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Abstract

A novel pattern processing scheme has been 

investigated which makes use of the motions generated by 

a window which tracks the lines or contours of a digitised 

television image of a black/white pattern, The novel 

features of the proposed scheme are that adaptive 

learning networks are used for both tracking and 

classifying. The tracking strategy is learnt from a human 

teacher.

Here one combines two methods of machine pattern 

recognition which, in isolation, have a limited performance. 

These are,'static learning networks'which have known 

limitations, and 'programmed tracking systems' in which the 

pre-programming itself may be limiting. In this combination 

one avoids some limitations of these systems because 

pre-programming of strategies is not necessary and feedback 

exists to make the task of the nets a dynamic one.

The thesis describes a hardware visual input and 

a special-purpose software system which were developed for 

this investigation. Also, several new modifications of the 

SLAM (Stored Logic Adaptive Microcircuit) element are 

discussed.

Beyond its practical application it is possible 

to conclude that the system developed here may be useful 

in the study of hypotheses regarding living animal systems 

which involve eye movements.



Chapter 1 
Introduction

1.1 Statement Of the Problem,

The problem investigated in this thesis represents 

one aspect of pattern recognition by a machine, and involves 

the learning of tracking strategies by means of adaptive 

digital networks.

The best general system in existence for recog­

nising complex patterns is still to be found in man and 

animals. Consider what happens when we look at a complex 

pattern such as a photograph or a line diagram. The eye, 

which can only perceive accurately a small amount of detail 

at a time, roves over the pattern and enables the brain to 

gather information from the pattern sequentially.

Now consider the ways that machines have been used 

to recognise patterns, Some of these compare the whole of 

the unknown pattern with a set of templates, but this method 

is usually discarded in favour of more powerful machines

which can examine parts of the input pattern in detail. 

Often, in these machines, this examination results in a 

sequential description of the pattern.

Another approach to machine pattern recognition 

has been made with 'adaptive learning networks' these learn­

ing networks are often considered as a step away from 

normal computing processes towards the processing of informa­

tion in a way similar to that of brains. One method used 

in practice involves the sampling of the whole of the input
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pattern with the elements of the learning network. One 

arrives at a final classification on the basis of a 

combinational decision made on the outputs of these

elements. The theoretical limitations of this method ,  

as with the limitations of the template matching method, 

are now well understood.

It is proposed in this thesis to investigate the 

effect of allowing the input matrix of a learning network 

to rove over a pattern so that parts of the pattern may 

be examined in detail, as is the case with the eye. One 

notes that such a system would have to be able to direct 

its own roving activity as well as analyse the data it 

receives. Two important topics require attention in the 

context of this system.

The first deals with adaptation to the attention 

shifts that are necessary for recognising a pattern and 

the organisation of a learning network aimed at achieving 

this task.
Si

(33)

Second, one asks how a learning network can be 

organised to analyse the sequential data which it receives 

from the 'roving e y e 1.

This thesis is primarily concerned with these

two questions.
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In considering a pattern recognition system of 

this form, the following three main areas of research are 

relevant.

Character recognition: This is a restricted case of pattern 

recognition where only characters are considered.

Scene analysis; This is a more general case of pattern 

recognition and is usually concerned with three dimensional 

scenes or two dimensional images of these scenes.

Visual Form perception: Where the perception of the shapes 

of objects by man and animals is considered.

Pattern recognition is generally tackled by making 

a classification based on a set of selected measurements 

extracted from an input pattern. These selected measurements 

called 'features' are supposed to be less sensitive with 

respect to the variations encountered within classes, and also 

to contain less redundancy,

A general scheme for a pattern recogniser is shown 

in Fig, 1.1,1, The input pattern is transformed by a 

preprocessor which operates in a uniform way over the input 

pattern to present the data in a form more acceptable to the 

feature extractor. The feature extractor takes the selected 

measurements mentioned above. The classifier decides to 

which class the input pattern belongs on the basis of the 

values of the extracted features. This model is not a 

necessary construction for a pattern recogniser but is‘used,



FEATURE
EXTRACTOR

Figure 1,1,1
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for convenience, to standardise a framework on which to base 

one's discussions,

1.2 Character Recognition,

Character recognition is the particular case in 

pattern recognition when recognising characters only is 

considered. Much work has been done in this field due to 

the need for machines to be able to read normal written text. 

Most of this work is of a specialised nature due to the 

limited, well defined class of inputs which are to be 

detected. The following account does not mention all the 

methods used in character recognition but .only :those 

which lead towards this project.

Character recognition is characterised by having a 

limited set of characters to be recognised. The input 

pattern is usually in the form of a two dimensional binary 

matrix representing the character,

1,2,1 Template Matching Pattern Recognisers.

Possibly the simplest, and most obvious, form of 

character recognition which has been gsed is template 

matching. With this method no preprocessing or feature 

extraction occurs and the raw data is input directly to the 

classifier. The classifier compares the input with a 

template of each class, and the classification is based on 

a preselected matching criterion or similarity criterion.

Such a simple method has many limitations. It is sometimes 

difficult to select a good template from each class and to
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define a proper matching criterion. Also, this method is 

both size limited and font limited.

Many variations of this method have been 

investigated. For example, the method described by Taylor 

1 9 6 8 in which a mask with analog weights is used.

However, all these methods are restricted by the limitations 

mentioned above,Owing to the obvious drawbacks, template 

methods were not considered in this project,

1.2.2 N-Tuple Pattern Recogniser,

The n-tuple recognising method may be considered 

as the next development in complexity. This method con­

siders sets of n-tuple samples from the input space. These 

n-tuples are usually selected randomly or by some adaptive 

algorithms. Early work on this method was done by Bledsoe 

and Browning 1959 ̂  in which a binary matrix is used for 

each class to store all the possible n-tuple states. This 

is initially set to zero and during training l's are put 

into the elements of this matrix which are selected by the 

input pattern. When an unknown pattern is presented to the 

system the number of l's which this pattern references in 

each matrix is noted. The matrix in which the highest 

number of l's are referenced decides the class of the input.

This system was further developed by Bledsoe and Bisson

(6)
1962 in which analog matrices are used and the frequency 

of occurrence of n-tuples during training was also considered. 

Work with similar structures has since been investigated by
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Ullman 1969 where the optimum size of the n-tuple was

found for a limited number in the training set and Chung

(7)
1973 in which the optimum amount of teaching and other

features are considered. Character recognition by the n-

tuple method often suffers from the same limitations as

(41)
a perceptron,(Rosenblatt ), A full, detailed, analysis 

of the theoretical topological properties and limitations

of perceptron structures is discussed by Minsky and Papert

(33)1969 , Learning networks consisting of binary n-tuple

sampling elements (SLAMs) have been used in this project. 

However, feedback has been introduced around the learning 

networks to overcome some of the limitations referred to 

above,

(54)

1.2.3 Scanning Pattern Recogniser.

The description of a pattern may be generated by 

a list of localised features of the pattern in which the 

position of these features is also indicated.

A practical system which embodies this method is 

the 'Scan Data Optical Reading System' which is

capable of reading multi-font characters and a limited set 

of hand-printed characters. The input pattern is presented 

on a 40x30 bit binary matrix obtained from a flying spot 

scanner and algorithms are used to normalise, centralise and 

adjust the threshold for the sampling brightness level to 

compensate for variations in the background. The feature 

extractor then scans the input pattern with a feature 

window and compares each input of the feature window with a
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list of 400 possible features using a mask matching criter­

ion. The input pattern is divided into 9 areas and the area 

in which each feature is found is also recorded. Hence 

after scanning, the feature extractor outputs a set of 

detected features with their approximate positions on the 

input pattern, The classifier compares this feature/ 

position list with a set of feature/position lists to 

classify the input character. The scanning method is 

inherently slower than the parallel methods mentioned 

previously. However, high speed is not essential to this 

system as the data inputting hardware has a maximum speed 

of 800 characters per second.

(25)Hunt 1972 describes a system in which the

input pattern is scanned with a set of logical operators-. 

These logical operators consist of a ternary mask which 

contains l's, 0's and spaces, A match is made if the l's 

and 0 's coincide with a part of the input patterns exactly.

A 5x5 result matrix (which corresponds to 25 equal areas of 

the input pattern) is generated in which matches of the 

operators are recorded, -Only one match can be recorded in 

each cell of the result matrix and a priority scheme 

decides the value of the cell if several different matches 

occur in its area. The result matrix is used to describe 

the input pattern and is input to the classifier.

A different approach, but still using a scanning

( 22 )
method is described by Hosking and Thomson 1968 and is

(23)further developed by Hosking 1972 . In their method, the

input pattern is scanned once and the feature extractor 

indicates when features occur. Features are of a general
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type e.g. the start of a line, the join between two lines 

etc, and about 10 different types of feature are detected. 

The detected features are numbered from 1 to n as they occur 

and a connection list stating which features are joined, is 

generated. Hence, the description of the pattern which is 

presented to the classifier is an ordered list of connected 

features (the type of the features is not specified in this 

list) .

(53)Uhr and Vossler 1961 have also described a system

in which the input pattern is scanned by a set of logical 

operators. The feature extractor forms a description of the 

pattern by noting the number of matches for each operator 

and also the average of the coordinates of these matches.

For this system, Uhr and Vossler have developed algorithms for 

generating operators and for evaluating their performance.

This enables the system to adapt to different styles of inputs 

and to improve its own performance.

Although the above systems have sequentiality and 

window extraction in common with the method in this thesis, 

the scanning is not determined by the "seen" elements in the 

window. Such systems are considered next.

1.2.4 Tracking Pattern Recognisers.

The tracking method uses the fact that characters 

are formed by a set of lines. If all the lines of an input 

pattern are tracked then all the localised features of the 

pattern will be encountered, hence, it is not necessary to 

scan over all of the input pattern.
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Most tracking systems have the following general 

schemer The input pattern is thinned so the lines are only 

one or two bits wide; then a tracking algorithm is used to 

track along these lines * The tracking motions produced 

during the tracking are then input serially to the feature 

detector which uses an algorithm to change these motions 

into an ordered list of features* Features are usually 

defined to be line segments, curves and line junctions etc. 

Either in the preprocessor or in the feature detector, a 

smoothing algorithm is used so that small variations in the 

shape of the input pattern will not be interpreted as 

features,

It is also possible to track the edges of the

input pattern rather than the lines. This has the

advantage that the character does not have to be thinned

and that a simple operator may be used to track the edge.

An example of such a system is described by Saraga et al

(43)1967 and a further development of the tracking opera-

(44)tors is described by Saraga and Wavish 1971 . A

different approach to edge following is described by

(52)Taussaint and Donaldson 1970v ' , In their method the

input pattern is divided into several areas and the maximum

and minimum positions reached while tracking in each area

is recorded to describe the input pattern. Mason and 

(32)
Clemens 1968 used a similar approach which involved

detecting maxima and minima when the edge of the pattern is 

tracked. Their system represents a character by a binary 

codeword which is generated by forming a string adding a 1 
whenever an X coordinate maximum or minimum occurs, and a 0 

whenever a Y coordinate maximum or minimum occurs.



19

As far as preprocessing is concerned, a scanning

method of thinning lines is described by Saraga and

(45) ^
Woollons 1968 and a review of these techniques is given

(9)by Deutsch 1968 . Some interesting preprocessing schemes

may be achieved if the input matrix is hexagonal rather 

than square and this is discussed by Golay 1969 ’ though

this is more useful in cases other than character 

recognition where the input pattern is not uniquely 

orientated„

( T O  A
Grimsdale et al 1959 have designed a system

which splits the input patterns into 'regions' which

includes line and curve segments and the shape of junctions,

A method of extracting features such as line endings, change

of direction, junction of lines, etc. is described by Parks 

(36)
1969v 0 This system has been further developed by Watt

(55)
and Beurle 1971 in which these are ordered and then the

ordered feature list is classified. D e u t s c h ^  also 

describes a system which forms an ordered feature list rela­

ting to a skeleton shape preprocessed from the original 

input pattern.

Finally, Eden 1968 ̂ ^  describes a method for 

recognising cursive handwritten script by splitting the 

script into a sequence of 'strokes'. He defines a set of 

28 different types of strokes though, in fact, only nine of 

these are used for English script.

The system described in this thesis is designed 

to recognise patterns by tracking them. However, it differs
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from the general form for tracking systems in two main w a y s . 

Firstly, the tracking strategy is taught to the system by 

a human teacher and secondly, no preprocessing (such as 

line thinning, etc«) is applied to the input information 

before it is presented to the tracking system.

1,3 Scene Analysis,

In scene analysis three dimensional scenes are 

usually considered though they are reduced to two 

dimensional images* The image is formed by a two dimen­

sional array of picture elements which have a brightness 

level/obtained from the scene,associated with them. The 

task in scene analysis is to detect and recognise from 

this image the objects present in the scene and the 

positional relationships between them, A good review of 

the techniques which have been used to achieve this is 

given by Duda and Hart 1973 »

For the purpose of this project, the methods of 

interest are those which operate on the image to reduce 

it to a line drawing (this is called spatial differentia­

tion) and then reconstruct those lines to determine the 

original objects.

An example of such a system is described by 

Forsen 1968 where the image is first spatially

differentiated. Then the resulting binary matrix is scanned 

by a set of 7x7 bit feature matrices and a new matrix is 

generated indicating where and what type of features have
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been detected* A line following algorithm could then be 

used to track this matrix*

An interesting system is described by Symons

(49)
1968 in which contour detecting and following are

simultaneously conducted on the image which has not been 

spatially differentiated. Also, features may be detected 

as the tracking proceeds.

(37)A similar method is used by Pingle 1969 who

describes a system which is designed to rapidly trace the 

outline of an object. (This system is intended for real­

time manipulation of mechanical arms and hence, must be as 

fast as possibles) After tracking an algorithm is used 

which assumes that the object is made of straight lines and 

attempts to locate the positions of the corners,

(29)
A system described by Ledley 1964 uses a 'bug

algorithm' to track the boundaries of digital images of 

chromosomes in a manner similar to that used in character 

recognition, From the tracking motions the chromosome is

described by a sequence of boundary segements. Kelley

(27)
1971 has developed a system which uses 'planning' to

extract the contour of a head from a photograph. Planning 

involves reducing the size of the image and firstly tracking 

the contours of this. Then this rough tracking is used as 

a plan for tracking contours of the original image.

The system described in this thesis could be used 

for scene analysis of a spatially differentiated scene. It 

differs from previously mentioned methods in that it uses a
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learnt adaptive tracking strategy,

1,4 Theories and Models of Visual Perception,

Much work has been done on trying to determine

the mechanisms of visual perception in man and in animals.

Although much progress has been made, especially with regards

to determining the functions of the retina of the eyes and the

optic nerve, still very little is known about the method of

'classification' which exists in the brain to enable it to

perceive objects0 For further details in this field Kolers 

(28)
1968 reviews some of the physiological aspects of

pattern recognition,and a review of the neurophysiology of 

the visual system is given by Chung 1968 ̂  . A detailed

review which covers the whole field of the perception of

(571form is given by Zusne 1970

Of particular interest is the research into the 

movements of the eye with respect to recognition, A review 

of the experiments conducted with measurements of eye move­

ments, including a description of the techniques involved in

(57)obtaining these measurements, is given in Zusne , One

(56)
set of experiments, conducted by Yarbus 1967 v , is to 

measure the eye movements when subjects view a two dimensional 

art work. His results show that, when looking at pictures, 

the observers fixate more frequently the features which are

actual or potential carriers of information. Noton and

(35)Stark 1971 have developed a theory of perception (see

section 1.4,2) in which the order of the fixations is important 

and their experimental results show that, when viewing a 

simple line drawing picture, repeated sequencies of fixations
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and attention shifts do tend to occur.

1.4.1 The Eye and the Visual Pathway.

A simplified description of the retina and visual 

pathway of the eye is as follows, The light coming through 

the lens of the eye falls on a mosaic of receptor cells 

(rods and cones) in the retina. The receptor cells connect 

with bipolar cells and the bipolar cells connect with 

retinal ganglion cells which send their fibres (i.e, the 

optic nerve fibres) to the lateral geniculate body which 

transfers this information to the visual area of the cere­

bral cortex (the visual cortex).

There are two kinds of light receptors; rods,which 

are very sensitive to blue-green light and cannot be used 

for colour,and cones,which are 1000 times less sensitive 

to light than rods, they are sensitive to colour but are

useless in poor lighting conditions. There are about

6 6 120.10 receptors in the retina and about 10 fibres in the

optic nerve, a reduction of about 120:1. The cones are

represented most densely in the centre of the eye and the

rods most densely in the periphery. In general, cones tend

to have direct lines (via bipolar cells) to ganglion cells

whereas many rods converge upon a single ganglion cell.

The fovea (the centre of the eye) only contains cones ,and

there is a 1 to 1 relation between receptors and ganglia

in this region.

Hence, when the eye observes a scene under normal
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lighting conditions, the optic nerve transfers a great 

amount of detailed information about a small area at the 

centre of the field of view together with a general 

impression from the rest of the field of view.

The ganglion cells perform the first stage of 

information processing. The input of a ganglion is taken 

from a localised area of the retina called its receptive 

field. The output from the ganglion depends on the pattern 

of light in its receptive field. Much work has been done 

on determining the functions which these ganglia perform.

Many experiments have been conducted with animals and these 

have shown that there is no general law which holds across 

species with regards to the visual system. Hence, results 

obtained with animals are directly relevant to that species 

of animal only.

An interesting example is the frog for which four

different types of ganglion cells have been identified

(31)(Lettvin et al 1959 ), Ganglia of each type are grouped

together and they map the retina continuously onto a single

sheet of endings in the tectum of the frog's brain. Herscher

and Kelly 1963 and Sutro 1968 ̂ ®^ have made hardware

models of the frog's retina which contain replicas of the

four different types of ganglia and are organised in a

similar way to that found in the frog. One of these ganglion

cells (usually called the bug detector) is sensitive to small

dark convex objects which move centripetally with respect

(2 )
to its receptive field, Arbib 1971 presents the theory 

that the tectum of the frog behaves as a somatotopically 

organised parallel decision mechanism which enables the frog
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Another example is the pidgeon which has ganglion 

cells that are sensitive to movements in one direction and 

not the other- A hardware model of this retina has been 

made by Runge et al 1968^42  ̂,

The functions of the ganglion cells depend on the 

particular animal and are often directed towards the 

particular needs of that animal, For mammals only two 

general types of ganglia cells have been detected. Most of 

this work has been done with cats but it is reasonable to 

assume that the same may in this case be true for man.

These cells have circular receptive fields, one type con­

tains a centre region which is excitatory and an outer region 

which is inhibitory and the other type contains the opposite.

Hubei and Wiesel 1966^24  ̂ have found that cells 

in the visual cortex of the cat have receptive fields which 

correspond to localised regions of the retina. These cells 

can be divided into two types: simple and complex. The 

simple cells are sensitive to spots of light (i.e, they 

have a similar function to the ganglion cells) or are 

sensitive to an edge of light in which the orientation of 

the edge is important. The complex cells are sensitive to 

both the form of an object and the position of the object 

with respect to the receptive field of the cell. Hubei 

and Wiesel used a rectangle as an object for these tests in 

which the dimensions, orientation and position could be

to perceive a fly and snap at it with its tongue.

varied.
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A model of the processing part of the brain has 

been proposed and simulated by Kabrisky 1 9 6 6 His 

contention is that the cortex behaves as a generalised 

planar (two dimensional) pattern manipulator which has a 

memory- He has designed an element the 'Basic Cortical 

Computational Element' which in a biological system would 

consist of several hundred neurons, and is a two dimensional 

array processor. An array of 100 of these elements has 

been simulated by a computer. Recognition occurs with this 

array by forming a cross correlation of the input with a 

stored pattern.

A theoretical model of the coding and processing 

of visual information in the visual system is described by 

Rosenberg and Wilkins 1968 ̂ °^ „ A simplified model is 

simulated which has two networks, one of horizontal line 

detectors and, one of verticle line detectors, which 

operate on an 18x18 input matrix. After an input pattern 

has been presented to the model two lists are generated 

which give a unique representation for any shape, invariant 

to change in size or position.

An interesting feature extracting system has been
/ i n

simulated by Fukushima 1969^ . This system uses succes­

sive layers of analog threshold elements and is applied to 

the task of character recognition. It generates a set of 

matrices which correspond to the input matrix and contain 

extracted features, e.g. line endings, lines with a 

particular orientation, etc.
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1-4,2 Theories of Visual Perception,

The method by which patterns are perceived in 

man is still not known although there are many theories 

on this subject, The theories which relate to this 

project are the ones in which a sequential approach 

utilising the movements of the eye is considered. One of 

the earliest of these theories was proposed by Hebb 1949 

in which perception is realised by 'phase sequence' of 

activities of 'cell assemblies', A cell assembly is a 

collection of cells which when stimulated by an event 

(e,g. a movement of the eye or the detection of a feature 

in the visual cortex) can act briefly as a closed system, 

maintaining this activity after stimulation has ceased.

When an object is viewed, a sequence of these cell assemb­

lies some related to eye movements and some to extracted 

features will be activated. This is referred to as a 

phase sequence and results in a further cell assembly being 

activated which indicates the form of the object. Although 

these cell assemblies have never been detected, Legendy 

1 9 6 6 has suggested that they would have to contain 

between several hundred and several thousand cells for each 

assembly„

(34)In a more recent theory by Noton 1970 it is

proposed that the internal representation of a pattern is 

a feature network in which the features of a pattern and 

the shifts of attention,required to pass from feature to 

feature across the visual field, are recorded. The 

feature network does not contain all possible attention 

shifts between features but only those which occur with
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some frequency. When an attempt to recognise a pattern is 

made, the recognition system tries to match a feature 

network with the pattern by executing a sequence of atten­

tion shifts specified by the feature network. It is 

important to note that it is the feature network which 

directs the matching process. The main difference between 

this theory and Hebbs is that the feature network is 

composed of memory traces recording the occurrence of 

feature detecting and attention activities, whereas the 

phase sequence is formed by interconnecting the cell 

assemblies themselves, A more general discussion of the 

background of this theory is presented by Noton and Stark '

The finally developed system differs in many ways 

from the mechanism of the eye. The most marked difference 

is that it smoothly tracks around the contours of an object 

rather than track with rapid saccadic attention shifts 

which are found with the eye. However, the preprocessing 

methods found within the retina of the eye and visual cortex 

and the hypothese concerning the perception mechanism 

within the brain may still be useful in the development of 

the proposed system.

1,5 Structure Of The Thesis,

The general scheme for the systems which will be 

described in this thesis is illustrated in Fig. 1.5.1. An 

optical transducer obtains information from a small area of 

the visual scene. An adaptive learning network is taught 

to control the position of attention of the optical trans-
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ducer by reacting to information obtained from the optical 

transducer, The sequential information obtained by moving 

the area of attention is then input to the second adaptive 

learning network which is taught to classify this data.

If the first learning network is taught to track 

the edges or lines of the input pattern, then the sequential 

information generated on tracking would be similar to that 

obtained by tracking systems designed for character recog­

nition. The possibility of teaching the system in this way 

has been considered in detail.

The optical transducer which has been designed 

and built for this project is described in Chapter 2. This 

involved interfacing a television camera to a computer in a 

somewhat unusual way in that only a small area of the scene 

of view is considered at a time. One of the most similar 

systems to this is described by Dinn et al 1970^°^ ,

However, this was designed with regards to industrial pro­

cess control and for conversion of images stored on video mag­

netic tape and there are many differences in the details.

One of the main differences is in the method used 

for obtaining averaged data when a small size matrix is 

used to represent a large area of the scene (i,e. each 

element of the matrix covers n lines of the television scan). 

Their system can obtain a 5-bit grey level value for each 

element of the matrix but only considers one of the n lines 

of the scan relevant to that element. The system described 

in this thesis was primarily intended for binary input
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patterns at one grey level at a time. This allows an 

averaging method to be used which considers all of the 

relevant n lines when determining the value of an element 

of the matrix.

Chapter 2 also contains an introduction to the 

software system designed to control the television camera.

In Chapter 3 the development of, and the results 

obtained from, the structure for the first learning 

network (designed to control the position of the area of 

attention) is discussed. Here a successful adaptation to 

tracking strategies was obtained.

In Chapter 4 the development of, and results 

obtained from, the second learning network (designed to 

classify the input pattern from the tracking information) 

is discussed. The results from this section are largely 

negative: reasons and causes are debated.

Several different learning elements were adapted 

in the two learning systems and these are described in 

detail in Chapter 5,

In Chapter 6 a description of the pattern 

processing software system which has been developed during 

this project is described and Chapter 7 is the conclusion.



Chapter 2

The Design Of The Hard And The Software

In this chapter the design considerations and 

a description of the operation of the software and 

hardware systems is presented.

This is intended to supply enough information to 

clarify references made to the computer system in the 

following chapters.

Further details of the software system are given 

in Chapter 6 and circuit details of the hardware system 

are given in Appendix 1,

2.1 Specification Of The Hardware.
2*1*1 General specification.

The device was originally considered as a model 

of an 'eye' which could 'look' at any part of a scene and 

receive detailed information about that part of the scene.

To decide how the hardware was to be built for 

this project the following specifications were defined.

A hardware device would view a two-dimensional, planar 

visual scene and send information in the form of a binary 

matrix (-16x16 bits) about a part of that scene. The 

computer must be able to dictate to the device where from 

the scene and over what area the information is to be taken.
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2.1.2 First planned device.

As at any one time only a 16x16 binary matrix of 

information was required it seemed reasonable to 

receive this information with a 'retina' in the form of 

a 16x16 matrix of photodiodes. This retina could easily 

be coupled to the computer. Unfortunately, at this time, 

this matrix cotlTd' only be made 6" square and this incurs 

mechanical problems. The image could be focused on the 

retina via a zoom lens and the whole system could be 

rotated in two dimensions by two geared stepping motors 

(this motion is similar to that of a real eye), see Fig. 

2.1.1. The stepping motors and zoom lens would be 

controlled by the computer. On closer examination this 

system presented several difficult problems.

1. The zoom lens should have a ratio of at 

least 6 to 1 and for a 6" square retina would have to be 

very expensive.

2, The device would be very bulky and it would 

be very difficult to make a mechanical system to control 

the retina quickly and accurately (an accuracy of 

several minutes of arc is necessary). This could 

partially be overcome by controlling a mirror in front 

of the lens instead of the whole lens-retina assembly, 

see Fig. 2.1.2, This would greatly reduce the mass to 

be moved but it would also limit the area of the scene 

which can be viewed.
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3. If the object is two-dimensional and the 

device looks at it from a fixed point then the edges 

become distorted due to the different angle subtended 

to that point, see Fig. 2.1.3. Using a 16x16 matrix and 

allowing a 1 distortion'in the order of one bit a maximum 

total viewing angle of only 30° is possible.

viewed from S.

Figure 2.1,3

4. Due to the large size (and low relative 

efficiency) of the photodiode matrix a large amount of 

light is required to illuminate the scene. It was estimated 

that the amount of light required was more than two orders 

of magnitude greater than was practical.

2,1.3 Second planned device.

Due to the above problems another method of 

building the device was considered. This method involves a 

television camera and is shown in Fig. 2.1,4.
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Figure 2.1.4
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With this system the camera remains stationary 

and its field of view is determined by its lens. The 

whole viewing area must be scanned all the time. The 

control unit then electronically selects information from 

the video signal only at the part of the scene that is of 

interest.

The main advantages of this system are as

follows:-

1. There is no problem in accuracy, or time lost 

in changing position of the area of interest as it is now 

done electronically instead of mechanically.

2. There are no light intensity problems, the 

camera is designed for normal lighting conditions and has 

an automatic intensity control which works over a large 

range.

3, The 'retina' i.e., the camera vidicon surface 

is plane and stationary and hence the distortion at the 

edges which occurs when the retina is moved does not exist 

at a ll.

4. The camera is a small but strong industrial 

piece of equipment hence no special care is needed when 

handling it, and it can easily be serviced.
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The main disadvantages are:-

1. A complex control unit is necessary to obtain 

the information from the camera.

2. The zoom operation can only be done in 

quantised steps. This is because of the television 

scanning system, which involves a set number of horizontal 

lines. The vertical information must be averaged over 

several lines for each bit hence, for 16 bits, the zoom 

must average over a multiple of 16 lines.

3. The lens, vidicon system is not very linear in 

its light response (the video signal is low at the edges of 

the scene). Hence, it is difficult to sample at one 

brightness level over the whole scene.

This second system is the one that was actually built.

2.2 The Hardware System.

The general layout of the television camera hard­

ware system is shown in Fig, 2.2,1. When the computer 

wants to obtain a matrix from the system it sends all the 

settings of the matrix to the control unit (i.e., x and y 

coordinates, zoom etc.). The control unit then obtains 

the matrix from the camera and sends it to the computer in 

16, 16-bit words.
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Figure 2,2,1

The T.V. monitor shows what the camera is looking 

at. The area over which the data is being obtained (i.e., 

the viewing window) can also be displayed on the T.V. 

screen. The "joystick input" consists of a remote control 

box with a joystick switch. There is also a two-positon 

function switch in the box. The outputs from these switches 

are connected to the computer interface and they have no 

direct effect on the camera hardware. The joystick input 

has been built to enable a teacher to control the position 

of the viewing window. The position of the joystick and 

the state of the function switch may be detected by the 

computer program and the effect that these switches have is 

defined within the program, as described in section 3.2.1.

The control unit contains all the logic for the 

system. It handles the information from the computer 

interface# obtains the required information from the camera 

and sends it back to the interface. It also generates the 

window displayed on the T.V, screen. The unit is shown in 

more detail in the block diagram of Fig. 2.2.2.
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The 6 MHz clock controls the main timing of the 

system. The clock pulses are counted by the x counter, 

each clock pulse determines the time taken to obtain one 

bit of information from the camera.

The first 256 increments of the x counter define 

the time during which data may be obtained from the screen. 

At a higher count the decoder sends a sync pulse to 

synchronise the line scan of the camera and then the 

counter is reset by the decoder for the next line. This 

is illustrated in Fig. 2.2.3.

Every time the x counter is reset, the y counter 

is incremented (i.e., each increment of the y counter 

corresponds to a line of the scan). In the y direction 

the lines are used as a way of obtaining the quantisation, 

i.e,, 1 line = 1 bit high. Hence, the first 256 increments 

of the y counter define the time when data may be 

obtained, at a higher count the y decoder sends a sync 

pulse to synchronise the frame of the camera with the 

system. This timing is illustrated in Fig. 2.2.4.

This arrangement allows the area where data may be 

obtained from the frame to be divided into a 256x256 matrix. 

Each bit of this matrix may be referenced by the position 

of the x and y counters.

The position of top left corner of the viewing 

window is defined by two 8-bit addresses sent via the 

computer output interface. The first defines the x



4 2

LINE SYNC 
PULSE

j n t '
- f---------- f * " f

A B C D
X COUNT 0 256 282 270

X COUNTER TIMING
(X counter is 
now reset)

Figure 2,2,3

A & D

i 
i
¿u—  
I

256 liness |

B

C

Figure 2,2,4

Frame sync

t T f

1111i

A B C D

Y COUNT 0 256 284 324

Y COUNTER TIMING

<X  counter is 
now reset)



43

coordinate and the second the y coordinate. These 

addresses are fed into the x and y decoders respectively 

(via the lines x and y in Fig. 2.2,2) .

Then, when this specified point has been reached 

by the x and y counters, pulses are sent to the x zoom 

counter and after every line the y zoom counter is 

incremented.

The size or magnification (zoom) of the viewing 

window is sent from the computer output interface to the 

zoom counters (line z in F i g .2„2 * 2) ,Once activated by the 

decoders, the zoom counters become active for zoom x 16 

pulses each scan for the x zoom counter and zoom x 16 lines 

for the y zoom counter,. Hence, the zoom counters are 

active when the area of the scene defined by the viewing 

window is being scanned.

The data from the camera is in the form of a 

composite video signal. This is fed to the threshold unit 

and to the T.V. window generator. The threshold unit is 

a comparator which decides which parts of the video 

signal are "white" or "black" and the resultant digital 

output is sent to the averaging unit. The voltage level 

at which the comparator decides between white and 

black is set by the computer and sent to the threshold 

unit (via the output interface and the line T on Fig. 2.2.2.)

The averaging unit accepts information from the 

threshold unit when it receives pulses from the two zoom
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counterso It generates the output matrix in the form 

of 16 p 16-bit words.

As each 16-bit word is generated it is sent to 

part of a 256-bit store in the computer interface. When 

the last 16-bit word has been sent to the interface the 

control unit indicates to the computer that the data is 

ready. The computer can then input this data. No more 

data is sent to the interface until the computer 

indicates a data requests

The window generator detects when the two zoom 

counters are active (i,e,, when the window is to be 

displayed) and then adds a d=c= level to the composite 

signal. The resultant signal is fed to the T.V. monitor 

and the window is displayed on the monitor as an area of 

the picture where the brightness level is different to 

the rest of the picture.

The manual controls (shown in Fig, 2,2,2)are 

mounted on a panel in the control unit. These switches 

allow the operator to override any or all of the functions 

which are carried out by the computer output interface. 

This is useful mainly when setting up and when working on 

the equipment off-line from the computer.

It has already been said that the averaging unit 

under the control of the zoom counters accepts informa­

tion from the camera, averages it to a 16x16 matrix and 

sends it to the computer input interface. The way that 

the unit averages the information is not a strict
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mathematical average. The unit finds the average of every 

line of the scan as it is input and then finds the average 

of these resultants to decide if the bit is a 1 or a 0.

For example, consider the case of a zoom of 6 then a 6x6 

matrix of the view will contribute to each bit of the 

output matrix. The way that the unit would handle one of 

these 6x6 matrices is illustrated in Fig. 2.2.5.

1 0 0 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 0 1
1 1 1 0 0 0 => 1
1 1 1 1 0  0 1
1 1 1 1 1 0  1
From Camera

=> 1

1 bit of output 
matrix

Figure 2.2.5 Method Of Averaging.

It counts the number of bits in each line and if this is greater 

than or equal to half the total number of possible bits in a 

line (i.e., 3 in this case), then that line is represented 

by a one. This is done for all the lines. The number of 

lines which are represented by a 1 are then counted and if 

(applying the same logic as for each line) three or more 

ones are present then the corresponding bit in the output 

matrix is made a 1,

For a proper mathematical average all the bits of

the 6x6 matrix should have been added together and the

resultant compared with half the square of the zoom (i.e.,

Z ̂
•j— = 18 in this case) . The first method was used because
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it is easy to realise in hardware, and has been achieved 

mainly with 17 4-bit counters. If the proper averaging 

system had been used the controlling logic would have 

been a lot more complex and twice as many counters would 

have been required.

Due to this method, the averaging unit will not

z ̂
output a 1 for patterns with less than —  bits set as for 

example:

1 1 1 0  0 0 

1 1 l o o o
0/P = 0 ^  1 1 /  A) /  0 0 0

0/P = 1 ^ 0  0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

z ̂It will certainly fire if there are more than y  bits set 

as for examplei

1 1 1 1 1 1  

1 1 1 1 1 1
O./P = 0\  1 1 /  (D̂ /~0" Q Q

o/p = o 5 o o o o
0 0 0 0 0 0

0 0 0 0 0 0

The method is shape dependent but is simple and was found 

adequate in the experiments,

The number of bits which decides the threshold 

(i.e,, 3 in the case of a zoom of 6) is half the value of 

the zoom. This number is stored in a counter which 

automatically counts half the zoom value when the zoom is
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set. If it is desired to change this threshold, any 

number (less than 16) may be loaded into this counter by 

the computer after the zoom has been set. For example, 

if in the case of the zoom of 6 this threshold was set at 

1 (instead of 3), then if any bit of the 6x6 matrix is a 

1 the output to the averaged matrix will be a 1. This 

means that the system is very sensitive to any object 

but does not give as much detail.

This could be useful in some experiments and 

the software has been written to enable this to be used.

A photograph of the equipment is shown in Fig. 2.3.5.

2.3 The Software System.

A software system was written to make the 

programming of experiments as easy as possible. This is 

intended for use with learning networks which require 

pattern manipulation. It contains the programs to control 

the camera so that it may be used without a knowledge of 

the hardware details.

2.3.1 Design considerations.

For any experiment concerned with learning 

networks the following parts of a software system were 

considered necessary.
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1. A set of executive routines to control 

all the peripherals including the camera.

2. A library of standard routines concerning 

pattern manipulation and data organisation.

3. An organised data workspace so that pattern 

information concerned with an experiment is readily 

available.

4. An on-line access to enable a user to 

manipulate manually the data in the workspace.

5. Debugging facilities to enable easy debug­

ging of a new experiment.

In writing this software several constraints had to be 

considered.

Speed. Most experiments with the camera take place 

in real time, also most experiments which involve cycling 

learning nets take a lot of processing time hence, it is 

very important that the pattern handling routines and 

simulation routines should operate as quickly as possible.

Space. Space in the computer is very limited.

The machine (a Honeywell DDP 516) with a 16-bit word length, 

had originally 8K words of store and now has 16K words. 

Further expansion is difficult due to both hardware and 

software limitations. So all parts of the system must be 

kept very compact.
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Simplicity. This software system is mainly 

designed for experimental use and users who may wish to 

understand how parts of the system work or who may even 

want to change the parts themselves. Hence, standard 

methods of operations in, for example, the setting up of 

loops, the calling of subroutines etc. have been 

established and short cuts for particular cases have been 

avoided.

2.3.2 The structure of the system.

The software backing system consists of three 

main modules. These are: an executive module which 

controls all the peripherals; a main program which sets 

up the data workspace and allows on-line access and 

manipulation within it, and a library of standard 

subroutines - which are available to all modules.

The actual experiment is written as a subsystem 

to the software and acts as a fourth module. There is 

an optional fifth module which is a debugging system.

This can be loaded into the workspace and is overwritten 

when it is not used.

All modules except the debugging module are 

loaded in the 'bottom* of the available core and the data 

workspace is allowed from the end of the last module to 

the end of the available core. This latter limit can be 

changed after the program has been loaded if it is desired 

to use the top of the core store for some other reason 

e.g., for multiprogramming.
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Fig. 2.3.1 shows the interactions between the 

sections of the software system as they appear to the 

on-line user. Each section has its own different command 

status, Usually, unless the experiment is running, the 

program waits in a command status for a command to be 

input, Each command status has a unique set of valid 

commands which it can accept and execute. Commands are 

input from the command device, this may be any peripheral 

which inputs characters but it is usually the teletype.

The Executive Input/Output Module.

This module is equivalent to the executive or 

director in a conventional operating system. It contains 

all the routines for communicating with the peripherals.

Its command status is entered by causing a program break 

from the command device. In its command status it allows 

peripherals to be allocated to different channels. There 

are two exits from this command status, one to the main 

program and one to the experiment subsystem.

The Main Program.

When starting, the system enters the main program 

and waits in its related command status. The main 

program does all the housekeeping for the system which is 

defined below. Hence, general purpose operations are 

possible here and do not need to be written into the 

experiment subsystem. The main program divides the data 

workspace into blocks of 16 words (16x16 bit binary patterns)
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and contains the following on-line functions.

1. Manipulation the workspace e.g., the command 

'AN 4 TO 5' will logically AND pattern 4 to pattern 5 and 

'OS 10 TO 30' will output on paper tape the patterns 10-30 

inclusive„

2. Control of the television camera. A set of 

commands enables every parameter sent to the camera to be 

varied and data from the camera to be stored in the work­

space .

3. General purpose commands e.g., the command 

*PV' enables a heading to be printed onto paper tape.

Some commands are also useful for limited debugging e.g.,

"DC '1000" will display core locations '1000 to '1017 on 

a visual display and the user can observe how and when 

they change value,

The Library Module,

This contains general purpose routines used by 

other modules e.g,, the command AN 4 TO 5 given in discussing 

the main program, this would use the following library 

subroutines

INCOMMAND to input the command 

INUMBER to input the two pattern numbers 

SORI to check that these numbers are

within range

AND to do the operation of ANDing the

patterns,
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Some routines have a command status which enable 

parameters within them to be set. Examples of these are 

shown in Fig, 2,3,1,

The Experiment Subsystem.

This is the experiment which is written by the 

user. Any DAP program can be used as a subsystem however, 

if the software backing system is considered when 

writing the subsystem, then it can contain the following 

features.

1, A command status to enable parameters within 

the experiment to be varied,

2, All pattern storage and learning network 

storage can be allocated in the data workspace.

3, All general functions e.g., pattern manipula­

tion etc. can be carried out via the library routines.

In this project several different experiment 

subsystems have been used. Examples of these occur in 

section 6,4 „

All the learning networks are organised in the 

experiment subsystem. The operation of the learning 

networks is assisted by a set of subroutines from the 

library. Many different kinds of learning elements are 

made available by different subroutines and only the 

subroutines which are specifically requested by an experi­

ment subsystem are loaded.
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There is a hardware learning machine 'Minerva' 

which is linked to the computer, An experiment subsystem 

may use Minerva via some of these library subroutines.

The other learning network subroutines simulate 

the learning elements within the core store. The active 

store for simulated learning elements is set up in the 

data workspace. Hence, the size of the learning networks 

may be varied and also the main program has easy access 

to the learning element stores.

The Debug Option,

A special debugging program for the DDP 516

(3)computer has been written at this University.

As well as a general debugging aid it also allows small 

DAP-like programs to be input on-line and modifications 

to the existing program. As a large amount of time is 

spent debugging the experiment subsystem, it is important 

that the system should have some debugging aids. It does 

have some in the main program but these have been limited 

due to the space they require. The debug program has been 

written so that it lies within two sectors (i.e., 64 

16x16 patterns). It was originally self-contained but now 

a modified version has been made which can link with the 

system through the Executive module.

The Debug option may be loaded at any time. It 

loads into the top of store and takes the space of the 

top 64 data patterns. It has a command status which can

be entered from any command status in the system.
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2.3,3 Summary of the- -software' system.

A software system has been written which is to 

aid experiments using patterns with particular regard 

to the camera peripheral and SLAM learning networks. It 

is self-protected i.e., it cannot corrupt itself unless 

there is a mistake in the experiment subsystem (or if a 

mistake is made in the use of Debug).

It means that a user can write an experiment 

subsystem which can have access to all the routines of 

the extensive library of the system and when necessary 

can be debugged or changed by a high level debugging 

system. The resulting program should run almost as fast 

as is possible and hence be suitable for real time 

applications,

This system is now being used for another 

project concerned with learning networks for pattern 

recognition.^'^ This project does not use the camera at 

all except for occasional data preparations. Many 

features of the system have been left out of this descrip­

tion but they are described in Chapter 6 which is devoted 

to the software system.



The Tracking System

Chapter 3

In this chapter the features of a tracking 

system are discussed. The tracking of thick lines or 

line drawings is considered. The tracking system is 

taught by a human teacher and is designed so that it will 

mimic the operator's actions on the basis of the subpat­

terns extracted from the viewed pattern. It is hoped 

that, due to the adaptive learning networks, the system 

will be able to track patterns not seen during the 

period of 'training', that is, it should be able to 

generalise.

Edge following, the simplest form of tracking, 

is considered first and the tracking system to do this 

has the following features:

1. It contains learning networks which are 

taught (by a human operator using a joystick) to make the 

decisions regarding the movement of the points of 

attention.

2. It receives information from the patterns 

only from the local area around the point of its attention, 

i.e., the point it has at present reached on the pattern 

due to its tracking.

3. It uses the camera system (this is described

in section 3.1).
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The general scheme for this system is illustrated 

in Fig. 3.1.1. This scheme has been further developed to 

track line drawings. If every line of a pattern is 

tracked then there should be sufficient information from 

the tracking motions to recognise the pattern. Also, 

different organisations of the learning elements within 

the learning networks have been investigated.

3.1 The Camera System.

The camera system, consisting of the camera 

hardware and its software backing can be represented by 

the diagram in Fig, 3,1.2, The details of the operation

Figure 3.1.2

of the hardware are given in section 2.2. The camera 

light threshold is preset to detect the pattern and the
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zoom value is preset to a suitable size with respect to 

the pattern size. Therefore, only the position of the 

viewing window is to be controlled. At each instant of 

clocked time, the position of the viewing window may be 

moved in the North/South and East/West directions by a 

preset number of picture elements. The number of 

elements moved is called the step size and it is set 

within the tracking experiment.

Hence, there are two inputs to the camera system. 

One to indicate a step in the North or South direction and 

the other to indicate a step in the East or West direc­

tion. Strictly, these inputs are three-level inputs in 

that no movement at all may be commanded.

The output from the camera is a 16x16 binary 

representation of the area of the scene within the viewing 

window. An example of the information obtained from the 

pattern is shown in Fig. 3.1.3. The new position of the 

viewing window after the command NE is given is shown by 

the broken lines.

3.2 The Tracking System,

3.2.1 Basic structure of the system.

The structure of the tracking system is partially 

defined by the camera system. The only information from 

the scene to the tracking system is through the viewing 

window, and the system must generate the N/S and E/W
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N

W •E

S

Parameter settings

X value = 60 
Y value = 140 
Z value = 4

Threshold (depends on aperture, set to detect 
the pattern)

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 o 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3,1,3
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commands to move the area of attention (i.e., the position 

of the viewing window), Hence, two outputs are needed 

from the tracking system (N/S and E/W) and the learning 

networks have been split into two modules to provide them. 

This is shown in Fig. 3.2.1. These modules are taught 

different information but are identical to each other in 

structure. Each module, whatever its internal structure 

has the following characteristics:

1. It contains a learning network which receives 

information from a binary input matrix and which can be 

taught via the teach input to associate either a high or 

low output response with this input matrix (i.e., it must 

be able to produce the same response when this input is 

again presented to the module without any teach stimulus).

2. A ternary (e,g„, N, S and no move) output 

decision system to drive the camera system.

3. A ternary 'teach' input decision system so 

that the module may be taught to output desired responses.

In practice, for convenience of the hardware, 

ternary teach inputs are realised by two binary inputs in 

which only 3 of the 4 possible binary combinations are 

permitted.

The ternary output is to match into the ternary 

input of the camera system, however, if the step size is 

small then a binary output may be sufficient that is, the
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Figure 3,2,1
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need for a dead zone is removed, This would compel the 

viewing window to move in the N or S direction with every 

instant of clocked time i.e„, one of the four possible 

moves (NE, SE, NW and SW) is forced,

Teaching is achieved by a human teacher using 

the joystick switch. This has a center return and can be 

pushed in the desired direction of motion. It has four 

binary outputs, one for each of the four cardinal 

directions N.S.E.W, and there is an overlap between 

adjacent directions. For example, it is possible to 

indicate NE when both N and E outputs will be true. This 

switch is connected to the teach terminals of the learning 

modules. When the joystick is pushed forward the N output 

becomes true and teaches the N/S learning network to give 

a high response to the input pattern, this results in the 

viewing window moving N, When the joystick is in the 

center position, both the teach terminals are false, no 

teaching takes place and the learning network makes its own 

decisions. Hence, the three states of the teaching inputs 

are teach high, no teach and teach low.

3.2,2 Last step feedback.

With the learning module described in the previous 

section it is possible to associate an input pattern with 

a command for the direction of the next step.

Consider the system shown in Fig. 3.2.1 (without 

the feedback) and a particular tracking task, of tracking
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around a square in a clockwise direction, as shown in 

Fig, 3.2,2. Now consider the viewing window in the two 

positions shown, at the top and bottom of the square.

At the top of the square the learning networks must 

associate the pattern in the viewing window with the 

direction E and at the bottom with W. These two patterns 

are completely different, so this should be possible.

One can see that a unique direction could be 

associated with every possible pattern which appears in 

the viewing window when it is on the edge of the square. 

This is true for all solid patterns.

However, if we try to use this system for track­

ing a line drawing of a square,instead of a solid square, 

an ambiguity arises,

Fig, 3,2,3 shows a line drawing of a square in 

which the task of tracking clockwise is again examined.

Consider the viewing window in the two positions 

indicated. It can be seen that the pattern in the viewing 

window is identical at these positions yet we want to move 

in opposite directions. Hence, it is not possible to 

track the pattern using the system in this way.

One possible solution is to displace the position 

of the viewing window with respect to its position on the 

line as shown in Fig. 3.2.4. Hence, the viewing window 

not only detects the line but its position with respect to
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•that line determines the direction of motion. The 

pattern in the viewing window is different at the top 

and bottom of the square hence tracking is possible.

This method has two disadvantages which are as follows:

1. The teacher must be very careful, when 

training,that the line does not drift much from the 

desired position in viewing window else the teaching will 

be incorrect;for different positions in the viewing 

window mean more than just a directing error.

2. The teacher must plan a strategy so that all 

the directions associated with particular lines and 

positions of the viewing window are unique. This is 

simple with patterns like squares and circles but becomes 

very involved when more complex patterns with many lines 

and line junctions are considered.

An alternative solution which has been investi­

gated is to include a memory within the system to indicate 

the direction of motion in ambiguous situations. For the 

case of the square this memory need only be one step long 

and it can be achieved by adding internal feedback around 

the learning modules. This is called 'last step' feed­

back.

The way that this feedback is added to the model 

is shown by the broken lines in Fig. 3.2.1. Last step 

feedback means that the last direction that the viewing 

window moved is fed back to the input of the learning
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network. Hence, the input is now a combination of the 

pattern in the viewing window and the last direction 

moved, (Several methods of combining this information 

have been investigated and the details of these are given 

in section 3„3,4e) How this feedback solves the problem 

is illustrated in Fig, 3,2,3, At the top of the square 

the pattern in the viewing window plus the fact that the 

last direction moved was W implies that the new direction 

is W and vice-versa at the bottom of the square. With 

this system it is possible to track simple line drawings 

and examples of these are given in Fig. 3.2.5. When 

using this type of feedback the task of the teacher has 

been reduced to guiding the viewing window along the 

lines of the line drawing in the desired direction.

If we limit the function of the viewing window 

to following a line we can more clearly define what we 

mean by 'tracking a line drawing',

Tracking a line drawing occurs when the viewing 

window traces a circuit over a line drawing in such a way 

that every line is at some time covered by the viewing 

window. Covered in this sense means that every part of 

the line is, at some time, contained within the viewing 

window.

The tracking is'good' if the centre of the view­

ing window accurately follows the center of the lines of 

the drawing and hence the shape of the line drawing can 

be accurately reconstructed from the motions of the
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viewing window.

For the edge following task in which the contour 

of a solid pattern is traced 'tracking the edge' of a 

pattern may also be defined in a similar way.

Tracking the edge of a pattern occurs when the 

viewing window traces a circuit over a solid pattern in 

such a way that during this circuit the viewing window 

passes over every part of the edge of the pattern.

The tracking of the edge is 'good' if the centre 

of the viewing window accurately follows the edge of the 

solid pattern and hence, the shape of the solid pattern 

can be reconstructed from the motion of the viewing window.

3.2.3 Delayed and damped feedback.

If we wish to track more complex patterns which 

have joining and intersecting lines, then a further problem 

appears which is demonstrated in the following example.

This example is illustrated in Fig. 3.2.6 where 

the pattern and the desired tracking path is shown. The 

problem occurs at the junction of the center line with 

the left hand upright line. This is shown in greater detail 

in Fig, 3.2.7, Table 3,2.1 indicates the information 

presented to the learning networks with different modes of 

feedback and the desired response from the learning network
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Figure 3,2,7

POSITION PATTERN 
IN VW

LAST
STEP
FEEDBACK

DELAYED
FEEDBACK

DAMPED
FEED­
BACK

NEW
DESIRED
DIRECTION

1 f f f t

2 t f f - >

3
f - >

4 - >

5
• <—

6 "j
<— » <—

t

7
t < - \ f

8
f f

9 f t t f

Table 3,2,1



72

for the different positions shown in Fig. 3.2.7.

Now consider the viewing window in the position 

(2) just before the first turn is made and position (7) 

just after the second turn has been made. In these two 

positions two different outputs are required. However, 

the last step feedback is identical and the patterns in 

the viewing window can be very similar if not identical. 

Therefore, the tracking system with last step feedback 

only is not able to track the desired path.

This problem arises at the critical point just 

at the junction. The viewing window changes direction, 

and hence, there are several values for the last feedback. 

To overcome this some memory must be added to the system 

so that information about the direction that the viewing 

window approached the junction is presented to the 

learning network until the viewing window has moved away 

from the junction and the critical point is passed.

Two methods of achieving this memory are discussed 

here. The first is to delay the feedback by n steps where 

n is a preset value. This could be achieved by a shift 

register, for each direction, of length n in which the 

output from the learning network is input, and the output 

from it is combined with the viewing window information and 

presented to the input of the learning network. Hence, 

any change in feedback will occur n steps after the junc­

tion. The directions that this feedback produces are also 

shown in Table 3.2,1. From the table it can be seen, for
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example, that between positions (8) and (9) the feedback 

changes value. This change was initiated by the second 

turn at the junction. It can be seen from the table 

that no anomalies like the one for the last step feedback 

occur for the delayed feedback and hence, tracking is 

possible with this method,

The second method, damped feedback, is to limit 

the rate of change of the direction fed back. Hence, 

although the direction fed back starts to change at the 

critical point in the junction, it does not complete the 

change until several steps later. The directions that 

would be fed back for the example using this type of 

feedback are also given in table 3.2,1, and again, it can 

be seen that no ambiguities arise and tracking is possible.

This type of feedback has been investigated and 

the results are given in section 3,3.5. The feedback 

vector has been generated in two separate parts, a N/S 

component and an E/W,which are calculated separately.

The N/S vector for example, may vary between +1 

indicating N and -1 indicating S, The simplest way to 

implement the rate of change of feedback would be to 

limit the amount by which the feedback vector is changed 

each step, until one of the maximum limits is reached.

This is expressed by:
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NSV = +1 for NV > +1

= NV for -1 < NV < +1 

= -1 for NV < -1 

where NV = NSV' +K , LD 

and NSV is the N/S vector

Nsv♦ ""is4 the previous value of NSV
LD is the last direction that the N/S learning 

module outputs, LD=+1 or 0 or -1 

K is a constant which determines the amount of 

change of NSV per step.

However, this simple method is not sufficient. This is 

illustrated by an example in Fig, 3.2.8. In this diagram the 

tracking path is shown in (a) the variation of the last step 

feedback (LD) is shown in (b) and the variation of the N/S 

vector is shown in (c) for delayed feedback and (d) for 

this simple damped feedback. When no direction commands 

are given then this feedback remains constant at its last 

value. Hence, at position (7) this feedback is still 

indicating an N direction.

This has been overcome by allowing the vector to 

zero if no commands are given. This has been achieved by 

calculating the vector with the following equation:

NSV = N S V ' . (1-K) + K.LD , CKK^l .

The way that this would work is shown in 

Fig. 3.2.8(e). This method is equivalent to taking a 

weighted sum of the past directions where each weight is
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Figure 3.2,8
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inversely related to the number of steps that a direction 

is in the past, Both delayed feedback and damped 

feedback are affected by the step size. There are 

usually in the order of 4-8 steps for the viewing window 

in moving between position (1) and (3) shown in Fig.

3.2.7, For good tracking the step size must be kept 

small to ensure that the features of the pattern are 

centred in the viewing window. However, the speed of 

tracking is proportional to the number of steps taken 

and -is therefore inversely proportional to the step 

size. The dependancy of the feedback on the step size means 

that the size of the pattern to be tracked is now relevant. 

In fact, with delayed feedback there is a definite problem 

when the critical points of two features occur in the order 

of n steps apart.

The delayed feedback has an inherent limitation 

in that it can only feedback one of eight unique values 

at the critical point of a junction. If one considers the 

more usual case where the output of the learning module is 

binary instead of ternary, then only four directions are 

possible. Also, often only 2 of these directions are 

valid. For example, if the system tracks a horizontal line 

well in an E direction then the sequence of commands would 

be NE, SE, N E , SE ... The N/S value would oscillate in 

this case and this N/S feedback when delayed is of no use. 

Hence, there is a definite restriction to the number of 

different lines which a system with delayed feedback can 

enter a junction and uniquely remember the direction of 

entry. With damped feedback this fundamental limit does not
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exist. The number of different entry lines which may be 

remembered with this feedback is determined by the number 

of feedback connections and the size of the learning 

network.

The damped feedback method is the one which has 

been investigated and details of this are given in section 

3.3.6.

3.2.4 Theoretical Performance.

The best possible performance of the tracking 

model with respect to the complexity of the input pattern 

may be determined.

Using damped feedback the model has the following 

three properties:

1. It can be taught to follow any single line 

in any direction.

2. When it enters a junction of several lines 

it can be taught to exit the junction by 

any one of the lines, even by the one by 

which it entered,

The above implies that if ever the system proceeds the same 

way along a line, it has previously tracked, then it is in 

a permanent loop and has completed a cycle of it.

3. If two or more junctions of a pattern are 

identical (i.e., the have the same number
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of lines joining at the same angles) 

then the second property concerns them 

all together as the tracking system 

cannot distinguish between them.

These above three properties determine the 

tracking abilities. With such a system it is not possible 

to teach it any scan path around a pattern. This is 

illustrated in Fig. 3.2.9. It cannot be taught the first 

tracking path because this involves making a different 

decision when entering the same junction from the same 

direction,as shown in the diagram at the points indicated, 

and this contradicts the second property. However, this 

pattern can be tracked by the second path hence, a tracking 

path can often be found if it is thought out beforehand.

The reason for this limitation is that there is 

no long term memory in the system to inform it where it 

has been. There is only a short term memory for enabling 

the system to pass through features. Further development 

could be aimed at providing a long term memory via a 

second feedback loop. If this was successfully added then 

the tracking system would be able to track any line 

drawing.
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3.3 A Maximum Response Learning System.
3.3.1 Structure of the learning modules.

Throughout these experiments the basic element 

which has been used in the learning networks is a SLAM. 

This is described in detail in section 5.1.1.

The structure of the learning elements to form 

a learning module is shown in Fig. 3.3.1. The learning 

networks are made of SLAM-16 elements in which all of the 

teach-clock inputs have been connected together also all 

the teach-sense inputs are set a 1. Therefore, when the 

learning network is clocked all of the SLAMs will output 

a 1 for the particular input pattern.

The clock terminal of the N net is connected to 

the N teach terminal and the clock terminal of the S net 

to the S teach terminal,

Initially, the stores of the SLAMs are set at 0. 

When the joystick is pushed in the N direction then the 

N learning network will output all Is for that input.

This response, (the sum of all the SLAMs outputting a 1) 

is compared with the response from the S learning network 

and the highest response determines whether the output 

from the module is high or low, A threshold can be set 

at the output which the difference between the responses 

must exceed for a non-zero output, otherwise the ternary 

output will be at the 0 neutral state. In practice, this 

threshold was usually set to 0 providing a binary output
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(see section 3,2,1).

The input, which consists of the pattern from 

the viewing window combined with the feedback if there 

is any, is connected to the learning network via a random 

map so that the SLAMs sample random 4-tuples from the 

input space. This is considered in more detail in 

section 3.3-5.

3.3.2 Performance criteria.

In evaluating the performance of the different 

tracking methods a set of criteria have been established. 

These criteria are as follows:

1. Generalisation. This is the ability of the 

system to track unseen patterns after teaching with the 

same tracking path that it has been taught. A good 

tracking system should be able to accept a wide variation 

in the dimensions of the input patterns i.e., the more it 

generalises the better,

2. Tracking ability. This is an evaluation of 

the complexity of the patterns which the tracking system 

can be taught to track.

3. Amount of teaching required. This can usually 

be expressed by the number of cycles of tracking path of

a pattern which must be tracked reliably. Sometimes, 

however, small corrections need to be made while the system
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is running and these have also been noted when relevant.

4, Ease of teaching. This is a subjective 

evaluation by the teacher on how easy it is to direct the 

system around the desired tracking path. It must be 

stressed that the teacher interacts heavily with the 

system and the performance of the system is very dependent 

on the ability of the teacher.

3.3.3 Performance of the system without feedback.

Without feedback the system should be able to be 

taught to follow edges. This was attempted with the 

smallest size of learning network available which was 64 

SLAM-16s per learning network (i.e., a total active store 

of 4,096 bits). Slightly more stable teaching and tracking 

was observed when twice this number of elements was used. 

The performance of this system for the edge following task 

is given below.

1. Generalisation.

Once taught a pattern, the system would track 

almost any other pattern hence, it has excellent generali­

sing properties.

2. Although it could perform the edge following 

task very well, this was not considered a difficult task. 

The limitations of this system are in the way it tracks. 

This is illustrated in Fig. 3.3.2. If the system is first 

taught to track the circle and then is tested with

the untaught triangle, then the tracking path cuts across
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the acute angle of the triangle. If only the triangle 

is taught and it is tested with the circle, then the 

tracking path becomes elongated at the top due to the 

teaching of the acute angle of the triangle. If the 

system is taught both patterns then it will track both 

properly.

3. Amount of teaching.

If taught one cycle around a pattern well then 

the teaching is sufficient. Poor teaching may take 

several cycles.

4 , Ease of teaching.

The system was very easy to teach and any errors 

made were easy to correct.

Hence, this tracking system without feedback is 

very good in all respects but it is only suitable for 

edge following tasks.

3.3.4 Performance of the maximum response system with 

last step feedback.

The learning module receives information in the 

form of a 16x16 matrix which consists of the viewing window 

information combined with the feedback information. Three 

different methods of combining the feedback information with 

the viewing window information have been investigated.

A parameter,the feedback %, is preset for an experiment and
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defines the amount of the input matrix over which the 

feedback function is effective. The actual bits of the 

input matrix which are to be associated with the feedback 

are randomly selected when the 'feedback %' is defined.

The three feedback functions which have been investigated 

are as follows:

1. Replacement connections.

This function replaces the selected bits of the 

input matrix with feedback information.

2. Exclusive OR connections.

This function replaces the selected bits of the 

input matrix by the value of these bits exclusive ORed 

with the feedback information.

3. AND - OR connections.

This function replaces the selected bits of the 

input matrix by the value of those bits ANDed or ORed with 

the feedback information. Both AND and OR gates are used 

with this method because of the nature of the feedback 

information. For example, if with last step feedback the 

last step was N then all the N/S feedback connections will 

1 and if the last step was S they would be zero; hence, if 

only AND gates were used the input matrix would be 

unaffected when the last step was N and all the N/S selec­

ted bits would be zero when the last step was S. To 

preserve a balance, when this function is selected, exactly 

half of the feedback functions are AND and half are OR.
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These three functions have been tested with 

different values for 'feedback %'. A standard test has 

been used to achieve this. The system is firstly taught 

to track a square and it is then tested with a circle and 

a triangle. This is illustrated in Fig. 3.3.3 where the 

tracking paths obtained with this test are shown. The 

test was conducted with 20% replacement connections 

feedback with 128 SLAM-16s per learning network. Fig. 

3.3.3(a) shows the tracking path obtained when teaching 

the system the square and (b) shows the path obtained when 

testing the system with the same square. The tracking path 

obtained when presented with the circle and triangle with­

out further teaching are shown in (c) and (d).

Although tracking was possible with the smallest 

available size of learning network, i.e., 64 SLAMs per 

learning network, better results were obtained when twice 

this size was used and this was the size used to obtain 

the performance given below (i.e., 128 SLAM-16s per learning 

network which involves a total active store of 8,192 bits). 1

1. Generalisation.

If a value of feedback is within ±1G% ofHEKe optimum 

value for a particular type of feedback then the generali­

sation with respect to the circle and triangle is good. In 

most cases they are both tracked successfully and in the 

others there are usually one or two critical points where 

the same errors are consistently made. (These may easily 

be corrected with a little extra teaching).
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2„ Tracking Ability.

With the optimum value of feedback the system 

could be taught to track the patterns in Fig. 3.2.5. The 

limits of the 'feedback %' which could be used to track 

a square were found and these are as follows:

Feedback %

Minimum Maximum

1. replacement connections 3 75

2 t Exclusive-OR connections 5 100

3. AND - OR connections 5 100

3. In most cases, except near the extreme limits

indicated above, the square was taught for one complete 

cycle and this was sufficient. When any correcting was 

needed on the second cycle this was usually due to the 

teacher badly teaching during first cycle.
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4, Ease of Teaching.

Near the mid values of the usable feedback % the 

teaching was very easy and it became increasingly more 

difficult as the limits of 'feedback %' were approached.

Using this system with reasonable values of 

feedback the patterns in Fig. 3.2.5 can be tracked. The 

three methods of applying feedback all worked well and no 

difference in performance could be detected between them.

In all the experiments mentioned in this chapter 

with last step feedback, 20% feedback with replacement 

connections were used unless otherwise stated.

3,3,5 The effect of different random m a p s .

For the above tests a different random map was 

used for each of the four learning networks. Some of these 

tests were repeated with the same random map for all four 

learning networks, This has the advantage that only one 

mapping has to be done instead of four. The mapping process 

takes a lot of time and by using one map instead of four 

the time taken to cycle a square was reduced from 25 to 9 

seconds,

The structure of the learning module with one map 

is shown in Fig. 3.3.4. In this form each SLAM in the N 

learning network has a corresponding SLAM in the S learning 

network which samples the same bits of the input space.
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This is similar to the structure of the T.R. SLAMs des­

cribed in section 5,5, In fact, where a two-level 

threshold is used at the output»the performance is identical 

to a single T.R. SLAM learning network with a 2-level 

threshold,

Using a single map for the input data no significant 

change in the performance was detected.

One further modification has been made to the 

mapping to ensure that for less than 25% feedback each SLAM 

has either 1 or 0 feedback inputs. For if more than one 

feedback input of the same type is fed to the inputs of a 

SLAM this is equivalent to connecting these two inputs 

together and a SLAM-16 would effectively behave as a SLAM-8. 

When the random map was structured in this way no signifi­

cant change in performance was detected and this single, 

structured type of map was used for all further experiments.

3.3.6 The performance of the system with damped feedback.

The damped feedback is generated by

NSV = N S V ' . (1-K) + K . LD , (0<K<1)

which is defined in section 3.2,3.

A value for K has to be preselected and for most 

tests this was set at 0.2. Which means that decisions 

made in the region 5 to 10 steps in the past are still
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considered. This type of feedback was investigated with 

twice the minimum size of learning networks (i.e., 128 

SLAMs per module, a total active store of 8,192 bits) 

and 35%'replacement connections'feedback. The perfor­

mance of this system was as follows.

1. Generalisation

This system was used to track more complex 

patterns (e.g„, with more than one loop) than had 

previously been possible. Once the system had been taught 

to track one of these patterns it could, in general, only 

accept very small changes in the shape or size of the 

pattern before tracking errors are m a d e » The most common 

error is that it does not make the correct decision at a 

junction and the cycle which it does track does not cover 

all of the pattern.

2 . Tracking Ability

Using this system it was possible to track all 

the patterns in Fig. 3.3.5 with the tracking paths shown. 

One pattern with three loops was taught but only with 

difficulty and the limit of this system appears to be at 

this level of complexity.

3. Amount of Teaching

Usually, if the system is taught for two to three 

cycles of the input pattern this is sufficient for that 

pattern to be tracked.
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4. Ease of Teaching

In general, this system is reasonably easy to 

teach though not quite as easy as with last step feedback.

This system is able to track more complex patterns 

than was previously possible. To do this the 'feedback %' 

has had to be increased and the ability of the system to 

generalise has been greatly reduced.

3.3.7 Saturation within the learning networks.

With the maximum response structure with two 

learning networks per learning module it is possible that 

these learning networks may saturate i.e., both give 100% 
output for a particular input pattern.

A mechanism has been built into the system which 

will enable teaching to continue if saturation occurs.

This mechanism teaches a randomly chosen 1/16 of the 

opposing learning network to output 0 for this particular 
input pattern. Hence, the correct response is now obtained. 

In practice, this mechanism was very rarely used and 

saturation usually only occurred for one of the two 

following reasons. 1

1, If the teacher is not very good and makes errors 

in teaching or if he changes his mind about the direction 

of the tracking path, then it is quite likely that he will 

contradict his own teaching and the learning networks will

saturate.
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2, If the tracking task is on the limit of 

the ability of the tracking system e,g„, if the system 

is being tested near the limits of its feedback or if the 

input pattern is very complex, then it is quite possible 

that the limitation of the system will be indicated by 

the learning networks saturating. The saturation may be 

caused by a combination of the above two reasons and 

further careful teaching may achieve the desired tracking.

3.4 A Probabilistic Learning System.
3.4.1 Structure of the probabilistic learning module.

The probabilistic learning system uses the 

probabilistic learning network which is described in 

section 5.3, The probabilistic learning network is 

designed so that it can be taught to output both high and 

low responses,

The structure of the probabilistic learning 

module is shown in Fig. 3.4.1. With this system, only 

one learning network is required for each module.

With the probabilistic learning network a frac­

tion of the SLAMs are taught with each clock cycle, this 

fraction is preset by the user. If less than % of the 

learning network is taught then one cannot be sure that 

the correct output response will occur after one clock 

cycle, (In general, l/16th of the learning network is
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usually taught per cycle). it is necessary for the 

learning network to output the desired responses when 

being taught, hence, a teaching mechanism is needed to 

ensure that the learning network is clocked a sufficient 

number of times for the desired response to be obtained.

To achieve this mechanism, two algorithms have 

been investigated which compare the output response of 

the learning network with the desired (non-zero) response 

and then clock the learning network until these responses 

are the same,

The first algorithm teaches the learning network 

once on receiving a teach command and then, if necessary, 

continues to clock the learning network until the desired 

response is achieved, This will be referred to as the 

'teach first' method.

The second algorithm, on receiving a teach 

command, checks if the response from the learning network 

is correct and then, if necessary, clocks the learning 

network until the desired response is achieved. This will 

be referred to as the 'check first' method.

3.4.2 Performance of the probabilistic learning system 

without feedback.

With the smallest size of learning network (64 

SLAM-16s per module) useful results could be obtained from 

the system and this is the size that was investigated in
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detail (i.e,, 64 SLAMs per module which is a total active 

store of 2,048 bits), The following performance was 

obtained.

1. Generalisation

After teaching one pattern with either of the 

teaching algorithms, the system could track many other 

shapes hence, the generalisation is very good.

2. Tracking Ability

The tracking ability was similar to the ability 

of the maximum response learning system described in 

section 3.3.3. However, the probabilistic tracking system 

was more likely to make errors and drift-off or into the 

pattern.

3. Amount of Teaching

In general, it was necessary to teach two to 

three cycles of the pattern for it to be tracked.

4 . Ease of Teaching

The system was easy to teach, though more difficult 

than the maximum response system.

Hence, the probabilistic learning system without 

feedback performs the edge following task well but is 

not, in most respects, as good as the maximum response

method.
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3.4.3 Performance of the probabilistic learning system 

with feedback ,

Although useful results could be obtained with 

the smallest size of learning network, more consistent 

results were obtained if twice this size was used and 

this is the size which was investigated (i.e., 128 SLAMs 

per module which is a total active store of 4,096 bits).

The 2-level feedback was used with 'replacement' 

feedback connections and several different amounts of 

feedback were investigated. The performance with respect 

to line drawings was as follows:

1. Generalisation

In most cases the system was only just able to 

track a square after being taught it. When tested with a 

circle and triangle the only correct tracking occurred at 

the optimum values of feedback (20-30%). However, all 

the tracking of circles and triangles was very poor.

2. Tracking Ability

The tracking ability of this system is very 

limited. It was possible to teach the system to track 

around a square (using values of feedback between 10 and 
70%). However, even this tracking was difficult to teach 

and more complex patterns were not considered possible.

The 'teach first' algorithm would not work with this system 

and all the results were obtained by teaching with the 

'check first' algorithm.
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3. Amount of Teaching

A lot of teaching was required for this system 

at least 3 to 4 cycles of the input pattern.

4. Ease of Teaching

This system was the most difficult system 

investigated to teach. Lengthy careful teaching was 

required if a square was to be tracked.

Hence, this system is not very good for the line 

following task. It uses less active store then any other 

method but teaching the system is very difficult and the 

resulting performance is poor and uncertain.

3.5 A Cumulative Learning System,
3.5,1 Structure of the CL learning module.

The CL learning module uses the CL learning 

network which is described in section 5.4. Like the 

probabilistic learning network, the CL learning network is 

designed so that it can be taught to output both high and 

low responses.

The structure of the CL learning module is 

similar to the structure of the probabilistic learning 

module shown in Fig. 3.4.1 except that a CL learning net­

work replaces the probabilistic one.

When a CL learning network is clocked the maximum
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change in output response is 1/16 of the total response.

Hence, as for the probabilistic learning system, a 

teaching algorithm is required. The algorithms which 

were used for the probabilistic system, which are des­

cribed in section 3,4.1, have also been investigated 

with the CL learning system.

3.5.2 Performance of the CL learning system without feedback.

The smallest size of CL SLAM learning network 

was sufficient for the edge following task. This involves 

64 CL SLAM-16s per module i.e., a total active store of 

8,192 bits. The performance of this system was as follows:

1. Generalisation

Both teaching algorithms were investigated and 

tracking could be achieved with either. However, if the 

'check first' algorithm was used,although the system 

would reliably track the training pattern when tested with 

other shapes, errors were often made. If the 'teach first' 

algorithm was used then the generalisation was very good 

and many other shapes could be tracked.

2 . Tracking Ability

Using the 'teach first' algorithm, the tracking 

ability was very similar to the ability of the maximum 

response learning system described in section 3.3.3.
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3. Amount of Teaching

Tracking could usually be achieved after teaching 

two to three cycles of the pattern but this would be 

improved by further teaching.

4 . Ease of Teaching

This system was very easy to teach and any errors 

made easy to correct.

Hence, the CL learning system without feedback can 

perform the edge following task well. The performance is 

comparable with the maximum distance system but twice as 

much active store is required.

3.5,3 Performance of the CL SLAM learning system with 

feedback.

As with other systems using feedback, more consis­

tent results were obtained by using twice the smallest 

size of the learning network. This involved 128 CL SLAM-16s 

per module i.e., a total active store of 16,386 bits.

As with the probabilistic learning system, last 

step feedback was used with 'replacement' feedback 

connections and different amounts of feedback. However, 

for this system the 'check first' teaching algorithm did 

not work and all the results were obtained using the 

'teach first' algorithm. The performance of this system
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with respect to line drawings was as follows:

1. Generalisation

The generalisation for other shapes was not very- 

good for this system. When taught the square with a near 

optimum amount of feedback (20-30%) then in most cases 

the system would also track a circle and triangle.

However, the tracking for the CL SLAM system was far 

better than the probability learning system.

2. Tracking Ability

The system could be taught to track a square with 

between 10 and 70% feedback and the performance of the 

system was similar to that of the equivalent maximum 

response learning system.

3. Amount of Teaching

This system required 3 to 4 cycles of the input 

pattern to teach it,

4 . Ease of Teaching

This system was fairly easy to teach. However, 

it took more care and time to teach than the equivalent 

maximum distance system.

This system when using the 'teach first' algorithm 

has a performance which is comparable»though in general 

inferior,to the equivalent maximum distance system and it 

requires twice as much active store.
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3.6 Observations On The Results,
3.6,1 General performance of the system.

With no feedback all the learning modules 

investigated could perform the edge following task well 

using learning networks which covered the input matrix 

once only.

When last step feedback was added, so that lines 

could be tracked, it was found that in all cases better 

results were obtained by doubling the size of the learning 

networks. (Due to the addition of the feedback connections, 

this is the smallest size in which the whole of the input 

space is covered.) In both of the above cases, further 

increase in the size of the learning networks had very 

little effect.

The method of applying the feedback connections 

to the learning network was not critical. Also, the random 

map applied to the input was not critical.

With edge following, the generalisation was very 

good. However, when feedback was added and ,the input 

pattern was made more complex, this generalisation was 

reduced.

When damped feedback was used with patterns of 

several loops, the system was only able to track the 

training pattern reliably.
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3.6.2 Relative performance of the learning modules.

(Considering line following tasks).

Of the three learning modules tested the best 

performance in tracking and ease of teaching was obtained 

from the maximum response module. The structure of this 

module could be represented in a similar way to the 

structure of the other two modules as shown in Fig. 3.4.1 

if the learning network was replaced by a T.R. SLAM 

learning network, and the function of the teach algorithm 

in this case would be to guard against saturation as 

described in section 3.3.7.

The input data is characterised by a long sequence 

of similar patterns. To demonstrate this all the patterns 

input to the learning modules while being taught to track 

a square were recorded, and used to obtain the following 

results. These patterns were divided into two groups, those 

for which the N/S learning module was taught N and those 

for which it was taught S. The histogram Fig. 3.6.1(a) 

shows the distribution obtained by comparing each pair of 

patterns in the N group and Fig, 3.6.1(b) shows the distri­

bution of comparing each pattern of the N group with each 

pattern of the S group. The broad distribution for the 

N group shows that it consists of many patterns which are 

not similar in Hamming distance. There is a lot of overlap 

between the two distributions which indicates that it is 

not possible to distinguish between the two groups with a 

Hamming distance comparison to any archetypes. Therefore, 

the nets are doing something in addition to the above
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i.e., a few patterns close to those it recognises keep 

it "on track".

In Fig. 3.6.2 a particular decision during 

tracking is considered; (a) shows the pattern in the 

viewing window and the last direction moved. The distri­

bution of this information to all the patterns in the N 

group is shown in (b) and for the S group in (c). Some 

of the patterns in (b) are very close in Hamming distance 

to the new pattern and this should be sufficient for the 

learning module to indicate that it belongs to the N group 

i.e., the next command from the N/S learning network should 

be N.

The better performance of the maximum response 

system is due to the large number of different input pat­

terns taught for each class » The maximum response system 

does not forget any of the patterns it has been taught. 

However, both the probability and the cumulative learning 

networks have the property that consistently taught recent 

information may overwrite previously learnt information, 

and for tracking it is essential that all the patterns 

of a class be remembered with equal weight.

The amount of overwriting depends on the amount of 

overlap (i„e„, where the Hamming distance is zero) between 

the classes for each learning element. If the order of 

the elements (i.e., number of inputs) was increased then 

this overlap would be decreased and one would expect that 

the performance of the probability and CL SLAM learning
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systems would improve with respect to the performance of 

the maximum response system.

The probability learning system would only work 

with the 'check first' teach algorithm. This is because 

all decisions of the learning networks were very critical 

(i.e., near the 50% mid value) , If too many of one class 

was taught the learning network becomes permanently biased 

towards that class.

The CL learning system does not generalise well 

with the 'check first' tracking algorithm as the learning 

network needs to be taught, even when the response it 

outputs is correct, so that these responses may be increased 

and do not remain near the critical 50% value.

The CL learning system could be taught to track 

a square with a 'dead zone' of up to 25% in the threshold 

decision at the output of the learning network. The 

probability learning system could not be taught to track 

a square if there was a dead zone.

Using the maximum response learning modules, the 

system was taught to track a square and the number of 

elements which were taught to 1 at each step was recorded. 

These results have been plotted in Fig. 3.6.3 and they 

demonstrate that after the initial teaching of the square 

further teaching has very little effect.
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Chapter 4
The Classifying System

An attempt has been made to recognise patterns 

from the tracking information produced by the tracking 

system.

In the first technique which was investigated, 

the data from the tracking system was transferred into 

a shift register and the contents of the shift register 

were examined in parallel, with a learning network.

This method was not very successful but is mentioned at 

the end of this chapter in section 4.4.

In the second method, the tracking information 

was fed serially into a learning network which, as a 

result of feedback, is sequence-sensitive, and this 

method is considered in detail in this chapter.

4.1 The Input Data.
4.1.1 Features of input data.

To create a structure for classifying patterns 

from tracking motions, it is important to understand how 

distinguishing features are contained in the tracking 

information.

The tracking information or 'input d a t a1 to the 

classifier has the following characteristics.



It is a sequence of events, the length of the 

sequence being dependent on the size of the pattern and 

the tracking path. (Each event consists of the 

information obtained from the tracking system in moving 

one step,) Typically, for a thick line drawing of a 

square, the sequence is the order of 100 events long for 

one cycle of the square.

This sequence of events contains within it a set 

of features of the pattern such as straight lines, curves, 

corners, etc, each feature being several events long, 

and the features occur in a unique order in the sequence.

113

4.1.2 Test data.

To assist the development and to evaluate the 

performance of the classifier, three different sets of test 

data have been used. This data is stored in the form of 

tracking movements on punched paper tape so that exactly 

the same data can be used for each test and the result of 

changing parameters can be observed. Each set of test 

data consists of the tracking information for two patterns. 

These are used as the training set to teach two classes 

to the classifier. This same data is also used to test 

the classifier. Each of the sets of data contains 

different characteristics and these are described below, 1

1. Test data (A)

This is illustrated in Fig. 4.1.1 and is of a circle
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and a triangle. This data was obtained from the tracking 

system. One cycle of the circle requires about 90 steps 

and one cycle of the triangle requires about 60 steps.

The main characteristic of this data is that the tracking 

paths are fundamentally the same form and the classifier 

must detect the small differences in the shape of the 

scan path to classify the patterns e.g., it must detect 

that the point of the triangle is different from the 

continuous curve of the circle.

2. Test data (B)

This is illustrated in Fig. 4.1.2 and is of a rec­

tangle with a center line and a rectangle without one. This 

data was also obtained from the tracking system. One 

cycle of the rectangle with the center line requires about 

130 steps per cycle and the plain rectangle requires about 

90 steps per cycle. The scan paths for the two patterns 

are the same except where the center line occurs in the 

first pattern. Hence, to classify these patterns, the 

classifier must detect the tracking motions relevant to 

the center line for the first pattern and must detect their 

absence at the equivalent position for the second pattern.

All the tracking motions concerned with the rectangle 

alone should be ignored as they are common to both patterns. 

This is explained in greater detail in section 4.2.3.

3. Test data (C)

This is illustrated in Fig, 4,1,3, for a square and a 

triangle. This data was calculated and generated by hand.

The object of this data is to provide simplified versions
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of tracking motions with short, well defined cycles of 

8 steps for each pattern. This data was used to assist 

the development of the classifier when it was not capable 

of producing useful results with test data (A) or test 

data (B),

4,1.3 Format of input data.

The tracking information is received from the 

tracking system in the form of a four-bit word for each 

step. Each bit, if set, represents a move in one of 

the four possible directions N. S. E. W. (If we assume 

that the viewing window must move at each instant of 

clocked time then it must move in one of 8 possible 

directions. Hence, 3 bits of information are obtained from 

the tracking system per step. However, the 4-bit code is 

a more convenient form to observe, and to input to a 

learning network,)

For the first experiments these 4-bit words were 

fed directly to the input of the classifier. Therefore, 

for a feature of a pattern, the classifier must have an 

internal memory for several steps. However, to obtain 

knowledge of the spatial position of the features it is 

necessary to detect in which order the features occur and 

for this a much longer internal memory is required.

Several experiments were carried out with this type of 

input. The classifier did not work at all for the test 

data (A), however some results were obtained with test data
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(C) in which both the shape of the features and the 

distance between features is only a few steps.

An important factor which must be considered with 

data taken directly from the tracking system is that it 

contains 'jitter' due to the characteristics of the 

tracking system. For example, if the system is tracking 

a horizontal line in the east direction, one might expect 

the sequence of commands to be E, E, E, E, •••• .

The tracking system is, however, taught imperfectly by a human 

teacher to maintain its N/S position on that line so 

that a more likely sequence in practice would be N E , S E ,

NE, S E , •*•*. Hence, a lot of N/S activity would be 

indicated which is not produced by the shape of the pattern.

In an attempt to overcome the problem of the long 

memory required and the 'jitter' problem mentioned above, 

the input information was averaged over several steps.

The way this is achieved is illustrated in Fig. 4.1.4.

The program written for this allows the average value of 

the last n steps to be evaluated (where l<n<16). For each 

direction the number of times that a move is indicated,

V, for the last n steps, is evaluated; this number is then 

presented to the classifier as V bits set in a binary 

vector of length n. For each step of the tracking system,

4.n bits of information are presented to the classifier.

The effect of this method is to generate an 'average' 

direction of tracking from the last n steps. This effec­

tively eliminates the 'jitter'.
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When n is large, some indication as to the 

spacial position of the features is now input to the 

classifier because the input vector cannot change very 

much between features. However, this also means that 

features are smoothed and in the case of the test data 

(A), for example, it is very important that features 

such as the points of the triangle should not be smoothed 

too much. This method was used with the classifier and 

although it still did not work properly with data from 

the tracking system, better results were obtained.

To avoid the smoothing problem a third method of 

inputting the data was developed. Instead of inputting 

the motions involved in tracking, it was decided to input 

the position of the viewing window with respect to the 

pattern. The advantage of this method is that features 

are spacially located by the input data, hence a long 

memory within the classifier is not necessary and the 

internal memory is only needed to detectthe features.

There is a practical difficulty in obtaining this data 

because the information from the tracking system is in the 

form of tracking motions. To generate position from these 

motions, a scaling system was used. This analyses the 

motions from the tracking system for the first cycle of the 

pattern’(without transmission to the analyser) so that the 

limits of the pattern could be determined. Then, after 

each motion is input, the position is normalised with 

respect to these limits. This scaling enables the pattern 

to be defined on a standard matrix size. The positions as
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they are generated can be used to generate the tracking 

path that the tracking system follows. The standard 

size has been defined on a 16x16 matrix and the results 

of plotting these motions on this matrix are shown in 

Figs, 4,1.1, 4,1.2 and 4,1,3»

Hence the output from this scaling system is one 

bit in 256 i„e, 8 bits of information per step. This was 

coded into two 16-bit binary vectors in which the X and Y 

coordinates of position on the normalised matrix are 

indicated by the number of bits set. This is illustrated 

in Fig. 4.1.4, When using this data form for the input to 

the classifier, a further improvement in the performance 

was noted and this form has been used for all the develop­

ment of the classifier. Although in the above description, 

the positions were generated by software, this is not 

necessary if one considers the tracking system and classi­

fier combined. Then the addresses that are sent to 

position the viewing window of the camera could be used to 

generate the classifier input.

4.1.4 Summary.

In this section the nature of the input sequence 

has been discussed in detail. The input sequence to the 

classifier is a sequence of positions, each position being 

defined by two 16-bit vectors.

The features of the pattern are defined by several
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steps of the input sequence,hence the classifier must 

have some short-term memory to store them.

To test the classifier three sets of test data 

have been established. Set (A) for problems where two 

scan paths have only minor detail differences, see Fig, 

4.1.1. Set (B) is typical of problems where one part of 

the scan path is different for one class where the rest 

of the scan paths are identical. Set (C) has only 8 steps 

per cycle and is used to evaluate systems for which the 

test data (A) and (B) is too long.

4,2 Structure Development Of The Classifier.
4,2,1 General system.

The general structure that was chosen for the 

classifier is shown in Fig. 4.2.1. The aim of this struc­

ture is to associate the output codeword with a class of 

input sequences, so that when an input is applied to it; 

after training, the appropriate codeword will form at the 

output.

The sequential data from the tracking system is 

randomly connected to some of the inputs of the classifier 

learning network and there is internal feedback around 

the network to the rest of the inputs.

During training, information from the input, and

from a codeword which defines the class, is fed to the
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teach terminals and the SLAMs are clocked (i.e., taught). 

The SLAMs which have the codeword only applied to the 

teach terminals are the ones which should regenerate 

the codeword when the input sequence is applied.

The other SLAMs receive teach information from 

both the input data and the codeword combined together. 

The combining is achieved by combinational logic gates 

(shown by the box 'F' in the diagram). The function 

realised by this logic is very important and will be 

discussed later.

Three main measures are used in discussing the 

properties of the classifier and these are defined as 

follows:

Store penetration: This is the number of binary 

locations in the SLAM stores which are accessed (i.e. 

are set to 1 or 0) when the classifier is taught. (It is 

usually stated as a percentage of the total SLAM store 

size.)

After one cycle of an input pattern has been 

taught, one would expect very little increase in this 

penetration. This measure does not take into account the 

number of times that a bit is changed during teaching.

Store Overlap; This is the number of binary

locations of the SLAM stores which,after being accessed by

teaching a first input pattern, change their value on
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being taught a second input pattern. (It is usually 

stated as a percentage of the store penetration of the 

first pattern taught), This measure depends to some 

extent on the position in the cycle of each pattern that 

teaching is terminated.

Pattern Activity: This measure is not rigorously 

defined and is used in a qualitative sense only. It is 

used to compare two sequences of patterns and is based on 

both the bits which change during the sequence and the 

correlation between the bits which change value. Hence 

a sequence of patterns is said to be more active than 

another if either the number of bits which change state 

is higher or the correlation between bits which change 

state is lower,

4.2.2 Development into a two-net structure.

The first step in the development of the general 

structure was to realise that it contains two learning 

networks which perform different functions. The second 

network which is taught only the codeword is to detect 

states of the structure and decide which codeword to 

output. The first network, which is taught a combination 

of input and codeword information, is intended to contain 

the short-term memory necessary for detecting distinguish­

ing features and generates the states which are detected 

by the second network„
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The structure of the classifier with the above 

development is shown in Fig, 4,2,2, The first learning 

network is called the cycle net and the second one is 

called the code net.

The cycle net has feedback around it so that it 

may have a memory of several steps to detect features 

(see section 4,2,4), There is a second feedback loop 

from the output of the code net to the input of the cycle 

net. This feedback has two main functions: it will be 

shown to reduce the amount of contradiction due to the 

teaching of several classes within the cycle net and it 

also should enable a codeword to become stable at the 

output. These properties of this feedback are discussed 

in more detail in section 4,3,4,

The teach clock for the structure has been split 

into two sections, this allows the two learning networks 

to be taught separately.

4,2,3 Development of the code net

It would appear more logical to discuss the 

development of the cycle net first, however, the exact 

function of the cycle net is not easy to define and is 

dealt with in the next section. The function of the code 

net is easier to define, it was developed first and will 

now be considered first. The general function of the 

cycle net is to enter state cycles in sympathy with the
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input sequence. These cycles should pass through 

states related to the class of the input sequence.

The code net must detect when these unique states 

occur and output a codeword which will indicate the class 

of the input sequence.

The first structure of the code net was a learning 

network of 16 SLAM-16s, The clock terminals were connected 

together and each of the teach sense terminals was connected 

to one bit of a 16-bit codeword. During training all the 

SLAMs are taught for every step of the input sequence.

Now consider the nature of the data which is 

presented to the code net. This data is considered in the 

form of 4-tuples randomly sampled by the code net. When 

the system is tracking patterns of the test data (B) type, 

for example, then it is probable that except in the region 

of the center line where the features are different, the 

information at the output of the cycle net will be very 

similar for the two classes. Also, as the cycle net is to 

go into cycles, one would expect a lot of activity (as 

defined in section 4,2.1) at the outputs. The result of 

both the above factors is that one would expect that many 

4-tuples of outputs would have common values at times for 

different classes.

Hence, the input to the code net is a large number 

of different patterns for each SLAM only a few of which 

define classes and many of which are common to both.
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Using the structure for the code net described above, 

where every input pattern is taught, the net will 

always be heavily overtaught with respect to the last 

class taught as follows. In such cases, all the input 

4-tuples which are common between classes are taught to 

output the code of the last class taught.

A feature of the code net is that it is possible 

to observe the output before teaching at each step, and 

evaluate how similar that output is to the desired code­

word without teaching. An algorithm was written to 

utilise this fact to overcome the above overteaching 

problem. This algorithm finds the difference between the 

output of the code net and the desired codeword and then 

corrects a fraction of the difference, by teaching this 

fraction to the code net, This algorithm produced an 

overall improvement in the performance of the classifier. 

However, it does have several disadvantages as follows.

1. The algorithm is time (i.e,, sequence length) 

dependent and if many cycles of a pattern, or many patterns 

of a class, are taught, then the overteaching will still 

occur since, with time, complete teaching is approached.

2. Only a portion of the codeword is taught and 

hence, only this form can be fed back which greatly 

reduces the effect of this feedback.

3. The above feature also implies an additional

restriction on the number of distinct classes
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taught More classes simply lower the Hamming distance

between codewords which might cause non-distinct code-r 

words to be taught.

This algorithm was abandoned because of the 

above disadvantages.

There is a need for a different type of learning 

element for the task required of the code net, A new 

element the 'T .R . SLAM' was developed to do this, and it 

is described in detail in section 5,5,

This element has an extra output which indicates 

whether the normal output is valid or invalid (i.e., not 

taught or overtaught). So this element is insensitive 

to overteaching by the last class taught. The feedback 

from the output of the code net has been modified by a 

16-bit memory so that only the last valid output is fed 

back. This has been added because for the majority of the 

time while the cycle net is establishing a definite cycle, 

the outputs from the code net are not valid. This is also 

discussed in more detail in section 5.5, Fig. 4.2.2 shows 

the structure of the classifier with T.R. SLAMs in the 

code net. When using T.R, SLAMs twice the active store 

required for normal SLAMs is used. For the code net of 

16 T.R, SLAM-16s described above 512 bits of active 

storage are required.



132

4,2.4 Development of the cycle ne t .

It has been stated (section 4.2.3) that the 

general function of the cycle net is to enter cycles in 

sympathy with the input sequences and in so doing pass 

through unique states relevant to the class of the input 

sequence,

This is necessary because, for some classes, 

the classifier must remember several previous steps to 

be able to react to an important feature. This can be 

demonstrated by an example. Consider the patterns in 

the test data (B) and assume that there is no memory of 

past events in the classifier. When tracking the first 

pattern the centerline results in several unique 

positions with respect to the pattern. Hence, the classi­

fier can come to a definite decision, However, in tracking 

the second pattern all the positions the tracking system 

passes through are common to both patterns. Hence, only 

arbitrary decisions can be made.

The only way to recognise the second pattern is 

to notice that the tracking motions do not go along a center 

line, i.e., the absence of a feature must be 'perceived', 

and the only way to do this is to provide the classifier 

with some memory of past events: hence, the feedback in 

the cycle net.

A similar type of argument can be applied to the 

test data (A) patterns, Here there is a difference in the



input positions for both patterns and it should be 

possible for the classifier without feedback to classify 

them. However, the difference in positions is very 

small and there could be some confusion if much variation 

in the shape of the patterns were allowed. If the sharp 

points of the triangle are detected,and the lack of them 

detected for the circle,then a much larger shape variation 

could be tolerated. As before, the only way to detect 

these features is by some memory in the system.

The structure of the cycle net is shown in 

Fig, 4,2,2, The learning network contains 48 SLAM-16s 

which have their clock terminals connected together. There 

is feedback around the cycle net to provide the necessary 

memory for features. The input to the cycle net is formed 

by the input data, the feedback around the cycle net and 

feedback from the code net.

The major problem with the cycle net is what to 

teach it. So far, two methods have been tried and neither 

has been very successful,

In the first method to be investigated, the 

teach sense terminals are connected to the input data, the 

net is taught at every step of the input sequence. Hence, 

the net is taught to output the present position and this 

is fed back around the net to some of the input terminals 

(delayed by one step), for the teaching of the next 

position, Therefore, the cycle net is taught to associate 

the present step with a mixture of the present and last
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steps. When, after training the cycle net is tested 

with an input sequence then, assuming that it works 

perfectly and synchronises correctly with the input 

sequences, it should generate the input sequence at its 

output, Hence the cycle net should behave as a trans­

parent filter for taught input sequences. This method

has been investigated for the case of non-sequential

(13)input data by Fairhurst and Aleksander . However, for 

the classifier being considered it is necessary for the 

cycle net to indicate to the code net the sequential 

distinguishing features of the input sequence, and the 

transparent filter indicates if an input has been taught 

but does not process a taught input in any way. Hence, 

it is not sufficient for the required task and was 

abandoned. One possible strategy in which this method 

could be used is to have a separate classifier for each 

class which'is taught to give a high response (i.e., all 

Is output) for that class. Then a classification would 

be indicated by the classifier outputting the highest 

response,

The second method was to combine the input 

sequence with the codeword before applying it to the teach 

terminal of the cycle n e t . The function of combination 

that has been used is an exclusive-OR function.

The reasoning behind this teaching method can be 

demonstrated by a simple example. Consider teaching the 

cycle net with test data (A) for the two codewords all Os

and all Is
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When teaching on the circle, the input sequence 

is exclusive-ORed with 0 (i.e., no change) and the net 

is taught to output the present step when the input is 

the present step and the last step as before. When 

teaching the triangle the input sequence is exclusive-ORed 

with 1 (i.e,, complemented) and the net is taught to 

output the complement of the present step when the input is 

the present step and the complement of the last step. If 

the cycle net, after training, is tested with the circle, 

assuming that it works perfectly and synchronises with the 

input sequence, then the input sequence should appear at 

the output. For the triangle the inverse of the input 

sequence should appear at the output. The input sequences 

for the circle and triangle are fairly similar hence, one 

would expect a large difference between the input sequences 

for the circle and the complement of the input sequence 

for the triangle and it should be possible to teach the 

code net to distinguish between these two sequences.

4.3 Investigation Of The Properties Of The Cl a s s if ie r .
4.3.1 Experiment conditions.

All the experiments have some common features which 

are listed below.

Input Data

The input data for these experiments was A, B or C 

as described in section 4.1.2. For testing the trained 

classifier, the training data is reapplied and the responses
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for the two different classes of input are compared. 

Codewords

Two 16-bit codewords have been chosen to 

represent the two classes, these are octal 000377 and 

octal 177400, These two codes are the complement of 

one another and hence, have the maximum Hamming distance 

(16) between them. They also both have a Hamming distance 

of 8 with respect to the all-0 codeword which is often 
used as an initial starting condition.

Learning Networks

For all these experiments, one size of learning 

network has been used. This consists of 48 SLAM-16 

elements for the cycle net (768 bits of active store) and 

16 T „R „ SLAM-16 elements for the code net (512 bits of 

active store).

Evaluation of the output response

The output response with respect to a particular 

codeword is taken as the average Hamming distance between 

that codeword and the valid output code from the classi­

fier, As the input is sequential one must average the 

output over many steps (at least one cycle of the input 

sequence) for a meaningful response. The average number 

of valid outputs is also noted as this gives a confidence 

figure for the response. For a deeper measure, the 

actual code output and the Hamming distance to the 

different codewords can be recorded at each step.
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When evaluating the output response to an input 

sequence the state transient must be considered. This 

transient is the number of steps required for the 

classifier to settle into a stable cycle. To obtain 

an accurate result it was decided to wait until the 

initial transient has passed before recording the outputs 

for an average. It is possible with this program to wait 

a set number of steps before the output is averaged. The 

length of the transient is a function of both the 

structure of the learning network and the nature of the 

input data. In general, it was found that the initial 

transient had passed after one cycle of the input pattern 

had been presented to the classifier. For the data like 

test data (B), the one identifying feature must be 

presented at least once to the classifier before a stable 

cycle can be obtained (assuming that the classifier is 

able to distinguish between the two classes). For test 

data (A), in general, the output cycle was established 

after 30-40 steps. For test data (C) which has very 

short sequences, the initial transient was also much 

shorter. In practice, the first 100 outputs for test data 

(A) and (B) were ignored and the response was averaged 

over the next 100. For the test data (C) the first 30 

outputs were ignored and the next 10 outputs were averaged.

4.3.2 Investigation of the cycle net store.

The classifier using 'Exclusive-OR' teaching 

described in the previous section was tested with test 

data (A) and (B) and only worked on a few unconnected
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occasions (dealt with in section 4.3.3). After training 

it was seen that the outputs of the cycle net on testing 

were very similar for the two classes.

The first experiment, described below, was 

designed to examine the cycle net SLAM stores after 

training in order to determine primarily if the second 

class taught to the cycle net was overteaching the first.

Using test data (A) the cycle net is first taught 

the circle and the number of distinct storage bits of the 

SLAM stores which are accessed by this teaching are noted. 

The cycle net is then taught the triangle and all the bits 

which were originally set to a value by the first teaching 

and are reset by the second teaching are noted. Hence, 

the number of elements accessed by teaching a pattern and 

the amount of overlap when teaching two classes is 

obtained.

The following is the exact method used to find 

this number of bits. The cycle net is reset and then 

taught the circle. The number of distinct bits of the 

SLAM stores which have become set is recorded. The cycle 

net is set and then taught the circle again. This time 

the number of bits which have become reset are recorded. 

The sum of the two recorded values gives the total number 

of storage elements which have been accessed by teaching 

the circle, A similar technique is used to find the 

number of these bits which are changed on teaching the 

triangle,
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This experiment was repeated with different 

amounts of feedback around the cycle net and with no 

feedback from the code net. The graph in Fig. 4.3.1 shows 

the amount of store accessed when using test data (A) 

(cycle length ~80 steps, 200 steps taught) and test data 

(C) (cycle length 8 steps, 40 steps taught). Fig. 4.3.2 

shows the amount of relative overlap which was detected 

for these two sets of data after the second class had 

been taught,

Fig, 4,3,1 shows that the store penetration(as defined

in section 4 02*1) is consistently about 30% whatever the 

amount of feedback. This is as expected for the feedback 

is the last input of the sequence exclusive-ORed with a 

constant codeword and hence should have the same activity 

(as defined in section 4,2.1) as the input data.

The surprising result from this graph is that 

almost the same amount of store is accessed by the type 

(C) test data of 8 steps long as is accessed by the type 

(A) test data of 80 steps long. This is due mainly to 

the fact that the range of Hamming distance within both 

sequencies of patterns is similar.

From Fig, 4.3.2 without feedback there is 74% 

overlap for test data (A) and 54% overlap for test data 

(C). The two classes in test data (A) are very close in 

Hamming distance which would account for the large amount 

of overlap. As the feedback is increased the amount of 

overlap decreases. This is because the feedback for the
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Store penetration for 1st class

Figure 4.3,1

Store Overlap

F i g u r e  4,3.2
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second class is complemented(by the codeword)with 

respect to the feedback for the first class and hence, 

there is a large Hamming distance between them.

The above experiment was repeated but with 8.3% 

(l/12th) feedback from the code net i.e., l/12th of the 
cycle net had the codeword applied directly to them.

The results are shown on Fig, 4,3.3 and Fig. 4.3.4. The 

amount of store accessed by the first class is about 2% 
less this time; this is due to the feedback inputs from 

the code net having a constant value during training.

The amount of overlap has been considerably reduced.

This is also due to the code net feedback which has a 

partitioning effect on the cycle net. If the code net 

feedback had been 25% (i.e., one feedback connection per 

SLAM element) then the overlap would always be zero.

A measure of how much the stores which were 

taught for a class were changed by further teaching was 

obtained (i.e., a measure of how much an input sequence 

interferes with itself), This was achieved for test 

data (A) by teaching the cycle net one cycle of the 

pattern and then to record the stores every 20 steps 
after that. These stores were then compared with each 

other and the results obtained are in the table below.
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% bits Number of Steps
changed

For this experiment the feedback was 50%. However, as 

with the amount of store penetration, one would expect 

the above figures to be independent of the amount of 

cycle net feedback. The amount of store penetration for 

this case is 33%, the figures in the table are expressed 

as a percentage with respect to this penetration. Hence, 

the maximum observed change in the stores caused by the 

teaching of one pattern interacting with itself is 9.2% 

of the total store accessed.

To summarise, the analysis of the cycle net 

stores for both type (A) and type (C) test data has

shown the following:
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1. About 33% store penetration occurs on teaching the 

first pattern to the cycle net. This penetration is 

independent of the amount of cycle net feedback but is 

reduced by the addition of code net feedback. (In the 

limit with 100% code net feedback the store penetration 
would be 6.25%).

2. Without feedback there is more than 50% overlap 

between the two classes. This is reduced progressively 

as cycle net feedback is added.

3. Both store penetration and store overlap (expressed as 

a fraction of store penetration) are reduced by code net 

feedback.

4. For test data (A) about 10% of the store penetrated 

is taught to output both 1 and 0 during the cycle of the 
input pattern.

The main point that this experiment shows is that 

for the useful range of feedback (defined in section 4.3.4) 

there is between 15-70% store overlap between two classes 

and in the order of 10% store overlap within class. What 

is not shown by this experiment is the frequency of 

occurrence that these overlapped elements are accessed.

The properties of the exclusive-OR method of teaching will 

be discussed further in section 4.3.4.
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4.3.3 Investigation of the code net store.

The experiment in this section is designed to 

demonstrate some of the properties of the code net and the 

effect of feedback from the output of the code net on the 

classifier. As the teaching method for the cycle net was 

not very effective the code net was tested with fixed, 

untaught stores for the cycle net as well as the taught 

cycle net. The SLAM element may have any predefined truth 

table loaded into its stores so that it performs a particular 

function. The functions that were used in the cycle net are 

shown in Fig, 4.3.5. The probability of a 1 being output 

for a random input is also shown (Pr),

The code net consists of T.R. SLAM-16s hence, after 

teaching, their stores may be easily analysed. The results 

are shown in Figs. 4.3.6 to 4.3.8. The elements of the 

T.R. SLAMs have been divided into three types; valid, 

untaught and overtaught. These values have been plotted in 

the graphs. The different type of cycle net stores which 

have been used are set along the x axis in order of descend­

ing penetration of the T.R, SLAM store. All the experiments 

were those with the type (B) test data and with several 

values of feedback from both the cycle and the code net.

After each store was recorded the classifier was 

tested with the training set again and the average response 

after 200 steps was recorded. When there was no feedback 

from the code net the average response was in nearly all 

cases 100% correct but the average number of valid outputs
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was always less than 2%, which implies that the classifier 
in this form is not suitable for the task. This will be 

discussed further in the next section.

With feedback from the code net there were always 

many more valid outputs (the lowest observed average valid 

output was 9%), However, the correct response was only 

obtained on a few occasions. These are listed below.

Average Responses

%
code
net
feed­
back

To □ To Q

cycle
net
feed­
back

cycle net 
store

% data 
response

valid 
% re­
sponse

% data 
response

valid 
% re­
sponse

8.3 16.6
(2)

2T/P x OR 98 58 70 58

8.3 16,6

gate

(3)
Random 67 38 56 36

25 8,3

Store

(9)
Majority 99 27 54 27

8.3 16.6

gates

(5)
AND-OR 98 59 97 52

25 8.3

gates

(5.)
AND-OR 67 19 52 19

8.3 16.6

gates

(1) 
x OR 61 48 76 40

25 8.3

gates
(2)

21/P x OR 65 42 51 40
gates

7*
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Each test was repeated 4 times with different initial 

starting values for the feedback. The results above 

indicated by * gave the response shown for some starting 

values but gave an incorrect response for others. (A 

correct response for the two-class case, which has been 

investigated, occurs if the data response is 50% for the 

correct class,)

In the results, one example of 0%cycle net feedback 

is given (with 8.3% code net feedback), Results have also 

been obtained for 0 and 16.6% code net feedback and they 

are very similar to the example plotted. The example shows 

that there are very few valid elements and this means that 

only part of the correct codeword can be generated and 

meaningful classifications cannot be made. Although the 

classifier could usually classify the training data with 

about 1% confidence#when it was tested with other similar 
data it usually gave a zero output.

4.3,4 Observations from the experiments.

1. Code net feedback .

The different amounts of code net feedback which 

were used to test the classifier are 0, 8.3, 16.6 and 25%. 

Considering test data (B) with no code net feedback, there 

is no definite latching into one state when the one 

defining feature occurs and the activity of the outputs of 

the cycle net during the cycle were always very similar for 

both classes. For 25% feedback the random map used implies
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that every SLAM in the cycle net receives one code net 

feedback connection; then the system tended to latch into 

one of the two classes and after the first few steps of 

the input sequence the classifier was set in one class 

and never changed. This class was often determined by 

the initial feedback pattern and was rarely determined by 

the input sequence. For test data (A) similar effects 

were observed but these were not as marked as for test 

data (B). This is due to the fact that with the test data

(A) there is a 'clue' to which class the input belongs to 

whenever the sequence is started whereas with test data

(B) there is only one part of the cycle which defines the 

class.

If 25% feedback is used the cycle net is parti­

tioned by the codeword on teaching into two similar 

learning networks of SLAM-8s. Hence, no overlap on 

teaching occurs. However, one would expect that once one 

codeword has stabilised (i.e,, one network has been 

selected) that a lot of change at - the input would be 

required to make a change to the other class. This explains 

why the test data (A) and (B) were unable to change the 

classification once it had been established. Further 

increase in code net feedback (for the two-class case) will 

make matters worse#especially when the cycle net is taught 

as many 4-tuple input patterns which may easily occur 

during testing cannot occur when training.

Hence, for the two-class case the code net feed­

back must be less than 25%, both 8,3% and 16.6% feedback

were found to be useful
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2, Cycle net feedback.

To define useful limits for the cycle net feed­

back is more difficult than for the code net as the nature 

of this feedback depends on the functions of the SLAM 

stores or the method of teaching the cycle net. Values 

of cycle net feedback between 0 and 50% were investigated. 

In general, small values of cycle net feedback were the 

useful.For test data (B) the only correct results were 

obtained when values between 8.3% and 25% feedback were 

used. For test data (A) where this type of feedback is 

not essential, the best results were obtained with feedback 

in the range 0 to 25%. However, some correct results were 

obtained with more feedback.

Once more than 25% feedback with 4 input SLAMs is 

used the system becomes potentially unstable as one output 

may affect two others on the next cycle and four others on 

the next, etc. Therefore, although the classifier may 

work with more than 25% feedback, one must remember that 

it is potentially unstable.

3. The performance of the classifier.

The classifier did not classify the real data 

.reliably over a range of values for feedback for any of the 

stores of the cycle net used. The behaviour of the 

classifier was rather erratic in that it might work for two 

values of feedback but not for a mid value between them.

This may be due in part to the small size of the learning 

network used. What is clear however, is that when the cycle
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net is tested with the training set it does not go into 

the cycles it was originally taught and the cycles it 

does go into are usually very similar for both classes. 

Further developments of the classifier are considered in 

the Conclusion (section 7.2).

4. The performance of the exclusive-OR method of teaching.

When compared with set stores in the code net 

store experiment the exclusive-OR method of teaching does 

not behave very well. As far as activity at the outputs 

is concerned (measured by the penetration of the code net 

elements) it is lower than any of the set stores for four 

input cycle net elements including the random elements 

(which are the initial states of the stores before exclusive- 

OR teaching). However, the number of valid elements in the 

code net created by the taught cycle net is similar to the 

number created by the set stores (i.e., the ratio of valid 

to non-valid elements is greater for the taught case).

From this one might qxpect a better performance from the 

taught cycle net but this has not been observed. The poor 

performance may be due to the store overlap which occurs 

when teaching the cycle net (see section 4.3.2).

Two methods have been tried to improve the 

performance of the exclusive-OR teaching method. The first 

was only to teach part of the learning network and to leave 

the rest random, and the second was to teach the cycle net 

for a fraction of the time that the input is presented. 

However, neither of these methods produced a noticeable 

improvement„
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4.4 Shift Register Classifier.
4.4.1 Structure.

The general structure of the shift register 

classifier is shown in Fig. 4.4.1. The 4-bit tracking 

movements are fed directly into a 4-bit wide shift 

register which has a maximum length of 64 steps. The 

contents of the shift register are randomly connected to 

the input of a set of learning networks. There are N 

learning networks with their inputs connected in parallel. 

Each network represents one class of patterns hence, N 

classes may be taught. The first learning network is 

shown in more detail in Fig, 4 „4.1. All the teach sense 

inputs are set to 1. The outputs are summed to obtain 

a response.

Initially, all the SLAM stores are set to 0 

(i.e,, will give a 0 response for all inputs). During 

training the learning network of the relevant class is 

clocked when the input sequence is applied. When the 

input sequence is used to test the classifier this learning 

network will output a maximum response. In general, a 

classification is made by comparing the average responses 

from all the learning networks, and the highest average 

response decides the class.

4.4.2 Peformance of the classifier.

Tests to evaluate the performance and properties 

of this classifier have been conducted using test data (A).
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Figure 4,4,1 Shift Register Classifier
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Each test involves two learning networks. One learning 

network is taught to output a high response when tracking 

data for the circle is input and the other is taught to 

give a high response for the triangle. Four different 

types of SLAM learning networks have been tested in this 

way, these are:-

1. Normal SLAM learning network, 64 SLAM-16s.

2. Probability SLAM learning network

(probability = 1/16).

3. Probability SLAM learning network

(probability = 1/4).

4. 4-layer CL SLAM-16 learning network,

256 SLAM-16s.

Further details of the construction of these learning 

networks are given in Chapter 5.

Several different sizes of shift register were 

tested and the longest (64 steps) produced the best 

results. The results given in the table below were the 

best obtained. 150 steps of each class were taught to the 

learning networks and a subsequent 200 steps of each class 
was used to test them.
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Average % Average
Response Responsi
from 0 from A
Learning Learnini
Network. Network

1. Normal SLAM Net

Test with 0 98.9 95.0

Test with A 90.2 98.9

2. Probability Net 

Prob. 1/16

Test with 0 63.2 54 .0

Test with A 57.0 64.7

3. Probability Net 

Prob. 4/16

Test with 0 91,9 83.4

Test with A 84.2 93.6

4. CL SLAM Net

Test with 0 81.1 70.3

Test with A 72.9 83.1

In all the above cases the correct class could be detected 

by the highest response. An illustration of how the 

response at the output appears is shown in Fig. 4.4.2.

This example is for the CL SLAM learning network structure. 

Fig. 4.4.2(a) shows how the output response varies when the 

circle is being taught and (b) when the triangle is taught. 

The responses for both learning networks when tested with
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the circle are shown in (c) and when tested with the 

triangle are shown in (d),

The shift register method has two fundamental 

problems, size invariance and overteaching.

The size invariance occurs because the shift 

register is of a fixed length whereas the length of the 

input sequence depends on the size of the input pattern.

Hence, for different size input patterns, the features will 

occur at different relative positions in the shift register.

Overteaching occurs because many very different 

patterns occur in the shift register and they are all 

taught to the learning network. The normal SLAM network 

gives very high responses to all input sequences after being 

taught only one of a class. This overteaching is reduced by 

the net organisation in the other learning networks tested. 

However, if several examples of a class are taught, then 

these other learning networks also become saturated.

One possible method of overcoming the overteaching 

problem is to only teach the learning network when a new, 

completely untaught, set of data is in the shift register(e.g,, 

once every 64 steps for a 64 step shift register). An 

example of how the classifier behaves in this situation is 

shown in Fig. 4,4.3, The shift register is of length 64 

and the learning network is the 64 normal SLAM type. The 

learning network is taught three times during the 150 steps 

for teaching (i.e. once every 64 steps). In this case, the
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correct classification could be obtained by detecting the 

highest peaks in the response „ In general, however, this 

method has produced many more problems e.g.

1. When classifying, the frequency of occurrence of the 

peaks should also be considered and this is 

complicated by the fact that the input sequence 

frequency 'beats' with the teaching frequency. This 

can be seen in Fig. 4.4.3.

2. When teaching a set of input patterns, they should all 

be synchronised i.e., teaching should only occur at 

the same relative positions for each input pattern.



Chapter 5
The Learning Elements And Networks

In this chapter the learning elements used in 

the learning networks are considered in detail. The 

element from which the others have been derived is the 

SLAM-16 and this is described in section 5.1.

The way in which this and alternative elements 

may be organised to distinguish between two classes is 

considered and, in section 5,5, the different elements 

are compared.

5.1 The SLAM Element.

5.1.1 The SLAM-1 6 .

A SLAM (Stored Logic Adaptive Microcircuit) is 

a random access memory (RAM) used as an adaptive logic 

gate. A SLAM-16, for example, is a 16-bit RAM and 

therefore has four address inputs, which are the data 

inputs for that element. If a 1 is written in to the 

memory for a particular 4-bit input pattern, then this 

element will produce a 1 at the output if this input 

pattern reoccurs. It can also be taught to associate a 

0 output for a particular input pattern. The writing 

input to the memory is referred to as the teach terminal.

An illustration of a SLAM-16 showing its terminal functions 

is shown in Fig. 5.1.1.

A collection of these elements has been connected
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(16 bit RAM)

7  V
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Teach Input Clock Input 
(data input) (data write strobe)

In the general case the n input SLAM contains 

2n binary storage elements, (j)̂ - and is called a

SLAM-(2n ) „

The function of the element is defined by:

j=2n~l
F = U  *3

j=0

where <x^> is the jr minterm of the inputs X^ - Xn - 

The teaching function is defined by:

4>j * = <Xj>„T„C + .c".<xV>

where <j>̂ ' is the next state of <j)j

T is the Teach Sense Input value

C is the Teach Clock Input value.

Figure 5,1,1
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to form a learning network. Usually the inputs of the 

elements are randomly distributed in an input 'retina' 

so that each SLAM samples a random 4-tuple of this total 

input. The learning network can be taught to associate 

any one pattern applied to the teach sense terminals 

with a particular pattern in the input space. Hence, 

after teaching, if that input pattern is reapplied to 

the learning network the taught pattern will be generated 

at the output.

A learning network of these elements is able to 

generalise, in that if it is taught to output a particular 

response for a class of input patterns then it will output 

a similar response when tested with an unseen pattern 

which is similar to the training patterns in Hamming 

distance. This has been dealt with in d e t a i l ^  for the 

case where the learning network is initially reset and is 

then taught to output all 1 's for a set of input patterns.

Throughout this project only SLAM-16s have been 

considered. The effect of varying the number of inputs of 

the elements for the tasks which have been considered here 

is not known. It is almost certain that four inputs per 

SLAM is not the optimum and it must be understood that 

this is a constraint on the system. Further work could be 

carried out on trying to discover the optimum for this 

task. This is considered to be outside the scope of the 

present thesis. The SLAM-16 was used as the hardware 

learning element in the 'Minerva' learning machine (see 

section 5.2) and it is also convenient to use one 16-bit 

word of the computer store in the simulation of such an
element.
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5.1.2 The 2-class learning network.

1
A task which is often required of learning 

networks is to distinguish between two classes of inputs, 

(e.g. the tracking system learning modules, see section 

3.2.1).

This is usually achieved by using two learning 

networks, one for each class. These learning networks 

are initially reset and are taught to output all l's for 

their particular class. The class of an unseen pattern 

is decided by the learning network with the highest 

response. The performance of such a learning system, if the 

sameinput mapping is used for both learning networks, is 

similar in basic structure and performance to a single 

learning network ofT„R.SLAMs which is described in detail 

in section 5,5,4,

Another, usually less successful, method is to 

use one learning network, This is taught to give an output 

of all l's for one class and all 0 's for the other, and 

the response to a test pattern is obtained by summing the 

number of l's appearing at the output. This response can 

be compared with a threshold (usually set at 50%) to 

decide the class of the input.

This network may be realised by SLAM-16s. All 

the teach sense terminals are connected together so that 

all l's or all 0 's can easily be presented to them and 

all the teach clock terminals are connected together so 

that all the SLAMs may be simultaneously taught. This
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network will always reproduce the response for the last 

pattern taught. However, especially if the Hamming 

distance between the two input classes is small, the 

learning network will be unable to give the correct maxi­

mum or minimum response to patterns used for training 

but may give a response great enough for the two classes 

to be distinguished.

5.2 M i n e r v a ,

Minerva is a hardware machine which contains 

1280 SLAM-16s. These SLAMs are organised in two layers 

1048 in the first which have their outputs connected to 

256 in the second. In this project, the second layer 

has not been used and no further reference will be made 

to it.

Minerva is organised into 256 cards each contain­

ing 4 SLAM-16s. One card at a time is accessed by the 

computer. This can be done by outputting its address 

directly from the computer, or by incrementing a hardware 

counter in Minerva through a consecutive stack of cards.

One of these cards is shown in Fig. 5.2.1. The input is 

a 16-bit word from the computer, common teach-sense and 

teach-clock terminals are available to the computer (via 

pulses on output control lines) and a 4-bit output from 

the card is input to the computer.
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In all possible cases, experiments have been 

conducted both with Minerva and by computer simulation 

of SLAMs. The advantage of Minerva is that it is about 

50 times quicker than the simulation. The main 

disadvantage with Minerva is that the teach sense and 

teach clock terminals are common for sets of 4 SLAMs and 

for many structures it is desirable to access these 

terminals separately. Minerva is being further developed 

and in the future separate access to these terminals will 

be possible.

5.3 Probability Learning Networks.

The probability learning network is a structure 

of SLAM-16s in which an attempt has been made to reduce 

the effect of the last pattern taught. This structure 

is primarily intended for cases when the learning network 

is taught to output a response as described in section

5.1.2. The problem with teaching all the SLAMs for one class 

is that when the two classes are similar then many of the 

4-tuple samples input to the SLAMs will be common to both 

classes and information in these SLAMs will be continuously 

overwritten as the alternate classes are taught. Hence, 

there will be a bias towards the last class taught.

To overcome this bias, the probability SLAM 

network is used, in which only a randomly chosen fraction 

of the network is taught for each input pattern. This 

has been designed to be realised with Minerva or by
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simulation. A standard size learning network of 6 4 
SLAM-16s has been chosen for this structure, although in 

practice, any multiple of 16 SLAM-16s may be used in the 

same way. The structure of this learning network as 

realised by 16 Minerva cards is shown in Fig, 5.3.1. The 

input matrix is 16x16 bits (i.e., the standard size for 

the software system). The output matrix is 4x16 bits 

which may be summed to obtain a response as before. All 

the teach sense terminals are connected together and 

hence they can all be set at 0 or 1 depending on which 
class is being taught. The teach clock terminals of the 

different cards are connected to different bits of a 16-bit 

teach clock vector. Only the cards which are associated 

with bits in the teach clock vector that are set to 1 will 
be taught.

The teach clock vector is generated by a random 

number generator which is designed to set N bits randomly 

in a 16-bit word. Where N is a preset, value (L£N<16) and 

determines the fraction of the learning network to be 

taught when it is clocked.

Hence, if N = 4 , for example, a randomly chosen 

quarter of all the cards will be taught at a time, if N=1 

then l/16th of the cards will be taught at a time.

The advantage of this learning network is that 

if N=1 for example, then only 1/16th of the SLAMs will be 

taught to the last class taught. Hence, only in the 

order of l/16th of the SLAMs common to both classes will
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be taught to output for the 'last class taught'.

The main disadvantage of this learning network 

is that if n=l, for example, only l/16th of each input 

pattern will be taught to the learning network and the 

rest will be ignored.

One method of teaching this learning network is

to start with n=16 so that the learning network is rapidly

taught and then, as teaching progresses, decrease n

slowly until n=0. In this way the effect of the last

pattern taught is removed. This method of teaching with

(14)'aging' has been investigated elsewhere .

The performance of this learning network is 

investigated in section 5.6.

5.4 The Cumulative Learning SLAM Element.
5.4.1 Structure of the element.

The Cumulative Learning SLAM, or CL SLAM, has 

been developed to be sensitive, during training, to occur­

rence frequencies of n-tuples and, in this way, to overcome 

partly the bias towards the more recently taught patterns. 

The CL SLAM has a numerical output the value of which is 

related to the frequency of occurrence of the input 

pattern during training.
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The CL SLAM contains a stack of normal SLAMs. 

Fig. 5.4.1 shows a 4 output CL SLAM-16. Hence, 4 bits 

of output information are associated with every 4-bit 

input pattern. The teach clock terminals are connected 

together to form a single teach clock terminal for the 

element. The four outputs from the element represent a 

4-bit binary number. The output number is fed to an adder 

unit which is connected to the teach sense terminals of 

the SLAMs. The teach sense input for the element is also 

connected to the adder unit which works on the following 

principle. When the teach sense terminal is 1 the output 

is made 1 higher than the input. When the teach sense 

terminal is 0 the output is made 1 lower than the input. 

Saturation occurs at 15 when ascending and 0 when descend­
ing. (When this element is used for the 2 class learning 

network saturation occurs at 1 when descending so that a 
mid value '8' exists which corresponds to a 50% output).

Therefore, when an input pattern is taught to 

the CL SLAM and the teach sense terminal is 1 then the 

SLAM will be taught to output a number one higher than 

it did for that pattern before teaching i,.e,, the number 

associated with that input pattern is incremented by o n e .

Hence, if the teach sense terminal is held at 1, 

the output number represents the number of times that the 

input pattern has been taught until, for a 4 output 

element, the output reaches 15. Then the system saturates 

and continues to output 15 unless the element is taught 

with the teach sense terminal at 0 and then the element
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will output 14. The system similarly saturates at 0 

when descending.

The concept of frequency of occurrence counting 

for n-tuple samples have been investigated by Bledsoe and 

Bisson^ ^ * where they use computer stored matrices for 

recording the exact frequency of occurrence of each n-tuple 

input pattern for each class during training. The CL SLAM 

described above if not allowed to saturate is capable of 

a similar function.

The CL SLAM may be realised in hardware by two 

standard integrated circuits, a 64-bit memory and a 4-bit 

adder and it could easily be made on a single MSI

(39)integrated circuit. A patent has been applied for for 

the concept of the CL SLAM.

The CL SLAMs that have been used for this 

project are 4 output CL SLAM-16s hence, they require 4 

times the amount of store used by a SLAM-16.

5.4.2 CL SLAMs in a 2 class learning network.

The CL SLAM can be organised to perform the 

two class learning network problem described in section

5.1.2. The output numbers from the CL SLAMs are numerically 

summed to give an overall response. Teach sense and teach 

clock terminals are connected together, as before. If a 

particular 4-tuple pattern occurs for one class only, then 

this CL SLAM will eventually saturate and give a large output
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denoting an important feature. If a 4-tuple is common to 

both classes then the number associated with it will be 

incremented for one class and deincremented for the other 

and should remain near the neutral value '8 ' which 

indicates neither class.

With this learning network, the last pattern 

taught can only produce a maximum of l/16th change in the 

overall responses, and also every bit (as opposed to the 

fraction in the last section) of all the input patterns 

is considered during teaching. The cost for this is that 

with 4 output CL SLAMs 4 times the amount of store is 

required. The performance of this learning network is 

investigated in section 5.6,

5.5 The Ternary SLAM Element.
5.5.1 The T ,R , S L A M .

The Ternary or T.R. SLAM has been developed 

primarily for extracting features, especially where cycling

is concerned» and the output of these SLAMs are used for 
feedback, as seen in section 4.2.3,for the classifier code 
net. The aim of the system is to distinguish between unseen, 

ambiguous and unambiguous n-tuple patterns. Only the latter 

are said to be 'valid'. There are two reasons for which the 

output of a SLAM could be considered as not being valid. 

Firstly, if the input pattern had not occurred during 

training, then the output is the initial value before 

training and hence of no informational value. This is the
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'unseen' case, Secondly, the input pattern may be common 

to both classes and takes the value of the last class 

taught. This is the ambiguous case.

With a normal SLAM output there is no informa­

tion indicating if an output is valid or not. The Ternary 

element has three output states 'valid' 1, 'valid' 0 and 
'not valid'. (In practice, there are two distinct 'not 

valid' states but this fact is only used internally by the 

SLAM) .

A T.R. SLAM-16 is shown in Fig. 5.5.1. Two 

SLAM-16s are used with their inputs coupled together, 

hence there are two bits of information associated with 

every input pattern. There are two binary outputs from the 

T.R. SLAM. One is called the 'data' output and the other 

the 'valid' output. There are four possible output states 

and these have been defined as follows.

Valid Data

0 0 => unseen

1 0 => taught 0 f
unambiguous

1 1 => taught 1J
0 1 => overtaught (ambiguous)

Initially, both SLAMs are reset and all outputs 

are in the untaught state., When taught a 0 or a 1 the 

valid output becomes true and the data output indicates 

the value taught. If the output is valid and it is taught

to output the opposite value to that which it is already
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valid for the fourth state, the overtaught state, .is 

entered. This last state is permanently 'not valid' and 

no further teaching will have any effect until the T.R. 

SLAM is reset again.

j

The above output states can be realised in 

hardware by the logic shown in Fig. 5.5.1. The two teach 

terminals are connected together and form a common teach 

clock terminal. The extra logic generates the required 

values for the two teach sense terminals and the Boolean 

equations which are realised by this logic are also given 

in Fig. 5,5.1.

To construct T.R. SLAMs the teach sense terminals 

must be accessed separately and this is not possible with 

the present form of Minerva, hence, all experiments with 

with T.R. SLAMs have been done by computer simulation.

5.5.2 T.R. SLAMs used in the classifier.

When using T.R. SLAMs in the code net for the 

classifier (see section 4.2.3), a lot of overteaching was 

experienced, hence for the majority of the time which the 

input sequence was applied, the output of each T.R. SLAM 

was not valid. However, the output of the SLAMs is fed 

back to the classifier and this feedback must have a 

value even when the T.R. SLAM output is not valid. To 

overcome this problem the 'last valid output' is remembered 

and is fed back to the classifier until another valid

output occurs.
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This additional memory may be added to the 

T.R. SLAM element by the use of a D flip-flop as shown 

by the broken lines in Fig. 5.5.1. When the valid 

output is true then the output of the flip-flop follows 

the input (which is the data output). When the valid 

output is false then the last valid data value is 

retained by the flip-flop.

5.5.3 Two features of T.R. SLAM learning networks.

When using a collection of T.R. SLAMs for a 

learning network two additional features of the learning 

network can be observed. Firstly, after training, the 

stores of the SLAM elements can be examined and the number 

of untaught, valid taught and overtaught states can be 

obtained. From this information some measure of the 

usefulness of individual n-tuples can be obtained. Also, 

some measure of the expected performance of the learning 

network can be obtained from this information. This 

feature has been used in analysing the classifier (see 

section 4.3.3). Secondly, when, after training, the 

learning network is tested the number of valid outputs 

which occur can be used to generate a confidence level 

for the response of the learning network. This feature 

is used by the classifier and is also considered in the 

experiments in section 5.6,

The main disadvantage with the T.R. SLAM is 

that if it is taught a rogue pattern (e.g., a pattern of 

the wrong class) then many of the useful valid states will
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be overtaught and made permanently invalid.

If it was realised that a rogue pattern had been 

taught some recovery could be made by setting all the 

overtaught non-valid states to untaught non-valid states 

and then training could be continued. In practice, this 

could easily be achieved by scanning through the 16 states 

of each T.R. SLAM and changing the overtaught ones as they 

occur.

5.5.4 T.R, SLAMs in a 2-class learning network.

The T,R. SLAM can be organised as a two-class 

learning network (i.e., for the task described in section 

5.1.2). The teach-sense terminals and teach-clock 

terminals are connected together as with the normal SLAM 

learning networks. The output response must be calculated 

in a different way. For a normal SLAM network the number 

of outputs which are 1 are summed and expressed as a 
fraction of the total number of SLAMs. For a net of T.R.

SLAMs the number of valid outputs which are 'one' must be 

expressed as a fraction of the total number of valid outputs. 

The total number of valid outputs should also be noted to 

give a confidence figure for the response.

For example, if for a learning network of 64 

T.R. SLAMs only one output was valid, then the response 

would be 100% for the class of that output. This decision 

has been made by considering only one unique 4-tuple of a
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256-bit input and it is important to indicate this fact. 

Noting the number of valid outputs will achieve this e.g., 

if the output is stated to be 100% for a class when only 

l/16th of the learning net output is valid.

For a learning network of N TR SLAMs used in a 

two-class classifier it is possible to express both the 

data response and the valid response in terms of a total 

response 'R' which may be defined by the following 

formula

R = (D + 2lV)

where R is the total response (% of N)

N is the total number of T.R. SLAM elements 

D is the number of 1 valid outputs 

V is the total number of valid outputs 

(e.g., if there is only 1 valid output and its value is 1 
and N=64, then the total response R=50.9%).

The above learning network has not been investi­

gated directly in the tracking system experiments. However, 

if one considers the maximum-response learning system 

described in section 3.3 the structure used there is very 

similar to a net of T.R. SLAMs. For the case where the 

input mappings are identical (see section 3.3.5), the 

performance of that tracking system is identical to that 

of a learning network of T.R. SLAM-16s when a two-level 

threshold is set at the output.
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5.6 Experiments With 2-Class Learning Networks.
5.6.1 The structure of the experiments.

To illustrate the properties of the different 

SLAM elements described in this chapter and to compare'''the 

performance of these elements when used in the two-class 

learning mode two experiments have been conducted. The 

learning networks which have been used are described in 

the following sections

Normal SLAMs 5.1.2

Probability Learning Networks 5.3

CL SLAMs 5.4.2

T.R. SLAMs 5.5.4

These experiments were conducted with the sub­

system shown in Fig, 5.6,1. More details of this subsystem 

are given in section 6.4.2,

When a 16x16 bit input pattern is presented to 

the subsystem it is randomly mapped into a second 16x16 

pattern. This second pattern is then presented to the 

different learning networks. Hence, the same 4-tuples are 

sampled by all the learning networks. The teach-clock and 

the teach-sense terminals of the different learning networks 

are commoned together. Hence, all the learning networks 

receive the same input data and the same teaching stimulus. 

All the outputs are summed to form a response as described 

in the relevant sections above.
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Figure 5,6,1



185

Before an experiment is conducted, the SLAM 

stores are initialised in the following way. For the 

learning networks which contain normal SLAM-16s half of 

the SLAMs are set and half are reset hence a 50% output 

response will be obtained for any input pattern. The CL 

SLAM learning network has all its stores set at 8 hence 
this learning network will also output a 50% response 

to any input pattern. The T.R. SLAM learning network has 

all its SLAMs reset hence no valid outputs which implies 

a 50% response.

5.6.2 Dependence on last pattern taught.

The first experiment is designed to demonstrate 

how the last pattern taught affects the performance of 

the learning networks.

The input data is in the form of two sets of 

handwritten characters on 16x16 matrices. The characters, 

chosen for the two-class, are '3's and '8's which is a 
difficult task as there is only a small Hamming distance 

between them. Each class contains 260 patterns.

The experiment is conducted in the following way;

1. The first 3 is taught to the learning networks 

to output a high response,

2» The average response of the learning networks 

for the next ten (i.e., untaught) 3s is

obtained.
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3. The average response for the first ten 

8s is obtained*
4. The first 8 is taught to output a low 

response.

5. The average response for the next ten 

3s is obtained.

6. The average response for the next ten 8s 
is obtained.

7. The second 3 is taught for a high response.

The above sequence is repeated 250 times, then the learning 

networks will have been taught 250 patterns for each class.

The average response to the next ten untaught 

patterns is used to measure the performance of the learning 

networks with respect to that class. A standard test set 

was not used as with only ten patterns it may not be typical 

of the class*

From the results of this experiment four graphs 

have been drawn for each learning network by plotting the 

average response versus the number of patterns taught.

The graphs show the following response:

LALH (Low After Last High) this is the performance 

of the learning network to the low response 

class (8s) after the last pattern taught was

of the high response class (3s) .

HALH High performance after last class taught is 

high.
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LALL Low performance after last class taught 

i s low.

HALL High performance after the last class 

taught is low.

These graphs are shown in Figs. 5.6.2 to 5.6.7 

and we recall that the object is to separate the high 

from the low.

In Fig. 5.6,2 the graphs from the normal SLAM 

learning network are shown. The last pattern taught 

alters the response to both classes by about 20%. This 

implies that about 20% of the input 4-tuples are common 

to both classes. There is a lot of confusion between 

LALH and HALL graphs in the range 40-60% response. This 

means that a threshold cannot be set at 50% to separate 

the two classes. It may be possible for a threshold to 

be set at another value but to do this one must know which 

class was the last one taught. After the first ten pairs 

of patterns have been taught, further teaching has very 

little effect on the performance.

In Fig. 5.6.3 the graphs for the probability 

learning network with n=l are shown. For this case, 

learning is much slower as only 1/16th of the learning 

network is taught at a time. About 100 pairs of patterns 

are required to teach the learning network so that further 

teaching has little effect. The shift due to the last 

pattern taught is in the order of 1-2% for the responses 

from both classes. This agrees with the expected value
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which is l/16th of the value for the normal SLAM learning 

network i.e«, 1,25%, The graphs for the probability 

learning network with n=4 are shown in Fig. 5.6.4. The 

separation between the classes is about the same.

However, only about 30 pairs of patterns need be taught 

before further teaching has little effect. The shift due 

to the last pattern taught is about 5% which is the value 

expected i.e., \ of the effect which was observed with 

the normal SLAM learning network.

In Fig. 5,6,5 the graphs for the CL learning 

network are shown. In this case there is a rapid improve­

ment in the performance for each class while the first 30 

pairs of patterns are taught. Then the CL SLAMs begin to 

saturate and further improvement is much slower (~5% for 

each class after the next 200 pairs of patterns have 
been taught). There is about 2% change in performance 

due to the last class taught which agrees with the expec­

ted value of 1/16th of the normal SLAM learning network 

response i.e,, 1.25%. The separation between the classes 

is better for the CL SLAM learning network than for the 

other learning networks tested.

To find the effect of not letting the CL SLAMs 

saturate,this experiment was performed on a learning 

network of 16 output CL SLAM-16s. These CL SLAMs can be 

incremented 32,768 times in either direction before 

saturation occurs. Hence, with a training set of 250
, i

patterns of each class saturation could not occur. The
0.

graphs for this learning network are shown in Fig. 5.6.6,
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the Y axis scale has been magnified as the maximum change 

in response possible is only 250/32,768=0.8%. The effect 

of the last class taught is negligible. There is a 

steady improvement in the performance of this learning 

network while the 250 pairs of patterns have been taught. 

This learning network uses 16 times the amount of active 

store which is used by the normal SLAM learning network.

In Fig. 5.6.7 the graphs for the T.R. SLAM 

learning network are shown. The Y axis scale has been 

magnified for clarity. It must be remembered that the 

responses are obtained in a different way for this 

learning network than from the others in that the concept 

of valid outputs is implemented. After the first 20 

patterns have been taught the shift due to the last pat­

tern taught becomes negligible. The separation with this 

system becomes worse as teaching progresses. This happens 

because the learning network cannot forget anything it has 

been taught. In this experiment the input data is very 

diverse in Hamming distance and contains many poor 

examples of both classes. This 'saturation' of the 

learning network could be partially overcome by employing 

an algorithm which would reset all the overtaught states 

(as described in section 5,5,3) after a set number of 

patterns have been taught.

5.6.3 Classification ability.

The second experiment was designed to demonstrate 

and compare the ability of the learning networks to 

classify the characters of each, class.
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For this experiment the learning networks were 

organised to have equal amounts of active store. The 

CL learning network contained 64 4-layer SLAM-16s, the 

T.R. SLAM network contained 128 T.R. SLAM-16s and the 

probability and normal SLAM learning networks contained 

256 SLAM-16s each (hence, they cover the input matrix 

four times)„ By increasing the active store in this way 

one would not expect an improvement in the performance 

of the system, one would merely hope that the results 

obtained with the system would be more consistent.

The learning networks were taught 50 patterns 

of each class alternately (i.e,, in the same way as for 

the first experiment), The number of errors made with the 

training set of 100 patterns and with a test set of 100 
patterns (50 of each class) was then obtained.

These results are as follows:

CL

2

10

Learning Network

Normal Probability T.R.
— n=4Errors for training

31 14 0+2
set of 100 patterns

Errors for test set
46 32 13+5

of 100 patterns
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Two figures are given for the T.R. SLAM learning 

network. The first is the number of wrong classifications 

and the second is the number of occasions when there were 

no valid outputs hence, no classification could be made.

It is not possible for the T.R. SLAM learning network to 

misclassify any of the training set.

For the normal SLAM learning network all the 

errors were made for the first class i.e., the opposite 

class to the last class taught.

For the first experiment the average performance 

of the probability SLAM learning network appeared similar 

to the performance of the CL SLAM learning network (see 

Fig. 5.6.4 and Fig. 5.6.6) , However, the actual perfor­

mance of the CL SLAM network is in fact far superior (10 

errors for the test set compared with 32 for the probability 

learning network) .

The input data used was of a very poor quality 

to ensure that a comparison between the different learning 

networks could be made. Examples of these patterns are 

given in Fig. 5.6.8,
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Chapter 6
The Software System

In this chapter the software used for the 

experiments in this project is considered in detail. The 

aims and basic structure of the software system have been 

outlined in section 2.3.

In the first part of this chapter the main 

program and executive modules are described in detail. In 

the second part of this chapter the structure and function 

of the main experiment subsystems is described and a 

particular subsystem (experiment 9 which is used in Chapter 

5) is considered in detail. A list of the routines which 

are available to a user when writing an experiment subsystem 

is given in Appendix 2.

6.1 Details Of The Software System.
6.1.1 Structure of the system.

The structure of the system and the design 

considerations which led to this structure are considered 

in section 2.3. The final structure consists of a set of 

modules which may be classified in the following way:

1. A main program, this sets up the work­

space and allows on-line access and manipu­

lation of pattern data within this workspace.

2. An executive program which controls all 

the peripherals.
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3. An experiment subsystem to conduct the 

experiment.

4. A library of subroutines to be used by 

the above three modules.

5. An optional debugging module which may 

be loaded into the workspace when needed.

The main program and the executive program are 

described in sections 6.2 and 6.3 and then experiment sub­

systems are described in section 6.4. The library is a set 

of routines called by the other modules. When operations 

are carried out by library routines this is mentioned in

the descriptions of the modules. The Debug program is

(3)described elsewhere ' ' . A special version,developed for 

the system,contains all of the functions of the normal 

version, but is linked to the system via the executive 

module.

Examples of some of the functionsavailable are given

below:-

1. Break points - Programs may be stopped, examined and

restarted at locations defined by the 

user.

2. Core Insertion & dumping - DAP-like programs or data

can be typed directly into the store, 

also the store can be dumped in either

data or instruction formats.
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3. Core Searching - Selected areas of core store can be

checked for particular instructions 

or data words (or parts of words) 

and the locations where these occur 

will be output.

6.1.2 Inputting information to the system.

The system has been designed so that when a user 

wishes to input information to the system via the command 

device there are three standard formats which he can use.

1. A one- or two- character mnemonic. This format is 

usually used in a command status to specify the different 

functions available.

2. An integer number. This is assumed to be decimal but 

by preceding it with 'B' it will be binary or ,#l it will 

be octal. After the number has been input it must be 

terminated by a space or ', ' or '.' .

3. Yes/No answer. This format is usually used when a 

binary decision is required by the system from the user.

The system outputs a question which the user answers by 

inputting 'Y' or 'N'.

Everywhere, except in the experiment subsystem, 

only the above three formats have been used. Functions have 

been specified by two-character mnemonics to reduce the 

typing for the user and to simplify decoding in the program. 

Except for the most frequently used functions, the system 

outputs a message after a mnemonic function has been input
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which states either the action taken or what further 

information is required.

Binary pattern information may also be input by 

the system. The format of this information depends on the 

peripheral concerned, there are two standard formats for 

representing a 16x16 bit pattern.

1. Paper tape format. This consists of a 'rubout'

(i.e., all 8 holes punched) followed by 32 8-bit frames 
to specify the pattern,

2. Magnetic tape format. This consists of 16 16-bit 

words to specify the pattern.

6.1.3 Computer organisation.
\

A summary of the main peripherals used by the 

system is given below. These peripherals will be referred 

to in later sections. 1

1. Teletype. A standard ASR 33/35 teletype: 10 characters/

second. Information may input or output 

in either character or pattern (paper tape) 

format.

2. Vista. A 'CASE Vista' visual display terminal which

has a solid state keyboard and a cathode ray 

tube display of 20 lines of characters.
Character information may be input from or 

output to this terminal. This will be 

referred to as the Vista in the rest of the

chapter
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3. Paper tape stations. There are two paper tape

stations which can read and 

punch paper tape. The paper 

tape may be in character format 

or pattern format.

4. Line Printer. The line printer has a 96 character

line and can output 300 lines a minute.

5. Magnetic tape unit. A standard Honeywell 50,000 bits/

sec. magnetic tape handler. It 

treats data in core transfers of 

16-bit words and requires a 

software handler.

The above devices are standard computer peripherals. There 

are some non-standard-; peripherals which are listed below.

6. T.V. Camera. This requires a software handler to

obtain a 16x16 matrix from a scene. The 

data is stored as a pattern in the computer. 

Further details are given in section 2.2.

7. Minerva. A hardware learning machine closely linked to

the computer. It always completes an operation 

within 1 computer cycle hence, it is not 

programmed as a peripheral. It's instructions 

are treated as an extension to the standard 

instructions of the computer. Details of the 

organisation of Minerva are given in section

5.2. Hardware details are described else-

(17)̂where
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8. V.D.U. A Visual Display Unit is available which

displays a 16x16 binary pattern of information

on an oscilloscope screen. This device time

shares whatever program is being executed

and continuously displays 16 consecutive words

of store. The time sharing has an overall

effect of reducing the effective speed of the

computer by 5%. Hardware details of this

i u (38)device are given elsewhere

9. Analog Plotter. There is an interface which contains

2 10-bit D to A convertors. This may 

be connected to a Hewlett Packard 

analog plotter. This has been used for 

plotting learning network responses and 

for plotting scan paths for the tracking 

system.

10. Disc. There is a disc unit which has a non-standard

handler. This has not been completed yet and is 

not available to computer users unless it is 

accessed by an operating system 'ADMOS' which

(4)
has recently been developed at this University 

This may be accessed by the special executive

described in section 6.2.5.
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6,2 The Executive Program.
6.2.1 Structure of the executive.

The executive program is 1,142 (Octal 2,200) 

locations long. The executive contains all the routines 

for controlling the peripherals. It has a command status 

which is entered when a program break occurs.

A program break may be caused by one of three 

occurrences

1. if octal 221 (character Q with control on the 

teletype) is input on the command device. This is 

the usual way to enter the command status;

2. if the start button on the computer console is 

pressed;

3. if an interrupt occurs from a device not enabled 

by the system. (This would usually indicate that 

there is a hardware fault).

The peripherals may be divided into two distinct 

types: the standard peripherals which use 8-bit words and 
the special peripherals which require software handlers.

6.2.2 Standard peripherals.

The peripherals relevant to this section and 

their mnemonics which are used in the system are as

follows:
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INPUT OUTPUT
Teletype TT TT

Vista VI VI

Paper tape Station 1 PR PP

Paper tape Station 2 R2 P2

Line printer - LP

(Null) — NO

Information may be input to and output from the 

system by two channels; a command channel and a data 

channel. The command channel is intended for inputting 

commands and for outputting messages from the system. The 

data channel is intended for inputting and outputting pat­

tern data. There are two additional output routines, one 

for the line printer and one for the Vista. These allow 

fast dumping of data. There is a special output channel 

which is labelled the mimic channel, this monitors both 

the input and the output information which passes through 

to command channel. This channel is primarily intended for 

creating a hard copy via the line printer or paper tape 

punch w h e n’ the command device is the Vista so that a 

permanent record of the experiment may be obtained.

A channel has the property that it may be assigned 

to any one of the peripherals listed at the beginning of 

this section. Initially, when the system is started, the 

channels have the following default devices.
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INPUT OUTPUT
Command Channel TT TT

Data Channel PR PP

Mimic Channel — NO

Hence, commands are input and messages are output on the 

teletype and pattern data is input and output on paper 

tape station 1. Data may also be output to the Vista or to 

the line printer by their special routines.

When a user wishes to write a subsystem two ways 

of inputting information are available to him (command 

channel and data channel input) and four ways of outputting 

information (command channel, data channel, line printer 

output and Vista output). To input data there are two 

routines, one for each channel. When a character (an 8-bit 
word) is requested, the appropriate routine is called. When 

the routine has obtained a character from the peripheral it 

returns to the program with the character in the right half 

of the 'A register',to obtain the next character the 

routine must be called again. Outputting, conducted by one 

of four routines, is achieved in a similar way. The 

character to be output is loaded into the right half of the 

'A register' and the routine is called, a return to the 

program occurs when the character has been output to the 

peripheral.

Hence the executive program deals only with single 

characters at a t i m e . The library contains many routines 

which use the above mentioned routines and enable the user
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to input and output information at a higher level. For 

example, for the command channel there are routines for 

inputting mnemonic commands and checking these with 

function lists, for inputting and outputting numbers, 

for outputting messages etc. For further details see 

Appendix 2.

With most operating systems these peripherals 

are time shared in an interleaved manner. However, for 

this system they have not been time shared for the 

following reasons

1. The time saved by time sharing would be 

very small for most of the processor time is usually spent 

in internal processing and very little time is used for 

dumping results while this processing is in progress.

2. The executive program would have to be much 

more complex and would also require much more store.

3. A useful feature of the system is that a 

user may stop the program when it is running and slowly 

step through it to see exactly what is happening. This is 

not possible if time sharing is allowed.

A user may change the allocations of the channels 

to the peripherals from the program by calling routines or

on-line when in the executive command status .
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6.2.3 Command status functions.

The executive command status allows channels to 

be assigned in the following way. One must first define 

the 'input' (or the 'output') to a peripheral then the 

channel may be assigned to the defined 'input' (or 

'output') peripheral. For example, to assign the output 

of the command channel to the line printer one would type 

DO LP (define output to line printer), OD (set command 

output to defined output). The command output may be 

returned to the default device (i.e., the teletype) by 

typing ON (command output normal).

The mnemonics for assigning the different channels 

are given below

INPUT OUTPUT

DEFINED DEFAULT DEFINED DEFAULT
Command Channel ID IN OD ON

Data Channel RD RN PD PN

Mimic Channel — _ MD MN

There are several options which may be set or reset 

by the user in the executive command status and these are as 

follows:- 1

1. Cancel Messages (set by CM, reset by P M ) . When this 

option is set there is no output on the command

channel. This does not effect the mimic channel.
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2. Tape Control (set by TC, reset by RC). When this

option is set the command input is taken from 

paper tape reader number one. This is 

conceptually different from assigning the 

command input to the paper tape reader. This 

appears different to the user in two main ways. 

Firstly, all commands input from the paper tape 

reader are mimicked on the command output device. 

Secondly, after a program break on the paper tape 

the system remains under tape control. If a user 

causes a program break then control returns to 

the defined command peripheral. This is a very 

important option, its use is demonstrated in the 

example in section 6.4.2 .

3. Vista Control (set by VC, reset by N C ) . When this

option is set the Vista completely replaces the 

teletype. Hence any references made to the tele­

type will be interpreted to mean the Vista. The 

Vista is a more convenient command device than 

the teletype and one very rarely wants to use both 

these peripherals at the same time.

4. DEBUG Option (set by $D, reset by N D ) . $D should only

be input when the debug program has been loaded.

This command makes the links with the debug program 

and allows DEBUG commands to be input within the

system
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5. Special Commands (set by SC, reset by N S ) . This

option is usually set. It checks each character 

that is input from the command device for the 

appearance of special characters. These charac­

ters are listed below with the functions that 

they incur once they are detected.

& This character forces the system into the main 

program command status.

* This forces the system into the experiment sub­

system command status.

$ This puts the system into the command status of 

DEBUG if it has been loaded.

3 This command must be followed by an argument 

n(04n*i7). It allows 8 different starting 
locations for the VDU to be remembered. When g)n 

is input the VDU is directed to the correct area 

of core store and neither command character is 

passed to the system. Hence the system is in 

exactly the same state as it was before the 

command was given. Sometimes a user may wish to 

input one of the above characters for a different 

function e.g. in typing a heading. To do this, 

the option must be reset.
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6.2.4 Special peripherals .

The magnetic tape is really a standard peripheral 

however, it requires a lot of software handling. As it is 

rarely used an optional subsystem has been written to 

operate it. This subsystem is separate from the executive 

and it is linked to the main program when it is used.

The special peripherals which are handled within 

the executive are the television camera and the VDU. The

graph plotter has not yet been written into the executive

however, it only uses a few instructions and any experiment 

subsystem which uses the plotter can easily contain these 

instructions within it.

The television camera is controlled by one routine. 

This routine outputs all the parameters to the camera,

obtains a matrix from the camera, stores it in a 16x16

buffer and returns. The camera may be operated in one of 

two modes:

1. The non-time sharing mode, in which the camera only 

inputs information from the scene when commanded to do so.

2. The time sharing mode, in which the camera will obtain 

a matrix from the scene when commanded to do so, as before, 

but it will continue to refresh this matrix with every scan 

of the camera maintaining the original parameter settings 

after it has returned from the camera routine.

The VDU must be used in a time sharing mode. One 

dedicated location in core is used to point to the area to
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be displayed. A routine in the executive ensures that 

the correct data word is sent to the VDU when it is requested. 

Sometimes it is advantageous to run the system without any 

time sharing peripherals. When this is required an option in 

the main program may be set which inhibits the VDU.

6.2.5 Special executive for ADMOS system.

A special version of the executive has been written 

which links with a general purpose fully time shared operating 

system 'ADMOS'.

In general, however, this version is not used very 

often for two main reasons. Firstly, the operating system 

uses more highly organised data structures than the usual 

executive which limits the effects of some of the options 

that are normally available to the system. E.g. when using 

the operating system one cannot stop the program to look at 

what is happening due to the time sharing. Secondly, the 

operating system requires 4K words of store (10,000 octal 

locations) which is far more than the normal executive and 

means that the data workspace available is greatly reduced.

The one advantage with this system is that the user 

can access the disc with the operating system which may be 

useful when much bulk data handling is required.
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6.3 The Main Program.

6.3.1 General outline.

The main program allows a user to access the data 

workspace which is divided into blocks of 16-bit words, it 

is 1,792 (3,400 octal) locations long. The on-line functions 

available to a user in the main program may be divided into 

three sections. 1. Camera control, 2. Data manipulation,

3. General purpose functions. These functions are described 

below. In the descriptions the following convention has been 

used

p represents a pattern number

n represents a number other than a
*

pattern number.

Almost all of the functions are actually conducted by library 

subroutines.

6.3.2 Camera control functions.

A set of commands enable all the parameters sent to 

the camera to be varied. These commands are as follows.

RI n move right* These commands allow the

LE n move left*  ̂ viewing window to be moved

UP n move up* n steps in any direction.

DN n move down* J

*
This indicates the command is sensitive to the global reset 
command RS which is described later.
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ZO n 

ZC n

TH n 

TS

SS

OD

DO

IH

IE

DG n 

IM p

Change the zoom value by n*

Change the zoom value by n* and maintain the 

position of the center of the viewing window. 

This changes the X and Y coordinates as they 

specify the top left-hand corner of the 

viewing window.

Change the light threshold by n levels*

Set the average threshold* to 1 after the zoom 

value has been output. This makes the hard­

ware averaging logic very sensitive to any 

picture elements which are 1.
(Show Status). This prints on the command 

device, the X address, Y address, zoom value 

and threshold setting.

(Origin Defined). A predefined set of values 

for the above four parameters are output to 

the camera.

(Define Origin). This command allows the above 

origin to be defined.

(Eye Inhibit). Set the camera in the non-time 

shared m o d e .

(Eye Enable). Set in time shared mode.

Set an n milliseconds delay* after a matrix has 

been obtained from the camera.

Move the matrix obtained from the camera to pat­

tern p.
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6.3.3 Data manipulation functions.

The commands which manipulate the patterns in the 

data workspace may be divided into smaller groups as 

described below

(a) Inputting patterns

IP p (Input pattern) Input a pattern from data channel

(paper tape format)

RE p (Read pattern) Input a pattern

(b) Editing patterns

AL p n^ n2 (Alter pattern) Put the number n2 into row
n-̂  of pattern p.

CB p n-̂  n2 (Change bit) Complement bit n2 on row n1
of pattern p.

(c) Manipulating a pattern 

CP p (Clear pattern)

FP p (Fill pattern)

IV p (Invert pattern)

MK p n (Mask pattern)

CR p 

AR p 

RU p n 

RD p n 

RL p n 

RR p n

(Clockwise rotate) 

(Anti-clockwise rotate) 

(Roll up)

(Roll down)

(Roll left)

(Roll right) j

Set pattern p to all 0.

Set pattern p to all 1.

Complement pattern p.

Set thè first n bits of 

pattern p.

Rotate pattern p by 90°.

Roll toroidally thè 

pattern p by n rows 

or columns.
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(d) Operations of one pattern on another 

IC p-|̂ p2 (Interchange)

AN p-̂  P2 (AND) Pattern p1 is ANDed with pattern p 2 .
The resultant pattern is in p2

OR Pl p2

X0 Pl P2
HD px p2

MP p2

(OR)

(Exclusive OR)

(Hamming distance) Print the Hamming distance

between p^ and p2 as a 

number and as a percentage. 

(Move pattern) Move pattern p.̂  to p 2 >

(e) Output a pattern

DP p (Display pattern) 

OP p (Output pattern)

PP p (Print pattern)

PB p (Print binary)

PO p (Print Octal)

LP (List patterns)

Display pattern p on the VDU.

Output a pattern on the data 

channel in paper tape format.

Print pattern p with X repre­

senting a 1 and space repre­
senting a 0 .

Print pattern p as 16 binary 

numbers.

Print pattern p as 16 binary 

coded octal numbers.

This command causes an entry to 

a general purpose pattern 

dumping subsystem. A block of 

patterns either 2 or 4 side by 

side may be dumped by any one of 

the four possible output methods. 

The characters to represent 1 and 

0 may also be defined.
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DC n^n2 (Display core) Core locations n ^ n 2 to 
n l+n2+15 are displayed on the 

V D U .

PV (Punch Visible) Allows a visible tape heading 

to be output on the data 

channel.

TV Allows a comment to be typed on 

the command device.

TP Allows a heading to be output to 

the line printer.

SN (Set net) This command enters a subsystem 

to allocate some data workspace 

for simulated learning elements. 

The SLAM simulators are then (at 

run time) only allowed to access 

this area.

ID (Inhibit display*) This inhibits the VDU so that 

the system may be run without 

any time sharing.

RS This command resets the next 

resettable command that is 

input. Resettable commands 

have been marked by *. E.g.,

RS LE will set the X coordinate

of the viewing window to 0 .
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There is a global command SQ n (sequence) which repeats 

the next data manipulation function n times incrementing 

the pattern number each time e.g. 'SQ10 CP 1* will clear 

patterns 1 to 10, For functions of type (d) where two 

patterns are involved, both these pattern numbers are 

incremented.

There is a second global command for functions 

of type (d) SH n (Sequence with Hold) this command is also 

for repeating a function n times but in this case only the 

second pattern number is incremented.

6.3.4 General purpose functions.

This section is concerned with all the functions 

not covered in the previous two sections. The most 

important of these are described below

CM, PM, TC and RC have the same effect in the main

program that they have in the executive.

PL (Punch leader) Output 100 blanks on the data

channel.

FF (Form feed) Space to next page on line printer.

VS p1 p 2 (View sequence) This allows a sequence of patterns

to be displayed on the VDU.

SD n (Set Delay) This allows a delay of n milli­

seconds to be set which occurs 

after each pattern pointed at by 

the VS command is displayed.

DI (Display eye) Point the VDU at the camera input

buffer
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6.4 The Experiment Subsystem,
6.4.1 Organisation of the main experiments.

During this project many different experiment sub­

systems have been written, the main ones are listed below. 

How these may be linked (by dumping the results from one and 

inputting them with the next set) is shown in Fig. 6.4.1.

Tracking Experiments.

All the tracking experiments have been conducted 

with two tracking subsystems: experiment 11 and experiment 
12. Experiment 11 is for experiments with the maximum 

response tracking system described in section 3.3. The 

learning networks may be organised in Minerva or by simula­

tion. Experiment 12 is for experiments which use only two 

learning networks to track with as described in sections

3.4 and 3.5. Both probability SLAM learning networks and 
CL SLAM learning networks may be simulated. Minerva may 
also be used for the probability learning network case.

Classifying Experiments.

The classifier experiments have been written to 

interact with the tracking experiments. Hence, this sub­

system can receive information from the tracking system as 

it tracks and a classification can be made in real time. 

However, when developing the classifier, to be able to 

repeat exactly the same tracking motions many times was 

considered important. To achieve this Experiment 13, a 

tracking simulator was written. This subsystem stores the 

logged tracking motions from an actual tracking system
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Figure 6,4.1



experiment and can repeatedly present this information to 

a classifier sub-subsystem. The final developed version 

of the classifier, described in section 4.2, is conducted 

by Experiment sub-subsystem 1 1 . The shift register

classifier, mentioned in section 4.4, is conducted by 

Experiment sub-subsystem 2 .

1
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A problem with using the tracking system and 

classifier together is that with all their options they 

both require a lot of store. There is not enough room, for 

example, for the experiment 11 or 12 tracking system, the 

experiment sub-subsystem 11 and the backing system. However, 

by reducing some of the options in either of these will 

create enough room. Experiment sub-subsystem 14 was 

written to simulate the effect of a classifier for a large 

tracking system. It enables the tracking motions to be 

dumped (for use by experiment 13) and also allows the 

tracking motions to be plotted in real time on the graph 

plotter.

Other Experiments.

Experiment 9 is designed to test different learning networks 

simultaneously so that their performances can be compared. 

This experiment is used in section 5 ,6 and it is used as an 

example of a subsystem in section 6.4.2.

There ara some other special purpose subsystems 

for example, Experiment 10 and Experiment 15. The tracking 

systems are able to dump all the patterns obtained from the 

viewing window and also other parameters (e.g. the responses
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from the learning networks) while it is tracking a pattern. 

For efficiency, these are dumped on paper tape in pattern 

data format. Experiment 10 is designed to sort out these 

patterns into a logical order and print the data in a 

readable form.

Experiment 15 is designed to obtain a Hamming distance 

distribution from sets of patterns. It can calculate a 

distribution for the Hamming distance between all the 

combinations of pairs of patterns within a set of patterns 

and it can calculate a distribution for the Hamming distance 

between all the combinations of pairs of patterns between 

two sets of patterns.

6.4.2 An example of an experiment subsystem.

Experiment 9 is designed to compare the perfor­

mance of different learning networks. On the following 

pages an example of how this would appear to the on-line 

user is given. Experiment 9 has been used for the experi­

ments in section 5.4 and its organisation is described there.

In this subsystem, all the operations are carried 

out from the subsystem command status. The functions which 

are available in this command status are listed below.

CH (Change) This command allows the chosen different

types of learning networks to be 

selected and the store for them

allocated.
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(Show Status)

CN (Clear Nets)

T+(or Tl)p (Teach 1)

T- (or TO)p (Teach 0)

OR p (Output
Responses)

Prints the selected learning 

networks and all the store 

allocations.

Sets all the learning network 

stores to 50%,

Teach pattern p with 1 on the 

teach sense terminals.

Teach pattern p 0.

Print the responses obtained 

when presenting pattern p to 

the learning networks.

OP p

OH

OD

OS

RS

SD

HE

IM

(Output
Percentages) Print responses but as

percentages.

(Output Heading)For responses or percentages.

(Output Device) The output devices which are

used by the above three 

functions may be selected with 

this command.

Output the sums of all the 

previous responses. (This is 

used to find average responses) . 

Set all the summed values to zero. 

Allows the output devices for 

the sum values to be selected. 

Print a heading for sum values.

(Output Sum)

(Reset Sum) 

(Sum Device)

(Heading for 
Sums)

(Input Maps) This inputs the connections for 

the input mapping from the data

channel.
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The following learning networks may be simulated with the 

subsystem.

Simulated Learning Networks

N Normal SLAM Learning Network

CC 4 Layer Cumulative Learning SLAM Network

TR Ternary SLAM Learning Network

PB Probability SLAM Learning Network

BC 15 Layer CL SLAM Learning Network

GP N Layer Probability CL SLAM Learning Network

Minerva Learning Networks

N Normal SLAM Learning Network

PB Probability Learning Network

In the example shown in Fig, 6.4,2 two classes of 

handwritten characters of four patterns each are used as 

data. Usually, many input patterns are involved in ari 

experiment and to control them all on-line by the user 

would be impractical. The set of commands to conduct such 

an experiment can be generated by a short simple program 

in a high level system such as Basic or a Macro processor. 

This string of commands is dumped on paper tape and the 

experiment can then be run under 'Tape Control'. The 

experiments described in section 5.5 were conducted in

this way.
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Comments

** ff SN
NO OF CARDS IS? 400
PATTERNS RFOUIRED = 1O0
NO OF SLAMS IS 1600
NO OF M I/P PATTERNS IS 25
MIN STARTING PATTERN IS 347
STARTING PATTFRN IS ? 300 TO 399
l  EXPERIMENT 9B
♦ £H CHANGE 
SIMULATION NET TYPES
N Y CL 1  TR I  pB I  BC 1  I
STORE ALLOCATED O.K.
1ST PATTFRN USED IS 290 
MINERVA NET TYPES 
N N_ PB 21 
.PB PROBABILITY/16 IS *
GP PROBABILITY/16 IS 16 
GP INCREMENT SIZE IS 1024 
LEVELS = 63 .LAYERS = 6

* SS STATUS
MAP PATTERNS ARE 00290 TO 00297 
I/P PATTERN IS 29R 
MAPPED PATTERN IS 299 
NET STORE IS 
N 00300 TO 00303
CL 00304 TO 00319
TR 00320 TO 00327
PB 0032B TO 00331 PROBAB1LITY/16 IS 4
GP 00332 TO 00395 PROBABILITY/16 IS 16
INCREMENT SIZE IS 1024 
LEVELS = 63 LAYERS = 6

(allocate stores for the simulated SLAMs) 

(Select and Set up the Learning Networks)

\ (The GP SLAM Network is simulating a 6 
output CL SLAM Learning Network)

(Obtain the settings and store allocations 
used in this experiment)

♦ IM. INPUT MAP PATTERNS O.K.
+ t f  SQ = 4 & IP 1 & SO = 4 & J_P 5_ t TV
PAT * S 1 TO 4 CONTAIN 3*S, PAT'S 5 TO 8 CONTAIN 8*S.

JL
l  DP 298
i  CP 0 l  HD 1 TO 0 
00062 00024 X

(Input the data and type a comment)

(Display the input pattern on the VDU) 

(Find the number of bits set in pattern 1)

*

OH

EXPERIMENT 9B 

N CL TRD TRV PB GP
OP 
T ♦ 
OP

!_ 00050 000 50 000 50 00000 000 50 0 0 0 50.0 0 0 00
i
i 00100 00057 00 100 00100 00062 00051.562 54

OR l 00064 00512 00064 00064 00040 0002162624
RS
OP

SUM
1

DELETED
00100 000 57 00100 ,00100 00062 000 51.562 54

ÜE. L 00081 00054 00100 000 62 00056 00050.97658
OP 3_ 000 60 00051 00100 00021 00051 000 50.34180
QL 4 000 70 000 53 00100 00043 000 53 000 50.68361
OS 0031 1 0021 5 00400 00226 00222 00203.56455
RS
1^
OP

SUM
5_

DELET ED 

00062 00054 00100 000 62 00051 000 50.9 76 58
RS
OP

”5  UM
2

DELETED 
000 50 00052 00088 00039 00048 0 0 0 50.4 6 3 8 7

OP 3 00046 000 50 00057 00021 00048 00050.04882
5F 4 000 50 00051 00080 00O32 00046 00050.31739
OS 00146 001 53 00225 00092 00 1 42 00150.83010
w N CL TRD TRV PB GP
HE 5__ 00000 00045 00000 00062 00039 00049.02340
RS
OP

SUM
6

DELETED
00032 00049 00037 00042 00045 00049.82909

OP 7 00037 00049 00031 00025 00045 00049.853 50
OP 8 00037 00050 00055 00028 00042 . 00050.04882
55 00106 001 48 00123 00095 00132 00149.73143
OH •N CL TRD 1R V PB GP
I f  LP READY? N_ 

t7
CC 0= ^  1 = X_
RE_ READY FROM PATTFRN J_ TO 4_

(Threshold for average sum is 4x50 = 200)

(Test set of patterns 2 to 4, average 
threshold for sum is 3x50 = 150)

(Print the data set of 3s using the 
pattern dump subsystem)

...XXX.... 

. x x x x x x . . .  

. x x x x x x x . .

.X X...XX..

.......XX. .

..... XXX..

....XXX...
• . . x x x x x . .  
. . . . x x x x x .
.......XX.
.........XX
........XX
. . . . . . . . X x
.«X....XXX
. . x x x x x x x .  
. . . x x x x x . .

. . x x x x . . . .  
x x x x x x . . . .  
x x x x x x . . . .  
. . .XXX....
. . .XX......
..xxxxx... 
...xxxxx..
......XX«.
.......XX.
........XX
. ;...... xx
........ XXX
......XXX.
. . x x x x x x . .  
. . . x x x x x . .

.xxxxxxxx. 
xxxxxxxxx. 
.XX.xxxxx.
......XXX. .
..... XX.• .
. . . .XXX.. .
....xxxxx. 
..... xxxx.
...........XX
...........XX
......... XX
XX........XX
XX........XX
XX...... XXX
.XX..xxxx. 
.xxxxxxx..

.xxxxx.
XXXXXXX...
XXX .XXX..
XX. ..XX..

.XXX..
xxxx..
.xxxx.
. . .XXX
.. . . . XX
.... XX

. X. .... XX

. XX . . .XXX

.xxxxxxxx.
.xxxxxx..

O.K.
i  PL

Characters underlined are 
input by the user.

Figure 6,4,2



Chapter 7

Conclusion

In this thesis a pattern recognition scheme has 

been developed which tracks patterns and classifies them. 

The main feature of the scheme is that both of the above 

functions are achieved by adaptive learning networks. All 

the systems described may be easily realised in hardware.

In general, the tracking system requires 256 16-bit words 

(4/096 bits) of active store and the classifier requires 

64 16-bit words (1,024 bits) of active store.

This work represents only the initial researches 

on this type of system and a practical form of this pattern 

recogniser would require further development. The 

development of the tracking system, classifying system 

and learning elements will be reviewed in the next three 

sections,

7.1 The Tracking System,

The details of the tracking system are given in 

Chapter 3, Initially the tracking system based its deci­

sions on the localised information from the area of 

attention only. It has been shown that such a system may 

easily be taught to track edges of patterns but it is not 

sufficient to track the lines of patterns.
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In order to track lines, feedback from the out­

put to the input of thetracking system has been added to 

good effect and this has been further improved by a 

damping process, With this tracking system it is possible 

to track simple line drawings. For very simple patterns 

such as circles and triangles, the system behaves very well.

Investigations with this system have shown the 

following:-

1, Not all line drawings can be tracked, 

there are theoretically determined limits 

of the system (defined in section 3,2,4) 

and any complex scanning path must be 

considered carefully,

2, The performance of the system is very 

dependent on the ability of the teacher.

3, It is more difficult to teach complex 

patterns* to the system than simple ones,

4, As the patterns become more complex the 

generalisation rapidly deteriorates,

(Increasing the size of the learning networks 

does not improve the generalisation.)

The first characteristic of the system mentioned 

above is due to the overall structure of the tracking

* The complexity of a pattern is difficult to define
rigorously, In this case it is related- to the number of 
line junctions and also to the nature of the line junc­
tions (e„g, the number of lines entering the junctions 
and the relative shapes of the junctions),
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system (i,e, the way that feedback is applied). The other 

three characteristics are determined by the nature of the 

learning modules. Three different types of n~tuple 

learning elements have been investigated and the degree 

to which they exhibit these characteristics has been 

detailed in Chapter 3,

The tracking system is very simple in structure 

and there are many ways in which it could be further 

developed. It cannot track all possible line drawings 

with only a short-term memory (created by the feedback), 

However, if a long-term memory (storing the sequence of 

features or tracking movements encountered) could be 

added,then there is no theoretical limit to the complexity 

of the patterns which can be tracked.

One possible development would be to select only 

a fraction of the learning network for tracking or testing 

The fraction selected would depend upon the location of 

the viewing window on the pattern e.g, it could depend on 

either the position of the viewing window or the last 

direction taken (averaged over several steps), This 

development could also be applied to the classifier.

It would be interesting to see if a model of 

the system proposed by Noton^4) Could be developed 

in which the classifier stores attention shifts necessary 

to examine the pattern and the tracking system could be 

guided at critical points by feedback from the classifier.



has shown that the separation between classes is very

small in Hamming distance, whereas the variation within

the classes is very large. This could be improved by

the introduction of some preprocessing. There are many

different types of preprocessing which could be applied

to the information from the camera. For example, the

effect of processing the information with a layer of simplified

models of retinal ganglion cells could be investigated

e,g, with similar receptive fields to those described by

Rosenberg and Wilkins , This could be further

developed by adding layers of cell models which have simi-

(24)
lar properties to the cells found by Hubei and Wiesel ' 

in the cats visual cortex.

So far no heuristics have been built into the 

processing of the information with regards to lines. If 

the task desired of the system is limited to tracking lines, 

then feature extractors may be applied to the input matrix 

to extract information which is relevant to line drawings 

only. For example, one could extract the number of lines 

in the window, their orientations, their positions with 

respect to the center of the window, etc. Hence, the 

relevant information would be presented in a less redundant 

form to the system and one might see an improvement in the 

performance of the system.

Analysis of the patterns taught to the learning modules
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7,2 The Class if ier  System,

The details of the classifier system are given 

in Chapter 4, For the classifier an attempt has been 

made to use a learning network to classify a sequential 

string of input data. Although this task has often been 

tackled with algorithms (e,g, all the tracking methods 

described in section 1,2,4), an approach with learning 

networks has not been tried before.

A simple system has been tentatively proposed 

and developed to achieve this task but the results from 

it have been poor. This classifier only receives input 

information from the tracking motions of the tracking 

system and is designed to generate a codeword to indicate 

the class of the input sequence.

Hence, with this approach, the tracking motions 

must contain the information to classify the input pattern. 

In this case, the tracking system tracked the lines or 

edges of the input pattern but this is not the only scheme 

with which the classifier could be used. For example, it 

could try to classify "saccadic” motions provided that 

they be unique for each class of patterns.

The system which was finally developed consisted 

of two parts: a cycling network, which is stimulated by the 

input sequence and a codeword extractor which detects 

classifying states in the cycle network. The main prob­

lem here is to know what to teach to the cycle network and
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very little is known about methods of teaching such a 

system. Also, it is very difficult to analyse the results 

of teaching due to the sequential nature of the input and 

output,

To assist with the study of this problem, the 

concepts of SLAM store'penetration’ and SLAM store 'over­

lap' have been introduced. Although in such an undeveloped 

form their usefulness is still questionable, they do allow 

measures to be made on the input data and internal states 

of the classifier which are independent of the sequential 

nature of the input data and its associated effects,* (e.g. 

the initial state transient) » An important feature of 

patterns associated with the classifier is the frequency of 

occurrence of elements of these patterns during the input 

cycle and neither of the above concepts embodies this. To 

provide a measure for this feature, the concept of pattern 

activity has been introduced but this has not been rigorously 

defined and is used in a qualitative way only. The use of 

these measures is illustrated in detail in Chapter 4,

The work in this thesis has done little more than 

establish the basic foundations of a classifier of this 

type. The learning network investigated was very small 

(only 16 TR SLAM-16s were used for the feature extractor) 

and future work could be aimed at investigating the pro­

perties of a larger system,

* The main problem with these measures is that often 
important information is conveyed by the sequential 
order of the data.
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It has been found advantageous to use T„R„ SLAMs 

in the code net. Experiments with the cycle net have shown 

that the method used for its teaching has not been very 

effective and also cycling networks are very sensitive to 

any changes in their structure. Hence, a teaching 

algorithm which can only cause small amounts of change may 

work better. One possible scheme to realise this would be 

to allow each memory element in the learning network to be 

taught once only, (This is similar in basic concept to the 

origins of the T.R, SLAM and in practice could be realised 

by learning elements consisting of two SLAMs with their 

inputs commoned.) Another possibility would be to use T.R. 

SLAMs with the 'last valid output' used for the outputs of 

the net.

The method used to code the sequential tracking 

information before inputting it to the classifier is 

important (this is due in part to the small size of the 

learning networks used). Several methods have been investi- 

gated and the most useful form used was to input the position 

of the area of attention. There are many other possibilities 

which could be investigated as in the following examples. 1

1, The input could be applied so that it had an 

inhibitory effect on the feedback only. Hence, the input 

'inhibits' rather than stimulates the net activity. This 

may overcome the problems of the dependance on initial 

starting and the length of the initial transient states.
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2, In many pattern recognising schemes, localised 

information about features is often considered important. 

This information could be obtained by extracting features 

from the tracking data for the last few steps taken. Then 

this information could be input to the classifier in 

addition to the position information.

3, Another more powerful method of realising the 

above concept is to extract features directly from the area 

of attention and input these with the position information.

7,3 The Development Of The Learning Elements.

Details of the development and properties of the 

learning elements are given in Chapter 5, The initial work 

was conducted with SLAM-16 learning elements. Three basic 

developments of this element have been investigated; the 

probabilistic SLAM, the CL (Cumulative Learning) SLAM and 

the TR (Ternary) SLAM.

The probabilistic SLAM element is similar in 

structure to a normal SLAM-16. However, on giving a teach 

command there is a definite preset probability that this 

command will be ignored. This teaching mechanism makes a 

learning network less sensitive to the last pattern taught 

and is ideal for cases where an ageing teach process is

(14)
required,for example, the method used by Fairhurst
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The CL SLAM has been patented^ ; and is 

characterised by having a number output, rather than a 

binary one, the value of which depends on the frequency 

of occurrence that the input pattern has been taught,

This SLAM requires n times the amount of store for a 

normal SLAM where n is the number of bits at the output.

(For most cases a value of n=4 has been used,) Like the 

probability SLAM network, the CL SLAM network overcomes 

the overteaching problem of the last pattern taught with 

the difference that it does not suffer from the defect of 

the probability SLAM network which ignores part of the 

input pattern on teaching to achieve this,

Since the development of the CL SLAM, a frequency

(7)sensitive SLAM (the FO SLAM) has been mentioned by Chung 

This FO SLAM uses an internal algorithm to achieve a 

dynamic equilibrium with respect to the number of states 

filled within the SLAM which is considered to be an 

important feature. On the other hand, it is the conten­

tion with the CL SLAM that some outputs should be weighted 

more than others over the network. The FO SLAM could be 

realised with a CL SLAM structure and with a saving of 

store, A FO SLAM could be realised by an n output CL SLAM k 

which requires h ,2 bits of active store; to achieve this 

with the shift register method by Chung would require 

2n ,k k its active store.

The normalisation technique described by Chung 

may be useful for some CL SLAM learning networks and the 

CL SLAM teach mechanism could easily be adapted so that a

( 39)
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distribution of values is always maintained within the 

CL SLAM outputs,

The TR SLAM has a ternary output (1, 0 and not 

valid) and uses twice as much active store as a normal 

SLAM, The TR SLAM was developed initially for use at the 

output of cycling learning networks,, (Also, the best 

results from the tracking system were obtained with 

learning networks which had a similar structure to a 

learning network of TR SLAMs.)

One feature of the TR SLAM is that it records 

all patterns it has been taught. This means that the 

last pattern taught has no more effect than any other. 

However, by the same token, these learning networks are 

easily overtaught.

Another feature of the TR SLAM is that its 

stores may be easily analysed for 'penetration' and 

'overlap' and also, when being used, noting the number 

of valid outputs can be used to indicate a confidence 

level for the classification.

7,4 Concluding Remarks,

In addition to the investigation and develop­

ment of a pattern recognition system, some special 

purpose hardware and software has been developed.

To obtain data from a visual scene a normal

television camera has been connected to the computer via
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a hardware control unit which was built especially for 

this project* This hardware is orientated towards 

realising some of the features of the human eye in that 

it can only obtain detailed information from a small 

part of the scene at a time. However, it may also be 

used for general purpose data acquisition from a visual 

scene. It has the following specifications:

1. The scene is defined by a 256x256 square matrix 

which is viewed by the camera,

2. A 16x16 bit binary matrix representing an area of 

the scene within the viewing window may be obtained 

every 20 milliseconds,

3. The binary matrix is obtained by sampling the scene 

with one of 16 brightness levels,

4. The viewing window may be positioned anywhere on the 

256x256 scene matrix and may cover an area of 16x16 pic­

ture elements or any multiple of this, (When the viewing 

window covers an area greater than 16x16 picture elements, 

a hardware averaging unit is used to generate the 16x16 

bit binary output,)

A special operating system has been written for 

this project. It has the following features:

1« It contains routines to control the 

television camera and all the other peripherals including

Minerva,
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2. It allows on-line access and manipulation of a 

data workspace, organised in 16x16 bit binary patterns.

3. It contains routines to simulate learning net­

works of normal, probability, CL and TR SLAMs.

4. Each experiment is conducted by a subsystem 

which may be any DAP program,

5. An interacting debugging program may be loaded 

when required.

The operating system is not restricted to this 

project only but is designed to be useful for experimental 

work involving pattern processing in general.

An attempt has been made to establish a framework 

for and develop a pattern recognition system from basic 

logical considerations rather than basing it on any 

existing system. Further development would be aimed in one 

of two directions. The system could be developed towards a 

pattern recogniser by adding heuristic feature extractors 

etc. which are known to be useful for other systems. 

Alternatively, one could work towards a model of the eye 

and the visual perception mechanism found in man.

Hypotheses of the visual processing mechanisms in the eye, 

for example the function of the ganglion cells, could be 

investigated with this system. Some of the possible 

developments of the tracking system are given in section 

7.1. The classifier which has been developed is only one 

of many possible forms, suggestions for further develop-
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ments of this and for alternative methods are given in 

section 7,2.

Whatever direction the further development 

may take, the hardware and software systems described 

here should be useful as a foundation. The existing 

system sets a reference with which to compare further 

results. Also, the development made in learning 

elements should be considered when designing future 

systems.



Appendix 1

Circuit Details Of The Camera Hardware

A description of the operation of the hardware 

control unit is given in section 2 , 2 , In this appendix 

the circuit details of this hardware are given. A block 

diagram of the hardware modules is shown in Fig, Al.l, 

definitions of the interconnections are given in Table 

Al.l and the circuits of the modules are given in Figs.

A 1 .2 - A1.9. The symbols used in these circuits are 

defined in Fig. A1.10 and Fig. Al.ll,

The following is a brief description of the 

functions of the modules and their interconnections.

The 6MHz Clock Fig. A1.2: The clock produces 

the timing pulses for setting up the 256x256 matrix over 

the scene and generating the camera synchronising pulses. 

Due to the poor quality of the camera a lot of mains hum 

was present on the video signal. To overcome the beating 

effects of the hum, caused by the difference in frequency 

between the frame rate and the mains, the clock was locked 

to the mains frequency by a phase locked loop.

A simple phase locked loop was originally used 

but, due to the large difference in frequencies (6MHz - 

50Hz);the clock frequency varied an unacceptable amount 

during one cycle of the mains. This was overcome by a 

combination of three methods;-
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1. The power supplies were heavily decoupled.

2. Two integrators instead of the usual one

were used,

3. The oscillator was isolated from the rest

of the circuitry by an enclosed metal 

box mounted at the other end of the 

rack,

The output of the clock is via CK and the 

inverse via CK „ A reference strobe for the phase locked 

loop when the Y counter is reset is provided by SC.

The X Counter and Decode Module Fig. A 1 .3: This 

module counts the clock pulses and determines the x 

coordinate of the television scan. The decoder generates 

the following functions:

LSY Line sync pulse, to synchronise the

camera. This is also used as a 

timing pulse for the zoom counters.

XPOS Indicates when the x coordinate of

the viewing window is reached. (Note 

XIC occurs slightly before XPOS and 

is used as a reset pulse by the line 

sampler.

SY This resets the X counter and incre­

ments the Y counter.
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The Y Counter and Decode Module F i g . Al,4 : This 

module counts the cycles of the X counter and determines 

the Y coordinate of the television scan. The decoder 

generates the following functions

FSY Frame sync pulse to synchronise the

camera frame»

YPOS Indicates when the Y coordinate of

the viewing window is reached,

FF This indicates to the computer when

the frame flyback occurs,

SC This resets the Y counter and strobes

the phase locked loop of the clock.

The Zoom Input Buffer Fig, Al,5: This module 

enables the zoom value ZV5 (5 bits) and the average thres­

hold ATH4 (4 bits) to be input. Usually the average 

threshold is half of the zoom value and provision has been 

made for this to be achieved automatically.

Video Processor Module Fig, A1.6: This module 

receives the composit video data from the T.V, camera and 

converts it to a binary signal BVI by means of a comparator. 

The threshold of the comparator is set at one of 16 levels 

by the computer or by the manual controls, This module 

also impresses the viewing window onto the composit video 

signal which is output to the monitor. The time when the 

window is to be impressed is defined by both zoom counters 

being active i,e,, when XZA and YZA are true.
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The X Zoom Counter and Line Sampler Fig, Al.7:

This module samples the binary video input BVI when a line 

which intersects the viewing window is scanned. The moment 

to start sampling is indicated by XPOS„ XIC changes state 

before XPOS and clears the data counter. Once XPOS occurs 

the X zoom counter counts the number of picture elements 

for each bit (defined by ZV5) and the data counter counts 

the number of picture elements set at 1, This latter count 

is compared with the average threshold ATH4, if it is 

greater or equal to the threshold the sampled data value 

SDAV is set true. After each bit of output data is 

obtained, it is strobed into the Line Average Module by SPAS. 

16 bits of data are obtained in this way and then a pulse on 

LEND indicates the end of sampling, LSY resets this module 

at the end of every line. While the line is being sampled, 

XZA is set true.

The Y Zoom Counter Module Fic^, A1.8: This module 

counts the lines which are relevant to the viewing window.

The first line of the viewing window is indicated by YPOS.

The Y zoom counter is strobed by LSY i„e., during the line 

flyback. After each zoom value number of lines (defined by 

ZV5) and when the line averaging is complete (indicated by 

DWC) , 'word ready' WORR is set which initiates a data trans­

fer to the computer (also, the average counters are cleared 

by a pulse on CAC) , The computer indicates when the data 

has been accepted by a pulse on 'word accepted' WORA, If 

the response from the computer is too slow then 'Frame not 

valid' FNV is set,, This is reset by the computer with a
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pulse on RFNV,* While the lines are being counted YZA is 

set true.

The Line Average Module Fig, Al,9: This module 

averages the data obtained from several lines. The data 

from the line sampler SDAV is strobed by SPAS into a 16 

bit shift register. When line sampling is complete 

(indicated by a pulse on LEND), the contents of the shift 

register are used to increment 16 4-bit counters. Each 

counter registers the number of lines in which the line sample 

has indicated a 1 for that position. If the counter value 

is equal to, or greater than, the 'average threshold' A T H 4 , 

then the relevant bit in the output shift register is set. 

After each zoom value number of lines a pulse from the Y 

zoom counter on CAC resets these counters. The counters 

are compared serially with the average threshold, after 

the line has been sampled, by 4 16 to 1 bit multiplexers and 

a 4 bit address counter. When this averaging process is 

complete, a pulse is output on DWC to the Y zoom counter.

The final 16 bit data word which is output to the computer 

is reset by the computer with a pulse on W O R A .

* This feature was originally included as the camera 
hardware was connected to a standard 16 bit computer 
interface. A hardware 16x16 bit buffer has now been built 
into the interface, hence the reply from the computer is 
independent of the computer program and is always quick 
enough,
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Interconnection List

ATH4 Average Threshold (4 bits)

BVI Binary Video Input

CAC Clear Average Counters

CK Clock

CK Clock Inverted

CVI Composit Video Input

DWC Data Word Complete

FF Frame Flyback

FNV Frame Not Valid

FSY Frame Synchronising Pulse

LEND Line End

LSY Line Synchronising Pulse

MVO Monitor Video Output

RFNV Reset Frame Not Valid

SC Strobe Clock

SDAS Sampled Data Strobe

SDAV Sampled Data Value

SY Strobe Y Counter

WORA Word Accepted

WORR Word Ready

XIC X Initial Clear

XPOS X Position Reached

XZA X Zoom Counter Active

YPOS Y Position Reached

YZA Y Zoom Counter Active

ZV5 Zoom Value (5 bits)

Table Al.l
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o----------- - Internal Interconnection

----------- Input from the computer interface

^ ___________  Output to the computer interface

^-----------  Manual push-button switch

□------------ Manual toggle switch

NAND gate Schmitt
trigger

NOR gate Exclusive OR 
gate

Invertor

_ri_
” i_ r

Monostable (+ indicates the 
edge triggering)

CLOCK
COUNTER *INPUT

Clear 0/P 0/P 0/P 0/P 
input 1 2  3 4

signifies a +ve edge triggered synchronous type 
otherwise a -ve edge triggered ripple-through type.

F i g u r e  A l .10
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Shift Clock
Input

Serial SHIFT REGISTER
Data Input

1
Clear o/P O/P 0/P O/P 
Input 1 2 3 4

A, A„ A_ A,

COMPARATOR

B1 B2 B 3 B 4

n  (A. ® B.) (realised by 2 input Exclusive OR 
i=l,4 1 gates and a NAND gate)

A

B
F

F = A.C + B.C

(realised by an AND-OR-Invert 
gate and an inverter)

C
Input Selector

Figure A L I I



Appendix 2

Pattern Processing System 
Subsystem Writers Manual

This manual is intended for users who wish to 

write an experiment subsystem for the Pattern Processing 

System and outlines the features which are available to 

him within the system.

There are two main command status within the 

system. The main program command status which allows 

manipulation of the data workspace and general functions 

and the executive command status which deals with assign­

ment of peripheral channels etc. A full account of the 

functions available when in these command status are 

given elsewhere(Chapter 6) .

On inputting the global command '*' the 

experiment subsystem will be entered. This subsystem may 

be any DAP program which is called EXPR by name, and the 

system causes a 'JST' to this label on entering the sub­

system. An exit to the main program may be made by a 

'JMP*' the entry point (EXPR) .

The following description of the features of the 

system assume that the reader has a knowledge of DAP 

assembly language. In these descriptions, the following 

abbreviations will be used ,
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A A register

B B register

C C register (1 bit)

Dl 1st location after subroutine call,

usually Dl is the return 

location from the subroutine 

D2 2nd location after subroutine call

X X register.

An argument of the form '(1-8)' after a register 

refers to the bits of that register which are currently 

relevent.

In this system the A, B and C registers are used 

for transferring parameters to subroutines. The X 

register value is always preserved. Unless otherwise 

stated, the return from a routine will be to D l .

The following routines are available to a user 

when writing a subsystem. Only a brief description of the 

functions are given,further details may be obtained from 

the program listings.

NAME FUNCTION
Peripheral Routines

1.

2 .

3.

4.

5.

TYPINA Input 1 frame from command 

channel. Result in A(9-16)i 

TYPOUT Output 1 frame (A(9-16)) to

command channel.

RPT Input 1 frame from data channel.

PUNCH Output 1 frame to data channel.

VISTOP Output 1 frame to the Vista.



6 .

7.

8 .

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Camera 

19 .

2 0.

c o n t .

1
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NAME FUNCTION

PRINTER

DICHAN

DOCHAN

ID CHAN " 
ODCHAN

ONCHAN

INCHAN

RMCHAN

RSCHAN

SEQU

NSEQ

CANP

NCAN

Subroutines

OPIC

NEWX

Output 1 frame to the line 

printer.

Define input channel, A has 

device number.

Define output channel, A has 

device number.

Command input to defined channel. 

Command output to defined 

channel.

Restore command output channel 

to default device.

Restore command input channel to 

default device.

(
Remember the state of the 

channels.

Restore the channels to the last 

remembered state.

Set in tape control mode.

Reset system to normal control 

mode .

Cancel messages which are 

output on the command channel. 

Reset the above function.

Obtain frame from the camera 

using the settings in the main 

program.

Change value of X parameter by
the value in A. If successful
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on the return A=0 otherwise,

A = - l .

As above, but for Y parameter. 

Change Zoom value by the value 

of A. On return A=0 if 

successful and -1 otherwise.
As above, except this sub­

routine changes the Zoom with 

the center of the viewing 

window as a reference.

Obtain frame from the camera 

with the following settings 

Dl=X value D2=Y value 

D3=Zoom value D4=brightness 

level D5=Special options 

D6 is the return location. 

Command channel character string inputting routines

25. INCOMMAND A=Starting location of return

pointers, Dl is the start of 

the list of mnemonics. This 

routine is for inputting and 

decoding one and two character 

mnemonics. When the user inputs 

a mnemonic it is compared with a 

list of mnemonics which follows 

the subroutine call and when the 

correct one is detected the 

routine returns by jumping 

through a corresponding location 

in a list of pointers. The list

FUN C TIO Nc o n t . NAME

21.
22.

NEWY

NEWZ

23. NEWC

24. GPIC
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c o n t . NAME F U N C T IO N

of mnemonics is terminated by 

a location set to 0. If the 

input mnemonic is not in the 

list of mnemonics, the routine 

returns to the first location 

after the end of the pointer 

list.

26. INUMBER Inputs a number, the result is

in A .

27. INCOMP Inputs a number with limits.

On entry A=maximum limit, 

B=minimum limit. The result is 

in A.

28. YORN For inputting Yes/No answers.

If Y is input A=-l on returning, 

and if N is input, A = 0 .

29. YENO For inputting Yes/No answers.

If Y is input A=-l and a return 

is made to D l . If N is input 

A=0 and a return is made to D 2 . 

If any other character is input 

A(9-16) is set to that character 

and a return is made to D 3 . 

Command channel outputting routines

30. MESSAGE This outputs a 'message'

(Character string) to the 

command channel. Dl contains a 

pointer to the character string 

and after outputting a return is

made to D 2 ,
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cont • • • • NAME FUNCTION

31. DOUTNUMBER Outputs the number in A 

in decimal with suppressed 

lead zeros.

32. BOUTNUMBER As above but in binary.

33. :OOUTNUMBER As above but in octal.

34. DOUTWORD Outputs the number in A in 

decimal as a 16-bit integer 

with suppressed lead zeros.

35. ~BOUTWORD As above but in binary.

36. 00UTW0RD As above but in octal.

37. :B00UTW0RD Outputs the number in A in 

binary coded Octal format.

38 FDOUTNUMBER Outputs the number in A in 

decimal with lead zeros.

39. *FOOUTNUMBER As above but in octal.

40. .FBOUTWORD Outputs the number in A as a 

16-bit integer in binary with 

lead zeros.

41. CRLF Outputs a new line.

42. OKE Outputs 'O.K.' followed by a 

new line.

Other character string routines

There is a general purpose character buffer (128 characters 

long) which is used by the following routines:

43. BUFO Obtains the state of the

buffer. On returning A=the 

starting location of the 

buffer and B-the number of 16- 

bit words which the buffer

contains.
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cont. . .. 

44.

45.

46.

47.

48.

INBUF

NAME

OUTBUF

INLINE

OUTLINE

OPRINT

The character in A (9-16) is 

inserted after the last 

character in the buffer. On 

returning A=-l if this is not 

possible and 0 otherwise.
One character is taken from 

the start of the buffer and is 

in A (9-16) when the routine 

returns. If the buffer is 

empty, the routine returns 

with A = - l .

This enables the user to input 

a line of characters via the 

command channel„ On return 

A(2-16) contains the number of 

characters input and if the 

line has been terminated by '#• 

A (1) is set.

This outputs the characters in 

the buffer to the command 

channel.

This outputs the characters in 

the buffer to the line printer.

FUN C TIO N

It is possible to output characters on paper tape, for 

headings, in visible format so that the user can read them. 

This can be done with the following routines:



264

c o n t . . . .  NAME FUN C TIO N

49. VIZP This outputs one character

(A(9-16)) to the data channel 

in visible format.

50. POVZ This routine uses INLINE to

input a string of characters 

and then outputs them to the 

data channel in visible, 

format.

The following routines are concerned with manipulating 16x16 

binary patterns:

51. SORI Convert a data store pattern

number to a pointer to the first 

location of that pattern. On 

entry A=pattern number on return 

A=required starting location.

If this is not successful the 

return is made to D - 2 .

52. DESORT Convert a pattern pointer to a

pattern number. On entry 

A=pointer and on returning 

A=pattern number. If this is not 

successful A=-l on returning.

For the routines 53 to 63 the A register on entry contains a 

pointer to the starting location of the pattern to be operated

o n .

53. CLEA Set all locations of the pattern

to 0 .

54. FILL Set all locations of the pattern

to 1.
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56 .

57.

58.

59.

c o n t . •••

5 5 .

60.

61.

62 . 

63.

NEG Complement all locations of the

patterns.

REMX Input the pattern from the data

channel (paper tape format).

OMX Output the pattern to the data

channel (paper tape format).

OBP Output the pattern to the command

channel as 16 16-bit binary 

numbers.

OBCO Output the pattern to the command

channel as 16 binary coded octal 

numbers.

INS Input the pattern from the command

channel as 16 numbers.

ALT Replace a row of the pattern

specified by a number input from 

the command channel by a second 

number input from the command 

channel.

CROT Rotate the pattern clockwise by

90° .

AROT Rotate the pattern anticlockwise

by 90°.

NAME FUN C TIO N

For the routines 64 to 68 B on entry contains a pointer to the 

start of the pattern to be operated on and A contains a number 

N :

64. MASK Set the first N bits of the pattern

to 1 and reset the remainder.

65. TOPROL Roll the pattern N rows toroidally.



266

Roll the pattern N columns 

toroidally.

Find the value of an element of 

the pattern.A(1-12) specifies the 

Y coordinate and A (13-16) speci­

fies the X coordinate. On 

returning A=0 if the element is 

reset and A=-l if the element is 

s e t .

Set the value of an element of 

the pattern. The value of this 

element is in C on entering and 

the location is specified in the 

same way as for 67.

FUN C TIO N

For the routines 69 to 75 a pattern (P2),. pointed at by the value
in B/is operated on by the pattern (PI), pointed at by the value

in A.

69. MOVE Transfer PI to P 2 .

70. INT Interchange Pi and P 2 .

71. AND AND PI and P2 the result is in P 2 .

72. ORE OR PI and P2 the result is in P 2 .

73. XOR Exclusive OR Pi and P2.

74. BITS Find the Hamming distance between

PI and P 2 . The result on returning

is in A.

The routines 75 to 80 require three or more parameters to be 

transferred when entered:

cont
66 .

NAME

SIDROL

67. REFP

68. REFT
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c o n t • • « •

7 5 .

76.

77.

78.

SHFTR

N A M E

RSHIFT

IMP

MAP

This routine treats a pattern as 

a 256-bit shift register. The 

new bits to be input are in A, the 

pointer to the pattern is in B and 

the number of shifts n(0^n$16) is 

in D l . The routine returns to D2 

with the bits that have overflowed 

from the register in A.

This behaves in similar way to 

SHIFTR except that the shift 

register is shifted in the opposite 

direction.

This routine replaces bits in 

a pattern P2 by correspondingly 

located bits in a pattern PI 

where there are I's in a pattern 

P3. On entering this routine A 

points to PI, B to P2 and Dl to P3. 

The routine returns to D 2 .

This routine is to map one pattern 

which is pointed to by Dl to a 

second pattern pointed to by A.

The 256 8-bit list for directing 

the map is stored in 8 consecutive 
patterns which are pointed at by B.

F U N C T IO N

The routine returns to D 2 .
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c o n t . . . .

79 .

80.

Miscellaneous

81.

RMAP

NAME

BMAP

Routines

SERCH

This routine is organised in the 

same way as MAP except that it 

performs the inverse mapping 

function. Hence, for a 1 to 1 

mapping the original pattern which 

produced a mapped pattern by MAP 

may be recreated by using RMAP 

on the mapped pattern.

This is a more general mapping 

routine than MAP in that it may 

map n consecutive patterns to n 

patterns where n^256. To do this 

one word is used to specify the 

mapping of each point, hence, the 

connection list is 16n patterns 

long. This routine is organised 

in a similar way to MAP except 

that n is contained in D2 and the 

return is made to D 3 .

This compares a word in A with a 

list of code words. This routine 

is organised in a similar way to 

INCOMMAND (25) except that it is 

entered with the unrecognised code 

in A and the pointer to the list 

of pointers in B,

FUN C TIO N
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c o n t• •• .

8 2 .

83.

84.

85.

86.

8 7 .

ADUMP

N A M E

PDUMP

RANDOM

SETSCAN

This routine is a subsystem which 

enables the user to set parameters 

for the dumping routine PDUMP from 

the command channel.

This outputs a consecutive block 

of patterns in character format.

A contains the 1st pattern number 

of the block and B contains the 

last.

This routine randomly sets n bits 

in a 16-bit word. The value of n 

is in A on entering and the 

desired random word is in A when 

the routine returns.

This is a subsystem to enable the 

user to set the parameters for 

the SCAN.

FUN C TIO N

TSCAN This routine scans a scene with

the camera and stores the result 

in a selected area of the data 

workspace.

CSCAN This routine scans a scene with

the camera and compares the result 

in Hamming distance with a 

previously stored scan in the data 

workspace.
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The following routines (88 to 96) are concerned with control­

ling the Magnetic tape handler. The mag tape format for a 

'file' within this system is defined as follows. A file 

number L followed by a character file of M lines followed by a 

data file of N patterns. The file numbers L are consecutive 

starting with 1 at the beginning of the tape. M or N for a 

file may be zero, the maximum limit is determined by the 

length of the tape. If an error occurs the routines return 

with -1 in A, otherwise they return with 0 in A.

88 .

89.

90.

91.

92.

93.

94 .

TWFILE

TWCHAR

TWPAT

TRFILE

TRCHAR

TRPAT

TEND

Opens a new file and writes a 

file number.

Writes a character line (from the 

general purpose buffer).

Writes a block of consecutive 

patterns. The number of patterns 

to be written is in A and the 

first pattern number is in B .

Reads a file number (the number is 

returned in B ) .

Reads a line of a character file 

and puts it into the general 

purpose buffer.

Reads a block of n data patterns. 

The routine is entered with n in 

A and the first pattern number 

for the data to be stored in B . 

Moves the mag tape to the end of

the last file.
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c o n t . NAME FUN C TIO N

95. TMOV Moves the mag tape to the file

specified in A.

96. TBOT Moves the mag tape to the beginning.

There are some Global locations which may be useful to the user. 

These are as follows:

1 .

2 .

3.

4.

5.

6 .

7.

8.

9 .

10.

DSTO

K816

Location
'63

STRT

MINB

MINE

XPOS

YPOS

MAG

MG16

This is the location of the first 

pattern of the data workspace.

This location contains the address 

of the top of the available data 

store.

Contains a pointer to the entry 

point of the executive.

This location is the starting 

location of the main program.

This location contains the 

starting address of the defined 

SLAM simulation store.

This location contains the 

address of the last pattern which 

has been allocated for the SLAM 

simulation store.

This location contains the current 

X-coordinate of the camera 

viewing window which is used in 

the main program.

As above but the Y-coordinate.

As XPOS but for the Zoom value. 

This is the value in MAG multi-

plied by 16
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INDEX OF GENERAL ROUTINES

ADUMP 82 MAP 78 RSCHAN 14

ALT 61 MASK 64 RSHIFT 76

AND 71 MESSAGE 30 SEQU 15

AROT 63 MOVE 69 SERCH 81

BITS 74 NCAN 18 SETSCAN 85

BMAP 80 NEG 55 SHIFTR 75

BOOUTWORD 37 NEWC 23 SIDROL 66
BOUTNUMBER 32 NEWX 20 SORI 51

BOUTWORD 35 NEWY 21 TBOT 96

BUFO 43 NEWZ 22 TOPROL 65

CANP 17 NSEQ 16 TEND 94

CLEA 53 OB CO 59 TMOV 95

CRLF 41 OBP 58 TRCHAR 92

CROT 62 ODCHAN 10 TRFILE 91

CSCAN 87 OKE 42 TRPAT 93

DESORT 52 OMX 57 TSCAN 86
DICHAN 7 ONCHAN 11 TWCHAR 89

DOCHAN 8 OOUTNUMBER 33 TWFILE 88
DOUTNUMBER 31 OOUTWORD 36 TWPAT 90

DOUTWORD 34 OPIC 19 TYPINA 1
FBOUTWORD 40 OPRINT 48 TYPOUT 2
FDOUTNUMBER 38 ORE 72 VISTOP 5

FILL 54 OUTBUF 45 VIZP 49

FOOUTNUMBER 39 OUTLINE 47 XOR 73

GP16 24 PDUMP 83 YENO 29

IDCHAN 9 POVZ 50 YORN 28

IMP 77 PRINTER 6
INBUF 44 PUNCH 4

INCHAN 12 RANDOM 84

INCOMMAND 25 REFP 67

INCOMP 27 REFT 68
INLINE 46 REMX 56

INS 60 RMCHAN 13

INT 70 RMAP 79

INUMBER 26 RPT 3
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Learning Network Routines

A library of routines is available which can 

operate the learning machine Minerva or simulate SLAM 

elements within the data workspace. The names and functions 

of these routines are as follows:

NAME FUNCTION

Routines 1 to 12 are for operating Minerva.

1. MUSCRE

2. MUSCSE

3. MUSCTO

4. MUSCT 1

5. MUSCOP

6. MUSPRE

7. MUSPSE

8. MUSPTO

Reset a card of four SLAM-16s.

The address of the card is in A.

Set a word, the address of the card 

is in A.

Teach a card of SLAMs 0. The input 

pattern is in A and the address of 

the card is in B .

As above but teach 1.

Obtain an output from a card. The 

input pattern is in A, the card 

address is in B and the 4-bit result 

is put into A(13-16).

Reset a 'pattern' of Minerva SLAMs 16 

consecutive cards are referred to as 

a pattern of SLAMs because they sample 

a 16x16 bit input pattern. The 

starting address is in A.

As above but set instead of reset. 

Teach 1 to a pattern of Minerva cards. 

The starting location of the input 

pattern in store is in A and the 

address of the first Minerva card is

in B .
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9.

10.

c o n t .

11.

MUSPT1

MUSPOP

NAME

MUS PPO

MUS PPl

As above, but teach 1 instead of 0. 

Obtain the total number of l's out­

put from a pattern of Minerva cards. 

On entry, the registers are set up 

as described for MUSPTO. On return­

ing the summed response is in A. 

Probablisticly teach Dlto a pattern 

of Minerva cards. The registers are 

set up as described for MUSPTO« Dl 

contains the 16-bit probablistic 

teach vector and the routine returns 

to D2.

As above, but teach 1 instead of 0.

FU N C TIO N

The following routines 13 to 43 are concerned with simulating 

SLAMs in the data workspace. 1 16-bit word is used to 

simulate each SLAM 16.

13. MINSET This enables a user to select an area

of data workspace for the SLAMs to be 

simulated. The SLAM routines may at 

run time only access this area for 

simulating SLAMs.

Routines to simulate 1 SLAM 16 (14-18).

14.

15.

16.

SALR

SALS

SALD

Reset a SLAM thè location of which 

is in A.

Set a SLAM thè location of which is 

in A.

Teach a SLAM d, thè input pattern is

in A (13-16) and thè location of thè

SLAM is in B.
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cont• ••• NAME FUNCTION

17. SALI As above, but teach 1.
18. SALOP Obtain an output from a SLAM.

The registers on entry are the 

same as for SALO. If the output 

is 1 then A=-l, if the output is 

0 then A=0 on returning.

Routines to simulate a Minerva card of SLAM 16s.

19.

20. 

2 1 .

22.
23.

MINR Reset a card of SLAMs the starting

location is in A.

MINS Set a card of SLAMs the starting

location is in A.

MIND Teach a card of SLAMs 0 the input

pattern is in A and the starting 

location of the SLAMs is in B.

MINI As above, but teach 1.

MINOP Obtain the output from a card of

SLAMs. The registers are set up in 

the same way as for MINO. On 

returning the result is in A (13-16).

Routines to simulate a 'pattern' of SLAMs which consists of 

16 consecutive cards of SLAMs.

24. MINPR Reset a pattern of SLAMs. The

starting location of the SLAMs is 

in A.

25. MINPS As above, but set instead of reset.

26. MINPO Teach 0 to a pattern of SLAMs. The

starting location of the input 

pattern is in A and the starting

location of the SLAMs is in B.
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27.

28.

c o n t . . . .

29 .

30.

MINPl As above, but teach 1.

MINPOP Obtain the sum of all the outputs

of a pattern of SLAMs which are 1. 

The registers are set up in the 

same way as for MINPO and on 

returning the summed response is 

in A.

MINPPO Probablisticly teach 0 to a pattern

of SLAMs. The registers are set up 

as for MINPO/ the 16-bit teach 

vector is in Dl and the routine 

returns to D 2 .

MINPP1 As above, but teach 1.

NAME FUN C TIO N

The following routines are for simulating a card of 4 SLAMs 

without the restrictions on the teach inputs which occurs 

in Minerva. A data word is associated with the card, which 

is formed in the following way. Bits (1-4) signify the teach 

sense values, bits (5-8) signifies the teach clock values 

and bits (13-16) contain the last obtained output from the 

card.

31. MISLCT Teach a card of SLAMs. The input

pattern is in A. The starting 

location of the SLAMs is in B and 

the data word is in Dl and the 

routine returns to D 2 . (All the 

other card functions may be con­

ducted by the normal card routines 

(19, 20 and 23) ) .
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The following routines are for simulating a 'pattern' of 

the cards of SLAMs mentioned above. With each 'pattern' of 

these SLAMs a data pattern of 16 consecutive data words is 

associated.

32. MISLPT Teach a pattern of SLAMs. A has

the location of the input pattern,

B the location of the SLAMs and 

Dl the location of the data pattern. 

The routine returns to D 2 .

33. MISLPO Obtain a new output from a pattern

of SLAMs. The routine is entered 

as described above for MISLPT.

(All other pattern functions may be 

conducted by the normal pattern 

routines (24, 25 and 27).

The following routines (34 to 54) are concerned with the 

simulation of cumulative learning SLAMs (CL SLAMs).

Routines for 4 output CL SLAM 16 s : the simulation of 4 output 

CL SLAM 16 requires 4 16-bit words.

34. SALCLC Clear a CL SLAM (i.e., set all the

outputs to 8). The location of the 

CL SLAM is in A.

35. SALCLT Teach on output to a CL SLAM. The

input pattern is in A (13-16) and 

the teach number is in A (5-8). The

c o n t .  . . .  NAME FUN C TIO N

location of the SLAM is in B .
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36.

Routines

37.

38.

39 .

c o n t . . .

40.

SALCLO Obtain the output from a CL SLAM.

The input pattern is in A (13-16). 

The location of the SLAM is in B 

and the output is in A when the 

routine returns.

NAME FUN C TIO N

to simulate a card of 4 4-output CL SLAM 16s.

MINCLC

MINCLT

MINCLI

MIN CLO

Clear a card of CL SLAMs the 

location of the first SLAM is in A. 

Teach each CL SLAM an output pattern. 

The input pattern is in A, the 

location of the first SLAM is in B 

and the output .patterns are in 

D 1 (5-8) and (13-16) and D 2 (5-8) and 

(13-16). The routine returns to D 3 . 

Increment the output of a card of 

CL SLAMs. The input pattern is in 

A, the location of the first SLAM 

is in B and the teach sense is in 

C. If C=l, then the SLAMs are 

incremented; if C=0, then they are 

deincremented. On returning, the 

number of SLAMs which have saturated 

is in A.

Obtain the outputs from a card of 

CL SLAMs. The input pattern is in A 

and the location of the first SLAM 

is in B. On returning, the four

responses are in A (5-8), A (13-16), 

B(5-8) and B(5-16) .
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Routines to simulate a pattern of CL SLAMs.

41. MINPCC Clear a pattern of CL SLAMs. The

location of the first SLAM is in A.

42. MINPCI Increment the output of a pattern

of CL SLAMs. The location of the 

input pattern is in A, the location 

of the first SLAM is in B and the 

teach sense is in C. On returning, 

the total number of CL SLAMs which 

have saturated is in A.

43. MINPCO Obtain a summed response from a

pattern of CL SLAMs. The location 

of input pattern is in A, the 

location of the first SLAM is in B 

and on returning, the summed response 

is in A.

The following routines are concerned with 16 output CL SLAM 

16s. For programming convenience, one word represents one 

element of the SLAM and a 16 output CL SLAM 16 is simulated 

by 16 consecutive words.

Routines for one 16 output CL SLAM 16V

44. BISLC The same function as SALCLC (34)

except the mid value is 32,568 for 

a 16 output CL SLAM.

45. BISLI The same function as SALCLT (35)

except that the teach number is in

D l (1-16) and the routine returns to

D2 .

c o n t . . . .  NAME FUN C TIO N



cont. ... NAME FUNCTION

46. BISIO The s ame function as SALCLO (36) .

Routines for a card of four 16 output CL SLAM 16s .

47. BISLCC The same function as MINCip (37) .

•
CO BISLCI The s ame function as MINCLI (38) .

49. BISLCO A similar function tc1 MINCLO (40)

except that the 4 outputs are 

summed and the routine returns 

with the response as a double 

precision integer in A and B.

Routines for a pattern of 16 output CL SLAM 16s.

50. BISLPC The same function as MINPCC (41) .

51. BISLPI The same function as MINPCI (42) .

52. BISLPO The same function as MINPCO (43)

except that the response is a

double precision integer in A and B

The following, output incrementing, teach routine has two 

additional features. Firstly, it can probabilisticly teach a 

pattern of CL SLAMs. Secondly, the size of the increment 

may be varied hence n output CL SLAMs may be simulated where 

U n <  16 .

53. BIGPI Similar to MINPI (27) except that

D1 contains the 16-bit teach vector 

and D2 contains the increment size. 

The routine returns to D 3 . (All 

other functions can be conducted by

the normal routines 51 and 53).
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The following routines are for simulating a card of 4 TR 

SLAM 16s. This is achieved by using two cards of normal 

SLAMs, one for the data output and one for the valid 

output.

54. MITRCT This is similar to MISLCT (31)

except that bits (9-12) of the 

data word are used for the last 

valid output.

55. MITRCO This obtains an output from a

card of TR SLAMs. It is entered in 

a similar way as MISLCT" (31).

On returning, the complete data 

word is in A with bits (9-12) 

containing the new valid output 

and bits (13-16) containing the 

new data output. (A card of TR 

SLAMs may be reset by using MINR 

twice) .

c o n t .  . . .  N A M E F U N C T IO N
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