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Abstract

Bayesian methods for group sequential clinical trials have received increasing at-
tention recently. They offer an approach for dealing with many difficult problems
and have some practical advantages over frequentist methods. This thesis covers
Bayesian methods for group sequential clinical trials comparing two treatments
using both the Bayes sequential procedure and the Bayes sequential decision pro-
cedure. The main outcome measures for clinical trials are distributed as normal,
binomial, and exponential and the proportional hazard model for survival time
data.

Under the framework of Bayes sequential procedure for group sequential clini-
cal trials, the student ¢ prior distribution for the parameter of interest is proposed
as a replacement for the normal prior distribution when the sample mean is very
distant from the mean of the prior distribution. The framework of Bayes sequen-
tial procedure in clinical trials on normal distribution responses with variance
unknown is given.

Bayes sequential decision theory is applied to group sequential clinical trials.
First, Bayes sequential decision procedures with piecewise continuous loss func-
tions are used in clinical trials on normal distribution responses. The procedures
with loss functions which consider treatment efficacy and patient horizon are then
given in clinical trials on binary responses. Approximation methods of Bayes
sequential decision procedures are explored in clinical trials with survival time
data.

Robust Bayes analysis in clinical trials is presented to address the criticism on
the subjective prior distribution for parameters of interest.
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Chapter 1

Introduction

1.1 Group Sequential Clinical Trial

The randomised, controlled clinical trial is the standard for evaluating new treat-
ments and therapeutic strategies in clinical research. It consumes substantial
patient, investigator and financial resources. For ethical requirements, patient re-
sources should be deployed efficiently and necessarily. Early termination could be
considered if a clinical trial shows early benefits or unexpected toxicity. To achieve
this, the interim monitoring of a clinical trial has been suggested and developed
by statisticians.

The mathematical theory of sequential analysis was introduced in the 1940s,
motivated by industrial applications, and has continued to develop actively. Over
the past 20 years, there has been extensive development in the biostatistics lit-
erature concerning the sequential monitoring of clinical trials. Classical methods
of sequential analysis in clinical trials are summarised by Armitage(1975), and
later by Whitehead(1982). These methods allow for continuous monitoring of
paired data while they achieve the desired levels of type I and type II error rates.
Though these methods are generally successful in their pursuit of a reduced sam-

ple number, they are not feasible in practice because of the difficulty of continual
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monitoring, particularly in multicenter co-operative clinical trials with survival
time responses.

The term “group sequential” was first introduced by Pocock(1977). The group
sequential clinical trial monitors a sequence of grouped data instead of paired data
one group at a time and is used to decide whether sampling should be continued
or stopped based on some criteria after observing each grouped data. The interim
monitoring can be at either every specified number of samples, for instance, ev-
ery 20 patients, or alternatively every selected time point, for instance, every 3
months after treatment or randomisation. The group sequential clinical trial or
interim monitoring of clinical trial is now widely used for ethical, scientific and eco-
nomic reasons. It is generally agreed that a clinical trial could be stopped should
accumulating evidence demonstrate the superiority of one of the treatments or
unexpected toxicity of treatments; whilst continuing the trial would unnecessarily
expose some patients in the trial to the less effective treatment and delay applying
the results to patients outside the trial. With the current statistical methods, it
is now recommended by FDA that planned interim analyses should be included

in any clinical trial protocol.

1.2 Introduction of Frequentist Methods

A number of different frequentist statistical procedures in group sequential clinical
trials have been suggested. The most popular ones are the Pocock(1977) and the
O’Brien-Fleming(1979) procedures. It is widely noticed that the repeated signifi-
cance tests at conventional critical values increase the overall significance level or
type I error rate . This was shown by Armitage, McPherson and Rowe(1969).
Therefore their methods adjust the critical values used at interim tests of the null
hypothesis by the choice of a more stringent “nominal significance level” o such

that the overall type I error rate « is controlled at some prespecified level, for
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example, o = 0.05. If the p value of test statistics Z;, j = 1,2,...,{ — 1, where
[ is the number of groups or number of analyses, is less than the nominal signif-
icance level o at an interim analysis, then the trial could be stopped early since
the significant treatment difference under overall significance level is equal to a.
Otherwise, the trial is continued to the final analysis.

Pocock and O’Brien-Fleming have given the nominal significance levels used in
their procedures for various maximum number of groups and overall significance
levels in their papers. Some of these nominal significance levels with overall type

I error rate a = 0.05 are shown in the following table.

Nominal Significance Level

Procedure One interim analysis Two interim analyses
Pocock 0.0294, 0.0294 0.0221, 0.0221, 0.0221
O’Brien-Fleming 0.0048, 0.0475 0.0005, 0.0141, 0.0451

For example, for two interim analysis clinical trials the nominal significance levels
above are 0.0005, 0.0141, and 0.0451 at the first, the second and the final analysis,
respectively, with the O’Brien-Fleming procedure; the levels remain at a constant
value of 0.0221 with the Pocock procedure. In terms of the nominal significance
level, Pocock’s procedure uses a constant stopping boundary, while the boundary
of O’Brien-Fleming starts from a very strict level and ends close to the overall
significance level. The methods of Pocock and O’Brien-Fleming require specifying
the number of groups(or number of interim analyses) in advance and monitoring
a clinical trial at equal increments of information. In practice, these procedures
could cause difficulties since we may change the frequency of data monitoring at
some point during the course of the trial for some unforeseen reasons. Another
possibility is that slower recruitment than anticipated could force extension of the

trial and hence increase the number of interim analyses.
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Lan and DeMets(1983) have developed a generalized group sequential pro-
cedure in clinical trials, known as the spending function (or use function) ap-
proach. It was motivated by the early termination of the Beta-Blocker Heart
Attack Trial(BHAT)(1981). Their method avoids the above two restrictions, in-
cludes the approaches of Pocock and O’Brien-Fleming as special cases, and re-
quires only the specification of a spending (or use) function «(t) in advance. It is
briefly described as follows.

Assume completion of a trial by time T, scaled arbitrarily such that T = 1,
and specify an increasing function «(t) such that «(0) = 0 and a(1) = «, which
is the overall significance level. This function «(t), which is called “spending” or
“use” function, allocates the amount of type I error rate that one can “spend or
use” at each interim analysis. Suppose there is a continuous stochastic process
{W(t);0 < ¢ < 1}, for example, Brownian motion process, and a continuous
boundary b(¢), 0 <t < 1, with probability « of being crossed in 0 <¢ < 1. More

specifically,

a(t)y=P(r<t) 0<t<1,

where 7 is the first exit time across the boundary b(t). Assume that W(¢) is
observed only at time points, 0 < t; <ty < ... < t; < 1. These are corresponding
to values of test statistics Z;, j = 1,2,...,1. Let W; = W (¢;), 7 = 1,2,...,1. The

boundary point by = b(t1) is chosen such that

P(IWi| > b)) = P(0 < 7 < t1) = a(ty),

that is, to assign an accumulated boundary crossing probability a(t1) to the time

t1. The b; = b(t;), 7 = 2,...,1, are obtained such that

P(|W1] € by, ey [Wisa| £ b1, [W)| > b5) = P(tjoa <7 < t5) = at;) — atj—1).
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The increment «(t;) — a(t;_1) represents the additional amount of the significance
level that can be spent at the time period (¢;_1,1;]. If b(t) denotes a continuously
accumulated boundary with b(t;) = b;, 7 = 1,2,...,[, of the process {W(t);0 <
t < 1}, then the probability of being crossed in 0 < ¢ < 1 is a. Therefore the
sum of probabilities of {W(¢;),7 = 1,2, ...,{} exceeding {b1, bs, ..., b;} is less than
or equal to a.

Implicit in this procedure is information time ¢;. On the scaled [0, 1] interval,
t represents the fraction of patients randomised or the number of events observed.
The calendar or real time can be transformed to the information time, for example,
see Lan and DeMets(1989). The evaluation of b;, 7 = 1,2,...,1, depends only
on a(t) and tq, ..., t;, and is independent of the number of groups [. Also the
group sample size, or the increment of information ¢; —¢;_1, y = 1,2,...,(, in each
interim analysis doesn’t need to be a constant. So a clinical trial can be monitored
at unequally spaced times without specifying the number of interim analyses in
advance by the generalized group sequential procedure. The spending function
approach needs to specify the target sample size of a clinical trial.

The fixed sample, the Pocock and the O’Brien-Fleming designs in clinical trials

are special cases of the spending function approach. If the spending function is

0 0<t<l
a(t) =
« t =1,

then it is a fixed sample design with the significance level equal to a.

If we choose spending function ay,
on(l) = 2 — 20(z2 /D),

where @ is the standard normal distribution function, then the corresponding

boundary is similar to the boundary of O’Brien-Fleming procedure. However, the
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spending function procedure doesn’t need to specify either the number of groups
[ or the group sample size in advance. Note a1(0.5) < 0.006 for o = 0.05. So
an O’Brien-Fleming boundary is unlikely to stop very early. The a1(¢) may be a
suitable choice when long-term treatment effect is a major concern of a clinical
trial.

The spending function

az(t) = aln{l + (e — 1)t}

will give the Pocock boundary. Since a»(0.5) = 0.62¢, as(t) will generally result
in earlier termination but we will suffer a reduction in power.

While not described originally as a group sequential procedure, a strategy
suggested by Haybittle(1971) and later supported by Peto et al(1976) merits con-
sideration as an ad hoc version of group sequential data monitoring. Most interim
analyses occur periodically after the entry of an additional group of subjects or
observations of an additional number of events. Haybittle proposed a very con-
servative critical value for all interim analyses(e.g. +3.0 or +3.5) such that type I
error rate increases almost negligibly in repeated analyses. At the last scheduled
analysis one could use the usual 5% critical value of +1.96(or £2.0) should the
trial continue that far.

The advantages among the above stopping boundaries depend upon the needs
of each clinical trial and the investigators philosophy. The Pocock boundary offers
the best opportunity for early termination. However, for a trial which continues to
the end with an impressive trend (e.g. the value of standardised test statistics >
1.96) but does not exceed the nominal significance level, the inability to reject the
null hypothesis Hy can be awkward and difficult to explain to clinical doctors. The
Haybittle-Peto boundary does not allow much opportunity for early termination
but avoids the awkward situation posed above. The O’Brien-Fleming boundary

offers, in some sense, a compromise. Early termination is not likely as with that
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of Pocock, but becomes more possible as the clinical trial progresses. At the end
of a clinical trial, the critical value of O’Brien-Fleming boundary is close to the
corresponding value of the fixed sample test.

Flashoff and Reedy(1984) discuss the selection of a group sequential procedure
with one interim analysis, and conclude that there is no “best” rule and they
explain how the different options compare. Geller and Pocock(1987) confine their
attention to a few options for clinical trials with a maximum number of interim
analyses between two and five and the overall significance level o = 0.05 for a two
sided test. The clinical trials with normal distribution responses are considered
in their comparison. The options are the procedures of Pocock, O’Brien-Fleming,
Haybittle-Peto and the plans in Pocock(1982) which minimise the average sample
number for that alternative hypothesis to be detected with given powers of 0.5,
0.75 and 0.8. Their conclusions are that the Pocock procedure has the greatest
savings in an average sample number when alternative hypotheses can be detected
with high power, but the O’Brien-Fleming procedure is better than the Pocock
procedure for saving a maximum sample number.

Wang and Tsiatis(1987) have introduced a family of one parameter stopping
boundaries, which were defined in terms of a parameter whose value affected the
probability of rejection of the null hypothesis over the various analyses. Suppose a
clinical trial comparing two treatments is monitored after every 2n observations,
n for each treatment, and the maximum number of groups is [. Let Z;, 7 =
1,2,...,1, be the sequence of test statistics. Assume Z;, j = 1,2,...,1, are normally
distributed with var(Z;)=1. The group sequential test consists of rejecting null

hypothesis Hy of no treatment difference for the first j such that
1Z;]1 > C(A, o, 1)5%,

where C'(A, a,l) is chosen such that the overall significance level is «, that is,

under the null hypothesis Hy, the probability of failing to reject Hy, when it is
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true, is
P(|Z4| < C(A, 0,12, ..,|121] < C(A,, )% Hp) = 1 — @,

where C(A, a,l) can be computed using the numerical recursive integration for-
mula given by Armitage, McPherson and Rowe(1969). The discrete stopping
boundary values C'(A, a,1)5%, 7 = 1,...,1, depend on the parameter A, called the
shape parameter. If A = 0, it gives the boundary of O’Brien-Fleming; and if
A = 0.5, it is the boundary of Pocock.

This family of stopping boundaries yields approximately optimal results with
respect to the least number of subjects for detecting specified treatment difference
at given significance level a, and power 1 — 3. The optimal results of Wang and
Tsiatis are consistent with those of Pocock(1982) by varying nominal significance
levels to minimise the average sample number(ASN) under the alternative hy-
pothesis. So the approximately optimal boundaries within the family of stopping
boundaries are approximately optimal overall. The methods of Wang-Tsiatis also
need to specify a maximum number of groups in advance and analyse data at
equal increments of information.

Pampallone and Tsiatis(1994) have proposed a general family of boundaries
based on the boundaries of Wang-Tsiatis that allow stopping early with rejection
of either the null or alternative hypothesis.

The statistical package EaSt(Early Stopping) can be used to design a group
sequential clinical trial with Wang and Tsiatis” family of one parameter stopping
boundaries and Pampallone and Tsiatis” general family of boundaries.

SPRT(Sequential Probability Ratio Test) designs and analyses have been sum-
marised by Whitehead(1992). He uses a continuous boundaries approach under
the assumption of a continuous sample path, which is an abstract mathematical

concept, and derives distributions of test statistics and power functions of tests.
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A Christmas tree adjustment is suggested at discrete interim analyses. The trian-
gular test is the most popular one in SPRT designs. There is a statistics package
PEST(Planning & Evaluation of Sequential Trials) which can be used to not only
design but also analyse group sequential clinical trials of SPRT. Estimations of
the treatments effects have been given as well.

Jennison and Turnbull(1984, 1989) have described the repeated confidence
interval approach. A sequence of intervals that all contain the true treatment
difference with a prespecified probability, 95% say, are calculated at each interim
analysis. The trial will be stopped and it can be claimed that there is a significant
difference between the treatments when the current repeated confidence interval
excludes 0. Jennison and Turnbull formulate certain repeated confidence intervals
directly. Unlike previous methods, inferences of the repeated confidence interval
approach are independent of the stopping rule. Interval estimates of the treatment
difference are provided at each interim analysis. They can be used in reporting
interim results and serve as an adjunct to a group sequential method giving more
than just the “stop/continue” information at each interim analysis. This method
is especially useful in some epidemiological studies or long-term follow-up studies
where the sudden ending of exposure would be impossible. Koepcke(1989) has
criticised that the repeated confidence intervals are too wide compared with con-
fidence intervals constructed at termination of a group sequential test. Pocock
and Hughes(1989) have suggested that repeated confidence intervals be shrunk
toward the null value of the parameter.

The stochastic curtailment approach in group sequential clinical trials was
introduced by Lan, Simon and Halperin(1982). More details are given by Halperin
et al (1982). The idea of stochastic curtailment is to curtail a trial as soon as an
eventual conclusion of a trial is determined with high probability. At any stage
of a trial, we calculate the probability of an eventual conclusion of experimental

superiority, conditional on the true treatment difference of a trial and on the data
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observed so far. A trial is stopped and it is concluded that the experimental
treatment is superior when the probability is large. This method can be used to
illustrate the effects of low accrual trials. Stochastic curtailment is a prediction
method, which is a criticism on this procedure.

The frequentist methods in group sequential clinical trials have the following
major difficulties.

When a clinical trial is completed, there is an impressive trend of treatment
difference which is however not significant at a pre-specified significance level,
and the other studies have the same result. We may wish to carry on the study.
How then should we analyse the extra data after we stop a trial? This type of
problem also occurs when there is a delay between the entry of patient and the
assessment of response to treatment. If a trial is stopped prematurely on the basis
of a stopping rule, how should the statistician deal with extra data that become
available after the trial has been stopped?

Terminal inferences of the group sequential method rely on strict adherence
to the specified stopping rule. The confidence intervals, and point estimates of
treatments differences have been studied under some special situations only. Most
frequentist methods for group sequential clinical trials do not provide any inference
about the treatment difference, only about the “stop/continue” decision during
the period of interim monitoring.

Sometimes there is a difficulty in explaining the result to clinical investigators.
For example, take a two interim analyses clinical trial with the Pocock procedure.
The nominal significance level o/ = 0.021 is used at each analysis, leading to an
overall significance level @ = 0.05. Suppose a trial has evidence of a treatment
difference with nominal p value equal to 0.03 at each analysis. Then according to
the nominal significance level this would not be statistically significant at the 5%
level, whereas an investigator with identical data carrying out a fixed size analysis

would attain p = 0.03. It is difficult to explain this to clinical investigators, who
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wonder why previous inspections of the data should affect the interpretation of
the final results.

A large number of analyses give more opportunities for early stopping and
will decrease the mean sample size if the treatment difference is large. On the
other hand, increasing the number of analyses can actually increase the expected
number of patients required for the trial under the null hypothesis, because the
nominal significance level must be adjusted downward to maintain the overall type
[ error rate. There is a “penalty” paid for frequent interim monitoring of a clinical
trial.

Reviews of frequentist methods for group sequential clinical trials can be found
in DeMets(1987), Jennison and Turnbull(1990), Pocock(1992), Whitehead(1992)
and Fleming and DeMets(1993).

1.3 Review of Bayesian Methods

Bayesian and the frequentist statistical approaches are based on inverse measures:
one deals with probabilities of hypotheses given the data and the other involves
probabilities of data sets given hypotheses. The interest of Bayesian method is on
some unknown parameter . The notation of probability has different interpre-
tations. The probability in Bayesian inferences is not frequentist. The P(§ < z)
does not represent the proportion of times that ¢ is less than or equal to z in
repeated investigations. Instead, it represents how likely the investigator thinks
that § is less than or equal to @. Berry(1987) compares Bayesian with frequentist
statistical approaches based on the role of likelihood principle. The comparison
i1s summarised here. The Bayesian approach is conditional since the posterior is
a distribution of given available information. The frequentist approach is uncon-
ditional since the statistical inference is derived from a given hypothesis. The

Bayesian approach is consistent with the likelihood principle since the posterior
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distribution depends on the observed data only through Bayes theorem. The
frequentist approach is not, because the p value or the tail probability is the prob-
ability under the null hypothesis of a result as extreme or more extreme than
observed. In clinical trials, the unconditional approach disallows looking at the
data if there is a possibility of stopping or otherwise modifying the study as a
result, unless inferences are adjusted accordingly. The conditional approach is
completely flexible in this regard.

Bayesian methods for group sequential clinical trials have received increasing
attention recently, as they offer an approach for dealing with many difficult prob-
lems and have some practical advantages over frequentist methods. As we know,
before designing a clinical trial to compare the experimental treatment with the
standard treatment, we will acquire all possible information about the activity
of both treatments. This information will give us an opinion about the treat-
ment difference § and can be described by a prior distribution of the treatment
difference, denoted by w(d). For example, Freedman and Spiegelhalter(1983) dis-
cuss their experience of translating doctors’ opinions into subjective probability
distributions. Chaloner et. al.(1993) describe a graphical elicitation of a prior
distribution for a clinical trial. When we collect some data, we can update the
opinion by Bayes theorem and get the posterior distribution of the treatment dif-
ference, denoted by w(d|data). The Bayesian inference derives entirely from this
posterior distribution of the treatment difference. Naturally the clinical trial may

be stopped if either

b2
/ w(d|data)dd > 1 — &4,

[oe]

or

/°° w(8|data)ds > 1 — e,
1
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where the e; and e, are small positive values, the larger value of § denotes the
experimental treatment better, and the interval (41, ds) is the range of equiva-
lence (that is, the two treatments are considered roughly equivalent.). At each
interim analysis, the treatment difference can be estimated by the expectation
of treatment difference ¢ with respect to the posterior distribution w(é|data).
Freedman and Spiegelhalter(1989, 1993) have shown that by choosing some prior
distributions Bayesian boundaries can be very close to Pocock or O’Brien-Fleming
boundaries. Geller and Pocock(1987) mention that the Pocock procedure has the
disadvantage of undertaking the last analysis at a p value considerably smaller
than 0.05 and that the O’Brien-Fleming procedure is perhaps too stringent at the
first analysis, virtually assuring that the trial does not stop then. Freedman and
Spiegelhalter(1989, 1993) have also shown that the Bayesian method can have a
stopping rule between the Pocock and O’Brien-Fleming boundaries by the choice
of some prior distributions.

The attraction of the Bayesian method lies in its simplicity of concept and the
directness of its conclusions. When we collect some data at any time, we update
the opinion on the treatment difference by Bayes theorem. The likelihood principle
implies that interpretation of the data does not depend on the number of analyses
or on the stopping rule of the trial. So no “penalty” is paid for frequent interim
analyses, and extra data can be analysed after the trial has been completed. Sta-
tistical inferences on the treatment difference following the trial are derived from
the posterior distribution of the treatment difference. The problems of frequen-
tist methods described in Section 1.2 are solved by Bayesian methods. However,
Bayesian methods have not been as well developed as frequentist methods, and
technical difficulties arise when numerous nuisance parameters are to be consid-
ered in addition to the treatment difference § itself. There is little corresponding
software generally available which blocks the application of Bayesian methods in

practice. The barrier to widespread implementation of the Bayesian method has
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been its computational difficulty and the construction of prior distribution, but
that in principle is no longer a problem(Whitehead 1992).

Spiegelhalter, Freedman and Parmar(1994) have reviewed and demonstrated
how Bayesian methods can be applied to group sequential clinical trials. Bayes
sequential methods in clinical trials have been explored by Novick and Griz-
z1e(1965), Cornfield(1966, 1969), Berry(1985, 1989), Whitehead(1991), Freedman
and Spiegelhalter(1989, 1991, 1993), Spiegelhalter and Freedman(1988), Freed-
man, Spiegelhalter and Parmar(1994), Parmar, Spiegelhalter and Freedman(1994),
and by George et. al.(1994), and discussed by Jennison and Turnbull(1990).

Since Bayes theorem allows an investigator to update his subjective opinion of
the treatment difference § at any time, there is no special reason for a Bayesian
to devise a stopping rule in advance. Decision theory provides the framework for
combining subjective distributions with action. However, Bayes decision theory
has not been widely introduced in group sequential clinical trials. Sylvester(1988)
has used Bayes decision theory for a one-stage phase Il clinical trial with binomial
distribution response. Berry and Ho(1988) have addressed one-sided sequential
stopping boundaries for clinical trials from a decision-theoretic point of view.
Lewis and Berry(1994), and Lewis(1996) have studied Bayes sequential decision
theory with piecewise continuous loss functions in group sequential clinical trials
with binomial distribution response.

The major criticism of Bayes analyses is that it presumes an ability to com-
pletely and accurately elicit subjective information in terms of a single prior dis-
tribution. However, there has long existed (at least since Good(1959)) a robust
Bayesian viewpoint which replaces the single prior distribution with a class of
possible prior distributions. The goal of this approach is to make inferences or
decisions which are robust over this class, i.e., relatively insensitive (or at least are
satisfactory) to deviations as the prior distribution varies over this class. Green-

house and Wasserman(1995) have illustrated the application of robust Bayesian
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methods in clinical trials. Spiegelhalter, Freedman, and Parmar(1994) have sug-
gested the consideration of a community of priors covering the perspectives of a
range of individuals. This may encompass a reference prior intended to add as
little as possible to the data and a clinical prior expressing reasonable opinions
held by individuals or derived from overviews(meta-analyses) of similar studies.
However, it is also useful to develop “off the shelf” priors corresponding to a
formal expression of sceptical and enthusiastic belief. These may be thought to

provide reasonable bounds to the community of priors.

1.4 Aims and Outline of the Thesis

In this thesis, Bayes methods in group sequential clinical trials comparing two
treatments are studied using both Bayes sequential and Bayes sequential decision
methods; and the main outcome variables for clinical trials are distributed as
normal, binomial, and exponential and proportional hazard models for survival
time data. The aims of the thesis are to study some unresearched problems in
Bayes sequential methods, build a set of systematic Bayes sequential decision
methods, and also to compare these with frequentist methods in group sequential
clinical trials.

Bayes sequential methods in clinical trials are discussed in Chapter 2. Under
its framework in clinical trials, in which the main outcome variables is normally
distributed, the student ¢ prior distribution is used and compared with the normal
prior distribution for the treatment difference. Bayes sequential decision theory
is introduced to group sequential clinical trials. The brief introduction of Bayes
sequential decision theory is described in Chapter 3. In Chapter 4, Bayes group
sequential decision clinical trials are set up based on normal distribution responses

with piecewise continuous loss functions, and are also compared with frequentist
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methods. The loss functions of considering the treatment effect and patient hori-
zon are studied under clinical trials with binary responses, which are discussed
in Chapter 5. Chapter 6 discusses the application of Bayes sequential decision
theory in group sequential clinical trials with the main outcome variable being an
exponential and proportional hazard model for survival time. The brief introduc-
tion of non-parametric Bayes analysis is also included in Chapter 6 in order to be
applied in proportional hazard model for survival time. Robust Bayes analyses
which study the uncertainty of prior information in clinical trials are described in
Chapter 7. The discussion and further study on some common issues are given in

Chapter 8.




Chapter 2

Bayes Sequential Methods

In this chapter, the framework of Bayes sequential methods in group sequential
clinical trials is described in Section 2.1. This framework is based on clinical
trials whose main outcome variable is normally distributed with known variance.
The mean of the normal distribution is the treatment effect. The parameter of
interest is the treatment difference which is considered to have a normal prior
distribution. In Section 2.2, the prior distribution of the treatment difference
which has the form of student ¢ is discussed. This is also compared with the
situation of normal prior to the treatment difference. In practice, the variance of
the normal response variable is usually unknown. This issue is studied in Section

2.3

2.1 Framework of Bayes Sequential Methods

2.1.1 The Problem

A group sequential clinical trial is designed to compare an experimental treatment
with the standard treatment. The main outcome measure X for the clinical trial is
normally distributed with probability density functions N (g, %) and N (us, %)

for the experimental and the standard treatments, respectively. The value of

24
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o? is known. For the presentation of below formulas purely, the variance of main
outcome measure X is assumed to have the form "—22— The treatment is assigned by
a randomised permuted block so that each consecutive group of 2n;, 7 =1,2,...,(,
patients has n; on each treatment. The [ is the maximum number of groups.

Let the parameter 6 = p, — j, be the measure of treatment difference where
large value of ¢ implies the superiority of the experimental treatment. The scale
of treatment difference is divided into (—oo, d1), (61, d2), and (J2, 00). If § > &5,
then the experimental treatment is considered clinically superior. If § < d;, then
the standard treatment is superior. The interval (41, d5) is called the range of
equivalence where the two treatments are considered roughly equivalent. Depend-
ing on the clinical situation, é; and d, will either coincide or §; will be less than
d5. The partitioning of the scale of treatment difference will be based on the rel-
ative toxicity of treatments and to a lesser extent on their cost and convenience.

Assume that the treatment difference ¢ has the normal prior distribution, that is,

§ ~w(8) = N(vg,72). (2.1)

The variance ¢ is expressed as 73 = %, which might suggest that there were ng

“extra” pairs of patients in the pilot trial(Freedman and Spiegelhalter 1989). This

form is useful in comparing different prior information by the change of value ng.
The ng is a measure of prior information on the treatment difference 4.

Let the group sample means be denoted by X;, = %E:Zl Xije and X, =

i
% Y Xije, J = 1,2, ..., 1, for the standard and experimental treatments, respec-
J
tively, where the group sequential sample from the standard treatment X, is from
the normal distribution NV (fs, %) and the group sequential sample from the exper-
imental treatment Xjj. is from the normal distribution N (z, %), 1 =1,2,..,ny
The group sample means X j, and X j, are then normally distributed with densities

N (s, 2”—2) and N (pe, ;;), respectively. The sequence of the differences between
7’1:] n]
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X, and Xj,, denoted by 7Z;,

S — 0'2
Zi=Xje = Xju o NG, D), j=1,201, (2.

n;

[N
Do
~—

are sufficient statistics of the treatment difference 6. There will be no loss of infor-
mation to replace the group sequential variables {Xjje, Xijs, 1 = 1,2,...,n,7 =
1,2,...,} by this classical sequential sample {Z;,7 = 1,2,...,{}. The group se-
quential clinical trial described above becomes a sequential clinical trial whose
main outcome variable 7;, 7 = 1,2, ...,/ is from the normal distribution N (4, %),
where § is the measure of treatment difference and has the normal prior distribu-

tion w(d) = N(wo, %) in (2.1).

2.1.2 The framework

At each analysis 7, 7 = 1,2, ...,(, after observing the differences of group sample
means 4y = 21, Ly = Za,..., 4j = %z, {from the clinical trial, by Bayes theorem the

posterior probability density function of § is the normal distribution with mean

J —
Zi:l nizj+nov

® 2 ¥
equal to ==1——— and variance equal to ——=——, that is,
i=1 i tT0 i=1 im0
§ ~ w(d|z1,22,...,25) = w(d|z;)
J = 2
_ N (Zi:l n;Z; + novo o ) (2.3)
- J 9 J bl p=te
Diz1 M+ o Yi=1 i + 1o
_ ] T 28
where z,; = Lizy % -
! ?:1 T

The sequential Bayes method may suggest termination of the clinical trial at

an interim analysis 7, 7 = 1,2, ...,{ — 1, if either

P
P(6 < 8|21, 23,y 25) = / w(8|21, 22, o, 2;)dE > 1 — €1, (2.4)

— 00
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resulting in a rejection of the experimental treatment, or

P(6 > 61|21, 22y oy 25) = /5 w(8|z1, 22, ey 25)dd > 1 — &9, 2,

O]
I3
S—

resulting in a recommendation of the experimental treatment, where the posterior
probability density w(d|z1, 22, ..., 2;) is obtained by (2.3). Otherwise the clinical
trial needs to be continued to observe the next group of patients. At the final
analysis, if (2.4) or (2.5) are not satisfied, then it may be concluded that these
two treatments are equivalent since P(d; < 6 < d5) is large. The e; and e, are
small positive values, such as 0.05, 0.025, etc.

Conditions (2.4) and (2.5) may be written as,

_ Zj: n; + no no (1 —eq . :
z; < E lj . (Sg— 7 Vg — (_] )O' Zni+n0, (26)
Dim1 N dim1 N Ei:l n; i=1
Y mitng no O (e,) j
Z; > = lj : é1 — > Vo — =3 o Zni + nyg, (2.7)
Zi:l n; Zi:l n; Zi:l U2 =1

respectively, where ®~*(1—0.025) = 1.96. These are the same form as boundaries

and

of frequentist methods in terms of test statistics Z; = z;, j = 1,2,...,[. Freedman
and Spiegelhalter(1989) have shown that by choosing some prior distributions of
0 in (2.1) through some values of ng, Bayesian boundaries of (2.6) and (2.7) can
be very close to boundaries of Pocock and O’Brien-Fleming procedures. Bayesian

methods provide the same desirable features as frequentist methods.
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2.2 Student ¢t Prior Distribution

2.2.1 The Framework

In Section 2.1, we assume that the treatment difference ¢ in the clinical trial
has the normal prior distribution 6 ~ w(d) = N(l/o,%). At each analysis j,

J =1,2,...,1, the posterior mean of the treatment difference ¢ from (2.3) is
E(d|21, 22y ..y 25) = %5 — ———(%; — 1o)-

If the sample mean Z; is very far from the mean of the prior distribution vq, then
the posterior mean £(d|z1, 23, ..., z;) will differ considerably from z;. Dawid(1973)
has shown that this undesirable behaviour would be avoided if the prior distri-
bution of § had the form of a student ¢ distribution. Assume that the variance
o? is known. He mentions that “if X ~ N(0,0%) given © = 6, while © has a
student ¢ prior, one obtains a limiting posterior © ~ N(z,0?) as |z| — oo, and
E(O]z)—ax — 0, as conjectured by Lindley.”. The Bayes sequential method in the
clinical trial described in Section 2.1.1 with the student ¢ prior for the treatment
difference § is discussed below.

Without loss of generality, let the mean of the prior distribution in (2.1) be

equal to 0, that is, 9 = 0. The prior distribution for the standardised treat-

)

o
ng

Instead, consider that ¢’ has a student ¢ prior with degree of freedom v, that is,

ment difference ¢’ = then becomes the standard normal distribution N (0, 1).

2

12

r(2sl

: ) _vit
I oy — 2 1 _ 2 . 2.8
The prior distribution of ¢ is then
1 4
§ ~ —w(—|v), (2.9)

a a
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0.2 ! . . .
where @ = /%, and w(-|v) is the density function of (2.8).
At each analysis 7, j = 1,2,...,[, after observing Zy = 21, Zy = 23, ..., Z; = z;

as in Section 2.1, the posterior probability density function of § is

j '",i o
e =71 4 £y°3
w(d|21, 25, sy 25) = W(B|24) = - e . (2.10)

- _LZ::lni(é‘_z.)Z §2 \ 22
e ™ @ T+ o) T ds

i
- s Tz
where z; = Z'—Tl—
B 1
i=1 "¢

The clinical trial may be terminated at analysis 7, 7 = 1,2,....(, if either,

b2
P(6 < 8|21, 22, ory 25) :/ w(8|Z;)d6 > 1 — 1, (2.11)
or,
P(8 > 811, 23, ooy 25) = /°° w(8|Z;)d6 > 1 — &5, (2.12)
51

where the posterior density function w(d|z;) is obtained by (2.10), and &; and &
are small positive numbers. Otherwise the trial is continued to observe the next
group of patients.

When the treatment difference ¢ has the form of student ¢ prior as in (2.9),
there is no closed form for the posterior probabilities P(d < d,|z1, 22, ..., z;) and
P(6 > 61|21, 22,...,2;) in (2.11) and (2.12), respectively. However, the numerical

integration may be obtained by many mathematical and statistical packages.

2.2.2 Inferences for the Degree of Freedom v

Using the example of Freedman and Spiegelhalter(1989), consider a clinical trial
comparing two treatments with 200 patients, and the number of groups [ = 5 with
the equal group sample size n; = n = 20, 3 = 1,2,...,5. Let The test statistics

Zj, 7 =1,2,...,5, are from the normal distributions N (4, %) given ¢ as in (2.2).
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The 02 = 0.5 and ng = 8,22, and 89 for the scanty, moderate and considerable
prior information, respectively. Here suppose that the prior distribution of the
treatment difference ¢ is the student ¢ distribution with the form of (2.9). Let
no = 22 where prior information available is average. Assume that our interest
is about departures, in either direction. Then §; = d5 = 0. At each analysis 7,
J = 1,2,...,5, if the posterior probabilities P(6 < 3|21, 23, ..., 2;) = P( < 82|Z;)
or P(6 > 01|21, 22,...,25) = P(6 > 61|Z;) follow the conditions (2.11) or (2.12),
respectively, then stopping the clinical trial may be suggested as before.

Since the Z; = % I Z;i, 7 =1,2,..,5, has the normal distribution N (6, Z—:L)
given &, the range of 99% possible value of Z; is ((5 + \/—‘J’—j X (—2.58), 6 + ;!:7 % 2.58).
As an example, 7 = 4 say, let Z, = \/g X zp. By symmetry, only Zy < 0 needs to
be considered. Without loss of generality, assume that zo = -2.58, -1.96, and -1,
the corresponding posterior probabilities P(6 < d2|Z4) of (2.11) and P(§ > 61|z4)
of (2.12) with the degree of freedom v from 3 to 100 in the student ¢ priors are
displayed in Figure 2.1(a), Figure 2.1(b), and Figure 2.1(c), respectively. These
figures show that the change of P(6 < d2|Z4) and P(§ > §1|Z4) with the change of
the degree of freedom v of student ¢ prior can be ignored, since these probabilities
are almost constant with the degree of freedom v from 3 to 100. Similar figures
can be obtained at other interim analyses. The same results are also found when
the values of 6% and ng are changed. Therefore it can be concluded that the pos-
terior inferences on the treatment difference ¢ is robust to the degree of freedom

v of the student ¢ prior.
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Figure 2.1 Posterior Probabilities with Different Degree of Freedom
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2.2.3 Comparisons with the Normal Prior Distribution

By the framework of Bayes sequential methods in group sequential clinical tri-
als, the stopping rules of these methods are based on the posterior probabil-
ity distribution of the treatment difference §. It is then interesting to com-
pare the posterior probabilities P(§ < 921, 23, ..., 2;) and P(§ > 61|21, 22, ..., 25),
7 = 1,2,...,[, for the student ¢ prior distributions with those for normal prior
distributions. The comparisons are based on the change of posterior probabilities
P(8 < é3|z1, 22, ..., 25) and P(8 > 61|21, 29, ..., 25), 5 = 1,2, ..., 1, with the change of
prior information.

The variance (or ng) of the normal prior distribution N (v, %) is a measure of
prior information on the treatment difference §. The tail probability of the student
t distribution is more sensitive than its degree of freedom. Hence, the change of
prior information is considered by the change of variances and tail probabilities

of normal and student ¢ prior distributions.

The robustness to change of variances of prior distributions

Continuing the example of Section 2.2.2, assume that the treatment difference §
has the normal prior distribution § ~ N (1, %) as in (2.1), where vy = 0. Let
ng = 8, 22, and 89 for the scanty, moderate and considerable prior information,
respectively. At each analysis 7, 7 = 1,2,...,5, after observing Z; = 21, Zy = z,,
...y 4j = zj, the posterior probabilities P( < 95|Z;) and P(6 > 61]z;) can be
calculated by (2.4) and (2.5). As an example, say j = 4, the posterior probabilities
P(§ < 85]Z4) and P(8 > 81]Zs) with 24 = /2 x zg, where 2 = -2.58, -1.96, -1,
and 0, are listed in Table 2.1. It shows that the change of prior information might
or might not affect the decision of stopping a trial early. Assume ¢; = g5 = 0.05.
When the value of observation z, = % X (—2.58), a very strong evidence of the

experimental treatment not being superior, all posterior probabilities P(§ < d4|z4)

under different prior information, ng = 8, 22, and 89, indicate that stopping the
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trial would be advisable. When zy = —1.96 and with the scanty prior information
no = 8, the posterior probability P(§ < d]Z4) = 0.9694 > 1 — 0.05, which
is suggesting that the trial may be stopped early, but with considerable prior
information (ny = 89) of no treatment difference (since we assumed that § ~
N(0, %)), the posterior probability P(d < d»]z4) = 0.9115 # 1 — 0.05, which is

suggesting that the trial should be continued.

Table 2.1: Posterior Probabilities of Different Normal Priors (ng)

P(§ < 8,|74) P(§ > 6,|7)
No Mo

20 8 22 89 8 2 89

-2.58 0.9933 0.9891 0.9623 0.0069 0.0112 0.0380
-1.96 0.9694 0.9589 0.9115 0.0308 0.0413 0.0888
-1 0.8300 0.8122 0.7545 0.1702 0.1880 0.2457
0 0.5001 0.5001 0.5001 0.5001 0.5001 0.5001

Alternatively, suppose that the treatment difference ¢ has the student ¢ prior
distribution as in (2.9). Let the variances of §, Var(d) = 2=, have the same
variances as those of normal prior distributions N(0, %) with ng = 8, 22, and
89 under the degree of freedom v from 10 to 100. The corresponding posterior
probabilities P(d < 05]Z4) and P(§ > §;|Z4) with Z4 = \/gx 20, Wwhere zp = —2.58,
-1.96 and -1, are listed in Table 2.2(a), (b) and (c¢), respectively. It can be seen
from these tables that the influence on the degree of freedom v can be ignored as in
Section 2.2.2 due to the minor change of posterior probabilities with the change of
the degree of freedom v. For example, at zg = —1.96, the difference of P(§ < §5|24)
between v = 10 and 100 is 0.9690 — 0.9666 = 0.0024. Similar to the results of
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normal prior distributions shown in Table 2.1, Tables 2.2(a), (b), and (¢) have also
shown that different precision of the prior information might change the decision of
stopping a trial early. For example, when zp = —1.96,v = 20, and &; = &5 = 0.05,
the trial is stopped and the experimental treatment is recommended if ng = 8 or
22; whereas the trial need to be continued if ny = 89.

Comparing Table 2.1 with Tables 2.2(a), (b), and (c), it can be seen that
the change of posterior probabilities P(§ < d5|Z4) and P(§ > 6;1|z4) is slightly
bigger to the student ¢ priors than those to normal priors with the same change
of the precision of prior information. For example, at zg = —2.58, for the normal
prior, the change of the posterior probability P(§ < d;|Z4) from the scanty prior

information (no = 8) to considerable prior information (ng = 89) is,

P(8 < 85|Z4,m0 = 8) — P(8 < 8s|Za,n0 = 89) = 0.9933 — 0.9623
= 0.0310;

and for the student ¢ prior, the change is,

P((g < 52|—3—4,710 = 8) = P((S = (52|E4,7lo = 89)
0.9921 — 0.9533 = 0.0389 v=10
0.9930 — 0.9613 = 0.0317 v = 100.

The same results above are found at other interim analyses.
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Table 2.2(a): Posterior Probabilities of Different Student ¢ Priors (v)

P(6 < 62|74) P(6 > 61]|z4)
no no

20 v 8 22 89 8 22 89
-2.58 10 0.9921 0.9863 0.9533 0.0079 0.0137 0.0467
20 0.9926 0.9877 0.9581 0.0074 0.0123 0.0419
30 0.9928 0.9881 0.9595 0.0072  0.0119 0.0405
40 0.9929 0.9883 0.9602 0.0071 0.0117 0.0398
50 0.9929 0.9884 0.9606 0.0071 0.0116 0.0394
60 0.9929 0.9885 0.9608 0.0071 0.0115 0.0392
70 0.9929 0.9885 0.9610 0.0071 0.0115 0.0390
80 0.9930 0.9886 0.9611 0.0070 0.0114 0.0389
90 0.9930 0.9886 0.9613 0.0070 0.0114 0.0388
100 0.9930 0.9886 0.9613 0.0070 0.0114 0.0387

35
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Table 2.2(b): Posterior Probabilities of Different Student ¢ Priors (v)

P(d < 65]74) P(6 > 61]za)
No no

20 v 8 22 89 8 22 89
-1.96 10 0.9666 0.9526 0.8966 0.0334 0.0475 0.1034
20 0.9680 0.9559 0.9045 0.0320 0.0441 0.0955
30 0.9684 0.9569 0.9068 0.0316 0.0431 0.0932
40 0.9686 0.9574 0.9080 0.0314 0.0426 0.0920
50 0.9687 0.9576 0.9087 0.0313 0.0424 0.0913
60 0.9688 0.9578 0.9091 0.0312 0.0422 0.0909
70 0.9689 0.9579 0.9094 0.0311 0.0421 0.0906
80 0.9689 0.9580 0.9097 0.0311 0.0420 0.0904
90 0.9689 0.9581 0.9098 0.0311 0.0419 0.0902
100 0.9690 0.9582 0.9100 0.0310 0.0418 0.0900

36
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Table 2.2(c): Posterior Probabilities of Different Student ¢ Priors (v)

P(§ < 02|Z4) P(0 > 61|Z4)
no No

20 v 8 22 89 8 22 89

-1 10 0.8249 0.8022 0.7383 0.1751 0.1978 0.2617
20 0.8276 0.8075 0.7467 0.1724 0.1925 0.2533

30 0.8284 0.8091 0.7493 0.1716  0.1909 0.2507

40 0.8288 0.8099 0.7506 0.1712  0.1902 0.2494

50 0.8290 0.8103 0.7513 0.1710 0.1897 0.2487

60 0.8291 0.8106 0.7518 0.1709 0.1894 0.2482

70 0.8292 0.8108 0.7522 0.1708 0.1892 0.2478

80 0.8293 0.8110 0.7524 0.1707 0.1890 0.2476

90 0.8294 0.8111 0.7526 0.1706 0.1889 0.2474

100 0.8294 0.8112 0.7528 0.1706 0.1888 0.2472

The robustness to change of tail probabilities of prior distributions
We continue using the above example to discuss the inferences on the change
of tail probabilities of normal priors and student ¢ priors. Assume that the tail
probabilities of normal priors and student ¢ priors, denoted by Py, are equal
to 0.01, 0.02, 0.03, 0.04, and 0.05. The posterior probabilities P(§ < d2|Z4) and
P(§ > 61]z4) for normal priors and student ¢ priors are listed in Table 2.3 and
Tables 2.4(a), (b), and (c). The zZ4 = \/g X 29, where zg = -2.58, -1.96, and -1.
Comparing Table 2.3 with Tables 2.4(a), (b) and (c), conclusions are consistent

with those of the same change of variances of normal priors and student ¢ priors,
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that is, the changes of posterior probabilities P(J < 65|Z4) and P(§ > 61]|z4) are

less to normal prior distributions than those to student ¢ prior distributions. For

example, at zop = —2.58, the change of the posterior probability P(d < d2|z4) from

Piait = 0.01 to Pys = 0.05, for the normal prior is,

P(8 < 6|4, Pt = 0.01) — P(S < 63|Z4, P = 0.05) = 0.9874 — 0.9771
= 0.0103;

for the student ¢ prior is,

P((S € (52|E4, Ptail = 001) = P((S < 52'34, Ptail = 005)
0.8083 — 0.7227 = 0.0856 v=10
0.8214 — 0.7481 = 0.0733 v = 100.

2.2.4 Summary

The student ¢ prior distribution (2.9) for the treatment difference § is discussed.
It can be concluded that the posterior inferences on the treatment difference J is
robust to the degree of freedom v of the student ¢ prior. By comparing the student
t prior with the normal prior, it can be obtained that posterior probabilities P(¢ <
dalz1, 29, ..., z5) and P(0 > 6121, 22, ..., 24), 7 = 1,2,...,[, are more robust to the
normal prior than those to the student ¢ prior with the same change of variances
or tail probabilities of the prior distributions. Hence, it is reasonable to assume
that the treatment difference ¢ has the normal prior distribution if the sample

mean is not far from the mean of this prior distribution.
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Table 2.3: Posterior Probabilities of Different(tail) Normal Priors

20 Praat P(d < 45|74) P(6 > 41|z4)
-2.58 0.01 0.9771 0.0232
0.02 0.9818 0.0184
0.03 0.9844 0.0158
0.04 0.9861 0.0141
0.05 0.9874 0.0129
-1.96 0.01 0.9352 0.0650
0.02 0.9439 0.0564
0.03 0.9489 0.0513
0.04 0.9524 0.0478
0.05 0.9551 0.0451
-1 0.01 0.7802 0.2200
0.02 0.7910 0.2093
0.03 0.7977 0.2026
0.04 0.8026 0.1976

0.05 0.8065 0.1937
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Table 2.4(a): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 Ptail v ])((S < (52 54) P(5 > 61|§4)
-2.58 0.01 10 0.7227 0.2773
50 0.7454 0.2546
100 0.7481 0.2519
0.02 10 0.7536 0.2464
50 0.7718 0.2282
100 0.7740 0.2260
0.03 10 0.7754 0.2246
50 0.7909 0.2091
100 0.7927 0.2073
0.04 10 0.7931 0.2069
50 0.8065 0.1935
100 0.8081 0.1919
0.05 10 0.8083 01917
50 0.8200 0.1800

100 0.8214 0.1786




Chapter 2. Bayes Sequential Methods

Table 2.4(b): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 Ptail v P((S < 52|E4) P((S > 51]54)
-1.96 0.01 10 0.6725 0.3275
50 0.6918 0.3082
100 0.6941 0.3059
0.02 10 0.6978 0.3022
50 0.7141 0.2859
100 0.7160 0.2840
0.03 10 0.7161 0.2839
50 0.7305 0.2695
100 0.7322 0.2678
0.04 10 0.7312 0.2688
50 0.7442 0.2558
100 0.7457 0.2543
0.05 10 0.7445 0.2555
50 0.7563 0.2437
100 0.7577 0.2423

41




Chapter 2. Bayes Sequential Methods

Table 2.4(c): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 '[)tail v P((s < 52|E4) P((S > 51!24)
-1 0.01 10 0.5898 0.4102
50 0.6008 0.3992
100 0.6021 0.3979
0.02 10 0.6037 0.3963
50 0.6134 0.3866
100 0.6146 0.3854
0.03 10 0.6140 0.3860
50 0.6229 0.3771
100 0.6240 0.3760
0.04 10 0.6227 0.3774
50 0.6310 0.3690
100 0.6320 0.3680
0.05 10 0.6304 0.3696
50 0.6383 0.3617
100 0.6392 0.3608
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2.3 Clinical Trials on Normally Distributed Re-
sponse with Unknown Variance

The frameworks of Bayes sequential method in group sequential clinical trials
above assume that the main outcome variable for a clinical trial is from the normal
distribution N (g, %) with known variance o?. The p is a measure of treatment
effect. However, it is often difficult to know the exact value of o2 in practice. This

issue 1s considered as follows.

2.3.1 The Framework

The prior distribution

Consider the clinical trial as described in Section 2.1. The main outcome measure
X for the clinical trial is normally distributed with probability density functions
N (fte, %) and N (ps, %) for the experimental and the standard treatments, re-
spectively, where the variance o2 is unknown. The parameter of interest is the
treatment difference § = ., — p,. For the convenience of notation, assume that
the clinical trial is monitored at every 2n patients with n for each treatment. At
each analysis 7, 7 = 1,2, ..., 1,

2

Ty = T = Ky v 170, S, (2.13)

n

is a sufficient statistic of the treatment difference § given o?, where X;, ~
N (e, g—n) and Xj, ~ N(u,, %) are group sample means for the experimental
and standard treatments, respectively.

Let r = % and let R be the corresponding random variable of 7. Suppose the

prior distribution of ¢ given R = r is the normal distribution,

1
§|R =r ~w(é|r) = N(vn, —), (2.14)

nor
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and the marginal prior distribution of R is the gamma distribution,
R ~w(r)=T(e,p), (2.15)

where parameters o« > 0 and 3 > 0.

The Posterior Distribution

It is known that for the normal distribution N(4, %)(or N (6, ) likelihood, the
normal-gamma prior is conjugate prior density for parameters (4, %5)(or (4,r)).
At each analysis j, j = 1,2,...,[, assume values Z; = 2, Z, = 23, ..., Z; = z;

have been observed and f(z1, 2, ..., z;/,7) is the probability density function of

(21,22, ..., z7) given (4,r), that is,

J i 5
forr 2o lbir) = (fgr) € F Zimalso? (216
m

Let Z; = % i_1 2. The posterior probability distribution of ¢ given R = r by

Bayes theorem is

w(d|z1, 22y vy 25,7) X f(21, 29, ..., 250, 7) W(S|r)

_ .7'7”(7]' —6)2 _ngr(8—yg )2
x € 2 (& 2

intng) inZ;+ngyy
_Un no)r (5 I )2

xX € Jntng

It then follows

d~w(d

S |
21,22y 0y 25,7) = N (]n',zj + 7701/0, . . (2.17)

Jn + ng (yn + no)r
The distribution of R given Zy = z1, Zy = 23, ..., Z; = z; 18

w(r|z1, 22, .., 25) X /f(zl,zz, ey 216, 7) w(O|r) w(r) d§
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> w(r)/ (\/’T)j@_% f““‘"““"’ﬁe—%s—u@f(zd
— ’IU(T) 7"%@_,;_7‘ i=1 : n01 /\/—6 > IlJ-}—nO (”jzj+7bou0)6]d5

J nr J 2 ngr_ o 1( +"0"0)‘
x w(r)rze 2 Li=1% 2 062_1—11j+n0

ngnjr

: nr M . )2 s ) 2
= w(r)rie” 2 L= (%) " atuigag (%)

1 Jnn

a+§—1 _<’B+% Ef:l(zi_‘z]) T3 atay jn+tng (Zj_yo)2>r

Hence, w(r|z1, 22, ..., z;) is the gamma distribution with shape parameter equal to

i g . ol e . n \~J Y. =.)\2 1 gnng (= 2
a + £, and scale parameter equal to 8+ 3 X7 (z: — Z;)* + T (z; — 10)*.

Let

JNZ; + nolo

@ = :
Jn +ng
ng _ non)
3 = e 2 —Z 2 = 2 o Q
/1 ﬁ 2 ;( J) (n] + 770)( g VO) (2 J‘b)
Then,
R ~ wir|z, 22, ...s23) = [(7|a + /31) (2.19)

The posterior probability density function of (é,7) by (2.17) and (2.19) is

w(d,r|21, 22,..,25) = w(b|z1,22,...,25,7) W(r|21, 22, ..., 2;)
1 J

= N |a, — ['(r =, 3

(0] (]7Z+no)7‘) (r fac+ 2’ A1)

: S atd _
¢ J
vV 2m F(CY + 5)
2 /(,H—’i
[ 2 5
A / o 1 n+n a
_ VIn+no By _ petialon —(lnta)es Y o (2.20)

V2r T(a+9)
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The posterior probability density function of § is then,

(o]
wiéler, 2, 0y 25) = /0 w(d, 7|21, 22, ..., 2;) dr

Jin T A Dot i+ 1)
v2r Dla+ 2] (w 1+ By)etits

( Jntng)(2a+j )17 I\( 2a+] +1) (Jntno)(2a+j _LQQ—?H_I
- - 1,‘2:. 14— (§—q)
(20 + j)m)2I'(%52) 20+
- . ] 0)(2 )
_ (5|2 +], a, SnEM2a i)y (2.21)

261

which is a ¢ distribution with degree of freedom 2a + j, location parameter a, and

(jn4no)(2a+7)

Ty . The values of a and [, are obtained by (2.18).

precision

The stopping rule
At each analysis 7, 7 = 1,2,...,[, the clinical trial is suggested being stopped if

either
52 \
P(§ < 83|21, 22, ..., 25) = / w(0|z1, 29y ooy z5) d§ > 1 — &4, (2.22)
or
Pw>m%@w¢ﬁ5éwwhﬂwﬁgw>yf% (2.23)

where w(d|z1, 22, ..., zj) is obtained by (2.21) and &; and e, are small positive

numbers; Otherwise the trial needs to be continued.
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2.3.2 The Prior Information

Influences of the prior information of (§,02) on the posterior distribution of § is

§ given o2 be the normal distribution N(0, :L—()) as in (2.14), where ng = 8, 22, and
89; and let the marginal prior distribution of R = % be the gamma distribution

['(e

7%) as in (2.15), where @ = 0.2, 0.5, 0.8, 1, 1.5 and 2. If o = % or an even
natural number, then the gamma distribution I'(«, %) is a x%(2«a) distribution.

The Monte Carlo simulations are used in the study.

The inference of the parameter o

Let the sequential sample Z;, 7 = 1,2,...,5, of the example be from the normal
distribution N(—0.01,%%). The value § = —0.01 is the mean of 1000 § which are
derived from the normal prior distribution N(0, Z—;) with 62 = 0.5. The 02 = 0.5 is
the average of 1000 o where % ~ T'(1, 1). The average posterior probabilities of §
as in (2.22) and (2.23) from 1000 simulations are denoted by Mean P(§ < &5|7 = 4)
and Mean P(d > d1|j = 4), respectively, at the analysis j = 4 in Table 2.5. The
corresponding standard errors are given in the brackets. For each ng = 8, 22, and
89, the differences among the posterior probabilities within two consecutive values
of o in Table 2.5 are around 0.002. These differences might be negligible. The
differences in the average posterior probabilities P(§ < d2|z1, 22, 23, 24) with a =
0.2 and 2 are equal to 0.5589 - 0.5497 = 0.0092 when no = 8 for the scanty prior
information of §; equal to 0.5566 - 0.5470 = 0.0096 when ng = 22 for the moderate
prior information of §; and equal to 0.5483 - 0.5383 = 0.01 when ny = 89 for the
considerable prior information of . These differences are close to each other. The

same results are found when the values of § and o2 are changed. The example

shows that the posterior inferences on ¢ is reasonable robust to the parameter a.
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Table 2.5: Posterior Probabilities of § under Different ny and o

ng « Mean P(6 < 93|73 =4) (se) Mean P(d > d1]5 = 4) (se)

8 0.2 0.5497 (0.0080) 0.4503 (0.0080)

0.5 0.5518 (0.0084) 0.4482 (0.0084)

0.8 0.5536 (0.0087) 0.4464 (0.0087)

1 0.5547 (0.0089) 0.4453 (0.0089)

1.5 0.5570 (0.0094) 0.4430 (0.0094)

2 0.5589 (0.0097) 0.4411 (0.0097)

22 0.2 0.5470 (0.0076) 0.4530 (0.0076)

0.5 0.5492 (0.0080) 0.4508 (0.0080)

0.8 5511 (0.0083) 0.4489 (0.0083)

1 0.5522 (0.0085) 0.4478 (0.0085)

1.5 0.5546 (0.0089) 0.4454 (0.0089)

2 0.5566 (0.0093) 0.4434 (0.0093)

89 0.2 0.5383 (0.0061) 0.4617 (0.0061)

0.5 0.5405 (0.0065) 0.4595 (0.0065)

0.8 0.5424 (0.0068) 0.4576 (0.0068)

| 0.5435 (0.0070) 0.4565 (0.0070)

1.5 0.5461 (0.0075) 0.4539 (0.0075)

2 0.5483 (0.0078) 0.4517 (0.0078)
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The comparison with the situation of ¢? known

Assume the sequential sample Z;, 7 = 1,2, ..., 5, in the example is from the normal
distribution N(—0.01, %) Table 2.6 lists average posterior probabilities P(¢ <
02

21, Z9, 23, 24) and P(6 > 01]z1, 22, 23, z4) with the variance of the normal response

known ¢ = 0.5, denoted by P(-|Z4), and the variance unknown % ~ I'(1, 3
denoted by P(-|j = 4) from the Monte Carlo simulations. We choose % ~ T'(1, %)
since E((%) = 2. The values in brackets are corresponding standard errors. It can
been seen from Table 2.6 that the posterior probabilities P(§ < d|z1, 22, 23, 24)
and P(§ > 61|21, 22, 23, 24) with o2 = 0.5 are similar to those with G% ~ I'(1, %)

This example shows that it is reasonable to assume % ~ I'(1, 3).

Table 2.6: Posterior Probabilities of § with o2 Known and Unknown

o2 =0.5 = ~I(1,1)

o 2

Mean Mean Mean Mean

Nno P((S < 62'54) P(5 > 51|§4) P(5 < 52’] — 4) P((g > 51“] = 4)

o0

0.5294 (0.0090) 0.4706 (0.0090)  0.5294(0.0092)  0.4706 (0.0092)
22 0.5284 (0.0086) 0.4716 (0.0086)  0.5281(0.0087) 0.4719 (0.0087)
89 0.5244 (0.0073) 0.4756 (0.0073)  0.5233(0.0072)  0.4767 (0.0072)

The inference of the change of o

Assume that the sequential sample Z;; and Z,; are from the normal distribution
N(—0.01, Zni) and N(—0.01, %L-ZL)7 respectively. Let ¢ = 0.5 and 02 = 1. The corre-
sponding posterior probabilities are denoted by Pi(:|-) and Ps(+|) respectively in

Table 2.7. Table 2.7 only lists the posterior probabilities P, (0 < 85|21, 29, 23, 24, 0F)

; N N 9 >
since Pp(& > 01|21, 22, 23, 24, 0%) = 1 — Pu(8 < 0221, 22, 23, 24,02), k = 1,2, when
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Table 2.7 shows that the change of the posterior probabilities P(§ < 83|21, 29, 23, 24)

with the change of 0% is bigger at 0 known than those at o ~ I'(c, 1).

Table 2.7: Posterior Probabilities of § with Different o2

o = 0.5 known L~ T(1, %)
Mean Mean Mean Mean

no Pi(8 < 02|Z4) P2( < 62|Z4) Pi(6 < dsly =4) Po(d < da]j =4)

8 0.5294 (0.0090) 0.5194 (0.0090)  0.5294(0.0092)  0.5204 (0.0099)
22 0.5284 (0.0086) 0.5187 (0.0086)  0.5281(0.0087)  0.5196 (0.0094)
89 0.5244 (0.0073) 0.5161 (0.0073)  0.5233(0.0072)  0.5165 (0.0079)

The summary

Under the framework described in Section 2.3.1, we have that the posterior prob-
abilities P(0 < 6s|21, 22,...,25) and P(6 > 61|21, 22,...,2;) are reasonably ro-
bust to the parameter a; when we choose the prior distribution % ~ T'(a, o
where E(Z) = 2a, the posterior probabilities P(§ < 85|21, 22, ..., 2;) and P(§ >
81|71, 22y ..., z;) are similar to those of o? being known and equal to i; if we
change ¢? from 0.5 to 1, the corresponding change of posterior probability P(§ <
02|21, 22, ..., z;) 1s smaller in assuming 01—2 ~ I'(1, %) than that in assuming o2 = 0.5.
Therefore the normal-gamma prior described in Section 2.3.1 is recommended

when we do not have enough prior information on the variance 2.

2.4 Discussion

The framework of Bayes sequential methods in group sequential clinical trials
described in Section 2.1 is based on the work of Freedman and Spiegelhalter(1989).

It can be generalized to clinical trials with binomially distributed responses and
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survival time data, although these clinical trials can be approximated by clinical
trials with normal distribution responses.

In the framework, at each analysis 7, j = 1,2,...,(, after observing Z; = z,
Zy = z3, ..., Zj = z;, we look at the posterior probabilities P(§ < d|z1, 2, ..., 2;)
as in (2.4), and P(d > 01|z1, 22,...,2j) as in (2.5). If the posterior probability
P(6 < d3|z1,22,...,25) (or P(§ > 41|21, 22, ..., 25)) is greater than some specified
value, then the clinical trial may be stopped. The calculation of corresponding
posterior probabilities could be found in Chapter 5 for clinical trials with binary
response and in Chapter 6 for clinical trials with survival time data.

The framework of Bayes sequential methods in groups sequential clinical trials
which we have discussed are based on posterior probabilites P(§ < 82|21, za, ..., 2;)
and P(§ > 01|71, 22, ..., 2j). Other criteria have also been suggested, for example,
at each analysis 7, j = 1,2,...,[, we can also look at the posterior expectation
of the treatment difference, denoted by FE(d|z1, 22, ..., zj). The clinical trial may
be suggested to be stopped if the expectation F(d|z1, 22, ..., z;) is greater than
some specified value. More generally, let g(d) be some quantity of interest. At
each analysis j, 7 = 1,2,...,[, we may look at the posterior expectation of ¢(¢),
that is, £(g(d)|z1, 22, ..., 2j), and decide whether to stop the trial based on the
value of E(g(0)|z1,22,...,2;). If g(d) is the indicator function for the interval
(—o0, 1) (or (82, o©)), then E(g(d)|z1,22,...,2;) = P(6 < 83|21, 22,...,2;) (or =
P(d > 81|21, 22y 4005 85) )




Chapter 3

Bayes Sequential Decision Theory

3.1 Introduction

Decision theory provides the framework for combining subjective distributions
with actions. The method of a sequential decision procedure is to look at a
sequence of observations one at a time and to decide after each observation whether
to stop sampling and make a decision immediately or to continue sampling and
make a decision sometime later.

Bayes sequential decision theory used in group sequential clinical trials is
briefly described in this chapter. Details can be found in Berger(1985), Deg-
root(1970), and Ferguson(1967), etc.

3.1.1 Basic Elements of A Sequential Decision Procedure

The basic elements of a sequential decision procedure considered in the study are
1) a parameter § whose values are in the parameter space A and its prior
distribution w(¢d) which is from the space of prior distributions A*;
Consider a clinical trial comparing two treatments described in Section 2.1.
The parameter of interest is the treatment difference § = po — p,. Its space A is

equal to the real line R. The prior distribution of the parameter of interest ¢ is

&1
Do
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assumed to be the normal distribution
d ~w(d) = N(I/O,TOZ).

The space of prior distributions is the normal distribution family, A* = {N (4, 72) :
§eR, 72> 0}.

2) a decision d which is from decision space D;

When the above clinical trial is terminated, a decision d will be chosen from
the decision space D = {experimental treatment, standard treatment}.

3) a sequential random sample X7, Xs,...; assume that the conditional g.p.d.f
of each X,,, m = 1,2..., is f(+|0) for every § € A;

In the clinical trial described in Section 2.1, we have the sequential sample Z;,
J = 1,2,...,[, which are from the normal distribution N(J, %) given ¢ with the
variance % known.

4) a loss function L(d,d), a real value function defined on A x D, which rep-
resents the loss when ¢ is true and decision d is chosen;

5) the cost functions are denoted by {cn(d, 1,22, ..., ), m = 1,2,...}; the

value of ¢, (9, z1, 2, ..., 2,,) represents the cost of taking observations X; = z1,
Xy = @9, ..., X; = &, and stopping sampling when ¢ is the true value of the
parameter.

3.1.2 Loss Function and Cost Function

Bayes sequential decision theory has not been widely used in clinical trials because
of the computational complexity of Bayes inferences and the difficulty of specifying
loss and cost functions which can describe or measure the cost of decisions and the
cost of carrying out a clinical trial. Lewis and Berry(1994), Lewis(1996) have ap-
plied Bayes sequential decision theory with piecewise continuous loss functions in

group sequential clinical trials of binomial response variables. R.J.Sylvester(1988)
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used Bayes decision theory in a one stage Phase II clinical trial with binary re-
sponse outcome and a two-point prior distribution for a new drug response rate.
He has suggested a loss function which involves the patient horizon and the amount
of the difference between the new drug response rate and the standard rate.

Generally, the aims of the ideas considered in loss functions and cost func-
tions are to maximise the expected experimental treatment benefit over a patient
horizon and the loss in efficacy will be taken to be proportional to the magnitude
of the advantage of the treatment difference(Anscombe 1963, Berry et al 1992,
Whitehead 1992). This area has been little studied.

The simplest form of the loss function is piecewise continuous. This will be
used in group sequential clinical trials comparing two treatments with normal
distribution response variables in Chapter 4. Although we may not rely on such
a simple loss function to make decisions in real clinical trials, this is a start to
introduce Bayes sequential decision theory into group sequential clinical trials.

Following this, the more complicated loss and cost functions will be discussed.
For example, suppose a group sequential clinical trial is designed to compare an
experimental treatment with the standard treatment. The parameter of inter-
est is the treatment difference §. Assume that the experimental treatment is to
be regarded as better than the standard treatment if the treatment difference
§ > 9o > 0 and that the experimental treatment is not to be recommended
otherwise. The &y is the break-even value of the treatment difference §. Let
zj, 7 = 1,2,...,1, be the observation values of the group sequential sample Z;,
7 =1,2,...,1, respectively, which are used to test the treatment difference §. The
[ is the number of groups or analyses. Let d. and d, be decisions of choosing the

experimental and the standard treatments respectively, after the clinical trial is
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terminated. The loss functions can be defined as,

0 d < 9o
BA} = (3.1)
[((5 — (50)t 4> 50,

—K(0—14d0)t &< do
L(d;ds) = (3.2)
—K(6—13d)t & > o,
where A denotes the difference in cost of further treatment between a patient who
takes the experimental treatment and a patient who takes the standard treatment
(assume K > 0); t expresses the patient horizon, ie. the average number of
patients who are treated with the experimental treatment after the trial before a
second experimental treatment, which is as least as good, is found; n; is the group
sample size in each treatment at analysis 7, 7 = 1,2, ..., L.

The loss functions L(d,d,) in (3.1) and L(4,d.) in (3.2) show that if the treat-
ment difference § < dg, that is, the experimental treatment is not better than the
standard treatment, then there is no loss in choosing the standard treatment, but
there is a cost —K'(d — dp)t > 0 in choosing the experimental treatment; if the
treatment difference § > dp, that is, the experimental treatment is better than the
standard treatment, then there is a gain(negative cost) —K(d — o)t < 0 in choos-
ing the experimental treatment, but there is a cost K(d— o)t > 0 in choosing the
standard treatment. The cost or gain of making a decision is proportional to the
patient horizon ¢ and the treatment efficacy 6 — do.

Chapter 5 will apply Bayes sequential decision theory with the form of loss
functions as in (3.1) to group sequential clinical trials with binomial distribution

response variables.
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3.1.3 Bayes Risk, Bayes Decision and the Expected Risk

Consider a sequential decision procedure with the basic elements specified in Sec-
tion 3.1.1. Suppose the sequential samples X; = z1, Xy = x3, ..., X;, = 7,
m = 1,2,..., have been observed. Let w™ = w(§|z1,zs..., ) be the posterior

distribution of d after observing X; = z1, Xy = 29, ..., X,y = 2y, which is,

_ f(xlaa;Za"'al'm‘(g) w(é)
fA f<$1,l'2, 7$m15) ’LU((S) dé’

(3.3)

8|T1, @y ey Ty ~ W(O|T1, Ty eeny T

The Bayes risk of stopping sampling, denoted by ro(w™,m), is defined as the
greatest lower bound of expected losses, or risks, with respect to the posterior

distribution w(d|xq, z, ..., 2,,) among decisions d € D, that is,
ro(w™,m) = gg]fj B (slo1,09,mm) (L(0, d) + e (3, 21, 22, ...y Tm)).  (3.4)

After sampling is terminated, a decision d € D is called a Bayes decision if its risk
B (81z1 w9sesom) (L(0, d) + € (6, 21, 23, ..., 2m)) 1s equal to the Bayes risk ro(w™, m)
in (3.4). In clinical trials of comparing different treatments, the decision space D
is a set of finite treatments, that is, a set of finite elements, so we can always get
a Bayes decision in clinical trials.

On the other hand, if sampling needs to be continued after observing X; = z1,
Xy = gy ooy Xon = Ty, the expected risk from continuing sampling to observe
the next observation X and to choose a decision d € D later, expressed by
E*ro(w™(X),m + 1), is the expectation of the Bayes risk ro(w™(X), m 4 1) with

respect to the predictive density of z, f(z|¢1, 22, ..., ), that is,
Ero(w™(X),m+1) = /X ro(w™(X = 2),m + 1) f(e|e, 22, .., Tra) dz, (3.5)

where w™(X = z) = w(é|x1, xa, ..., Tm, ¢) is the posterior distribution of § after

observing X1 = z1, Xo = 23, ..., X = Zmm and X = z; ro(w™(X = 2),m + 1) is
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the Bayes risk after observing X; = 21, X3 = 23, ..., X,,, = 2, and X = z, and
m+1 means that the risk is from these m+1 observations; f(z|z1, 22, ..., 2,) is the
predictive density function of x after observing X; = z1, Xo = 29, ..., X, = @,
that is,
F(2]21, T2, ooy Em) = / F(2]6) w(b|21, 3, ooy Tm) dO. (3.6)
A

3.2 Bayes Sequential Decision Theory

3.2.1 Bayes Sequential Decision Procedure

A sequential decision procedure involves looking at a sequence of observations one
at a time and deciding after each observation whether to stop sampling and make
a decision immediately or to continue sampling and make a decision sometime
later. It has two components. One component is called a stopping rule, or a
sampling plan, which specifies whether sampling should be stopped and a decision
d € D should be chosen without further observations or whether another sample
X should be observed after observing values X; = 21, Xy = @3, ..., X;n = Zpm,
m=1, 2, .... The second component of a sequential decision procedure may be
called a decision rule. It specifies the decision d(z1, ¢, ...,2,,) € D to be chosen
for each possible set of observed values X; = 21, X5 = 29, ..., X,, = z,, after
which sampling might be terminated.

A Bayes sequential decision procedure, or an optimal sequential decision pro-
cedure, is a procedure for which the total risk(at least one observation is to be
taken in clinical trials) is minimised. For a bounded sequential procedure, in which
there is a fix number of observations Ny that can be taken, at each analysis, after

observing X1 = x1, Xy = 2, ..., Xip, = &, m = 1,2,..., Ny — 1, the stopping rule
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of a Bayes sequential decision procedure is applied by comparing the Bayes risk
from stopping sampling ro(w™, m), obtained by (3.4), with the expected risk from
the optimal continuation of sampling and then choosing a decision d € D later,
which is denoted by ry,_m(w™, m) and discussed in Section 3.2.2. If the Bayes
risk from stopping sampling is less than the risk from the optimal continuing

sampling, that is,
ro(w™,m) < ryy—m(w™,m), (3.7)

then sampling may be stopped and a decision d € D would need to be chosen.
Otherwise the sampling is continued.

The decision rule of a Bayes sequential decision procedure requires that deci-
sion functions d(z1, ¥, ..., tm), m = 1,2, ..., are always specified by Bayes decisions
in D. That is, if sampling is to be terminated after values X; = z1, Xy = 24, ...,
X, = &, have been observed and a decision d = d(x1, ¢, ...,2,,) € D is chosen,

then the risk of this decision d is equal to the Bayes risk, that is,

Eo(slo1,m2,0am) (L(0, d) + (8, 21, T2, ooy Tim) ) = ro(w™, m). (3.8)

3.2.2 Bounded Bayes Sequential Decision Procedure

The bounded sequential decision procedure involves stopping sampling after, at
most, Ny samples. Corresponding to group sequential clinical trials comparing two
treatments, let the maximum number of groups be [ and the group sample size be
n for each treatment, we have Ny = 2nl. If the value of Ny is large enough, then
the bounded sequential procedure is in fact also the unbounded procedure. For
example, if we can reach the point that as the trial progresses the cost of enrolling
any additional groups of patients is greater than the cost savings achieved by any

possible decrease in making Bayes decision, then we should terminate the trial
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at this stage, 7, say, and make a decision. Let Ny > 2nj, the optimum bounded
sequential decision procedure will be the optimum unbounded sequential decision
procedure.

Backward induction(Berger 1985, Degroot 1970) is used to construct bounded
Bayes sequential decision procedures. At each observation X,,,m = 1,2, ..., Ng—1,
X1 = 21, Xo = 29, ..., X;n = x,, have been observed, there are not more than
No—m observations which can be taken; we need to compare the risk from stopping
the trial, denoted by ro(w™,m), with the risk from the optimal continuation of
the trial, denoted by rn,—m(w™,m), in which not more than Ny — m observations

can be taken. If

m

ro(w™,m) < ryy—m(w™,m), (3.9)

then we make a decision without further observations; otherwise we continue
sampling to observe the next sample X. The calculations of ry,_,,(w™, m) can

be obtained by the following recursive relationships,

m

ro(w™,m) = (;ng) E(s1z1 22, mm) (L(6, d) + e (8, 21, T2, .oy 2m)),
m=1,2, ..., N, (3.10)
re(w™,m) = min{ro(w™,m), Erp_1(w™(X),m+ 1)},

m,k=1,...,No—1, m+ k < Nq. (3.11)

After stopping sampling, the decision d € D with the Bayes risk as in (3.8) is

chosen.

As an example, a Bayes sequential decision procedure with two interim anal-

yses, that is, No = 3, is described as follows.

the first interim analysis
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After observing X; = 21, we need to compare the Bayes risk from stopping sam-
pling, ro(w!, 1) with the expected risk from continuing sampling with not more
than two observations ry(w!,1). If ro(w!,1) < ry(w?, 1), then we stop sampling
and make a Bayes decision. Otherwise we continue sampling and observe the next
observation X. The Bayes risk from stopping sampling ro(w',1) is obtained by
(3.4) with m = 1. The expected risk ry(w', 1) is calculated by using recursive

relationships of (3.10) and (3.11), that is,

ri(w',1) = min{re(w', 1), E*ro(w'(X),2)},

ro(w',1) = min{re(w',1), E*ri(w'(X),2)}.

the second interim analysis

After observing X; = x5 and Xy = x5, the Bayes risk from stopping sampling is
ro(w?,2), obtained by (3.4) and the risk from continuing sampling with not more
than one observation is rq(w?,2). If ro(w?,2) < ri(w?,2), then we stop sampling.
Otherwise we continue sampling to observe the next observation X. The risk

r1(w?,2) is obtained by (3.11) with m =2,k = 1.

the final analysis
After observing X; = w5, X3 = 25 and X3 = 23, we need to choose a decision

with the Bayes risk ro(w?®, 3) that is calculated by (3.4) with m=3.

3.2.3 Group Sequential Decision Procedure

To use a group sequential decision procedure one looks at observations one group
at a time instead of one observation at a time as in a classical sequential decision
procedure. It is more practical to carry out a group sequential procedure than a
classical sequential decision procedure in clinical trials because of the difficulty in

continual monitoring, particularly in multicenter co-operative clinical trials with
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survival time response.

It is known that there is no information loss of statistical inference on the
parameters of interest if sufficient statistics(if they exist) of the parameters of in-
terest are used. Therefore group sequential samples may be replaced by a sequence
of sufficient statistics of the parameters of interest. Bayes sequential decision pro-
cedure can be applied to the sequence of sufficient statistics. Chapters 4, 5, and
6 will apply Bayes sequential decision theory into group sequential clinical tri-
als comparing two treatments with normal, binomial and survival time response

variables, respectively.




Chapter 4

Bayes Group Sequential Decision
Clinical Trials on Normal

Response

4.1 The Problem

Consider a clinical trial comparing an experimental treatment with the standard
treatment. Assume that the main outcome variable of the clinical trial X is
normally distributed with known variance o and unknown means y, and p, for
the experimental and standard treatments, respectively. Let § = p, — p, denote
the treatment difference. The conventional hypotheses are

Hy : 6 < 0(the experimental treatment is not better) vs  Hy:d > 5y > 0
in which dq is a break-even value of 4.

Suppose that the treatment is assigned by a randomised permuted block so
that each consecutive group of 2n patients has n patients on each treatment, and
the maximum number of groups is [. The group sample size n might be different
in each group. This is discussed in Section 4.4. Let the group sequential sample

be denoted by Xije, Xijs, ¢t = 1,2,...,n, 7 = 1,2,...,1, for the experimental and

62
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standard treatments respectively. Random variables Xije, X;js, 1 = 1,2,...,n, J =
1,2,...,{, are independent and identically distributed as the normal distribution
N(pe,0?) for the experimental treatment and the normal distribution N(u,,o?)

for the standard treatment. The group sequential samples can be expressed as

e . 4 .
Xlle,leea'“a)\'rLl& Xllsa)‘Zl.‘n-'w‘Ynls)

"3 - . 7 ”
X1267A2267""“XTL28) X1287"X2237"'7X'n28’ (4 1)

o r >3 7z 7 s
«’Xllea)\ZIew'w)\nle— Axllstlea---a)‘nls-

At each analysis 3, 7 = 1,2,...,, the Z; is defined to be the difference of group

sample means of the experimental and the standard treatments, which is
Zi = X — X o, (4.2)

where,

>
~

o

|

3=
0=

>
S

(1]

The sequence of new random variables Z;, Zs,..., Z; constitutes a classical sequen-
tial random sample, and they are independent and identically distributed as the
normal distribution with mean equal to ¢ and variance equal to %

Since Zy, Zs,..., Z; are sufficient statistics of the treatment difference §, they
can be used instead of the group sequential sample of (4.1) in statistical inferences

on the treatment difference § without losing information. Then the Bayes sequen-

tial decision theory can be applied to the classical sequential random sample Z;,
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4.2 Bayes Group Sequential Decision Procedure

4.2.1 Basic Elements of Bayes Sequential Decision Proce-

dure of the Study

Corresponding to Section 3.1.1, the basic elements of the Bayes sequential decision
procedure applied to the problem described in Section 4.1 are,

1) The parameter of interest is the treatment difference 6 = p, — p,. Assume
that the prior distribution of ¢ is the normal distribution with mean equal to 14

and variance equal to 72, that is,
($ ~ U)((S) = ]V(I/U’ '7'02) (43)

2) The decision d is chosen from the standard treatment and the experimental

treatment, that is,
d € {standard treatment d,, experimental treatment d,}. (4.4)

3) the sequential sample
[t has been shown in Section 4.1 that the classical sequential sample 7y, Z,,..., 7,
of (4.2) can be used instead of the original group sequential sample X;je, Xijs, ¢ =
1,2,..,n,7=1,2,....0, of (4.1) without loss of information concerning statistical
inferences on the treatment difference 6. The probability density function of Z;,
g = 1a B s veg bs 18

Do

n

Zi ~ f(z18) = N(G,

3) the loss and cost functions
To facilitate comparison with frequentist methods in group sequential clini-

cal trials, and also for the simplicity of computation, the piecewise continuous
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loss function is used. The loss functions L(d,d.) and L(4,d,) for choosing the

experimental and standard treatments, respectively, are defined as,

0 0 < éo
Lt dy) =
K d > do,
K 6<0
L(é,d.) = (4.6)
0 6>0,

that is, if the treatment difference § < 0 — the experimental treatment is not
better than the standard treatment, then there is no loss in choosing the standard
treatment, but there is a cost K in choosing the experimental treatment; if the
treatment difference § > §y — the experimental treatment is better than the
standard treatment, then there is no loss in choosing the experimental treatment
but there is a cost K in choosing the standard treatment. The loss function implies
a “zone of indifference” or “range of equivalence” that extends from 0 to dg, in
which benefis from the experimental treatment are balanced by increased toxicity,
inconvenience or cost. If the true difference ¢ lies in this region, then there is no
loss associated with accepting or rejecting the null hypothesis. The loss functions

of (4.6) are displayed in Figure 4.1.

L(8, B) L(5, A)

Figure 4.1 Loss Function L(§, A)(—) and Loss Function L(é, B)(——)
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Suppose the cost of enrolling a patient into the trial is 1 unit. This cost is

constant through the trial. The cost function is then,

Gl 215 Zos o 2p) = 2ng, 7=1,2,..1L (4.7)

The total cost, for example, will be L(d, d)+2n if the trial stops at the first interim

analysis.

4.2.2 Posterior Distribution of §

At each analysis j, j = 1,...,(, after observing Z; = 21, Z, = 2,,..., Z; = z;, the
joint probability density function of Zy, Zs,..., and Zj;, from (4.5) is
j ~
flz1, 22,05 2510) =[] f(216)
=1
R e
n J —# zi—6
- = 4.8
< anoz) © 48)

The posterior distribution of 8, w? = w(§|zy, zg, ..., 2;), is obtained by the Bayes

theorem, that is,

( - )j 6“432 1=y (zi=0) 1 —(6;:§)~
. 4mo? V27T €
- 2

f n : 6_4:2 f_l(z,—é) 1 - 6;’% 16

a 4mo? V27T <
(6-v;)?

_ 1 e_ 21‘?

A 2y

2

= N(v;,75), (4.9)
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where,

jnTozEj + Qupo®
vy = . 2 52
nTy + 20

5.2 2
2150

il
Il

* 2 s 9
JnTg + 202

‘M lzj:: (4.10)

] =1

0|
|

4.2.3 Predictive Density Function

At each analysis 3, 7 = 1,2,...,1, after observing Z, = 21, Z, = 2,,..., Z; =
z;, the predictive density function of Z given Z, = z, Z, = z,,..., Z; = z;,

f(z|z1, 22, ..., 2j), defined by (3.6), is,

|21, 220y 25) = /_°° F(216) (8|21, 72, -.ry 2;) d6

o0
oo n __n N2 1 _-T.,'.JZ‘_‘.
:/ \/ =8 18 e T dé
— Vdro 27r7-j
1 A T

1 —(6§— .\2
— e 2(1']2+2‘,:-)( VJ)
27r(7j2 + zg“)
9 202
= N(vj, i + —), (4.11)

where v, 77, and Z; are obtained by (4.10).

4.2.4 Sequential Decision Procedure

Suppose the study defined in Section 4.1 is designed to have two interim analyses.
The Bayes sequential decision procedure of the study may have the first interim
analysis, the second interim analysis and the final analysis. The Bayes group se-
quential decision procedure of the clinical trial is described as follows by backward

induction(see Section 3.2.2).
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The first interim analysis

At the first interim analysis, after Z; = z; has been observed, we need to get
ro(w',1) which is the Bayes risk from stopping the trial, and r5(w?!, 1) which is
the risk from optimally continuing the trial with not more than two observations.
Since the cost of enrolling patients, which is C1(d,21) = 2n at the first interim
analysis, is independent of ¢, and the risk ro(w?, 1) is used to compare with the risk
ro(w', 1) only, the cost C1(d,z1) = 2n may be ignored in calculations of ro(w?, 1)
and ry(w!, 1).

Using the formulae (3.4) with m = 1, we have,

) 1 — :
70(w 71) - der{r}itflle}EalzlL((S’d)
= min{Ls,, L(6,d,), Esp,, L(,de)}
o — _
= min{K(l — &(2 7)), Ko(—2), (4.12)
T1 T1

where ®(-) is the standard normal cumulative probability distribution function
and 1 and 7y are obtained by (4.10).
From the formula (3.11) with m = 1 and k£ = 2, we get,

ra(w',1) = min{ro(w', 1), E*ri(w'(Z2),2) + 2n}, (4.13)
where ro(w!, 1) is obtained by (4.12) and

E'ry(w}(2),2) = /°° ro(wh(2),2) * f(2]21)dz. (4.14)

— o0

z1) is the normal distribution N(vy, 77 + %)

In (4.14), the predictive density f(z
by (4.11), and the calculation of r1(w?(2),2) is obtained as follows.
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By (3.11) and (4.12), first we have,

ri(w',1) = min{ro(w',1), E*ro(w'(Z'),2) + 2n}
min{ K (1 — ®(%=2)) E*ro(wt(Z'),2) + 2n} z < My

T

min{ K®(52), E*ro(w'(Z'),2) + 2n} z1 > My,
where

So(n7g +20%)  2up0?

2 o 2
2nT nTg

A/ll =

If w! = w(d]z1) is replaced by w'(z) = w(d|z1,2), then we can get,

r1(w!(2),2) =

2

_ (z’—v2(11 ,z))

min{ K (1 — @(%z‘—’z))), KMa- @(6°_”3£§1’Z’Z{))) L e D) Lo

N
K Jip @(=sl) e D 4o 4 20} y< M,
\/Zr(‘rg-}-m%)
(' =va(,2))?

min{ Ko(=2ldy - o M1 — (Rmtalazs)y) L i) gy
21(734—%)
, _(Z’_V'l(zlvj)):z
+[X’fﬂoj,q)(—w(il,z,z)) 1 e 2(r,_?+~g‘) dz’—}—Qn} y > A/[,
: \/27r(‘r22+2—:1)

where,
727‘022'1 + Zwpo?
%1 = 2 2 )
nty + 20
2 27’0202
T: = —_—
1 p
nté + 202’
9 2
far. ) — nts (21 + 2) + 2v0
ValZ1, %2 = D) 52 5
2nts + 20
) D le?
Ty =

P )
Inté + 202
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nt(z1 + 2z + 2') + 2102

/
va(21,2,2) =
(21,2, %) 3nté + 202 ’
2 2
2 _ 2150
® 3ntd + 20?’
1 1
M' = —(=2u0* —n¢(z1 + 2) + =6(3n7E + 207)),
nTy 2
1
/ 2 2
M = n—Tz—(—Qz/oa — nr¢z + So(n1g + o?)).
0

After ro(w', 1) and ra(w?, 1) have been calculated, we compare these two risks. If
ro(w!, 1) < ry(w?, 1), then we stop the trial and choose a treatment which has the
Bayes risk ro(w',1). The statistical inferences on the treatment difference § can
be obtained based on the posterior distribution 6|z; ~ w! = w(d|z1) = N(vy, 72).
Otherwise we continue the trial to observe the next observation Z and need to go

to the second interim analysis.

The second interim analysis

At the second interim analysis, after Z; = z; and Z» = z, have been observed, we
need to calculate the Bayes risk from stopping the trial ro(w?,2), and ri(w?,2)
which is the expected risk from observing not more than one observation. Similar
to the first interim analysis, the risks ro(w?,2) and r;(w?,2) are calculated by
(3.4) and the recursive relationships of (3.10) and (3.11), respectively. The Bayes
risk from stopping the trial is,

710(102’ 2) = de{iz?fd } E6|z1 ,zzL((Sa d)

= min{Eﬂzl B0, s ) Esio, 2 L8, )},

50—1/2

), Ko(—2)}.

T2 T2

= min{A (1 — §(
The expected risk is,

ri(w?2) = min{ro(w?2), E*ro(w?(Z),3)+ 2n},
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where vy and 7, are obtained by (4.10), and

E*ro(w?(Z),3) = /OO ro(w*(Z = 2),3) f (2|21, 22)d2

M do — v3(z 1 "(_zq__vsz
= & [P -edmld)) __ i g
- n ) (4 )
(z—vp)?
00 — z 1 N 7 )
+K ( vl )) - 2(r} +26%) dz,
' \ar(d 7 )
where
 _ n1g(z+ 2z +2) + 20p0°
va(z) = 3ntg + 202 ’
1 _ ordoi
. Intg + 202’
1 1
My = —5(—2uv00% —n7i(z1 4 22) + =60(3n73 + 207)).
nTs 2

If ro(w?,2) < E*rg(w?(Z),3) + 2n, then we should stop the trial to choose a
decision with the Bayes risk ro(w?,2). The statistical inferences on the treatment
difference § may be based on the posterior distribution § ~ w? = w(§|zy,2;) =
N(ve,73). Otherwise we need to continue the trial to observe the next observation

Z.

The Final Analysis
At the final analysis, after observing Z; = 21, Z» = 23 and Z3 = z3, we should

stop sampling and choose the treatment with the Bayes risk ro(w?®,3), which is,

7'0(103,3) = H]iH{Eglzl s\ 0y Bely  Topncn s L0y e ) Je
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The decision d may be chosen by,

~—

(ls E&]zl 129,23 L((Sv ds) S E6|zl 122,23 L((Sa de

de E6|z1 ,ZQ,ZgL(67 ds) Z E6|z1 ,zg,Z3L(5a de)'

The statistical inferences on the treatment difference § could be obtained from

the posterior distribution w(4|z1, 22, 22) = N(vs,73) as in (4.9). For example, the

"Tg (21 +22+23)+ 20902
3nT02+202

posterior expectation of §, F(d|z1, 22, 23) = , 1s a point estimator

of the treatment difference 4.

4.2.5 Mean Sample Size

Suppose random variable J is the number of analyses. For two interim analyses,

values of J may be 1, 2, or 3, and the expected number of analyses E(J) is

E(J) = 1x P(ro(w',1) < ry(wt, 1))
+2 x P(ro(w',1) > ra(w', 1), ro(w?,2) < E*ro(w?(Z2),3) + 2n)

+3 x P(ro(w',1) > ra(w', 1), ro(w?,2) > E*ro(w?(Z),3) + 2n)

If the group of sample size of each treatment is n, then the mean sample size of
the clinical trial will be 2n % E(.J).

Although the group sequential clinical trial with three analyses was used in the
study to describe the Bayes group sequential decision procedure, this procedure
is similar when applied to a group sequential clinical trial with a greater number
of analyses. Pocock(1982) has suggested that the number of analyses in group
sequential clinical trials should not be more than five; otherwise there is little
advantage in carrying out a group sequential clinical trial to reduce the sample
size in frequentist methods. The group sequential clinical trial with three analyses
will be used to compare Bayes sequential decision procedure with procedures of

Pocock and O’Brien-Fleming in Section 4.3 by Monte Carlo simulations.
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4.3 Monte Carlo Simulations

4.3.1 Introduction

Two types of Monte Carlo simulations were used to compare Bayes procedures
with frequentist procedures on group sequential clinical trials. The first type
of simulation compared type I and type II error rates and mean sample sizes
of Bayes group sequential decision procedures with one-tailed frequentist group
sequential procedures of the Pocock and the O’Brien-Fleming. The second type
of simulation was the comparison of Bayesian characteristics — the mean cost C
— which is equal to the mean sample size plus the loss K times error rate. T'wo

interim analyses were used in simulations.

4.3.2 Simulations on Type I, Type II error rates and Mean

Sample Size

We start by considering the first type of simulation. Type I error rates a were

determined with the treatment difference ¢ equal to 0, that is, the sequential

202

) with mean equal to

sample of (4.5) are from the normal distribution N(0,
zero; The type I error rate « is the ratio of the number of decisions that there is a
treatment difference to the total times of simulations. The mean sample size under
these conditions is denoted by Mean N,. Type II error rates 3 were determined
with the treatment difference ¢ equal to 0.250, that is, the sequential sample of
(4.5) are from the normal distribution N(0.250, %), The type II error rate (3 is
the ratio of the number of decisions that there is no treatment difference to the
total times of simulations. The corresponding mean sample size is Mean Ng.

We assumed that the prior distribution of the treatment difference § was the
normal distribution N (0, %) The mean of the prior distribution is equal to 0

which means that there was no treatment difference to our prior knowledge. The
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variance of the prior distribution is equal to % which might suggest that there
were 2ng “extra” pairs of patients in the pilot trial(Freedman and Spiegelhalter
1989). The number ng can be regarded as a measurement of the prior information
and was changed (from 1% of maximum sample size to 50% of maximum sample
size) in our simulations to study inferences from different prior information.

Group sample sizes n obtained by the Pocock’s design and the O’Brien-Fleming’s
design with type I error rate a = 0.05, powers 1 — 3 = 80% , and 90% were used
in the simulations. The loss functions of (4.6), A" values of 5,000 and 10,000, were
chosen to yield type I error rates close to 0.05, type II error rates close to 0.20 or
0.10.

We ran 1000 simulations on Bayes procedures with various prior information.
Results of simulations, which are the type I error rate «, the type II error rate
(3, the mean sample size under no treatment difference and the mean sample
size under the treatment difference = 0.250, denoted by Mean N, and Mean Ng
respectively, are listed in Table 4.1, Table 4.2, Table 4.3, Table 4.4 and Table 4.5.
Table 4.1 and Table 4.2 are the comparison of the Pocock procedures(powers 1-4 =
80%, 90%) with Bayes procedures (loss functions K" = 5,000, K = 10,000). Table
4.3 and Table 4.4 are the comparison of the O’Brien-Fleming procedures(powers
1-4 = 80%, 90%) with Bayes procedures (loss functions K" = 5,000, K = 10, 000).
They show that with some prior distribution of the treatment difference §, there
is a Bayes procedure(bold print in tables) with type I error rates o and type II
error rates (3 similar to those of the Pocock and the O’Brien-Fleming procedures,
but with smaller mean sample sizes (Mean N, and Mean Ng) than those of the
Pocock and the O’Brien-Fleming procedures. Bayes procedures stop the trial
earlier under null hypothesis than the Pocock and the O’Brien-Fleming procedures
since Bayes procedures have a much smaller mean sample size(Mean N,). The
more prior information we have concerning treatment difference (when nyg is large),

the earlier the trial stops under the null hypothesis(for Mean N, is small), but the
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lower power is(1- is small). This is because the prior distribution of treatment
difference ¢ has the mean equal to 0. Since we did 1,000 simulations in Bayes
procedures, the type [ error rate o and type Il error rate 3 were random variables
with binomial distributions. If we compare type I error rates a of Bayes procedures
with the o = 0.05 of frequentist procedures, the 95% confidence interval of « is
(0.036, 0.064). The 95% confidence intervals for powers 1-3=80%, 90% are (0.775,
0.825), (0.881, 0.919), respectively. This is the reason that we are able to say that
the bold print of type I error rate o and type II error rate 3 in Table 4.1, Table
4.2, Table 4.3 and Table 4.4 are similar to 0.05, 0.80(or 0.90), respectively.
Table 4.5 is the comparison between Bayes procedures with different loss func-
tions(loss functions K=5,000, and 10,000) and the Pocock procedures with the
type I error rate @ = 0.05 and the power 1-5 = 90%. Results on the comparison
of Bayes procedures with the Pocock procedure are the same as those of Tables 4.1
and 4.2. By looking at different loss functions in Bayes procedures, Table 4.5 also
shows that the bigger the cost of making a wrong decision(when K = 10,000),
the larger the mean sample sizes needed in trials in order to make a decision with

greater accuracy, that is, with smaller type I error rate and bigger power.

4.3.3 Simulations on Costs

The second type of simulation considered the comparison of Bayes characteristics
— the mean cost C' — which is equal to the mean sample size plus the loss K times
error rate. Instead of giving values of treatment difference §, the value of treatment
difference ¢ used for each simulation was from the prior distribution N(0, %) and
the sequential samples Z’s were from the normal distribution N (4, 2%) with the
mean equal to ¢ obtained from the prior distribution N (0, %) The Table 4.6
shows the comparison of Bayes procedures of the loss K=5,000 with the Pocock
procedure of type I error rate o = 0.05 and type II error rate 8 = 0.20.

In Table 4.6, Bayes procedure I is the result of 10 simulations on treatment
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differences ¢ and 500 simulations on sequential samples Z’s for each treatment
difference 8, and Bayes procedure Il is the result of 100 simulations on treatment
differences ¢ and 20 times on sequential samples for each . It is very interesting
to note that the mean cost(Mean C') in Bayes procedures is lower than that in
the Pocock procedures. The same results are found in the comparison of Bayes

procedures with the O’Brien-Fleming procedures.

4.3.4 Discussion

In the simulations, we used the break-even value of the treatment difference ¢
equal to 0.250, that is, dy = 0.250, and got a large sample size saving in Bayes
procedures. If dg = 0.500, then the sample size saving in Bayes procedures would
not be as big as in &y = 0.250. However, the reason for carrying out sequential
clinical trials is to be able to detect small treatment differences as early as possible.
Snapinn(1992) has also shown that monitoring clinical trials with a conditional
probability stopping rule can achieve a large reduction in expected sample size
without greatly affecting either the significance level or power of the trial. Another
reason for the large sample size saving in Bayes procedures is that the Pocock
and O’Brien-Fleming procedures stop a clinical trial when there is a treatment
difference. But Bayes procedures stop a clinical trial either there is a treatment
difference or there is no treatment difference when it is demonstrated by enough

accumulating data.
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Table 4.1 Frequentist Characteristics Comparison of Bayes(/& = 5,000) with the

Pocock Procedures

Procedure n  Max/N  Prior ng « Mean N, 1 -8 Mean Ng

Pocock 78 468 0.050 456 0.800 320
Bayes 2(1%)  0.105 239 0.874 247
12(5%)  0.078 223 0.821 252

23(10%) 0.055 206  0.763 257

47(20%)  0.023 176 0.564 240

117(50%)  0.001 157 0.060 160

Pocock 106 636 0.050 626 0.900 388
Bayes 3(1%)  0.094 279 0.883 291
16(5%) 0.067 258  0.822 293

31(10%)  0.044 241 0.742 285

63(20%)  0.011 218 0.482 256

157(50%)  0.001 212 0.030 212
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Table 4.2 Frequentist Characteristics Comparison of Bayes(& = 10,000) with

the Pocock Procedures

Procedure n  Max/N Prior ng « Mean N, 1 -3 Mean Ng

Pocock 78 468 0.050 456 0.800 320
Bayes 2(1%)  0.080 273 0.898 286
12(5%)  0.069 254 0.860 295

23(10%) 0.047 234  0.796 303

47(20%)  0.025 194 0.641 292

117(50%)  0.000 157 0.114 181

Pocock 106 636 0.050 626 0.900 388
Bayes 3(1%)  0.064 323 0.918 338
16(5%) 0.049 296  0.875 346

31(10%)  0.031 269 0.801 353

63(20%)  0.010 229 0.584 331

157(50%)  0.000 213 0.037 216
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Table 4.3 Frequentist Characteristics Comparison of Bayes(& = 5,000) with the
O’Brien-Fleming(O — F') Procedures

Procedure n Max/N  Prior ng « Mean N, 1—-p3 Mean Ng

O—F 68 408 0.050 404 0.800 332
Bayes 201%)  0.107 221 0.864 230
10(5%)  0.083 209 0.818 235

20(10%) 0.061 192  0.758 239

41(20%)  0.028 163 0.588 228

102(50%)  0.001 137 0.099 150

O-F 93 558 0.050 556  0.900 425
Bayes 3(1%)  0.096 260  0.881 273
14(5%) 0.072 245  0.830 274

28(10%) 0.046 224  0.743 273

56(20%) 0.014 197 0511 249

140(50%)  0.001 186 0.038 186
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Table 4.4 Frequentist Characteristics Comparison of Bayes(KA = 10,000) with
the O’Brien-Fleming(O — F') Procedures

Procedure n Max/N  Prior ng «a Mean N, 1—p3 Mean Ng

O-F 68 408 0.050 404  0.800 332
Bayes 2(1%)  0.089 247  0.886 264
105%) 0.072 236 0850 272

20(10%) 0.059 219  0.793 277

A1(20%)  0.029 182 0.653 274

102(50%) 0.000 139 0.159 172

O—F 93 558 0.050 556 0.900 425
Bayes 3(1%)  0.071 300 0.913 316
14(5%) 0.056 277  0.870 325

28(10%) 0.034 253 0.794 330

56(20%)  0.014 212 0.614 319

140(50%)  0.000 187 0.055 195
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Table 4.5 Comparison of Bayes Procedures with Different Loss Functions

Procedure n  MaxN  Prior ng a Mean N, 1—3 Mean Ng
Pocock 106 636 0.050 626 0.900 388
K = 5,000
Bayes 3(1%) 0.094 279 0.883 291
16(5%) 0.067 258  0.822 293
31(10%) 0.044 241 0.742 285
63(20%) 0.011 218 0482 256
157(50% ) 0.001 212 0.030 212
K = 10,000
Bayes 3(1%) 0.064 323 0918 338
16(5%) 0.049 296 0.875 346
31(10%) 0.031 269  0.801 353
63(20%) 0.010 229 0.584 331

157(50%)

0.000

0.037

216
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Table 4.6 Costs Comparison of Bayes(KA = 5,000, n = 78) with

Pocock(n = 78, a = 0.05, 8 = 0.2) Procedures

Procedure Prior ny Mean N Error Rate Mean C
Pocock 304 0.0196 402
Bayes procedure | 2(1%) 185 0.0126 248
Pocock 356 0.0060 386
Bayes procedure 11 2(1%) 183 0.0070 218
Pocock 410 0.0086 453
Bayes procedure | 12(5%) 187 0.0176 274
Pocock 398 0.0180 480
Bayes procedure 11 12(5%) 203 0.0215 310
Pocock 428 0.0228 542
Bayes procedure | 23(10%) 207 0.0304 359
Pocock 426 0.0050 452
Bayes procedure 11 23(10%) 208 0.0090 253
Pocock 447 0.0048 471
Bayes procedure I 47(20%) 177 0.0022 187
Pocock 438 0.0105 490
Bayes procedure 11 47(20%) 185 0.0105 237
Pocock 461 0.0178 550
Bayes procedure [ 117(50%) 156 0.0004 158
Pocock 451 0.0105 504
Bayes procedure 11 117(50%) 157 0.0100 207
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4.4 Conclusion and Discussion

In the group sequential clinical trial comparing an experimental treatment with
the standard treatment, where the main outcome measure X for the clinical trial
is normally distributed and the mean of its normal distribution is the measure
of treatment effect, there is a sequence of sufficient statistics of the treatment
difference §, 7y, Zs,...,Z;, which constitutes a classical sequential random sample.
The Z;, 7 = 1,2,...,1, is normally distributed. The original group sequential
random sample can be replaced by this sequence of efficient statistics without
loss of information of statistical inferences on the treatment difference 6. The
Bayes sequential decision theory is then applied to the classical sequential random
sample 71, Z,,...,Z;. Monte Carlo simulations have shown that by choosing proper
prior distributions and loss functions, there are Bayes group sequential decision
procedures with type I error rate and type II error rate similar to those of the
Pocock and the O’Brien-Fleming procedures, but with smaller expected sample
sizes and costs than those of the Pocock and the O’Brien-Fleming procedures.

In the above study, we assumed that the clinical trial was monitored at every
equal group sample size, which was every 2n patients. This is not the requirement
of the Bayes sequential decision procedure in clinical trials. A clinical trial can be
monitored at unequal group sample size. It is explained as follows.

Consider the clinical trial as in Section 4.1, here suppose that the group sample
size is nj, 7 = 1,2,...,[. Corresponding to (4.2), the classical sequential sample
Z; = Xjo — X s, where Xje = %Z?&Xije, Xjo = nLjZ?ilXij,,, 7 =12,.,0. The

71, Lo, ..., Z;} are the sequence of differences of group sample means and from the
) v] 3 q g

normal distributions f(z|d) = N(J, 252 ), 7 =1,2,...,1, respectively. The variances
J

of this sequence of random variables {Z;,7 = 1,2,...,[} are different, which is the

only difference from the above clinical trial with equal group sample size. However,

the variance o2 is known, at each analysis j, j = 1,2,...,[, the sequential sample

Z; may be standardised to have its variance equal to 1. The Bayes sequential
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decision procedure of this clinical trial with unequal group sample size is then the

same as the above procedure with equal group sample size. The Bayes sequential

decision procedure can also be applied to the sequential sample {Z;,7 = 1,2,...,(}

itself like the above clinical trial, which is monitored at every 2n patients, because

the corresponding posterior distribution w(d|z1, 22, ..., 2j), § = 1,2, ...,{, shown in

(4.15) and predictive distribution f(z|z1, 22, ...,

are still normal distributions.

At each analysis 7, 7 = 1,2, ...

the posterior distribution of the treatment difference ¢ is

where,

w(d|z1, 22, vy 25)

L J(2:16) w(9)
[ Ty (2:18) w(8) do

J

zj), 3 =1,2,...,1, shown in (4.17)

1, after observing %y = &, Zg = 255,00y 45 = 25

_ Li(2;,—6)2 _(5—vp)
ll[ ni o ,ZZ:I 27 (% 79) 1 Tas2
o] 4mo? V2mTy
— ] B )
-2 ior(2-6) (-]

o0 ng = 1
r—oo iI—_I 47r¢;'2 =t V2mrTy
(6—v;)?
1 - 272

= € J

V2T

2

= N(Vj7 Tj ))

7 2= ¢ 2
i=1 NiTeZ; + 2v00

= J 2 ¢ G2 2
=1 Ty + 20
" 27'0202
T == -
J J 2 2’
iz Ty + 20
J
= Ei:l n;z;
Z; 3
Zi:] n;

(4.15)

(4.16)

The predictive density function of z with the group sample size equal to n given
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Zy = 21, Zy = 2a,..., Z; = z;, f(2|21, 22, ..., 25), 18,
Flz|2r, 20y 2) = / F(218) w(8|21, 22, orny 23) d6

e , n 2 _—,{_2
- / n e—m—(z—S) 1 e 21']. d5
00 V 4mo? V2TT:
1 N SR

j
v 2
_ q(.,.]2+20'2)( J)
27r(7'j2 + %)
2 2
= N3+ =), (4.17)

where v, 77, and Z; are obtained by (4.16).

This detailed procedure of monitoring a clinical trial with unequal group sam-
ple size is discussed in Chapter 6, where the clinical trial with survival time re-
sponse may be approximated by the clinical trial with normal distribution response
with unequal variance in each analysis.

In the previous study, we also assumed that the main outcome variable in
the clinical trial is from the normal distribution with variance o? known. When
the variance o? is unknown, the computation required by the Bayes sequential

decision procedure is complicated. This needs to be further studied.



Chapter 5

Bayes Group Sequential Decision
Clinical Trials on Binary

Response

This chapter will look at the Bayes sequential decision procedure of clinical trials
with main outcome variables being binary response. If a random variable X is
from the binomial distribution B(n,p), where p is the parameter of interest, then
the set of possible values of this random variable X are {0,1,2,...,n}, which is a
finite set. Consequently the computational difficulties of Bayesian inferences on
the parameter p may be partly overcome. Therefore, instead of using the simple
piecewise continuous loss function as in Chapter 4, the loss function which consid-
ers the treatment effect and patient horizon will be used in the Bayes sequential

decision procedure of clinical trials with binary response.

5.1 The Problem

A clinical trial is designed to test a new drug response rate p. The conventional

hypotheses are

86
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Hy : p < po(reject the new drug) vs Hy : p > py (accept the new drug),
in which pg is the break-even value of the response rate.

Suppose the clinical trial is monitored at every n observations and the total
number of analyses is [. Let X;;,¢=1,2,....,n, 7 =1,2,...,(, be the group sequen-
tial random variables, where X;; are independent identically distributed Bernoulli
random variables with unknown parameter p. At each analysis 7, 7 = 1,2, ..., [,
the group sequential sample, X1; = x4, X2j = ®aj, ..., Xn; = nj, are observed.
Let Y; be defined to be the sum of the group sample X;;,¢ = 1,2,...,n. The
sequence of random variables Y, 7 = 1,2,...,[, constitutes a classical sequential

sample, and the distribution of Y is the binomial distribution B(n,p), that is,

Y; = 3" Xis ~ B(n,p). (5.1)

=1

Since Yj, 7 = 1,2,...,(, are sufficient statistics of the parameter p, the group se-
quential sample X;;, 1 =1,2,...,n, 7 = 1,2,...,, can be replaced by the classical
sequential sample Yj, 7 = 1,2,...,[, without losing information on statistical in-
ferences of the parameter p. The group sequential procedure is then replaced by
the classical sequential procedure. Bayes sequential decision theory described in
Chapter 3 can therefore be applied to the study. It is discussed as follows.

The basic elements of Bayes sequential decision procedure of the study are,

1) The parameter of interest is the new drug response rate p. A two-point
prior distribution and beta prior distribution for p are studied in Section 5.2 and
Section 5.3, respectively.

2) The decision space of the study is D = {dy(reject the new drug), d; (accept
the new drug)}.

3) the loss and cost functions
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At each analysis 7,7 = 1,2, ..., [, the loss function is defined as,

0 P < po
L(p’ dO) = .
K(p—po)t  p> po,
K(po—p)t  p<po
L(p,dy) = ) (5.2)
K(po—p)t  p> po,
where p = the true underlying response rate of the new drug;
po = the break-even response rate;
t = the patient horizon;
K = the difference in cost(monetary or ethical) of further treatment be-

tween a patient who does not respond to the new drug and a patient who does

respond(K > 0).

L(p,d1) L(p,do)

Figure 5.1 Loss Function L(p,do)(—) and Loss Function L(p, di)(——)
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The loss function is shown in figure 5.1. The patient horizon ¢ and the treat-
ment effect p — pg are considered in the loss function. If the response rate of
new drug p is less than py, where the new drug should not be recommended,
then there is no loss(L(p,dp) = 0) in rejecting the new drug, and there is a loss
L(p,d;) = K(po — p)t in accepting the new drug. If the response rate of new
drug p is greater than py, where the new drug could be recommended, then there
is a loss L(p,do) = K(p — po)t in rejecting the new drug, and there is a gain
L(p,d1) = K(po — p)t (<0) in accepting the new drug.

Suppose that the unit of K (> 0) is the cost of enrolling a patient into the trial.

The cost function at analysis 7, 7 = 1,2, ...,[, is then
(s = jn. (5.3)

4) The sequential sample Y;, 7 = 1,2,...,[, are obtained by (5.1) in which
Y; ~ f(ylp) = B(n,p).

5.2 Bayes Sequential Decision Procedure with
Two-Point Prior Distribution

Consider the Bayes sequential decision procedure of the clinical trial described in
Section 5.1. Suppose that the response rate of new drug p has the two-point prior

distribution,

W p=n
w(p) = (5.4)
wy P = P2,
where w; +wy = 1, 0 < p1 < po < ps < 1. In practical, this prior distribution

would be suggested only when we have very strong prior information to show this
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form of prior.
At each analysis 7, y = 1,2,...,[, the posterior distribution of p after observing

Vi =1, Ya = ya,..., Y; = y;, denoted by w? = w(ply1, ya, ..., y;), is

w(p|y1a Y2y .eny y])
_ f(y17y2’7y.7|p) U)(p)
1,925 -5 yilp1) w(pr) + f(y1, Y2, -5 yilp2) w(ps)

I f(wslp) w(p)

.rzjll f(yilp1) w(py) + iljl F(yilpz) w(p2)

pizl vi(l — p)jfz—Z?zl v w(p)

J . . j
1 Y _E .
plz:zzl l(l—pl )]n i=1 y’wl
S wi P =SV p=n
P] =17 (1-p1) —i=1""w +p) =1 (1-p2) i=1 "t wy

Ty PR o F A
p?‘z:.:l y'(l—pg)” E:,‘:1 Yi g
J . ; Zj J . : Zi
pEi=l T (1opy )T Lui=t Vi 4p =1 T (1) T Lui=1 Vi,

At each analysis 7, 7 = 1,2, ..., [, the predictive density function of Y after observ-

ing )/1 =i, )2 = Y2,y--1y Y,; =Yj, cxpressed by f(y|y17y27 "'7yj)7 is

f(y’(/h Yz, -eey yy)
= Ep|y1,yz,---‘yjf(y’p)
= f(ylpr)w(prlys, y2; - y5) + f(ylp2)w(p2lys, vz, - y;) (5.

( n) Z?:l vity (j+1)n—(2f:1 y,-+y)wl+(z)p2§:f=1 yiﬂ’(l_m)(j+1)n—(2f-.:1 vity),,

y )P (1-p1)
%)

. . i
=1 (1) D iy

- J . ; 7
.Y _yV :
gL "(1-p1)’" E'=1 y'wl-HDg

5.2.1 Bayes Sequential Decision Procedure

The Bayes sequential decision procedure of a clinical trial compares the Bayes

risk from stopping the clinical trial with the risk from the optimal continuation
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of the clinical trial after each observation. During any analysis, if the Bayes risk
from stopping the trial is less than the risk from the optimally continuing the trial,
then the clinical trial is stopped; otherwise the trial is continued. After the clinical
trial is terminated, a decision with the Bayes risk is chosen. These are described
in Chapter 3. However, the stopping and decision rules of the Bayes sequential
decision procedure of the clinical trial defined in Section 5.1 with the two-point
prior distribution as in (5.4) can be described in the form of test statistics as can
those of frequentist methods. This is explained as follows by these Bayes sequential

decision procedures with one interim analysis and two interim analyses.

The Stopping Rule
One Interim Analysis
In the interim analysis, after the value Y3 = y; has been observed, ignoring the

constant cost function of (5.3), the Bayes risk from stopping the trial ro(w?!, 1) is,

ro(wt, 1)
= m‘indG{do,dl} Eplyl L(p, d)
= Inin{EPh/l L(]), dO)v EP|y1 L(p’ dl>}
Pl “1 ( )n]
2(1’2 1—po

K (pz2 — po)t w(pz|y1) Y1 < log[p2 e STy

— P1 1=p2

i R Po—P1 “1(1 Pl )n]
K(po — p1)tw(prlyr) + K(po — p2)t w(pzlin) 1 >

s
Ut

log [:2

1Og[ iP" —po) wo

r2 1—-py
log [ 114

On the other hand, if the next sample ¥ needs to be observed, the expected risk

from observing Y, denoted by E*ro(w!(Y),2), is

Ero(w'(Y),2) = Y ro(w'(Y =y),2) f(yIY1 = ),
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where

ro(w'(Y = y),2)
= Hlinde{do,fh} EP|y1 ,yL(pa d)

= min{Eppy, 4 L(p, do), Epjy, y L(p,d1)}

2(1’0—1?1 )ﬂ( i_Pl )2n]

P2 —pg) W —

log [i’;—fiéﬁl N 0
i . log [;2=LL L1 (1=PLyan)

K(po = pr)tw(prlys, y) + K(po — p2)t w(palyr,y) v > g (B2 ToE] Y1

P1 1—-p2

log|

K (p2 — po)t w(pa|y1,y) y <

and the predictive density function f(y|y:1) is obtained by (5.6). Let M be the
10g[2(pl?2_—1;10) I_;( 1:1;;; )*"]

P2 1-p1
IOg [H I—Pz]

integer portion of value max{ — 41, 0}. It is obtained that

E*ro(w!(Y),2) = Tylo K(p2 — po)t w(palyr, y) f(ylyn)

+ % 1 [K (po — p1)t w(pi|yr, y) + K(po — p2)t w(palys, v)] f(yly).
y=M+

(5.8)

Let
D(yi|n, K, t,w) = ro(w',1) — (E*ro(w'(Y),2) + n). (5.9)

If D(ys|n, K,t,w) < 0, then the clinical trial might be stopped; otherwise the
clinical trial needs to be continued. Assume that the clinical trial is terminated at
the interim analysis. The value of y; should be small if the drug is not effective;
and the value of y; would not be close to 0 if the response rate of the drug is high.

The structure of stopping region is then,

{y1: D(y1|n, K, t,w) <0} =

(5.10)
{yn iy < a(n, K t,w)} U{yr cy1 > ea(n, K t,w)},

where ¢; and ¢2(0 < ¢; < ¢ < n) might be the roots of the equation

D(y1|n, K, t,w) = 0. (5.11)
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Although the form of (5.10) is obtained under the assumption of the clinical trial
being terminated at the interim analysis, it can be also used in the situation when
the clinical trial needs to be continued by some special values of ¢; and ¢;. The
stopping rule at the interim analysis is then described as below.

At the interim analysis, if there are no roots in [0,n] of the equation (5.11),
then the clinical trial is either continued when D(y;|n, K,¢,w) > 0 or stopped
when D(yi|n, K,t,w) < 0, no matter what value y; has been observed. If there
are roots of the equation (5.11), then

1) when ¢; = ¢ = nor ¢ = ¢ = 0, that is, {y1 : D(y1|n, K,t,w) < 0} =
{0,1,2,...,n}, the clinical trial is stopped at the interim analysis no matter what
value of the first observation Y; is observed;

2) when ¢; < 0 and ¢; > n, while {y; : D(y1|n, K,t,w) < 0} is an empty set,
the clinical trial needs to be continued;

3) when ¢; < 0 and ¢; < n, the trial could be stopped and the new drug ac-
cepted if y1 € {y1 : y1 > ca(n, K, t,w)}, otherwise the trial needs to be continued;

4) when ¢; > n and ¢; > 0, the trial could be stopped and the new drug rejected
if y1 € {y1 : 11 < e1(n, K, t,w)}, otherwise the trial needs to be continued:;

5) when 0 < ¢; < ¢ < n, the trial could be stopped with the decision of
rejecting the new drug if y1 € {y1 : y1 < c1(n, K,t,w)} or accepting the new
drug if y1 € {y1 : y1 > c2(n, K, t,w)}, otherwise the trial is continued to the final

analysis.

Two Interim Analyses Procedure

Say at the first interim analysis, ¥ = y; has been observed. The next observa-
tion should be taken if, and only if, the risk from stopping the trial, denoted by
ro(w', 1), is greater than the risk of continuing the trial with not more than two

observations, denoted by ra(w?, 1). The risk ro(w?, 1) is obtained by (5.7). Using
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the method of backward induction described in Chapter 3, the risk ry(w?, 1) is,
ra(w',1) = min{ro(w', 1), E*ri(w*(Y),2) 4+ n}, (5.12)

where,

n

E*ry(w'(Y Z =¥),2) f(yly1)- (5.13)

In (5.13) the predictive density function f(y|y1) is obtained by (5.6), and the
calculation of ri(w'(Y =y),2) is described as below.

From (3.11) it is obtained,

ri(w', 1) = min{re(w', 1), E*re(w'(Y'),2) 4+ n}
o Po—P1 w1 1-P)\n
min{ By, L(p, do), E*ro(w!(Y"),2) +n} gy < “Sirasg) =)

— 105[11? 1- z;
- (Wl (V7). 2 Log [y =sq) vz (=53]
mln{Ep|y1L(p’ dl)» 7 To(w O )’“) + n} Y1 > log [72 I=P1 )
Og[ﬁ 1—P2]
where,
E*rg(w'(Y'),2) = Y ro(w'(Y =¢),2) fF(Y' = ¢/|w).
y'=0
M
= > K(p2 — po)tw(palys, y') f('ln)
y'=0
+ 2 [K(po—p)tw(palys,y') + K(po — p2)t w(pslys, y)] F(¥' ),
y'=M+1
7,?—,}—)#(1 )"
in which the M is the integer portion of value ma*{{ 2 [(’m 12_1,1] — 1, 0}.

r1 1—p2

If w' = w(ply1) is replaced by w(y) = w(p|y1,y), then 71(w1(Y =1y),2) in (5.13)
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is obtained, that is,

(¥ =y),2)
= min{ro(w*(Y = y)), E*ro(w (Y)Y =y)) + n}
1Og[_PO—_Pl__L(_L) W

nnn{LMyl wL(p,do), E*ro(w (Y)Y =y)) + n} y = 2(1’1“ gIE(;))z = p:]m —hn
- IOg[ PO —P1 1“1’1 (pf—m )2n]
i By o L0, o), Ero(w! (V)Y = y)) 40}y > —rgiainr sy,
P11=p2

where,

E*ro(w' (Y)Y =y)) Z K(p2 — po)t w(pzly1, v, v") (¥ ly1, y)

+ Y {K(po—po)tw(pilys, v, y') + Kt(po — p2) w(p2lys, v, ')} F (¥ [y1, ),

y'=M;+1
. ) . . [_0—_p]__L(_1_)3n]
in which the M; is the integer portion of ma‘x{ 2“1"’[’2,; T ]"2 — (31 +y), 0}.
8Ly Topy
Let
Di(ya|n, K, t,w) = ro(w',1) — ry(wt, 1). (5.14)

If Di(y1|n, K,t,w) < 0, then the clinical trial could be stopped; otherwise the
trial needs to be continued. As described in the procedure of one interim analysis,

the stopping region with the form of y; has the structure,

{y1: Di(yaln, K t,w) <0} =

(5.15)
{yl - < c%(n, [X’atvw)} U {yl ‘W 2 C%(”a [(ataw)}v

where ¢i(n, K,t,w) and cj(n, K,t,w) (¢} < cl) might be the roots of equation
D1(ya|n, K, t,w) = 0.

If the equation D;(y1|n, K,t,w) = 0 has no roots, the clinical trial could be
either stopped when Dy (y1|n, K, t,w) < 0, or continued when Dy (y;|n, K, t,w) > 0

no matter what observed value Y7 = y; is. If there are roots of the equation
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D1(yi|n, K,t,w) = 0, then clinical trial could be stopped when 0 < y; < ¢] < n
or n >y, > c3 > 0; otherwise the trial needs to be continued.

At the second interim analysis, after Y7 = y; and Y5 = y, have been observed,
there is only one more sample which can be observed. The calculation of risks at
the second interim analysis is therefore same as those at the interim analysis of
one interim analysis procedure except that the posterior distribution of p, w(p|y1),

is replaced by w(ply;,y2). The Bayes risk from stopping the trial is,

ro(u)z, 2) — {g(r)l%irll} Ep|y1 e L(p, d)

= min{Epjy, 4, L(p,do); Eply, 4o L(p, d1)}, (5.16)
where,

Eplyl,yzL(P,dO) = 1"(P2—P0)tw(]?21y1,y2),

Epyy n L(p,d1) = K(po — p1)t w(prlyr,y2) + K(po — p2)t w(p2|y1,y2).

The expected risk from observing the last observation is,

E*TO(IUZ(Y)ag) — 27'0(102()/ :y)vs) f(y|y17y2)7 (517)
y=0
where,
ro(wz()x =§L8] = der{g(i)lgil} Eplyl,yz,yL(p7 d)

= min{Epjy, go.y L(P, do)s  Eplyy oy L(ps dr)}-

It is easy to show that the ro(w?,2) and E*ro(w?(Y'),3)+n are functions of y; 4y,

given the group sample size n, parameters of the loss function K, ¢t and the prior
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distribution w(p). Let
Da(y1 + y2|n, K, t,w) = ro(w?,2) — (E*ro(w?(Y),3) + n). (5.18)

If Da(y1 + ya|n, K,t,w) < 0, then the trial should be stopped; otherwise the trial

needs to be continued. The stopping region with the form of y; + y, is

{yl + Ya : Dz(yl + yzlna ["7t7w) S O} = (r 19)
J.
{ri+yr i+ v <G, K t,w)}U{ys +y2 1 +y2 > E(n, K, t,w)}.

where ¢f(n, K, t,w), c3(n, K, t,w) can be the roots of the equation Dy (y;+ys|n, K,t,w) =
0.
Hence the stopping rule of the clinical trial with two interim analyses in the
form of test statistics is that at each interim analysis 7 = 1 (or j = 2), after
Y1 = y1 (or Y1 = y1, Yo = ya) being observed, if the equation Dy (y1|n, K, t,w) =0
(or Dy(y1 + y2|n, I, t,w)) have no roots, then the clinical trial should be stopped
when Di(y1|n, K,t,w) < 0 (or Dy(ys + ya|n, K,t,w) < 0), and the clinical trial
is continued when Di(yi|n, K,t,w) > 0 (or Dy(y1 + y2|n, K, t,w) > 0); if the
equation Dy (y1|n, K,t,w) =0 (or Ds(y1 + y2|n, K,t,w) = 0) have the roots, then
the decision of stopping the trial early is based on the values of the roots listed in

the following table.
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The Stopping Rule of Clinical Trials Two Interim Analyses

first interim analysis D1(y1|n, K t,w) =0
no roots in [0, n] roots i, c3
stop the trial D1(y1|n, K, t,w) <0 0<y1<ci<n

OSC§§y1Sn

continue the trial D1(y1|n, K, t,w) >0 cj <0andcl>n
second interim analysis Ds(y1 + y2|n, K, t,w) =0

no roots in [0, 2n] roots ¢, 3
stop the trial Dy(y1 4+ ya|n, K, t,w) <0 0<y1+y2 <2 <n

0<c<y1+ys<n

continue the trial Dy(y1 + ya|n, K, t,w) >0 ¢ <0 and ¢ > n

The above results can be easily generalized to the Bayes sequential decision proce-
dure of the clinical trial with more than two interim analyses. Consider the Bayes
sequential decision procedure of the clinical trial described in Section 5.1. At each
analysis 7, 7 = 1,2,...,[, after Y1 = y1, Y5 = s, ..., ¥; = y; have been observed,
the Bayes risk from stopping the trial is denoted by r¢(w?,j) and the expected

risk of continuing the trial with not more than [ — j observations is denoted by
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ri_;(w?, 7). Let

D; (> yiln, K, t,w) = ro(w?, ) — ri—j(w’, ), (5.20)

=1

J
If D;(Y yiln, K,t,w) < 0, then the trial could be stopped; otherwise the trial
=1

J
needs to be continued. The stopping region with the form of statistics . Y; is
=1

j j ,

j j . j (5.21)
{Zy,-:Zyigc{(nj(,t,w)}U{ZyZ.Eyz_ (n, K,t,w}
=1 =1 =1

where ¢}(n, K,t,w) and &(n, K,t,w) (¢ < &) may be the roots of the equation
J

D; (Y yiln, K,t,w) = 0. The stopping rule at analysis j can be summarised as
=1

the following table.

Stopping rule at analysis 7

J
Jth interim analysis D; (Y yiln, K, t,w) =0
=1
no roots in [0, jn] roots ¢, ¢}
stop the trial (E viln, K, t,w) <0 0< E Y < o < nj

0<C<Eﬁﬁm

] .
continue the trial Di(Y yiln, K,t,w) >0 ¢ <0and d > nj
7=1




Chapter 5. Bayes Group Sequential Decision Clinical Trials on Binary Responsel(00

The Decision Rule

At each analysis 7, j = 1,2,...,[, after values Y; = y1, Y3 = y,,..., ¥; = y; have

been observed, if the clinical trial is terminated, the Bayes risk from stopping the

trial, ro(w?, 7), is,

o (U]j, ]) —
where
I RA—— i X )
Eplyr i L (P dy)

i

min{Ep|yl’y2 """ ny(p’dO)’ Eplylyyz,---yij(P)dl)}
i v; L (P, do) zJ: - < Log [ty ok (1=pe "]

P|1/1 Y2 50eey H — 1 [P_z l—m]

P1 1—;?
Po—P1 ﬂ( —P1 )Jn]
2(po—pg) wo \1—po

P2 1—py ’
IOg[H 1—P2]

(5.22)

log|

J
Eplyhya,n-,ij(Pa dy) 2 Y >

= Kt(ps — po) w(p2ly1, Y2, s ¥j),

= Kt(po — p1)w(prlyr, Y2, -, y5) + Kt(po — p2) w(palys, ya, -, v5)-

: J
The Bayes risk ro(w?, 7) is a function of Y y;. The decision rule after the trial be
Y ;

terminated is then

do(reject the new drug)

d =

di(accept the new drug)

=1

Po—P1 w_1(1—P1 )jn]
2(p2 —pg) wp " 1—p
=
Po—P1 w1 (I—p1\;
10g[2(1’2 —7r0) E(l—m )"
P2 1—171]

lOg[;’T 1—p2

log|

M.
&
|

~
Il
i

(5.23)

M.
=
\%

<.
Il
1

5.2.2 Group Sample Size

Consider the group sequential clinical trial with the number of analyses equal to

[. At the final analysis, let f(y1,ya, ..., y1) be the joint probability density function
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of Y1, Ys,..., Y7, that is,

Ty, vz, m) = [y, y2s - ulp) w(py) + f(y1, yas - wilp2) w(ps)
l 1 )
= ]I (n) plEi:l (1 P1)”l_22=1 Y,
=1 Yi
l 1 .
+ I (n ) pzz"=1 Y (1 = p) e ¥ . (5.24)
=1 Yi

!
Since the Bayes risk ro(w’,{) as in (5.22) with j = [ is a function of Y y; where
a=1

the constant cost function Cj as in (5.3) was ignored, the average Bayes risk,

E(Y1,Y;>,..‘,Y1)7GO('LUI7 l) —+ nl, iS7

E(YI,YQ,...,Y;)TO(wlv [) +nl = Z To(wl, Z) f(yh Y2y o1y yl) +nl
Y1,Y2 Yl
— Z ro('wl,l)f(z yr) + nl
v
nl il ,’ ,
— Z To(lul’[) [(Zy) plzy (1 . pl)nl—zy, wy
> wi=0 -
+ (Zn;) P (1 — py )L wz} + nl
oL nl ; ,
= Z Eplys gz, L (5 o) [(Ey) plz:y = pl)nl_zy' w1
EinO J
[ . A
> i
=L nl ; _
> B l(p,di) l(zy) p%:y (1 —=p1 )nl_zy‘ wy
Yo ui=Mo+1 *
[ v '
() 1 = pa) T, | 4 (5.25)
2 i

Po—P1_ w1 (1=P1\nl
[ ( i
P

lo
where the My is the integer portion of £

1 [1‘2 =

It can been seen from above that given the prior distribution w(p), the loss

function L(p,d), and the cost function C;,7 = 1,2,...,(, the average Bayes risk
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E, 7y2w_1yl)r0(wl,l) is a function of nl, which is the maximum sample size of the
group sequential clinical trial. Bayes inferences are independent of the number of
analyses after the trial is terminated. Therefore in the view of Bayes sequential
decision theory the maximum sample size N = nl can be designed to reach the

prespecified average Bayes risk level, say R, and
N = min{N: Ey .y, wro(w,l) <R} (5.26)

If the clinical trial is designed to have equal group size, then the group sample

size i1s n = %

5.2.3 Comparison with Frequentist Methods

In this section, the procedures of Pocock and O’Brien-Fleming are used for com-
parisons with the Bayes sequential decision procedure in the group sequential
clinical trial described in Section 5.2.1. The comparisons are based on type I er-
ror rates a, type Il error rates 3, and their corresponding expected sample sizes,
Mean N,, Mean Ng, respectively,

Since the response rate of new drug p is assumed to have the two-point prior
distribution as in (5.4), the corresponding conventional hypotheses test is Hy :
p = p1 < po(reject the new drug), vs Hy : p = ps > po(accept the new drug).
Hence, the type | error rate o in the study is the probability of accepting the drug
if the drug is not effective, that is, the probability of choosing decision d; if the
sequential samples Y;, 7 = 1,2,...,[, are from the binomial distribution B(n, p;).
The type Il error rate  in the study is the probability of rejecting the drug
while the drug is effective, that is, the probability of choosing decision dj if the
sequential samples Y}, 7 = 1,2,...,[, are from the binomial distribution B(n, ps).
Since the number of all possible values of Y;, 7 = 1,2,...;(, is n + 1, the type I

error rate o and type II error rate 3 can be calculated.
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Assume the clinical trial described in Section 5.1 is studied under the Bayes
sequential decision theory. Suppose the break-even value of response rate of the
new drug po = 0.20, the new drug is rejected if the response rate of the drug
p = p = 0.01, 0.05, and 0.10, and the new drug is accepted if the response rate
of the drug p = p» = 0.25. Let the two-point prior distribution of p as in (5.4)
have w; = 0.3, 0.5, 0.7, and 0.9. The group sample sizes n are designed to be the
same as those used in the procedures of Pocock and O’Brien-Fleming with type
I error rate o = 0.05 and type II error rate # = 0.20 and 0.10. Assume that the
patient horizon ¢ = 500, 1000, 5000, 10000. The two interim analyses procedure
is used as an example. The Table 5.1 and Table 5.2 are the results of the type |
error rate a and its expected sample size Mean N,, and the type II error rate 3
and its expected sample size Mean Ng, respectively, with the group sample size
designed by the procedure of Pocock with type I error rate a = 0.05 and type 11
error rate 0 = 0.2.

It has been shown that there are Bayes sequential decision procedures which
have the type I error rates a, type II error rates 3 close to the procedures of
Pocock, but their corresponding expected sample sizes are smaller than those of
Pocock’s procedures, which are in bold print in the tables. The more prior belief
in p = p; of the new drug being ineffective, that is, the larger value of w;, then
the lower type I error rate o and the smaller expected sample size Mean N, but
the higher type Il error rate 3 and the bigger expected sample size Mean Ng. The
less prior belief in p = p; or the more prior belief in p = p,, that is, the larger
the value of wy = 1 — wq, then the smaller type II error rate # is. The larger
the patient horizon ¢ is, the larger the expected sample size is needed to be able
to make a decision with greater accuracy(that is, both type I and type II error
rates are small). The bigger the difference of response rate(that is, the value of
p1 is smaller because the value of p, is fixed to be 0.25.) is, the earlier the trial

is stopped since the expected sample size is smaller. The same results are found
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when the type II error rate 3 = 0.1.

The Table 5.1" and Table 5.2” are the results of the type I error rate a and
its expected sample size Mean N,, and the type II error rate 3 and its expected
sample size Mean Npg, respectively, with the group sample size designed by the
procedure of O’Brien-Fleming with type | error rate o = 0.05 and type II error
rate 3 = 0.2. The results of Bayesian decision procedures comparing with the
procedure of O’Brien-Fleming are same as those of Bayesian decision procedures
comparing with the procedure of Procock.

Hence, it is obtained that Bayesian sequential decision procedures in clinical
trials could be based on the statistics Ele Y:, 7 =1,2,...,1, as those of frequentist
methods. There are Bayesian sequential decision procedures with type I and type
II error rates similar to those of the Pocock and the O’Brien-Fleming procedures,
but with smaller mean sample size than those of the Pocock and the O’Brien-

Fleming procedures.
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Table 5.1 Type I error rate a and expected sample size Mean N,

t=5000

« Mean N,

Pocock’s procedure: p; = 0.01, Max N = 39,

Bayes sequential decision procedure:

0.3 0.0082

0.7 0.0072
0.9 0.0004
Max N = 63,

Pocock’s procedure: p; = 0.05,

Bayes sequential decision procedure:

p1 = 0.10, Max N = 129,

Pocock’s procedure:

Bayes sequential decision procedure:

Mean N = 17.5

0.0085 28.8
0.0007 14.9
0.0007 14.9
0.0007 14.9

Mean N = 28

0.0277 37.2
0.0080 27.8
0.0061 27.8
0.0011 23.0

Mean N = 55.5

0.0728 60.6
0.0318 55.0
0.0124 49.4
0.0044 45.9

t=10000
« Mean N,
0.0024 29.0
0.0008 26.4
0.0007 14.9
0.0007 14.9
0.0149 37.8
0.0066 37.9
0.0038 27.9
0.0012 23.4
0.0373 65.0
0.0162 64.2
0.0067 56.7

0.0024

49.4
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Table 5.2 Type II error rate 3 and expected sample size MeanNg

t=500 t=1000 t=5000 t=10000
wq 6 Mean Ng 06 Mean Ng 06 Mean Ng 16} Mean Ng

Pocock’s procedure: p; = 0.01, Max N =39, Mean N = 20.5

Bayes sequential decision procedure:

0.3 0.0275 14.5 0.0275 14.5 0.0042 14.9 0.0048 17.7
0.5 0.0275 14.5 0.0275 14.5 0.0292 17.8 0.0092 18.2
0.7 0.1267 13 0.0275 14.5 0.0292 17.8 0.0292 17.8
0.9 0.1321 16.0 0.1321 16.0 0.0292 17.8 0.0292 17.8

Pocock’s procedure: p; = 0.05, Max N = 63, Mean N = 33.5

Bayes sequential decision procedure:

0.3 0.0745 21 0.0236 22.3 0.0080 26.0 0.0085 30.0
0.5 0.0745 21 0.0843 23.7 0.0313 29.3 0.0151 31.1
0.7 0.1917 21 0.0843 23.7 0.0323 30.4 0.0329 34.9
0.9 0.3674 21 0.2063 25.1 0.0976 34.6 0.0913 34.8

Pocock’s procedure: p; = 0.10, Max N =129, Mean N = 66

Bayes sequential decision procedure:

0.3 0.0612 43 0.0612 43 0.0161 48.6 0.0147 53.8
0.5 0.1237 43 0.1237 43 0.0339 52.6 0.0217 60.5
0.7 0.1237 43 0.1237 43 0.0740 57.1 0.0420 67.6
0.9 0.3390 43 0.3390 43 0.1411 61.0 0.0916 73.4
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Table 5.1” Type I error rate a and expected sample size N,

t=500 t=1000 t=>5000 t=10000
w1 o Mean N, « Mean N, «@ Mean N, « Mean N,
O’Brien-Fleming procedure: p; = 0.01, Max N = 30, Mean N = 20
Bayes sequential decision procedure:
0.3 0.0956 10 0.0134 11.7 0.0066 21.73 0.0066 21.7
0.5 0.0055 11.0 0.0055 11.0 0.0066 21.73 0.0032 21.8
0.7 0.0055 11.0 0.0055 11.0 0.0024 11.90 0.0032 21.8
0.9 0.0043 10 0.0010 11.1 0.0003 11.08 0.0003 11.1
O’Brien-Fleming procedure: p; = 0.05, Max N =48, Mean N = 32
Bayes sequential decision procedure:
0.3 0.0582 19.7 0.0594 20.1 0.0200 30.26 0.0205 37.7
0.5 0.0503 17 0.0542 20.2 0.0188 27.96 0.0128 30.6
0.7 0.0503 17 0.0112 17.8 0.0041 21.59 0.0045 28.3
0.9 0.0088 17 0.0025 17.9 0.0038 20.85 0.0030 21.6
O’Brien-Fleming procedure: p; = 0.10, Max N = 94, Mean N = 62
Bayes sequential decision procedure:
0.3 0.2115 32 0.2115 32 0.0593 55.38 0.0605 58.7
0.5 0.0944 32 0.0944 32 0.0503 45.62 0.0352 57.0
0.7 0.0359 32 0.0358 82 0.0222 40.24 0.0148 47.4
0.9 0.0117 32 0.0117 32 0.0062 35.34 0.0057 40.0
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Table 5.2” Type II error rate 3 and expected sample size Ng

t=>500 t=1000 t=5000 t=10000
w1 g Mean Ng Ié Mean Ng g Mean Ng 16} Mean Ng
O’Brien-Fleming procedure: p; = 0.01, Max N = 30, Mean N = 24.5
Bayes sequential decision procedure:
0.3 0.0563 10 0.0589 12.0 0.0112 13.2 0.0112 13.2
0.5 0.0689 12.2 0.0689 12.2 0.0112 13.2 0.0121 16.1
0.7 0.0689 12.2 0.0689 12.2 0.0618 15.3 0.0121 16.1
0.9 0.2440 10 0.0794 15.2 0.0853 16.3 0.0853 16.3
O’Brien-Fleming procedure: p; = 0.05, Max N = 48, Mean N = 39
Bayes sequential decision procedure:
0.3 0.0687 18.9 0.0579 19.2 0.0218 24.4 0.0164 24.7
0.5  0.1637 17 0.0590 19.5 0.0290 24.3 0.0233 30.0
0.7 0.1637 17 0.1767 20.6 0.0781 28.6 0.0473 29.8
0.9 0.3530 17 0.2088 25.0 0.0927 28.3 0.0797 34.2
O’Brien-Fleming procedure: p; = 0.10, Max N = 94, Mean N = 76
Bayes sequential decision procedure:
0.3 0.0698 32 0.0698 32 0.0243 42.7 0.0210 42.9
0.5 0.1530 32 0.1530 32 0.0465 42.7 0.0269 49.6
0.7 0.2779 32 0.2779 32 0.0911 46.3 0.0597 56.2
0.9 0.4325 32 0.4325 32 0.1976 51.0 0.1201 61.1
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5.3 Bayes Sequential Decision Procedure with

Beta Prior Distribution

Consider the study described as in Section 5.1. Assume that the prior distribution
of the response rate p in the study has the beta distribution with parameters

u(u > 0) and v(v > 0). The probability density function of p is,

p~uw(p) = fplu,v)
= Pl = p) T (5.27)

At each analysis 7, 7 = 1,2,...,[, the posterior distribution of p after observing

Yi = y1, Yo = ¥a, ..., Y; = yj, denoted by w? = w(p|y1,ye, ..., y;), is still a beta
; :

J
distribution with parameters Y y; + v and jn — > y; + v. It is shown as follows
i=1 g=1

by Bayes theorem.

=2

Y1, Y2, -0 Y5l p) w(p)

w(plys, Y2, - Y5) =

Jo f(y1,y2s -y yilp) w(p) dp
g
11 (wlp) w(p)
- j
Jo IT f(yslp) w(p) dp
J J
" Yui gn= vi B
= ()= @ =p) = gt (1 —p)
= j
j dwi =3 ui
01 1:11 (1/'> px:l (1 — p) i=1 ﬁ(ivv)pU—l(l - p)'u—ldp
j j
Z yitu—1 jn—z yit+v—1
pi:l (1 e p) =1

K3

J J ’
B vitu, jn— Y yi+v)
=1 =1
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At each analysis 7, 7 = 1,2, ..., [, the predictive density function of Y after observ-

ing Y1 = y1, Y2 = ya,..., Yj = y;, expressed by f(yly1,yz, .-, Y;), is

f(y|y17 Y2, -eny y.])
= Ep|y1 ,yz,...,yjf(ylp)
1
:/0 F(ylp) w(plys, yz, - y;) dp

J J
> yitu—1 in=Y vitv-1

1 n n— pi:l 1_p i=1
:/0 (y)py(l—p) V— s ) 5 dp
B yitu, jn— X yitv)

" ﬁ(ZjIyHrwau, (j+1)n—£yz~—y+v)
1=1 =1

y i , i
»3(_21% +u, gn — ;yi+v)

5.3.1 Bayes Sequential Decision Procedure

In this section, Bayes sequential decision procedures of the study are described by

the one interim analysis and the two interim analyses.

The Stopping Rule
One Interim Analysis
At the interim analysis, suppose that the value ¥Y; = y; has been observed, the

Bayes risk from stopping the trial, ro(w?, 1), is,

7"0(wla1) = de?}igl}EplylL(Pa d)

— min{ By, L(p, do), By L(p, )}, (5.30)
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1

By L(p, do) = ! L(p,do) w(plyr) dp

1 pm +u— 1(1 _ p)n—yl +v—1

K(
Do P —po)t Blyr +u, n —y1 +v)

U1 _+_ U 1 py1+u+1—1(1 _ p)n—yl-l-—u—l
Kt
(n+u+v po Bly1+u+1, n—y +v)

dp

dp

—Po

1 py1+u—1(1 _ p)n—y1+v—1 )
dp
po Blyr+u, n—y1 +v)

[ 20 dr) wlplyn) dp

1 pYt +u—1(1 _ p)n—yl +v-1
K(po — p)t d
/0 “(po = p) Blyr +u, n—y1 +v) -

Y1+ u
n-l—u—{—v'

[X/tpo — Kt

There is no closed form for the Bayes risk ro(w', 1) as in (5.7) for the study with
the two-point prior distribution.

The expected risk from observing the next observation Y, denoted by E*ro(w*(Y),2),

Ero(w(Y),2) = zn:ro(wl(Yzy)ﬂ)f(ylyl)

de{do,d1}

= i( min EplyhyL(Pad)) J(yly1)

= i( min /1L(p,d)w(p|y1,y)dp) flyr), (5.31)

de{do dq }

where the posterior density function w(p|y;,y) and the predictive density function
f(y1]y) are obtained by (5.28) and (5.29), respectively.

If the Bayes risk from stopping the trial ro(w?, 1) is less than E*rq(w!(Y),2)+
n, the clinical trial could be stopped; otherwise the trial needs to be continued.
Although the stopping rule of the Bayes sequential decision procedure in the study

can be described as a form of statistics Y7 as in Section 5.2, it is not easy to get
)
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roots from the following equation (5.32) and it is unnecessary for this discussion.
D(yi|n, K, t,w) = ro(w',1) — (E*ro(w'(Y),2) +n) = 0. (5.32)

Two Interim Analyses
At the first interim analysis, say Y7 = y; has been observed. The Bayes risk from
stopping the trial ro(w', 1) is obtained by (5.30). Using the backward induction,

the risk from continuing the trial with not more than two observations ry(w?, 1)

is,

ro(w', 1) = min{re(w',1), E*ri(w'(Y),2)+n}, (5.33)
where,

Brr(wt(Y),2) = f%u(wl(yz 9, 2)f (ln)- (5.34)

In (5.34) the predictive density function f(y|y1) is obtained by (5.29), and the risk
r1(w! (Y = y),2) may be calculated as the risk r1(w', 1) by replacing the posterior
distribution w! = w(ply,) with the posterior distribution w!(Y) = w(p|y1,y). It

is described as follows.

From (3.11) it is obtained,
ri(w', 1) = min{re(w', 1), E*ro(w'(Y"),2) + n},

where,
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Hence,
ri(w'(Y =y),2) = min{re(w’(Y =y)), E*ro(w' (Y)Y =y)) + n},

where,

ro(wh(Y = y)) = min{ Eypy y L(p, o), Bppyr o L(p, )},
E*To(wl(y,ﬂy = y)) = ’Zo min{Eplylyy,y’L(Pa do)7 Eplylyy,y’L(P, dl)}f(y,|y1,y)
y —

If the Bayes risk from stopping the trial ro(w?', 1) is less than the expected risk
of continuing the trial with not more than two observations ry(w',1), then the
clinical trial could be stopped; Otherwise it needs to be continued to the second
interim analysis.

At the second interim analysis, after Y3 = y; and Y2 = y, have been observed,
there is only one more sample which can be observed. The risk from stopping the
trial is,

ro(w*,2) = {gﬁlidrll} EplyuyzL(p, d)

= Inin{Eﬂyl,yzL(pa d0)7 EplylyyzL(pa dl)} (535)

The expected risk from observing the last observation is,

n

E*ro(w®(Y),3) = Y ro(w’(Y =y),3)f(ylys,v2), (5.36)
y=0
where,
7’0(102(}/:9)’3) = der{%if}ll}Eplylyyz,yL(Pvd)

= min{ Ly, goy L(P, do); Eplyy g L(P, d1)}-

If the Bayes risk from stopping the trial ro(w?,2) is less than the expected risk of
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continuing the trial E*ro(w?(Y),3) 4+ n, then the clinical trial could be stopped,;

Otherwise the trial needs to be continued.

The Decision Rule
At each analysis j, j = 1,2,...,[, in the study, after values Y7 = y1, Y2 = ya,...,
Y; = y; have been observed, if the trial is terminated, then the Bayes risk from

stopping the trial ro(w?, j) is,

ro(w?,j) = der{%})l}il}Eplyl,yz,~--,ij(pad)

= min{Eplyl,yzw.»ij(p?dO)a Eplys e ij(pvdl)}“ (5~37)

vvvvv

J
the drug is not accepted if the response rate is not high enough, that is, the ° y;
2=1

is small. The decision rule after the trial being terminated has the form,

Mm
=
IN
XN
e

do(reject the new drug)

1
-
—
Ut
(U5}
o
N

d=

M=
s
v
&

dq(accept the new drug)

o,
Il
=

where 0 < k; < ky < gn.

5.3.2 Prior Information

In the study the prior distribution of the response rate p of the new drug is

assumed to be a beta distribution as in (5.27), that is,

1 u—1 _ v—1
p~w(p) = B0y’ (1—=p) .
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The expectation and variance of the prior distribution of p are,

= E(p)(1 - E(p)) (U—Jﬁ) '

These expressions show that the variance Var(p) is a function of u + v if the
expectation E(p) is fixed. Therefore the value of v + v may be regarded as a
measure of prior information.

If E(p) < po, then there is prior belief that the new drug is not effective. The
larger value of v+ v (or the more prior information), the more likely that the new
drug would be rejected, and hence the smaller type I error rate o would be. When
E(p) > po, it is assumed that the new drug is effective by the prior information.
The larger value of u + v, that is, the more prior information, the more chance
that the new drug be accepted, and hence the smaller type II error rate § would
be. These results can be shown by the following example.

Consider a one interim analysis with group sample size n = 20 and the break-
even value of response rate pg = 0.20. The type [ error rate o and its corresponding
mean sample size Mean N, are obtained under the assumption that the sequential
sample Y is from the binomial distribution B(n,p;1), where p; = 0.05. The type II
error rate 3 and its corresponding mean sample size Mean Ng are obtained under
the assumption that the sequential sample Y is from the binomial distribution
B(n, p2), where ps = 0.25. The parameters u and v of the beta prior distribution
of (5.27) are selected to have the E(p) = 0.01 and 0.5. As an example, assume
that the value of v =0.2, 0.25, 0.33, 0.5, 1, 2, 3, and 4. The corresponding values
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of v are obtained by £(p) = 0.01 and 0.5. The type I error rate a and its expected
sample size Mean N,, and the type II error rate 3 and its expected sample size
Mean Npg are listed in Table 5.3.

The Table 5.3 shows that when E(p) < po, then the more prior information,
such as the value of u + v from 2 to 40, the smaller the type I error rate «, which
is 0.0159 to < 0.0001, but the bigger type Il error rate [, which is from 0.2252 to
0.8982. The type I error rate o and type Il error rate 3 are quite stable when the
value of u + v is from 2 to 2.5, 3.3 to 10, and 20 to 40. When FE(p) > po, then
the more prior information, while the value of w 4 v is from 2 to 40, the smaller
the type II error rate [ is, but the type I error rate a is increased. The type I
error rate a and type Il error rate [ are relatively stable when the value of u 4 v

is from 0.4 to 2.
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Table 5.3 The Beta Prior Information

u v E(p) Var(p) a Mean N, 0 Mean Ng
E(p) < po
0.2 1.8 0.01 0.03 0.0159 20 0.2252 20
0.25 2.25 0.01 0.0257 0.0159 20 0.2252 20
0.33 3 0.01  0.0208 0.0026 20.3 0.3422 23.8
0.5 4.5 0.01 0.015 0.0026 20.3 0.3422 23.8
1 9 0.01  0.0082 0.0026 20 0.4148 20
2 18 0.01  0.0043 0.0003 20 0.6172 20
3 27 0.01  0.0029 < 0.0001 20 0.7858 20
4 36 0.01  0.0022 < 0.0001 20 0.8982 20
E(p) > po
02 02 0.5  0.1786 0.0159 20 0.2252 20
0.25 0.25 0.5 0.1667 0.0159 20 0.2252 20
0.33 0.33 0.5 0.15 0.0159 20 0.2252 20
0.5 0.5 0.5 0.125 0.0159 21.2 0.1739 22.7
1 ] 0.5 0.0833 0.0161 21.2 0.1468 22.7
2 2 0.5 0.05 0.0755 20 0.0913 20
3 3 0.5  0.0357 0.2642 20 0.0243 20
4 4 0.5  0.0278 0.2926 27 5 0.0051 20.4
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5.3.3 Comparison with the Two-point Prior Distribution

The comparisons are based on type I, type II error rates, their corresponding
expected sample sizes, and average Bayes risks. The values of parameters u, v of
the beta prior distribution are selected to have the same expectation and variance
as those of the two-point prior distributions in Table 5.1 and Table 5.2. The loss
and cost functions are also same as those of the two-point prior distributions in
Table 5.1 and Table 5.2. The results of the type I error rate o and its corresponding
expected sample size Mean N,, and the type Il error rate J and its corresponding
expected sample size Mean Ng on the beta prior distribution are listed in Table 5.4
and Table 5.5. The expected Bayes risk Mean Risk of two-point prior distribution
and beta prior distribution are listed in Table 5.6 and Table 5.7, respectively.
Comparing Table 5.1 with Table 5.4, and Table 5.2 with Table 5.5, it can
been seen that the type I error rates o of Bayes sequential decision procedures
with the beta prior distribution are smaller than those of Bayes sequential decision
procedures with the two-point prior distribution; the type Il error rates 3 of Bayes
sequential decision procedures with the beta prior distribution are larger than
those of Bayes sequential decision procedures with two-points prior distribution,
but can still be smaller than those of procedures of Pocock in some situations.
Comparing Table 5.6 with Table 5.7, it can been seen that the average Bayes risks
of Bayes sequential decision procedures with beta prior distributions are bigger
than those with two-point prior procedures. This is because the two-point prior

distribution could be assumed when we have very strong prior information.
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Table 5.4 Type I error rate o and expected sample size Mean N,

t=500 t=1000 t=>5000 t=10000
u % a MeanhN, a MeanN, a MeanhN, a MeanlV,

Pocock’s procedure: p; = 0.01, Max N = 39, Mean N = 17.5

Bayes sequential decision procedure:

1.98 9.12 .0003 13 .0003 13.1 < .0001 14.6 < .0001 14.6
0.89 5.96 .0003 13 < .0001 13.0 < .0001 13.1 < .0001 14.6
0.43 4.79 .0003 13 < .0001 13.0 < .0001 13.1 < .0001 14.6
0.18 5.15 < .0001 13 < .0001 13.0 < .0001 13.1 < .0001 13.1
Pocock’s procedure: p; = 0.05, Max N = 63, Mean N = 28

Bayes sequential decision procedure:

1.98 9.12 0189 21 0189 21 0006 22.8 .0005 27.0
0.89 5.96 0032 21 0032 21 .0005 22.8 0001 22.9
0.43 4.79 0032 21 0032 21 .0001 21.4 .0001 22.9
0.18 5.15 0004 21 0004 21 < .0001 21.1 < .0001 214
Pocock’s procedure: p; = 0.10, Max N = 129, Mean N = 55.5

Bayes sequential decision procedure:

1.98 9.12 0607 43 0607 43 0283 47.7 0117 54.3
0.89 5.96 .0244 43 0244 43 0105 45.2 .0041 48.9
0.43 4.79 .0087 43 0087 43 .0091 43.7 0032 45.6

0.18 5.15 .0008 43 .0008 43 0002 43.1 < .0001 43.2
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Table 5.5 Type II error rate # and expected sample size Mean Ng

t=500 t=1000 t=5000 t=10000
u v B MeanNg B MeanNg 1Y) MeanNg B MeanNg

Pocock’s procedure: p; = 0.01, Max N = 39, Mean N = 20.5

Bayes sequential decision procedure:

1.98 9.12 0.3326 13 0.1952 15.7 0.2175 28.3 0.2175 28.3
0.89 5.96 0.3326 13 0.3817 16.9 0.2622 26.2 0.2175 28.3
0.43 4.79 0.3326 13 0.3817 16.9 0.2622 26.2 0.2175 28.3
0.18 5.15 0.5843 13 0.4163 16.3 0.2927 25.2 0.2686 30.1

Pocock’s procedure: p; = 0.05, Max N = 63, Mean N = 33.5

Bayes sequential decision procedure:

1.98 9.12 0.1917 21 0.1917 21 0.1479 34.1 0.1261 37.7
0.89 5.96 0.3674 21 0.3674 21 0.2120 34.9 0.1990 40.4
0.43 4.79 0.3674 21 0.3674 21 0.2845 35.8 0.2077 42.8
0.18 5.15 0.5666 21 0.5666 21 0.4607 34.7 0.3769 42.2

Pocock’s procedure: p; = 0.10, Max N = 129, Mean N = 66

Bayes sequential decision procedure:

1.98 9.12 0.1237 43 0.1237 43 0.0864 49.7 0.0632 58.6
0.89 5.96 0.2175 43 0.2175 43 0.1591 52.3 0.1158 63.8
0.43 4.79 0.3390 43 0.3390 43 0.2439 48.2 0.1794 61.3
0.18 5.15 0.6145 43 0.6145 43 0.6273 835 DB17F 281
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Table 5.6 Expected Bayes Risk for the Two-point Prior

t=500 t=1000 t=5000 t=10000
w1 Mean Risk Mean Risk Mean Risk Mean Risk

pp = 0.0, Max N =39, Mean N, = 20.5, Mean Ng=23.0

0.3 -13.04 -26.08 -136.90 -276.22
0.5 -9.14 -18.28 -93.91 -195.75
0.7 -4.09 -10.47 -56.14 -112.27

p; = 0.05, Max N =63, Mean N, = 33.5, Mean Ng=26.5

0.3 -10.38 -23.44 -132.77 -269.89
0.5 -5.96 -15.40 -91.34 -189.99
0.7 -2.91 -8.26 -53.57 -108.93

p1 = 0.10, Max N =129, Mean N, = 66, Mean Ng=72
0.3 -10.69 -21.38 -126.77 -262.83
0.5 -6.31 -12.63 -86.85 -184.83
0.7 -2.82 -5.63 -47.66 -106.17
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Table 5.7 Expected Bayes Risk for the Beta Prior

t=500 t=1000 t=5000 t=10000
wy Mean Risk Mean Risk Mean Risk Mean Risk

p1 =0.01, Max N =39, Mean N, = 20.5, Mean Ng=23.0

0.3 -7.61 -18.02 -110.53 -221.05
0.5 -5.73 -13.30 -79.83 -165.41
0.7 -3.41 -8.19 -48.54 -100.15

p1 = 0.05, Max N = 63, Mean N, = 33.5, Mean Ng=26.5

0.3 -7.66 -15.32 -99.79 -206.49
0.5 -4.82 -9.64 -67.85 -140.27
0.7 -2.12 -4.24 -32.61 -71.77

p1 = 0.10, Max N =129, Mean N, = 66, Mean Ng=T72
0.3 -8.26 -16.52 -91.41 -195.74
0.5 -4.68 -9.35 -55.01 -121.97
0.7 -1.50 -3.00 -18.97 -48.94




Chapter 6

Bayes Group Sequential Decision
Clinical Trials on Survival Time

Data

In this chapter, Bayes sequential decision theory is introduced into clinical trials
with survival time data. The exponential distributions and proportional hazard
models for survival time are studied. The one treatment clinical trial with an
exponential distribution response is discussed first to give a picture of using Bayes
sequential decision theory. Following this, clinical trials comparing two treatments
with exponential distribution responses are studied. After a brief introduction of
the non-parametric Bayes analysis, several approaches are discussed for group

sequential clinical trials with proportional hazard models for survival time data.

123
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6.1 One Treatment Clinical Trials with Expo-

nential Distribution Responses

6.1.1 The Problem

A clinical trial is designed to test the effect of a new treatment. The major
outcome of the clinical trial is an exponentially distributed random variable. Its

probability density function is,
f(t) = xe™, (6.1)

and the survival function is,

where the hazard rate A > 0.

Assume that Mg is a break-even value of A. The new treatment is not considered
effective if A > Ag. The conventional hypotheses will be, Hy: A > Ag(no treatment
effect), vs Hy: A < Ao(treatment effect).

Suppose a size n random sample t1, ta, ..., Ly, €1, C2y ...y Ch—m, are from the
exponential distribution (6.1), where t1, ts,..., t,, are the failure times and ¢,
Ca,..., Cn_m are the censored times. Let S be the random variable of total survival

time and s be its observed value, that is,

S:th—l- Z CL. (62)
7=1 k=1

The likelihood function of X is then

X5 5 00 By B 0 55 Bpim). = Hf(tj) H S(ex)
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m n—m
— H(/\e—/\tj) H e—)\ck
7=1 k=1

_ ym IR I )

/\'In m n—m B —)\(Zm t‘+2n—1nc )
o (>}, tst )" e R T
['(m) Jzzjl / kz::l
/\m m—1_—As
= F(m)s e, (6.3)

which is proportional to the gamma probability density function with shape pa-
rameter m and scale parameter A\. The likelihood function shows that given the
number of failures m, the total survival time S is a sufficient statistic for A,
and the statistic S follows the gamma distribution with shape parameter equal
to the number of failures m and scale parameter equal to the hazard rata A,
denoted by Fglm(s;m,/\). The statistical inferences on A based on the data
{1y ooy biny €1y ooey Cnm can therefore be replaced by the datum s defined as in (6.2)

without loss of information.

6.1.2 Design of the Clinical Trial

Assume patient accrual is uniform in period (0,s,) with a constant rate R. The
maximum number of patients in the clinical trial is then Rs,. The clinical trial is
monitored at either I) selected times after treatment or randomisation, uy, us, ...,
uy, every 6 months say, or IT) specified number of new failures mq, ms,...,my, say,
every 10 failures. The [ is the maximum number of analyses. Suppose patients

are observed until failed or censored by the termination of the clinical trial.

I) The clinical trial is monitored at times uy, us, ..., 4.
Let the total number of failures until times wq, us, ..., uw; be denoted by d(u,),

d(us),..., d(ur), respectively. At each analysis 7, j = 1,2,...,[, the total observed
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survival time s; is,

ij, (64)

where t;,1 = 1,2,...,d(u;), are the failure times at the analysis j, and cg;, k =

1,2, ..., Rmin{u;, s, } — d(u;), are censored times until uw;. Let S;, j = 1,2,...,(,

PRt

be the corresponding random variables of s;, 3 = 1,2,...,[. Given the number of
failures d(u;), the S;, 7 =1,2,...,(, are from the gamma distributions with shape

parameter equal to d(u;) and scale parameter equal to A by Section 6.1.1. Let

up =0, d(ug) =0,
m; = d(w;) — d(ui—1).

The m;, 7 = 1,2,...,7, 7 = 1,2,...,[, are the number of failures at the period
(wi—1,u;). The total number of failures at analysis j, denoted by d(u;), is equal
to 337_, m;. The gamma random variable S; can be then decomposed as a sum of

the gamma random variables X;, that is,

8y = ZXi, (6.5)

where random variables X;, 1 = 1,2, ..., j, are from the gamma distributions with
shape parameters equal to m;, 7 = 1,2,...,[, respectively, and the constant scale

parameter equal to A.

IT) The clinical trial is monitored at number of new failures m;, ma, ...,
my.

Let the corresponding monitoring times at the cumulated number of failures m;,
my +ma, ..., Yi_; m; be denoted by uy, us,...,us. At each analysis 5, j =1,2,...,1,

let S; be the total survival time random variable and s; be its observed value,
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that is,
mi+...4m; Rmin{u;j,sqa}—(mi+...4mj)
sj= ), bt Chj (6.6)
=1 k=1

where t;,0 = 1,2, ..., le m;, are the failure times until analysis j, and ¢k, k =
1,2,..., Rmin{u;, sq} — (m1 + ... + m;) are censored time until analysis j. The
Siy 7 =1,2,...,, are from the gamma distributions with probability density func-
tions I'(s; 7_; m4, A) by Section 6.1.1. As in the case I), the S; can be decomposed
as,

J

S =3 X, (6.7)

=1

where X;, 7 = 1,2,...7 are from the gamma distributions I'(z; m;, A), respectively.

Hence, the group sequential samples in both cases I) and II) can be replaced
by the classical sequential sample X;, 7 = 1,2,...,[, where X;, 7 = 1,2,...,[, are
from the gamma distributions with probability density function I'(z;m; , A). The
m; is the number of new failures at analysis j and Y7_; m; is the total number of

failures at analysis j.

6.1.3 Basic Elements of Bayes Sequential Decision Theory

Bayes sequential decision theory is applied in the clinical trial described above in
Section 6.1.1 and Section 6.1.2. The basic elements of Bayes sequential decision
theory in this study are,

1) the parameter of interest A is assumed to have the gamma prior distribution
with parameters a and 3, that is,

B Na-1,-BA )\ 5
A~ w(d) = T(ha,f) = T@7 (6.8)

0 otherwise.
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2) the decision space is
D = {dy (no treatment effect), d;(treatment effect)}.
3) the loss and the cost functions
For computational simplicity, piecewise continuous loss functions are used here.

They are defined as,

K X < X
L(/\,do) —
0 A Z /\07
0 A< A
L(M\dy) = ’ (6.9)
K A > Ao

Suppose the unit of A’ (> 0) is the cost of enrolling a patient into the trial. This
cost is constant through the trial.
4) the sequential sample X;, j = 1,2,...,[, obtained by Section 6.1.2, are from the

gamma distributions, which are,
(; v Fla|X, my) = Daymg, A, (6.10)

where the m; is the number of failures between the (7 — 1)th analysis and jth
analysis, and the ¥7_; m; are the total number of failures at the jth analysis.
From above elements, the posterior distribution of A and predictive distribution
of x are obtained as follows. At each analysis j, j = 1,2,...,(, after observing
X1 = x1, X3 = 23, ..., X; = z; with the number of new failures mq, ms, ..., m;,
respectively, the posterior distribution of A, denoted by w? = w(A|xy1, 2, ..., ;)

is,

w21, e, ...y zj) =

fla1, za, .,z )w(A)
IS flrr, ze, ey 2] N w(A) dA

J A m,—l —/\:1;, B ya—1_-BX
= meJz (Fgr* e
my m,—l —\z a a— -
fO =1 F)“m;) 7 A '(Fﬁza /\ 16 ﬂ)‘) d)\
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/\a+2{:1 m"—le_(ﬁ'{"zi::l i) A
fooo /\a+zf=1 m"_le_('g'l"Z{:l i)\
(B+ Ty et Eam™ o j
i=1 ,\Q+E;=1 m‘_le_(ﬂ+2;:1 .'I:i))\,

Mo+ S0y ) (6.11)

which is still the gamma probability density function with parameters oo+ Ele m;
and 8+ Y0_, ;.

At each interim analysis j, j = 1,2,...,{ — 1, after observing X; = x1, X, =
Ta,..., Xj = x;, the predictive density function of z with number of new failures

equal to m, denoted by f(z|z1, s, ..., ), is,

f(z|z1, ey .oy j)
= E)\|:1'1 Ta,. i (’E’)\)
_/ (z|N)w(A|z1, Tay ..oy T5) dA

:/ 2™ 1 —/\z)((ﬁ—l_zg:l ‘ri)_(a+ i=1 ™ )\a+21 m;—1 —ﬁ+z )d/\
Pla+ ¥im mi)

F
B ((5 + E =1 i )a+2' ! / )\a+m+2 mi—le_(ﬁ+m+2f=1 z)A
(

m—1
['(m)l(a+ Y mi)

"G+ Sl )™ T(atm+ S, m)
L(m)l (a4 Yoy my) (B+z+ Eg=1 Ii)a+m+2f=1 m
T(a+m+Y,m) 2™ B+ Y, xi)a+25:1 =

N+ T m)l(m) (84 2 + i, o)+ i ™

6.1.4 Bayes Sequential Decision Procedure

The one interim analysis is first considered to describe Bayes sequential decision
procedure of the study described in Sections 6.1.1, 6.1.2, and 6.1.3. The two types

of monitoring are studied separately.
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I) Monitoring the clinical trial at the selected times u; and u,

In the interim analysis, at the time w;, the number of failures equal to m; and
the total survival time X; equal to x; are observed. The Xj is from the gamma
distribution with parameters m; and A, denoted by I'(z; my, A). The risk from

stopping the trial, denoted by ro(w', 1), is

ro(w', 1) {tlilo]%irll} Bz, L(A, d)

= min{ly,, L(A, do), Exg L(A,d1)},
where, by the loss function (6.9) and posterior distribution function (6.11),

B LA\ do) = /O°° L(, do) w(A|zy) dA

_ /OAOKw(/\|:cl)d)\

- K/OAO PN o+ my, B4 21)d A,
By L(Mdi) = /0°° L\, di) w(Mz1) dA

_ /:o[(w(/\kcl)d/\

0

- K/ LA a4+ mq, B+ 1) dX.
Ao
Let M; be the median of the gamma distribution I'(A\; & + mq, 8 4 21), then

ro(wt. 1) = KP(A < Xola+my, B+ 1) Ao < M, (6.13)
K[1 — P(A < Xola+ my, 5+ 21)] Ao > M,
where P(A < Xgla,b) is the probability of event {A < Ao} of the gamma distri-
bution with the shape parameter equal to a and the scale parameter equal to
b.
On the other hand, if the next observation X = x with the number of failures

m is observed, then the Bayes risk from stopping the trial after observing X; = z;
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and X = z 1s,

o(w'(AX = z),2)

= ro(w?,2)

= minggy i} Ejar2L(A, )

= Kmin{P(A < Xola+mi+m,B+z14+2), 1 = P(A < Xola+mqi+m,B+ 2+ 2)}.

Since
P(A < Xola+mq+m, B+ 21 + )

o (Btzita)(atmitm) at+my+m—1 —(ﬁ+x1+z
- 0 (a+m1—|—m) /\ d/\

_ p(Btzi4z) o
= jo

a+mi+m—1 —/\
—(a+m1+m) A 1 d/\

which is a monotonic increasing function of & given Ao, o, 3, m and z;. So there
is an unique value M = %2 — 3 — w1, where M, is the median of the gamma

distribution F(;\; a + mq + m,1), such that

K P(A< Xla+mi+m,f+z1+x r <M
ro(w(MX = z),2) = s LB
K[l —PA < Xla+my+m, B+ 21+ ) x>M

Hence, the expected risk from observing the next sample X given the number of

failures m, denoted by Ej ro(w'(A[X),2), is

Er, ro(w'(AX),2)

—/ ro(w'(A|X = 2),2) f(2|X; = 21)dz

F(a +mq, + m) (/6 + xl)a-{-mlxm—l
Mo + ma)T(m) (3 + o1 + 2y

[la+my+m) (B4 z,)*t™a™ ! iz}
(o +mq)l(m) (8 + 1 + x)etmatm ™

a+my—1 m—1
= B+ x z
il )
AT T a+m1,m) Btaita B+o+z B4z +z

B (ﬁ +z )a-}-’m] //\0 /\a—{—ml—le—(ﬁ-}—wl))\d)\
['(a+mq) Jo

dz

—[\{/ PN < Xola+mi+m,0+x1+2)

+/ [1— P(A < Xola+my+m, B+ 1 + )]
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(ﬁ‘}' x )a-l-ml / /' /\a+m1+m 1 —(ﬁ+m1+7:))\ m— 1d/\d$}
['(a+ mq)l(m
Let g(m) be the probability distribution function of m. The expected risk from

observing the next sample X is,
E*ro(w' (M X)), ZEWO (A|X),2) g(m). (6.15)

If the Bayes risk from stopping the trial is less than the expected risk from ob-
serving the next sample X, that is, ro(w?,1) < E*ro(w'(A|X),2) + R min{us —
Uy, 8¢ — u1,0}, then the clinical trial is terminated. Otherwise the clinical trial is
continued to the final analysis.

At the final analysis, after observing X; = 7 and X, = x5, the decision with

the Bayes stopping risk is chosen.

The simulation on the expected risk £*(w!(AX),2)
The distribution of the number of failures g(m) is very complicated. Alterna-
tively the following simulation method may be used to get the expected risk
E*ro(w*(A|X),2) in (6.15).

At the interim analysis, assume that the clinical trial is continued and that

the next sample X = = with number of new failures m is observed. The expected

risk given m, E|*m(wl(/\ X),2), can be calculated by using (6.14). The expected

risk E*(w'(A|X),2) is then

oy Ef(w' (A X),2)

B (w!(A1X),2) = - ,

where N is the number of simulations.

IT) Monitoring the clinical trial at number of failures m; and m; + m,

At the interim analysis, after observing the total survival time X; = z; with

(6.14)
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number of failures equal to my, the Bayes risk from stopping the trial ro(w?, 1) is
obtained by (6.13). The expected risk from continuing the trial E*(w'(A|X),2)

can be obtained directly from (6.14) with
E*(w'()\X),2) = El*m:mz(wl(/\\X),‘Z),

as the clinical trial is expected to be monitored at the next number of failures
equal to ms.

Let u be the corresponding monitoring time with number of failures equal to
m1 +ms. The computation of the expected monitoring time E(u) is complicated.
The simulation method is used to get the E(u).

If the Bayes risk from stopping the trial is less than the expected risk from op-
timally continuing the trial, that is, ro(w?!, 1) < E*ro(w'(A|X),2)+ R min{E(u)—
U1, 84 — u1, 0}, then the clinical trial is terminated. Otherwise the clinical trial is
continued to the final analysis.

At the final analysis, after observing X; = z; and X, = wx,, the decision with

the Bayes stopping risk is chosen.

If the Bayes sequential decision procedure with more than one interim analysis
is designed in the clinical trial, then at each interim analysis 7, the computation
of the Bayes risk from stopping the trial is similar to that of one interim analysis,
where the posterior density w' = w(A|z1) is replaced by the posterior density
w? = w(A|xy, 2, ...,2;); and the expected risk from optimally continuing the trial
would need be obtained by simulations as that of one interim analysis. The clinical
trial could be stopped at the interim analysis 7 when the Bayes risk from stopping

the trial is less than the expected risk from continuing the trial.
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6.2 Two Treatments Clinical Trials on Exponen-

tial Distribution Responses

6.2.1 The Problem

Consider a clinical trial comparing an experimenatal treatment with the standard

treatment. The main outcome of treatments is exponentially distributed with

hazard rates A, and A, for the experimental and standard treatments respectively.
A

Let the treatment difference in efficacy is v = §¢. The conventional hypotheses

are
Hy:v>1 vs Hy:vy <o, (6.16)

where vo(< 1) is a break-even value of y. The Hy corresponds to the experimental
treatment not better and H; to the experimental treatment better.

Patients are uniformly enrolled into the trial in period (0,s,) at a constant
rate R and are allocated randomly and equally to each treatment. The clinical
trial is monitored at either I) selected times uy, us, ..., u; or IT) selected number of
new failures mqe + M1y, Mae + May, ....,mie+my,. The [ 1s the maximum number of
analyses. Sections 6.1.1 and 6.1.2 have shown that given the number of failures,
the group sequential sample from an exponential distribution can be regarded
as a classical sequential sample from gamma distributions. Therefore, the group
sequential sample from these exponential distributions with hazard rates A, for
the experimental treatment and A, for the standard treatment can be replaced by
classical sequential samples of gamma distributions without loss of information
on inference of A, and A,. Let the X, k =e,s, 1 =1,2,...,{, be the sequences of

classical samples, then

Xjk ~ f(SL"mjk,)\k) = F(.’L‘k;ﬂljk,)\k), k= €, Sy ] = 1,2,...,1, (617)
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where Y0, Xy, and Y0, my, are the total survival time and number of failures,
respectively, for treatment &k, k = e, s, at analysis 7, 7 =1,2,...,[.
Suppose hazard rates A, and A, are independent and the prior distributions of

Mk, k = e, s, are the gamma distributions which are,
Me ~ w(Ak) = T(A; a, Be). (6.18)

At each analysis j, 7 = 1,2,...,{, after observing Xix = 1%, Xox = ok, ..., Xjp =
zjg, with number of failures myg, may,..., mjp, respectively, & = e,s, by (6.10)
the posterior distribution of Ax, denoted by w(Ak |21k, T2k, ..., Tjx), are the gamma

distributions with parameters oy + Zgzl m; and Gy + Ele Tk, that is

J J
w()\k|11k, Lo 5=y .”L‘jk) = F(/\k; e + Z 7nik7ﬁk + Z xzk)

=1 =1
The posterior distribution of 7, denoted by w(y|(21e, Z1s), (T2e; T2s), -y (Tje, Tis)),

is then,

w(le(‘Ile? :Els)a (1172@, 1:28)7 ) (‘T:iev $j3>)

o0
= /0 Mg N |5 Bty s vy ) W As | Bt B 03 Bigs) T

) g J J 7
= /(.) ASF("YAS; Qe+ Z 7ni8758 + Z xie)[‘()‘s; a, + Z Mis, ﬁs + Z :Cis) d)\s

fo%e) et Mie
— { ﬂ + E 1$16> Z' . (,.YA )a5+21 177":5_1 m IBe‘l'E‘ lrze
0 [(ae + 371 mie)
(ﬁs + ZJ 1 ,L”Ls)aﬁ—Zl ' /\§8+Zf=1 mi3+le_(ﬁs+zf=1 Tis)
[y + Y7—1 mus)
)
_ (Bet Ty i) T e (B, 4 S 0y, ) o et D, mie
[ + EJ 1 Mie) (s + 371 mys)
% /OO A?E+Ei=l mie+a’+zi=1 Mis e_ ('85+E{:1 mie)'y+(ﬁa+z‘:=l xis)]/\s dAs
0

AYdN,

F(ae + Zgzl Mie + g + Zgzl Mg + 1)
F(ac + 2321 nl’ie)r(as + Zzl?:l 7”1‘3)
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(/j + Zz 1 rze)aa—Z{:I i (Bs + Zgzl xis)a’+zi:1 i 7ae+2?:1 il

. . (6.19)
: T . ¢
[(Be + oy @ie)y + (Bo + Sy gy 2vimt Mot Ly it

At each interim analysis 7,7 = 1,2,...,] — 1, the predictive density function of
(Xe, Xy) with number of new failures (m., m,) after observing X1, = @1x, Xop =

s . = 2
Lok, ...,)\jk = Tjk, k= €, S, 18,

f(CUe, $s|($1e, l’ls), ('l’ze, Izs), ceey (l"vj& SEjs))
= f(l’e|l'1e, T2ey --ey $je) f($s|$1s, T2gyeey SUjg)
= E)\ |Z1e,Z2e e s T e ($e|/\ ) E)\simls,mgs,...,mjsf(x-ﬁ|)\3)
= H / (2p) Ak)w( Ak | T1ks T2k vy Tjk) dAk

k=e,s

_qp S (Bt Dy )i
a r

jees L (M) Do + S0, ma)
X H / /\mk+ak+2; 1 Mik— 1 ﬁk‘*’E; i ,k+TL))\k d)\k

k=e,s
B H D(ag + my + Xy man) @™ (B + Ty $ik)ak+2?=l ik
o, Lok + Zz 1 max) L (myg) (B + z1 + i, mik)ak+mk+2f=l mk

(6.20)

6.2.2 Bayes Sequential Decision Procedure

Corresponding to the conventional hypotheses (6.16), piecewise continuous loss
functions for choosing the experimental treatment and the standard treatment

are defined as,

0 v<1
L(v,de) =
K > 1,
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K <
L(v,d,) = Lk (6.21)

0 Y Z 7o,
in which the unit of K'(> 0) is the cost of enrolling a patient into the trial. This
cost is constant through the trial. There is no loss in the range of equivalence
(709 1)‘
One interim analysis is considered first. At the interim analysis, let mqy,

k = e, s, be the number of failures and u; be the monitoring time. The Bayes risk

from stopping the clinical trial after observing Xy = @1, k = €, s, is
ro(w',1) = min{ By, 01, L(7: de)s Enjoyeen, L7, ds) }, (6.22)

where,

Eﬂlwmmu[/(%de)

= [7° Kw(y|z1e, T15)dy

— [{ foo F(a5+mle+as+mls_1) (:86+mle)ae+mle (,8.9+mla)us+m1" 'Yae+mled
- 1 F(a5+m15)r(a5+mlﬂ) [(ﬁe‘l’mle)'Y‘l'(,Ba‘i'mls)]ae+m1€+as+ml‘,_I ’)/’

E’Y|:I)1€,:E13L(77 ds)
= fo° Kw(7|T1e, 15)dy

— [\7 Yo F(ae+mle+as+mla_1) (ﬁe+mle)ae+mle (ﬂs+zls)as+1nl‘g 'Yae+mlc d
0 TD(aetmie)T(ast+mis) [(ﬂe+m1e)7+(ﬁ,+m“)]"‘e+mle+°‘3+m13_l -

On the other hand, the expected risk from observing the next samples X3, k = e, s,

with the number of new failures my, k = ¢, s, at the monitoring time u, denoted

by E*ro(w!(v|Xe, Xs),2), is

E*ro(w' (7| Xe, Xs),2)

= [0 [ ro(w (7] Xe = @ey 8 = 25),2) [(2e, Ts|T1e, T1s) dTedas,

(6.23)

where the predictive density f(ze,zs|T1e,215) is obtained by (6.20), and the risk

ro(w!(v|Xe = xe, Xy = 24),2) is the stopping risk after observing Xy = 215 and
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X = x5, with the number of failures miy, myg, respectively, k = e, s, that is,

7’0(101('”)(3 - $eaf\fs = 1.3)72) (6 24)

= Min{ Eyj(oye,010),(@ess) LV D)y Eryl(wrea10),(mesa) L(7,ds) }5

where

E’Y [(zlevmls)y(me:ms)L(fY) de)
= [7° Kw(v|(%1e, T1s), (Te, T5) )dy

_ gol(actmictmetastmitms+1) Qetmietme .\t tmgtms
- I\ F(ae+mle+m€)r(as+mls+ms) (/86 + xle + xe) (/33 + :E]_S + :Ls)

oo 7ae+m1e+me—1 [
R e R T T v

E'Y |($le:mls)1(meyms)[j<77 ds)
= [5° Kw(y|(21e, 215), (%e, T4))dy

_ ,rF(ae+m16+me+as+m13+m5+1) Qet+Mietme . \astmig+m
= [\ F(ae+’nllle+me)r(as+mls+ms) (/Be + :E]e -l_ l‘e) € (ﬁs + :C]_,g + :Ls) 8 3

Yo
X Jo

»y"‘€+"lle+m€_1 l
a’y.
[(Betzie+ze)v+(Batarsta,)]2et M et metastmigtmat] v

If ro(w!, 1) < E*ro(w!(v|Xe, Xs),2) + Rmin{u — uq, s — uq,0}, then the clinical
trial is terminated. Otherwise the clinical trial is continued to the final analysis.
At the final analysis, after observing X; = 213 and X3 = w4, the decision with
the Bayes risk is chosen.
The computation of the expected risk E*ro(w!(y]|Xe, X,),2) in (6.23) is dif-
ficult even given the number of failures my, &k = e,s. It is very complicated to
divide the two dimensional space {(z.,zs);z. > 0,2, > 0} in (6.24) into two

parts, say @2 and 22 ({(@¢,2,); xe > 0,2, > 0} = 22 + 22), as follows,

710(w1(7 Xe = :EeaXs = 2175),2)

E’Yl(:’:leﬁrls)y(xeqms)L(’y’ de) (CI;C? ms) E wg
E’Y](zle7$ls)1(weywx)[](77 (13) ('Te7 173) e '1:37
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in order to get E*ro(w!(y|ze,x,),2) by (6.23). Therefore, it is necessary to find
some approximate approaches to be able to use Bayes sequential decision theory

in the study.

6.2.3 Log Gamma Approximation

The approximation method
If the random variable X is from the gamma distribution, which is X ~ ['(«, 3),

then

26X ~ x*(20),
In(26X) <~ N(In(2a) — — —

1 1 2
In(2X) — In(2a) + 5 4 e ~ N(—=In(B),

that is, the distribution of log gamma random variable can be approximated by the
normal distribution. In terms of the sequential samples Xz, k =e,s, j =1,2...,,

in (6.17) from the study described in Sections 6.2.1 and 6.2.2, it is obtained that

1 I 2
In(2X:) — In(2m ~ N(—=In(\g '
I]( Jk) H( rn]k) + szk —+ 1277’1510 ( 11( k)7 Qmjk . 1)
Let
Y = In(2X In(2 L !
k= (2XG) —In(2mg) + oy | Tomd,’
Zj = Y:js — Y;]‘e, (625)
then
7N (e 2 2 6.26
/)] — 5 i
4 ( n(/\s ) 2mje — 1 T 2m;, — 1) ( )
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The mean of the normal distribution in (6.26) is equal to ln(i—j), which is a measure
of the difference between the experimential treatment and the standard treatment,
the sequence of random variables Z;, 7 = 1,2,...,[, may be used to test the
treatment difference instead of the sequential sample X, 7 = 1,2,...,[, k = e, s,
in (6.17). Again using the log transformation in the hazard rates Ag, k = ¢,s in
(6.18), let 6 = Iny = ln(:\\—j), then § = In(A.) — In()\,) has an asymptotic normal
distribution.

Hence, the problem in Section 6.2.1 becomes the study that a classical se-
quential clinical trial with the normal distribution responses Z;, 7 = 1,2,...,1[,
is designed to test the hypotheses Hy : 6 = ]n(i—j) >0, Hy:6 < b= Inno.
The Bayes sequential decision procedure on normal responses in Chapter 4 can
be used.

The variances of the sequential samples Z;, 3 = 1,2,...,[, are equal to ﬁ -4
je

2

=), J = 1,2,...,[, respectively, which are not constant. The procedure dis-
8

cussed in Section 4.4 should be used. This is described as follow.

The Bayes sequential decision procedure

the basic elements

The Bayes sequential decision procedure is based on the following basic elements.
1) the parameter of interest is § = ln(:\\—‘;). Assume that ¢ has the normal prior

distribution, that is,

§ ~w(d) = N(ro,75), (6.27)
where,
| (aeﬁs) 1 1 1 1
= |n SR —— - _
v O‘sﬁe 2063 120!623 20(3 1204?’
’ 2 2
5 = +
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The above ae, (., a,, 3, are obtained by (6.18). The posterior distribution of §

given 7y = z1,...,4; = zj, J = 1,...,1, is the normal distribution,
& . 2 ‘
10(5‘41,.,.,.:;_«1') - N(Vj,Tj), (628)
where,
T
=1 0.5'2_ + ,’K_%
V. — . T 0
J Jo1 41 ’
=1 ;?_ 7_—7
. :
i T 0§ .1, 1o
i=1 52 + 2
1 0
9 9
) 2 2
g. = + s
* 2mie — 1 2my, — 1

2) the decision space.

After the trial is terminated, the decision d € D with the Bayes risk is chosen,

where the decision space D is defined as

D = { experimental treatment d., standard treatment d, }.

3) the loss and cost functions

Corresponding to the loss functions of (6.21), the loss functions here are

_ 0 4§<0
Lif,ds) =
K §>0,
K § <6
Lsd) = 4 °
0 J 2 507

in which the unit of K'(> 0) is the cost of enrolling a patient into the trial. This
cost is constant through the trial.

4) the sequential sample

The sequential sample Z;, 5 = 1,2, ..., 1, are from normal distributions N (4, 3 2 el
Mje—
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5——7 ), respectively.
2mjs—

At each interim analysis 5, 7 = 1,2,...,l -1, given Z; = z1, Z2 = z3,...,2Z; = zj,
the predictive density function of Z with number of failures my, k = e, s, is still

the normal distributions,

f(2|31752>”'azj) — E6|z1,z2,...,zjf(2|5)
2 2
2me — 1 + 2m, — 1

= N(yj, 7} + ) (6.29)

where v; and sz are the same as those in (6.28).

the stopping risk and the expected risk
At each interim analysis j, 7 = 1,2,...,{ — 1, after observing Z; = z;, Z, =
. Z; = zj, the risk from stopping the trial is,

ro(w?,7) = MUD{ Bz, 2,....2; L(0; de), E|zy ,2,....2; L (9, ds) }

- min{]x”(l—CI)(T—)) KoYy

J J

If the clinical trial is monitored at I) selected times uy, us, ..., u;, then the expected

risk from observing the next sample Z at time u = uj4q, 1s

E*(ro(w?(Z),5 +1) Z B (ro(w? (Z),7 4 1) g(me,m,).
where Eﬁnyeyms(ro(wj(Z),j—kl) is the expected risk given m, and my, and g(m., m,)
is the distribution of (m.,m,). The distribution g(me.,m,) is very complicated.
The E*(ro(w?(Z), j+1) may be obtained by the simulation method used in Section
6.1.4.
If the clinical trial is monitored at IT) selected number of failures my. + my,,

Mae + Mag, ..., Mie + Myy, then the expected risk from observing the next sample
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with number of new failures m. + m, = m is

B (ro(w(Z), i+ 1) = 3 B, (ro(w?(2), +1) glome,ma).

Me+MmMmg=m

Let u be the corresponding monitoring time with number of new failures equal to
me + my = m. The E(uj;) may be obtained by simulation as in Section 6.1.4.

By backward induction described in Section 3.2.2, the risk from optimally
continuing the trial with not more than [ — j groups of observations, denoted by

r1_;(wi, 7). is obtained based on the above stopping risk and expected risk.

the procedure
At each interim analysis 7, 7 = 1,2,...,[ — 1, if the Bayes risk from stopping the

trial is less than the risk of continuing the trial, that is,
TO(wjaj) S rl—j(wjvj),

then we stop the trial. Otherwise we continue the trial to observe the next group

of samples.

6.2.4 Log-rank Statistics Approximation

Consider the study described in Section 6.2.1. Let § = ln(ﬁf) and Ay = A\g. The 6
is a log hazard ratio and A\, = Agexp(f). A proportional hazard model is defined

with the hazard rate,
A = doezxp(0z), (6.30)

where z is an indicator variable of treatments, that is, when z = 1, then the patient
is from the experimental treatment with the hazard rate A = Agexp(f) = A;

whereas when z = 0, the patient is from the standard treatment with the hazard
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rate A = Ay = A,. Under this model, # = 0 means that there is no treatment
difference between the experimental and standard treatments.

Tsiatis(1981,1982) has shown that the log rank test of a proportional hazard
model computed over time indeed behaves like a partial sum of independent nor-
mal variables, with the variance proportional to the number of failures observed.

Suppose the clinical trial is monitored at arbitrarily selected calendar times
uj,j = 1,2,...,1, where the total number of failures at these time points are
denoted by d(u1), d(uz), ..., d(w;). Let V(u;), 3 =1,2,...,1, denote the value of the
log rank test computed at calendar time u;. Tsiatis(1981,1982) has derived that,

V(Uj) ~ X1 =+ Xg + ...+ )(j, (631)

where X1, X, ..., X; are independent normal random variables with mean F(X;)

and variance Var(X;), 1 = 1,2..., 7, respectively, as follows.

E(X;) = 0[d(w) — d(ui-1)]p(1 — p),
Var(X;) = [d(u;) — d(ui—1)]p(l — p), (6.32)

in which p denotes the proportion of failures in one of the treatments.

At each analysis 7, 7 = 1,2,.... [, let

X;
[d(u;) — d(uj—1)]p(l —p)’

' 1
Y; ~ N(, [d(u;) — d(uj—1)]p(1 — p)

Yj:

). (6.33)

When the number of failures is large enough, the sequence of random variables
Y;, 7 =1,2,...,1, may be used to test the hypotheses Hy : = 0. The sequential
sample in (6.17) can be then replaced by the sequential sample Y;, 5 =1,2,...,[,in
(6.33), where Yj’s are from the normal distributions. The Bayes sequential decision

procedure in clinical trials with normal distribution responses in Chapter 4 can be



Chapter 6. Bayes Group Sequential Decision Clinical Trials on Survival Time Datal45

used to approximate the Bayes sequential decision clinical trials on exponential

distributions for survival time data.

6.2.5 Comparison Between Log gamma Approximation and

Log-rank Statistics Approximation

The asymptotic normal distributions

The log transformation of the gamma random variable in Section 6.3.2 and the
log-rank statistics in Section 6.3.4 are asymptotically normal distributed with
the probability density functions (6.26) and (6.33), respectively. The mean of
the normal distribution (6.26) equal to 6 = ln(i—j) is the same as the mean of
the normal distribution (6.33) which is 6 = ln(i—z). If the number of failures my,
k=e,s,7=172,..11islarge enough, then the variance of the normal distribution

(6.26) is

2 2 1 1
+ ~ =
Mlge—1 = 2mg—1 Wi M,
1
- X . Mje Mjs
(mJe —I_ sz)mje+mja Mjetmjs

1
[d(uj) — d(wj-1)]p(1 — p)’

which is the variance of the normal distribution (6.33). Therefore these two asymp-

totic normal distributions are almost the same.

Monte Carlo simulations
Monte Carlo simulations are used to compare these two approximation methods
based on the following example.

Assume 300 patients enter a clinical trial for comparing an experimental treat-
ment with the standard treatment. Patients are uniformly enrolled into the clinical

trial and are allocated randomly and equally for each treatment during a year. The
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major outcome of the clinical trial is the survival time from treatment. Suppose
the survival time from the standard treatment has the exponential distribution
with hazard rate A, equal to 0.8. The experimental treatment is considered ef-
fective if the hazard ratio is less than 0.5. The hazard rate A, is then equal to
0.5 x 0.8 = 0.4. Suppose this is the one interim analysis and the clinical trial is
monitored at the middle of the study year. Let A, and A, have the same prior
gamma distribution I'(A; 1,b). The b > 0 was changed in simulations to study the
inferences of the prior information.

Simulation 1. The log gamma approximation. After observing the group
sequential samples from the exponential distributions with hazard rates A, and
A,, the corresponding classical sequential samples, X, 7 = 1,2, which are from
the gamma distributions I'(mjx, Ax), 7 = 1,2, are calculated by (6.2) for each
treatment k, &k = e, s. Following (6.25) and (6.26), the sequence of asymptotic
normal random variables Z;, j = 1,2, are obtained. The Bayes sequential decision
procedure described in Section 6.2.3 is used into the simulation.

Simulation 2. The log-rank statistics approximation. The log-rank statistics
are calculated after observing the group sequential samples from exponential dis-
tributions with hazard rate A, and A,. Using the result of (6.33), the log-rank
statistics are treated as from the normal distributions. The Bayes sequential de-
cision procedure in clinical trials with normal distribution responses may be used
in the simulation.

The comparisons are based on the type I error rate «, its expected sample size
Mean N,, type Il error rate 3, its expected sample size Mean Ng and the average
Bayes risk. The results are listed in Table 6.1 with the loss function K = 2000
and parameter of prior distribution b = 1.5, where the 95% confidence intervals
are listed in the brackets. It shows that these two approximation methods are
reasonably close. The same conclusion is found when the values of K and b are

changed.
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The prior gamma distribution was changed in simulations. The result of sim-
ulations on log gamma transformation is listed in Table 6.2. The type I error
rate o, its mean sample size Mean N,, type Il error rate 3, its mean sample size
Mean Ng, and average Bayes risk are quite stable with the change of b from 1 to

2.5. This is the same for the log-rank statistics approximation, which is shown in

Table 6.3.
Table 6.1 The comparison of two approximation methods

log gamma transformation log-rank statistics
type I error « 0.1058 (0.0953, 0.1162) 0.0820 (0.0650, 0.0990)
Mean N, 190.1 (188.3, 191.9) 185.7 (181.7, 189.7)
Average Bayes risk 40.14 (38.88, 41.40) 37.93 (35.06, 40.80)
type Il error (3 0.1168 (0.1079, 0.1257) 0.1740 (0.1505, 0.1975)
Mean Ng 202.6 (200.6, 204.6) 203.7 (199.2, 208.2)
Average Bayes risk 50.65 (49.30, 52.00) 54.57 (51.58, 57.56)

Table 6.2 The log gamma approximation with different prior distributions

b o Mean N, Mean Risk Ié; Mean Ng Mean Risk

1 0.1040 190.5 39.78 0.1170 202.9 50.26
1.25 0.1054 190.2 40.01 0.1168 202.7 50.44
1.5 0.1058 190.1 40.14 0.1168 202.6 50.65

2 0.1060 190.0 40.32 0.1172 202.2 51.04
2.25 0.1066 189.8 40.52 0.1176 202.0 51.23

2.5 0.1064 189.7 40.57 0.1176 201.8 51.50
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Table 6.3 Log-rank statistics approximation with different prior distributions

b el Mean N, Mean Risk Ié) Mean Ng Mean Risk

1 0.0850 186.0 36.48 0.1870 202.2 54.68
1.25 0.0930 190.2 36.24 0.1680 199.7 56.13
1.5 0.0820 185.7 37.93 0.1740 203.7 54.57

2 0.0810 186.9 37.09 0.1790 206.6 53.05
2.25 0.0990 184.5 39.70 0.1850 200.1 52.77
25 0.0950 187.5 38.57 0.1790 201.2 52.00

6.2.6 Conclusion

Bayes sequential decision theory was applied to the clinical trials comparing two
treatments with survival time data. When the survival time is from an exponential
distribution with hazard rate equal to A and the prior distribution of the A is a
gamma distribution, then the Bayes sequential decision procedure in clinical trials
with normal distribution responses can be used as an approximation. If the gamma

prior distribution has the form I'(1,b), then the inferences of the average sample

size and the average Bayes risk from changing the value of b are small.
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6.3 Non-Parametric Bayes Analysis

6.3.1 Prior Distributions on Spaces of Probability Mea-

sures

Ferguson(1973, 1974) has said that the Bayes approach in treating non-parametric
problems has not been very successful, and this is due primarily to the difficulty
in finding workable prior distributions on the parameter space. There are two
desirable properties of a prior distribution for nonparametric problems.

(1) The support of the prior distribution should be large — with respect to
some suitable topology on the space of probability distributions on a given sample
space.

(2) Posterior distributions given a sample of observations from the true prob-
ability distribution should be manageable analytically.

Ferguson(1973) first introduced the Dirichlet process and used it as prior for
an unknown cumulative distribution function. Later Doksum(1974) and Fergu-
son(1974) have addressed the tail-free processes and processes neutral to the right
as prior probability distributions on spaces of probability measures or distribu-
tion functions. These three processes have often been used in the non-parametric
Bayes analysis.

Here the prior distributions on the space of all probability measures are re-
stricted on (R, B) where R is the real line and B is the o-algebra of Borel subsets

of R. Let
F={P:P is a probability measure on (R,B)}.

The definitions of the Dirichlet process, the process neutral to the right
and the tail-free process

The Dirichlet process
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Let a(-) be a finite non-null measure on (R, B), and let P(+) be a stochastic process
indexed by elements of B. The P is called a Dirichlet process with parameter o
and written P € D(«), if for every finite measurable partition { B, ..., B} of R,
the random vector (P(By), ..., P(By)) has a Dirichlet distribution with parameter
(a(Bi1),...ya(By)). In particular, for every B € B, P(B) € Be(a(B),a(R) —
o(B)), therefore E[P(B)] = 4.

Equivalently, the Dirichlet process can be defined as follows. Let «(t) =
a((—oo,t]) and F(t) = P((—o0,t]). The P is called a Dirichlet process with
parameter o and written P € D(a) (or F' € D(«)), if the process F'(¢) may be

written as ZZ—;, where Z; is a process with independent increments, Z; € I'(a(t), 1),

and Zo = limy_o Z; € T'(a(R), 1), F(t) €Be(a(t), a(R) — aft)).

The process neutral to the right

A random distribution function F'(t) on the real line is said to be neutral to the
right if for every m and t; < {3 < -+ < 1, there exist independent random
variables Vi, Vs, ..., Vin, such that (1 — F'(¢1),1— F(t2),...,1 — F'(ts,)) has the same
distribution as (V4, V1 Va, ..., lIT'V;).

Essentially, F' is said to be neutral to the right, if (1—F'(¢1), 1:2837 . 11—}1;(“2))

are independent when the denominators are non zero.

The tail-free process
Let {mn; m =1,2,..} be a tree of measurable partitions of (R, B). The distribu-
tion of a random probability P on (R, B) is said to be tail-free with respect to {m,, }
if there exist a family of non-negative independent random variables {V,, g; m =
1,2,..., B € m,} such that for every m = 1,2,..., if B; € m;,7 = 1,...,m and
B, C ... C By, then P(B,) =1I7.,V;35,.

A random distribution function F' is tail-free with respect to the tail (s, co)

if for all s =ty < ... <t} there exist non-negative independent random variables
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Vi,...,Vi independent of {F'(t): ¢ < s} such that

(F(tr), ooy P(t8)) = (F(8) + [1 = F())[1 = Wa(1 = V)], i = L,y k)

If I is neutral to the right then Y; = —log(1 — F'(t)) has independent increments.
Let Y; be a process with independent increments, non-decreasing a.s., right con-
tinuous a.s., lims,_o Y; = 0 a.s. and lim;_,o, ¥; = 00 a.s. Then F(¢) =1 —e ¥t is

a random distribution function neutral to the right.

Characterisations of three processes
Let three trivial types of processes be

Ti. P non-random (F = Fy);

Ty. P degenerate at a random point (F' = Ijx )) where X has distribution
F);

T5. P concentrated on two non-random points (I' = Ullg ) + (1 — U)Ijp )

where U has an arbitrary distribution on [0,1], and a < b).

1. If I is a Dirichlet process (F € D(«)), then with probability one F' is
discrete.

The limitations of the Dirichlet process stem mainly from the fact that it
chooses discrete distributions with probability one, so that it is expected to have
some observations repeated exactly. To avoid these limitations, we should try to
find some workable priors that choose continuous distribution with probability
one. There are some among the tailfree processes.

2. The support of D(«) with respect to the topology of weak convergence is the
set of all distribution whose support is contained in the support of a. Therefore,
if the support of a is R, then the support of D(«) with respect to convergence in
law 1s F.

3. If P is neutral with respect to every finite measurable partition, then P is
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either a Dirichlet process or of types 11, Ty or Tj.

4. If P is tail-free with respect to every tree of partitions, then P is either a
Dirichlet process or of types T4, T or Ts.

The Dirichlet process is essentially the only random probability that is inde-
pendent of the defined partitions in the sense of having the desired independence
properties for all sequences of partitions.

5. If for every measurable set B, the posterior distribution of P(B) given
a sample X1, ..., X,, from P, depends on Xj,..., X, only through the number of
observations that fall in B (and not on where they fall within or outside of B),
then P is either a Dirichlet process or of types Ty, Ty or Ts.

The above property makes the posterior distribution of the Dirichlet process
easy to handle. However, this is not necessarily a desirable property since the
posterior distribution is rather insensitive to the values of the sample. From
this point of view, the tail-free process prior that chooses absolutely continuous
distributions with probability one would seem to be more appropriate. But the
tail-free with continuous singular or absolutely continuous with probability one
has new drawbacks. A minor one is that the expectation of F(t) is now more
difficult to compute. The main drawback is that the dyadic points of subdivision
play a strong role in the posterior distribution.

6. I is neutral to the right if and only if F' is tail-free with respect to (s, oo)
for all s in R.

Posterior distributions of three processes

If F'is a Dirichlet process I' € D(«) and if Xj, ..., X,, is a sample from F', then
the posterior distribution of F' given Xy, ..., X, is D(a + Y7 dx;), where §, is the
measure giving mass one to .

If F' is neutral to the right, and if Xi,..., X,, is a sample from F', then the

posterior distribution of F' given Xi,..., X, is neutral to the right.
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If the distribution of P is tail-free with respect to {m,} and if Xi,..., X}, is a
sample from P, then the posterior distribution of P given X, ..., X,, is tail-free

with respect to {mm,}.

6.3.2 Non-parametric Bayes Analysis of the Proportional

Hazard Model

The non-parametric Bayes estimation of a survival or reliability function has been
considered by several authors (for example, see Susarla and Van Ryzin, 1976,
Ferguson and Phadia, 1979, Dykstra and Laud, 1981, Padgett and Wei,1981, and
Berliner and Hill, 1988). Kalbfleisch(1978) and Hjort(1990) have discussed the
non-parametric Bayes analysis of the proportional hazard model.

Let T' > 0 represent the failure time of an individual. The covariate variable z
is equal to 0 or 1 to indicate two treatments. The distribution function F'(¢) and

the survival function S(t¢) are
1 — F(t|z) = S(t|z) = exp{—A(t)exp(z0)} (6.34)

where exp{—A(t)} is a base line survival function and is left unspecified. In the
continuous case, the cumulative hazard function A(t) = & \(u)du.

Kalbfleisch(1978) has treated the A(t) as a nuisance parameter with a gamma
process, denoted by A(t) ~ I'(¢A*(t), ¢), where the c is a positive real number and
exp{—A*(t)} is a completely specified survival function. The gamma process that
he constructed is a non-decreasing process with independent increments, which
is similar to the Dirichlet process. Estimation of 3 is carried out by determining
the marginal probability distribution of data as a function of 3, after A(t) having
been eliminated.

Suppose (t1,21),...,(tn, 2n) are observed from the proportional hazard model

(6.34), where ty, ts, ..., t, are observed failure times with ¢; < ?; < ... < t,, and
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21, 23, ..., 2 are values of covariate variable z, then,

P(Ty > ty,..., T > t,]8,2,A) = exp{— ZA(ti)exp(ziﬁ)}

= e:cp{—zn:m-Ai}, (6.35)

where r; = A(t;) — A(ti—1), and A; = Yjepy,) ezp(218), ¢ = 1,...,n. Let to = 0 and
lpnt1 = 00.

If g = P(T € [ti1,t:)|T > tii1,A), then A(t;) = i, —log(l — q). It
has been shown by Doksum(1974) that a probability distribution can be speci-
fied on the space {A(t)} by specifying the finite dimensional distributions of ¢,
G2ye-sGny1 for each partition [t;_q,t;) (i=1,2,...n+1). Accordingly, independent
prior probability densities can be specified for g1, ga,...,Gnt1 subject to some con-
sistency conditions and the resulting processes are called tailfree or nuetral to
the right by Doksum. The A(?) is by this construction a non-decreasing process
with independent increments. The problem then reduces to the specification of
a non-decreasing independent increments process for A(¢). To do this, one need
only specify independent prios for the ris or (¢is) subject to the condition that
the distribution of r; + ;41 must be the same as would be obtained by direct
application of the rules to the combined interval. If the ¢s have independent
beta prior distributions, then the resulting process A(t) is Dirichlet process. The
gamma process specifies that r; = —log(l — ¢;) have the independent gamma

distributions

T, = A(tz) — A(ti_l)
~ T{eA*(t;) — cA*(tic1),¢} (i=1,...,n+1), (6.36)

Integrating (6.35) with respect to the distribution of r; in (6.36) gives,

P(Tl Z t17T2 2 t27 7Tn Z tn‘ﬁaz) = elp{_ZCBl/\*(tz)}
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then the likelihood function of 3 is

L(B) = c"ewp{—ZcBi/\*(ti)} H{/\*(ti)Bi}, (6.37)

where

d
A*(t) = —A*(t
M = Lxw,
B, = —log{l— cap(zB)/(c+ A},
A; = Z exp(z,0), t=1,..,n,
u€R(t;)

and R(t;) is the set of individuals at risk at time ¢; — 0.
Although the likelihood function L(f3) in (6.37) is considered under failure

times, right censoring is easily accommodated which is
n

L(B) = c"exp{=Y eB;A*(t:)} [[{N"(t:) Bi}*. (6.38)

1

where d; = 0 or 1 for censored or failure times t; respectively.

Let 7(/3) be a prior distribution of parameter 3. The posterior distribution of

B is,
w(B|T, z) < m(B)exp{— Y eBiA*(t:)} [T{N"(t:) Bi}*. (6.39)

Statistical inferences for 3 can be derived based on this posterior distribution.

Hjort(1990) has considered a beta process on the cumulative hazard function
A(t). Using the product integral, the distribution function F'(t|z) obtained from
A(t) is

F(tlz) = 1 = [J{1 — dA(s)}=*®) ¢t >0 (6.40)

0.¢]
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which is equivalent to the distribution function of (6.34) if and only if A(¢) is
continuous.

Hjort(1990) said that the cumulative hazard function A(t) in (6.40) was more
easily interpreted and generalized than that in (6.34), and also is the desire to par-
allel the construction and results of non-parametric time discreta survival analy-
sis. Loosely speaking, a beta process on a cumulative hazard function is a process
which produces cumulative hazard rates whose increments are independent and
approximately beta distributed. A particular transformation of a given Dirichlet
process produces a special case of the beta process, but the beta process forms a
much larger and more flexible class.

Let Ao(t) be a cumulative hazard function with a finite number of jumps at
t1, tg,...,tn and let ¢(t) be a piecewise continuous, non-negative function on [0, co).
The Levy process A(t), ie., one having independent non-negative increments, is

called a beta process with parameters ¢(t), Ag(t), and denoted by

A(t) ~ beta{c(t),No(t)}, (6.41)

if the following equation holds,

B (exp{—0A(1)}) =

11 E(ewp(—esj»] cap{~ [ (1= ™)dLi(s)},

Jit; <t

where

Sj = A(t;) ~ beta{c(t;), Mo(i;)}
dLi(s) = /Ot ¢(z)s7H(1 — 8)* P dAg o(2)ds,

in which Agc(t) = Ao(t) — X4, <t Ao(t;) s Ao(t) with its jumps removed, then the

A(t) has Levy representation.
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If A(t) is a beta process beta{c(t), Ao(t)} defined by (6.41), then the indepen-

dent increments have
dA(s) ~ beta{c(s)dAo(s),c(s)(1 —dAo(s))}

Suppose the data (t1,21),...,(tn, 2n) have been observed from (6.40) with ¢; <
ty < ... < tln. Let w(fB) be a prior distribution of 3. The posterior distribution of
(3 by Hjort(1990) is,

w(B|data) = const.exp{— 5° [b(c(s) + (s, B)) — (e(s))le(s)dAo(s)}

(6.42)
X Misi=1 [ (c(t:) + B(ti, B)) — (e(ts) + R(ti, ) — AL, 8))]m(B),

where
I'(2) 1 1
hz) = = = logz —=/z— — /2
R(Svﬁ) = Z emp(/azj)[{tjzs}v
7=1
60; = 1 failure; or 0 censored,

Afg B = Z exp(ﬁzj)[{gztj)gjzl}.
7=1

Both posterior distributions of 8 in (6.39) and (6.42) are related to data of all
individuals. It is, however, very difficult to get the expected risk from observing

the next group of samples in using Bayes sequential decision theory.
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6.4 Bayes Group Sequential Decision Clinical Tri-
als on Proportional Hazard Model for Sur-

vival Time Data

6.4.1 The Problem

Consider a clinical trial comparing an experimental treatment with the standard
treatment. The main outcome of the clinical trial is a survival time random
variable with the following proportional hazard model. Let T" be the survival time
random variable. The hazard function h(t|z) and the survival function S(¢|z) of

T are

Mils) = Atezp(82),
S(t]z) = exp{—A(t)exp(B=2)}, (6.43)

where A(t) is a baseline hazard function which is left unspecified and A(t) =
fEM(s)ds is the cumulative hazard function of A(#). The covariate variable z is
a 0-1 variable. The z = 0 for the outcome from the standard treatment; and
z = 1 for the outcome from the experimental treatment. The 3 is the parameter
of interest. Assume that the experimental treatment is not considered better if
(3 > (35 and that the experimental treatment is considered better if § < 3;. The
interval (1, f2) is the range of equivalence. Suppose [ has the normal prior
distribution with mean 14 and variance 7¢, that is, 8 ~ w(3) = N(vp, od).
Assume patients accrual is uniform in period (0, s,) with a constant rate R
and the allocation of patients is random and equal for each treatment. The clinical
trial is monitored at either I) selected times w1, us,..., u; or II) total number of
new failures my = mye + M1y, My = Mae + Moy, ..., my = My + my,. The [ is the

maximum number of analyses. For simplity of computation, the loss functions are
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defined as
Hpd) = |0 b
0 ﬂ Z ﬁla
L(B,d.) = boorsn (6.44)
K B > [,

in which the unit of K is the cost of enrolling a patient into the trial. This cost

is constant through the trial.

6.4.2 Method 1. Beta Process on the Cumulative Hazard

Function A(t)

Let the nuisance parameter A(¢) in the proportional hazard model (6.43) have a
prior beta process beta{c, Ao(t)} defined in (6.41), where the ¢ is a constant and

Ao(t) = /\ot

The posterior distribution of the parameter 3

At each analysis j, j = 1,2, ..., [, suppose the values (t, z) = {(t1,21), ({2, 22), ...,
(tmy+ma+..emj> Zmi+ma+..+m;)} have been observed from the proportional hazard
model (6.43). The Zle m; is the total number of failures at analysis 7. The

posterior distribution of 3, w(f3|t,z), is given by (6.42).

The predictive density function

At each interim analysis j, j = 1,2,...,0 — 1, let s = {5, 53,...,55,.; 51, 53, ..., S, }

Y Pme)

be the observed survival time from the next group of observations, where s*¥ <

sk < ... < sk are the survival time from treatment k, k = e, s, and m = m. + m,

mg

is the total number of new failures.
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Let r¥ = A(s¥)—A(sF_,), which is from beta{c(Ao(sF)—Ao(sF_;)), c(1—(Ao(sF)—
Ao(s¥ N} RE = (my — (1 — 1))exp(BzF), where 2° = 0 and 2° = 1; and let

GT (.) be the moment generating function of the beta distribution r¥, k = e, s,
8 = L o s Tl

Since

5 B 2 B ey S, 2 S, (B8]
= Epjoa[P(S] 2 81, Sy 2 Sa,» ST 2 85,50, 2 55, 18)]
= Epjoa[P(S] = 81,3 S, 2 5,18)] Epje ol P(ST 2 51, .., 55, 2 57, 18)]
= Epjeo[ITi21 Gry (—ms + 1 = 1)] Egjeo[lliZ Gre((—me + @ — 1)exp(3))]
= [I2 Grg (= + i — 1) Epje 5[I1125 Gre ((—me + 1 — L)eap(5))]

= [Ii2y Gog(—m, + i — 1) [2 w(B]t, 2)[[Ti25 Gre((—me + 4 — 1)exp(B))]dP
=124 Grs(—ms +4i— 1)
X fi"’oo{const-emp{—iﬁ;,—"g)z — Yo Acfib(e + X exp(B2u)) — P(O)](t — ti-1)}
x [Tz [(c + Xoae; exp(Beu)) — (e + ity exp(Bzu))]

X[[T2g Gre((—me + i — L)exp(B))]}dB,
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then, the predictive density function is,

d

f(slt,z) = —d—P(Sf > 83500y O, = S 51 2 87,0, S, 2 85 |6, 7).
S €

e
Me

Bayes sequential decision procedure: one interim analysis
At the interim analysis, the values (t, z) = ((t1, 1), (t2, 22), .., (tmys 2m,)) have

been observed. The risk from stopping the trial is,
ro(w',1) = min{EgL(B,d,s), EgL(0,de)},

where,

EgeL(8,d,)
=K [% w(g|t)dB
= K [#, const.cap{—Ez2L — T Al (c + Ti; exp(Bza)) — $(€)](t: — ti-a)}
x T2 [ (e + Xui exp(Bzu)) — (e + Luli exp(Bz4)))dB,
Ege (8, d.)
= K Jg; w(Bt)ds
= K J3? const.eap{—L2 — ¥ Aclih(c + Tu; eap(Bzu)) — $()](t: — tim1)}
x II2 [(e + E0ls exp(Bzu)) — ¥ (e + Euliga exp(Bza))]dp.

The expected risk from continuing the trial, denoted by E*rg(w?(s),2), is

s min{ Ege zsL(0,ds), Epe,zsL(B,de)}

= [omin{Epjezs L(B,ds), Epjasl(B,de)} f(s]t,z)ds

= Jmin{ Egj¢ 2;sL(8, ds), Egjt,zsL(B,de) } f(s]t,2)ds]...ds}, dss...dss, (6.45)
8 < ...<s,

S,

~€ €
51 <o < Sy
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where

Boasl(5,) = const. [ cap{=CE— [yt Rit,0) — vo)ledr
>j?wo+mmmww@+mmm—Amﬁm
< T 16(0) + B3 ) = ¥le-+ B(sLo0) = Al )
< T 1(6) + (55, 8)) = bl + (55, 6) = Al B)1dB,
Eppeasl(,d.) :cmwwjmm—ﬁifﬁ—ﬁwww+ﬂmﬁ»—wmaw}

my

><H c)+ R(t;,8)) — v(c+ R(ti, B) — AL, )]

X H [¥(c) + R(sy, 8)) — (e + R(sy, B) — Alsy, 8))]

u=1

< L1000 + U5 8)) = (e + R(s5, 8) — AL, B,

in which ¥(.), A(.,3) are the same as those in (6.42), and

Mg Me

Z exp ﬂzz [{t >t} T Z I{s">t} + Z ezp [{sgzt}-

The computation of the expected risk (6.45) is extremely difficult even for a one
interim analysis. It is the same situation when a gamma process (Kalbfleisch
1978) is considered on the cumulative hazard function A(t). It is necessary to

develop some approximation methods.

6.4.3 Method 2. Cox partial likelihood method

The Cox partial likelihood function of the parameter 3 ignores the nuisance pa-
rameter A(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>