
Rocha, Valdemar C. (1976) Versatile Error-Control Coding Systems. Doctor
of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94613/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94613

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94613/
https://doi.org/10.22024/UniKent/01.02.94613
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

VERSATILE ERROR-CONTROL CODING SYSTEMS

by

VALDEMAR C. ROCHA, Jr.

A Dissertation submitted for the Degree of Doctor
of Philosophy in the Faculty of Natural Sciences

at the University of Kent at Canterbury

liElectronics Laboratories > May, 1976

'S ^ \ CM VJ'D' T)

n 5268

To my wife,
Ursula

1

Acknowledgements

I would like to give my most grateful thanks to the
Brazilian research coordinating institution, CAPES, for
the financial support which made this research possible;
to Professor R.C. Jennison for providing research facili­
ties; to the Staff of the Electronics Laboratories for
friendly assistance; to my colleagues in both the
Communications Laboratory and the Computers & Cybernetics
Laboratory for useful advice, discussion of relevant
matters and sharing experimental equipment; to Miss Denise
Paine for her efforts in the typing of this thesis; to Dr.
P.G. Farrell for his helpful supervision, guidance,
encouragement and the constant interest demonstrated during
the course of this research; to my family, friends and
especially to my wife for encouragement, patience and
understanding.

11

ABSTRACT

The research reported in this thesis is in the field
of error-correcting codes, which has evolved as a very
important branch of information theory. The main use of
error-correcting codes is to increase the reliability of
digital data transmitted through a noisy environment.
There are, sometimes, alternative ways of increasing the
reliability of data transmission, but coding methods are
now competitive in cost and complexity in many cases
because of recent advances in technology.

The first two chapters of this thesis introduce the
subject of error-correcting codes, review some of the
published literature in this field and discuss the advan­
tages of various coding techniques. After presenting
linear block codes attention is from then on concentrated
on cyclic codes, which is the subject of Chapter 3.

The first part of Chapter 3 presents the mathemati­
cal background necessary for the study of cyclic codes and
examines existing methods of encoding and their practical
implementation. In the second part of Chapter 3 various
ways of decoding cyclic codes are studied and from these
considerations, a general decoder for cyclic codes is
devised and is presented in Chapter 4. Also, a review of
the principal classes of cyclic codes is presented.

Chapter 4 describes an experimental system constructed
for measuring the performance of cyclic codes initially

iii

perturbed by random errors and then by bursts of errors.
Simulated channels are used both for random and burst
errors. A computer simulation of the whole system was
made in order to verify the accuracy of the experimental
results obtained.

Chapter 5 presents the various results obtained with
the experimental system and by computer simulation, which
allow a comparison of the efficiency of various cyclic
codes to be made. Finally, Chapter 6 summarises and dis­
cusses the main results of the research and suggests
interesting points for future investigation in the area.

The main objective of this research is to contribute
towards the solution of a fairly wide range of problems
arising in the design of efficient coding schemes for
practical applications; i.e. a study of coding from an
engineering point of view.

)

iv

CONTENTS

Page
\

Acknowledgements i
Abstract ii
Contents iv
Symbols and Abbreviations viii

CHAPTER 1 : Introduction 1

CHAPTER 2 : Survey of Coding 7
2.1 Introduction 7
2.2 Block and Convolutional Codes 7
2.3 Linear Block Codes 8
2.4 Generator Matrix 9
2.5 Parity Check Matrix 11
2.6 Error Syndrome and Decoding 12
2.7 The Standard Array 16
2.8 Maximum Likelihood Decoding 18
2.9 Systematic Search Decoding 19
2.10 Single Parity Check (S.P.C.) Codes 20
2.11 Hamming Codes 23
2.12 Product Codes 27

Constant Weight Codes2.13 28

V

3.1 Introduction 29
3.2 Basic Definitions 29
3.3 Matrix Representation of Cyclic Codes 32
3.4 Encoding with an (n-k)-Stage Shift-Register 33
3.5 Encoding with a k-Stage Shift-Register 35
3.6 Syndrome Calculation 38
3.7 Shortened Cyclic Codes 41
3.8 Pseudo-Cyclic Codes 42
3.9 Decoding Cyclic Random Error Correcting 43

Codes
3.9.1 Meggitt Decoder 43
3.9.2 Error Trapping Decoding 48
3.9.3 Permutation Decoding 52
3.9.4 Majority Logic Decoding 53
3.10 Bose-Chaudhuri-Hocquenghem (B.C.H.) Codes 63
3.10.1 Basic Properties of B.C.H. Codes 64
3.10.2 Decoding of the B.C.H. Codes 66
3.11 Burst Error Correction 70
3.12 Decoding of Burst-Correcting Cyclic Codes 72
3.12.1 Burst Trapping Decoder 72
3.12.2 Gallager Optimum Burst Decoder 73
3.12.3 High-Speed Burst Decoder 74
3.13 Important Classes of Cyclic Codes 75
3.13.1 Hamming Codes 75
3.12.2 Maximum Length Sequence Codes 76
3.13.3 Reed-Solomon Codes 76

Page

CHAPTER 3 : Cyclic Codes 29

vi

3.13.4 Codes Based on Finite Geometries 77
3.13.5 Quadratic Residue Codes 78
3.13.6 Fire Codes 79

CHAPTER 4 : Experimental System and Computer
Simulation 81

4.1 Introduction 81
4.2 Data Source 82
4.3 Clock and Timing Waveforms 83
4.4 Encoder 85
4.5 Error Generator 86
4.5.1 Random Errors 86
4.5.2 Generation of Bursts 91
4.6 Random Error Correction 92
4.6.1 Decoder 93
4.6.2 Error Trapping 94
4.6.3 Systematic Search 96
4.6.4 Shortened Cyclic Codes 97
4.7 Burst Error Correction 98
4.7.1 Encoder 98
4.7.2 Decoder 98
4.8 Counting Errors 1°0
4.9 Computer Simulation 102

Page

via

Results 104

5.1 Introduction 104
5.2 Cyclic Random Error Correcting Codes 104
5.2.1 Shortened Cyclic Codes 106
5.2.2 Error Trapping Plus Systematic Search 107
5.3 Cyclic Burst-Error-Correcting Codes 108
5.4 Forward Error Correction with A.R.Q. Ill
5.5 Possible Sources of Inaccuracy in the

Results 112

CHAPTER 6 : Conclusion 140

APPENDIX I : Modern Algebra and Vector Spaces 146
APPENDIX II Computer Programmes 151
APPENDIX III : List of Integrated Circuits 158

BIBLIOGRAPHY 159

INDEX 176

Page

CHAPTER 5 : Experimental and Computer Simulated

viii

Symbols and Abbreviations

a
A . R . Q.
b

B.C.H.
B.S.C.
c

C
C (x)
CLC
rt _ nl

n " (n - t) : t l

D

d
DO
E (x)

EB
EC
ED
ET
F/B
FF
FEC
FSR
03

Primitive element of a Galois Field
Automatic repeat request
Maximum burst length that a code can
effectively correct
Bose-Chaudhuri-Hocquenghem
Binary Symmetric Channel
Number of parity check digits in a
block code
Channel capacity
Remainder polynomial
Combinational logic circuit

Unit delayNumber of errors a code can detect
Hamming distance
Noise error pattern

Polynomial representation of an error
pattern
Error buffer
Error correcting code
Error detecting code
Error trapping
Feedback
Flip-flop
Forward error correction
Feedback shift register
Generator matrix of a linear code

IX

G(x) Generator polynomial of a cyclic code
GF(q) Galois field with q elements
D O Parity check matrix

H(x) Parity check polynomial of a cyclic code
I/P Input
I(x) Polynomial representation of k informa­

tion digits
J Number of orthogonal parity check

equations
k Number of information digits in a block

code
LCM Least common multiple
MPLX Multiplexer
n Block length of a code
(n ,k) Block code with parameters n and k
(n,k,d) Block code with parameters n, k and d
0/P Output
P Exponent to which a polynomial belongs
P(x) Primitive polynomial

Quotient polynomial
Pc Probability of erroneous decoding

pb Probability of a burst occurring
pe Probability of a random error occurring
PN Pseudo-noise
PROM Programmable Read Only memory
q Number of levels that a digit can assume
Q(x) Quotient polynomial

D O Received codeword
R Code information rate or efficiency
R(X) Polynomial representation of a received

n-tuple
REM Remainder (from a division)

X

00 Syndrome vector
S(x) Polynomial representation of a syndrome vector
S.C.R. Syndrome calculating register
S/N Signal-to-noise power ratio
S.P.C. Single parity check
S.R. Shift register
t Number of random errors a code can

correct (per codeword)
r a Transmitted codeword

V(x) Polynomial representation of a trans­
mitted codeword

| x | Determinant X

rxi Largest integer £ X

E x : Matrix X

e x : t Transpose of [Y]

w Channel frequency bandwidth
W (v) Weight of an n-tuple v
W/F Waveform

Two input exclusive-OR gate

Two input OR-gate

Two input AND-gate

Logical inverter

1

CHAPTER 1

Introduction

People in their desire to communicate with others have,
since the very early days of history, been challenged by
the problem of how to achieve reliable communication, i.e.
reliable transmission of information. Though the formula­
tion of this problem has varied a lot over the centuries,
it remains very much alive and is of major concern among
the communication engineers of today.

Practical communication systems keep changing their
external aspect as technology changes, e.g. the old systems
evolved from electromechanical switching relays to vacuum
tubes, later to transistors, etc. However, a closer look
reveals that in general terms these systems can all be
represented by a block diagram like that of Figure 1.1.

FIGURE 1.1 : General Communication System

2

SOURCE : Originating point for the information to be
transmitted. It can be, for example, the output from
a remote sensor in a telemetering system.
TRANSMITTER : Converts the source output into waveforms
suitable for transmission over the channel. The
function of the transmitter can be subdivided as follows:

1. SOURCE ENCODER
This can be in many cases simply an analogue to

digital converter or in other situations a more sophisti­
cated piece of equipment to remove unnecessary detail from
the information, as in data compression schemes.

2. CHANNEL ENCODER Controlled redundancy is added to
the information by the channel encoder to counteract as
far as possible the effects of noise.

3. MODULATOR
In many cases the output from the channel encoder

is not matched to the channel. It is the function of the
modulator to translate the channel encoder output into a
waveform suitable for transmission over the channel.

CHANNEL : Physical path over which the information has to
pass before reaching the receiver. A channel can take a
variety of forms. Pair of wires, or microwave links, are
examples of practical channels. As the information is
carried through a channel, it is subjected to unpredict­
able and unwanted disturbances called noise. As a result

3

of noise part of the information can be badly corrupted.

RECEIVER Estimates which waveform has been transmitted from
the received version, possibly corrupted by noise, of the
original waveform. This is normally the most complex part
of a communication system and can be subdivided as follows:

1. DEMODULATOR
On receiving a waveform from the channel the demodula­

tor tries to estimate which waveform was sent by the trans­
mitter and outputs the corresponding digital version. Due
to noise, this version will not always be a correct one and
so estimates containing errors will be passed on to the
channel decoder.

2. CHANNEL DECODER
By applying the coding rules to the digits provided by

the demodulator, the channel decoder tries to correct
possible errors and then produce its estimation of the
source encoder output digits.

3. SOURCE DECODER
Processes, to replace the redundancy removed at the

transmitter, the channel decoder output before passing it
to the sink. If a correct estimate of the transmitted
message has been made by the channel decoder, then the
source decoder will supply a replica of the original
information to the sink.

4

SINK Final recipient of the information transmitted. The
sink can be a human being at the end of a telephone line,
or a computer, for example.

No matter how well designed, any communication system
will always suffer from the effects of noise, i.e. the
messages coming from its output may contain errors. It can
take a long time before an error appears, but eventually it
will happen. However, the practical problem is not the
provision of error-free communication, but the design of
systems which provide an acceptably low error rate for the

-4user. For example, an error rate of 10 for the letters
in a book is perfectly acceptable, while the same error
rate within a computer would be disastrous.

The ultimate potential of error-correcting codes was
established in 1948 with Shannon's "Coding Theorem" for a
noisy channel (Shannon, 1948). The coding theorem for a
noisy channel states the following:

- every channel has a definite maximum capacity C ,
and for any rate R less than C, there exist codes
of rate R which, with maximum likelihood decoding,
have an arbitrarily small probability of erroneous
decoding.

This means more specifically that for any given R<C
and length n, there exists a code such that Pc £ e
where E(R) > 0, for R<C, and is specified by channel tran­
sition probabilities (Lin, 1970). The coding theorem
proves the existence of codes which can make the probability
of erroneous decoding very small but gives no clue on how to
construct such codes. However, it indicates that P can bec
* P is the probability of erroneous decoding.

5

reduced by increasing n. When n is increased, the com­
plexity of the systems increase, sometimes exponentially
with n. The ways by which the error rate of a system can
be reduced are all dependent on the parameters contained
in the famous expression below, where W represents the
channel bandwidth and S/N is the signal-to-noise power
ratio C = W log(1 + S/N)

derived by Shannon (1948). The most ingenious of all is
the trading of bandwidth and signal-to-noise power ratio
by the use of coding (i.e. the controlled addition of
redundant information) to allow the receiver to detect and
possibly correct errors using a decoder.

From this discussion, it becomes apparent that the
objective of coding theory is to:

(1) find long good codes
(2) find practical methods for encoding and

efficient decoding

The present need for processing enormous amounts of
data, mostly digital, transmitted in many cases auto­
matically and at high-speed, demands solutions that a few
years ago would be considered impractical. The recent
developments in digital hardware technology have made
possible the use of fairly complex coding schemes and as
more sophisticated processors become available, thanks to
microelectronic technology, the advantages that can be
gained by the use of coding will be even greater.

The second chapter in this thesis reviews some of the

6

published literature in the field and discusses the
advantages of various coding techniques. After presenting
linear block codes, attention is from then on concentrated
on cyclic codes, which is the subject of Chapter 3.

The first part of Chapter 3 presents the mathematical
background necessary for the study of cyclic codes and
examines existing methods of encoding and their practical
implementation. In the second part of Chapter 3 various
ways of decoding cyclic codes are studied and from these
considerations a general decoder for cyclic codes is
devised and is presented in Chapter 4. Also a review of
the principal classes of cyclic codes is presented.

Chapter 4 describes an experimental system constructed
for measuring the performance of cyclic codes initially
perturbed by random errors and then by bursts of errors.
Simulated channels are used both for random and burst errors.
A computer simulation of the whole system was made in order
to verify the accuracy of the experimental results obtained.

Chapter 5 presents the various results obtained with
the experimental system and by computer simulation which
allow a comparison of the efficiency of various cyclic codes
to be made. Finally, Chapter 6 summarises and discusses
the main results of the research and suggests interesting
points for future investigation in the area.

The main objective of this research is to contribute
towards the solution of a fairly wide range of problems
arising in the design of efficient coding schemes for
practical applications; i.e. a study of coding from an
engineering point of view.

7

CHAPTER 2

Survey of Coding

2.1 Introduction

Since the advent of the coding theorem (Shannon, 1948)
and of Hamming’s Single-Error-Correcting Code (Hamming,
1950), coding theory has developed enormously, and at
present it generates a fairly extensive area of research.
Apart from the more general applications, there are codes
designed for special applications like synchronisation
recovery (Stiffler, 1971), asymmetric channels (Kautz and
Levitt, 1969), comma-free codes (Scholtz, 1969), etc., but
these are not studied here. After a brief discussion of
the two main types of code construction this survey is
directed towards linear binary group codes. By comparison
with other types of codes, linear codes are fairly well
developed and understood.

2.2 Block and Convolutional Codes

Depending on how redundancy is added to blocks of
information digits two basically different types of code
result. Codes for which the redundancy in a block checks
for errors only in that particular block are called block
codes. Codes where the redundancy in a block checks for

8

errors in more than one block are called convolutional
codes (Elias, 1955). There is no intention here of con­
sidering convolutional codes any further; their definition
has been given just to point out the basic difference
between block and convolutional codes. For a treatment of
convolutional codes see Peterson (1972). Block and con­
volutional codes are competitive in many situations. The
final choice between them is a function of factors like the
data format, the decoding delay, the complexity of the
overall system needed to achieve a specified output error
rate, etc.

2.3 Linear Block Codes

Block codes can be linear or nonlinear. For linear
codes the redundant digits are calculated with modulo-2
adders while nonlinear codes require the use of nonlinear
logic like AND, NOR, NAND gates, etc. However, the over­
whelming majority of published articles on block codes is
concerned with the linear case. The reason for this is
the fact that linear block codes turn out to be mathema­
tically more tractable, and in general are simpler to
implement in practice, than nonlinear block codes. Despite
these difficulties there is still research being done on
nonlinear codes, and discoveries like that of a (15,8) code
which corrects two random errors per block (Nordstrom et al,1967)
which it is impossible to obtain by linear means, stimu­
lates further work in nonlinear code construction techniques.
The theory of linear block codes owes much to the work of

9

Hamming (1950), Golay (1949) and Slepian (1956a, 1956b, 1960).
The treatment of linear block codes that follows uses the
concept of vector space (see Appendix I for definition of
terms), and only binary codes are assumed throughout unless
the contrary is specified. Linear block codes are normally
represented by the ordered pair (n,k) where n represents the
number of digits in each codeword and is referred to as
block length, and k is the number of information digits per
block; or the ordered triplet (n,k,d) where n and k are the
same as before and d is the code minimum distance (to be
defined later in this chapter).

DEFINITION 2.1 An (n,k) linear block code is a set of
2 n-tuples which form a subspace of the vector space of all
n-tuples.

2.4 Generator Matrix

An (n,k) binary code has 2 distinct codewords, each
of them n digits long. To use such a code, without further

kconsideration, it is necessary to store n><2 binary digits
(bits) at the transmitter. This is one way of having the
k; . . k2 codewords ready for transmission. However, when the 2

n-tuples form a subspace of the space of all n-tuples (i.e.
a linear code) it is possible to obtain a set of k linearly
independent vectors*, which by linear combinations generate
all the elements of the subspace. For example if:

The words vector and codeword will be used interchangeably throughout
this thesis.

10

O J >[>2] » • • •» LV fcl

are k independent n-tuples (i.e. form a basis) then any other
n-tuple in their subspace can be obtained as:

[U] = m1[V1] + m2 [V2"] + ... + mk[Vkl

where m. is either zero or one, and l<i<k.1 — ~pThen, the way to generate the 2 codewords for a linear block
code is best described in terms of a generator matrix [gQ .
The rows of the generator matrix are chosen to be k indepen­
dent vectors from the code alphabet; i.e. [g] is a kxn
matrix where the rows form a basis:

~vi
cg: • „

Any codeword in the code can be generated as follows. Let
Qnj = [m1 ,m2 , . . . ,m̂] be a message sequence. The matrix
product [m] . [G] results in a vector QJ] , which is a linear
combination of rows of [g] :

[U] = [m).[Gl] = m1[V1] + m? + ... + mR [vj

Qj] is the codeword associated with the k-tuple message
block Qm] and the matrix [G] is called the generator matrix
of the code. It should be clear that the use of linear
block codes reduces considerably the storage requirements at

11

the transmitter. Basically, the encoder for a linear block
code can consist of enough storage elements to accommodate
the k rows of Qg] and a logic circuit to perform a linear
combination of these rows according to the incoming message
sequence. Since 13 is non-singular (Peterson, 1961),it is
possible to write |j3] = I g] where 1^ is a k*k unit
matrix and g is a kx(n-k) matrix. In this situation Qg] is
said to be in standard echelon form and the codewords it
generates have the first k positions occupied by the infor­
mation digits while the last n-k digits are linear combina­
tions of these information digits. A code with this
structure is said to be systematic. The n-k redundant digits
of a codeword are called parity checks and the linear functions
that give the parity checks are called parity check equations.

2.5 Parity Check Matrix

Given the kxn matrix [G] of a linear code it is possible
to find a (n-k)xn matrix [Tf] such that the row space of £g]
is orthogonal to Q£),i.e. if [j / i s a vector in the row
space of [G] then [V7]. QT] ̂ = 0. The Qf] matrix is called
the parity check matrix of the code and can be represented
as Qf] = [h .’ I where h is an (n-k)xk matrix and In_^ is

Tan (n-k) x(n-k) unit matrix. It can be shown that [h] = Qf]
where [g] ̂ is the transpose of the Hg] matrix. Since the
rows of Qf] are linearly independent they generate an (n,n-k)
linear code which is called the dual of the (n,k) linear code
generated by [jG] . This (n,n-k) code can be regarded as the

12

null-space of the (n,k) code generated by [g] .

2.6 Error Syndrome and Decoding

Suppose a codeword [V] in a linear block code with
generator matrix [gJ and parity check matrix [hJ is trans­
mitted through a noisy channel. At the receiver an n-tuple
DO is received which may differ from [V] due to the noise
added in the channel during transmission. It is the task
of the decoder to recover [V] from [r] . The first step is
to check whether [X] is a codeword. This step can be repre­
sented by the equation below.

[r][h]t = DO

where DO is an (n-k)-tuple called the syndrome of Q0 • If
Qs] = [pj (an all zero (n-k)-tuple) it is assumed that no
errors occurred, i.e. Qf] is assumed to be equal to Qv J .
However, if [Sj / [0] ? Q0 does not correspond to a code
vector in the row space of [jd and the decoder uses this
syndrome for error detection and/or correction purposes.
The received n-tuple [r] can be written as QC] = CVl + DO
where [jEf] is an n-tuple representing the error pattern. A
number of relevant terms is presented below which are very
useful in establishing the error correcting properties of
linear block codes.

DEFINITION 2.2 The number of non-zero components of
an n-tuple [V] as caH ed the Hamming weight of Qv] and is

13

denoted by

DEFINITION 2.3 The number of positions in which two
n-tuples [vj and [V̂] differ is called the Hamming distance
between [V-jl and [V^ and is denoted by d^y^ V2)'

DEFINITION 2.4 The smallest distance between any pair
of codewords in a code is called the minimum distance of the
code, denoted d . or simply d.

Due to the group properties of vector spaces, the
addition of two codewords in a linear code gives as a result
another codeword. This fact can be represented as:

[v j + o g = = [V 31
W(V1+V2} = w(v 3)

d (v 1 5 v 2) = W(V 3)

The last expression above means that for linear codes
the minimum distance is equal to the weight of the minimum
weight non-zero codeword. With the exception of Hamming
codes (d=3 and d=4), which are described later, the problem
of constructing non-trivial error correcting codes with a
given d is very difficult. In the linear case an important
property for code construction is now introduced which
relates d with the parity check matrix Qf] . If the mini­
mum weight non-zero codeword is multiplied by the code
parity check matrix Q{] , the result is obviously an all

14

zero (n-k)-tuple. This all zero (n-k)-tuple can be thought
of as resulting from a linear combination of d columns of
[hJ . Consequently, no linear combination of less than d
columns of QiJ will give as a result an all zero (n-k)-tuple
otherwise the code minimum distance would be less than d.
The minimum distance of a linear code can be expressed in
terms of the Q{] matrix as follows.

THEOREM 2.1 A linear code whose parity check matrixQf]
contains d-1 linearly independent columns has minimum dis­
tance at least d.

For a formal proof of Theorem 2.1 see Peterson (1972).
Though only the Hamming metric is considered in this

thesis, other metrics exist, e.g. the Lee metric (Lee, 1958)
the choice of a particular metric, aiming at optimum results
is a function of the type of modulation and channel charac­
teristic to be used (see Berlekamp, 1968).

In order to assess the performance of a coding scheme
it is vital to have a knowledge of the statistical behaviour
of the channel. In practice, these statistics normally turn
out to be very difficult to obtain and a theoretical model
of the channel is used instead. One of the most commonly
used channel models is that of the binary symmetric channel
(B.S.C.) . The B.S.C. assumes that errors occur indepen­
dently (i.e. the channel is memoryless) and that zeros and
ones have the same probability of being in error (see Figure
2.1). In some applications it can be more convenient to
use other channel models, e.g. the binary erasure channel
(Elias, 1954).

15

FIGURE 2.1 : Binary Symmetric Channel

The ultimate performance that can be achieved with
error correcting codes is theoretically expressed in terms
of bounds (Hamming, 1950; Gilbert, 1952; Plotkin, 1960;
Varshamov, 1957). There are many classes of codes which
meet these bounds for small values of block length, but
which soon fall short in performance as n is increased.
For a code with minimum distance d to be able to correct t
or less errors per codeword, the following inequality must
hold:

d >. 2 t + 1 (Peterson, 1961).

In general, to correct C errors and to detect D errors per
codeword, the inequality above is expressed as:

d >. C+D+l,

where D>C as errors must be detected before they can be
corrected.

16

2.7 The Standard Array

When an n-tuple [r] is received, the decoder has to
decide among all possible codewords which particular code­
word has been transmitted. In order to properly consider
this decoding problem, it is sometimes convenient to use
the concept of the standard array. This applies to linear
codes, and consists of splitting the vector space containing
the 2 distinct n-tuples into 2 disjoint subsets, each one
of them containing one and only one codeword. The 2 dis-
joint subsets are constructed as follows. Write all the 2
code vectors in a row. Below the all zero codeword, write
an n-tuple [Ê] which does not appear in the first row. This
n-tuple can be associated with an error pattern which the
code is to detect and/or correct, as will be shown later.
The second row is formed by adding [Ê] to each of the non­
zero code vectors as indicated below:

[o o . . . o] [v j C v 2l • • • . [v 2k . - j]

pg Pi+Vj Pi + V2l [VV2k-l]

The third and consecutive rows are constructed in a similar
manner, every new row starting with an n-tuple not used
before. The following table results:

17

[bo ... 6] [Vj] & 2] [v2k-J

[Ej] (E1+V̂ | S b V2k-3

[E j] H 2+VJ 5 2 tV 3 f f 2+V2 l< -ii
• • *
• • •
• • »
• • *

E2(n-k)_^j [E2(n -k)_1+Vl| ^ (n - k ^ + V - l j

TABLE 1

n _The 2 rows in the table above are called cosets and the
leading element in each row is called the coset leader.
This table is called the standard array or the coset decom­
position of the code.

The syndrome QT) associated with an n-tuple Qf] is
given by:

DO = [r].[h]t = H+v] .[h]t = [e].[h]t + [v].[h]t = [e].[h]t

since [V].[H]T = 0, i.e. [s] = [Ej.Qf]™. This equation for the
syndrome clearly shows that all elements in one coset of the
standard array have the same syndrome because it depends
only on the coset leader n-tuple Jjf] . This suggests the use
of the standard array and the equation |jf] = Qe] . Q£] to
decode linear codes as follows:

(1) Calculate the syndrome Qf] of a received n-tuple Qf] .
(2) Find the coset leader [e /} associated with this syndrome.

18

This coset leader is assumed to be the errors introduced
by noise on the channel.

(3) Subtract the coset leader found in step 2 above from
m in order to obtain the estimate of the transmitted
codeword, i.e. [Vf] = Qf] - [e 7].

From these discussions it is concluded that, based on noise
statistics of the channel, the coset leaders should be chosen
as the most likely error patterns. However, as mentioned
earlier, detailed statistics of the noise are not always
available and it usually becomes very difficult to find codes
to exactly match the channel. Also, in order to use the
standard array, it is necessary to find the coset (and therefore
the appropriate coset leader) to which the received n-tuple
belongs. This is, in general, not easy to implement, so
that the concept of the standard array is more useful as a
way of understanding the structure of linear codes, rather
than as a practical decoding algorithm.

Two potentially practical methods of decoding linear
codes are now presented. Further procedures are described in
Peterson (1972) and Lucky et al (1968), but so far the use of
the linearity property alone has not resulted in any simple
decoding algorithm for linear codes, at least in the pub­
lished literature.

2.8 Maximum Likelihood Decoding

If the codewords of an (n,k) code are selected indepen­
dently and all have the same probability of being sent

19

through a channel, an optimum way of decoding them is as
follows. On receiving an n-tuple [r] , the decoder compares
it with all possible codewords in the code. For the binary

case this means comparing |_RJ with the 2 distinct n-tuples
which form the code. Select the codeword which is nearest
to py in terms of Hamming distance, i.e. the word which
differs from [r] in the least number of places. This is
assumed to be the transmitted codeword. Unfortunately, the
time required to decode a received n-tuple can become pro­
hibitively long even for moderate values of k. It should
be noted that the decoder has to compare |_Rj with 2 code­
words during a time interval corresponding to the duration
of n channel digits. This fact makes this process of
decoding inadequate for many practical cases.

2.9 Systematic Search Decoding

A general procedure for decoding linear block codes
consists of associating a correctable error pattern with
each of the non-zero syndromes. It has been mentioned
before that one property of the standard array is that all
n-tuples belonging to one coset have the same syndrome.
Also, the coset leaders should be chosen as the most likely
error patterns in their cosets. A simple way of decoding
these codes is:
(1) Calculate the syndrome for the received n-tuple.
(2) By systematic search find the correctable error pattern,

(coset leader), associated with the syndrome of the
received n-tuple.

20

(3) Subtract the error pattern found in step 2 from the
received n-tuple in order to remove the errors from
it.

To implement this procedure it is necessary to generate all
correctable error patterns successively, and feed them into
a combinational circuit that gives the associated syndromes
at its output. Using a multiple input logic gate it is possible
to detect when the locally generated syndrome matches the
syndrome of the received n-tuple. If this (n,k) code is t
error correcting, the total number of patterns it is necessary
to generate in the search is given by C Luc Ky et a.1,1969):

From this expression it is easy to see that the number of
error patterns increases very rapidly with n and t. This
fact sets a limit to the applicability of this technique.

The decoding methods described above in sections 2.8
and 2.9 are generally applicable to all linear block codes.
Less complex methods of decoding can be devised for certain
classes of linear codes, by virtue of their particular
structure. Some simple block codes are now presented.

2.10 Single Parity Check (S.P.C.) Codes

These constitute one of the simplest forms of coding
because only one redundant digit (parity check) is used per
codeword. This parity check digit is calculated according

i=l

21

to the following rule. Make the parity check digit equal to
one if the number of ones in the information block is odd;
otherwise make the parity check equal to zero. This proce­
dure is equivalent to making the check digit equal to the
sum modulo- 2 of the information digits in a block, i.e. a
linear code results. By using this rule to calculate the
parity check, the number of ONES in a codeword is always even*.
As a consequence of the presence of the single parity check,
the decoder is able to detect any odd number of errors but
fails to detect an even number of errors. Thus, these codes
have minimum distance d=2. Figure 2.2 shows the diagram of
an encoder for these codes. A toggle flip-flop is used to
calculate the parity check. The output of this type of flip-
flop changes with the next clock pulse whenever the present
input is a one. With the flip-flop initially reset, informa­
tion digits are sent to the channel and simultaneously into
the encoder. After k shifts, an odd number of ones in the
information section causes a one to appear at the output of
the flip-flop; otherwise a zero will be produced. A timing
circuit controls the delivery of information and parity digits
to the channel.

The decoding rule for S.P.C. codes is simply to count
the number of ones in a received block. If the resulting
count is even, the received block is assumed to be error-free
and can be delivered to the data sink. If the count gives an
odd number, errors have been detected and the received block
is either tagged and delivered to the data sink or just dis-

A , f t tAn alternative way of calculating the check digit (odd parity) is by
making it equal to zero when the number of ones in the information
block is odd; otherwise the parity check is made equal to one.

22

CLOCK. TIMING -O/P

I/P TOGGLE
FLIP-FLOP

PARITY

V O/P

TO CHANNEL

INFORMATION

FIGURE 2.2 : Encoder for S.P.C. Codes

carded. Another alternative is to ask the transmitter,
assuming a feedback channel is available, to retransmit the
erroneous block. This last possibility is called automatic
repeat request (A.R.Q.). Though S.P.C. codes permit only
error detection, they are very powerful in systems using
A.R.Q., because their efficiency is usually high for mode­
rate n and the circuitry required for their implementation
is very simple. The efficiency of S.P.C. codes is given by
the expression:

R = is = ¡Ul = ! - In n n

It is clear from this expression that R approaches 1 as n is
increased. This improved efficiency should always be weighed
against the increase in the probability of undetected errors.
The block error rate for S.P.C. codes in a B.S.C. channel is
given by(f arrell , {3^3)

23

Pc = C2 P2(l-P)n 2 + C4 P4(l-P)n 4 + n e e n e e

If Pg is sufficiently small Pc can be approximated as

P = C2 P2(l-P)n 2 c n e e

Figure 2.3 shows the diagram of a decoder for S.P.C. codes.

I/P
FROM

CHANNEL

FIGURE 2.3 : Decoder for S.P.C. Codes

2.11 Hamming Codes

These codes (Hamming, 1950), were the first non-trivial
error correcting codes to be proposed. Hamming codes are
linear single error correcting codes, i.e. their minimum
distance is d = 3.They have block length n<.2 -1, where c is
the number of parity check digits. This condition on n
ensures the availability of sufficient redundancy to check

24

for single errors in a codeword since then the number of
non-zero syndromes (2 -1) is always greater than or equal to
the number of single error positions (n). The construction
of the parity check equations for these codes is best
explained with the aid of an example.

EXAMPLE. Consider the construction of the (7,4) Hamming
code. The ideas described here are easily generalised for
any (n,k) Hamming code. The number of check digits for this
(7,4) code is c=7-4=3. Consider the non-zero binary numbers
that can be formed using c=3 digits.

0 0 1 C1

0 1 0 C2

0 1 1 kl
1 0 0 C3
1 0 1 k 2

1 1 0 X1 CO

1 1 1 k4

TABLE 2

Hamming associated the numbers of the form 21, i = 0,1,2, ...
with parity check positions. The other positions were
associated with information digits, as indicated in the
table above. Now, looking down the columns, the parity check
equations are written as the modulo- 2 addition of the infor­
mation positions where a one appears in the particular
column being considered.

25

i.e. c1 = k1 + k2 +
c2 = k1 + k3 + k^
c3 = k 2 + k 3 + k 4

On receiving a codeword, the decoder recalculates the parity
checks and adds them modulo- 2 to the received ones in order
to obtain the syndrome. If, for example, kg is in error,
parity checks Cg and Cg will fail while c-̂ will agree
because it does not check kg. This situation is represented
as:

C 3 C 2 C1
1 1 0

This binary number corresponds to the position of kg in the
table considered above. The error is thus located and can
then be corrected. This method generalises to cover any
value of n. For practical reasons the codewords are nor­
mally transmitted in a systematic manner. In his work,
Hamming (1950) also mentioned that the minimum distance of
these codes can be increased by 1 to become d=4, by annexing
an overall parity check to each codeword. This overall
parity check is determined in the same manner as the one for
S.P.C. codes, i.e. by the modulo-2 addition of all other
digits in the codeword. This procedure applies not only to
Hamming codes but to any code with an odd minimum distance
(Peterson, 1972), i.e. if d is odd, by annexing an overall
parity check the new minimum distance is d+1. Hamming codes

26

are quite unique in the sense that no other class of non­
trivial error correcting codes can be so easily decoded,
and also because Hamming codes are perfect or quasi-perfect
codes as defined below.

DEFINITION 2.5 An (n,k) t-error-correcting code is
called a perfect code if, and only if,

^ = n u m b e r o | l e v e l s

t < - rk
i=0

Codes in which the information digits are repeated a number
of times are called repetition codes and are perfect in a
trivial sense. Repetition codes are decoded by taking a
majority vote. Apart from the Hamming codes, the (23,12)
t=3 Golay code and the ternary (ll,6)t=3 code, there are no
other non-trivial perfect codes (van Lint, 1970; Tietavainen,
1973). Codes where

t+ 1 i
I e «
i=0

n-k
i =0

are called the quasi-perfect if the remaining redundancy can
be used to correct only some of the patterns containing t+1

errors. Perfect and quasi-perfect codes are optimum (i.e.
they minimise the probability of error) when used in a B.S.C.
(Slepian, 1956a).

27

2.12 Product Codes

These codes are usually linear and result from a com­
bination of two or more codes in order to obtain a more
powerful code. When two codes are used to form a product
code, the information digits -may be arranged in a rectangular
matrix form, and row and column parity check digits are
calculated in accordance with the coding rules for the two
codes respectively, along each of the two dimensions. The
minimum distance of this product code is d = d^ x d^,
where d^ and d^ are the individual minimum distances of the
two codes used (Elias, 1954). The resulting two dimensional
array has the following general structure:

INFORMATION ROW
DIGITS PARITY

CHECKS

COLUMN CHECKS
PARITY ON
CHECKS CHECKS

Product codes are efficient when used for error detection
with A.R.Q. (Farrell, 1969) because a very low probability
of undetected error can be achieved. Also they find
practical use in coding for digital multiplex systems
(Riley, 1975) and in general wherever the data format is
rectangular. Product codes have been studied by Elias
(1954), Burton and Weldon (1965), Berlekamp (1968), and

28

Peterson (1972), and otkers.

2.13 Constant Weight Codes

These codes are also known as: fixed ratio, m out of n
and constant ratio codes. Their characteristic is to have
codewords all with the same weight i.e., the same number of
ONES .

The number of codewords in an m out of n code is given
by:

M = ___Hi___m!(n-m)!

The van Duuren A.R.Q. system (van Duuren, 1961) uses a
3 out of 7 constant weight code and is a good example of the
use of such codes on radio-telegraph circuits. In this case
any single error causes a received block to have either
weight 2 or 4 and so is detected. However, a double error
can happen which changes a one into a zero and a zero into
a one and this will pass undetected. In general, these codes
are guaranteed to detect odd numbers of errors but can fail
to detect an even number of them. Constant weight codes are
less efficient than S.P.C. codes but can have their error
detecting capability improved by carefully reducing the
number of codewords. These codes are very often nonlinear,
but there are exceptions like the m-sequence codes (see
Chapter 3).

The next chapter introduces cyclic codes which are
linear codes with some additional mathematical structure.
This allows relatively simple decoders to be constructed for
codes normally more powerful than the ones presented above.

29

CHAPTER 3

Cyclic Codes

3.1 Introduction

The codes described in this chapter constitute the
most powerful sub-class of linear block codes as far as
practical implementation and mathematical structure are
concerned. Prange (1957) was the first to study cyclic
codes. Subsequently, these codes have been studied in
the context of modern algebra using the concepts of
Galois fields, (see Peterson, 1972 and Berlekamp, 1968).

3.2 Basic Definitions

Definition 3.1 A linear block code is called a
cyclic code if the result of any cyclic permutation of
any of its codewords is another valid codeword, i.e. if
V [' is a codeword. V Vn-i ’

is also a codeword in theVn-i + l 5'‘* ’V0 ,V1 5,'' ’Vn-i-l
same code, and the indices are reduced modulo-n.

Any n-tuple like [V] above, can be represented in
the form of a polynomial V(x) of degree at most n-1 as

V(X) = VQ + V-jX + V2x 2 + . . . + Vn _1x n 1

follows:

30

With the use of the properties of finite fields it can be
proved (see Peterson (1961), for example) that all code­
words of an (n,k) cyclic code are multiples of a polynomial
G(x), of degree n-k, which is unique; and conversely that
every polynomial of degree n- 1 or less which is a multiple
of G(x) must be a codeword. Furthermore, G(x) is called
the code generator polynomial, and it divides Xn+1. The
mathematical properties just mentioned for cyclic codes
are those of a mathematical ideal (see Appendix I for
definition). This allows the properties of cyclic codes
to be derived from the study of ideals and an equivalent
definition of cyclic codes is:
Definition 3.2 Cyclic codes are ideals in the algebra of
polynomials modulo Xn+1.

The factorisation of Xn+1 gives as a result:

Xn + 1 = (X+ou)(X+a0)(X+a0)...(X+a), where the roots a.(l< 1 2 3 n l —
i<n) are elements of an extension field. Each of these
n roots can be expressed as a power of a, where a is
called a primitive root, i.e. a,a ,a , ...,a ,a =l = a .
The lowest degree polynomial with binary coefficients
which is a factor of Xn+1 and contains ou as a root is
called the minimum polynomial of . If n = 2m-l it can
be shown that the maximum degree of a minimum polynomial

2 2m (x) is m. In the binary case in (x) = m (x) which aq otq aq
2 4implies that if a. is a root of m .(x) so are a-,a.,...,3 ai J j

i.e. the minimum polynomial of any even power of a is the
same as the minimum polynomial of some odd power of a.
Cyclic codes can also be specified in terms of the roots
of G(x), in an extension field. If G(x) has non-repeated

31

roots a, ,ou,...,a , then any polynomial V(x) will belong
1 z n k

the code if, and only if, V (a i) =°5 l<.i<n-k.

THEOREM 3.1 If M s a root of a polynomial V(x),
then V(x) is divisible by M(x), the minimum polynomial of
3 •

PROOF Let V(x) = P(x)M(x)+S(x)
Then V(3) = P(3)M(3)+S(3) = 0 and,
S(3)=0, since V(3)=M(3)=0. By the Euclidean

division algorithm S(x) is of degree less than M(x) and so
it must be zero, (i.e. S(x)=0) because the definition of
minimal polynomial guarantees M(x) to be the lowest degree
polynomial with 3 as a root.

Q.E.D.

As a consequence of Theorem 3.1, if the minimum poly­
nomial of a. is M^.(x) then V(x) is a codeword in a cyclic
code if and only if V(x) is divisible by (x),M (x),0L j (X2
...,M (x), i.e. V(x) must divide the least common multi- an-k
pie of M (x),M (x),...,M^ (x). Therefore, the codeal a 2 an-k
generator polynomial G(x) can be written as:

G(x) = L C M{M (x),M (x),...,M (x)}al a 2 an-k

where , (l<.i<.n-k) are the roots of G(x) . If a cyclic code
is required to have a generator polynomial G(x) with a root

repeated p times, then the minimum polynomial of must
appear p times as a factor of G(x). The condition for Xn+1 to
have only distinct roots is that the block length n and the
number of levels q must be relatively prime (Peterson, 1961).
In the binary case, this condition simply means that n must

32

be odd for the roots of Xn+1 to be distinct.

3.3 Matrix Representation of Cyclic Codes

From the definition of cyclic codes , the multiples of
the generator polynomial G(x) are codewords. So the poly-

2 k- 1nomials G(x),xG(x),x G(x),...,x G(x) are all codewords,
and are also linearly independent. Using these polynomials
the following matrix can be formed, which represents the
generator matrix of a cyclic code with generator polynomial
G(x) .

DU =

For encoding purposes the cyclic shift property allows a
sequential implementation of [g] which is described in
section 3. M-. Also described there is a sequential imple­
mentation of the parity check matrix Q{] as a function of
the code parity check polynomial H(x). This relatively
simple implementation turns out to be of great practical

2advantage for cyclic codes. Let V(x) = W ̂+V-̂ x+W + ...+
Vr_2x be a codeword in a cyclic code with generator
polynomial G(x) having roots ,â , • • • ,an_k , i-e* ^(a.)= ̂=
V„ + V-, a •+V„a . + . . .+V -.a1? ̂, where l<i<n-k. This expression
can be written as a matrix product as follows:

k-l0 , . x G(x)

x^G(x)
xG (x)
G (x)

33

or, in other words, V(x) is a codeword if and only if it
is in the null space of the matrix Qf] :

1 a- an- 1
1

[H]

a, a, n- 1a0

1 2 n- 1
an-k an-k an-k

3.4 Encoding With An (n-k)-Stage Shift-Register * •

This encoding procedure is based on the property that
all codewords in a cyclic code are multiples of the code
generator polynomial G(x). The k information digits can
be represented by a polynomial I(x) of degree less than k
as follows:

ICx) = k-̂ x̂ ̂ + k^x^ . . . + k,

where the k^ (l<.i<k) are the information digits. Multi-
• • • n ““ kplying the information polynomial I(x) by x gives

n—kx ICx) which is of degree not greater than (n-1) and
contains no terms of degree less than (n-k). Division of
x ICx) by GCx) gives as a result

34

xn kI(x) = P(x)G(x) + C (x)

where P(x) and C(x) are respectively quotient and remainder
polynomials. C(x), being the remainder, is of degree
smaller than the degree of G(x), i.e. <,(n-k)-l. If C(x) is

n ~subtracted from x I(x) the result is a multiple of G(x),
i.e. a codeword. Also, since C(x) has degree <.n-k-l, it
represents the parity checks and does not overlap with the
information section represented by x I(x). The operations
described can be performed by the circuit shown in Figure
3.1, keeping in mind that modulo-2 addition and subtraction
are the same.

FIGURE 3.1 : Encoder Using (n-k) S.R. Stages

The circuit shown in Figure 3.1 uses (n-k)-stages of shift-
register and pre-multiplies the information polynomial by
xn k (Peterson, 1972). The switches G^^ » • • • *Gc_-̂ are

35

closed wherever the corresponding coefficient in G(x) is
a ONE; otherwise they are left open. Starting with all
zeros in the shift register, switches closed and S2 in
position 1 , information digits are sent to the output and
simultaneously into the division circuit. After the k
information digits have been sent out, and the remainder
(i.e. the parity checks) is in the register, switch S-̂ is
opened and is moved to position 2. During the next
(n-k) clock pulses the parity checks are transmitted. This
process is repeated for the next block of information digits.

3.5 Encoding with a k-Stage Shift-Register

Since G(x) divides xn-l it follows that

xn-l = G(x)H(x) (3.1)
The polynomial H(x) completely specifies an (n,k)

cyclic code with generator polynomial G(x), as will be
shown. Let V(x) be a codeword, i.e.

V(x) = P(x)G(x) (3.2)

where V(x) = Vq + V-̂ x+V2x ̂+ ...+ V^-^x1"1 ^. Multiplying both
sides in (3.2) by H(x) gives:

V(x)H(x) = P(x)G(x)H(x) (3.3)
or, V(x)H(x) = P(x)(xn-l)=P(x)xn-P(x) (3.4)

From (3.2) it is seen that P(x) has degree at most k-1.
This fact allows us to conclude that (3.4) can not contain
the terms x ,x ,...,x , i.e. their coefficients m
(3.4) are zero. This implies that:

36

Ii=o
H.V . . 1 n-i-j 0 for 1 <L j <. n-k (3.5)

Since, from (3.1) it is known that H =1 and H, =1, (3.5)
O K

can be written as:

Vn-k-j
k-1

l H.V . .x n-i-q for 1 <. j <. n-k (3.6)

Expression (3.6) represents a recurrence relation which is
also known as a difference equation (Lin, 1970) and pro­
vides a rule for calculating the parity check digits V , , ,n x _l
Vn-k-2 ’" - ,Vo » Siven the k information digits vn_p »v n _ 2 > vn_ 3 »
...,V So, an (n,k) cyclic code with generator poly-
nomial G(x) is completely specified by the polynomial H(x),
which is called the parity polynomial of the code. The
following circuit diagram (Figure 3.2) shows an encoder
based on expression (3.6), using a k-stage shift-register.

I/P y

FIGURE 3.2 : Encoder Using k S.R. Stages

This circuit works as follows:
(1) With switch S-̂ closed and Ŝ open. Information

37

digits are clocked into the circuit and
simultaneously to the output.

(2) After k shifts, switch is opened and
S2 is closed. At the output appears
where Vn_k _1 = HQVn _ 1 + + • • • +Hk_1Vn_k ,
and this constitutes the first parity check.

(3) After one clock shift the first parity check
is sent out and into the encoding circuit.
The second parity check then appears at the
output Vn_k_2 = HQVn _ 2 + Hivn_3+ • • *+Hk-2Vn-k
+ Hk-lVn-k-l.

This procedure continues until the last parity check has
been sent out, then switch is closed and S2 is opened.
The next information block can now be shifted into the
encoding circuit. The k-stage shift-register encoder
should be used whenever n-k>k; otherwise the (n-k)-stage
encoding circuit is preferable. It should be observed,
however, that the k-stage encoder can be implemented with
conventional integrated circuit shift registers since it
does not require any external gates to be connected in
between stages. This can be an advantage even if n-k<k.

On the other hand, for the calculation of syndromes
(see next section) and subsequent error correction the n-k
stage circuit is normally preferred because the operation
of multiplying the syndrome polynomial by x and reducing
modulo G(x) is easily accomplished.

38

3.6 Syndrome Calculation

It is the function of the decoder, on receiving an
n-tuple R(x), to check whether or not it is a valid code­
word. This is necessary because after passing through a
noisy channel, part of the received codeword may be
corrupted by noise. If errors are detected, i.e. the
syndrome is non-zero, then the decoder starts attempting
correction. This section deals only with syndrome calcu­
lation and consequent error detection, leaving error
correction for a future section. In the case of cyclic
codes, both syndrome calculation, and subsequent error
correction, are relatively more simple than in the case of
linear codes in general.

Since in a cyclic code all the codewords are multiples
of the code generator polynomial, the first action of the
decoder is to check whether the received n-tuple is divi­
sible by G(x). The remainder of this division is the
syndrome, and if it is zero it can be assumed that no
errors have occurred. A non-zero syndrome indicates that
the decoder has detected errors and can proceed with
correction. If R(x) is the received n-tuple it can be
written as

R(x) = V(x) + E(x) ,

where V(x) and E(x) represent respectively the transmitted
codeword and the error pattern. Division of R(x) by G(x)
gives:

R(x) = QCx)G(x) + SCx) (3.7)

39

where S(x) is the syndrome polynomial and has degree at
most (n-k-1) i.e. it is an (n-k)-tuple.
Expression (3.7) above can be written as:

V(x) + E(x) = Q(x)G(x) + S(x) (3.8)

or P(x)G(x) + E(x) = Q(x)G(x) + S (x) (3.9)

Finally, E(x) = (Q(x) + P(x))G(x) + S (x) (3.10)

It is clear from expression (3.10) that there is a defi­
nite relation between syndrome and error pattern; i.e.

S (x) EOO'.
G(x) J

This will be explored later for error correction purposes.
It follows from the properties of the standard array (see
Chapter 2) that different E(x) polynomials can lead to
the same syndrome and in what follows E(x) will always be
assumed to be the polynomial of smallest weight satisfying
the relation

S (x)

For the binary symmetric channel this leads to maximum
likelihood decoding (Lucky et al, 1968). The circuits
used for syndrome calculation are similar to those for the
encoding of cyclic codes. This means that either k or
(n-k)-stage syndrome calculating registers can be used.
Figure 3.3 shows a circuit diagram for the (n-k) stage
type of syndrome calculating register. Initially, the
shift register contents are all zeros. The incoming n-

40

tuple is shifted into this circuit and after n clock
pulses, the shift register has the syndrome as its
contents. Before receiving the next n-tuple this shift
register needs to be cleared. No pre-multiplication is
required, since the received parity checks must be
added to the recalculated parity checks anyway.

I/P

FIGURE 3.3 : (n-k)-Stage Syndrome Calculating Register

A k-stage syndrome calculating register is shown in
Figure 3.4. In this circuit the incoming n-tuple is
shifted into the register with switch closed and
switches S2 JS2 and open. After k shifts switches S^j

and are closed and S-̂ is opened, the recalculated
parity checks are added modulo-2 to the received ones
and the syndrome digits appear at the output.

41

I/P

FIGURE 3.4 : k-Stage Syndrome Calculating Register

3.6 Shortened Cyclic Codes

From an engineering point of view, it is important
that a particular class of easily decodable codes should
cover a wide range of code rates and error-correcting
power. Since the generator polynomial of a cyclic code
has to divide Xn-1, the designer is left with a relatively
small number of cyclic codes for a given n. However, for
every i<k, it is possible to have an (n-i,k-i) code which
is obtained from an (n,k) cyclic code by selecting all
those codewords which begin with i zeros, and deleting

k_1these first i zeros. There are, of course, 2 codewords
in this shortened code which is linear but no longer cyc­
lic (Peterson, 1972). Encoding and syndrome calculation
can be done with the circuits used for the original code
since the i zeros deleted do not affect the calculation
of the parity checks. This is the first important point

4 2

about shortened cyclic codes. They are as easy to
implement as full cyclic codes. The second important
point is that the Hamming distance of the shortened code
is at least the same as that of the original code. For
decoding the codewords are preceded by i zeros if the
decoder for the original cyclic code is to be used. This
solves the problem of decoding shortened cyclic codes,
but the method does not fully exploit the fact that the
redundancy of the code remains constant while the number
of codewords has been reduced from 2 to 2 . This
means that, potentially, more errors could be corrected
with the shortened code because there are fewer informa­
tion positions to be checked. Simplicity of implementation
may offset the shortfall in performance, however, thus
making shortened cyclic codes attractive in certain circum­
stances .

3.8 Pseudo-Cyclic Codes

So far what has been written about cyclic codes has
implied working with polynomials reduced modulo Xn-1. If
instead modulo f(x) is used, where f(x) is an arbitrary
polynomial in x, the resulting codes are called pseudo-
cyclic codes. Peterson (1972) proves the following
theorems for cyclic codes:

Theorem 3.2 Every pseudo-cyclic code with minimum
distance greater than 2 is a shortened cyclic code.

Theorem 3.3 Every shortened cyclic code is a

pseudo-cyclic code.*

3.9 Decoding Cyclic Random Error Correcting Codes

In this section some of the more important algorithms
for decoding cyclic codes are presented together with
comments on their advantages and limitations. The decoding
of random error correcting codes is in general a difficult
matter, and one can say that in most practical situations,
it is the complexity of the decoder that sets a limit as
to which codes can be used. For cyclic codes, encoding
and syndrome calculation have already been shown to be
easily attainable with shift registers, modulo-2 adders,
a few logic gates and a timing circuit.

3.9.1 Meggitt Decoder

This type of decoder works as follows. A received n-
digit codeword, possibly erroneous, is fed to a syndrome
calculating register and simultaneously into a buffer
register. The syndrome obtained is fed into a combinational
logic circuit (CLC) whose output is a ONE if and only if
this syndrome is associated with a correctable error pattern
having an error in its highest order digit, i.e. an error
in the first digit to be read out of the buffer register or
the digit with highest degree in a polynomial representation.

In the multi-level case this still holds true because f(x) is a
factor of xn-l, for some n.

44

If the output of the CLC is zero, it is assumed that the
highest order digit in the buffer is correct. So, the
output from the CLC indicates whether the digit to come out
from the buffer is in error or not. The contents of the
buffer are read out one at a time, the syndrome register
being shifted simultaneously. Every time a ONE is output
from the CLC it is added modulo-2 to the buffer output
and simultaneously to the feedback path of the syndrome
register in order to remove the effect of the error from
the syndrome calculation. After n shifts the contents of
the syndrome register should be all zeros if the error
pattern was a correctable one otherwise an uncorrectable
error has been detected. A simple example is now given
in order to make clear the points explained above.

EXAMPLE Consider the (7,4) single error correcting
3Hamming code whose generator polynomial is G(x)=x +x+l.

The parity check equations for this code are:

C1 = ki + k 2 + k 3

c2 = k2 + k 3 + k^

c3 = k^ + k2 + k^

Let the transmitted codeword be:
kf k2 k3 k^ cx c2 c3

[Vj = [l 1 0 1 0 0 1 J

Let the error vector be:

[E] = [0 0 1 0 0 0 0]

45

The received n-tuple will be:

D D = [v] + D O
QO = Q. 1 1 1 ° ° Q

The received n-tuple is fed into the circuit shown in
Figure 3.5 with the switch open. The contents of the
syndrome register after n shifts is the pattern

D O = Co o g
C1 c2 °3

FIGURE 3.5 : Meggitt Decoder for the (7,4) t=l Cyclic Code

is now closed and the contents of the buffer start
being delivered, as follows in the table:

46

Shift
Contents of

Syndrome Register
Output of
CLC

Output of
Buffer

Output of
Deooder

1 0 0 1 0 1 1

2 0 1 0 0 1 1

3 1 0 0 1* 1 0

4 0 0 0 0 1 1

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 1 1

C1 C2 C3

Error located

TABLE 1

It is thus seen that the error in the third position
(k^) of the received n-tuple is corrected. If one is
interested only in correcting errors in the information
digits a k-stage buffer should be used. The decoder shown
in this example uses pre-multiplication of the incoming

n — 'sequence by x modulo G(x) so the resulting syndromes
n ~ k •appear multiplied by x (Peterson, 1972). When decoding

shortened cyclic codes the incoming codeword should either
be pre-multiplied by

, n-k+
f(x) = REHj -----

L G(x)
(where i is the number of information digits removed from
the code), or preceded by i zeros and applied to the

47

decoder for the original unshortened code. The next dia­
gram (Figure 3.6) shows the Meggitt decoder for the code
resulting from shortening by i=2 the (7,4) code of the
above example. Pre-multiplication by

r 5 2f(x) = REm J ^ ^ ---1 = x +x+l
» - X + X + 1 J

has been used.

I/P

FIGURE 3.6 : Meggitt Decoder for the (5,2) t=l Shortened
Cyclic Code

The difficulty with the Meggitt decoder is the com­
plexity associated with its CLC for codes that correct two
or more errors per codeword. However, with the advent of
more complex integrated circuits, this decoding procedure
can be attractive. The use of programmable read only
memories (PROMs) simplifies drastically the design of the

48

CLC. The syndrome digits in the decoder may be used as
addresses to the PROMs. With the aid of a small computer
programme, those syndromes which are associated with error
patterns having the highest order digit in error are
determined, and the PROMs are then programmed to output a
ONE in these cases and a zero otherwise. For a code having
c check digits a 2C bit PROM is needed (or equivalent com­
bination of PROMs). It is clear that in this way full use

ccan be made of the 2 syndromes available. As a consequence,
when decoding quasi-perfect codes, one is able to correct
some error patterns with t+1 errors which are usually left
aside by other methods. Some quadratic residue codes,
which have good distance properties but are hard to decode,
can be considered for practical implementation using these
techniques. The limitation of the extent to which PROMs
can be applied is dictated by the available technology.
Finally, the Meggitt decoder provides a general method of
fully decoding any cyclic code, i.e. it does not suffer
from the limitations of bounded distance decoders. The
practical implementation of Meggitt decoders requires
either the use of duplicate buffers or operation at twice
the line clock rate.

3.9.2 Error Trapping Decoding

Error trapping decoding (Rudolph and Mitchell, 1964)
is possibly the simplest way to decode a cyclic code when
the errors to be corrected do not spread over a span
greater than (n-k) digits, including the end around case

49

i.e. regarding the span cyclically. Because of the cyclic
nature of the code, such error patterns can be shifted
entirely into the parity check section of the received n-
tuple. When this happens the errors are said to be
"trapped" and can then be corrected, as will now be
explained. It has already been shown that the syndrome
S(x) of a received n-tuple R(x) is equal to the remainder
resulting from the division of the error polynomial E(x)
by the generator polynomial G(x) of the code, i.e.

E(x) = Q(x).G(x) + S(x) .

If E(x) = E x(n_k)_1+E . x (n_k)~2n-k- 1 n-k-2 +...+Ê x+Eq ,

then the errors are confined to the parity check section
of R(x), then Q(x) = 0 and E(x) = S(x). Correction is
achieved by adding (modulo-2) R(x) to S(x). Now suppose
that the errors are not situated in the parity check sec­
tion and E(x) is of the form:

F (x) -F >-k) 1+i F x^n k ̂ 2+^+ +F x̂ "+ "̂+FECx) n-k-l+i n-k-2+i * ‘ i+l +Eix

By shifting R(x) cyclically n-i times, the errors will
occupy the parity check positions of R(x)^n which is a
shifted version of the received n-tuple. So,the syndrome
of R(x)^n ^ is identical to the error affecting R(x) and
so R(x) can be corrected as in the previous case.

The sequence of operations necessary to decode by
this process is therefore:

(1) Shift the received n-tuple into the syndrome
register and into a buffer simultaneously.

50

(2) Calculate the weight of the syndrome W(s).
(a) If W(s)<.t then the errors are confined to

the parity check section of the received
n-tuple*and the information digits are error-
free. No correction is necessary, just
deliver the k information digits to the
data sink.

(b) If W(s)>t then shift the syndrome register
and after every shift check if W(s) has gone
down to t or less. Suppose that W(s)<.t
after i shifts for 0<i<n-k. Now, inhibit the
feedback connections of the syndrome register
and apply (n-k)-i shifts to it. When this is
done the first i higher order digits in the
syndrome register match the errors in the
first i positions of the buffer (Lin, 1970).
The other information digits are error-free.
Correction is accomplished by shifting both
together the buffer and the syndrome register,
and adding their outputs modulo-2 .

(3) If W(s) does not go down to t or less after
(n-k) shifts, then start delivering the buffer
contents to the data sink. At the same time
the syndrome register is shifted and if W(s)<.t
is verified the feedback connections are
inhibited. The pattern in the syndrome,regis­
ter matches the errors in the next (n-k)
digits to come out from the buffer. The
pattern in the syndrome register is then

T V i i s c o n v e r s e a l s o h o l d s -fcr u e .

51

added to the digits coming out of the buffer
as both registers are shifted together. If
it happens that the weight of the syndrome
never goes down to t or less after k shifts,
then either an uncorrectable error has been
detected or a correctable error pattern with
errors not confined to (n-k) consecutive
positions has occurred. Figure 3.7 shows the
circuit diagram of a decoder for error trap­
ping.

FIGURE 3.7 : Error-Trapping Decoder

In general, for a code to be efficiently decoded by
error trapping the following condition must hold:

n
k > t

(Peterson, 1972). Due to this,error trapping is seen to

52

be effective for low rate and/or small t codes only. Care
is necessary when applying error trapping to relatively
more powerful codes, because a good deal of the code error
correcting ability can be wasted. Many coding theorists
have tried to extend the applicability of the error trap­
ping technique to cover the case when the error patterns
are not all confined to (n-k) consecutive positions
(Kasami, 1964), (MacWilliams, 1964). An example of such
an extension is permutation decoding, which is described
in the next section.

3.9.3 Permutation Decoding

This is a more sophisticated type of error trapping.
In the case of error trapping, only cyclic shifts are
applied to the received n-tuple when trying to trap the
erroneous digits. It is important to observe that cyclic
shifts are code preserving permutations. This means that
the same decoder can be used after cyclic shifts are
applied to the received n-tuple. If the permutations used
are not code preserving, the decoder would normally have
to be modified in order to deal with the new syndromes,
which is obviously a disadvantage. Successful application
of permutation decoding depends on finding a set of code
preserving permutations which rearrange the codeword
digits in such a way as to leave at least k consecutive
correct digits in a codeword containing errors. Error
trapping can then be applied to correct the errors and
after that an inverse operation is required to restore the

53

original codeword.
Cyclic codes of odd length are preserved by the

permutation
. . 21X3 -* (X3)

j = 0,1,2,...,n-l
i = 1,2,...

applied to the digits of any of their codewords (MacWilliams,
1964). In many cases this permutation together with cyclic
shifts is sufficient to decode a given code. However, very
little is known about code preserving permutations and for
a given (n,k,t) code it is not known in general how to find
a set of permutations to decode it, or even if such a set
exists. Permutation decoding is treated in Peterson (1972)
and MacWilliams (1964).

3.9.4 Majority Logic Decoding

The majority logic decoding algorithm is an efficient
scheme for decoding certain classes of cyclic codes; as
for example the m-sequence codes and finite projective
geometry codes (Lin, 1970). Majority logic decoding can
also be applied to other classes of block codes; however,
the final circuit for the decoder is not always as simple
as for cyclic codes. Convolutional codes can also be
decoded by majority logic techniques. Historically Reed
(1954) was the first to suggest the idea of majority logic
decoding in order to decode the Reed-Muller codes (Muller,

54

1954). Later his work was extended by other coding theo­
rists and two good accounts of this subject can be found in
Massey (1963) and Peterson (1972).

a. Orthogonal parity sums
The syndrome [sf] of a received n-tuple in an (n,k)

cyclic code with parity check matrix Qf) can be written as:

OQ = Cs0,S1,S2,... ,Sn_k_g = [e].[h] (3.11)

where Qe] = [Eq ,E^ ,E2 , • • . >En_̂] represents an error pattern,
Expanding equation (3.11) leads to:

so = Z EiHOii=0
n-1

I - I Eii=0
n-1

n-k-1 - £ ^i1 n-k-liS , , = V E_. H
i=0

(3.12)

Now consider a combination of syndrome digits as follows :

A = a0S0 + alSl + + an-k-lSn-k-l (3.13)

a^ is either zero or one. Due to equation (3.12) A can
be written as:

A = b o E o blEl + b 2 E 2 + b -, E , n-1 n-1 (3.14)

b^ is either zero or one. An error position E^ is said to

55

be checked by A if its coefficient b^ in equation (3.14) is
ONE. Equation (3.14) is called a parity check sum.

Definition 3.3 Given a set of J parity check sums
(parity check equations) A1,A2,... ,Aj such that one error
position E^ is checked by all of them and all other error
positions appear once and only once in each parity check
sum, then this set is said to be orthogonal on the position

If, instead of having E^ common to all equations, we
have E=E.+E•+...+E0 as the common term in all equations,
then the following definition arises.

Definition 3.4 A set of J parity check sums A^,A2,
...,At is said to be orthogonal on the set E if, and only
if, E is checked by all the J parity check sums and no
error position outside E appears in more than one parity
check equation.

Definition 3.3 is the basis for what is known as ONE-
STEP MAJORITY LOGIC DECODING while Definition 3.4 can be
conceived of as a generalisation of Definition 3.3 and is
the basis for L-STEP MAJORITY LOGIC DECODING.

b. ONE-STEP MAJORITY LOGIC DECODING
Given an (n,k) cyclic code suppose we can find J

parity check sums orthogonal on the highest order position
of the received n-tuple, and therefore on the highest order
digit, of the error pattern. If no more than J/2
errors affect a transmitted codeword they can be corrected

56

as follows. Suppose the highest order digit is not in
error*-then at most J/2 parity check sums will fail,
leaving at least J/2 of them agreeing. So, if a clear
majority of the parity sums are zero (i.e. agree) or if
a tie results, the highest order digit is delivered
unchanged by the decoder. Now suppose En_^ is in error,
this leaves ^ - 1 errors to be spread among at most ^ - 1
parity equations. This leaves at least J -
equations in which only En_^ = 1, and so a clear majority
of the sums will be ONE. The highest order digit can in
this way be corrected by the decoder. In the case of
cyclic codes, position ^n_2 can corr’ec'ted in the same
way as described above because after a cyclic shift it
will occupy the position of En_-̂ . Once the error effect
on E^_^ has been removed from the parity sums the estimate
of E „ can proceed. This process continues until the n-2
complete codeword is decoded.

The process of decoding by a majority rule is very
efficient whenever J is equal to or very close to d-1
because t ■ f ¥ U is the error correcting capability
of the code. Also some patterns having more than t errors
can be corrected. Codes for which J = d-1 are said to be
completely orthogonalisable.

EXAMPLE Consider the m-sequence code with parameters
x7 + ln = 7, k=3, d = 4 and generator polynomial G(x) = p^yi where

P(x) is a primitive polynomial of degree k. If P(x) is
chosen to be x +x+l, then the following G(x) results:

G(x) = (x^+x^+1)(x+1) = x4+x7+x+l.

57

Depending on the way the parity check sums are con­
structed two basically different implementations result.
They are known as Type I and Type II majority logic decoders
(Massey, 1963). The polynomial P'(x) = x^Pi^) is the
reciprocal of P(x) and is also primitive (Peterson, 1972).
It is in the null space of the (7,3) code.* In this example

3 2P'(x) = x +x +1 and the following set of equations can be
used for parity checking.

P' (x) = x3+x2+l

xP'(x) = x4+x3+x

x3P'(x) = x6+x5+x

(3.15)

It is easily seen that this set is orthogonal on position
x . The next diagram (Figure 3.8) shows a syndrome cal­
culating register using pre-multiplication by xn-k l. e.
x4. By doing that, the highest order position in the

, r n-1 code (x , i .e. x) will appear as x6 4 10 .x = x or 3X
7modulo x +1 and so (3.15) can be used to check for errors

on the highest order position of the received codewords.
In terms of ONES and ZEROS (3.15) can be written as :

kl k2 k3 ! C1 ! c2 1 1 c3 c4
0 0 o ! i ! ii i 0 1
0 0 Oi—1 i—1 1 0 (3.16)
1 1 o 1—1o 0 0
E2 E1 Eo! E6 ! E5 E4 E 3 +

yThe polynomial P'Cx) and its multiples taken modulo X +1 form the null
space of the (7,3) m-sequence code, and so can be used as parity
check equations.
D̂igits rearranged after multiplication by x^.

58

A 1 = S 3A 2 = S 0
A 3 Sl+S2

A 1 = E6+E5+E3
A. — Ec + E., +E„2 6 4 0

> CO = Eg+E2+E1

(3.17)

(3.18)

The set of equations (3.17) express orthogonality in
terms of syndrome digits and is used to construct a Type
I one-step majority logic decoder (Figure 3.8), while
(3.18) refers to Figure 3.9 where a Type II decoder is
shown.

S1

I/P

FIGURE 3.8 : Type I One-Step Majority Logic Decoder

59

FIGURE 3.9 : Type II One-Step Majority Logic Decoder

TYPE I DECODER: The syndrome of a received n-tuple is
calculated in the usual manner with S-^closed and S£ open.
The output from the majority gate is used to correct the
digits coming out from the word buffer, and it is also
fed back to the syndrome calculating register to remove
the effect of the errors corrected from the syndrome.
After the last digit stored in the word buffer has been
delivered, the contents of the syndrome register should be
all zeros, otherwise an uncorrectable error has been
detected.

TYPE II DECODER: The incoming n-tuple is fed into the

60

parity check register with closed and and S3 open.
For the next n-shifts the output from the majority gate is
added modulo-2 to the received n-tuple as this is shifted
out of the parity check register, in order to correct
possible errors. The final output is fed back to the
input and after n-shifts the inputs to the majority gate
should all be zero; i.e. the parity check register contains
a valid codeword. Otherwise an error has been detected
which cannot be corrected.

The following theorem establishes an upper bound for
the performance of one-step majority logic decoding.

THEOREM 3.4 (Peterson, 1972) Given an (n,k) code with
d as the minimum distance of its dual code, the maximum
number of errors t-̂ per codeword that can be corrected
using one-step majority decoding is

tl *
n-1

2(d-1)

This result means that many codes cannot be efficiently
decoded by the one-step majority logic method, e • g. the
Golay code, for which t-̂ = 1.

c. L-STEP MAJORITY LOGIC DECODING
ONE-STEP decoding is easy to implement but relatively

few classes of cyclic codes can be decoded in this way
because the orthogonality condition is very restrictive.
Implementation of definition 3.4, which generalises the
idea of orthogonality, together with the procedures des­
cribed above, allows a larger number of cyclic codes to be

61

decoded by majority logic techniques, by means of several
levels of majority gates. At each level a number of sums
of orthogonal digits are estimated. This process is
continued until a set of J or more parity check sums
orthogonal on a single position E is obtained. The value
of E can then be estimated as in the one-step case. The
following theorem gives an upper bound on the performance
of L-step majority logic decoding.

THEOREM 3.5 (Peterson, 1972). Given an (n,k) code,
with d as the minimum distance of its dual code, the
maximum number of errors t^ that can be corrected per
codeword using L-step majority logic decoding is:

n-

t L i

i.e. tT <. -=— 7T for d evenL d /

tT < for d oddL d + 1 2

Thus, for the Golay code, t^ = 2.

d. Alternatives to the basic majority logic decoding
process
(1) The use of feedback, as in the example given, in

many situations allows correction of patterns having
slightly over t errors. This happens when the decoder
succeeds in correcting an error in a pattern containing

62

say t+1 errors which leaves then a pattern with t errors,
which can also be corrected.

(2) The use of non-orthogonal check sums (Peterson,
1972). This process applies mainly to codes based on
finite geometries (Carmichael, 1937), and has a complexity
comparable to L-step majority decoding but usually corrects
fewer errors.

(3) Rudolph (1973) observed that in some cases there
are orthogonal parity check equations which can be obtained
from others in the same set by cyclic shifts. In this case
some majority gates can be saved by employing a sequential
technique to calculate and store the different estimates to
be used for the final majority voting.

(4) Variable threshold (Townsend and Weldon, 1967).
The majority gates considered in this procedure have

an adjustable threshold T, which is set initially at its
highest value T = d-1. Decoding is then attempted. If,
after the first n shifts , no error has been detected the
threshold is lowered by one, the cycle is repeated and
if no error is detected the threshold is lowered again by
one. This goes on until T = ------- is reached or an error
is found in which case the threshold is increased by one.
When T = ̂̂ is reached, the decoding process is con­
sidered terminated, i.e. the received word is considered
to have been decoded. Whenever an error is found, for
some T > the threshold is increased by one and after
a complete cycle (n shifts) it is lowered by one and
decoding continues. The end of this process is achieved

63

when either T drops to —' and remains there, or enters
a limit cycle where it keeps changing between two or more
values. In the second case T is forced to ^ after a
specified number of revolutions and then fixed threshold
decoding is tried. This usually results in correction of
more errors than is possible with conventional majority
logic decoding (fixed threshold).

e. Final comment
A description of the majority logic decoding algorithm

has been presented with emphasis on its application for
cyclic codes. When compared to the BCH decoding algorithm,
in terms of complexity, majority logic decoding is generally
much simpler for moderate values of n. However, the codes
for which majority logic decoding is efficient are slightly
inferior to the BCH codes in the same range. For large n
the large number of majority gates required makes majority
logic decoding unattractive and the BCH codes , besides
having a better performance, have also simpler decoding
algorithms.

3.10 Bose-Chaudhuri-Hocquenghem (B.C.H.) Codes

These codes were discovered independently by Hocquen-
ghem (1959) and Bose and Chaudhuri (1960). Peterson (1960)
pointed out that they were cyclic codes and described the
first algebraic procedure for their decoding. Though

64

originally described for binary symbols, the BCH codes were
generalised later for the multi-level case (Gorenstein and
Zierler, 1961); and the decoding procedure was refined by
Chien (1964), Berlekamp (1968) and Massey (1969). The BCH
codes constitute one of the most important and extensive
classes of constructive codes. However, their importance
stems mainly from the fact that there exists a way of
decoding them which is practical for relatively large
values of n. Using 50 ns switching logic, it is feasible
to construct decoders for BCH codes with n<1023 and a bit
rate of 1 MHz (Wolf, 1973). Berlekamp (1968) points out
that the distance properties of BCH codes are asymptoti­
cally disappointing, and other cyclic codes likes the
quadratic residue codes perform much better but are harder
to decode.

3.10.1 Basic Properties of BCH Codes

For a thorough understanding of BCH codes a know­
ledge of how to operate with Galois field is required. An
elementary treatment of binary BCH codes is presented in
this section. Appendix I gives some of the basic defini­
tions of modern algebra but for a more complete coverage
the reader is referred to Peterson (1972) and Berlekamp
(1968).

For any positive integers m,t(t<2m)̂ there exists a
BCH code with parameters:

n = 2m-l
n-k = c <. mt
d >. 2t+ 1

65

THEOREM 3.6 Peterson (1961) The BCH code whose
2 3generator polynomial has d-1 consecutive roots a,a ,a

 ̂has minimum Hamming distance at least d.

Proof As shown before (see section 3.3), the state-
2 3 d“ 1ment that G(X) has roots a,a ,a ,...,a is equivalent to

saying that the code is the null space of the matrix Qf)
below.

l a a n-1a

-, 2 4l a a 2(n-l)a

[H] = n 3 6l a a a3(n-l)

n d-1 2(d-1) (d-1)(n-1)1 a a a

By selecting any set of d-1 distinct columns of [hJ , the
following determinant results.

3a d-1

D = C a V 1 (c,2)'2 f 2v ̂d-1... (a)

(a«) 32
, d - l ^ d - (a)

h j2a a ... Jd-1 a D-,

By factoring a 1 (l<.i<.d-l) from every column of D, a new
determinant D-̂ is obtained which has the form:

66

i 1 — ... 1

xi X2 xd-l
= lj. (X. - X.x>: i j

II1—1
Q

x 2.i x 2X2 x 2Xd-1
yd-2
X1

Yd-2x2 yd-2
... Xd-1 where X. = al

D-̂ is recognised as a Vandermonde determinant and so
= 0 if, and only if, two of its columns are identical.

Given the way [h] has been constructed, there are no
repeated columns, hence there are no combinations of d-1
or fewer columns of Q{] which are linearly dependent.
That means the BCH code which is the null space of Q{] has
minimum distance at least d. Q . E . D.

2 3 d-1Because G(X) has ot,ot ,a , ...,a as roots and since
2 2m (x) = m(x), it is possible to write:

G(x) = LCMCm^Cx),m3(x),...,m2t_1(x)), where nn(x)

is the minimal polynomial of a1, and d>2t+l. This expres­
sion for G(X) can have at most t factors of degree at most
m, so the degree of G(x) is always c<mt.

3.10.2 Decoding of the B.C.H. Codes

BCH codes can be decoded by some of the methods pre­
viously described, e.g. Meggitt decoder, error-trapping,

67

etc., but none of them explore fully the mathematical
structure of BCH codes. A brief description of a pro­
cedure described by Peterson (1961) for decoding BCH codes
which makes use of the structure of these codes is
presented here.

The matrix Qf) from section 3.10.1 constitutes a
parity check matrix for BCH codes. Assuming that a trans­
mitted codeword is received with errors, the associated
syndrome vector can be written as:

[s] = Cv+E][H]T = DO D D T + [E] [h] t= D 0 [H t

(since [v] is a codeword ra d o DO)

An error pattern containing t errors will be charac­
terised by the positions of these errors, denoted by
. . . ,6̂ which are called error-location numbers. Let Qf| =
[S1,S2 ,S3,...,Sd_-jJ, the expansion of [e] Qf] can be
represented as:

51 = 6

52 = B

53 = 8

1 + $2 ++ st
2 n2 „2
1 + 32 + --- + t̂
3 _ 3 „ 3
1 + 6 2 ++ 0t

d-1 cd-l Qd-1
1 + + + 3t

► (3.19)

Equations (3.19) above are called power sum symmetric func-
tions. The algebraic decoding of BCH codes depends on

68

solving this system of equations, to determine the B's from
the S^'s. This system of equations is nonlinear and so
far has defied simple solutions. Peterson (1961) observed
that the error-location numbers can be expressed in terms
of elementary symmetric functions as:

6f + $2 + + $-£

BfB? + 3 + •••• + + ^2^3 + * * * * + ^2^ t + ^t-l^t

^1^2 ̂ 3 ̂^1^ 2^4 * ••• •

B-^82 •••• Bt

The power sum symmetric functions are related to the
elementary symmetric functions by Newton*s identities as
follows:

= 0
S3 + + S-La2 + a 3 = 0

S 5 + V l + S3CT2 + S2a3 + Sla4 + a5 = 0

S2t-1 + S2t-2al + + St-l°t 0

These equations can be expressed in matrix form as

[sQ = (M J O D Where:

69

~S1 1 0 0 0 0

S 3 ~°1 S2 S1 1 0 0

Sr Or, s„ s 0 So S 1 1 ... 05
, 0 =

.2 IIl±Jr\ 4 3 2 1

•
°t

•

S2t-1 S2t-2 *‘* st-l

o g is non-singular (i.e. has t independent rows) provided
exactly t errors occurred. In this case, the a's can be
determined from:

do = og-^so
Given the a's, the error location numbers can be determined
from the final decoding equation

E(x) = (x+61)(x+62)(x+63) ... (x+6^)

by simple trial and error substitution. If 3̂ is a root of
E(x), i.e. E(B^) = 0, the digit in position 3̂ of the
received n-tuple is changed.

In case less than t errors occurred Qî] can be changed
by reducing the number of equations and another tentative
decoding made. Eventually, a system of equations will
result which can be solved for the elementary symmetric
functions. Berlekamp (1968) improved this algorithm in a
way which avoids matrix inversion and Chien (1964) developed
an efficient process of search for finding the roots of E(x).
However, algebraic decoders normally correct only up to t
errors per codeword and in this sense do not make full use
of the error correcting properties of the code.

70

3.11 Burst Error Correction

This section deals with cyclic burst error correcting
codes capable of correcting a single burst of errors per
block. Conditions for existence, construction and decoding
are presented. These codes have been created to be used in
channels where errors do not occur independently, i.e. the
occurrence of one error in one digit increases the chances
of having the next digit also in error. Channels of this
type are said to have memory. In fact, as pointed out by
Gallager (1968), with the possible exception of space
channels almost all other types of channels have memory to
a certain degree. This effect of memory can appear in the
form of intersymbol interference due to band-limiting a
signal in frequency or as intermodulation noise due to
inadequate filtering. In telephone lines bursts can be
caused by a stroke of lightning or a momentary overloading
of an amplifier. Defects on a magnetic tape usually cause
errors that occur in bursts. A burst is said to have
length b with respect to a guard space g when it satisfies
the following conditions:

(1) The first and last digits of a burst are ONES,
the other b-2 digits can be zero or one.

(2) The burst is preceded and followed by at least
g error free positions.

(3) There can be no sequences of g or more consecu­
tive zeros inside a burst.

71

For example, if g=3, then

b= 3 b = 4
0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0

represents a stream of binary digits containing one burst
of length 3 and another of length 4. The following
theorems establish conditions for a linear code to be
able to correct bursts, and the minimum number of parity
checks needed. The proofs for these theorems can be found
in Lin (1970) and Peterson (1972), and are based on the
concept of the standard array presented in Chapter 2.

THEOREM 3.7 A necessary condition for an (n,k)
linear code to correct all bursts of length b or less is
that no burst of length 2b or less can be a codeword.

THEOREM 3.8 An (n,k) linear code which contains no
burst of length 2b or less as a codeword has at least 2b
parity checks, i.e. n-k >. 2b

Combining Theorems 3.1 and 3.2 it can be seen that a
burst b error-correcting code must have at least 2b parity

whichl-kchecks. This can also be interpreted as b <.
constitutes an upper bound on the burst correcting capa-
ability of an (n,k) linear code called the Reiger bound
(Reiger, 1960) . Codes for which 2b = n-k are said to be
optimum. A figure of merit for burst correcting codes can
be defined as z = (n-k)-2b. With this definition optimum
burst correcting codes have z = 0.

72

3.12 Decoding of Burst-Correcting Cyclic Codes
3.12.1 Burst Trapping Decoder

By observing the condition established in the Reiger
bound (2b £ n-k), it can be seen that any correctable burst
pattern can be cyclically shifted into the parity check
section of a received n-tuple, and consequently can be
trapped in the syndrome calculating register. In this way,
a simple decoder can be constructed using basically a syn­
drome calculating register, a counter, and an (n-k)-b input
OR-gate connected to the higher order end of the syndrome
calculating register as shown in Figure 3.10 below.

FIGURE 3.10 : Burst Trapping Decoder

The OR-gate in Figure 3.10 is used to detect, after the
syndrome has been calculated, whether the burst is trapped
i.e., when the (n-k)-b higher order positions of the syn­
drome register contain zeros. The counter reads the number
of cyclic shifts required to achieve that. Correction then

73

follows in the same way as error trapping for random errors.
If after n shifts the output of the OR-gate has not indi­
cated the condition for "burst trapped" then a burst of
length greater than b has been detected.

3.12.2 Gallager Optimum Burst Decoder

It is interesting to observe that for burst correc-
tion a given burst correcting code has available 2 -1
syndromes and for the guaranteed burst length b it uses
n.2^ of them, which in many cases is far less than 2n ^-1.
The burst trapping technique described above can be modified
in order to make full use of the redundancy available and to
correct bursts of length £, b<£.<n-k. Gallager (196 8) pro­
posed a modification of the burst trapping technique which
turned out to be equivalent to minimum distance decoding for
channels where shorter bursts are more likely to occur than
longer ones, i.e. a burst of length £ is more likely to
occur than one of length £+1. The idea is to calculate the
syndrome of a received n-tuple, and if this syndrome is
non-zero, to shift the syndrome register n times and keep
a record of the position of the syndrome with the longest
run of consecutive zeros (using a counter, for example).
This syndrome corresponds to the shortest burst and correc­
tion achieved by adding modulo-2 the contents of the
syndrome register, with feedback connections inhibited, to
a section of the received n-tuple, stored in a buffer
register, determined by the burst location counter. More

74

details of this type of decoder are given in Chapter 4,
where an experimental system is described. If desired,
this decoder can be used in a combination of error correc­
tion and error detection. A question can be asked about
what to do when the decoder is faced with two "possible
bursts" of the same length £>b. In this case provision
can be made to decide, for example, to select the burst
with the smaller weight.

3.12.3 High-Speed Burst Decoder

Chien (1969) introduced an interesting technique for
decoding some special types of burst correcting cyclic
codes, namely the Fire codes and their generalisation,
which are covered later in this chapter. The burst decoders
previously described required at least n shifts for loca­
ting and correcting a burst. This can be seen as a decoding
delay due to the process of error correction and for long
values of n it can be an unacceptable disadvantage. Chien!s
solution to the problem is to reduce the decoding delay by
factorising G(x) and computing a partial syndrome for each
of its factors. For example, let G(X) = (xC-l)P(x), where
P(x) is an irreducible polynomial belonging to an exponent
p, and c is relatively prime to p. The partial syndrome
obtained with x -1 is used to trap the burst and to deter­
mine its location to within a multiple of c. This burst is
then fed into a feedback shift register, connected according
to p(x), and shifted until the contents of this register

75

matches the partial syndrome obtained with P(x). The number
of shifts required to trap the burst m the X -1 register
and the number of shifts needed to match the syndrome in the

P (x) register are used as residues. The Chinese Remainder
Theorem (Berlekamp, 1968) is then applied to determine the
exact burst location using these residues. This implies
using some means of computation to perform simple arithmetic
multiplication and addition. For long codes (n<1000), this
decoder achieves speeds several orders of magnitude higher
than it is possible with conventional burst decoders. There
are codes which are more powerful than the ones for which
this decoder is intended; however, their decoding can be
costly because of the reduction of parallel processing, thus
making them unattractive from a practical point of view.

3.13 Important Classes of Cyclic Codes
3.13.1 Hamming Codes

The parameters for these codes have already been
given in Chapter 2, i.e.

n = 2 C-1
k = 2 C-l-c
d = 3

The generator polynomial of a Hamming cyclic code can
be any primitive polynomial of degree c, which by defini­
tion is a factor of Xn+1. These codes are easily decoded
with a Meggitt or error-trapping decoder. Also, Hamming

76

codes are orthogonalisable in L = c-1 steps.

3.13.2 Maximum Length Sequence Codes

For any c>2 there exists a maximum length sequence
code (m-sequence code) with the following parameters:

The generator polynomial of an m-sequence code is given by

vn_i
G(x) = H30 »

where P(x) is a primitive polynomial of degree p, i.e. the
dual code of an m-sequence code is a Hamming code. M-sequence
codes are completely orthogonalisable in one step and conse­
quently are easily decodable by a majority logic technique.
Error trapping decoding is also an efficient way of decoding
m-sequence codes because these are normally low rate codes.

3.13.3 Reed-Solomon Codes

The multi-level BCH codes defined by the following
parameters:

n = q-1
n-k = 2t

d = 21+1

77

constitute the important class of Reed-Solomon codes (Reed-
Solomon, 1960; and Gorenstein & Zierler, 1961). The

2 d — 1generator polynomial of these codes has roots (a,a ,.. . ,a),
i. e.

G(x) = (1-a).(1-a2) . . .(l-ad_1)

Reed-Solomon codes with q=2m are used in many practical
applications, as the multi-level digits can be represented by
binary m-tuples. Since d=(n-k)+l, these codes are also maxi­
mum distance separable (Berlekamp, 1968). Some very powerful
burst and random and burst error correcting codes result from
using a Reed-Solomon code over GF(2) to correct any combina­
tion of t binary m-tuples in error, in a code containing m.n
binary digits per block. Also, concatenated codes (Forney,
1966) use normally a Reed-Solomon code as their outer code.

3.13.4 Codes Based on Finite Geometries

Euclidean geometry codes and finite projective
geometry codes (Lin, 1970 and Peterson, 1972) are important
classes of majority logic decodable cyclic codes, whose
construction is based on the properties of finite geometries
(Carmichael, 1937). The Hamming and the Reed-Muller codes
(Muller, 1954) are particular cases of Euclidean geometry
codes while the finite projective geometry codes contain the
difference set codes (Lin, 1970) as a particular case. The
similarities among the various types of majority logic
decodable codes mentioned above were explored and combined

78

to form the class of polynomial codes (Kasami, Lin and
Peterson, 1968). Polynomial codes are cyclic codes and
contain as sub-classes the BCH codes, Reed-Solomon codes,
generalised Reed-Muller codes and finite geometry codes.

3.13.5 Quadratic Residue Codes

Definition An integer r is a quadratic residue of
a prime number n if, and only if, there exists an integer
X such that:

X2 = r mod.n

It can be shown that if n = 8m±l, then 2 is a quadra­
tic residue of n (Berlekamp, 1968). In this case, Xn+1 can
be factored into (x+1)G^Cx)G^(x) (Peterson, 1972)

G (x) = if (x+ar)
r reRo

G_(x) = fi (x+ar)
r - R c

where a is a primitive element in an extension field of
GF(2), R is the set of quadratic residues modulo-n and R
is the set of quadratic non-residues modulo-n. The cyclic
codes with generator polynomials G^Cx), (l+x)Gr(x), G_(x)
and (l+x)G_(x) are referred to as quadratic residue codes.
Berlekamp (1968) points out that permutation decoding is a
very efficient way of decoding certain quadratic residue
codes but permutation decoders are normally more complex

79

than comparable BCH decoders. However, for practical appli­
cations, the relatively large minimum distance of these
codes, together with the difficulty in decoding them, makes
quadratic residue codes more suited for use in situations
where an incomplete decoding scheme is appropriate. An
incomplete decoding scheme uses the code redundancy to
correct up to t^<t errors and to detect d-Ct^+l) errors per
codeword thus requiring a simpler decoder than when up to t
errors have to be corrected per codeword.

3.13.6 Fire Codes

These codes were discovered by Fire (1959) while
trying to generalise the work of Abramson (1959) on burst
error correcting codes. Fire codes can correct a single
burst of errors per codeword. A burst b error correcting
Fire code is generated by the polynomial

G(x) = (xr+l)P(x)

where P(x) is a primitive polynomial of degree m and order
p = 2m-l, b<m and r>.2b-l. Also, p must not divide r. The
block length for this code is given by

n = LCM(r,p)

Chien (1969) generalised the Fire codes by defining G(x)
as follows:

s
G(x) = (xr + l) Tf P.(x)

j=l 3

80

where P^(x) is an irreducible polynomial of degree m̂ and
order . Also, it is required that all P^(x) be distinct
and that the p .(j=1,2,...,s) do not divide r. Consequently
G(x) has no repeated factors and the code length is given
by:

n = LCH(r,p15p2,...,pg)

The main advantage of the generalised Fire codes is their
high speed decoding process, described in section 3.12.3.
Other powerful burst correcting codes are obtained by
interleaving random or burst error correcting codes (Lin,
1970). A simple type of interleaving is obtained by
storing a number of codewords at the transmitter as rows of
a two-dimensional array which is transmitted by columns.
This technique tries to randomise the bursts by spreading
the erroneous digits among different codewords so that the
receiver can correct them as random errors. Also, by using
computer search techniques, many good burst error correct­
ing codes have been discovered, see for example, Peterson
(1972) or Lucky et al (1968).

81

CHAPTER 4

Experimental System and Computer Simulation

4.1 Introduction

In order to investigate the practical performance of
cyclic codes, an experimental system was built. The need
to test a number of different codes, both for burst and
random errors, imposed restrictions on the design parameters
of the decoder, like decoding time and overall complexity.
For that reason it was decided to limit the code length to
p<31 and the number of parity check digits to o<10. By
comparison with the decoder, the design of the encoder was
simple, and in what follows we shall concentrate our atten­
tion mainly on the decoder.

Figure4.1 shows the system constructed in block diagram
form.

FIGURE 4.1

82

A brief explanation of what each block contains and its
function is now given. A more detailed treatment comes
later in this chapter.

The data source generates pseudo-random data which is
fed to the encoder. The encoder constructed uses a c-stage
shift register and adds redundancy to the data according
to the code generator polynomial for which it is set.

The codewords thus generated are sent to the channel.
Noise is then added to the transmitted codewords by modulo-2
addition. In this way whenever an error comes from the noise
generator it changes either a one into a zero or a zero into
a one. The probability with which the errors occur is
externally set and can be varied over seven decades. The
error generator constructed can provide both random and
burst errors.

The decoder receives the codewords coming from the
channel and depending on external controls operates on them
either as a random or a burst error corrector. After decod­
ing the received n-tuples are compared with their transmitted
original versions, suitably delayed, and errors that either
escaped correction or were introduced by the decoder can then
be counted.

This experimental system was constructed with exclusively
TTL logic integrated circuits. A list of the integrated
circuits used is given in Appendix III.

4.2 Data Source

The data source was a binary m-sequence generated by

83

5 2 5the polynomial x +x +1. This sequence has length 2 -1 = 31.
The pseudo-random properties of m-sequences (Golomb, 1967)
make them appropriate for use as sources of random data.
See Figure 4.2 for the diagram of the data generator.

4.3 Clock and Timing Waveforms

The main clock for the system was set at 1 MHz and was
derived from a dual NAND Schmitt trigger (SN 7413). The
accuracy of this frequency was not a critical parameter
since all other frequencies in the system were derived from
the 1 MHz source by division.

The main timing circuit is shown in block diagram form
in Figure 4.3. Its job is to generate a periodic waveform
composed of n-c consecutive ones followed by c consecutive
zeros. This circuit works as follows. Initially, the shift
register contains only zeros. The flip-flop is preset to
one. When the clock starts ones begin to enter the shift
register. This continues until the magnitude of word b
becomes greater than or equal to that of word a. Then a one
appears at the output of the word magnitude comparator which
resets the flip-flop to zero. From now on, the output from
this circuit is a periodic waveform of period n selected by
the multiplexer and having a number of consecutive ones
which is determined by the switch which is sei; to repre­
sent word a in the word magnitude comparator. For example,
if n=7 and the switch is in position 3, we get at the output
the sequence

1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 . . .

84

0/P

FIGURE 4.2 : Data Generator

FIGURE 4.3 : Timing Waveform Generator

85

4.4 Encoder

The encoder constructed was of the (n-k) stage shift
register type described in Chapter 3. With this encoder
(see Figure 4.4)any generator polynomial of degree less than
11 can be implemented by closing the switches corresponding
to terms which are missing in G(X) and leaving them open
for the terms which are present. The timing waveform
generator shown in Figure4.3supplies the necessary control
waveform for the gates in Figure 4.4.

FIGURE 4.4: General Encoder For Cyclic Codes

86

4.5 Error Generator
4.5.1 Random Errors

In order to simulate a binary symmetric channel (BSC),
an error generator was constructed and the approach taken is
now explained.

It is known that the weight distribution of run lengths
in a maximal-length sequence (m-sequence) follows a binomial
law (Davies, 1967). One way to obtain pseudo-random noise
with a binomial probability distribution then would be to
use the outputs from the stages of a feedback shift register
that generates an m-sequence. The next point is to determine
how long this m-sequence should be. This will be set by the
smallest probability required. Just for the sake of argument
say it is 10 ̂ i.e., a certain condition would be detected
once every 100,000 times on average. The m-sequence to be
chosen should be at least 10 times 10^ digits long otherwise
the result would have a poor statistical behaviour. A good

30 gchoice would be an m-sequence of length 2 -1*10 which is
generated by a primitive polynomial of degree 30.

If, without further considerations, one connects a
feedback shift register to implement this m-sequence and
combines its outputs according to some logic in order to
obtain the desired probabilities of error, the result will
be that the average number of errors will be as calculated,
but that, however, their distribution might differ considera­
bly from a binomial one. This is so because with the
described procedure one would be implicitly assuming that
each output from the feedback shift register (FSR) is:

87

(a) A pseudo-random source of zeros and ones with
approximately equal probabilities.

(b) The outputs from the FSR stages are statisti­
cally independent.

It is assumption (b)that is not correct, on the contrary
those outputs are strongly dependent since each one (except­
ing the lowest order one) will be equal to the previous one
after one clock pulse. To overcome this difficulty we
relied on the work published by Hurd (1974) of which a
brief description is given below.

Consider the following arrangement where stages 3, 7
and 11 are toggle flip-flops (see Figure 4.5)

FIGURE 4.5

A toggle flip-flop is equivalent to the following circuit:

D represents a unit
of delay

X1 + DX2

88

X2(l+D) = Xx or

CM
X

1
X1 1+D

The output X2 changes with the next clock pulse
whenever X-̂ is a ONE.

The reason for using toggle flip-flops 3, 7 and 11 is
0 1 2to make the feedback digits (, x^ , x^) depend on more

than two digits (so as to avoid trinomial-like recursions,
e.g. when the FSR is described by a three term polynomial).

0 1 2x^ , x^ and x^ can be written as:

0 D 2 . ^3 1
XK = 1 + D XK D XK

u0 3 1 D 2
XK + D XK + XK = 0

1 _ D3 0 A „2 2
XK " 1+D XK D K i.e. 1+D xK + xK + D xK = 0

2 _ D4 1 ̂ „2 0
XK = 1+D XK D XK d2xK + £ d XK + XK = 0

In order for this system of equations to be indeterminate
one must have

PCD) =

D'

d °/i+d

D /1+D

D

D2 D4/l+D 1

= 0

Solving for PCD) we get:

PCD) = D11+D10+D9+D7+D6+D3+D2+D+l

89

11 10 9 7 G 9 ?or P(X) = X±x+X U+Xa+X'+Xb+Xb+X^+X+1

which is a primitive polynomial and so generates an m-
sequence.

It is obvious that the tap points in the shift register
of the example have to be carefully chosen otherwise P(X)
might not be primitive and so the resulting sequence would
not be of maximal length. At the moment, there are no known
systematic ways of finding arrangements that lead to m-
sequences, other than trial and error.

Some important properties of pseudo-noise (PN) sequences
are now presented.

(1) The randomness properties of PN sequences tend
to improve with the degree and complexity of the recursion
relation. (That is why trinomials should be avoided).

(2) It is possible to use different (widely shifted)
phase-shifts of the same sequence as essentially independent
noise sequences.

(3) Statistical dependence is usually not observed
unless the recursion relation is a very simple one.

So, with circuits similar to the one just described,
one can generate m-sequences using the minimum number of
stages of shift-register, and also many different and widely
spaced phase shifts are generated after every clock pulse.
As pointed out by Hurd those digits in the shift register
are "linearly independent and retain the important statisti­

90

cal property that all disjoint subsets considered as binary
numbers, are independent and jointly uniformly distributed".
This is so because all the 2n-l non-zero states occur equally
often. Also, the results of tests on the weight distribution
indicated that there was no evidence to distinguish between
truly random sequences of independent and equally likely bits
and the m-sequences generated in the way just described.

The error generator constructed used two m-sequences of
relatively prime lengths 2^-1 and 22<3-l

21;L-1 = 23x89

2 2°-l = 3x52xllx31xi+l

The primitive polynomial for the 2^-1 bit sequence is the
same as the one we used before, i.e.

f±(x) = x11+x10+x9+x7+x6+x3+x2+x+l

The way the m-sequence generator for this polynomial is
implemented has already been shown. For the implementation

20of the 2 -1 bit sequence, the following primitive poly­
nomial was used

f2 (x) 20, 17 16, 14 12 11 9, 8, 5̂ 4 ,x + x +x + x + x + x +x +x +x +x +1

91

FIGURE t+,6
All flip-flops are D-type except 5, 10, 15 and 20 which are

toggle flip-flops.

Twenty-five outputs were arithmetically added using
binary full adders and fed to a binary word magnitude com­
parator. In this way, using a set of switches, we can
vary the binary number at the other input to the comparator
and obtain at its output the errors according to well
defined probabilities. The lowest probability of error (P)

1 2 5 _ nthat can be obtained is (y) =3x10

4.5.2 Generation of Bursts

FigureH.7 shows a diagram of the circuit used to generate
bursts of errors. As can be seen the bursts are triggered by
the random error generator. Thus, the rate at which bursts
occur is controlled by the threshold settings used in the

92

random error case. The length of the bursts can be varied by
adjusting the time constant of the monostable. An m-sequence
is used to "fill" the bursts with pseudo-random digits while
the flip-flop and gates guarantee that the bursts will always
start and end with a one.

FIGURE 4.7 : Burst Error Generator

4.6 Random Error Correction

To decode random error-correcting cyclic codes an error­
trapping (E.T.) decoder was chosen due to its relative
simplicity. However, as mentioned before, E.T. suffers from
limitations and some means of overcoming those had to be

93

provided, since otherwise the code performance would be
degraded. The reason for choosing E.T. when more efficient
methods are available lies in the fact that to change from
one code to another not many changes are required in an E.T.
decoder. This is not generally true of other decoders and
the efficiency of E.T. decoding is reasonably good for n and
c in the range given above. To complement E.T. when necessary,
a process of systematic search was chosen. Again, for n and c
in the range given, this is feasible i.e. not too time-
consuming and is simple to implement.

4.6.1 Decoder

Figure 4.8 shows a block diagram of the decoder con­
structed. We shall start by describing how the buffers in
the decoder work.

While buffer 1 is being serially loaded with an incoming
n-tuple from the channel, its contents are being delivered
to the data sink. Simultaneously, the decoder is working on
the contents of buffer 2, checking for errors and attempting
correction if necessary. After buffer 1 has been loaded with
the incoming n-tuple the roles of the two buffers are inter­
changed. This means that buffer 2 now receives the digits
coming from the channel while delivering its contents
(corrected codeword) to the data sink. Simultaneously, the
contents of buffer 1 are being checked by the decoder.

This process is carried on repeating itself over and
over. The number of stages required for each of these
buffers is n, the codeword length, which is specified as

94

an address for their respective multiplexers. It should be
clear from Figure 4.8 that the multiplexers are used in
order to achieve variable wordlength in a simple way.

Due to the number of operations the decoder needed to
perform during the time duration of one codeword, it had to
be provided with a "fast clock". This "fast clock" was 20
times faster than the rate at which digits were received
from the channel. When using search this allowed the decoder
enough time to go through all its possible error patterns,
and be stopped safely before the next codeword was- due to be
decoded.

4.6.2 Error Trapping

Figure 4.8 can be used to ilia s trite the decoder section
concerned with random error-correction.

r e c e i v e d
Using the fast clock the stored/se<ju ence ready for

processing is fed into the syndrome calculating register
*(SCR) and at the same time cyclically shifted in its buffer.

This stored sequence is kept circulating in its buffer while
the SCR is shifted trying to trap the error pattern. If
E.T. succeeds, then the error buffer (EB), which is an n-
stage shift register, is serially loaded with the contents
of the S.C.R., which has its feedback connections inhibited.
During this time (c fast clock pulses) the fast clock for
the stored codeword is inhibited. After that the contents
of the E.B. are added modulo-2 to the stored codeword. A
timing circuit (not shown) controls the number of shifts
required in order to achieve correction and to restore the
* B U F F E R 1 OR BU FFE R z

95

F/B

CONTROL
LOGIC FOR
SHORTENED
CODES

SYNDROME REGISTER
(F.S.R.)

fast
clock

I

^ 3
COMPARATOR

A<B 2 A=B

TEMPORARY STORE

FROM F.S.R.

WEIGHT
CALCULATION

COMPARATORI

ADDRESS

DECODER
O/P

MPLX

BUFFER 1

ADDRESS
i >— -t DECODER

I/P
MPLX

BUFFER 2

ADDRESS
± J...♦

MPLX

ERROR BUFFER

*CONTROL LOGIC

FIGURE *4.8 : General Decoder For Cyclic Codes

96

original bit positions in the buffer.
If E.T. fails to decode the error then one can choose

to search or simply to reset the SCR and associated
logic and wait for the next codeword.

4.6.3 Systematic Search

When the decoder is using E.T. plus search, the search
process only starts after E.T. has failed. The search pro­
cess can be described as follows.

First, the syndrome is transferred to a temporary
store. After that, the SCR is cleared and the E.B. is loaded

c — lwith the pattern X +1. Now, using the fast clock, the
contents of the E.B. are shifted into the SCR and simul­
taneously cyclically shifted. After the n ^ shift, an extra
clock pulse is inserted in the clock streams for the SCR and
E.B. while X+l is added to both registers. What we just
said is equivalent to the following

X(XC_1+1) + (X+l) = XC+1

The contents of E.B. and. SCR are now XC+1 and its
syndrome respectively. While the fast clock keeps shifting
the contents of the codeword buffer, E.B. and SCR, the
outputs from the SCR are being compared against the contents
of the temporary store, to see if the syndromes agree. If
that happens after i shifts (i<n) the contents of the E.B.
represent the error pattern responsible for the syndrome
match. Correction of the error is then achieved by adding

97

modulo-2 the contents of E.B. and codeword buffer. This
requires n shifts but (n-i) shifts are still necessary in
order to restore the initial positions of the digits in
the codeword buffer register. This codeword is then ready
for delivery to the data sink. In the case that after n
shifts no matching of syndromes has been achieved again an
extra clock pulse is applied as before to E.B. and SCR and
X+l is added to both in order to get XC+^+l inside the E.B.
and its associated syndrome in the SCR.

c+1Now, X can be tried as a possible error pattern and
the process is repeated in the same way as before. This
process has to be controlled in order to avoid overflow
i.e. running out of decoding time. For a worst case situa­
tion a fast clock 20 times more rapid than the line clock
was found to be sufficient.

c+iAfter all possible patterns of the form X +1 have
been tried, and no matching of syndromes has occurred, the
contents of the codeword buffer are left unchanged to be
delivered to the data sink.

4.6.4 Shortened Cyclic Codes

This section will explain how the decoder buffers
operate when shortened cyclic codes are used.

Since the codeword length in a shortened code is (n-i)*
this implies receiving and delivering codewords of length
(n-i) while processing them with length n since the same

n is the original word length and i is the number of digits by which it
is shortened.

98

unaltered decoder is used for both shortened and non-shortened
codes. This means that the addresses for buffers 1 and 2
(Figure 4.8) need to alternate between n and (n-i) depending
on whether they are being used for receiving or decoding
codewords respectively. When calculating the syndrome of a
received (n-i)-tuple, the input to the SCR is made equal to
zero during the first i clock pulses. This is equivalent to
preceding each (n-i)-tuple with i zeros which is the same as
treating them as n-tuples having the first i positions filled
with zeros.

4.7 Burst Error Correction
4.7.1 Encoder

The encoder remains unchanged since the codes used for
burst error correction are also cyclic.

4.7.2 Decoder

By means of a switch the decoder constructed can be
manually changed from the random error-correcting mode to
the burst correcting mode.

This decoder shared some parts of the hardware used
for correction of random errors as will be clear from the
description that follows. See Figure 4.8.

The first task is to calculate the syndrome of the
received n-tuple and store this syndrome in the temporary
store. The syndrome register is shifted n times. After

99

every shift the contents of temporary store and syndrome
register are compared as binary numbers. Every time the
number in the temporary store is greater than the one in
the syndrome register a pulse is generated which transfers
the contents of the syndrome register to the temporary
store. In this way, after n shifts, the temporary store
contains the smallest binary number'that appeared during
the shifts or in other words the syndrome with the longest
run of consecutive zeros. Between two possible bursts of
same length the decoder chooses the one with smaller den­
sity. The syndrome register continues being shifted until
its contents match those of the temporary store. During all
this processing the received n-tuple is kept circulating in
its respective buffer. The fast clock for this buffer is
inhibited, the error buffer serially loaded with the con­
tents of the syndrome register and then added modulo-2 to the
contents of the codeword buffer.

A timing circuit controlled the number of shifts
required to correct the received n-tuple and leave it ready
for delivery.

In terms of number of clock pulses, the time needed by
this decoder to operate is:

Number of Clock Pulses Operation
n Syndrome calculation
n Find shortest burst
n+c Loading of error buffer

plus correction

Total: 3n+c

100

4.8 Counting Errors

When the error rate is sufficiently high, some code­
words are so badly corrupted that the decoder is unable to
correct them. In these cases the data delivered to the
sink contain digits in error. In order to count those
errors and thus measure the performance of the codes used,
the following procedure was adopted. The transmitted code­
words were delayed by means of shift register buffers and
then compared with their decoded versions by modulo-2
addition. The output from the modulo-2 adder (Figure 4.9)
was passed through an AND-gate with the clock, to be able to
count consecutive errors. The output from this AND-gate was
then fed to a counter (Advance Instruments, timer counter
TC14). By the use of external logic it was possible to
start and stop the counter automatically, and also to measure
bit and block error rate both over the whole codeword and
over the information section only.

In the circuit given in Figure 4.9, buffers 1 and 2
are part of the decoder as explained before. Buffers 3 and
4 store the encoded data for comparison and error count.
The flip-flop is reset at the beginning of every codeword
and any error occurring after that will preset the flip-flop
again to one causing the counter to increment its reading by
one.

TIMING WAVEFORM

101

FIGURE *4.9 : Circuit For Counting Errors

102

4.9 Computer Simulation

The performance of the experimental system was checked
by means of a simulation, using the programmes given in
Appendix II.

The computer used was a Honeywell DDP 516 and the
programmes were written in MINIC language. MINIC is a high
level language of which BASIC is a subset. It is also much
faster than BASIC and is specially designed (Glover, 1974)
to deal efficiently with patterns and maps; i.e. arrays of
binary numbers obeying certain rules. In order to generate
the errors the computer random number generator was tried
but proved unsatisfactory because its probability distribu­
tion was found not to be binomial. It was decided then to
use a software version of the hardware error generator, and
this proved successful. The error generator programme given
in the Appendix is actually a simpler version of the one
constructed which makes the programme run faster.

Since the syndromes depend only on the error patterns
(i.e. are independent of the codewords transmitted) the
output from the error generator was fed straight to the
decoder. The decoder was provided with information about
the code length, t and generator polynomial being used. The
probability of error can be adjusted by varying a threshold
in the error generator. The programme used for simulation
of the decoder for random error correcting codes was easily
adapted for the'simulation of forward error correction with
A.R.Q. Instead of starting systematic search after error
trapping has failed, all that is needed is to ask for a
repeat and inhibit the error count' for that particular code­
word.

10 3

For the generation of bursts, the random error
generator is used to start the burst and the computer
random number generator is used to "fill" the burst with
ones and zeros.

The average number of bursts of length b will only
coincide with the average number of random errors at

_ 3small values of probability of error (<10). When the
noise level is high, the average number of bursts will be
smaller than the average number of random errors because
during the duration of one burst more than one random
error can occur. This fact has been taken into account
when plotting the curves for the performance of burst cor­
recting codes described in the next chapter.

The rate at which bursts occurred was controlled by
adjusting a threshold in the random error generator. The
burst lengths were made adjustable so that a code could be
tested under many different burst conditions.

Though the programmes given in Appendix II are fairly
easy to follow with the assistance of the remark state­
ments, extra information has been given on the side
whenever it was felt it would increase clarity.

104

CHAPTER 5

Experimental and Computer Simulated Results

5.1 Introduction

Using the hardware described in the previous chapter,
it was possible to investigate the performance of various
cyclic codes both in the presence of random (pseudo-random)
and burst noise. A computer simulation of the whole system
was also made and the results obtained are shown for
comparison with the experimental results.

5.2 Cyclic Random Error Correcting Codes

We shall present first the results obtained for the
performance of random error correcting cyclic codes in
the presence of pseudo-random errors with a binomial prob­
ability distribution. The graphs that follow show a plot
of the probability of error after decoding (P) versus the
probability of error in the channel (Pg). Both block and
bit output error rates have been plotted because each one
has its own interest and one of them alone does not
accurately describe the other. Pe is input bit error rate
in all cases.

Graphs 1 and 2 show the block and bit error rate
respectively for the following single error correcting

105

codes (7,4), (15,11), (31,26). Those are perfect Hamming
cyclic codes with generator polynomials and rates given
below.

Code Generator Polynomial Rate
(7,4) 3

X + X + 1 0 . 5 7 1

(1 5 , 1 1) X + X + 1 0 . 7 3 3

(3 1 , 2 6)
5. 2,, x +x +1 0 . 8 3 9

It is interesting to observe that for a probability of
- 2error Pe <. 10 the curves m graphs 1 and 2 become very

nearly parallel and for sufficiently small probabilities of
error they are for all purposes parallel. This means, for
example, that the (7,4) code gives a reduction in block
error rate of about 23.7 against the (31,26) code for
Pg <. 10 . This point is important when trading code rate
and block (or bit) error rate.

Graphs 3 and 4 show block and bit error rate for two
double error-correcting codes and one triple error-correcting
with the following parameters.

Code t Generator Polynomial Rate
(15,7) 2 8 7 6 4 . x +x +x +x +1 0.467
(31,21) 2 x10+x9+x8+x6+x5+x3+l 0.677
(15,5) 3 x10+x8+x5+x4+x2+x+l 0.333

It is seen that the curves for codes with different t have
different slopes and as a consequence of this the advantage
to be gained is a function of P . For example, if we com­
pare the codes (15,5) and (31,21) on graph 3, for a

106

reduction in code rate of about 50% we obtain an improvement
- 2factor of around 500 for the block error rate at Pg = 10

and this improvement keeps increasing as Pg decreases while
the code rate remains constant.

Graphs 5 to 10 show pairs of codes having approximately
the same rate (k/n) . It is clearly seen that the longer
codes have better error-correcting properties and that the
curves normally cross over at a noise error rate close to
10 1. This is a relatively high probability of error since

-3in many practical applications Pg is <10 except during bad
fading or bursty conditions. A definite advantage is thus
obtained by using longer codes. The limit to the code
length to be used will be set by the cost and complexity of
the particular coding scheme.

5.2.1 Shortened Cyclic Codes

Various shortened cyclic codes were tested and the
results obtained are well described by graphs 11 and 12
where the (15,11) S.E.C. code has been chosen. It can be
seen that only a relatively small reduction in probability
of error after decoding is obtained as a result of shorten­
ing, i.e. even with quite a severe reduction in efficiency
(k/n). For this particular (15,11) code the block error
rate is reduced 18 times when it is shortened to (5,1). In
terms of code rate this represents a reduction from .733 to
.200. It should be noted that with a repetition code (5,1)
one is able to correct double errors inside a block while
with the (5,1) shortened code mentioned above, the error-

107

correcting capability remains t=l if the same decoder for
the (15,11) code is used preceding each word by 10 zeros.
In this sense, both code efficiency and error-correcting
power are being lost. However, in many applications where
the original code can be decoded with sinple equipment, it
can be advantageous to stick to this decoder rather than to

Idesign a special type where the syndromes are difficult to
relate to error patterns and/or a lot of parallel computa­
tion is required.

5.2.2 Error Trapping Plus Systematic Search

Graphs 13 and 14 illustrate the advantage of using
search to complement error trapping.

The (31,21) t=2 cyclic code was used here to compare
the results of decoding by error trapping alone and when,

-3in addition, search is used. For Pg = 10 a reduction of
around 30 times is obtained for block error rate when
search is used and this improvement increases as Pg decreases

So, whenever error trapping alone is not sufficient to
fully decode the code, one should consider the option of
complementing the decoding with search before considering
another decoding process altogether.

For the (31,21) code mentioned above, the following
error patterns and their cyclic shifts could not be trapped:
x10+ i , x 13- + i , X12+ l , X13+ l , X14+ l , X15+ l .

Generally, if the search can be done sequentially, the
amount of hardware required is considerably reduced and the
limiting factor will be the maximum speed at which the

108

circuit components used can work.
Another code that required search was the (17,9) t=2

8 5 4 3cyclic code generated by G(X) = x +x +x +x +1. In this
gcase, the decoder needed to use search only for the X +1

pattern and its cyclic shifts.

5.3 Cyclic Burst-Error-Correcting Codes

. For the study of burst error-correcting codes in a
bursty channel, it is necessary to know the following
characteristics of the channel:

(1) Frequency of occurrence of bursts.
(2) Probability distribution of burst length.
(3) Distribution of number of errors in a burst;

i.e. distribution of burst density.

The codes studied did not show any sensitivity to
burst density since, as explained before, all bursts of
length j<b are corrected and those bursts longer than b
which can be corrected are not selected on a burst density
basis.

Instead of using a particular probability distribution
of burst length it was decided to obtain results for various
fixed values of b. Graphs are plotted showing block and bit
output error rates against input burst probability, .
These results can be combined by using appropriate values
for coefficients satisfying a given distribution of burst
length, and the performance of the code in a given environ-

109

ment can thus be determined.
Graphs 15 and 16 show block and bit error rate results

obtained with the codes:

(7,3) b=2 G(x) = x^+x8+x2+l
(14,6) b=4 G(x) = x8+x6+x4+l

The (14,6) code was obtained by interleaving the (7,3) code
to degree 2.

It is interesting to observe in those graphs that the
(7,3) code deteriorates much faster than the (14,6) code
when bursts longer than b occur. The reason for that lies
in the fact that the (7,3) code uses its redundancy very
efficiently to correct the bursts of length <2 and is left
with no "spare" redundancy to cope with longer bursts. On
the other hand, the (14,6) code after allowing for all

O Qbursts of length <4 is left with 2 -1-14x2 = 143 unused
syndromes which are then used by the decoder to correct
bursts longer than 4. This (14,6) code corrects 62.5% of
the bursts of length 5 and 25% of the bursts of length 6.

Graphs 17 and 18 show block and bit error rate for the
codes:

(15,10) b=2 G(x) = x5+x4+x2+l
(30,20) b=4 G(x) = x10+x8+x4+l

The results are very similar to the ones just dis­
cussed. However, these codes are longer. The codes have
the same rate since the (30,20) code resulted from inter­
leaving the (15,10) code to degree 2.

110

Peterson, 1972 (p.363), shows that random error-
correcting codes can be used to correct bursts of errors.
When used for correcting single bursts the lower bound on
b is given by:

where d is the minimum distance of the code.

A few random error-correcting codes were tried on the
computer for correction of bursts of errors and the
results are given below.

n,k,t b 3d-8
4 z = c-2b

15,7,2 BCH 4 7/4 0
15,5,3 BCH 5 13/4 0
17,9,2 BCH 3 7/4 2
23,12,3 Go lay 5 13/4 1
23,11,3 Golay modified 6 4 0
31,21,2 BCH 4 13/4 2

TABLE 1

It can be seen that some well established random error
correcting codes are optimum (z=0) when used for burst
correction. Such codes, however, cannot be used to correct
both burst and random errors because in their coset decom­
position, one finds "correctable" bursts and "correctable"
random error patterns in the same coset.

Ill

5.4 Forward Error Correction with A.R.Q.

Some of the random error-correcting codes, mentioned
above, are studied in this section and used as hybrid ED/EC
codes in combination with Automatic Repeat Request (A.R.Q.),
and the results obtained are presented in graphs 19 to 26.

To use A.R.Q. it is necessary to have a feedback
channel, and to have some means of storage at the transmit­
ter. The results presented here are ideal in that a
noiseless feedback channel, together with infinite buffer
storage at the transmitter, are assumed.

From the graphs mentioned above, it can be seen that
the probability of error after decoding is substantially
reduced as the codes are used to correct less and to detect
more errors. As the error-detecting power of these codes
is increased, an increase in the number of repeat requests
is observed. The percentage of retransmitted blocks is
shown on the graphs for block error rate. For Pg >. 10 ̂
the efficiency of the channel is very low since the number
of retransmissions then becomes very large.

Error detecting codes (t=0) become very practical in
- 3terms of efficient use of the channel for values of P <10e — 3since the number of repeat requests drops to about 1 in 10

or less.
The use of combined error-trapping and A.R.Q. effec­

tively transforms the (15,10)d = 4(single error-correcting
double-error detecting code) into a double error-correcting
code which is both efficient and easy to decode. Another
interesting point is the possibility of correcting some
patterns of errors of weight t+1 when using quasi-perfect

112

codes. The (15,7) t=2 code shown in graphs 19 and 20 has a
block error rate 10 times smaller (on average) than when
decoded by error trapping alone. This is so because on the
forward error-correcting mode normally more than half of the
total number of syndromes available are not used at all
(they correspond to weight t+1 error patterns).

5.5 Possible Sources of Inaccuracy in the Results

We were faced with some difficulties when obtaining
experimental results for low error rates of the order of 1
in 10 . This was caused by transient noise in the form of
spikes coming from the mains supply and was eliminated by
decoupling the power rails with capacitors and adjusting a
threshold in the counter. In this way, only pulses exceed­
ing a given duration and height were counted.

For the computer simulation we did not use the computer
random number generator as the random error source because
its probability distribution is arbitrary and we needed a
binomial distribution. Thus, an error generator of the type
constructed in hardware was simulated in software. In order
to keep the computer programme within a manageable size, and
at the same time not too slow, a shorter m-sequence was
used. This is a possible source of inaccuracy, particularly
at low error rates. Contrasting with what has been said
about difficulties in getting results experimentally and by
computer simulation, it is relatively easy to predict the
code performance at low error rates once a sufficient number

113

of points have been obtained. This is
curves Pc versus Pg , when plotted on a
tend to straight lines for Pg < 10 ^.

so because the
log x log graph,

114

GRAPH 1

115

116

GRAPH 3

117

118

RANDOM ERRORS
BLOCK ERROR RATE
CODE RATE

A - (7,3) 0.428
B - (15,7) 0.467

T=1
T=2

GRAPH 5

119

GRAPH 6

120

121

122

123

GRAPH 10

124

125

126

127

128

GRAPH 15

129

GRAPH 16

130

GRAPH 17

131

GRAPH 18

132

133

GRAPH 20

134

GRAPH 21

135

GRAPH 22

136

GRAPH 23

137

GRAPH 24

138

GRAPH 25

e

139
Pc

10 |3 10 2| 10 j

RANDOM ERRORS / / \
BIT ERROR RATE / / / /
F.E.C. + ARQ / / \

CODE (31,21,2) / / \

^ P e

/ / \
_-l
10

/ / // "

--210

. EXPERIMENTAL / J / /

_-310

/ / / ■

_-410
--
--
--
--
--

oj
,

^ t=1 t=0 — 610

GRAPH 26

140

CHAPTER 6

Conclusion
V

The main objective of the research described in the
previous chapters was the investigation of the practical
performance of block error correcting codes as a means of
reducing the error rate in communication systems. This
study necessarily involved an analysis and a discussion
of various coding techniques and their associated decoding
problems. For practical reasons, the sub-class of linear
block codes called cyclic codes was used for the investi­
gation ,

In Chapter 1 the general ideas related to the use of
error correcting codes in communication systems were
presented. Also, the Coding Theorem and the consequent
coding problem were introduced.

Chapters 2 and 3 dealt with the theory of linear
block codes, the study of cyclic codes, and some important
coding techniques which were reviewed and compared. From
this study became apparent the practical advantages to be'
gained by using linear cyclic codes rather than simply
linear codes. Chapter 4 described the hardware used in
the experimental investigation which comprised a general
encoder/decoder for cyclic codes, a noise generator and
the associated circuits for counting errors. The practical
performance of many cyclic codes was assessed using the

141

hardware constructed, and the results obtained were checked
by computer simulation. The construction of similar hard­
ware to study linear codes would have involved an extremely
complicated decoder for the reasons given in Chapter 2.
Chapter 5 presented and discussed the results of error
measurements obtained with the experimental system and by a
computer simulation. In all cases there was always close
agreement between both sets of results.

From the various graphs shown in Chapter 5 it is easy
to see how the slopes of the curves plotted are related to
the error-correcting power of the corresponding codes. For
a random t error-correcting code a slope of t+1 is obtained,
in the linear region of the graph, when the decoder used can
correct all errors up to t per codeword. In this case only
patterns containing t+1 or more errors will cause the
decoder to decode wrongly. For a sufficiently small Pg the
effect of patterns with more than t+1 errors in the system
error rate is negligible when compared with those containing
t+1 errors. In situations where error-trapping is not
sufficient to correct all patterns with t errors, the curves
obtained will fall somewhere between lines of slope t and t+1,
and will tend asymptotically to a slope of t. Also, from the graphs
shown, it can be seen that for codes with the same rate,
shorter codes apparently perform better than longer codes
at high error rates. However, this may not be a true
advantage because when it happens the codes have already
deteriorated in performance considerably.

As mentioned before, most real channels are difficult
to model and the use of simple hardware, like the one

m 2

constructed, makes possible quick and easy measurement of
code performance. As far as practical applications of
coding are concerned, this procedure is very effective
whenever it is feasible. Even for channels like the
binary symmetric channel the exact calculation of bit
error rate after decoding is normally very complicated and
impractical (Turner, 1976).

In practical applications of coding, the use of a
powerful code, able to cope with a worst case situation,
normally implies a very low throughput for the system even
during periods of relatively low noise. If, alternatively,
a code is selected which is efficient in a quiet channel,
it will often have a poor performance during noisy periods.
In this context the so called fixed redundancy schemes are
inefficient. However, in conjunction with the problem of
efficient channel utilisation, the engineers are also faced
with the problem of designing the decoding equipment. So,
in many cases, the two requirements of simple decoding and
reasonable efficiency may indicate the choice of a weak
code. In order to make more efficient use of the channel
it may be better in such cases to consider a variable
redundancy system (i.e. to use a number of codes with a
wide range of rates and error correcting power, selecting
them adaptively according to varying channel conditions).
The advantages of having a relatively simple general
encoder/decoder are obvious in this case. With very little
modification the hardware constructed provides a simple
encoder/decoder for applications requiring variable redun­
dancy .

143

If a situation arises where only one fairly long and
powerful random error-correcting code must be used, then
a BCH code can be a strong candidate because of its con­
venient decoding algorithm. Of course, this might not be
the final answer to the problem because it is always a
function of other parameters as well like cost, complexity,
maximum tolerable decoding delay, and the error rate after
decoding. Since all types of decoders, proposed so far,
grow very fast in complexity with code length, it is of
practical importance to use relatively short codes. Many
powerful coding schemes result from a combination of short,
easy to decode, codes. If a feedback channel is available,
then by using A.R.Q. (perhaps in combination with forward
error correction) a simple decoder results. A.R.Q. systems
normally have a high throughput but during high noise
periods become inefficient due to the many repeat requests;
the addition of forward error correction in these cases may
be an acceptable compromise because it helps to decrease
the number of repeat requests at the cost of a reduction in
throughput.

Recommendations for future research

The experimental system built proved very reliable, as
was expected, due to the use of integrated circuit components.
The only limiting factor, when larger values of n are
required, is the decoder complexity. This clearly shows the
need for more efficient decoding algorithms for cyclic codes,
perhaps aiming to be optimum only for certain types of

144

channel. Efficient decoding will possibly involve more
sophisticated ways of manipulating the code redundancy, by
exploring some properties of the channel e.g., the fact
that most real channels are not memoryless. In the area
of burst error correction there is always a need for more
sophisticated interleaving techniques. Also, the con­
struction of codes which meet the bound

R - g+b

(Gallager, 1968), rather than the more common

R < £lb
g+b 5

deserves more attention. Burst correcting codes are normally
designed to combat bursts on a burst length basis; it may
be interesting to analyse the results of codes designed to
combat bursts on a burst density basis.

An interesting extension of the research described here
is the study of codes and coding schemes to operate under
very noisy conditions, with error rates in the range of
0.5 to 0.1. Systems of this type may be of interest for
use with channels subject to severe fading and multipath
effects (e.g. HF links), or operating at very low receiver
signal-to-noise ratios (e.g. spread-spectrum systems;
Farrell & Munday, 1976).

Finally, the advent of microprocessors represent an
important step forward for the implementation of experimen­
tal coding schemes. The use of software programmes, instead

14 5

of hard wired logic, makes a system more versatile and
easier to modify. Though, at the moment, the price-speed
factor is not very favourable to microprocessors, as
compared to systems built using TTL for example, it is
possible to have cheaper microprocessors combined in
parallel operation to improve speed.

146

APPENDIX I

Modern Algebra and Vector Spaces

The definitions presented here can be found in texts
like Peterson (1972), Lin (1970), Berlekamp (1968) and
Herstein (1964).

GROUP; A set of elements obeying the following postulates.
If a, b and c are elements of the set then:
(1) a+b is in the set, where (+) denotes an operation.
(2) (a+b)+c = a+(b+c).
(3) There is a unique element 0 such that 0+a = a.
(4) There is a unique element -a such that a+(-a) = 0.

SUB GROUP: A subset of elements of a group which satisfies
all the properties of a group and so forms itself a
group with respect to the operation used for the
group (+).

ABELIAN GROUP: A group with elements which satisfy a
fifth postulate, namely:
(5) a+b = b+a .

RING: A set of elements which form an Abelian group under
the operation (+) and satisfy the following postulates
with respect to another operation (•).

147

(1) a.b is in the set.
(2) a.(b.c) = (a.b).c
(3) a.(b+c) = a.b + a.c
(4) (b+c).a = b.a + c.a
The ring is commutative if a.b = b.a

FIELD: A set of elements which form a ring, and the non­
zero elements form an Abelian group with respect to
the operation (•).

GALOIS FIELDS; GF(q)
It can be shown that for q=p , where p is a prime

number, there exists a finite field containing q elements.
This is called a Galois field of q elements. Those q
elements will be the integers 0 to q-1 if and only if q is

\
prime.

POLYNOMIAL RINGS:
The set of all polynomials in a single unknown X,

with coefficients from GF(q) , forms a commutative ring
which is called a ring of polynomials over GF(q).

IDEALS:
The set of all polynomials *with coefficients in

GF(q) of the form g(x).p(x), where p(x) is any polynomial,
is called the ideal generated by g(x).

RESIDUE CLASSES:
An ideal can be thought of as a subset of a ring of

148

polynomials. The elements of this ring,which are not in
the ideal, form what is called residue classes.

The elements of each residue class are characterised
by the fact that subtraction between any pair of its
members gives an element in the ideal.

RESIDUE CLASS RING:
The set of residue classes, as defined above, form a

ring called a residue class ring with respect to an ideal.

VECTOR SPACES:
The sequence [V] = [V^ , V 2 »V 3 > • • • j V^] , where the com­

ponents are elements from GF(2), i.e. either 0 or 1, is
called an n-tuple over GF(2). There are 2n different n-
tuples, for a given n, due to the binary nature of the
components V.. Addition of two n-tuples QJ] and [V] is
defined as follows:

where U^+V^ represents the modulo- 2 addition of and V^.
Scalar multiplication of a binary n-tuple by an element a
of GF(2) is defined as:

CD = tu1,u2,u3, . . . , u n]

Dfl + DO = B u 1+v 1),(u 2+v 2), ..., (un+vnO

149

The inner product of two n-tuples U and V is defined as:

D3-D0 = » P i + u2 v 2 + U3 V 3 + unvn

where addition and multiplication are taken modulo-2. A
vector space over GF(2) is defined as the set of all
possible binary n-tuples. A subspace Sn of Vn is defined
as a subset of Vn which contains the all zero n-tuple and
such that the addition of any two n-tuples in Sn always
results in a third n-tuple belonging to S . Given i n-tuples
[Vj , [V2H 5 [V3] 5 • • • 5 CV-fl 5 a linear combination of them is
defined as:

[u] = CpQVj] + Cj UVj] + C3 [Vj] c-Cv.]

where the coefficients are taken from GP(2). If it is
possible to find scalars from GF(2), not all zero, such
that:

CiCV]] + c2 [v2l + ... + CjPv.] = 0 ,

then the set{ [Vp] » ’ CV3I j • • • j [V-p ̂ is said to be linearly
dependent. If the only set of scalars from GF(2) satisfying
this condition is C1 =C2 =. . . =C^ = 0 , then the set { [Vp] ’ [Ÿg] ’

is said to be linearly independent. In any
vector space or subspace there is at least one set of
linearly independent vectors (n-tuples) that generate, by
linear combinations, all other vectors in the space or sub­
space. This set is called a basis of the vector space or

150

subspace. The dimension of a space is the number of vectors
in its basis.

151

APPENDIX I I

Computer Programmes

Random Error Correction

DIM PAT D(31,1),PAT Dl(31,1),PAT X(31,1),PAT Xl(31,1)
DIM PAT E(31,1),PAT BL(31,1),PAT C(31,1),PAT 6(31,1)
DIM MAP SFC31,31),MAP S2(31,31),PAT SIC31,1),PAT 11(31,1)
DIM PAT Z0(20,1),MAP FS(20,20),MAP FB(20,20)
DIM PAT C2(20,1),PAT D2(20,l),PAT X2(20,l)
1 PRINT "SRI :UP FOR TT,DOWN FOR VT"
2 PRINT "GIVE N,K,T,M,THRESHOLD FOR PROB. OF ERROR"
3 INPUT N,K,Tl,M,T4
4 IF SR2 GOTO 11
5 DRSPEC 13 DC T 10
7 INPUT #3 MAP FS,mP FB
8 INPUT #3 MAP SF,MAP S2,PAT G,PAT D
9 INPUT #3 PAT SI,PAT II
10 DRSPEC
11 LET 15=0
12 DIM V(10),U(10)
13 PRINT "DO YOU NEED SEARCH? TYPE 1 FOR YES ,0 FOR NO"
14 INPUT F
15 IF SRI GOTO 20
17 DRSPEC TO IT
20 FOR 1=1 TO 10
22 LET V(I)=0
24 NEXT I
26 LET PAT C2 BE NT PAT ZO
28 IF SR3 GOTO 800
30 FOR 13=1 TO 10
35 FOR Jl=l TO M
37 LET 12=0
40 LET PAT XI BE PAT D
45 LET PAT E BE PAT BL
50 FOR J=1 TO N
55 LET PAT X BE PAT XI BY MAP SF
60 LET PAT XI BE PAT X Generation of random errors
62 LET PAT X2 BE PAT C2 BY MAP FS
64 LET PAT D2 BE PAT C2 BY MAP FB
66 LET PAT C2 BE PAT X2 EX PAT D2
68 LET S=SUM PAT C2
70 IF SOT4 THEN GOTO 8075 LET PAT E BE PAT E OR PAT XI
80 NEXT J
85 LETT S=SUM PAT E Avoid running through the
90 IF S=0 THEN GOTO 505 programne when there are
95 LET PAT D1 BE PAT E no errors
100 GOSUB 600

152

110 LET B=SUM PAT DI
115 IF B<=T1 THEN GOTO 230
120 LET 12=12+1
125 IF I2=N+1 THEN GOTO 300
130 LET PAT X BE PAT DI BY MAP SF
135 LET PAT DI BE PAT X
140 LET PAT X BE PAT DI AN PAT D Error trapping
145 LET S=SUM PAT X
150 IF S=0 IHEN GOTO 120
155 LET PAT DI BE PAT DI EX RAT G
160 GOTO 110
230 LET PAT C BE PAT DI BY MAP S2
240 IF 12=0 THEN GOTO 490
250 FOR 1=1 TO N-I2
255 LET PAT X BE PAT C BY MAP SF
260 LET PAT C BE PAT X
265 NEXT I
270 GOTO 490300 REM SEARCH TO COMPLEMENT ERROR TRAPPING
302 IF F=0 THEN GOTO 480
304 LET PAT XI BE PAT DI
305 LET PAT C BE PAT SI
310 LET PAT DI BE PAT C
315 GOSUB 600
320 LET 12=0
325 IF I2=N+1 IHEN GOTO 450
330 LET RAT X BE PAT XI EX PAT DI
335 LET S=SUM PAT X
340 IF S=0 IHEN GOTO 485
345 LET 12=12+1
350 LET PAT X BE PAT DI BY MP SF
355 LET PAT DI BE PAT X
360 LET PAT X BE PAT C BY MAP SF
365 LET PAT C BE PAT X
370 LET PAT X BE PAT DI AN PAT D
375 LET S=SUM PAT X
380 IF S=0 THEN GOTO 325
385 LET PAT DI BE PAT DI EX PAT G
390 GOTO 325
450 LET 15=15+1
455 IF 15=6 IHEN GOTO 480
460 LET PAT C BE PAT C EX PAT II
465 LET PAT DI BE PAT C
470 GOTO 315
480 LET PAT C BE PAT BL
485 LET 15=0
490 LET RAT C BE PAT C EX PAT E
495 LEI S=SUM PAT C Error correction and bit and block
496 IF S=0 THEN GOTO 505 error count
500 LET V(I3)=V(I3)+S
502 LET U(I3)=U(I3)+1
505 NEXT J1510 PRINT V(I3)P
515 NEXT 13
520 PRINT " "
525 END
600 REM DIVISION OF N-TUPLE BY G(X)
605 LET 11=0

153

610 LET 11=11+1
615 LET PAT X BE PAT DI AN PAT D
620 LET S=SUM PAT X
625 IF S=0 THEN GOTO 635
630 LET PAT DI BE PAT DI EX PAT G
635 IF I1=K THEN GOTO 700
640 ITT PAT X BE PAT DI BY MAP SF
645 LET PAT DI BE PAT X
660 GOTO 610
700 RETURN
800 REM INITTALISE M-SEQUENCE
810 INPUT K1
820 FOR 1=1 TO K1
830 LET PAT X2 BE PAT C2 BY MAP FS
840 LET PAT D2 BE PAT C2 BY MAP FB
850 LET PAT C2 BE PAT D2 EX PAT X2
860 NEXT I
870 GOTO 30

Burst Error Correction

DIM PAT Z0(20,1),PAT C2(20,1),PAT X2(20,l)
DIM MAP FS(20,20),MAP FB(20,20),PAT D2(20,l)5 DIM T(31),X(31),G(31),L(31),V(11),U(10),W(10)
20 FOR 1=1 TO 11 25 INPUT A3
30 LET V(I)=A3
35 NEXT I
36 LET PAT C2 BE NT PAT ZO
37 INPUT N,K,M
40 DRSPEC 13 DC T 10
42 INPUT #3 MAP FS.RAP FB
44 DRSPEC
45 IF SRI GOTO 47
46 DRSPEC TO IT
47 FOR B=2 TO 5
50 FOR T4=10 TO 1655 PRINT "BLOCK"/’BIT","LOG.AVERAGES:BLOCK AND BIT"
80 FOR 13=1 TO 5
82 FOR J3=l TO M
83 LET J1=0
84 LET 15=0
85 LET 12=0
86 FOR 1=1 TO N
90 LET PAT X2 BE PAT C2 BY MAP FS
95 LET PAT D2 BE PAT C2 BY MAP FB

Burst error generation

154

100 LET PAT C2 BE PAT X2 EX PAT D2
105 LET S=SUM PAT C2
107 LET L(I)=0
108 LET G(I)=0
110 IF S<>T4 THEN GOTO 180
115 LET J1=J1+1
120 LET T(I+B-1)=1 Burst error generation
125 LET T(I)=1
130 IF B=2 THEN GOTO 165
135 FOR J=I+1 TO I+B-2
140 IF RND(0)>.5 THEN GOTO 155
145 LET T(J)=1
150 GOTO 160
155 LET T(J)=0
160 NEXT J
165 FOR J=I TO I+B-l
170 LET L(J)=T(J)
175 NEXT J
177 LET I=I+B-1
180 NEXT I
185 IF J1=0 THEN GOTO 485
200 QOSUB 600
205 REM STORE SYNDROME
210 FOR I=K+1 TO N
215 LET X(I)=T(I)
220 NEXT I
240 REM SHIFT SYNDROME
245 LET 15=15+1
250 LET C=T(1)
260 FOR J=2 TO N
270 LET T(J-1)=T(J)
280 NEXT J
290 LET T(N)=C
300 GOSUB 600
310 REM COMPARE SHIFTED WITH STORED SYND.
320 FOR I=K+1 TO N
330 IF T(I)>X(I) THEN GOTO 240
335 IF T(I)<X(I) THEN GOTO 352
340 NEXT I
351 GOTO 360
352 LET 12=15
354 FOR J=K+1 TO N
356 LET X(J) =T(J)
358 NEXT J
360 IF I5=N+I2 THEN GOTO 372
370 GOTO 240
372 IF 12=N THEN GOTO 450
380 FOR 1=1 TO N-I2
390 LET C=X(1)
400 FOR J=2 TO N
410 LET X(J-1)=X(J)
420 NEXT J
430 LET X(N)=C
440 NEXT I
450 FOR 1=1 TO N
460 LET T(I)=X(I)+L(I)
465 NEXT I
470 GOSUB 700

155

471 LET A=0
472 FOR 1=1 TO N
473 LET A1=T(I)
474 LET X(I)=0
475 LET A=A+A1
477 LET T(I)=0
480 NEXT I
482 IF A=0 THEN GOTO 485483 LET U(I3)=U(I3)+1 Bit and block error count
484 LET W(I3)=W(I3)+A
485 NEXT J3
486 PRINT " "
487 PRINT U(I3),W(I3)488 PRINT L0G((U(I3)/M)+lE-20)/L0G(10) ,L0G((W(I3)/(N*M))+lE-20)/L0G(10)
489 LET U(I3)=0
490 LET W(I3)=0
491 NEXT 13492 PRINT "THRESHOLD T4="PT4,"BURST LENGTH B="PB,"USED ABOVE"
495 NEXT T4
497 NEXT B
500 STOP600 REM DIVISION OF N-TUPLE BY G(X)
601 LET 11=0
602 FOR 1=1 TO 11
603 LET G(I)=V(I)
604 NEXT I
606 LET 11=11+1
610 LET A=T(I1)+G(I1)
615 IF A=2*INT(A/*) THEN GOTO 625
620 GOTO 638
625 FOR 1=1 TO N
630 LET T(I)=T(I)+G(I)
635 NEXT I
638 IF I1=K THEN GOTO 700
640 FOR I=N TO 2 STEP -1
645 LET G(I)=G(I-1)
650 NEXT I
655 LET G(1)=0
665 GOTO 606
700 FOR 1=1 TO N705 IF T(I)=2*INT(T(I)/2) THEN GOTO 720
710 LET T(I)=1
715 GOTO 735
720 LET T(I) =0
735 NEXT I
740 RETURN

156

Forward Error Correction with A.R.Q.

DIM PAT D(15,1),PAT D1(15,1),PAT X(15,1),PAT Xl(15,l)
DIM PAT E(15,1),PAT BL(15,1),PAT C(15,1),PAT G(15,l)
DIM MAP SF(15,15),MAP S2(15,15)
DIM PAT Z0(20,l) ,MAP FS(20,20),mP FB(20,20)
DIM PAT C2(20,l),PAT D2(20,l),PAT X2(20,l)
1 PRINT "SRI :UP FOR IT,DOWN FOR VT"
2 PRINT "GIVE N,K,T,M"
3 INPUT N,K,T1,M
4 IF SR2 GOTO 11
5 DRSPEC 13 DC T 10
7 INPUT #3 MAP FS,MAP FB
8 INPUT #3 MAP SF,mP S2 ,PAT G,PAT D
10 DRSPEC
11 DIM V(10),R(10),U(10)
15 IF SRI GOTO 20
17 DRSPEC TO TT
20 LET PAT C2 BE NT PAT ZO
22 IF SR3 GOTO 800
24 FOR T4=10 TO 16
26 FOR 1=1 TO 10
27 LET V(I)=0
28 LET R(I)=0
29 LET U(I)=0
30 NEXT I
31 PRINT "T4="PT4
32 PRINT "BLOCK"," BIT ","LOG. AVERAGES : BLOCK AND BIT,"P
33 PRINT "REPEATED BLOCKS"
34 FOR 13=1 TO 5
35 FOR Jl=l TO M
37 LET 12=0
40 LET PAT XI BE PAT D
45 LET PAT E BE PAT BL
50 FOR J=1 TO N
55 LET PAT X BE PAT XI BY MP SF
60 LET PAT XI BE PAT X
62 LET PAT X2 BE PAT C2 BY MAP FS
64 LET PAT D2 BE PAT C2 BY MAP FB Random error generation
66 LET PAT C2 BE PAT X2 EX PAT D2
68 LET S=SUM PAT C2
70 IF S<>T4 THEN GOTO 80
75 LET PAT E BE PAT E OR PAT XI
80 NEXT J
85 LET S=SUM PAT E
90 IF S=0 IHEN GOTO 505
95 LET PAT D1 BE PAT E
100 QOSUB 600
110 LET B=SUM PAT D1
115 IF B<=T1 THEN GOTO 230
120 LET 12=12+1 Error trapping125 IF I2=N+1 THEN GOTO 300
130 LET PAT X BE PAT D1 BY MP SF
135 LET PAT D1 BE PAT X
140 LET PAT X BE PAT D1 AN PAT D
145 LET S=SUM PAT X

157

Error trapping

150 IF S=0 THEN GOTO 120
155 LET PAT D1 BE PAT D1 EX PAT G
160 GOTO 110
230 LET PAT C BE PAT D1 BY MAP S2
240 IF 12=0 THEN GOTO 490
250 FOR 1=1 TO N-I2
255 LET PAT X BE PAT C BY MAP SF
260 LET PAT C BE PAT X
265 NEXT I
270 GOTO 490
300 REM ARQ BEING USED
305 LET R(I3)=R(I3)+1
310 GOTO 505
490 LET PAT C BE PAT C EX PAT E
495 LET S=SUM PAT C
497 IF S=0 THEN GOTO 505
500 LET U(I3)=U(I3)+S
502 LET V(I3)=V(I3)+1
505 NEXT J1
510 PRINT V(I3),U(I3),L0G((V(I3)/M)+lE-2O)/LOG(lO)
512 PRINT LOG((U(I3)/(N*M))+IE-20)/LOG(IO)
513 PRINT R(I3)/M
515 NEXT 13
520 PRINT " "
522 NEXT T4
525 END
600 REM DIVISION OF N-TUPLE BY' G(X)
605 LET 11=0
610 LET 11=11+1
615 LET PAT X BE PAT D1 AN PAT D
620 LET S=SUM PAT X
625 IF S=0 THEN GOTO 635
630 LET PAT D1 BE PAT D1 EX PAT G
635 IF I1=K THEN GOTO 700
640 LET PAT X BE PAT D1 BY MAP SF
645 LET PAT D1 BE PAT X
660 GOTO 610
700 RETURN
800 REM INITIALISE M-SEQUENCE
810 INPUT KL
820 FDR 1=1 TO K1
830 LET PAT X2 BE PAT C2 BY MAP FS
840 LET PAT D2 BE PAT C2 BY MAP FB
850 LET PAT C2 BE PAT D2 EX PAT X2
860 NEXT I
870 GOTO 24

Count number of repeated blocks

Count bit and block errors

158

APPENDIX I I I

A list of the integrated circuits used in the
construction of the hardware described in Chapter 4 is
given below. These integrated circuits are all from
the Transistor-Transistor Logic (TTL) family, series 74.

SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN

7400 Quad 2 input NAND
7402 Quad 2 input NOR
7404 Hex inverter
7408 Quad 2 input AND
7410 Triple 3 input NAND
7413 Dual 4 input NAND Schmitt trigger
7420 Dual 4 input NAND
7427 Triple 3 input NOR
7432 Quad 2 input OR
7474 Dual D-type flip-flop
7482 2 bit binary full adder
748 3A 4 bit binary full adder
7485 4 bit word magnitude comparator
7486 Quad 2 input exclusive-OR
7496 5 bit shift register PIPO
74107 Dual J-K flip-flop
74121 Monostable multivibrator
74123 Dual monostable multivibrator
74150 16 bit data selector
74157 Quad 2 to 1 line selector
74163 4 bit synchronous binary counter
74164 8 bit shift register SIP0
74174 Hex D-type flip-flop
74H183 Dual carry save full adder
74221 Dual monostable multivibrator
74265 Quad delay equaliser
74LS266 Quad 2 input exclusive-NOR 0/C

159

Bibliography

The following abbreviations have been used in the
bibliography:

BSTJ Bell System Technical Journal
IBM International Business Machines
IEE Institution of Electrical Engineers
IEEE Institute of Electrical & Electronics

Engineers
IRE Institute of Radio Engineers
MIT Massachusetts Institute of Technology
SIAM Society of Industrial & Applied

Mathematics

Transactions :

COM Communication Technology
CS Communication Systems
EC Electronic Computers
IT Information Theory

160

N.M. Abramson
(1959)

N.M. Abramson
(1961)

N.M. Abramson
(1968)

B.G. Bajoga
& W.J. Walbesser
(1973)

E.R. Berlekamp
(196 8)

E.R. Berlekamp
(1973)

E.R. Berlekamp
& 0. Moreno
(1973)

A Class of Systematic Codes for
Non-Independent Errors. IRE Trans.,
IT-5, No.4, p.150, Dec.

Error-Correcting Codes from Linear
Sequential Circuits. The 4th London
Symposium on Information Theory,
Editor C. Cherry, Butterworths, p.26

Cascade Decoding of Cyclic Product
Codes. IEEE Trans., COM-16, No.3,
p . 39 8 , June.

Decoder Complexity for BCH Codes.
Proc. IEE, Vol.120, No.4, p.429 ,
April.

Algebraic Coding Theory. McGraw-Hill,
New York.

Goppa Codes. IEEE Trans., IT-19, No.5,
p . 5 90 , Sept.

Extended Double-Error-Correcting Binary
Goppa Codes are Cyclic. IEEE Trans.,
IT-19, No.6 , p.817, Nov.

161

R.C. Bose On a Class of Error Correcting Binary
& D.K. Ray-Chaudhuri Group Codes. Info. & Control, Vol.3,
(1960) p.6 8, March.

K. Brayer Error Correction Code Performance on
(1971) HF, Troposcatter, and Satellite

Channels. IEEE Trans., COM-19, No.5,
' p.781, Oct.

D.T. Brown Cyclic Codes for Error Detection.
& W.W. Peterson Proc. IRE, Vol.49, No.l, p.228, Jan.
(1961)

H.O. Burton Errors and Error Control. Proc. IEEE,
& D.D. Sullivan Voi.60, No.11, p.1293, Nov.
(1972)

H.O. Burton Cyclic Product Codes. IEEE Trans.,
& E.J. Weldon, Jr. IT-11, No.3, p .433, July.
(1965)

R.D. Carmichael Introduction to the Theory of Groups
(1937) of Finite Order. Ginn & Company,

New York.

R.T. Chien Cyclic Decoding Procedures for Bose-
(1964) Chaudhuri-Hocquenghem Codes. IEEE

Trans., IT-10, p.357, Oct.

162

R.T. Chien Burst-Correcting Codes with High
(1969) Speed Decoding. IEEE Trans., IT-15,

No.l, p.109, Jan.

R.T. Chien Block-Coding Techniques for Reliable
(1971) Data Transmission. IEEE Trans.,

COM-19, No.5, p.743, Oct.

A.C. Davies Probability Distributions of Pseudo­
(1967) random Waveforms Obtained from m-

sequences. Electronics Letters,
Vol.3, p.115.

H.C.A. van Duuren Error Probability and Transmission
(1961) Speed on Circuits Using Error Detec­

tion and Automatic Repetition of
Signals. IRE Trans., CS-9, No.l,
p.3 8 , Mar ch.

P. Elias Error-Free Coding. IRE Trans., IT-4,
(195 4) p.29, Sept.

P. Elias Coding for Noisy Channels. IRE Nat.
(1955) Convention Record, Part 4, p.37.

R.M. Fano Lectures on Communication System
(1961) Theory, Chapter 23. Editor Elie J.

Baghdady. McGraw-Hill Book Company.

163

P.G. Farrell Coding for Noisy Data Links. Ph.D
(1969) Thesis, University of Cambridge.

P.G. Farrell Economical Practical Realisation of
& E . Munday Minimum Distance Soft-Decision
(1976) Decoding for Data Transmission. Proc.

of the International Zurich Seminar
on Digital Communications.

P. Fire A Class of Multiple-Error-Correcting
(1959) Binary Codes for Non-Independent

Errors. Silvania Electric Products
Inc., Report No.RSL-E-2, March.

G.D. Forney Generalised Minimum Distance Decoding.
(1966a) IEEE Trans., IT-12, No.2 , p.125, April.

G.D. Forney Concatenated Codes. The MIT Press,
(1966b) Cambridge, Massachusetts.

G.D. Forney Burst-Correcting Codes for the Classic
(1971) Bursty Channel. IEEE Trans., COM-19,

No.5 , p.772 , Oct.

R.G. Gallager Low-Density Parity-Check Codes. The
(1963) MIT Press, Cambridge, Massachusetts.

R.G. Gallager Information Theory and Reliable Com­
(1968) munication. New York, John Wiley &

Sons .

164

E.N. Gilbert A Comparison of Signalling Alphabets.
(1952) BSTJ, Vol.31, p .504 , May.

R. Glover Private Communication.
(1974)

J.M. Goethals Factorisation of Cyclic Codes. IEEE
(1967) Trans., IT-13, p.242, April.

J.M. Goethals On a Class of Majority-Logic Decodable
& P. Delsarte Cyclic Codes. IEEE Trans., IT-14,
(1968) No. 2, p.182, March.

M.J.E. Golay Notes on Digital Coding. Proc. IRE,
(1949) Vol.37, No.6 , p.657, Jan.

M.J.E. Golay Note on Binary Decoding. Proc. IRE,
(1959) Vol.47, p.996, May.

S.W. Golomb Shift-Register Sequences. Holden-Day
(1967) Inc., San Franciso, California.

R.M.F. Goodman Variable Redundancy Coding for Adap­
(1975) tive Error Control. Ph.D Thesis,

University of Kent at Canterbury, June

D. Gorenstein A Class of Cyclic Linear Error-Correc­
& N. Zier1er ting Codes in pm Symbols. Journal
(1961) SIAM, Vol.9, p.207.

165

E. Gorog Some Classes of Cyclic Codes Used
(1963) for Burst-Error Correction. IBM

Journal, Vol.7, No.2, p.102, April.

J.H. Green, Jr. An Error-Correcting Encoder and
& R.L. San Saucie Decoder of High Efficiency. Proc.
(195 8) IRE, Vol.46, No.7, p.1741, Oct.

D.H. Green Irreducible Polynomials over Compo­
& I.S. Taylor site Galois Fields and Their Appli­
(1974) cations in Coding Techniques. Proc.

IEE, Vol.121, No.9, p.935, Sept.

R.W. Hamming Error Detecting and Error Correcting
(1950) Codes. BSTJ, Vol.29, p.147, April.

C.R.P. Hartmann On Some Classes of Cyclic Codes of
& K.K. Tzeng Composite Length. IEEE Trans., IT-19,
(1973) No.6 , p.820, Nov.

C.R.P. Hartmann Decoding Beyond the BCH Bound Using
& K.K. Tzeng Multiple Sets of Syndrome Sequences.
(1974) IEEE Trans., IT-20, No.2, p.292, March.

A.A. Hashim Class of Linear Binary Codes. Proc.
& A.G. Constantinides IEE, Vol.121, No.7, p.555, July.
(1974)

H.J. Helgert
& R.D. Stinaff
(1973a)

Minimum Distance Bounds for Binary
Linear Codes. IEEE Trans., IT-19,
No.3, p .344 , May.

166

H. J. Helgert
& R.D. Stinaff
(1973b)

I. N. Herstein
(1964)

A. Hocquenghem
(1959)

H.T. Hsu, T. Rasami
& R.T. Chien
(1968)

D.A. Huffman
(1960)

W.J. Hurd
(1974)

I.M. Jacobs
(1974)

Shortened BCH Codes. IEEE Trans.,
IT-19, No.6 , p .818, Nov.

Topics in Algebra. Ginn and Company.
Xerox College Publishing. Waltham,
Mass.-Toronto.

Codes Correcteurs d ’Erreurs.
Chiffres, Vol.2, p.147.

Error-Correcting Codes for a Compound
Channel. IEEE Trans., IT-14, No.l,
p.13 5 , J an .

On Decoding Linear Error Correcting
Codes - Part I. IRE Trans., IT-6 ,
p.450, Sept.

Efficient Generation of Statistically
Good Pseudonoise by Linearly Inter­
connected Shift Registers. IEEE
Trans., C-23, No.2, p.146, Feb.

Practical Applications of Coding.
IEEE Trans., IT-20, No.3, p.305, May.

167

J.R. Juroshek,
R. T. Hatheson
& M. Nesenbergs
(1971)

T. Kasami
(1964)

T. Kasami, S. Lin
& W.W. Peterson
(1968)

W.H. Kautz
& K.N. Levitt
(1969)

S. Y. Kuba
& R.B. Lowry
(1971)

C. Y. Lee
(195 8)

D. J.H. Lewis
& M. Fukada
(1973)

Interleaved Block Coding Tests over
VHF and HF Channels. IEEE Trans.,
COM-19, No.5, p.790, Oct.

A Decoding Procedure for Multiple
Error-Correcting Cyclic Codes. IEEE
Trans., IT-10, p.134, April.

Polynomial Codes. IEEE Trans., IT-14,
No.6 , p .807, Nov.

A Survey of Progress in Coding Theory
in the Soviet Union. IEEE Trans.,
IT-15, No.1, p.197, Jan.

Estimating the Performance of Error-
Correcting Codes on the HF Channel.
IEEE Trans., COM-19, No.5, p.802, Oct.

Some Properties of Non-Binary Error
Correcting Codes. IEEE Trans., IT-4,
No.2, p .77, June.

A Note on Burst-Error Correction Using
the Check Polynomial. IEEE Trans.,
IT-19, No.2, p.246, March.

168

S. Lin Some Codes Which are Invariant Under
(1967) a Transitive Permutation Group and

Their Connection with Balanced Incom­
plete Block Designs. Proc, of the
Conference on Combinational Mathematics
and its Applications, Chapel Hill, N.C.
University of North Carolina Press.

S. Lin On a Class of Cyclic Codes. Chapter 7
(1968) in Error-Correcting Codes, Editor H.B.

Mann. John Wiley & Sons, Inc.

S. Lin Introduction to Error-Correcting Codes.
(1970) Englewood Cliffs, N.J.: Prentice-Hall,

Inc.

J.H. van Lint Nonexistence Theorems for Perfect
(1970) Error-Correcting Codes. Computers in

Algebra and Number Theory, SIAM AMS
Proc., Vol.45, G. Birkhoff and M. Hall,
Jr., Editors, p.89.

R.W. Lucky, J. Salz Principles of Data Communication. New
& E.J. Weldon, Jr. York : McGraw-Hill Book Company.
(1968)

F.J. MacWilliams Permutation Decoding of Systematic
(1964) Codes. BSTJ, Vol.43, p.484, Jan.

169

H.B. Mann (Editor) Error Correcting Codes. Proceedings
(196 8) of a Symposium organised by the

Mathematics Research Center, U.S.
Army, University of Wisconsin, New
York: John Wiley & Sons, Inc.

J.L. Massey Threshold Decoding. The MIT Press,
(1963) Cambridge, Massachusetts.

J.L. Massey Shift Register Synthesis and BCH
(1969) Decoding. IEEE Trans., IT-15, No.l,

p.122, Jan.

H.F. Mattson A New Treatment of Bose-Chaudhuri
& G. Solomon Codes. Journal SIAM, Vol.9, No.4,
(1961) p .654 .

E.J. McCluskey, Jr. Introduction to the Theory of Switch­
(1965) ing Circuits. New York: McGraw-Hill

Book Company.

C.M. Melas A Cyclic Code for Double Error-
(1960) Correction. IBM Journal, Vol.4,

No.3, p.364, July.

D.E. Muller
(1954)

Application of Boolean Algebra to
Switching Circuit Design and Error
Detection. IRE Trans., EC-3, p.6 ,
Sept.

(1954)

170

A.W. Nordstrom An Optimum Nonlinear Code. Info.
& J.P. Robinson and Control, Vol.ll, p.613.
(1967)

J.K. Omura A Probabilistic Decoding Algorithm
(1969) for Binary Group Codes. Presented

at the IEEE International Symposium
on Information Theory.

W.K. Pehlert, Jr. Design and Evaluation of a Genera­
(1971) lised Burst-Trapping Error Control

System. IEEE Trans., COM-19, No.5,
p .863, Oct.

W.W. Peterson Encoding and Error-Correction Pro­
(1960) cedures for the Bose-Chaudhuri Codes.

IRE Trans., IT-6 , p.459, Sept.

W.W. Peterson Error-Correcting Codes. The MIT
(1961) Press, Cambridge, Massachusetts.

W.W. Peterson Error-Correcting Codes. 2nd Edition.
& E.J. Weldon, Jr. The MIT Press, Cambridge, Massachusetts
(1972)

M. Plotkin Binary Codes with Specified Minimum
(1960) Distance. IRE Trans., IT-6 , No.3,

p. 445 , Sept.

171

E . Prange Cyclic Error-Correcting Codes in Two
(1957) Symbols. AFCRC-TN-57-103, Air Force

Cambridge Research Center, Cambridge
Massachusetts, Sept.

E . Prange Some Cyclic Error-Correcting Codes
(1958) with Simple Decoding Algorithms.

AFCRC-TN-58-156, Air Force Cambridge
Research Center, Bedford, Mass.,
April.

E. Prange The Use of Coset Equivalence in the
(1959) Analysis and Decoding of Group Codes

AFCRC-TR-59-164, Air Force Cambridge
Research Center, Cambridge, Mass.,
June.

F.P. Preparata A Class of Optimum Nonlinear Double
(1968) Error Correcting Codes. Info, and

Control, Vol.13, p.378.

I.S. Reed A Class of Multiple-Error-Correcting
(1954) Codes and the Decoding Scheme. IRE

Trans., IT-4, p.38, Sept.

I.S. Reed Polynomial Codes over Certain Finite
& G. Solomon Fields. Journal SIAM, Vol.8, p.300.
(1960)

172

S.H. Reiger
(1960)

6.1. Riley
(1975)

V.C. Rocha
(1975)

L.D. Rudolph
(1967)

L.D. Rudolph
& C.R.P. Hartmann
(1973)

L.D. Rudolph
& M.E. Mitchell
(1964)

R.A. Scholtz
(1966)

Codes for the Correction of "Clustered"
Errors. IRE Trans., IT-6 , No.l, p.16,
March.

Error Control for Data Multiplex
Systems. Ph.D Thesis, University of
Kent, Canterbury.

The Decoding of Cyclic Codes Using
P.R.O.M.s. Internal Report, Elec­
tronics Labs., University of Kent at
Canterbury, Sept.

A Class of Majority-Logic Decodable
Codes. IEEE Trans., IT-13, No.2,
p . 305 , April.

Decoding by Sequential Code Reduction.
IEEE Trans., IT-19, No.4, p.549,
July.

Implementation of Decoders for Cyclic
Codes. IEEE Trans., IT-10, No.3,
p.259, July.

Codes with Synchronisation Capability.
IEEE Trans., IT-12, No.2, p.135,
April.

173

R.A. Scholtz Maximal and Variable Word-Length
(1969) Comma-Free Codes. IEEE Trans., IT-15,

No.2, p.300, March.

C.E. Shannon A Mathematical Theory of Communica­
(1948) tion. BSTJ, Vol.27, p. 379 , July &

p . 62 3 , Oct.

D. Slepian A Class of Binary Signalling Alpha­
(1956a) bets. BSTJ, Vol.35, p.203.

D. Slepian A Note on Two Binary Signalling
(1956b) Alphabets. IRE Trans., IT-2, p.84.

D. Slepian Some Further Theory of Group Codes.
(1960) BSTJ, Vol.39, p.1219.

D. Slepian Information Theory in The Fifties.
(1973) IEEE Trans., IT-19, No.2, p.145,

March.

J.J. Stifler Theory of Synchronous Communication.
(1971) Englewood Cliffs, N.J.: Prentice-

Hall, Inc.

S.E. Tavares, Decomposition of Cyclic Codes into
P.E. Allard Cyclic Classes and Applications.
S.G.S. Shiva International Symposium on Info.
(1970) Theory, Noordwijk, The Netherlands,

June.

174

A. Tietavainen On the Non-existence of Perfect Codes
(1973) Over Finite Fields. Journal SIAM,

Vol.24, p.8 8, Jan.

R.L. Townsend Self-orthogonal Quasi-cyclic Codes.
& E.J. Weldon, Jr. IEEE Trans., IT-13, No.2, p.183,
(1967) April.

L.F. Turner On the Error-Correcting Capability
& 0.0. Olanyan of Optimum Linear Block Codes. Proc.
(1976) IEE, Vol.123, No.1, p . 26 , Jan.

R.R. Varshamov Estimate of the Number of Signals in
(1957) Error-Correcting Codes. Translated

from Dokl.Akad.Nauk.SSSR, Vol.117,
p. 739 .

A.J. Viterbi Information Theory in the Sixties.
(1973) IEEE Trans., IT-19, No.3, p.257,

May.

E.J. Weldon, Jr. Difference-Set Cyclic Codes. BSTJ,
(1966) Vol.45, p .1045.

E.J. Weldon, Jr. Euclidean Geometry Cyclic Codes.
(1967) Proc. of a Symposium of Combinational

Mathematics at the University of
North Carolina, Chapel Hill, N.C.

175

J.K. Wolf
(19 73)

A Survey of Coding Theory. IEEE
Trans., IT-19, No.4, p.381, July.

The Engineering Staff
of Texas Instruments
(1972)

The TTL Data Book for Design
Engineers. Texas Instruments
Components Group.

176

Index

Page

Abelian group 146
Abramson, N.M., 79,160
Adaptive Coding 142
Algebra 146
Algorithm 31,70
Appendix I, 146

II, 151
III, 158

A. R.Q. 22
Associated polynomial 29
Bajoga, B.G. 160
Basis 149
B. C.H. codes, 63

decoding of, 66

minimum distance of 65
Berlekamp, E.R. 14 ,27 ,29 ,64 ,69,75 ,78 ,146 ,160
Berlekamp algorithm 69
Binary code 7,9
Binary erasure channel 14
Binary symmetric channel 14
Binomial distribution 86

Block codes, 7
bounds on distance for, 15
burst correcting, 70
constant weight, 28
decoding , 17

177

(Block codes)
dual , 1 1

linear, 8

single parity check 20

Block interleaving 80
Block length 9
Bose, R.C. 63,161
Bose-Chaudhuri code. See BCH code
Bose-Chaudhuri-Hocquenghem code. See BCH code
Bounds 15
Bounded distance decoding 48
Bounds on burst correcting ability 71
Bounds on distance for block codes 15
Brayer , K. 161
Brown, D.T. 161
B.S.C. See Binary symmetric channel
Burst correcting ability

bounds on 71
Burst correcting codes, 108

computer generated, 80
decoding, 72
optimal, 71

Burst error correction, 70,98
statistical. See Optimum burst decoder

Burton, H.0. 27,161
Capacity

channel 4

Page

Carmichael, R.D. 62,77 ,161

178

Page

Channel, 2

binary erasure 14
binary symmetric 14

Channel capacity, 4
encoder, 2

decoder,
Check sums

3

nonorthogonal 62
orthogonal 54

Chien, R.T. 64 ,69 ,74 ,79 ,161 ,162
Chinese remainder theorem 75
Clock waveform 83
Code length 9
Code preserving permutation 52
Code rate 4
Codeword 9,12
Coding theory objective 5
Comma free codes 7
Communication system 1

Completely orthogonalisable
Compression

56

data 2

Computer generated burst correcting codes 80
Computer simulation 102

Concatenated code 77
Constant weight code 28
Convolutional code 7
Correction. See Decoding
Coset 17

179
Page

Coset decomposition 17
Coset leader 17
Cyclic codes , 29

decoding , 43
encoding , 33,35
pseudo , 42
shortened , 41,97,106

Data compression, 2

source, 82
Davies, A„C. 86 ,162
Decodable code

majority logic 53
Decoder, 93

Meggitt , 43
Decoding, 12

BCH codes, 66

block codes, 12

burst, 72
cyclic codes , 43
error trapping, 48
Hamming codes, 24 ,75
majority logic, 53
maximum likelihood, 18
Meggitt, 43
one-step, 55
permutation, 52
threshold. See majority logic decoding
variable threshold, 62

180

Page

Demodulator 3
Detection

error 15
Determinant

Vandermonde 66
Difference-set codes 77
Digital communication system 1
Dimension 150
Distance

Hamming, 13
Lee , 14
minimum, 13

Distribution
binomial 86

Dual code 11
van Duuren, H.C.A. 28 ,162
EG code. See Euclidean geometry code
Elias, P. 8,14 ,27 ,162
Encoder 2,11,33,35 ,85
Encoding

cyclic codes 33 ,35
Erasure channel 14
Error,

burst , 70
probability of, 91

Error correcting capability 15 ,71
Error detecting codes 111
Error location numbers 67

181

Error correction. See decoding
Error detection
Error generator
Error pattern
Error rate

bit,
block,

Error trapping,
plus systematic search,

Euclidean division algorithm
Euclidean geometry
Euclidean geometry codes
Experimental system
Fano, R.M.
Farrell, P.G.
Feedback

decoding with,
Field ,

extension,
Galois ,
prime,

Finite geometries
Finite field. See Galois field
Fire, P.
Fire codes
Fixed redundancy coding
Forney, G.D.
Forward error correction with ARQ
Gallager, R.G.,

Page

15
86

12

104
104

48 ,94
107
31
77
77

81,104
161

27 ,144 ,163

61
147
30

147
14 7
77

79,163
79

14 2
77 ,163

111
70 ,73,144 ,163

optimum burst decoder 73

182

Galois field 147
Generator matrix 9,32
Generator polynomial 30

Page

Geometry
Euclidean, 77
Projective,

GF(q). See Galois field
77

Gilbert, E .N. 15 ,164
Glover, R. 102 ,164
Goethaïs , J.M. 164
Golay, M.J.E. 9,26 ,164
Golay code 26
Golomb, S.W. 83 ,164
Goodman, R.M.F. 164
Gorenstein, D. 64 ,77 ,164
Gorog, E. 65
Green, J.H. 165
Green, D.H. 165
Hamming, R.W.
Hamming

7,9,15 ,23,25 ,165

codes, 7,23,26,75
distance , 13
weight, 12

Hartmann, C.R.P. 165
Hashim, A.A. 165
Helgert, H.J. 165 ,166
Herstein, I.N. 146 ,166
H.F. 144
Hocquenghem, A. 63,166

183
Page

Hsu, H.T. 166
Huffman, D.A. 166
Hurd, W.J. 87,166
Ideals 147
Index 176
Information digits 9
Inner product 149
Interlacing. See Interleaving
Interleaving

block, 80
degree, 109

Iterated codes. See Product codes
Jacobs, I.M. 166
Juroshek, J.R. 167
Kasami, T. 52,78,167
Kautz, W.H. 7 ,167
Kuba, S.Y. 167
Lee, C.Y. 14 ,167
Lee metric 14
Length

block,
Levitt, K.N.
Lewis, D.J.H.
Lin, S.
Linear block codes
Linear code

9
7

167
4,36 ,50,5 3 ,71,77 ,78 ,80,14 6,16 8

8

7
Linear combination 149

184
Page

Linearly
dependent, 149

independent , 149
van Lint, J.H. 26 ,168
Lucky, R.W. 18 ,39,80,168
MacWilliams , - J. 52 ,53 ,168
Magnetic tape 70
Majority logic decodable code, 53

decoding, 53
Mann, H.B. 169
Massey, J.L. 54,64 ,169
Matrix

generator, 9,32
inversion, 69
parity check, 11
unit, 11

Mattson, H.T. 169
Maximum distance separable codes 77
Maximum length sequence, 86

codes, 76
Maximum likelihood decoding 18
McCluskey, E.J. , Jr. 169
Meggitt decoder 43
Melas, C.M. 169
Memoryless channel 14
MINIC 102
Microprocessors 14 4

185

Minimum

Page

distance , 13
polynomial, 30
weight, 13

Mitchell, M.E. 48
Modulator 2
Muller, D.E. 53,77 ,169
Multiplication

scalar, 14 8
(n,k) code 9
n-Tuple 148
Newton's identities 68
Noise 2
Noisy channel theorem 4
Nonlinear codes 8
Nonorthogonal check sums 62
Nonsingular matrix 11
Nordstrom, A.W. 8 ,170
Null space 12
Omura, J.K. 170
Optimum burst decoder 73
Orthogonal parity check sums 54
Orthogonalisable

completely 56
one-step 55

Overall parity check 25
Parity check, 11
Parity check

code 3
7

(Parity check)
equation, 11
matrix, 11
polynomial, 36
orthogonal sums, 54

Pehlert, W.K., Jr. 170
Perfect code 26
Permutation,

code preserving 52
decoding 52

Peterson, W.W. 8,11,14,15,18,25,28,29,30,31,34,
41,4 2 ,4 6,51 ,5 3 ,54,60 ,61,62 ,63 ,
64 ,65 ,67,68 ,71,77 ,78 ,80 ,110,14 6

170
PG code. See Projective geometry code
Plotkin, M.
Polynomial

associated,
generator,
minimum,
parity check,
primitive,
reciprocal,
rings ,
roots,

Polynomial codes
Polynomial ideals
Power sum symmetric functions
Prange, E .
Pre-multiplication by x^n ^

15 ,170

29
30
30
36

57 ,89
57

147
30
78

14 7
67

29,171
34

Preparata, F.P.
Primitive field element
Primitive polynomial
Probability of error
Product

inner
Product codes
Projective geometry
Projective geometry code
Pseudo-cyclic code
Pseudo-random noise
Pseudo-random sequence
Quadratic residue codes
Quasi-perfect code
Random error correction
Rate

code
Ray-Chaudhuri, D.K. See Chaudhuri, D.K.
Receiver
Reciprocal polynomial
Redundant digits
Redundancy
Reed , I.S.
Reed-Muller codes
Reed-Solomon codes
Reiger, S.H.
Remainder theorem

171
30

57 ,89
91

Page

149
27
77
77
42
86

83
78
26

92 ,104

4

3
57
11
3,7

53 ,77 ,171
53, 77

76
71,172

Chinese 75

188

Residue classes 147
Residue class ring 148
Retransmission. See A.R.Q.
Riley, 6.1. 27,172
Ring 146

residue class 148
Rocha, V.C. 172
Roots of polynomial 30

Page

Rudolph, L.D. 48 ,62 ,172
Scalar multiplication 148
Scholtz, R.A.
Sequence

7,172 ,173

maximum length , 86
pseudo-random, 83

Shannon, C.E.
Shannon's channel capacity. See ChannelCapacity

4 ,5 ,7,173

Shortened cyclic codes 41,97,106
Single parity check codes 20
Sink 4
Slepian, D. 9 ,26,173
Solomon, G. 77
Source 2

decoder , 3
encoder,

S.P.C. See single parity check codes
2

Spread-spectrum 144
Standard array 16
Standard echelon form 11

Stiffler, J.J. 7,173
Subgroup 146
Subspace

linear, 149
vector , 149

Symmetric functions
elementary, 68
power-sum, 67

Synchronisation recovery 7
Syndrome 12,38
Systematic

code, 11
search decoding, 19,96

Tape
magnetic 70

Tavares, S.E. 173
Threshold decoding. See Majority logic decoding

variable, 62
Tietavainen, A. 26,174
Timing 83
Townsend 62,174
Transmitter 2
Transpose 11
Turner, L.F. 142,174
Undetected error

probability of. See Probability of error
Vandermonde determinant 66

189

Page

Variable
redundancy, 1^2
threshold decoding 62

Varshamov, R.R. 15,174
Vector, ^

basis,
multiplication, 1^8

148space,
Viterbi, A.J. P71*
Weight

Hamming,
minimum, 13

Weldon, E.J., Jr. 62,174
Wolf, J.K. 64,175

Page

