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ABSTRACT

The research reported in this thesis is in the field 
of error-correcting codes, which has evolved as a very 
important branch of information theory. The main use of 
error-correcting codes is to increase the reliability of 
digital data transmitted through a noisy environment.
There are, sometimes, alternative ways of increasing the 
reliability of data transmission, but coding methods are 
now competitive in cost and complexity in many cases 
because of recent advances in technology.

The first two chapters of this thesis introduce the 
subject of error-correcting codes, review some of the 
published literature in this field and discuss the advan­
tages of various coding techniques. After presenting 
linear block codes attention is from then on concentrated 
on cyclic codes, which is the subject of Chapter 3.

The first part of Chapter 3 presents the mathemati­
cal background necessary for the study of cyclic codes and 
examines existing methods of encoding and their practical 
implementation. In the second part of Chapter 3 various 
ways of decoding cyclic codes are studied and from these 
considerations, a general decoder for cyclic codes is 
devised and is presented in Chapter 4. Also, a review of 
the principal classes of cyclic codes is presented.

Chapter 4 describes an experimental system constructed 
for measuring the performance of cyclic codes initially
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perturbed by random errors and then by bursts of errors. 
Simulated channels are used both for random and burst 
errors. A computer simulation of the whole system was 
made in order to verify the accuracy of the experimental 
results obtained.

Chapter 5 presents the various results obtained with 
the experimental system and by computer simulation, which 
allow a comparison of the efficiency of various cyclic 
codes to be made. Finally, Chapter 6 summarises and dis­
cusses the main results of the research and suggests 
interesting points for future investigation in the area.

The main objective of this research is to contribute 
towards the solution of a fairly wide range of problems 
arising in the design of efficient coding schemes for 
practical applications; i.e. a study of coding from an 
engineering point of view.

)
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CHAPTER 1

Introduction

People in their desire to communicate with others have, 
since the very early days of history, been challenged by 
the problem of how to achieve reliable communication, i.e. 
reliable transmission of information. Though the formula­
tion of this problem has varied a lot over the centuries, 
it remains very much alive and is of major concern among 
the communication engineers of today.

Practical communication systems keep changing their 
external aspect as technology changes, e.g. the old systems 
evolved from electromechanical switching relays to vacuum 
tubes, later to transistors, etc. However, a closer look 
reveals that in general terms these systems can all be 
represented by a block diagram like that of Figure 1.1.

FIGURE 1.1 : General Communication System
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SOURCE : Originating point for the information to be 
transmitted. It can be, for example, the output from 
a remote sensor in a telemetering system.
TRANSMITTER : Converts the source output into waveforms 
suitable for transmission over the channel. The 
function of the transmitter can be subdivided as follows:

1. SOURCE ENCODER
This can be in many cases simply an analogue to 

digital converter or in other situations a more sophisti­
cated piece of equipment to remove unnecessary detail from 
the information, as in data compression schemes.

2. CHANNEL ENCODER Controlled redundancy is added to 
the information by the channel encoder to counteract as 
far as possible the effects of noise.

3. MODULATOR
In many cases the output from the channel encoder 

is not matched to the channel. It is the function of the 
modulator to translate the channel encoder output into a 
waveform suitable for transmission over the channel.

CHANNEL : Physical path over which the information has to 
pass before reaching the receiver. A channel can take a 
variety of forms. Pair of wires, or microwave links, are 
examples of practical channels. As the information is 
carried through a channel, it is subjected to unpredict­
able and unwanted disturbances called noise. As a result
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of noise part of the information can be badly corrupted.

RECEIVER Estimates which waveform has been transmitted from 
the received version, possibly corrupted by noise, of the 
original waveform. This is normally the most complex part 
of a communication system and can be subdivided as follows:

1. DEMODULATOR
On receiving a waveform from the channel the demodula­

tor tries to estimate which waveform was sent by the trans­
mitter and outputs the corresponding digital version. Due 
to noise, this version will not always be a correct one and 
so estimates containing errors will be passed on to the 
channel decoder.

2. CHANNEL DECODER
By applying the coding rules to the digits provided by 

the demodulator, the channel decoder tries to correct 
possible errors and then produce its estimation of the 
source encoder output digits.

3. SOURCE DECODER
Processes, to replace the redundancy removed at the 

transmitter, the channel decoder output before passing it 
to the sink. If a correct estimate of the transmitted 
message has been made by the channel decoder, then the 
source decoder will supply a replica of the original 
information to the sink.
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SINK Final recipient of the information transmitted. The
sink can be a human being at the end of a telephone line,
or a computer, for example.

No matter how well designed, any communication system
will always suffer from the effects of noise, i.e. the
messages coming from its output may contain errors. It can
take a long time before an error appears, but eventually it
will happen. However, the practical problem is not the
provision of error-free communication, but the design of
systems which provide an acceptably low error rate for the

-4user. For example, an error rate of 10 for the letters 
in a book is perfectly acceptable, while the same error 
rate within a computer would be disastrous.

The ultimate potential of error-correcting codes was 
established in 1948 with Shannon's "Coding Theorem" for a 
noisy channel (Shannon, 1948). The coding theorem for a 
noisy channel states the following:

- every channel has a definite maximum capacity C , 
and for any rate R less than C, there exist codes 
of rate R which, with maximum likelihood decoding, 
have an arbitrarily small probability of erroneous 
decoding.

This means more specifically that for any given R<C 
and length n, there exists a code such that Pc £ e 
where E(R) > 0, for R<C, and is specified by channel tran­
sition probabilities (Lin, 1970). The coding theorem 
proves the existence of codes which can make the probability 
of erroneous decoding very small but gives no clue on how to
construct such codes. However, it indicates that P can bec
* P is the probability of erroneous decoding.
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reduced by increasing n. When n is increased, the com­
plexity of the systems increase, sometimes exponentially 
with n. The ways by which the error rate of a system can 
be reduced are all dependent on the parameters contained 
in the famous expression below, where W represents the 
channel bandwidth and S/N is the signal-to-noise power 
ratio C = W log(1 + S/N)

derived by Shannon (1948). The most ingenious of all is 
the trading of bandwidth and signal-to-noise power ratio 
by the use of coding (i.e. the controlled addition of 
redundant information) to allow the receiver to detect and 
possibly correct errors using a decoder.

From this discussion, it becomes apparent that the 
objective of coding theory is to:

(1) find long good codes
(2) find practical methods for encoding and 

efficient decoding

The present need for processing enormous amounts of 
data, mostly digital, transmitted in many cases auto­
matically and at high-speed, demands solutions that a few 
years ago would be considered impractical. The recent 
developments in digital hardware technology have made 
possible the use of fairly complex coding schemes and as 
more sophisticated processors become available, thanks to 
microelectronic technology, the advantages that can be 
gained by the use of coding will be even greater.

The second chapter in this thesis reviews some of the
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published literature in the field and discusses the 
advantages of various coding techniques. After presenting 
linear block codes, attention is from then on concentrated 
on cyclic codes, which is the subject of Chapter 3.

The first part of Chapter 3 presents the mathematical 
background necessary for the study of cyclic codes and 
examines existing methods of encoding and their practical 
implementation. In the second part of Chapter 3 various 
ways of decoding cyclic codes are studied and from these 
considerations a general decoder for cyclic codes is 
devised and is presented in Chapter 4. Also a review of 
the principal classes of cyclic codes is presented.

Chapter 4 describes an experimental system constructed 
for measuring the performance of cyclic codes initially 
perturbed by random errors and then by bursts of errors. 
Simulated channels are used both for random and burst errors. 
A computer simulation of the whole system was made in order 
to verify the accuracy of the experimental results obtained.

Chapter 5 presents the various results obtained with 
the experimental system and by computer simulation which 
allow a comparison of the efficiency of various cyclic codes 
to be made. Finally, Chapter 6 summarises and discusses 
the main results of the research and suggests interesting 
points for future investigation in the area.

The main objective of this research is to contribute 
towards the solution of a fairly wide range of problems 
arising in the design of efficient coding schemes for 
practical applications; i.e. a study of coding from an 
engineering point of view.
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CHAPTER 2

Survey of Coding

2.1 Introduction

Since the advent of the coding theorem (Shannon, 1948) 
and of Hamming’s Single-Error-Correcting Code (Hamming, 
1950), coding theory has developed enormously, and at 
present it generates a fairly extensive area of research. 
Apart from the more general applications, there are codes 
designed for special applications like synchronisation 
recovery (Stiffler, 1971), asymmetric channels (Kautz and 
Levitt, 1969), comma-free codes (Scholtz, 1969), etc., but 
these are not studied here. After a brief discussion of 
the two main types of code construction this survey is 
directed towards linear binary group codes. By comparison 
with other types of codes, linear codes are fairly well 
developed and understood.

2.2 Block and Convolutional Codes

Depending on how redundancy is added to blocks of 
information digits two basically different types of code 
result. Codes for which the redundancy in a block checks 
for errors only in that particular block are called block
codes. Codes where the redundancy in a block checks for
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errors in more than one block are called convolutional 
codes (Elias, 1955). There is no intention here of con­
sidering convolutional codes any further; their definition 
has been given just to point out the basic difference 
between block and convolutional codes. For a treatment of 
convolutional codes see Peterson (1972). Block and con­
volutional codes are competitive in many situations. The 
final choice between them is a function of factors like the 
data format, the decoding delay, the complexity of the 
overall system needed to achieve a specified output error 
rate, etc.

2.3 Linear Block Codes

Block codes can be linear or nonlinear. For linear 
codes the redundant digits are calculated with modulo-2 
adders while nonlinear codes require the use of nonlinear 
logic like AND, NOR, NAND gates, etc. However, the over­
whelming majority of published articles on block codes is 
concerned with the linear case. The reason for this is 
the fact that linear block codes turn out to be mathema­
tically more tractable, and in general are simpler to 
implement in practice, than nonlinear block codes. Despite 
these difficulties there is still research being done on 
nonlinear codes, and discoveries like that of a (15,8) code 
which corrects two random errors per block (Nordstrom et al,1967) 
which it is impossible to obtain by linear means, stimu­
lates further work in nonlinear code construction techniques. 
The theory of linear block codes owes much to the work of
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Hamming (1950), Golay (1949) and Slepian (1956a, 1956b, 1960). 
The treatment of linear block codes that follows uses the 
concept of vector space (see Appendix I for definition of 
terms), and only binary codes are assumed throughout unless 
the contrary is specified. Linear block codes are normally 
represented by the ordered pair (n,k) where n represents the 
number of digits in each codeword and is referred to as 
block length, and k is the number of information digits per 
block; or the ordered triplet (n,k,d) where n and k are the 
same as before and d is the code minimum distance (to be 
defined later in this chapter).

DEFINITION 2.1 An (n,k) linear block code is a set of 
2 n-tuples which form a subspace of the vector space of all 
n-tuples.

2.4 Generator Matrix

An (n,k) binary code has 2 distinct codewords, each 
of them n digits long. To use such a code, without further

kconsideration, it is necessary to store n><2 binary digits
(bits) at the transmitter. This is one way of having the
k; . . k2 codewords ready for transmission. However, when the 2

n-tuples form a subspace of the space of all n-tuples (i.e.
a linear code) it is possible to obtain a set of k linearly
independent vectors*, which by linear combinations generate
all the elements of the subspace. For example if:

The words vector and codeword will be used interchangeably throughout 
this thesis.
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are k independent n-tuples (i.e. form a basis) then any other 
n-tuple in their subspace can be obtained as:

[U] = m1[V1] + m2 [V2"] + ... + mk[Vkl

where m. is either zero or one, and l<i<k.1 — ~pThen, the way to generate the 2 codewords for a linear block 
code is best described in terms of a generator matrix [gQ . 
The rows of the generator matrix are chosen to be k indepen­
dent vectors from the code alphabet; i.e. [g] is a kxn 
matrix where the rows form a basis:

~vi
cg: • „

Any codeword in the code can be generated as follows. Let 
Qnj = [m1 ,m2 , . . . ,m̂ ] be a message sequence. The matrix 
product [m] . [G] results in a vector QJ] , which is a linear 
combination of rows of [g] :

[U] = [m).[Gl] = m1[V1] + m? + ... + mR [vj

Qj] is the codeword associated with the k-tuple message 
block Qm] and the matrix [G] is called the generator matrix 
of the code. It should be clear that the use of linear 
block codes reduces considerably the storage requirements at
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the transmitter. Basically, the encoder for a linear block 
code can consist of enough storage elements to accommodate 
the k rows of Qg] and a logic circuit to perform a linear 
combination of these rows according to the incoming message 
sequence. Since 13 is non-singular (Peterson, 1961),it is 
possible to write |j3] = I g] where 1^ is a k*k unit
matrix and g is a kx(n-k) matrix. In this situation Qg] is 
said to be in standard echelon form and the codewords it 
generates have the first k positions occupied by the infor­
mation digits while the last n-k digits are linear combina­
tions of these information digits. A code with this 
structure is said to be systematic. The n-k redundant digits 
of a codeword are called parity checks and the linear functions 
that give the parity checks are called parity check equations.

2.5 Parity Check Matrix

Given the kxn matrix [G] of a linear code it is possible
to find a (n-k)xn matrix [Tf] such that the row space of £g]
is orthogonal to Q£),i.e. if [ j / i s  a vector in the row
space of [G] then [V7]. QT] ̂  = 0. The Qf] matrix is called
the parity check matrix of the code and can be represented
as Qf] = [h .’ I where h is an (n-k)xk matrix and In_^ is

Tan (n-k) x(n-k) unit matrix. It can be shown that [h] = Qf]
where [g] ̂  is the transpose of the Hg] matrix. Since the 
rows of Qf] are linearly independent they generate an (n,n-k) 
linear code which is called the dual of the (n,k) linear code 
generated by [jG] . This (n,n-k) code can be regarded as the
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null-space of the (n,k) code generated by [g] .

2.6 Error Syndrome and Decoding

Suppose a codeword [V] in a linear block code with 
generator matrix [gJ and parity check matrix [hJ is trans­
mitted through a noisy channel. At the receiver an n-tuple 
DO is received which may differ from [V] due to the noise 
added in the channel during transmission. It is the task 
of the decoder to recover [V] from [r] . The first step is 
to check whether [X] is a codeword. This step can be repre­
sented by the equation below.

[r][h]t = DO

where DO is an (n-k)-tuple called the syndrome of Q0 • If 
Qs] = [pj (an all zero (n-k)-tuple) it is assumed that no 
errors occurred, i.e. Qf] is assumed to be equal to Qv J . 
However, if [Sj / [0] ? Q0 does not correspond to a code 
vector in the row space of [jd and the decoder uses this 
syndrome for error detection and/or correction purposes.
The received n-tuple [r] can be written as QC] = CVl + DO 
where [jEf] is an n-tuple representing the error pattern. A 
number of relevant terms is presented below which are very 
useful in establishing the error correcting properties of 
linear block codes.

DEFINITION 2.2 The number of non-zero components of 
an n-tuple [V] as caH ed the Hamming weight of Qv] and is
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denoted by

DEFINITION 2.3 The number of positions in which two 
n-tuples [vj and [V̂ ] differ is called the Hamming distance 
between [V-jl and [V^ and is denoted by d^y^ V2)'

DEFINITION 2.4 The smallest distance between any pair 
of codewords in a code is called the minimum distance of the 
code, denoted d . or simply d.

Due to the group properties of vector spaces, the 
addition of two codewords in a linear code gives as a result 
another codeword. This fact can be represented as:

[ v j  + o g  = = [V 31
W(V1+V2} = w(v 3)

d ( v 1 5 v 2 ) = W( V 3 )

The last expression above means that for linear codes 
the minimum distance is equal to the weight of the minimum 
weight non-zero codeword. With the exception of Hamming 
codes (d=3 and d=4), which are described later, the problem 
of constructing non-trivial error correcting codes with a 
given d is very difficult. In the linear case an important 
property for code construction is now introduced which 
relates d with the parity check matrix Qf] . If the mini­
mum weight non-zero codeword is multiplied by the code 
parity check matrix Q{] , the result is obviously an all
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zero (n-k)-tuple. This all zero (n-k)-tuple can be thought 
of as resulting from a linear combination of d columns of 
[hJ  . Consequently, no linear combination of less than d 
columns of QiJ will give as a result an all zero (n-k)-tuple 
otherwise the code minimum distance would be less than d.
The minimum distance of a linear code can be expressed in 
terms of the Q{] matrix as follows.

THEOREM 2.1 A linear code whose parity check matrixQf] 
contains d-1 linearly independent columns has minimum dis­
tance at least d.

For a formal proof of Theorem 2.1 see Peterson (1972).
Though only the Hamming metric is considered in this 

thesis, other metrics exist, e.g. the Lee metric (Lee, 1958) 
the choice of a particular metric, aiming at optimum results 
is a function of the type of modulation and channel charac­
teristic to be used (see Berlekamp, 1968).

In order to assess the performance of a coding scheme 
it is vital to have a knowledge of the statistical behaviour 
of the channel. In practice, these statistics normally turn 
out to be very difficult to obtain and a theoretical model 
of the channel is used instead. One of the most commonly 
used channel models is that of the binary symmetric channel 
(B.S.C.) . The B.S.C. assumes that errors occur indepen­
dently (i.e. the channel is memoryless) and that zeros and 
ones have the same probability of being in error (see Figure 
2.1). In some applications it can be more convenient to 
use other channel models, e.g. the binary erasure channel 
(Elias, 1954).
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FIGURE 2.1 : Binary Symmetric Channel

The ultimate performance that can be achieved with 
error correcting codes is theoretically expressed in terms 
of bounds (Hamming, 1950; Gilbert, 1952; Plotkin, 1960; 
Varshamov, 1957). There are many classes of codes which 
meet these bounds for small values of block length, but 
which soon fall short in performance as n is increased.
For a code with minimum distance d to be able to correct t 
or less errors per codeword, the following inequality must 
hold:

d >. 2 t + 1 (Peterson, 1961).

In general, to correct C errors and to detect D errors per 
codeword, the inequality above is expressed as:

d >. C+D+l,

where D>C as errors must be detected before they can be
corrected.
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2.7 The Standard Array

When an n-tuple [r] is received, the decoder has to 
decide among all possible codewords which particular code­
word has been transmitted. In order to properly consider 
this decoding problem, it is sometimes convenient to use 
the concept of the standard array. This applies to linear 
codes, and consists of splitting the vector space containing 
the 2 distinct n-tuples into 2 disjoint subsets, each one 
of them containing one and only one codeword. The 2 dis- 
joint subsets are constructed as follows. Write all the 2 
code vectors in a row. Below the all zero codeword, write 
an n-tuple [Ê ] which does not appear in the first row. This 
n-tuple can be associated with an error pattern which the 
code is to detect and/or correct, as will be shown later.
The second row is formed by adding [Ê ] to each of the non­
zero code vectors as indicated below:

[ o o  . . .  o ] [ v j  C v 2l  • • • .  [ v 2k . - j ]

pg Pi+Vj Pi + V2l .... [VV2k-l]

The third and consecutive rows are constructed in a similar 
manner, every new row starting with an n-tuple not used 
before. The following table results:
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[bo ... 6] [Vj] & 2] ....... [v2k-J

[Ej] (E1+V̂ | ....... S b V2k-3

[E j]  H 2+VJ  5 2 tV 3    f f 2+V2 l< -ii
• • *
• • •
• • »
• • *

E2(n-k)_^j [E2(n -k )_1+Vl| ............................  ^ ( n - k ^ + V - l j

TABLE 1

n _The 2 rows in the table above are called cosets and the 
leading element in each row is called the coset leader.
This table is called the standard array or the coset decom­
position of the code.

The syndrome QT) associated with an n-tuple Qf] is 
given by:

DO = [r].[h]t = H+v] .[h]t = [e].[h]t + [v].[h]t = [e].[h]t

since [V].[H]T = 0, i.e. [s] = [Ej.Qf]™. This equation for the 
syndrome clearly shows that all elements in one coset of the 
standard array have the same syndrome because it depends 
only on the coset leader n-tuple Jjf] . This suggests the use 
of the standard array and the equation |jf] = Qe] . Q£] to 
decode linear codes as follows:

(1) Calculate the syndrome Qf] of a received n-tuple Qf] .
(2) Find the coset leader [e /} associated with this syndrome.
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This coset leader is assumed to be the errors introduced 
by noise on the channel.

(3) Subtract the coset leader found in step 2 above from 
m  in order to obtain the estimate of the transmitted 
codeword, i.e. [Vf] = Qf] - [e 7].

From these discussions it is concluded that, based on noise 
statistics of the channel, the coset leaders should be chosen 
as the most likely error patterns. However, as mentioned 
earlier, detailed statistics of the noise are not always 
available and it usually becomes very difficult to find codes 
to exactly match the channel. Also, in order to use the 
standard array, it is necessary to find the coset (and therefore 
the appropriate coset leader) to which the received n-tuple 
belongs. This is, in general, not easy to implement, so 
that the concept of the standard array is more useful as a 
way of understanding the structure of linear codes, rather 
than as a practical decoding algorithm.

Two potentially practical methods of decoding linear 
codes are now presented. Further procedures are described in 
Peterson (1972) and Lucky et al (1968), but so far the use of 
the linearity property alone has not resulted in any simple 
decoding algorithm for linear codes, at least in the pub­
lished literature.

2.8 Maximum Likelihood Decoding

If the codewords of an (n,k) code are selected indepen­
dently and all have the same probability of being sent



19

through a channel, an optimum way of decoding them is as 
follows. On receiving an n-tuple [r] , the decoder compares 
it with all possible codewords in the code. For the binary

case this means comparing |_RJ with the 2 distinct n-tuples 
which form the code. Select the codeword which is nearest 
to py in terms of Hamming distance, i.e. the word which 
differs from [r] in the least number of places. This is 
assumed to be the transmitted codeword. Unfortunately, the 
time required to decode a received n-tuple can become pro­
hibitively long even for moderate values of k. It should 
be noted that the decoder has to compare |_Rj with 2 code­
words during a time interval corresponding to the duration 
of n channel digits. This fact makes this process of 
decoding inadequate for many practical cases.

2.9 Systematic Search Decoding

A general procedure for decoding linear block codes 
consists of associating a correctable error pattern with 
each of the non-zero syndromes. It has been mentioned 
before that one property of the standard array is that all 
n-tuples belonging to one coset have the same syndrome.
Also, the coset leaders should be chosen as the most likely 
error patterns in their cosets. A simple way of decoding 
these codes is:
(1) Calculate the syndrome for the received n-tuple.
(2) By systematic search find the correctable error pattern, 

(coset leader), associated with the syndrome of the 
received n-tuple.
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(3) Subtract the error pattern found in step 2 from the 
received n-tuple in order to remove the errors from 
it.

To implement this procedure it is necessary to generate all 
correctable error patterns successively, and feed them into 
a combinational circuit that gives the associated syndromes 
at its output. Using a multiple input logic gate it is possible 
to detect when the locally generated syndrome matches the 
syndrome of the received n-tuple. If this (n,k) code is t 
error correcting, the total number of patterns it is necessary 
to generate in the search is given by C Luc Ky et a.1,1969):

From this expression it is easy to see that the number of 
error patterns increases very rapidly with n and t. This 
fact sets a limit to the applicability of this technique.

The decoding methods described above in sections 2.8 
and 2.9 are generally applicable to all linear block codes. 
Less complex methods of decoding can be devised for certain 
classes of linear codes, by virtue of their particular 
structure. Some simple block codes are now presented.

2.10 Single Parity Check (S.P.C.) Codes

These constitute one of the simplest forms of coding 
because only one redundant digit (parity check) is used per 
codeword. This parity check digit is calculated according

i=l
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to the following rule. Make the parity check digit equal to 
one if the number of ones in the information block is odd; 
otherwise make the parity check equal to zero. This proce­
dure is equivalent to making the check digit equal to the 
sum modulo- 2 of the information digits in a block, i.e. a 
linear code results. By using this rule to calculate the 
parity check, the number of ONES in a codeword is always even*. 
As a consequence of the presence of the single parity check, 
the decoder is able to detect any odd number of errors but 
fails to detect an even number of errors. Thus, these codes 
have minimum distance d=2. Figure 2.2 shows the diagram of 
an encoder for these codes. A toggle flip-flop is used to 
calculate the parity check. The output of this type of flip- 
flop changes with the next clock pulse whenever the present 
input is a one. With the flip-flop initially reset, informa­
tion digits are sent to the channel and simultaneously into 
the encoder. After k shifts, an odd number of ones in the 
information section causes a one to appear at the output of 
the flip-flop; otherwise a zero will be produced. A timing 
circuit controls the delivery of information and parity digits 
to the channel.

The decoding rule for S.P.C. codes is simply to count 
the number of ones in a received block. If the resulting 
count is even, the received block is assumed to be error-free 
and can be delivered to the data sink. If the count gives an 
odd number, errors have been detected and the received block 
is either tagged and delivered to the data sink or just dis-

A , f t tAn alternative way of calculating the check digit (odd parity) is by 
making it equal to zero when the number of ones in the information 
block is odd; otherwise the parity check is made equal to one.
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CLOCK. TIMING -O/P

I/P TOGGLE
FLIP-FLOP

PARITY

V O/P

TO CHANNEL

INFORMATION

FIGURE 2.2 : Encoder for S.P.C. Codes

carded. Another alternative is to ask the transmitter, 
assuming a feedback channel is available, to retransmit the 
erroneous block. This last possibility is called automatic 
repeat request (A.R.Q.). Though S.P.C. codes permit only 
error detection, they are very powerful in systems using 
A.R.Q., because their efficiency is usually high for mode­
rate n and the circuitry required for their implementation 
is very simple. The efficiency of S.P.C. codes is given by 
the expression:

R = is = ¡Ul = ! - In n n

It is clear from this expression that R approaches 1 as n is 
increased. This improved efficiency should always be weighed 
against the increase in the probability of undetected errors. 
The block error rate for S.P.C. codes in a B.S.C. channel is 
given by( f arrell , {3^3)
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Pc = C2 P2(l-P )n 2 + C4 P4(l-P )n 4 + n e e n e e

If Pg is sufficiently small Pc can be approximated as

P = C2 P2(l-P )n 2 c n e  e

Figure 2.3 shows the diagram of a decoder for S.P.C. codes.

I/P
FROM

CHANNEL

FIGURE 2.3 : Decoder for S.P.C. Codes

2.11 Hamming Codes

These codes (Hamming, 1950), were the first non-trivial 
error correcting codes to be proposed. Hamming codes are 
linear single error correcting codes, i.e. their minimum 
distance is d = 3.They have block length n<.2 -1, where c is 
the number of parity check digits. This condition on n 
ensures the availability of sufficient redundancy to check
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for single errors in a codeword since then the number of 
non-zero syndromes ( 2 -1) is always greater than or equal to 
the number of single error positions (n). The construction 
of the parity check equations for these codes is best 
explained with the aid of an example.

EXAMPLE. Consider the construction of the (7,4) Hamming 
code. The ideas described here are easily generalised for 
any (n,k) Hamming code. The number of check digits for this 
(7,4) code is c=7-4=3. Consider the non-zero binary numbers 
that can be formed using c=3 digits.

0 0 1 C1

0 1 0 C2

0 1 1 kl
1 0 0 C3
1 0 1 k 2

1 1 0 X1 CO

1 1 1 k4

TABLE 2

Hamming associated the numbers of the form 21, i = 0,1,2, ... 
with parity check positions. The other positions were 
associated with information digits, as indicated in the 
table above. Now, looking down the columns, the parity check 
equations are written as the modulo- 2 addition of the infor­
mation positions where a one appears in the particular 
column being considered.
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i.e. c1 = k1 + k2 +
c2 = k1 + k3 + k^
c3 = k 2 + k 3 + k 4

On receiving a codeword, the decoder recalculates the parity 
checks and adds them modulo- 2 to the received ones in order 
to obtain the syndrome. If, for example, kg is in error, 
parity checks Cg and Cg will fail while c-̂ will agree 
because it does not check kg. This situation is represented 
as:

C 3 C 2 C1
1 1 0

This binary number corresponds to the position of kg in the 
table considered above. The error is thus located and can 
then be corrected. This method generalises to cover any 
value of n. For practical reasons the codewords are nor­
mally transmitted in a systematic manner. In his work, 
Hamming (1950) also mentioned that the minimum distance of 
these codes can be increased by 1 to become d=4, by annexing 
an overall parity check to each codeword. This overall 
parity check is determined in the same manner as the one for 
S.P.C. codes, i.e. by the modulo-2 addition of all other 
digits in the codeword. This procedure applies not only to 
Hamming codes but to any code with an odd minimum distance 
(Peterson, 1972), i.e. if d is odd, by annexing an overall 
parity check the new minimum distance is d+1. Hamming codes
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are quite unique in the sense that no other class of non­
trivial error correcting codes can be so easily decoded, 
and also because Hamming codes are perfect or quasi-perfect 
codes as defined below.

DEFINITION 2.5 An (n,k) t-error-correcting code is 
called a perfect code if, and only if,

^  = n u m b e r  o |  l e v e l s

t < - rk
i=0

Codes in which the information digits are repeated a number 
of times are called repetition codes and are perfect in a 
trivial sense. Repetition codes are decoded by taking a 
majority vote. Apart from the Hamming codes, the (23,12) 
t=3 Golay code and the ternary (ll,6)t=3 code, there are no 
other non-trivial perfect codes (van Lint, 1970; Tietavainen, 
1973). Codes where

t+ 1 i
I e «
i=0

n-k
i =0

are called the quasi-perfect if the remaining redundancy can 
be used to correct only some of the patterns containing t+1 

errors. Perfect and quasi-perfect codes are optimum (i.e. 
they minimise the probability of error) when used in a B.S.C. 
(Slepian, 1956a).
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2.12 Product Codes

These codes are usually linear and result from a com­
bination of two or more codes in order to obtain a more 
powerful code. When two codes are used to form a product 
code, the information digits -may be arranged in a rectangular 
matrix form, and row and column parity check digits are 
calculated in accordance with the coding rules for the two 
codes respectively, along each of the two dimensions. The 
minimum distance of this product code is d = d^ x d^, 
where d^ and d^ are the individual minimum distances of the 
two codes used (Elias, 1954). The resulting two dimensional 
array has the following general structure:

INFORMATION ROW
DIGITS PARITY

CHECKS

COLUMN CHECKS
PARITY ON
CHECKS CHECKS

Product codes are efficient when used for error detection 
with A.R.Q. (Farrell, 1969) because a very low probability 
of undetected error can be achieved. Also they find 
practical use in coding for digital multiplex systems 
(Riley, 1975) and in general wherever the data format is 
rectangular. Product codes have been studied by Elias
(1954), Burton and Weldon (1965), Berlekamp (1968), and
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Peterson ( 1972), and otkers.

2.13 Constant Weight Codes

These codes are also known as: fixed ratio, m out of n 
and constant ratio codes. Their characteristic is to have 
codewords all with the same weight i.e., the same number of 
ONES .

The number of codewords in an m out of n code is given
by:

M = ___Hi___m!(n-m)!

The van Duuren A.R.Q. system (van Duuren, 1961) uses a 
3 out of 7 constant weight code and is a good example of the 
use of such codes on radio-telegraph circuits. In this case 
any single error causes a received block to have either 
weight 2 or 4 and so is detected. However, a double error 
can happen which changes a one into a zero and a zero into 
a one and this will pass undetected. In general, these codes 
are guaranteed to detect odd numbers of errors but can fail 
to detect an even number of them. Constant weight codes are 
less efficient than S.P.C. codes but can have their error 
detecting capability improved by carefully reducing the 
number of codewords. These codes are very often nonlinear, 
but there are exceptions like the m-sequence codes (see 
Chapter 3).

The next chapter introduces cyclic codes which are 
linear codes with some additional mathematical structure.
This allows relatively simple decoders to be constructed for
codes normally more powerful than the ones presented above.
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CHAPTER 3

Cyclic Codes

3.1 Introduction

The codes described in this chapter constitute the 
most powerful sub-class of linear block codes as far as 
practical implementation and mathematical structure are 
concerned. Prange (1957) was the first to study cyclic 
codes. Subsequently, these codes have been studied in 
the context of modern algebra using the concepts of 
Galois fields, (see Peterson, 1972 and Berlekamp, 1968).

3.2 Basic Definitions

Definition 3.1 A linear block code is called a 
cyclic code if the result of any cyclic permutation of 
any of its codewords is another valid codeword, i.e. if
V [ ' is a codeword. V Vn-i ’

is also a codeword in theVn-i + l 5'‘* ’V0 ,V1 5,'' ’Vn-i-l 
same code, and the indices are reduced modulo-n.

Any n-tuple like [V] above, can be represented in
the form of a polynomial V(x) of degree at most n-1 as

V(X)  = VQ + V-jX + V2x 2 + . . .  + Vn _1x n 1

follows:
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With the use of the properties of finite fields it can be 
proved (see Peterson (1961), for example) that all code­
words of an (n,k) cyclic code are multiples of a polynomial 
G(x), of degree n-k, which is unique; and conversely that 
every polynomial of degree n- 1 or less which is a multiple 
of G(x) must be a codeword. Furthermore, G(x) is called 
the code generator polynomial, and it divides Xn+1. The 
mathematical properties just mentioned for cyclic codes 
are those of a mathematical ideal (see Appendix I for 
definition). This allows the properties of cyclic codes 
to be derived from the study of ideals and an equivalent 
definition of cyclic codes is:
Definition 3.2 Cyclic codes are ideals in the algebra of 
polynomials modulo Xn+1.

The factorisation of Xn+1 gives as a result:

Xn + 1 = (X+ou )(X+a0)(X+a0)...(X+a ), where the roots a.(l< 1 2  3 n l —
i<n) are elements of an extension field. Each of these
n roots can be expressed as a power of a, where a is
called a primitive root, i.e. a,a ,a , ...,a ,a =l = a .
The lowest degree polynomial with binary coefficients
which is a factor of Xn+1 and contains ou as a root is
called the minimum polynomial of . If n = 2m-l it can
be shown that the maximum degree of a minimum polynomial

2 2m (x) is m. In the binary case in (x) = m (x ) which aq otq aq
2 4implies that if a. is a root of m .(x) so are a-,a.,...,3 ai J j

i.e. the minimum polynomial of any even power of a is the 
same as the minimum polynomial of some odd power of a. 
Cyclic codes can also be specified in terms of the roots 
of G(x), in an extension field. If G(x) has non-repeated
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roots a, ,ou,...,a , then any polynomial V(x) will belong
1 z n  k

the code if, and only if, V ( a i ) =°5 l<.i<n-k.

THEOREM 3.1 If M s  a root of a polynomial V(x), 
then V(x) is divisible by M(x), the minimum polynomial of 
3 •

PROOF Let V(x) = P(x)M(x)+S(x)
Then V(3) = P(3)M(3)+S(3) = 0 and,
S(3)=0, since V(3)=M(3)=0. By the Euclidean 

division algorithm S(x) is of degree less than M(x) and so 
it must be zero, (i.e. S(x)=0) because the definition of 
minimal polynomial guarantees M(x) to be the lowest degree 
polynomial with 3 as a root.

Q.E.D.

As a consequence of Theorem 3.1, if the minimum poly­
nomial of a. is M^.(x) then V(x) is a codeword in a cyclic 
code if and only if V(x) is divisible by (x),M (x),0L j (X2
...,M (x), i.e. V(x) must divide the least common multi- an-k
pie of M (x),M (x),...,M^ (x). Therefore, the codeal a 2 an-k
generator polynomial G(x) can be written as:

G(x) = L C M{M (x ),M (x ),...,M (x )}al a 2 an-k

where , (l<.i<.n-k) are the roots of G(x) . If a cyclic code 
is required to have a generator polynomial G(x) with a root 

repeated p times, then the minimum polynomial of must 
appear p times as a factor of G(x). The condition for Xn+1 to 
have only distinct roots is that the block length n and the 
number of levels q must be relatively prime (Peterson, 1961). 
In the binary case, this condition simply means that n must
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be odd for the roots of Xn+1 to be distinct.

3.3 Matrix Representation of Cyclic Codes

From the definition of cyclic codes , the multiples of
the generator polynomial G(x) are codewords. So the poly-

2 k- 1nomials G(x),xG(x),x G(x),...,x G(x) are all codewords, 
and are also linearly independent. Using these polynomials 
the following matrix can be formed, which represents the 
generator matrix of a cyclic code with generator polynomial 
G(x) .

DU =

For encoding purposes the cyclic shift property allows a 
sequential implementation of [g] which is described in 
section 3. M-. Also described there is a sequential imple­
mentation of the parity check matrix Q{] as a function of 
the code parity check polynomial H(x). This relatively
simple implementation turns out to be of great practical

2advantage for cyclic codes. Let V(x) = W ̂+V-̂ x+W + ...+
Vr_2x be a codeword in a cyclic code with generator 
polynomial G(x) having roots ,â  , • • • ,an_k , i-e* ^(a.)=  ̂= 
V„ + V-, a •+V„a . + . . .+V -.a1?  ̂, where l<i<n-k. This expression 
can be written as a matrix product as follows:

k-l0 , . x G(x)

x^G(x) 
xG (x)
G (x)
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or, in other words, V(x) is a codeword if and only if it 
is in the null space of the matrix Qf] :

1 a- an- 1
1

[H]

a, a, n- 1a0

1 2 n- 1
an-k an-k an-k

3.4 Encoding With An (n-k)-Stage Shift-Register * •

This encoding procedure is based on the property that 
all codewords in a cyclic code are multiples of the code 
generator polynomial G(x). The k information digits can 
be represented by a polynomial I(x) of degree less than k 
as follows:

ICx ) = k-̂ x̂   ̂ + k^x^ . . . + k,

where the k^ (l<.i<k) are the information digits. Multi-
• • • n ““ kplying the information polynomial I(x) by x gives

n—kx ICx) which is of degree not greater than (n-1) and 
contains no terms of degree less than (n-k). Division of 
x ICx) by GCx) gives as a result
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xn kI(x) = P(x)G(x) + C ( x)

where P(x) and C(x) are respectively quotient and remainder
polynomials. C(x), being the remainder, is of degree
smaller than the degree of G(x), i.e. <,(n-k)-l. If C(x) is

n ~subtracted from x I(x) the result is a multiple of G(x), 
i.e. a codeword. Also, since C(x) has degree <.n-k-l, it 
represents the parity checks and does not overlap with the 
information section represented by x I(x). The operations 
described can be performed by the circuit shown in Figure 
3.1, keeping in mind that modulo-2 addition and subtraction 
are the same.

FIGURE 3.1 : Encoder Using (n-k) S.R. Stages

The circuit shown in Figure 3.1 uses (n-k)-stages of shift- 
register and pre-multiplies the information polynomial by 
xn k (Peterson, 1972). The switches G^^ » • • • *Gc_-̂ are
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closed wherever the corresponding coefficient in G(x) is 
a ONE; otherwise they are left open. Starting with all 
zeros in the shift register, switches closed and S2 in 
position 1 , information digits are sent to the output and 
simultaneously into the division circuit. After the k 
information digits have been sent out, and the remainder 
(i.e. the parity checks) is in the register, switch S-̂ is 
opened and is moved to position 2. During the next 
(n-k) clock pulses the parity checks are transmitted. This 
process is repeated for the next block of information digits.

3.5 Encoding with a k-Stage Shift-Register

Since G(x) divides xn-l it follows that

xn-l = G(x)H(x) (3.1)
The polynomial H(x) completely specifies an (n,k) 

cyclic code with generator polynomial G(x), as will be 
shown. Let V(x) be a codeword, i.e.

V(x) = P(x)G(x) (3.2)

where V(x) = Vq + V-̂ x+V2x  ̂+ ...+ V^-^x1"1 ^. Multiplying both
sides in (3.2) by H(x) gives:

V(x)H(x) = P(x)G(x)H(x) (3.3)
or, V(x)H(x) = P(x)(xn-l)=P(x)xn-P(x) (3.4)

From (3.2) it is seen that P(x) has degree at most k-1. 
This fact allows us to conclude that (3.4) can not contain 
the terms x ,x ,...,x , i.e. their coefficients m  
(3.4) are zero. This implies that:



36

Ii=o
H.V . . 1 n-i-j 0 for 1 <L j <. n-k (3.5)

Since, from (3.1) it is known that H =1 and H, =1, (3.5)
O K

can be written as:

Vn-k-j
k-1

l H.V . .x n-i-q for 1 <. j <. n-k (3.6)

Expression (3.6) represents a recurrence relation which is 
also known as a difference equation (Lin, 1970) and pro­
vides a rule for calculating the parity check digits V , , ,n x _l
Vn-k-2 ’" - ,Vo » Siven the k information digits vn_p »v n _ 2 > vn_ 3 » 
...,V So, an (n,k) cyclic code with generator poly-
nomial G(x) is completely specified by the polynomial H(x), 
which is called the parity polynomial of the code. The 
following circuit diagram (Figure 3.2) shows an encoder 
based on expression (3.6), using a k-stage shift-register.

I/P y

FIGURE 3.2 : Encoder Using k S.R. Stages 

This circuit works as follows:
(1) With switch S-̂ closed and Ŝ  open. Information
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digits are clocked into the circuit and 
simultaneously to the output.

(2) After k shifts, switch is opened and
S2 is closed. At the output appears 
where Vn_k _1 = HQVn _ 1 + + • • • +Hk_1Vn_k ,
and this constitutes the first parity check.

(3) After one clock shift the first parity check 
is sent out and into the encoding circuit. 
The second parity check then appears at the 
output Vn_k_2 = HQVn _ 2 + Hivn_3+ • • *+Hk-2Vn-k
+ Hk-lVn-k-l.

This procedure continues until the last parity check has 
been sent out, then switch is closed and S2 is opened. 
The next information block can now be shifted into the 
encoding circuit. The k-stage shift-register encoder 
should be used whenever n-k>k; otherwise the (n-k)-stage 
encoding circuit is preferable. It should be observed, 
however, that the k-stage encoder can be implemented with 
conventional integrated circuit shift registers since it 
does not require any external gates to be connected in 
between stages. This can be an advantage even if n-k<k.

On the other hand, for the calculation of syndromes 
(see next section) and subsequent error correction the n-k 
stage circuit is normally preferred because the operation 
of multiplying the syndrome polynomial by x and reducing 
modulo G(x) is easily accomplished.
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3.6 Syndrome Calculation

It is the function of the decoder, on receiving an 
n-tuple R(x), to check whether or not it is a valid code­
word. This is necessary because after passing through a 
noisy channel, part of the received codeword may be 
corrupted by noise. If errors are detected, i.e. the 
syndrome is non-zero, then the decoder starts attempting 
correction. This section deals only with syndrome calcu­
lation and consequent error detection, leaving error 
correction for a future section. In the case of cyclic 
codes, both syndrome calculation, and subsequent error 
correction, are relatively more simple than in the case of 
linear codes in general.

Since in a cyclic code all the codewords are multiples 
of the code generator polynomial, the first action of the 
decoder is to check whether the received n-tuple is divi­
sible by G(x). The remainder of this division is the 
syndrome, and if it is zero it can be assumed that no 
errors have occurred. A non-zero syndrome indicates that 
the decoder has detected errors and can proceed with 
correction. If R(x) is the received n-tuple it can be 
written as

R(x) = V(x) + E(x) ,

where V(x) and E(x) represent respectively the transmitted 
codeword and the error pattern. Division of R(x) by G(x) 
gives:

R(x) = QCx)G(x) + SCx) (3.7)
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where S(x) is the syndrome polynomial and has degree at 
most (n-k-1 ) i.e. it is an (n-k)-tuple.
Expression (3.7) above can be written as:

V(x) + E(x) = Q(x)G(x) + S(x) (3.8)

or P(x)G(x) + E(x) = Q(x)G(x) + S ( x) (3.9)

Finally, E(x) = (Q(x) + P(x))G(x) + S (x) (3.10)

It is clear from expression (3.10) that there is a defi­
nite relation between syndrome and error pattern; i.e.

S ( x) EOO'. 
G(x) J

This will be explored later for error correction purposes. 
It follows from the properties of the standard array (see 
Chapter 2) that different E(x) polynomials can lead to 
the same syndrome and in what follows E(x) will always be 
assumed to be the polynomial of smallest weight satisfying 
the relation

S ( x)

For the binary symmetric channel this leads to maximum 
likelihood decoding (Lucky et al, 1968). The circuits 
used for syndrome calculation are similar to those for the 
encoding of cyclic codes. This means that either k or 
(n-k)-stage syndrome calculating registers can be used. 
Figure 3.3 shows a circuit diagram for the (n-k) stage 
type of syndrome calculating register. Initially, the 
shift register contents are all zeros. The incoming n-
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tuple is shifted into this circuit and after n clock 
pulses, the shift register has the syndrome as its 
contents. Before receiving the next n-tuple this shift 
register needs to be cleared. No pre-multiplication is 
required, since the received parity checks must be 
added to the recalculated parity checks anyway.

I/P

FIGURE 3.3 : (n-k)-Stage Syndrome Calculating Register

A k-stage syndrome calculating register is shown in 
Figure 3.4. In this circuit the incoming n-tuple is 
shifted into the register with switch closed and 
switches S2 JS2 and open. After k shifts switches S^j 

and are closed and S-̂ is opened, the recalculated 
parity checks are added modulo-2 to the received ones 
and the syndrome digits appear at the output.
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I/P

FIGURE 3.4 : k-Stage Syndrome Calculating Register

3.6 Shortened Cyclic Codes

From an engineering point of view, it is important
that a particular class of easily decodable codes should
cover a wide range of code rates and error-correcting
power. Since the generator polynomial of a cyclic code
has to divide Xn-1, the designer is left with a relatively
small number of cyclic codes for a given n. However, for
every i<k, it is possible to have an (n-i,k-i) code which
is obtained from an (n,k) cyclic code by selecting all
those codewords which begin with i zeros, and deleting

k_1these first i zeros. There are, of course, 2 codewords 
in this shortened code which is linear but no longer cyc­
lic (Peterson, 1972). Encoding and syndrome calculation 
can be done with the circuits used for the original code 
since the i zeros deleted do not affect the calculation 
of the parity checks. This is the first important point
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about shortened cyclic codes. They are as easy to 
implement as full cyclic codes. The second important 
point is that the Hamming distance of the shortened code 
is at least the same as that of the original code. For 
decoding the codewords are preceded by i zeros if the 
decoder for the original cyclic code is to be used. This 
solves the problem of decoding shortened cyclic codes, 
but the method does not fully exploit the fact that the 
redundancy of the code remains constant while the number 
of codewords has been reduced from 2 to 2 . This
means that, potentially, more errors could be corrected 
with the shortened code because there are fewer informa­
tion positions to be checked. Simplicity of implementation 
may offset the shortfall in performance, however, thus 
making shortened cyclic codes attractive in certain circum­
stances .

3.8 Pseudo-Cyclic Codes

So far what has been written about cyclic codes has 
implied working with polynomials reduced modulo Xn-1. If 
instead modulo f(x) is used, where f(x) is an arbitrary 
polynomial in x, the resulting codes are called pseudo- 
cyclic codes. Peterson (1972) proves the following 
theorems for cyclic codes:

Theorem 3.2 Every pseudo-cyclic code with minimum 
distance greater than 2 is a shortened cyclic code.

Theorem 3.3 Every shortened cyclic code is a



pseudo-cyclic code.*

3.9 Decoding Cyclic Random Error Correcting Codes

In this section some of the more important algorithms 
for decoding cyclic codes are presented together with 
comments on their advantages and limitations. The decoding 
of random error correcting codes is in general a difficult 
matter, and one can say that in most practical situations, 
it is the complexity of the decoder that sets a limit as 
to which codes can be used. For cyclic codes, encoding 
and syndrome calculation have already been shown to be 
easily attainable with shift registers, modulo-2 adders, 
a few logic gates and a timing circuit.

3.9.1 Meggitt Decoder

This type of decoder works as follows. A received n- 
digit codeword, possibly erroneous, is fed to a syndrome 
calculating register and simultaneously into a buffer 
register. The syndrome obtained is fed into a combinational 
logic circuit (CLC) whose output is a ONE if and only if 
this syndrome is associated with a correctable error pattern 
having an error in its highest order digit, i.e. an error 
in the first digit to be read out of the buffer register or 
the digit with highest degree in a polynomial representation.

In the multi-level case this still holds true because f(x) is a 
factor of xn-l, for some n.
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If the output of the CLC is zero, it is assumed that the 
highest order digit in the buffer is correct. So, the 
output from the CLC indicates whether the digit to come out 
from the buffer is in error or not. The contents of the 
buffer are read out one at a time, the syndrome register 
being shifted simultaneously. Every time a ONE is output 
from the CLC it is added modulo-2 to the buffer output 
and simultaneously to the feedback path of the syndrome 
register in order to remove the effect of the error from 
the syndrome calculation. After n shifts the contents of 
the syndrome register should be all zeros if the error 
pattern was a correctable one otherwise an uncorrectable 
error has been detected. A simple example is now given 
in order to make clear the points explained above.

EXAMPLE Consider the (7,4) single error correcting
3Hamming code whose generator polynomial is G(x)=x +x+l.

The parity check equations for this code are:

C1 = ki + k 2 + k 3

c2 = k2 + k 3 + k^

c3 = k^ + k2 + k^

Let the transmitted codeword be:
kf k2 k3 k^ cx c2 c3

[Vj = [l 1 0 1 0 0 1 J

Let the error vector be:

[E] = [ 0 0  1 0 0 0 0 ]
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The received n-tuple will be:

D D  = [v ] + D O
QO = Q. 1 1 1 ° ° Q

The received n-tuple is fed into the circuit shown in 
Figure 3.5 with the switch open. The contents of the 
syndrome register after n shifts is the pattern

D O  = Co o g
C1 c2 °3

FIGURE 3.5 : Meggitt Decoder for the (7,4) t=l Cyclic Code

is now closed and the contents of the buffer start 
being delivered, as follows in the table:
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Shift
Contents of 

Syndrome Register
Output of 
CLC

Output of 
Buffer

Output of 
Deooder

1 0 0 1 0 1 1

2 0 1 0 0 1 1

3 1 0  0 1* 1 0

4 0 0 0 0 1 1

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 1 1

C1 C2 C3

Error located

TABLE 1

It is thus seen that the error in the third position 
(k^) of the received n-tuple is corrected. If one is 
interested only in correcting errors in the information 
digits a k-stage buffer should be used. The decoder shown
in this example uses pre-multiplication of the incoming

n —  'sequence by x modulo G(x) so the resulting syndromes
n ~ k •appear multiplied by x (Peterson, 1972). When decoding

shortened cyclic codes the incoming codeword should either 
be pre-multiplied by

, n-k+
f(x) = REHj -----

L G(x)
(where i is the number of information digits removed from 
the code), or preceded by i zeros and applied to the
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decoder for the original unshortened code. The next dia­
gram (Figure 3.6) shows the Meggitt decoder for the code 
resulting from shortening by i=2 the (7,4) code of the 
above example. Pre-multiplication by

r 5 2f(x) = REm J ^ ^ ---1 = x +x+l
» - X  + X + 1 J

has been used.

I/P

FIGURE 3.6 : Meggitt Decoder for the (5,2) t=l Shortened 
Cyclic Code

The difficulty with the Meggitt decoder is the com­
plexity associated with its CLC for codes that correct two 
or more errors per codeword. However, with the advent of 
more complex integrated circuits, this decoding procedure 
can be attractive. The use of programmable read only 
memories (PROMs) simplifies drastically the design of the
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CLC. The syndrome digits in the decoder may be used as 
addresses to the PROMs. With the aid of a small computer 
programme, those syndromes which are associated with error 
patterns having the highest order digit in error are 
determined, and the PROMs are then programmed to output a 
ONE in these cases and a zero otherwise. For a code having 
c check digits a 2C bit PROM is needed (or equivalent com­
bination of PROMs). It is clear that in this way full use

ccan be made of the 2 syndromes available. As a consequence, 
when decoding quasi-perfect codes, one is able to correct 
some error patterns with t+1 errors which are usually left 
aside by other methods. Some quadratic residue codes, 
which have good distance properties but are hard to decode, 
can be considered for practical implementation using these 
techniques. The limitation of the extent to which PROMs 
can be applied is dictated by the available technology. 
Finally, the Meggitt decoder provides a general method of 
fully decoding any cyclic code, i.e. it does not suffer 
from the limitations of bounded distance decoders. The 
practical implementation of Meggitt decoders requires 
either the use of duplicate buffers or operation at twice 
the line clock rate.

3.9.2 Error Trapping Decoding

Error trapping decoding (Rudolph and Mitchell, 1964) 
is possibly the simplest way to decode a cyclic code when 
the errors to be corrected do not spread over a span 
greater than (n-k) digits, including the end around case
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i.e. regarding the span cyclically. Because of the cyclic 
nature of the code, such error patterns can be shifted 
entirely into the parity check section of the received n- 
tuple. When this happens the errors are said to be 
"trapped" and can then be corrected, as will now be 
explained. It has already been shown that the syndrome 
S(x) of a received n-tuple R(x) is equal to the remainder 
resulting from the division of the error polynomial E(x) 
by the generator polynomial G(x) of the code, i.e.

E(x) = Q(x).G(x) + S(x) .

If E(x) = E x(n_k)_1+E . x (n_k)~2n-k- 1 n-k-2 +...+Ê x+Eq ,

then the errors are confined to the parity check section 
of R(x), then Q(x) = 0 and E(x) = S(x). Correction is 
achieved by adding (modulo-2) R(x) to S(x). Now suppose 
that the errors are not situated in the parity check sec­
tion and E(x) is of the form:

F ( x ) -F >-k) 1+i F x^n k  ̂ 2+^+ +F x̂ "+ "̂+FECx) n-k-l+i n-k-2+i * ‘ i+l +Eix

By shifting R(x) cyclically n-i times, the errors will 
occupy the parity check positions of R(x)^n which is a 
shifted version of the received n-tuple. So,the syndrome 
of R(x)^n ^  is identical to the error affecting R(x) and 
so R(x) can be corrected as in the previous case.

The sequence of operations necessary to decode by 
this process is therefore:

(1) Shift the received n-tuple into the syndrome 
register and into a buffer simultaneously.
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(2) Calculate the weight of the syndrome W(s).
(a) If W(s)<.t then the errors are confined to 

the parity check section of the received 
n-tuple*and the information digits are error- 
free. No correction is necessary, just 
deliver the k information digits to the
data sink.

(b) If W(s)>t then shift the syndrome register 
and after every shift check if W(s) has gone 
down to t or less. Suppose that W(s)<.t 
after i shifts for 0<i<n-k. Now, inhibit the 
feedback connections of the syndrome register 
and apply (n-k)-i shifts to it. When this is 
done the first i higher order digits in the 
syndrome register match the errors in the 
first i positions of the buffer (Lin, 1970). 
The other information digits are error-free. 
Correction is accomplished by shifting both 
together the buffer and the syndrome register, 
and adding their outputs modulo-2 .

(3) If W(s) does not go down to t or less after 
(n-k) shifts, then start delivering the buffer 
contents to the data sink. At the same time 
the syndrome register is shifted and if W(s)<.t 
is verified the feedback connections are 
inhibited. The pattern in the syndrome,regis­
ter matches the errors in the next (n-k) 
digits to come out from the buffer. The 
pattern in the syndrome register is then

T V i i s  c o n v e r s e  a l s o  h o l d s  -fcr u e .
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added to the digits coming out of the buffer 
as both registers are shifted together. If 
it happens that the weight of the syndrome 
never goes down to t or less after k shifts, 
then either an uncorrectable error has been 
detected or a correctable error pattern with 
errors not confined to (n-k) consecutive 
positions has occurred. Figure 3.7 shows the 
circuit diagram of a decoder for error trap­
ping.

FIGURE 3.7 : Error-Trapping Decoder

In general, for a code to be efficiently decoded by 
error trapping the following condition must hold:

n
k > t

(Peterson, 1972). Due to this,error trapping is seen to
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be effective for low rate and/or small t codes only. Care 
is necessary when applying error trapping to relatively 
more powerful codes, because a good deal of the code error 
correcting ability can be wasted. Many coding theorists 
have tried to extend the applicability of the error trap­
ping technique to cover the case when the error patterns 
are not all confined to (n-k) consecutive positions 
(Kasami, 1964), (MacWilliams, 1964). An example of such 
an extension is permutation decoding, which is described 
in the next section.

3.9.3 Permutation Decoding

This is a more sophisticated type of error trapping. 
In the case of error trapping, only cyclic shifts are 
applied to the received n-tuple when trying to trap the 
erroneous digits. It is important to observe that cyclic 
shifts are code preserving permutations. This means that 
the same decoder can be used after cyclic shifts are 
applied to the received n-tuple. If the permutations used 
are not code preserving, the decoder would normally have 
to be modified in order to deal with the new syndromes, 
which is obviously a disadvantage. Successful application 
of permutation decoding depends on finding a set of code 
preserving permutations which rearrange the codeword 
digits in such a way as to leave at least k consecutive 
correct digits in a codeword containing errors. Error 
trapping can then be applied to correct the errors and 
after that an inverse operation is required to restore the
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original codeword.
Cyclic codes of odd length are preserved by the 

permutation
. . 21X3 -* (X3)

j = 0,1,2,...,n-l 
i = 1,2,...

applied to the digits of any of their codewords (MacWilliams, 
1964). In many cases this permutation together with cyclic 
shifts is sufficient to decode a given code. However, very 
little is known about code preserving permutations and for 
a given (n,k,t) code it is not known in general how to find 
a set of permutations to decode it, or even if such a set 
exists. Permutation decoding is treated in Peterson (1972) 
and MacWilliams (1964).

3.9.4 Majority Logic Decoding

The majority logic decoding algorithm is an efficient 
scheme for decoding certain classes of cyclic codes; as 
for example the m-sequence codes and finite projective 
geometry codes (Lin, 1970). Majority logic decoding can 
also be applied to other classes of block codes; however, 
the final circuit for the decoder is not always as simple 
as for cyclic codes. Convolutional codes can also be 
decoded by majority logic techniques. Historically Reed 
(1954) was the first to suggest the idea of majority logic 
decoding in order to decode the Reed-Muller codes (Muller,



54

1954). Later his work was extended by other coding theo­
rists and two good accounts of this subject can be found in 
Massey (1963) and Peterson (1972).

a. Orthogonal parity sums
The syndrome [sf] of a received n-tuple in an (n,k) 

cyclic code with parity check matrix Qf) can be written as:

OQ = Cs0,S1,S2,... ,Sn_k_g = [e].[h] (3.11)

where Qe] = [Eq ,E^ ,E2 , • • . >En_̂ ] represents an error pattern, 
Expanding equation (3.11) leads to:

so = Z  EiHOii=0
n-1

I - I  Eii=0
n-1

n-k-1 - £  ^i1 n-k-liS , , = V E_. H
i=0

(3.12)

Now consider a combination of syndrome digits as follows :

A = a0S0 + alSl + + an-k-lSn-k-l (3.13)

a^ is either zero or one. Due to equation (3.12) A can 
be written as:

A = b o E o blEl + b 2 E 2 + b -, E , n-1 n-1 (3.14)

b^ is either zero or one. An error position E^ is said to
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be checked by A if its coefficient b^ in equation (3.14) is 
ONE. Equation (3.14) is called a parity check sum.

Definition 3.3 Given a set of J parity check sums 
(parity check equations) A1,A2,... ,Aj such that one error 
position E^ is checked by all of them and all other error 
positions appear once and only once in each parity check 
sum, then this set is said to be orthogonal on the position

If, instead of having E^ common to all equations, we 
have E=E.+E•+...+E0 as the common term in all equations, 
then the following definition arises.

Definition 3.4 A set of J parity check sums A^,A2,
...,At is said to be orthogonal on the set E if, and only 
if, E is checked by all the J parity check sums and no 
error position outside E appears in more than one parity 
check equation.

Definition 3.3 is the basis for what is known as ONE- 
STEP MAJORITY LOGIC DECODING while Definition 3.4 can be 
conceived of as a generalisation of Definition 3.3 and is 
the basis for L-STEP MAJORITY LOGIC DECODING.

b. ONE-STEP MAJORITY LOGIC DECODING
Given an (n,k) cyclic code suppose we can find J 

parity check sums orthogonal on the highest order position 
of the received n-tuple, and therefore on the highest order 
digit, of the error pattern. If no more than J/2
errors affect a transmitted codeword they can be corrected
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as follows. Suppose the highest order digit is not in
error*-then at most J/2 parity check sums will fail,
leaving at least J/2 of them agreeing. So, if a clear
majority of the parity sums are zero (i.e. agree) or if
a tie results, the highest order digit is delivered
unchanged by the decoder. Now suppose En_^ is in error,
this leaves ^ - 1 errors to be spread among at most ^ - 1
parity equations. This leaves at least J -
equations in which only En_^ = 1, and so a clear majority
of the sums will be ONE. The highest order digit can in
this way be corrected by the decoder. In the case of
cyclic codes, position ^n_2 can corr’ec'ted in the same
way as described above because after a cyclic shift it
will occupy the position of En_-̂ . Once the error effect
on E^_^ has been removed from the parity sums the estimate
of E „ can proceed. This process continues until the n-2
complete codeword is decoded.

The process of decoding by a majority rule is very 
efficient whenever J is equal to or very close to d-1
because t ■ f ¥ U is the error correcting capability 
of the code. Also some patterns having more than t errors 
can be corrected. Codes for which J = d-1 are said to be 
completely orthogonalisable.

EXAMPLE Consider the m-sequence code with parameters
x7 + ln = 7, k=3, d = 4 and generator polynomial G(x) = p^yi where 

P(x) is a primitive polynomial of degree k. If P(x) is 
chosen to be x +x+l, then the following G(x) results:

G(x) = (x^+x^+1)(x+1) = x4+x7+x+l.
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Depending on the way the parity check sums are con­
structed two basically different implementations result.
They are known as Type I and Type II majority logic decoders 
(Massey, 1963). The polynomial P'(x) = x^Pi^) is the 
reciprocal of P(x) and is also primitive (Peterson, 1972).
It is in the null space of the (7,3) code.* In this example 

3 2P'(x) = x +x +1 and the following set of equations can be 
used for parity checking.

P' (x) = x3+x2+l

xP'(x) = x4+x3+x

x3P'(x) = x6+x5+x

(3.15)

It is easily seen that this set is orthogonal on position
x . The next diagram (Figure 3.8) shows a syndrome cal­
culating register using pre-multiplication by xn-k l. e.
x4. By doing that, the highest order position in the

, r n-1 code (x , i .e. x ) will appear as x6 4 10 .x = x or 3X
7modulo x +1 and so (3.15) can be used to check for errors

on the highest order position of the received codewords.
In terms of ONES and ZEROS (3.15) can be written as :

kl k2 k3 ! C1 ! c2 1 1 c3 c4
0 0 o ! i ! ii i 0 1
0 0 Oi—1 i—1 1 0 (3.16)
1 1 o 1—1o 0 0
E2 E1 Eo! E6 ! E5 E4 E 3 +

yThe polynomial P'Cx) and its multiples taken modulo X +1 form the null 
space of the (7,3) m-sequence code, and so can be used as parity 
check equations.
D̂igits rearranged after multiplication by x^.
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A 1 = S 3A 2 = S 0
A 3 Sl+S2

A 1 = E6+E5+E3
A. — Ec + E., +E„2 6 4 0

> CO = Eg+E2+E1

(3.17)

(3.18)

The set of equations (3.17) express orthogonality in 
terms of syndrome digits and is used to construct a Type 
I one-step majority logic decoder (Figure 3.8), while
(3.18) refers to Figure 3.9 where a Type II decoder is 
shown.

S1

I/P

FIGURE 3.8 : Type I One-Step Majority Logic Decoder
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FIGURE 3.9 : Type II One-Step Majority Logic Decoder

TYPE I DECODER: The syndrome of a received n-tuple is 
calculated in the usual manner with S-^closed and S£ open. 
The output from the majority gate is used to correct the 
digits coming out from the word buffer, and it is also 
fed back to the syndrome calculating register to remove 
the effect of the errors corrected from the syndrome.
After the last digit stored in the word buffer has been 
delivered, the contents of the syndrome register should be 
all zeros, otherwise an uncorrectable error has been 
detected.

TYPE II DECODER: The incoming n-tuple is fed into the
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parity check register with closed and and S3 open.
For the next n-shifts the output from the majority gate is 
added modulo-2 to the received n-tuple as this is shifted 
out of the parity check register, in order to correct 
possible errors. The final output is fed back to the 
input and after n-shifts the inputs to the majority gate 
should all be zero; i.e. the parity check register contains 
a valid codeword. Otherwise an error has been detected 
which cannot be corrected.

The following theorem establishes an upper bound for 
the performance of one-step majority logic decoding.

THEOREM 3.4 (Peterson, 1972) Given an (n,k) code with 
d as the minimum distance of its dual code, the maximum 
number of errors t-̂ per codeword that can be corrected 
using one-step majority decoding is

tl *
n-1

2(d-1)

This result means that many codes cannot be efficiently 
decoded by the one-step majority logic method, e • g. the 
Golay code, for which t-̂  = 1.

c. L-STEP MAJORITY LOGIC DECODING
ONE-STEP decoding is easy to implement but relatively 

few classes of cyclic codes can be decoded in this way 
because the orthogonality condition is very restrictive. 
Implementation of definition 3.4, which generalises the 
idea of orthogonality, together with the procedures des­
cribed above, allows a larger number of cyclic codes to be
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decoded by majority logic techniques, by means of several 
levels of majority gates. At each level a number of sums 
of orthogonal digits are estimated. This process is 
continued until a set of J or more parity check sums 
orthogonal on a single position E is obtained. The value 
of E can then be estimated as in the one-step case. The 
following theorem gives an upper bound on the performance 
of L-step majority logic decoding.

THEOREM 3.5 (Peterson, 1972). Given an (n,k) code, 
with d as the minimum distance of its dual code, the 
maximum number of errors t^ that can be corrected per 
codeword using L-step majority logic decoding is:

n-

t L i

i.e. tT <. -=—  7T for d evenL d /

tT < for d oddL d + 1 2

Thus, for the Golay code, t^ = 2.

d. Alternatives to the basic majority logic decoding 
process
(1) The use of feedback, as in the example given, in 

many situations allows correction of patterns having 
slightly over t errors. This happens when the decoder 
succeeds in correcting an error in a pattern containing
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say t+1 errors which leaves then a pattern with t errors, 
which can also be corrected.

(2) The use of non-orthogonal check sums (Peterson, 
1972). This process applies mainly to codes based on 
finite geometries (Carmichael, 1937), and has a complexity 
comparable to L-step majority decoding but usually corrects 
fewer errors.

(3) Rudolph (1973) observed that in some cases there 
are orthogonal parity check equations which can be obtained 
from others in the same set by cyclic shifts. In this case 
some majority gates can be saved by employing a sequential 
technique to calculate and store the different estimates to 
be used for the final majority voting.

(4) Variable threshold (Townsend and Weldon, 1967).
The majority gates considered in this procedure have

an adjustable threshold T, which is set initially at its 
highest value T = d-1. Decoding is then attempted. If, 
after the first n shifts , no error has been detected the 
threshold is lowered by one, the cycle is repeated and 
if no error is detected the threshold is lowered again by 
one. This goes on until T = ------- is reached or an error
is found in which case the threshold is increased by one. 
When T =  ̂̂  is reached, the decoding process is con­
sidered terminated, i.e. the received word is considered 
to have been decoded. Whenever an error is found, for 
some T > the threshold is increased by one and after
a complete cycle (n shifts) it is lowered by one and 
decoding continues. The end of this process is achieved
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when either T drops to —' and remains there, or enters 
a limit cycle where it keeps changing between two or more 
values. In the second case T is forced to ^  after a 
specified number of revolutions and then fixed threshold 
decoding is tried. This usually results in correction of 
more errors than is possible with conventional majority 
logic decoding (fixed threshold).

e. Final comment
A description of the majority logic decoding algorithm 

has been presented with emphasis on its application for 
cyclic codes. When compared to the BCH decoding algorithm, 
in terms of complexity, majority logic decoding is generally 
much simpler for moderate values of n. However, the codes 
for which majority logic decoding is efficient are slightly 
inferior to the BCH codes in the same range. For large n 
the large number of majority gates required makes majority 
logic decoding unattractive and the BCH codes , besides 
having a better performance, have also simpler decoding 
algorithms.

3.10 Bose-Chaudhuri-Hocquenghem (B.C.H.) Codes

These codes were discovered independently by Hocquen- 
ghem (1959) and Bose and Chaudhuri (1960). Peterson (1960) 
pointed out that they were cyclic codes and described the 
first algebraic procedure for their decoding. Though
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originally described for binary symbols, the BCH codes were 
generalised later for the multi-level case (Gorenstein and 
Zierler, 1961); and the decoding procedure was refined by 
Chien (1964), Berlekamp (1968) and Massey (1969). The BCH 
codes constitute one of the most important and extensive 
classes of constructive codes. However, their importance 
stems mainly from the fact that there exists a way of 
decoding them which is practical for relatively large 
values of n. Using 50 ns switching logic, it is feasible 
to construct decoders for BCH codes with n<1023 and a bit 
rate of 1 MHz (Wolf, 1973). Berlekamp (1968) points out 
that the distance properties of BCH codes are asymptoti­
cally disappointing, and other cyclic codes likes the 
quadratic residue codes perform much better but are harder 
to decode.

3.10.1 Basic Properties of BCH Codes

For a thorough understanding of BCH codes a know­
ledge of how to operate with Galois field is required. An 
elementary treatment of binary BCH codes is presented in 
this section. Appendix I gives some of the basic defini­
tions of modern algebra but for a more complete coverage 
the reader is referred to Peterson (1972) and Berlekamp 
(1968).

For any positive integers m,t(t<2m )̂ there exists a 
BCH code with parameters:

n = 2m-l 
n-k = c <. mt
d >. 2t+ 1
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THEOREM 3.6 Peterson (1961) The BCH code whose
2 3generator polynomial has d-1 consecutive roots a,a ,a 

 ̂has minimum Hamming distance at least d.

Proof As shown before (see section 3.3), the state-
2 3 d“ 1ment that G(X) has roots a,a ,a ,...,a is equivalent to 

saying that the code is the null space of the matrix Qf) 
below.

l a  a n-1a

-, 2 4l a  a 2(n-l)a

[H] = n 3 6l a  a a3(n-l)

n d-1 2(d-1) (d-1)(n-1)1 a a ....  a

By selecting any set of d-1 distinct columns of [hJ , the 
following determinant results.

3a d-1

D = C a V 1 (c,2 )'2 f 2v ̂d-1... (a )

(a« ) 32
, d - l ^ d -  (a )

h  j2a a ... Jd-1 a D-,

By factoring a 1 (l<.i<.d-l) from every column of D, a new 
determinant D-̂  is obtained which has the form:
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i 1 — ...  1

xi X2 ....... xd-l
= lj. (X. - X.x>: i j

II1—1 
Q

x 2.i x 2X2 x 2Xd-1
yd-2 
X1

Yd-2x2 .... yd-2
... Xd-1 where X. = al

D-̂ is recognised as a Vandermonde determinant and so 
= 0 if, and only if, two of its columns are identical. 

Given the way [h] has been constructed, there are no 
repeated columns, hence there are no combinations of d-1 
or fewer columns of Q{] which are linearly dependent.
That means the BCH code which is the null space of Q{] has 
minimum distance at least d. Q . E . D.

2 3 d-1Because G(X) has ot,ot ,a , ...,a as roots and since 
2 2m (x) = m(x ), it is possible to write:

G(x) = LCMCm^Cx),m3(x),...,m2t_1(x)), where nn(x)

is the minimal polynomial of a1, and d>2t+l. This expres­
sion for G(X) can have at most t factors of degree at most 
m, so the degree of G(x) is always c<mt.

3.10.2 Decoding of the B.C.H. Codes

BCH codes can be decoded by some of the methods pre­
viously described, e.g. Meggitt decoder, error-trapping,
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etc., but none of them explore fully the mathematical 
structure of BCH codes. A brief description of a pro­
cedure described by Peterson (1961) for decoding BCH codes 
which makes use of the structure of these codes is 
presented here.

The matrix Qf) from section 3.10.1 constitutes a 
parity check matrix for BCH codes. Assuming that a trans­
mitted codeword is received with errors, the associated 
syndrome vector can be written as:

[s] = Cv+E][H]T = DO D D T + [E] [h] t= D 0 [ H t

(since [v] is a codeword ra d o DO)

An error pattern containing t errors will be charac­
terised by the positions of these errors, denoted by 
. . . ,6̂  which are called error-location numbers. Let Qf| = 
[S1,S2 ,S3,...,Sd_-jJ, the expansion of [e ] Qf] can be 
represented as:

51 = 6

52 = B

53 = 8

1 + $2 + . ...+ st
2 n2 „2
1 + 32 + --- + t̂
3 _ 3 „ 3
1 + 6 2 + ....+ 0t

d-1 cd-l Qd-1
1 + + . . . . + 3t

► (3.19)

Equations (3.19) above are called power sum symmetric func- 
tions. The algebraic decoding of BCH codes depends on
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solving this system of equations, to determine the B's from 
the S^'s. This system of equations is nonlinear and so 
far has defied simple solutions. Peterson (1961) observed 
that the error-location numbers can be expressed in terms 
of elementary symmetric functions as:

6f + $2 + .....  + $-£

BfB? + 3 + •••• + + ^2^3 + * * * * + ^2^ t + ^t-l^t

^1^2 ̂  3  ̂^1^ 2^4 * ••• •

B-^82 •••• Bt

The power sum symmetric functions are related to the 
elementary symmetric functions by Newton*s identities as 
follows:

= 0
S3 + + S-La2 + a 3 = 0

S 5 + V l  + S3CT2 + S2a3 + Sla4 + a5 = 0

S2t-1 + S2t-2al + + St-l°t 0

These equations can be expressed in matrix form as 

[sQ = (M J O D  Where:
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~S1 1 0 0 0 ...... 0

S 3 ~°1 S2 S1 1 0 ...... 0

Sr Or, s„ s 0 So S 1 1 ... 05
, 0  =

.2 IIl±Jr\ 4 3 2 1

•
°t

•

S2t-1 S2t-2 *‘* ..... st-l

o g  is non-singular (i.e. has t independent rows) provided 
exactly t errors occurred. In this case, the a's can be 
determined from:

do = og-^so
Given the a's, the error location numbers can be determined 
from the final decoding equation

E(x) = (x+61)(x+62)(x+63) ... (x+6^)

by simple trial and error substitution. If 3̂  is a root of 
E(x), i.e. E(B^) = 0, the digit in position 3̂  of the 
received n-tuple is changed.

In case less than t errors occurred Qî ] can be changed 
by reducing the number of equations and another tentative 
decoding made. Eventually, a system of equations will 
result which can be solved for the elementary symmetric 
functions. Berlekamp (1968) improved this algorithm in a 
way which avoids matrix inversion and Chien (1964) developed 
an efficient process of search for finding the roots of E(x). 
However, algebraic decoders normally correct only up to t 
errors per codeword and in this sense do not make full use 
of the error correcting properties of the code.
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3.11 Burst Error Correction

This section deals with cyclic burst error correcting 
codes capable of correcting a single burst of errors per 
block. Conditions for existence, construction and decoding 
are presented. These codes have been created to be used in 
channels where errors do not occur independently, i.e. the 
occurrence of one error in one digit increases the chances 
of having the next digit also in error. Channels of this 
type are said to have memory. In fact, as pointed out by 
Gallager (1968), with the possible exception of space 
channels almost all other types of channels have memory to 
a certain degree. This effect of memory can appear in the 
form of intersymbol interference due to band-limiting a 
signal in frequency or as intermodulation noise due to 
inadequate filtering. In telephone lines bursts can be 
caused by a stroke of lightning or a momentary overloading 
of an amplifier. Defects on a magnetic tape usually cause 
errors that occur in bursts. A burst is said to have 
length b with respect to a guard space g when it satisfies 
the following conditions:

(1) The first and last digits of a burst are ONES, 
the other b-2 digits can be zero or one.

(2) The burst is preceded and followed by at least 
g error free positions.

(3) There can be no sequences of g or more consecu­
tive zeros inside a burst.
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For example, if g=3, then

b= 3 b = 4
0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0

represents a stream of binary digits containing one burst 
of length 3 and another of length 4. The following 
theorems establish conditions for a linear code to be 
able to correct bursts, and the minimum number of parity 
checks needed. The proofs for these theorems can be found 
in Lin (1970) and Peterson (1972), and are based on the 
concept of the standard array presented in Chapter 2.

THEOREM 3.7 A necessary condition for an (n,k) 
linear code to correct all bursts of length b or less is 
that no burst of length 2b or less can be a codeword.

THEOREM 3.8 An (n,k) linear code which contains no 
burst of length 2b or less as a codeword has at least 2b 
parity checks, i.e. n-k >. 2b

Combining Theorems 3.1 and 3.2 it can be seen that a 
burst b error-correcting code must have at least 2b parity

whichl-kchecks. This can also be interpreted as b <. 
constitutes an upper bound on the burst correcting capa- 
ability of an (n,k) linear code called the Reiger bound 
(Reiger, 1960) . Codes for which 2b = n-k are said to be 
optimum. A figure of merit for burst correcting codes can
be defined as z = (n-k)-2b. With this definition optimum
burst correcting codes have z = 0.
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3.12 Decoding of Burst-Correcting Cyclic Codes
3.12.1 Burst Trapping Decoder

By observing the condition established in the Reiger 
bound (2b £ n-k), it can be seen that any correctable burst 
pattern can be cyclically shifted into the parity check 
section of a received n-tuple, and consequently can be 
trapped in the syndrome calculating register. In this way, 
a simple decoder can be constructed using basically a syn­
drome calculating register, a counter, and an (n-k)-b input 
OR-gate connected to the higher order end of the syndrome 
calculating register as shown in Figure 3.10 below.

FIGURE 3.10 : Burst Trapping Decoder

The OR-gate in Figure 3.10 is used to detect, after the 
syndrome has been calculated, whether the burst is trapped 
i.e., when the (n-k)-b higher order positions of the syn­
drome register contain zeros. The counter reads the number 
of cyclic shifts required to achieve that. Correction then
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follows in the same way as error trapping for random errors. 
If after n shifts the output of the OR-gate has not indi­
cated the condition for "burst trapped" then a burst of 
length greater than b has been detected.

3.12.2 Gallager Optimum Burst Decoder

It is interesting to observe that for burst correc- 
tion a given burst correcting code has available 2 -1
syndromes and for the guaranteed burst length b it uses 
n.2^ of them, which in many cases is far less than 2n ^-1. 
The burst trapping technique described above can be modified 
in order to make full use of the redundancy available and to 
correct bursts of length £, b<£.<n-k. Gallager (196 8) pro­
posed a modification of the burst trapping technique which 
turned out to be equivalent to minimum distance decoding for 
channels where shorter bursts are more likely to occur than 
longer ones, i.e. a burst of length £ is more likely to 
occur than one of length £+1. The idea is to calculate the 
syndrome of a received n-tuple, and if this syndrome is 
non-zero, to shift the syndrome register n times and keep 
a record of the position of the syndrome with the longest 
run of consecutive zeros (using a counter, for example).
This syndrome corresponds to the shortest burst and correc­
tion achieved by adding modulo-2 the contents of the 
syndrome register, with feedback connections inhibited, to 
a section of the received n-tuple, stored in a buffer 
register, determined by the burst location counter. More
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details of this type of decoder are given in Chapter 4, 
where an experimental system is described. If desired, 
this decoder can be used in a combination of error correc­
tion and error detection. A question can be asked about 
what to do when the decoder is faced with two "possible 
bursts" of the same length £>b. In this case provision 
can be made to decide, for example, to select the burst 
with the smaller weight.

3.12.3 High-Speed Burst Decoder

Chien (1969) introduced an interesting technique for 
decoding some special types of burst correcting cyclic 
codes, namely the Fire codes and their generalisation, 
which are covered later in this chapter. The burst decoders 
previously described required at least n shifts for loca­
ting and correcting a burst. This can be seen as a decoding 
delay due to the process of error correction and for long 
values of n it can be an unacceptable disadvantage. Chien!s 
solution to the problem is to reduce the decoding delay by 
factorising G(x) and computing a partial syndrome for each 
of its factors. For example, let G(X) = (xC-l)P(x), where 
P(x) is an irreducible polynomial belonging to an exponent 
p, and c is relatively prime to p. The partial syndrome 
obtained with x -1 is used to trap the burst and to deter­
mine its location to within a multiple of c. This burst is 
then fed into a feedback shift register, connected according 
to p(x), and shifted until the contents of this register
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matches the partial syndrome obtained with P(x). The number 
of shifts required to trap the burst m  the X -1 register 
and the number of shifts needed to match the syndrome in the 

P ( x )  register are used as residues. The Chinese Remainder 
Theorem (Berlekamp, 1968) is then applied to determine the 
exact burst location using these residues. This implies 
using some means of computation to perform simple arithmetic 
multiplication and addition. For long codes (n<1000), this 
decoder achieves speeds several orders of magnitude higher 
than it is possible with conventional burst decoders. There 
are codes which are more powerful than the ones for which 
this decoder is intended; however, their decoding can be 
costly because of the reduction of parallel processing, thus 
making them unattractive from a practical point of view.

3.13 Important Classes of Cyclic Codes 
3.13.1 Hamming Codes

The parameters for these codes have already been 
given in Chapter 2, i.e.

n = 2 C-1 
k = 2 C-l-c 
d = 3

The generator polynomial of a Hamming cyclic code can 
be any primitive polynomial of degree c, which by defini­
tion is a factor of Xn+1. These codes are easily decoded 
with a Meggitt or error-trapping decoder. Also, Hamming
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codes are orthogonalisable in L = c-1 steps.

3.13.2 Maximum Length Sequence Codes

For any c>2 there exists a maximum length sequence 
code (m-sequence code) with the following parameters:

The generator polynomial of an m-sequence code is given by

vn_i
G(x) = H30 »

where P(x) is a primitive polynomial of degree p, i.e. the 
dual code of an m-sequence code is a Hamming code. M-sequence 
codes are completely orthogonalisable in one step and conse­
quently are easily decodable by a majority logic technique. 
Error trapping decoding is also an efficient way of decoding 
m-sequence codes because these are normally low rate codes.

3.13.3 Reed-Solomon Codes

The multi-level BCH codes defined by the following 
parameters:

n = q-1 
n-k = 2t

d = 21+1
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constitute the important class of Reed-Solomon codes (Reed-
Solomon, 1960; and Gorenstein & Zierler, 1961). The

2 d — 1generator polynomial of these codes has roots (a,a ,.. . ,a ), 
i. e.

G(x) = (1-a).(1-a2) . . .(l-ad_1)

Reed-Solomon codes with q=2m are used in many practical 
applications, as the multi-level digits can be represented by 
binary m-tuples. Since d=(n-k)+l, these codes are also maxi­
mum distance separable (Berlekamp, 1968). Some very powerful 
burst and random and burst error correcting codes result from 
using a Reed-Solomon code over GF(2) to correct any combina­
tion of t binary m-tuples in error, in a code containing m.n 
binary digits per block. Also, concatenated codes (Forney, 
1966) use normally a Reed-Solomon code as their outer code.

3.13.4 Codes Based on Finite Geometries

Euclidean geometry codes and finite projective 
geometry codes (Lin, 1970 and Peterson, 1972) are important 
classes of majority logic decodable cyclic codes, whose 
construction is based on the properties of finite geometries 
(Carmichael, 1937). The Hamming and the Reed-Muller codes 
(Muller, 1954) are particular cases of Euclidean geometry 
codes while the finite projective geometry codes contain the 
difference set codes (Lin, 1970) as a particular case. The 
similarities among the various types of majority logic 
decodable codes mentioned above were explored and combined
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to form the class of polynomial codes (Kasami, Lin and 
Peterson, 1968). Polynomial codes are cyclic codes and 
contain as sub-classes the BCH codes, Reed-Solomon codes, 
generalised Reed-Muller codes and finite geometry codes.

3.13.5 Quadratic Residue Codes

Definition An integer r is a quadratic residue of 
a prime number n if, and only if, there exists an integer 
X such that:

X2 = r mod.n

It can be shown that if n = 8m±l, then 2 is a quadra­
tic residue of n (Berlekamp, 1968). In this case, Xn+1 can 
be factored into (x+1)G^Cx)G^(x) (Peterson, 1972)

G (x) = if (x+ar) 
r reRo

G_(x) = fi (x+ar)
r - R c

where a is a primitive element in an extension field of 
GF(2), R is the set of quadratic residues modulo-n and R 
is the set of quadratic non-residues modulo-n. The cyclic 
codes with generator polynomials G^Cx), (l+x)Gr(x), G_(x) 
and (l+x)G_(x) are referred to as quadratic residue codes. 
Berlekamp (1968) points out that permutation decoding is a 
very efficient way of decoding certain quadratic residue 
codes but permutation decoders are normally more complex
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than comparable BCH decoders. However, for practical appli­
cations, the relatively large minimum distance of these 
codes, together with the difficulty in decoding them, makes 
quadratic residue codes more suited for use in situations 
where an incomplete decoding scheme is appropriate. An 
incomplete decoding scheme uses the code redundancy to 
correct up to t^<t errors and to detect d-Ct^+l) errors per 
codeword thus requiring a simpler decoder than when up to t 
errors have to be corrected per codeword.

3.13.6 Fire Codes

These codes were discovered by Fire (1959) while 
trying to generalise the work of Abramson (1959) on burst 
error correcting codes. Fire codes can correct a single 
burst of errors per codeword. A burst b error correcting 
Fire code is generated by the polynomial

G(x) = (xr+l)P(x)

where P(x) is a primitive polynomial of degree m and order 
p = 2m-l, b<m and r>.2b-l. Also, p must not divide r. The 
block length for this code is given by

n = LCM(r,p)

Chien (1969) generalised the Fire codes by defining G(x) 
as follows:

s
G(x) = (xr + l) Tf P.(x )

j=l 3
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where P^(x) is an irreducible polynomial of degree m̂  and 
order . Also, it is required that all P^(x) be distinct 
and that the p .(j=1,2,...,s) do not divide r. Consequently 
G(x) has no repeated factors and the code length is given 
by:

n = LCH(r,p15p2,...,pg)

The main advantage of the generalised Fire codes is their 
high speed decoding process, described in section 3.12.3. 
Other powerful burst correcting codes are obtained by 
interleaving random or burst error correcting codes (Lin, 
1970). A simple type of interleaving is obtained by 
storing a number of codewords at the transmitter as rows of 
a two-dimensional array which is transmitted by columns. 
This technique tries to randomise the bursts by spreading 
the erroneous digits among different codewords so that the 
receiver can correct them as random errors. Also, by using 
computer search techniques, many good burst error correct­
ing codes have been discovered, see for example, Peterson 
(1972) or Lucky et al (1968).
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CHAPTER 4

Experimental System and Computer Simulation

4.1 Introduction

In order to investigate the practical performance of 
cyclic codes, an experimental system was built. The need 
to test a number of different codes, both for burst and 
random errors, imposed restrictions on the design parameters 
of the decoder, like decoding time and overall complexity. 
For that reason it was decided to limit the code length to 
p<31 and the number of parity check digits to o<10. By 
comparison with the decoder, the design of the encoder was 
simple, and in what follows we shall concentrate our atten­
tion mainly on the decoder.

Figure4.1 shows the system constructed in block diagram
form.

FIGURE 4.1
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A brief explanation of what each block contains and its 
function is now given. A more detailed treatment comes 
later in this chapter.

The data source generates pseudo-random data which is 
fed to the encoder. The encoder constructed uses a c-stage 
shift register and adds redundancy to the data according 
to the code generator polynomial for which it is set.

The codewords thus generated are sent to the channel. 
Noise is then added to the transmitted codewords by modulo-2 
addition. In this way whenever an error comes from the noise 
generator it changes either a one into a zero or a zero into 
a one. The probability with which the errors occur is 
externally set and can be varied over seven decades. The 
error generator constructed can provide both random and 
burst errors.

The decoder receives the codewords coming from the 
channel and depending on external controls operates on them 
either as a random or a burst error corrector. After decod­
ing the received n-tuples are compared with their transmitted 
original versions, suitably delayed, and errors that either 
escaped correction or were introduced by the decoder can then 
be counted.

This experimental system was constructed with exclusively 
TTL logic integrated circuits. A list of the integrated 
circuits used is given in Appendix III.

4.2 Data Source

The data source was a binary m-sequence generated by
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5 2 5the polynomial x +x +1. This sequence has length 2 -1 = 31.
The pseudo-random properties of m-sequences (Golomb, 1967)
make them appropriate for use as sources of random data.
See Figure 4.2 for the diagram of the data generator.

4.3 Clock and Timing Waveforms

The main clock for the system was set at 1 MHz and was 
derived from a dual NAND Schmitt trigger (SN 7413). The 
accuracy of this frequency was not a critical parameter 
since all other frequencies in the system were derived from 
the 1 MHz source by division.

The main timing circuit is shown in block diagram form 
in Figure 4.3. Its job is to generate a periodic waveform 
composed of n-c consecutive ones followed by c consecutive 
zeros. This circuit works as follows. Initially, the shift 
register contains only zeros. The flip-flop is preset to 
one. When the clock starts ones begin to enter the shift 
register. This continues until the magnitude of word b 
becomes greater than or equal to that of word a. Then a one 
appears at the output of the word magnitude comparator which 
resets the flip-flop to zero. From now on, the output from 
this circuit is a periodic waveform of period n selected by 
the multiplexer and having a number of consecutive ones 
which is determined by the switch which is sei; to repre­
sent word a in the word magnitude comparator. For example, 
if n=7 and the switch is in position 3, we get at the output 
the sequence

1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0  . . .
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0/P

FIGURE 4.2 : Data Generator

FIGURE 4.3 : Timing Waveform Generator
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4.4 Encoder

The encoder constructed was of the (n-k) stage shift 
register type described in Chapter 3. With this encoder 
(see Figure 4.4)any generator polynomial of degree less than 
11 can be implemented by closing the switches corresponding 
to terms which are missing in G(X) and leaving them open 
for the terms which are present. The timing waveform 
generator shown in Figure4.3supplies the necessary control 
waveform for the gates in Figure 4.4.

FIGURE 4.4: General Encoder For Cyclic Codes
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4.5 Error Generator
4.5.1 Random Errors

In order to simulate a binary symmetric channel (BSC), 
an error generator was constructed and the approach taken is 
now explained.

It is known that the weight distribution of run lengths
in a maximal-length sequence (m-sequence) follows a binomial
law (Davies, 1967). One way to obtain pseudo-random noise
with a binomial probability distribution then would be to
use the outputs from the stages of a feedback shift register
that generates an m-sequence. The next point is to determine
how long this m-sequence should be. This will be set by the
smallest probability required. Just for the sake of argument
say it is 10  ̂ i.e., a certain condition would be detected
once every 100,000 times on average. The m-sequence to be
chosen should be at least 10 times 10^ digits long otherwise
the result would have a poor statistical behaviour. A good

30 gchoice would be an m-sequence of length 2 -1*10 which is
generated by a primitive polynomial of degree 30.

If, without further considerations, one connects a 
feedback shift register to implement this m-sequence and 
combines its outputs according to some logic in order to 
obtain the desired probabilities of error, the result will 
be that the average number of errors will be as calculated, 
but that, however, their distribution might differ considera­
bly from a binomial one. This is so because with the 
described procedure one would be implicitly assuming that 
each output from the feedback shift register (FSR) is:



87

(a) A pseudo-random source of zeros and ones with 
approximately equal probabilities.

(b) The outputs from the FSR stages are statisti­
cally independent.

It is assumption (b)that is not correct, on the contrary 
those outputs are strongly dependent since each one (except­
ing the lowest order one) will be equal to the previous one 
after one clock pulse. To overcome this difficulty we 
relied on the work published by Hurd (1974) of which a 
brief description is given below.

Consider the following arrangement where stages 3, 7 
and 11 are toggle flip-flops (see Figure 4.5)

FIGURE 4.5

A toggle flip-flop is equivalent to the following circuit:

D represents a unit 
of delay
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X2(l+D) = Xx or

CM
X

1
X1 1+D

The output X2 changes with the next clock pulse 
whenever X-̂ is a ONE.

The reason for using toggle flip-flops 3, 7 and 11 is
0 1 2to make the feedback digits ( ,  x^ , x^) depend on more 

than two digits (so as to avoid trinomial-like recursions, 
e.g. when the FSR is described by a three term polynomial). 

0 1 2x^ , x^ and x^ can be written as:

0 D 2 . ^3 1 
XK = 1 + D XK D XK

u0 3 1 D 2
XK + D XK + XK = 0

1 _ D3 0 A „2 2 
XK " 1+D XK D K i.e. 1+D xK + xK + D xK = 0

2 _ D4 1  ̂ „2 0
XK = 1+D XK D XK d2xK + £ d XK + XK = 0

In order for this system of equations to be indeterminate 
one must have

PCD) =

D'

d °/i+d

D /1+D

D

D2 D4/l+D 1

= 0

Solving for PCD) we get:

PCD) = D11+D10+D9+D7+D6+D3+D2+D+l
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11 10 9 7 G 9 ?or P(X) = X±x+X U+Xa+X'+Xb+Xb+X^+X+1

which is a primitive polynomial and so generates an m- 
sequence.

It is obvious that the tap points in the shift register 
of the example have to be carefully chosen otherwise P(X) 
might not be primitive and so the resulting sequence would 
not be of maximal length. At the moment, there are no known 
systematic ways of finding arrangements that lead to m- 
sequences, other than trial and error.

Some important properties of pseudo-noise (PN) sequences 
are now presented.

(1) The randomness properties of PN sequences tend 
to improve with the degree and complexity of the recursion 
relation. (That is why trinomials should be avoided).

(2) It is possible to use different (widely shifted) 
phase-shifts of the same sequence as essentially independent 
noise sequences.

(3) Statistical dependence is usually not observed 
unless the recursion relation is a very simple one.

So, with circuits similar to the one just described, 
one can generate m-sequences using the minimum number of 
stages of shift-register, and also many different and widely 
spaced phase shifts are generated after every clock pulse.
As pointed out by Hurd those digits in the shift register 
are "linearly independent and retain the important statisti­
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cal property that all disjoint subsets considered as binary 
numbers, are independent and jointly uniformly distributed". 
This is so because all the 2n-l non-zero states occur equally 
often. Also, the results of tests on the weight distribution 
indicated that there was no evidence to distinguish between 
truly random sequences of independent and equally likely bits 
and the m-sequences generated in the way just described.

The error generator constructed used two m-sequences of 
relatively prime lengths 2^-1 and 22<3-l

21;L-1 = 23x89 

2 2°-l = 3x52xllx31xi+l

The primitive polynomial for the 2^-1 bit sequence is the 
same as the one we used before, i.e.

f±(x) = x11+x10+x9+x7+x6+x3+x2+x+l

The way the m-sequence generator for this polynomial is
implemented has already been shown. For the implementation 

20of the 2 -1 bit sequence, the following primitive poly­
nomial was used

f2 (x) 20, 17 16, 14 12 11 9, 8, 5̂  4 ,x + x +x + x + x + x +x +x +x +x +1
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FIGURE t+,6
All flip-flops are D-type except 5, 10, 15 and 20 which are

toggle flip-flops.

Twenty-five outputs were arithmetically added using 
binary full adders and fed to a binary word magnitude com­
parator. In this way, using a set of switches, we can 
vary the binary number at the other input to the comparator 
and obtain at its output the errors according to well 
defined probabilities. The lowest probability of error (P )

1 2  5 _ nthat can be obtained is (y) =3x10

4.5.2 Generation of Bursts

FigureH.7 shows a diagram of the circuit used to generate 
bursts of errors. As can be seen the bursts are triggered by 
the random error generator. Thus, the rate at which bursts 
occur is controlled by the threshold settings used in the
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random error case. The length of the bursts can be varied by 
adjusting the time constant of the monostable. An m-sequence 
is used to "fill" the bursts with pseudo-random digits while 
the flip-flop and gates guarantee that the bursts will always 
start and end with a one.

FIGURE 4.7 : Burst Error Generator

4.6 Random Error Correction

To decode random error-correcting cyclic codes an error­
trapping (E.T.) decoder was chosen due to its relative 
simplicity. However, as mentioned before, E.T. suffers from 
limitations and some means of overcoming those had to be
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provided, since otherwise the code performance would be 
degraded. The reason for choosing E.T. when more efficient 
methods are available lies in the fact that to change from 
one code to another not many changes are required in an E.T. 
decoder. This is not generally true of other decoders and 
the efficiency of E.T. decoding is reasonably good for n and 
c in the range given above. To complement E.T. when necessary, 
a process of systematic search was chosen. Again, for n and c 
in the range given, this is feasible i.e. not too time- 
consuming and is simple to implement.

4.6.1 Decoder

Figure 4.8 shows a block diagram of the decoder con­
structed. We shall start by describing how the buffers in 
the decoder work.

While buffer 1 is being serially loaded with an incoming 
n-tuple from the channel, its contents are being delivered 
to the data sink. Simultaneously, the decoder is working on 
the contents of buffer 2, checking for errors and attempting 
correction if necessary. After buffer 1 has been loaded with 
the incoming n-tuple the roles of the two buffers are inter­
changed. This means that buffer 2 now receives the digits 
coming from the channel while delivering its contents 
(corrected codeword) to the data sink. Simultaneously, the 
contents of buffer 1 are being checked by the decoder.

This process is carried on repeating itself over and 
over. The number of stages required for each of these 
buffers is n, the codeword length, which is specified as
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an address for their respective multiplexers. It should be 
clear from Figure 4.8 that the multiplexers are used in 
order to achieve variable wordlength in a simple way.

Due to the number of operations the decoder needed to 
perform during the time duration of one codeword, it had to 
be provided with a "fast clock". This "fast clock" was 20 
times faster than the rate at which digits were received 
from the channel. When using search this allowed the decoder 
enough time to go through all its possible error patterns, 
and be stopped safely before the next codeword was- due to be 
decoded.

4.6.2 Error Trapping

Figure 4.8 can be used to ilia s trite the decoder section
concerned with random error-correction.

r e c e i v e d
Using the fast clock the stored/se<ju ence ready for 

processing is fed into the syndrome calculating register
*(SCR) and at the same time cyclically shifted in its buffer. 

This stored sequence is kept circulating in its buffer while 
the SCR is shifted trying to trap the error pattern. If 
E.T. succeeds, then the error buffer (EB), which is an n- 
stage shift register, is serially loaded with the contents 
of the S.C.R., which has its feedback connections inhibited. 
During this time (c fast clock pulses) the fast clock for 
the stored codeword is inhibited. After that the contents 
of the E.B. are added modulo-2 to the stored codeword. A 
timing circuit (not shown) controls the number of shifts 
required in order to achieve correction and to restore the 
* B U F F E R  1 OR BU FFE R  z
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FIGURE *4.8 : General Decoder For Cyclic Codes
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original bit positions in the buffer.
If E.T. fails to decode the error then one can choose 

to search or simply to reset the SCR and associated
logic and wait for the next codeword.

4.6.3 Systematic Search

When the decoder is using E.T. plus search, the search 
process only starts after E.T. has failed. The search pro­
cess can be described as follows.

First, the syndrome is transferred to a temporary
store. After that, the SCR is cleared and the E.B. is loaded

c — lwith the pattern X +1. Now, using the fast clock, the 
contents of the E.B. are shifted into the SCR and simul­
taneously cyclically shifted. After the n ^  shift, an extra 
clock pulse is inserted in the clock streams for the SCR and 
E.B. while X+l is added to both registers. What we just 
said is equivalent to the following

X(XC_1+1) + (X+l) = XC+1

The contents of E.B. and. SCR are now XC+1 and its 
syndrome respectively. While the fast clock keeps shifting 
the contents of the codeword buffer, E.B. and SCR, the 
outputs from the SCR are being compared against the contents 
of the temporary store, to see if the syndromes agree. If 
that happens after i shifts (i<n) the contents of the E.B. 
represent the error pattern responsible for the syndrome 
match. Correction of the error is then achieved by adding



97

modulo-2 the contents of E.B. and codeword buffer. This
requires n shifts but (n-i) shifts are still necessary in
order to restore the initial positions of the digits in
the codeword buffer register. This codeword is then ready
for delivery to the data sink. In the case that after n
shifts no matching of syndromes has been achieved again an
extra clock pulse is applied as before to E.B. and SCR and
X+l is added to both in order to get XC+^+l inside the E.B.
and its associated syndrome in the SCR. 

c+1Now, X can be tried as a possible error pattern and 
the process is repeated in the same way as before. This 
process has to be controlled in order to avoid overflow 
i.e. running out of decoding time. For a worst case situa­
tion a fast clock 20 times more rapid than the line clock 
was found to be sufficient.

c+iAfter all possible patterns of the form X +1 have 
been tried, and no matching of syndromes has occurred, the 
contents of the codeword buffer are left unchanged to be 
delivered to the data sink.

4.6.4 Shortened Cyclic Codes

This section will explain how the decoder buffers 
operate when shortened cyclic codes are used.

Since the codeword length in a shortened code is (n-i)* 
this implies receiving and delivering codewords of length 
(n-i) while processing them with length n since the same

n is the original word length and i is the number of digits by which it 
is shortened.
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unaltered decoder is used for both shortened and non-shortened 
codes. This means that the addresses for buffers 1 and 2 
(Figure 4.8) need to alternate between n and (n-i) depending 
on whether they are being used for receiving or decoding 
codewords respectively. When calculating the syndrome of a 
received (n-i)-tuple, the input to the SCR is made equal to 
zero during the first i clock pulses. This is equivalent to 
preceding each (n-i)-tuple with i zeros which is the same as 
treating them as n-tuples having the first i positions filled 
with zeros.

4.7 Burst Error Correction 
4.7.1 Encoder

The encoder remains unchanged since the codes used for 
burst error correction are also cyclic.

4.7.2 Decoder

By means of a switch the decoder constructed can be 
manually changed from the random error-correcting mode to 
the burst correcting mode.

This decoder shared some parts of the hardware used 
for correction of random errors as will be clear from the 
description that follows. See Figure 4.8.

The first task is to calculate the syndrome of the 
received n-tuple and store this syndrome in the temporary 
store. The syndrome register is shifted n times. After
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every shift the contents of temporary store and syndrome 
register are compared as binary numbers. Every time the 
number in the temporary store is greater than the one in 
the syndrome register a pulse is generated which transfers 
the contents of the syndrome register to the temporary 
store. In this way, after n shifts, the temporary store 
contains the smallest binary number'that appeared during 
the shifts or in other words the syndrome with the longest 
run of consecutive zeros. Between two possible bursts of 
same length the decoder chooses the one with smaller den­
sity. The syndrome register continues being shifted until 
its contents match those of the temporary store. During all 
this processing the received n-tuple is kept circulating in 
its respective buffer. The fast clock for this buffer is 
inhibited, the error buffer serially loaded with the con­
tents of the syndrome register and then added modulo-2 to the 
contents of the codeword buffer.

A timing circuit controlled the number of shifts 
required to correct the received n-tuple and leave it ready 
for delivery.

In terms of number of clock pulses, the time needed by 
this decoder to operate is:

Number of Clock Pulses Operation
n Syndrome calculation
n Find shortest burst
n+c Loading of error buffer

plus correction

Total: 3n+c
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4.8 Counting Errors

When the error rate is sufficiently high, some code­
words are so badly corrupted that the decoder is unable to 
correct them. In these cases the data delivered to the 
sink contain digits in error. In order to count those 
errors and thus measure the performance of the codes used, 
the following procedure was adopted. The transmitted code­
words were delayed by means of shift register buffers and 
then compared with their decoded versions by modulo-2 
addition. The output from the modulo-2 adder (Figure 4.9) 
was passed through an AND-gate with the clock, to be able to 
count consecutive errors. The output from this AND-gate was 
then fed to a counter (Advance Instruments, timer counter 
TC14). By the use of external logic it was possible to 
start and stop the counter automatically, and also to measure 
bit and block error rate both over the whole codeword and 
over the information section only.

In the circuit given in Figure 4.9, buffers 1 and 2 
are part of the decoder as explained before. Buffers 3 and 
4 store the encoded data for comparison and error count.
The flip-flop is reset at the beginning of every codeword 
and any error occurring after that will preset the flip-flop 
again to one causing the counter to increment its reading by 
one.

TIMING WAVEFORM
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FIGURE *4.9 : Circuit For Counting Errors
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4.9 Computer Simulation

The performance of the experimental system was checked 
by means of a simulation, using the programmes given in 
Appendix II.

The computer used was a Honeywell DDP 516 and the 
programmes were written in MINIC language. MINIC is a high 
level language of which BASIC is a subset. It is also much 
faster than BASIC and is specially designed (Glover, 1974) 
to deal efficiently with patterns and maps; i.e. arrays of 
binary numbers obeying certain rules. In order to generate 
the errors the computer random number generator was tried 
but proved unsatisfactory because its probability distribu­
tion was found not to be binomial. It was decided then to 
use a software version of the hardware error generator, and 
this proved successful. The error generator programme given 
in the Appendix is actually a simpler version of the one 
constructed which makes the programme run faster.

Since the syndromes depend only on the error patterns 
(i.e. are independent of the codewords transmitted) the 
output from the error generator was fed straight to the 
decoder. The decoder was provided with information about 
the code length, t and generator polynomial being used. The 
probability of error can be adjusted by varying a threshold 
in the error generator. The programme used for simulation 
of the decoder for random error correcting codes was easily 
adapted for the'simulation of forward error correction with 
A.R.Q. Instead of starting systematic search after error 
trapping has failed, all that is needed is to ask for a 
repeat and inhibit the error count' for that particular code­
word.
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For the generation of bursts, the random error 
generator is used to start the burst and the computer 
random number generator is used to "fill" the burst with 
ones and zeros.

The average number of bursts of length b will only
coincide with the average number of random errors at

_ 3small values of probability of error (<10 ). When the
noise level is high, the average number of bursts will be 
smaller than the average number of random errors because 
during the duration of one burst more than one random 
error can occur. This fact has been taken into account 
when plotting the curves for the performance of burst cor­
recting codes described in the next chapter.

The rate at which bursts occurred was controlled by 
adjusting a threshold in the random error generator. The 
burst lengths were made adjustable so that a code could be 
tested under many different burst conditions.

Though the programmes given in Appendix II are fairly 
easy to follow with the assistance of the remark state­
ments, extra information has been given on the side 
whenever it was felt it would increase clarity.
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CHAPTER 5

Experimental and Computer Simulated Results

5.1 Introduction

Using the hardware described in the previous chapter, 
it was possible to investigate the performance of various 
cyclic codes both in the presence of random (pseudo-random) 
and burst noise. A computer simulation of the whole system 
was also made and the results obtained are shown for 
comparison with the experimental results.

5.2 Cyclic Random Error Correcting Codes

We shall present first the results obtained for the 
performance of random error correcting cyclic codes in 
the presence of pseudo-random errors with a binomial prob­
ability distribution. The graphs that follow show a plot 
of the probability of error after decoding (P ) versus the 
probability of error in the channel (Pg). Both block and 
bit output error rates have been plotted because each one 
has its own interest and one of them alone does not 
accurately describe the other. Pe is input bit error rate 
in all cases.

Graphs 1 and 2 show the block and bit error rate 
respectively for the following single error correcting
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codes (7,4), (15,11), (31,26). Those are perfect Hamming 
cyclic codes with generator polynomials and rates given
below.

Code Generator Polynomial Rate
(7,4) 3

X  + X + 1 0 . 5 7 1

( 1 5 , 1 1 ) X  + X + 1 0 . 7 3 3

( 3 1 , 2 6 )
5. 2,, x +x +1 0 . 8 3 9

It is interesting to observe that for a probability of 
- 2error Pe <. 10 the curves m  graphs 1 and 2 become very 

nearly parallel and for sufficiently small probabilities of 
error they are for all purposes parallel. This means, for 
example, that the (7,4) code gives a reduction in block 
error rate of about 23.7 against the (31,26) code for 
Pg <. 10 . This point is important when trading code rate
and block (or bit) error rate.

Graphs 3 and 4 show block and bit error rate for two 
double error-correcting codes and one triple error-correcting 
with the following parameters.

Code t Generator Polynomial Rate
(15,7) 2 8 7 6 4 . x +x +x +x +1 0.467
(31,21) 2 x10+x9+x8+x6+x5+x3+l 0.677
(15,5) 3 x10+x8+x5+x4+x2+x+l 0.333

It is seen that the curves for codes with different t have 
different slopes and as a consequence of this the advantage 
to be gained is a function of P . For example, if we com­
pare the codes (15,5) and (31,21) on graph 3, for a
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reduction in code rate of about 50% we obtain an improvement
- 2factor of around 500 for the block error rate at Pg = 10

and this improvement keeps increasing as Pg decreases while
the code rate remains constant.

Graphs 5 to 10 show pairs of codes having approximately
the same rate (k/n) . It is clearly seen that the longer
codes have better error-correcting properties and that the
curves normally cross over at a noise error rate close to
10 1. This is a relatively high probability of error since

-3in many practical applications Pg is <10 except during bad 
fading or bursty conditions. A definite advantage is thus 
obtained by using longer codes. The limit to the code 
length to be used will be set by the cost and complexity of 
the particular coding scheme.

5.2.1 Shortened Cyclic Codes

Various shortened cyclic codes were tested and the 
results obtained are well described by graphs 11 and 12 
where the (15,11) S.E.C. code has been chosen. It can be 
seen that only a relatively small reduction in probability 
of error after decoding is obtained as a result of shorten­
ing, i.e. even with quite a severe reduction in efficiency 
(k/n). For this particular (15,11) code the block error 
rate is reduced 18 times when it is shortened to (5,1). In 
terms of code rate this represents a reduction from .733 to 
.200. It should be noted that with a repetition code (5,1) 
one is able to correct double errors inside a block while 
with the (5,1) shortened code mentioned above, the error-
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correcting capability remains t=l if the same decoder for 
the (15,11) code is used preceding each word by 10 zeros.
In this sense, both code efficiency and error-correcting 
power are being lost. However, in many applications where 
the original code can be decoded with sinple equipment, it 
can be advantageous to stick to this decoder rather than to

Idesign a special type where the syndromes are difficult to 
relate to error patterns and/or a lot of parallel computa­
tion is required.

5.2.2 Error Trapping Plus Systematic Search

Graphs 13 and 14 illustrate the advantage of using
search to complement error trapping.

The (31,21) t=2 cyclic code was used here to compare
the results of decoding by error trapping alone and when,

-3in addition, search is used. For Pg = 10 a reduction of 
around 30 times is obtained for block error rate when 
search is used and this improvement increases as Pg decreases 

So, whenever error trapping alone is not sufficient to 
fully decode the code, one should consider the option of 
complementing the decoding with search before considering 
another decoding process altogether.

For the (31,21) code mentioned above, the following 
error patterns and their cyclic shifts could not be trapped: 
x10+ i ,  x 13- + i ,  X12+ l ,  X13+ l ,  X14+ l ,  X15+ l .

Generally, if the search can be done sequentially, the
amount of hardware required is considerably reduced and the 
limiting factor will be the maximum speed at which the
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circuit components used can work.
Another code that required search was the (17,9) t=2

8 5 4 3cyclic code generated by G(X) = x +x +x +x +1. In this
gcase, the decoder needed to use search only for the X +1 

pattern and its cyclic shifts.

5.3 Cyclic Burst-Error-Correcting Codes

. For the study of burst error-correcting codes in a 
bursty channel, it is necessary to know the following 
characteristics of the channel:

(1) Frequency of occurrence of bursts.
(2) Probability distribution of burst length.
(3) Distribution of number of errors in a burst;

i.e. distribution of burst density.

The codes studied did not show any sensitivity to 
burst density since, as explained before, all bursts of 
length j<b are corrected and those bursts longer than b 
which can be corrected are not selected on a burst density 
basis.

Instead of using a particular probability distribution 
of burst length it was decided to obtain results for various 
fixed values of b. Graphs are plotted showing block and bit 
output error rates against input burst probability, .
These results can be combined by using appropriate values 
for coefficients satisfying a given distribution of burst 
length, and the performance of the code in a given environ-
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ment can thus be determined.
Graphs 15 and 16 show block and bit error rate results 

obtained with the codes:

(7,3) b=2 G(x) = x^+x8+x2+l
(14,6) b=4 G(x) = x8+x6+x4+l

The (14,6) code was obtained by interleaving the (7,3) code 
to degree 2.

It is interesting to observe in those graphs that the 
(7,3) code deteriorates much faster than the (14,6) code 
when bursts longer than b occur. The reason for that lies 
in the fact that the (7,3) code uses its redundancy very 
efficiently to correct the bursts of length <2 and is left 
with no "spare" redundancy to cope with longer bursts. On 
the other hand, the (14,6) code after allowing for all

O Qbursts of length <4 is left with 2 -1-14x2 = 143 unused
syndromes which are then used by the decoder to correct 
bursts longer than 4. This (14,6) code corrects 62.5% of 
the bursts of length 5 and 25% of the bursts of length 6.

Graphs 17 and 18 show block and bit error rate for the 
codes:

(15,10) b=2 G(x) = x5+x4+x2+l 
(30,20) b=4 G(x) = x10+x8+x4+l

The results are very similar to the ones just dis­
cussed. However, these codes are longer. The codes have 
the same rate since the (30,20) code resulted from inter­
leaving the (15,10) code to degree 2.
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Peterson, 1972 (p.363), shows that random error- 
correcting codes can be used to correct bursts of errors. 
When used for correcting single bursts the lower bound on 
b is given by:

where d is the minimum distance of the code.

A few random error-correcting codes were tried on the 
computer for correction of bursts of errors and the 
results are given below.

n,k,t b 3d-8 
4 z = c-2b

15,7,2 BCH 4 7/4 0
15,5,3 BCH 5 13/4 0
17,9,2 BCH 3 7/4 2
23,12,3 Go lay 5 13/4 1
23,11,3 Golay modified 6 4 0
31,21,2 BCH 4 13/4 2

TABLE 1

It can be seen that some well established random error 
correcting codes are optimum (z=0) when used for burst 
correction. Such codes, however, cannot be used to correct 
both burst and random errors because in their coset decom­
position, one finds "correctable" bursts and "correctable" 
random error patterns in the same coset.
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5.4 Forward Error Correction with A.R.Q.

Some of the random error-correcting codes, mentioned 
above, are studied in this section and used as hybrid ED/EC 
codes in combination with Automatic Repeat Request (A.R.Q.), 
and the results obtained are presented in graphs 19 to 26.

To use A.R.Q. it is necessary to have a feedback 
channel, and to have some means of storage at the transmit­
ter. The results presented here are ideal in that a 
noiseless feedback channel, together with infinite buffer 
storage at the transmitter, are assumed.

From the graphs mentioned above, it can be seen that 
the probability of error after decoding is substantially 
reduced as the codes are used to correct less and to detect 
more errors. As the error-detecting power of these codes 
is increased, an increase in the number of repeat requests 
is observed. The percentage of retransmitted blocks is 
shown on the graphs for block error rate. For Pg >. 10  ̂
the efficiency of the channel is very low since the number 
of retransmissions then becomes very large.

Error detecting codes (t=0) become very practical in
- 3terms of efficient use of the channel for values of P <10e — 3since the number of repeat requests drops to about 1 in 10 

or less.
The use of combined error-trapping and A.R.Q. effec­

tively transforms the (15,10)d = 4(single error-correcting 
double-error detecting code) into a double error-correcting 
code which is both efficient and easy to decode. Another 
interesting point is the possibility of correcting some 
patterns of errors of weight t+1 when using quasi-perfect
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codes. The (15,7) t=2 code shown in graphs 19 and 20 has a 
block error rate 10 times smaller (on average) than when 
decoded by error trapping alone. This is so because on the 
forward error-correcting mode normally more than half of the 
total number of syndromes available are not used at all 
(they correspond to weight t+1 error patterns).

5.5 Possible Sources of Inaccuracy in the Results

We were faced with some difficulties when obtaining 
experimental results for low error rates of the order of 1 
in 10 . This was caused by transient noise in the form of 
spikes coming from the mains supply and was eliminated by 
decoupling the power rails with capacitors and adjusting a 
threshold in the counter. In this way, only pulses exceed­
ing a given duration and height were counted.

For the computer simulation we did not use the computer 
random number generator as the random error source because 
its probability distribution is arbitrary and we needed a 
binomial distribution. Thus, an error generator of the type 
constructed in hardware was simulated in software. In order 
to keep the computer programme within a manageable size, and 
at the same time not too slow, a shorter m-sequence was 
used. This is a possible source of inaccuracy, particularly 
at low error rates. Contrasting with what has been said 
about difficulties in getting results experimentally and by 
computer simulation, it is relatively easy to predict the 
code performance at low error rates once a sufficient number
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of points have been obtained. This is 
curves Pc versus Pg , when plotted on a 
tend to straight lines for Pg < 10 ^.

so because the 
log x log graph,
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CHAPTER 6

Conclusion
V

The main objective of the research described in the 
previous chapters was the investigation of the practical 
performance of block error correcting codes as a means of 
reducing the error rate in communication systems. This 
study necessarily involved an analysis and a discussion 
of various coding techniques and their associated decoding 
problems. For practical reasons, the sub-class of linear 
block codes called cyclic codes was used for the investi­
gation ,

In Chapter 1 the general ideas related to the use of 
error correcting codes in communication systems were 
presented. Also, the Coding Theorem and the consequent 
coding problem were introduced.

Chapters 2 and 3 dealt with the theory of linear 
block codes, the study of cyclic codes, and some important 
coding techniques which were reviewed and compared. From 
this study became apparent the practical advantages to be' 
gained by using linear cyclic codes rather than simply 
linear codes. Chapter 4 described the hardware used in 
the experimental investigation which comprised a general 
encoder/decoder for cyclic codes, a noise generator and 
the associated circuits for counting errors. The practical 
performance of many cyclic codes was assessed using the
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hardware constructed, and the results obtained were checked 
by computer simulation. The construction of similar hard­
ware to study linear codes would have involved an extremely 
complicated decoder for the reasons given in Chapter 2.
Chapter 5 presented and discussed the results of error 
measurements obtained with the experimental system and by a 
computer simulation. In all cases there was always close 
agreement between both sets of results.

From the various graphs shown in Chapter 5 it is easy 
to see how the slopes of the curves plotted are related to 
the error-correcting power of the corresponding codes. For 
a random t error-correcting code a slope of t+1 is obtained, 
in the linear region of the graph, when the decoder used can 
correct all errors up to t per codeword. In this case only 
patterns containing t+1 or more errors will cause the 
decoder to decode wrongly. For a sufficiently small Pg the 
effect of patterns with more than t+1 errors in the system 
error rate is negligible when compared with those containing 
t+1 errors. In situations where error-trapping is not 
sufficient to correct all patterns with t errors, the curves 
obtained will fall somewhere between lines of slope t and t+1, 
and will tend asymptotically to a slope of t. Also, from the graphs 
shown, it can be seen that for codes with the same rate, 
shorter codes apparently perform better than longer codes 
at high error rates. However, this may not be a true 
advantage because when it happens the codes have already 
deteriorated in performance considerably.

As mentioned before, most real channels are difficult 
to model and the use of simple hardware, like the one
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constructed, makes possible quick and easy measurement of 
code performance. As far as practical applications of 
coding are concerned, this procedure is very effective 
whenever it is feasible. Even for channels like the 
binary symmetric channel the exact calculation of bit 
error rate after decoding is normally very complicated and 
impractical (Turner, 1976).

In practical applications of coding, the use of a 
powerful code, able to cope with a worst case situation, 
normally implies a very low throughput for the system even 
during periods of relatively low noise. If, alternatively, 
a code is selected which is efficient in a quiet channel, 
it will often have a poor performance during noisy periods. 
In this context the so called fixed redundancy schemes are 
inefficient. However, in conjunction with the problem of 
efficient channel utilisation, the engineers are also faced 
with the problem of designing the decoding equipment. So, 
in many cases, the two requirements of simple decoding and 
reasonable efficiency may indicate the choice of a weak 
code. In order to make more efficient use of the channel 
it may be better in such cases to consider a variable 
redundancy system (i.e. to use a number of codes with a 
wide range of rates and error correcting power, selecting 
them adaptively according to varying channel conditions). 
The advantages of having a relatively simple general 
encoder/decoder are obvious in this case. With very little 
modification the hardware constructed provides a simple 
encoder/decoder for applications requiring variable redun­
dancy .
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If a situation arises where only one fairly long and 
powerful random error-correcting code must be used, then 
a BCH code can be a strong candidate because of its con­
venient decoding algorithm. Of course, this might not be 
the final answer to the problem because it is always a 
function of other parameters as well like cost, complexity, 
maximum tolerable decoding delay, and the error rate after 
decoding. Since all types of decoders, proposed so far, 
grow very fast in complexity with code length, it is of 
practical importance to use relatively short codes. Many 
powerful coding schemes result from a combination of short, 
easy to decode, codes. If a feedback channel is available, 
then by using A.R.Q. (perhaps in combination with forward 
error correction) a simple decoder results. A.R.Q. systems 
normally have a high throughput but during high noise 
periods become inefficient due to the many repeat requests; 
the addition of forward error correction in these cases may 
be an acceptable compromise because it helps to decrease 
the number of repeat requests at the cost of a reduction in 
throughput.

Recommendations for future research

The experimental system built proved very reliable, as 
was expected, due to the use of integrated circuit components. 
The only limiting factor, when larger values of n are 
required, is the decoder complexity. This clearly shows the 
need for more efficient decoding algorithms for cyclic codes, 
perhaps aiming to be optimum only for certain types of
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channel. Efficient decoding will possibly involve more 
sophisticated ways of manipulating the code redundancy, by 
exploring some properties of the channel e.g., the fact 
that most real channels are not memoryless. In the area 
of burst error correction there is always a need for more 
sophisticated interleaving techniques. Also, the con­
struction of codes which meet the bound

R - g+b

(Gallager, 1968), rather than the more common

R < £lb
g+b 5

deserves more attention. Burst correcting codes are normally 
designed to combat bursts on a burst length basis; it may 
be interesting to analyse the results of codes designed to 
combat bursts on a burst density basis.

An interesting extension of the research described here 
is the study of codes and coding schemes to operate under 
very noisy conditions, with error rates in the range of 
0.5 to 0.1. Systems of this type may be of interest for 
use with channels subject to severe fading and multipath 
effects (e.g. HF links), or operating at very low receiver 
signal-to-noise ratios (e.g. spread-spectrum systems;
Farrell & Munday, 1976).

Finally, the advent of microprocessors represent an 
important step forward for the implementation of experimen­
tal coding schemes. The use of software programmes, instead



14 5

of hard wired logic, makes a system more versatile and 
easier to modify. Though, at the moment, the price-speed 
factor is not very favourable to microprocessors, as 
compared to systems built using TTL for example, it is 
possible to have cheaper microprocessors combined in 
parallel operation to improve speed.
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APPENDIX I

Modern Algebra and Vector Spaces

The definitions presented here can be found in texts 
like Peterson (1972), Lin (1970), Berlekamp (1968) and 
Herstein (1964).

GROUP; A set of elements obeying the following postulates. 
If a, b and c are elements of the set then:
(1) a+b is in the set, where (+) denotes an operation.
(2) (a+b)+c = a+(b+c).
(3) There is a unique element 0 such that 0+a = a.
(4) There is a unique element -a such that a+(-a) = 0.

SUB GROUP: A subset of elements of a group which satisfies 
all the properties of a group and so forms itself a 
group with respect to the operation used for the 
group (+).

ABELIAN GROUP: A group with elements which satisfy a 
fifth postulate, namely:
(5) a+b = b+a .

RING: A set of elements which form an Abelian group under
the operation (+) and satisfy the following postulates 
with respect to another operation (•).
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(1) a.b is in the set.
(2) a.(b.c) = (a.b).c
(3) a.(b+c) = a.b + a.c
(4) (b+c).a = b.a + c.a
The ring is commutative if a.b = b.a

FIELD: A set of elements which form a ring, and the non­
zero elements form an Abelian group with respect to 
the operation (•).

GALOIS FIELDS; GF(q)
It can be shown that for q=p , where p is a prime 

number, there exists a finite field containing q elements. 
This is called a Galois field of q elements. Those q
elements will be the integers 0 to q-1 if and only if q is

\
prime.

POLYNOMIAL RINGS:
The set of all polynomials in a single unknown X, 

with coefficients from GF(q) , forms a commutative ring 
which is called a ring of polynomials over GF(q).

IDEALS:
The set of all polynomials *with coefficients in 

GF(q) of the form g(x).p(x), where p(x) is any polynomial, 
is called the ideal generated by g(x).

RESIDUE CLASSES:
An ideal can be thought of as a subset of a ring of
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polynomials. The elements of this ring,which are not in 
the ideal, form what is called residue classes.

The elements of each residue class are characterised 
by the fact that subtraction between any pair of its 
members gives an element in the ideal.

RESIDUE CLASS RING:
The set of residue classes, as defined above, form a 

ring called a residue class ring with respect to an ideal.

VECTOR SPACES:
The sequence [V] = [V^ , V 2 »V 3 > • • • j V^]  , where the com­

ponents are elements from GF(2), i.e. either 0 or 1, is 
called an n-tuple over GF(2). There are 2n different n- 
tuples, for a given n, due to the binary nature of the 
components V.. Addition of two n-tuples QJ] and [V] is 
defined as follows:

where U^+V^ represents the modulo- 2 addition of and V^. 
Scalar multiplication of a binary n-tuple by an element a 
of GF(2) is defined as:

CD = tu1,u2,u3, . . . , u n]

Dfl + DO = B u 1+v 1 ),(u 2+v 2), ..., (un+vnO
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The inner product of two n-tuples U and V is defined as:

D3-D0 = » P i  + u2 v 2  + U3 V 3  + . . .  .  unvn

where addition and multiplication are taken modulo-2. A 
vector space over GF(2) is defined as the set of all 
possible binary n-tuples. A subspace Sn of Vn is defined 
as a subset of Vn which contains the all zero n-tuple and 
such that the addition of any two n-tuples in Sn always 
results in a third n-tuple belonging to S . Given i n-tuples 
[Vj , [V2H 5 [V3] 5 • • • 5 CV-fl 5 a linear combination of them is 
defined as:

[u] = CpQVj] + Cj UVj] + C3 [Vj] . . . . .  c-Cv.]

where the coefficients are taken from GP(2). If it is 
possible to find scalars from GF(2), not all zero, such 
that:

CiCV]] + c2 [v2l + ... + CjPv.] = 0 ,

then the set{ [Vp] » ’ CV3I j • • • j [V-p ̂ is said to be linearly
dependent. If the only set of scalars from GF(2) satisfying 
this condition is C1 =C2 =. . . =C^ = 0 , then the set { [Vp] ’ [Ÿg] ’ 

is said to be linearly independent. In any 
vector space or subspace there is at least one set of 
linearly independent vectors (n-tuples) that generate, by 
linear combinations, all other vectors in the space or sub­
space. This set is called a basis of the vector space or
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subspace. The dimension of a space is the number of vectors 
in its basis.
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APPENDIX I I

Computer Programmes

Random Error Correction

DIM PAT D(31,1),PAT Dl(31,1),PAT X(31,1),PAT Xl(31,1)
DIM PAT E(31,1),PAT BL(31,1),PAT C(31,1),PAT 6(31,1)
DIM MAP SFC31,31),MAP S2(31,31),PAT SIC31,1),PAT 11(31,1)
DIM PAT Z0(20,1),MAP FS(20,20),MAP FB(20,20)
DIM PAT C2(20,1),PAT D2(20,l),PAT X2(20,l)
1 PRINT "SRI :UP FOR TT,DOWN FOR VT"
2 PRINT "GIVE N,K,T,M,THRESHOLD FOR PROB. OF ERROR"
3 INPUT N,K,Tl,M,T4
4 IF SR2 GOTO 11
5 DRSPEC 13 DC T 10
7 INPUT #3 MAP FS,mP FB
8 INPUT #3 MAP SF,MAP S2,PAT G,PAT D
9 INPUT #3 PAT SI,PAT II
10 DRSPEC
11 LET 15=0
12 DIM V(10),U(10)
13 PRINT "DO YOU NEED SEARCH? TYPE 1 FOR YES ,0 FOR NO"
14 INPUT F
15 IF SRI GOTO 20 
17 DRSPEC TO IT 
20 FOR 1=1 TO 10 
22 LET V(I)=0
24 NEXT I
26 LET PAT C2 BE NT PAT ZO 
28 IF SR3 GOTO 800 
30 FOR 13=1 TO 10 
35 FOR Jl=l TO M 
37 LET 12=0
40 LET PAT XI BE PAT D 
45 LET PAT E BE PAT BL 
50 FOR J=1 TO N
55 LET PAT X BE PAT XI BY MAP SF
60 LET PAT XI BE PAT X Generation of random errors
62 LET PAT X2 BE PAT C2 BY MAP FS
64 LET PAT D2 BE PAT C2 BY MAP FB
66 LET PAT C2 BE PAT X2 EX PAT D2
68 LET S=SUM PAT C2
70 IF SOT4 THEN GOTO 8075 LET PAT E BE PAT E OR PAT XI
80 NEXT J
85 LETT S=SUM PAT E Avoid running through the
90 IF S=0 THEN GOTO 505 programne when there are
95 LET PAT D1 BE PAT E no errors
100 GOSUB 600
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110 LET B=SUM PAT DI
115 IF B<=T1 THEN GOTO 230
120 LET 12=12+1
125 IF I2=N+1 THEN GOTO 300
130 LET PAT X BE PAT DI BY MAP SF
135 LET PAT DI BE PAT X
140 LET PAT X BE PAT DI AN PAT D Error trapping
145 LET S=SUM PAT X
150 IF S=0 IHEN GOTO 120
155 LET PAT DI BE PAT DI EX RAT G
160 GOTO 110
230 LET PAT C BE PAT DI BY MAP S2
240 IF 12=0 THEN GOTO 490
250 FOR 1=1 TO N-I2
255 LET PAT X BE PAT C BY MAP SF
260 LET PAT C BE PAT X
265 NEXT I
270 GOTO 490300 REM SEARCH TO COMPLEMENT ERROR TRAPPING 
302 IF F=0 THEN GOTO 480
304 LET PAT XI BE PAT DI
305 LET PAT C BE PAT SI 
310 LET PAT DI BE PAT C 
315 GOSUB 600
320 LET 12=0
325 IF I2=N+1 IHEN GOTO 450
330 LET RAT X BE PAT XI EX PAT DI
335 LET S=SUM PAT X
340 IF S=0 IHEN GOTO 485
345 LET 12=12+1
350 LET PAT X BE PAT DI BY MP SF
355 LET PAT DI BE PAT X
360 LET PAT X BE PAT C BY MAP SF
365 LET PAT C BE PAT X
370 LET PAT X BE PAT DI AN PAT D
375 LET S=SUM PAT X
380 IF S=0 THEN GOTO 325
385 LET PAT DI BE PAT DI EX PAT G
390 GOTO 325
450 LET 15=15+1
455 IF 15=6 IHEN GOTO 480
460 LET PAT C BE PAT C EX PAT II
465 LET PAT DI BE PAT C
470 GOTO 315
480 LET PAT C BE PAT BL
485 LET 15=0
490 LET RAT C BE PAT C EX PAT E
495 LEI S=SUM PAT C Error correction and bit and block
496 IF S=0 THEN GOTO 505 error count
500 LET V(I3)=V(I3)+S
502 LET U(I3)=U(I3)+1
505 NEXT J1510 PRINT V(I3)P
515 NEXT 13
520 PRINT " "
525 END
600 REM DIVISION OF N-TUPLE BY G(X)
605 LET 11=0



153

610 LET 11=11+1
615 LET PAT X BE PAT DI AN PAT D
620 LET S=SUM PAT X
625 IF S=0 THEN GOTO 635
630 LET PAT DI BE PAT DI EX PAT G
635 IF I1=K THEN GOTO 700
640 ITT PAT X BE PAT DI BY MAP SF
645 LET PAT DI BE PAT X
660 GOTO 610
700 RETURN
800 REM INITTALISE M-SEQUENCE
810 INPUT K1
820 FOR 1=1 TO K1
830 LET PAT X2 BE PAT C2 BY MAP FS
840 LET PAT D2 BE PAT C2 BY MAP FB
850 LET PAT C2 BE PAT D2 EX PAT X2
860 NEXT I 
870 GOTO 30

Burst Error Correction

DIM PAT Z0(20,1),PAT C2(20,1),PAT X2(20,l)
DIM MAP FS(20,20),MAP FB(20,20),PAT D2(20,l)5 DIM T(31),X(31),G(31),L(31),V(11),U(10),W(10)
20 FOR 1=1 TO 11 25 INPUT A3 
30 LET V(I)=A3
35 NEXT I
36 LET PAT C2 BE NT PAT ZO
37 INPUT N,K,M
40 DRSPEC 13 DC T 10 
42 INPUT #3 MAP FS.RAP FB
44 DRSPEC
45 IF SRI GOTO 47
46 DRSPEC TO IT
47 FOR B=2 TO 5
50 FOR T4=10 TO 1655 PRINT "BLOCK"/’BIT","LOG.AVERAGES:BLOCK AND BIT" 
80 FOR 13=1 TO 5
82 FOR J3=l TO M
83 LET J1=0
84 LET 15=0
85 LET 12=0
86 FOR 1=1 TO N
90 LET PAT X2 BE PAT C2 BY MAP FS
95 LET PAT D2 BE PAT C2 BY MAP FB

Burst error generation
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100 LET PAT C2 BE PAT X2 EX PAT D2 
105 LET S=SUM PAT C2
107 LET L(I)=0
108 LET G(I)=0
110 IF S<>T4 THEN GOTO 180 
115 LET J1=J1+1
120 LET T(I+B-1)=1 Burst error generation
125 LET T(I)=1
130 IF B=2 THEN GOTO 165
135 FOR J=I+1 TO I+B-2
140 IF RND(0)>.5 THEN GOTO 155
145 LET T(J)=1
150 GOTO 160
155 LET T(J)=0
160 NEXT J
165 FOR J=I TO I+B-l 
170 LET L(J)=T(J)
175 NEXT J 
177 LET I=I+B-1 
180 NEXT I
185 IF J1=0 THEN GOTO 485
200 QOSUB 600
205 REM STORE SYNDROME
210 FOR I=K+1 TO N
215 LET X(I)=T(I)
220 NEXT I
240 REM SHIFT SYNDROME 
245 LET 15=15+1 
250 LET C=T(1)
260 FOR J=2 TO N 
270 LET T(J-1)=T(J)
280 NEXT J 
290 LET T(N)=C 
300 GOSUB 600
310 REM COMPARE SHIFTED WITH STORED SYND.
320 FOR I=K+1 TO N 
330 IF T(I)>X(I) THEN GOTO 240 
335 IF T(I)<X(I) THEN GOTO 352 
340 NEXT I
351 GOTO 360
352 LET 12=15
354 FOR J=K+1 TO N 
356 LET X(J) =T(J)
358 NEXT J
360 IF I5=N+I2 THEN GOTO 372 
370 GOTO 240
372 IF 12=N THEN GOTO 450 
380 FOR 1=1 TO N-I2 
390 LET C=X(1)
400 FOR J=2 TO N 
410 LET X(J-1)=X(J)
420 NEXT J
430 LET X(N)=C
440 NEXT I
450 FOR 1=1 TO N
460 LET T(I)=X(I)+L(I)
465 NEXT I 
470 GOSUB 700
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471 LET A=0
472 FOR 1=1 TO N
473 LET A1=T(I)
474 LET X(I)=0
475 LET A=A+A1 
477 LET T(I)=0 
480 NEXT I
482 IF A=0 THEN GOTO 485483 LET U(I3)=U(I3)+1 Bit and block error count
484 LET W(I3)=W(I3)+A
485 NEXT J3
486 PRINT " "
487 PRINT U(I3),W(I3)488 PRINT L0G((U(I3)/M)+lE-20)/L0G(10) ,L0G((W(I3)/(N*M))+lE-20)/L0G(10)
489 LET U(I3)=0
490 LET W(I3)=0
491 NEXT 13492 PRINT "THRESHOLD T4="PT4,"BURST LENGTH B="PB,"USED ABOVE"
495 NEXT T4
497 NEXT B 
500 STOP600 REM DIVISION OF N-TUPLE BY G(X)
601 LET 11=0
602 FOR 1=1 TO 11
603 LET G(I)=V(I)
604 NEXT I
606 LET 11=11+1 
610 LET A=T(I1)+G(I1)
615 IF A=2*INT(A/*) THEN GOTO 625
620 GOTO 638
625 FOR 1=1 TO N
630 LET T(I)=T(I)+G(I)
635 NEXT I
638 IF I1=K THEN GOTO 700 
640 FOR I=N TO 2 STEP -1 
645 LET G(I)=G(I-1)
650 NEXT I 
655 LET G(1)=0 
665 GOTO 606 
700 FOR 1=1 TO N705 IF T(I)=2*INT(T(I)/2) THEN GOTO 720
710 LET T(I)=1
715 GOTO 735
720 LET T(I) =0
735 NEXT I
740 RETURN
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Forward Error Correction with A.R.Q.

DIM PAT D(15,1),PAT D1(15,1),PAT X(15,1),PAT Xl(15,l)
DIM PAT E(15,1),PAT BL(15,1),PAT C(15,1),PAT G(15,l)
DIM MAP SF(15,15),MAP S2(15,15)
DIM PAT Z0(20,l) ,MAP FS(20,20),mP FB(20,20)
DIM PAT C2(20,l),PAT D2(20,l),PAT X2(20,l)
1 PRINT "SRI :UP FOR IT,DOWN FOR VT"
2 PRINT "GIVE N,K,T,M"
3 INPUT N,K,T1,M
4 IF SR2 GOTO 11
5 DRSPEC 13 DC T 10
7 INPUT #3 MAP FS,MAP FB
8 INPUT #3 MAP SF,mP S2 ,PAT G,PAT D
10 DRSPEC
11 DIM V(10),R(10),U(10)
15 IF SRI GOTO 20
17 DRSPEC TO TT 
20 LET PAT C2 BE NT PAT ZO 
22 IF SR3 GOTO 800 
24 FOR T4=10 TO 16
26 FOR 1=1 TO 10
27 LET V(I)=0
28 LET R(I)=0
29 LET U(I)=0
30 NEXT I
31 PRINT "T4="PT4
32 PRINT "BLOCK"," BIT ","LOG. AVERAGES : BLOCK AND BIT,"P
33 PRINT "REPEATED BLOCKS"
34 FOR 13=1 TO 5
35 FOR Jl=l TO M 
37 LET 12=0
40 LET PAT XI BE PAT D 
45 LET PAT E BE PAT BL 
50 FOR J=1 TO N
55 LET PAT X BE PAT XI BY MP SF
60 LET PAT XI BE PAT X
62 LET PAT X2 BE PAT C2 BY MAP FS
64 LET PAT D2 BE PAT C2 BY MAP FB Random error generation
66 LET PAT C2 BE PAT X2 EX PAT D2
68 LET S=SUM PAT C2
70 IF S<>T4 THEN GOTO 80
75 LET PAT E BE PAT E OR PAT XI
80 NEXT J
85 LET S=SUM PAT E
90 IF S=0 IHEN GOTO 505
95 LET PAT D1 BE PAT E
100 QOSUB 600
110 LET B=SUM PAT D1
115 IF B<=T1 THEN GOTO 230
120 LET 12=12+1 Error trapping125 IF I2=N+1 THEN GOTO 300
130 LET PAT X BE PAT D1 BY MP SF
135 LET PAT D1 BE PAT X
140 LET PAT X BE PAT D1 AN PAT D
145 LET S=SUM PAT X
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Error trapping

150 IF S=0 THEN GOTO 120 
155 LET PAT D1 BE PAT D1 EX PAT G 
160 GOTO 110
230 LET PAT C BE PAT D1 BY MAP S2 
240 IF 12=0 THEN GOTO 490 
250 FOR 1=1 TO N-I2 
255 LET PAT X BE PAT C BY MAP SF 
260 LET PAT C BE PAT X 
265 NEXT I 
270 GOTO 490 
300 REM ARQ BEING USED 
305 LET R(I3)=R(I3)+1 
310 GOTO 505
490 LET PAT C BE PAT C EX PAT E 
495 LET S=SUM PAT C 
497 IF S=0 THEN GOTO 505 
500 LET U(I3)=U(I3)+S 
502 LET V(I3)=V(I3)+1 
505 NEXT J1
510 PRINT V(I3),U(I3),L0G((V(I3)/M)+lE-2O)/LOG(lO)
512 PRINT LOG((U(I3)/(N*M))+IE-20)/LOG(IO)
513 PRINT R(I3)/M 
515 NEXT 13
520 PRINT " "
522 NEXT T4 
525 END
600 REM DIVISION OF N-TUPLE BY' G(X)
605 LET 11=0 
610 LET 11=11+1
615 LET PAT X BE PAT D1 AN PAT D
620 LET S=SUM PAT X
625 IF S=0 THEN GOTO 635
630 LET PAT D1 BE PAT D1 EX PAT G
635 IF I1=K THEN GOTO 700
640 LET PAT X BE PAT D1 BY MAP SF
645 LET PAT D1 BE PAT X
660 GOTO 610
700 RETURN
800 REM INITIALISE M-SEQUENCE
810 INPUT KL
820 FDR 1=1 TO K1
830 LET PAT X2 BE PAT C2 BY MAP FS
840 LET PAT D2 BE PAT C2 BY MAP FB
850 LET PAT C2 BE PAT D2 EX PAT X2
860 NEXT I 
870 GOTO 24

Count number of repeated blocks

Count bit and block errors
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APPENDIX I I I

A list of the integrated circuits used in the 
construction of the hardware described in Chapter 4 is 
given below. These integrated circuits are all from 
the Transistor-Transistor Logic (TTL) family, series 74.

SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN
SN

7400 Quad 2 input NAND
7402 Quad 2 input NOR
7404 Hex inverter
7408 Quad 2 input AND
7410 Triple 3 input NAND
7413 Dual 4 input NAND Schmitt trigger
7420 Dual 4 input NAND
7427 Triple 3 input NOR
7432 Quad 2 input OR
7474 Dual D-type flip-flop
7482 2 bit binary full adder
748 3A 4 bit binary full adder
7485 4 bit word magnitude comparator
7486 Quad 2 input exclusive-OR
7496 5 bit shift register PIPO
74107 Dual J-K flip-flop
74121 Monostable multivibrator
74123 Dual monostable multivibrator
74150 16 bit data selector
74157 Quad 2 to 1 line selector
74163 4 bit synchronous binary counter
74164 8 bit shift register SIP0
74174 Hex D-type flip-flop
74H183 Dual carry save full adder
74221 Dual monostable multivibrator
74265 Quad delay equaliser
74LS266 Quad 2 input exclusive-NOR 0/C
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