
A Digital Learning System For

Tracking Pattern Features

By

A, P, Reeves

A Thesis Submitted for the Degree

of Doctor of Philosophy at the

University of Kent at Canterbury

19 7 3

1

Contents

Page

Acknowledgments 7

Abstract 8

CHAPTER 1

Introduction

1.1 Statement of the problem 9

1.2 Character recognition 13

1.2a Template matching pattern
recognisers

13

1.2.2 N-tuple pattern recognisers 14

1.2.3 Scanning pattern recognisers 15

1.2.4 Tracking pattern recognisers 17

1.3 Scene analysis 20
1. 4 Theories and models of visual percep­

tion
22

1.4.1 The eye and the visual pathway 23

1.4.2 Theories of visual perception 27

1.5
*

Structure of the thesis 28

CHAPTER 2

The Design of the Hardware and the Software

2.1 Specification of the hardware 32

2a .1 General specification 32

2a .2 First planned device 33

2.1.3 Second planned device 35

2.2 The hardware system 38

2.3 The software system 47

2.3,1 Design considerations 47

2.3.2 The structure of the system 50

2.3.3 Summary of the software system 56

2

CHAPTER 3

The Tracking System

3.1 The camera system 58

3.2 The tracking system 60

3.2.1 Basic structure of the system 60

3.2.2 Last step feedback 64

3.2.3 Delayed and damped feedback 70

Pa g e

3.2,4 Theoretical performance 77
3,3 A maximum réponse learning system 80

3,3.1 Structure of the learning
modules 80

3.3,2 Performance criteria 82

3.3.3 Performance of the system with­
out feedback 83

3.3,4 Peformance of the maximum
response system with last step
feedback

85

3.3,5 The effect of different random
maps

90

3.3,6 The performance of the system
with damped feedback 92

3.3,7 Saturation within the learning
networks 95

3.4 A probabilistic learning system 96

3,4,1 Structure of the probabilistic
learning module 96

3.4,2 Performance of the probabilistic
learning system without feedback 98

3,4,3 Performance of the probabilistic
learning system with feedback 100

3,5 A cumulative learning system 101
3.5.1 Structure of the CL learning

module
101

3.5.2 Performance of the CL learning
system without feedback 102

3.5.3 Performance of the CL SLAM
learning system with feedback

103

3

3.6 Observations on the results 105

Pa g e

3.6.1 General performance of the
system 105

3.6,2 Relative performance of the
learning modules 106

CHAPTER 4

The Classifying System

4.1 The input data 112
4,1.1 Features of the input data 112
4,1,2 Test data 113

4,1,3 Format of input data 118

4,1,4 Summary 121
4.2 Structure development of the classifier 123

4.2,1 General system 123

4,2,2 Development into a two-net
structure 126

4.2,3 Development of the code net 127

4,2,4 Development of the cycle net 132

4.3 Investigation of the properties of the
classifier 135

4,3,1 Experimental conditions 135

4,3.2 Investigation of the cycle net
store 137

4.3,3 Investigation of the code net
store 145

4.3.4 Observations from the experi­
ments 151

4,4 Shift register classifier 155

4,4,1 Structure 155

4,4.2 Performance of the classifier 155

4

Pa g eCHAPTER 5

The Learning Elements and Networks

5.1 The SLAM element

5.1.1 The SLAM-16

5.1.2 The 2-class learning network

5.2 Minerva

5.3 Probability learning networks

5.4 The cumulative learning SLAM element

5.4.1 Structure of the element

5.4.2 CL SLAMs in a 2-class learning
network

5.5 The ternary SLAM element

5.5.1 The T,R, SLAM

5.5.2 T,R, SLAMs used in the classifier

5.5.3 Two features of T,R, SLAM learning
networks

5.5.4 T-R, SLAMs in a 2-class learning
network

5.6 Experiments with 2-class learning networks

5.6.1 The structure of the experiments

5.6.2 Dependence on last pattern taught

5.6.3 Classification ability

163

163

166

167

169

172

172

175

176

176

179

180

181

183

183

185

195

CHAPTER 6

The Software System

6.1 Details of the software system 199

6.1.1 Structure of the system 199

6.1.2 Inputting information to the system 201

6.2 The executive program 205

6.2.1 Structure of the executive 205

6.2.2 Standard peripherals 205

6.2.3 Command status functions 209

6.2.4 Special peripherals 212

Special executive for ADMOS system6,2,5 213

6

Page
6.3 The main program 214

6.3,1 General outline 214

6,3,2 Camera control functions 214

6.3.3 Data manipulation functions 216

6,3,4 General purpose functions 219

6,4 The experiment subsystem 220

6,4,1 Organisation of the main experi­
ments

220

6,4,2 An example of an experiment sub­
system 223

CHAPTER 7

Conclusion

7.1 The tracking system 227

7,2 The classifier system 231

7.3 The development of the learning ele­
ments

234

7.4 Concluding remarks 236

APPENDIX 1
Circuit Details of the Camera Hardware 240

APPENDIX 2

Pattern Processing System : Subsystem Writers Manual 257

REFERENCES 282

7

A c m WL f J & E KEM IS

I wish to acknowledge the support that the Science

Research Council has given to this project.

I would like to thank Dr. I. Aleksander for his

help and supervision, and also the staff of the

Electronics Laboratories at the University of Kent for

their advice and for providing the research facilities.

I am especially grateful to my colleagues and

friends in the Electronics Computer Laboratory for their

help which has enabled me to complete this thesis.

Finally, I would like to thank Miss D. Paine for

the care she has taken in typing this thesis.

A, P, Reeves.

8

Abstract

A novel pattern processing scheme has been

investigated which makes use of the motions generated by

a window which tracks the lines or contours of a digitised

television image of a black/white pattern, The novel

features of the proposed scheme are that adaptive

learning networks are used for both tracking and

classifying. The tracking strategy is learnt from a human

teacher.

Here one combines two methods of machine pattern

recognition which, in isolation, have a limited performance.

These are,'static learning networks'which have known

limitations, and 'programmed tracking systems' in which the

pre-programming itself may be limiting. In this combination

one avoids some limitations of these systems because

pre-programming of strategies is not necessary and feedback

exists to make the task of the nets a dynamic one.

The thesis describes a hardware visual input and

a special-purpose software system which were developed for

this investigation. Also, several new modifications of the

SLAM (Stored Logic Adaptive Microcircuit) element are

discussed.

Beyond its practical application it is possible

to conclude that the system developed here may be useful

in the study of hypotheses regarding living animal systems

which involve eye movements.

Chapter 1
Introduction

1.1 Statement Of the Problem,

The problem investigated in this thesis represents

one aspect of pattern recognition by a machine, and involves

the learning of tracking strategies by means of adaptive

digital networks.

The best general system in existence for recog­

nising complex patterns is still to be found in man and

animals. Consider what happens when we look at a complex

pattern such as a photograph or a line diagram. The eye,

which can only perceive accurately a small amount of detail

at a time, roves over the pattern and enables the brain to

gather information from the pattern sequentially.

Now consider the ways that machines have been used

to recognise patterns, Some of these compare the whole of

the unknown pattern with a set of templates, but this method

is usually discarded in favour of more powerful machines

which can examine parts of the input pattern in detail.

Often, in these machines, this examination results in a

sequential description of the pattern.

Another approach to machine pattern recognition

has been made with 'adaptive learning networks' these learn­

ing networks are often considered as a step away from

normal computing processes towards the processing of informa­

tion in a way similar to that of brains. One method used

in practice involves the sampling of the whole of the input

10

pattern with the elements of the learning network. One

arrives at a final classification on the basis of a

combinational decision made on the outputs of these

elements. The theoretical limitations of this method ,

as with the limitations of the template matching method,

are now well understood.

It is proposed in this thesis to investigate the

effect of allowing the input matrix of a learning network

to rove over a pattern so that parts of the pattern may

be examined in detail, as is the case with the eye. One

notes that such a system would have to be able to direct

its own roving activity as well as analyse the data it

receives. Two important topics require attention in the

context of this system.

The first deals with adaptation to the attention

shifts that are necessary for recognising a pattern and

the organisation of a learning network aimed at achieving

this task.
Si

(33)

Second, one asks how a learning network can be

organised to analyse the sequential data which it receives

from the 'roving e y e 1.

This thesis is primarily concerned with these

two questions.

11

In considering a pattern recognition system of

this form, the following three main areas of research are

relevant.

Character recognition: This is a restricted case of pattern

recognition where only characters are considered.

Scene analysis; This is a more general case of pattern

recognition and is usually concerned with three dimensional

scenes or two dimensional images of these scenes.

Visual Form perception: Where the perception of the shapes

of objects by man and animals is considered.

Pattern recognition is generally tackled by making

a classification based on a set of selected measurements

extracted from an input pattern. These selected measurements

called 'features' are supposed to be less sensitive with

respect to the variations encountered within classes, and also

to contain less redundancy,

A general scheme for a pattern recogniser is shown

in Fig, 1.1,1, The input pattern is transformed by a

preprocessor which operates in a uniform way over the input

pattern to present the data in a form more acceptable to the

feature extractor. The feature extractor takes the selected

measurements mentioned above. The classifier decides to

which class the input pattern belongs on the basis of the

values of the extracted features. This model is not a

necessary construction for a pattern recogniser but is‘used,

FEATURE
EXTRACTOR

Figure 1,1,1

13

for convenience, to standardise a framework on which to base

one's discussions,

1.2 Character Recognition,

Character recognition is the particular case in

pattern recognition when recognising characters only is

considered. Much work has been done in this field due to

the need for machines to be able to read normal written text.

Most of this work is of a specialised nature due to the

limited, well defined class of inputs which are to be

detected. The following account does not mention all the

methods used in character recognition but .only :those

which lead towards this project.

Character recognition is characterised by having a

limited set of characters to be recognised. The input

pattern is usually in the form of a two dimensional binary

matrix representing the character,

1,2,1 Template Matching Pattern Recognisers.

Possibly the simplest, and most obvious, form of

character recognition which has been gsed is template

matching. With this method no preprocessing or feature

extraction occurs and the raw data is input directly to the

classifier. The classifier compares the input with a

template of each class, and the classification is based on

a preselected matching criterion or similarity criterion.

Such a simple method has many limitations. It is sometimes

difficult to select a good template from each class and to

14

define a proper matching criterion. Also, this method is

both size limited and font limited.

Many variations of this method have been

investigated. For example, the method described by Taylor

1 9 6 8 in which a mask with analog weights is used.

However, all these methods are restricted by the limitations

mentioned above,Owing to the obvious drawbacks, template

methods were not considered in this project,

1.2.2 N-Tuple Pattern Recogniser,

The n-tuple recognising method may be considered

as the next development in complexity. This method con­

siders sets of n-tuple samples from the input space. These

n-tuples are usually selected randomly or by some adaptive

algorithms. Early work on this method was done by Bledsoe

and Browning 1959 ̂ in which a binary matrix is used for

each class to store all the possible n-tuple states. This

is initially set to zero and during training l's are put

into the elements of this matrix which are selected by the

input pattern. When an unknown pattern is presented to the

system the number of l's which this pattern references in

each matrix is noted. The matrix in which the highest

number of l's are referenced decides the class of the input.

This system was further developed by Bledsoe and Bisson

(6)
1962 in which analog matrices are used and the frequency

of occurrence of n-tuples during training was also considered.

Work with similar structures has since been investigated by

15

Ullman 1969 where the optimum size of the n-tuple was

found for a limited number in the training set and Chung

(7)
1973 in which the optimum amount of teaching and other

features are considered. Character recognition by the n-

tuple method often suffers from the same limitations as

(41)
a perceptron,(Rosenblatt), A full, detailed, analysis

of the theoretical topological properties and limitations

of perceptron structures is discussed by Minsky and Papert

(33)1969 , Learning networks consisting of binary n-tuple

sampling elements (SLAMs) have been used in this project.

However, feedback has been introduced around the learning

networks to overcome some of the limitations referred to

above,

(54)

1.2.3 Scanning Pattern Recogniser.

The description of a pattern may be generated by

a list of localised features of the pattern in which the

position of these features is also indicated.

A practical system which embodies this method is

the 'Scan Data Optical Reading System' which is

capable of reading multi-font characters and a limited set

of hand-printed characters. The input pattern is presented

on a 40x30 bit binary matrix obtained from a flying spot

scanner and algorithms are used to normalise, centralise and

adjust the threshold for the sampling brightness level to

compensate for variations in the background. The feature

extractor then scans the input pattern with a feature

window and compares each input of the feature window with a

16

list of 400 possible features using a mask matching criter­

ion. The input pattern is divided into 9 areas and the area

in which each feature is found is also recorded. Hence

after scanning, the feature extractor outputs a set of

detected features with their approximate positions on the

input pattern, The classifier compares this feature/

position list with a set of feature/position lists to

classify the input character. The scanning method is

inherently slower than the parallel methods mentioned

previously. However, high speed is not essential to this

system as the data inputting hardware has a maximum speed

of 800 characters per second.

(25)Hunt 1972 describes a system in which the

input pattern is scanned with a set of logical operators-.

These logical operators consist of a ternary mask which

contains l's, 0's and spaces, A match is made if the l's

and 0 's coincide with a part of the input patterns exactly.

A 5x5 result matrix (which corresponds to 25 equal areas of

the input pattern) is generated in which matches of the

operators are recorded, -Only one match can be recorded in

each cell of the result matrix and a priority scheme

decides the value of the cell if several different matches

occur in its area. The result matrix is used to describe

the input pattern and is input to the classifier.

A different approach, but still using a scanning

(22)
method is described by Hosking and Thomson 1968 and is

(23)further developed by Hosking 1972 . In their method, the

input pattern is scanned once and the feature extractor

indicates when features occur. Features are of a general

17

type e.g. the start of a line, the join between two lines

etc, and about 10 different types of feature are detected.

The detected features are numbered from 1 to n as they occur

and a connection list stating which features are joined, is

generated. Hence, the description of the pattern which is

presented to the classifier is an ordered list of connected

features (the type of the features is not specified in this

list) .

(53)Uhr and Vossler 1961 have also described a system

in which the input pattern is scanned by a set of logical

operators. The feature extractor forms a description of the

pattern by noting the number of matches for each operator

and also the average of the coordinates of these matches.

For this system, Uhr and Vossler have developed algorithms for

generating operators and for evaluating their performance.

This enables the system to adapt to different styles of inputs

and to improve its own performance.

Although the above systems have sequentiality and

window extraction in common with the method in this thesis,

the scanning is not determined by the "seen" elements in the

window. Such systems are considered next.

1.2.4 Tracking Pattern Recognisers.

The tracking method uses the fact that characters

are formed by a set of lines. If all the lines of an input

pattern are tracked then all the localised features of the

pattern will be encountered, hence, it is not necessary to

scan over all of the input pattern.

18

Most tracking systems have the following general

schemer The input pattern is thinned so the lines are only

one or two bits wide; then a tracking algorithm is used to

track along these lines * The tracking motions produced

during the tracking are then input serially to the feature

detector which uses an algorithm to change these motions

into an ordered list of features* Features are usually

defined to be line segments, curves and line junctions etc.

Either in the preprocessor or in the feature detector, a

smoothing algorithm is used so that small variations in the

shape of the input pattern will not be interpreted as

features,

It is also possible to track the edges of the

input pattern rather than the lines. This has the

advantage that the character does not have to be thinned

and that a simple operator may be used to track the edge.

An example of such a system is described by Saraga et al

(43)1967 and a further development of the tracking opera-

(44)tors is described by Saraga and Wavish 1971 . A

different approach to edge following is described by

(52)Taussaint and Donaldson 1970v ' , In their method the

input pattern is divided into several areas and the maximum

and minimum positions reached while tracking in each area

is recorded to describe the input pattern. Mason and

(32)
Clemens 1968 used a similar approach which involved

detecting maxima and minima when the edge of the pattern is

tracked. Their system represents a character by a binary

codeword which is generated by forming a string adding a 1
whenever an X coordinate maximum or minimum occurs, and a 0

whenever a Y coordinate maximum or minimum occurs.

19

As far as preprocessing is concerned, a scanning

method of thinning lines is described by Saraga and

(45) ^
Woollons 1968 and a review of these techniques is given

(9)by Deutsch 1968 . Some interesting preprocessing schemes

may be achieved if the input matrix is hexagonal rather

than square and this is discussed by Golay 1969 ’ though

this is more useful in cases other than character

recognition where the input pattern is not uniquely

orientated„

(T O A
Grimsdale et al 1959 have designed a system

which splits the input patterns into 'regions' which

includes line and curve segments and the shape of junctions,

A method of extracting features such as line endings, change

of direction, junction of lines, etc. is described by Parks

(36)
1969v 0 This system has been further developed by Watt

(55)
and Beurle 1971 in which these are ordered and then the

ordered feature list is classified. D e u t s c h ^ also

describes a system which forms an ordered feature list rela­

ting to a skeleton shape preprocessed from the original

input pattern.

Finally, Eden 1968 ̂ ^ describes a method for

recognising cursive handwritten script by splitting the

script into a sequence of 'strokes'. He defines a set of

28 different types of strokes though, in fact, only nine of

these are used for English script.

The system described in this thesis is designed

to recognise patterns by tracking them. However, it differs

20

from the general form for tracking systems in two main w a y s .

Firstly, the tracking strategy is taught to the system by

a human teacher and secondly, no preprocessing (such as

line thinning, etc«) is applied to the input information

before it is presented to the tracking system.

1,3 Scene Analysis,

In scene analysis three dimensional scenes are

usually considered though they are reduced to two

dimensional images* The image is formed by a two dimen­

sional array of picture elements which have a brightness

level/obtained from the scene,associated with them. The

task in scene analysis is to detect and recognise from

this image the objects present in the scene and the

positional relationships between them, A good review of

the techniques which have been used to achieve this is

given by Duda and Hart 1973 »

For the purpose of this project, the methods of

interest are those which operate on the image to reduce

it to a line drawing (this is called spatial differentia­

tion) and then reconstruct those lines to determine the

original objects.

An example of such a system is described by

Forsen 1968 where the image is first spatially

differentiated. Then the resulting binary matrix is scanned

by a set of 7x7 bit feature matrices and a new matrix is

generated indicating where and what type of features have

21

been detected* A line following algorithm could then be

used to track this matrix*

An interesting system is described by Symons

(49)
1968 in which contour detecting and following are

simultaneously conducted on the image which has not been

spatially differentiated. Also, features may be detected

as the tracking proceeds.

(37)A similar method is used by Pingle 1969 who

describes a system which is designed to rapidly trace the

outline of an object. (This system is intended for real­

time manipulation of mechanical arms and hence, must be as

fast as possibles) After tracking an algorithm is used

which assumes that the object is made of straight lines and

attempts to locate the positions of the corners,

(29)
A system described by Ledley 1964 uses a 'bug

algorithm' to track the boundaries of digital images of

chromosomes in a manner similar to that used in character

recognition, From the tracking motions the chromosome is

described by a sequence of boundary segements. Kelley

(27)
1971 has developed a system which uses 'planning' to

extract the contour of a head from a photograph. Planning

involves reducing the size of the image and firstly tracking

the contours of this. Then this rough tracking is used as

a plan for tracking contours of the original image.

The system described in this thesis could be used

for scene analysis of a spatially differentiated scene. It

differs from previously mentioned methods in that it uses a

22

learnt adaptive tracking strategy,

1,4 Theories and Models of Visual Perception,

Much work has been done on trying to determine

the mechanisms of visual perception in man and in animals.

Although much progress has been made, especially with regards

to determining the functions of the retina of the eyes and the

optic nerve, still very little is known about the method of

'classification' which exists in the brain to enable it to

perceive objects0 For further details in this field Kolers

(28)
1968 reviews some of the physiological aspects of

pattern recognition,and a review of the neurophysiology of

the visual system is given by Chung 1968 ̂ . A detailed

review which covers the whole field of the perception of

(571form is given by Zusne 1970

Of particular interest is the research into the

movements of the eye with respect to recognition, A review

of the experiments conducted with measurements of eye move­

ments, including a description of the techniques involved in

(57)obtaining these measurements, is given in Zusne , One

(56)
set of experiments, conducted by Yarbus 1967 v , is to

measure the eye movements when subjects view a two dimensional

art work. His results show that, when looking at pictures,

the observers fixate more frequently the features which are

actual or potential carriers of information. Noton and

(35)Stark 1971 have developed a theory of perception (see

section 1.4,2) in which the order of the fixations is important

and their experimental results show that, when viewing a

simple line drawing picture, repeated sequencies of fixations

23

and attention shifts do tend to occur.

1.4.1 The Eye and the Visual Pathway.

A simplified description of the retina and visual

pathway of the eye is as follows, The light coming through

the lens of the eye falls on a mosaic of receptor cells

(rods and cones) in the retina. The receptor cells connect

with bipolar cells and the bipolar cells connect with

retinal ganglion cells which send their fibres (i.e, the

optic nerve fibres) to the lateral geniculate body which

transfers this information to the visual area of the cere­

bral cortex (the visual cortex).

There are two kinds of light receptors; rods,which

are very sensitive to blue-green light and cannot be used

for colour,and cones,which are 1000 times less sensitive

to light than rods, they are sensitive to colour but are

useless in poor lighting conditions. There are about

6 6 120.10 receptors in the retina and about 10 fibres in the

optic nerve, a reduction of about 120:1. The cones are

represented most densely in the centre of the eye and the

rods most densely in the periphery. In general, cones tend

to have direct lines (via bipolar cells) to ganglion cells

whereas many rods converge upon a single ganglion cell.

The fovea (the centre of the eye) only contains cones ,and

there is a 1 to 1 relation between receptors and ganglia

in this region.

Hence, when the eye observes a scene under normal

24

lighting conditions, the optic nerve transfers a great

amount of detailed information about a small area at the

centre of the field of view together with a general

impression from the rest of the field of view.

The ganglion cells perform the first stage of

information processing. The input of a ganglion is taken

from a localised area of the retina called its receptive

field. The output from the ganglion depends on the pattern

of light in its receptive field. Much work has been done

on determining the functions which these ganglia perform.

Many experiments have been conducted with animals and these

have shown that there is no general law which holds across

species with regards to the visual system. Hence, results

obtained with animals are directly relevant to that species

of animal only.

An interesting example is the frog for which four

different types of ganglion cells have been identified

(31)(Lettvin et al 1959), Ganglia of each type are grouped

together and they map the retina continuously onto a single

sheet of endings in the tectum of the frog's brain. Herscher

and Kelly 1963 and Sutro 1968 ̂ ®^ have made hardware

models of the frog's retina which contain replicas of the

four different types of ganglia and are organised in a

similar way to that found in the frog. One of these ganglion

cells (usually called the bug detector) is sensitive to small

dark convex objects which move centripetally with respect

(2)
to its receptive field, Arbib 1971 presents the theory

that the tectum of the frog behaves as a somatotopically

organised parallel decision mechanism which enables the frog

25

Another example is the pidgeon which has ganglion

cells that are sensitive to movements in one direction and

not the other- A hardware model of this retina has been

made by Runge et al 1968^42 ̂,

The functions of the ganglion cells depend on the

particular animal and are often directed towards the

particular needs of that animal, For mammals only two

general types of ganglia cells have been detected. Most of

this work has been done with cats but it is reasonable to

assume that the same may in this case be true for man.

These cells have circular receptive fields, one type con­

tains a centre region which is excitatory and an outer region

which is inhibitory and the other type contains the opposite.

Hubei and Wiesel 1966^24 ̂ have found that cells

in the visual cortex of the cat have receptive fields which

correspond to localised regions of the retina. These cells

can be divided into two types: simple and complex. The

simple cells are sensitive to spots of light (i.e, they

have a similar function to the ganglion cells) or are

sensitive to an edge of light in which the orientation of

the edge is important. The complex cells are sensitive to

both the form of an object and the position of the object

with respect to the receptive field of the cell. Hubei

and Wiesel used a rectangle as an object for these tests in

which the dimensions, orientation and position could be

to perceive a fly and snap at it with its tongue.

varied.

26

A model of the processing part of the brain has

been proposed and simulated by Kabrisky 1 9 6 6 His

contention is that the cortex behaves as a generalised

planar (two dimensional) pattern manipulator which has a

memory- He has designed an element the 'Basic Cortical

Computational Element' which in a biological system would

consist of several hundred neurons, and is a two dimensional

array processor. An array of 100 of these elements has

been simulated by a computer. Recognition occurs with this

array by forming a cross correlation of the input with a

stored pattern.

A theoretical model of the coding and processing

of visual information in the visual system is described by

Rosenberg and Wilkins 1968 ̂ °^ „ A simplified model is

simulated which has two networks, one of horizontal line

detectors and, one of verticle line detectors, which

operate on an 18x18 input matrix. After an input pattern

has been presented to the model two lists are generated

which give a unique representation for any shape, invariant

to change in size or position.

An interesting feature extracting system has been
/ i n

simulated by Fukushima 1969^ . This system uses succes­

sive layers of analog threshold elements and is applied to

the task of character recognition. It generates a set of

matrices which correspond to the input matrix and contain

extracted features, e.g. line endings, lines with a

particular orientation, etc.

27

1-4,2 Theories of Visual Perception,

The method by which patterns are perceived in

man is still not known although there are many theories

on this subject, The theories which relate to this

project are the ones in which a sequential approach

utilising the movements of the eye is considered. One of

the earliest of these theories was proposed by Hebb 1949

in which perception is realised by 'phase sequence' of

activities of 'cell assemblies', A cell assembly is a

collection of cells which when stimulated by an event

(e,g. a movement of the eye or the detection of a feature

in the visual cortex) can act briefly as a closed system,

maintaining this activity after stimulation has ceased.

When an object is viewed, a sequence of these cell assemb­

lies some related to eye movements and some to extracted

features will be activated. This is referred to as a

phase sequence and results in a further cell assembly being

activated which indicates the form of the object. Although

these cell assemblies have never been detected, Legendy

1 9 6 6 has suggested that they would have to contain

between several hundred and several thousand cells for each

assembly„

(34)In a more recent theory by Noton 1970 it is

proposed that the internal representation of a pattern is

a feature network in which the features of a pattern and

the shifts of attention,required to pass from feature to

feature across the visual field, are recorded. The

feature network does not contain all possible attention

shifts between features but only those which occur with

28

some frequency. When an attempt to recognise a pattern is

made, the recognition system tries to match a feature

network with the pattern by executing a sequence of atten­

tion shifts specified by the feature network. It is

important to note that it is the feature network which

directs the matching process. The main difference between

this theory and Hebbs is that the feature network is

composed of memory traces recording the occurrence of

feature detecting and attention activities, whereas the

phase sequence is formed by interconnecting the cell

assemblies themselves, A more general discussion of the

background of this theory is presented by Noton and Stark '

The finally developed system differs in many ways

from the mechanism of the eye. The most marked difference

is that it smoothly tracks around the contours of an object

rather than track with rapid saccadic attention shifts

which are found with the eye. However, the preprocessing

methods found within the retina of the eye and visual cortex

and the hypothese concerning the perception mechanism

within the brain may still be useful in the development of

the proposed system.

1,5 Structure Of The Thesis,

The general scheme for the systems which will be

described in this thesis is illustrated in Fig. 1.5.1. An

optical transducer obtains information from a small area of

the visual scene. An adaptive learning network is taught

to control the position of attention of the optical trans-

i

Area of
attention

Data from
Scene

Sequential
Information

Visual
Scene

NJ
VO

TEACHER TEACHER

Figure 1.5.1

30

ducer by reacting to information obtained from the optical

transducer, The sequential information obtained by moving

the area of attention is then input to the second adaptive

learning network which is taught to classify this data.

If the first learning network is taught to track

the edges or lines of the input pattern, then the sequential

information generated on tracking would be similar to that

obtained by tracking systems designed for character recog­

nition. The possibility of teaching the system in this way

has been considered in detail.

The optical transducer which has been designed

and built for this project is described in Chapter 2. This

involved interfacing a television camera to a computer in a

somewhat unusual way in that only a small area of the scene

of view is considered at a time. One of the most similar

systems to this is described by Dinn et al 1970^°^ ,

However, this was designed with regards to industrial pro­

cess control and for conversion of images stored on video mag­

netic tape and there are many differences in the details.

One of the main differences is in the method used

for obtaining averaged data when a small size matrix is

used to represent a large area of the scene (i,e. each

element of the matrix covers n lines of the television scan).

Their system can obtain a 5-bit grey level value for each

element of the matrix but only considers one of the n lines

of the scan relevant to that element. The system described

in this thesis was primarily intended for binary input

31

patterns at one grey level at a time. This allows an

averaging method to be used which considers all of the

relevant n lines when determining the value of an element

of the matrix.

Chapter 2 also contains an introduction to the

software system designed to control the television camera.

In Chapter 3 the development of, and the results

obtained from, the structure for the first learning

network (designed to control the position of the area of

attention) is discussed. Here a successful adaptation to

tracking strategies was obtained.

In Chapter 4 the development of, and results

obtained from, the second learning network (designed to

classify the input pattern from the tracking information)

is discussed. The results from this section are largely

negative: reasons and causes are debated.

Several different learning elements were adapted

in the two learning systems and these are described in

detail in Chapter 5,

In Chapter 6 a description of the pattern

processing software system which has been developed during

this project is described and Chapter 7 is the conclusion.

Chapter 2

The Design Of The Hard And The Software

In this chapter the design considerations and

a description of the operation of the software and

hardware systems is presented.

This is intended to supply enough information to

clarify references made to the computer system in the

following chapters.

Further details of the software system are given

in Chapter 6 and circuit details of the hardware system

are given in Appendix 1,

2.1 Specification Of The Hardware.
2*1*1 General specification.

The device was originally considered as a model

of an 'eye' which could 'look' at any part of a scene and

receive detailed information about that part of the scene.

To decide how the hardware was to be built for

this project the following specifications were defined.

A hardware device would view a two-dimensional, planar

visual scene and send information in the form of a binary

matrix (-16x16 bits) about a part of that scene. The

computer must be able to dictate to the device where from

the scene and over what area the information is to be taken.

33

2.1.2 First planned device.

As at any one time only a 16x16 binary matrix of

information was required it seemed reasonable to

receive this information with a 'retina' in the form of

a 16x16 matrix of photodiodes. This retina could easily

be coupled to the computer. Unfortunately, at this time,

this matrix cotlTd' only be made 6" square and this incurs

mechanical problems. The image could be focused on the

retina via a zoom lens and the whole system could be

rotated in two dimensions by two geared stepping motors

(this motion is similar to that of a real eye), see Fig.

2.1.1. The stepping motors and zoom lens would be

controlled by the computer. On closer examination this

system presented several difficult problems.

1. The zoom lens should have a ratio of at

least 6 to 1 and for a 6" square retina would have to be

very expensive.

2, The device would be very bulky and it would

be very difficult to make a mechanical system to control

the retina quickly and accurately (an accuracy of

several minutes of arc is necessary). This could

partially be overcome by controlling a mirror in front

of the lens instead of the whole lens-retina assembly,

see Fig. 2.1.2, This would greatly reduce the mass to

be moved but it would also limit the area of the scene

which can be viewed.

f O

3 4

X STEPPING
MOTOR

Figure 2,1,1

PLAN
VIEW

MIRROR

X STEPPING
MOTOR

Y STEPPING
MOTOR

Figure 2.1,2

35

3. If the object is two-dimensional and the

device looks at it from a fixed point then the edges

become distorted due to the different angle subtended

to that point, see Fig. 2.1.3. Using a 16x16 matrix and

allowing a 1 distortion'in the order of one bit a maximum

total viewing angle of only 30° is possible.

viewed from S.

Figure 2.1,3

4. Due to the large size (and low relative

efficiency) of the photodiode matrix a large amount of

light is required to illuminate the scene. It was estimated

that the amount of light required was more than two orders

of magnitude greater than was practical.

2,1.3 Second planned device.

Due to the above problems another method of

building the device was considered. This method involves a

television camera and is shown in Fig. 2.1,4.

36

Figure 2.1.4

37

With this system the camera remains stationary

and its field of view is determined by its lens. The

whole viewing area must be scanned all the time. The

control unit then electronically selects information from

the video signal only at the part of the scene that is of

interest.

The main advantages of this system are as

follows:-

1. There is no problem in accuracy, or time lost

in changing position of the area of interest as it is now

done electronically instead of mechanically.

2. There are no light intensity problems, the

camera is designed for normal lighting conditions and has

an automatic intensity control which works over a large

range.

3, The 'retina' i.e., the camera vidicon surface

is plane and stationary and hence the distortion at the

edges which occurs when the retina is moved does not exist

at a ll.

4. The camera is a small but strong industrial

piece of equipment hence no special care is needed when

handling it, and it can easily be serviced.

38

The main disadvantages are:-

1. A complex control unit is necessary to obtain

the information from the camera.

2. The zoom operation can only be done in

quantised steps. This is because of the television

scanning system, which involves a set number of horizontal

lines. The vertical information must be averaged over

several lines for each bit hence, for 16 bits, the zoom

must average over a multiple of 16 lines.

3. The lens, vidicon system is not very linear in

its light response (the video signal is low at the edges of

the scene). Hence, it is difficult to sample at one

brightness level over the whole scene.

This second system is the one that was actually built.

2.2 The Hardware System.

The general layout of the television camera hard­

ware system is shown in Fig, 2.2,1. When the computer

wants to obtain a matrix from the system it sends all the

settings of the matrix to the control unit (i.e., x and y

coordinates, zoom etc.). The control unit then obtains

the matrix from the camera and sends it to the computer in

16, 16-bit words.

39

Figure 2,2,1

The T.V. monitor shows what the camera is looking

at. The area over which the data is being obtained (i.e.,

the viewing window) can also be displayed on the T.V.

screen. The "joystick input" consists of a remote control

box with a joystick switch. There is also a two-positon

function switch in the box. The outputs from these switches

are connected to the computer interface and they have no

direct effect on the camera hardware. The joystick input

has been built to enable a teacher to control the position

of the viewing window. The position of the joystick and

the state of the function switch may be detected by the

computer program and the effect that these switches have is

defined within the program, as described in section 3.2.1.

The control unit contains all the logic for the

system. It handles the information from the computer

interface# obtains the required information from the camera

and sends it back to the interface. It also generates the

window displayed on the T.V, screen. The unit is shown in

more detail in the block diagram of Fig. 2.2.2.

COMPUTER
OUTPUT
INTERFACE

COMPUTER
INPUT
INTERFACE

JOYSTICK
INPUT

INPUT
BUFFER

X Y Z T

MANUAL
CONTROL

{

X

COUNTER

Y

COUNTER

X

X

DECODER

Y

DECODER

SYNC Pulses

THRESHOLD
UNIT

"-3
X ZOOM
COUNTER

—£
Y ZOOM
COUNTER

WINDOW

GENERATOR

-** AVERAGING
UNIT

—3>

—3>

Figure 2,2,2

i y .

T.V.
CAMERA

O

T.V.
MONITOR

41

The 6 MHz clock controls the main timing of the

system. The clock pulses are counted by the x counter,

each clock pulse determines the time taken to obtain one

bit of information from the camera.

The first 256 increments of the x counter define

the time during which data may be obtained from the screen.

At a higher count the decoder sends a sync pulse to

synchronise the line scan of the camera and then the

counter is reset by the decoder for the next line. This

is illustrated in Fig. 2.2.3.

Every time the x counter is reset, the y counter

is incremented (i.e., each increment of the y counter

corresponds to a line of the scan). In the y direction

the lines are used as a way of obtaining the quantisation,

i.e,, 1 line = 1 bit high. Hence, the first 256 increments

of the y counter define the time when data may be

obtained, at a higher count the y decoder sends a sync

pulse to synchronise the frame of the camera with the

system. This timing is illustrated in Fig. 2.2.4.

This arrangement allows the area where data may be

obtained from the frame to be divided into a 256x256 matrix.

Each bit of this matrix may be referenced by the position

of the x and y counters.

The position of top left corner of the viewing

window is defined by two 8-bit addresses sent via the

computer output interface. The first defines the x

4 2

LINE SYNC
PULSE

j n t '
- f---------- f * " f

A B C D
X COUNT 0 256 282 270

X COUNTER TIMING
(X counter is
now reset)

Figure 2,2,3

A & D

i
i
¿u—
I

256 liness |

B

C

Figure 2,2,4

Frame sync

t T f

1111i

A B C D

Y COUNT 0 256 284 324

Y COUNTER TIMING

<X counter is
now reset)

43

coordinate and the second the y coordinate. These

addresses are fed into the x and y decoders respectively

(via the lines x and y in Fig. 2.2,2) .

Then, when this specified point has been reached

by the x and y counters, pulses are sent to the x zoom

counter and after every line the y zoom counter is

incremented.

The size or magnification (zoom) of the viewing

window is sent from the computer output interface to the

zoom counters (line z in F i g .2„2 * 2) ,Once activated by the

decoders, the zoom counters become active for zoom x 16

pulses each scan for the x zoom counter and zoom x 16 lines

for the y zoom counter,. Hence, the zoom counters are

active when the area of the scene defined by the viewing

window is being scanned.

The data from the camera is in the form of a

composite video signal. This is fed to the threshold unit

and to the T.V. window generator. The threshold unit is

a comparator which decides which parts of the video

signal are "white" or "black" and the resultant digital

output is sent to the averaging unit. The voltage level

at which the comparator decides between white and

black is set by the computer and sent to the threshold

unit (via the output interface and the line T on Fig. 2.2.2.)

The averaging unit accepts information from the

threshold unit when it receives pulses from the two zoom

44

counterso It generates the output matrix in the form

of 16 p 16-bit words.

As each 16-bit word is generated it is sent to

part of a 256-bit store in the computer interface. When

the last 16-bit word has been sent to the interface the

control unit indicates to the computer that the data is

ready. The computer can then input this data. No more

data is sent to the interface until the computer

indicates a data requests

The window generator detects when the two zoom

counters are active (i,e,, when the window is to be

displayed) and then adds a d=c= level to the composite

signal. The resultant signal is fed to the T.V. monitor

and the window is displayed on the monitor as an area of

the picture where the brightness level is different to

the rest of the picture.

The manual controls (shown in Fig, 2,2,2)are

mounted on a panel in the control unit. These switches

allow the operator to override any or all of the functions

which are carried out by the computer output interface.

This is useful mainly when setting up and when working on

the equipment off-line from the computer.

It has already been said that the averaging unit

under the control of the zoom counters accepts informa­

tion from the camera, averages it to a 16x16 matrix and

sends it to the computer input interface. The way that

the unit averages the information is not a strict

45

mathematical average. The unit finds the average of every

line of the scan as it is input and then finds the average

of these resultants to decide if the bit is a 1 or a 0.

For example, consider the case of a zoom of 6 then a 6x6

matrix of the view will contribute to each bit of the

output matrix. The way that the unit would handle one of

these 6x6 matrices is illustrated in Fig. 2.2.5.

1 0 0 0 0 0 0

1 1 0 0 0 0 0
1 1 1 0 0 0 1
1 1 1 0 0 0 => 1
1 1 1 1 0 0 1
1 1 1 1 1 0 1
From Camera

=> 1

1 bit of output
matrix

Figure 2.2.5 Method Of Averaging.

It counts the number of bits in each line and if this is greater

than or equal to half the total number of possible bits in a

line (i.e., 3 in this case), then that line is represented

by a one. This is done for all the lines. The number of

lines which are represented by a 1 are then counted and if

(applying the same logic as for each line) three or more

ones are present then the corresponding bit in the output

matrix is made a 1,

For a proper mathematical average all the bits of

the 6x6 matrix should have been added together and the

resultant compared with half the square of the zoom (i.e.,

Z ̂
•j— = 18 in this case) . The first method was used because

46

it is easy to realise in hardware, and has been achieved

mainly with 17 4-bit counters. If the proper averaging

system had been used the controlling logic would have

been a lot more complex and twice as many counters would

have been required.

Due to this method, the averaging unit will not

z ̂
output a 1 for patterns with less than — bits set as for

example:

1 1 1 0 0 0

1 1 l o o o
0/P = 0 ^ 1 1 / A) / 0 0 0

0/P = 1 ^ 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

z ̂It will certainly fire if there are more than y bits set

as for examplei

1 1 1 1 1 1

1 1 1 1 1 1
O./P = 0\ 1 1 / (D̂ /~0" Q Q

o/p = o 5 o o o o
0 0 0 0 0 0

0 0 0 0 0 0

The method is shape dependent but is simple and was found

adequate in the experiments,

The number of bits which decides the threshold

(i.e,, 3 in the case of a zoom of 6) is half the value of

the zoom. This number is stored in a counter which

automatically counts half the zoom value when the zoom is

47

set. If it is desired to change this threshold, any

number (less than 16) may be loaded into this counter by

the computer after the zoom has been set. For example,

if in the case of the zoom of 6 this threshold was set at

1 (instead of 3), then if any bit of the 6x6 matrix is a

1 the output to the averaged matrix will be a 1. This

means that the system is very sensitive to any object

but does not give as much detail.

This could be useful in some experiments and

the software has been written to enable this to be used.

A photograph of the equipment is shown in Fig. 2.3.5.

2.3 The Software System.

A software system was written to make the

programming of experiments as easy as possible. This is

intended for use with learning networks which require

pattern manipulation. It contains the programs to control

the camera so that it may be used without a knowledge of

the hardware details.

2.3.1 Design considerations.

For any experiment concerned with learning

networks the following parts of a software system were

considered necessary.

ii
ai
#

oo

Figure 2,3.5

49

1. A set of executive routines to control

all the peripherals including the camera.

2. A library of standard routines concerning

pattern manipulation and data organisation.

3. An organised data workspace so that pattern

information concerned with an experiment is readily

available.

4. An on-line access to enable a user to

manipulate manually the data in the workspace.

5. Debugging facilities to enable easy debug­

ging of a new experiment.

In writing this software several constraints had to be

considered.

Speed. Most experiments with the camera take place

in real time, also most experiments which involve cycling

learning nets take a lot of processing time hence, it is

very important that the pattern handling routines and

simulation routines should operate as quickly as possible.

Space. Space in the computer is very limited.

The machine (a Honeywell DDP 516) with a 16-bit word length,

had originally 8K words of store and now has 16K words.

Further expansion is difficult due to both hardware and

software limitations. So all parts of the system must be

kept very compact.

50

Simplicity. This software system is mainly

designed for experimental use and users who may wish to

understand how parts of the system work or who may even

want to change the parts themselves. Hence, standard

methods of operations in, for example, the setting up of

loops, the calling of subroutines etc. have been

established and short cuts for particular cases have been

avoided.

2.3.2 The structure of the system.

The software backing system consists of three

main modules. These are: an executive module which

controls all the peripherals; a main program which sets

up the data workspace and allows on-line access and

manipulation within it, and a library of standard

subroutines - which are available to all modules.

The actual experiment is written as a subsystem

to the software and acts as a fourth module. There is

an optional fifth module which is a debugging system.

This can be loaded into the workspace and is overwritten

when it is not used.

All modules except the debugging module are

loaded in the 'bottom* of the available core and the data

workspace is allowed from the end of the last module to

the end of the available core. This latter limit can be

changed after the program has been loaded if it is desired

to use the top of the core store for some other reason

e.g., for multiprogramming.

51

Fig. 2.3.1 shows the interactions between the

sections of the software system as they appear to the

on-line user. Each section has its own different command

status, Usually, unless the experiment is running, the

program waits in a command status for a command to be

input, Each command status has a unique set of valid

commands which it can accept and execute. Commands are

input from the command device, this may be any peripheral

which inputs characters but it is usually the teletype.

The Executive Input/Output Module.

This module is equivalent to the executive or

director in a conventional operating system. It contains

all the routines for communicating with the peripherals.

Its command status is entered by causing a program break

from the command device. In its command status it allows

peripherals to be allocated to different channels. There

are two exits from this command status, one to the main

program and one to the experiment subsystem.

The Main Program.

When starting, the system enters the main program

and waits in its related command status. The main

program does all the housekeeping for the system which is

defined below. Hence, general purpose operations are

possible here and do not need to be written into the

experiment subsystem. The main program divides the data

workspace into blocks of 16 words (16x16 bit binary patterns)

5 2

— Definite links
-- Links depending on conditions
* Three optional subsystems are

drawn, more can be made available

Figure .2,3,1

53

and contains the following on-line functions.

1. Manipulation the workspace e.g., the command

'AN 4 TO 5' will logically AND pattern 4 to pattern 5 and

'OS 10 TO 30' will output on paper tape the patterns 10-30

inclusive„

2. Control of the television camera. A set of

commands enables every parameter sent to the camera to be

varied and data from the camera to be stored in the work­

space .

3. General purpose commands e.g., the command

*PV' enables a heading to be printed onto paper tape.

Some commands are also useful for limited debugging e.g.,

"DC '1000" will display core locations '1000 to '1017 on

a visual display and the user can observe how and when

they change value,

The Library Module,

This contains general purpose routines used by

other modules e.g,, the command AN 4 TO 5 given in discussing

the main program, this would use the following library

subroutines

INCOMMAND to input the command

INUMBER to input the two pattern numbers

SORI to check that these numbers are

within range

AND to do the operation of ANDing the

patterns,

54

Some routines have a command status which enable

parameters within them to be set. Examples of these are

shown in Fig, 2,3,1,

The Experiment Subsystem.

This is the experiment which is written by the

user. Any DAP program can be used as a subsystem however,

if the software backing system is considered when

writing the subsystem, then it can contain the following

features.

1, A command status to enable parameters within

the experiment to be varied,

2, All pattern storage and learning network

storage can be allocated in the data workspace.

3, All general functions e.g., pattern manipula­

tion etc. can be carried out via the library routines.

In this project several different experiment

subsystems have been used. Examples of these occur in

section 6,4 „

All the learning networks are organised in the

experiment subsystem. The operation of the learning

networks is assisted by a set of subroutines from the

library. Many different kinds of learning elements are

made available by different subroutines and only the

subroutines which are specifically requested by an experi­

ment subsystem are loaded.

55

There is a hardware learning machine 'Minerva'

which is linked to the computer, An experiment subsystem

may use Minerva via some of these library subroutines.

The other learning network subroutines simulate

the learning elements within the core store. The active

store for simulated learning elements is set up in the

data workspace. Hence, the size of the learning networks

may be varied and also the main program has easy access

to the learning element stores.

The Debug Option,

A special debugging program for the DDP 516

(3)computer has been written at this University.

As well as a general debugging aid it also allows small

DAP-like programs to be input on-line and modifications

to the existing program. As a large amount of time is

spent debugging the experiment subsystem, it is important

that the system should have some debugging aids. It does

have some in the main program but these have been limited

due to the space they require. The debug program has been

written so that it lies within two sectors (i.e., 64

16x16 patterns). It was originally self-contained but now

a modified version has been made which can link with the

system through the Executive module.

The Debug option may be loaded at any time. It

loads into the top of store and takes the space of the

top 64 data patterns. It has a command status which can

be entered from any command status in the system.

56

2.3,3 Summary of the- -software' system.

A software system has been written which is to

aid experiments using patterns with particular regard

to the camera peripheral and SLAM learning networks. It

is self-protected i.e., it cannot corrupt itself unless

there is a mistake in the experiment subsystem (or if a

mistake is made in the use of Debug).

It means that a user can write an experiment

subsystem which can have access to all the routines of

the extensive library of the system and when necessary

can be debugged or changed by a high level debugging

system. The resulting program should run almost as fast

as is possible and hence be suitable for real time

applications,

This system is now being used for another

project concerned with learning networks for pattern

recognition.^'^ This project does not use the camera at

all except for occasional data preparations. Many

features of the system have been left out of this descrip­

tion but they are described in Chapter 6 which is devoted

to the software system.

The Tracking System

Chapter 3

In this chapter the features of a tracking

system are discussed. The tracking of thick lines or

line drawings is considered. The tracking system is

taught by a human teacher and is designed so that it will

mimic the operator's actions on the basis of the subpat­

terns extracted from the viewed pattern. It is hoped

that, due to the adaptive learning networks, the system

will be able to track patterns not seen during the

period of 'training', that is, it should be able to

generalise.

Edge following, the simplest form of tracking,

is considered first and the tracking system to do this

has the following features:

1. It contains learning networks which are

taught (by a human operator using a joystick) to make the

decisions regarding the movement of the points of

attention.

2. It receives information from the patterns

only from the local area around the point of its attention,

i.e., the point it has at present reached on the pattern

due to its tracking.

3. It uses the camera system (this is described

in section 3.1).

58

The general scheme for this system is illustrated

in Fig. 3.1.1. This scheme has been further developed to

track line drawings. If every line of a pattern is

tracked then there should be sufficient information from

the tracking motions to recognise the pattern. Also,

different organisations of the learning elements within

the learning networks have been investigated.

3.1 The Camera System.

The camera system, consisting of the camera

hardware and its software backing can be represented by

the diagram in Fig, 3,1.2, The details of the operation

Figure 3.1.2

of the hardware are given in section 2.2. The camera

light threshold is preset to detect the pattern and the

w
i
t
h

t
h
e

G
o
G
O
•H
-p
G

(L)
>.

<u (ö
-p
-p

O G
Pm
W

G -H
<D m T3
Ü O
W cn

(Ö *H
(D 0)
.G P 4-)
EH (Ö -H

Joystick controlled
by a human teacher
who observes the
monitor

U1

Figure 3,1,1

60

zoom value is preset to a suitable size with respect to

the pattern size. Therefore, only the position of the

viewing window is to be controlled. At each instant of

clocked time, the position of the viewing window may be

moved in the North/South and East/West directions by a

preset number of picture elements. The number of

elements moved is called the step size and it is set

within the tracking experiment.

Hence, there are two inputs to the camera system.

One to indicate a step in the North or South direction and

the other to indicate a step in the East or West direc­

tion. Strictly, these inputs are three-level inputs in

that no movement at all may be commanded.

The output from the camera is a 16x16 binary

representation of the area of the scene within the viewing

window. An example of the information obtained from the

pattern is shown in Fig. 3.1.3. The new position of the

viewing window after the command NE is given is shown by

the broken lines.

3.2 The Tracking System,

3.2.1 Basic structure of the system.

The structure of the tracking system is partially

defined by the camera system. The only information from

the scene to the tracking system is through the viewing

window, and the system must generate the N/S and E/W

61

N

W •E

S

Parameter settings

X value = 60
Y value = 140
Z value = 4

Threshold (depends on aperture, set to detect
the pattern)

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 o 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3,1,3

62

commands to move the area of attention (i.e., the position

of the viewing window), Hence, two outputs are needed

from the tracking system (N/S and E/W) and the learning

networks have been split into two modules to provide them.

This is shown in Fig. 3.2.1. These modules are taught

different information but are identical to each other in

structure. Each module, whatever its internal structure

has the following characteristics:

1. It contains a learning network which receives

information from a binary input matrix and which can be

taught via the teach input to associate either a high or

low output response with this input matrix (i.e., it must

be able to produce the same response when this input is

again presented to the module without any teach stimulus).

2. A ternary (e,g„, N, S and no move) output

decision system to drive the camera system.

3. A ternary 'teach' input decision system so

that the module may be taught to output desired responses.

In practice, for convenience of the hardware,

ternary teach inputs are realised by two binary inputs in

which only 3 of the 4 possible binary combinations are

permitted.

The ternary output is to match into the ternary

input of the camera system, however, if the step size is

small then a binary output may be sufficient that is, the

63

Figure 3,2,1

64

need for a dead zone is removed, This would compel the

viewing window to move in the N or S direction with every

instant of clocked time i.e„, one of the four possible

moves (NE, SE, NW and SW) is forced,

Teaching is achieved by a human teacher using

the joystick switch. This has a center return and can be

pushed in the desired direction of motion. It has four

binary outputs, one for each of the four cardinal

directions N.S.E.W, and there is an overlap between

adjacent directions. For example, it is possible to

indicate NE when both N and E outputs will be true. This

switch is connected to the teach terminals of the learning

modules. When the joystick is pushed forward the N output

becomes true and teaches the N/S learning network to give

a high response to the input pattern, this results in the

viewing window moving N, When the joystick is in the

center position, both the teach terminals are false, no

teaching takes place and the learning network makes its own

decisions. Hence, the three states of the teaching inputs

are teach high, no teach and teach low.

3.2,2 Last step feedback.

With the learning module described in the previous

section it is possible to associate an input pattern with

a command for the direction of the next step.

Consider the system shown in Fig. 3.2.1 (without

the feedback) and a particular tracking task, of tracking

65

around a square in a clockwise direction, as shown in

Fig, 3.2,2. Now consider the viewing window in the two

positions shown, at the top and bottom of the square.

At the top of the square the learning networks must

associate the pattern in the viewing window with the

direction E and at the bottom with W. These two patterns

are completely different, so this should be possible.

One can see that a unique direction could be

associated with every possible pattern which appears in

the viewing window when it is on the edge of the square.

This is true for all solid patterns.

However, if we try to use this system for track­

ing a line drawing of a square,instead of a solid square,

an ambiguity arises,

Fig, 3,2,3 shows a line drawing of a square in

which the task of tracking clockwise is again examined.

Consider the viewing window in the two positions

indicated. It can be seen that the pattern in the viewing

window is identical at these positions yet we want to move

in opposite directions. Hence, it is not possible to

track the pattern using the system in this way.

One possible solution is to displace the position

of the viewing window with respect to its position on the

line as shown in Fig. 3.2.4. Hence, the viewing window

not only detects the line but its position with respect to

6 6

/// //,US.
/

/A
A///S/7 //

Figure 3.2,3

/

3
/

¿ZZZZZZA

V y y

/
3
V
/

zzz +E => E

zzz +w => w

Figure 3,2.4

67

•that line determines the direction of motion. The

pattern in the viewing window is different at the top

and bottom of the square hence tracking is possible.

This method has two disadvantages which are as follows:

1. The teacher must be very careful, when

training,that the line does not drift much from the

desired position in viewing window else the teaching will

be incorrect;for different positions in the viewing

window mean more than just a directing error.

2. The teacher must plan a strategy so that all

the directions associated with particular lines and

positions of the viewing window are unique. This is

simple with patterns like squares and circles but becomes

very involved when more complex patterns with many lines

and line junctions are considered.

An alternative solution which has been investi­

gated is to include a memory within the system to indicate

the direction of motion in ambiguous situations. For the

case of the square this memory need only be one step long

and it can be achieved by adding internal feedback around

the learning modules. This is called 'last step' feed­

back.

The way that this feedback is added to the model

is shown by the broken lines in Fig. 3.2.1. Last step

feedback means that the last direction that the viewing

window moved is fed back to the input of the learning

68

network. Hence, the input is now a combination of the

pattern in the viewing window and the last direction

moved, (Several methods of combining this information

have been investigated and the details of these are given

in section 3„3,4e) How this feedback solves the problem

is illustrated in Fig, 3,2,3, At the top of the square

the pattern in the viewing window plus the fact that the

last direction moved was W implies that the new direction

is W and vice-versa at the bottom of the square. With

this system it is possible to track simple line drawings

and examples of these are given in Fig. 3.2.5. When

using this type of feedback the task of the teacher has

been reduced to guiding the viewing window along the

lines of the line drawing in the desired direction.

If we limit the function of the viewing window

to following a line we can more clearly define what we

mean by 'tracking a line drawing',

Tracking a line drawing occurs when the viewing

window traces a circuit over a line drawing in such a way

that every line is at some time covered by the viewing

window. Covered in this sense means that every part of

the line is, at some time, contained within the viewing

window.

The tracking is'good' if the centre of the view­

ing window accurately follows the center of the lines of

the drawing and hence the shape of the line drawing can

be accurately reconstructed from the motions of the

h.

»

/V V

<-

<-

V A

■>

^0

viewing window.

For the edge following task in which the contour

of a solid pattern is traced 'tracking the edge' of a

pattern may also be defined in a similar way.

Tracking the edge of a pattern occurs when the

viewing window traces a circuit over a solid pattern in

such a way that during this circuit the viewing window

passes over every part of the edge of the pattern.

The tracking of the edge is 'good' if the centre

of the viewing window accurately follows the edge of the

solid pattern and hence, the shape of the solid pattern

can be reconstructed from the motion of the viewing window.

3.2.3 Delayed and damped feedback.

If we wish to track more complex patterns which

have joining and intersecting lines, then a further problem

appears which is demonstrated in the following example.

This example is illustrated in Fig. 3.2.6 where

the pattern and the desired tracking path is shown. The

problem occurs at the junction of the center line with

the left hand upright line. This is shown in greater detail

in Fig, 3.2.7, Table 3,2.1 indicates the information

presented to the learning networks with different modes of

feedback and the desired response from the learning network

71

Figure 3,2,7

POSITION PATTERN
IN VW

LAST
STEP
FEEDBACK

DELAYED
FEEDBACK

DAMPED
FEED­
BACK

NEW
DESIRED
DIRECTION

1 f f f t

2 t f f - >

3
f - >

4 - >

5
• <—

6 "j
<— » <—

t

7
t < - \ f

8
f f

9 f t t f

Table 3,2,1

72

for the different positions shown in Fig. 3.2.7.

Now consider the viewing window in the position

(2) just before the first turn is made and position (7)

just after the second turn has been made. In these two

positions two different outputs are required. However,

the last step feedback is identical and the patterns in

the viewing window can be very similar if not identical.

Therefore, the tracking system with last step feedback

only is not able to track the desired path.

This problem arises at the critical point just

at the junction. The viewing window changes direction,

and hence, there are several values for the last feedback.

To overcome this some memory must be added to the system

so that information about the direction that the viewing

window approached the junction is presented to the

learning network until the viewing window has moved away

from the junction and the critical point is passed.

Two methods of achieving this memory are discussed

here. The first is to delay the feedback by n steps where

n is a preset value. This could be achieved by a shift

register, for each direction, of length n in which the

output from the learning network is input, and the output

from it is combined with the viewing window information and

presented to the input of the learning network. Hence,

any change in feedback will occur n steps after the junc­

tion. The directions that this feedback produces are also

shown in Table 3.2,1. From the table it can be seen, for

7 3

example, that between positions (8) and (9) the feedback

changes value. This change was initiated by the second

turn at the junction. It can be seen from the table

that no anomalies like the one for the last step feedback

occur for the delayed feedback and hence, tracking is

possible with this method,

The second method, damped feedback, is to limit

the rate of change of the direction fed back. Hence,

although the direction fed back starts to change at the

critical point in the junction, it does not complete the

change until several steps later. The directions that

would be fed back for the example using this type of

feedback are also given in table 3.2,1, and again, it can

be seen that no ambiguities arise and tracking is possible.

This type of feedback has been investigated and

the results are given in section 3,3.5. The feedback

vector has been generated in two separate parts, a N/S

component and an E/W,which are calculated separately.

The N/S vector for example, may vary between +1

indicating N and -1 indicating S, The simplest way to

implement the rate of change of feedback would be to

limit the amount by which the feedback vector is changed

each step, until one of the maximum limits is reached.

This is expressed by:

74

NSV = +1 for NV > +1

= NV for -1 < NV < +1

= -1 for NV < -1

where NV = NSV' +K , LD

and NSV is the N/S vector

Nsv♦ ""is4 the previous value of NSV
LD is the last direction that the N/S learning

module outputs, LD=+1 or 0 or -1

K is a constant which determines the amount of

change of NSV per step.

However, this simple method is not sufficient. This is

illustrated by an example in Fig, 3.2.8. In this diagram the

tracking path is shown in (a) the variation of the last step

feedback (LD) is shown in (b) and the variation of the N/S

vector is shown in (c) for delayed feedback and (d) for

this simple damped feedback. When no direction commands

are given then this feedback remains constant at its last

value. Hence, at position (7) this feedback is still

indicating an N direction.

This has been overcome by allowing the vector to

zero if no commands are given. This has been achieved by

calculating the vector with the following equation:

NSV = N S V ' . (1-K) + K.LD , CKK^l .

The way that this would work is shown in

Fig. 3.2.8(e). This method is equivalent to taking a

weighted sum of the past directions where each weight is

75

Figure 3.2,8

76

inversely related to the number of steps that a direction

is in the past, Both delayed feedback and damped

feedback are affected by the step size. There are

usually in the order of 4-8 steps for the viewing window

in moving between position (1) and (3) shown in Fig.

3.2.7, For good tracking the step size must be kept

small to ensure that the features of the pattern are

centred in the viewing window. However, the speed of

tracking is proportional to the number of steps taken

and -is therefore inversely proportional to the step

size. The dependancy of the feedback on the step size means

that the size of the pattern to be tracked is now relevant.

In fact, with delayed feedback there is a definite problem

when the critical points of two features occur in the order

of n steps apart.

The delayed feedback has an inherent limitation

in that it can only feedback one of eight unique values

at the critical point of a junction. If one considers the

more usual case where the output of the learning module is

binary instead of ternary, then only four directions are

possible. Also, often only 2 of these directions are

valid. For example, if the system tracks a horizontal line

well in an E direction then the sequence of commands would

be NE, SE, N E , SE ... The N/S value would oscillate in

this case and this N/S feedback when delayed is of no use.

Hence, there is a definite restriction to the number of

different lines which a system with delayed feedback can

enter a junction and uniquely remember the direction of

entry. With damped feedback this fundamental limit does not

77

exist. The number of different entry lines which may be

remembered with this feedback is determined by the number

of feedback connections and the size of the learning

network.

The damped feedback method is the one which has

been investigated and details of this are given in section

3.3.6.

3.2.4 Theoretical Performance.

The best possible performance of the tracking

model with respect to the complexity of the input pattern

may be determined.

Using damped feedback the model has the following

three properties:

1. It can be taught to follow any single line

in any direction.

2. When it enters a junction of several lines

it can be taught to exit the junction by

any one of the lines, even by the one by

which it entered,

The above implies that if ever the system proceeds the same

way along a line, it has previously tracked, then it is in

a permanent loop and has completed a cycle of it.

3. If two or more junctions of a pattern are

identical (i.e., the have the same number

78

of lines joining at the same angles)

then the second property concerns them

all together as the tracking system

cannot distinguish between them.

These above three properties determine the

tracking abilities. With such a system it is not possible

to teach it any scan path around a pattern. This is

illustrated in Fig. 3.2.9. It cannot be taught the first

tracking path because this involves making a different

decision when entering the same junction from the same

direction,as shown in the diagram at the points indicated,

and this contradicts the second property. However, this

pattern can be tracked by the second path hence, a tracking

path can often be found if it is thought out beforehand.

The reason for this limitation is that there is

no long term memory in the system to inform it where it

has been. There is only a short term memory for enabling

the system to pass through features. Further development

could be aimed at providing a long term memory via a

second feedback loop. If this was successfully added then

the tracking system would be able to track any line

drawing.

79

AMBIGUOUS
POSITION

AMBIGUOUS
POSITION

Figure 3,2.9

80

3.3 A Maximum Response Learning System.
3.3.1 Structure of the learning modules.

Throughout these experiments the basic element

which has been used in the learning networks is a SLAM.

This is described in detail in section 5.1.1.

The structure of the learning elements to form

a learning module is shown in Fig. 3.3.1. The learning

networks are made of SLAM-16 elements in which all of the

teach-clock inputs have been connected together also all

the teach-sense inputs are set a 1. Therefore, when the

learning network is clocked all of the SLAMs will output

a 1 for the particular input pattern.

The clock terminal of the N net is connected to

the N teach terminal and the clock terminal of the S net

to the S teach terminal,

Initially, the stores of the SLAMs are set at 0.

When the joystick is pushed in the N direction then the

N learning network will output all Is for that input.

This response, (the sum of all the SLAMs outputting a 1)

is compared with the response from the S learning network

and the highest response determines whether the output

from the module is high or low, A threshold can be set

at the output which the difference between the responses

must exceed for a non-zero output, otherwise the ternary

output will be at the 0 neutral state. In practice, this

threshold was usually set to 0 providing a binary output

Viewing Window & TEimCH TE^ CH
Feedback Input S
Data

Figure 3.3,1 Maximum Response Learning Module

00
h-1

82

(see section 3,2,1).

The input, which consists of the pattern from

the viewing window combined with the feedback if there

is any, is connected to the learning network via a random

map so that the SLAMs sample random 4-tuples from the

input space. This is considered in more detail in

section 3.3-5.

3.3.2 Performance criteria.

In evaluating the performance of the different

tracking methods a set of criteria have been established.

These criteria are as follows:

1. Generalisation. This is the ability of the

system to track unseen patterns after teaching with the

same tracking path that it has been taught. A good

tracking system should be able to accept a wide variation

in the dimensions of the input patterns i.e., the more it

generalises the better,

2. Tracking ability. This is an evaluation of

the complexity of the patterns which the tracking system

can be taught to track.

3. Amount of teaching required. This can usually

be expressed by the number of cycles of tracking path of

a pattern which must be tracked reliably. Sometimes,

however, small corrections need to be made while the system

83

is running and these have also been noted when relevant.

4, Ease of teaching. This is a subjective

evaluation by the teacher on how easy it is to direct the

system around the desired tracking path. It must be

stressed that the teacher interacts heavily with the

system and the performance of the system is very dependent

on the ability of the teacher.

3.3.3 Performance of the system without feedback.

Without feedback the system should be able to be

taught to follow edges. This was attempted with the

smallest size of learning network available which was 64

SLAM-16s per learning network (i.e., a total active store

of 4,096 bits). Slightly more stable teaching and tracking

was observed when twice this number of elements was used.

The performance of this system for the edge following task

is given below.

1. Generalisation.

Once taught a pattern, the system would track

almost any other pattern hence, it has excellent generali­

sing properties.

2. Although it could perform the edge following

task very well, this was not considered a difficult task.

The limitations of this system are in the way it tracks.

This is illustrated in Fig. 3.3.2. If the system is first

taught to track the circle and then is tested with

the untaught triangle, then the tracking path cuts across

Tracking paths after training with 0

Tracking paths after training with A

Figure 3,3,2,

85

the acute angle of the triangle. If only the triangle

is taught and it is tested with the circle, then the

tracking path becomes elongated at the top due to the

teaching of the acute angle of the triangle. If the

system is taught both patterns then it will track both

properly.

3. Amount of teaching.

If taught one cycle around a pattern well then

the teaching is sufficient. Poor teaching may take

several cycles.

4 , Ease of teaching.

The system was very easy to teach and any errors

made were easy to correct.

Hence, this tracking system without feedback is

very good in all respects but it is only suitable for

edge following tasks.

3.3.4 Performance of the maximum response system with

last step feedback.

The learning module receives information in the

form of a 16x16 matrix which consists of the viewing window

information combined with the feedback information. Three

different methods of combining the feedback information with

the viewing window information have been investigated.

A parameter,the feedback %, is preset for an experiment and

86

defines the amount of the input matrix over which the

feedback function is effective. The actual bits of the

input matrix which are to be associated with the feedback

are randomly selected when the 'feedback %' is defined.

The three feedback functions which have been investigated

are as follows:

1. Replacement connections.

This function replaces the selected bits of the

input matrix with feedback information.

2. Exclusive OR connections.

This function replaces the selected bits of the

input matrix by the value of these bits exclusive ORed

with the feedback information.

3. AND - OR connections.

This function replaces the selected bits of the

input matrix by the value of those bits ANDed or ORed with

the feedback information. Both AND and OR gates are used

with this method because of the nature of the feedback

information. For example, if with last step feedback the

last step was N then all the N/S feedback connections will

1 and if the last step was S they would be zero; hence, if

only AND gates were used the input matrix would be

unaffected when the last step was N and all the N/S selec­

ted bits would be zero when the last step was S. To

preserve a balance, when this function is selected, exactly

half of the feedback functions are AND and half are OR.

87

These three functions have been tested with

different values for 'feedback %'. A standard test has

been used to achieve this. The system is firstly taught

to track a square and it is then tested with a circle and

a triangle. This is illustrated in Fig. 3.3.3 where the

tracking paths obtained with this test are shown. The

test was conducted with 20% replacement connections

feedback with 128 SLAM-16s per learning network. Fig.

3.3.3(a) shows the tracking path obtained when teaching

the system the square and (b) shows the path obtained when

testing the system with the same square. The tracking path

obtained when presented with the circle and triangle with­

out further teaching are shown in (c) and (d).

Although tracking was possible with the smallest

available size of learning network, i.e., 64 SLAMs per

learning network, better results were obtained when twice

this size was used and this was the size used to obtain

the performance given below (i.e., 128 SLAM-16s per learning

network which involves a total active store of 8,192 bits). 1

1. Generalisation.

If a value of feedback is within ±1G% ofHEKe optimum

value for a particular type of feedback then the generali­

sation with respect to the circle and triangle is good. In

most cases they are both tracked successfully and in the

others there are usually one or two critical points where

the same errors are consistently made. (These may easily

be corrected with a little extra teaching).

Figure 3,3.3.

L

89

2„ Tracking Ability.

With the optimum value of feedback the system

could be taught to track the patterns in Fig. 3.2.5. The

limits of the 'feedback %' which could be used to track

a square were found and these are as follows:

Feedback %

Minimum Maximum

1. replacement connections 3 75

2 t Exclusive-OR connections 5 100

3. AND - OR connections 5 100

3. In most cases, except near the extreme limits

indicated above, the square was taught for one complete

cycle and this was sufficient. When any correcting was

needed on the second cycle this was usually due to the

teacher badly teaching during first cycle.

90

4, Ease of Teaching.

Near the mid values of the usable feedback % the

teaching was very easy and it became increasingly more

difficult as the limits of 'feedback %' were approached.

Using this system with reasonable values of

feedback the patterns in Fig. 3.2.5 can be tracked. The

three methods of applying feedback all worked well and no

difference in performance could be detected between them.

In all the experiments mentioned in this chapter

with last step feedback, 20% feedback with replacement

connections were used unless otherwise stated.

3,3,5 The effect of different random m a p s .

For the above tests a different random map was

used for each of the four learning networks. Some of these

tests were repeated with the same random map for all four

learning networks, This has the advantage that only one

mapping has to be done instead of four. The mapping process

takes a lot of time and by using one map instead of four

the time taken to cycle a square was reduced from 25 to 9

seconds,

The structure of the learning module with one map

is shown in Fig. 3.3.4. In this form each SLAM in the N

learning network has a corresponding SLAM in the S learning

network which samples the same bits of the input space.

TEACH TEACH
N S

Figure 3,3,4

92

This is similar to the structure of the T.R. SLAMs des­

cribed in section 5,5, In fact, where a two-level

threshold is used at the output»the performance is identical

to a single T.R. SLAM learning network with a 2-level

threshold,

Using a single map for the input data no significant

change in the performance was detected.

One further modification has been made to the

mapping to ensure that for less than 25% feedback each SLAM

has either 1 or 0 feedback inputs. For if more than one

feedback input of the same type is fed to the inputs of a

SLAM this is equivalent to connecting these two inputs

together and a SLAM-16 would effectively behave as a SLAM-8.

When the random map was structured in this way no signifi­

cant change in performance was detected and this single,

structured type of map was used for all further experiments.

3.3.6 The performance of the system with damped feedback.

The damped feedback is generated by

NSV = N S V ' . (1-K) + K . LD , (0<K<1)

which is defined in section 3.2,3.

A value for K has to be preselected and for most

tests this was set at 0.2. Which means that decisions

made in the region 5 to 10 steps in the past are still

93

considered. This type of feedback was investigated with

twice the minimum size of learning networks (i.e., 128

SLAMs per module, a total active store of 8,192 bits)

and 35%'replacement connections'feedback. The perfor­

mance of this system was as follows.

1. Generalisation

This system was used to track more complex

patterns (e.g„, with more than one loop) than had

previously been possible. Once the system had been taught

to track one of these patterns it could, in general, only

accept very small changes in the shape or size of the

pattern before tracking errors are m a d e » The most common

error is that it does not make the correct decision at a

junction and the cycle which it does track does not cover

all of the pattern.

2 . Tracking Ability

Using this system it was possible to track all

the patterns in Fig. 3.3.5 with the tracking paths shown.

One pattern with three loops was taught but only with

difficulty and the limit of this system appears to be at

this level of complexity.

3. Amount of Teaching

Usually, if the system is taught for two to three

cycles of the input pattern this is sufficient for that

pattern to be tracked.

\

95

4. Ease of Teaching

In general, this system is reasonably easy to

teach though not quite as easy as with last step feedback.

This system is able to track more complex patterns

than was previously possible. To do this the 'feedback %'

has had to be increased and the ability of the system to

generalise has been greatly reduced.

3.3.7 Saturation within the learning networks.

With the maximum response structure with two

learning networks per learning module it is possible that

these learning networks may saturate i.e., both give 100%
output for a particular input pattern.

A mechanism has been built into the system which

will enable teaching to continue if saturation occurs.

This mechanism teaches a randomly chosen 1/16 of the

opposing learning network to output 0 for this particular
input pattern. Hence, the correct response is now obtained.

In practice, this mechanism was very rarely used and

saturation usually only occurred for one of the two

following reasons. 1

1, If the teacher is not very good and makes errors

in teaching or if he changes his mind about the direction

of the tracking path, then it is quite likely that he will

contradict his own teaching and the learning networks will

saturate.

96

2, If the tracking task is on the limit of

the ability of the tracking system e,g„, if the system

is being tested near the limits of its feedback or if the

input pattern is very complex, then it is quite possible

that the limitation of the system will be indicated by

the learning networks saturating. The saturation may be

caused by a combination of the above two reasons and

further careful teaching may achieve the desired tracking.

3.4 A Probabilistic Learning System.
3.4.1 Structure of the probabilistic learning module.

The probabilistic learning system uses the

probabilistic learning network which is described in

section 5.3, The probabilistic learning network is

designed so that it can be taught to output both high and

low responses,

The structure of the probabilistic learning

module is shown in Fig. 3.4.1. With this system, only

one learning network is required for each module.

With the probabilistic learning network a frac­

tion of the SLAMs are taught with each clock cycle, this

fraction is preset by the user. If less than % of the

learning network is taught then one cannot be sure that

the correct output response will occur after one clock

cycle, (In general, l/16th of the learning network is

Viewing
window

TEACH TEACH
N S

Figure 3,4,1 Probabilistic Learning
Module

98

usually taught per cycle). it is necessary for the

learning network to output the desired responses when

being taught, hence, a teaching mechanism is needed to

ensure that the learning network is clocked a sufficient

number of times for the desired response to be obtained.

To achieve this mechanism, two algorithms have

been investigated which compare the output response of

the learning network with the desired (non-zero) response

and then clock the learning network until these responses

are the same,

The first algorithm teaches the learning network

once on receiving a teach command and then, if necessary,

continues to clock the learning network until the desired

response is achieved, This will be referred to as the

'teach first' method.

The second algorithm, on receiving a teach

command, checks if the response from the learning network

is correct and then, if necessary, clocks the learning

network until the desired response is achieved. This will

be referred to as the 'check first' method.

3.4.2 Performance of the probabilistic learning system

without feedback.

With the smallest size of learning network (64

SLAM-16s per module) useful results could be obtained from

the system and this is the size that was investigated in

99

detail (i.e,, 64 SLAMs per module which is a total active

store of 2,048 bits), The following performance was

obtained.

1. Generalisation

After teaching one pattern with either of the

teaching algorithms, the system could track many other

shapes hence, the generalisation is very good.

2. Tracking Ability

The tracking ability was similar to the ability

of the maximum response learning system described in

section 3.3.3. However, the probabilistic tracking system

was more likely to make errors and drift-off or into the

pattern.

3. Amount of Teaching

In general, it was necessary to teach two to

three cycles of the pattern for it to be tracked.

4 . Ease of Teaching

The system was easy to teach, though more difficult

than the maximum response system.

Hence, the probabilistic learning system without

feedback performs the edge following task well but is

not, in most respects, as good as the maximum response

method.

100

3.4.3 Performance of the probabilistic learning system

with feedback ,

Although useful results could be obtained with

the smallest size of learning network, more consistent

results were obtained if twice this size was used and

this is the size which was investigated (i.e., 128 SLAMs

per module which is a total active store of 4,096 bits).

The 2-level feedback was used with 'replacement'

feedback connections and several different amounts of

feedback were investigated. The performance with respect

to line drawings was as follows:

1. Generalisation

In most cases the system was only just able to

track a square after being taught it. When tested with a

circle and triangle the only correct tracking occurred at

the optimum values of feedback (20-30%). However, all

the tracking of circles and triangles was very poor.

2. Tracking Ability

The tracking ability of this system is very

limited. It was possible to teach the system to track

around a square (using values of feedback between 10 and
70%). However, even this tracking was difficult to teach

and more complex patterns were not considered possible.

The 'teach first' algorithm would not work with this system

and all the results were obtained by teaching with the

'check first' algorithm.

101

3. Amount of Teaching

A lot of teaching was required for this system

at least 3 to 4 cycles of the input pattern.

4. Ease of Teaching

This system was the most difficult system

investigated to teach. Lengthy careful teaching was

required if a square was to be tracked.

Hence, this system is not very good for the line

following task. It uses less active store then any other

method but teaching the system is very difficult and the

resulting performance is poor and uncertain.

3.5 A Cumulative Learning System,
3.5,1 Structure of the CL learning module.

The CL learning module uses the CL learning

network which is described in section 5.4. Like the

probabilistic learning network, the CL learning network is

designed so that it can be taught to output both high and

low responses.

The structure of the CL learning module is

similar to the structure of the probabilistic learning

module shown in Fig. 3.4.1 except that a CL learning net­

work replaces the probabilistic one.

When a CL learning network is clocked the maximum

102

change in output response is 1/16 of the total response.

Hence, as for the probabilistic learning system, a

teaching algorithm is required. The algorithms which

were used for the probabilistic system, which are des­

cribed in section 3,4.1, have also been investigated

with the CL learning system.

3.5.2 Performance of the CL learning system without feedback.

The smallest size of CL SLAM learning network

was sufficient for the edge following task. This involves

64 CL SLAM-16s per module i.e., a total active store of

8,192 bits. The performance of this system was as follows:

1. Generalisation

Both teaching algorithms were investigated and

tracking could be achieved with either. However, if the

'check first' algorithm was used,although the system

would reliably track the training pattern when tested with

other shapes, errors were often made. If the 'teach first'

algorithm was used then the generalisation was very good

and many other shapes could be tracked.

2 . Tracking Ability

Using the 'teach first' algorithm, the tracking

ability was very similar to the ability of the maximum

response learning system described in section 3.3.3.

103

3. Amount of Teaching

Tracking could usually be achieved after teaching

two to three cycles of the pattern but this would be

improved by further teaching.

4 . Ease of Teaching

This system was very easy to teach and any errors

made easy to correct.

Hence, the CL learning system without feedback can

perform the edge following task well. The performance is

comparable with the maximum distance system but twice as

much active store is required.

3.5,3 Performance of the CL SLAM learning system with

feedback.

As with other systems using feedback, more consis­

tent results were obtained by using twice the smallest

size of the learning network. This involved 128 CL SLAM-16s

per module i.e., a total active store of 16,386 bits.

As with the probabilistic learning system, last

step feedback was used with 'replacement' feedback

connections and different amounts of feedback. However,

for this system the 'check first' teaching algorithm did

not work and all the results were obtained using the

'teach first' algorithm. The performance of this system

104

with respect to line drawings was as follows:

1. Generalisation

The generalisation for other shapes was not very-

good for this system. When taught the square with a near

optimum amount of feedback (20-30%) then in most cases

the system would also track a circle and triangle.

However, the tracking for the CL SLAM system was far

better than the probability learning system.

2. Tracking Ability

The system could be taught to track a square with

between 10 and 70% feedback and the performance of the

system was similar to that of the equivalent maximum

response learning system.

3. Amount of Teaching

This system required 3 to 4 cycles of the input

pattern to teach it,

4 . Ease of Teaching

This system was fairly easy to teach. However,

it took more care and time to teach than the equivalent

maximum distance system.

This system when using the 'teach first' algorithm

has a performance which is comparable»though in general

inferior,to the equivalent maximum distance system and it

requires twice as much active store.

105

3.6 Observations On The Results,
3.6,1 General performance of the system.

With no feedback all the learning modules

investigated could perform the edge following task well

using learning networks which covered the input matrix

once only.

When last step feedback was added, so that lines

could be tracked, it was found that in all cases better

results were obtained by doubling the size of the learning

networks. (Due to the addition of the feedback connections,

this is the smallest size in which the whole of the input

space is covered.) In both of the above cases, further

increase in the size of the learning networks had very

little effect.

The method of applying the feedback connections

to the learning network was not critical. Also, the random

map applied to the input was not critical.

With edge following, the generalisation was very

good. However, when feedback was added and ,the input

pattern was made more complex, this generalisation was

reduced.

When damped feedback was used with patterns of

several loops, the system was only able to track the

training pattern reliably.

106

3.6.2 Relative performance of the learning modules.

(Considering line following tasks).

Of the three learning modules tested the best

performance in tracking and ease of teaching was obtained

from the maximum response module. The structure of this

module could be represented in a similar way to the

structure of the other two modules as shown in Fig. 3.4.1

if the learning network was replaced by a T.R. SLAM

learning network, and the function of the teach algorithm

in this case would be to guard against saturation as

described in section 3.3.7.

The input data is characterised by a long sequence

of similar patterns. To demonstrate this all the patterns

input to the learning modules while being taught to track

a square were recorded, and used to obtain the following

results. These patterns were divided into two groups, those

for which the N/S learning module was taught N and those

for which it was taught S. The histogram Fig. 3.6.1(a)

shows the distribution obtained by comparing each pair of

patterns in the N group and Fig, 3.6.1(b) shows the distri­

bution of comparing each pattern of the N group with each

pattern of the S group. The broad distribution for the

N group shows that it consists of many patterns which are

not similar in Hamming distance. There is a lot of overlap

between the two distributions which indicates that it is

not possible to distinguish between the two groups with a

Hamming distance comparison to any archetypes. Therefore,

the nets are doing something in addition to the above

HAMMING DISTANCE

F i g u r e 3,6,1

N patterns compared
with N patterns (a)

0
N patterns compared

with S patterns
(b)

T
256

1
0
7

108

i.e., a few patterns close to those it recognises keep

it "on track".

In Fig. 3.6.2 a particular decision during

tracking is considered; (a) shows the pattern in the

viewing window and the last direction moved. The distri­

bution of this information to all the patterns in the N

group is shown in (b) and for the S group in (c). Some

of the patterns in (b) are very close in Hamming distance

to the new pattern and this should be sufficient for the

learning module to indicate that it belongs to the N group

i.e., the next command from the N/S learning network should

be N.

The better performance of the maximum response

system is due to the large number of different input pat­

terns taught for each class » The maximum response system

does not forget any of the patterns it has been taught.

However, both the probability and the cumulative learning

networks have the property that consistently taught recent

information may overwrite previously learnt information,

and for tracking it is essential that all the patterns

of a class be remembered with equal weight.

The amount of overwriting depends on the amount of

overlap (i„e„, where the Hamming distance is zero) between

the classes for each learning element. If the order of

the elements (i.e., number of inputs) was increased then

this overlap would be decreased and one would expect that

the performance of the probability and CL SLAM learning

o 64 128

HAMMING DISTANCE

F i g u r e 3,6.2

Viewing Window
Z Z 2

/Last direction

New desired direction is N

(a)

Comparison with N
taught patterns

Comparison with S
taught patterns t->

o

l
192

~T~
256

110

systems would improve with respect to the performance of

the maximum response system.

The probability learning system would only work

with the 'check first' teach algorithm. This is because

all decisions of the learning networks were very critical

(i.e., near the 50% mid value) , If too many of one class

was taught the learning network becomes permanently biased

towards that class.

The CL learning system does not generalise well

with the 'check first' tracking algorithm as the learning

network needs to be taught, even when the response it

outputs is correct, so that these responses may be increased

and do not remain near the critical 50% value.

The CL learning system could be taught to track

a square with a 'dead zone' of up to 25% in the threshold

decision at the output of the learning network. The

probability learning system could not be taught to track

a square if there was a dead zone.

Using the maximum response learning modules, the

system was taught to track a square and the number of

elements which were taught to 1 at each step was recorded.

These results have been plotted in Fig. 3.6.3 and they

demonstrate that after the initial teaching of the square

further teaching has very little effect.

60

50

40

30

20

10

0

Nuinber of elements taught when
teaching to track a square

NUMBER OF STEPS TAUGHT

F i g u r e 3,6,3

i
n

Chapter 4
The Classifying System

An attempt has been made to recognise patterns

from the tracking information produced by the tracking

system.

In the first technique which was investigated,

the data from the tracking system was transferred into

a shift register and the contents of the shift register

were examined in parallel, with a learning network.

This method was not very successful but is mentioned at

the end of this chapter in section 4.4.

In the second method, the tracking information

was fed serially into a learning network which, as a

result of feedback, is sequence-sensitive, and this

method is considered in detail in this chapter.

4.1 The Input Data.
4.1.1 Features of input data.

To create a structure for classifying patterns

from tracking motions, it is important to understand how

distinguishing features are contained in the tracking

information.

The tracking information or 'input d a t a1 to the

classifier has the following characteristics.

It is a sequence of events, the length of the

sequence being dependent on the size of the pattern and

the tracking path. (Each event consists of the

information obtained from the tracking system in moving

one step,) Typically, for a thick line drawing of a

square, the sequence is the order of 100 events long for

one cycle of the square.

This sequence of events contains within it a set

of features of the pattern such as straight lines, curves,

corners, etc, each feature being several events long,

and the features occur in a unique order in the sequence.

113

4.1.2 Test data.

To assist the development and to evaluate the

performance of the classifier, three different sets of test

data have been used. This data is stored in the form of

tracking movements on punched paper tape so that exactly

the same data can be used for each test and the result of

changing parameters can be observed. Each set of test

data consists of the tracking information for two patterns.

These are used as the training set to teach two classes

to the classifier. This same data is also used to test

the classifier. Each of the sets of data contains

different characteristics and these are described below, 1

1. Test data (A)

This is illustrated in Fig. 4.1.1 and is of a circle

1 1 4

Tracking Paths

Plotted Tracking Movements

N o r m a l i s e d t r a c k i n g m o v e m e n t s p l o t t e d o n a 1 6 x 1 6 m a t r i x

F i g u r e 4,1.1 T e s t Da t a (A)

115

and a triangle. This data was obtained from the tracking

system. One cycle of the circle requires about 90 steps

and one cycle of the triangle requires about 60 steps.

The main characteristic of this data is that the tracking

paths are fundamentally the same form and the classifier

must detect the small differences in the shape of the

scan path to classify the patterns e.g., it must detect

that the point of the triangle is different from the

continuous curve of the circle.

2. Test data (B)

This is illustrated in Fig. 4.1.2 and is of a rec­

tangle with a center line and a rectangle without one. This

data was also obtained from the tracking system. One

cycle of the rectangle with the center line requires about

130 steps per cycle and the plain rectangle requires about

90 steps per cycle. The scan paths for the two patterns

are the same except where the center line occurs in the

first pattern. Hence, to classify these patterns, the

classifier must detect the tracking motions relevant to

the center line for the first pattern and must detect their

absence at the equivalent position for the second pattern.

All the tracking motions concerned with the rectangle

alone should be ignored as they are common to both patterns.

This is explained in greater detail in section 4.2.3.

3. Test data (C)

This is illustrated in Fig, 4,1,3, for a square and a

triangle. This data was calculated and generated by hand.

The object of this data is to provide simplified versions

1 1 6

Tracking Paths

N o r m a l i s e d t r a c k i n g m o v e m e n t s p l o t t e d o n a 1 6 x 1 6 m a t r i x

F i g u r e 4,1,2 T e s t Da t a (B)

117

Tracking Paths

Plotted Tracking Movements

s

X

4

EE

!.

'WTEEEfflT f l ! ? i T i

X

.f

!

—J_
T U -1

XI

III:i:—__
t— .. 1-. .

r. t.it_ X J: ~... 1_ . ‘ _
L...X X 4 . -J...i...L ..._ j..,X X X i_X

. _L
I_ _lI.... UmmJ

N o r m a l i s e d t r a c k i n g m o v e m e n t s p l o t t e d o n a 1 6 x 1 6 m a t r i x

F i g u r e 4.1,3 T e s t Da t a (0

118

of tracking motions with short, well defined cycles of

8 steps for each pattern. This data was used to assist

the development of the classifier when it was not capable

of producing useful results with test data (A) or test

data (B),

4,1.3 Format of input data.

The tracking information is received from the

tracking system in the form of a four-bit word for each

step. Each bit, if set, represents a move in one of

the four possible directions N. S. E. W. (If we assume

that the viewing window must move at each instant of

clocked time then it must move in one of 8 possible

directions. Hence, 3 bits of information are obtained from

the tracking system per step. However, the 4-bit code is

a more convenient form to observe, and to input to a

learning network,)

For the first experiments these 4-bit words were

fed directly to the input of the classifier. Therefore,

for a feature of a pattern, the classifier must have an

internal memory for several steps. However, to obtain

knowledge of the spatial position of the features it is

necessary to detect in which order the features occur and

for this a much longer internal memory is required.

Several experiments were carried out with this type of

input. The classifier did not work at all for the test

data (A), however some results were obtained with test data

119

(C) in which both the shape of the features and the

distance between features is only a few steps.

An important factor which must be considered with

data taken directly from the tracking system is that it

contains 'jitter' due to the characteristics of the

tracking system. For example, if the system is tracking

a horizontal line in the east direction, one might expect

the sequence of commands to be E, E, E, E, •••• .

The tracking system is, however, taught imperfectly by a human

teacher to maintain its N/S position on that line so

that a more likely sequence in practice would be N E , S E ,

NE, S E , •*•*. Hence, a lot of N/S activity would be

indicated which is not produced by the shape of the pattern.

In an attempt to overcome the problem of the long

memory required and the 'jitter' problem mentioned above,

the input information was averaged over several steps.

The way this is achieved is illustrated in Fig. 4.1.4.

The program written for this allows the average value of

the last n steps to be evaluated (where l<n<16). For each

direction the number of times that a move is indicated,

V, for the last n steps, is evaluated; this number is then

presented to the classifier as V bits set in a binary

vector of length n. For each step of the tracking system,

4.n bits of information are presented to the classifier.

The effect of this method is to generate an 'average'

direction of tracking from the last n steps. This effec­

tively eliminates the 'jitter'.

120

When n is large, some indication as to the

spacial position of the features is now input to the

classifier because the input vector cannot change very

much between features. However, this also means that

features are smoothed and in the case of the test data

(A), for example, it is very important that features

such as the points of the triangle should not be smoothed

too much. This method was used with the classifier and

although it still did not work properly with data from

the tracking system, better results were obtained.

To avoid the smoothing problem a third method of

inputting the data was developed. Instead of inputting

the motions involved in tracking, it was decided to input

the position of the viewing window with respect to the

pattern. The advantage of this method is that features

are spacially located by the input data, hence a long

memory within the classifier is not necessary and the

internal memory is only needed to detectthe features.

There is a practical difficulty in obtaining this data

because the information from the tracking system is in the

form of tracking motions. To generate position from these

motions, a scaling system was used. This analyses the

motions from the tracking system for the first cycle of the

pattern’(without transmission to the analyser) so that the

limits of the pattern could be determined. Then, after

each motion is input, the position is normalised with

respect to these limits. This scaling enables the pattern

to be defined on a standard matrix size. The positions as

121

they are generated can be used to generate the tracking

path that the tracking system follows. The standard

size has been defined on a 16x16 matrix and the results

of plotting these motions on this matrix are shown in

Figs, 4,1.1, 4,1.2 and 4,1,3»

Hence the output from this scaling system is one

bit in 256 i„e, 8 bits of information per step. This was

coded into two 16-bit binary vectors in which the X and Y

coordinates of position on the normalised matrix are

indicated by the number of bits set. This is illustrated

in Fig. 4.1.4, When using this data form for the input to

the classifier, a further improvement in the performance

was noted and this form has been used for all the develop­

ment of the classifier. Although in the above description,

the positions were generated by software, this is not

necessary if one considers the tracking system and classi­

fier combined. Then the addresses that are sent to

position the viewing window of the camera could be used to

generate the classifier input.

4.1.4 Summary.

In this section the nature of the input sequence

has been discussed in detail. The input sequence to the

classifier is a sequence of positions, each position being

defined by two 16-bit vectors.

The features of the pattern are defined by several

Output from
Tracking System

Input to
Classi­
fier.

N S E W

0 1 1 0

Method 1, direct

= >
(a)

O l i o

(4 bits)

N S E W

0 1 1 0
= >

0 1 1 0

Method 2, fl 0 1 0

Averaged 0 1 1 0
(n==8) 1 0 1 0

Previous ̂
0 1 1 0

7 Steps
1 0 1 0

1 0 1 0

l1 0 0 1

(b)

0 0 0 0

0 0 1 0

0 0 1 0

1 0 1 0

1 0 1 0

1 1 1 0

1 1 1 0

1 1 1 1

(4 ,n bits)

N S E W

0 1 1 0

Method 3,
Position
Input

<D
-P(0
c
•H
P
0
1
O
U

0 e o e o e e 9 © © 8 ft © B
= > >

0 0

0 o © ft o * © 9 o 9 © ft ft ft ft ft 0 0

0 e o a » B o B o © © ft © © ft ft ft 0 0

0 © W o • : • • © © © B © ft B ft ft ft 0 0

0 © © ft » 9 o X X X B © ft B ft ft ft 1 0

0 ft ft o » O X o « 9 X 9 9 9 ft ft ft 1 0

0 ft o ft 6 X » 9 0 • B X . . ft ft ft 1 0

1 © n e X • e e » B . f i . B ft B 1 1

1 • » » X 18 « • • © B A B B ft ft ft 1 1

1 S B * X • • B • • © B B B ft ft ft 1 1

1 © » 9 X B 9 • • « B ft ft © 1 1

1 9 e 9 • 0 » o B B ft B ft ft ft ft 1 1

1 9 9 o « 9 © B e B ft ft B • b a 1 1

1 9 0 9 9 O B e B • 9 9 9 « « « 1 1

1 o 9 e o 9 0 • o B 9 9 9 1 1

1 © O B © • « e B B B O B B ft ft 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 X y

X Co-ordinate (32 bits)

(c)

Figure ¿1,1.4

123

steps of the input sequence,hence the classifier must

have some short-term memory to store them.

To test the classifier three sets of test data

have been established. Set (A) for problems where two

scan paths have only minor detail differences, see Fig,

4.1.1. Set (B) is typical of problems where one part of

the scan path is different for one class where the rest

of the scan paths are identical. Set (C) has only 8 steps

per cycle and is used to evaluate systems for which the

test data (A) and (B) is too long.

4,2 Structure Development Of The Classifier.
4,2,1 General system.

The general structure that was chosen for the

classifier is shown in Fig. 4.2.1. The aim of this struc­

ture is to associate the output codeword with a class of

input sequences, so that when an input is applied to it;

after training, the appropriate codeword will form at the

output.

The sequential data from the tracking system is

randomly connected to some of the inputs of the classifier

learning network and there is internal feedback around

the network to the rest of the inputs.

During training, information from the input, and

from a codeword which defines the class, is fed to the

Code word
input

F i g u r e 4,2,1

1
2
4

125

teach terminals and the SLAMs are clocked (i.e., taught).

The SLAMs which have the codeword only applied to the

teach terminals are the ones which should regenerate

the codeword when the input sequence is applied.

The other SLAMs receive teach information from

both the input data and the codeword combined together.

The combining is achieved by combinational logic gates

(shown by the box 'F' in the diagram). The function

realised by this logic is very important and will be

discussed later.

Three main measures are used in discussing the

properties of the classifier and these are defined as

follows:

Store penetration: This is the number of binary

locations in the SLAM stores which are accessed (i.e.

are set to 1 or 0) when the classifier is taught. (It is

usually stated as a percentage of the total SLAM store

size.)

After one cycle of an input pattern has been

taught, one would expect very little increase in this

penetration. This measure does not take into account the

number of times that a bit is changed during teaching.

Store Overlap; This is the number of binary

locations of the SLAM stores which,after being accessed by

teaching a first input pattern, change their value on

126

being taught a second input pattern. (It is usually

stated as a percentage of the store penetration of the

first pattern taught), This measure depends to some

extent on the position in the cycle of each pattern that

teaching is terminated.

Pattern Activity: This measure is not rigorously

defined and is used in a qualitative sense only. It is

used to compare two sequences of patterns and is based on

both the bits which change during the sequence and the

correlation between the bits which change value. Hence

a sequence of patterns is said to be more active than

another if either the number of bits which change state

is higher or the correlation between bits which change

state is lower,

4.2.2 Development into a two-net structure.

The first step in the development of the general

structure was to realise that it contains two learning

networks which perform different functions. The second

network which is taught only the codeword is to detect

states of the structure and decide which codeword to

output. The first network, which is taught a combination

of input and codeword information, is intended to contain

the short-term memory necessary for detecting distinguish­

ing features and generates the states which are detected

by the second network„

127

The structure of the classifier with the above

development is shown in Fig, 4,2,2, The first learning

network is called the cycle net and the second one is

called the code net.

The cycle net has feedback around it so that it

may have a memory of several steps to detect features

(see section 4,2,4), There is a second feedback loop

from the output of the code net to the input of the cycle

net. This feedback has two main functions: it will be

shown to reduce the amount of contradiction due to the

teaching of several classes within the cycle net and it

also should enable a codeword to become stable at the

output. These properties of this feedback are discussed

in more detail in section 4,3,4,

The teach clock for the structure has been split

into two sections, this allows the two learning networks

to be taught separately.

4,2,3 Development of the code net

It would appear more logical to discuss the

development of the cycle net first, however, the exact

function of the cycle net is not easy to define and is

dealt with in the next section. The function of the code

net is easier to define, it was developed first and will

now be considered first. The general function of the

cycle net is to enter state cycles in sympathy with the

Code
0/P

Valid
0/P*

* used with TR SLAM Code Net

F i g u r e 4,2,2

128

129

input sequence. These cycles should pass through

states related to the class of the input sequence.

The code net must detect when these unique states

occur and output a codeword which will indicate the class

of the input sequence.

The first structure of the code net was a learning

network of 16 SLAM-16s, The clock terminals were connected

together and each of the teach sense terminals was connected

to one bit of a 16-bit codeword. During training all the

SLAMs are taught for every step of the input sequence.

Now consider the nature of the data which is

presented to the code net. This data is considered in the

form of 4-tuples randomly sampled by the code net. When

the system is tracking patterns of the test data (B) type,

for example, then it is probable that except in the region

of the center line where the features are different, the

information at the output of the cycle net will be very

similar for the two classes. Also, as the cycle net is to

go into cycles, one would expect a lot of activity (as

defined in section 4,2.1) at the outputs. The result of

both the above factors is that one would expect that many

4-tuples of outputs would have common values at times for

different classes.

Hence, the input to the code net is a large number

of different patterns for each SLAM only a few of which

define classes and many of which are common to both.

130

Using the structure for the code net described above,

where every input pattern is taught, the net will

always be heavily overtaught with respect to the last

class taught as follows. In such cases, all the input

4-tuples which are common between classes are taught to

output the code of the last class taught.

A feature of the code net is that it is possible

to observe the output before teaching at each step, and

evaluate how similar that output is to the desired code­

word without teaching. An algorithm was written to

utilise this fact to overcome the above overteaching

problem. This algorithm finds the difference between the

output of the code net and the desired codeword and then

corrects a fraction of the difference, by teaching this

fraction to the code net, This algorithm produced an

overall improvement in the performance of the classifier.

However, it does have several disadvantages as follows.

1. The algorithm is time (i.e,, sequence length)

dependent and if many cycles of a pattern, or many patterns

of a class, are taught, then the overteaching will still

occur since, with time, complete teaching is approached.

2. Only a portion of the codeword is taught and

hence, only this form can be fed back which greatly

reduces the effect of this feedback.

3. The above feature also implies an additional

restriction on the number of distinct classes

131

taught More classes simply lower the Hamming distance

between codewords which might cause non-distinct code-r

words to be taught.

This algorithm was abandoned because of the

above disadvantages.

There is a need for a different type of learning

element for the task required of the code net, A new

element the 'T .R . SLAM' was developed to do this, and it

is described in detail in section 5,5,

This element has an extra output which indicates

whether the normal output is valid or invalid (i.e., not

taught or overtaught). So this element is insensitive

to overteaching by the last class taught. The feedback

from the output of the code net has been modified by a

16-bit memory so that only the last valid output is fed

back. This has been added because for the majority of the

time while the cycle net is establishing a definite cycle,

the outputs from the code net are not valid. This is also

discussed in more detail in section 5.5, Fig. 4.2.2 shows

the structure of the classifier with T.R. SLAMs in the

code net. When using T.R, SLAMs twice the active store

required for normal SLAMs is used. For the code net of

16 T.R, SLAM-16s described above 512 bits of active

storage are required.

132

4,2.4 Development of the cycle ne t .

It has been stated (section 4.2.3) that the

general function of the cycle net is to enter cycles in

sympathy with the input sequences and in so doing pass

through unique states relevant to the class of the input

sequence,

This is necessary because, for some classes,

the classifier must remember several previous steps to

be able to react to an important feature. This can be

demonstrated by an example. Consider the patterns in

the test data (B) and assume that there is no memory of

past events in the classifier. When tracking the first

pattern the centerline results in several unique

positions with respect to the pattern. Hence, the classi­

fier can come to a definite decision, However, in tracking

the second pattern all the positions the tracking system

passes through are common to both patterns. Hence, only

arbitrary decisions can be made.

The only way to recognise the second pattern is

to notice that the tracking motions do not go along a center

line, i.e., the absence of a feature must be 'perceived',

and the only way to do this is to provide the classifier

with some memory of past events: hence, the feedback in

the cycle net.

A similar type of argument can be applied to the

test data (A) patterns, Here there is a difference in the

input positions for both patterns and it should be

possible for the classifier without feedback to classify

them. However, the difference in positions is very

small and there could be some confusion if much variation

in the shape of the patterns were allowed. If the sharp

points of the triangle are detected,and the lack of them

detected for the circle,then a much larger shape variation

could be tolerated. As before, the only way to detect

these features is by some memory in the system.

The structure of the cycle net is shown in

Fig, 4,2,2, The learning network contains 48 SLAM-16s

which have their clock terminals connected together. There

is feedback around the cycle net to provide the necessary

memory for features. The input to the cycle net is formed

by the input data, the feedback around the cycle net and

feedback from the code net.

The major problem with the cycle net is what to

teach it. So far, two methods have been tried and neither

has been very successful,

In the first method to be investigated, the

teach sense terminals are connected to the input data, the

net is taught at every step of the input sequence. Hence,

the net is taught to output the present position and this

is fed back around the net to some of the input terminals

(delayed by one step), for the teaching of the next

position, Therefore, the cycle net is taught to associate

the present step with a mixture of the present and last

1 3 4

steps. When, after training the cycle net is tested

with an input sequence then, assuming that it works

perfectly and synchronises correctly with the input

sequences, it should generate the input sequence at its

output, Hence the cycle net should behave as a trans­

parent filter for taught input sequences. This method

has been investigated for the case of non-sequential

(13)input data by Fairhurst and Aleksander . However, for

the classifier being considered it is necessary for the

cycle net to indicate to the code net the sequential

distinguishing features of the input sequence, and the

transparent filter indicates if an input has been taught

but does not process a taught input in any way. Hence,

it is not sufficient for the required task and was

abandoned. One possible strategy in which this method

could be used is to have a separate classifier for each

class which'is taught to give a high response (i.e., all

Is output) for that class. Then a classification would

be indicated by the classifier outputting the highest

response,

The second method was to combine the input

sequence with the codeword before applying it to the teach

terminal of the cycle n e t . The function of combination

that has been used is an exclusive-OR function.

The reasoning behind this teaching method can be

demonstrated by a simple example. Consider teaching the

cycle net with test data (A) for the two codewords all Os

and all Is

135

When teaching on the circle, the input sequence

is exclusive-ORed with 0 (i.e., no change) and the net

is taught to output the present step when the input is

the present step and the last step as before. When

teaching the triangle the input sequence is exclusive-ORed

with 1 (i.e,, complemented) and the net is taught to

output the complement of the present step when the input is

the present step and the complement of the last step. If

the cycle net, after training, is tested with the circle,

assuming that it works perfectly and synchronises with the

input sequence, then the input sequence should appear at

the output. For the triangle the inverse of the input

sequence should appear at the output. The input sequences

for the circle and triangle are fairly similar hence, one

would expect a large difference between the input sequences

for the circle and the complement of the input sequence

for the triangle and it should be possible to teach the

code net to distinguish between these two sequences.

4.3 Investigation Of The Properties Of The Cl a s s if ie r .
4.3.1 Experiment conditions.

All the experiments have some common features which

are listed below.

Input Data

The input data for these experiments was A, B or C

as described in section 4.1.2. For testing the trained

classifier, the training data is reapplied and the responses

136

for the two different classes of input are compared.

Codewords

Two 16-bit codewords have been chosen to

represent the two classes, these are octal 000377 and

octal 177400, These two codes are the complement of

one another and hence, have the maximum Hamming distance

(16) between them. They also both have a Hamming distance

of 8 with respect to the all-0 codeword which is often
used as an initial starting condition.

Learning Networks

For all these experiments, one size of learning

network has been used. This consists of 48 SLAM-16

elements for the cycle net (768 bits of active store) and

16 T „R „ SLAM-16 elements for the code net (512 bits of

active store).

Evaluation of the output response

The output response with respect to a particular

codeword is taken as the average Hamming distance between

that codeword and the valid output code from the classi­

fier, As the input is sequential one must average the

output over many steps (at least one cycle of the input

sequence) for a meaningful response. The average number

of valid outputs is also noted as this gives a confidence

figure for the response. For a deeper measure, the

actual code output and the Hamming distance to the

different codewords can be recorded at each step.

137

When evaluating the output response to an input

sequence the state transient must be considered. This

transient is the number of steps required for the

classifier to settle into a stable cycle. To obtain

an accurate result it was decided to wait until the

initial transient has passed before recording the outputs

for an average. It is possible with this program to wait

a set number of steps before the output is averaged. The

length of the transient is a function of both the

structure of the learning network and the nature of the

input data. In general, it was found that the initial

transient had passed after one cycle of the input pattern

had been presented to the classifier. For the data like

test data (B), the one identifying feature must be

presented at least once to the classifier before a stable

cycle can be obtained (assuming that the classifier is

able to distinguish between the two classes). For test

data (A), in general, the output cycle was established

after 30-40 steps. For test data (C) which has very

short sequences, the initial transient was also much

shorter. In practice, the first 100 outputs for test data

(A) and (B) were ignored and the response was averaged

over the next 100. For the test data (C) the first 30

outputs were ignored and the next 10 outputs were averaged.

4.3.2 Investigation of the cycle net store.

The classifier using 'Exclusive-OR' teaching

described in the previous section was tested with test

data (A) and (B) and only worked on a few unconnected

138

occasions (dealt with in section 4.3.3). After training

it was seen that the outputs of the cycle net on testing

were very similar for the two classes.

The first experiment, described below, was

designed to examine the cycle net SLAM stores after

training in order to determine primarily if the second

class taught to the cycle net was overteaching the first.

Using test data (A) the cycle net is first taught

the circle and the number of distinct storage bits of the

SLAM stores which are accessed by this teaching are noted.

The cycle net is then taught the triangle and all the bits

which were originally set to a value by the first teaching

and are reset by the second teaching are noted. Hence,

the number of elements accessed by teaching a pattern and

the amount of overlap when teaching two classes is

obtained.

The following is the exact method used to find

this number of bits. The cycle net is reset and then

taught the circle. The number of distinct bits of the

SLAM stores which have become set is recorded. The cycle

net is set and then taught the circle again. This time

the number of bits which have become reset are recorded.

The sum of the two recorded values gives the total number

of storage elements which have been accessed by teaching

the circle, A similar technique is used to find the

number of these bits which are changed on teaching the

triangle,

139

This experiment was repeated with different

amounts of feedback around the cycle net and with no

feedback from the code net. The graph in Fig. 4.3.1 shows

the amount of store accessed when using test data (A)

(cycle length ~80 steps, 200 steps taught) and test data

(C) (cycle length 8 steps, 40 steps taught). Fig. 4.3.2

shows the amount of relative overlap which was detected

for these two sets of data after the second class had

been taught,

Fig, 4,3,1 shows that the store penetration(as defined

in section 4 02*1) is consistently about 30% whatever the

amount of feedback. This is as expected for the feedback

is the last input of the sequence exclusive-ORed with a

constant codeword and hence should have the same activity

(as defined in section 4,2.1) as the input data.

The surprising result from this graph is that

almost the same amount of store is accessed by the type

(C) test data of 8 steps long as is accessed by the type

(A) test data of 80 steps long. This is due mainly to

the fact that the range of Hamming distance within both

sequencies of patterns is similar.

From Fig, 4.3.2 without feedback there is 74%

overlap for test data (A) and 54% overlap for test data

(C). The two classes in test data (A) are very close in

Hamming distance which would account for the large amount

of overlap. As the feedback is increased the amount of

overlap decreases. This is because the feedback for the

S
t
o
r
e

o
v
e
r
l
a
p

a
s

a

%

o
f

p
e
n
e
t
r
a
t
i
o
n

o
f

1
s
t

c
l
a
s
s

%
N
e
t

s
t
o
r
e

a
c
c
e
s
s
e
d

140

Store penetration for 1st class

Figure 4.3,1

Store Overlap

F i g u r e 4,3.2

141

second class is complemented(by the codeword)with

respect to the feedback for the first class and hence,

there is a large Hamming distance between them.

The above experiment was repeated but with 8.3%

(l/12th) feedback from the code net i.e., l/12th of the
cycle net had the codeword applied directly to them.

The results are shown on Fig, 4,3.3 and Fig. 4.3.4. The

amount of store accessed by the first class is about 2%
less this time; this is due to the feedback inputs from

the code net having a constant value during training.

The amount of overlap has been considerably reduced.

This is also due to the code net feedback which has a

partitioning effect on the cycle net. If the code net

feedback had been 25% (i.e., one feedback connection per

SLAM element) then the overlap would always be zero.

A measure of how much the stores which were

taught for a class were changed by further teaching was

obtained (i.e., a measure of how much an input sequence

interferes with itself), This was achieved for test

data (A) by teaching the cycle net one cycle of the

pattern and then to record the stores every 20 steps
after that. These stores were then compared with each

other and the results obtained are in the table below.

S
t
o
r
e

o
v
e
r
l
a
p

a
s

a

%

o
f

p
e
n
e
t
r
a
t
i
o
n

o
f

1
s
t

c
l
a
s
s

%
N
e
t

s
t
o
r
e

a
c
c
e
s
s
e
d

142

40 -
X - Test data (A)

0 - Test data (C)

20 -

10 .

0 -4---- -------- 1------------- 1-------------1----------
0 25 50 75

% Feedback

Store penetration (with 8% code net feedback)

Figure ¿1,3,3

X - Test data (A)

0 - Test data (C)

% Feedback

Store overlap (with 8% code net feedback)

F i g u r e 4 . 3 . 4

—r~

100

—i—
100

1 4 3

% bits Number of Steps
changed

For this experiment the feedback was 50%. However, as

with the amount of store penetration, one would expect

the above figures to be independent of the amount of

cycle net feedback. The amount of store penetration for

this case is 33%, the figures in the table are expressed

as a percentage with respect to this penetration. Hence,

the maximum observed change in the stores caused by the

teaching of one pattern interacting with itself is 9.2%

of the total store accessed.

To summarise, the analysis of the cycle net

stores for both type (A) and type (C) test data has

shown the following:

144

1. About 33% store penetration occurs on teaching the

first pattern to the cycle net. This penetration is

independent of the amount of cycle net feedback but is

reduced by the addition of code net feedback. (In the

limit with 100% code net feedback the store penetration
would be 6.25%).

2. Without feedback there is more than 50% overlap

between the two classes. This is reduced progressively

as cycle net feedback is added.

3. Both store penetration and store overlap (expressed as

a fraction of store penetration) are reduced by code net

feedback.

4. For test data (A) about 10% of the store penetrated

is taught to output both 1 and 0 during the cycle of the
input pattern.

The main point that this experiment shows is that

for the useful range of feedback (defined in section 4.3.4)

there is between 15-70% store overlap between two classes

and in the order of 10% store overlap within class. What

is not shown by this experiment is the frequency of

occurrence that these overlapped elements are accessed.

The properties of the exclusive-OR method of teaching will

be discussed further in section 4.3.4.

145

4.3.3 Investigation of the code net store.

The experiment in this section is designed to

demonstrate some of the properties of the code net and the

effect of feedback from the output of the code net on the

classifier. As the teaching method for the cycle net was

not very effective the code net was tested with fixed,

untaught stores for the cycle net as well as the taught

cycle net. The SLAM element may have any predefined truth

table loaded into its stores so that it performs a particular

function. The functions that were used in the cycle net are

shown in Fig, 4.3.5. The probability of a 1 being output

for a random input is also shown (Pr),

The code net consists of T.R. SLAM-16s hence, after

teaching, their stores may be easily analysed. The results

are shown in Figs. 4.3.6 to 4.3.8. The elements of the

T.R. SLAMs have been divided into three types; valid,

untaught and overtaught. These values have been plotted in

the graphs. The different type of cycle net stores which

have been used are set along the x axis in order of descend­

ing penetration of the T.R, SLAM store. All the experiments

were those with the type (B) test data and with several

values of feedback from both the cycle and the code net.

After each store was recorded the classifier was

tested with the training set again and the average response

after 200 steps was recorded. When there was no feedback

from the code net the average response was in nearly all

cases 100% correct but the average number of valid outputs

146

1
2
3
4

SLAM-16 0/P

1 Exclusive OR 2 2 I/P Exclusive OR

F = (1©2) © (304)

Pr = 0.5

F = 3©4

Pr = 0.5

3 Random

1 SLAM-16
?

(Random
J

Store)4

(Any function is possible)

Max-liklihood Pr = 0.5

5 AND-OR

Pr = 0.5

4 Majority Gate

where N is the number
of I/P which are 1

P r = 0.69

_6 No gates

4 -------

F = 4

Pr = 0.5

7 2 I/P AND or OR

1 ---- i

F = 3.4 or F = 3+4

P r = 0.25 or Pr = 0.25

F i g u r e ¿1,3.5

50

40

30

20

10

0

% of code net elements which are valid

X X X

On
A

□ X
X A

□

X
A

OA °A A□ O
□

O O O
□
O
A
x

x

A n

nr
l

~ r
2

4*
—r~
■ 4

nr
5 TAUGHT

— r~

Figure 4,3,6

Jo

+

% Feedback

Cycle Code

+ 8.3 0
0 0 8.3
□ 8.3 8.3
A 25 8.3
X 8.3 16.6

Figure 4,3,7

\ 4- . +

70 _ % of code net elements which + A
are untaught □ O d

O X A Xo
60 - 4*

x A

□

+

50 -

w

cu
1— I
cu
in
o

0\0

30 -

O

□X

A

4*
O

A°X

20 -
4*
O

io .
X

u -1-------------- 1-------------- 1--------------!------------- 1--------------1--------------1--------------1--------- -— r
Type of cycle net store — > 1 2 3 4 5 TAUGHT 6 7

70 -
+

60 _

% Feedback

Cycle Code

+ 8.3 0
0 0 8.3
□ 8.3 8.3
A 25 8.3
X 8.3 16.6

Figure ¿1,3,8

50 H

w
-P
«
O
e
CD

r— !
CD

vw
O
0\0

40 -

30 -

20 -

A

■f

X
O

□

X

10 _

O ___
Type of cycle net store T1 T

2

>
□

of code net elements which are overtaught

□OA

X

O
OA

O
OA
X

c F

ü
A

----i---
TAUGHT

150

was always less than 2%, which implies that the classifier
in this form is not suitable for the task. This will be

discussed further in the next section.

With feedback from the code net there were always

many more valid outputs (the lowest observed average valid

output was 9%), However, the correct response was only

obtained on a few occasions. These are listed below.

Average Responses

%
code
net
feed­
back

To □ To Q

cycle
net
feed­
back

cycle net
store

% data
response

valid
% re­
sponse

% data
response

valid
% re­
sponse

8.3 16.6
(2)

2T/P x OR 98 58 70 58

8.3 16,6

gate

(3)
Random 67 38 56 36

25 8,3

Store

(9)
Majority 99 27 54 27

8.3 16.6

gates

(5)
AND-OR 98 59 97 52

25 8.3

gates

(5.)
AND-OR 67 19 52 19

8.3 16.6

gates

(1)
x OR 61 48 76 40

25 8.3

gates
(2)

21/P x OR 65 42 51 40
gates

7*

151

Each test was repeated 4 times with different initial

starting values for the feedback. The results above

indicated by * gave the response shown for some starting

values but gave an incorrect response for others. (A

correct response for the two-class case, which has been

investigated, occurs if the data response is 50% for the

correct class,)

In the results, one example of 0%cycle net feedback

is given (with 8.3% code net feedback), Results have also

been obtained for 0 and 16.6% code net feedback and they

are very similar to the example plotted. The example shows

that there are very few valid elements and this means that

only part of the correct codeword can be generated and

meaningful classifications cannot be made. Although the

classifier could usually classify the training data with

about 1% confidence#when it was tested with other similar
data it usually gave a zero output.

4.3,4 Observations from the experiments.

1. Code net feedback .

The different amounts of code net feedback which

were used to test the classifier are 0, 8.3, 16.6 and 25%.

Considering test data (B) with no code net feedback, there

is no definite latching into one state when the one

defining feature occurs and the activity of the outputs of

the cycle net during the cycle were always very similar for

both classes. For 25% feedback the random map used implies

152

that every SLAM in the cycle net receives one code net

feedback connection; then the system tended to latch into

one of the two classes and after the first few steps of

the input sequence the classifier was set in one class

and never changed. This class was often determined by

the initial feedback pattern and was rarely determined by

the input sequence. For test data (A) similar effects

were observed but these were not as marked as for test

data (B). This is due to the fact that with the test data

(A) there is a 'clue' to which class the input belongs to

whenever the sequence is started whereas with test data

(B) there is only one part of the cycle which defines the

class.

If 25% feedback is used the cycle net is parti­

tioned by the codeword on teaching into two similar

learning networks of SLAM-8s. Hence, no overlap on

teaching occurs. However, one would expect that once one

codeword has stabilised (i.e,, one network has been

selected) that a lot of change at - the input would be

required to make a change to the other class. This explains

why the test data (A) and (B) were unable to change the

classification once it had been established. Further

increase in code net feedback (for the two-class case) will

make matters worse#especially when the cycle net is taught

as many 4-tuple input patterns which may easily occur

during testing cannot occur when training.

Hence, for the two-class case the code net feed­

back must be less than 25%, both 8,3% and 16.6% feedback

were found to be useful

153

2, Cycle net feedback.

To define useful limits for the cycle net feed­

back is more difficult than for the code net as the nature

of this feedback depends on the functions of the SLAM

stores or the method of teaching the cycle net. Values

of cycle net feedback between 0 and 50% were investigated.

In general, small values of cycle net feedback were the

useful.For test data (B) the only correct results were

obtained when values between 8.3% and 25% feedback were

used. For test data (A) where this type of feedback is

not essential, the best results were obtained with feedback

in the range 0 to 25%. However, some correct results were

obtained with more feedback.

Once more than 25% feedback with 4 input SLAMs is

used the system becomes potentially unstable as one output

may affect two others on the next cycle and four others on

the next, etc. Therefore, although the classifier may

work with more than 25% feedback, one must remember that

it is potentially unstable.

3. The performance of the classifier.

The classifier did not classify the real data

.reliably over a range of values for feedback for any of the

stores of the cycle net used. The behaviour of the

classifier was rather erratic in that it might work for two

values of feedback but not for a mid value between them.

This may be due in part to the small size of the learning

network used. What is clear however, is that when the cycle

154

net is tested with the training set it does not go into

the cycles it was originally taught and the cycles it

does go into are usually very similar for both classes.

Further developments of the classifier are considered in

the Conclusion (section 7.2).

4. The performance of the exclusive-OR method of teaching.

When compared with set stores in the code net

store experiment the exclusive-OR method of teaching does

not behave very well. As far as activity at the outputs

is concerned (measured by the penetration of the code net

elements) it is lower than any of the set stores for four

input cycle net elements including the random elements

(which are the initial states of the stores before exclusive-

OR teaching). However, the number of valid elements in the

code net created by the taught cycle net is similar to the

number created by the set stores (i.e., the ratio of valid

to non-valid elements is greater for the taught case).

From this one might qxpect a better performance from the

taught cycle net but this has not been observed. The poor

performance may be due to the store overlap which occurs

when teaching the cycle net (see section 4.3.2).

Two methods have been tried to improve the

performance of the exclusive-OR teaching method. The first

was only to teach part of the learning network and to leave

the rest random, and the second was to teach the cycle net

for a fraction of the time that the input is presented.

However, neither of these methods produced a noticeable

improvement„

155

4.4 Shift Register Classifier.
4.4.1 Structure.

The general structure of the shift register

classifier is shown in Fig. 4.4.1. The 4-bit tracking

movements are fed directly into a 4-bit wide shift

register which has a maximum length of 64 steps. The

contents of the shift register are randomly connected to

the input of a set of learning networks. There are N

learning networks with their inputs connected in parallel.

Each network represents one class of patterns hence, N

classes may be taught. The first learning network is

shown in more detail in Fig, 4 „4.1. All the teach sense

inputs are set to 1. The outputs are summed to obtain

a response.

Initially, all the SLAM stores are set to 0

(i.e,, will give a 0 response for all inputs). During

training the learning network of the relevant class is

clocked when the input sequence is applied. When the

input sequence is used to test the classifier this learning

network will output a maximum response. In general, a

classification is made by comparing the average responses

from all the learning networks, and the highest average

response decides the class.

4.4.2 Peformance of the classifier.

Tests to evaluate the performance and properties

of this classifier have been conducted using test data (A).

I I

Figure 4,4,1 Shift Register Classifier

157

Each test involves two learning networks. One learning

network is taught to output a high response when tracking

data for the circle is input and the other is taught to

give a high response for the triangle. Four different

types of SLAM learning networks have been tested in this

way, these are:-

1. Normal SLAM learning network, 64 SLAM-16s.

2. Probability SLAM learning network

(probability = 1/16).

3. Probability SLAM learning network

(probability = 1/4).

4. 4-layer CL SLAM-16 learning network,

256 SLAM-16s.

Further details of the construction of these learning

networks are given in Chapter 5.

Several different sizes of shift register were

tested and the longest (64 steps) produced the best

results. The results given in the table below were the

best obtained. 150 steps of each class were taught to the

learning networks and a subsequent 200 steps of each class
was used to test them.

158

Average % Average
Response Responsi
from 0 from A
Learning Learnini
Network. Network

1. Normal SLAM Net

Test with 0 98.9 95.0

Test with A 90.2 98.9

2. Probability Net

Prob. 1/16

Test with 0 63.2 54 .0

Test with A 57.0 64.7

3. Probability Net

Prob. 4/16

Test with 0 91,9 83.4

Test with A 84.2 93.6

4. CL SLAM Net

Test with 0 81.1 70.3

Test with A 72.9 83.1

In all the above cases the correct class could be detected

by the highest response. An illustration of how the

response at the output appears is shown in Fig. 4.4.2.

This example is for the CL SLAM learning network structure.

Fig. 4.4.2(a) shows how the output response varies when the

circle is being taught and (b) when the triangle is taught.

The responses for both learning networks when tested with

r
e
s
p
o
n
s
e

%
r
e
s
p
o
n
s
e

\
%

r
e
s
p
o
n
s
e

159

(a) training 0 (b) training A

steps

(c) when tested with 0

0 learning net

0 "1---------------------- i-----------------— i--------------------- r ------- ~ ----------r
0 100 200 300 400

steps

(d) when tested with A

P tpiidi: ¿1 . ll . 9

160

the circle are shown in (c) and when tested with the

triangle are shown in (d),

The shift register method has two fundamental

problems, size invariance and overteaching.

The size invariance occurs because the shift

register is of a fixed length whereas the length of the

input sequence depends on the size of the input pattern.

Hence, for different size input patterns, the features will

occur at different relative positions in the shift register.

Overteaching occurs because many very different

patterns occur in the shift register and they are all

taught to the learning network. The normal SLAM network

gives very high responses to all input sequences after being

taught only one of a class. This overteaching is reduced by

the net organisation in the other learning networks tested.

However, if several examples of a class are taught, then

these other learning networks also become saturated.

One possible method of overcoming the overteaching

problem is to only teach the learning network when a new,

completely untaught, set of data is in the shift register(e.g,,

once every 64 steps for a 64 step shift register). An

example of how the classifier behaves in this situation is

shown in Fig. 4,4.3, The shift register is of length 64

and the learning network is the 64 normal SLAM type. The

learning network is taught three times during the 150 steps

for teaching (i.e. once every 64 steps). In this case, the

r
e
s
p
o
n
s
e

•
%

r
e
s
p
o
n
s
e

%
r
e
s
p
o
n
s
e

161

Response of 0
learning net

Response of A
learning net

100

50

0.

-j i 100 - ii; 11 i 1QJW
1 o 50“ \

1uL, ! a I*4 f i Ì « ([; ji I n 1 ![1 { j \ j
\ \\

* o\o \ / /'u 1....... ~ T ~ ~ 0 ■--- : — tt
0 ^ 10Ó1' 200 300

No. of input steps

(a) when trained

0 ^ 100^
Steps

indicates when the net
is taught

200

steps

300

(c) when tested with A

Figure l\A3

steps

1 6 2

correct classification could be obtained by detecting the

highest peaks in the response „ In general, however, this

method has produced many more problems e.g.

1. When classifying, the frequency of occurrence of the

peaks should also be considered and this is

complicated by the fact that the input sequence

frequency 'beats' with the teaching frequency. This

can be seen in Fig. 4.4.3.

2. When teaching a set of input patterns, they should all

be synchronised i.e., teaching should only occur at

the same relative positions for each input pattern.

Chapter 5
The Learning Elements And Networks

In this chapter the learning elements used in

the learning networks are considered in detail. The

element from which the others have been derived is the

SLAM-16 and this is described in section 5.1.

The way in which this and alternative elements

may be organised to distinguish between two classes is

considered and, in section 5,5, the different elements

are compared.

5.1 The SLAM Element.

5.1.1 The SLAM-1 6 .

A SLAM (Stored Logic Adaptive Microcircuit) is

a random access memory (RAM) used as an adaptive logic

gate. A SLAM-16, for example, is a 16-bit RAM and

therefore has four address inputs, which are the data

inputs for that element. If a 1 is written in to the

memory for a particular 4-bit input pattern, then this

element will produce a 1 at the output if this input

pattern reoccurs. It can also be taught to associate a

0 output for a particular input pattern. The writing

input to the memory is referred to as the teach terminal.

An illustration of a SLAM-16 showing its terminal functions

is shown in Fig. 5.1.1.

A collection of these elements has been connected

c3 HBTSAH3
3>i?iOWT3H CWA STMBMBJB SHIHflABJ 3HÌ

ni fi ©an s à n a m s L a T g n i a i ß a l -arid isdqsrio aifíd" ni

ariT X isdôfi ni fisiafiianoo aïs a^iiowdan çai-tvxm&L add

arid si fisviisfi naad avari siarido arid rioiriw mold dnamala

.1.5 noidoae ni badxioaeb ai airid fins ÖI-MAJ3

adnsmaia avidsndsdls bns airid rioiriw ni y ^w ariT

ai aaàaslo owd naawdad riaiuçnidaifi od basinspio ad y sììi

adnamala dnaiaiiib arid ,2.5 noidoea ni ,fons fiaiafiianoo

.fiaisqmoo oís

.tmbmbjB MAJ2 hhT ì,c
■5X-MAJ8 ariT 1.1.5

ai (dinoiiooioiM avidqsfiA oipoJ bsiodS) MAJ3 A

Dipoi avxdqsfis ne as b e a u (MAH) Y^omsm aaaoos mobnsi s

bns MAH did-dl ß ai ,aiqmsxa noi ,dl-MAJB A .adsç

sd'Bfi arid s i & rioiriw , adnqni a e ai fifis di/oì asrf a noi ai arid-
\

arid od ni naddiiw si I e il .dnamala dsrid ioì adnqni

airid norid , m a d d s q dxiqni did-i* isluoidisg s io'ì y i omafa

dnqni airid di dnqduo arid ds I s aonfioiq Xliw J n & œ a L a

s adsiooaas od driçnsd ad osls nso di .aiuoooai m a d d s q

çnidiiw ariT . m a d d s q dnqni islnoidisq & xoi dnqdno 0

»Xsnimiad dossi arid as od fiaiiaìai ai Ydoma/a arid on dnqni

ano!donni Xsh¿miad adi oniworia- 5I-MÄJ3 s io noildsidanXXi nA

.1.1.5 .pii ni nwória ex

badoannoD naad asri a dn amai a aaa.id io noidoallod A

164

X 1 ----^
N,

“ 2 ?

V __ ..."x“ 3 ?

>«.
*4 2

Pattern Input
(address
terminals)

SLAM-16

(16 bit RAM)

7 V

OUTPUT
F

Teach Input Clock Input
(data input) (data write strobe)

In the general case the n input SLAM contains

2n binary storage elements, (j)̂ - and is called a

SLAM-(2n) „

The function of the element is defined by:

j=2n~l
F = U *3

j=0

where <x^> is the jr minterm of the inputs X^ - Xn -

The teaching function is defined by:

4>j * = <Xj>„T„C + .c".<xV>

where <j>̂ ' is the next state of <j)j

T is the Teach Sense Input value

C is the Teach Clock Input value.

Figure 5,1,1

165
to form a learning network. Usually the inputs of the

elements are randomly distributed in an input 'retina'

so that each SLAM samples a random 4-tuple of this total

input. The learning network can be taught to associate

any one pattern applied to the teach sense terminals

with a particular pattern in the input space. Hence,

after teaching, if that input pattern is reapplied to

the learning network the taught pattern will be generated

at the output.

A learning network of these elements is able to

generalise, in that if it is taught to output a particular

response for a class of input patterns then it will output

a similar response when tested with an unseen pattern

which is similar to the training patterns in Hamming

distance. This has been dealt with in d e t a i l ^ for the

case where the learning network is initially reset and is

then taught to output all 1 's for a set of input patterns.

Throughout this project only SLAM-16s have been

considered. The effect of varying the number of inputs of

the elements for the tasks which have been considered here

is not known. It is almost certain that four inputs per

SLAM is not the optimum and it must be understood that

this is a constraint on the system. Further work could be

carried out on trying to discover the optimum for this

task. This is considered to be outside the scope of the

present thesis. The SLAM-16 was used as the hardware

learning element in the 'Minerva' learning machine (see

section 5.2) and it is also convenient to use one 16-bit

word of the computer store in the simulation of such an
element.

166

5.1.2 The 2-class learning network.

1
A task which is often required of learning

networks is to distinguish between two classes of inputs,

(e.g. the tracking system learning modules, see section

3.2.1).

This is usually achieved by using two learning

networks, one for each class. These learning networks

are initially reset and are taught to output all l's for

their particular class. The class of an unseen pattern

is decided by the learning network with the highest

response. The performance of such a learning system, if the

sameinput mapping is used for both learning networks, is

similar in basic structure and performance to a single

learning network ofT„R.SLAMs which is described in detail

in section 5,5,4,

Another, usually less successful, method is to

use one learning network, This is taught to give an output

of all l's for one class and all 0 's for the other, and

the response to a test pattern is obtained by summing the

number of l's appearing at the output. This response can

be compared with a threshold (usually set at 50%) to

decide the class of the input.

This network may be realised by SLAM-16s. All

the teach sense terminals are connected together so that

all l's or all 0 's can easily be presented to them and

all the teach clock terminals are connected together so

that all the SLAMs may be simultaneously taught. This

167

network will always reproduce the response for the last

pattern taught. However, especially if the Hamming

distance between the two input classes is small, the

learning network will be unable to give the correct maxi­

mum or minimum response to patterns used for training

but may give a response great enough for the two classes

to be distinguished.

5.2 M i n e r v a ,

Minerva is a hardware machine which contains

1280 SLAM-16s. These SLAMs are organised in two layers

1048 in the first which have their outputs connected to

256 in the second. In this project, the second layer

has not been used and no further reference will be made

to it.

Minerva is organised into 256 cards each contain­

ing 4 SLAM-16s. One card at a time is accessed by the

computer. This can be done by outputting its address

directly from the computer, or by incrementing a hardware

counter in Minerva through a consecutive stack of cards.

One of these cards is shown in Fig. 5.2.1. The input is

a 16-bit word from the computer, common teach-sense and

teach-clock terminals are available to the computer (via

pulses on output control lines) and a 4-bit output from

the card is input to the computer.

1
6

b
i
t

I
N
P
U
T

W
O
R
D

168

TS TC

Figure 5,2,1 Minerva Card Organisation

O
U
T
P
U
T

169

In all possible cases, experiments have been

conducted both with Minerva and by computer simulation

of SLAMs. The advantage of Minerva is that it is about

50 times quicker than the simulation. The main

disadvantage with Minerva is that the teach sense and

teach clock terminals are common for sets of 4 SLAMs and

for many structures it is desirable to access these

terminals separately. Minerva is being further developed

and in the future separate access to these terminals will

be possible.

5.3 Probability Learning Networks.

The probability learning network is a structure

of SLAM-16s in which an attempt has been made to reduce

the effect of the last pattern taught. This structure

is primarily intended for cases when the learning network

is taught to output a response as described in section

5.1.2. The problem with teaching all the SLAMs for one class

is that when the two classes are similar then many of the

4-tuple samples input to the SLAMs will be common to both

classes and information in these SLAMs will be continuously

overwritten as the alternate classes are taught. Hence,

there will be a bias towards the last class taught.

To overcome this bias, the probability SLAM

network is used, in which only a randomly chosen fraction

of the network is taught for each input pattern. This

has been designed to be realised with Minerva or by

170

simulation. A standard size learning network of 6 4
SLAM-16s has been chosen for this structure, although in

practice, any multiple of 16 SLAM-16s may be used in the

same way. The structure of this learning network as

realised by 16 Minerva cards is shown in Fig, 5.3.1. The

input matrix is 16x16 bits (i.e., the standard size for

the software system). The output matrix is 4x16 bits

which may be summed to obtain a response as before. All

the teach sense terminals are connected together and

hence they can all be set at 0 or 1 depending on which
class is being taught. The teach clock terminals of the

different cards are connected to different bits of a 16-bit

teach clock vector. Only the cards which are associated

with bits in the teach clock vector that are set to 1 will
be taught.

The teach clock vector is generated by a random

number generator which is designed to set N bits randomly

in a 16-bit word. Where N is a preset, value (L£N<16) and

determines the fraction of the learning network to be

taught when it is clocked.

Hence, if N = 4 , for example, a randomly chosen

quarter of all the cards will be taught at a time, if N=1

then l/16th of the cards will be taught at a time.

The advantage of this learning network is that

if N=1 for example, then only 1/16th of the SLAMs will be

taught to the last class taught. Hence, only in the

order of l/16th of the SLAMs common to both classes will

1
6
x
1
6

b
i
t

I
n
p
u
t

M
a
t
r
i
x

171

16 bit 4 bit

16 bits

ORGANISATION OF A PROBABILITY
SLAM LEARNING NETWORK

Figure 5,3.1

4
x
1
6

b
i
t

O
u
t
p
u
t

M
a
t
r
i
x

172

be taught to output for the 'last class taught'.

The main disadvantage of this learning network

is that if n=l, for example, only l/16th of each input

pattern will be taught to the learning network and the

rest will be ignored.

One method of teaching this learning network is

to start with n=16 so that the learning network is rapidly

taught and then, as teaching progresses, decrease n

slowly until n=0. In this way the effect of the last

pattern taught is removed. This method of teaching with

(14)'aging' has been investigated elsewhere .

The performance of this learning network is

investigated in section 5.6.

5.4 The Cumulative Learning SLAM Element.
5.4.1 Structure of the element.

The Cumulative Learning SLAM, or CL SLAM, has

been developed to be sensitive, during training, to occur­

rence frequencies of n-tuples and, in this way, to overcome

partly the bias towards the more recently taught patterns.

The CL SLAM has a numerical output the value of which is

related to the frequency of occurrence of the input

pattern during training.

173

The CL SLAM contains a stack of normal SLAMs.

Fig. 5.4.1 shows a 4 output CL SLAM-16. Hence, 4 bits

of output information are associated with every 4-bit

input pattern. The teach clock terminals are connected

together to form a single teach clock terminal for the

element. The four outputs from the element represent a

4-bit binary number. The output number is fed to an adder

unit which is connected to the teach sense terminals of

the SLAMs. The teach sense input for the element is also

connected to the adder unit which works on the following

principle. When the teach sense terminal is 1 the output

is made 1 higher than the input. When the teach sense

terminal is 0 the output is made 1 lower than the input.

Saturation occurs at 15 when ascending and 0 when descend­
ing. (When this element is used for the 2 class learning

network saturation occurs at 1 when descending so that a
mid value '8' exists which corresponds to a 50% output).

Therefore, when an input pattern is taught to

the CL SLAM and the teach sense terminal is 1 then the

SLAM will be taught to output a number one higher than

it did for that pattern before teaching i,.e,, the number

associated with that input pattern is incremented by o n e .

Hence, if the teach sense terminal is held at 1,

the output number represents the number of times that the

input pattern has been taught until, for a 4 output

element, the output reaches 15. Then the system saturates

and continues to output 15 unless the element is taught

with the teach sense terminal at 0 and then the element

174

*1
x2
Xo

X,

TC TS

Figure 5,4,1 Structure Of A 4 Output CL SLAM-16

175

will output 14. The system similarly saturates at 0

when descending.

The concept of frequency of occurrence counting

for n-tuple samples have been investigated by Bledsoe and

Bisson^ ^ * where they use computer stored matrices for

recording the exact frequency of occurrence of each n-tuple

input pattern for each class during training. The CL SLAM

described above if not allowed to saturate is capable of

a similar function.

The CL SLAM may be realised in hardware by two

standard integrated circuits, a 64-bit memory and a 4-bit

adder and it could easily be made on a single MSI

(39)integrated circuit. A patent has been applied for for

the concept of the CL SLAM.

The CL SLAMs that have been used for this

project are 4 output CL SLAM-16s hence, they require 4

times the amount of store used by a SLAM-16.

5.4.2 CL SLAMs in a 2 class learning network.

The CL SLAM can be organised to perform the

two class learning network problem described in section

5.1.2. The output numbers from the CL SLAMs are numerically

summed to give an overall response. Teach sense and teach

clock terminals are connected together, as before. If a

particular 4-tuple pattern occurs for one class only, then

this CL SLAM will eventually saturate and give a large output

176

denoting an important feature. If a 4-tuple is common to

both classes then the number associated with it will be

incremented for one class and deincremented for the other

and should remain near the neutral value '8 ' which

indicates neither class.

With this learning network, the last pattern

taught can only produce a maximum of l/16th change in the

overall responses, and also every bit (as opposed to the

fraction in the last section) of all the input patterns

is considered during teaching. The cost for this is that

with 4 output CL SLAMs 4 times the amount of store is

required. The performance of this learning network is

investigated in section 5.6,

5.5 The Ternary SLAM Element.
5.5.1 The T ,R , S L A M .

The Ternary or T.R. SLAM has been developed

primarily for extracting features, especially where cycling

is concerned» and the output of these SLAMs are used for
feedback, as seen in section 4.2.3,for the classifier code
net. The aim of the system is to distinguish between unseen,

ambiguous and unambiguous n-tuple patterns. Only the latter

are said to be 'valid'. There are two reasons for which the

output of a SLAM could be considered as not being valid.

Firstly, if the input pattern had not occurred during

training, then the output is the initial value before

training and hence of no informational value. This is the

177

'unseen' case, Secondly, the input pattern may be common

to both classes and takes the value of the last class

taught. This is the ambiguous case.

With a normal SLAM output there is no informa­

tion indicating if an output is valid or not. The Ternary

element has three output states 'valid' 1, 'valid' 0 and
'not valid'. (In practice, there are two distinct 'not

valid' states but this fact is only used internally by the

SLAM) .

A T.R. SLAM-16 is shown in Fig. 5.5.1. Two

SLAM-16s are used with their inputs coupled together,

hence there are two bits of information associated with

every input pattern. There are two binary outputs from the

T.R. SLAM. One is called the 'data' output and the other

the 'valid' output. There are four possible output states

and these have been defined as follows.

Valid Data

0 0 => unseen

1 0 => taught 0 f
unambiguous

1 1 => taught 1J
0 1 => overtaught (ambiguous)

Initially, both SLAMs are reset and all outputs

are in the untaught state., When taught a 0 or a 1 the

valid output becomes true and the data output indicates

the value taught. If the output is valid and it is taught

to output the opposite value to that which it is already

178

r Last
Valid
Output

Data
Out­
put

Valid
Out­
put

TSV = V.D + V.(T 0 D)

Figure 5,5,1 Organisation Of A T,R, SLAM-16

179

valid for the fourth state, the overtaught state, .is

entered. This last state is permanently 'not valid' and

no further teaching will have any effect until the T.R.

SLAM is reset again.

j

The above output states can be realised in

hardware by the logic shown in Fig. 5.5.1. The two teach

terminals are connected together and form a common teach

clock terminal. The extra logic generates the required

values for the two teach sense terminals and the Boolean

equations which are realised by this logic are also given

in Fig. 5,5.1.

To construct T.R. SLAMs the teach sense terminals

must be accessed separately and this is not possible with

the present form of Minerva, hence, all experiments with

with T.R. SLAMs have been done by computer simulation.

5.5.2 T.R. SLAMs used in the classifier.

When using T.R. SLAMs in the code net for the

classifier (see section 4.2.3), a lot of overteaching was

experienced, hence for the majority of the time which the

input sequence was applied, the output of each T.R. SLAM

was not valid. However, the output of the SLAMs is fed

back to the classifier and this feedback must have a

value even when the T.R. SLAM output is not valid. To

overcome this problem the 'last valid output' is remembered

and is fed back to the classifier until another valid

output occurs.

180

This additional memory may be added to the

T.R. SLAM element by the use of a D flip-flop as shown

by the broken lines in Fig. 5.5.1. When the valid

output is true then the output of the flip-flop follows

the input (which is the data output). When the valid

output is false then the last valid data value is

retained by the flip-flop.

5.5.3 Two features of T.R. SLAM learning networks.

When using a collection of T.R. SLAMs for a

learning network two additional features of the learning

network can be observed. Firstly, after training, the

stores of the SLAM elements can be examined and the number

of untaught, valid taught and overtaught states can be

obtained. From this information some measure of the

usefulness of individual n-tuples can be obtained. Also,

some measure of the expected performance of the learning

network can be obtained from this information. This

feature has been used in analysing the classifier (see

section 4.3.3). Secondly, when, after training, the

learning network is tested the number of valid outputs

which occur can be used to generate a confidence level

for the response of the learning network. This feature

is used by the classifier and is also considered in the

experiments in section 5.6,

The main disadvantage with the T.R. SLAM is

that if it is taught a rogue pattern (e.g., a pattern of

the wrong class) then many of the useful valid states will

181

be overtaught and made permanently invalid.

If it was realised that a rogue pattern had been

taught some recovery could be made by setting all the

overtaught non-valid states to untaught non-valid states

and then training could be continued. In practice, this

could easily be achieved by scanning through the 16 states

of each T.R. SLAM and changing the overtaught ones as they

occur.

5.5.4 T.R, SLAMs in a 2-class learning network.

The T,R. SLAM can be organised as a two-class

learning network (i.e., for the task described in section

5.1.2). The teach-sense terminals and teach-clock

terminals are connected together as with the normal SLAM

learning networks. The output response must be calculated

in a different way. For a normal SLAM network the number

of outputs which are 1 are summed and expressed as a
fraction of the total number of SLAMs. For a net of T.R.

SLAMs the number of valid outputs which are 'one' must be

expressed as a fraction of the total number of valid outputs.

The total number of valid outputs should also be noted to

give a confidence figure for the response.

For example, if for a learning network of 64

T.R. SLAMs only one output was valid, then the response

would be 100% for the class of that output. This decision

has been made by considering only one unique 4-tuple of a

182

256-bit input and it is important to indicate this fact.

Noting the number of valid outputs will achieve this e.g.,

if the output is stated to be 100% for a class when only

l/16th of the learning net output is valid.

For a learning network of N TR SLAMs used in a

two-class classifier it is possible to express both the

data response and the valid response in terms of a total

response 'R' which may be defined by the following

formula

R = (D + 2lV)

where R is the total response (% of N)

N is the total number of T.R. SLAM elements

D is the number of 1 valid outputs

V is the total number of valid outputs

(e.g., if there is only 1 valid output and its value is 1
and N=64, then the total response R=50.9%).

The above learning network has not been investi­

gated directly in the tracking system experiments. However,

if one considers the maximum-response learning system

described in section 3.3 the structure used there is very

similar to a net of T.R. SLAMs. For the case where the

input mappings are identical (see section 3.3.5), the

performance of that tracking system is identical to that

of a learning network of T.R. SLAM-16s when a two-level

threshold is set at the output.

183

5.6 Experiments With 2-Class Learning Networks.
5.6.1 The structure of the experiments.

To illustrate the properties of the different

SLAM elements described in this chapter and to compare'''the

performance of these elements when used in the two-class

learning mode two experiments have been conducted. The

learning networks which have been used are described in

the following sections

Normal SLAMs 5.1.2

Probability Learning Networks 5.3

CL SLAMs 5.4.2

T.R. SLAMs 5.5.4

These experiments were conducted with the sub­

system shown in Fig, 5.6,1. More details of this subsystem

are given in section 6.4.2,

When a 16x16 bit input pattern is presented to

the subsystem it is randomly mapped into a second 16x16

pattern. This second pattern is then presented to the

different learning networks. Hence, the same 4-tuples are

sampled by all the learning networks. The teach-clock and

the teach-sense terminals of the different learning networks

are commoned together. Hence, all the learning networks

receive the same input data and the same teaching stimulus.

All the outputs are summed to form a response as described

in the relevant sections above.

184

Teach Teach
sense clock
input input

Figure 5,6,1

185

Before an experiment is conducted, the SLAM

stores are initialised in the following way. For the

learning networks which contain normal SLAM-16s half of

the SLAMs are set and half are reset hence a 50% output

response will be obtained for any input pattern. The CL

SLAM learning network has all its stores set at 8 hence
this learning network will also output a 50% response

to any input pattern. The T.R. SLAM learning network has

all its SLAMs reset hence no valid outputs which implies

a 50% response.

5.6.2 Dependence on last pattern taught.

The first experiment is designed to demonstrate

how the last pattern taught affects the performance of

the learning networks.

The input data is in the form of two sets of

handwritten characters on 16x16 matrices. The characters,

chosen for the two-class, are '3's and '8's which is a
difficult task as there is only a small Hamming distance

between them. Each class contains 260 patterns.

The experiment is conducted in the following way;

1. The first 3 is taught to the learning networks

to output a high response,

2» The average response of the learning networks

for the next ten (i.e., untaught) 3s is

obtained.

186

3. The average response for the first ten

8s is obtained*
4. The first 8 is taught to output a low

response.

5. The average response for the next ten

3s is obtained.

6. The average response for the next ten 8s
is obtained.

7. The second 3 is taught for a high response.

The above sequence is repeated 250 times, then the learning

networks will have been taught 250 patterns for each class.

The average response to the next ten untaught

patterns is used to measure the performance of the learning

networks with respect to that class. A standard test set

was not used as with only ten patterns it may not be typical

of the class*

From the results of this experiment four graphs

have been drawn for each learning network by plotting the

average response versus the number of patterns taught.

The graphs show the following response:

LALH (Low After Last High) this is the performance

of the learning network to the low response

class (8s) after the last pattern taught was

of the high response class (3s) .

HALH High performance after last class taught is

high.

187

LALL Low performance after last class taught

i s low.

HALL High performance after the last class

taught is low.

These graphs are shown in Figs. 5.6.2 to 5.6.7

and we recall that the object is to separate the high

from the low.

In Fig. 5.6,2 the graphs from the normal SLAM

learning network are shown. The last pattern taught

alters the response to both classes by about 20%. This

implies that about 20% of the input 4-tuples are common

to both classes. There is a lot of confusion between

LALH and HALL graphs in the range 40-60% response. This

means that a threshold cannot be set at 50% to separate

the two classes. It may be possible for a threshold to

be set at another value but to do this one must know which

class was the last one taught. After the first ten pairs

of patterns have been taught, further teaching has very

little effect on the performance.

In Fig. 5.6.3 the graphs for the probability

learning network with n=l are shown. For this case,

learning is much slower as only 1/16th of the learning

network is taught at a time. About 100 pairs of patterns

are required to teach the learning network so that further

teaching has little effect. The shift due to the last

pattern taught is in the order of 1-2% for the responses

from both classes. This agrees with the expected value

P
e
r
c
e
n
t
a
g
e

R
e
s
p
o
n
s
e

1 0 0 _ _

N S L A M N e t R e s p o n s e

75

50

HALH

; * »
¡Uii I S (\\-j w; }

25 —

i 5 » i*

s i n \
M

% y y
■ ; r' j V

;<i ■ !;,] F i p
V ii' i p 1/ !i

A
;l i f

- p i
1

J N ,1 l ij « t

y p V i i
•• 4 i)

.p ji
\j> i '

r%Ì1

. f j * n u . . -j a -3 ilM j! 4 ¡1 , fil f? iI ; J .I : JJ I i . j '
- i $jw4 j'| «!• \ V ii HI* I V * jw lj tH,

si -5M /,‘u * it - fl *) id hi l■ ' ! I ii

:V 4

I /«fifiijj y n, h>i\ <, jiiUi ‘i

!%h> s ll4u! U \illl '■

: 1 ' ■ \
'

■<- HALL

j]) liii
LALH

’V ,J|
LALL

^ * K

0
»

n I.'I I I -

0
i
50

I
100 150

Patterns Taught

Figure 5,6,2

200
I

2 50

1
8
8

Pe
rc
en
ta
ge
 R

es
po
ns
e

100 P r o b a b i l i t y S L A M N e t R e s p o n s e (P r o b = 1 / 1 6)

f " v’ V
h J K j. /i »,

W W ^ fffc / W ** wIf*

vfó

^— HALH

^ HALL

w v ' V
LALH

^ LALL

25 —

0

0
~r
50

r
100

r
150 200

~ r
2 50

P A T T E R N S T A U G H T

F i g u r e 5 , 6 , 3

1
8
9

Pe
rc
en
ta
ge
 R

es
po
ns
e

P A T T E R N S T A U G H T

F i g u r e 5 . 6 . 4

1
9
0

Pe
rc
en
ta
ge
 R

es
po
ns
e

100 - ,
4 O u t p u t C L S L A M N e t R e s p o n s e

« A / Hr
& J

A x

V

:■
TS

£
4, «

HALH
HALL

a v** f
i RV

LALH
LALL

25-

i—1
VO

I
I

~r------------ t------- -------r~
50 100 150

P A T T E R N S T A U G H T

F i g u r e 5 , 6 , 5

o —.

o
F

200
~r
250

er
ce
nt
ag
e

Re
sp
on
se
1 6 O u t p u t C L S L A M N e t R e s p o n s e s

50,04 _

50.00

to 49.96

j J

>\/
M / ;i * r HALHä hall

'N, * A
\. Ar*

A a
VA

itV
y f V

LALH
LALL

0
T ”
50 100

~ r
150

~T~
200

~ n
2 50

P A T T E R N S T A U G H T

F igure 5 , 6 , 6

192

P
e
r
c
e
n
t
a
g
e

R
e
s
p
o
n
s
e

60

T . R . S L A M N e t R e s p o n s e

50 -

L

! M

A
1 ^ 1 __ HALH

HALL

1 pJS j
i -'Vs f t fJ
1 y v

40

r
o

_ T

50 100 150
r

200 250

P A T T E R N S T A U G H T

F igure 5 ,6 .7

H»
VO
U)

194

which is l/16th of the value for the normal SLAM learning

network i.e«, 1,25%, The graphs for the probability

learning network with n=4 are shown in Fig. 5.6.4. The

separation between the classes is about the same.

However, only about 30 pairs of patterns need be taught

before further teaching has little effect. The shift due

to the last pattern taught is about 5% which is the value

expected i.e., \ of the effect which was observed with

the normal SLAM learning network.

In Fig. 5,6,5 the graphs for the CL learning

network are shown. In this case there is a rapid improve­

ment in the performance for each class while the first 30

pairs of patterns are taught. Then the CL SLAMs begin to

saturate and further improvement is much slower (~5% for

each class after the next 200 pairs of patterns have
been taught). There is about 2% change in performance

due to the last class taught which agrees with the expec­

ted value of 1/16th of the normal SLAM learning network

response i.e,, 1.25%. The separation between the classes

is better for the CL SLAM learning network than for the

other learning networks tested.

To find the effect of not letting the CL SLAMs

saturate,this experiment was performed on a learning

network of 16 output CL SLAM-16s. These CL SLAMs can be

incremented 32,768 times in either direction before

saturation occurs. Hence, with a training set of 250
, i

patterns of each class saturation could not occur. The
0.

graphs for this learning network are shown in Fig. 5.6.6,

195

the Y axis scale has been magnified as the maximum change

in response possible is only 250/32,768=0.8%. The effect

of the last class taught is negligible. There is a

steady improvement in the performance of this learning

network while the 250 pairs of patterns have been taught.

This learning network uses 16 times the amount of active

store which is used by the normal SLAM learning network.

In Fig. 5.6.7 the graphs for the T.R. SLAM

learning network are shown. The Y axis scale has been

magnified for clarity. It must be remembered that the

responses are obtained in a different way for this

learning network than from the others in that the concept

of valid outputs is implemented. After the first 20

patterns have been taught the shift due to the last pat­

tern taught becomes negligible. The separation with this

system becomes worse as teaching progresses. This happens

because the learning network cannot forget anything it has

been taught. In this experiment the input data is very

diverse in Hamming distance and contains many poor

examples of both classes. This 'saturation' of the

learning network could be partially overcome by employing

an algorithm which would reset all the overtaught states

(as described in section 5,5,3) after a set number of

patterns have been taught.

5.6.3 Classification ability.

The second experiment was designed to demonstrate

and compare the ability of the learning networks to

classify the characters of each, class.

196

For this experiment the learning networks were

organised to have equal amounts of active store. The

CL learning network contained 64 4-layer SLAM-16s, the

T.R. SLAM network contained 128 T.R. SLAM-16s and the

probability and normal SLAM learning networks contained

256 SLAM-16s each (hence, they cover the input matrix

four times)„ By increasing the active store in this way

one would not expect an improvement in the performance

of the system, one would merely hope that the results

obtained with the system would be more consistent.

The learning networks were taught 50 patterns

of each class alternately (i.e,, in the same way as for

the first experiment), The number of errors made with the

training set of 100 patterns and with a test set of 100
patterns (50 of each class) was then obtained.

These results are as follows:

CL

2

10

Learning Network

Normal Probability T.R.
— n=4Errors for training

31 14 0+2
set of 100 patterns

Errors for test set
46 32 13+5

of 100 patterns

197

Two figures are given for the T.R. SLAM learning

network. The first is the number of wrong classifications

and the second is the number of occasions when there were

no valid outputs hence, no classification could be made.

It is not possible for the T.R. SLAM learning network to

misclassify any of the training set.

For the normal SLAM learning network all the

errors were made for the first class i.e., the opposite

class to the last class taught.

For the first experiment the average performance

of the probability SLAM learning network appeared similar

to the performance of the CL SLAM learning network (see

Fig. 5.6.4 and Fig. 5.6.6) , However, the actual perfor­

mance of the CL SLAM network is in fact far superior (10

errors for the test set compared with 32 for the probability

learning network) .

The input data used was of a very poor quality

to ensure that a comparison between the different learning

networks could be made. Examples of these patterns are

given in Fig. 5.6.8,

198

fl B 8 B
9 9 9 9

It

B

B
0
B

B
B
B

fl .
fl fl
B B
B
e

............ B B B B B B B . . .

............ B B . . B B B B . .

......................... .. B B •............ .

.............................. B fl

.......... . . . B B B f l B B B

..................B B fl B B fl •

..................6 6 B R B . •

...................... B B S S * •

........................... B B S *

.............................. fl B

............................B B S

. . . . B f l B B f l . B B B B .

...................... B 0 fl B • •........ .

................. B 6 . . . B B .

................. B B . . . B

................. B . . B B

................. B B

...............A B B

..........8 B B . 8 B

. . . . B B S . . 8 8

. . . . B B . . 8 B 6

..........B B B B B

. . . . B f l f l f l B f l . .

. . . A B B S f l B B . .
• B B B B
. B A BB B
B B Sf l . .
B f l B B B * B B f l f l . .
B B B B f l f l f l B B . . .
. . f l f l f l f l f l f l B . . .

• . 8 B B . . B B . • •
• . B fl • . B B S * . •
. 8 6 * . B B fl . . • •
. f l f l . B f l f l
. 6 6 8 0

. . . . B B B B

. . B B B • • B

. 0 B I • • • I

. 6 B • . • B B
a B . • . B B B
B B . . fl B B .
. . . B B 8 . .
. . . B E . . .
. . . B B B 8 •
. B B B
.............B B
............... B
B B B 6

B

............

. . . . B 6

. . . . B B
• • • « B B
. . . . D B

B B D B B
B 8 . . .

B . . B B
B B B B B
B B B B B
B B B B B
B B B B B
B B B 8 8
8 B . . B
6 B . . B
B B B B B

B B B B
• B B B

. . B 6 BBBBBB
B B B B .
B 8 . . .

B . . .
K B . .
B B . .
B B . .
B fl . .
B B . .

.............B H B B B B B B . .

.......... B B Q B B B B B 8 . .

. . . . 8 B B . . B . . . 6 B .

. . . . a a b b

. . • . B B B B B

..............8 6 6 3 6 . . . 8 8 .

.............. B B B B B B B B B .

...................... B B B B B . .

................. B B B B B B B H .

............ B B B B 8 8 .

.......... B B SB B .

................. B B . . . B 6 B .

. 0 •
B B B
B B 0

. . B

B B B B
B B . B
. . B B
. 8 B B

B
8
8

6
B
B
B
B

B B

. B

B
B
B
B
B

B 8 6 • . 6 8 6 .
. B B S .

. . . B A B B * .

. B

.............6 B

............... B
B B 0 B . B 6 .
. . B B S S . .

. B B B B . . . B 6 6 6 B 6 0 B P 8 8

. B O B B B D B B B B B B B B B . .

. B B B B B B B B B B B B B B . .
• - 6 B B B « 8 B B B B B B E H . .
• B B - 5 6 6 6 C . . . B D B .

B B O B . « . . . B 6 A - . . . B B B D .
B G S B . . . • . . B 6 6 E B G C B B B . •
• B E . . B B B B B B B B B B B
. B B B B B B B

. . B B B

. . B B B

. B B B

. . B B B B 6

.......... B B 0 0 , .

.............B B C . ,

.............E B B . .
B B B . . B B 0 G . .
B B B B B K B B B . .

8 B 6 . . . B B
.............. B fl
.............. B B
.......... B B .
. . . . 8 G B .

. B

. B

. B

. B

.............B

.......... B B

. . . . B B .
B B B B B . .

• B B S
B 6 D B B B . . .
B . . 6 B G . . .
.......... 8 . . .
B B . . .
6 . . . B E . . .
B 6 B B B B . . .
B B B B B B . . .
B B B B B B B . .
D B . .
G B • •
G BB
B B S . . . 8 . .
B B B B B B 6 . .
B B B B B 8 . . .

..................BBS

................. fl B B B

.............8 B B . .

.............B B S . .

................. fl B B .

............... B B B B

..................B B B

.............B B B B B

.......... 8 fl B B B B
« . . . B B B B . . 8
. . . . fl B B D fl B B
. . . . B B B B B G 8
.......... .. 8 B B B B

BABBO
fl B B B G
B B B B B
. . B B S
. . 8 8 .
8 B B . .
B B f l f l .

• B B G . B • • • • • • • • • • • • 8 8

. B B B B G f l B . . .

B B B E B B * .

8 B B B 8 B B 6 B 6 6 B B B B * .

. B G B B 8 . . .

. B B B B B B B B B . . .

.......... B B B B B . . . B B S 8 B B B B B B 8 .
• • • « G B G « . . B B B B B B B . . . O B B B
. . . . B G B B B B 8 B 0 E B
. . . . B B 8 . . B B B B B B 6
. 6 B G B B 8 0 8 . . . 6 8
. B f l B B 8 B B G B G G
. B B B B S B B B B B B
. 8 8 . . 8 8 B B S S .
. B B . . . B B B G B f l B
. 8 B . . B B B B B . B B
. B G . G B f l 8 8 . * 6 B
. B O O B B B B . B B .

B B B B B B B B B .
B B B B B B
. BB B...... fl 8
................. B fl
............... B fl .
B B B B B B B f l . .
B B B B H 6 B G . .

................................ B

................. . . < . B 6 fl

.......... B B . • • . 8 8 6 6

. . . . B B B B . B B B B B .

. . B B B B B B B B
B B B B B . . B B S
B B B G 8 •
.............fl 6 B .
............B B B . .
.......... .. B B . .
............ B B B . .
.......... . 6 0 6 .
............... B B .
• • 8 B 8 .
. B B fl B .
. . 8 0 . . B B S .
. . B 0 B B B B . .
. . . B B B B B . .

. B B
8 B B
B B B
6 B G
. 8 B
. B 8
. . 8
. . B
. 8 G
. 8 B
. B B
. G B
. B G
. G G

B B B K 6 B B . .
B • . B B B B B .
.......... B B S .
. . . . fl E B B 0
. . . B B 0 fl B •
B G B B B . . . «

B B B B

. . 8 B B 8 0 B

. B B . . B B B

. 8 8 . . . B 8
• B B B
. B B . . 6 B B
. 8 8 B B B 0 .
. . B B B B . .
. . B B B B . .
. B B fl G fl fl .
. fl B . . 8 8 .
R G B . . 0 9 .
B B . . . B fl .
6 G 6 . . B 0 .
. B B 8 B fl • .
. . B B

Figure 5,6.8

Chapter 6
The Software System

In this chapter the software used for the

experiments in this project is considered in detail. The

aims and basic structure of the software system have been

outlined in section 2.3.

In the first part of this chapter the main

program and executive modules are described in detail. In

the second part of this chapter the structure and function

of the main experiment subsystems is described and a

particular subsystem (experiment 9 which is used in Chapter

5) is considered in detail. A list of the routines which

are available to a user when writing an experiment subsystem

is given in Appendix 2.

6.1 Details Of The Software System.
6.1.1 Structure of the system.

The structure of the system and the design

considerations which led to this structure are considered

in section 2.3. The final structure consists of a set of

modules which may be classified in the following way:

1. A main program, this sets up the work­

space and allows on-line access and manipu­

lation of pattern data within this workspace.

2. An executive program which controls all

the peripherals.

200

3. An experiment subsystem to conduct the

experiment.

4. A library of subroutines to be used by

the above three modules.

5. An optional debugging module which may

be loaded into the workspace when needed.

The main program and the executive program are

described in sections 6.2 and 6.3 and then experiment sub­

systems are described in section 6.4. The library is a set

of routines called by the other modules. When operations

are carried out by library routines this is mentioned in

the descriptions of the modules. The Debug program is

(3)described elsewhere ' ' . A special version,developed for

the system,contains all of the functions of the normal

version, but is linked to the system via the executive

module.

Examples of some of the functionsavailable are given

below:-

1. Break points - Programs may be stopped, examined and

restarted at locations defined by the

user.

2. Core Insertion & dumping - DAP-like programs or data

can be typed directly into the store,

also the store can be dumped in either

data or instruction formats.

201

3. Core Searching - Selected areas of core store can be

checked for particular instructions

or data words (or parts of words)

and the locations where these occur

will be output.

6.1.2 Inputting information to the system.

The system has been designed so that when a user

wishes to input information to the system via the command

device there are three standard formats which he can use.

1. A one- or two- character mnemonic. This format is

usually used in a command status to specify the different

functions available.

2. An integer number. This is assumed to be decimal but

by preceding it with 'B' it will be binary or ,#l it will

be octal. After the number has been input it must be

terminated by a space or ', ' or '.' .

3. Yes/No answer. This format is usually used when a

binary decision is required by the system from the user.

The system outputs a question which the user answers by

inputting 'Y' or 'N'.

Everywhere, except in the experiment subsystem,

only the above three formats have been used. Functions have

been specified by two-character mnemonics to reduce the

typing for the user and to simplify decoding in the program.

Except for the most frequently used functions, the system

outputs a message after a mnemonic function has been input

202

which states either the action taken or what further

information is required.

Binary pattern information may also be input by

the system. The format of this information depends on the

peripheral concerned, there are two standard formats for

representing a 16x16 bit pattern.

1. Paper tape format. This consists of a 'rubout'

(i.e., all 8 holes punched) followed by 32 8-bit frames
to specify the pattern,

2. Magnetic tape format. This consists of 16 16-bit

words to specify the pattern.

6.1.3 Computer organisation.
\

A summary of the main peripherals used by the

system is given below. These peripherals will be referred

to in later sections. 1

1. Teletype. A standard ASR 33/35 teletype: 10 characters/

second. Information may input or output

in either character or pattern (paper tape)

format.

2. Vista. A 'CASE Vista' visual display terminal which

has a solid state keyboard and a cathode ray

tube display of 20 lines of characters.
Character information may be input from or

output to this terminal. This will be

referred to as the Vista in the rest of the

chapter

203

3. Paper tape stations. There are two paper tape

stations which can read and

punch paper tape. The paper

tape may be in character format

or pattern format.

4. Line Printer. The line printer has a 96 character

line and can output 300 lines a minute.

5. Magnetic tape unit. A standard Honeywell 50,000 bits/

sec. magnetic tape handler. It

treats data in core transfers of

16-bit words and requires a

software handler.

The above devices are standard computer peripherals. There

are some non-standard-; peripherals which are listed below.

6. T.V. Camera. This requires a software handler to

obtain a 16x16 matrix from a scene. The

data is stored as a pattern in the computer.

Further details are given in section 2.2.

7. Minerva. A hardware learning machine closely linked to

the computer. It always completes an operation

within 1 computer cycle hence, it is not

programmed as a peripheral. It's instructions

are treated as an extension to the standard

instructions of the computer. Details of the

organisation of Minerva are given in section

5.2. Hardware details are described else-

(17)̂where

204

8. V.D.U. A Visual Display Unit is available which

displays a 16x16 binary pattern of information

on an oscilloscope screen. This device time

shares whatever program is being executed

and continuously displays 16 consecutive words

of store. The time sharing has an overall

effect of reducing the effective speed of the

computer by 5%. Hardware details of this

i u (38)device are given elsewhere

9. Analog Plotter. There is an interface which contains

2 10-bit D to A convertors. This may

be connected to a Hewlett Packard

analog plotter. This has been used for

plotting learning network responses and

for plotting scan paths for the tracking

system.

10. Disc. There is a disc unit which has a non-standard

handler. This has not been completed yet and is

not available to computer users unless it is

accessed by an operating system 'ADMOS' which

(4)
has recently been developed at this University

This may be accessed by the special executive

described in section 6.2.5.

205

6,2 The Executive Program.
6.2.1 Structure of the executive.

The executive program is 1,142 (Octal 2,200)

locations long. The executive contains all the routines

for controlling the peripherals. It has a command status

which is entered when a program break occurs.

A program break may be caused by one of three

occurrences

1. if octal 221 (character Q with control on the

teletype) is input on the command device. This is

the usual way to enter the command status;

2. if the start button on the computer console is

pressed;

3. if an interrupt occurs from a device not enabled

by the system. (This would usually indicate that

there is a hardware fault).

The peripherals may be divided into two distinct

types: the standard peripherals which use 8-bit words and
the special peripherals which require software handlers.

6.2.2 Standard peripherals.

The peripherals relevant to this section and

their mnemonics which are used in the system are as

follows:

206

INPUT OUTPUT
Teletype TT TT

Vista VI VI

Paper tape Station 1 PR PP

Paper tape Station 2 R2 P2

Line printer - LP

(Null) — NO

Information may be input to and output from the

system by two channels; a command channel and a data

channel. The command channel is intended for inputting

commands and for outputting messages from the system. The

data channel is intended for inputting and outputting pat­

tern data. There are two additional output routines, one

for the line printer and one for the Vista. These allow

fast dumping of data. There is a special output channel

which is labelled the mimic channel, this monitors both

the input and the output information which passes through

to command channel. This channel is primarily intended for

creating a hard copy via the line printer or paper tape

punch w h e n’ the command device is the Vista so that a

permanent record of the experiment may be obtained.

A channel has the property that it may be assigned

to any one of the peripherals listed at the beginning of

this section. Initially, when the system is started, the

channels have the following default devices.

207

INPUT OUTPUT
Command Channel TT TT

Data Channel PR PP

Mimic Channel — NO

Hence, commands are input and messages are output on the

teletype and pattern data is input and output on paper

tape station 1. Data may also be output to the Vista or to

the line printer by their special routines.

When a user wishes to write a subsystem two ways

of inputting information are available to him (command

channel and data channel input) and four ways of outputting

information (command channel, data channel, line printer

output and Vista output). To input data there are two

routines, one for each channel. When a character (an 8-bit
word) is requested, the appropriate routine is called. When

the routine has obtained a character from the peripheral it

returns to the program with the character in the right half

of the 'A register',to obtain the next character the

routine must be called again. Outputting, conducted by one

of four routines, is achieved in a similar way. The

character to be output is loaded into the right half of the

'A register' and the routine is called, a return to the

program occurs when the character has been output to the

peripheral.

Hence the executive program deals only with single

characters at a t i m e . The library contains many routines

which use the above mentioned routines and enable the user

208

to input and output information at a higher level. For

example, for the command channel there are routines for

inputting mnemonic commands and checking these with

function lists, for inputting and outputting numbers,

for outputting messages etc. For further details see

Appendix 2.

With most operating systems these peripherals

are time shared in an interleaved manner. However, for

this system they have not been time shared for the

following reasons

1. The time saved by time sharing would be

very small for most of the processor time is usually spent

in internal processing and very little time is used for

dumping results while this processing is in progress.

2. The executive program would have to be much

more complex and would also require much more store.

3. A useful feature of the system is that a

user may stop the program when it is running and slowly

step through it to see exactly what is happening. This is

not possible if time sharing is allowed.

A user may change the allocations of the channels

to the peripherals from the program by calling routines or

on-line when in the executive command status .

209

6.2.3 Command status functions.

The executive command status allows channels to

be assigned in the following way. One must first define

the 'input' (or the 'output') to a peripheral then the

channel may be assigned to the defined 'input' (or

'output') peripheral. For example, to assign the output

of the command channel to the line printer one would type

DO LP (define output to line printer), OD (set command

output to defined output). The command output may be

returned to the default device (i.e., the teletype) by

typing ON (command output normal).

The mnemonics for assigning the different channels

are given below

INPUT OUTPUT

DEFINED DEFAULT DEFINED DEFAULT
Command Channel ID IN OD ON

Data Channel RD RN PD PN

Mimic Channel — _ MD MN

There are several options which may be set or reset

by the user in the executive command status and these are as

follows:- 1

1. Cancel Messages (set by CM, reset by P M) . When this

option is set there is no output on the command

channel. This does not effect the mimic channel.

210

2. Tape Control (set by TC, reset by RC). When this

option is set the command input is taken from

paper tape reader number one. This is

conceptually different from assigning the

command input to the paper tape reader. This

appears different to the user in two main ways.

Firstly, all commands input from the paper tape

reader are mimicked on the command output device.

Secondly, after a program break on the paper tape

the system remains under tape control. If a user

causes a program break then control returns to

the defined command peripheral. This is a very

important option, its use is demonstrated in the

example in section 6.4.2 .

3. Vista Control (set by VC, reset by N C) . When this

option is set the Vista completely replaces the

teletype. Hence any references made to the tele­

type will be interpreted to mean the Vista. The

Vista is a more convenient command device than

the teletype and one very rarely wants to use both

these peripherals at the same time.

4. DEBUG Option (set by $D, reset by N D) . $D should only

be input when the debug program has been loaded.

This command makes the links with the debug program

and allows DEBUG commands to be input within the

system

211

5. Special Commands (set by SC, reset by N S) . This

option is usually set. It checks each character

that is input from the command device for the

appearance of special characters. These charac­

ters are listed below with the functions that

they incur once they are detected.

& This character forces the system into the main

program command status.

* This forces the system into the experiment sub­

system command status.

$ This puts the system into the command status of

DEBUG if it has been loaded.

3 This command must be followed by an argument

n(04n*i7). It allows 8 different starting
locations for the VDU to be remembered. When g)n

is input the VDU is directed to the correct area

of core store and neither command character is

passed to the system. Hence the system is in

exactly the same state as it was before the

command was given. Sometimes a user may wish to

input one of the above characters for a different

function e.g. in typing a heading. To do this,

the option must be reset.

212

6.2.4 Special peripherals .

The magnetic tape is really a standard peripheral

however, it requires a lot of software handling. As it is

rarely used an optional subsystem has been written to

operate it. This subsystem is separate from the executive

and it is linked to the main program when it is used.

The special peripherals which are handled within

the executive are the television camera and the VDU. The

graph plotter has not yet been written into the executive

however, it only uses a few instructions and any experiment

subsystem which uses the plotter can easily contain these

instructions within it.

The television camera is controlled by one routine.

This routine outputs all the parameters to the camera,

obtains a matrix from the camera, stores it in a 16x16

buffer and returns. The camera may be operated in one of

two modes:

1. The non-time sharing mode, in which the camera only

inputs information from the scene when commanded to do so.

2. The time sharing mode, in which the camera will obtain

a matrix from the scene when commanded to do so, as before,

but it will continue to refresh this matrix with every scan

of the camera maintaining the original parameter settings

after it has returned from the camera routine.

The VDU must be used in a time sharing mode. One

dedicated location in core is used to point to the area to

213

be displayed. A routine in the executive ensures that

the correct data word is sent to the VDU when it is requested.

Sometimes it is advantageous to run the system without any

time sharing peripherals. When this is required an option in

the main program may be set which inhibits the VDU.

6.2.5 Special executive for ADMOS system.

A special version of the executive has been written

which links with a general purpose fully time shared operating

system 'ADMOS'.

In general, however, this version is not used very

often for two main reasons. Firstly, the operating system

uses more highly organised data structures than the usual

executive which limits the effects of some of the options

that are normally available to the system. E.g. when using

the operating system one cannot stop the program to look at

what is happening due to the time sharing. Secondly, the

operating system requires 4K words of store (10,000 octal

locations) which is far more than the normal executive and

means that the data workspace available is greatly reduced.

The one advantage with this system is that the user

can access the disc with the operating system which may be

useful when much bulk data handling is required.

214

6.3 The Main Program.

6.3.1 General outline.

The main program allows a user to access the data

workspace which is divided into blocks of 16-bit words, it

is 1,792 (3,400 octal) locations long. The on-line functions

available to a user in the main program may be divided into

three sections. 1. Camera control, 2. Data manipulation,

3. General purpose functions. These functions are described

below. In the descriptions the following convention has been

used

p represents a pattern number

n represents a number other than a
*

pattern number.

Almost all of the functions are actually conducted by library

subroutines.

6.3.2 Camera control functions.

A set of commands enable all the parameters sent to

the camera to be varied. These commands are as follows.

RI n move right* These commands allow the

LE n move left* ̂ viewing window to be moved

UP n move up* n steps in any direction.

DN n move down* J

*
This indicates the command is sensitive to the global reset
command RS which is described later.

215

ZO n

ZC n

TH n

TS

SS

OD

DO

IH

IE

DG n

IM p

Change the zoom value by n*

Change the zoom value by n* and maintain the

position of the center of the viewing window.

This changes the X and Y coordinates as they

specify the top left-hand corner of the

viewing window.

Change the light threshold by n levels*

Set the average threshold* to 1 after the zoom

value has been output. This makes the hard­

ware averaging logic very sensitive to any

picture elements which are 1.
(Show Status). This prints on the command

device, the X address, Y address, zoom value

and threshold setting.

(Origin Defined). A predefined set of values

for the above four parameters are output to

the camera.

(Define Origin). This command allows the above

origin to be defined.

(Eye Inhibit). Set the camera in the non-time

shared m o d e .

(Eye Enable). Set in time shared mode.

Set an n milliseconds delay* after a matrix has

been obtained from the camera.

Move the matrix obtained from the camera to pat­

tern p.

216

6.3.3 Data manipulation functions.

The commands which manipulate the patterns in the

data workspace may be divided into smaller groups as

described below

(a) Inputting patterns

IP p (Input pattern) Input a pattern from data channel

(paper tape format)

RE p (Read pattern) Input a pattern

(b) Editing patterns

AL p n^ n2 (Alter pattern) Put the number n2 into row
n-̂ of pattern p.

CB p n-̂ n2 (Change bit) Complement bit n2 on row n1
of pattern p.

(c) Manipulating a pattern

CP p (Clear pattern)

FP p (Fill pattern)

IV p (Invert pattern)

MK p n (Mask pattern)

CR p

AR p

RU p n

RD p n

RL p n

RR p n

(Clockwise rotate)

(Anti-clockwise rotate)

(Roll up)

(Roll down)

(Roll left)

(Roll right) j

Set pattern p to all 0.

Set pattern p to all 1.

Complement pattern p.

Set thè first n bits of

pattern p.

Rotate pattern p by 90°.

Roll toroidally thè

pattern p by n rows

or columns.

217

(d) Operations of one pattern on another

IC p-|̂ p2 (Interchange)

AN p-̂ P2 (AND) Pattern p1 is ANDed with pattern p 2 .
The resultant pattern is in p2

OR Pl p2

X0 Pl P2
HD px p2

MP p2

(OR)

(Exclusive OR)

(Hamming distance) Print the Hamming distance

between p^ and p2 as a

number and as a percentage.

(Move pattern) Move pattern p.̂ to p 2 >

(e) Output a pattern

DP p (Display pattern)

OP p (Output pattern)

PP p (Print pattern)

PB p (Print binary)

PO p (Print Octal)

LP (List patterns)

Display pattern p on the VDU.

Output a pattern on the data

channel in paper tape format.

Print pattern p with X repre­

senting a 1 and space repre­
senting a 0 .

Print pattern p as 16 binary

numbers.

Print pattern p as 16 binary

coded octal numbers.

This command causes an entry to

a general purpose pattern

dumping subsystem. A block of

patterns either 2 or 4 side by

side may be dumped by any one of

the four possible output methods.

The characters to represent 1 and

0 may also be defined.

218

DC n^n2 (Display core) Core locations n ^ n 2 to
n l+n2+15 are displayed on the

V D U .

PV (Punch Visible) Allows a visible tape heading

to be output on the data

channel.

TV Allows a comment to be typed on

the command device.

TP Allows a heading to be output to

the line printer.

SN (Set net) This command enters a subsystem

to allocate some data workspace

for simulated learning elements.

The SLAM simulators are then (at

run time) only allowed to access

this area.

ID (Inhibit display*) This inhibits the VDU so that

the system may be run without

any time sharing.

RS This command resets the next

resettable command that is

input. Resettable commands

have been marked by *. E.g.,

RS LE will set the X coordinate

of the viewing window to 0 .

219

There is a global command SQ n (sequence) which repeats

the next data manipulation function n times incrementing

the pattern number each time e.g. 'SQ10 CP 1* will clear

patterns 1 to 10, For functions of type (d) where two

patterns are involved, both these pattern numbers are

incremented.

There is a second global command for functions

of type (d) SH n (Sequence with Hold) this command is also

for repeating a function n times but in this case only the

second pattern number is incremented.

6.3.4 General purpose functions.

This section is concerned with all the functions

not covered in the previous two sections. The most

important of these are described below

CM, PM, TC and RC have the same effect in the main

program that they have in the executive.

PL (Punch leader) Output 100 blanks on the data

channel.

FF (Form feed) Space to next page on line printer.

VS p1 p 2 (View sequence) This allows a sequence of patterns

to be displayed on the VDU.

SD n (Set Delay) This allows a delay of n milli­

seconds to be set which occurs

after each pattern pointed at by

the VS command is displayed.

DI (Display eye) Point the VDU at the camera input

buffer

2 20

6.4 The Experiment Subsystem,
6.4.1 Organisation of the main experiments.

During this project many different experiment sub­

systems have been written, the main ones are listed below.

How these may be linked (by dumping the results from one and

inputting them with the next set) is shown in Fig. 6.4.1.

Tracking Experiments.

All the tracking experiments have been conducted

with two tracking subsystems: experiment 11 and experiment
12. Experiment 11 is for experiments with the maximum

response tracking system described in section 3.3. The

learning networks may be organised in Minerva or by simula­

tion. Experiment 12 is for experiments which use only two

learning networks to track with as described in sections

3.4 and 3.5. Both probability SLAM learning networks and
CL SLAM learning networks may be simulated. Minerva may
also be used for the probability learning network case.

Classifying Experiments.

The classifier experiments have been written to

interact with the tracking experiments. Hence, this sub­

system can receive information from the tracking system as

it tracks and a classification can be made in real time.

However, when developing the classifier, to be able to

repeat exactly the same tracking motions many times was

considered important. To achieve this Experiment 13, a

tracking simulator was written. This subsystem stores the

logged tracking motions from an actual tracking system

221

Figure 6,4.1

experiment and can repeatedly present this information to

a classifier sub-subsystem. The final developed version

of the classifier, described in section 4.2, is conducted

by Experiment sub-subsystem 1 1 . The shift register

classifier, mentioned in section 4.4, is conducted by

Experiment sub-subsystem 2 .

1

222

A problem with using the tracking system and

classifier together is that with all their options they

both require a lot of store. There is not enough room, for

example, for the experiment 11 or 12 tracking system, the

experiment sub-subsystem 11 and the backing system. However,

by reducing some of the options in either of these will

create enough room. Experiment sub-subsystem 14 was

written to simulate the effect of a classifier for a large

tracking system. It enables the tracking motions to be

dumped (for use by experiment 13) and also allows the

tracking motions to be plotted in real time on the graph

plotter.

Other Experiments.

Experiment 9 is designed to test different learning networks

simultaneously so that their performances can be compared.

This experiment is used in section 5 ,6 and it is used as an

example of a subsystem in section 6.4.2.

There ara some other special purpose subsystems

for example, Experiment 10 and Experiment 15. The tracking

systems are able to dump all the patterns obtained from the

viewing window and also other parameters (e.g. the responses

2 2 3

from the learning networks) while it is tracking a pattern.

For efficiency, these are dumped on paper tape in pattern

data format. Experiment 10 is designed to sort out these

patterns into a logical order and print the data in a

readable form.

Experiment 15 is designed to obtain a Hamming distance

distribution from sets of patterns. It can calculate a

distribution for the Hamming distance between all the

combinations of pairs of patterns within a set of patterns

and it can calculate a distribution for the Hamming distance

between all the combinations of pairs of patterns between

two sets of patterns.

6.4.2 An example of an experiment subsystem.

Experiment 9 is designed to compare the perfor­

mance of different learning networks. On the following

pages an example of how this would appear to the on-line

user is given. Experiment 9 has been used for the experi­

ments in section 5.4 and its organisation is described there.

In this subsystem, all the operations are carried

out from the subsystem command status. The functions which

are available in this command status are listed below.

CH (Change) This command allows the chosen different

types of learning networks to be

selected and the store for them

allocated.

ss

224

(Show Status)

CN (Clear Nets)

T+(or Tl)p (Teach 1)

T- (or TO)p (Teach 0)

OR p (Output
Responses)

Prints the selected learning

networks and all the store

allocations.

Sets all the learning network

stores to 50%,

Teach pattern p with 1 on the

teach sense terminals.

Teach pattern p 0.

Print the responses obtained

when presenting pattern p to

the learning networks.

OP p

OH

OD

OS

RS

SD

HE

IM

(Output
Percentages) Print responses but as

percentages.

(Output Heading)For responses or percentages.

(Output Device) The output devices which are

used by the above three

functions may be selected with

this command.

Output the sums of all the

previous responses. (This is

used to find average responses) .

Set all the summed values to zero.

Allows the output devices for

the sum values to be selected.

Print a heading for sum values.

(Output Sum)

(Reset Sum)

(Sum Device)

(Heading for
Sums)

(Input Maps) This inputs the connections for

the input mapping from the data

channel.

225

The following learning networks may be simulated with the

subsystem.

Simulated Learning Networks

N Normal SLAM Learning Network

CC 4 Layer Cumulative Learning SLAM Network

TR Ternary SLAM Learning Network

PB Probability SLAM Learning Network

BC 15 Layer CL SLAM Learning Network

GP N Layer Probability CL SLAM Learning Network

Minerva Learning Networks

N Normal SLAM Learning Network

PB Probability Learning Network

In the example shown in Fig, 6.4,2 two classes of

handwritten characters of four patterns each are used as

data. Usually, many input patterns are involved in ari

experiment and to control them all on-line by the user

would be impractical. The set of commands to conduct such

an experiment can be generated by a short simple program

in a high level system such as Basic or a Macro processor.

This string of commands is dumped on paper tape and the

experiment can then be run under 'Tape Control'. The

experiments described in section 5.5 were conducted in

this way.

226

Comments

** ff SN
NO OF CARDS IS? 400
PATTERNS RFOUIRED = 1O0
NO OF SLAMS IS 1600
NO OF M I/P PATTERNS IS 25
MIN STARTING PATTERN IS 347
STARTING PATTFRN IS ? 300 TO 399
l EXPERIMENT 9B
♦ £H CHANGE
SIMULATION NET TYPES
N Y CL 1 TR I pB I BC 1 I
STORE ALLOCATED O.K.
1ST PATTFRN USED IS 290
MINERVA NET TYPES
N N_ PB 21
.PB PROBABILITY/16 IS *
GP PROBABILITY/16 IS 16
GP INCREMENT SIZE IS 1024
LEVELS = 63 .LAYERS = 6

* SS STATUS
MAP PATTERNS ARE 00290 TO 00297
I/P PATTERN IS 29R
MAPPED PATTERN IS 299
NET STORE IS
N 00300 TO 00303
CL 00304 TO 00319
TR 00320 TO 00327
PB 0032B TO 00331 PROBAB1LITY/16 IS 4
GP 00332 TO 00395 PROBABILITY/16 IS 16
INCREMENT SIZE IS 1024
LEVELS = 63 LAYERS = 6

(allocate stores for the simulated SLAMs)

(Select and Set up the Learning Networks)

\ (The GP SLAM Network is simulating a 6
output CL SLAM Learning Network)

(Obtain the settings and store allocations
used in this experiment)

♦ IM. INPUT MAP PATTERNS O.K.
+ t f SQ = 4 & IP 1 & SO = 4 & J_P 5_ t TV
PAT * S 1 TO 4 CONTAIN 3*S, PAT'S 5 TO 8 CONTAIN 8*S.

JL
l DP 298
i CP 0 l HD 1 TO 0
00062 00024 X

(Input the data and type a comment)

(Display the input pattern on the VDU)

(Find the number of bits set in pattern 1)

*

OH

EXPERIMENT 9B

N CL TRD TRV PB GP
OP
T ♦
OP

!_ 00050 000 50 000 50 00000 000 50 0 0 0 50.0 0 0 00
i
i 00100 00057 00 100 00100 00062 00051.562 54

OR l 00064 00512 00064 00064 00040 0002162624
RS
OP

SUM
1

DELETED
00100 000 57 00100 ,00100 00062 000 51.562 54

ÜE. L 00081 00054 00100 000 62 00056 00050.97658
OP 3_ 000 60 00051 00100 00021 00051 000 50.34180
QL 4 000 70 000 53 00100 00043 000 53 000 50.68361
OS 0031 1 0021 5 00400 00226 00222 00203.56455
RS
1^
OP

SUM
5_

DELET ED

00062 00054 00100 000 62 00051 000 50.9 76 58
RS
OP

”5 UM
2

DELETED
000 50 00052 00088 00039 00048 0 0 0 50.4 6 3 8 7

OP 3 00046 000 50 00057 00021 00048 00050.04882
5F 4 000 50 00051 00080 00O32 00046 00050.31739
OS 00146 001 53 00225 00092 00 1 42 00150.83010
w N CL TRD TRV PB GP
HE 5__ 00000 00045 00000 00062 00039 00049.02340
RS
OP

SUM
6

DELETED
00032 00049 00037 00042 00045 00049.82909

OP 7 00037 00049 00031 00025 00045 00049.853 50
OP 8 00037 00050 00055 00028 00042 . 00050.04882
55 00106 001 48 00123 00095 00132 00149.73143
OH •N CL TRD 1R V PB GP
I f LP READY? N_

t7
CC 0= ^ 1 = X_
RE_ READY FROM PATTFRN J_ TO 4_

(Threshold for average sum is 4x50 = 200)

(Test set of patterns 2 to 4, average
threshold for sum is 3x50 = 150)

(Print the data set of 3s using the
pattern dump subsystem)

...XXX....

. x x x x x x . . .

. x x x x x x x . .

.X X...XX..

.......XX. .

..... XXX..

....XXX...
• . . x x x x x . .
. . . . x x x x x .
.......XX.
.........XX
........XX
. X x
.«X....XXX
. . x x x x x x x .
. . . x x x x x . .

. . x x x x
x x x x x x
x x x x x x
. . .XXX....
. . .XX......
..xxxxx...
...xxxxx..
......XX«.
.......XX.
........XX
. ;...... xx
........ XXX
......XXX.
. . x x x x x x . .
. . . x x x x x . .

.xxxxxxxx.
xxxxxxxxx.
.XX.xxxxx.
......XXX. .
..... XX.• .
. . . .XXX.. .
....xxxxx.
..... xxxx.
...........XX
...........XX
......... XX
XX........XX
XX........XX
XX...... XXX
.XX..xxxx.
.xxxxxxx..

.xxxxx.
XXXXXXX...
XXX .XXX..
XX. ..XX..

.XXX..
xxxx..
.xxxx.
. . .XXX
.. . . . XX
.... XX

. X. XX

. XX . . .XXX

.xxxxxxxx.
.xxxxxx..

O.K.
i PL

Characters underlined are
input by the user.

Figure 6,4,2

Chapter 7

Conclusion

In this thesis a pattern recognition scheme has

been developed which tracks patterns and classifies them.

The main feature of the scheme is that both of the above

functions are achieved by adaptive learning networks. All

the systems described may be easily realised in hardware.

In general, the tracking system requires 256 16-bit words

(4/096 bits) of active store and the classifier requires

64 16-bit words (1,024 bits) of active store.

This work represents only the initial researches

on this type of system and a practical form of this pattern

recogniser would require further development. The

development of the tracking system, classifying system

and learning elements will be reviewed in the next three

sections,

7.1 The Tracking System,

The details of the tracking system are given in

Chapter 3, Initially the tracking system based its deci­

sions on the localised information from the area of

attention only. It has been shown that such a system may

easily be taught to track edges of patterns but it is not

sufficient to track the lines of patterns.

228

In order to track lines, feedback from the out­

put to the input of thetracking system has been added to

good effect and this has been further improved by a

damping process, With this tracking system it is possible

to track simple line drawings. For very simple patterns

such as circles and triangles, the system behaves very well.

Investigations with this system have shown the

following:-

1, Not all line drawings can be tracked,

there are theoretically determined limits

of the system (defined in section 3,2,4)

and any complex scanning path must be

considered carefully,

2, The performance of the system is very

dependent on the ability of the teacher.

3, It is more difficult to teach complex

patterns* to the system than simple ones,

4, As the patterns become more complex the

generalisation rapidly deteriorates,

(Increasing the size of the learning networks

does not improve the generalisation.)

The first characteristic of the system mentioned

above is due to the overall structure of the tracking

* The complexity of a pattern is difficult to define
rigorously, In this case it is related- to the number of
line junctions and also to the nature of the line junc­
tions (e„g, the number of lines entering the junctions
and the relative shapes of the junctions),

229

system (i,e, the way that feedback is applied). The other

three characteristics are determined by the nature of the

learning modules. Three different types of n~tuple

learning elements have been investigated and the degree

to which they exhibit these characteristics has been

detailed in Chapter 3,

The tracking system is very simple in structure

and there are many ways in which it could be further

developed. It cannot track all possible line drawings

with only a short-term memory (created by the feedback),

However, if a long-term memory (storing the sequence of

features or tracking movements encountered) could be

added,then there is no theoretical limit to the complexity

of the patterns which can be tracked.

One possible development would be to select only

a fraction of the learning network for tracking or testing

The fraction selected would depend upon the location of

the viewing window on the pattern e.g, it could depend on

either the position of the viewing window or the last

direction taken (averaged over several steps), This

development could also be applied to the classifier.

It would be interesting to see if a model of

the system proposed by Noton^4) Could be developed

in which the classifier stores attention shifts necessary

to examine the pattern and the tracking system could be

guided at critical points by feedback from the classifier.

has shown that the separation between classes is very

small in Hamming distance, whereas the variation within

the classes is very large. This could be improved by

the introduction of some preprocessing. There are many

different types of preprocessing which could be applied

to the information from the camera. For example, the

effect of processing the information with a layer of simplified

models of retinal ganglion cells could be investigated

e,g, with similar receptive fields to those described by

Rosenberg and Wilkins , This could be further

developed by adding layers of cell models which have simi-

(24)
lar properties to the cells found by Hubei and Wiesel '

in the cats visual cortex.

So far no heuristics have been built into the

processing of the information with regards to lines. If

the task desired of the system is limited to tracking lines,

then feature extractors may be applied to the input matrix

to extract information which is relevant to line drawings

only. For example, one could extract the number of lines

in the window, their orientations, their positions with

respect to the center of the window, etc. Hence, the

relevant information would be presented in a less redundant

form to the system and one might see an improvement in the

performance of the system.

Analysis of the patterns taught to the learning modules

231

7,2 The Class if ier System,

The details of the classifier system are given

in Chapter 4, For the classifier an attempt has been

made to use a learning network to classify a sequential

string of input data. Although this task has often been

tackled with algorithms (e,g, all the tracking methods

described in section 1,2,4), an approach with learning

networks has not been tried before.

A simple system has been tentatively proposed

and developed to achieve this task but the results from

it have been poor. This classifier only receives input

information from the tracking motions of the tracking

system and is designed to generate a codeword to indicate

the class of the input sequence.

Hence, with this approach, the tracking motions

must contain the information to classify the input pattern.

In this case, the tracking system tracked the lines or

edges of the input pattern but this is not the only scheme

with which the classifier could be used. For example, it

could try to classify "saccadic” motions provided that

they be unique for each class of patterns.

The system which was finally developed consisted

of two parts: a cycling network, which is stimulated by the

input sequence and a codeword extractor which detects

classifying states in the cycle network. The main prob­

lem here is to know what to teach to the cycle network and

232

very little is known about methods of teaching such a

system. Also, it is very difficult to analyse the results

of teaching due to the sequential nature of the input and

output,

To assist with the study of this problem, the

concepts of SLAM store'penetration’ and SLAM store 'over­

lap' have been introduced. Although in such an undeveloped

form their usefulness is still questionable, they do allow

measures to be made on the input data and internal states

of the classifier which are independent of the sequential

nature of the input data and its associated effects,* (e.g.

the initial state transient) » An important feature of

patterns associated with the classifier is the frequency of

occurrence of elements of these patterns during the input

cycle and neither of the above concepts embodies this. To

provide a measure for this feature, the concept of pattern

activity has been introduced but this has not been rigorously

defined and is used in a qualitative way only. The use of

these measures is illustrated in detail in Chapter 4,

The work in this thesis has done little more than

establish the basic foundations of a classifier of this

type. The learning network investigated was very small

(only 16 TR SLAM-16s were used for the feature extractor)

and future work could be aimed at investigating the pro­

perties of a larger system,

* The main problem with these measures is that often
important information is conveyed by the sequential
order of the data.

233

It has been found advantageous to use T„R„ SLAMs

in the code net. Experiments with the cycle net have shown

that the method used for its teaching has not been very

effective and also cycling networks are very sensitive to

any changes in their structure. Hence, a teaching

algorithm which can only cause small amounts of change may

work better. One possible scheme to realise this would be

to allow each memory element in the learning network to be

taught once only, (This is similar in basic concept to the

origins of the T.R, SLAM and in practice could be realised

by learning elements consisting of two SLAMs with their

inputs commoned.) Another possibility would be to use T.R.

SLAMs with the 'last valid output' used for the outputs of

the net.

The method used to code the sequential tracking

information before inputting it to the classifier is

important (this is due in part to the small size of the

learning networks used). Several methods have been investi-

gated and the most useful form used was to input the position

of the area of attention. There are many other possibilities

which could be investigated as in the following examples. 1

1, The input could be applied so that it had an

inhibitory effect on the feedback only. Hence, the input

'inhibits' rather than stimulates the net activity. This

may overcome the problems of the dependance on initial

starting and the length of the initial transient states.

234

2, In many pattern recognising schemes, localised

information about features is often considered important.

This information could be obtained by extracting features

from the tracking data for the last few steps taken. Then

this information could be input to the classifier in

addition to the position information.

3, Another more powerful method of realising the

above concept is to extract features directly from the area

of attention and input these with the position information.

7,3 The Development Of The Learning Elements.

Details of the development and properties of the

learning elements are given in Chapter 5, The initial work

was conducted with SLAM-16 learning elements. Three basic

developments of this element have been investigated; the

probabilistic SLAM, the CL (Cumulative Learning) SLAM and

the TR (Ternary) SLAM.

The probabilistic SLAM element is similar in

structure to a normal SLAM-16. However, on giving a teach

command there is a definite preset probability that this

command will be ignored. This teaching mechanism makes a

learning network less sensitive to the last pattern taught

and is ideal for cases where an ageing teach process is

(14)
required,for example, the method used by Fairhurst

235

The CL SLAM has been patented^ ; and is

characterised by having a number output, rather than a

binary one, the value of which depends on the frequency

of occurrence that the input pattern has been taught,

This SLAM requires n times the amount of store for a

normal SLAM where n is the number of bits at the output.

(For most cases a value of n=4 has been used,) Like the

probability SLAM network, the CL SLAM network overcomes

the overteaching problem of the last pattern taught with

the difference that it does not suffer from the defect of

the probability SLAM network which ignores part of the

input pattern on teaching to achieve this,

Since the development of the CL SLAM, a frequency

(7)sensitive SLAM (the FO SLAM) has been mentioned by Chung

This FO SLAM uses an internal algorithm to achieve a

dynamic equilibrium with respect to the number of states

filled within the SLAM which is considered to be an

important feature. On the other hand, it is the conten­

tion with the CL SLAM that some outputs should be weighted

more than others over the network. The FO SLAM could be

realised with a CL SLAM structure and with a saving of

store, A FO SLAM could be realised by an n output CL SLAM k

which requires h ,2 bits of active store; to achieve this

with the shift register method by Chung would require

2n ,k k its active store.

The normalisation technique described by Chung

may be useful for some CL SLAM learning networks and the

CL SLAM teach mechanism could easily be adapted so that a

(39)

236

distribution of values is always maintained within the

CL SLAM outputs,

The TR SLAM has a ternary output (1, 0 and not

valid) and uses twice as much active store as a normal

SLAM, The TR SLAM was developed initially for use at the

output of cycling learning networks,, (Also, the best

results from the tracking system were obtained with

learning networks which had a similar structure to a

learning network of TR SLAMs.)

One feature of the TR SLAM is that it records

all patterns it has been taught. This means that the

last pattern taught has no more effect than any other.

However, by the same token, these learning networks are

easily overtaught.

Another feature of the TR SLAM is that its

stores may be easily analysed for 'penetration' and

'overlap' and also, when being used, noting the number

of valid outputs can be used to indicate a confidence

level for the classification.

7,4 Concluding Remarks,

In addition to the investigation and develop­

ment of a pattern recognition system, some special

purpose hardware and software has been developed.

To obtain data from a visual scene a normal

television camera has been connected to the computer via

237

a hardware control unit which was built especially for

this project* This hardware is orientated towards

realising some of the features of the human eye in that

it can only obtain detailed information from a small

part of the scene at a time. However, it may also be

used for general purpose data acquisition from a visual

scene. It has the following specifications:

1. The scene is defined by a 256x256 square matrix

which is viewed by the camera,

2. A 16x16 bit binary matrix representing an area of

the scene within the viewing window may be obtained

every 20 milliseconds,

3. The binary matrix is obtained by sampling the scene

with one of 16 brightness levels,

4. The viewing window may be positioned anywhere on the

256x256 scene matrix and may cover an area of 16x16 pic­

ture elements or any multiple of this, (When the viewing

window covers an area greater than 16x16 picture elements,

a hardware averaging unit is used to generate the 16x16

bit binary output,)

A special operating system has been written for

this project. It has the following features:

1« It contains routines to control the

television camera and all the other peripherals including

Minerva,

238

2. It allows on-line access and manipulation of a

data workspace, organised in 16x16 bit binary patterns.

3. It contains routines to simulate learning net­

works of normal, probability, CL and TR SLAMs.

4. Each experiment is conducted by a subsystem

which may be any DAP program,

5. An interacting debugging program may be loaded

when required.

The operating system is not restricted to this

project only but is designed to be useful for experimental

work involving pattern processing in general.

An attempt has been made to establish a framework

for and develop a pattern recognition system from basic

logical considerations rather than basing it on any

existing system. Further development would be aimed in one

of two directions. The system could be developed towards a

pattern recogniser by adding heuristic feature extractors

etc. which are known to be useful for other systems.

Alternatively, one could work towards a model of the eye

and the visual perception mechanism found in man.

Hypotheses of the visual processing mechanisms in the eye,

for example the function of the ganglion cells, could be

investigated with this system. Some of the possible

developments of the tracking system are given in section

7.1. The classifier which has been developed is only one

of many possible forms, suggestions for further develop-

239

ments of this and for alternative methods are given in

section 7,2.

Whatever direction the further development

may take, the hardware and software systems described

here should be useful as a foundation. The existing

system sets a reference with which to compare further

results. Also, the development made in learning

elements should be considered when designing future

systems.

Appendix 1

Circuit Details Of The Camera Hardware

A description of the operation of the hardware

control unit is given in section 2 , 2 , In this appendix

the circuit details of this hardware are given. A block

diagram of the hardware modules is shown in Fig, Al.l,

definitions of the interconnections are given in Table

Al.l and the circuits of the modules are given in Figs.

A 1 .2 - A1.9. The symbols used in these circuits are

defined in Fig. A1.10 and Fig. Al.ll,

The following is a brief description of the

functions of the modules and their interconnections.

The 6MHz Clock Fig. A1.2: The clock produces

the timing pulses for setting up the 256x256 matrix over

the scene and generating the camera synchronising pulses.

Due to the poor quality of the camera a lot of mains hum

was present on the video signal. To overcome the beating

effects of the hum, caused by the difference in frequency

between the frame rate and the mains, the clock was locked

to the mains frequency by a phase locked loop.

A simple phase locked loop was originally used

but, due to the large difference in frequencies (6MHz -

50Hz);the clock frequency varied an unacceptable amount

during one cycle of the mains. This was overcome by a

combination of three methods;-

241

1. The power supplies were heavily decoupled.

2. Two integrators instead of the usual one

were used,

3. The oscillator was isolated from the rest

of the circuitry by an enclosed metal

box mounted at the other end of the

rack,

The output of the clock is via CK and the

inverse via CK „ A reference strobe for the phase locked

loop when the Y counter is reset is provided by SC.

The X Counter and Decode Module Fig. A 1 .3: This

module counts the clock pulses and determines the x

coordinate of the television scan. The decoder generates

the following functions:

LSY Line sync pulse, to synchronise the

camera. This is also used as a

timing pulse for the zoom counters.

XPOS Indicates when the x coordinate of

the viewing window is reached. (Note

XIC occurs slightly before XPOS and

is used as a reset pulse by the line

sampler.

SY This resets the X counter and incre­

ments the Y counter.

242

The Y Counter and Decode Module F i g . Al,4 : This

module counts the cycles of the X counter and determines

the Y coordinate of the television scan. The decoder

generates the following functions

FSY Frame sync pulse to synchronise the

camera frame»

YPOS Indicates when the Y coordinate of

the viewing window is reached,

FF This indicates to the computer when

the frame flyback occurs,

SC This resets the Y counter and strobes

the phase locked loop of the clock.

The Zoom Input Buffer Fig, Al,5: This module

enables the zoom value ZV5 (5 bits) and the average thres­

hold ATH4 (4 bits) to be input. Usually the average

threshold is half of the zoom value and provision has been

made for this to be achieved automatically.

Video Processor Module Fig, A1.6: This module

receives the composit video data from the T.V, camera and

converts it to a binary signal BVI by means of a comparator.

The threshold of the comparator is set at one of 16 levels

by the computer or by the manual controls, This module

also impresses the viewing window onto the composit video

signal which is output to the monitor. The time when the

window is to be impressed is defined by both zoom counters

being active i,e,, when XZA and YZA are true.

243

The X Zoom Counter and Line Sampler Fig, Al.7:

This module samples the binary video input BVI when a line

which intersects the viewing window is scanned. The moment

to start sampling is indicated by XPOS„ XIC changes state

before XPOS and clears the data counter. Once XPOS occurs

the X zoom counter counts the number of picture elements

for each bit (defined by ZV5) and the data counter counts

the number of picture elements set at 1, This latter count

is compared with the average threshold ATH4, if it is

greater or equal to the threshold the sampled data value

SDAV is set true. After each bit of output data is

obtained, it is strobed into the Line Average Module by SPAS.

16 bits of data are obtained in this way and then a pulse on

LEND indicates the end of sampling, LSY resets this module

at the end of every line. While the line is being sampled,

XZA is set true.

The Y Zoom Counter Module Fic^, A1.8: This module

counts the lines which are relevant to the viewing window.

The first line of the viewing window is indicated by YPOS.

The Y zoom counter is strobed by LSY i„e., during the line

flyback. After each zoom value number of lines (defined by

ZV5) and when the line averaging is complete (indicated by

DWC) , 'word ready' WORR is set which initiates a data trans­

fer to the computer (also, the average counters are cleared

by a pulse on CAC) , The computer indicates when the data

has been accepted by a pulse on 'word accepted' WORA, If

the response from the computer is too slow then 'Frame not

valid' FNV is set,, This is reset by the computer with a

244

pulse on RFNV,* While the lines are being counted YZA is

set true.

The Line Average Module Fig, Al,9: This module

averages the data obtained from several lines. The data

from the line sampler SDAV is strobed by SPAS into a 16

bit shift register. When line sampling is complete

(indicated by a pulse on LEND), the contents of the shift

register are used to increment 16 4-bit counters. Each

counter registers the number of lines in which the line sample

has indicated a 1 for that position. If the counter value

is equal to, or greater than, the 'average threshold' A T H 4 ,

then the relevant bit in the output shift register is set.

After each zoom value number of lines a pulse from the Y

zoom counter on CAC resets these counters. The counters

are compared serially with the average threshold, after

the line has been sampled, by 4 16 to 1 bit multiplexers and

a 4 bit address counter. When this averaging process is

complete, a pulse is output on DWC to the Y zoom counter.

The final 16 bit data word which is output to the computer

is reset by the computer with a pulse on W O R A .

* This feature was originally included as the camera
hardware was connected to a standard 16 bit computer
interface. A hardware 16x16 bit buffer has now been built
into the interface, hence the reply from the computer is
independent of the computer program and is always quick
enough,

Figure Al.l

2
4 5

246

Interconnection List

ATH4 Average Threshold (4 bits)

BVI Binary Video Input

CAC Clear Average Counters

CK Clock

CK Clock Inverted

CVI Composit Video Input

DWC Data Word Complete

FF Frame Flyback

FNV Frame Not Valid

FSY Frame Synchronising Pulse

LEND Line End

LSY Line Synchronising Pulse

MVO Monitor Video Output

RFNV Reset Frame Not Valid

SC Strobe Clock

SDAS Sampled Data Strobe

SDAV Sampled Data Value

SY Strobe Y Counter

WORA Word Accepted

WORR Word Ready

XIC X Initial Clear

XPOS X Position Reached

XZA X Zoom Counter Active

YPOS Y Position Reached

YZA Y Zoom Counter Active

ZV5 Zoom Value (5 bits)

Table Al.l

F i g u r e A l . 2

CLOCK

2
4
7

b
i
t

X

C
o
u
n
t
e
r

X Counter and Decoder

F i g u r e A l . 3

2
4
8

b
i
t

Y

C
O
U
N
T
E
R

F i g u r e A l . 4

2
4
9

<>
V

V
\

2 50

XZAc-
YZA~

«

--------V W — |
t— AAA/'— *

--------/V\A/1— «1
EH
jz;

S— 'W V ''—

D
O
U

-------- AAAA— 1
1— \ A / 'k—~i

--------A A A A - ^

0 h >

CVI

q > -t>°-

VIDEO PROCESSOR

Figure Al.6

—|j

P

_

3------* ^ 1 -----------1 = >

2
5
1

X ZOOM COUNTER AND
LINE SAMPLER

F i g u r e A l , 7

2
5
2

Figure Al.8

2
5
3

O
U
T
P
U
T

D
A
T
A

255

o----------- - Internal Interconnection

----------- Input from the computer interface

^ ___________ Output to the computer interface

^----------- Manual push-button switch

□------------ Manual toggle switch

NAND gate Schmitt
trigger

NOR gate Exclusive OR
gate

Invertor

ri
” i_ r

Monostable (+ indicates the
edge triggering)

CLOCK
COUNTER *INPUT

Clear 0/P 0/P 0/P 0/P
input 1 2 3 4

signifies a +ve edge triggered synchronous type
otherwise a -ve edge triggered ripple-through type.

F i g u r e A l .10

256

Shift Clock
Input

Serial SHIFT REGISTER
Data Input

1
Clear o/P O/P 0/P O/P
Input 1 2 3 4

A, A„ A_ A,

COMPARATOR

B1 B2 B 3 B 4

n (A. ® B.) (realised by 2 input Exclusive OR
i=l,4 1 gates and a NAND gate)

A

B
F

F = A.C + B.C

(realised by an AND-OR-Invert
gate and an inverter)

C
Input Selector

Figure A L I I

Appendix 2

Pattern Processing System
Subsystem Writers Manual

This manual is intended for users who wish to

write an experiment subsystem for the Pattern Processing

System and outlines the features which are available to

him within the system.

There are two main command status within the

system. The main program command status which allows

manipulation of the data workspace and general functions

and the executive command status which deals with assign­

ment of peripheral channels etc. A full account of the

functions available when in these command status are

given elsewhere(Chapter 6) .

On inputting the global command '*' the

experiment subsystem will be entered. This subsystem may

be any DAP program which is called EXPR by name, and the

system causes a 'JST' to this label on entering the sub­

system. An exit to the main program may be made by a

'JMP*' the entry point (EXPR) .

The following description of the features of the

system assume that the reader has a knowledge of DAP

assembly language. In these descriptions, the following

abbreviations will be used ,

258

A A register

B B register

C C register (1 bit)

Dl 1st location after subroutine call,

usually Dl is the return

location from the subroutine

D2 2nd location after subroutine call

X X register.

An argument of the form '(1-8)' after a register

refers to the bits of that register which are currently

relevent.

In this system the A, B and C registers are used

for transferring parameters to subroutines. The X

register value is always preserved. Unless otherwise

stated, the return from a routine will be to D l .

The following routines are available to a user

when writing a subsystem. Only a brief description of the

functions are given,further details may be obtained from

the program listings.

NAME FUNCTION
Peripheral Routines

1.

2 .

3.

4.

5.

TYPINA Input 1 frame from command

channel. Result in A(9-16)i

TYPOUT Output 1 frame (A(9-16)) to

command channel.

RPT Input 1 frame from data channel.

PUNCH Output 1 frame to data channel.

VISTOP Output 1 frame to the Vista.

6 .

7.

8 .

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Camera

19 .

2 0.

c o n t .

1

259

NAME FUNCTION

PRINTER

DICHAN

DOCHAN

ID CHAN "
ODCHAN

ONCHAN

INCHAN

RMCHAN

RSCHAN

SEQU

NSEQ

CANP

NCAN

Subroutines

OPIC

NEWX

Output 1 frame to the line

printer.

Define input channel, A has

device number.

Define output channel, A has

device number.

Command input to defined channel.

Command output to defined

channel.

Restore command output channel

to default device.

Restore command input channel to

default device.

(
Remember the state of the

channels.

Restore the channels to the last

remembered state.

Set in tape control mode.

Reset system to normal control

mode .

Cancel messages which are

output on the command channel.

Reset the above function.

Obtain frame from the camera

using the settings in the main

program.

Change value of X parameter by
the value in A. If successful

260

on the return A=0 otherwise,

A = - l .

As above, but for Y parameter.

Change Zoom value by the value

of A. On return A=0 if

successful and -1 otherwise.
As above, except this sub­

routine changes the Zoom with

the center of the viewing

window as a reference.

Obtain frame from the camera

with the following settings

Dl=X value D2=Y value

D3=Zoom value D4=brightness

level D5=Special options

D6 is the return location.

Command channel character string inputting routines

25. INCOMMAND A=Starting location of return

pointers, Dl is the start of

the list of mnemonics. This

routine is for inputting and

decoding one and two character

mnemonics. When the user inputs

a mnemonic it is compared with a

list of mnemonics which follows

the subroutine call and when the

correct one is detected the

routine returns by jumping

through a corresponding location

in a list of pointers. The list

FUN C TIO Nc o n t . NAME

21.
22.

NEWY

NEWZ

23. NEWC

24. GPIC

261

c o n t . NAME F U N C T IO N

of mnemonics is terminated by

a location set to 0. If the

input mnemonic is not in the

list of mnemonics, the routine

returns to the first location

after the end of the pointer

list.

26. INUMBER Inputs a number, the result is

in A .

27. INCOMP Inputs a number with limits.

On entry A=maximum limit,

B=minimum limit. The result is

in A.

28. YORN For inputting Yes/No answers.

If Y is input A=-l on returning,

and if N is input, A = 0 .

29. YENO For inputting Yes/No answers.

If Y is input A=-l and a return

is made to D l . If N is input

A=0 and a return is made to D 2 .

If any other character is input

A(9-16) is set to that character

and a return is made to D 3 .

Command channel outputting routines

30. MESSAGE This outputs a 'message'

(Character string) to the

command channel. Dl contains a

pointer to the character string

and after outputting a return is

made to D 2 ,

262

cont • • • • NAME FUNCTION

31. DOUTNUMBER Outputs the number in A

in decimal with suppressed

lead zeros.

32. BOUTNUMBER As above but in binary.

33. :OOUTNUMBER As above but in octal.

34. DOUTWORD Outputs the number in A in

decimal as a 16-bit integer

with suppressed lead zeros.

35. ~BOUTWORD As above but in binary.

36. 00UTW0RD As above but in octal.

37. :B00UTW0RD Outputs the number in A in

binary coded Octal format.

38 FDOUTNUMBER Outputs the number in A in

decimal with lead zeros.

39. *FOOUTNUMBER As above but in octal.

40. .FBOUTWORD Outputs the number in A as a

16-bit integer in binary with

lead zeros.

41. CRLF Outputs a new line.

42. OKE Outputs 'O.K.' followed by a

new line.

Other character string routines

There is a general purpose character buffer (128 characters

long) which is used by the following routines:

43. BUFO Obtains the state of the

buffer. On returning A=the

starting location of the

buffer and B-the number of 16-

bit words which the buffer

contains.

263

cont. . ..

44.

45.

46.

47.

48.

INBUF

NAME

OUTBUF

INLINE

OUTLINE

OPRINT

The character in A (9-16) is

inserted after the last

character in the buffer. On

returning A=-l if this is not

possible and 0 otherwise.
One character is taken from

the start of the buffer and is

in A (9-16) when the routine

returns. If the buffer is

empty, the routine returns

with A = - l .

This enables the user to input

a line of characters via the

command channel„ On return

A(2-16) contains the number of

characters input and if the

line has been terminated by '#•

A (1) is set.

This outputs the characters in

the buffer to the command

channel.

This outputs the characters in

the buffer to the line printer.

FUN C TIO N

It is possible to output characters on paper tape, for

headings, in visible format so that the user can read them.

This can be done with the following routines:

264

c o n t NAME FUN C TIO N

49. VIZP This outputs one character

(A(9-16)) to the data channel

in visible format.

50. POVZ This routine uses INLINE to

input a string of characters

and then outputs them to the

data channel in visible,

format.

The following routines are concerned with manipulating 16x16

binary patterns:

51. SORI Convert a data store pattern

number to a pointer to the first

location of that pattern. On

entry A=pattern number on return

A=required starting location.

If this is not successful the

return is made to D - 2 .

52. DESORT Convert a pattern pointer to a

pattern number. On entry

A=pointer and on returning

A=pattern number. If this is not

successful A=-l on returning.

For the routines 53 to 63 the A register on entry contains a

pointer to the starting location of the pattern to be operated

o n .

53. CLEA Set all locations of the pattern

to 0 .

54. FILL Set all locations of the pattern

to 1.

265

56 .

57.

58.

59.

c o n t . •••

5 5 .

60.

61.

62 .

63.

NEG Complement all locations of the

patterns.

REMX Input the pattern from the data

channel (paper tape format).

OMX Output the pattern to the data

channel (paper tape format).

OBP Output the pattern to the command

channel as 16 16-bit binary

numbers.

OBCO Output the pattern to the command

channel as 16 binary coded octal

numbers.

INS Input the pattern from the command

channel as 16 numbers.

ALT Replace a row of the pattern

specified by a number input from

the command channel by a second

number input from the command

channel.

CROT Rotate the pattern clockwise by

90° .

AROT Rotate the pattern anticlockwise

by 90°.

NAME FUN C TIO N

For the routines 64 to 68 B on entry contains a pointer to the

start of the pattern to be operated on and A contains a number

N :

64. MASK Set the first N bits of the pattern

to 1 and reset the remainder.

65. TOPROL Roll the pattern N rows toroidally.

266

Roll the pattern N columns

toroidally.

Find the value of an element of

the pattern.A(1-12) specifies the

Y coordinate and A (13-16) speci­

fies the X coordinate. On

returning A=0 if the element is

reset and A=-l if the element is

s e t .

Set the value of an element of

the pattern. The value of this

element is in C on entering and

the location is specified in the

same way as for 67.

FUN C TIO N

For the routines 69 to 75 a pattern (P2),. pointed at by the value
in B/is operated on by the pattern (PI), pointed at by the value

in A.

69. MOVE Transfer PI to P 2 .

70. INT Interchange Pi and P 2 .

71. AND AND PI and P2 the result is in P 2 .

72. ORE OR PI and P2 the result is in P 2 .

73. XOR Exclusive OR Pi and P2.

74. BITS Find the Hamming distance between

PI and P 2 . The result on returning

is in A.

The routines 75 to 80 require three or more parameters to be

transferred when entered:

cont
66 .

NAME

SIDROL

67. REFP

68. REFT

267

c o n t • • « •

7 5 .

76.

77.

78.

SHFTR

N A M E

RSHIFT

IMP

MAP

This routine treats a pattern as

a 256-bit shift register. The

new bits to be input are in A, the

pointer to the pattern is in B and

the number of shifts n(0^n$16) is

in D l . The routine returns to D2

with the bits that have overflowed

from the register in A.

This behaves in similar way to

SHIFTR except that the shift

register is shifted in the opposite

direction.

This routine replaces bits in

a pattern P2 by correspondingly

located bits in a pattern PI

where there are I's in a pattern

P3. On entering this routine A

points to PI, B to P2 and Dl to P3.

The routine returns to D 2 .

This routine is to map one pattern

which is pointed to by Dl to a

second pattern pointed to by A.

The 256 8-bit list for directing

the map is stored in 8 consecutive
patterns which are pointed at by B.

F U N C T IO N

The routine returns to D 2 .

268

c o n t

79 .

80.

Miscellaneous

81.

RMAP

NAME

BMAP

Routines

SERCH

This routine is organised in the

same way as MAP except that it

performs the inverse mapping

function. Hence, for a 1 to 1

mapping the original pattern which

produced a mapped pattern by MAP

may be recreated by using RMAP

on the mapped pattern.

This is a more general mapping

routine than MAP in that it may

map n consecutive patterns to n

patterns where n^256. To do this

one word is used to specify the

mapping of each point, hence, the

connection list is 16n patterns

long. This routine is organised

in a similar way to MAP except

that n is contained in D2 and the

return is made to D 3 .

This compares a word in A with a

list of code words. This routine

is organised in a similar way to

INCOMMAND (25) except that it is

entered with the unrecognised code

in A and the pointer to the list

of pointers in B,

FUN C TIO N

269

c o n t• •• .

8 2 .

83.

84.

85.

86.

8 7 .

ADUMP

N A M E

PDUMP

RANDOM

SETSCAN

This routine is a subsystem which

enables the user to set parameters

for the dumping routine PDUMP from

the command channel.

This outputs a consecutive block

of patterns in character format.

A contains the 1st pattern number

of the block and B contains the

last.

This routine randomly sets n bits

in a 16-bit word. The value of n

is in A on entering and the

desired random word is in A when

the routine returns.

This is a subsystem to enable the

user to set the parameters for

the SCAN.

FUN C TIO N

TSCAN This routine scans a scene with

the camera and stores the result

in a selected area of the data

workspace.

CSCAN This routine scans a scene with

the camera and compares the result

in Hamming distance with a

previously stored scan in the data

workspace.

c o n t N A M E F U N C T IO N

The following routines (88 to 96) are concerned with control­

ling the Magnetic tape handler. The mag tape format for a

'file' within this system is defined as follows. A file

number L followed by a character file of M lines followed by a

data file of N patterns. The file numbers L are consecutive

starting with 1 at the beginning of the tape. M or N for a

file may be zero, the maximum limit is determined by the

length of the tape. If an error occurs the routines return

with -1 in A, otherwise they return with 0 in A.

88 .

89.

90.

91.

92.

93.

94 .

TWFILE

TWCHAR

TWPAT

TRFILE

TRCHAR

TRPAT

TEND

Opens a new file and writes a

file number.

Writes a character line (from the

general purpose buffer).

Writes a block of consecutive

patterns. The number of patterns

to be written is in A and the

first pattern number is in B .

Reads a file number (the number is

returned in B) .

Reads a line of a character file

and puts it into the general

purpose buffer.

Reads a block of n data patterns.

The routine is entered with n in

A and the first pattern number

for the data to be stored in B .

Moves the mag tape to the end of

the last file.

271

c o n t . NAME FUN C TIO N

95. TMOV Moves the mag tape to the file

specified in A.

96. TBOT Moves the mag tape to the beginning.

There are some Global locations which may be useful to the user.

These are as follows:

1 .

2 .

3.

4.

5.

6 .

7.

8.

9 .

10.

DSTO

K816

Location
'63

STRT

MINB

MINE

XPOS

YPOS

MAG

MG16

This is the location of the first

pattern of the data workspace.

This location contains the address

of the top of the available data

store.

Contains a pointer to the entry

point of the executive.

This location is the starting

location of the main program.

This location contains the

starting address of the defined

SLAM simulation store.

This location contains the

address of the last pattern which

has been allocated for the SLAM

simulation store.

This location contains the current

X-coordinate of the camera

viewing window which is used in

the main program.

As above but the Y-coordinate.

As XPOS but for the Zoom value.

This is the value in MAG multi-

plied by 16

272

INDEX OF GENERAL ROUTINES

ADUMP 82 MAP 78 RSCHAN 14

ALT 61 MASK 64 RSHIFT 76

AND 71 MESSAGE 30 SEQU 15

AROT 63 MOVE 69 SERCH 81

BITS 74 NCAN 18 SETSCAN 85

BMAP 80 NEG 55 SHIFTR 75

BOOUTWORD 37 NEWC 23 SIDROL 66
BOUTNUMBER 32 NEWX 20 SORI 51

BOUTWORD 35 NEWY 21 TBOT 96

BUFO 43 NEWZ 22 TOPROL 65

CANP 17 NSEQ 16 TEND 94

CLEA 53 OB CO 59 TMOV 95

CRLF 41 OBP 58 TRCHAR 92

CROT 62 ODCHAN 10 TRFILE 91

CSCAN 87 OKE 42 TRPAT 93

DESORT 52 OMX 57 TSCAN 86
DICHAN 7 ONCHAN 11 TWCHAR 89

DOCHAN 8 OOUTNUMBER 33 TWFILE 88
DOUTNUMBER 31 OOUTWORD 36 TWPAT 90

DOUTWORD 34 OPIC 19 TYPINA 1
FBOUTWORD 40 OPRINT 48 TYPOUT 2
FDOUTNUMBER 38 ORE 72 VISTOP 5

FILL 54 OUTBUF 45 VIZP 49

FOOUTNUMBER 39 OUTLINE 47 XOR 73

GP16 24 PDUMP 83 YENO 29

IDCHAN 9 POVZ 50 YORN 28

IMP 77 PRINTER 6
INBUF 44 PUNCH 4

INCHAN 12 RANDOM 84

INCOMMAND 25 REFP 67

INCOMP 27 REFT 68
INLINE 46 REMX 56

INS 60 RMCHAN 13

INT 70 RMAP 79

INUMBER 26 RPT 3

273

Learning Network Routines

A library of routines is available which can

operate the learning machine Minerva or simulate SLAM

elements within the data workspace. The names and functions

of these routines are as follows:

NAME FUNCTION

Routines 1 to 12 are for operating Minerva.

1. MUSCRE

2. MUSCSE

3. MUSCTO

4. MUSCT 1

5. MUSCOP

6. MUSPRE

7. MUSPSE

8. MUSPTO

Reset a card of four SLAM-16s.

The address of the card is in A.

Set a word, the address of the card

is in A.

Teach a card of SLAMs 0. The input

pattern is in A and the address of

the card is in B .

As above but teach 1.

Obtain an output from a card. The

input pattern is in A, the card

address is in B and the 4-bit result

is put into A(13-16).

Reset a 'pattern' of Minerva SLAMs 16

consecutive cards are referred to as

a pattern of SLAMs because they sample

a 16x16 bit input pattern. The

starting address is in A.

As above but set instead of reset.

Teach 1 to a pattern of Minerva cards.

The starting location of the input

pattern in store is in A and the

address of the first Minerva card is

in B .

274

9.

10.

c o n t .

11.

MUSPT1

MUSPOP

NAME

MUS PPO

MUS PPl

As above, but teach 1 instead of 0.

Obtain the total number of l's out­

put from a pattern of Minerva cards.

On entry, the registers are set up

as described for MUSPTO. On return­

ing the summed response is in A.

Probablisticly teach Dlto a pattern

of Minerva cards. The registers are

set up as described for MUSPTO« Dl

contains the 16-bit probablistic

teach vector and the routine returns

to D2.

As above, but teach 1 instead of 0.

FU N C TIO N

The following routines 13 to 43 are concerned with simulating

SLAMs in the data workspace. 1 16-bit word is used to

simulate each SLAM 16.

13. MINSET This enables a user to select an area

of data workspace for the SLAMs to be

simulated. The SLAM routines may at

run time only access this area for

simulating SLAMs.

Routines to simulate 1 SLAM 16 (14-18).

14.

15.

16.

SALR

SALS

SALD

Reset a SLAM thè location of which

is in A.

Set a SLAM thè location of which is

in A.

Teach a SLAM d, thè input pattern is

in A (13-16) and thè location of thè

SLAM is in B.

275

cont• ••• NAME FUNCTION

17. SALI As above, but teach 1.
18. SALOP Obtain an output from a SLAM.

The registers on entry are the

same as for SALO. If the output

is 1 then A=-l, if the output is

0 then A=0 on returning.

Routines to simulate a Minerva card of SLAM 16s.

19.

20.

2 1 .

22.
23.

MINR Reset a card of SLAMs the starting

location is in A.

MINS Set a card of SLAMs the starting

location is in A.

MIND Teach a card of SLAMs 0 the input

pattern is in A and the starting

location of the SLAMs is in B.

MINI As above, but teach 1.

MINOP Obtain the output from a card of

SLAMs. The registers are set up in

the same way as for MINO. On

returning the result is in A (13-16).

Routines to simulate a 'pattern' of SLAMs which consists of

16 consecutive cards of SLAMs.

24. MINPR Reset a pattern of SLAMs. The

starting location of the SLAMs is

in A.

25. MINPS As above, but set instead of reset.

26. MINPO Teach 0 to a pattern of SLAMs. The

starting location of the input

pattern is in A and the starting

location of the SLAMs is in B.

276

27.

28.

c o n t

29 .

30.

MINPl As above, but teach 1.

MINPOP Obtain the sum of all the outputs

of a pattern of SLAMs which are 1.

The registers are set up in the

same way as for MINPO and on

returning the summed response is

in A.

MINPPO Probablisticly teach 0 to a pattern

of SLAMs. The registers are set up

as for MINPO/ the 16-bit teach

vector is in Dl and the routine

returns to D 2 .

MINPP1 As above, but teach 1.

NAME FUN C TIO N

The following routines are for simulating a card of 4 SLAMs

without the restrictions on the teach inputs which occurs

in Minerva. A data word is associated with the card, which

is formed in the following way. Bits (1-4) signify the teach

sense values, bits (5-8) signifies the teach clock values

and bits (13-16) contain the last obtained output from the

card.

31. MISLCT Teach a card of SLAMs. The input

pattern is in A. The starting

location of the SLAMs is in B and

the data word is in Dl and the

routine returns to D 2 . (All the

other card functions may be con­

ducted by the normal card routines

(19, 20 and 23)) .

277

The following routines are for simulating a 'pattern' of

the cards of SLAMs mentioned above. With each 'pattern' of

these SLAMs a data pattern of 16 consecutive data words is

associated.

32. MISLPT Teach a pattern of SLAMs. A has

the location of the input pattern,

B the location of the SLAMs and

Dl the location of the data pattern.

The routine returns to D 2 .

33. MISLPO Obtain a new output from a pattern

of SLAMs. The routine is entered

as described above for MISLPT.

(All other pattern functions may be

conducted by the normal pattern

routines (24, 25 and 27).

The following routines (34 to 54) are concerned with the

simulation of cumulative learning SLAMs (CL SLAMs).

Routines for 4 output CL SLAM 16 s : the simulation of 4 output

CL SLAM 16 requires 4 16-bit words.

34. SALCLC Clear a CL SLAM (i.e., set all the

outputs to 8). The location of the

CL SLAM is in A.

35. SALCLT Teach on output to a CL SLAM. The

input pattern is in A (13-16) and

the teach number is in A (5-8). The

c o n t NAME FUN C TIO N

location of the SLAM is in B .

278

36.

Routines

37.

38.

39 .

c o n t . . .

40.

SALCLO Obtain the output from a CL SLAM.

The input pattern is in A (13-16).

The location of the SLAM is in B

and the output is in A when the

routine returns.

NAME FUN C TIO N

to simulate a card of 4 4-output CL SLAM 16s.

MINCLC

MINCLT

MINCLI

MIN CLO

Clear a card of CL SLAMs the

location of the first SLAM is in A.

Teach each CL SLAM an output pattern.

The input pattern is in A, the

location of the first SLAM is in B

and the output .patterns are in

D 1 (5-8) and (13-16) and D 2 (5-8) and

(13-16). The routine returns to D 3 .

Increment the output of a card of

CL SLAMs. The input pattern is in

A, the location of the first SLAM

is in B and the teach sense is in

C. If C=l, then the SLAMs are

incremented; if C=0, then they are

deincremented. On returning, the

number of SLAMs which have saturated

is in A.

Obtain the outputs from a card of

CL SLAMs. The input pattern is in A

and the location of the first SLAM

is in B. On returning, the four

responses are in A (5-8), A (13-16),

B(5-8) and B(5-16) .

279

Routines to simulate a pattern of CL SLAMs.

41. MINPCC Clear a pattern of CL SLAMs. The

location of the first SLAM is in A.

42. MINPCI Increment the output of a pattern

of CL SLAMs. The location of the

input pattern is in A, the location

of the first SLAM is in B and the

teach sense is in C. On returning,

the total number of CL SLAMs which

have saturated is in A.

43. MINPCO Obtain a summed response from a

pattern of CL SLAMs. The location

of input pattern is in A, the

location of the first SLAM is in B

and on returning, the summed response

is in A.

The following routines are concerned with 16 output CL SLAM

16s. For programming convenience, one word represents one

element of the SLAM and a 16 output CL SLAM 16 is simulated

by 16 consecutive words.

Routines for one 16 output CL SLAM 16V

44. BISLC The same function as SALCLC (34)

except the mid value is 32,568 for

a 16 output CL SLAM.

45. BISLI The same function as SALCLT (35)

except that the teach number is in

D l (1-16) and the routine returns to

D2 .

c o n t NAME FUN C TIO N

cont. ... NAME FUNCTION

46. BISIO The s ame function as SALCLO (36) .

Routines for a card of four 16 output CL SLAM 16s .

47. BISLCC The same function as MINCip (37) .

•
CO BISLCI The s ame function as MINCLI (38) .

49. BISLCO A similar function tc1 MINCLO (40)

except that the 4 outputs are

summed and the routine returns

with the response as a double

precision integer in A and B.

Routines for a pattern of 16 output CL SLAM 16s.

50. BISLPC The same function as MINPCC (41) .

51. BISLPI The same function as MINPCI (42) .

52. BISLPO The same function as MINPCO (43)

except that the response is a

double precision integer in A and B

The following, output incrementing, teach routine has two

additional features. Firstly, it can probabilisticly teach a

pattern of CL SLAMs. Secondly, the size of the increment

may be varied hence n output CL SLAMs may be simulated where

U n < 16 .

53. BIGPI Similar to MINPI (27) except that

D1 contains the 16-bit teach vector

and D2 contains the increment size.

The routine returns to D 3 . (All

other functions can be conducted by

the normal routines 51 and 53).

2 8 1

The following routines are for simulating a card of 4 TR

SLAM 16s. This is achieved by using two cards of normal

SLAMs, one for the data output and one for the valid

output.

54. MITRCT This is similar to MISLCT (31)

except that bits (9-12) of the

data word are used for the last

valid output.

55. MITRCO This obtains an output from a

card of TR SLAMs. It is entered in

a similar way as MISLCT" (31).

On returning, the complete data

word is in A with bits (9-12)

containing the new valid output

and bits (13-16) containing the

new data output. (A card of TR

SLAMs may be reset by using MINR

twice) .

c o n t N A M E F U N C T IO N

References

1. ALEKSANDER, I. 'Microcircuit Learning Computers',

Mills & Boon, 1971.

2. ARBIB, M.A. 'Transformation and Somatotopy

in Perceiving Systems', Second

Int. Joint Conf. on Artificial

... Intelligence, PP.140-148, 1971.

3. BALL, A.G. 'Alan's Debug' : User Manual,

Electronics, University of Kent,

at Canterbury, 1971.

4. BALL, A.G. 'AMOS Sub-System Writers Manual'

Electronics, University of Kent

at Canterbury, February, 1973.

5. BLEDSOE, W.W.
& BROWNING, I.

'Pattern Recognition and Reading

by Machine', Proc. of the Eastern

Joint Computer Conf. PP.225-232,

1959.

6. BLEDSOE, W.W.
& BISSON, C.L.

'Improved Memory Matrices for the

n-tuple Pattern Recognition

Method', IRE Trans, on Electronic

Computers, Vol.EC-11, No.3,

PP.414-415, June, 1962.

7. CHEUNG, C.Y. 'Some Aspects of Adaptive Logic

for Pattern Recognition', Ph.D.

Thesis in Electronics, University

of Kent at Canterbury, 1973.

283

8. CHUNG/ S.H. 'Neurophysiology of the Visual System'

in'Recognising Patterns', Eds.: Kolers,

P.A. & Eden, M. The M.I.T. Press,

PP.82-101, 1968.

9. DEUTSCH, E.S. 'Character Preprocessing and Recogni­

tion : A Pseudo-Topological Approach',

Ph.D. Thesis in Engineering, University

of London, 1969.

10. DINN/ D.F.
WINTER, D.A.
& TRENHOLM/ B.G,

'CINTEL-Computer Interface for Tele­

vision', IEEE Trans, on Computers,

Vol.Cl9, PP.1091-1095, November, 1970.

11. DUDA, R.O.
& HART, P.E.

'Pattern Classification and Scene

Analysis', John Wiley & Sons, 1973.

12. EDEN, M. 'Handwriting Generation and Recognition'

in'Recognising Patterns' Eds.: Kolers,

P.A. & Eden, M. The M.I.T, Press,

PP.138-154, 1968.

13. FAIRHURST, M.C.
& ALEKSANDER, I.

'Natural Pattern Clustering in Digital

Learning Nets', Electronics Letters,

Vol.7, No.24, PP.724-726, December, 1971

14. FAIRHURST, M.C. 'The Dynamics of Learning in Some

Digital Networks', Ph.D» Thesis in
V v

Electronics, University of Kent at

Canterbury, 1973,

15. FORSEN, G.E. 'Processing Visual Data With An Auto­

maton Eye' in 'Practical Pattern

Recognition', Thompson Book Company,

PP.471-502, 1968.

284

16. FUKUSHIMA, K. 'Visual Feature Extraction by a

Multilayered Network of Analog Thres­

hold Elements', IEEE Trans, on System

Science and Cybernetics, Vol.SSC-5,

No.4, PP.322-333, October, 1969.

17. GLOVER, R.J.
ALEKSANDER, I.
& REEVES, A.P.

18. GOLAY, M.J.E.

'The Minerva Adaptive Computing

System' (To be published),

'Hexagonal Parallel Pattern Trans­

formations ', IEEE Trans. on Electronic

Computers, Vol.C-18, PP.733-740,

August, 1969.

19. GRIMSDALE, R . L . 'A System for the Automatic Recognition
SUMNER, F.H.
TUNIS, C.J. of Patterns', Proceedings of the IEE.,
& KILBURN, T.

Vol.106, Part B, No.26, PP.210-221,

March, 1959. Also, in 'Pattern

Recognition', Uhr, L, Editor, John Wiley

& Sons, PP.317-338, 1966.

20. HEBB, D.O. 'The Organisation of Behaviour', John

Wiley & Sons, 1949,

21. HERSCHER, M.B.
& KELLY, T.P.

'Functional Electronic Model for The

Frog Retina', IEEE Trans, on Military

Electronics, Vol.7, PP.98-103, April-

July, 1963.

22. HOSKING, K.H.
& THOMPSON, J.

'A Feature Detection Method for Optical

Character Recognition', Conf. on Pattern

Recognition, Organised by IEE & N P L ,

PP,271-283, 1968.

285

23. HOSKING, K.H. 'A Contour Method for the Recognition

of Hand Printed Characters', Machine

Perception of Patterns and Pictures,

Conf. series no.13, The Instit. of

Physics, London & Bristol, PP.19-27,

1972.

24. HUBEL, D.H.
& WIESEL, T.N.

'Receptive Fields, Binocular Inter­

action and Functional Architecture in

the Cats Visual Cortex', Journal of

Physiology, Vol.160, PP.106-123, 1962,

Also, in 'Pattern Recognition', Uhr. L.

Editor. John Wiley & Sons, PP.262-277,

1966.

25. HUNT, D.J. 'A Feature Extraction Method for the

Recognition of Hand Printed Characters',

Machine Perception of Patterns and

Pictures, Conf, series no.13, The

Instit. of Physics, London & Bristol,

PP.28-33, 1972.

26. KABRISKY, M. 'A Proposed Model for Visual Information

Processing in the Brain', University of

Illinois Press, 1966.

27. KELLEY, M.D, 'Edge Detection in Pictures by Computer

Using Planning', in 'Machine Intelli­

gence 6 ', Meltzer, B. & Miche, D. Eds.

PP.397-404, 1971.

28. KOLERS, P.A. 'Some Psychological Aspects of Pattern

Recognition' in 'Recognising Patterns',

Kolers, P .A ; & Eden, M. Eds, The M.I.T.

Press, PP4-61, 1968.

286

29. LEDLEY, R.S. 'High-Speed Automatic Analysis of

Biomedical Pictures', Science, 146,

P P „216-223, October, 1964,

30, LEGENDY, C.R, 'Ho w Large are Hebbs Cell Assemblies?',

in 'Cybernetic Problems in Bionomics',

Bionomics Symposium, 1966, Oestricher,

H.L, & Moore, D.R, Eds. PP.721-724.

31. LETTVIN, J.Y. 'What the Frog's Eye Tells the Frog's
MATURANA, H.R.
McCULLOCK, W.S. Brain', Proc, IRE., Vol,47, PP.1940-
& PITTS, W.H.

1951, 1959.

32. MASON, S.J, 'Character Recognition in an Experi-
& CLEMENS, J.K.

mental Reading Machine for the Blind',

in 'Recognising Patterns', Kolers, P.A,

& Eden, M. Eds, The M.I.T. Press,

PP.156-167, 1968.

33. MINSKY, M.
& PAPERT, S,

34. NOTON, D,

35. NOTON, D.
& STARK, L.

36. PARKS, J.R.

'Perceptrons', M.I.T, Press, 1969.

'A Theory of Visual Pattern Perception',

IEEE Trans. on System Science and

Cybernetics, Vol,SSC-6, No.4, PP.349-357,

October, 1970,

'Eye Movements and Visual Perception',

Scientific American, PP.34-43, June, 1971

'A Multi-Level System of Analysis for

Mixedfont and Hand-Blocked Printed

Characters Recognition', in 'Automatic

Interpretation and Classification of

Images', edited by Grasselli, A. Academic

Press, PP.295-322, 1969,

287

37. PINGLE, K.K. 'Visual Perception by a Computer',

in 'Automatic Interpretation and

Classification of Images', edited by

Grasselli, A » Academic Press, PP.277-

284, 1969.

38. REEVES, A.P. 'Visual Display Unit Report', Third

Year Project Report, Electronics,

University of Kent at Canterbury, 1970.

39. REEVES, A.P, 'Improvements In Adaptive Networks',

U.K. Patent Applic, No,36006/71, 1971.

40. ROSENBERG, B.
& WILKINS, B.R.

'Coding in the Visual System', Conf.

on Pattern Recognition, Organised by

IEE & N P L , PP.77-85, 1968.

41. ROSENBLATT, F. 'Principles of Neurodynamics : Percep-

trons and the Theory of Brain

Mechanisms', Spartan Books, 1962,

42, RUNGE, R.G.
UEMURA, M.
& VIGLIONE, S.S.

'Electronic Synthesis of the Neural

Network in the Pidgeon Retina', in

'Cybernetics Problems in Bionomics',

Bionomics Syposium, 1966, Oestricher,

H.L, & Moore, D.R. Eds. PP.791-810.

43. SARAGA, P.
WEAVER, J.A.
& WOOLLONS, D.J.

'Optical Character Recognition',

Philips Technical Review, Vol.28,

PP.197-203, 1967,

44. SARAGA, P.
& WAVISH, P.R.

'Edge-coding Operators for Pattern

Recognition', Electronics Letters, Vol.7,

No.25, PP.736-738, December, 1971.

288

45. SARAGA, P.
& WOOLLONS, D„J„

'The Design of Operators for Pattern

Processing', Conf, on Pattern Recogni­

tion. Organised by IEE & N P L , PP.106-

116, 1968,

46, SCAN-DATA CORP. 'Scan Data Optical Character Reading

System', Reference Manual,

47. STECK, G.P. 'Stochastic Model for the Browning

Bledsoe Pattern Recognition Scheme',

IRE Trans, on Electronic Computers,

Voi.E C U , PP,274-282, April, 1962.

48, SUTRO, L.L. 'Proposed Electronics to Represent

Properties of the Frog's Eye' in

'Cybernetic Problems in Bionomics',

Bionomics Symposium, 1966. Oestricher,

H„L. & Moore, D,R, Eds. PP.811-819.

49. SYMONS, M. 'A New Self-Organising Pattern Recogni­

tion System', Conf, on Pattern Recogni­

tion. Organised by IEE and NPL, PP,11-20,

1968.

50. TAYLOR, W.K„ 'Learning Characteristics of a Trainable

Pattern Recognition Machine', Conf, on

Pattern Recognition. Organised by IEE &

NPL, PP,238-249,1968.

51. TOLLYFIELD, A.J. 'Investigation of the Behaviour of SLAM

Nets with Feedback', First Year Report,

Electronics, The University of Kent at

Canterbury, 1971.

289

52. TOUSSANT, G.T. 'Algorithms for Recognising Contour-
& DONALDSON, R.W,

Traced Hand-Printed Characters', IEEE

Trans on Computers, Vol.C19, PP.541-546,

June, 1970.

53. UHR, L,
& VOSSLER, C.

'A Pattern Recognition Program that

Generates, Evaluates & Adjusts Its Own

Operators', Proc. of the Western Joint

Computer Conf„ Vol,19, PP,555-569, May,

1961, Also, in 'Pattern Recognition',

Uhr, L, Editor. John Wiley & Sons, 1966.

54. ULLMANN, J.R. 'Experiments with the n-tuple Method of

Pattern Recognition', IEEE Trans, on

Computers, V0I.CI8, P P ,1135-1137,

December, 1969»

55. WATT, A „ H .
& BEURLE, R„L.

'Recognition of Hand-Printed Numerals

Reduced to Graph Representable Form',

Second Int. Joint Conf, on Artificial

Intelligence, PP,322-332, 1971.

56. YARBUS, A.L. 'Eye Movement and Vision', Translation

editor Riggs, L ,A „ Plenum Press, N.Y.,

1967.

57. ZUSNE, L. 'Visual Perception of Form', Academic

Press, 1970

