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ABSTRACT

A novel pattern processing scheme has been
investigated which makes use of the motions generated by
a window which tracks the lines or contours of a digitised
television image of a black/white pattern., The novel
features of the proposed scheme are that adaptive
learning networks are used for both tracking and
classifying. The tracking strategy is learnt from a human

teacher.

Here one combines two methods of machine pattern
recognition which, in isolation, have a limited performance.
These are,'static learning networks'which have known
1imitations, and 'programmed tracking systems' in which the
pre-programming itself may be limiting, In this combination
one avoids some limitations of these systems because
pre-programming of gtrategies is not necessary and feedback

exists to make the task of the nets a dynamic one.

The thesis describes a hardware visual input and
a special—pufpose software system which were developed for
this investigation, Also, several new modifications of the
SLAM (Stored Logic Adaptive Microcircuit) element are

discussed.

Beyond its practical application it is possible
to conclude that the system developed here may be useful
in the study of hypotheses regarding living animal systems

which involve eye movements,




CHAPTER 1
INTRODUCTION

Ls.l STATEMENT OF THE PROBLEM.

The problem investigated in this thesis represents
one aspect of pattern recognition by a machine, and involves
the learning of tracking strategies by means of adaptive

digital networks.

The best general system in existence for recog-
nising complex patterns is still to be found in man and
animals. Consider what happens when we look at a complex
pattern such as a photograph or a line diagram. The eye,
which can only perceive accurately a small amount of detail
at a time, roves over the pattern and enables the brain to

gather information from the pattern sequentially.

Now consider the ways that machines have been used
to recognise patterns, Some of these compare the whole of
the unknown pattern with a set of templates, but this method
is usually discarded in favour of more powerful machines
which can examine parts of the input pattern in detail,
Often, in these machines, this examination results in a

sequential description of the pattern.,

Another approach to machine pattern recognition
has been made with 'adaptive learning networks' these learn-
ing networks are often considered as a step away from
normal computing processes towards the processing of informa-
tion in a way similar to that of brains, One method used

in practice involves the sampling of the whole of the input
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pattern with the elements of the learning network. One
arrives at a final classification on the basis of a
combinational decision made on the outputs of these
elements. The theoretical limitations of this method(33),
as with the limitations of the template matching method,

are now well understood.

It is proposed in this thesis to investigate the
effect of allowincg the input matrix of a learning network
to rove over a pattern so that parts of the pattern may
be examined in detail, as is the case with the eye. One
notes that such a system would have to be able to direct
its own roving activity as well as analyse the data it
receives. Two important topics require attention in the

context of this system.

The first deals with adaptation to the attention
shifts that are necessary for recognising a pattern and
the organisation of a learning network aimed at achieving

this task.

Second, one asks how a learning network can be
organised to analyse the sequential data which it receives

from the ‘'roving eye'.

This thesis is primarily concerned with these

two guestions.
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In considering a pattern recognition system of
this form, the following three main areas of research are

relevant.

Character recognition: This is a restricted case of pattern

recognition where only characters are considered.

Scene analysis: This is a more general case of pattern

recognition and is usually concerned with three dimensional

scenes or two dimensional images of these scenes.,

Visual Form perception: Where the perception of the shapes

of objects by man and animals is considered,

Pattern recognition is generally tackled by making
a classification based on a set of selected measurements
extracted from an input pattern, These selected measurements
called 'features' are supposed to be less sensitive with
respect to the variations encountered within classes, and also

to contain less redundancy.

A general scheme for a pattern recogniser is shown
in Fig. 1.1.1. The input pattern is transformed by a
preprocessor which operates in a uniform way over the input
pattern to present the data in a form more acceptable to the
feature extractor. The feature extractor takes the selected
measurements mentioned above. The classifier decides to
which class the input pattern belomgson the basis of the
values of the extracted features. This model is not a

necessary construction for a pattern recogniser but is’ used,
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for convenience, to standardise a framework on which to base

one's discussions.

1.2 CHARACTER RECOGNITION,

Character recognition is the particular casein
pattern recognition when recognising characters only is
considered. Much work has been done in this field due to
the need for machines to be able to read normal written text.
Most of this work is of a specialised nature due to the
limited, well defined class of inputs which are to be
detected, The following account does not mention all the
methods used in character recognition but .only :those

which lead towards this project.

Character recognition is characterised by having a
limited set of characters to be recognised. The input
pattern is usually in the form of a two dimensional binary

matrix representing the character,

l.2,1 Template Matching Pattern Recognisers.

Possibly the simplest, and most obvious, form of
character recognition which has been used is template
matching. With this method no preprocessing or feature
extraction occurs and the raw data is input directly to the
classifier, The classifier compares the input with a |
template of each class, and the classification is based on
a preselected matching criterion or similarity criterion.
Such a simple method has many limitations, It is sometimes

difficult to select a good template from each class and to
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define a proper matching criterion. Also, this method is

both size limited and font limited.

Many variations of this method have been
investigated. For example, the method described by Taylor

1968(50)

in which a mask with analog weights is used,
However, all these methods are restricted by the limitations
mentioned above.Owing to the obvious drawbacks, template

methods were not considered in this project.

Lndwtt N-Tuple Pattern Recogniser.

The n-tuple recognising method may be considered
as the next development in compiexitya This method con-
siders sets of n-tuple sémples from the input space. These
n-tuples are usually selected randomly or by some adaptive
algorithms. Early work on this method was done by Bledsoce

(5) in which a binary matrix is used for

and Browning 1959
each class to store all the possible n-tuple states., This
is initially set to zero and during training l's are put
into the elements of this matrix which are selected by the
input pattern. When an unknown pattern is presented to the
system the number of 1's which this pattern references in
each matrix is noted. The matrix in which the highest
number of 1's are referenced decides the class of the input.
This system was further developed by Bledsoce and Bisson

(6)

1962 in which analog matrices are used and the frequency

of occurrence of n-tuples during training was also considered.

Work with similar structures has since been investigated by
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(54)

Ullman 1969 where the optimum size of the n-tuple was

found for a limited number in the training set and Chung

1973(7)

in which the optimum amount of teaching and other
features are considered. Character recognition by the n-
tuple method often suffers from the same limitations as

(41)). A full, detailed, analysis

a perceptron, (Rosenblatt
of the theoretical topological properties and limitations
of perceptron structures is discussed by Minsky and Papert
1969(33), Learning networks consisting of binary n-tuple
sampling elements (SLAMs) have been used in this project.
However, feedback has been introduced around the learning

networks to overcome some of the limitations referred to

above,

1.2.3 Scanning Pattern Recogniser,

The description of a pattern may be generated by
a list of localised features of the pattern in which the

position of these features is also indicated.,

A practical system which embodies this method is

1 (46) which is

the 'Scan Data Optical Reading System
capable of reading multi-font éharacters and a limited set
of hand-printed characters. The input pattern is presented
on a 40x30 bit binary matrix obtained from a flying spot
scanner and algorithms are used to normalise, centralise and
adjust the threshold for the sampling brightness level to
compensate for variations in the background. The feature

extractor then scans the input pattern with a feature

window and compares each input of the feature window with a
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list of 400 possible features using a mask matching criter-
ion. The input pattern is divided into 9 areas and the area
in which each feature is found is also recorded. Hence
after scanning, the feature extractor outputs a set of
detected features with their approximate positions on the
input pattern. The classifier compares this feature/
position list with a set of feature/position lists to
classify the input character. The scanning method is
inherently slower than the parallel methods mentioned
previously. However, high speed is not essential to this
system as the data inputting hardware has a maximum speed

of 800 characters per second.

Hunt 1972(25) describes a system in which the
input pattern is scanned with a set of logical operators..
These logical operators consist of a ternary mask which
contains 1's, O's and spaces. A match is made if the 1's
and O's coincide with a part of the input patterns exactly.
A 5x%x5 result matrix (which corresponds to 25 equal areas of
the input pattern) is generated in which matches of the
operators are recorded. -Only one match can be recorded in
each cell of the result matrix and a priority scheme
decides the value of the cell if several different matches
occur in its area. The result matrix is used to describe

the input pattern and is input to the classifier.

A different approach, but still using a scanning

(22) and is

method is described by Hosking and Thomson 1968
further developed by Hosking 1972(23). In their method, the
input pattern is scanned once and the feature extractor

indicates when features occur. Features are of a general
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type e.g., the start of a line, the join between two lines
etc, and about 10 different types of feature are detected.
The detected features are numbered from 1 to n as they occur
and a connection list stating which features are joined, is
generated. Hence, the description of the pattern which is
presented to the classifier is an ordered list of connected
features (the type of the features is not specified in this
Iigt) .

Uhr and Vossler 1961 ¢33)

have also described a system
in which the input pattern is scanned by a set of logical
operators. The feature extractor forms a description of the
pattern by noting the number of matches for each operator

and also the average of the coordinates of these matches.

For this system, Uhr and Vossler have developed algorithms for
generating operators and for evaluating their performance.

This enables the system to adapt to different styles of inputs

and to improve its own performance.

Although the above systems have sequentiality and
window extraction in common with the method in this thesis,
the scanning is not determined by the "seen" elements in the

window. Such systems are considered next.

1.2.4 Tracking Pattern Recognisers.

The tracking method uses the fact that characters
are formed by a set of lines. If all the lines of an input
pattern are tracked then all the localised features of the
pattern will be encountered, hence, it is not necessary to

scan over all of the input pattern.
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Most tracking systems have the following general
scheme. The input pattern is thinned so the lines are only
one or two bits wide; then a tracking algorithm is used to
track along these lines. The tracking motions produced
during the tracking are then input serially to the feature
detector which uses an algorithm to change these motions
into an ordered list of features. Features are usually
defined to be line segments, curves and line junctions etc.
Either in the preprocessor or in the feature detector, a
smoothing algorithm is used so that small variations in the
shape of the input pattern will not be interpreted as

features.

It is also possible to track the edges of the
input pattern rather than the lines. This has the
advantage that the character does not have to be thinned
and that a simple operator may be used to track the edge.
An example of such a system is described by Saraga et al

(43) and a further development of the tracking opera-

(44)

1967
tors is described by Saraga and Wavish 1971 A
different approach to edge following is described by

0(52). In their method the

Taussaint and Donaldson 197
input pattern is divided into several areas and the maximum
and minimum positions reached while tracking in each area
is recorded to describe the input pattern. Mason and

ka2l used a similar approach which involved

Clemens 1968
detecting maxima and minima when the edge of the pattern is
tracked. Their system represents a character by a binary

codeword which is generated by forming a string adding a 1

whenever an X coordinate maximum or minimum occurs, and a O

whenever a Y coordinate maximum or minimum occurs.
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As far as preprocessing is concerned, a scanning
method of thinning lines is described by Saraga and
Woollons 1968(4 )andwa review of these techniques is given
by Deutsch 1968(9). Some interesting preprocessing schemes
may be achieved if the input matrix is hexagonal rather

than square and this is discussed by Golay 1969(18)

though
this 1s more useful in cases other than character
recognition where the input pattern is not uniquely

orientated.

Grimsdale et al 1959(19) have designed a system
which splits the input patterns into 'regions' which
includes line and curve segments and the shape of junctions,
A method of extracting features such as line endings, change
of direction, junction of lines, etc. is described by Parks
1969(36)5 This system has been further developed by Watt
and Beurle 1971(55) in which these are ordered and then the

ordered feature list is classified. Deutsch(g)

also
describes a system which forms an ordered feature list rela-
ting to a skeleton shape preprocessed from the original
input pattern.

Finally, Eden 1968(12)

describes a method for
recognising cursive handwritten script by splitting the
script into a sequence of 'strokes'., He defines a set of
28 different types of strokes though, in fact, only nine of

these are used for English script.

The system described in this thesis is designed

to recognise patterns by tracking them. However, it differs
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from the general form for tracking systems in two main ways.,
Firstly, the tracking strategy is taught to the system by

a human teacher and secondly, no preprocessing (such as

line thinning, etc,) is applied to the input information

before it is presented to the tracking system,

1.3 SCENE ANALYSIS,

In scene analysis three dimensional scenes are
usually considered though they are reduced to two
dimensional images. The image is formed by a two dimen-
sional array of picture elements which have a brightness
level,obtained from the scene,associated with them. The
task in scene analysis is to detect and recognise from
this image the objects present in the scene and the
positional relationships between them. A good review of
the techniques which have been used to achieve this is

given by Duda and Hart 1973(11).

For the purpose of this project, the methods of
interest are those which operate on the image to reduce
it to a line drawing (this is called spatial differentia-
tion) and then reconstruct those lines to determine the

original objects.,

An example of such a system is described by

8(15) where the image is first spatially

Forsen 196
differentiated. Then the resulting binary matrix is scanned
by a set of 7x7 bit feature matrices and a new matrix is

generated indicating where and what type of features have




21

been detected. A line following algorithm could then be

used to track this matrix.

An interesting system is described by Symons

1968 (49)

in which contour detecting and following are
simultaneously conducted on the image which has not been
spatially differentiated. Also, features may be detected

as the tracking proceeds.

A similar method is used by Pingle 1969(37) who
describes a system which is designed to rapidly trace the
outline of an object. (This system is intended for real-
time manipulation of mechanical arms and hence, must be as
fast as possible.) After tracking an algorithm is used
which assumes that the object is made of straight lines and
attempts to locate the positions of the corners.

t28 uses a 'bug

A system described by Ledley 1964
algorithm' to track the boundaries of digital images of
chromosomes in a manner similar to that used in character
recognition, From the tracking motions the chromosome is
described by a sequence of boundary segements. Kelley

1971 (27}

has developed a system which uses 'planning' to
extract the contour of a head from a photograph., Planning
involves reducing the size of the image and firstly tracking
the contours of this. Then this rough tracking is used as

a plan for tracking contours of the original image.

The system described in this thesis could be used
for scene analysis of a spatially differentiated scene. It

differs from previously mentioned methods in that it uses a




22

learnt adaptive tracking strategy.

1.4 THEORIES AND MoDELS OF VISUAL PERCEPTION,

Much work has been done on trying to determine
the mechanisms of visual perception in man and in animals, .
Although much progress has been made, especially with regards
to determining the functions of the retina of the eyes and the
optic nerve, still very little is known about the method of
'classification' which exists in the brain to enable it to
perceive objects. For further details in this field Kolers
1968(28) reviews some of the physiological aspects of
pattern recognition,and a review of the neurophysiology of
the visual system is given by Chung 1968(8). A detailed
review which covers the whole field of the perception of

form is given by Zusne 1970(57).

Of particular interest is the research into the
movements of the eye with respect to recognition, A review
of the experiments.conducted with measurements of eye move-
ments, including a description of the techniques involved in

; . : 7
obtaining these measurements, is given in Zusne(5 ). One

set of experiments, conducted by Yarbus 1967(56), is to
measure the eye movements when subjects view a two dimensional
art work. His results show that, when looking at pictures,
the observers fixate more frequently the features which are
actual or potential carriers of information. Noton and

(35) have developed a theory of perception (see

Stark 1971
section 1.4.2) in which the order of the fixations is important
and their experimental results show that, when viewing a

simple line drawing picture, repeated sequencies of fixations
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and attention shifts do tend to occur,

1.4,1 The Eye and the Visual Pathway.

A simplified description of the retina and visual
pathway of the eye is as follows. The light coming through
the lens of the eye falls on a mosaic of receptor cells
(rods and cones) in the retina. The receptor cells connect
with bipolar cells and the bipolar cells connect with
retinal ganglion cells which send their fibres (i.e. the
optic nerve fibres) to the lateral geniculate body which
transfers this information to the visual area of the cere-

bral cortex (the visual cortex) .

There are two kinds of light receptors; rods,which
are very sensitive to blue-green light and cannot be used
for colour ,and cones,which are 1000 times less sensitive
to light than rods, they are sensitive to colour but are
useless in poor lighting conditions. There are about

6 receptors in the retina and about lO6 fibres in the

120,10
optic nerve, a reduction of about 120:1, The cones are
represented most densely in the centre of the eye and the
rods most densely in the periphery. In general, cones tend
to have direct lines (via bipolar cells) to ganglion cells
whereas many rods converge upon a single ganglion cell.
The fovea (the centre of the eye) only contains cones ,and

there is a 1 to 1 relation between receptors and ganglia

in this region,

Hence, when the eye observes a scene under normal
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lighting conditions, the optic nerve transfers a great
amount of detailed information about a small area at the
centre of the field of view together with a general

impression from the rest of the field of view,

The ganglion cells perform the first stage of
information processing, The input of a ganglionis taken
from a localised area of the retina called its receptive
field. The output from the ganglion depends on the pattern
of light in its receptive field., Much work has been done
on determining the functions which these ganglia perform.
Many experiments have been conducted with animals and these
have shown that there is no general law which holds across
species with regards to the visual system, Hence, results
obtained with animals are directly relevant to that species

of animal only.

An interesting example is the frog for which four
different types of ganglion cells have been identified

(31)). Ganglia of each type are grouped

(Lettvin et al 1959
together and they map the retina continuously onto a single
sheet of endings in the tectum of the frog's brain. Herscher
and Kelly 1963(21) and Sutro 1968(48) have made hardware
models of the frog's retina which contain replicas of the
four different types of ganglia and are organised in a
similar way to that found in the frog. One of these ganglion
cells (usually called the bug detector) is sensitive to small
dark convex objects which move centripetally with respect

(2) presents the theory

to its receptive field, Arbib 1971
that the tectum of the frog behaves as a somatotopically

organised parallel decision mechanism which enables the frog
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to perceive a fly and snap at it with its tongue.

Another example is the pidgeon which has ganglion
cells that are sensitive to movements in one direction and
not the other. A hardware model of this retina has been

made by Runge et al 1968(42).

The functions of the ganglion cells depend on the
particular animal and are often directed towards the
particular needs of that animal, For mammals only two
general types of ganglia cells have been detected. Most of
this work has been done with cats but it is reasonable to
assume that the same may in this case be true for man.

These cells have circular receptive fields, one type con-
tains a centre region which is excitatory and an outer region
which is inhibitory and the other type contains the opposite.

(24) have found that cells

Hubel and Wiesel 1966
in the visual cortex of the cat have receptive fields which
correspond to localised regions of the retina., These cells
can be divided into two types: simple and complex. The
simple cells are sensitive to spots of light (i.e. they
have a similar function to the ganglion cells) or are
sensitive to an edge of light in which the orientation of
the edge is important. The complex cells are sensitive to
both the form of an object and the position of the object
with respect to the receptive field of the cell. Hubel
and Wiesel used a rectangle as an object for these tests in

which the dimensions, orientation and position could be

varied.
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A model of the processing part of the brain has
been proposed and simulated by Kabrisky 1966(26). His
contention is that the cortex behaves as a generalised
planar (two dimensional) pattern manipulator which has a
memory. He has designed an element the 'Basic Cortical
Computational Element' which in a biological system would
consist of several hundred neurons, and is a two dimensional
array processor, An array of 100 of these elements has
been simulated by a computer. Recognition occurs with this

array by forming a cross correlation of the input with a

stored pattern.

A theoretical model of the coding and processing
of visual information in the visual system is described by
Rosenberg and Wilkins 1968(40), A simplified model is
simulated which has two networks, one of horizontal line
detectors and, one of verticle line detectors, which
operate on an 18x18 input matrix. After an input pattern
has been presented to the model two lists are generated
which give a unique representation for any shape, invariant

to change in size or position,

An interesting feature extracting system has been

9(16), This system uses succes-

simulated by Fukushima 196
sive layers of analog threshold elements and is applied to
the task of character recognition. It generates a set of
matrices which correspond to the input matrix and contain

extracted features, e.g. line endings, lines with a

particular orientation, etc.




27

1.4.2 Theories of Visual Perception,

The method by which patterns are perceived in
man is still not known although there are many theories
on this subject. The theories which relate to this
project are the ones in which a sequential approach
utilising the movements of the eye is considered. One of
the earliest of these theories was proposed by Hebb 1949(20)
in which perception is realised by 'phase sequence' of
activities of 'cell assemblies', A cell assembly is a
collection of cells which when stimulated by an event
(e.g. a movement of the eye or the detection of a feature
in the visual cortex) can act briefly as a closed system,
maintaining this activity after stimulation has ceased.
When an object is viewed, a sequence of these cell assemb-
lies some related to eye movements and some to extracted
features will be activated. This is referred to as a
phase sequence and results in a further cell assembly being
activated which indicates the form of the object. Although
these cell assemblies have never been detected, Legéndy

has suggested that they would have to contain
between several hundred and several thousand cells for each
assembly.

In a more recent theory by Noton 1970(34) it is
proposed that the internal representation of a pattern is
a feature network in which the features of a pattern and
the shifts of attention,required to pass from feature to
feature across the visual field, are recorded. The

feature network does not contain all possible attention

shifts between features but only those which occur with
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some frequency. When an attempt to recognise a pattern is
made, the recognition system tries to match a feature
network with the pattern by executing a sequence of atten-
tion shifts specified by the feature network, It is
important to note that it is the feature network which
directs the matching process. The main difference between
this theory and Hebbs is that the feature network is
composed of memory traces recording the occurrence of
feature detecting and attention activities, whereas the
phase sequence is formed by interconnecting the cell
assemblies themselves. A more general discussion of the

background of this theory is presented by Noton and Stark(35).

The finally developed system differs in many ways
from the mechanism of the eye. The most marked difference
is that it smoothly tracks around the contours of an object
rather than track with rapid saccadic attention shifts
which are found with the eye. However, the preprocessing
methods found within the retina of the eye and visual cortex
and the hypothese concerning the perception mechanism
within the brain may still be useful in the development of

the proposed system.

1.5 STRUCTURE OF THE THESIS,

The general scheme for the systems which will be
described in this thesis is illustrated in Fig. 1.5.1. An
optical transducer obtains information from a small area of
the visual scene. An adaptive learning network is taught

to control the position of attention of the optical trans-
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ducer by reacting to information obtained from the optical
transducer. The sequential information obtained by moving
the area of attention is then input to the second adaptive

learning network which is taught to classify this data.

If the first learning network is taught to track
the edges or lines of the input pattern, then the sequential
information generated on tracking would be similar to that
obtained by tracking systems designed for character recog-
nition. The possibility of teaching the system in this way

has been considered in detail.

The optical transducer which has been designed
and built for this project is described in Chapter 2. This
involved interfacing a television camera to a computer in a
somewhat unusual way in that only a small area of the scene
of view is considered at a time. One of the most similar
systems to this is described by Dinn et al 1970 (10),
However, this was designed with regards to industrial pro-

cess control and for conversion of images stored on video mag-

netic tape and there are many differences in the details.,

One of the main differences is in the method used
for obtaining averaged data when a small size matrix is
used to represent a large area of the scene (i.e. each
element of the matrix covers n lines of the television scan).
Their system can obtain a 5-bit grey level value for each
element of the matrix but only considers one of the n lines
of the scan relevant to that element. The system described

in this thesis was primarily intended for binary input
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patterns at one grey level at a time. This allows an
averaging method to be used which considers all of the
relevant n lines when determining the value of an element

of the matrix-.

Chapter 2 also contains an introduction to the

software system designed to control the television camera.

In Chapter 3 the development of, and the results
obtained from, the structure for the first learning
network (designed to control the position of the area of
attention) is discussed. Here a successful adaptation to

tracking strategies was obtained.

In Chapter 4 the development of, and results
obtained from, the second learning network (designed to
classify the input pattern from the tracking information)
is discussed. The results from this section are largely

negative: reasons and causes are debated.

Several different learning elements were adapted
in the two learning systems and these are described in

detail in Chapter 5.

In Chapter 6 a description of the pattern
processing software system which has been developed during

this project is described and Chapter 7 is the conclusion,




CHAPTER 2

THE DEsi6N OF THE HARD AND THE SOFTWARE

In this chapter the design considerations and
a description of the operation of the software and

hardware systems is presented.

This is intended to supply enough information to
clarify references made to the computer system in the

following chapters.

Further details of the software system are given
in Chapter 6 and circuit details of the hardware system

are given in Appendix 1.

Z2:l SpeciFicATION OF THE HARDWARE,

2.1.1 General specification,

The device was originally considered as a model
of an 'eye' which could 'look' at any part of a scene and

receive detailed information about that part of the scene.

To decide how the hardware was to be built for
this project the following specifications were defined.
A hardware device would view a two-dimensional, planar
visual scene and send information in the form of a binary
matrix (~16x16 bits) about a part of that scene. The
computer must be able to dictate to the device where from

the scene and over what area the information is to be taken.
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24l 42 First planned device.

As at any one time only a 16x16 binary matrix of
information was required it seemed reasonable to
receive this information with a 'retina' in the form of
a 16x16 matrix of photodiodes. This retina could easily
be coupled to the computer. Unfortunately, at this time,
this matrix colld@ only be made 6" square and this incurs
mechanical problems. The image could be focused on the
retina via a zoom lens and the whole system could be
rotated in two dimensions by two geared stepping motors
(this motion is similar to that of a real eye), see Fig.
2.1.1. The stepping motors and zoom lens would be
controlled by the computer. On closer examination this

system presented several difficult problems.

1. The zoom lens should have a ratio of at
least 6 to 1 and for a 6" square retina would have to be

very expensive.

2. The device would be very bulky and it would
be very difficult to make a mechanical system to control
the retina quickly and accurately (an accuracy of
several minutes of arc is necessary). This could
partially be overcome by controlling a mirror in front
of the lens instead of the whole lens-retina assembly,
see Fig. 2.1.2. This would greatly reduce the mass to
be moved but it would also limit the area of the scene

which can be viewed.
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3. If the object is two-dimensional and the
device looks at it from a fixed point then the edges
become distorted due to the different angle subtended
to that point, see Fig. 2.1.3. Using a 16x16 matrix and
allowing a'distortion'in the order of one bit a maximum

total viewing angle of only 30° is possible.

| =1

Zl > 22, but appears the same when

viewed from S.

FiGure 2.1.3

4. Due to the large size (and low relative
efficiency) of the photodiode matrix a large amount of
light is required to illuminate the scene. It was estimated
that the amount of light required was more than two orders

of magnitude greater than was practical.

2.1.3 Second planned device.

Due to the above problems another method of
building the device was considered. This method involves a

television camera and is shown in Fig. 2.1.4.
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With this system the camera remains stationary
and its field of view is determined by its lens. The
whole viewing area must be scanned all the time. The
control unit then electronically selects information from
the video signal only at the part of the scene that is of

interest.

The main advantages of this system are as
follows:-

1., There is no problem in accuracy, or time lost
in changing position of the area of interest as it is now

done electronically instead of mechanically.

2. There are no light intensity problems, the
camera is designed for normal lighting conditions and has
an automatic intensity control which works over a large

range.

3. The 'retina' i.e., the camera vidicon surface
is plane and stationary and hence the distortion at the
edges which occurs when the retina is moved does not exist

at all.

4., The camera is a small but strong industrial
piece of equipment hence no special care is needed when

handling it, and it can easily be serviced.
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The main disadvantages are:-
1. A complex control unit is necessary to obtain

the information from the camera.

2. The zoom operation can only be done in
quantised steps. This is because of the television
scanning system, which involves a set number of horizontal
lines. The vertical information must be averaged over
several lines for each bit hence, for 16 bits, the zoom

must average over a multiple of 16 lines.

3. The lens, vidicon system is not very linear in
its light response (the video signal is low at the edges of
the scene). Hence, it is difficult to sample at one

brightness level over the whole scene.

This second system is the one that was actually built.

2,2 THE HARDWARE SYSTEM,

The general layout of the television camera hard-
ware system is shown in Fig. 2.2.1. When the computer
wants to obtain a matrix from the system it sends all the
settings of the matrix to the control unit (i.e., x and y
coordinates, zoom etc.,), The control unit then obtains
the matrix from the camera and sends it to the computer in

16, l1l6-bit words.
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The T.V. monitor shows what the camera is looking
at. The area over which the data is being obtained (i.e.,
the viewing window) can also be displayed on the T.V.
screen., The "joystick input" consists of a remote control
box with a joystick switch, There is also a two-positon
function switch in the box. The outputs from these switches
are connected to the computer interface and they have no
direct effect on the camera hardware. The joystick input
has been built to enable a teacher to control the position
of the viewing window. The position of the joystick and
the state of the function switch may be detected by the
computer program and the effect that these switches have is

defined within the program, as described in section 3.2.1.

The control unit contains all the logic for the
system. It handles the information from the computer
interface, obtains the required information from the camera
and sends it back to the interface. It also generates the
window displayed on the T.V., screen. The unit is shown in

more detail in the block diagram of Fig. 2.2.2.
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The 6 MHz clock controls the main timing of the
system. The clock pulses are counted by the x counter,
each clock pulse determines the time taken to obtain one

bit of information from the camera.

The first 256 increments of the x counter define
the time during which data may be obtained from the screen.
At a higher count the decoder sends a sync pulse to
synchronise the line scan of the camera and then the
counter is reset by the decoder for the next line. This

is illustrated in Fig. 2.2.3.

Every time the x counter is reset, the y counter
is incremented (i.,e., each increment of the y counter
corresponds to a line of the scan). In the y direction
the lines are used as a way of obtaining the quantisation,
i.e., 1 line = 1 bit high. Hence, the first 256 increments
of the y counter define the time when data may be
obtained, at a higher count the y decoder sends a sync
pulse to synchronise the frame of the camera with the

system. This timing is illustrated in Fig. 2.2.4.

This arrangement allows the area where data may be
obtained from the frame to be divided into a 256x256 matrix.
Each bit of this matrix may be referenced by the position

of the x and y counters.

The position of top left corner of the viewing
window is defined by two 8-bit addresses sent via the

computer output interface. The first defines the x
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coordinate and the second the y coordinate. These
addresses are fed into the x and y decoders respectively

(via the lines x and y in Fig. 2.2.2).

Then, when this specified point has been reached
by the x and y counters, pulses are sent to the x zoom
counter and after every line the y zoom counter is

incremented.

The size or magnification (zoom) of the viewing
window is sent from the computer output interface to the
zoom counters (line z in Fig.2.2.2) .Onceactivated by the
decoders, the zoom counters become active for zoom x 16
pulses each scan for the x zoom counter and zoom x 16 lines
for the y zoom counter. Hence, the zoom counters are
active when the area of the scene defined by the viewing

window is being scanned.

The data from the camera is in the form of a
composite video signal, This is fed to the threshold unit
and to the T.V. window generator. The threshold unit is
a comparator which decides which parts of the video
signal are "white" or "black" and the resultant digital
output is sent to the averaging unit. The voltage level
at which the comparator decides between white and
black is set by the computer and sent to the threshold

unit (via the output interface and the line T on Fig. 2.2.2.)

The averaging unit accepts information from the

threshold unit when it receives pulses from the two zoom
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counters. It generates the output matrix in the form

of 16, 1l6-bit words.

As each 16-bit word is generated it is sent to
part of a 256-bit store in the computer interface. When
the last 16-bit word has been sent to the interface the
control unit indicates to the computer that the data is
ready. The computer can then input this data. No more
data is sent to the interface until the computer

indicates a data request.

The window generator detects when the two zoom
counters are active (i.e., when the window is to be
displayed) and then adds a d.c. level to the composite
signal. The resultant signal is fed to the T.V. monitor
and the window is displayed on the monitor as an area of
the picture where the brightness level is different to

the rest of the picture.

The manual controls (shown in Fig. 2.2.2)are

mounted on a panel in the control unit. These switches

allow the operator to override any or all of the functions

which are carried out by the computer output interface.
This is useful mainly when setting up and when working on

the equipment off-line from the computer.

It has already been said that the averaging unit
under the control of the zoom counters accepts informa-
tion from the camera, averages it to a 16x16 matrix and
sends it to the computer input interface. The way that

the unit averages the information is not a strict
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mathematical average. The unit finds the average of every
line of the scan as it is input and then finds the average
of these resultants to decide if the bit is a 1 or a O.
For example, consider the case of a zoom of 6 then a 6x6
matrix of the view will contribute to each bit of the
output matrix. The way that the unit would handle one of

these 6x6 matrices is illustrated in Fig. 2.2.5.

1000600 0
110000 0
1110600 1
=> => l
L1 1I000 1
111100 1
111110 1
From Camera 1 bit of output

matrix

FiGurRe 2.2.5 METHOD OF AVERAGING.

It counts the number of bits in each line and if this is greater
than or equal to half the total number of possible bits in a
line (i.e., 3 in this case), then that line is represented

by a one. This is done for all the lines. The number of

lines which are represented by a 1 are then counted and if
(applying the same logic as for each line) three or more

ones are present then the corresponding bit in the output

matrix is made a 1.

For a proper mathematical average all the bits of
the 6x6 matrix should have been added together and the

resultant compared with half the square of the zoom (i.e.,

Z2

5— = 18 in this case). The first method was used because
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it is easy to realise in hardware, and has been achieved
mainly with 17 4-bit counters. If the proper averaging
system had been used the controlling logic would have

been a lot more complex and twice as many counters would

have been required.

Due to this method, the averaging unit will not

2
output a 1 for patterns with less than %— bits set as for

example:
1 1 1 O O o
1 1 1 0 O O
o/p = O\/l__i__/._ /e/0 o0 o
o/P = 1 O 0O 0O 0O O O
0O 0O 0O 0 o o
0 0O 0O 0O O O

2

It will certainly fire if there are more than %— bits set

as for example:

. 1 1 1 1 1@
i@ 1 1 1 1 21

o/P = OW
o/P = 1 O 0O 0 0 ©
O O O O o
O O O O o

o O O

The method is shape dependent but is simple and was found

adequate in the experiments,

The number of bits which decides the threshold
(i.e,, 3 in the case of a zoom of 6) is half the value cof
the zoom., This number is stored in a counter which

automatically counts half the zoom value when the zoom is
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set, If it is desired to change this threshold, any
number (less than 16) may be loaded into this counter by
the computer after the zoom has been set, For example,
if in the case of the zoom of 6 this threshold was set at
1l (instead of 3), then if any bit of the 6x6 matrix is a
1 the output to the averaged matrix will be a 1. This
means that the system is very sensitive to any object

but does not give as much detail.

This could be useful in some experiments and
the software has been written to enable this to be used.

A photograph of the equipment is shown in Fig. 2.3.5.

2.3 THE SOFTWARE SYSTEM,

A software system was written to make the
programming of experiments as easy as possible. This is
intended for use with learning networks which require
pattern manipulation. It contains the programs to control
the camera so that it may be used without a knowledge of

the hardware details.

Zilatal Design considerations.

For any experiment concerned with learning
networks the following parts of a software system were

considered necessary,
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FiGcure 2.3.5
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1. A set of executive routines to control

all the peripherals including the camera.

2. A library of standard routines concerning

pattern manipulation and data organisation.

3., An organised data workspace so that pattern
information concerned with an experiment is readily

available.

4, An on-line access to enable a user to

manipulate manually the data in the workspace.

5. Debugging facilities to enable easy debug-

ging of a new experiment.

In writing this software several constraints had to be

considered.

Speed. Most experiments with the camera take place
in real time, also most experiments which involve czcling

learning nets take a lot of processing time hence, it is

very important that the pattern handling routines and

simulation routines should operate as quickly as possible.

Space. Space in the computer is very limited.
The machine (a Honeywell DDP 516) with a 16-bit word length,
had originally 8K words of store and now has 16K words.
Further expansion is difficult due to both hardware and
software limitations. So all parts of the system must be

kept very compact.
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Simplicity. This software system is mainly

designed for experimental use and users who may wish to
understand how parts of the system work or who may even
want to change the parts themselves. Hence, standard
methods of operations in, for example, the setting up of
loops, the calling of subroutines etc. have been
established and short cuts for particular cases have been

avoided.

2.3.2 The structure of the system.

The software backing system consists of three
main modules. These are: an executive module which
controls all the peripherals; a main program which sets
up the data workspace and allows on-line access and
manipulation within it, and a library of standard

subroutines - which are available to all modules..

The actual experiment is written as a subsystem
to the software and acts as a fourth module. There is
an optional fifth module which is a debugging system.
This can be loaded into the workspace and is overwritten

when it is not used.

All modules except the debugging module are
loaded in the 'bottom' of the available core and the data
workspace is allowed from the end of the last module to
the end of the available core. This latter limit can be
changed after the program has been loaded if it is desired
to use the top of the core store for some other reason

€.g., for multiprogramming.
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Fig. 2.3.1 shows the interactions between the
sections of the software system as they appear to the
on-line user. Each section has its own different command
status. Usually, unless the experiment is running, the
program waits in a command status for a command to be
input, Each command status has a unique set of valid
commands which it can accept and execute. Commands are
input from the command device, this may be any peripheral

which inputs characters but it is usually the teletype.

The Executive Input/Output Module.

This module is equivalent to the executive or
director in a conventional operating system. It contains
all the routines for communicating with the peripherals.
Its command status is entered by causing a program break
from the command device. In its command status it allows
peripherals to be allocated to different channels. There
are two exits from this command status, one to the main

program and one to the experiment subsystem,

The Main Program.

When starting, the system enters the main program
and waits 1in its related command status. The main
program does all the housekeeping for the system which is
defined below, Hence, general purpose operations are
possible here and do not need to be written into the
experiment subsystem. The main program divides the data

workspace into blocks of 16 words (16x16 bit binary patterns)
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and contains the following on-line functions.

1. Manipulation the workspace e.g., the command
'AN4 TO 5' will logically AND pattern 4 to pattern 5 and
'OS 10TO 30' will output on paper tape the patterns 10-30
inclusive,

2, Control of the television camera. A set of
commands enables every parameter sent to the camera to be
varied and data from the camera to be stored in the work-
space.

3. General purpose commands e.g., the command
'PV' enables a heading to be printed onto paper tape.
Some commands are also useful for limited debugging e.g.,
"DC '1000" will display core locations 'l000 to '1l017 on
a visual display and the user can observe how and when

they change value.

The Library Module,

This contains general purpose routines used by

other modules e.g,, the command AN 4 TO 5 given in discussing

the main program, this would use the following library
subroutines
INCOMMAND to input the command
INUMBER to input the two pattern numbers
SORT to check that these numbers are
within range
AND to do the operation of ANDing the

patterns.




54

Some routines have a command status which enable
parameters within them to be set. Examples of these are

shown in Fig., 2.,3.1,

The Experiment Subsystem.

This is the experiment which is written by the
user. Any DAP program can be used as a subsystem however,
if the software backing system is considered when
writing the subsystem, then it can contain the following

features.

1. A command status to enable parameters within
the experiment to be varied.

2. All pattern storage and learning network
storage can be allocated in the data workspace.

3. All general functions e.g., pattern manipula-

tion etc. can be carried out via the library routines.

In this project several different experiment
subsystems have been used. Examples of these occur in

section 6.4.

All the learning networks are organised in the
experiment subsystem. The operation of the learning
networks is assisted by a set of subroutines from the
library. Many different kinds of learning elements are
made available by different subroutines and only the
subroutines which are specifically requested by an experi-

ment subsystem are loaded.
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There is a hardware learning machine 'Minerva’
which is linked to the computer. An experiment subsystem

may use Minerva via some of these library subroutines.

The other learning network subroutines simulate
the learning elements within the core store. The active
store for simulated learning elements is set up in the
data workspace. Hence, the size of the learning networks
may be varied and also the main program has easy access

to the learning element stores.

The Debug Option,

A special debugging program for the DDP 516
computer has been written at this University.(3)
As well as a general debugging aid it also allows small
DAP-like programs to be input on-line and modifications

to the existing program. As a large amount of time is
spent debugging the experiment subsystem, it is important
that the system should have some debugging aids. It does
have some in the main program but these have been limited
due to the space they require. The debug program has been
written so that it lies within two sectors (i.e., 64

16x16 patterns). It was originally self-contained but now

a modified version has been made which can link with the

system through the Executive module.

The Debug option may be loaded at any time. It
loads into the top of store and takes the space of the
top 64 data patterns. It has a command status which can

be entered from any command status in the system.
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2.3.3 Summary Of the ‘SO'ftW‘é‘I"é‘ éy-é-t-ém.

A software system has been written which is to
aid experiments using patterns with particular regard
to the camera peripheral and SLAM learning networks. It
is self-protected i.e., it cannot corrupt itself unless
there is a mistake in the experiment subsystem (or if a

mistake is made in the use of Debug).

It means that a user can write an experiment
subsystem which can have access to all the routines of
the extensive library of the system and when necessary
can be debugged or changed by a high level debugging
system. The resulting program should run almost as fast
as is possible and hence be suitable for real time

applications.

This system is now being used for another

project concerned with learning networks for pattern

(51)

recognition. This project does not use the camera at

all except for occasional data preparations. Many

features of the system have been left out of this descrip-

tion but they are described in Chapter 6 which is devoted

to the software system.




CHAPTER 3

THE TRACKING SYSTEM

In this chapter the features of a tracking
system are discussed. The tracking of thick lines or
line drawings is considered. The tracking system is
taught by a human teacher and is designed so that it will
mimic the operator's actions on the basis of the subpat-
terns extracted from the viewed pattern. It is hoped
that, due to the adaptive learning networks, the system
will be able to track patterns not seen during the
period of 'training', that is, it should be able to

generalise.

Edge following, the simplest form of tracking,
is considered first and the tracking system to do this

has the following features:

l. It contains learning networks which are
taught (by a human operator using a joystick) to make the
decisions regarding the movement of the points of

attention.

2. It receives information from the patterns
only from the local area around the point of its attention,
i.e., the point it has at present reached on the pattern

due to its tracking.

3. It uses the camera system (this is described

in section 3.1).
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The general scheme for this system is illustrated
in Fig. 3.1.1. This scheme has been further developed to
track line drawings. If every line of a pattern is
tracked then there should be sufficient information from
the tracking motions to recognise the pattern. Also,
different organisations of the learning elements within

the learning networks have been investigated.

3.1 THE CAMERA SYSTEM.

The camera system, consisting of the camera
hardware and its software backing can be represented by

the diagram in Fig. 3.1.2., The details of the operation

| CAMERA
SYSTEM
}6xl6 step step
binary N/S E/W
output
Ficure 3.1.2

of the hardware are given in section 2.2. The camera

light threshold is preset to detect the pattern and the
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zoom value is preset to a suitable size with respect to
the pattern size. Therefore, only the position of the
viewing window is to be controlled. At each instant of
clocked time, the position of the viewing window may be
moved in the North/South and East/West directions by a
preset number of picture elements. The number of
elements moved is called the step size and it is set

within the tracking experiment.

Hence, there are two inputs to the camera system.
One to indicate a step in the North or South direction and
the other to indicate a step in the East or West direc-
tion. Strictly, these inputs are three-level inputs in

that no movement at all may be commanded.

The output from the camera is a 16x16 binary
representation of the area of the scene within the viewing
window. An example of the information obtained from the
pattern is shown in Fig. 3.1.3., The new position of the
viewing window after the command NE is given is shown by

the broken lines.

G, THE TRACKING SYSTEM,

324l Basic structure of the system.

The structure of the tracking system is partially
defined by the camera system. The only information from
the scene to the tracking system is through the viewing

window, and the system must generate the N/S and E/W
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commands to move the area of attention (i.e., the position
of the viewing window) . Hence, two outputs are needed
from the tracking system (N/S and E/W) and the learning
networks have been split into two modules to provide them.
This is shown in Fig. 3.2.1. These modules are taught
different information but are identical to each other in
structure. Each module, whatever its internal structure

has the following characteristics:

l. It contains a learning network which receives
information from a binary input matrix and which can be
taught via the teach input to associate either a high or
low output response with this input matrix (i.e., it must
be able to produce the same response when this input is

again presented to the module without any teach stimulus).

2. A ternary (e.g., N, S and no move) output

decision system to drive the camera system.

3. A ternary 'teach' input decision system so

that the module may be taught to output desired responses.

In practice, for convenience of the hardware,
ternary teach inputs are realised by two binary inputs in
which only 3 of the 4 possible binary combinations are

permitted.

The ternary output is to match into the ternary
input of the camera system, however, if the step size is

small then a binary output may be sufficient that is, the
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need for a dead zone is removed. This would compel the
viewing window to move in the N or S direction with every
instant of clocked time i.e., one of the four possible

moves (NE, SE, NW and SW) is forced.

Teaching is achieved by a human teacher using
the joystick switch. This has a center return and can be
pushed in the desired direction of motion. It has four
binary outputs, one for each of the four cardinal
directions N.S.,E.W. and there is an overlap between
adjacent directions. For example, it is possible to
indicate NE when both N and E outputs will be true. This
switch is connected to the teach terminals of the learning
modules. When the joystick is pushed forward the N output
becomes true and teaches the N/S learning network to give
a high response to the input pattern, this results in the
viewing window moving N. When the joystick is in the
center position, both the teach terminals are false, no
teaching takes place and the learning network makes its own
decisions. Hence, the three states of the teaching inputs

are teach high, no teach and teach low.

Jeldeid Last step feedback.

With the learning module described in the previous
section it is possible to associate an input pattern with

a command for the direction of the next step.

Consider the system shown in Fig. 3.2.1 (without

the feedback) and a particular tracking task, of tracking
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around a square in a clockwise direction, as shown in
Fig. 3.2.2. Now consider the viewing window in the two
positions shown, at the top and bottom of the square.

At the top of the square the learning networks must
associate the pattern in the viewing window with the
direction E and at the bottom with W. These two patterns

are completely different, so this should be possible.

One can see that a unique direction could be
associated with every possible pattern which appears in
the viewing window when it is on the edge of the square.

This is true for all solid patterns.

However, if we try to use this system for track-
ing a line drawing of a square,instead of a solid square,

an ambiguity arises.

Fig. 3,2.3 shows a line drawing of a square in

which the task of tracking clockwise is again examined.

Consider the viewing window in the two positions
indicated. It can be seen that the pattern in the viewing
window is identical at these positions yet we want to move
in opposite directions. Hence, it is not possible to

track the pattern using the system in this way.

One possible solution is to displace the position
of the viewing window with respect to its position on the
line as shown in Fig. 3.2.4. Hence, the viewing window

not only detects the line but its position with respect to
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that line determines the direction of motion. The
pattern in the viewing window is different at the top
and bottom of the square hence tracking is possible.

This method has two disadvantages which are as follows:

1. The teacher must be very careful when
training,that the line does not drift much from the
desired position in viewing window else the teaching will
be incorrect;for different positions in the viewing

window mean more than just a directing error.

2. The teacher must plan a strategy so that all
the directions associated with particular lines and
positions of the viewing window are unique. This is
simple with patterns like squares and circles but becomes
very involved when more complex patterns with many lines

and line junctions are considered.

An alternative solution which has been investi-
gated is to include a memory within the system to indicate
the direction of motion in ambiguous situations. For the
case of the square this memory need only be one step long
and it can be achieved by adding internal feedback around
the learning modules. This is called 'last step' feed-

back.

The way that this feedback is added to the model
is shown by the broken lines in Fig. 3.2.1. Last step
feedback means that the last direction that the viewing

window moved is fed back to the input of the learning
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network. Hence, the input is now a combination of the
pattern in the viewing window and the last direction
moved. (Several methods of combining this information
have been investigated and the details of these are given
in section 3,3.4.) How this feedback solves the problem
is illustrated in Fig., 3.2.3. At the top of the square
the pattern in the viewing window plus the fact that the
last direction moved was W implies that the new direction
is W and vice-versa at the bottom of the square. With
this system it is possible to track simple line drawings
and examples of these are given in Fig. 3.2.5. When
using this type of feedback the task of the teacher has
been reduced to guiding the viewing window along the

lines of the line drawing in the desired direction.

If we limit the function of the viewing window
to following a line we can more clearly define what we

mean by 'tracking a line drawing',

Tracking a line drawing occurs when the viewing.
window traces a circuit over a line drawing in such a way
that every line is at some time covered by the viewing
window. Covered in this sense means that every part of
the line is, at some time, contained within the viewing

window.

The tracking is'good' if the centre of the view-
ing window accurately follows the center of the lines of
the drawing and hence the shape of the line drawing can

be accurately reconstructed from the motions of the
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viewing window.

For the edge following task in which the contour
of a solid pattern is traced 'tracking the edge' of a

pattern may also be defined in a similar way.

Tracking the edge of a pattern occurs when the
viewing window traces a circuit over a solid pattern in
such a way that during this circuit the viewing window

passes over every part of the edge of the pattern.

The tracking of the edge is 'good' if the centre
of the viewing window accurately follows the edge of the
solid pattern and hence; the shape of the solid pattern

can be reconstructed from the motion of the viewing window.

34243 Delayed and damped feedback.

If we wish to track more complex patterns which
have joining and intersecting lines, then a further problem

appears which is demonstrated in the following example.

This example is illustrated in Fig. 3.2.6 where
the pattern and the desired tracking path is shown. The
problem occurs at the junction of the center line with
the left hand upright line. This is shown in greater detail
in Fig. 3.2.7. Table 3.2.1 indicates the information
presented to the learning networks with different modes of

feedback and the desired response from the learning network
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for the different positions shown in Fig. 3.2.7.

Now consider the viewing window in the position
(2) just before the first turn is made and position (7)
just after the second turn has been made. In these two
positions two different outputs are required. However,
the last step feedback is identical and the patterns in
the viewing window can be very similar if not identical.
Therefore, the tracking system with last step feedback

only is not able to track the desired path.

This problem arises at the critical point just
at the junction., The viewing window changes direction,
and hence, there are several values for the last feedback.
To overcome this some memory must be added to the system
so that information about the direction that the viewing
window approached the junction is presented to the
learning network until the viewing window has moved away

from the junction and the critical point is passed.

Two methods of achieving this memory are discussed
here. The first is to delay the feedback by n steps where
n is a preset value, This could be achieved by a shift
register, for each direction,of length n in which the
output from the learning network is input, and the output
from it is combined with the viewing window information and
presented to the input of the learning network. Hence,
any change in feedback will occur n steps after the junc-
tion. The directions that this feedback produces are also

shown in Table 3.2.1. From the table it can be seen, for
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example, that between positions (8) and (9) the feedback
changes value. This change was initiated by the second
turn at the junction. It can be seen from the table

that no anomalies like the one for the last step feedback
occur for the delayed feedback and hence, tracking is

possible with this method.,

The second method, damped feedback, is to limit
the rate of change of the direction fed back. Hence,
although the direction fed back starts to change at the
critical point in the junction, it does not complete the
change until several steps later. The directions that
would be fed back for the example using this type of
feedback are also given in table 3.2.1, and again, it can

be seen that no ambiguities arise and tracking is possible.

This type of feedback has been investigated and
the results are given in section 3.3.5. The feedback
vector has been -generated in two separate parts, a N/S

component and an E/W,which are calculated separately.

The N/S vector for example, may vary between +1
indicating N and -1 indicating S. The simplest way to
implement the rate of change of feedback would be to
limit the amount by which the feedback vector is changed
each step, until one of the maximum limits is reached.

This is expressed by:
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NSV +1 for NV » +1

NV for =1 < NV < +1
= -1 for NV ¢ -1
where NV = NSV' +K , ID
and NSV is the N/S vector
NSV*“is*the previous value of NSV
LD is the last direction that the N/S learning
module outputs, LD=+1 or O or -1
K is a constant which determines the amount of

change of NSV per step.

However, this simple method is not sufficient. This is
illustrated by an example in Fig. 3.2.8. In this diagram the
tracking path is shown in (a) the variation of the last step
feedback (LD) is shown in (b) and the variation of the N/S
vector is shown in (c) for delayed feedback and (d) for

this simple damped feedback. When no direction commands

are given then this feedback remains constant at its last
value. Hence, at position (7) this feedback is still

indicating an N direction.

This has been overcome by allowing the vector to
zero if no commands are given. This has been achieved by

calculating the vector with the following equation:

NSV = NSV',.(1-K) + K.LD , O<Kgl .

The way that this would work is shown in
Fig. 3.2.8(e). This method is equivalent to taking a

weighted sum of the past directions where each weight is
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inversely related to the number of steps that a direction
is in the past. Both delayed feedback and damped

feedback are affected by the step size. There are

usually in the order of 4-8 steps for the viewing window

in moving between position (1) and (3) shown in Fig.

3.2.7. For good tracking the step size must be kept

small to ensure that the features of the pattern are
centred in the viewing window. However, the speed of
tracking is proportional to the number of steps taken

and ‘is therefore inversely proportional to the step

size. The dependancy of the feedback on the step size means
that the size of the pattern to be tracked is now relevant.
In fact, with delayed feedback there is a definite problem
when the critical points of two features occur in the order

of n steps apart.

The delayed feedback has an inherent limitation
in that it can only feedback one of eight unique values
at the critical point of a junction. If one considers the
more usual case where the output of the learning module is
binary instead of ternary, then only four directions are
possible. Also, often only 2 of these directions are
valid. For example, if the system tracks a horizontal line
well in an E direction then the sequence of commands would
be NE, SE, NE, SE ... The N/S value would oscillate in
this case and this N/S feedback when delayed is of no use.
Hence, there is a definite restriction to the number of
different lines which a system with delayed feedback can
enter a junction and uniquely remember the direction of

entry. With damped feedback this fundamental limit does not
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exist. The number of different entry lines which may be
remembered with this feedback is determined by the number
of feedback connections and the size of the learning

network.,

The damped feedback method is the one which has
been investigated and details of this are given in section

3.3.6.

324 Theoretical Performance.

The best possible performance of the tracking
model with respect to the complexity of the input pattern

may be determined.

Using damped feedback the model has the following

three properties:

1. It can be taught to follow any single line
in any direction.
2. When it enters a junction of several lines
it can be taught to exit the junction by
any one of the lines, even by the one by
which it entered.
The above implies that if ever the system proceeds the same
way along a line, it has previously tracked, then it is in

a permanent loop and has completed a cycle of it.

3. If two or more junctions of a pattern are

identical (i.e., the have the same number
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of lines joining at the same angles)
then the second property concerns them
all together as the tracking system

cannot distinguish between them.

These above three properties determine the
tracking abilities. With such a system it is not possible
to teach it any scan path around a pattern. This is
illustrated in Fig. 3.2.9. It cannot be taught the first
tracking path because this involves making a different
decision when entering the same junction from the same
direction,as shown in the diagram at the points indicated,
and this contradicts the second property. However, this
pattern can be tracked by the second path hence, a tracking

path can often be found if it is thought out beforehand.

The reason for this limitation is that there is
no long term memory in the system to inform it where it
has been. There is only a short term memory for enabling
the system to pass througﬁ features. Further development
could be aimed at providing a long term memory via a
second feedback loop. If this was successfully added then
the tracking system would be able to track any line

drawing.
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Jad A MaxIMuM RESPONSE LEARNING SYSTEM.

3:8:1 Structure of the learning modules.

Throughout these experiments the basic element
which has been used in the learning networks is a SLAM.

This is described in detail in section 5.1.1.

The structure of the learning elements to form
a learning module is shown in Fig. 3.3.1. The learning
networks are made of SLAM-16 elements in which all of the
teach-clock inputs have been connected together also all
the teach-sense inputs are set a 1. Therefore, when the
learning network is clocked all of the SLAMs will output

a 1 for the particular input pattern.

The clock terminal of the N net is connected to
the N teach terminal and the clock terminal of the S net

to the S teach terminal.

Initially, the stores of the SLAMs are set at O.
When the joystick is pushed in the N direction then the
N learning network will output all 1s for that input.
This response, (the sum of all the SLAMs outputting a 1)
is compared with the response from the S learning network
and the highest response determines whether the output
from the module is high or low. A threshold can be set
at the output which the difference between the responses
must exceed for a non-zero output, otherwise the ternary
output will be at the O neutral state. 1In practice, this

threshold was usually set to O providing a binary output
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(see section 3.2.,1).

The input, which consists of the pattern from
the viewing window combined with the feedback if there
is any, is connected to the learning network via a random
map so that the SLAMs sample random 4-tuples from the
input space. This is considered in more detail in

section 3.3.5,

3:3a2 Performance criteria.

In evaluating the performance of the different
tracking methods a set of criteria have been established.

These criteria are as follows:

l. Generalisation., This is the ability of the
system to track unseen patterns after teaching with the
same tracking path that it has been taught. A good
tracking system should be able to accept a wide variation
in the dimensions of the input patterns i.e., the more it

generalises the better.

2., Tracking ability. This is an evaluation of
the complexity of the patterns which the tracking system

can be taught to track.

3. Amount of teaching required. This can usually
be expressed by the number of cycles of tracking path of
a pattern which must be tracked reliably. Sometimes,

however, small corrections need to be made while the system
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is running and these have also been noted when relevant.

4, Ease of teaching. This is a subjective
evaluation by the teacher on how easy it is to direct the
system around the desired tracking path. It must be
stressed that the teacher interacts heavily with the
system and the performance of the system is very dependent

on the ability of the teacher,

3s3e3 Performance of the system without feedback.

Without feedback the system should be able to be
taught to follow edges. This was attempted with the
smallest size of learning network available which was 64
SLAM-16s per learning network (i.e., a total active store
of 4,096 bits). Slightly more stable teaching and tracking
was observed when twice this number of elements was used.
The performance of this system for the edge following task

is given below.

l. Generalisation.

Once taught a pattern, the system would track
almost any other pattern hence, it has excellent generali-
sing properties.

2. Although it could perform the edge following
task very well, this was not considered a difficult task.
The limitations of this system are in the way it tracks.
This is illustrated in Fig. 3.3.2. If the system is first
taught to track the circle and then is tested with

the untaught triangle, then the tracking path cuts across
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the acute angle of the triangle. If only the triangle
is taught and it is tested with the circle, then the
tracking path becomes elongated at the top due to the
teaching of the acute angle of the triangle. If the
system is taught both patterns then it will track both

properly.

3. Amount of teaching.

If taught one cycle around a pattern well then
the teaching is sufficient. Poor teaching may take

several cycles.

4, Ease of teaching.

The system was very easy to teach and any errors

made were easy to correct.

Hence, this tracking system without feedback is
very good in all respects but it is only suitable for

edge following tasks.

3.3.4 Performance of the maximum response system with

last step feedback.

The learning module receives information in the
form of a 16x16 matrix which consists of the viewing window
information combined with the feedback information. Three
different methods of combining the feedback information with
the viewing window information have been investigated.

A parameter,the feedback %, is preset for an experiment and
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defines the amount of the input matrix over which the
feedback function is effective. The actual bits of the
input matrix which are to be associated with the feedback
are randomly selected when the 'feedback %' is defined.
The three feedback functions which have been investigated

are as follows:

1. Replacement connections.
This function replaces the selected bits of the

input matrix with feedback information.

2. Exclusive OR connections.
This function replaces the selected bits of the
input matrix by the value of these bits exclusive ORed

with the feedback information.

3. AND - OR connections.

This function replaces the selected bits of the
input matrix by the value of those bits ANDed or ORed with
the feedback information. Both AND and OR gates are used
with this method because of the nature of the feedback
information. For example, if with last step feedback the
last step was N then all the N/S feedback connections will
1l and if the lést step was S they would be zero; hence, if
only AND gates were used the input matrix would be
unaffected when the last step was N and all the N/S selec-
ted bits would be zero when the last step was S. To
preserve a balance, when this function is selected, exactly

half of the feedback functions are AND and half are OR.
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These three functions have been tested with
different values for 'feedback %'. A standard test has
been used to achieve this. The system is firstly taught
to track a square and it is then tested with a circle and
a triangle. This is illustrated in Fig. 3.3.3 where the
tracking paths obtained with this test are shown. The
test was conducted with 20% replacement connections
feedback with 128 SLAM-16s per learning network. Fig.
3.3.3(a) shows the tracking path obtained when teaching
the system the square and (b) shows the path obtained when
testing the system with the same square. The tracking path
obtained when presented with the circle and triangle with-

out further teaching are shown in (c) and (d).

Although tracking was possible with the smallest
available size of learning network, i.e., 64 SLAMs pef
learning network, better results were obtained when twice
this size was used and this was the size used to obtain
the performance given below (i.e,, 128 SLAM-16s per learning

network which involves a total active store of 8,192 bits).

l. Generalisation.

value for a particular type of feedback then the generali-
sation with respect to the circle and triangle is good. 1In
most cases they are both tracked successfully and in the
others thereare usually one or two critical points where
the same errors are consistently made. (These may easily

be corrected with a little extra teaching).
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2, Tracking Ability.

With the optimum value of feedback the system
could be taught to track the patterns in Fig. 3.2.5. The
limits of the 'feedback %' which could be used to track

a square were found and these are as follows:

Feedback %

Minimum Maximum
l. replacement connections 3 1.5
2. Exclusive-OR connections 5 100
3. AND - OR connections 5 100
3. In most cases, except near the extreme limits

indicated above, the square was taught for one complete
cycle and this was sufficient. When any correcting was
needed on the second cycle this was usually due to the

teacher badly teaching during first cycle.
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4. Ease of Teaching.

Near the mid values of the usable feedback % the
teaching was very easy and it became increasingly more

difficult as the limits of 'feedback %' were approached.

Using this system with reasonable values of
feedback the patterns in Fig. 3.2.5 can be tracked. The
three methods of applying feedback all worked well and no

difference in performance could be detected between them.

In all the experiments mentioned in this chapter

with last step feedback, 20% feedback with replacement

connections were used unless otherwise stated.

3 5:3VeD The effect of different random maps.

For the above tests a different random map was
used for each of the four learning networks. Some of these
tests were repeated with the same random map for all four
learning networks. This has the advantage that only one
mapping has to be done instead of four. The mapping process
takes a lot of time and by using one map instead of four
the time taken to cycle a square was reduced from 25 to 9

seconds.

The structure of the learning module with one map
is shown in Fig. 3.3.4. 1In this form each SLAM in the N
learning network has a corresponding SLAM in the S learning

network which samples the same bits of the input space.
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This is similar to the structure of the T.R. SLAMs des-
cribed in section 5.5, In fact, where a two-level
threshold is used at the output,the performance is identical
to a single T.R. SLAM learning network with a 2-level

threshold.

Using a single map for the input data no significant

change in the performance was detected.

One further modification has been made to the
mapping to ensure that for less than 25% feedback each SLAM
has either 1 or O feedback inputs, For if more than one
feedback input of the same type is fed to the inputs of a
SLAM this is equivalent to connecting these two inputs
together and a SLAM-16 would effectively behave as a SLAM-8.
When the random map was structured in this way no signifi-
cant change in performance was detected and this single,

structured type of map was used for all further experiments.

3.3.6 The performance of the system with damped feedback.

The damped feedback is generated by

NSV = NSV' . (1-K) + K . LD , (O<Kgl)

which is defined in section 3.2.3.

A value for K has to be preselected and for most
tests this was set at 0.2. Which means that decisions

made in the region 5 to 10 steps in the past are still
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considered. This type of feedback was investigated with
twice the minimum size of learning networks (i.e., 128
SLAMs per module, a total active store of 8,192 bits)
and 35%'replacement connections'feedback. The perfor-

mance of this system was as follows.

l. Generalisation

This system was used to track more complex
patterns (e.g., with more than one loop) than had
previously been possible. Once the system had been taught
to track one of these patterns it could, in general, only
accept very small changes in the shape or size of the
pattern before tracking errors are made. The most common
error is that it does not make the correct decision at a
junction and the cycle which it does track does not cover

all of the pattern.

2. Tracking Ability

Using this system it was possible to track all
the patterns in Fig. 3.3.5 with the tracking paths shown.
One pattern with three loops was taught but only with
difficulty and the limit of this system appears to be at

this level of complexity.

3. Amount of Teaching

Usually, if the system is taught for two to three
cycles of the input pattern this is sufficient for that

pattern to be tracked.
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4. Ease of Teaching

In general, this system is reasonably easy to

teach though not quite as easy as with last step feedback.

This system is able to track more complex patterns
than was previously possible, To do this the 'feedback %'
has had to be increased and the ability of the system to

generalise has been greatly reduced.

3 3] Saturation within the learning networks.

With the maximum response structure with two
learning networks per learning module it is possible that
these learning networks may saturate i.e., both give 100%

output for a particular input pattern.

A mechanism has been built into the system which
will enable teaching to continue if saturation occurs.
This mechanism teaches a randomly chosen 1/16 of the
opposing learning network to output O for this particular
input pattern., Hence, the correct responée is now obtained.
In practice, this mechanism was very rarely used and
saturation usually only occurred for one of the two

following reasons.

1, If the teacher is not very good and makes errors
in teaching or if he changes his mind about the direction
of the tracking path,then it is quite likely that he will
contradict his own teaching and the learning networks will

saturate,
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2. If the tracking task is on the limit of
the ability of the tracking system e.g,, if the system
is being tested near the limits of its feedback or if the
input pattern is very complex, then it is quite possible
that the limitation of the system will be indicated by
the learning networks saturating. The saturation may be
caused by a combination of the above two reasons and

further careful teaching may achieve the desired tracking.

3.4 A PROBABILISTIC LEARNING SYSTEM.

3.4.1 Structure of the probabilistic learning module.

The probabilistic learning system uses the
probabilistic learning network which is described in
section 5.3. The probabilistic learning network is
designed so that it can be taught to output both high and

low responses.

The structure of the probabilistic learning
module is shown in Fig. 3.4.1. With this system, only

one learning network is required for each module.

With the probabilistic learning network a frac-
tion of the SLAMs are taught with each clock cycle, this
fraction is preset by the user. If less than % of the
learning network is taught then one cannot be sure that
the correct output response will occur after one clock

cycle, (in general, 1/16th of the learning network is
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usually taught per cycle). It is necessary for the
learning network to output the desired responses when
being taught, hence, a teaching mechanism is needed to
ensure that the learning network is clocked a sufficient

number of times for the desired response to be obtained.

To achieve this mechanism, two algorithms have
been investigated which compare the output response of
the learning network with the desired (non-zero) response
and then clock the learning network until these responses

are the same.,

The first algorithm teaches the learning network
once on receiving a teach command and then, if necessary,
continues to clock the learning network until the desired
response is achieved. This will be referred to as the

'teach first' method,

The second algorithm, on receiving a teach
command, checks if the response from the learning network
is correct and then, if necessary, clocks the learning
network until the desired response is achieved. This will

be referred to as the 'check first' method.

3.4.2 Performance of the probabilistic learning system

without feedback.

With the smallest size of learning network (64
SLAM-16s per module) useful results could be obtained from

the system and this is the size that was investigated in
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detail (i.e,, 64 SLAMs per module which is a total active
store of 2,048 bits). The following performance was

obtained.

l. Generalisation

After teaching one pattern with either of the
teaching algorithms, the system could track many other

shapes hence, the generalisation is very good.

2. Tracking Ability

The tracking ability was similar to the ability
of the maximum response learning system dgscribed in
section 3.3.3. However, the probabilistic tracking system
was more likely to make errors and drift-off or into the

pattern.

3. Amount of Teaching

In general, it was necessary to teach two to

three cycles of the pattern for it to be tracked.

of Teaching

The system was easy to teach, though more difficult

than the maximum response system.

Hence, the probabilistic learning system without
feedback performs the edge following task well but is
not, in most respects, as good as the maximum response

method.



100

3.4.3 Performance of the probabilistic learning system

with feedback.

Although useful results could be obtained with
the smallest size of learning network, more consistent
results were obtained if twice this size was used and
this is the size which was investigated (i.e., 128 SLAMs

per module which is a total active store of 4,096 bits).

The 2-level feedback was used with 'replacement'
feedback connections and several different amounts of
feedback were investigated, The performance with respect

to line drawings was as follows:

l. Generalisation

In most cases the system was only just able to
track a square after being taught it. When tested with a
circle and triangle the only correct tracking occurred at
the optimum values of feedback (20-30%). However, all

the tracking of circles and triangles was very poor.

2. Tracking Ability

The tracking ability of this system is very
limited. It was possible to teach the system to track
around a square (using values of feedback between 10 and
70%) . However, even this tracking was difficult to teach
and more complex pattefns were not considered possible.

The 'teach first' algorithm would not work with this system
and all the results were obtained by teaching with the

'check first' algorithm.




101

3. Amount of Teaching

A lot of teaching was required for this system

at least 3 to 4 cycles of the input pattern.

4., Ease of Teaching

This system was the most difficult system
investigated to teach. Lengthy careful teaching was

required if a square was to be tracked.

Hence, this system is not very good for the line
following task. It uses less active store then any other
method but teaching the system is very difficult and the

resulting performance is poor and uncertain.,

3.5 A CUMULATIVE LEARNING SYSTEM,

FeDad Structure of the CL learning module.

The CL learning module uses the CL learning
network which is described in section 5.4. Like the
probabilistic learning network, the CL learning network is
designed so that it can be taught to output both high and

low responses.

The structure of the CL learning module is
similar to the structure of the probabilistic learning
module shown in Fig. 3.4.1 except that a CL learning net-

work replaces the probabilistic one.

When a CL learning network is clocked the maximum
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change in output response is 1/16 of the total response.
Hence, as for the probabilistic learning system, a
teaching algorithm is required. The algorithms which
were used for the probabilistic system, which are des-
cribed in section 3,4.1, have also been investigated

with the CL learning system.

3.5.2 Performance of the CL learning system without feedback.

The smallest size of CL SLAM learning network
was sufficient for the edge following task. This involves
64 CL SLAM-16s per module i.e., a total active store of

8,192 bits, The performance of this system was as follows:

l. Generalisation

Both teaching algorithms were investigated and
tracking could be achieved with either. However, if the
'check first' algorithm was used,although the system
would reliably track the training pattern when tested with
other shapes, errors were often made. If the 'teach first'
algorithm was used then the generalisation was very good

and many other shapes could be tracked.

2., Tracking Ability

Using the 'teach first' algorithm, the tracking
ability was very similar to the ability of the maximum

response learning system described in section 3.3.3.
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3. Amount of Teaching

Tracking could usually be achieved after teaching
two to three cycles of the pattern but this would be

improved by further teaching.

4. Ease of Teaching
This system was very easy to teach and any errors

made easy to correct.

Hence, the CL learning system without feedback can
perform the edge following task well. The performance is
comparable with the maximum distance system but twice as

much active store is required,

3.5.3 Performance of the CL SLAM learning system with

feedback.

As with other systems using feedback, more consis-
tent results were obtained by using twice the smallest
size of the learning network. This involved 128 CL SLAM-16s

per module i.e., a total active store of 16,386 bits.

As with the probabilistic learning system, last
step feedback was used with 'replacement' feedback
connections and different amounts of feedback. However,
for this system the 'check first' teaching algorithm did
not work and all the results were obtained using the

‘teach first' algorithm. The performance of this system
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with respect to line drawings was as follows:

l. Generalisation

The generalisation for other shapes was not very
good for this system., When taught the square with a near
optimum amount of feedback (20-30%) then in most cases -
the system would also track a circle and triangle.
However, the tracking for the CL SLAM system was far

better than the probability learning system.

2. Tracking Ability

The system could be taught to track a square with
between 10 and 70% feedback and the performance of the
system was similar to that of the equivalent maximum

response learning system.

3. Amount of Teaching

This system required 3 to 4 cycles of the input

pattern to teach it.,

4, Ease of Teaching

This system was fairly easy to teach. However,
it took more care and time to teach than the equivalent

maximum distance system.

This system when using the 'teach first' algorithm
has a performance which is comparable,though in general
inferior,to the equivalent maximum distance system and it

requires twice as much active store.
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3.6 OBSERVATIONS ON THE RESULTS,

3.6,1 General performance of the system.

With no feedback all the learning modules
investigated could perform the edge following task well
using learning networks which covered the input matrix

once only.

When last step feedback was added, so that lines
could be tracked, it was found that in all cases better
results were obtained by doubling the size of the learning
networks. (Due to the addition of the feedback connections,
this is the smallest size in which the whole of the input
space is covered.) In both of the above cases, further
increase in the size of the learning networks had very

little effect.

The method of applying the feedback connections
to the learning network was not critical. Also, the random

map applied to the input was not critical.

With edge following, the generalisation was very
good. However, when feedback was added and .the input
pattern was made more complex, this generalisation was

reduced.

When damped feedback was used with patterns of
several loops, the system was only able to track the

training pattern reliably.
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202 Relative performance of the learning modules.

(Considering line following tasks).

Of the three learning modules tested the best
performance in tracking and ease of teaching was obtained
from the maximum response module, The structure of this
module could be represented in a similar way to the
structure of the other two modules as shown in Fig. 3.4.1
if the learning network was replaced by a T.R. SLAM
learning network, and the function of the teach algorithm
in this case would be to guard against saturation as

described in section 3.3.7.

The input data is characterised by a long sequence
of similar patterns. To demonstrate this all the patterns
input to the learning modules while being taught to track
a square were recorded, and used to obtain the following
results. These patterns were divided into two groups, those
for which the N/S learning module was taught N and those
for which it was taught S. The histogram Fig. 3.6.1l(a)
shows the distribution obtained by comparing each pair of
patterns in the N group and Fig, 3.6.1(b) shows the distri-
bution of comparing each pattern of the N group with each
pattern of the S group. The broad distribution for the
N group shows that it consists of many patterns which are
not similar in Hamming distance. There is a lot of overlap
between the two distributions which indicates that it is-
not possible to distinguish between the two groups with a
Hamming distance comparison to any archetypes. Therefore,

the nets are doing something in addition to the above
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i.e., a few patterns close to those it recognises keep

it "on track".

In Fig. 3.6.2 a particular decision during
tracking is considered; (a) shows the pattern in the
viewing window and the last direction moved. The distri-
bution of this information to all the patterns in the N
group is shown in (b) and for the S group in (c¢c). Some
of the patterns in (b) are very close in Hamming distance
to the new pattern and this should be sufficient for the
learning module to indicate that it belongs to the N group
i.e., the next command from the N/S learning network should

be N.

The better performance of the maximum response
system is due to the large number of different input pat-
terns taught for each class, The maximum response system
does not forget any of the patterns it has been taught.
However, both the probability and the cumulative learning
networks have the property that consistently taught recent
information may overwrite previously learnt information,
and for tracking it is essential that all the patterns

of a class be remembered with equal weight.

The amount of overwriting depends on the amount of
overlap (i.e., where the Hamming distance is zero) between
the classes for each learning element. If the order of
the elements (i.e., number of inputs) was increased then
this overlap would be decreased and one would expect that

the performance of the probability and CL SLAM learning
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systems would improve with respect to the performance of

the maximum response system.

The probability learning system would only work
with the 'check first' teach algorithm. This is because
all decisions of the learning networks were very critical
(i.e., near the 50% mid value). If too many of one class
was taught the learning network becomes permanently biased

towards that class.

The CL learning system does not generalise well
with the 'check first' tracking algorithm as the learning
network needs to be taught, even when the response it
outputs is correct, so that these responses may be increased

and do not remain near the critical 50% value.

The CL learning system could be taught to track
a square with a 'dead zone' of up to 25% in the threshold
decision at the output of the learning network. The
probability learning system could not be taught to track

a square if there was a dead zone.

Using the maximum response learning modules, the
system was taught to track a square and the number of
elements which were taught to 1 at each step was recorded.
These results have been plotted in Fig. 3.6.3 and they
demonstrate that after the initial teaching of the square

further teaching has very little effect.
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CHAPTER 4
THE CLASSIFYING SYSTEM

An attempt has been made to recognise patterns
from the tracking information produced by the tracking

system.

In the first technique which was investigated,
the data from the tracking system was transferred into
a shift register and the contents of the shift register
were examined in parallel, with a learning network.
This method was not very successful but is mentioned at

the end of this chapter in section 4.4.

In the second method, the tracking information
was fed serially into a learning network which, as a
result of feedback, is sequence-sensitive, and this

method is considered 1in detail in this chapter.

4.1 THE INPUT DATA,
4.1.1 Features of input data.,

To create a structure for classifying patterns
from tracking motions, it is important to understand how
distinguishing features are contained in the tracking

information.

The tracking information or 'input data' to the

classifier has the following characteristics.



113

It is a sequence of events, the length of the
sequence being dependent on the size of the pattern and
the tracking path. (Each event consists of the
information obtained from the tracking system in moving
one step.) Typically, for a thick line drawing of a
square, the sequence‘is the order of 100 events long for

one cycle of the square.

This sequence of events contains within it a set
of features of the pattern such as straight lines, curves,
corners, etc., each feature being several events long,

and the features occur in a unique order in the sequence.

4l 2 Test data.

To assist the development and to evaluate the
performance of the classifier, three different sets of test
data have been used. This data is stored in the form of
tracking movements on punched paper tape so that exactly
the same data can be used for each test and the result of
changing parameters can be observed. Each set of test
data consists of the tracking information for two patterns.
These are used as the training set to teach two classes
to the classifier. This same data is also used to test
the classifier. Each of the sets of data contains

different characteristics and these are described below.

l. Test data (A)

This is illustrated in Fig. 4.1.1 and is of a circle
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and a triangle. This data was obtained from the tracking
system. One cycle of the circle requires about 90 steps
and one cycle of the triangle requires about 60 steps.
The main characteristic of this data is that the tracking
paths are fundamentally the same form and the classifier
must detect the small differences in the shape of the
scan path to classify the patterns e.g., it must detect
that the point of the triangle is different from the

continuous curve of the circle.

2. Test data (B)

This is illustrated in Fig. 4.1.2 and is of a rec-
tangle with a center line and arectangle without one. This
data was also obtained from the tracking system. One
cycle of the rectangle with the center line requires about
130 steps per cycle and the plain rectangle requires about
90 steps per cycle. The scan paths for the two patterns
are the same except where the center line occurs in the
first pattern, Hence, to classify these patterns, the
classifier must detect the tracking motions relevant to

the center line for the first pattern and must detect their

absence at the equivalent position for the second pattern.
All the tracking motions concerned with the rectangle
alone should be ignored as they are common to both patterns.

This is explained in greater detail in section 4.2.3.

3. Test data (C)

This is illustrated in Fig. 4.1.3. for a square and a
triangle. This data was calculated and generated by hand.

The object of this data is to provide simplified versions
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of tracking motions with short, well defined cycles of
8 steps for each pattern. This data was used to assist
the development of the classifier when it was not capable
of producing useful results with test data (A) or test

data (B) .

4.1.3 Format of input data.

The tracking information is received from the
tracking system in the form of a four-bit word for each
step., Each bit, if set, represents a move in one of
the four possible directions N. S. E. W, (If we assume
that the viewing window must move at each instant of
clocked time then it must move in one of 8 possible
directions. Hence, 3 bits of information are obtained from
the tracking system per step. However, the 4-bit code is
a more convenient form to observe, and to input to a

learning network,)

For the first experiments these 4-bit words were
fed directly to the input of the classifier. Therefore,
for a feature of a pattern, the classifier must have an
internal memory for several steps. However, to obtain
knowledge of the spatial position of the features it is
necessary to detect in which order the features occur and
for this a much longer internal memory is required.
Several experiments were carried out with this type of
input. The classifier did not work at all for the test

data (A), however some results were obtained with test data
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(C) in which both the shape of the features and the

distance between features is only a few steps.

An important factor which must be considered with
data taken directly from the tracking system is that it
contains 'jitter' due to the characteristics of the
tracking system. For example, if the system is tracking
a horizontal line in the east direction, one might expect
the sequence of commands to be E, E, E, E, **++ .,
The tracking system ié, however, taught imperfectly by a human
teacher to maintain its N/S position on that line so
that a more likely sequence in practice would be NE, SE,
NE, SE, ****. Hence, a lot of N/S activity would be

indicated which is not produced by the shape of the pattern.

In an attempt to overcome the problem of the long
memory required and the 'jitter' problem mentioned above,
the input information was averaged over several steps.

The way this is achieved is illustrated in Fig. 4.1l.4.

The program written for this allows the average value of
the last n steps to be evaluated (where 1<n<l16). For each
direction the number of times that a move is indicated,

V, for the last n steps, is evaluated; this number is then
presented to the classifier as V bits set in a binary
vector of length n. For each step of the tracking system,
4.n bits of information are presented to the classifier.
The effect of this method is to generate an 'average'
direction of tfacking from the last n steps. This effec-

tively eliminates the 'jitter'.
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When n is large, some indication as to the
spacial position of the features is now input to the
classifier because the input vector cannot change very
much between features. However, this also means that
features are smoothed and in the case of the test data
(A) , for example, it is very important that features
such as the points of the triangle should not be smoothed
too much. This method was used with the classifier and
although it still did not work properly with data from

the tracking system, better results were obtained.

To avoid the smoothing problem a third method of
inputting the data was developed. Instead of inputting
the motions involved in tracking, it was decided to input
the position of the viewing window with respect to the
pattern. The advantage of this method is that features
are spacially located by the input data, hence a long
memory within the classifier is not necessary and the
internal memory is only needed to detectthe features.
There is a practical difficulty in obtaining this data
because the information from the tracking system is in the
form of tracking motions. To generate position from these
motions, a scaling system was used. This analyses the
motions from the tracking system for the first cycle of the
pattern’ (without transmission to the analyser) so that the
limits of the pattern could be determined. Then, after
each motion is input, the position is normalised with
respect to these limits. This scaling enables the pattern

to be defined on a standard matrix size. The positions as
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they are generated can be used to generate the tracking
path that the tracking system follows. The standard
size has been defined on a 16x16 matrix and the results
of plotting these motions on this matrix are shown in

Figs. 4,1,1, 4,1.2 and 4,1.3.

Hence the output from this séaling system is one
bit in 256 i.e. 8 bits of information per step. This was
coded into two 16-bit binary vectors in which the X and Y
coordinates of position on the normalised matrix are
indicated by the number of bits set., This is illustrated
in Fig. 4.1.4. When using this data form for the input to
the classifier, a further improvement in the performance
was noted and this form has been used for all the develop-
ment of the classifier. Although in the above description,
the positions were generated by software, this is not
necessary if one considers the tracking system and classi-
fier combined. Then the addresses that are sent to
position the viewing window of the camera could be used to

generate the classifier input.

4.1.4 Summary .

In this section the nature of the input sequence
has been discussed in detail. The input sequence to the
classifier is a sequence of positions, each position being

defined by two 16-bit vectors.

The features of the pattern are defined by several
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steps of the input sequence,hence the classifier must

have some short-term memory to store them.

To test the classifier three sets of test data
have been established. Set (A) for problems where two
scan paths have only minor detail differences, see Fig.
4.1.1. Set (B) is typical of problems where one part of
the scan path is different for one class where the rest
of the scan paths are identical. Set (C) has only 8 steps
per cycle and is used to evaluate systems for which the

test data (A) and (B) is too long.

.2 STRUCTURE DEVELOPMENT OF THE CLASSIFIER.

4,2.1 General system.

The general structure that was chosen for the
classifier is shown in Fig. 4.2.1. The aim of this struc-
ture is to associate the output codeword with a class of
input sequences, so that when an input is applied to itj;
after training, the appropriate codeword will form at the

output.

The sequential data from the tracking system is
randomly connected to some of the inputs of the classifier
learning network and there is internal feedback around

the network to the rest of the inputs.

-During training, information from the input, and

from a codeword which defines the class, is fed to the
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teach terminals and the SLAMs are clocked (i.e., taught).
The SLAMs which have the codeword only applied to the
teach terminals are the ones which should regenerate

the codeword when the input sequence is applied.

The other SLAMs receive teach information from
both the input data and the codeword combined together.
The combining is achieved by combinational logic gates
(shown by the box 'F' in the diagram). The function
realised by this logic is very important and will be

discussed later.
Three main measures are used in discussing the
properties of the classifier and these are defined as

follows:

Store penetration: This is the number of binary

locations in the SLAM stores which are accessed (i.e.
are set to 1 or O) when the classifier is taught. (It is
usually stated as a percentage of the total SLAM store

size.)

After one cycle of an input pattern has been
taught, one would expect very little increase in this
penetration. This measure does not take into account the

number of times that a bit is changed during teaching.

Store Qverlap: This is the number of binary

locations of the SLAM stores which ,after being accessed by

teaching a first input pattern, change their value on



126

being taught a second input pattern. (It is usually
stated as a percentage of the store penetration of the
first pattern taught). This measure depends to some
extent on the position in the cycle of each pattern that

teaching is terminated.

Pattern Activity: This measure is not rigourously

defined and is used in a qualitative sense only. It is
used to compare two sequences of patterns and is based on
both the bits which change during the sequence and the
correlation between the bits which change value. Hence

a sequence of patterns is said to be more active than
another if either the number of bits which change state
is higher or the correlation between bits which change

state is lower,

4,2,2 Development into a two-net structure.

The first step in the development of the general
structure was to realise that it contains two learning
networks which perform different functions. The second
network which is taught only the codeword is to detect
states of the structure and decide which codeword to
output. The first network, which is taught a combination
of input and codeword information, is intended to contain
the short-term memory necessary for detecting distinguish-
ing features and generates the states which are detected

by the second network.
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The structure of the classifier with the above
development is shown in Fig. 4.2.2. The first learning
network is called the cycle net and the second one is

called the code net.

The cycle net has feedback around it so that it
may have a memory of several steps to detect features
(see section 4.2.4). There is a second feedback loop
from the output of the code net to the input of the cycle
net. This feedback has two main functions: it will be
shown to reduce the amount of contradiction due to the
teaching of several classes within the cycle net and it
also should enable a codeword to become stable at the
output. These properties of this feedback are discussed

in more detail in section 4.3.4.

The teach clock for the structure has been split
into two sections, this allows the two learning networks

to be taught separately.

4.2.3 Development of the code net

It would appear more logical to discuss the
development of the cycle net first, however, the exact
function of the cycle net is not easy to define and is
dealt with in the next section. The function of the code
net is easier to define, it was developed first and will
now be considered first., The general function of the

cycle net is to enter state cycles in sympathy with the
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input sequence, These cycles should pass through

states related to the class of the input sequence.

The code net must detect when these unique states
occur and output a codeword which will indicate the class

of the input sequence.

The first structure of the code net was a learning
network of 16 SLAM-16s. The clock terminals were connected
together and each of the teach sense terminals was connected
to one bit of a 16-bit codeword. During training all the

SLAMs are taught for every step of the input sequence.

Now consider the nature of the data which is
presented to the code net. This data is considered in the
form of 4-tuples randomly sampled by the code net., When
the system is tracking patterns of the test data (B) type,
for example, then it is probable that except in the region
of the center line where the features are different, the
information at the output of the cycle net will be very
similar for the two classes. Also, as the cycle net is to
go into cycles, one would expect a lot of activity (as
defined in section 4,2,1) at the outputs., The result of
both the above factors is that one would expect that many
4-tuples of outputs would have common values at times for

different classes.

Hence, the input to the code net is a large number
of different patterns for each SLAM only a few of which

define classes and many of which are common to both.
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Using the structure for the code net described above,
where every input pattern is taught, the net will
always be heavily overtaught with respect to the last
class taught as follows. In such cases, all the input
4-tuples which are common between classes are taught to

output the code of the last class taught.

A feature of the code net is that it is possible
to observe the output before teaching at each step, and
evaluate how similar that output is to the desired code-
word without teaching. An algorithm was written to
utilise this fact to overcome the above overteaching
problem. This algorithm finds the difference between the
output of the code net and the desired codeword and then
corrects a fraction of the difference, by teaching this
fraction to the code net. This algorithm produced an
overall improvement in the performance of the classifier.

However, it does have several disadvantages as follows.

1. The algorithm is time (i.e., sequence length)
dependent and if many cycles of a pattern, or many patterns
of a class, are taught, then the overteaching will still

occur since, with time, complete teaching is approached.

2. Only a portion of the codeword is taught and
hence, only this form can be fed back which greatly

reduces the effect of this feedback.

3. The above feature also implies an additional

restriction on the number of distinct classes
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taught., More classes simply lower the Hamming distance
between codewords which might cause non-distinct code-

words to be taught.

This algorithm was abandoned because of the

above disadvantages,

There is a need for a different type of learning
element for the task required of the code net, A new
element the 'T.R. SLAM' was developed to do this, and it

is described in detail in section 5.5,

This element has an extra output which indicates
whether the normal output is valid or invalid (i.e., not
taught or overtaught). So this element is insensitive
to overteaching by the last class taught. The feedback
from the output of the code net has been modified by a
16-bit memory so that only the last wvalid output is fed
back. This has been added because for the majority of the
time while the cycle net is establishing a definite cycle,
the outputs from the code net are not valid., This is also
discussed in more detail in section 5.5, Fig. 4.2.2 shows
the structure of the classifier with T.R. SLAMs in the
code net. When using T.R. SLAMs twice the active store
required for normal SLAMs is used. For the code net of
16 T.R, SLAM-16s described above 512 bits of active

storage are required.
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4,2.4 Development of the cycle net.

It has been stated (section 4.2.3) that the
general function of the cycle net is to enter cycles in
sympathy with the input sequences and in so doing pass
through unique states relevant to the class of the input

sequence,

This is necessary because, for some classes,
the classifier must remember several previous steps to
be able to react to an important feature. This can be
demonstrated by an example. Consider the patterns in
the test data (B) and assume that there is no memory of
past events in the classifier. When tracking the first
pattern the centerline results in several unique
positions with respect to the pattern. Hence, the classi-
fier can come to a definite decision, However, in tracking
the second pattern all the positions the tracking system
passes through are common to both patterns. Hence, only

arbitrary decisions can be made.

The only way to recognise the second pattern is
to notice that the tracking motions do not go along a center
line, i.e., the absence of a feature must be 'perceived',
and the only way to do this is to provide the classifier
with some memory of past events: hence, the feedback in

the cycle net.

A similar type of argument can be applied to the

test data (A) patterns. Here there is a difference in the
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input positions for both patterns and it should be
possible for the classifier without feedback to classify
them. However, the difference in positions is very

small and there could be some confusion if much variation
in the shape of the patterns were allowed. If the sharp
points of the triangle are detected,and the lack of them
detected for the circle,then a much larger shape variation
could be tolerated. As before, the only way to detect

these features is by some memory in the system.

The structure of the cycle net is shown in
Fig. 4.2.2, The learning network contains 48 SLAM-16s
which have their clock terminals connected together. There
is feedback around the cycle net to provide the necessary
memory for features. The input to the cycle net is formed
by the input data, the feedback around the cycle net and

feedback from the code net.

The major problem with the cycle net is what to
teach it. So far, two methods have been tried and neither

has been very successful,

In the first method to be investigated, the
teach sense terminals are connected to the input data, the
net is taught at every step of the input sequence. Hence,
the net is taught to output the present position and this
is fed back around the net to some of the input terminals
(delayed by one step), for the teaching of the next
position, Therefore, the cycle net is taught to associate

the present step with a mixture of the present and last
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steps. When, after training the cycle net is tested
with an input sequence then, assuming that it works
perfectly and synchronises correctly with the input
sequences, it should generate the input sequence at its
output., Hence the cycle net should behave as a trans-
parent filter for taught input sequences. This method
has been investigated for the case of non-sequential
input data by Fairhurst and Aleksander(13{ However, for
the classifier being considered it is necessary for the
cycle net to indicate to the code net the sequential
distinguishing features of the input sequence, and the
transparent filter indicates if an input has been taught
but does not process a taught input in any way. Hence,
it is not sufficient for the required task and was
abandoned. One possible strategy in which this method
could be used is to have a separate classifier for each
class which 'is taught to give a high response (i.e., all
1ls output) for that class. Then a classification would

be indicated by the classifier outputting the highest

response.,

The second method was to combine the input
sequence with the codeword before applying it to the teach
terminal of the cycle net. The function of combination

that has been used is an exclusive-OR function.

The reasoning behind this teaching method can be
demonstrated by a simple example. Consider teaching the
cycle net with test data (A) for the two codewords all Os

and all 1s.
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When teaching on the circle, the input sequence
is exclusive-ORed with O (i.e., no change) and the net
is taught to output the present step when the input is
the present step and the last step as before. When
teaching the triangle the input sequence is exclusive-ORed
with 1 (i.e., complemented) and the net is taught to
output the complement of the present step when the input is
the present step and the complement of the last step. If
the cycle net, after training, is tested with the circle,
assuming that it works perfectly and synchronises with the
input sequence, then the input sequence should appear at
the output. For the triangle the inverse of the input
sequence should appear at the output. The input sequences
for the circle and triangle are fairly similar hence, one
would expect a large difference between the input sequences
for the circle and the complement of the input sequence
for the triangle and it should be possible to teach the

code net to distinguish between these two sequences.

4,3 INVESTIGATION OF THE PrROPERTIES OF THE CLASSIFIER.

4.3.1 Experiment conditions,

All the experiments have some common features which

are listed below.

Input Data

The input data for these experiments was 2, B or C
as described in section 4.1.2. For testing the trained

classifier, the training data is reapplied and the responses
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for the two different classes of input are compared.

Codewords

Two 1l6-bit codewords have been chosen to
represent the two classes, these are octal 000377 and
octal 177400. These two codes are the complement of
one another and hence, have the maximum Hamming distance
(16) between them. They also both have a Hamming distance
of 8 with respect to the all-0O codeword which is often

used as an initial starting condition.

Learning Networks

For all these experiments, one size of learning
network has been used. This consists of 48 SLAM-16
elements for the cycle net (768 bits of active store) and
16 T,R, SLAM-16 elements for the code net (512 bits of

active store).

Evaluation of the output response

The output response with respect to a particular
codeword is taken as the average Hamming distance between
that codeword and the valid output code from the classi-
fier. As the input is sequential one must average the
output over many steps (at least one cycle of the input
sequence) for a meaningful response. The average number
of valid outputs is also noted as this gives a confidence
figure for the response, For a deeper measure, the
actual code output and the Hamming distance to the

different codewords can be recorded at each step.
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When evaluating the output response to an input
sequence the state transient must be considered. This
transient is the number of steps required for the
classifier to settle into a stable cycle. To obtain
an accurate result it was decided to wait until the
initial transient has passed before recording the outputs
for an average, It is possible with this program to wait
a set number of steps before the output is averaged. The
length of the transient is a function of both the
structure of the learning network and the nature of the
input data. In general, it was found that the initial
transient had passed after one cycle of the input pattern
had been presented to the classifier. For the data like
test data (B), the one identifying feature must be
presented at least once to the classifier before a stable
cycle can be obtained (assuming that the classifier is
able to distinguish between the two classes). For test
data (A), in general, the output cycle was established
after 30-40 steps. For test data (C) which has very
short sequences, the initial transient was also much
shorter. 1In practice, the first 100 outputs for test data
(A) and (B) were ignored and the response was averaged
over the next 100, For the test data (C) the first 30

outputs were ignored and the next 10 outputs were averaged.

4.3.2 Investigation of the cycle net store.

The classifier using 'Exclusive-OR' teaching
described in the previous section was tested with test

data (A) and (B) and only worked on a few unconnected
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occasions (dealt with in section 4.3.3). After training
it was seen that the outputs of the cycle net on testing

were very similar for the two classes.

The first experiment, described below, was
designed to examine the cycle net SLAM stores after
training in order to determine primarily if the second

class taught to the cycle net was overteaching the first.

Using test data (A) the cycle net is first taught
the circle and the number of distinct storage bits of the
SLAM stores which are accessed by this teaching are noted.
The cycle net is then taught the triangle and all the bits
which were originally set to a value by the first teaching
and are reset by the second teaching are noted. Hence,
the number of elements accessed by teaching a pattern and
the amount of overlap when teaching two classes is

obtained.

The following is the exact method used to find
this number of bits. The cycle net is reset and then
taught the circle. The number of distinct bits of the
SLAM stores which have become set is recorded. The cycle
net is set and then taught the circle again. This time
the number of bits which have become reset are recorded.
The sum of the two recorded values gives the total number
of storage elements which have been accessed by teaching
the circle. A similar technique is used to find the
number of these bits which are changed on teaching the

triangle,
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This experiment was repeated with different
amounts of feedback around the cycle net and with no
feedback from the code net. The graph in Fig. 4.3.1 shows
the amount of store accessed when using test data (A)
(cycle length ~80 steps, 200 steps taught) and test data
(C) (cycle length 8 steps, 40 steps taught). Fig. 4.3.2
shows the amount of relative overlap which was detected
for these two sets of data after the second class had

been taught.

Fig. 4.3.1 shows that the storepenetration(as defined
in section 4.2.1)is ‘consistently about 30% whatever the
amount of feedback. This is as expected for the feedback
is the last input of the sequence exclusive-ORed with a
constant codeword and hence should have the same activity

(as defined in section 4.2.1) as the input data.

The surprising result from this graph is that
almost the same amount of store is accessed by the type
(C) test data of 8 steps long as is accessed by the type
(A) test data of 80 steps long. This is due mainly to
the fact that the range of Hamming distance within both

sequencies of patterns is similar.

From Fig. 4.3.2 without feedback there is 74%
overlap for test data (A) and 54% overlap for test data
(C). The two classes in test data (A) are very close in
Hamming distance which would account for the large amount
of overlap., As the feedback is increased the amount of

overlap decreases. This is because the feedback for the
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second class is complemented (by the codeword)with
respect to the feedback for the first class and hence,

there is a large Hamming distance between them.

The above experiment was repeated but with 8.3%
(L/12th) feedback from the code net i.e., 1/12th of the
cycle net had the codeword applied directly to them.
The results are shown on Fig, 4.3.3 and Fig. 4.3.4. The
amount of store accessed by the first class is about 2%
less this time; this is due to the feedback inputs from
the code net having a constant value during training.
The amount of overlap has been considerably reduced.
This is also due to the code net feedback which has a
partitioning effect on the cycle net. If the code net
feedback had been 25% (i.e., one feedback connection per

SLAM element) then the overlap would always be zero.

A measure of how much the stores which were
taught for a class were changed by further teaching was
obtained (i.e., a measure of how much an input sequence
interferes with itself). This was achieved for test
data (A) by teaching the cycle net one cycle of the
pattern and then to record the stores every 20 steps
after that, These stores were then compared with each

other and the results obtained are in the table below.
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% bits Number of Steps
changed

100 120 140 160 180 200

100 0
120 6.8 o)

[74])

Y

¢ 140 6 6.4 o)

(93]

Uy

(0]

. 160 6 8 4 0

(0]

Q

g

3

= 180 5.6 9.2 7.6 4.8 o)
200 2 6.4 4.8 5.6 5.2 o)

For this experiment the feedback was 50%. However, as
with the amount of store penetration, one would expect
the above figures to be independent of the amount of
cycle net feedback., The amount of store penetration for
this case is 33%, the figures in the table are expressed
as a percentage with respect to this penetration. Hence,
the maximum observed change in the stores caused by the
teaching of one pattern interacting with itself is 9.2%

of the total store accessed.

To summarise, the analysis of the cycle net
stores for both type (A) and type (C) test data has

shown the following:
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1. About 33% store penetration occurs on teaching the
first pattern to the cycle net. This penetration is
independent of the amount of cycle net feedback but is
reduced by the addition of code net feedback. (In the
limit with 100% code net feedback the store penetration

would be 6.25%) .

2. Without feedback there is more than 50% overlap
between the two classes. This is reduced progressively

as cycle net feedback is added.

3. Both store penetration and store overlap (expressed as

a fraction of store penetration) are reduced by code net

feedback.

4. For test data (A) about 10% of the store penetrated

is taught to output both 1 and O during the cycle of the

input pattern.

The main point that this experiment shows is that
for the useful range of feedback (defined in section 4.3.4)
there is between 15-70% store overlap between two classes
and in the order of 10% store overlap within class. What
is not shown by this experiment is the frequency of
occurrence that these overlapped elements are accessed.
The properties of the exclusive-OR method of teaching will

be discussed further in section 4.3.4.
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4.3.3 Investigation of the code net store.

The experiment in this section is designed to
demonstrate some of the properties of the code net and the
effect of feedback from the output of the code net on the
classifier. As the teaching method for the cycle net was
not very effective the code net was tested with fixed,
untaught stores for the cycle net as well as the taught
cycle net. The SLAM element may have any predefined truth
table loaded into its stores so that it performs a particular
function. The functions that were used in the cycle net are
shown in Fig. 4.3.5. The probability of a 1 being output

for a random input is also shown (Pr).

The code net consists of T.R. SLAM-16s hence, after
teaching, their stores may be easily analysed. The results
are shown in Figs. 4.3.6 to 4.3.8. The elements of the
T.R. SLAMs have been divided into three types; valid,
untaught and overtaught. These values have been plotted in
the graphs. The different type of cycle net stores which
have been used are set along the x axis in order of descend-
ing penetration of the T,R., SLAM store. All the experiments
were those with the type (B) test data and with several

values of feedback from both the cycle and the code net.

After each store was recorded the classifier was
tested with the training set again and the average response
after 200 sfeps was recorded. When there was no feedback
from the code net the average response was in nearly all

cases 100% correct but the average number of valid outputs
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was always less than 2%, which implies that the classifier

in this form is not suitable for the task.

discussed further in the next section.

This will be

With feedback from the code net there were always

many more valid outputs (the lowest observed average valid

output was 9%) .

obtained on a few occasions.

However, the correct response was only

These are listed below.

5%

7*

Average Responses
o B To [J
éycle gode cycle net | % data valid % data valid
net net store response | % re- response| % re-
feed-| feed- sponse sponse
back | back
(2)
8.3 16.6 2L/P x OR 98 58 70 58
gate
(2)
8.3 16.6 Random 67 38 56 36
Store
(&)
25 8.3 Majority 99 27 54 27
gates
(5)
8.3 16.6 AND-OR 98 59 97 52
gates
(%)
25 8.3 AND~OR 67 19 52 19
gates
(1)
8.3 16,6 x OR 61 48 76 40
gates
(2)
25 8.3 2I/P x OR 65 42 51 40

gates
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Each test was repeated 4 times with different initial
starting values for the feedback. The results above
indicated by * gave the response shown for some starting
values but gave an incorrect response for others. (2
correct response for the two-class case, which has been
investigated, occurs if the data response is 50% for the

correct class.)

In the results, one example of 0O3cycle net feedback
is given (with 8.3% code net feedback) . Results have also
been obtained for O and 16.6% code net feedback and they
are very similar to the example plotted. The example shows
that there are very few valid elements and this means that
only part of the correct codeword can be generated and
meaningful classifications cannot be made. Although the '
classifier could usually classify the training data with
about 1% confidence,when it was tested with other similar

data it usually gave a zero output.

4.3.4 Observations from the experiments.

1. Codenet feedback.

The different amounts of code net feedback which
were used to test the classifier are 0, 8.3, 16.6 and 25%.
Considering test data (B) with no code net feedback, there
is no definite latching into one state when the one
defining feature occurs and the activity of the outputs of
the cycle net during the cycle were always very similar for

both classes. For 25% feedback the random map used implies
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that every SLAM in the cycle net receives one code net
feedback connection; then the system tended to latch into
one of the two classes and after the first few steps of
the input sequence the classifier was set in one class
and never changed. This class was often determined by
the initial feedback pattern and was rarely determined by
the input sequence. For test data (A) similar effects
were observed but these were not as marked as for test
data (B). This is due to the fact that with the test data
(2) there is a 'clue' to which class the input belongs to
whenever the sequence is started whereas with test data
(B) there is only one part of the cycle which defines the

class.

If 25% feedback is used the cycle net is parti-
tioned by the codeword on teaching into two similar
learning networks of SLAM-8s. Hence, no overlap on
teaching occurs. However, one would expect that once one
codeword has stabilised (i.,e., one network has been
selected) that a lot of change at-the input would be
required to make a change to the other class. This explains
why the test data (A) and (B) were unable to change the
classification once it had been established. Further
increase in code net feedback (for the two-class case) will
make matters worse,especially when the cycle net is taught
as many 4-tuple input patterns which may easily occur

during testing cannot occur when training.

Hence, for the two-class case the code net feed-
back must be less than 25%, both 8,3% and 16.6% feedback

were found to be useful.
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2. Cycle net feedback.

To define useful limits for the cycle net feed-
back is more difficult than for the code net as the nature
of this feedback depends on the functions of the SLAM
stores or the method of teaching the cycle net. Values
of cycle net feedback between O and 50% were investigated.
In general, small values of cycle net feedback were the
useful.For test data (B) the only correct results were
obtained when values between 8,3% and 25% feedback were
used. For test data (2) where this type of feedback is
not essential, the best results were obtained with feedback
in the range O to 25%. However, some correct results were

obtained with more feedback.

Once more than 25% feedback with 4 input SLAMs is
used the system becomes potentially unstable as one output
may affect two others on the next cycle and four others on
the next, etc. Therefore, although the classifier may
work with more than 25% feedback, one must remember that

it is potentially unstable.

3. The performance of the classifier.

The classifier did not classify the real data
.reliably over a range of values for feedback for any of the
stores of the cycle net used. The behaviour of the
classifier was rather erratic in that it might work for two
values of feedback but not for a mid value between them.
This may be due in part to the small size of the learning

network used. What is clear however, is that when the cycle
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net is tested with the training set it does not go into
the cycles it was originally taught and the cycles it
does go into are usually very similar for both classes.
Further developments of the classifier are considered in

the Conclusion (section 7.2) .

4. The performance of the exclusive-OR method of teaching.
When compared with set stores in the code net
store experiment the exclusive-OR method of teaching does
not behave very well. As far as activity at the outputs
is concerned (measured by the penetration of the code net
elements) it is lower than any of the set stores for four
input cycle net elementsincluding the random elements
(which are the initial states of the stores before exclusive-
OR teaching). However, the number of valid elements in the
code net created by the taughtcycle net is similar to the
number created by the set stores (i.e., the ratio of valid
to non-valid elements is greater for the taught case).
From this one might expect a better performance from the
taught cycle net but this has not been observed. The poor
performance may be due to the store overlap which occurs

when teaching the cycle net (see section 4.3.2).

Two methods have been tried to improve the
performance of the exclusive-OR teaching method. The first
was only to teach part of the learning network and to leave
the rest random, and the second was to teach the cycle net
for a fraction of the time that the input is presented.
However, neither of these methods produced a noticeable

improvement ,
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4.4 SHIFT REGISTER CLASSIFIER.
4.4.1 Structure.

The general structure of the shift register
classifier is shown in Fig. 4.4.1. The 4-bit tracking
movements are fed directly into a 4-bit wide shift
register which has a maximum length of 64 steps. The
contents of the shift register are randomly connected to
the input of a set of learning networks. There are N
learning networks with their inputs connected in parallel.
Each network represents one class of patterns hence, N
classes may be taught. The first learning network is
shown in more detail in Fig., 4.4.1. All the teach sense
inputs are set to 1. The outputs are summed to obtain

a response.

Initially, all the SLAM stores are set to O
(i.e., will give a O response for all inputs). During
training the learning network of the relevant class is
clocked when the input sequence is applied. When the
input sequence is used to test the classifier this learning
network will output a maximum response. In general, a
classification is made by comparing the average responses
from all the learning networks, and the highest average

response decides the class.

4.4.2 Peformance of the classifier.

Tests to evaluate the performance and properties

of this classifier have been conducted using test data (A).
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Each test involves two learning networks. One learning
network is taught to output a high response when tracking
data for the circle is input and the other is taught to
give a high response for the triangle. Four different
types of SLAM learning networks have been tested in this

way, these are:-

1. Normal SLAM learning network, 64 SLAM-16s.
2. Probability SLAM learning network
(probability = 1/16).

3. Probability SLAM learning network

(probability 1/4).
4. 4-layer CL SLAM-16 learning network,

256 SLAM-16s.

Further details of the construction of these learning

networks are given in Chapter 5,

Several different sizes of shift register were
tested and the longest (64 steps) produced the best
results. The results given in the table below were the
best obtained. 150 steps of each class were taught to the
learning networks and a subsequent 200 steps of each class

was used to test them,
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Average % Average %

Response Response
from O from A
Learning Learning
Network. Network
1. Normal SLAM Net
Test with O 98,9 95.0
Test with A 90,2 98.9
2. Probability Net
Prob. 1/16
Test with O 63.2 54.0
Test with A 57.0 64.7
3. Probability Net
Prob. 4/16
Test with O 91.9 83.4
Test with A 84.2 D346
4. CL SLAM Net
Test with O g1 .1 70.3
Test with A 72.9 83.1

In all the above cases the correct class could be detected
by the highest response. An illustration of how the
response at the output appears is shown in Fig. 4.4.2.

This example is for the CL SLAM learning network structure.
Fig. 4.4.2(a) shows how the output response varies when the
circle is being taught and (b) when the triangle is taught.

The responses for both learning networks when tested with
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the circle are shown in (c) and when tested with the

triangle are shown in (d).

The shift register method has two fundamental

problems, size invariance and overteaching.

The size invariance occurs because the shift
register is of a fixed length whereas the length of the
input sequence depends on the size of the input pattern.
Hence, for different size input patterns, the features will

occur at different relative positions in the shift register.

Overteaching occurs because many very different
patterns occur in the shift register and they are all
taught to the learning network. The normal SLAM network
gives very high responses to all input sequences after being
taught only one of a class. This overteaching is reduced by
the net organisation in the other learning networks tested.
However, if several examples of a class are taught, then

these other learning networks also become saturated.

One possible method of overcoming the overteaching
problem is to only teach the learning network when a new,
completely untaught, set of data is in the shift register(e.g.,
once every 64 steps for a 64 step shift register). An
example of how the classifier behaves in this situation is
shown in Fig. 4,4.3, The shift register is of length 64
and the learning network is the 64 normal SLAM type. The
learning network is taught three times during the 150 steps

for teaching (i.e. once every 64 steps). 1In this case, the
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correct classification could be obtained by detecting the
highest peaks in the response. In general, however, this

method has produced many more problems e.g.

1. When classifying, the frequency of occurrence of the
peaks should also be considered and this is
complicated by the fact that the input sequence
frequency 'beats' with the teaching frequency. This

can be seen in Fig. 4.4.3.

2. When teaching a set of input patterns, they should all
be synchronised i.e., teaching should only occur at

the same relative positions for each input pattern.



A CHAPTER 5
THE LEARNING ELEMENTS AND NETWORKS
In this chapter the learning elements used in
the learning networks are considered in detail. The
element from which the others have been derived is the

SLAM-16 and this is described in section 5.1.

The way in which this and alternative elements
may be organised to distinguish between two classes is
considered and, in section 5.5, the different elements

are compared.

5.1 THE SLAM ELEMENT.

5.1.1 The SLAM-16.

A SLAM (Stored Logic Adaptive Microcircuit) is
a random access memory (RAM) used as an adaptive logic
gate. A SLAM-16, for example, is a 1l6-bit RAM and
therefore h#s four address inputs, which are the data
inputs for that element. If a 1 is written in to the
memory for a particular 4-bit input pattern, then this
element will produce a 1 at the output if this input
pattern reoccurs. It can also be taught to associate a
0 output for a particular input pattern. The writing
input to the memory is referred to as the teach terminal.
An illuétration of a SLAM-16 showing its terminal functions

is shown in Fig. 5.1.1.

A collection of these elements has been connected
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In the general case the n input SLAM contains
s binary storage elements, ¢l - ¢2n-l and is called a

SLAM- (27 ,

The function of the element is defined by:

=281
F = . <X.>
cbJ J
j=0
where <xj> is the jth minterm of the inputs X, - Xn.

The teaching function is defined by:

NV o= <. > T.C + i aCaSX .2
®5 %5 b5 %5

where ¢j' is the next state of ¢j

p is the Teach Sense Input value

c is the Teach Clock Input value.

Ficure 5,1,1
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to form a learning network. Usually the inputs of the
elements are randomly distributed in an input 'retina'
so that each SLAM samples a random 4-tuple of this total
input. The learning network can be taught to associate
any one pattern applied to the teach sense terminals
with a particular pattern in the input space. Hence,
after teaching, if that input pattern is reapplied to
the learning network the taught pattern will be generated

at the output.

A learning network of these elements is able to
generalise, in that if it is taught to output a particular
response for a class of input patterns then it will output
a similar response when tested with an unseen pattern
which is similar to the training patterns in Hamming

(1) for the

distance. This has been dealt with in detail
case where the learning network is initially reset and is

then taught to output all 1's for a set of input patterns.

Throughout this project only SLAM-16s have been
considered. The effect of varying the number of inputs of
the elements for the tasks which have been considered here
is not known. It is almost certain that four inputs per
SLAM is not the optimum and it must be understood that
this is a constraint on the system. Further work could be
carried out on trying to discover the optimum for this
task. This is considered to be outside the scope of the
present thesis. The SLAM-16 was used as the hardware
learning element in the 'Minerva' learning machine (see
section 5.2) and it is also convenient to use one 16-bit
word of the computer store in the simulation of such an

element.
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Ii¥.2 The 2~class learning network.

A task which is often required of learning
networks is to distinguish between two classes of inputs.
(e.g. the tracking system learning modules, see section

3.2,1).

This is usually achieved by using two learning
networks, one for each class. These learning networks
are initially reset and are taught to output all 1l's for
their particular class. The class of an unseen pattern
is decided by the learning network with the highest
response, The performance of such a learning system, if
sameinput mapping is used for both learning networks, is
similar in basic structure and performance to a single
learning network ofT.R.SLAMs which is described in detail

in section 5.5.4,

Another, usually less successful, method is to

the

use one learning network., This is taught to give an output

of all 1's for one class and all O's for the other, and
the response to a test pattern is obtained by summing the
number of 1l's appearing at the output. This response can
be coméared with a threshold (usually set at 50%) to

decide the class of the input.

This network may be realised by SLAM-16s. All
the teach sense terminals are connected together so that
all 1's or all O's can easily be presented to them and
all the teach clock terminals are connected together so

that all the SLAMs may be simultaneously taught. This
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network will always reproduce the response for the last
pattern taught. However, especially if the Hamming
distance between the two input classes is small, the
learning network will be unable to give the correct maxi-
mum Oor minimum response to patterns used for training

but may give a response great enough for the two classes

to be distinguished.

5,2 MINERVA ,

Minerva is a hardware machine which contains
1280 SLAM-16s. - These SLAMs are organised in two layers
1048 in the first which have their outputs connected to
256 in the second. In this project, the second layer
has not been used and no further reference will be made

to it.

Minerva is organised into 256 cards each contain-
ing 4 SLAM-16s. One card at a time is accessed by the
computer. This can be done by outputting its address
directly from the computer, or by incrementing a hardware
counter in Minerva through a consecutive stack of cards.
One of these cards is shown in Fig. 5.2.1. The input is
a- 16-bit word from the computer, common teach-sense and
teach-clock terminals are available to the computer (via
pulses on output control lines) and a 4-bit output from

the card is input to the computer.
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In all possible cases,; experiments have been
conducted both with Minerva and by computer simulation
of SLAMs. The advantage of Minerva is that it is about
50 times quicker than the simulation. The main
disadvantage with Minerva is that the teach sense and
teach clock terminals are common for sets of 4 SLAMs and
for many structures it is desirable to access these
terminals separately. Minerva is being further developed
and in the future separate access to these terminals will

be possible.

5 PROBABILITY LEARNING NETWORKS,

The probability learning network is a structure
of SLAM-16s in which an attempt has been made to reduce
the effect of the last pattern taught. This structure
is primarily intended for cases when the learning network
is taught to output a response as described in section
5.1.2. The problem with teaching all the SLAMs for one class
is that when the two classes are similar then many of the
4-tuple samples input to the SLAMs will be common to both
classes and information in these SLAMs will be continuously
overwritten as the alternate classes are taught. Hence,

there will be a bias towards the last class taught.

To overcome this bias, the probability SLAM
network is used, in which only a randomly chosen fraction
of the network is taught for each input pattern. This

has been designed to be realised with Minerva or by
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simulation. A standard size learning network of 64
SLAM-16s has been chosen for this structure, although in
practice, any multiple of 16 SLAM-~16s méy be used in the
same way. The structure of this learning network as
realised by 16 Minerva cards is shown in Fig, 5.3.1. The
input matrix is 16x16 bits (i.e., the standard size for
the software system). The output matrix is 4x16 bits
which may be summed to obtain a response as before. All
the teach sense terminals are connected together and
hence they can all be set at O or 1 depending on which
class is being taught. The teach clock terminals of the
different cards are connected to different bits of a 16-bit
teach clock vector. Only the cards which are associated
with bits in the teach clock vector that are set to 1 will

be taught.

The teach clock vector is generated by a random
number generator which is designed to set N bits randomly
in a 16-bit word. Where N is a preset wvalue (1sNZ16) and
determines the fraction of the learning network to be

taught when it is clocked.

Hence, if N=4, for example, a randomly chosen
quarter of all the cards will be taught at a time, if N=1

then 1/16th of the cards will be taught at a time.

The advantage of this learning network is that
if N=1 for example, then only 1/16th of the SLAMs will be
taught to the last class taught. Hence, only in the

order of 1/16th of the SLAMs common to both classes will
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be taught to output for the 'last class taught'.

The main disadvantage of this learning network
is that if n=1, for example, only 1/16th of each input
pattern will be taught to the learning network and the

rest will be ignored.

One method of teaching this learning network is
to start with n=16 so that the learning network is rapidly
taught and then, as teaching progresses, decrease n
slowly until n=0. 1In this way the effect of the last
pattern taught is removed. This method of teaching with
'aging' has been investigated elsewhere(l4).

The performance of this learning network is

investigated in section 5.6.

5.4 THE CUMULATIVE LEARNING SLAM ELEMENT,

5.4.1 Structure of the element.

The Cumulative Learning SLAM, or CL SLAM, has
been developed to be sensitive,during training, to occur-
rence frequencies of n-tuples and, in this way, to overcome
partly the bias towards the more recently taught patterns.
The CL SLAM has a numerical output the value of which is
related to the frequency of occurrence of the input

pattern during training.
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The CL SLAM contains a stack of normal SLAMs.
Fig. 5.4.1 shows a 4 output CL SLAM-16. Hence, 4 bits
of output information are associated with every 4-bit
input pattern. The teach clock terminals are connected
together to form a single teach clock terminal for the
element. The four outputs from the element represent a
4-bit binary number. The output number is fed to an adder
unit which is connected to the teach sense terminals of
the SLAMs. The teach sense input for the element is also
connected to the adder unit which works on the following
principle. When the teach sense terminal is 1 the output
is made 1 higher than the input. When the teach sense
terminal is O the output is made 1 lower than the input.
Saturation occurs at 15 when ascending and O when descend-
ing. (When this element is used for the 2 class learning
network saturation occurs at 1 when descending so that a

mid value '8' exists which corresponds to a 50% output).

Therefore, when an input pattern is taught to
the CL SLAM and the teach sense terminal is 1 then the
SLAM will be taught to output a number one higher than
it did for that pattern before teaching i.e., the number

associated with that input pattern is incremented by one.

Hence, if the teach sense terminal is held at 1,
the output number represents the number of times that the
input pattern has been taught until, for a 4 output
élement, the output reaches 15. Then the system saturates
‘and continues to output 15 unless the element is taught

with the teach sense terminal at O and then the slement
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will output 14. The system similarly saturates at O

when descending.

The concept of frequency of occurrence counting
for n-tuple samples have been investigated by Bledsoe and

(6)

Bisson where they use computer stored matrices for
recording the exact frequency of occurrence of each n-tuple
input pattern for each class during training. The CL SLAM
described above if not allowed to saturate is capable of

a similar function.

The CL SLAM may be realised in hardware by two
standard integrated circuits, a 64-bit memory and a 4-bit
adder and it could easily be made on a single MSI
integrated circuit. A patent has been applied for(39)for

the concept of the CL SILAM.
The CL SLAMs that have been used for this

project are 4 output CL SLAM-16s hence, they require 4

times the amount of store used by a SLAM-16.

5.4.2 CL SLAMs in a 2 class learning network.

The CL SLAM can be organised to perform the
two class learning network problem described in section
5.1.2. The output numbers from the CL SLAMs are numerically
summed to give an overall response. Teach sense and teach
clock termiﬁals are connected together, as before. If a
particular 4-tuple pattern occurs for one class only, then

this CL SLAM will eventually saturate and give a large output
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denoting an important feature. If a 4-tuple is common to
both classes then the number associated with it will be
incremented for one class and deincremented for the other
and should remain near the neutral value '8' which

indicates neither class.

With this learning network, the last pattern
taught can only produce a maximum of 1/16th change in the
overall responses, and also every bit (as opposed to the
fraction in the last section) of all the input patterns
is considered during teaching. The cost for this is that
with 4 output CL SLAMs 4 times the amount of store is
required. The performance of this learning network is

investigated in section 5.6,

5.5 THE TERNARY SLAM ELEMENT.
5:5.1 The T.R. SLAM,

The Ternary or T.R. SLAM has been developed
primarily for extracting features, especially where cycling
is concerned, and the output of these SLAMs are used for
feedback, as seen in section 4.2.3, for the classifier code
net. The aim of the system is to distinguish between unseen,
ambiguous and unambiguous n-tuple patterns. Only the latter
are said to be 'valid'. There are two reasons for which the
output of a SLAM could be considered as not being valid.
Firstly, if the input pattern had not occurred during
training, then the output is the initial value before

training and hence of no informational value. This is the
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'unseen' case., Secondly, the input pattern may be common
to both classes and takes the value of the last class

taught. This is the ambiguous case.

With a normal SLAM output there is no informa-
tion indicating if an output is valid or not. The Ternary
element has three output states 'valid' 1, 'valid' O and
'not valid'. (In practice, there are two distinct 'not
valid' states but this fact is only used internally by the

SLAM) .

A T.R. SLAM-16 is shown in Fig. 5.5.1l. Two
SLAM-16s are used with their inputs coupled together,
hence there are two bits of information associated with
every input pattern. There are two binary outputs from the
T.R. SLAM. One is called the 'data' output and the other
the 'valid' output. There are four possible output states

and these have been defined as follows.

Valid Data
(0] (0] => unseen
1 0o => taught 0)
¢ unambiguous
1 1 => taught lj
o 3 => overtaught (ambiguous)

Initially, both SLAMs are reset and all outputs
are in the untaught state. When taught a O or a 1 the
valid output becomes true and the data output indicates
the value taught. If the output is valid and it is taught

to output the opposite value to that which it is already
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valid for the fourth state, the overtaught state, is
entered. This last state is permanently 'not valid' and
no further teaching will have any effect until the T.R.
SLAM is reset again.
|

The above output states can be realised in
hardware by the logic shown in Fig. 5.5.1. The two teach
terminals are connected together and form a common teach
clock terminal. The extra logic generates the required
values for the two teach sense terminals and the Boolean
equations which are realised by this logic are also given

in Fig. 5.5.1.

To construct T.R. SLAMs the teach sense terminals
must be accessed separately and this is not possible with
the present form of Minerva, hence, all experiments with

with T.R. SLAMs have been done by computer simulation.

56D 2 T.R. SLAMs used in the classifier.

When using T.R. SLAMs in the code net for the
classifier (see section 4.2.3), a lot of overteaching was
experienced, hence for the majority of the time which the
input sequence was applied, the output of each T.R. SLAM
was not valid. However, the output of the SLAMs is fed
back to the classifier and this feedback must have a
value even when the T.R. SLAM output is not valid. To
overcome this problem the 'last valid output' is remembered
and is fed back to the classifier until another valid

output occurs.
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This additional memory may be added to the
T.R. SLAM element by the use of a D flip-flop as shown
by the broken lines in Fig. 5.5.1. When the valid
output is true then the output of the flip-flop follows
the input (which is the data output). When the valid
output is false then the last valid data value is

retained by the flip-=flop.

5533 Two features of T.R. SLAM learning networks.

When using a collection of T.R. SLAMs for a
learning network two additional features of the learning
network can be observed. Firstly, after training, the
stores of the SLAM elements can be examined and the number
of untaught, valid taught and overtaught states can be
obtained. From this information some measure of the
usefulness of individual n-tuples can be obtained. Also,
some measure of the expected performance of the learning
network can be obtained from this information. This
feature has been used in analysing the classifier (see
section 4.3.3). Secondly, when, after training, the
learning network is tested the number of valid outputs
which occur can be used to generate a confidence level
for the response of the learning network. This feature
is used by the classifier and is also considered in the

experiments in section 5.6,

The main disadvantage with the T.R. SLAM is
that if it is taught a rogue pattern (e.g., a pattern of

the wrong class) then many of the useful valid states will
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be overtaught and made permanently invalid.

If it was realised that a rogue pattern had been
taught some recovery could be made by setting all the
overtaughtnon-valid states to untaught non-valid states
and then training could be continued. 1In practice, this
could easily be achieved by scanning through the 16 states
of each T.R. SLAM and changing the overtaught ones as they

occur.

5.5.4 T,.R. SLAMs in a 2-class learning network.

The T.R. SLAM can be organised as a two-class
learning network (i.e., for the task described in section
5.1.2). The teach-sense terminals and teach-clock
terminals are connected together as with the normal SLAM
learning networks. The output response must be calculated
in a different way. For a normal SLAM network the number
of outputs which are 1 are summed and expressed as a

fraction of the total number of SILAMs. For a net of T.R.

SLAMs the number of valid outputs which are 'one' must be

expressed as a fraction of the total number of valid outputs.

The total number of wvalid outputs should also be noted to

give a confidence figure for the response.

For example, if for a learning network of 64
T.R. SLAMs only one output was valid, then the response
would be 100% for the class of that output. This decision

has been made by considering only one unique 4-tuple of a
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256-bit input and it is important to indicate this fact.
Noting the number of valid outputs will achieve this e.g.,
if the output is stated to be 100% for a class when only

1/16th of the learning net output is valid.

For a learning network of N TR SLAMs used in a
two-class classifier it is possible to express both the
data response and the valid response in terms of a total
response 'R' which may be defined by the following
formula

N-V, 100

R = (D + 5 ) N

where R is the total response (% of N)
N is the total number of T.R. SLAM elements
D is the number of 1 valid outputs
V is the total number of valid outputs
(e«g., if there is only 1 valid output and its value is 1

and N=64, then the total response R=50.9%).

The above learning network has not been investi-
gated directly in the tracking system experiments. However,
if one considers the maximum-response learning system
described in section 3.3 the structure used there is very
similar to a net of T,.R, SLAMs, For the case where the
input mappings are identical (see section 3.3.5), the
performance of that tracking system is identical to that
of a learning network of T.R, SLAM-16s when a two-level

threshold is set at the output,
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5.6 ExPERIMENTS WITH 2-CiLASS LEARNING NETWORKS.

5.6.1 The structure of the experiments.

To illustrate the properties of the different
SLAM elements described in this chapter and to compare*the
performance of these elements when used in the two-class
learning mode two experiments have been conducted. The
learning networks which have been used are described in

the following sections

Normal SLAMs el 2
Probability Learning Networks 5.3
CL SLAMs 5.4.2

T.R. SLAMs 5.5.4

These experiments were conducted with the sub-
system shown in Fig, 5.6.,1l. More details of this subsystem

are given in section 6.4.2,

When a 16x16 bit input pattern is presented to

the subsystem it is randomly mapped into a second 16x16
pattern. This second pattern is then presented to the
different learning networks. Hence, the same 4-tuples are
sampled by all the learning networks. The teach-clock and
the teach-sense terminals of the different learning networks
are commoned together, Hence, all the learning networks
receive the same input data and the same teaching stimulus.
All the outputs are summed to form a response as described

in the relevant sections above.
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Before an experiment is conducted, the SLAM
stores are initialised in the following way. For the
learning networks which contain normal SIAM-16s half of
the SLAMs are set and half are reset hence a 50% output
response will be obtained for any input pattern. The CL
SLAM learning network has all its stores set at 8 hence
this learning network will also output a 50% response
to any input pattern. The T.R. SLAM learning network has
all its SLAMs reset hence no valid outputs which implies

a 50% response.

5.6.2 Dependence on last pattern taught.

The first experiment is designed to demonstrate
how the last pattern taught affects the performance of

the learning networks.

The input data is in the form of two sets of
handwritten characters on 16x16 matrices. The characters,
chosen for the two-class, are '3's and '8's which is a
difficult task as there is only a small Hamming distance

between them. Each class contains 260 patterns.

The experiment is conducted in the following way:

l. The first 3 is taught to the learning networks
to output a high response,

2, The average response of the learning networks
for the next ten (i.e., untaught) 3s is

obtained.
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3 The average response for the first ten

8s is obtained.

4, The first 8 is taught to output a low
response.
5% The average response for the next ten

3s is obtained.
6. The average response for the next ten 8s
is obtained.

Tis The second 3 is taught for a high response.

The above sequence is repeated 250 times, then the learning

networks will have been taught 250 patterns for each class.

The average response to the next ten untaught
patterns is used to measure the performance of the learning
networks with respect to that class. A standard test set
was not used as with only ten patterns it may not be typical

of the class,

From the results of this experiment four graphs
have been drawn for each learning network by plotting the

average response versus the number of patterns taught.

The graphs show the following response:

LALH (Low After Last High) this is the performance
of the learning network to the low response
class (8s) after the last pattern taught was
of the high response class (3s).

HALH High performance after last class taught is

high.
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LALL Low performance after last class taught
is low.
HALL High performance after the last class

taught is low.

These graphs are shown in Figs. 5.6.2 to 5.6.7
and we recall that the object is to separate the high

from the low,

In Fig, 5.6.2 the graphs from the normal SLAM
learning network are shown. The last pattern taught
alters the response to both classes by about 20%. This
implies that about 20% of the input 4-tuples are common
to both classes. There is a lot of confusion between
LALH and HALL graphs in the range 40-60% response. This
means that a threshold cannot be set at 50% to separate
the two classes. It may be possible for a threshold to
be set at another value but to do this one must know which
class was the last one taught. After the first ten pairs
of patterns have been taught, further teaching has very

little effect on the performance.

In Fig. 5.6.3 the graphs for the probability
learning network with n=1 are shown. For this case,
learning is much slower as only 1/16th of the learning
network is taught at a time. About 100 pairs of patterns
are required to teach the learning network so that further
teaching has little effect. The shift due to the last
pattern taught is in the order of 1-2% for the responses

from both classes. This agrees with the expected value
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which is 1/16th of the value for the normal SLAM learning
network i.e., 1.25%., The graphs for the probability
learning network with n=4 are shown in Fig. 5.6.4. The
separation between the classes is about the same.
However, only about 30 pairs of patterns need be taught
before further teaching has little effect. The shift due
to the last pattern taught is about 5% which is the value
expected i.e., %¥ of the effect which was observed with

the normal SLAM learning network.

In Fig. 5.6.,5 the graphs for the CL learning
network are shown, In this case there is a rapid improve-
ment in the performance for each class while the first 30
pairs of patterns are taught. Then the CL SLAMs begin to
saturate and further improvement is much slower (~5% for
each class after the next 200 pairs of patterns have
been taught). There is about 2% change in performance
due to the last class taught which agrees with the expec-
ted value of 1/16th of the normal SLAM learning network
response i.e., 1.25%. The separation between the classes
is better for the CL SLAM learning network than for the

other learning networks tested.

To find the effect of not letting the CL SLAMs
saturate,this experiment was performed on a learning
network of 16 output CL SLAM-16s. These CL SLAMs can be
incremented 32,768 times in either direction before
saturation occurs. Hence, with a training set of 250
patterns of eaéh class saturation could not occur. The

X 0.
graphs for this learning network are shown in Fig. 5.6:6,
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the Y axis scale has been magnified as the maximum change
in response possible is only 250/32,768=0.8%. The effect
of the last class taught is negligible. There is a
steady improvement in the performance of this learning
network while the 250 pairs of patterns have been taught.
This learning network uses 16 times the amount of active

store which is used by the normal SLAM learning network.

In Fig. 5.6.7 the graphs for the T.R. SLAM
learning network are shown. The Y axis scale has been
magnified for clarity. It must be remembered that the
responses are obtained in a different way for this
learning network than from the others in that the concept
of valid outputs is implemented. After the first 20
patterns have been taught the shift due to the last pat-
tern taught becomes negligible. The separation with this
system becomes worse as teaching progresses. This happens
because the learning network cannot forget anything it has
been taught. In this experiment the input data is very
diverse in Hamming distance and contains many poor
examples of both classes. This 'saturation' of the
learning network could be partially overcome by employing
an algorithm which would reset all the overtaught States
(as described in section 5,5,3) after a set number of

patterns have been taught.

5.6.3 Classification ability.

The second experiment was designed to demonstrate
and compare the ability of the learning networks to

classify the characters of each class.
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For this experiment the learning networks were
organised to have equal amounts of active store. The
CL learning network contained 64 4-layer SLAM-16s, the
T.R. SLAM network contained 128 T.R. SLAM-16s and the
probability and normal SLAM learning networks contained
256 SLAM-16s each (hence, they cover the input matrix
four times) . By increasing the active store in this way
one would not expect an improvement in the performance
of the system, one would merely hope that the results

obtained with the system would be more consistent.

The learning networks were taught 50 patterns
of each class alternately (i.e., in the same way as for
the first experiment). The number of errors made with the
training set of 100 patterns and with a test set of 100

patterns (50 of each class) was then obtained.

These results are as follows:

Learning Network

Normal Probability T.R. CL
Errors for training n=4
31 14 0+2 2
set of 100 patterns
Errors for test set
46 32 1345 10

of 100 patterns
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Two figures are given for the T.R. SLAM learning
network. The first is the number of wrong classifications
.and the second is the number of occasions when there were
no valid outputs hence, no classification could be made.
It is not possible for the T.,R. SLAM learning network to

misclassify any of the training set.

For the normal SLAM learning network all the
errors were made for the first class i.e., the opposite

class to the last class taught.

For the first experiment the average performance
of the probability SLAM learning network appeared similar
to the performance of the CL SLAM learning network (see
Fig. 5.6.4 and Fig. 5.6.6) . However, the actual perfor-
mance of the CL SLAM network is in fact far superior (10
errors for the test set compared with 32 for the probability

learning network) .

The input data used was of a very poor quality
to ensure that a comparison between the different learning
networks could be made. Examples of these patterns are

given in Fig. 5.6.8.
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CHAPTER b
THE SOFTWARE SYSTEM
In this chapter the software used for the
experiments in this project is considered in detail. The
aims and basic structure of the software system have been

outlined in section 2.3.

In the first part of this chapter the main
program and executive modules are described in detail. 1In
the second part of this chapter the structure and function
of the main experiment subsystems is described and a
particular subsystem (experiment 9 which is used in Chapter
5) is considered in detail. A list of the routines which
are available to a user when writing an experiment subsystem

is given in Appendix 2.

6.1 DetaiLs OF THE SOFTWARE SYSTEM,

6slad Structure of the system.

The structure of the system and the design
considerations which led to this structure are considered
in section 2.3. The final structure consists of a set of
modules which may be classified in the following way:

1. A main program, this sets up the work-

space and allows on-line access and manipu-

lation of pattern data within this workspace.

2. An executive program which controls all

the peripherals.
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3. An experiment subsystem to conduct the

experiment.

4. A library.of subroutines to be used by

the above three modules.

5. An optional debugging module which may

be loaded into the workspace when needed.

The main program and the executive program are
~described in sections 6.2 and 6.3 and then experiment sub-
systems are described in section 6.4. The library is a set
of routines called by the other modules. When operations
are carried out by library routines this is mentioned in
the descriptions of the modules. The Debug program is
described elsewhere(3). A special version,developed for
the system,contains all of the functions of the normal

version, but is linked to the system via the executive

module.

Examples of some of the functiomsavailable are given

below:~-

1. Break points - Programs may be stopped, examined and
restarted at locations defined by the

user.

2. Core Insertion & dumping - DAP-like programs or data
can be typed directly into the store,
also the store can be dumped in either

data or instruction formats.
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3. Core Searching - Selected areas of core store can be
checked for particular instructions
or data words (or parts of words)
and the locations where these occur

will be output.

6.1.2 Inputting information to the system.

The system has been designed so that when a user
wishes to ipput information to the system via the command

device there are three standard formats which he can use.

1. A one- or two- character mnemonic. This format is

usually used in a command status to specify the different

functions available.

2. An integer number. This is assumed to be decimal but

by preceding it with 'B' it will be binary or '/' it will
be octal. After the number has been input it must be

terminated by a space or ',' or '.' .

3. Yes/No answer. This format is usually used when a

binary decision is required by the system from the user.
The system outputs a question which the user answers by

inputting 'Y' or 'N'.

Everywhere, except in the experiment subsystem,
only the above three formats have been used. Functions have
been specified by two-character mnemonics to reduce the
typing for the user and to simplify decoding in the program.
Except for the most ffequently used functions, the system

outputs a message after a mnemonic function has been input
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which states either the action taken or what further

information is required.

Binary pattern information may also be input by
the system. The format of this information depends on the
peripheral concerned, there are two standard formats for

representing a 16x16 bit pattern.

1. Paper tape format. This consists of a ‘'rubout'

(i.e., all 8 holes punched) followed by 32 8-bit frames

to specify the pattern.

2. Magnetic tape format. This consists of 16 16-bit

words to specify the pattern.

6.1.3 Computer organisation.

A summary of the main peripherals used by the
system is given below. These peripherals will be referred

to in later sections.

1. Teletype. A standard ASR 33/35 teletype: 10 characters/
second. Information may input or output
in either character or pattern (paper tape)

format.

2. Vista. A 'CASE Vista' visual display terminal which

has a solid state keyboard and a cathode ray

tube display of 20 lines of characters.
Character information may be input from or
output to this terminal. This will be
referred to as the Vista in the rest of the

chapter.
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3. Paper tape stations. There are two paper tape
stations which can read and
punch paper tape. The paper
tape may be in character format

or pattern format.

4, Line Printer. The line printer has a 96 character

line and can output 300 lines a minute.

5. MagneEic tape unit. A standard Honeywell 50,000 bits/
sec. magnetic tape handler. It
treats data in core transfers of
16-bit words and requires a

software handler.

The above devices are standard computer peripherals. There

are some non-standard: peripherals which are listed below.

6. T.V. Camera. This requires a software handler to
obtain a 16x16 matrix from a scene. The
data is stored as a pattern in the computer.

Further details are given in section 2.2.

7. Minerva. A hardware learning machine closely linked to
the computer. It always completes an operation
within 1 computer cycle hence, it is not
programmed as a peripheral. 1It's instructions
are treated as an extension to the standard
instructions of the computer. Details of the

organisation of Minerva are given in section

5.2. Hardware details are described else-

where(l7{
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8. V.D.U. A Visual Display Unit is available which
displays a 16x16 binary pattern of information
on an oscilloscope screen. This device time
shares whatever program is being executed
and continuously displays 16 consecutive words
of store. The time sharing has an overall
effect of reducing the effective speed of the
computer by 5%. Hardware details of this

device are given elsewhere(38{

9. Analog Plotter. There is an interface which contains
2 10-bit D to A convertors. This may
be connected to a Hewlett Packard
analog plotter. This has been used for
plotting learning network responses and
for plotting scan paths for the tracking

system,

10. Disc. There is a disc unit which has a non-standard
handler. This has not been completed yet and is
not available to computer users unless it is
accessed by an operating system 'ADMOS' which

(4)

has recently been developed at this University .

This may be accessed by the special executive

described in section 6.2.5.
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THE EXECUTIVE PROGRAM,

d: Structure of the executive.

The executive program is 1,142 (Octal 2,200)

locations long. The executive contains all the routines

for

controlling the peripherals. It has a command status

which is entered when a program break occurs.

A program break may be caused by one of three

occurrences

l.

if octal 221 (character Q with control on the
teletype) is input on the command device. This is

the usual way to enter the command status;

if the start button on the computer console is

pressed;

if an interrupt occurs from a device not enabled
by the system. (This would usually indicate that

there is a hardware fault) .

The peripherals may be divided into two distinct

types: the standard peripherals which use 8-bit words and

the special peripherals which require software handlers.

6.2.2 Standard peripherals.

The peripherals relevant to this section and

their mnemonics which are used in the system are as

follows:
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INPUT OUTPUT
Teletype TT TT
Vista VI VI
Paper tape Station 1 PR PP
Paper tape Station 2 R2 P2
Line printer - LP
(Null) - NO

Information may be input to and output from the
system by two channels; a command channel and a data
channel. The command channel is intended for inputting
commands and for outputting messages from the system. The
data channel is intended for inputting and outputting pat-
tern data. There are two additional output routines, one
for the line printer and one for the Vista. These allow
fast dumping of data. There is a special output channel
which is labelled the mimic channel, this monitors both
the input and the output information which passes through
to command channel. This channel is primarily intended for
creating a hard copy via the line printer or paper tape
punch when: the command device is the Vista so that a

permanent record of the experiment may be obtained.

A channel has the property that it may be assigned
to any one of the peripherals listed at the beginning of
this section. 1Initially, when the system is started, the

channels have the following default devices.
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INPUT  OUTPUT

Command Channel TT TT
Data Channel PR PP
Mimic Channel - NO

Hence, commands are input and messages are output on the
teletype and pattern data is input and output on paper
tape station 1. Data may also be output to the Vista or to

the line printer by their special routines.

When a user wishes to write a subsystem two ways
of inputting information are available to him (command
channel and data channel input) and four ways of putputting
information (command channel, data channel, line printer
output and Vista output). To input data there are two
routines, one for each channel. When a character (an 8-bit
word) is requested, the appropriate routine is called. When
the routine has obtained a character from the peripheral it
returns to the program with the character in the right half
of the 'A register';to obtain the next character the
routine must be called again. Outputting, conducted by one
of four routines,is achieved in a similar way. The
character to be output is loaded into the right half of the
'A register' and the routine is called, a return to the
program occurs when the character has been output to the

peripheral,

Hence the executive program deals only with single
characters at a time. The library contains many routines

which use the above mentioned routines and enable the user
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to input and output information at a higher level. For
example, for the command channel there are routines for
inputting mnemonic commands and checking these with
function lists, for inputting and outputting numbers,
for outputting messages etc. For further details see

Appendix 2.

With most operating systems these peripherals
are time shared in an interleaved manner. However, for
this system they have not been time shared for the

following reasons:-

1. The time saved by time sharing would be
very small for most of the processor time is usually spent
in internal processing and very little time is used for

dumping results while this processing is in progress.

2. The executive program would have to be much

more complex and would also require much more store.

3. A useful feature of the system is that a
user may stop the program when it is running and slowly
step through it to see exactly what is happening. This is

not possible if time sharing is allowed.

A user may change the allocations of the channels
to the peripherals from the program by calling routines or

on-line when in the executive command status.
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6423 Command status functions.

The executive command status allows channels to
be assigned in the following way. One must first define
the 'input' (or the 'output') to a peripheral then the
channel may be assigned to the defined 'input' (or
'output') peripheral. For example, to assign the output
of the command channel to the line printer one would type
DO LP (define output to line printer), OD (set command
output to defined output). The command output may be
returned to the default device (i.e., the teletype) by

typing ON (command output normal) .

The mnemonics for assigning the different channels

are given below

INPUT OUTPUT

DEFINED DEFAULT DEFINED DEFAULT

Command Channel ID IN oD ON
Data Channel RD RN PD PN
Mimic Channel - - MD MN

There are several options which may be set or reset
by the user in the executive command status and these are as

follows: -

l. Cancel Messages (set by CM, reset by PM). When this
option is set there is no output on the command

channel. This does not effect the mimic channel.
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2., Tape Control (set by TC, reset by RC). When this
option is set the command input is taken from
paper tape reader number one. This is
conceptually different from assigning the
command input to the paper tape reader. This
appears different to the user in two main ways.
Firstly, all commands input from the paper tape
reader are mimicked on the command output device.
Secondly, after a program break on the paper tape
the system remains under tape control. If a user
causes a program break then control returns to
the defined command peripheral. This is a very
important option, its use is demonstrated in the

example in section 6.4.2 .

3. Vista Control (set by VC, reset by NC). When this
option is set the Vista completely replaces the
teletype. Hence any references made to the tele-
type will be interpreted to mean the Vista. The
Vista is a more convenient command device than
the teletype and one very rarely wants to use both

these peripherals at the same time.

4, DEBUG Option (set by $D, reset by ND). $D should only
be input when the debug program has been loaded.
This command makes the links with the debug program
and allows DEBUG commands to be input within the

system.
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5. Special Commands (set by SC, reset by NS). This
option is usually set. It checks each character
that’is input from the command device for the
appearance of special characters. These charac-
ters are listed below with the functions that

they incur once they are detected.

& This character forces the system into the main
program command status.

* This forces the system into the experiment sub-
system command status.

$ This puts the system into the command status of
DEBUG if it has been loaded.

0 This command must be followed by an argument
n(Osn<7). It allows 8 different starting
locations for the VDU to be remembered. When gn
is input the VDU is directed to the correct area
of core store and neither command character is
passed to the system. Hence the system is in
exactly the same state as it was before the
command was given. Sometimes a user may wish to
input one of the above characters for a different
function e.g. in typing a heading. To do this,

the option must be reset.
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6.2.4 Special peripherals.

The magnetic tape 1is really a standard peripheral
however, it requires a lot of software handling. As it is
rarely used an optional subsystem has been written to
operate it. This subsystem is separate from the executive

and it is linked to the main program when it is used.

The special peripherals which are handled within
the executive are the television camera and the VDU. The
graph plotter has not yet been written into the executive
however, it only uses a few instructions and any experiment
subsystem which uses the plotter can easily contain these

instructions within it.

The television camera is controlled by one routine.
This routine outputs éil the parameters to the camera,
obtains a matrix from the camera, stores it in a 16x16
buffer and returns. The camera may be operated in one of

two modes:

1. The non-time sharing mode, in which the camera only

inputs information from the scene when commanded toc do so.

2. The time sharing mode, in which the camera will obtain
a matrix from the scene when commanded to do so, as before,
but it will continue to refresh this matrix with every scan
of the camera maintaining the original parameter settings

after it has returned from the camera routine.

The VDU must be used in a time sharing mode. One

dedicated location in core is used to point to the area to
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be displayed. A routine in the executive ensures that
the correct data word is sent to the VDU when it is requested.
Sometimes it is advantageous to run the system without any
time sharing peripherals. When this is required an option in

the main program may be set which inhibits the VDU.

6.2.5 Special executive for ADMOS system.

A special version of the executive has been written
which links with a general purpose fully time shared operating

system 'ADMOS'.

In general, however, this version is not used very
often for two main reasons. Firstly, the operating system
uses more highly organised data structures than the usual
executive which limits the effects of some of the options
that are normally available to the system. E.g. when using
the operating system one cannot stop the program to look at
what is happening due to the time sharing. Secondly, the
operating system requires 4K words of store (10,000 octal
locations) which is far more than the normal executive and

means that the data workspace available is greatly reduced.

The one advantage with this system is that the user
can access the disc with the operating system which may be

useful when much bulk data handling is required.
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0.3 THE MAIN PROGRAM,

6.3.1 General outline.

The main program allows a user to access the data
workspace which is divided into blocks of 16-bit words, it
is 1,792 (3,400 octal) locations long. The on-line functions
available to a user in the main program may be divided into
three sections. 1. Camera control, 2. Data manipulation,

3. General purpose functions. These functions are described
below. In the descriptions the following convention has been
used

p represents a pattern number

n represen?s a number other than a

pattern number.

Almost all of the functions are actually conducted by library

subroutines.

6.3.2 Camera control functions.

A set of commands enable all the parameters sent to

the camera to be varied. These commands are as follows.

RI n move right¥* These commands allow the
LE n move left* viewing window to be moved
UP n move up* n steps in any direction.

DN n move down*

*
This indicates the command is sensitive to the global reset

command RS which is described later.
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Z0 n Change the zoom value by n*

ZC n Change the zoom value by n* and maintain the
position of the center of the viewing window.
This changes the X and Y coordinates as they
specify the top left-hand corner of the
viewing window.

TH n Change the 1light threshold by n levels*

TS Set the average threshold* to 1 after the zoom
value has been output. This makes the hard-
ware averaging logic very sensitive to any
picture elements which are 1.

SS (Show Status). This prints on the command
device, the X address, Y address, zoom value
and threshold setting.

oD (Origin Defined) . A predefined set of values
for the above four parameters are output to
the camera.

DO (Define Origin). This command allows the above
origin to be defined.

IH (Eye Inhibit). Set the camera in the non-time
shared mode.

IE (Eye Enable). Set in time shared mode.

DG n Set an n milliseconds delay* after a matrix has
been obtained from the camera.

IM P Move the matrix obtained from the camera to pat-

tern p.
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6e3:3 Data manipulation functions.

The commands which manipulate the patterns in the

data workspace may be divided into smaller groups as

described below

(a)

(b)

(c)

Inputting patterns
IP p (Input pattern) Input a pattern from data channel
(paper tape format)

RE p (Read pattern) Input a pattern

Editing patterns

AL pn n2 (Alter pattern) Put the number n., into row

1 2

n,y of pattern p.

CB p n; n, (Change bit) Complement bit n, on row n;

2
of pattern p.

Manipulating a pattern

CP p (Clear pattern) Set pattern p to all O.
FP p (Fill pattern) Set pattern p to all 1.
IV p (Invert pattern) Complement pattern p.
MK p n (Mask pattern) Set the first n bits of
pattern p.

CR p (Clockwise rotate) Rotate pattern p by 90°.
AR p (Anti-clockwise rotate)
RU p n (Roll up) Roll toroidally the
RD p n (Roll down) pattern p by n rows
RL p n (Roll left) or columns.

P

RR n (Roll right)
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(d) Operations of one pattern on another

(e)

IE pl p2

AN Py Py
OR p,; P,

28 Py By

HD P; Py

MP p; P,

(Interchange)
(AND) Pattern P is ANDed with pattern P, -
The resultant pattern is in P,

(OR)

(Exclusive OR)

(Hamming distance) Print the Hamming distance
between P, and p, as a
number and as a percentage.

(Move pattern) Move pattern P, to Py-

Output a pattern

DP p (Display pattern) Display pattern p on the VDU.

OP p (Output pattern) Output a pattern on the data

channel in paper tape format.

PP p (Print pattern) Print pattern p with X repre-

senting a 1 and space repre-

senting a O.

PB p (Print binary) Print pattern p as 16 binary
numbers .
PO p (Print Octal) Print pattern p as 16 binary

coded octal numbers.

LP (List patterns) This command causes an entry to

a general purpose pattern

dumping subsystem. A block of
patterns either 2 or 4 side by
side may be dumped by any one of
the four possible output methods.
The characters to represent 1 and

O may also be defined.
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PV

TV

TP

SN

ID
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(Display core)

(Punch Visible)

(Set net)

(Inhibit display*)

Core locations nl+n2 to

n +n2+15 are displayed on the

1
VDU.

Allows a visible tape heading
to be output on the data
channel.

Allows a comment to be typed on
the command device.

Allows a heading to be output to
the line printer.

This command enters a subsystem
to allocate some data workspace
for simulated learning elements.
The SLAM simulators are then (at
run time) only allowed to access
this area.

This inhibits the VDU so that
the system may be run without
any time sharing.

This command resets the next
resettable command that is
input. Resettable commands
have been marked by *. E.g.,

RS LE will set the X coordinate

of the viewing window to O.
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There is a global command SQ n (sequence) which repeats
the next data manipulation function n times incrementing
the pattern number each time e.g. 'SQlO CP 1' will clear
patterns 1 to 10. For functions of type (d) where two
patterns are involved, both these pattern numbers are

incremented.

There is a second global command for functions
of type (d) SH n (Sequence with Hold) this command is also
for repeating a function n times but in this case only the

second pattern number is incremented.

6.3.4 General purpose functions.

This section is concerned with all the functions
not covered in the previous two sections. The most

important of these are described below

CM, PM, TC and RC have the same effect in the main

program that they have in the executive.

PL (Punch leader) Output 100 blanks on the data
channel.
FF (Form feed) Space to next page on line printer.

VS P, P, (View sequence) This allows a sequence of patterns

to be displayed on the VDU.

SD n (Set Delay) This allows a delay of n milli-
seconds to be set which occurs
after each pattern pointed at by
the VS command is displayed.

DI (Display eye) Point the VDU at the camera input

buffer.
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6.4 THE EXPERIMENT SUBSYSTEM,

6.4.1 Organisation of the main experiments.

During this project many different experiment sub-
systems have been written, the main ones are listed below.
How these may be linked (by dumping the results from one and

inputting them with the next set) is shown in Fig. 6.4.1.

Tracking Experiments.

All the tracking experiments have been conducted
with two tracking subsystems: experiment 11 and experiment

12, Experiment 11l is for experiments with the maximum

response tracking system described in section 3.3. The
learning networks may be organised in Minerva or by simula-

tion. Experiment 12 is for experiments which use only two

learning networks to track with as described in sections
3.4 and 3.5. Both probability SLAM learning networks and
CL SLAM learning networks may be simulated. Minerva may

also be used for the probability learning network case.

Classifying Experiments.

The classifier experiments have been written to
interact with the tracking experiments. Hence, this sub-
system can receive information from the tracking system as
it tracks and a classification can be made in real time.
However, when developing fhe classifier, to be able to
repeat exactly the same tracking motions many times was

considered important. To achieve this Experiment 13, a

tracking simulator was written. This subsystem stores the

logged tracking motions from an actual tracking system
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experiment and can repeatedly present this information to
a classifier sub-subsystem. The final developed version
of the classifier, described in section 4.2, is conducted

by Experiment sub-subsystem 11. The shift register

classifier, mentioned in section 4.4, is conducted by

Experiment sub-subsystem 2.

A problem with using the tracking system and
classifier together is that with all their options they
both require a lot of store. There is not enough room, for
example, for the experiment 11 or 12 tracking system, the
experiment sub-subsystem 11 and the backing system. However,
by reducing some of the options in either of these will

create enough room. Experiment sub-subsystem 14 was

written to simulate the effect of a classifier for a large
tracking system. It enables the tracking motions to be
dumped (for use by experiment 13) and also allows the
tracking motions to be plotted in real time on the graph

plotter.

Other Experiments.

Experiment 9 is designed to test different learning networks

simultaneously so that their performances can be compared.
This experiment is used in section 5.6 and it is used as an

example of a subsystem in section 6.4.2.

D

@

There are some other special purpose subsystems
for example, Experiment 10 and Experiment 15. The tracking
systems are able to dump all the patterns obtained from the

viewing window and also other parameters (e.g. the responses
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from the learning networks) while it is tracking a pattern.
For efficiency, these are dumped on paper tape in pattern

data format. Experiment 10 is designed to sort out these

patterns into a logical order and print the data in a

readable form.

Experiment 15 is designed to obtain a Hamming distance

distribution from sets of patterns. It can calculate a
distribution for the Hamming distance between all the
combinations of pairs of patterns within a set of patterns
and it can calculate a distribution for the Hamming distance
between all the combinations of pairs of patterns between

two sets of patterns.

6.4.2 An example of an experiment subsystem.

Experiment 9 is designed to compare the perfor-
mance of different learning networks. On the following
pages an example of how this would appear to the on-line
user is given. Experiment 9 has been used for the experi-

ments in section 5.4 and its organisation is described there.

In this subsystem, all the operations are carried
out from the subsystem command status. The functions which

are available in this command status are listed below.

CH (Change) This command allows the chosen different
types of learning networks to be
selected and the store for them

allocated.
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(Show Status)

(Clear Nets)

(Teach 1)

(Teach 0)

(Output
Responses)

{Output
Percentages)

Prints the selected learning
networks and all the store
allocations.

Sets all the learning network
stores to 50%.

Teach pattern p with 1 on the
teach sense terminals.

Teach pattern p O.

Print the responses obtained
when presenting pattern p to

the learning networks.

Print responses but as

percentages.

(Output Heading) For responses or percentages.

(Output Device)

(Output Sum)

(Reset Sum)

(Sum Device)

(Heading for
Sums)

(Input Maps)

The output devices which are
used by the above three
functions may be selected with
this command.

Output the sums of all the
previous responses. (This is
used to find average responses).

Set all the summed values to zero.

Allows the output devices for
the sum values to be selected.

Print a heading for sum values.

This inputs the connections for
the input mapping from the data

channel.
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The following learning networks may be simulated with the

subsystem,

Simulated Learning Networks

N Normal SLAM Learning Network

CC 4 Layer Cumulative Learning SLAM Network

TR Ternary SLAM Learning Network

PB Probability SLAM Learning Network

BC 16 Layer CL SLAM Learning Network

GP N Layer Probability CL SLAM Learning Network
Minerva Learning Networks

N Normal SLAM Learning Network

PB Probability Learning Network

In the example shown in Fig. 6.4.2 two classes of
handwritten characters of four patterns each are used as
data. Usually, many input patterns are involved in anf
experiment and to control them all on-line by the user
would be impractical. The set of commands to conduct such
an experiment can be generated by a short simple program
in a high level system such as Basic or a Macro processor.
This string of commands is dumped on paper tape and the
experiment can then be run under 'Tape Control'. The
experiments described in section 5.6 were conducted in

this way.
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Comments

*x 22 SN (allocate stores for the simulated SLAMs)
NO OF CARDS 1S? 440

PATTERNS KEQUIRED =100

NO OF SLAMS 1S 1600

NO OF M 1/P PATTERNS IS 25

MIN STARTING PATTERN IS 347

STARTING PATTFRN 1S ? 304 T0 399

¢ * EXPERIMENT 9B

;l%%LA?TS:GSET TYPES (Select and Set up the Learning Networks)
N_Y_CLLTRLPBLBCNGP
STORE ALLOCATED 0K

1ST PATTERN USED 1S 290
MINERVA NET TYPES

N N PB N

PB PROBABILITY/16 1S 4_
AP L . (The GP SLAM Network is simulating a 6

P INCREMENT SIZE 1S 1024 i
EEVELS = 63 LAYERS = 6 output CL SLAM Learning Network)

|=<

« S5 STATUS
MAP PATTERNS ARE #0290 TO 0297 (32:31znttzizesiézgingg)store allogationg
1/P PATTERN 1S 298

MPPED PATTERN IS 299

NET STORE 1S

N AA3A0 TO 00303

CL #A334 TO G319

TR AA320 TO 327

PB AN328 TO AA331 PROBABILITY/16 1S 4

6P PA332 TO AN395 PROBABILITY/16 IS 16

INCREMENT SIZE 1S 1024

LEVELS = 63 LAYERS = 6

* IM  INPUT MAP PATTERNS  0.K.
* 22 50 = 4 ¢ 1P ) &S0 =428 1P 5¢&TV (1
PAT'S | _TO 4 CONTAIN 3'S, PAT'S 5 10 B CONTAIN &'S. nput the data and type a comment)

A
: gi 39: e s T (Display the input pattern on the VDU)
NiE— DALY - (Find the number of bits set in pattern 1)

EXPERIMENT 9B

N CcL TRD TRV PB GP
200250 200 50 n9N SA f2nAan ana Sn 700 SN.NANANA

fn100 nAAST na100 20100 nnn62 ANAS1. 56254
nanea aAs12 nON6A nnneéa B0 an nAR21 62624

RIgZIISIRIRE!

i i e i L o o o ¥ o

UM DELETED
20100 a0nAS7 AN100 0100 ann 62 20N S1.56254
nans 1 AnASa 7fN100 ann 62 PA0S6 AAASA.97658
oP A0 60 292051 AN100 nanz21 70051 NAASA.34180

00N70  APAS3  ARIAR  ARR4A3  PARS3  AANSA. ER36I
AA311 @A21S AA4AN  AN226 AN222  0A2A3. 56455
UM DELETED (Threshold for average sum is 4x50 = 200)
PAR62  AAAS4A  PAIAN  APAG2  ANAS]  PANSA. 97658
UM DELETED
ANASA  AANS2  AAMRR  ARA39  AARAB  AAASA. 46387
AANA6  ABASA  APAST  AAA21  BAR4AR  AANSA.MAABR2
fAASA  AAASI  ANARA  APA32  ANA46  AAASA.31739
0A146  AN1S3  @AA225  AAN92  AN142  AN1SA.R3N1A

(Test set of patterns 2 to 4, average
threshold for sum is 3x50 = 150)

BRERE R RRRERERRRRRRR R RER R R RE R

RRISRRIIZRI AR R

N CcL TRD TRV PB GP
S . 00AAA  0ARAS  ANAAG  ANA62  0NA39  ANN49.0R2340
SUM DELETED
6 @M6A32  0AB49  APA3T  0ANA2  AANAS  NANA9.82909
i PAn37 nan4a9 nan3l nanN2s 20045 AAAA9.RS535A
8_ onn37 ldzRe) nnass nnA28 00N4a2 . PANSA.NA8B2
016 20148 w123 nAn9S 00132 AN149.73143
N CcL TRD TRV PB GP
¥ LE READY? N (Print the data set of 3s using the
. o0 is % pattern dump subsystem)
RE_READY FROM PATTERN 1| TO 4_

seie kR R e snessessbacineien “ReeanRARRXRK Y e amemeieEes 4600600
oo XXX R oo 5.9 5 9 s XXX K sonnoss snooXXKKXKXXRewe o oo XXNKKos oo diss
2o s RXRXKX K oinieases sooXkKXXXXeinsves snocoXNKaXKXXKewe oo s XRKXKKKS 660 00
KXo eXRbss00s 0o e XKXAXKsoomare somoanse s XhKosws sosXXKea XX ais700
s Bk Nswmennn  aweeewen shKeneuie  wesXKeolieX v oo
sonseshfrsvnenee  wesseeseXXKeanioe eoevuvssXKNowaioe
o KXXKK o706 AXXKR K wione  pmeeeiein KKK K jeie
e o XXXKK o0 o XXX Ksiws wsisirenie XXKKereioie
cimasssseRRovess laseeesssseneXRes  wewesgewss XK
<
seioRRs o Beweamesevsekhes  eeeseesisss Ko
cooeXNuns eweehkKosrneskios awesKessssiKKens
sevessasesRRkRsin  avenkKasowso XKoo oeeekKon s aXhXKews
veeseeenaXkReose eussXKeoooeXRXes soooXKKXKXXK oo
oo e s XREXKXX s 5w o weoesehkKonkXAKocs swoe s XXRXKXXssevo
eneoe e XKKX e vsseo eneseXKXAKXNKssoss soecossossssoses

Characters underlined are
¢ PL input by the user.

ssesssssseXXeare sseccsecsseaXXeo ceeen

FIiGure 6.4.2




CHAPTER 7

CONCLUSION

In this thesis a pattern recognition scheme has
been developed which tracks patterns and classifies them.
The main feature of the scheme is that both of the above
functions are achieved by adaptive learning networks. All
the systems described may be easily realised in hardware.
In general, the tracking system requires 256 1l6-bit words
(4,096 bits) of active store and the classifier requires

64 16-bit words (1,024 bits) of active store.

This work represents only the initial researches
on this type of system and a practical form of this pattern
recogniser would require further development. The
development of the tracking system, classifying system
and learning elements will be reviewed in the next three

sections.

7.1 THE TRACKING SYSTEM,

The details of the tracking system are given in
Chapter 3. ‘Initially the tracking system based its deci-
sions on the localised information from the area of
attention only. It has been shown that such a system may
easily be taught to track edges of patterns but it is not

sufficient to track the lines of patterns.
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In order to track lines, feedback from the out-
put to the input of thetracking system has been added to
good effect and this has been further improved by a
damping process. With this tracking system it is possible
to track simple line drawings. For very simple patterns
such as circles and triangles, the system behavesvery well,

Investigations with this system have shown the
following:~-

1. Not all line drawings can be tracked,

there are theoretically determined limits

of the system (defined in section 3.2.4)

and any complex scanning path must be

considered carefully.

2. The performance of the system is very

dependent on the ability of the teacher.

3. It is more difficult to teach complex

patterns* to the system than simple ones.

4, As the patterns become more complex the
generalisation rapidly deteriorates.
(Increasing the size of the learning networks

does not improve the generalisation.)

The first characteristic of the system mentioned

above is due to the overall structure of the tracking

* The complexity of a pattern is difficult to define
rigorously. In this case it is related. to the number of
line junctions and also to the nature of the line junc-
tions (e.g. the number of lines entering the junctions
and the relative shapes of the junctions).
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system (i.e. the way that feedback is applied). The other
three characteristics are determined by the nature of the
learning modules. Three different types of n-tuple
learning elements have been investigated and the degree

to which they exhibit these characteristics has been

detailed in Chapter 3,

The tracking system is very simple in structure
and there are many ways in which it could be further
developed. It cannot track all possible line drawings
with only a short-term memory (created by the feedback) .
However, if a long-term memory (storing the sequence of
features or tracking movements encountered) could be
added, then there is no theoretical limit to the complexity

of the patterns which can be tracked.

One possible development would be to select only
a fraction of the learning network for tracking or testing.
The fraction selected would depend upon the location of
the viewing window on the pattern e.g. it could depend on
either the position of the viewing window or the last
direction taken (averaged over several steps). This

development could also be applied to the classifier.

It would be interesting to see if a model of
the system proposed by Noton(34) could be developed
in which the classifier stores attention shifts necessary
to examine the pattern and the tracking system could be

guided at critical points by feedback from the classifier,
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Analysis of the patterns taught to the learning modules

has shown that the separatim between classes is very

small in Hamming distance, whereas the variation within

the classes is very large. This could be improved by

the introduction of some preprocessing. There are many
different types of preprocessing which could be applied

to the information from the camera. For example, the

effect of processing the information with a layer of simplified
models of retinal ganglion cells could be investigated

e.g. with similar receptive fields to those described by
Rosenberg and Wilkins(4o), This could be further

developed by adding layers of cell models which have simi-

lar properties to the cells found by Hubel and Wiesel(24)

in the cats wvisual cortex.

So far no heuristics have been built into the
processing of the information with regards to lines. If
the task desired of the system is limited to tracking lines,
then feature extractors may be applied to the input matrix
to extract information which is relevant to line drawings
only. For example, one could extract the number of lines
in the window, their orientations, their positions with
respect to the center of the window, etc. Hence, the
relevant information would be presented in a less redundant
form to the system and one might see an improvement in the

performance of the system,
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7.2 THE CLASSIFIER SYSTEM,

The details of the classifier system are given
in Chapter 4. For the classifier an attempt has been
made to use a learning network to classify a sequential
string of input data. Although this task has often been
tackled with algorithms (e.g. all the tracking methods
described in section 1.2.4), an approach with learning

networks has not been tried before.

A simple system has been tentatively proposed
and developed to achieve this task but the results from
it have been poor, This classifier only receives input
information from the tracking motions of the tracking
system and is designed to generate a codeword to indicate

the class of the input sequence.

Hence, with this approach, the tracking motions
must contain the information to classify the input pattern.
In this case, the tracking system tracked the lines or
edges of the input pattern but this is not the only scheme
with which the classifier could be used. For example, it
could try to classify "saccadic" motions provided that

they be unique for each class of patterns.

The system which was finally developed consisted
of two parts: a cycling network, which is stimulated by the
input sequence and a codeword extractor which detects
classifying states in the cycle network. The main prob-

lem here is to know what to teach to the cycle network and
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very little is known about methods of teaching such a
system. Also, it is very difficult to analyse the results
of teaching due to the sequential nature of the input and

output.

To assist with the study of this problem, the
concepts of SLAM store'penetration' and SLAM store 'over-
lap' have been introduced. Although in such an undeveloped
form their usefulness is still questionable, they do allow
measures to be made on the input data and internal states
of the classifier which are independent of the sequential
nature of the input data and its associated effects,* (e.g.
the initial state transient) . An important feature of
patterns associated with the classifier is the frequency of
occurrence of elements of these patterns during the input
cycle and neither of the above concepts embodies this. To
provide a measure for this feature, the concept of pattern
activity has been introduced but this has not been rigorously
defined and is used in a qualitative way only. The use of

these measures is illustrated in detail in Chapter 4.

The work in this thesis has done little more than
establish the basic foundations of a classifier of this
type. The learning network investigated was very small
(only 16 TR SLAM-16s were used for the feature extractor)
and future work could be aimed at investigating the pro-

perties of a larger system,

* The main problem with these measures is that often
important information is conveyed by the sequential
order of the data.
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It has been found advantageous to use T.R. SLAMs
in the code net. Experiments with the cycle net have shown
that the method used for its teaching has not been very
effective and also cycling networks are very sensitive to
any changes in their structure. Hence, a teaching
algorithm which can only cause small amounts of change may
work better. One possible scheme to realise this would be
to allow each memory element in the learning network to be
taught once only. (This is similar in basic concept to the
origins of the T.R. SLAM and in practice could be realised
by learning elements consisting of two SLAMs with their
inputs commoned.) Another possibility would be to use T.R.
SLAMs with the 'last valid output' used for the outputs of

the net.

The method used to code the sequential tracking
information before inputting it to the classifier is
important (this is due in part to the small size of the
learning networks used). Several methods have been investi-
gated and the most useful form used was to input the position
of the area of attention., There are many other possibilities

which could be investigated as in the following examples,

1. The input could be applied so that it had an
inhibitory effect on the feedback only. Hence, the input
‘inhibits' rather than stimulates the net activity. This
may overcome the problems of the dependance on initial

starting and the length of the initial transient states.
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2. In many pattern recognising schemes, localised
information about features is often considered important.
This information could be obtained by extracting features
from the tracking data for the last few steps taken. Then
this information could be input to the classifier in

addition to the position information.

3. Another more powerful method of realising the
above concept is to extract features directly from the area

of attention and input these with the position information.

7.3 THE DEVELOPMENT OF THE LEARNING ELEMENTS.

Details of the development and properties of the
learning elements are given in Chapter 5. The initial work
was conducted with SLAM-16 learning elements. Three basic
developments of this element have been investigated; the
probabilistic SLAM, the CL (Cumulative Learning) SLAM and

the TR (Ternary) SLAM,

The probabilistic SLAM element is similar in
structure to a normal SLAM-16. However, on giving a teach
command there is a definite preset probability that this
command will be ignored. This teaching mechanism makes a
learning network less sensitive to the last pattern taught
and is ideal for cases where an ageing teach process is

required, for example, the method used by Fairhurst(l4).
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)

The CL SLAM has been patented(39 and is
characterised by having a number output, rather than a
binary one, the value of which depends on the frequency
of occurrence that the input pattern has been taught.
This SLAM requires n times the amount of store for a
normal SLAM where n is the number of bits at the output.
(For most cases a value of n=4 has been used.) Like the
probability SLAM network, the CL SLAM network overcomes
the overteaching problem of the last pattern taught with
the difference that it does not suffer from the defect of

the probability SLAM network which ignores part of the

input pattern on teaching to achieve this.

Since the development of the CL SLAM, a frequency
sensitive SLAM (the FO SLAM) has been mentioned by Chung(7)
This FO SLAM uses an internal algorithm to achieve a
dynamic equilibrium with respect to the number of states
filled within the SLAM which is considered to be an
important featuré“ On the other hand, it is the conten-
tion with the CL SLAM that some outputs should be weighted
more than others over the network. The FO SLAM could be
realised with a CL SLAM structure and with a saving of
store. A FO SLAM could be realised by an n output CL SLAM k
which requires n,zk bits of active store; to achieve this
with the shift register method by Chung would require

N X

2 bits of active store.

The normalisation technigue described by Chung
may be useful for some CL SLAM learning networks and the

CL SLAM teach mechanism could easily be adapted so that a
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distribution of values is always maintained within the

CL SLAM outputs.

The TR SLAM has a ternary output (1, O and not
valid) and uses twice as much active store as a normal
SLAM. The TR SLAM was developed initially for use at the
output of cycling learning networks. (Also, the best
results from the tracking system were obtained with
learning networks which had a similar structure to a

learning network of TR SLAMs.)

One feature of the TR SLAM is that it records
all patterns it has been taught. This means that the
last pattern taught has no more effect than any other.
However, by the same token, these learning networks are

easily overtaught.

Another feature of the TR SLAM is that its
stores may be easily analysed for 'penetration' and
'overlap' and also, when being used, noting the number
of valid outputs can be used to indicate a confidence

level for the classification.

/.4 CONCLUDING REMARKS.

In addition to the investigation and develop-
ment of a pattern recognition system, some special

purpose hardware and software has been developed.

To obtain data from a visual scene a normal

television camera has been connected to the computer via
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a hardware control unit which was built especially for
this project. This hardware is orientated towards
realising some of the features of the human eye in that
it can only obtain detailed information from a small
part of the scene at a time., However, it may also.be
used for general purpose data acquisition from a visual

scene. It has the following specifications:

1. The scene is defined by a 256x256 square matrix

which is viewed by the camera.

2, A 16x16 bit binary matrix representing an area of
the scene within the viewing window may be obtained

every 20 milliseconds,

3. The binary matrix is obtained by sampling the scene

with one of 16 brightness levels.

4. The viewing window may be positioned anywhere on the
256x256 scene matrix and may cover an area of 16xl6 pic-
ture elements or any multiple of this. (When the viewing
window covers an area greater than 16x1l6 picture elements,
a hardware averaging unit is used to generate the 16x16

bit binary output,)

A special operating system has been written for

"this project. It has the following features:

1. It contains routines to control the

television camera and all the other peripherals including

Minerva.
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2. It allows on-line access and manipulation of a

data workspace, organised in 16x16 bit binary patterns.

3. It contains routines to simulate learning net-

works of normal, probability, CL and TR SLAMs.

4. Each experiment is conducted by a subsystem

which may be any DAP program,

5. An interacting debugging program may be loaded

when required.

The operating system is not restricted to this
project only but is designed to be useful for experimental

work involving pattern processing in general.

An attempt has been made to establish a framework
for and develop a pattern recognition system from basic
logical considerations rather than basing it on any
existing system. Further development would be aimed in one
of two directions. The system could be developed towards a
pattern recogniser by adding heuristic feature extractors
etc. which are known to be useful for other systems.
Alternatively, one could work towards a model of the eye
and the visual perception mechanism found in man.
Hypotheses of the visual processing mechanisms in the eye,
for example the function of the ganglion cells, could be
investigated with this system. Some of the possible
developments of the tracking system are given in section
7.1, The classifier which has been developed is only one

of many possible forms, suggestions for further develop-
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ments of this and for alternative methods are given in

section 7,2.

Whatever direction the further development
may take, the hardware and software systems described
here should be useful as a foundation. The existing
system sets a reference with which to compare further
results. Also, the development made in learning
elements should be considered when designing future

systems.



APPENDIX 1

CircuiT DeTAILS OF THE CAMERA HARDWARE

A description of the operation of the hardware
control unit is given in section 2.2, In this appendix
the circuit details of this hardware are given. A block
diagram of the hardware modules is shown in Fig. Al.1l,
definitions of the interconnections are given in Table
Al.l and the circuits of the modules are given in Figs.
Al.2 - Al,9. The symbols used in these circuits are

defined in Fig. Al.10 and Fig. Al.1l1l.

The following is a brief description of the

functions of the modules and their interconnections.

The 6MHz Clock Fig. Al.2: The clock produces

the timing pulses for setting up the 256x256 matrix over
the scene and generating the camera synchronising pulses.
Due to the poor quality of the camera a lbt of mains hum
was present on the video signal. To overcome the beating
effects of the hum, caused by the difference in frequency
between the frame rate and the mains, the clock was locked

to the mains frequency by a phase locked loop.

A simple phase locked loop was originally used
but, due to the large difference in frequencies (6MHz -
50Hz) , the clock frequency varied an unacceptable amount
during one cycle of the mains. This was overcome by a

combination of three methods:-
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1. The power supplies were heavily decoupled.

2. Two integrators instead of the usual one
were used,

3. The oscillator was isolated from the rest
of the circuitry by an enclosed metal
box mounted at the other end of the

rack.,
The output of the clock is via CK and the
inverse via EK .~ A reference strobe for the phase locked

loop when the Y counter is reset is provided by SC.

The X Counter and Decode Module Fig. Al.3: This

module counts the clock pulses and determines the x
coordinate of the television scan. The decoder generates

the following functions:

LSY Line sync pulse, to synchronise the
camera. This is also used as a
timing pulse for the zoom counters,

XPOS Indicates when the x coordinate of
the viewing window is reached. (Note
XIC occurs slightly before XPOS and
is used as a reset pulse by the line
sampler.

SY This resets the X counter and incre-

ments the Y counter.
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" The Y Counter and Decode Module Fig., Al.4: This

module counts the cycles of the X counter and determines
the Y coordinate of the television scan, The decoder

generates the following functions:-

FSY Frame sync pulse to synchronise the
camera frame,

YPOS Indicates when the Y coordinate of

the viewing window is reached.

FF This indicates to the computer when
the frame flyback occurs.

SC This resets the Y counter and strobes

the phase locked loop of the clock.

The Zoom Input Buffer Fig. Al,5: This module

enables the zoom value ZV5 (5 bits) and the average thres-
hold ATH4 (4 bits) to be input. Usually the average
threshold is half of the zoom value and provision has been

made for this to be achieved automatically.

Video Processor Module Fig, Al.6: This module

receives the composit video data from the T.V. camera and
converts it to a binary signal BVI by means of a comparator.
The threshold of the comparator is set at one of 16 levels
by the computer or by the manual controls. This module
also impresses the viewing window onto the composit video
signal which is output to the monitor. The time when the
window is to be impressed is defined by both zoom counters

being active i.e., when XZA and YZA are true.
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The X Zoom Counter and Line Sampler Fig. Al.7:

This module samples the binary video input BVI when a line
which intersects the viewing window is scanned. The moment

to start sampling is indicated by XPOS. XIC changes state

before XPOS and clears the data counter. Once XPOS occurs
the X zoom counter counts the number of picture elements
for each bit (defined by ZV5) and the data counter counts
the number of picture elements set at 1. This latter count
is compared with the average threshold ATH4, if it is
greater or equal to the threshold the sampled data value
SDAV is set true. After each bit of output data is

obtained, it is strobed into the Line Average Module by SDAS .

16 bits of data are obtained in this way and then a pulse on
LEND - indicates the end of sampling., LSY resets this module
at the end of every line. While the line is being sampled,

XZA is set true.

The Y Zoom Counter Module Fig, Al.8: This module

counts the lines which are relevant to the viewing window.
The first line of the viewing window is indicated by YPOS.
The Y zoom counter is strobed by LSY i,e., during the line
flyback. After each zoom value number of lines (defined by
ZV5) and when the line averaging is complete (indicated by
Qﬂg), 'word ready' WORR is set which initiates a data trans-
fer to the computer (also, the average counters are cleared
by a pulse on CAC). The computer indicates when the data
has been accepted by a pulse on 'word accepted' WORA, If
the response from the computer is too slow then 'Frame not

valid' FNV is set, This is reset by the computer with a
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pulse on RFNV.* While the lines are being counted YZA is

set true.

The Line Average Module Fig. Al.9: This module

averages the data obtained from several lines. The data
from the line sampler SDAV is strobed by SDAS into a 16

bit shift register. When line sampling is complete
(indicated by a pulse on LEND), the contents of the shift
register are used to increment 16 4-bit counters. Each
counter registers the number of lihes in which the line sample
has indicated a 1 for that position. If the counter value
is equal to, or greater than, the 'average threshold' ATH4,
then the relevant bit in the output shift register is set.
After each zoom value number of lines a pulse from the Y
zoom counter on CAC resets these counters. The counters

are compared serially with the average threshold, after

the line has been sampled, by 4 16 to 1 bit multiplexers and
a 4 bit address counter., When this averaging process is
complete, a pulse is output on DWC to the Y zoom counter.
The final 16 bit data word which is output to the computer

is reset by the computer with a pulse on WORA.

* This feature was originally included as the camera
hardware was connected to a standard 16 bit computer
interface. A hardware 16x16 bit buffer has now been built
into the interface, hence the reply from the computer is
independent of the computer program and is always quick
enough.,
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Interconnection List

Average Threshold (4 bits)
Binary Video Input

Clear Average Counters
Clock

Clock Inverted

Composit Video Input
Data Word Complete

Frame Flyback

Frame Not Valid

Frame Synchronising Pulse
Line End

Line Synchronising Pulse
Monitor Video Output
Reset Frame Not Valid
Strobe Clock

Sampled Data Strobe
Sampled Data Value
Strobe Y Counter

Word Accepted

Word Ready

Initial Clear
Position Reached

Zoom Counter Active

Position Reached

KoK X X X

Zoom Counter Active
Zoom Value (5 bits)

TaBLE Al,l
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o Internal Interconnection

> Input from the computer interface
P Output to the computer interface
&> Manual push-button switch

O— Manual toggle switch

i

::)0___ NAND gate }S b Schmitt
trigger

@—- NOR gate Exclusive OR
- gate

*

[:>¢‘ Invertor

- 3

Monostable (+ indicates the

—— —T_I— edge triggering)
CLOCK _____ . *
* INPUT COUNTER

Clear o/p O/P O/P O/P
input 1 2 3 4

signifies a +ve edge triggered synchronous type
otherwise a -ve edge triggered ripple-through type.

Fieure Al.10
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Shift Clock

Input
Serial SHIFT REGISTER
Data Input
Clear o/p 0O/P O/P O/P
Input 1 2 3 4
COMPARATOR F
Bl B2 B3 B4
B = f-\ (Ai @ Bi)(realised by 2 input Exclusive OR
i=1,4 gates and a NAND gate)
A ¥ = A.C # B.C
K (realised by an AND-OR-Invert
B gate and an inverter)

Input Selector

Inverting in- ] =

put

’ —OUtput
Non-inverting in- ————em——d +
put

OperationalAmplifier

Freure Al.11



APPENDIX 2

PATTERN PROCESSING SYSTEM
SuBsYSTEM WRITERS MANUAL

This manual is intended for users who wish to
write an experiment subsystem for the Pattern Processing
System and outlines the features which are available to

him within the system.

There are two main command status within the
system. The main program\command status which allows
manipulation of the data workspace and general functions
and the executive command status which deals with assign-
ment of peripheral channels etc. A full account of the
functions available when in these command status are
given elsewhere (Chapter 6).

On inputting the global command 'x' the
experiment subsystem will be entered. This subsystem may
be any DAP program which is called EXPR by name, and the
system causes a 'JST' to this label on entering the sub-
system. An exit to the main program may be made by a

'JMPx' the entry point (EXPR).

The following description of the features of the
system assume that the reader has a knowledge of DAP
assembly language. In these descriptions, the following

abbreviations will be used,
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A A register
B B register
C C register (1 bit)
D1 1st location after subroutine call,

usually D1 is the return
location from the subroutine
D2 2nd location after subroutine call

X X register.

An argument of the form '(1-8)' after a register
refers to the bits of that register which are currently

relevent.

In this system the A, B and C registers are used
for transferring parameters to subroutines. The X
register value is always preserved. Unless otherwise

stated, the return from a routine will be to Dl.

The following routines are available to a user
when writing a subsystem. Only a brief description of the
functions are given, further details may be obtained from
the program listings.

NAME FUNCTION
Peripheral Routines

§ TYPINA Input 1 frame from command
channel. Result in A(9-16)
2 TYPOUT Output 1 frame (A(9-16)) to

command channel.

3. RPT Input 1 frame from data channel.

4. PUNCH Output 1 frame to data channel.

5, VISTOP Output 1 frame to the Vista.




259

cont. ...

NAME
6. PRINTER
7o DICHAN
8. DOCHAN
9. IDCHAN'
10. ODCHAN
11. ONCHAN.
12. INCHAN
13. RMCHAN
14. RSCHAN.-:
15. SEQU
16. NSEQ
17« CANP
18. NCAN
Camera Subroutines
19. OPIC
20. NEWX

FUNCTION

Output 1 frame to the line
printer.

Define input channel, A has
device number.

Define output channel, A has
device number.

Command input to defined channel.
Command output to defined
channel.

Restore command output channel
to default device.

Restore command input channel to
default device.

Remember the staté of the
channels.

Restore the channels to the last
remembered state.

Set in tape control mode.

Reset system to normal control
mode .

Cancel messages which are

- output on the command channel.

Reset the above function.

Obtain frame from the camera
using the settings in the main
program.

Change wvalue of X parameter by

the value in A. If successful
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21.

22,

23.

24.

Command channel
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NAME

NEWY

NEWZ

NEWC

GPIC

FUNCTION
on the return A=0 otherwise,
A=-1,
As above, but for Y parameter.
Change Zoom value by the wvalue
of A. On return A=0 if
successful and -1 otherwise.
As above, except this sub-
routine changes the Zoom with
the center of the viewing
window as a reference.
Obtain frame from the camera
with the following settings
D1=X value D2=Y value
D3=Zoom value D4=brightness
level D5=Special options

D6 is the return location.

character string inputting routines

25 ;

INCOMMAND A=Starting location of return

pointers, D1 is the start of

the list of mnemonics. This
routine is for inputting and
decoding one and two character
mnemonics. When the user inputs
a mnemonic it is compared with a
list of mnemonics which follows
the subroutine call and when the
correct one is detected the
routine returns by Jjumping
through a corresponding location

in a list of pointers. The list
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cont L] L NME
26. INUMBER
27. INCOMP
28. YORN
29, YENO

FUNCTION
of mnemonics is terminated by
a location set to O. If the
input mnemonic is not in the
list of mnemonics, the routine
returns to the first location
after the end of the pointer
list.
Inputs a number, the result is
in A.
Inputs a number with limits.
On entry A=maximum limit,
B=minimum limit. The result is
in A.
For inputting Yes/No answers.
If Y is input A=-1 on returning,
and if N is input, A=0.
For inputting Yes/No answers.
If Y is input A=-1 and a return
is made to Dl1. If N is input
A=0 and a return is made to D2.
If any other character is input
A(9-16) is set to that character

and a return is made to D3.

Command channel outputting routines

30. MESSAGE

This outputs a 'message'’
(Character string) to the
command channel. Dl contains a
pointer to the character string
and after outputting a return is

made to D2.
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CONLe oo NAME' FUNCTION
31, DOUTNUMBER Outputs the number in A

in decimal with suppressed

lead zeros.

32. BOUTNUMBER As above but in binary.
33, :OOUTNUMBER As above but in octal.
34, ' DOUTWORD Outputs the number in A in

decimal as a 1l6-bit integer

with suppressed lead zeros.

35 "BOUTWORD As above but in binary.
36. OOUTWORD As above but in octal.
37. - BOOUTWORD Outputs the number in A in

binary coded Octal format.

38 FDOUTNUMBER Outputs the number in A in
decimal with lead zeros.

39. . FOOUTNUMBER As above but in octal.

40, . FBOUTWORD Outputs the number in A as a
16-bit integer in binary with

lead zeros.

41. CRLF Outputs a new line.
42, OKE Outputs 'O.K.' followed by a
new line.

Other character string routines

There is a general purpose character buffer (128 characters

long) which is used by the following routines:

43. BUFO Obtains the state of the
buffer. On returning A=the
starting location of the
buffer and B=the number of 16-
bit words which the buffer

T
concains,
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cont. ... NAME
44, INBUF
45, OUTBUF
46, INLINE
47. OUTLINE
48. OPRINT

FUNCTION

The character in A(9-16) is
inserted after the last
character in the buffer. On
returning A=-1 if this is not
possible and O otherwise.

One character is taken from
the start of the buffer and is
in A(9-16) when the routine
returns. If the buffer is
empty, the routine returns
with A=-1.

This enables the user to input

a line of characters
command channel. On
A(2-16) contains the

characters input and

via the
return
number of

if the

line has been terminated by '#'

A(l) is set.

This outputs the characters in

the buffer to the command

channel.

This outputs the characters in

the buffer to the line printer.

It is possible to output characters on paper tape,

headings, in visible

This can be done with the following routines:

for

format so that the user can read them.
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cont, ... NAME FUNCTION
49, VIZP This outputs one character

(A(9-16)) to the data channel
in visible format.

50. POVZ This routine uses INLINE to
input a 8tring of characters
and then outputs them to the
data channel in visible.
format.

The following routines are concerned with manipulating 16x16

binary patterns:

Y SORI Convert a data store pattern
number to a pointer to the first:
location of that pattern. On
entry A=pattern number on return
A=required starting location.

If this is not sugcessful the
return is made to D-2.

52. DESORT Convert a pattern pointer to a
pattern number. On entry
A=pointer and on returning
A=pattern number. If this is not
successful A=-1 on returning.

For the routines 53 to 63 the A register on entry contains a

pointer to the starting location of the pattern to be operated

on.

5. CLEA Set all locations of the pattern
to O.

54. FILL Set all locations of the pattern

to 1.
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gonke oue NAME FUNCTION

55, NEG Complement all locations of the
patterns.

56. REMX Input the pattern from the data

channel (paper tape format).

57« OMX Output the pattern to the data
channel (paper tape format).

58. OBP Output the pattern to the command
channel as 16 16-bit binary
numbers .

59. OBCO Output the pattern to the command
channel as 16 binary coded octal
numbers.

60. INS Input the pattern from the command
channel as 16 numbers.

61. ALT Replace a row of the pattern
specified by a number input from
the command channel by a second

number input from the command

channel.

62, CROT Rotate the pattern clockwise by
90°.

63. AROT Rotate the pattern anticlockwise
by 90°.

For the routines 64 to 68 B on entry contains a pointer to the

start of the pattern to be operated on and A contains a number

N :

64. MASK Set the first N bits of the pattern
to 1 and reset the remainder.

65. TOPROL Roll the pattern N rows toroidally.
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cont. .os NAME FUNCTION

66 . SIDROL Roll the pattern N columns
toroidally.

67. REFP Find the value of an element of

the pattern.A(1-12) specifies the
Y coordinate and A(13-16) speci-
fies the X coordinate. On
returning A=0 if the element is
reset and A=-1 if the element is
set.

68. REFT Set the value of an element of
the pattern. The value of this
element is in C on entering and
the location is specified in the
same way as for 67.

For the routines 69 to 75 a pattern (P2), pointed at by the value

in B,is operated on by the pattern (Pl), pointed at by the value

in A.

69. MOVE Transfer Pl to P2,

70. INT Interchange Pl and P2.

71, AND AND Pl and P2 the result is in P2.
72 . ORE OR Pl and P2 the result is in P2,
73. XOR Exclusive OR Pl and P2.

74, BITS Find the Hamming distance between

Pl and P2. The result on returning
is in A.
The routines 75 to 80 require three or more parameters to be

transferred when entered:



conte oo NAME
75, SHFTR
76 . RSHIFT
i 747 IMP
78. MAP
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FUNCTION
This routine treats a pattern as
a 256-bit shift register. The
new bits to be input are in A, the
pointer to the pattern is in B and
the number of shifts n(0<n<l6) is
in D1. The routine returns to D2
with the bits that have overflowed
from the register in A.
This behaves in similar way to
SHIFTR except that the shift
register is shifted in the opposite
direction.
This routine replaces bits in
a pattern P2 by correspondingly
located bits in a pattern Pl
where there are 1l's in a pattern
P3.

On entering this routine A

points to P1, B to P2 and D1 to P3.

The routine returns to
This routine is to map
which is pointed to by
second pattern pointed
The 256 8-bit list for

the map is stored in 8

D2.

one pattern
Dl to a

to by A.
directing

consecutive

patterns which are pointed at by B.

The routine returns to

D2.
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79.

80.

°

NAME

BMAP

Miscellaneous Routines

81.

SERCH
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FUNCTION
This routine is organised in the
same way as MAP except that it
performs the inverse mapping
function. Hence, for a 1 to 1
mapping the original pattern which
produced a mapped pattern by MAP
may be recreated by using RMAP
on the mapped pattern.
This is a more general mapping
routine than MAP in that it may
map n consecutive patterns to n
patterns where n<256. To do this
one word is used to specify the
mapping of each point, hence, the
connection list is 1l6n patterns
long. This routine is organised
in a similar way to MAP except
that n is contained in D2 and the

return is made to D3.

This compares a word in A with a
list of code words. This routine
is organised in a similar way to
INCOMMAND (25) except that it is
entered with the unrecognised code
in A and the pointer to the list

of pointers in B.
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82, ADUMP
83. PDUMP
84, RANDOM
85. SETSCAN
86. TSCAN
87. CSCAN

FUNCTION
This routine is a subsystem which
enables the user to set parameters
for the dumping routine PDUMP from
the command channel.
This outputs a consecutive block
of patterns in character format.
A contains the 1lst pattern number
of the block and B contains the
last.
This routine randomly sets n bits
in a 16-bit word. The value of n
is in A on entering and the
desired random word is in A when
the routine returns.,
This is a subsystem to enable the
user to set the parameters for
the SCAN.
This routine scans a scene with
the camera and stores the result
in a selected area of the data
workspace.
This routine scans a scene with
the camera and compares the result
in Hamming distance with a
previously stored scan in the data

workspace.
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The following routines (88 to 96) are concerned with control-
ling the Magnetic tape handler. The mag tape format for a
'file' within this system is defined as follows. A file
number L followed by a character file of M lines followed by a
data file of N patterns. The file numbers L are consecutive
starting with 1 at the beginning of the tape. M or N for a
file may be zero, the maximum limit is determined by the
length of the tape. If an error occurs the routines return

with -1 in A, otherwise they return with O in A.

88. TWFILE Opens a new file and writes a
file number.

89. TWCHAR Writes a character line (from the
general purpose buffer) .

90. TWPAT Writes a block of consecutive
patterns. The number of patterns
to be written is in A and the
first pattern number is in B.

97 . TRFILE Reads a file number (the number is
returned in B).

92. TRCHAR Reads a line of a character file
and puts it into the general
purpose buffer.

93, TRPAT Reads a block of n data patterns.
The routine is entered with n in
A and the first pattern number
for the data to be stored in B.

94, TEND Moves the mag tape to the end of

the last file.
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95. TMOV Moves the mag tape to the file

specified in A.
96. TBOT Moves the mag tape to the beginning.
There are some Global locations which may be useful to the user.
These are as follows:
) DSTO This is the location of the first
pattern of the data workspace.
2 K816 This location contains the address

of the top of the available data

store.
3. %ocation Contains a pointer to the entry
o3 point of the executive.

4, STRT This location is the starting
location of the main program.

5 MINB This location contains the
starting address of the defined
SLAM simulation store.

6. MINE This location contains the
address of the last pattern which
has been allocated for the SLAM
simulation store.

7. XPOS This location contains the current
X-coordinate of the camera
viewing window which is used in
the main program.

8. YPOS As above but the Y-coordinate.

9. MAG As XPOS but for the Zoom value.

10. MG16 This is the value in MAG multi-

plied by 16.
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BITS

BMAP
BOOUTWORD
BOUTNUMBER
BOUTWORD
BUFO

CANP

CLEA

CRLF

CROT

CSCAN
DESORT
DICHAN
DOCHAN
DOUTNUMBER
DOUTWORD
FBOUTWORD
FDOUTNUMBER
FILL
FOOUTNUMBER
GP1l6
IDCHAN

IMP

INBUF
INCHAN
INCOMMAND
INCOMP
INLINE

INS

INT
INUMBER
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Learning Network Routines

A library of routines is available which can

operate the learning machine Minerva or simulate SLAM

elements within the data workspace. The names and functions

of these routines are as follows:

NAME

FUNCTION

Routines 1 to 12 are for operating Minerva.

1. MUSCRE
2. MUSCSE
3 MUSCTO
4, MUSCT 1
5 MUSCOP -
6. MUSPRE
7. MUSPSE
8. . MUSPTO ™

Reset a card of four SLAM-16s.

The address of the card is in A.

Set a word, the address of the card
is in A.

Teach a card of SLAMs O. The input
pattern is in A and the address of
the card is in B.

As above but teach 1.

Obtain an output from a card. The
input pattern is in A, the card
address is in B and the 4-bit result
is put into A(13-16).

Reset a 'pattern' of Minerva SLAMs 16
consecutive cards are referred to as
a pattern of SLAMs because they sample
a 16x16 bit input pattern. The
starting address is in A.

As above but set instead of reset.
Teach 1 to a pattern of Minerva cards.
The starting location of the input
pattern in store is in A and the
address of the first Minerva card is

in B.
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9. MUSPT1
10, MUSPOP
11. MUS PPO
12, MUS PP1
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FUNCTION
As above, but teach 1 instead of O.
Obtain the total number of 1l's out-
put from a pattern of Minerva cards.
On entry, the registers are set up
as described for . MUSPTO. On return-
ing the summed response is in A.
Probablisticly teach Dlto a pattern
of Minerva cards. The registers are
set up as described for MUSPTO. D1 -
contains the 16-bit probablistic
teach vector and the routine returns
to D2.

As above, but teach 1 instead of O.

The following routines 13 to 43 are concerned with simulating

SLAMs in the data workspace. 1 1l6-bit word is used to

simulate each SLAM 1l6.

13. MINSET

This enables a user to select an area
of data workspace for the SLAMs to be
simulated. The SLAM routines may at
run time only access this area for

simulating SLAMs.

Routines to simulate 1 SLAM 16 (14-18).

14. SALR
15 . SALS
16. SALD

Reset a SLAM the location of which
is in A.

Set a SLAM the location of which is
in A.

Teach a SLAM d, the input pattern is
in A(13~-16) and the location of thé

SLAM is in B.
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175 SAL1 As above, but teach 1.
18. SALOP Obtain an output from a SLAM.

The registers on entry are the
same as for SALO. If the output
is 1 then A=-1, if the output is

O then A=0 on returning.
Routines to simulate a Minerva card of SLAM 1l6s.

19, MINR Reset a card of SLAMs the starting
location is in A.

20. MINS Set a card of SLAMs the starting
location is in A,

21. MIND Teach a card of SLAMs O the input
pattern is in A and the starting
location of the SLAMs is in B.

22. MIN1 As above, but teach 1.

23. MINOP Obtain the output from a card of
SLAMs. The registers are set up in
the same way as for MINO. On

returning the result is in A(13-16).

Routines to simulate a 'pattern' of SLAMs which consists of

16 consecutive cards of SLAMs.

24, MINPR Reset a pattern of SLAMs. The

starting location of the SLAMs is

in A.
25, MINPS As above, but set instead of reset.
26. MINPO Teach O to a pattern of SLAMs. The

starting location of the input
pattern is in A and the starting

location of the SLAMs is in B.
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277 MINP1 As above, but teach 1.
28. MINPOP Obtain the sum of all the outputs

of a pattern of SLAMs which are 1.
The registers are set up in the
same way as for MINPO and on
returning the summed response is
in A.

29. MINPPO Probablisticly teach O to a pattern
of SLAMs. The registers are set up
as for MINPO, the 16-bit teach
vector is in D1 and the routine
returns to D2.

30. MINPP1 As above, but teach 1.

The following routines are for simulating a card of 4 SIAMs
without the restrictions on the teach inputs which occurs

in Minerva. A data word is associated with the card, which
is formed in the following way. Bits (1-4) signify the teach
sense values, bits (5-8) signifies the teach clock vglues
and bits (13-16) contain the last obtained output from the

card.

3%, MISLCT Teach a card of SLAMs. The input
pattern is in A. The starting
location of the SLAMs is in B and
the data word is in D1 and the
routine returns to D2. (All the
other card functions may be con-
ducted by the normal card routines

(19, 20 and 23)).
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The following routines are for simulating a 'pattern' of
the cards of SLAMs mentioned above. With each 'pattern' of

these SLAMs a data pattern of 16 consecutive data words is

associated.
32, MISLPT Teach a pattern of SIAMs. A has
the location of the input pattern,
B the location of the SLAMs and
D1 the location of the data pattern.
The routine returns to D2.
33. MISLPO Obtain a new output from a pattern

of SLAMs. The routine is entered
as described above for MISLPT.

(A1l other pattern functions may be
conducted by the normal pattern

routines (24, 25 and 27).

The following routines (34 to 54) are concerned with the
simulation of cumulative learning SLAMs (CL SLAMs) .
Routines'for 4 output CL SLAM 1l6s: the simulation of 4 output

CL SLAM 16 requires 4 16-bit words.

34. SALCLC Clear a CL SLAM (i.e., set all the
outputs to 8). The location of the
CL SLAM is in A.

35 SALCLT" Teach on output to a CL SLAM. The
input pattern is in A(13-16) and
the teach number is in A(5-8) . The

location of the SLAM is in B.



cont.

36.

-

NAME

SALCLO
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FUNCTION
Obtain the output from a CL SLAM.
The input pattern is in A(13-16).
The location of the SLAM is in B
and the output is in A when the

routine returns.

Routines to simulate a card of 4 4-output CL SLAM lé6s.

37 »

38.

39 .

40‘

MINCLC

MINCLT

MINCLI

MINCLO

Clear a card of CL SLAMs the
location of the first SLAM is in A.
Teach each CL SLAM an output pattern.
The input pattern is in A, the
location of the first SLAM is in B
and the output patterns are in
D1(5-8) and (13-16) and D2(5-8) and
(13-16) . The routine returns to D3.
Increment the output of a card of
CL SLAMs. The input pattern is in
A, the location of the first SLAM
is in B and the teach sense is in
C. If c=1, then the SLAMs are
incremented; if C=0, then they are
deincremented. On returning, the
number of SLAMs which have saturated
is in A.

Obtain the outputs from a card of
CL SLAMs. The input pattern is in A
and the location of the first SLAM
is in B. On returning, the four
responses are in A(5-8), A(13-16),

B(5-8) and B(5-16) .
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Routines to simulate a pattern of CL SLAMs.

41. MINPCC Clear a pattern of CL SLAMs. The
location of the first SLAM is in A.

42, MINPCI Increment the output of a pattern
of CL SLAMs. The location of the
input pattern is in A, the location
of the first SLAM is in B and the
teach sense is in C. On returning,
the total number of CL SLAMs which
have saturated is in A.

43, MINPCO Obtain a summed response from a
pattern of CL SLAMs. The location
of input pattern is in A, the
location of the first SILAM is in B
and on returning, the summed response

is in A.

The following routines are concerned with 16 output CL SLAM
l6s. For programming convenience, one word represents one
element of the SLAM and a 16 output CL SLAM 16 is simulated
by 16 consecutive words.

Routines for one 16 output CL SLAM 16.

44, BISLC The same function as SALCLC (34)
except the mid value is 32,568 for
a 16 output CL SLAM.

45. BISLI The same function as SALCLT (35)
except that the teach number is in
D1(1-16) and the routine returns to

DZ?
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46 . BISIO The same function as SALCLO (36) .

Routines for a card of four 16 output CL SLAM 1l6s.

47. BISLCC The same function as MINCLO (37) &
48. BISLCI The same function as MINCLI (38) .
49, BISLCO A similar function to MINCLO (40)

except that the 4 outputs are
summed and the routine returns
with the response as a double

precision integer in A and B.

Routines for a pattern of 16 output CL SLAM 1l6s.

50. BISLPC The same function as MINPCC . (41).
g I BISIPI The same function as MINPCI (42) .
52. BISLPO The same function as MINPCO (43)

except that the response is a

double precision integer in A and B.

The following, output incrementing, teach routine has two
additional features. Firstly, it can probabilisticly teach a
pattern of CL SLAMs. Secondly, the size of the increment
may be varied hence n output CL SLAMs may be sihulated where

1<ngl6.

53. BIGPI Similar to MINPI (27) except that
D1 contains the 16-bit teach vector
and D2 contains the increment size.
The routine returns to D3. (All
other functions can be conducted by

the normal routines 51 and 53).
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The following routines are for simulating a card of 4 TR
SLAM 16s. This is achieved by using two cards of normal

SLAMs, one for the data output and one for the valid

output.

54, MITRCT This is similar to MISLCT (31)
except that bits (9-12) of the
data word are used for the last
valid output.

55. MITRCO This obtains an output from a

card of TR SLAMs. It is entered in
a similar way as MISICT ~ (31).

On returning, the complete data
word is in A with bits (9-12)
containing the new valid output
and bits (13-16) containing the
new data output. (A card of TR
SLAMs may be reset by using MINR

twice) .
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