATIVE (3, 2, 0)

While waiting for both seats six and seven, we make forecasts of the nine/eight 
undeclared seats using only one explanatory variable: that party’s number of 
votes in the 1983 election:

• Barnet, Hendon South: Prediction (3, 2, 10) ALLIANCE to win overall
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Seat No. Name Conservative Labour Liberal Total
1 Barking and Dagenham, Barking 10389 14415 8770 33574

2 Barking and Dagenham, Dagenham 12668 15665 10769 39102

3 Barnet, Chipping Barnet 23164 6599 10771 40534

4 Barnet, Finchley 19616 10302 7763 37681

5 Barnet, Hendon North 18499 8786 9474 36759

6 Barnet, Hendon South 17115 7415 10682 35212

7 Barnet, Bexleyheath 23411 7560 13153 44124

8 Barnet, Erith and Crayford 15289 11260 14369 40918

9 Bexley, Old Bexley and Sidcup 22422 5116 9704 37242

10 Brent, Brent East 13529 18363 6598 38490

11 Brent, Brent North 24842 10191 9082 44115

12 Brent, Brent South 10740 21259 7557 39556

13 Bromley, Beckenham 23603 6386 10936 40925

14 Bromley, Chislehurst 22108 7320 10047 39475

15 Bromley, Orpington 25569 3439 15148 44156

Table 8.1: Vote share in the truncated 1983 election.

• Barnet, Bexleyheath: Prediction (4, 2, 9) ALLIANCE to win overall

Then, we introduce the second explanatory variable, Labour (the main rival for 
Conservative) votes in the 1983 election, Conservative (the main rival for Labour) 
votes in the 1983 election and Labour (the main rival for Alliance) votes in the 
1983 election:

• Barnet, Erith and Crayford: Prediction (5, 2, 8) ALLIANCE to win overall

• Bexley, Old Bexley and Sidcup: Prediction (6, 2, 7) ALLIANCE to win 
overall

• Brent, Brent East: Prediction (7, 2, 6) CONSERVATIVE to win overall

• Brent, Brent North: Prediction (7, 3, 5) CONSERVATIVE to win overall

• Brent, Brent South: Prediction (8, 3, 4) CONSERVATIVE to win overall

• Bromley, Beckenham: Prediction (8, 4, 3) CONSERVATIVE to win overall

• Bromley, Chislehurst: Prediction (9, 4, 2) CONSERVATIVE to win overall
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Seat No. Name Conservative Labour Liberal Total
1 Barking and Dagenham, Barking 11898 15307 7336 34541

2 Barking and Dagenham, Dagenham 15985 18454 7088 41527

3 Barnet, Chipping Barnet 24686 8115 9815 42616

4 Barnet, Finchley 21603 12690 5580 39873

5 Barnet, Hendon North 20155 9223 6859 36237

6 Barnet, Hendon South 19341 7261 8217 34819

7 Barnet, Bexleyheath 24866 8218 13179 46263

8 Barnet, Erith and Crayford 20203 13209 11300 44712

9 Bexley, Old Bexley and Sidcup 24350 6762 8076 39188

10 Brent, Brent East 15119 16772 5710 37601

11 Brent, Brent North 26823 11103 6868 44794

12 Brent, Brent South 13209 21140 6375 40724

13 Bromley, Beckenham 24903 7888 11439 44230

14 Bromley, Chislehurst 24165 8115 9658 41938

15 Bromley, Orpington 27261 14486 5512 47259

Table 8.2: Vote share in the truncated 1987 election.

• Bromley, Orpington (final seat): Prediction (10, 4, 1) CONSERVATIVE to 
win overall

8.4.2 Inference

We see how the forecast greatly overestimates Alliance early on, with Conservative 
in second place and Labour third. This swings to Conservative taking the lead by 
the time the ninth seat has declared, and putting (and retaining) Labour correctly 
in second place. Plots of the forecasting accuracy for each party are shown in 
Figure 8.3. Clearly we only have a very small number of seats and so it is hard 
to see how accurate how method is. Nevertheless, we can see that in all cases the 
accuracy improves gradually as more seats declare. Ideally, when extended to the 
UK as a whole we expect that the forecast will tend towards the final outcome 
early on in order that we may state a final forecast equally early.

Table 8.3 shows for each party the predictive probabilities of voting at each 
stage of waiting for the next seat to declare. From this we can see that the 
predictions get better as more seats declare, and correctly predict certain impor
tant features, for instance, the domination of Labour in Brent South. Because

192



20

8
o  o_ O

10 11 
w aiting for seat

12 13 14 15

w aiting  for se a t

Figure 8.3: Revised forecasts per party in the truncated 1987 election compared 
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Figure 8.4: Histograms of sample predictive probabilities of voting each party in 
the truncated 1987 election given 14 declared seats.
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of the fact that we sampled from various distributions in order to arrive at these 
probabilities, due to the difficulty in evaluating it exactly, it is important to 
check whether the realisations of the inevitable probabilities take the shape of 
the Dirichlet distribution. Figure 8.4 shows histograms of the 10000 samples for 
each party while waiting for the final seat to declare; these are typical spreads at 
any stage of waiting. We see that these form the shapes expected from Dirichlet 
densities. Here, the negative skewness of Conservative realisations is to be ex
pected due to the party’s popularity in the 1987 election. Consequently we have 
positive skewness for the realisations of Labour and Alliance, whose shapes look 
similar to each other. For information, also shown in Table 8.4 are regression- 
based estimates of how long we must wait until the next declarations. This gives 
us generally the kinds of waiting times which we expect.

Table 8.5 shows the regression parameters including the estimated variances 
for each of the parties and also for the time difference between declarations.

An obvious limitation is that in practice some constituencies are known typ
ically to declare later than others, for instance, those in which Alliance won in 
1987. Our truncated version has not allowed for this, which explains why Alliance 
has won no seats. Recall also that while waiting for seat 14 to declare we should 
ideally introduce the third variable, whereas we still only have two. Because of 
its simplification to only a fraction of the seats, there is no scope or flexibility for 
our forecast to smoothen itself out over time. When used to forecast in a more 
realistic context we expect that the forecasting error like that shown in Figure 8.3 
will be large as early on as what our illustration above shows but would become 
more and more modest later on, such that we may soon get similar results each 
time a new seat declares and we update the forecast.

8.5 Review

To summarise, we have introduced our own new method, using a simple sce
nario for illustration. Our methodology from Chapter 6 is used inside the BBC’s 
regression framework, of which we provided a detailed review. Overall, our ap
proach attractively has several of the benefits of the other approaches considered, 
and often improves on them. We focused on the three-party case and with the 
1987 data, the interest now being in the forecasting on election night itself. We 
detailed the approach, which is based on the BBC’s adopted method but with 
our new contribution of probability modelling at each stage. Next we illustrated 
the approach by looking at the first fifteen declarations of seats. Our findings
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indicate that, after somewhat poor forecasts initially, the fluctuations stretch and 
get smaller as more seats declare and we have more data in our model. Subse
quently, the method would be accurate and thus useful if implemented on the 
night. Furthermore, if we had the exit poll data per constituency then we would 
expect our method to be more accurate.
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W a itin g  fo r  seat 6 7 8 9 10 11 12 13 14 15

6 (0 .4 6 , 0 .2 9 , (0 .4 6 , 0 .2 6 , (0 .4 2 , 0 .5 5 , (0 .4 8 , 0 .2 6 , (0 .3 9 , 0 .4 8 , (0 .4 4 , 0 .3 2 , (0 .3 9 , 0 .5 5 , (0 .4 7 , 0 .2 7 , (0 .4 4 , 0 .3 3 , (0 .4 5 , 0 .2 0 ,

0 .2 5 ) 0 .2 8 ) 0 .0 3 ) 0 .2 6 ) 0 .1 3 ) 0 .2 3 ) 0 .0 6 ) 0 .2 7 ) 0 .2 2 ) 0 .3 5 )

7 - (0 .4 7 , 0 .2 5 , (0 .4 1 , 0 .3 0 , (0 .4 9 , 0 .2 3 , (0 .3 9 , 0 .4 3 , (0 .4 6 , 0 .3 0 , (0 .3 4 , 0 .5 0 , (0 .4 6 , 0 .2 5 , (0 .4 6 , 0 .2 8 , (0 .4 7 , 0 .1 7 ,

- 0 .2 8 ) 0 .2 9 ) 0 .2 8 ) 0 .1 9 ) 0 .2 4 ) 0 .1 6 ) 0 .2 9 ) 0 .2 7 ) 0 .3 7 )

8 - - (0 .4 8 , 0 .3 3 , (0 .4 5 ,0 .2 4 , (0 .4 0 , 0 .3 9 , (0 .4 1 , 0 .2 8 , (0 .3 1 , 0 .4 1 , (0 .5 0 , 0 .2 6 , (0 .4 7 , 0 .2 7 , (0 .5 5 , 0 .2 4 ,

- - 0 .1 9 ) 0 .3 1 ) 0 .2 1 ) 0 .3 1 ) 0 .2 8 ) 0 .2 5 ) 0 .2 5 ) 0 .2 0 )

9 - - - (0 .4 0 , 0 .2 4 , (0 .3 9 , 0 .3 9 , (0 .3 5 , 0 .2 8 , (0 .3 5 , 0 .4 0 (0 .4 5 , 0 .2 6 , (0 .4 3 , 0 .2 7 , (0 .5 5 , 0 .26 ,

- - - 0 .3 6 ) 0 .2 2 ) 0 .3 8 ) 0 .2 4 ) 0 .3 0 ) 0 .3 0 ) 0 .1 9 )

10 - - - - (0 .4 5 , 0 .4 0 , (0 .4 2 , 0 .2 7 , (0 .3 7 , 0 .4 1 , (0 .4 9 , 0 .2 5 , (0 .4 7 , 0 .2 6 , (0 .5 2 , 0 .2 5 ,

- - - - 0 .1 5 ) 0 .3 1 ) 0 .2 2 ) 0 .2 6 ) 0 .2 6 ) 0 .2 3

11 - - - - - (0 .4 1 , 0 .2 8 , (0 .3 1 , 0 .4 2 , (0 .4 9 , 0 .2 5 , (0 .4 7 , 0 .2 7 , (0 .5 9 , 0 .2 2 ,

- - - - - 0 .3 1 ) 0 .2 7 ) 0 .2 7 ) 0 .2 5 ) 0 .2 6 )

12 - - - - - - (0 .2 9 , 0 .4 1 , (0 .5 5 , 0 .2 5 , (0 .5 2 , 0 .2 7 , (0 .5 8 , 0 .2 2 ,

- - - - - - 0 .3 0 ) 0 .2 0 ) 0 .2 1 ) 0 .2 0 )

13 - - - - - - - (0 .5 6 , 0 .2 5 , (0 .5 2 , 0 .2 8 , (0 .6 1 , 0 .2 0 ,

- - - - - - - 0 .2 0 ) 0 .2 0 ) 0 .2 0 )

14 - - - - - - - - (0 .5 2 , 0 .2 7 , (0 .5 8 , 0 .1 8 ,

- - - - - - - - 0 .2 1 ) 0 .2 4 )

15 - - - - - - - - - (0 .5 7 , 0 .1 7 ,

- - - - - - - - - 0 .2 6 )

Table 8.3: Predictive probabilities in the truncated 1987 election.



W a itin g  fo r  seat 6 7 8 9 10 11 12 13 14 15

6 0 .1 2 0 .04 0.01 0 .03 0 .04 0.01 0 .0 5 0 .0 2 0 .0 2 0 .02

7 - 0 .25 0 .05 0 .0 2 0 .04 0 .0 5 0 .0 2 0 .04 0 .03 0 .0 4

8 - - 0 .02 0 .05 0 .05 0 .0 2 0 .0 6 0 .04 0 .03 0 .0 4

9 - - - 0 .05 0 .0 5 0 .02 0 .06 0 .0 4 0 .0 3 0 .04

10 - - - - 0 .0 5 0 .03 0 .0 7 0 .04 0 .04 0 .05

11 - - - - - 0 .02 0 .0 6 0 .04 0 .04 0 .04

12 - - - - - - 0 .0 6 0 .04 0 .0 3 0 .04

13 - - - - - - - 0 .04 0 .03 0 .0 3

14 - - - - - - - - 0 .03 0 .0 3

15 - - - - - - - - - 0 .0 3

Table 8.4: Predictive waiting time (hours) for declarations in the truncated 1987 
election.

W a itin g  fo r  seat C o n se rv a t iv e L a b o u r T o ta l <5

6 /3o= 1 9 1 1 .8 , 0 1 = 0 .4 , 0 0 = 6 2 6 .7 , 0 i= O .7 , 0 0 = 1 4 1 9 .1 , 0 i= O .5 , 0 0 = 0 .1 ,  0 i  = 0 . 1 ,

d 2 = 5 4 6 1 8 0 0 d 2 = 1396600 d 2 =  17883000 d 2 = 0 .0 2

7 0 0 = 2 2 7 9 .1 , 0 i= O .5 , 0 0 = 8 9 6 .8 , 0 1 = 0 .7 , 0 0 = 1 9 3 4 .8 , 0 i= O .6 , 0 0 = 0 .1 ,  0 i = O . l ,

d 2 = 5 2 7 8 6 0 0 d 2 =  1397000 d 2 = 1 7 1 1 7 0 0 0 d 2 = 0 .0 2

8 0 0 = 1 5 6 2 .1 , 0 i= O .5 , 0 0 = 5 2 5 .1 , 0 i= O .6 , 0 0 = 7 7 9 .7 , 0 i  =  l . l , 0 0 = 0 .1 ,  0 i  = 0 . 1 ,

0 2 = 0 .1 ,  a 2 = 5 8 9 9 0 0 0 0 2 = 0 .1 ,  d 2 =  1516000 02  = -0 .4 ,  d 2 =  17020000 d 2 = 0 .0 2

9 0 0 = 1 3 3 6 .7 , 0 i= O .2 , 0 0 = 1 9 -4 , 0 i= O .6 , 0 0 = 5 6 3 .2 , 0 i  =  l.O , 0 0 = 0 .1 ,  0 i  =  0 .1 ,

0 2 = 0 .8 ,  d 2 = 6 0 3 9 7 0 0 0 2 = 0 .3 ,  d 2 =  1420500 0 2 = -O .2 , d 2 = 1 6 8 7 4 0 0 0 d 2 = 0 .0 2

10 0 0 = 1 3 5 4 .8 , 0 i= O .6 , 0 0 = 1 2 0 .4 , 0 i= O .6 , 0 0 = 8 4 4 .2 , 0 i= O .9 , 3 II O 2
C> II O

0 2 = 0 .4 ,  d 2 = 5 6 2 7 2 0 0 0 2 = 0 .3 ,  d 2 =  1417500 0 2  = -0 .1 ,  d 2 = 16958000 d 2 = 0 .0 2

11 0 0 = 1 9 8 5 .9 , 0 i= O .6 , 0 0 = 2 0 8 .3 , 0 i= O .8 , 0 0 = 6 4 1 .9 , 0 i  =  1.5, 0 0 = 0 .1 ,  0 i  =  0 .1 ,

0 2 = 0 .3 ,  a 2 = 5 4 1 4 2 0 0 0 2 = 0 .1 ,  d 2 = 7 2 5 0 9 0 0 2 = -O .6 , d 2 =  12584000 d 2 = 0 .0 2

12 0 0 = 1 8 8 6 .3 , 0 i  =  l.O , 00  = 2 9 4 .6 , 0 i= O .9 , 0 0 = 1 5 0 .4 , 0 i  =  1.6, 0 0 = 0 .1 ,  0 i  = 0 . 1 ,

0 2  = -0 .0 ,  d 2 = 4 6 5 4 5 0 0 0 2 = 0 .1 ,  d 2 = 6 7 5 7 4 0 0 2  = -0 .7 ,  d 2 = 11444000 d 2 = 0 .0 2

13 0 0 = 2 1 4 0 .4 , 0 i = l .O , 0 0 = 1 3 6 .9 , 0 i = l .O , 0 0 = 6 7 .6 ,  0 i = 1 .8 , 0 0 = 0 .1 ,  0 i  = 0 . 1 ,

0 2  = -0 .0 ,  a 2 = 4 6 4 0 4 0 0 0 2 = 0 .0 1 , d 2 = 262380 0 2 = - 0 .8 ,  d 2= 1 0 3 6 4 0 0 0 d 2 = 0 .0 2

14 0 0  =  1942 .5 , 0 i = l . l , 0 0 = 1 5 8 .9 , 0 i = l .O , 0 o  = -2 1 .1 , 0 i  =  1.7, 0 0 = 0 .1 ,  0 i  = 0 . 1 ,

02 = -O .O , d 2 = 4 3 2 5 5 0 0 0 2 = 0 .0 2 ,  d 2 = 2 7 8 6 5 0 02  = -0 .7 ,  d 2 =  10670000 d 2 = 0 .0 2

15 0 0 = 1 9 1 8 .4 , 0 i  =  l . l , 0 0 = 1 3 5 .9 , 0 i = l .O , s>
* II jk 0 0 = 0 .1 ,  0 i = O . l ,

0 2  = -0 .4 ,  d 2 = 4 1 5 3 3 0 0 0 2 = 0 .0 1 , d 2 = 2 7 0 1 3 0 0 2 = -O .7 , d 2= 1 0 8 8 1 0 0 0 d 2 = 0 .0 2

Table 8.5: Regression parameters at each stage in the truncated 1987 election.
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Chapter 9 

Discussion

9.1 Summary and Conclusions

Chapter 2 began with us familiarising ourselves with the process of the general 
election, including the night itself, over which constituencies declare results. We 
covered how the UK is broken down into constituencies and clarified the main 
parties in history as well as key events per recent election. This includes the 
evolution from a two-party contest (Conservative and Labour) into a three-party 
contest (Conservative, Labour and Liberal Democrats) in recent times. Funda
mental here is forecasting, mainly of the final result, but also of the result per 
undeclared seat. We then focused on the sources of information used to gear 
this, namely opinion polls, exit polls, previous elections and declared seats on the 
night itself.

In Chapter 3 we presented an account of time series modelling in general, 
beginning with its numerous applications in real life. We explained how very 
generally one may decompose the time series into three parts: the trend, the 
seasonal component and the irregular part. The data may be stationary, and the 
autocorrelation function plays a vital role in assessing which lags most influence 
the current value. We then went on to look at non-stationarity of the mean and 
variance, the latter of which involves the modelling of volatility. It is of course 
important to choose the best model for the time series of interest and there are 
model criteria for doing this; we may then assess specific goodness of fit using 
such tools as F-tests, for instance. We looked at some elementary approaches 
for forecasting upcoming values given what is known. We then presented models 
which are strictly stationary, distinguishing clearly between three types of model: 
stationary, stochastic volatility and generalised autoregressive conditional het- 
eroskedacity (GARCH) models. These each use different historical information
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in the modelling of probabilities of voting. Furthermore, we reviewed the mix
ture transition distribution for stationary models, which enable more than the 
previous lag to be considered in modelling. After looking at strict stationarity, 
we showed how to adapt these so as to model differing time intervals.

Chapter 4 was devoted to the existing forecasting methods used for elections. 
The simplest of these is the poll of polls (the average of poll results collected), 
which provides little scope for analysis. A more sophisticated approach, set in 
the area of time series, involved a multivariate local level model, which puts more 
emphasis on recent data. The cube rule was a very early attempt at predicting 
the final outcome, but became somewhat redundant in the UK with the concept 
of the third party in the contest. We also briefly reviewed some other approaches 
taken.

Chapter 5 then reviewed the method of maximisation in the presence of un
observed variables, known as the h-likelihood. Most of the work is due to the 
research of Lee and Nelder, who since the mid-1990s have developed the theory. 
A key property is that the estimates are asymptotically equivalent to the unavail
able maximum likelihood estimates, the latter of which we would have sought in 
the absence of latent data.

Next, in Chapter 6, we moved onto the main focus of the thesis, which is defin
ing our approach to modelling the election poll data. We have, in the simplest 
case, a beta-binomial model, in which the latent variables take beta (continuous) 
densities and subsequently the number of votes take binomial (discrete) densi
ties, which we showed was an appealing yet straightforward arrangement. Using 
the results of Chapter 5, we specified a form for the likelihood and put a lot of 
detail into tailoring this theory for our time series scenario, including showing 
that the estimators are still asymptotically equivalent to maximum likelihood es
timates. We reintroduced the ARCH, stochastic volatility and GARCH models 
from Chapter 3. Subsequently, we defined each specific model of interest. We 
showed how the stationary model provides parameters via the h-likelihood which 
are very similar and asymptotically equivalent to those provided by the popular 
EM algorithm, asymptotically in this case actually requiring that the sample size 
of a poll is equal to the number of polls taken before the election. We acknowl
edged that this is of course unrealistic in practice. The next section looked at 
simulations from each main model, given realistic parameter values. Importantly, 
the simulations suggested that the stationary models were perhaps unsuitable in 
context, due to the simulations fluctuating too much. By contrast the simulations 
of the stochastic volatility and GARCH models looked more realistic, although
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too similar to one another; this was due to the proportions of votes behaving too 
similarly to the probabilities to be able to distinguish clearly one from the other. 
This led to us dropping the latter type, since they are more cumbersome than the 
former, especially when thinking of computation and programming. Regarding 
the volatility models, the h-likelihood parameter estimates obtained from simu
lated data were close to the initial choices, to confirm our slight adaption to the 
methodology.

Chapter 7 was a chapter of illustration. First, we focused on fitting the sta
tionary and stochastic volatility models to real data, with the inevitable goal of 
setting up a framework for forecasting on election night. We used opinion poll 
data from the 1983 and 1987 consecutive elections. H-likelihood parameters were 
obtained as well as approximations of their correlation matrices and confidence 
intervals. We applied the scaled deviance test, used for selecting the best model 
and in applying this found that the stochastic volatility models easily outper
formed the stationary models. This was not surprising when we reconsidered the 
simulations shown earlier.

Chapter 8 focused on election night. We looked in detail at the British Broad
casting Corporation regression approach, which has seen some refinement based 
on lessons learned from previous elections. Next, we described in detail our 
method, detailing how our methodology appears at each stage of waiting for the 
seats to declare their results. Having set up the theory we initiated the approach 
using the 1987 data, although in a much simplified context. Our probabilities 
consider recent history, but also update exit poll models and consider regression- 
based forecasts of votes and fit in nicely with the regression approach adopted. 
Our method is sensible and convenient in that we obtain underlying probabilities 
of voting at each stage, similar to with the opinion polls, and these are likely to 
be of interest to psephologists and perhaps politicians.

Griliches (1974, [50]) states that some unobservable variables act as ‘carriers 
of some of the content of our theories.’ The focus on this thesis has been on 
using the probabilities of voting as instruments in the modelling of election data. 
These probabilities are determined by unique historical information, thus putting 
us in a time series framework. The history could be probabilities of voting (at 
previous stages), numbers of votes (at previous stages) or both. The observations 
and probabilities each have their own distributions. Clearly the probabilities are 
latent data; in their absence we would have used usual maximum likelihood es
timation to get model parameters, but employed a newer approach to deal with 
such unobserved information. Much of the subsequent inference is similar to that,
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provided we had the typical maximum likelihood parameter estimates. The elec
tion data could be pre-polls or seats on election night, but we focused more so 
on the former yet outlined how to proceed with the latter, and also incorporating 
exit poll information. We conclude that this appears to be a sensible and sophis
ticated yet conceptually simple contribution to the modelling of election data, in 
which the probabilities evolve naturally alongside the actual voting.

Our modelling and overall approach improves on the current models for elec
tions in various ways. The simplest statistic is the poll of polls. We provide 
scope for more analysis of our results, which are in comparison more than just 
a point estimate. The infamous cube law is limited to two parties whereas fight 
for UK Government is now at least a three-party contest; our model can cater 
for as many parties as is needed. The multivariate structural time series by Har
vey and Shephard (1990, [55]) simply assumes the normality of votes whereas 
we give them a distribution (binomial/multinomial) which makes sense - voters 
choose one party out of a fixed set of parties. None of these methods discussed 
thus far provides probabilities of voting; in Brown, Firth and Payne (1999, [22]) 
the authors comment that such probabilities should have a prominent role in the 
broadcasted presentation of the forecast. Not only do probabilities help to con
vey the inevitable uncertainty in any forecast, but they would also make election 
night more interesting for the audience. The BBC method presented in Brown 
and Payne (1975, [23]) provides probabilities but assumes their normality. We 
have modelled them as beta/Dirichlet data which seems a natural choice. Note, 
however, that Lee and Nelder (1996, [69]) analysed various hierarchical gener
alised linear models (HGLMs) when fit to real datasets, focusing on conjugate 
HGLMs including the beta-binomial, Poisson-gamma and gamma-inverse gamma 
models. They commented that the distributions for the unobserved variables in 
conjugate HGLMs behave similarly to the normal distribution, and often tend 
to normality rapidly as the maximum hierarchical likelihood estimate values in
crease.

Available is a range of models within our general specification. We can con
sider different history; we saw with our data that the stochastic volatility models 
were best, which consider time differences between outcomes. However, to sim
plify matters or if we suspect stationarity then we may use our autoregressive 
conditional heteroskedacity models. If we suspect that the historical outcomes 
have different influence from the probabilities then we may employ our GARCH 
models; in our cases and with our particular specifications we found that this 
difference was not obvious. Furthermore, with all models we may assess histori-
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cal information (lags) as far back as we wish. We should not necessarily reject a 
forecasting model altogether, on the basis of only one election trial.

9.2 Extensions

Below we list some possible avenues of future work to extend what we have done.

Multi-latent processes Pitt and Walker (2006, [96]) consider multi-latent pro
cesses. We said that having continuous probability density functions in between 
the election votes gives us flexibility in the modelling. We could introduce more 
flexibility if required using the theory in this paper, which would basically involve 
a new latent variable modelling the latent probabilities.

Additional weights In our GARCH model the shape parameters were already 
quite elaborate. However, we could have even more weights, u, letting them differ 
according to lags rather than assuming them to be fixed no matter what lag. 
Obviously though, the idea of parsimony will determine whether this is necessary 
when it comes to choosing the best model for the data of interest.

Use of prior information In the forecasting on election night we discussed 
including the exit poll information in a weight function with the regression mod
elling. However, in Brown, Firth and Payne (1999) prior information is introduced 
into the regression design matrix and so is done differently. We could employ this 
approach with a few minor adjustments. Consequently, this would slightly change 
the regression modelling which we presented in Chapters 4 and 8.

Next election It will be interesting to perform our analysis when the next 
general election takes place, which will occur no later than June 2010. We will 
also be able to examine precisely how influential our predictive probabilities are on 
election night, since we do not know the final outcome yet (before-the-fact model), 
as opposed to having worked with historical elections for which we already know 
the results (after-the-fact model). It will be exciting to do a complete analysis 
of the whole night. The first task would be to collate opinion poll and exit poll 
data.

Other polls/elections There is no reason why we cannot apply our overall 
approach to the modelling of any polls or elections conducted, under the necessary
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conditions. The competitors would still be modelled binomially/multinomially 
and the probability of voting still beta/Dirichlet.

Bayesian/nonparameteric approach It would be possible to switch to a 
Bayesian and/or nonparametric perspective, to compare with our classical and 
parametric approach. Mena and Walker (2005, [84]) cover the necessary theory 
to enable this with our stationary models.

Continuous time Our time series analysis has been in discrete time. A much 
more complicated approach would be to investigate whether it is possible to 
move into continuous time, whereby we have the exact times when the polls take 
place, and when the seats declare. A useful theoretical starting point would be 
the famous book ‘The Theory of Stochastic Processes’ by Cox and Miller (1977, 
[30]), which, for instance, has a chapter on Markox processes with discrete states 
in continuous time, a section on stationary processes in continuous time and a 
chapter on non-Markovian processes.
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Appendix A  

Programs

We made use of the useful mathematical software ‘Maple’ (Versions 10 and 11) 
to help solve some of the more difficult mathematics such as the integrals within 
using the EM algorithm. Our main software package, however, was ‘MATLAB’ 
(Version 7.2.0.232 (R2006a)), in which we wrote and ran all the programs. This 
includes the running of simulations and production of most plots. We also plotted 
using ‘Minitab’ (Version 15.1.0.0).

A .l  H-Likelihood Evaluation

Essentially, with each model the program had two chief components: maximisa
tion of the latent variables followed by maximisation of the parameters via the 
Newton-Raphson method. These were combined into an iterative procedure in 
order to produce the desired (converged) result.

Below is some example code, both from one of our stationary models (see 
Figures A.1-A.5, ARCH(3,2)) and one of our stochastic volatility models (see 
Figures A.6-A.11, SV(3,2)). Note that generally there is a typical structure for 
evaluation of parameters in all models, although they differ in level of complexity. 
Note also that in the code text after the symbol ‘% ’ are brief explanations of the 
meaning at that point in the program; they do not interrupt the programs.

Methods

The following summarises the steps required to evaluate the maximum hierarchi
cal likelihood estimate (MHLE) for the mixture transition distribution models, 
given the way in which we structured the likelihood. Recall that these are sta
tionary models. A fuller explanation of the components was given in Chapter 6.
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For k =  1 : m, m — a large number of iterations:

1. Intuitively, choose 6^  and Z ^

2. W (fc)|ZW

3. X (fc)| 9̂ k\ (i.e. k— 1 is now complete)

4. 6>(fc+1)|XW, Z(fc)

5. Z (A+1)|X(fc), W (fc\ 0 (fc+1)

6. Loop from 2. to 5. until convergence of all 

In the algorithm above:

• the main components of interest are 6 (party strengths) and w (lag strengths); 
and

• z and x are latent but still of some interest (z identifies the dominating lag 
at each poll t and x states P r(Y  =  y) at each poll).

The following summarises the steps required to evaluate the MHLE for the 
stochastic volatility models. A fuller explanation of the components was given 
in Chapter 6. Note that this is the more standard form of algorithm for finding 
the MHLEs of the h-likelihood for most of our models, and so the program for 
the generalised autoregressive conditional heterskedacity models (as well as the 
simplest stationary models) would be very similar.

For k =  1 : m, m =  a large number of iterations:

1. Intuitively, choose 6^

2. (i.e. k= 1 is now complete)

3. 0(fe+1)|XW

4. Loop from 2. to 3. until convergence of all 

In the algorithm above:

• the main components of interest are 9 (party strengths and lag strengths); 
and

• x are latent but still of some interest (x states P r{Y  =  y) at each poll).
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A. 2 Simulations

In order to study model behaviour we ran several simulations, an example of 
which is shown in Figures A.12-A.13 (for SV(3,2)). Again, all models follow a 
similar procedure.

A. 3 Forecasting

Following the poll parameter estimates, we have programs to forecast the seat 
distribution among the main three parties. Our programs give the continually- 
revised predictions, that is, imagining that we observed each declaration and then 
accordingly updated our forecast of the remaining undeclared seat outcomes. An 
example program is shown in Figures A. 14-A. 15.

Note that in all three cases above it is straightforward to adapt any program as 
and when necessary.
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function f=mhlearch32(param) %param is  a vector o f  a l l  'parameters'  
a l ( l )  = param(l);  a2 ( l )  = param(2); a 3 ( l )  = param(3); v ( l )  = param(4);
%al, a2, a3 represent Conservative, Labour, Al l iance  respectively  
%v(l) (weight parameter) i s  just a s ta rt ing  val for Newton-Raphson

global z %define the f i r s t  dummy vector outside the code for ease overall

n = le n g t h ( z ) ;
%------------------------------------------------------------------
for k=l :100  %Newton-Raphson to find w given z

w(k)=exp(v(k)) / ( l+ e xp (v (k ) ) ) ;  %reparameterisation so that 0<weight<l  
dw=exp (v (k ) ) / ( l +e xp (v(k ) ) ) A2; %its derivatives  
d2w=exp(v(k)) * ( 1 -e xp(v (k ) ) ) / ( 1+exp(v ( k ) ) ) A3;

for t=3:n
dldv(t) = dw*(z(t ) /w(k)  -  (1 - z ( t ) ) / (1-w(k)) ) ;  %likelihood derivatives  

d21dv2(t) = d2w*(z(t) /w(k)  -  ( 1 - z ( t ) ) / (1 -w(k)) ) + (dw)A2*(~z ( t ) / . . .  
w(k)A2 -  ( l - z ( t ) ) /  ( l - w ( k ) ) A2 ) ;

end
v(k+1)=v(k)-sum(dldv) /sum(d21dv2) ; %Newton-Raphson in 1-dimension

end
mlev=v (k+1);
v (1 )=v(k+1) ;  %start next i te ra t io n  below at maximised one now 
w(k+1)=exp (v(k+1)) / (1+exp(v(k+1)) ) ;  %using invariance property  
latestw=exp(v(k+1) ) / (1+exp(v(k+1)) ) ;

global y l  y2 r %define the vote data outside the program for ease overal l  
%ln th is  part we maximise the x given the a (and z which e f f e c t i v e l y  
%represents the w)
pi (l) = ( a l ( l ) + y l  (1 ) -1)  /  ( a l ( l ) + a 2 ( l ) + a 3  (1) +r (1 ) -3)  ; 
p2 (I) = (a2(l )+y2 <1)-1) /  (al (1) +a2 (1) +a3 (1) +r (1 ) -3)  ;
p 3 (1)= (a 3(1)+ r (1 ) - y l ( l ) - y 2  ( 1 ) - 1 ) / ( a l ( 1 ) + a 2 ( l ) + a 3 ( l ) + r ( 1 ) - 3 ) ;  %special case 
p i ( 2 ) = ( a l ( l ) + y l ( 2 ) + y l ( l ) - 1 ) / ( a l ( l ) + a 2 ( l ) + a 3 ( l ) + r ( 2 ) + r ( 1 ) - 3 ) ;  %for t = l  
p 2 ( 2 ) = ( a 2 ( l ) + y 2 ( 2 ) + y 2 ( l ) - 1 ) / ( a l (1 )+ a 2 (1 )+a3( 1 ) + r (2 )+ r ( 1 ) - 3 ) ;  %special case 
p3 ( 2 ) = ( a 3 ( l ) + r ( 2 ) - y l ( 2 ) - y 2  ( 2 ) + r ( l ) - y l (1)—y2 ( 1 ) —1 ) / . . .  %for t=2

( a l ( 1 ) +a2(1 )+ a 3 (1 )+ r (2 )+ r (1) - 3 ) ;

for t=3 : n  %main part  ( influence o f  dummy z on choosing x)
i f  (z (t )>0) p i  ( t )= (al  (1) +yl  ( t ) +yl  ( t - 1 ) -1 )  /  (al  ( 1 ) +a2 ( l )+a3 (1) +r (t) . . . 

+ r (t —1) -3)  ;
e l s e i f  (z ( t ) <1) pi  ( t )= ( a l ( 1 ) +yl  ( t ) + y l ( t - 2 ) - 1 ) / ( a l ( 1 ) + a 2 ( 1 ) +a3( 1 ) + . . .  

r ( t ) +r ( t - 2 ) -3 )  ;
end

i f  (z (t )>0) p2 (t) = (a2 (1) +y2 ( t ) +y2 ( t - 1 ) -1 )  /  (al (1) +a2 (1) +a3 (1) +r ( t ) + . . .  
r ( t - 1 ) - 3 ) ;

e l s e i f  (z (t )<1) p 2 ( t ) = (a 2 (1)+ y 2 ( t ) + y 2 ( t - 2 ) - 1 ) / ( a l (1 )+ a 2 (1)+a3( 1 ) + . . .  
r ( t ) +r (t - 2  ) -3 )  ;

end

i f  (z (t)>0) p 3 ( t )=  (a 3( 1 ) +r ( t ) - y l ( t ) - y 2 ( t ) + r ( t - 1 ) - y l ( t - 1 ) - y 2 ( t - 1 )  - 1 ) / .
( a l ( l ) + a 2 ( 1 ) + a 3 ( l ) + r ( t ) + r ( t - l ) - 3 ) ; 

e l s e i f  (z ( t ) <1) p3(t)  = ( a 3 ( l ) + r ( t ) - y l ( t ) - y 2 ( t ) + r ( t - 2 ) - y l ( t - 2 ) - .  . .  
y 2 ( t - 2 ) - 1 ) / ( a l  ( l ) + a 2 ( l ) + a 3 ( l ) + r ( t ) + r ( t - 2 ) - 3 ) ;

end
end

F igu re  A . l :  H -lik e lih ood  co d e  fo r  A R C H (3 ,2 ) .
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for t = l : n
x l ( t ) = p l ( t ) ;  x2 (t) =p2 (t) ; x 3 ( t ) = p 3 ( t ) ;  
end
maxxl=xl; maxx2=x2; maxx3=x3; %so a l l  variables for h=0 found now; o n t o . . .

%next, i . e .  h=l
%---------------------------------------------------------------------
for h= l :50  %this is  the h - l ike l ihood ;  f i r s t  get a|x then x|a t i l  . . .  

%convergence of both

for j = 2 :50 %Newton-Raphson to  find the a l ,  a2, a3 given current z and x

for t= 3 :n  %relevant components to the p a r t ia l  derivatives
d i O ( t ) = p s i ( 0 , a l (j —1 ) + a 2 ( j - l ) + a 3 ( j - l ) t r ( t - l ) ) ; d i i ( t ) = p s i ( 0 , a l ( j - 1 ) + . . .

yl ( t - 1 ) ) ;  d i 2 ( t ) = p s i ( 0 , a 2 ( j - l ) + y 2  ( t - 1 ) ) ;  
d i 3 ( t ) = p s i ( 0 , a3 ( j - 1 ) + r ( t - l ) - y l ( t - 1 ) - y 2 ( t - 1 ) ) ;
t r O ( t ) = p s i ( 1 , a l ( j - 1 ) + a 2 ( j - 1 ) + a 3 (j - 1 ) + r ( t - 1 ) ) ;  t r i ( t )= p s i ( l , a l ( j - l ) + . . .

yl ( t - 1 ) ) ;  t r 2 ( t ) = p s i ( l , a 2 (j - l ) + y 2 ( t - 1 ) ) ;  
t r 3 ( t ) = p s i ( 1 , a 3 (j - 1 ) + r ( t - 1 ) - y l ( t - 1 ) - y 2 ( t - 1 ) ) ;
d i 00 ( t ) = p s i ( 0 , a l (j - 1 ) + a 2 ( j - 1 ) + a 3 ( j - 1 ) + r ( t - 2 ) ) ;  d i l l ( t )= p s i ( 0 , . . .

al ( j - 1 ) + y l ( t - 2 )) ; d i 2 2 ( t ) = p s i ( 0 , a 2 (j - 1 ) +y2 ( t - 2 ) ) ;  
di 3 3 ( t ) = p s i ( 0 , a 3 ( j - l ) + r ( t - 2 ) - y l ( t - 2 ) - y 2 ( t - 2 ) ) ;
trOO ( t ) =psi ( 1 , a l (j - 1 ) +a2 ( j - 1 ) + a 3 ( j - 1 ) + r ( t - 2 ) ) ; t r l l ( t ) = p s i ( 1 , . . .

al ( j - 1 ) + y l ( t - 2 ) ) ;  t r 2 2 ( t ) = p s i ( 1 , a 2 (j - 1 ) +y2 ( t - 2 ) ) ;  
t r 3 3 ( t ) = p s i ( l , a 3 ( j - 1 ) + r ( t - 2 ) - y l ( t - 2 ) - y 2 ( t - 2 ) ) ;
1 1 (t) = l o g ( x l ( t ) ) ;  12 (t) = l o g ( x 2 ( t ) ) ;  13 (t) = l o g (1 - x l ( t ) - x 2 ( t ) ) ;

end
diO( 2 ) = p s i ( 0 , a l ( j - 1 ) + a 2 ( j - 1 ) + a 3 (j - 1 ) + r ( 1 ) ) ;
d i i ( 2 ) = p s i ( 0 , al ( j - 1 ) + y l ( 1 ) ) ;  d i 2 ( 2 ) = p s i ( 0 , a2 ( j - 1 ) + y 2 ( 1 ) ) ;  d i 3 ( 2 ) = . . .

p s i ( 0 , a 3 ( j - l ) + r ( 1 ) - y l  ( l ) - y 2  ( 1 ) ) ;  
t r O ( 2 ) = p s i ( 1 , a l (j - 1 ) + a 2 ( j - 1 ) + a 3 (j —1 ) +r ( 1 ) ) ;
t r i (2 )= p s i ( 1 , a l ( j - 1 ) + y 1 (1) ) ;  t r 2 (2 )= p s i ( 1 , a 2 (j - 1 ) +y2( 1 ) ) ;  t r 3 ( 2 ) = . . .

p s i ( l , a 3 ( j - l ) + r ( l ) - y l (1) -y2 ( 1 ) ) ;  
diO( 1 ) = p s i ( 0 , al ( j - 1 ) + a 2 < j - l ) + a 3  ( j - 1 ) ) ;
d i i (1 )= p s i ( 0 , a l ( j - 1 ) ) ;  d i 2 (1)= p s i ( 0 , a 2 (j - 1 ) ) ;  d i 3 (1) = p s i ( 0 , a 3 ( j - 1 ) ) ;  
tr O ( 1 ) = p s i ( 1 , al ( j - 1 ) + a 2 ( j -1 )+ a3  ( j - 1 ) ) ;
t r i ( 1 ) = p s i ( 1 , a l ( j - 1 ) ) ;  tr2 (1)=psi  ( 1 , a2 ( j - 1 ) ) ;  t r 3 ( l ) = p s i ( l , a 3 ( j - 1 ) ) ;  
11(2) =log (xl (2 ) ) ; 12(2) = l o g ( x 2 ( 2 ) ) ;  13(2) = l o g (1 - x l (2) - x 2 ( 2 ) ) ;
11(1) =log (xl (1 ) ) ; 12(1) = l o g ( x 2 ( l ) ) ;  13(1) =log ( 1 -x l  (1 ) -x2 ( 1) ) ;

for t=3:n
d2pdal2 (t) = z (t ) * (trO ( t ) - t r i  (t) ) + (1-z (t) )* (trOO (t ) - t r l l  (t) ) ;
d2pda22 (t) = z ( t ) * (trO ( t ) - t r 2  (t) ) + (1-z (t) )* (trOO (t ) - t r 2 2  (t) ) ;
d2pda32 (t) = z (t ) * (trO ( t ) - t r 3  (t) ) + (1-z (t) )* (trOO (t ) - t r 3 3  (t) ) ;
d2pdalda2(t) = z ( t ) * ( t r O ( t ) ) + ( 1-z ( t ) )* (trOO ( t ) ) ;

dpdal(t)  = z ( t ) * ( d i O ( t ) - d i l ( t ) + l l ( t ) ) + ( 1 - z ( t ) ) * ( d i O O ( t ) - d i l l ( t )+11 ( t ) ) ;  
dpda2(t) = z ( t ) * ( d i O ( t ) - d i 2 ( t ) + 1 2 ( t ) ) + (1-z ( t ) ) * (d iO O (t ) - d i2 2 ( t )+12 ( t ) ) ;  
dpda3 (t) = z ( t ) * ( d i 0 ( t ) - d i 3 ( t ) + 1 3 ( t ) )  + (1-z (t ) ) * (diOO ( t ) - d i 3 3  (t )+13 (t) ) ; 

end

A = t r O (1) - t r i ( 1 ) + t r 0 ( 2 ) - t r i (2)+sum(d2pdal2); %relevant p a rt ia l  
B = t r 0 ( 1 ) - t r 2 ( 1 ) + t r 0 ( 2 ) - t r 2 (2)+sum(d2pda22); %derivatives  
C = t r O ( l ) - t r 3 ( 1 ) + t r 0 ( 2 ) - t r 3  (2)+sum(d2pda32);
D = t r O (1)+ t r 0 ( 2 ) +sum(d2pdalda2);
E = d i 0(1) - d i  1 ( 1 ) +di0 ( 2 ) - d i i (2 )+1 1 (1 )+ 1 1 ( 2 )+sum(dpdal);
F = di 0 ( 1 ) - d i 2 ( 1 ) +di 0 ( 2 ) - d i 2 (2 )+1 2 (1 )+ 1 2 ( 2 )+sum(dpda2);
G = diO(1 )- d i 3 ( 1 ) + d i 0 ( 2 ) - d i 3 (2 )+1 3 (1 )+ 1 3 ( 2 )+sum(dpda3) ;

F igu re  A .2: H -lik e lih ood  c o d e  fo r  A R C H (3 ,2 )  (continued).
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%--------------------------------------------------------------------
M = [ a l ( j - 1 ) ; a 2 (j - 1 ) ; a 3 ( j - 1 ) ] ;  %last parameter vector  
M2 = M -  [ (B*C-D*D)*E + (D*D-C*D)*F + (D*D-B*D)*G; . . .

(D*D-C*D)*E + (A*C-D*D)*F + (D*D-A*D)*G; . . .
(D*D-B*D)*E + (D*D-A*D)*F + (A*B-D*D)*G]/ (A*(B*C-D*D)-D*. . .
(C*D-D*D)+D*(D*D-B*D)) ;

a l ( j ) = M 2 ( l ) ;  a2( j)=M2(2 ) ;  a3( j)=M2(3 ) ;  %latest parameter vector  
end %get the converged a|x
%--------------------------------------------------------------------
m l e a l = a l ( j ) ;  mlea2=a2(j ) ;  mlea3=a3(j ) ;
a l ( l ) = a l ( j ) ;  a 2 ( l ) = a 2 ( j ) ;  a 3 ( l ) = a 3 ( j ) ;  %starts new i te rat ion  at la s t  mhles 
latestmle = [ a l ( j ) ;  a 2 ( j ) ;  a3 ( j ) ] ;
%--------------------------------------------------------------------
for t= 3 :n  % first  re -evaluate z now given new a l ,a 2 , a 3
f l ( t ) = l o g ( w ( k + l ) ) + ( y l ( t ) + a l ( j ) + y l ( t - l ) - l ) * l o g ( x l  ( t ) ) + ( y 2 ( t ) + a 2 (j) + . . .  

y2 ( t - l ) - 1 ) * l o g ( x 2 ( t ) ) + ( r ( t ) - y l ( t ) - y 2 ( t ) + a 3  (j ) + r ( t - 1 ) - y l ( t - 1 ) - . . .  
y2 ( t - 1 ) - 1 ) *  l o g ( 1 - x l (t ) - x 2 ( t ) ) -  . . .

(gammaIn(al(j ) + y l ( t - 1 ) ) +gammaln(a2 ( j ) + y 2 ( t - 1 ) ) +gammaln(a3(j ) + r ( t - 1 ) - . . .
yl ( t - 1 ) -y2 (t -1) ) - .  . .
gammaln (al (j) +a2 ( j) +a3 (j )  +r ( t - 1 ) ) ) ;
f 2 ( t ) = l o g ( l - w ( k + l ) ) + ( y l ( t ) + a l ( j ) + y l ( t - 2 ) - 1 ) * l o g ( x l ( t ) ) + ( y 2 ( t ) + a 2 (j ) + . . .  

y2 ( t - 2 ) - 1 ) * l o g ( x 2 ( t ) ) + ( r ( t ) - y l ( t ) - y 2 (t ) + a 3 (j ) + r ( t - 2 ) - y l ( t - 2 )  - . 
y2 ( t - 2 ) - 1 ) * l o g ( 1 - x l ( t ) - x 2 ( t ) ) -  (gammaln(al( j ) + y l ( t - 2 ) ) + . . . 
gammaln(a2( j ) + y 2 ( t - 2 ) ) +gammaln(a3(j ) + r ( t - 2 ) - y l  ( t - 2 ) - y 2 ( t - 2 ) ) - . . .  

gammaln(al(j ) + a 2 ( j ) + a 3 (j ) + r ( t - 2 ) ) ) ;  
end
for t= 3 :n  %use th is  pr inc iple  to choose whether 1st or 2nd lag dominates:  

i f  ( f l ( t )  > f  2 ( t ) ) z ( t ) =1;  
e l s e i f  ( f 1<t) < f 2 ( t )) z ( t )=0;  
end

end
mlez=z;

for k=l :100  %need to  re-evaluate  the w given the new zs (same way as above)
w(k)=exp (v (k ) ) / ( l +e xp (v(k ) ) ) ;
dw=exp(v (k) ) / (1+exp(v(k) )) A2;
d2w=exp(v ( k ) ) * (1 -e x p (v (k ) ) ) / (1+exp(v(k)) ) A3;
for t= 3 :n
dldv(t)  = dw* (z (t) /w(k) -  (1-z (t) ) / ( l -w(k )) )  ;
d21dv2(t) = d2w*(z(t) /w(k)  -  ( 1 - z ( t ) ) / ( l - w ( k ) )) + (dw)A2 * ( - z ( t ) / w ( k ) A2 . . .
-  ( 1 - z ( t ) ) / (1-w(k)) A2 ) ; 
end
v (k+1)=v(k)-sum(dldv) / sum(d21dv2) ;
end
mlev=v (k+1);  
v (1 )—v (k+1) ; 
mlev2=v(k+l) ;
w (k +l )= exp(v (k +l )) / (1 + exp(v(k+1)) ) ;  
mlew=exp(v (k+1)) / (1+exp(v(k+1)) ) ;
%---------------------------------------------------------------------
p i ( 1 ) = ( a l ( j ) + y l ( 1 ) - 1 ) / ( a l ( j ) + a 2 (j ) + a 3 (j ) + r ( 1 ) - 3 ) ;  %need to  re-evaluate  
p2 (l) = (a 2(j )+  y 2 (1) — 1) /  (al ( j) +a2 (j )  +a3 (j ) +r (1) -  3 ) ;  %thex|a (& z) now 
p 3 ( l ) = ( a 3 ( j ) + r ( l ) - y l ( l ) - y 2  (1) -1) /  ( a l ( j )  +a2(j)+a3  ( j )+r  <1)-3) ; 
p i (2)= ( a l ( j )+y l  (2 )+ y l ( 1 ) - 1 ) / ( a l (j ) + a 2 (j ) +a3( j ) + r  (2)+r < l ) - 3 ) ; 
p2 (2 )= (a 2(j )+ y2  (2) +y2 (1) -1)  /  (a l ( j )+a 2  (j ) +a3 ( j ) +r (2 )+r (1) -3)  ; 
p3 (2)=(a3(  j) +r (2) - y l ( 2 ) - y 2  (2 )+r (1 ) - y l  (1 ) -y2 (1) -1)  /  (al (j ) +a2 (j ) +a3 ( j) + . . . 

r (2) + r ( 1 ) - 3 ) ;
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for t=3 :n
i f  ( z (t) >0) p l ( t )  = ( a l ( j ) + y l ( t ) + y l  (t -1  ) -1 ) /  (al ( j) +a2 ( j ) +a3 ( j) + . . . 

r (t ) +r ( t -1  ) -3)  ;
e l se i f  (z ( t ) <1) p i ( t ) = ( a l ( j ) + y l ( t ) + y l ( t - 2 ) - 1 ) / ( a l (j ) + a 2 (j ) +a3( j ) + . . .  

r ( t ) + r ( t - 2 ) - 3 ) ;
end
i f  ( z (t) >0) p 2 ( t ) = ( a 2 ( j )  +y2 (t) +y2 ( t -1 )  -1)  /  (al ( j)+a2 ( j ) +a3 ( j) +. . .  

r (t ) +r (t -1  ) -3)  ;
e l se i f  (z ( t ) <1) p 2 ( t ) = (a 2( j ) + y 2 ( t ) + y 2 ( t - 2 ) - 1 ) / ( a l (j ) + a 2 (j ) +a3( j ) +. 

r ( t ) +r ( t - 2 ) -3 )  ;
end
i f  ( z (t) >0) p 3 ( t ) = ( a 3 ( j ) + r  < t ) -y l  ( t ) - y 2  ( t )+r  ( t - l ) - y l  ( t -1  ) -y2 ( t - 1 ) -1  ) / . . .  

( a l (j ) +a 2 ( j ) + a 3 ( j ) + r ( t ) + r ( t - 1 ) -3)  ;
e l se i f  (z ( t ) <1) p 3 ( t ) = (a3 ( j ) + r ( t ) - y l ( t ) - y 2 ( t ) + r ( t - 2 ) - y l ( t - 2 ) - y 2 ( t - 2 ) . . .  

-1)  /  (al ( j )+a2(  j ) + a 3 ( j ) + r ( t ) + r  ( t - 2 ) - 3 ) ;
end

end

for t = l : n
xl ( t ) =pl (t) ; x 2 ( t ) = p 2 ( t ) ;  x 3 ( t ) = p 3 ( t ) ;

end
maxxl=xl; maxx2=x2; maxx3=x3;
%____________________________________________________________
end %completes h - l ike l ihood
mhlea= [mleal; mlea2; mlea3] %displays mhles of party parameters 
mlew %displays mhle of weight parameter 
mlez %displays optimal dummy indicator
maxx=[maxxl; maxx2; maxx3] %displays optimal late nt p r o b a b i l i t ie s

Q = [-A -D -D 0; -D -B -D 0; -D -D -C 0; 0 0 0  -sum(d21dv2)];
VC = inv(Q);  %approx var-cov matrix
SC = [sqrt (VC(1 ,1 ) )  VC( 1 , 2 ) / (sqrt(VC( 1 , 1 ) ) *sqrt (V C( 2 ,2 ) ) )  V C ( 1 , 3 ) / . . .

(sqrt(VC(1 , 1 ) )* sqrt (VC(3 ,3 ) ) )  . . .
VC( 1 , 4 ) / ( s q r t ( V C ( 1 , 1 ) ) *sqrt(VC<4,4 ) ) ) ;  . . .

VC( 2 , 1 ) / ( s q r t ( V C ( 1 , 1 ) ) *sqrt(VC(2, 2 ) ) )  sqrt(VC( 2 ,2 ) )  V C ( 2 , 3 ) / . . .
(sqrt(VC( 3 , 3 ) ) *sqrt (VC(2,2) ) ) . . .

VC ( 2 , 4 ) / ( s q r t  (VC( 2 , 2 ) ) *sqrt(VC( 4 , 4 ) ) ) ;  . . .
VC( 3 , 1 ) / ( s q r t ( V C ( 1 , 1 ) ) *sqrt(VC( 3 , 3 ) ) )  VC( 3 , 2 ) / ( s q r t ( V C ( 3 , 3 ) ) * . . .  
sqrt(VC( 2 , 2 ) ) )  sqrt(VC(3 ,3 ))  . . .
VC( 3 , 4 ) / (sqrt(VC( 4 , 4 ) ) *sqrt(VC( 3 , 3 ) ) ) ;  . . .
VC(4,1) /  (sqrt(VC( 1 , 1 ) ) *sqrt(VC(4, 4)) )  VC( 4 , 2 ) / ( s q r t ( V C ( 4 , 4 ) ) * . . .  
sqrt(VC( 2 , 2 ) ) )  . . .
VC( 4 , 3 ) / (sqrt(VC( 4 , 4 ) ) *sqrt(VC( 3 , 3 ) ) )  sqrt(VC( 4 , 4 ) ) ]  %approx.

A1CI = [mleal-2 .5758*SC(1,1) ; mleal+2. 5758*SC( 1 , 1 ) ] '  %correlation matrix 
A2CI = [mlea2-2 .5758*SC(2 ,2) ; mlea2+2. 5758*SC( 2 , 2 ) ] '
A3CI = [mlea3-2. 5758*SC(3,3)  ; mlea3+2.5758*SC( 3 , 3 ) ] ' %99% approx confidence 
WCI = [mlew-2. 5758*SC(4,4) ; mlew+2. 5758*SC( 4 , 4 ) ] '  %intervals per mhle

for t = l : l e n g t h (y l ) %Deviance for r e la t iv e  goodness of f i t  t e s t
1 1 (t) = gammaln(r(t)+1) -  gammaln(yl(t)+1) -  gammaln(y2 ( t )+1) -  . . .  

gammaln( r ( t ) - y l ( t ) - y 2 ( t ) +1) + ( y l ( t ) ) * l o g ( x l ( t ) ) + ( y 2 ( t ) ) * . . .  
l o g ( x 2 ( t ) ) + ( r ( t ) - y l ( t ) - y 2 ( t ) ) * l o g ( l - x l ( t ) - x 2 ( t ) ) ;

end
l o g l i k l = s u m ( l l ) ;
Deviance = 2 * ( l e n g t h ( y l ) - l o g l i k l )
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for t = 3 : l e n g t h (y l ) %Computes the maximum hierarchical  l ike l ihood  
l i k ( t )  = z ( t ) * ( log(mlew) + gammaln(r ( t ) +1) -  gammaln(yl(t)+1) 

gammaln(y2 ( t ) +1) -  g a m m a l n ( r ( t ) - y l ( t ) - y 2 ( t ) + l )  + . . .
( m l e a l + y l ( t - 1 ) - 1 + y l ( t ) ) * l o g ( x l ( t ) ) + ( m l e a 2 + y 2 ( t - 1 ) - l + y 2 ( t ) ) * . . .  
l o g ( x 2 ( t ) ) + ( m l e a 3 + r ( t - l ) - y l ( t - 1 ) - y 2 ( t - 1 ) - 1 + r ( t ) - y l  ( t ) -y 2  ( t ) ) *.  
l o g ( 1 - x l ( t ) - x 2 ( t )) + gammaln(mleal+mlea2+mlea3+r(t-1)) -  . . .  
gammaln(mleal+yl(t-1)) -  gammaln(mlea2+y2(t-1)) -  gammaln(mlea3+ 
r ( t - 1 ) - y l ( t - 1 ) - y 2 ( t - 1 ) ) ) + ( 1 - z ( t ) ) * (log(1-mlew) + gammaln(r(t)+1) 
-  gammaln(yl(t)+1) -  gammaln(y2 ( t )+1) -  g a m m a ln (r ( t ) -y l ( t ) - . . .  
y2 ( t ) +1) + ( m l e a l + y l ( t - 2 ) - 1 + y l ( t ) ) * l o g ( x l ( t ) ) + (mlea2+y2(t-2) . .  
- l + y 2 ( t ) ) * l o g ( x 2 ( t ) ) + (mlea3+r ( t - 2 ) - y l ( t - 2 ) - y 2  ( t - 2 ) - 1 + r ( t ) - . . .  
yl ( t ) -y 2  ( t ) ) *log ( 1 - x l ( t ) - x 2 ( t )) + gammaln(mleal+mlea2+mlea3+. . .  
r ( t - 2 )) -  gammaln(mleal+yl(t -2)) -  gammaln(mlea2+y2(t-2)) - . . .  
gamm aln(m lea3+r(t -2 ) -y l( t -2 ) - y 2 ( t - 2 ) ) ) ;

end
l ik (2 )  = gammaln(r(2)+1) -  gammaln(yl(2)+1) -  gammaln(y2(2)+1) - . . .  

gammaln(r(2 ) - y l ( 2 ) - y 2 (2)+1) + (m leal+yl ( 2 - 1 ) - 1 + y l ( 2 ) ) * l o g ( x l (2)) 
+ (mlea2+y2( 2 - 1 ) - l + y 2 ( 2 ) ) * l o g ( x 2 (2)) + (mlea3+r( 2 - 1 ) - y l ( 2 - 1 ) - . . .  
y 2 ( 2 - 1 ) - 1 + r (2)- y l ( 2 ) - y 2 ( 2 ) ) * l o g ( 1 - x l (2 ) -x2 (2)) + gammaln(mleal+. 
mlea2+mlea3+r(2 -1 ) )  -  gammaln(mleal+yl(2 -1) )  -  gammaln(mlea2+.. .  
y 2 ( 2 - l ) )  -  gammaln(mlea3+r( 2 - 1 ) - y l ( 2 - 1 ) - y 2 ( 2 - 1 ) ) ;  

l i k ( l )  = gammaln(r(1)+1) -  gammaln(yl(1)+1) -  gammaln(y2(1)+1) - . . .  
gammaln(r(1 ) - y l ( 1 ) - y 2 (1)+1) + ( m l e a l - l + y l ( 1 ) ) * l o g ( x l (1)) + . . .  
(mlea2-l+y2( 1 ) ) * l o g ( x 2 (1)) + (m lea3 -l+r( 1 ) - y l (1 ) -y2 (1 ))*  l o g ( 1 - . -  
x l ( l ) - x 2 ( l ) )  + gammaln(mleal+mlea2+mlea3) -  gammaln(mleal) -  . . .  
gammaln(mlea2) -  gammaln(mlea3); 

lo=sum(lik)

Figure A.5: H-likelihood code for ARCH(3,2) {continued).
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function f=mhlesv32(param) %param is  a vector o f  a l l  'parameters'  
p h i (1 )=param(l); v ( l )= para m(2 ) ;
%v(1) (weight parameter) i s  just a start ing  val  fo r  Newton-Raphson 

global y l  y2 r dl %define known data outside the code for ease overal l  

n=length(y1) ; 

for t= 2 :n
d 2 ( t )= d l ( t ) + d l ( t - 1 ) ;  %determine the 2nd lag time interval

end

for t = l : n  %subsequent c _ l  and c_2 inside the D ir ich let  shape parameters 
c l (t ) = 1 / ( exp(p h i (1)* d l ( t ) ) - 1 ) ;

end
for t= 2 :n

c2 ( t ) = l / ( e x p ( p h i (1 )* d 2 ( t ) ) -1)  ;
end

w(1 )=exp ( v ( 1 ) ) / (1+exp(v ( 1 ) ) ) ;  %reparameterise the weight function so
%that l i e s  in [0 ,1]

for t = l : n  % init ia l  values for x (do not matter a f te r  h - l ik e l ih ood  starts)  
xl (t )=  (yl ( t ) +5) /  (r ( t ) +5) ; x2 (t) = (y2 ( t ) -5)  /  (r ( t ) - 5 ) ; x 3  ( t ) = l - x l  (t) -x2 ( t ) ;

end
%---------------------------------------------------------------------
for h=l :50  %h-likelihood s t a r t s  here

for j=2 :50  %Newton-Raphson to  find phi, w | x

for t= 2 :n
c l ( t )  = 1 / (exp(p hi(j - 1 ) * d l ( t ) ) - 1 ) ;  %derivatives of c _ l  and c_2 
dlc l  ( t ) = - ( d l ( t ) * e x p ( p h i ( j - 1 ) * d l ( t ) ) ) /  (exp(phi( j - 1 ) * d l ( t ) ) - 1 ) A2 ; 
d2cl (t) = ( d l ( t ) A2 * e x p ( p h i ( j - 1 ) * d l ( t ) ) * (1+exp(phi(j - 1 ) * d l ( t ) ) ) ) / . . .

(exp (phi( j - 1 ) * d l ( t ) ) - 1 )  A3; 
c2(t )  = 1 / (exp(phi (j - 1 ) * d 2 ( t ) ) - 1 ) ;
d l c 2 ( t ) = - (d 2( t ) *e x p (p h i ( j - 1 ) * d 2 ( t ) ) ) / (exp(phi( j - 1 ) * d 2 ( t ) ) - 1 ) A2 ; 
d2c2 (t) = ( d 2 ( t ) A2 * e x p ( p h i ( j - 1 ) * d 2 ( t ) ) * ( l + e x p ( p h i ( j - 1 ) * d 2 ( t ) ) ) ) / . . .

( e x p ( p h i ( j - 1 ) * d 2 ( t ) ) - 1 ) A3;
end

w ( j - 1 ) = e x p ( v ( j - 1 ) ) / (1+exp(v(j - 1 ) ) ) ;  %derivatives of w 
dw=exp(v( j -1 )) / ( 1 + e x p ( v ( j - 1 ) ) ) A2;
d2w=exp (v (j - 1 ) )* ( l - e x p ( v ( j - 1 ) ) ) / (1+exp(v(j - 1 ) ) ) A3;

for t= 3 :n  %relevant components o f  fol lowing p a r t ia l  derivatives  
DiO(t) = p s i (0, ( w ( j - 1 ) * c l ( t ) + ( l - w ( j - 1 ) ) * c 2 ( t ) ) ) ;
D i l ( t )  = p s i (0, (w(j - 1 ) * c l ( t ) * y l ( t - 1 ) / r ( t - 1 ) + ( 1-w(j - 1 ) ) * c 2 ( t ) * y l ( t - 2 ) / . . .  

r (t —2 ) ) ) ;
Di2 (t) = p s i (0, ( w ( j - l ) * c l ( t ) * y 2 ( t - l ) / r ( t - 1 )  + (1—w(j —1 ) ) * c 2 ( t ) * y 2 ( t - 2 ) / . . .  

r ( t - 2 ) ) ) ;
Di3 (t) = p s i (0, (w(j - 1 ) * c l ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) + . . .

( l - w ( j - l )  )*c2 (t) * ( l - y l  (t -2) / r  ( t - 2 ) -y2 (t -2 )  / r  (t -2) ) ) ) ;
Tr0(t) = p s i ( l ,  (w ( j - 1 ) * c l ( t ) + ( 1 - w ( j - 1 ) ) * c 2 ( t ) ) ) ;
T r l ( t )  = ps i (1, ( w ( j - l ) * c l < t ) * y l ( t - 1 ) / r ( t - 1 ) + ( l - w ( j - l ) ) * c 2 ( t ) * y l ( t - 2 ) / . . .

F igu re  A .6: H -lik e lih ood  co d e  for  S V (3 ,2 ) .
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r ( t  — 2 ) ) ) ;
T r2 (t ) = p s i ( l ,  ( w ( j - 1 ) * c l ( t ) * y 2 ( t —1 ) / r ( t - 1 ) + ( l - w ( j - 1 ) ) * c 2 ( t ) * y 2 ( t - 2 ) /  

r ( t - 2 ) ) ) ;
Tr 3 ( t ) = p s i (1, (w(j—1 ) * c l ( t ) * < 1  —y l ( t - l ) / r ( t —1 ) —y 2 ( t —1 ) / r ( t - 1 )  ) + . .  .

(1—w ( j - l )  ) *c2 (t) * ( 1 - y l  (t -2 )  / r  ( t - 2 ) - y 2  (t -2 )  / r  (t -2) ) ) ) ;
end

Di0(2) = p s i ( 0 ,  c 1(2) ) ; Dil<2) = p s i ( 0 ,  cl ( 2 ) *yl  (1 ) / r (1)) ;
D i 2 (2) = p s i ( 0 ,  c l ( 2 ) * y 2  ( 1 ) / r (1)) ; Di3(2) = p s i ( 0 ,  cl  (2)* ( 1- y l ( 1 ) / r (1)

-y  2 ( 1) /  r ( 1) ) ) ;
TrO(2) = p s i ( l ,  c l ( 2 ) ) ;  Trl(2)  = p s i ( l ,  c l ( 2 ) *yl (1) / r (1 ) ) ;
Tr2 (2) = p s i ( l ,  c l ( 2 ) *y2 ( 1 ) / r (1) ) ; Tr3(2) = p s i ( l ,  cl (2)* ( 1 - y l  ( 1 ) / r (1)

- y  2 ( 1 ) / r (1) )) ;

for t= 3 :n  %main part
d2ldphi 2 ( t ) = w ( j - 1 ) * d 2 c l ( t ) * ( ( y l ( t - 1 ) / r ( t - 1 ) ) * l o g ( x l ( t ) ) + . . .

( y 2 ( t - l ) / r ( t - 1 ) ) *log (x2 ( t ) ) + (1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 (t - 1 ) / . .  . 
r ( t - l )  ) * l o g ( l - x l  ( t ) - x 2 ( t )  ) + D i O ( t )  -  Di 1 (t ) *y l  ( t -1  ) / r  ( t -1  ) -  
Di2 (t) *y2 ( t - 1 ) / r  ( t -1 )  -  Di3 (t) * (1 -y l  ( t -1  ) / r  (t -1  ) -y2  ( t - 1 ) / . .  . 
r ( t - 1 ) ) )  + w(j - 1 ) * d l c l ( t ) * (TrO(t)* (w(j - 1 ) * d l c l ( t ) + (1 -w(j - 1 ) ) * .  
d l c 2 ( t ) ) -  Tri ( t ) * ( y l ( t - 1 ) / r ( t - 1 ) ) * ( w ( j - 1 ) * d l c l ( t ) * y l ( t - 1 ) / . . .  
r ( t -1  ) + (1-w( j - 1 )  ) *dlc2 (t) *y l  ( t -2 )  /  r ( t -2 )  ) -  Tr2 (t ) * (y2 ( t -1  ) /  . . 
r ( t - 1 ) ) * ( w ( j - 1 ) * d l c l < t ) * y 2 ( t - 1 ) / r (t - 1 ) + ( 1 - w ( j - 1 ) ) * d l c 2 ( t ) * . . .  
y2 ( t - 2 ) / r  (t -2 )  ) -  Tr3 (t )* (1 -y l  (t -1  ) / r  ( t - 1 ) - y 2  ( t -1  ) / r  ( t -1  ) ) * . .  . 
( w ( j - 1 ) * d l c l ( t ) * ( 1 - y l ( t - 1 ) / r ( t - l ) - y 2 ( t - 1 ) / r ( t - 1 ) ) + ( 1 -w (j - 1 ) ) * .  
d l c 2 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  )) )  + (1 -w (j - 1 ) ) * . .  . 
d2c2(t) *( (yl ( t - 2 ) / r ( t - 2 ) ) * l o g ( x l ( t ) ) + ( y 2 ( t - 2 ) / r ( t - 2 )  ) * . .  . 
log (x2(t)  ) + ( 1 - y l  ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  ) * l o g ( l - x l ( t ) - . . .  
x2 ( t ) ) + DÌO (t ) -  Dii  (t) *yl  ( t -2 )  / r  ( t -2 )  -  Di2 (t ) *y2 (t -2 )  /  . . . 
r ( t -2  ) -  Di3 (t) * ( 1 - y l  ( t -2  ) / r  ( t - 2 ) - y 2  ( t -2 )  / r  ( t -2 )  ) ) + . . .
(1-w( j - 1 ) ) * d l c 2 ( t ) * (TrO(t)* (w(j - 1 ) * d l c l ( t ) + (1 -w (j - 1 ) ) * d l c 2 ( t )) 
-  Tri ( t ) * (yl ( t - 2 ) / r ( t - 2 ) ) * (w( j - 1 ) * d l c l < t ) *y1 ( t - 1 ) / r ( t - 1 )  + . . .  
( l - w ( j - 1 )  ) * d l c 2 ( t ) * y l ( t - 2 ) / r ( t - 2 ) )  -  Tr2 ( t ) * (y2 ( t - 2 ) / .  . .  
r ( t - 2 ) ) * ( w ( j - 1 ) * d l c l ( t ) * y 2 ( t - l ) / r ( t - 1 ) + ( 1 - w ( j - 1 ) ) * d l c 2 ( t ) * . . .  
y2 ( t - 2 ) / r (t -2)  ) -  Tr3 ( t ) * ( 1 - y l (t - 2 ) / r (t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) * .  . .  
( w ( j - 1 ) * d l c l ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) + ( 1 -w(j - 1 ) ) * .  
dlc2 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  )) ) ; 

d21dv2(t ) = d 2 w * c l ( t ) * ( ( y l ( t - 1 ) / r ( t - l ) ) * l o g ( x l ( t ) ) + ( y 2 ( t - l ) / . . .  
r ( t - 1 )  ) * l o g ( x 2 ( t )  ) + ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) * . .  . 
log  (1 -x l  ( t ) - x 2 ( t )  ) + DiO(t) -  D i i ( t ) * y l  ( t - 1 ) / r  ( t -1 )  - D i 2 ( t ) * . . .  
y2 ( t - 1 ) / r ( t - 1 )  -  D i 3 ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ))  + . . .  

(dw* c l ( t ) ) * (TrO(t)* (dw*cl( t ) -dw *c2( t ) ) -  Tri ( t ) * ( y l ( t - 1 ) / r ( t - 1 ) ) * .  
( d w * c l ( t ) * y l ( t - 1 ) / r ( t - 1 ) - d w * c 2 ( t ) * y l ( t - 2 ) / r ( t - 2 ) ) -  T r 2 ( t ) * . . .
(y2 (t -1 )  / r  ( t -1 )  ) * (dw*cl (t) *y2 ( t -1  ) / r ( t -1  ) -dw*c2 (t ) *y2 (t -2 )  /  . 
r ( t - 2 ) ) -  Tr3 ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) * (dw*cl(t) * ( 1 - . . 
yl (t -1 )  / r  ( t - 1 ) - y 2 ( t -1 )  / r  (t -1 )  ) - d w *c 2( t )*  ( 1 - y l  ( t - 2 ) / r  ( t - 2 ) - y 2  ( t -2  ) /  
r ( t - 2 ) ) )) - (d2w*c2 ( t ) * ( ( y l ( t - 2 ) / r ( t - 2 )  ) * l o g ( x l (t ) ) + (y 2 (t - 2 ) / . .  . 
r ( t -2 )  ) * l o g ( x 2 ( t ) )  + ( ( 1 -y l  ( t -2  ) / r  ( t - 2 ) - y 2  ( t -2  ) / r  ( t -2 )  ) ) * l o g ( l - .  . .  
xl (t ) -x2 (t) ) + DÌO (t ) -  Dii ( t ) * y l  ( t - 2 ) / r  ( t -2 )  -  Di2 (t ) *y2 ( t -2 )  /  . . . 
r ( t - 2 )  -  D i 3 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  ) ) + (dw*c2(t) ) * . .  
(TrO (t) * (dw*cl(t) -dw*c2 (t) ) -  Tri (t ) * (yl ( t -2  ) / r  ( t -2  ) ) * (dw*cl (t) * . . 
yl ( t - 1 ) / r ( t - 1 ) -dw*c2 ( t ) * y l ( t - 2 ) / r ( t - 2 )  ) -  T r 2 ( t ) * ( y 2 (t - 2 ) / r (t - 2 )  )* 
(dw*cl( t ) * y 2 ( t - l ) / r ( t - 1 ) - d w * c 2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 ) ) -  Tr3 ( t ) * ( 1 - . . .  
yl ( t - 2 ) / r  ( t - 2 ) - y 2 ( t - 2 ) / r  (t -2)  )* <dw*cl (t)* ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 )  
/ r (t -1 )  ) - dw * c 2 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) )  ) ) ) ;  

d2ldp hidv(t ) = d i c i (t ) * d w * ( ( y l ( t - l ) / r ( t - 1 ) ) * l o g ( x l ( t ) ) + ( y 2 ( t - 1 ) / . . .  
r ( t - 1 ) ) *log(x 2  (t) )+ ( 1 - y l  ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) * l o g ( 1 - x l ( t )  . . .  
-x2 ( t ) ) + DÌO( t ) - D i l ( t ) *y1 ( t - 1 ) / r ( t - 1 ) - D i 2 ( t ) * y 2 ( t - 1 ) / r (t - 1 ) - . .  .
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Di3 (t) * (1 -y l  (t -1) / r  ( t - l ) - y 2  ( t -1 )  / r  (t-1) ) ) + c l  (t) *dw* (TrO(t) * . . .
( w ( j - l ) * d l c l < t ) + ( l - w ( j - 1 ) ) * d l c 2 ( t ) ) - T r l ( t ) * ( y l ( t - 1 ) / r ( t - 1 ) ) * .
( w ( j - 1 ) * d l c l ( t ) * y l ( t - 1 ) / r ( t - 1 ) + ( 1-w( j - 1 ) ) * d l c 2 ( t ) * y l ( t - 2 ) / r ( t - 2 ) )
Tr2 ( t ) * (y2 ( t - l ) / r ( t - 1 ) ) * ( w ( j - 1 ) * d l c l  ( t ) * y 2 ( t - l ) / r ( t - 1 ) + ( l - w ( j - 1 ) ) * . . .  
d l c 2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 ) ) - T r 3 ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - l ) ) * . . .
(w( j —1)* dl c l ( t ) * ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) + ( 1 - w ( j - 1 ) ) * . . .  
d l c 2 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  ) )) -  ( d l c 2 ( t ) * d w * ( ( y l ( t - 2 ) / . . .  
r ( t - 2 ) ) * l o g ( x l  ( t ) )+ ( y 2 ( t - 2 ) / r ( t - 2 ) ) * l o g ( x 2 ( t ) )  + ( l - y l ( t - 2 ) / r ( t - 2 ) - . . .  
y 2 ( t - 2 ) / r ( t - 2 ) ) *log ( 1 - x l ( t ) - x 2  ( t ) ) + D i O ( t ) - D i l ( t ) * y l ( t - 2 ) / r ( t - 2 ) - . . .  
Di2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 ) - D i 3 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 )  ) ) + . . .  
c 2(t )* dw*(TrO(t )* (w(j - 1 ) * d l c l ( t ) + ( 1 - w ( j - 1 ) ) * d l c 2 ( t ) ) - T r l ( t ) *.
( y l ( t - 2 )  / r ( t - 2 ) ) * ( w ( j - 1 ) * d l c l ( t ) * y l ( t - 1 ) / r ( t - 1 ) + (1 -w(j - 1 ) ) * . . .  
d l c 2 ( t ) * y l ( t - 2 ) / r ( t - 2 ) ) -  T r 2 ( t ) * (y2 ( t - 2 ) / r ( t - 2 ) ) * ( w ( j - 1 ) * d l c l ( t ) * . . .  
y 2 ( t - 1 ) / r ( t - 1 ) + ( 1 - w ( j - 1 ) ) * d l c 2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 ) ) - T r 3 ( t ) * ( 1 - y l ( t - 2 ) . . .  
/ r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) )*  < w ( j - l ) * d l c l ( t ) * (1 -y l  ( t - 1 ) / r  ( t - l ) - y 2 ( t - 1 )  / .  . . 
r ( t - 1 )) + (1-w (j -1 )  ) *dlc2 (t) * (1 -y l  ( t - 2 ) / r  ( t - 2 ) -y2 ( t -2 )  / r  (t -2) )) )) ; 
dldphi(t)  = w( j - 1 ) * d lc l  ( t ) * ( (yl ( t - 1 ) / r  (t -1 )  ) * log (xl (t) ) + ( y 2 ( t - l ) / . . .  
r ( t - 1 ) ) * l o g ( x 2 ( t ) ) + ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) * l o g ( 1 - . . .  
x l ( t ) - x 2 ( t )) + DiO(t) -  D i l ( t ) * y l ( t - l ) / r ( t - l )  -  D i 2 ( t ) * y 2 ( t - 1 ) / . . .  
r ( t - 1 ) -  Di3 ( t ) * ( 1 - y l ( t - 1 ) / r ( t - l ) - y 2 ( t - 1 ) / r ( t - 1 ) )) + . . .
( 1 - w ( j - 1 ) ) * d l c 2 ( t ) * ( ( y l ( t - 2 ) / r ( t - 2 ) ) * l o g ( x l ( t ) )  + ( y 2 ( t - 2 ) / r ( t - 2 ) ) * . . .  
log ( x 2 ( t ) ) + ( 1 - y l ( t - 2 ) / r (t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) * l o g ( l - x l  ( t ) - x 2 ( t ) ) + . . .  
DiO ( t ) -  Dil ( t ) * y l ( t - 2 ) / r  (t -2)  -  Di2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 )  -  D i 3 ( t ) * . . .  
( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) ) ;
dldv( t)  = c l ( t ) * d w * ( ( y l ( t - 1 ) / r ( t - 1 ) ) * log(x l  ( t ))+ ( y 2 ( t - 1 ) / r ( t - 1 ) )* . . .  
l o g ( x 2 ( t ) ) + ( 1 - y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) * l o g ( 1 - x l ( t ) - x 2 ( t ) ) . . .
+ DiO ( t ) - D i l  ( t ) * y l ( t - 1 ) / r  ( t - 1 ) - D i 2 ( t ) * y 2 ( t - 1 ) / r ( t - l ) - D i 3 ( t ) * ( 1 - . . .  
y l ( t - 1 ) / r ( t - 1 ) - y 2 ( t - 1 ) / r ( t - 1 ) ) )  - c 2 ( t ) * d w * ( ( y l ( t - 2 ) / r ( t - 2 ) ) * . . .  
l o g ( x l ( t ) ) + ( y 2 ( t - 2 ) / r ( t - 2 ) ) * l o g ( x 2 ( t ) ) + ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / . . . 
r ( t - 2 ) ) * l o g ( 1 - x l ( t ) - x 2 ( t ) ) + D i O ( t ) - D i l ( t ) * y l  ( t - 2 ) / r  ( t - 2 ) -Di2 ( t )* . . . 
y2 ( t - 2 ) / r ( t - 2 ) - D i 3 ( t ) * ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) ) ;

end
d21dphi2(2) = d 2 c l ( 2 ) * ( ( y l ( 1 ) / r ( 1 ) ) * l o g ( x l (2)) + (y2 ( 1 ) / r ( 1 ) ) * . . .  

l o g ( x 2 (2)) + ( 1 - y l (1 ) / r (1 ) - y 2 (1 ) / r ( 1 ) ) * l o g ( 1 - x l (2) - x 2 (2) ) + . . .  
DiO(2) -  D i l ( 2 ) *  ( y l ( 1 ) / r ( l ) ) -  Di2 (2)* (y2(1 ) / r (1))  -  Di3 (2)* ( 1 - . . . 
y l (1 ) / r ( l ) - y 2 ( l ) / r (1 )) )  + d l c l ( 2 ) * 2 * (TrO(2)- T r l ( 2 ) * (y1 ( 1 ) / . . .  
r (1)) * 2 - T r 2 ( 2 ) * ( y 2 (1 ) / r ( 1 ) ) A2 - T r 3 ( 2 ) * ( 1 - y l (1 ) / r  ( l ) - y 2  (1 ) / r  (1) ) *2) ; 

dldphi (2) = d l c l ( 2 ) * ( ( y l ( l ) / r ( l ) ) * l o g ( x l ( 2 ) )  + (y2 ( 1 ) / r  (1) ) * . . .
log (x 2(2)) + ( 1 - y l (1 ) / r ( l ) - y 2 (1 ) / r ( 1 ) ) * l o g ( l - x l (2)—x2(2) ) + . . .  

DiO (2) -  Dil (2 ) * (yl (1 ) / r  (1)) -  Di2 (2 ) * (y2 (1 ) / r  (1)) -  Di3 (2) * ( 1 - . . . 
y l ( l ) / r ( l ) —y 2 ( l ) / r ( l ) ) ) ;  %the p a r t ia l  derivatives  

A=sum(d21dphi2); B=sum(d21dv2); C=sum(d21dphidv);D=sum(dldphi);E=sum(dldv);

M = [p h i ( j -1 )  ; v ( j - l ) ] ;  %last values o f  mhles 
M2 = M -  [ (B*D-C*E)/ (A*B-C*C) ; (A*E-C*D)/(A*B-C*C)];
p h i ( j )=M2(1) ;  v ( j )= M 2 ( 2 ) ;  %latest values o f  mhles 

end
m lephi=phi(j ) ; %mhle of  phi
p h i ( 1 ) = p h i (j ) ; %start next i te r a t io n  at l a t e s t  mhle for phi 
mlev=v(j ) ;
v ( l ) = v ( j ) ;  %start next i te r a t io n  at l a t e s t  mhle for v 
w(j)=exp(v (j ) ) / (1 + e x p (v ( j ) ) ) ;  %using invariance property 
mlew=w(j) %mhle o f  w
%---------------------------------------------------------------------
for t = l : n  %now need to get x|phi,w 

cl ( t ) = l / ( e x p ( p h i (j ) * d l ( t ) ) —1) ;
end
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for t= 2 :n
c2 ( t ) =1 /  (exp (phi (j ) *d2 ( t ) ) -1) ;

end
%sequentially evaluate each x
q ln = ( y l ( n ) + c l ( n ) * w ( j ) * y l ( n - 1 ) / r ( n - 1 ) +c 2 (n )* ( 1 -w( j ) ) * y l ( n - 2 ) / r ( n - 2 ) - 1 ) / . . .

( r ( n )+ w (j ) *c l (n )  + (1 -w( j ) ) *c 2 (n ) - 3 ) ;
q2n= (y 2(n ) + c l ( n ) * w ( j ) * y 2 ( n - l ) / r ( n - l ) + c 2 ( n ) * ( l - w ( j ) ) * y 2 ( n - 2 ) / r ( n - 2 ) - l ) / . . .

( r ( n )+ w (j ) *c l (n )  + (1 -w( j ) ) *c2(n) - 3 ) ;

for m=l :n-3 %Newton-Raphson to find x 
q l (1 )=xl (n -m); 
q 2 (1 )=x2(n-m); 
for k = l :5 0

A2 = - 1 * (yl(n-m)+cl(n-m) *w(j ) *y l (n -m -1 ) /r (n -m -1 )+c2 (n -m )* (1-w( j ) ) * . .  . 
y l (n -m -2 ) / r(n -m -2 ) - 1 ) / q l ( k ) A2 -  ( r (n -m ) -y l (n -m ) -y 2 (n -m )+c l (n -m )* . . .  
w( j ) * ( 1 - y l ( n - m - 1 ) / r ( n -m -1 ) -y 2 (n -m -1 ) / r ( n - m - 1 ) ) +c2 (n-m)* (1-w( j ) ) * .
(1 -y 1 (n-m-2) / r(n -m -2)-y 2 (n -m - 2 ) / r (n -m -2 ) ) - l ) / ( l - q l ( k ) - q 2 ( k ) ) A2;

B2 = - 1 *  (y2(n-m)+cl(n-m)*w(j ) *y2(n -m-1) / r(n -m-1)+c2(n-m)* (1-w( j ) ) * . .  . 
y2 ( n - m - 2 ) / r ( n - m - 2 ) - l ) / q 2 ( k ) A2 -  ( r ( n - m ) - y l ( n - m ) -y 2 (n-m)+cl(n-m)* . . .  
w( j ) * (1 -y l (n -m - 1 ) / r ( n - m - 1 ) - y 2 ( n - m - 1 ) / r ( n - m - 1 ) ) + c 2 ( n - m ) * ( l - w ( j ) ) * . . .
(1- y 1 (n-m-2) / r (n -m -2)- y 2 ( n - m - 2 ) / r ( n - m - 2 ) ) - l ) / ( l - q l ( k ) - q 2 ( k ) ) A2 ;

C2 = - 1 *  ( r (n-m )-y1 (n-m)-y2(n-m)+cl(n-m)*w( j ) * ( 1 - y l ( n - m - 1 ) / r ( n - m - 1 ) - . . .  
y2(n-m-1) / r ( n -m - 1 ) ) +c2(n-m)* ( 1 -w( j ) ) * ( 1 - y l ( n - m - 2 ) / r (n -m - 2 ) - . . .  
y2 ( n - m - 2 ) / r ( n - m - 2 ) ) - l ) / (1 -q l ( k ) -q 2 ( k )  ) A2 ;

D2 = (y l ( n - m ) + c l (n-m)*w( j ) * y 1 (n-m-1) / r (n-m-1) +c2(n-m)* ( 1 -w( j ) ) * . . .
y l ( n - m - 2 ) / r (n -m -2 ) - 1 ) / ql(k) - ( r (n -m)-y l (n -m )-y2(n -m )+cl(n-m)*w(j ) * . . .  
( 1 -y l ( n -m - 1 ) / r ( n - m - 1 )- y 2 ( n - m - 1 ) / r ( n - m - 1 ) ) +c2(n-m)* ( 1 -w( j ) ) * ( 1 - . . .  
y l ( n - m - 2 ) / r ( n - m - 2 ) - y 2 ( n - m - 2 ) / r ( n - m - 2 ) ) - 1 ) / ( 1 - q l ( k ) - q 2 ( k ) ) ;

E2 = (y2(n-m)+cl(n-m)*w( j ) *y2(n-m-1) / r (n -m -1) +c2(n-m)* ( 1-w( j ) ) * . . .
y2(n -m-2) / r ( n - m - 2 ) - l ) / q 2 ( k )  -  ( r (n -m ) -y l (n -m ) -y 2 (n -m )+c l (n -m )* . . .  
w( j ) * (1 -y 1 (n-m-1) / r (n -m -1 ) -y 2 (n -m -1 ) / r ( n - m - 1 ) ) +c2(n-m)* (1-w( j ) ) * . . .  
(1 -y l (n -m - 2 ) / r(n -m -2) - y 2 ( n - m - 2 ) / r ( n - m - 2 ) ) - l ) / ( l - q l ( k ) - q 2 ( k ) ) ;

Ma = [ql (k) ; q2 (k) ] ;
Ma2 = Ma -  [( (B2*D2-C2*E2)/ (A2*B2-C2*C2)) ; ( (A2*E2-C2*D2) / (A2*B2-C2*C2)) ] ;

q l (k + 1 ) =Ma2(1);  
q2(k+1)=Ma2(2);

end
p i (n -m)= q l(k+1) ; 
p2(n-m)=q2(k+1) ;

end

q l ( l ) = x l ( 2 ) ;  %special case for t= 2 ;  similar method to  above 
q 2 ( 1 ) =x 2 (2);  
for k = l :50

A3 = -1 *  (yl (2)+cl  (2 ) *y1 ( 1 ) / r  (1 ) - l ) / q l ( k ) A2 -  ( r (2 ) - y l (2 ) -y2 (2)+ c l ( 2 ) * . . .
( l - y l ( l ) / r ( l ) - y 2 ( 1 ) / r ( 1 ) ) - 1 ) / ( 1 - q l ( k ) - q 2 ( k ) ) A2;

B3 = -1 *  ( y 2 ( 2 ) + c l (2 )* y 2 ( l ) / r ( 1 ) - 1 ) / q 2 ( k ) A2 -  (r (2 ) - y l (2 ) - y 2 (2)+c1 ( 2 ) * . .  .
( l - y l ( l ) / r ( l ) - y 2 (1 ) / r ( 1 ) ) - 1 ) / ( 1 - q l ( k ) - q 2 ( k ) ) A2;

C3 = -1 *  ( r ( 2 ) - y 1 ( 2 ) - y 2 ( 2 ) + c l  ( 2 ) * (1 -y l  ( l ) / r ( l ) - y 2 (1 ) / r ( 1 ) ) - 1 ) / ( 1 -q l (k )  . .  . 
- q 2 (k ) ) A2 ;

D3 = ( y l (2)+ c l ( 2 ) * y l ( 1 ) / r ( 1 ) - 1 ) / q l ( k )  -  ( r (2 ) - y l  (2 ) - y 2 ( 2 ) + c l (2)* ( 1 - . . .
y l ( l ) / r (1 ) - y 2 (1 ) / r ( 1 ) ) - 1 ) / ( 1 - q l ( k ) - q 2 ( k ) );

E3 = ( y 2 ( 2 ) + c l ( 2 ) * y 2 ( l ) / r ( l ) - l ) / q 2 ( k )  -  (r (2 ) - y l  (2 ) -y2 ( 2 ) +c 1 (2 ) * . . .
( 1 - y l <1)/ r ( 1 ) - y 2 ( l ) / r ( l ) ) - l ) / ( 1 - q l ( k ) - q 2 ( k ) ) ;

Ma = [ql (k) ; q2 (k) ] ;
Ma2 = Ma -  [ ( (B3*D3-C3*E3)/ (A3*B3-C3*C3)) ; ( (A3*E3-C3*D3)/ (A3*B3-C3*C3)) ] ;
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ql(k  + 1 ) =Ma2(1) ; 
q2(k+1) =Ma2(2);

end
p l (2) =q l (k +1) ;
P2 ( 2 ) =q2(k+1) ;

p l ( n ) = q l n ; p 2 ( n ) = q 2 n ;p l (1 )= x l ( 1 ) ; p 2 ( 1 ) =x 2 (1);

for t = l : n
x l  (t) =pl  ( t ) ; x 2 ( t ) = p 2 ( t ) ;  x3 ( t ) = l - x l ( t ) -x 2 ( t )  ;

end
maxxl=xl; maxx2=x2; maxx3=x3;

end %h-likelihood complete

mlephi %displays optimal phi value  
mlew %displays optimal weight
maxx=[maxxl;maxx2;maxx3] %displays maximised la te nt  p r o b a b i l i t ie s

VC = [-B / (A*B-C*C) C/(A*B-C*C) ; C/(A*B-C*C) -A /(A*B-C*C)];
%approx var-cov matrix
SC = [ s q r t (—B/ (A*B-C*C)) (C/(A*B-C*C)) / ( sq rt ( -B /(A*B -C *C )) * . . .

sqrt (  — A/(A*B—C*C)) ) ; (C/(A*B-C*C) ) / (sqrt ( -B /  (A*B-C*C) ) * . .  .
sqrt ( -A /( A *B -C *C ))) sqrt ( -A /( A *B -C *C ))] %approx corre lat ion matrix 

PCI = [mlephi- 2 .5 75 8 *SC (1 ,1) ; mlephi+2.5758*SC( 1 , 1 ) ] '
%approx 99% confidence interval
VCI = [m lev -2 . 5 75 8 *SC( 2 ,2) ; m lev+2 .5758*SC(2, 2 ) ] '

wse=sqrt(VC( 2 , 2 ) * (exp(mlev)/ (1+exp(mlev)) A2 ) A2 ) %delta method to update
WCI=[mlew-2.5758*wse ; mlew+2. 5758*wse] %from v to  w

for t = l : l e n g t h ( y l ) %Deviance for goodness of f i t  te s t
1 1 (t) = gammaln(r(t)+1) -  gammaln(yl(t)+1) -  gammaln(y2(t)+1) -  . . .  

gammaln (r ( t ) - y l  (t) -y2 (t) +1) + (yl ( t ) ) *log (xl ( t ) ) + ( y 2 ( t ) ) * . . .  
l o g ( x 2 ( t ) ) + (r (t ) - y l  ( t ) -y 2  ( t ) ) * l o g ( 1 -x l  ( t ) - x 2 (t ) ) ;

end
l o g l i k l = s u m ( l l ) ;
Deviance = 2 * ( l e n g t h ( y l ) - l o g l i k l )

for t = 3 : l e n g t h ( y l ) %Computes the maximum h- like l ihood
l i k ( t )  = gammaln(r(t)+1) -  gammaln(yl(t)+ 1 ) -  gammaln(y2 ( t )+1) - . . .  

g a m m a l n ( r ( t ) - y l ( t ) - y 2 ( t ) + l )  + (mlew*cl(t) * y l (t — 1 ) / r  (t -1 )  + ( 1 - . . .  
mlew)*c2(t)*yl  ( t - 2 ) / r ( t - 2 ) -1+y l  ( t ) ) * l o g ( x l ( t ) ) + (m lew*c l( t) * . . 
y 2 ( t - 1 ) / r ( t - 1 ) + ( l - m l e w ) * c 2 ( t ) * y 2 ( t - 2 ) / r ( t - 2 ) - l + y 2 ( t ) ) * . . .  
log(x2 (t) )+ (mlew* c l  ( t ) * ( 1 -y l  ( t - 1 ) / r  ( t - 1 ) -y2  ( t -1 )  / r ( t - l )  ) + ( l - .  . 
m lew)* c2(t )* ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) - 1 + r ( t ) - y l ( t ) - . . .  
y 2 ( t ) ) * l o g (1 - x l ( t ) - x 2 ( t ) ) +gammaln(mlew*cl(t)+ (1 -mlew)*c2(t)) 
gammaln(mlew*cl( t)*y l( t -1 ) / r ( t - 1 ) + (1 -mlew)*c2(t) * y l ( t - 2 ) / . 
r ( t - 2 )) -g a m m a ln ( m le w * c l ( t ) * y 2 ( t - 1 ) / r ( t -1 ) + (1 -mlew)*c2(t) * . .  . 
y2 ( t - 2 ) / r ( t - 2 ) ) -  gammaln(mlew*cl ( t ) * ( 1 -y l  ( t - 1 ) / r  ( t - 1 ) - y 2 ( t - 1 ) /  
r ( t - l ) ) + (1 -m le w )*c2 (t )* ( 1 - y l ( t - 2 ) / r ( t - 2 ) - y 2 ( t - 2 ) / r ( t - 2 ) ) ) ;

end
l i k ( 2 )  = gammaln(r(2)+1) -  gammaln(yl( 2 )+ 1 ) -  gammaln(y2(2)+1) - . . .  

gammaln(r (2) -yl ( 2 ) - y 2 (2)+1) + (cl  (2 ) *yl  ( 2 - 1 ) / r ( 2 - 1 ) - 1 + y l ( 2 ) ) * . .  .
l o g ( x l (2)) + (cl  ( 2 ) *y2 ( 2 - 1 ) / r ( 2 - l ) - l + y 2 ( 2 ) ) * l o g ( x 2 (2))  + (cl  (2)

F igu re  A . 10: H -lik e lih ood  c o d e  fo r  S V (3 ,2 )  ( continuedI).

216



(1-yl(2-1)/ r (2-1)-y2(2-l)/r(2-1))-1+r(2)-yl(2)-y 2 (2))*log(1- 
xl(2)-x2(2)) +gammaln(cl(2)) - gammaln(c l (2)*y1(2-1)/r (2-1))
- gammaln(cl(2)*y2(2-1)/r (2-1)) - gammaln(cl(2)*(1-yl(2-1)/ 
r ( 2 - 1 ) - y 2 ( 2 - 1 ) / r (2—1)) ) ;  
lo=sum (lik)

Figure A. 11: H-likelihood code for SV(3,2) (continued)
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function f=simsv32(param) %param is  a vector o f  a l l  'parameters'  
phi=param(1) ;  x 1 ( 1 ) =param(2) ; x 2 ( 1 ) =param (3) ; w=param(4);
%each vector entry of parameter s ta r t in g  values

global  dl r
%enables us to define time interval  and p o l l  sample s iz e  outside the code 

for t= 2 : length (r)
d 2 ( t ) = d l (t ) + d l (t - 1 ) ; %time interval  back to  the 2nd lag

end

%Special case 1: t = l  (so no weight w appears here -  0 lags poss ible)  
x3(l)=l-xl(1)- x 2 (1);
X = [xl (1) x2 (1)]; 
i f

sum(X)<1 X=[X,l-sum(X) ] ;  %simulates the x from D ir ichlet
end
cump=cumsum(X);m=rand(r (1),1);cumy=zeros(1,3); 
for j=l:3

c u m y (j) = sum(m<cump(j ));
end
y=[cumy (1),cumy (2 )-cumy(1),d i f  f (cumy) ] ;  
yl (1) =cumy (1);
y 2 (1 )= c u m y (2)-cumy (1) ;  %simulates the y (multinomial) given the x

%Special case 2 :  t=2 (again no weight appears here -  only 1 lag possible)  
cl (2)=l/(exp(phi*dl(2) )-l); 
pl=gammas im(cl(2)*yl (1)/r (1 ),1 ) ; 
p2=gammas im(cl(2)*y2 (1)/r (1 ),1);
p3=g ammas im(cl(2)*(1-y1(1)/r(1)-y2(1)/r(1)),1); 
xl(2)=pl ./ (pl+p2+p3); 
x2(2)=p2 ./ (pl+p2+p3); 
x3 (2)=l-xl(2)- x 2 (2);
X = [xl(2) x2(2)]; %simulates the x from Dirich let
i f

sum(X)<l X=[X,1-sum(X ) ];
end
cump=curnsurn(X);m=rand(r (2) ,1);cumy=zeros (1,3); 
for j=l:3

cumy(j) = sum(m<cump(j ));
end
y=[cumy(1),c u m y (2)-cumy(1),diff(cumy)]; 
y l (2)=cumy(1);
y2 (2)=cumy(2) -cumy(1) ;  %simulates the y (multinomial) given the x

%Main part
for t=3 : length ( r)

cl(t)=1/(exp(phi*dl(t ) ) — 1) ; 
c 2 ( t ) = 1 / (exp(ph i*dl (t ) )- 1 )  ;
pi=gammasim((w*cl(t)*y1(t-1)/r(t-1) + (1-w)*c2 (t)*y1(t-2)/r (t-1) ),1) ; 
p2=gammasim((w*cl(t)*y2(t-1)/r (t-1) + (1-w)*c2(t)*y2(t-2)/r(t-l) ), 1) ; 
p3=gammasim((w*cl(t)* (1-yl(t-1)/r(t-l)-y2(t-l)/r(t-l)) + (1-w)*c2(t)* ..

(1-yl(t-2)/r (t-2)-y2 (t-2)/r(t-2))),1)
xl(t)=pl/(pl + p2 +p3); 
x2(t)=p2/(pl + p2 +p3);
x3 ( t )=l-xl ( t ) - x 2 ( t ) ;  %simulates the x from Dirichlet  
X = [x 1 (t) x2 (t) ] ; 
i f

sum(X)<1 X =[X,1 - su m (X ) ] ;
end

F igu re  A . 12: S im u la tion  c o d e  fo r  S V (3 ,2 ) .
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cump=cumsum(X);m=rand(r (t), 1);cumy=zeros(1,3); 
for j=l:3
cumy(j) = sum(mccump(j)); 
end

y=[cumy(1) ,cumy(2)-cumy(1) ,dif f(cumy) ]; 
yl (t) =cumy (1);
y2(t)=c u m y (2)-cumy(1); %simulates the y (multinomial) given the x 
end

subplot(2,2,1) %enables a series of small plots 
m=l:1:length(r);
plot(m,xl,m,x2,':+',m,x3, 'o k ') %plots all party probabilities on one graph 
ylim([0 1]) %defines limits of y axis to cover probability range [0,1] 
subplot(2,2,2)
plot(m,xl) %plots Conservative
ylim ( [0 1])
subplot (2,2,3)
plot (m,x2, ' :+')
ylim([0 1]) %plots Labour
subplot (2,2,4)
plot(x3,':ok')
ylim([0 1]) %plots Alliance

Figure A. 13: Simulation code for SV(3,2) (continued).
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function f=forecastsv32(phi,w,q,n)
%q=(# columns in design matrix)-1;
%n=# seats declared>7

global M N P  Reald OldC OldL OldD Oldd
%M, N, P are final vote outcomes for Conservative, Labour & Alliance 
%respectively; OldC, OldL, OldD were their final outcomes in last election; 
%Reald and Oldd are time intervals between declarations for new and last 
%elections respectively

for t=l:length(M) %defines the 'Total' column vector
01dR(t,l)=l; ^corresponds with intercept parameter
OldR(t,2)=01dC(t, 2)+01dL(t,2)+01dD(t, 2); %lst variable(own last time) 
OldR(t,3)=01dC(t,3)+01dL(t,3)+01dD(t,3); %2nd variable(rival last time)

end

for k=n+l:length(M) %loop deals with progression through election night
for t=l:k-l %part of new column vectors which are known declarations... 

NewC(t) = M(t); NewL(t) = N(t); NewD(t) = P(t);
NewR(t) = NewC(t)+NewL(t)+NewD(t); Newd(t) = Reald(t);

end
for t=k:length(M) %...remainder are 0 entries for now until forecasted 

NewC(t) = 0; NewL(t) = 0; NewD(t) = 0; NewR(t) = 0; Newd(t) = 0;
end
New2C=NewC. ' ; New2L=NewL. '; New2D=NewD. '; New2R=NewR.'; New2d=Newd.';

for t=k:length(M) %loop to forecast each undeclared seat 
for e=l:length(M)

Cl(e) = OldC(e,2); LI(e) = 01dL(t,2); T1 (e) = 01dR(e,2);
C2(e) = OldC(e,3); L2(e) =01dL(e,3); T2(e) =01dR(e,3); 
dO(e) = Oldd(e,2);

end

tOldC = OldC.'; tXOldC = (t01dC*01dC); iOldC = inv(tXOldC); 
betasl = i01dC*t01dC*New2C;
kk=4; ridge2C=eye(q+1)+kk*eye(q+1)*i01dC; invridge2C=inv(ridge2C); 
ridgebetasl=invridge2C*betasl; %ridge-regression parameter for Cons 
tlll=(New2C-01dC*ridgebetasl); tl21=tlll.'; tl31=tl21*tlll; 
estvl = tl31/(length(New2C)-q); sdyl=sqrt(estvl);%estimate sd(Cons) 
tOldR = OldR.'; tXOldR = (t01dR*01dR); iOldR = inv(tXOldR); 
betas2 = i01dR*t01dR*New2R;
kk=4; ridge2R=eye(q+1)+kk*eye(q+1)*i01dR; invridge2R=inv(ridge2R); 
ridgebetas2=invridge2R*betas2; %ridge-regression parameter for Total 
tll2=(New2R-01dR*ridgebetas2); tl22=tll2.'; tl32=tl22*tll2; 
estv2 = tl32/(length(New2R)-q); sdr=sqrt(estv2); %sd(Total) 
tOldL = OldL.'; tXOldL = (t01dL*01dL); iOldL = inv(tXOldL); 
betas3 = 101dL*t01dL*New2L;
kk=4; ridge2L=eye(q+1)+kk*eye(q+1)*iO!dL; invridge2L=inv(ridge2L); 
ridgebetas3=invridge2L*betas3; %ridge-regression parameter for Lab 
tll3=(New2L-01dL*ridgebetas3); tl23=tll3.'; tl33=tl23*tll3; 
estv3 = tl33/(length(New2L)-q); sdy2=sqrt(estv3); %sd(Lab) 
tOldd = Oldd.'; tXOldd = (t01dd*01dd); iOldd = inv(tXOldd);
betas4 = i01dd*t01dd*New2d;
kk=4; ridge2d=eye(1+1)+kk*eye(1+1)*iOldd; invridge2d=inv(ridge2d); 
ridgebetas4=invridge2d*betas4; %ridge-regression parameter for time 
tll4=(New2d-01dd*betas4); tl24=tll4.'; t134=t124*t114;

Figure A. 14: Forecasting code.
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estv4 = t!34/(length(New2d)-1); sdd=sqrt(estv4); %sd(time)

y l ( t ) = ridgebetasl(1)+C1(t) *ridgebetasl(2)+C2(t) *ridgebetasl(3);  
y2(t) = ridgebetas3(1)+L1(t)*ridgebetas3(2)+L2(t)*ridgebetas3(3) ; 
r(t) = ridgebetas2(1)+T1(t)*ridgebetas2(2)+T2(t)*ridgebetas2(3);  
dl(t) = betas4(1)+dO(t)*betas4(2);  %means of regression per case

for j = l : 10000 %how we estimate the predictive probabilities
b l (j )=randn*sdyl+yl(t); 
b2(j )=randn*sdy2+y2(t);
b3(j )=randn*sdr+r(t); %1) sample from each distribution for
b5(j ) =randn*sdd+dl(t) ;  %yl, y2, r and d; and . . .
b6 (j ) =b5(j ) + d l ( t -1 );
pl=gammasim(bl(j ) ,1) ;
p2=gammasim(b2(j ) , 1 ) ;
p3=gammasim(b3(j ) - b l (j ) - b 2 (j ) , 1 ) ;
b41(j)=pl  . /  (pl+p2+p3); b42(j ) =p2 . /  (pl+p2+p3);

%2) . . . subsequently sample from the Dirichlet distribution  
end %repeat to get 10000 realisations of b41 

subplot(3,1,1)  %enables multiple small plots rather than just one 
hist(b41) %histogram of a l l  Conservative sample probabilities  
xlim([0 1]) %plots whole of x range [0, 1] 
subplot(3,1 ,2)
hist(b42) %histogram of a l l  Labour sample probabilities  
xlim([0 1]) 
subplot(3,1 ,3)
hist( l-b41-b42)  %histogram of a l l  Alliance sample probabilities  
xlim([0 1])
Egivenhistl=mean(b41); Egivenhist2=mean(b42);
Predprob=[Egivenhistl; Egivenhist2; 1-Egivenhistl-Egivenhist2].  
%estimates of the predictive probabilities of voting 
New2C(t)=r(t)*Egivenhistl;
New2L(t) = r ( t ) *Egivenhist2;
New2D(t)=r(t)-New2C(t)-New2L(t);
New2R(t) = r ( t ) ;  %subsequently predictive votes per party, as required 
Predvote=[New2C(t) ; New2L(t) ; New2D(t) ] . ' ;
New2d(t) = d l ( t ) ;

end

for t = l : length(M) %sorts out winners of each seat
i f  ((NewC(t) > NewL(t)) && (NewC(t) > NewD(t))) s l ( t ) = l ;
else s l ( t ) = 0 ;
end
i f  ((NewL(t) > NewC(t)) && (NewL(t) > NewD(t))) s2 ( t )= l ;
else s 2 ( t ) =0;
end

end
Cseats=sum(sl); Lseats=sum(s2) ; Dseats=length(M)-Cseats-Lseats;
CvsLvsD = [Cseats; Lseats; D seats ] . ' ;

end %now the next seat has been declared so we revise a ll  undeclared le f t

Figure A .15: Forecasting code (continued).
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Appendix B

Computational Statistics

B .l Maximum Likelihood Estimation

Consider a family of probability distributions parameterized by an unknown pa
rameter vector 9, associated with either a known probability density function 
(continuous case) or probability mass function (discrete case). We will denote 
this by fe. We obtain a sample {yi,y2 , ■ ■ ■, yn} of n values from this distribution, 
and then use fg to compute the multivariate probability density associated with 
our observed data, fe{yi,y2 , ■ ■ ■, yn)• As a function of 9 with y1; y2, • • ■ > yn fixed, 
we call this the likelihood function L(9). The method of maximum likelihood 
estimates 9 by finding the value of 9, 9, which maximises L(9). This is the max
imum likelihood estimate (MLE) of 9. The maximum likelihood estimator may 
not be unique, or may not even exist. Commonly, we assume that the data from 
a particular distribution are independent, identically distributed with unknown 
parameters. This considerably simplifies the problem, as the likelihood may then 
be written as a product of n univariate probability densities:

n

m  =  X \fe(y,), (B .l)
i= 1

and, to simplify computation, we may take the logarithm of (B .l), since maxima 
are unaffected by monotone transformations such as a =  ln(6):

n

I n / , « .  (B.2)
¿=1

Then, the maximum of (B.2) may be found numerically using various optimiza
tion algorithms, such as the Newton-Raphson method. The MLE may be supple
mented by its approximate covariance matrix, derived from the likelihood func
tion. The likelihood function itself may be used to construct improved versions of
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confidence intervals compared to those obtained from the approximate covariance 
matrix.

This contrasts with seeking an unbiased estimator of 8, which may not neces
sarily yield the MLE but which will yield a value that (on average) will neither 
tend to overestimate nor underestimate the true value of 6.

B.1.1 Properties

Invariance: If 9 is the MLE for 9, and g is any function of 9, then the MLE 
for g(9) is g(6). It maximizes the so-called profile likelihood.

Bias: For small samples, this may be substantial.

Asymptotics: Often, estimation is performed using a set of i.i.d. measure
ments, such as distinct elements from a random sample or repeated observations. 
Here, we are interested in the behaviour of an estimator as the number of mea
surements increases to infinity (asymptotic behaviour).

Under the regularity conditions stated below, the MLE has several character
istics such that we say that it is ‘asymptotically optimal’. These include:

• Asymptotic unbias, i.e., bias tends to zero as n —> oo;

• Asymptotic efficiency, i.e., achieves the Cramer-Rao lower bound when n —> 
oo (minimum mean squared error)1; and

• Asymptotic normality. As n —> oo, the distribution of the MLE tends to 
the Gaussian distribution with mean 9 and covariance matrix equal to the 
inverse of the Fisher information matrix

Some regularity conditions which govern this behaviour are:

1. Defined first and second derivatives of the log-likelihood;

2. A non-zero Fisher information matrix and continuous as a function of the 
parameter; and

3. A consistent maximum likelihood estimator.
1 However, the Cramer-Rao bound only speaks of unbiased estimators while the MLE is 

usually biased.
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There may exist other (nearly) unbiased estimators with much smaller vari
ance. On the other hand, it may be that among all regular estimators, whose 
asymptotic distribution is not dramatically disturbed by small changes in the 
parameters, the asymptotic distribution of the maximum likelihood estimator is 
the best possible.

Cases where asymptotic behaviour does not hold:

1. The MLE is on its boundary of values.

2. The data boundary is parameter dependent, for example when estimating 
6 from a set of i.i.d. U[0,0\. Here, the MLE exists and has some good 
behaviour, but the asymptotics are not as outlined above.

3. Nuisance parameters. There may exist many, but this number should not 
increase with n.

4. Increasing information. Where i.i.d. observations does not hold, the infor
mation in the data must increase with n. This may not be met if there is too 
much dependence in the data (for example, if new observations are essen
tially identical to existing observations) or new independent observations 
have an increasing observation error.

B.2 EM  Algorithm

B.2.1 Motivation

Optimisation iterative methods such as Newton Raphson, steepest ascent and 
simplex do not necessarily converge. In most cases, the EM algorithm converges 
to a stationary point of the likelihood surface. The more parameters on the like
lihood surface the more local maximum points it has. As with other optimisation 
methods, we cannot guarantee that the EM algorithm provides the global max
imum, but it will usually be a local maximum. In quite general cases, the EM 
algorithm procedure results in an increasing sequence of values for the likelihood, 
which ultimately converge to a stationary value.

B.2.2 Definition

To start, we will write the likelihood as

L{0\ x) =  /(x| d),
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where 0 is the parameter vector and x  is data which are incomplete in some way. 
Then, we somehow choose to augment x  to get y, which is now complete data, 
and get subsequently a revised likelihood

L{0\ y) =  g(y\0) .

Suppose that we start the iteration from that is, we choose the starting 
point intuitively. The EM algorithm procedure involves generating a sequence 
of for m =  1,2, . . . ,  in which each iteration has two stages: firstly, the
expectation stage (the E-step), in which we require the general expression of

Q(9, 0(m)) =  E(lm?(y| 0)| x, 0(m>) (B.3)

and secondly, the maximisation stage (the M-step), at which we must obtain the 
value of 9, 0(m+1), which maximises (B.3).

B.2.3 Remarks

A property of the method is that the sequence is monotonic increasing, although 
not always strictly, that is, L(0(m+1)) >  L(#(m)).

Often, it is difficult to obtain expressions to go on to maximise; also integrals 
at the E-step are often difficult if not impossible to solve. Extensions to the EM 
algorithm include the generalised EM (GEM) algorithm and the stochastic EM 
(SEM) algorithm, which offer ways to tackle such problems (Morgan, 2000, [87]).

A complete account of the EM algorithm, including derivation, proof of con
vergence and numerous applications, is detailed in Dempster, Laird and Rubin 
(1977, [34]) and Figueiredo (2004, [44]).
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Appendix C

Opinion Poll Data

Harvey and Shephard (1990, [55]) mention that opinion polls from panel surveys 
have been excluded, as they violate the assumption that the measurement errors 
are independent through time. Also excluded are surveys carried out in marginal 
constituencies and then reweighted to give an impression of the national vote, as 
they view the practice as potentially highly inaccurate. Further notes about data 
cleansing is in Harvey and Shephard (1990).

The data do not always sum to 100% since nationalist parties receive signifi
cant support in polls and due to rounding error by individual pollsters.

For 1983, fieldwork for the first poll started on 10i/l May and the election was 
held on the 9th June. For 1987, fieldwork for the first poll occurred between 6th 
and 11th May and the election was held on the II th June.

We stress the point made by Harvey and Shephard (1990) that it would have 
been useful had any fieldwork spread over a number of days been broken down 
into individual day results, thus giving us more data in order to help overcome the 
problem of having less data. Instead, the average of the period is what is recorded. 
Nevertheless, in our two illustrations the vector lengths are large enough for our 
programs/models to work, but our programs/models would have struggled for 
example in the October 1974 election, when only fifteen polls were recorded.
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Poll no. (t) Time (days) 5 (days) Con. (%) Lab. (%) Lib. (%) Poll size (rt)
1 0.0 0.5 46.0 31.0 21.0 1047

2 2.0 2.0 49.0 34.0 15.0 964

3 3.5 1.5 46.0 33.0 19.0 946

4 6.0 2.5 44.0 37.0 17.0 1090

5 6.0 0.5 46.0 31.0 21.0 1154

6 6.5 0.5 49.0 31.0 19.0 1584

7 7.0 0.5 44.0 33.0 21.0 507

8 7.5 0.5 47.0 30.0 21.0 960

9 9.0 1.5 46.0 37.0 16.0 1100

10 9.5 0.5 45.0 36.0 18.0 1052

11 10.0 0.5 47.0 34.0 18.0 1250

12 11.5 1.5 48.0 33.0 18.0 1700

13 13.0 1.5 45.0 32.0 20.0 1071

14 13.0 0.5 51.0 33.0 15.0 1068

15 13.0 0.5 52.0 33.0 14.0 1100

16 14.0 1.0 47.5 32.5 19.0 1422

17 14.0 0.5 45.0 32.0 21.0 557

18 14.5 0.5 46.0 30.0 23.0 1023

19 15.0 0.5 49.0 31.5 18.0 2015

20 16.0 1.0 51.0 29.0 19.0 1088

21 16.5 0.5 47.0 30.0 21.0 1029

22 17.0 0.5 49.5 31.0 19.0 1325

23 17.5 0.5 47.5 28.0 23.0 918

24 20.0 2.5 41.0 30.0 24.0 1056

25 20.5 0.5 47.0 30.0 22.0 1276

26 21.0 0.5 44.0 32.0 21.0 1026

27 21.0 0.5 44.0 29.0 25.0 504

28 21.5 0.5 46.0 28.0 24.0 1038

29 22.0 0.5 45.5 31.5 22.0 1989

30 22.5 0.5 45.0 28.0 25.0 942

31 23.0 0.5 43.0 32.0 23.0 1067

32 23.5 0.5 47.0 28.0 23.0 1041

Table C.l: Election poll data in the run up to the general election of 1983.

227



Poll no. (t) Time (days) 6 (days) Con. (%) Lab. (%) Lib. (%) Poll size (rt)
33 24.0 0.5 44.0 27.0 27.5 1311

34 24.0 0.5 47.0 29.0 23.0 1074

35 26.0 2.0 45.0 24.0 28.0 1038

36 27.0 1.0 47.0 26.0 25.0 1337

37 27.5 0.5 46.0 28.0 24.0 1040

38 28.0 0.5 46.0 23.0 29.0 1100

39 28.5 0.5 45.5 26.5 26.0 2003

40 29.0 0.5 46.0 26.0 26.0 1335

41 29.0 0.5 47.0 25.0 26.0 1013

42 29.0 0.5 48.0 28.0 26.0 1101

Table C.2: Election poll data in the run up to the general election of 1983 (con
tinued).
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Poll no. (t) Time (days) S (days) Con. (%) Lab. (%) All. (%) Poll size (rt)
1 0.0 0.5 46.0 28.0 25.0 1735

2 0.5 0.5 39.0 28.0 30.0 1085

3 1.5 1.0 43.0 29.0 25.0 1445

4 1.5 0.5 44.0 31.0 23.0 1934

5 4.5 3.0 41.0 30.0 26.0 1020

6 5.5 1.0 42.0 33.0 23.0 1040

7 8.0 2.5 42.0 32.0 24.0 1058

8 9.5 1.5 41.0 33.0 24.0 1072

9 11.0 1.5 42.0 33.0 23.0 2640

10 11.0 0.5 45.0 36.0 20.0 1079

11 12.0 1.0 41.0 34.0 22.0 1066

12 12.5 0.5 41.0 33.0 21.0 1517

13 15.0 2.5 42.0 37.0 21.0 1075

14 17.5 2.5 42.0 35.0 20.0 1035

15 18.0 0.5 44.5 36.0 18.0 2506

16 19.0 1.0 41.0 37.0 21.0 1072

17 19.0 0.5 45.0 32.0 22.0 1067

18 19.5 0.5 44.0 32.0 21.0 1553

19 22.5 3.0 42.0 36.0 20.0 1573

20 22.5 0.5 44.0 33.0 21.0 1063

21 24.0 1.5 40.5 36.5 21.5 2553

22 25.0 1.0 44.0 33.0 21.0 1087

23 25.5 0.5 44.0 34.0 24.0 1576

24 26.0 0.5 43.0 33.0 22.0 2102

25 26.5 0.5 43.0 35.0 21.0 1065

26 29.5 3.0 45.0 32.0 21.0 1575

27 30.0 0.5 42.0 35.0 21.0 2122

28 30.0 0.5 41.0 34.0 23.5 2005

29 30.5 0.5 43.0 35.0 21.0 1086

30 30.5 0.5 43.0 34.0 21.0 1702

31 31.0 0.5 44.0 32.0 22.0 1668

32 31.5 0.5 42.0 35.0 21.0 1633

Table C.3: Election poll data in the run up to the general election of 1987.
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