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ABSTRACT

Quenouille has developed a procedure, later termed the jackknife
by Tukey, for reducing the bias of a consistent estimator of an
unknown parameter. A measure of the variance of the resulting estimator
can be obtained and used to provide approximate confidence intervals
and tests of significance. Thus the jackknife technique may be
especially interesting when the estimator under consideration is biased
but consistent and mathematically intractable distribution theory
prevents the construction of exact confidence intervals.

Considerable research has been devoted to studying the jackknife
technique, predominantly in the fields of biometrics, statistics and
numerical analysis. So far the use of the jackknife method in
econometrics has been negligible, although one very important class of
econometric estimators, the simultaneous equation estimators, is biased
in finite samples and, in general, has a mathematically intractable
distribution.

In this thesis we investigate the application of the jackknife
technique to the Two-Stage Least Squares (2SLS) structural parameter
estimator in a simultaneous equation system. The bias reducing property
was found to be present in the majority of cases considered in an
investigation of the effects of jackknifing on the exact bias of the
2S5LS estimator in a two equation model. Conditions are given for which
it is unlikely that jackknifing will reduce the bias of the 2SLS estimator.

Since the exact variance of the jackknifed 2SLS estimator is
unknown, an examination of the effect on the variance of 2SLS of
applying the jackknife had to be made by a simulation experiment.

Whilst the 2SLS estimator always had a smaller mean square error than
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the jackknifed 2SLS estimator, a comparison of absolute errors
rarely produced a significant difference between them.

Finally, it was observed that t statistics formed using the
28LS estimator may not be distributed according to the Student t
distribution. The actual distribution may be highly skewed and serious
errors could result if the postulated theoretical distribution was
used for statistical inference. In general, this feature was less
noticeable for the J2SLS estimator which appeared to have a reasonably
symmetric distribution, and consequently there is less likelihood
of serious errors being made if the postulated theoretical distribution

is used for the purpose of statistical inference.
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"Grown-ups love figures. When you tell them you have made a
new friend, they never ask you any questions about essential
matters. They never say to you, 'What does his voice sound
like? What games does he love best? Does he collect
butterflies?' Instead, they demand: 'How old is he? How many
brothers has he? How much does he weigh? How much money does
his father make?' Only from these figures do they think they

have learned anything about him."

Antoine de Saint-Exupéry, The Little Prince




CHAPTER 1

INTRODUCTION

Quenouille [45] has developed a technique, later termed the
jackknife by Tukey [72], for reducing the bias which may be present in
an (otherwise consistent) estimator of an unknown parameter. Quenouille's
original justification for using the technique was based upon the
assumption of the existence of a Taylor series expansion for the bias
of an estimator whereupon, by applying the jackknife technique, the
bias term to order (l/N) could be removed. In addition to its bias
reducing properties, the jackknife technique can also be used to provide
approximate confidence intervals and tests of significance. Thus the
jackknife technique is a viable proposition where the estimator under
consideration is biased, but consistent, and/or where mathematically
intractable distribution theory prohibits the formation of exact
confidence intervals.

Considerable research has been devoted to studying the jackknife
technique, predominantly in the fields of biometrics, statistics and
numerical analysis. Its use in econometrics has been negligible, yet
a class of consistent econometric estimators possess both bias and
intractable distribution theory in finite samples, which would suggest
that application of the jackknife technique may be a fruitful exercise.
This class of estimators is the class of simultaneous equation estimators.

This thesis considers the effects of applying the jackknife
‘technique to one of this class of estimators, the Two-Stage Least Squares
(2SLS) estimator.

2SLS is a '"limited information' estimator in the sense that it

estimates the equations comprising a simultaneous economic system one




at a time. In order to estimate any one equation, 2SLS only requires

a specification of the equation being estimated and a list of the

other predetermined variables appearing in the system. It does not
therefore take account of contemporaneous correlation between the
disturbances of the equations in the system. Neither does it use the
information contained in the overidentifying restrictions on the

other equations in the system. Consequently, if the entire system has
been specified, 2SLS may not make the most effective use of all the
available information and a '"full-information' estimator may be preferred.
Under the assumption that the hypothesized model is correctly specified,
the most efficient method of estimation would be one of the full
information methods. Most economists, however, would consider this
assumption rather heroic and would select one of the limited information
estimators in order to isolate the deleterious effects of any
specification errors to the equations in which they arise.

There are two reasons for selecting the 2SLS estimator from
such a wide class of estimators.

Firstly, the exact bias (and higher order moments) of the 2SLS
estimator have been derived for a two equation model and this allows
an exact investigation of the jackknife's bias reducing ability
vis-a-vis 2SLS, albeit under rather restrictive assumptions.

Secondly, the other limited information simultaneous equation
estimators of any importance are the Ordinary Least Squares (OLS) and
the Limited Information Maximum Likelihood (LIML) estimators. OLS is
not a candidate for jackknifing since it contravenes Quenouille's
assumption of a consistent estimator, whilst the non-finite moments
of the LIML estimator (see Mariano and Sawa [30]) precludes any
examination of the effects of the jackknife technique on its '"bias'.

In addition, within the class of limited information simultaneous




equation estimators, on the basis of numerous Monte Carlo results
(the major works are summarized in Johnston [20], Chapter 13,
Section 8) 2SLS is generally preferred on the grounds of "all-round"
performance and computational efficiency and simplicity.

"Full information" methods of estimation were not considered
as possible candidates for jackknifing as this would seem to be the
logical step forward after the limited information estimators had been
considered. This point is discussed further in Chapter 8.

The general form of the simultaneous equation system which will
be used throughout this thesis, together with the relevant notation
and assumptions, is defined in Chapter 2. The 2SLS estimator and its
asymptotic properties are derived for the parameters of any single
equation in the system. Conditions and assumptions under which the
exact finite sample results of the 2SLS estimator have been derived
are also stated.

Chapter 2 continues with a description of the jackknife
statistic, its bias reducing properties, and its use in formulating
approximate confidence intervals and tests of significance. The
literature on the jackknife and its applications is so extensive that
only (what the author considers to be) the more relevant works are
cited, although a bibliographical reference is given.

The asymptotic properties of the jackknife 2SLS (J2SLS) estimator
are investigated in Chapter 3. A proof of the asymptotic equivalence
of the J2SLS and 2SLS estimators is given, and a t ratio formed using
the J2SLS estimator is shown to be asymptotically distributed as the
standardized normal distribution.

The small sample properties of the J2SLS estimator are
investigated by a series of simulation experiments in Chapters 5, 6

and 7. The computer algorithms used in the experiments are described




in Chapter 4 together with results of verification where they do not

already exist. A formula given in Chapter 3 reduces the computational
burden involved in calculating J2SLS parameter estimates, and should
reduce the probability of significant inaccuracies due to the build-up
of rounding errors resulting from repeated use of the matrix inversion
algorithm. Chapter 4 also contains a method for evaluating the
accuracy of the asymptotic approximations to the exact moments of the
2SLS estimator.

For an equation containing just two endogenous variables the
exact first and second order moments of the 2SLS estimator have been
derived. It is relatively easy to adapt the exact bias of the 2SLS
estimator to obtain the exact bias of the J2SLS estimator, but the
exact mean square error of the JZSLS estimator has not, as yet, been
derived. In Chapter 5 the exact relative biases of the 2SLS and
J2SLS estimators are compared, under conditions which prevail for
""exact" theory, by means of a simulation experiment. This experiment
gives exact results on the ability of the jackknife to reduce the bias
of the 2SLS estimator. For the general model, however, this form of
analysis is not possible, and the author has only been able to derive
a rather weak conditon under which jackknifing is "unlikely'" to reduce
the bias of the 2SLS estimator.

Chapter 6 presents the results of a Monte Carlo experiment into
the properties of the two esfiﬁatof;. Comparisons of relative bias,
mean square error and mean absolute error are made using a two equation
model. The use of the jackknife étatistic to form approximate
confidence intervals and tests of significance using the 2SLS estimator
is also investigated and the results are presented in Chapter 7.

It is well known that standardized normal ratios and t ratios formed
using the 2SLS estimator are only valid asymptotically, and that in

small samples they could diverge significantly from their postulated




theoretical distributions. A comparison of the small sample

distributions of test statistics using both 2SLS and J2SLS estimators
is made.

Concluding remarks are contained in Chapter 8.




CHAPTER 2 .

THE TWO-STAGE LEAST SQUARES ESTIMATOR AND
THE BIAS REDUCING PROPERTIES OF THE JACKKNIFE STATISTIC

2.1 The General Linear Simultaneous Equations Model

2.1.1 Specification of the Model

The analysis in this thesis is concerned with a simultaneous
economic system of G linear stochastic equations relating G endogenous
(or jointly-dependent) variables and K exogenous variables, which can

be written as
YB+X =U . (2.1)

We are interested in the estimation of just one equation from

this system, (say) the jth, which can be written as

RO S TR T e R 2.2
Y5 = Vi85 * Xpgdag * Xo5)p5 * Yy (2.2)

and we will refer to this equation as the jth structural equation
(j=1,2,...,G). For notational simplicity we will generally omit the j

subscript.

2.1.2 Notation

Y is a matrix of N observations on the G endogenous variables in the
entire system;

y is a vector of N observations on the '"dependent' endogenous variable;

Y is a matrix of N observations on the other g endogenous variables
included in the jth equation. In the unlikely event that all G

endogenous variables appear in the jth equation then g=G-1 and




[y:Y]=Y , otherwise g<G-1 ;

X is a matrix of N observations on K exogenous variables partitioned
as X = [Xl : Xz] 3

X1 is a matrix of observations on the K1 exogenous variables included
in the jth equation;

X2 is a matrix of observations on the K2 exogenous variables excluded
from the jth equation (i.e. K==K1 + Kz);

U is a matrix of N unobservable disturbances for each of the G equations,
with jth column denoted by Ej 3

B is a Gx G matrix of unknown structural coefficients;

B is an unknown g component sub-vector of B with non-zero elements.

I'is a KxG matrix of unknown structural coefficients;

11 is a K, component sub-vector of I' with non-zero elements;

1

Y, is a K2 component sub-vector of I' with zero elements.

2.1.3 Basic Assumptions

The following conventional assumptions are made for the system
(2.1), and for the jth structural equation (2.2):
(1) B is non-singular;
(ii) the jth structural equation, (2.2), is just- or over-identified by
zero restrictions on the structural coefficients, i.e. K2>g;;
(iii) the matrix X consists of non-stochastic elements and is of full
rank, K. Further, as N->~ the matrix N_l(X'X) converges to a

finite matrix, denoted by

1.@% .5

lim XX

N >

. where ZXX is a finite positive definite matrix ;

(iv) the sample size (N) is greater than the total number of exogenous

variables (K) in the system;




(v) the N rows of U are independently and identically distributed
with zero mean vector and unknown finite covariance
matrix, X. In addition, the analysis in Chapter 3 requires

that the structural disturbances have finite fourth order moment.

Postmultiplying equation (2.1) by B we obtain the reduced form
of the system, which can be written as

Y=XT+V, (2.3)

- -1
where T = -TB .

T -1
and V = UB

The reduced form equation for the jth '"dependent' endogenous
variable and the reduced form equations for the g '"explanatory"

endogenous variables can be written as

and

Y.
J

XIL + V, (2.4)

respectively. Since, for notational convenience, we are omitting the
j subscripts, this explains the necessity to write equation (2.3) in the
above form rather than in the more common form which would coincide

with equation (2.4) when the subscripts are omitted.

2.1.4 The Two Endogenous Variables Case

The majority of results on the exact properties of the 2SLS
estimator have been derived under the assumption that g=1, i.e.
the equation being estimated contains only two endogenous variables.

and X, contain no

In addition, it is assumed that the matrices X1 2

lagged endogenous variables.
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Under the above conditions, the first structural equation can

be written as

Yy = YR+ Xy XXy gy, : © (2.9

with reduced form equations
%y = Mqihy * Rallyg ¥ 2y
Yo = Lllgy * Aollgp ¥ Yy o

and 7 are vectors of constant coefficients.

Aais Lo

" The random vector (!1': Xé ) is assumed to be distributed as bivariate

where Mo 312,

normal with zero mean and positive definite covariance matrix 2 @ Iy s

where Q = wij (i,j =1,2) is a matrix of reduced form parameters. - _

2.2 The TWO-Stagé Least Squares Estimator

It is well known that OLS is, in general, an inconsistent

~ estimator of the parameters in the structural equation (2.2). This

~ inconsistency is due to the correlation between the explanatory

) endogéﬁous variables (Y) and the vector of structural di;turbances (u.
Basmann [3] and Theil [70] derived, independently, an alternative
estimatér which "purges" Y of the stochastic combonent associated

with the disturbance term, and then estimates the revised equation by
OLS. This "alternative'" estimator is called thé Two-Stage Least
Squares Estimator. |

Fiom equation (2.2) we write the jth structural equation as
L= Y§.+ Xjy; +u.
If we rewrite the above equction as

X=. (Y—V)£ + xlll + 0 ¥ V_B_,‘
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then using equation (2.4), (Y-V) = XII is uncorrelated with (u+Vg)
since X is non-stochastic by assumption (iii).
Since V is unobservable we must use its estimated value 0,
where V = Y-Xﬁ: Provided plimiT=II,it follows that plim (Y-—@) = (Y-V)
N+ N+ oo

and hence (Y-—V) and (E;+V§) are asymptotically uncorrelated.

Thus if the least squares estimator is applied to

y = (Y -V)E + X +u + 0@_,

14
we can obtain consistent estimates of B and Yq - Since this process
of estimation involves two successive applications of least squares
it is known as Two-Stage Least Squares (2SLS).

In this thesis we shall work with the Instrumental Variables

type formulation of the 2SLS estimator, viz:

|®>
|

1 i 1
= [Z'X(X'X)_ x'z:I Z'X(xX')"" x'y , (2.6)

where Z (& ¢ XIJ and §j = [Ef 2 2&{]

In order to apply tests of significance, knowledge of the

distribution of the 2SLS estimator is required. The finite sample
distribution of 2SLS is only known for a few specific cases, thus
reliance isusually placed upon its asymptotic distribution.

Substituting for y in equation (2.6) we obtain

| D>

_—v 1y =Lyt o 1 foni=l, o
-0 =]Z2X(X'X) 'X'Z Z X(X'X) Xu,

and we require the limiting distribution of the sequence

-

1

S : -1 -1 '

WNE-0) =[1.zx(1.x'x) 1.x'zf{1.z'x{1.x'X] 1 .x'u
N N N

N

Z| =

Since X is (by assumption) non-stochastic, it follows that

X l.X'[Y:Xl]

1.X'[XI+ V:X]
N N

zZ|=




converges in probability to a finite 1imit, denoted by

A ' i ,
plim 1 .X'Z =X : Ut
N->o N X2 s g

We have already assumed the existence of a finite limit for

-1

N XX , and thus we can denote its inverse by

‘ _ Ly
lim [1.X'X ) = E3y -
N+eo \ N

Under assumption (V), modified application of the Lindeberg-Levy theorem

_(see e.g. Theil [71; pp.498-499]) using the above results will yield

n -1 -1
/N (6-0)~N |0,0%plim {1.2'X (_1_. x'x) 1.%'Z 5. A2:7)
' N+ew [N N N

where o2 denotes the variance of the jth structural disturbance,
i.e. the jjth component of Z.

A consistent estimator of o2 is given by

82 =§_'§_/(N'K1'g) >

whereu = [y-YB -X¥, 1 .

Since the asymptotic covariance matrix of .the 2SLS estimator
coincides with the Cramer-Rao bound (when the structural disturbances
are normally distributed), 2SLS is an efficient estimator in its class

of limited information simultaneous equation estimators. Its relativc

(small sample) efficiency however has not, in general, been ascertained.

2.3 The Jackknife Staztistic

2.3.1 Definition

1 X g w oy iy N

independently and identically distributed observations from the cumulative

Let & be an unknown parameter, and let X
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distribution function Fa' Further, let o be a biased estimator
of o such that

a a a
E(é\c-oc):-i +£—+.”.+%-

N N2

e aiden y (2.8)

z

where a;, a ., @, are constants and not dependent upon N. If the

2’
N observations can be divided into n groups, each of r observations

(i.e. N=nr), then the estimator

Ji(&) =na - ( n--1)&i , (i=1,2,...,n)

where &i denotes the estimate of o obtained with the ith group
of observations omitted, removes the term in 1/N from equation (2.8).

Applying the technique to equation (2.8) gives

~ a a a
E[J.(@)] = na + MNP S e i
i 2 3 52
T TN Sr’n
a a a
- (n-1)o - —1— - 2 - - = e e 5
T r?(n-1) r?(n-1)2
a, (2n—l)a3

i.e. E[J.(@)] = a - - = e
r’n(n-1) r’n?(n-1)

G = 1.2, )
Tukey,l in unpublished work, has named Ji(&) the pseudo-jackknife
estimator. He defined the jackknife estimator, J(&), as the average

of the i pseudo-jackknife values (i=1,2,..., n), i.e.

~ n ~ ~ n A
J@) = . * ) J. (@) =na - (n-1) ¥ (2.9)
ni= 1=

15 The definition that follows is taken from Brillinger [7]
who cites an unpublished paper and an abstract [72] of a
conference paper by Tukey.
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J(&) will have the same -expected value as Ji(&), but a smaller
variance. The term jackknife was coined for this procedure since
it shared two characteristics with a boy scout's jackknife:
(i) wide applicability to many different problems;
(ii) inferiority to special tools for those problems for which special
tools have been designed.

In most problems however the property of removing bias would
not be sufficient to recommend the use of the jackknife. A comparison
of the dispersion of the original estimator with that of the jackknife
estimator is needed. Tukey noted that not only are the pseudo-jackknife
estimates nearly unbiased, but their average sum of squares of
deviations is nearly N(N-1) times the variance of their means. He
proposed that in many instances the Ji(&) are approximately independently
and identically distributed and hence an approximate estimate of the

variance of J(&) is given by

[3,® -I@)°

n
) ’ (2.10)
i=1 n(n-1)
whilst )
J -
[ (it) a] e (2.11)
n [J.(@) - J(®)]
i=1 n(n-1)

is approximately distributed as a t variate with (n-1) degrees of
freedom.

The jackknife can be re-applied in order to remove the bias
term of order 1/N? which remains after the initial application.
Quenouille [45] and Kendall and Stuart [24] give a formula to achieve
this further bias reduction, but if ay = 0 for all k > 2 then the

second application of the jackknife does not yield an exactly unbiased
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statistic as one would have desired. Schucany, Gray and Owen [62]
give a higher order transformation which provides an algorithm for
eliminating, exactly, bias terms of higher order.

This thesis considers the jackknife technique when r=1 (i.e.
N=n). Thus each of the N pseudo-jackknife estimates is calculated
from the total number of observations less one, and the jackknife
statistic is defined as

C(N-1)
N p 5

i (2.12)

J(@) = Na i

Il ~>12

1

Intuitively, choosing r=1 is appealing since problems of
dividing up samples and being left with awkward remainders are
avoided. In addition, several studies involving applications of the
jackknife have found r=1 to be the "optimal" value of r (e.g. see

Robson and Whitlock [56] and Rao [47]).

2.3.2 The Generalized Jackknife

Schucany et al. [62] provide a general method for bias reduction

which includes the jackknife as a special case. Suppose that there

A

are k+1 biased estimators of q, viz: &1, o} defined

a
STICTTTIN. W

over the N(=n) observations, and further suppose that the biases of

these k+1 estimators can be written as

I o~

E(&i) -0 = fij(N)bj(a) | (i=1,2,...,k+1)

j=1

then the estimator




0.1 0L2 S0 o e | e s OLk+1
B B, L o R

” fi1 ko f kel

=0 _ (2.13)

1 1
Bt Bl o, AR YE
£ £ £, x+2
£y S ks i

reduces the order of bias to terms of order (k+1) in 1/N, i.e.

o [?(k?] of g [§-(k+1i] ’

where the argument of the fij functions has been suppressed for

notational convenience, and these functions are assumed to be known.

Further, it is assumed that 1 < k < N-1 and that the denominator

of equation (2.13) is non-zero.

A

[ I
1

1

Y o
i 00 =gy aad ) £ werme

If k=1, then a1= o, ozz =

I o~2Z

z| =

i

and equation (2.13) reduces to the "regular' jackknife as defined
by equation (2.12).
The formula given by equation (2.13) is exact, in the sense

that if the bias of the original estimator takes the form of

equation (2.8) with only the first k terms non-zero, application of

&(k) will remove all bias.

16
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Schucany et al. only considered the problem of bias reduction.
The effect of their higher order transformation on the variance of

&(k) was not investigated for the general case.

2.4  Previous Applications of the Jackknife Technique in Econometrics

2.4.1 Partial Correlation Coefficient

If the estimated value of the partial correlation coefficient
is used as an approximate test for serial correlation in time series,
Quenouille [44] has shown that the bias of the estimator is inversely
proportional to the sample size, N. He suggested using (what later
became known as) the jackknife technique with n=2, i.e. the sample
was split in half, in order to remove the bias term of order (1/N). In
a later paper, Quenouille [45] generalized this procedure by noting
that the same amount of bias reduction could be achieved by splitting

the sample into n groups each of size r (where N=nr).

2.4.2 Autoregressive Processes

Quenouille's [44] original method of jackknifing (i.e. n=2) was
later applied by Orcutt and Winokur [39] to the least squares estimator
in an attempt to reduce the bias of B (the least squares estimator of B)

in the autoregressive process

Yy ®a s Byt_1 * e {t =125 N

(et normally and independently distributed).

Using a Monte Carlo study they compared sample means and mean
square errors of three estimators of B: least squares, jackknife least
squares, and an estimator based upon correcting the bias of least

squares using an expression derived by Marriott and Pope [31]. Whilst
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both modified least squares estimators reduced bias, the jackknife

estimator exhibited a larger mean square error than the other two

estimators and consequently was not to be preferred.

2.5 Use of the Jackknife Technique in Other Disciplines

A substantial body of literature on the application of the
jackknife technique in various disciplines has evolved since Tukey's
[72] initial conjecture. A survey of these applications, together
with a comprehensive bibliography, has been compiled by Miller [35].
With the exception of the two papers cited in the previous section, few
of the applications have any direct relevance to econometrics.

Perhaps the most successful area in which the jackknife has been
used to date is that of ratio estimation. Given a bivariate sample

(X Yi) (i=1,2,...,T) from a population of size N (T<N) with means U

i
and n respectively, we are interested in estimation of the ratio

R= u/n. In many instances the classical ratio estimator r = X/Y

(i.e. the ratio of sample means) with X known, may exhibit a large

bias compared to its standard error in surveys with many strata and
small samples within strata. Durbin [14] suggested the jackknife with
n=2 as a bias reducing tool and investigated its properties under two
distributional assumptions on the stochastic error term in the general
linear model. Under both assumptions the jackknife not only reduced
the bias of the ratio estimator, but also reduced the mean square
error. Rao [47] and Rao and Webster [48] showed that the optimal
choice of n under both of Durbin's [14] distributional assumptions is
n=N.

Subsequent research investigated the performance of the jackknife

in ratio estimation as compared with several other estimators. In

general, the jackknife appeared to rank close behind the most efficient




estimators but had the disadvantage of being more complicated to

compute.

An application of the jackknife with direct relevance to
econometrics is Miller's [36] proof that the jackknife OLS estimator
of the vector of parameters in the general linear model is asymptotically
normally distributed under conditions that do not require the vector
of stochastic disturbances to be normally distributed. He conjectured
that his proof extended to the case of non-linear least squares.

The jackknife has also been applied in the areas of maximum
likelihood estimation, functions of a U-statistic, stochastic processes,
inference on variances, and multivariate analysis. This list is far
from exhaustive and the interested reader is referred to Miller's [35]
bibliography for additional areas of application, and his synthesis
for a review of the performance of the jackknife statistic over the

many disciplines in which it has been used.

2.6 Alternative Methods of Bias Reduction Using the 2SLS Estimator

2.6.1 General Remarks

Methods designed to reduce the bias of the 2SLS estimator, without
increasing the mean square error, have been devised by Nagar [37] and
Sawa [60, 61]. Strictly speaking neither author 'manipulates" the
2SLS estimator specifically, but since both proposed estimators converge
in distribution to the 2SLS estimator as the sample size increases
indefinitely, they could offer themselves as alternatives to the J2SLS

estimator, at least on a bias reduction criterion.

2.6.2 Nagar's Unbiased k-Class Estimator

Nagar [37] has derived an expression for the bias to order 1/N

of a distribution approximating the distribution of the k-class
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estimators. He noted that for k=1 + V/N, where v is the degree of
overidentification of the equation being estimated, the bias vanishes
to order 1/N. Asymptotically, Nagar's unbiased estimator is clearly
equivalent to the 2SLS estimator.

Using Klein's model I, Nagar showed that whilst this choice of
k certainly exhibited a smaller 'bias' than the corresponding 2SLS
estimator, 2SLS dominated on a ''mean square error' criterion. Sawa
[59], however, has shown (for a two endogenous variables model) that
if k> 1 and nonstochastic then no moments of the k-class estimators
are finite; hence Nagar's 'unbiased'" k-class estimator does not possess

a finite first order, or any other order, moment.

2.6.3 Sawa's Combined Estimator

On the basis of an asymptotic expansion of the exact bias of
the k-class estimators in a two endogenous variables model, Sawa
[60] proposed an estimator which uses a weighted combination of the
2SLS and OLS estimators in order to remove the leading term of the
asymptotic expansion. The weights are such that, asymptotically, Sawa's
combined estimator converges to 2SLS.

In a series of experiments, the combined estimator dominated the
2SLS estimator (on a mean square error criterion) when the number of
exogenous variables excluded from the equation being estimated was
very large. The reduction in bias (over 2SLS) obtained by using the
combined estimator was always evident and frequently substantial.

The experiments were only conducted for an equation containing
just two endogenous variables. Sawa [61] justified the extension of his
combined estimator to equations containing an arbitrary number of
endogenous variables by using Kadane's [23] small o approximations.

As yet, however, no Monte Carlo results have been published on the
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relative merits of the combined estimator vis-a-vis other limited
information estimators. Clearly if the combined estimator dominates
other limited information estimators on a mean square error criterion
only for a large number of excluded exogenous variables, a Monte Carlo

study may be impracticable, or at least very expensive.

2.7 Justification for Applying the Jackknife Technique to the

Two-Stage Least Squares Estimator

The author has been unable to produce a rigorous justification
for applying the jackknife technique to the 2SLS estimator, as he
cannot express the bias of 2SLS as a Taylor series expansion in terms
of increasing powers of 1/N. Nagar [37], however, has shown that the
bias of the 2SLS estimator can be approximated by an expression
involving terms of increasing powers of order (l/N%) in probability.
In addition, using Kadane's [23] approximation to the bias of the
2SLS estimator, the author has been able to derive a condition under
which the jackknife is "unlikely'" to reduce the bias of the 2SLS
estimator. This analysis is contained in Chapter 5.

Whilst these results cannot provide a rigorous justification for
using the jackknife technique as a bias reducing tool, it suggests that

its application may be worth pursuing.




CHAPTER 3

ASYMPTOTIC THEORY

3.1 Derivation of the Computing Formula for the J2SLS Estimator

From equation (2.6).the 2SLS estimator can be written, in

L

instrumental variable form, as

8= z'xx'n X'z lzaxx'n 'y . s

We denote the 2SLS estimator of 8 based upon (N-1) observations

as
8. - z)x. x'x.) " x'z.17% 2%, ox!x.) "Ity (3.2)
Y 3% (X3X;3) X324 %5 (X3X3) X3y .

ﬁhe;e the i subscript denotes that the ith observation (i=1,2,...,N)
has been removed from thé relevant data matrix. Using Appendix A we
can show that

- i -1 ¥ s B ™ &

o X0 Txx (X'

1y ~-1 ' -1 1
(XIX) =X X-x.x)""=(X'X)""+ s - > (3.3)
11 s s 8 ) 1 --x_jl.(x|x)"1.£i .

where X5 (a K dimensional column vector) denotes the ith row of X;
i.e. the ith observation on X.

Using equation (3.3), we can rewrite cquation (3.2) as

y " _ TN
b - | Vot -1— -1
o~ (X'X) x.x. (X'X)
8, ={12"x-z;x1 |rx'0 7t 2 [X'2-x,2]1%
; xi'(x‘X)' X,
\ — ' - <

)

i T . My ]
X0 xx! (k07

X< [2'X-2z,x/] )™ [X'y_—g_{gi]% (3.4)

Vputyy -1

- ©

7

where k2 (a K14-g dimensional column vector) and Y (scalar) denote the

ith observations on Z and y respectively.
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Consider the term to be inverted in equation (3.4). Upon

expansion we obtain

! to =11 1 utyy -1 ' 1 tys =1 1 ! pulys =Lyt
ZXX) X Z+£i£i(X X) X:Z; - Z X(X'X) X;zs -Ei_{i(x X) X Z

1

1 R | L ) P 0t =1 1 [T, |
Z. XXX 5i§i(x X)Xz Eiii(x X) 5i§i(x X) Eiz'

+ ' 1 + ' T e
1 - ] -
1—_x_i(X X) X4 1-3(_i(X X) X5
-1
- ' = = -
250 e x ) K2 ' a2
5 —i— o o ey’ —i—i (3.5)
DR T PRI R | 2 :
l_ii(x X) X5 1-5i(x X) Xy
et P =z'xex'vyIx'z,
s, = x'(X'X)_lx. (scalar)
i = = 2
P, (O eSS N IO K
bi = §i(X X) Xy-= 5T, (scalar)
and a. = Z'X(X'X)_lx. s
= =
then equation (3.5) can be rewritten as
= -1
agh, ' Spua Sifi2;  SiZ%e
PSRl e BiE & s e
_S -S - -
(1-s;) (1-s)) (1-s,)  (1-s;)
- (; \ L b 3.6
= - zzy ot —— (25-3,) (25 - 3) . (3.6)
(1-s.)
5 P + 1 i
et '(IT')_ (E-l a 31) (51 i il) = P
i i
then, using Appendix I, equation (3.6) can be rewritten as
TR | C—l—iii ¢
(e Bl ) ™ ST i b (3.7)
—A— T
1.=:2% C %
i
and using the same expansion, it follows that
-1 -1
P (z;, - a.)(z; - a.) P
gteply Bl : (3.8)

(1-5.) + (z; -3,) "P7(z, - 2,)
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Combining equations (3.7) and (3.8) and simplifying we obtain

—._1
-1 ' 1 '
Po-z.z, 0+ (z. -2a.)(z; -2a;) =
" e e B (l'si) —1 —1°"—1 -1 J

=] ' =] ] g 1
b o) ¥R MBI T et MERG M R 2
P - +— | P Eiz—i =
(1- s; * di) ki (1- S; + di)
| SR 1= i -1 -1
O PzyzP (zy-a,)(24-85) P (2030 (24-3,) P Z;2,P T(z4-34) (25-2,) (P
(1-s;+d,) (1-s;+d.)?
(3.9)
& -1
where di = (Ei_ii) P (-Z—i—ii) 3 (scalar)
i . ]
i z.P "(z.-a.)(z.-a.) P "z,
and k. =1 - zP 1z.+ = e A e = (scalar)
i =1 =
(1- s; * di)

The last term in equation (3.9) can be rewritten as

it ol EQJ
(1- s, + di)

and combining this with the first term in curly brackets gives

Pz (2080

1 -1

=) ;
P 0] 200, 1" | - bl

. k.(1-s+d.)
i i &

Thus equation (3.9) can be written as

-1
1 (I-z: P 8:)
B s, L - s P_l(i"i')(ﬁi‘ii)' + P_lﬁ'ii
k. (1-s.+d.) e T
i s Wi
-1 15-1 |
(z -a.)'P Bs 2.P "(z.-a.)
: 1 a8 P—l(ii'i')ii' = . e _Z_i(ii’a gt P—l
(1-5;+4d;) (1-s;+d.)

(3.10)

2




Now consider the second '"term'" in equation (3.4), viz:

x'0x x0T

[2'x-zx!] [0 e [X'y - x;;]

P |
1-5i(x X) Xy

. ' Loonmdi 8 1oy los =1
= [% X(X'X) "Xy+ Eizi(x X) X;Y5

1 Iy | 1 5o Bog ol 1 (o T O |
+ 1 L2 X(XX) §i§i(x X) Xy+ 1 .Eizi(x X) Eigi(x X) X;¥5

i
(1-s;) (l-Si)
z'x(x'x) z.x! (x'x " x'
it 5 - 4% £
1 1y -1 ¥ Wi dion ] e, R | PR e
- d 20X X) iiii(x X) X5 - 1. s giii(x X) 5i§i(x X)X % .
(l_si) (l-si)
(3%11)
Let
' 1 =10
then equation (3.11) can be written as
1 V utyy =1yt
q- Y2t (2-2) (y;-x, (X°X) "Xy)| . (3.12)
(1-s.)
1 i

A

To obtain an expression for Qi in (3.2), we must postmultiply
equation (3.10) by eXpression (3.12). Postmultiplying equation (3.10)
by q we obtain

1

A (1=2zF "2.) -1
E L pi(zmey) (zg-a) " +PTzyz)
k. (1-s,+d.)
1 1 i
1 —1 | —1
! 272 P % P l(z.-a.)z! = 22 Y Pz, (2z:-3.) " |8
LR P iy 230578

(1'5i+di) (1_Si+d1)
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Postmul tiplying equation (3.10) by -YiZ; and simpli’fying we obtain

. | ' :
(z.-a.) Pz
- L E-lii _ i —i =i .p_l(.?.i'?_i) v d
ks L. (1-s;+4d;) o

Postmultiplying equation (3.10) by the term in sqpare' brackets in

>

expression (3.12) and simplifying we obtaiﬁ

" | ' :
' 1Q-2/P " z,) P (_z_ -a,) ' =
R e S P'l(zl-_gl) + 1 e, [yi - xfn]
k (l—si+di) -(l'si+di)

Then rearranging the above expressions we obtain

NP T N p¥ ey Tt
9—1 o+ = (z -a. ) - — P 2z yi-_z_ig
- _ki(l-si+d ) . . k; A
' -1 r -1
(1-2P "z.) z:P (z.-a.).
g 1 ] p-l(z‘-i’é-i) 4 =0 —i —1 p-lii X
ki(l—si+di) ki(l-si+di)

E Y: = X. 'rr) - (z -al) ] (1=1,2;.;N) ' (3.13)

Note that (yi - _)Sl_ﬁ_) is the ith componént of the reduced form
residual vector _\2 = (I ‘Mx))i , we denote it thergfore by :.71. Similarly,
Gi = (yi -Z—i@ is the ith c‘.omponen'c of the 'structural form residtiai
v.ecto _ﬁ_ = (y- Zé)', and Q = Oy~ a'§) is the ith component of the
) "second stage" re51dual vector w = (y-M ze) where MX X(X’X)-l' ‘.

Equat1on 3. 13) was used for computing the J2SLS estlmator and
its associated test statistic in the Monte Carlo study of Chapters
6 and 7.

For future analysis, it will be convenient to rewrite equation

(3.13) as.
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§ =849, (1=1,2,...,8) (3.14)
where g. = (h; + j.)0; + b, (V; -W;) , (3.15)
(1-zp7'z) 2P ()
h, = (z;-3;) + = Zis (3.16)
k. (1-s.+d.) ki(l—s +d.)
: (z;-3;) P "z 1 )
and ii = (Ei_éi) -—z (3.17)
ks (1-5;+d.) 4

The result in (3.14) is given in Phiilips [42].

3.2 An Expression for the J2SLS Estimator

To form the J2SLS estimator we are required to take the summation
of equation (3.14) over all i (i=1,2,...,N) omitted observations.

Using equation (3.14) we can form the J2SLS estimator as

. 1) N
I =N - 8,
TN =l
LW L N
=0 P B

and using equation (3.15) we then obtain

(N- 1) N .k
. 2 (h; +3,)0; + z hy (V59| . (3.18)

RIOEKE

Sﬁbstituting for hi from (3.16) we obtain

z'P"1 .
—l

(z;-8;) (V;-¥;)

i
p

-
-
D
'£)
rqu

i=1 -1 k. 1 (1-s; +d )

N 2P Tzma) | ' gt
+ 1 : z, (V45 . (3.19)
i=1 ki(1'5;+di)




28

Since (z;-a;) and z; are the ith columns of Z'(I—MX) and z'
respectively, it follows that

N l_ij'_P_lEi A A '
(z;-3;) (v;-w;) = Z (I—Mx)AS(X:&Q (3.20)

1=1 ki(l—si+di)
and

sl
N AR E

2. (V.-W.) = - Z'A(V -W) ; (3.21)
1=l kyflis+d) TN 4

where A3 is an NxN diagonal matrix with iith component

(A = — (A 128, 0.8

)i >
SUAT
ki(l-si+di)
and A2 is an NxN diagonal matrix with iith component

-1
I By

GAn) o = (i= 1,2,%..,N)
2711
ki(l—si+di)
Substituting from equations (3.20) and (3.21) into equation (3.19)
gives
N A A 1 AU, 1 A A
izlhi(vi-wi) = 2 (I-M) A (v-W) - Z'A,(V-W). (3.22)

Similarly it can be shown that

~

N
A 1 A 1
_Z hyu, = 2" (I-M)Au - Z2'Au . (3.23)
i=1
N ~
Consider the term z jiui in equation (3.18). Substituting for
i=1"

J; from equation (3.17) gives

15-1
N g B R Ry MR T g
I Gy - 7oy 1Y
i=1 i=1 k, (1-s,+d.) i=1 k,
ik O b
1 ~ ~
= - Z (I-M)Au - 2'Au (3.24)

where A1 is an NxN diagonal matrix with iith component

1

)i =%
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Substituting from equations (3.22), (3.23), and (3.24) into

equation (3.18) we obtain

A

a . & DR Eel
J(@®) =06 + S —,P Z (A1 + 2A2 - AS)E

=1_1 A

= PiE MX(A2 - A3)E

f Pl - AYE-0)
g IR

1

. P z'MXAB(Q;-Qi] , (3.25)

The ensuing analysis is simplified by writing equation (3.25) in

slightly amended form. Recall that

A 1 )
u = [I-2Z(Z MXZ) Z MX]Z_ 3
.‘2 = [I = Mx]_X_ >
and
A 1 -1
W= [T - MXZ(Z MXZ) Z MX]X ”,

from which it follows that

and Z'M (¥ - W) =0 .
Thus, if we define
A3 =71 - A3 5

we can rewrite equation (3.25) as

| >

+ N-1). 1 z' (A + 2A
N

J(@) =

2

1 — )
-Z MX(A2 - A3)E

+2' () - T - W)

+ 2' MR (¥ - Qi] : (3.26)
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3.3 The Asymptotic Equivalence of J2SLS and 2SLS

3.3.1 Preliminary Results

In this section the asymptotic behaviour of the three diagonal

matrices (viz: A A2, and KS) introduced earlier in this Chapter will

1,
be investigated.

Essentially we must consider the following terms:

fr=1
Kis €158 w5 P

1n-1
i’ z; and z;P " (z; - 3;),

e e |
where S; = Ei(x X) X;
d. = )'pt
g " (zi - 3i) (Ei . Ei) s
1,-1 1 -1
Z:RY (2 mds) (Beiae ) Pz
and ki - 1_£.ip~1£i+—1 1 —i 1 —1 =i

(1 —si+di)

The reader is reminded of the following results which were

established in Chapter 2:

B 1 1 -1 1 e -1 -1
(a) pldm:l . ZoXful . X' X Je Xy 7 = plim N.P ~ = Zp "
N+ |N N N N+

-1 . r s T :
where ZP is a finite positive definite matrix;
and

(b)  Pli1"L X Z ®elie,
s XZ

where ZXZ is a finite matrix.

For the ensuing analysis result (b) will be expressed in a

different form. Since

X'Z = X"[XI + V : x1] :

we can rewrite result (b) as

plim L X'Z2 =L 0 : Z
N XX XX
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It follows from assumption (iii), section 2.1.3, that

lim Ns, = 1im x {1 . X'x\'x. = x! =2 x. ,
N = =1 XX =

N- N

which is a finite constant, and consequently

lims. = 0 . (3.27)
Noco T

. 1
Consider the vector a; where

RN e Sy (SR Qo (R . .
a; = x5 (X)X Z = x (X X)X [¥:X%] ;
' 2 1
ie. a; = [5iH 'Eii] ; (3.28)
Using result (a) it follows that
lim N.a!P e, = [x'fzx, IE %, 1 %] (3.29)
P S S T hip A gl s :

N >

a finite constant, where zii is the ith row of X1

This result can be shown as follows:

the matrix (X'X)_lx'X1

is a submatrix of (X'X)_lx'X = I,
and thus consists of K1 columns of the KxK identity matrix. By

premultiplying these columns by 5& we obtain Eji

It will be convenient to write equation (3.29) as

. Bl ot e e
5{32 N -2y P a; =a; ZP a; (:3..30)
where plim a = g& , a finite constant vector.
N>

We can conclude, therefore, that

plim a; P! a. = 0. (3.31)

N~ =
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Consider the term

v -1
where the vector (Ei-gi)' is the ith observation on the matrix

[z-xxX'%) " 1x'z]

Partitioning this matrix we obtain

1 =1, .
[Y :Xl] - X(X'X) "X [Y: Xl]
= 'Y :Xl] - [Xs Xl]
=[V:01,

which will have ith observation denoted by

[v;:0"]

It follows that

v -1 o i
(2. =& )'P_ z. = [vl:0"] P_l[v +0'x. @ x,.] (3.33)
-1 = —i - = —i s I ’
and
15-1 _ LA -1
a; P (z;-2y) = [§iH 'zli] P [Xi sl . (3.34)

Since each element of the OLS reduced form residuals matrix
converges in distribution to the corresponding element of the
disturbance matrix, from equation (3.32) and using result (a) we can
write

1 1 _1

Vo= vl v, (3.35)

5 A -
plim N -V P violp vy

N -

Since Z;l is a finite positive definite matrix, and since
the vy (1=1,2,...,N) are independently and identically distributed
with mean zero and finite covariance matrix (this fact follows from

assumption (v), section 2.1.3, since the reduced form disturbances are
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just linear combinations of the structural form disturbances), it

follows that

v sl
Yi % Y

is a random variable with finite mean and variance. Hence

plim v} P 3. =0 , (3.36)
N >

since 1 . v{ Z;l v, converges in probability to zero.
N

Combining equations (3.32), (3.33),and (3.34) we can write

15-1 _ -1 1o-1
(z;-a;) P 7z, = (z;-23,) P "(z5-35) + (z;-3;) P a;, . (3.37)

The probability limit of the last term in equation (3.37) can

be written as

: 1.-1 _
E{:E N.(E_i -Ei) P a, = v, Zp a, . (3.38)

Since Z_l a. is a finite vector, and since the v. (i=1,2,...,N)
P = —i

are independently and identically distributed with mean zero and finite

covariance matrix, it follows that

g
Vi %p 3

is a random variable with mean zero and finite variance. Thus

. 1
ﬁlffl (z;-23;) P a, =0,

since 1.v. Z;l é& converges in probability to zero.

Combining the above result with that given by equation (3.36), and
substituting into equation (3.37), we have shown that

plim (z.-a.)' P71z, =0 . (3.39)
N> o = =2 =L

We now consider the scalar Ei P-lz. which can be written as

15-1 ro-1
a:F "2y = [lzgpagy +agl P

[(Ei-.§£4-§i]

'5-1 1551
(zi-23) P (25 -28;) + 3P 73y

-1
+ 2P (2rey)
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Using equations (3.29), (3.32), (3.36), and.(3.39) it follows
that
v -1

lim 2z, P 7z. =0-. : 3.40
§+oo -1 =1 . ( )

From equations (3.27), (3.32), and (3.36) we have shown that

plim (1-s,+d,) =1, , ' (3.41)

N+oo
and from equations (3.39), (3.40), and (3.4]) we have shown that

plin k. =1 . S : (3.42)

N>

3.3.2 Proof of Asymptotic Equivalence

To prove that the 2SLS and J2SLS estimators are asymptotically

equivalent, we are required to show that

plim W[I(B)-5] =0 .

N->e

From equation (3.26) we can write this.requirement as

plim /N [J(a)-§_] = " ,plim (1 . P>-1 plim 1 Z'(Al +2:A2 -A3)§_

N> - N+ \N N+ VN *

- plim 1 .z, (A, -K)u + plim 1 .2'(A, -B)(E-W)

N+ VN N>
+plim 1 .z'MA,(v-w) $ =0 . : (3.43)
g_m N o A R i

A term by term evaluation of equation (3.43) now follows,
. ' '
Consider the first term in curly brackets in equation (3.43), viz:
] ~ ;
Z (Al +2A2 'A,S)E- % . g : (3.44)
We know that:

the iith component of A1 is l/ki g
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“(z-2) "y
the iith component of A2 is 5

ki(l -, ¢+ di)

(1 - iip—li_i)
and the iith component of A3 is 3

ki (1-s; +d,)

thus, after some algebraic manipulation, the iith component of the

bracketed term in expression (3.44) can be written as

'

1

Si 2 Py
(A1+2A2—A3)11= -kcl : +d) * k(l—s +d)
iv T 7 i 1 i 1
Let g;SP_la be the largest of the g& p-ly (1=1,2:5::80,

then it follows from equation (3.30) that
.  —— _ =1 -1 —
sljglo N.g._sP a, =ag ZP a

b

s
a finite positive definite quadratic form. It follows, therefore, that

plim N max a; g, =, (3.45)

N+o  1<igN =

Using a similar argument it can be shown that

lim VN max s. =0 . (3.46)
N+o 1gigN '

Combining equations (3.41), (3.42), (3.45), and (3.46) we obtain

plim /W max (A + 20, - A

).. =0 . (3.47)
N acs 1<igN 2 3raa

The jth component of the random vector (3.44) can be written as

N
izlmij(Al 28, - Mgy

4. v (3.48)

N
¥ Z (A + 28, - )y qusvyg

i
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where the mij (181,2,.sssN5 3 =1,2,...,K1-+g) represent the
nonstochastic part of the zij (the ijth element of Z), and the

vij(i =1,2,...,N; j=1,2,... Kl-bg) represent the reduced form
disturbance part of the zij (where appropriate). Without loss of
generality we can assume that the observations on the (g) explanatory
endogenous variables occur in the first g columns of Z; thus Vij =0

for all j>g (for all i).

Consider the first term in expression (3.48), viz:

+ 2A2 - AS)" u.

m, 5 (A 11 1

ijol

Il D2

i=1

Since the mij are nonstochastic, it follows from equation (3.47)

that

plim /N max mij(A1 + 20, - A =0 . (3.49)

Vi s
N+w  1gisN A
We now require the following theorem which is taken from Malinvaud

[27; pp. 322-323] and is cited without proof.

THEOREM 1.
Let Xip (t=1,2,...,T; T=1,2,....) be random variables. If

plim max Ix '= 0
T 1gt<T | OF ’

and if the u, are mutually independent random variables identically

distributed with zero mean, then:

1 T 1 T
plim T Z Xep = 0 and plim T }u X =0
T—>o t=1 T > t=
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Since each component of the 2SLS residual vector converges in
distribution to the corresponding element of the disturbance vector,

using Theorem I together with equation (3.49) if follows that

=0 .

>

N Lmyy N+ 20 - AU

1 N
plim z m. .
N->o & j=]

Now consider the second term in expression (3.48), viz:

A

(A Pii U Vij - (3.50)

+ 20, - A
1 2

1

o~z

i
The reduced form disturbances associated with the g explanatory
variables can be decomposed into a term (E_!f) which is proportional

to the disturbance term in the ith structural equation, and a term (E)

which is uncorrelated with u (e.g. see Nagar [37; p.577]), viz:
V=E!'+E' (3.51)

The ith row of v can be written as

1

! .
= uy ¥ e > i=1,2,...,N)

\Y%
==1

whereupon by substituting for vij in (3.50) we obtain
N A
DGl S PP AN
i=1
N A

* izl (A) + 24, - Adgg ugeys »

where wj denotes the jth element of gf

Let E(ui) = o2 then, since Gi-+ui as N > », it follows that the
(ui-—cz) are (asymptotically) independently and identically distributed
random variables with mean zero.

Since the wj are nonstochastic it follows, using equation

(3.47), that

plim YN max (A, + 2A
N > 1<igN

1}
o

2 - Agdis wj
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Combining this result with Theorem I it follows that

N

.1 o 2y _
plim & .Z VN (hy +2h, <A Y0 wj (u;u; -0%) =0
N> i=1
This result implies that

N
2 b A
plim = ) N(A, +2A,-A,).. ¥.0.u,
T N i=1 1 2 oG 1 L e N

N
_ .1 2
= E{:z N-izlvN(A1-+2A2-A3)ii wj o
= o plim = Ifmm +20 -MN).. ¥

i 1 " =%y T Seliz ¥s

N> i=1

= 0 from Theorem I

Since aieij-*uieij(as N-+«) which are mutually independent random

variables (i.e. u . 1s independent of uieij) it follows from

i+lei+1,3
Theorem I that

N

1 A )
plim N-.EIVN(Al + 2\, - A u.e.. = 0.

I T - Y
N N 4 2 371171 1]

This concludes the analysis on the first term in curly brackets

in equation (3.43). To summarize, we have shown that

. 1 a8
plim 1 . Z (A1 - 2A2 - As)u

0
N > /N - -

Consider the second term in curly brackets in equation (3.43),
V. Zi:

1 — A
- Z'My (A, - Tu , (3.52)

where the iith component of the term in brackets can be written as

-1 v -1
(z. -a.) P z. 1-z! Pz.)
e — 1 % e (3.53)
ki (1-s; +d.) k; (1-s; +d,)

(Az - As)ii‘




39

Expressing equation (3.53) in terms of a common denominator, the

numerator can be written as

1

15-1 -1 t -1
- (25-8y)F 2y by -sy2 Pzg -9y vdyzy P

Tz
—i
1

' -1 o
"2y Pz -ay) (-2 Py

The following probability limits can now be established:

lim N(s.z!P—lz.) = liml.x.' 1.X'X X. .Z-' 1P z. =0 ’
p p
i— =1 — 1| == - T =1\= —

using equation (3.40) and the knowledge that 5; Z;i X5 is a finite

constant;
: ¢ o=l s | P T, | z
EEQ<%.P (2;-2,)(2z; -2,) P &%"gngép @4‘%)] =0,

using equation (3.39);

and

| -1
plim N(d.z/P 2z, ) =plim 1 J¥! (1.P) %. .z (1.P) z. % =0,
N - o T T A A ==\ =

using equations (3.35) and (3.40).
Combining the above three results with equations (3.41) and (3.42)

we have shown that

. - -1 '
plim Ny -Agdss =% Py 3 - 20 %p Yy o (3.54)
and, by the same proof, that
plim N(T,),. = - x! Iy x, + v) It v, . (3.55)
N+ 11 ! —1 - —1

Expression (3.52) can be written as

-1 .z'x(& .x'*)'l XA, -T)4 . (3.56)

N N
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The rth element of
] -— A
X (A2 - A3)E

can therefore be written as

If X' l . X'X -1 % a
L Xr 5N X%
i=1

~y l.P -1
lxirli N

where X; . (r=1,2,...,K) is the rith element of x'.

zZ|-

<>
H.

c>
(=]

2
= (3.57)

Il ~>2

i

Rearranging the first term in expression (3.57) and taking its

probability 1limit in the context of expression (3.56) gives

Z

N 1\ -1
-1 . v f1,.XX . A o~
L L z lim x. <;—' X.. plim = Z Xe . =0
ZX "XX joi Noe 2 N > i N jo1 T -

This result is obtained by noting that the limit term is a finite

constant, whilst the Law of Large Numbers (e.g. see Malinvaud [27;

Proposition 12, p.322]) ensures that the probability limit term is zero.
Since each element of the 2SLS residual vector converges in

distribution to the corresponding-element of the disturbance vector,

and since each element of the OLS reduced form residuals matrix

converges in distribution to the corresponding element of the disturbance

matrix, it follows that

AL _1/\/\

Y4 (l' P/ %%

N

converges in probability to

1
vi I v (3.58)

Using equation (3.51), expression (3.58) can be written as

¢ o ot ol
(¥ +oy) Ip Chmy +8,)u,
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which upon expansion gives

1= 3 1 -1 2
E_ZP E_ui + ng ZP E_ui +oe; Zp e;u; . (3.59)

In the context of the second term in expression (3.57), the first

term in expression (3.59) can be written as

-l vptin £ ) x; e - Bu)] = 0
N+ N 3

I 2

1

Noting that the quadratic form in the above equation is a constant,
the Law of Large Numbers ensures the result.

In the context of expression (3.56) this result implies that

-1 1 -1 . i 3
Vs Loz L ZP Y plim N X, us
N> 1

Il ' t~12Z

ZX “XX = .
1

in a finite matrix, provided E(u;) is finite.

Since uy and e, are uncorrelated random variables (by assumption)
it follows, using Theorem I, that the second and third terms in
expression (3.59), in the context of expression (3.57), converge in
probability to zero.

Collecting results, we have shown that

plim Z'MX(AZ - Y\'S)Q

N >0

is a finite constant, and hence

- ! N -
5{:: 1.2 MX(A2 = Ké)g_ 0
JN
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The third term in curly brackets in equation (3.43) is
z'(A2 . KS)@ - W) . (3.60)

We know that

i=(y-20,

Ve (- M)y,
and

W=y - Mz

from which it follows that

(V- W =- M. (3.61)

Substituting from equation (3.61), expression (3.60) can be written as

z' (h, - T )X (_1_. X'X >‘1 <_1_. x'_@) : (3.62)
N N

Consider the term

; -
Z (A2 - Ag)X

which has jsth element given by

Z|N

N -1

X 4 l.P N
Z Zij!i <N' > Vi X5 0 (3.63)
where x. (s =1,2,...,K) is the isth element of X.

The first term in expression (3.63) can be expanded as

\-1
1.Xx'x
m 1 -~ .
| i (N > Li%is

Lo\
45 \N Zi%isVij o

whence the first term of the above expression converges to a finite

4 R
I 2

i

Il o~>2

3
N i

constant and the second term converges in probability to zero by the
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Law of Large Numbers.

The second term in expression (3.63) can be expanded as

%I A (1P tA
Mij Xis Yi\N AL}
i=1 *J

Z|™

N -1
At P ~
Z Xig ¥y <N- > Vi Vij . (3.64)

Using the argument preceding expression (3.58), and substituting for

vy from equation (3.51), expression (3.64) can be rewritten as

I-)l _?_JJ (wjui + eij)

From our analysis to date, it follows that both terms in the above
expression converge in probability to finite constants.

Since, from our initial assumptions, the term to be inverted in
expression (3.62) converges to a finite matrix and the term on its

right converges in probability to a null vector, we have shown that

pliml.z'(Az-K)(\?-G) =0 .
N->o 3= = -
VN

The fourth term in curly brackets in equation (3.43) is
MX Ké(x.' w)

which, using equation (3.61), can be rewritten as

E| -1
1. 2'X (_1_.x'x> X' T X <l.x'9 (l.xﬁ)
N N N N
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From our initial assumptions, the first three terms in round brackets
converge in probability to finite matrices, whilst the fourth converges

in probability to a null vector.

Using equation (3.55) the rsth element of the '"middle'" term

in the above expression can be written as

N
1 |
- N'.z Xir & ZXX X Xis
i=1
g1 ? x. vl It v, x
N = ir < P -4 “is ?

whence the first term converges to a finite limit whilst the second
term converges in probability to a finite limit. Thus we have shown

that

plim 1 . z'M, T, (v -w =0.
N > ;/N

Using the above results, we have shown that

plim W [J(8) - 8] = 0 ;

N >

i.e. the J2SLS and 2SLS estimators are asymptotically equivalent.

3.4 Asymptotic Normality of J2SLS t-Ratios

From equation (2.10) the variance of the J2SLS estimator of ©

can be written as

A 1 N i A /\‘— i} A P '
VU@l —— 1 [3;®-I®| |3,B-3® | . (3.65)
N(N-1) i=1




Using the definition of the jackknife it can be shown that

N -
J.® -3 - [N._é_- (N—l)_@_i—J . Ew@- (N-1) ] _é_i} . (3.66)

1

whereupon, if we let §i = %
i

I|'MZ

equation (3.65) can be rewritten as ,

N —
via@1 = (N-1)* | (§;

1
N(N-1) i=1

Using equations (3.25) and (3.66) we can write

P _ A _1 _1 ' A
8; =8 - N .P [z (A + 20, - AJu
(] A
- Z MX(A2 - Ag)E
+ Z'(Az - As)(_\_?_ - &)
' A N
+ Z MX/\z(l -w)l . (3.68)
N
- 1
Let g = N-.Z 8;
1=1

represent the terms within the square brackets in equation (3.68), then

equation (3.68) can be written as

~ oA <1 -1 =
8, =8-N".P" g,
and thus
N [— o ' N '
Z(e -e)<e -é> . Z<e-e.+N1 Plg(e—é.+N_l.P_lé>
. -1 —=a/\-4 — . — -1 - =i E=3
i=1 i=1

Expanding the right hand side of the above expression gives
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N : N
Y [6. -8)\8, -8 -.1_Z< -8) g pt
i=1 —1 — J\ — - N = —1 —] =
N . N o _
- %. ) P'1 (Gi -6) += P_l__gf p-l
i=1 N?i=1
Since
N A A NA ~ _1_
L ®; -8 =18 -N=-P"g,
i=1 i=1
we can write
N N
] & -Dget-- Trtgg et
i=] i=1
From equation (3.14) it follows that
N N
A A A A 1 = | 1 -1
izl ©-9)0 -9 =izlp g & P,

and using the definition of g; as given by equations (3.15), (3.16), and

(3.17) we can write

N ,
(Eifi T 121 E"i -Wj +u;)h, 4 “iia.] [E’i ~W; *u;)h; 4 uiii]

Il 12

Letting éi = (Qi - Qi + ﬁi) and expanding the above terms

individually we obtain the following four expressions:




N
~ A A 2 1
L vy -w; +3) hih
i=1
N A ~ ~ A ]
L (Vg -wg +ug)ushe g
i=1
N |
Lug (0 -0+ 85 by
i=1

47

Loy
e; (A5 (A)) ;5 (2; -35)zs

/\2 ' .
izlei(Az)ii(AS)ii 25025 -25)" 5

A A 1
1eiui(A3)ii(A2)ii(E¢ -a;)(z; -2y)

~2Z

i

1

€385 ()5 (A4 (2

z; - a.) z

ii ot g |

—a.)'

4. (A a;

11 25 (z4

2
2)ii 1 =]

1
i s Lol
11 —1—1

>

105 (A)) 55 (4)

3

5 (A

110D 55 (25 -a3) (25 -ap)'
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Ig Ao 1 _ Ii] A2 A 2 1
LY 1)y T us ()55 ( ) (25 -34)
1=1 i=l
1§A2 A A 1
- LU () ()5 (2y -35)2
i=1
N 2 A A '
- L0 ()55 ()5 240z - 8y)
i=1
N . .
* .z ui(Al)ll Z3Z3 5
i=1
where, as before, the ii subscript on a matrix indicates the iith

component of that matrix.

Gathering terms, we can write

N N
1 A A 1
izlgﬁgd - Z SLUN 5 + 28385 (g 13 ()5 +05 (A5 i](Z5-23) (25 -3y)
N ) 2 A A
* izl o5 ()55 - 2e5u; (A5 (A)y5 + GFCADT;| 2324
N p A A AN AN 2
* 121 e (Ng) 5 (M) gy - e58; (M) g (A)) g5 +uye; (A5
~nN2 1
=~ Uglho) el g | L2y =234025
4 ) Lo 2 o
* iz €1(Ap) 55 (Ng) 5 + 8505 (M) -e5u; (g5 (Ay)s5
- a;(AZ) Chdes | BB = E " (3.69)
We define the following matrices
Ry = -9 (-28)" =uu’,
R, = FI—MX) (X_Z@J[-(I-Mx)(l_z@]' = (I-Mx)g g'(I-MX) 3 g (3.70)
_ T A 1 B A Ay _
and Ry = (-2 [A-MO-28)|' = G E -
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which allows us to rewrite equation (3.69) as

N o~—m2Z
[oa
Y]
1]

L . .
Z (I-MX)[AZ(dlag Rl)A2+A3 (diag R2)A3

i=1

+

21, (diag R)AL] (I-M,)Z

+

z' [A,(diag R,)A, - 2A,(diag R)A, + A (diag R))A, ]2

+*

1 . .
Z (I-My) [As(dlag R2)A2 - As(dlag R3)A1

+

Az(diag RS)AZ-Az(diag Rl)Al]Z

+

1 . .
Z [A2(d1ag RZ)A3+vA2(d1ag R3)A2

Ag(diag RPA, - Ay(diag RDAI(I-MZ , (3.71)

where (diag ) denotes that the relevant matrix has all off-diagonal

components equal to zero.

If we also define S

' 1
g =2+ 2T -MA,

- 1 1 _
and 82 = Z A2 + Z (I MX)A3 3

then equation (3.71) can be rewritten as

I o~—Z

| R . ! . 1
g:8; = Sl(dlag RI)S1 + Sz(dlag R2)82

i=1

. ' . 1
- Sl(dlag RS)SZ - Sz(dlag RS)SI s

We also require é_which can be written, using equation (3.68), as

AL 1 ~ 1 ~
g =1 (A1-+2A2-A3)E_— Z MX(AZ-AS)E
+ 2, - A -W) + Z'MA (V- W)
i.e. g= Slg_- Sz(ﬁ_- W,
and hence

= e ' 1 _ 1 . '
22" = SRS + S,R,S) - SRS, - SRS .
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Upon substituting the above results into equation (3.68), and then

into equation (3.67), we obtain

VI = -1 .t [s
s =

Pt
[a W
[N
[
(4]

- It is shown in Appendix B that

brackets in equation (3.72) converges
' 2
o° Ip
in'probability as N> e .

It follows from equation (3.72)

-1

plim V[J(8)] = o2 X -

N>

since (N-1)/N-+>1 as N+ o ,
Since J(§) has been shown to be

it follows that, asymptotically,

(J(ej) - 8.)

J_ ~N(0,1)
vﬁacﬁj)]

Z|—

'
2

\ ot -1 -
. R3) Sj] P . (3.72) A

the expression in square

Z| -

=

N

+
|-
) 3
N
o
N -

zZ| -

to

that

asymptotically equivalent to &

(§=1,2,..., K; +8)
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CHAPTER 4

COMPUTATIONAL ASPECTS

4.1 Computer Algorithms and their Certification

From equation (2.6) the 2SLS estimator of 6 can be written as

8= zrxexexn ez 2 iy (4.1)

In all but the simplest cases, equation (4.1) must be evaluated
using a computer. Matrix manipulations can be performed using either
standard algorithms designed for a specific computer and usually
incorporated in the software library, or machine independent aiéofithms
published in computer programming journals. Alternatively one could
write one's own algorithms although this might be inadvisable for the
more complicated operations such as matrix inversion.

In all computational work in this thesis, matrix manipulations
were performed with algorithms written by the author, except for the
matrix inversion algorithm. To perform inversions an algorithm
written by Devine [11], which inverts a symmetric positive definite
matrix by the Choleski decomposition method was selected. All programs
were written in Algol 60.

Certification of Devine's algorithm was carried out by the
author. This was performed by multiplying the original matrix by its
calculated inverse and then obtaining the maximum absolute deviation
of elements from the unit matrix. These maximum absolute deviations
are given in Table 4.1 for the eight different data matrices which
are inverted during the Monte Carlo study in Chapters 6 and 7. The
column headed K represents the dimensions of tﬁe matrix (i.e. the

number of exogenous variables in the model), whilst the column headed A
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denotes the theoretical pairwise correlation between the K variables.

The sample correlation matrices are given in Table 6.2.

Table 4.1: Maximum Absolute Deviations (M.A.D.) of
(X'X)_I(X'X) from the Unit Matrix

K A M.A.D.
5 0.00 5.46 x 10712
5 0.45 8.19 x 10712
8 0.00 9,83 % 10~
8 0.45 2.46 x 10711
8 0.90 1.56 210"
11 0.00 2.91 x 10711
11 0.45 2.18 x 10711
11 0.90 2.18 x 10”11

The accuracy of the matrix inversion, as reflected by the
maximum absolute deviations given in Table 4.1, is certainly satisfactory
for our purposes.

For K = 5 and A = 0.90, whilst the moment matrix of predetermined
variables was inverted satisfactorily, a further inversion incorporating
stochastic matrices which is required at each replication in the Monte
Carlo experiment exhibited substantial "inversion errors' and
consequently "inconsistent'" results were obtained. This problem is
discussed in Chapter 6.

A machine independent pseudo-random number generator devised
by Pike and Hill [43] was used for generating uniformly distributed
pseudo-random numbers for the experiments in Chapters 5, 6 and 7.
Favourable evidence of randomness for this algorithm is given by
serial and poker tests conducted by Pike and Hill, and by frequency

tests in the certification by Sullins [65].
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The Box and Muller [6] transformation for generating normally

distributed pseudo-random variates is given by

A
1 (-2 loge rl) sin Zﬂr2

1

2

) (-2 loge rl) cos 21Tr2 .

bl
1}

(4.2)

S —

=
1}

where X, and X, are two uncorrelated pseudo-random standardized normal
variates, and T and r, are uniformly distributed pseudo-random variates
defined on the [0,1] interval. This transformation produces exact
results conditional upon the accuracy of evaluation of the sin and cos
functions and the correct distribution of T and r,. When used in
conjunction with a multiplicative congruential pseudo-random number
generator however, Neave [38j has shown how the transformation.may break
down. Amendments to equation (4.2), as suggested by Chay, Fardo and

Mazumbar [9], were used in this research, therefore, to avoid Neave's

objections. With these amendments the transformation becomes
X, = (-2 log_ r );5 sin 2mr
1 e 2 e

where it should be noted that only the sin transformation is used and
the uniformly distributed variates have been interchanged.

The Monte Carlo study reported in Chapters 6 and 7 necessitated
the generation of 4,400 pseudo-random standardized normal variates
(this figure excludes the additional normally distributed variates
required to calculate the power functions in Chapter 7). The Kolmogorov-
Smirnov test was conducted to test for any significant divergence
between the theoretical (standardized normal) and empirical distributions
of the pseudo-random variatés.’ The maximum absolute value of D.
(the difference between the two distributions) was 0.01306. At the

% level of significance the hypothesis of equality cannot be rejected.
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The pseudo-random normal variates were subsequently transformed

into pseudo-random bivariate normal variates by using the transformation

7 = 5
il T

1 e sl
Z, = w222 (6x1 + vVl - 8 x2) "

where Z, and 22 are correlated normal variates with coefficient of

1
correlation equal to §. w4 and w,, are the specified population
variances of Z1 and Z2 respectively, and the covariance of Z1

and 22 is given by 6“12'

4.2  Computing J2SLS Parameter Estimates

In order to apply the jackknife to the 2SLS estimator we must have
some method by which the ith observation can be extracted from
equation (4.1). Clearly one could calculate equation (4.1) N times
using a 2SLS program and omitting a different observation on each
occasion, but this would be a tedious and computationally expensive
procedure especially for '"large'" N and/or K as it would require
inverting both matrices in square brackets in equation (4.1) (minus
one observation) at each iteration. In addition, rounding errors from
the inversion algorithm may lead to a build-up of inaccuracies.

In Chapter 3 we derived equation (3.13) for calculating the 2SLS
estimator with the ith observation removed which obviates the need to
perform matrix inversions additional to those required for 2SLS with
all N observations included. This formula was checked by calculating
the J2SLS estimator both ways with a test program and noting that
the parameter estimates were identical to at least the sixth decimal

place.



55

4.3 Computing Exact Results

Calculation of the exact moments of the 2SLS estimator, and
exact bias in the case of J2SLS, requires evaluation of the confluent

hypergeometric function
1F1 (@Y 3 X) s (4.3)

Although tables are available (e.g. see Slater [64]), relatively few
values of o, Y and x have been tabulated. In general, therefore,
the function must be calculated by direct summation of an infinite
series or via an asymptotic approximation.

An algorithm for calculating the confluent hypergeometric
function with complex parameters via the method of direct summation
has been written by Relph [49]. Thacher [69] in his certification of
this algorithm mentioned its inefficiency for real arguments.

A problem frequently encountered in this thesis was that of
relatively small a and Y, but relatively large x, whence evaluation of
equation (4.3) is characterized by slow convergence. When this problem
arose it was resolved by using an asymptotic approximation to the
confluent hypergeometric function, which for integer o and Y = 0o + 1
contains a finite number of terms. A check on the error involved
in using the approximation can be made if o is an integer and, if
necessary, a correction made.

For a model containing just two endogenous variables, Richardson
and Wu [55] have derived the bias of the 2SLS estimator (B) of B in

equation (2.5) as

R WA AB-W T b S X v
B(B-B) = i i 12 o 1F1<—2'1 i 2y _) . 4.8

Waa




2 =] [T 1 =q '
where U< = Wyy = Moy XZ[IN- Xl(X1 Xl) X

1 ] X2 Ty, s the

concentration parameter so named because for every € > 0
lim  Pr(|R - B]>€) =0 .
p2>

All other notation was explained in Chapter 2.
Clearly o= (K2/2 - 1) is an integer if K, is even.
From Appendix C (equafion (C.1)) the asymptotic (in uz)

of the confluent hypergeometric function (for y = o + 1) can

(o]

1 ;o

Fp @ar i~ 2] (-0 () , (4.

r=0 e

and thus the asymptotic approximation to the bias (4.4) is

. W, ~B-w (K,-2) o K T
EB-p)~- 22122y ( . —2> <i> |,
22 u?2  r=0 2/, n?

The error incurred by applying this approximation for finite

integer o is given (from Appendix C (equation C.8)) by

WyB-Wi,  _u22 <K2> ( 2>k 1 (4.
P N Ll o
w 2 i

where k = (K2 - 2)/2.
It is interesting to note from equation (4.6) that for

u? and K, = 2 the 2SLS estimator is unbiased.
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expansion

be written as

5)

lllargeﬂ

Thus provided the asymptotic approximation of the confluent

hypergeometric function terminates after a finite number of terms,

equations (4.5) and (4.7) will ensure exact evaluation of this function.

The gain in computational efficiency will be particularly marked

when the summation of the infinite series required for direct evaluation

of the confluent hypergeometric function is slow to converge.
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For a non-integer, equation (4.5) is an infinite series, although
it can be truncated after (say) n terms. “If thié is done the error
_involved in truncating fhe'infinite series after the nth term will
not exceed the (n + 1)th term, and will bé of the same sign as the
(n + 1)th term (Luke [25; p.127]).

In this thesis, when & is not an infeger the confluent
hypergeometric function had to be truncated in such a way as to ensure
that aii values of bias and mean squére error were éorrect to at least
the number of decimal placés given in the text. .For integer a, all

results are "exact'.
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CHAPTER 5

THE EXACT BIASES OF THE TWO-STAGE LEAST SQUARES
AND JACKKNIFE TWO-STAGE LEAST SQUARES ESTIMATORS

5.1 Résumé of "Exact' Studies

In his pioneering work on the exact finite sample distribution
function of the 2SLS estimator, Basmann [4] demonstrated analytically
that for a two equation simultaneous equations model, under certain
conditions, the moments may not exist (i.e. they may not be finite).

Prior to Basmann's [4] paper, Monte Carlo studies of the relative
properties of simultaneous equations estimators had frequently used
as their objective function the mean square error in order to compare
the relative properties of the estimators. Basmann remarked that an
objective function which involved moments of the estimators would
have little significance if the moments of the estimators did not
exist. In addition, non-finite moments could give rise to "outliers"
when this form of objective function is used in Monte Carlo studies,
and thus uncritical rejection of these outliers is not a valid procedure.

On the basis of his early work, Basmann [4] conjectured that the
moments of the 2SLS estimator exist up to the order of over-identification
of the equation being estimated. Basmann's proof was only valid for

a two-equation model with K, = K

1 2 = 3, although

= 2 and K1 = K2

in a later paper (Basmann [5]) he extended it to a three equation model

with g = 2, K. =1 and K2 = 3.

]

Kabe [21, 22] greatly simplified Basmann's derivations, and
this was followed by analytical proofs of Basmann's conjecture for

g =1, K, > 2, by Richardson [52] and Sawa [58].

2
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For the general case (i.e. g and K2 both arbitrary) Mariano [28]
has provided a proof of Basmann's conjecture for the even-ordered moments
of the 2SLS estimator, whilst Hatanaka [17] has shown that the same
conjecture provides a sufficient condition for the existence of the
odd-ordered moments.

Sawa [58] and Richardson and Wu [55] derived, independently,
the distribution function of the OLS estimator, and then showed how
the distribution function of the 2SLS estimator could be derived as
a corollary to the derivation of the OLS estimator. For g = 1 the
exact moments of the coefficient (B) of the right-hand side endogenous
variable in equation (2.5) have been calculated by Sawa [58],

Takeuchi [67], and Richardson and Wu [55] for both estimators. From
Richardson and Wu [55], the first order moment of the 2SLS estimator

can be written as

. W, B - W 2 K K p?
E(B - B) = - heiale LR s 1F1 21 5 2 ?'—_) (5.1)
W5y 2 2 2

Second and higher order moments take a more complicated form
and the interested reader is referred to the literature previously
cited.

The fundamental parameter in all '"exact' studies is the
concentration parameter p?, and not the sample size which does not
enter equation (5.1) explicitly, although it is implicit in u2.

As p? increases indefinitely, the 2SLS estimator of B converges
to its true parameter value (i.e. it is a consistent estimator).

A sufficient, but not a necessary, condition for u2 to increase
indefinitely is for the sample size to increase indefinitely.

In general, the concentration parameter for the jth equation
is defined by

2 -1

. = trace (M, ) .
5 M5 2, )
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1 ] ' b 1
where Mj = H22 ij [T - le(lele) le] X2jH22
and 2_1 is the covariance matrix of non-normalized endogenous
*
variables included in the structural equation.
Essentially, therefore, the moments of the 2SLS estimator are
derived in terms of '"'nuisance'" parameters. Sawa [58] assigned ''reasonable''

values to these nuisance parameters in order to ascertain the relative
w
e

w
22
2SLS is an increasing function of |p| and that frequently it "is not

importance of N, p and KZ' He observed that the bias of
negligible'". In addition, he found that the distribution of the 2SLS
estimator was often considerably asymmetric.

Mariano and Ramage [29] considered the effects on 2SLS of
excluding relevant exogenous variables and including extraneous
exogenous variables in the equation to be estimated. Mathematical
complexity precludes useful analysis of the former specification
error, but under the latter type of misspecification both the
concentration parameter and the degrees of freedom are smaller than
for a correctly specified model. The decrease in the concentration
parameter increases the bias and mean square error of both estimators,
whilst the effect of the decrease in the degrees of freedom is

indefinite and depends on other unknown parameters in the model.

5.2 The Concentration Parameter and a Change in Sample Size

Let uﬁ and u;_l denote the concentration parameter based upon N

and (N-1) observations respectively, then

2 24 ' v [ 1 il v
My "B Loy %5 [} AT TR sz-ﬂzz el

and

.y **'*—1*'*
Wl T % Bt [N G A Py R s 5
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where the asterisk superscript refers to the relevant data matrix
with one observation removed. Without loss of generality we assume

that the Nth observation has been removed, i.e.

* *

& X,

Xl = ' and X2= '
&4 .5,

where X and X, are K1 and K2 dimensional column vectors representing
the omitted observation from X1 and X2 respectively.

Noting that

%' %

1 1
X X)) = KX -xx) ,
*! % ; ‘
Xy X)) = Xy X, - % %),
*! % . '
and (X} X)) = (X; X, - x; x5)

equation (5.3) can be written as

>~

2 o -1 ' ' '
Waa %2 I3 {(Xz 2 = Xp¥p )
1 ! 1 1 1
= W X =X Oy K - 4K )y s - $ X0
It can be shown (see Appendix A) that

1 _1 1 1 _1
AT P e e Ll S U
= %

' ' -1
Lome O - B0 2y

-1

1
(X; X -x%) )

Using this result, and after considerable algebraic manipulation,

equation (5.3) can be written as

2 2 1 -1

1
2 N-1 ~ UN i w22 122 (52 = g )(52 i i) _1122 > (5.4)
(1-¢)
where c=x, (X,'X )—1 X 0<c<1
=1 3 M | =1 ?
n 1 1 -1
and dy= (X2 Xl)(X1 Xl) X
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Since T,

_quadratic form, and as Wy and (1 - c) are both greater than zero, it

; (52 - g)(zz - g)'EQZ is a positive semi-definite

follows that

2 2
uNZUN_l 3

i.e. the concentration parameter is a monotonically non-decreasing .

. function of sample size.

5.3 The Exact Bias of the Jackknife Two-Stage Least Squares Estimator

5.3.1 Introduction

Since only u? is dependent upon changes in N, the bias of the
2SLS estimator of B with the ith observation omitted (gi) can be

written, using equation (5.1), as

. WA,B - W n2 K K n?
E(B; -8) = - —uexp.(— ) R (—2- 1; -2, N‘l). (5.5)
. mzz 2 2 2 2

Thus, when the exact bias of the 2SLS estimator can be calculated,
it is relatively easy to calculate the exact bias of the J2SLS

estimator.

Differentiating the absolute bias with respect to u§/2 , and
utiliziﬁé the contiguity relations of the confluent hypergeometric

function (e.g. see Slater [64; p.19] gives |

e -8 | W, B - W 2 " K 2
——— - R Fil -1 2y .0 PR
du N/2 Wy ,Kz 2 2 2 :

From equation (5.6) is is apparent that the absolute value of
the bias is a monotonically decreasing function of the concentration
3yl : : - . . .
parameter uN, proylded B > wlz/w22 . I£ B = wlz/w22 no bias exists,

whilst if B < wlz/mzé it follows that the actual bias is a monotonically

decreasing function of p2. Similarly, the mean square error of the
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2SLS estimator can be shown to be a monotonically decreasing
function of the concentration parameter (see Owen [40]).

Earlier in this Chapter is was shown that the concentration
parameter is a monotonically non-decreasing function of sample size.
Thus, combining these two results, it has been shown that the bias
(and the mean square error) of the 2SLS estimator are monotonically
non-increasing functions of the sample size; conditional, of course,
on the exogenous variables.

We have already seen that the bias of the J2SLS estimator can

be written as

N
E( - 8) + (N-1) [E(ﬁ-g) -rE L@ -0t (5.7)
i=1

It follows from the above result that the term in square brackets
in equation (5.7) will be either zero or opposite in sign to E(§;—§).
Consequently, application of the jackknife will have one of three

possible effects on the bias of the 2SLS estimator:

ks The absolute bias decreases but its sign remains unchanged;
2. The absolute bias decreases and its sign changes;
3 The absolute bias increases and its sign changes.

If the bias decreases slowly or approximately linearly with
sample size, then it seems reasonable to expect possibilities 1.or 2.
to occur. When the bias is decreasing rapidly with sample size however,
there could be a tendency for the jackknife to '"over-correct' for
bias and possibility 3. could occur.

Since the above eventualities are somewhat vague, we turn from
heuristic analysis to consider an analytical investigation of the
conditions under which jackknifing is unlikely to decrease the
bias of the 2SLS estimator. First we consider the exact bias of

the 2SLS estimator of B as given by equation (5.1) for the special
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case of Kf 2, then we consider a more general approach using

Kadane's [23] approximation to the bias of the 2SLS estimator.

5.3.2 Effect of Jackknifing on the Exact Bias of 2SLS when K2= 2

From equation (5.1), if K2= 2 the exact bias of the 2SLS estimator

of B degenerates to

EB-B) = - ————— e s (5.8)
since 1Fl(O,l,uz/Z) =

Expanding the exponential term in equation (5.8) and setting

p = flz— gives
®
2 2 - \E
E(B-B) = -(B-p) | 1 + (—“—>+<~P——> L (“—> L,
2 2 21 2 !

(5.9)

Since p? is of order N, when K2= 2 the bias of the 2SLS estimator
is clearly a function of terms (with alternating signs) of increasing
powers of order N. Whilst alternating signs will not weaken the
jackknife's bias reducing properties, equation (5.9) clearly contravenes
Quenouille's basic assumption regarding the application of the
jackknife, viz: that the bias can be expressed as an expansion in
terms of increasing powers of order (%J . This suggests that application
of the jackknife technique is unlikely to be successful if K2= 2.,

When K2> 2

2
T Rt e
11 2 2 2.2 2
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takes the form of an infinite series and the bias cannot be expanded
into an expression such as equation (5.9). We can however fall
back on equation (4.6) which gives a ''large" u? expansion of the bias,
equation (5.1), in terms of increasing powers of order %—, provided
K2> 2 (although if K2 is an integer this expansion will terminate
after a finite number of terms). This suggests that for "large" p? and
K2> 2, application of the jackknife technique could reduce the
bias of the 2SLS estimator.

Both of the above observations will be investigated by means of

a simulation experiment in Section 5.5.

5.4 Jackknifing the Approximate Bias of the 2SLS Estimator

Kadane [23] has derived the leading terms of the first two
moments of a distribution approximating the exact distribution of the
2SLS estimator, although it should be emphasized that the moments of
approximate distributions are not necessarily identical to approximations
to the moments of the exact distribution.

Nagar's [37] work in this field carries a similar interpretation.
Kadane's approximations are based on a '"small'" o asymptotic
expansion of the moments of the k-class estimators (N.B. in our notation

0= wll-m12p4-w22(8-p)2 and is not to be confused with the 0 used
elsewhere in this thesis. The definition of o0 given here is restricted
solely to this Section). For N fixed, u?-+« if 0>0 and it can be
shown (see Sawa [59; Appendix C]) that Kadane's (and Nagar's) expansion
coincides with "large" u? expansions of the exact moments, provided

the latter exist.

Kadane [23] has approximated the bias of the 2SLS estimator by
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E(8-9) = 02(L-1)Qq + 0(0%), : - (5.10)

where L==K2-g, i.e. the degree of,éveridentification of the eduation

. being estimated , LR ¢ 3
W= [XI: XI]’
Q= (w!
)
3=.-1N-E[Y:X1] u
8
and 0 = |..
Y

'
Let §i denote the 2SLS estimator of 8 with the ith observation

removed then,
EB-8) = 0*(L-1)Q;q + 0(0®) , - (5.11)
s 1 . .
where Qi = (W'W - Eigi)—l and Wy is a K, + g dimensicnal column vector
representing the omitted observation from W.

From Appendix A, it can be shown that

B (A R A A Qi Q
Q = (W'W) 1 . : e 5 # et
Lm0y 1owy
and hence
A~ . Q!V_. .“.'_! Q
E(d, - 0) = o?(L-1)Qq + 0%(L-1) ——— g
SR o l-w:' JW . e
-4 4
] 1 o CQw. w! Q : L '
=E@-0) +0%(L-1) ——=—q , ©(5.12)
o R { 1 -!’—::l Qﬂl : ¥

where terms of higher order in o have been neglected;

From the definition of the jackknife, and using equation (5.12),

b}

. we obtain

el e vt
E[0(8) -0 = Ne(B-0) - By g, -0)
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A a ,(N-1) N Qw.w! Q
= NE-0) - (N-1)E(B - 9) - 02 ] (L-1) ———
T Loy
(N-1) N Qiiﬁi'q
= E(8-0) - 02(L-1)— 2 q . . (5.13)

1

For jackknifing not to increase the absolute value of the bias

of the 2SLS estimator over all parameters being estimated, we require
E[3(®) -81 E@®) -0)" - E[§-0] E[B-8]° | (5.14)

to-have all main diagonal components < O.
Consider the last term in equation (5.13) which can be rewritten

as

(N-) N Qu.w:Q (N-1) N | wow'

0? (L-1) EJ == __g=02@-1)—Q) |—| Q@

N i=1 1-w.Qu, _ N o i=1fl-w.Qw, |
|

Let A be an Nx N diagonal matrix with iith component eqhal

to .‘?.iQ.Vii ,» then

I

is an NxN diagonal matrix with iith component equal to

1

[
1 -w, ’
s 1

and hence
N'.Eiﬁs ' -1 "
= =W [I-A]"W. : (5.15)

* 1
i=1 1-w, Qv

Thus equation (5.13) can be rewritten as -

E[J(D) - 8] = §_ ) - oZ(L-1)£§§ll Q' [1 - A1 ea (5.16)
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and upon substituting into equation (5.14) we obtain
ED® - 0JEL D - 01" = Etﬁ—giﬁip“_—_e_]'
’ 02(1,-1)9‘—&1—) Qw' [I A-.A]"'l Woq E[§-'g]'
- 02(L- 1)(N D Es- ola" ai' [1-41""wg
+ o (L- 1)2(”N” Q' [1- 4] WQqq Q' (-4

which can be rewritten as

EN(®)-01E(®)-0]" = o (L-17 Q' E—i“’—gﬂcx-m“] WQqq' Qu'

-8R o,

where 02(L-1)Qq has been substituted forvEﬂi-gj.
Thus, for the jackknife not to increase the bias of the 2SLS ay

estimator, we are required to show that

| of’(L-nz'Qw'E ) (1-n) :I Waa q' Qu' I:I-(—”—Nl)— “'“"ﬂ WQ

- o (L-1)? Qg_g_' Q APk (5.17)

has all méin.diagonal components - 0.
~If we denote the iith component of A by Ai’ then Teekens

[68; pp-103-106] has shown that, in general,

and it follows that

& - _Q%l_)_ (I-A)'IJ <0, (=1, 2, ... , N) (5.18)
: ii

where the ii subscript refers to the iith component of the matrix

formed by. those .terms in the square brackets.
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Thus, when equation (5.18) holds,

- Qn' I-I - (1) (I-—A)A'l] WQ

must be positive definite.

We now require the following theorem from Rao [46; p.37]:

THEOREM
Let A and B be real mxm symmetric matrices of which B is positive °

definite. Then there exists a matrix R such that

1 -1

A=rR"1m! anda B=r'"1R

where A is a diagonal matrix.

Using this theorem, there exists a matrix R such that
-R"Qi’" [1 - (—NI;—”- (I-A)'l] WQR = A
and R'QR=1,

where A is a diagonal matrix whose main diagonal components are positive

"and equal to the roots of the equation
| - o' I_I -%Q(I-A)‘l] WQ - Q] =0,

o | - Q' [:I-(—N;,—l—)-(I-A)'l]w.Q%-u|=o.

Thus, from equation (5.17), for the jackknife not to increase bias
we'require

@12 ®)7! r'QrR Tqq" (") TR'QRR™

N

JR'QW' l: - (N;l) (I - A)—l:[ WQRR—l

= ot @-1)? [(R')—l R 'Rt @Y - @7t ar Mg R'_lAR—ﬂ

- ota-n? @) 7w [: ot QEH, o' A)_‘I‘J W QRR lqq'R'7!

to have non-negative main diagonal components. This cannot be shown but the
sum of squared biases will be reduced in the general case and, in the case of

two included endogenous variables, the squared bias of the endogenous °
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.

coefficient estimator will be reduced if the roots Ai, of the matrix

- QW' [1 SN (I—A)‘l:l WQ*

are such that

0gA €1 . <R S I T (5.20)

Since this condition is dependent upon W it is not possible to
give a general statement concerning its existence. However, a

sufficient condition for equation (5.20) to hold is that

E- LR (I—A)‘f]”z 1, G
: . 111

" (N-1) 1

1y 2, wss 3 H)

i.e. , -1¢<1
B, d=gy Qi
i ' * N+1 | s :
or _Vii Q_\!ls'—z-N— . (1'—‘-1, 2y wiwie s N)

It is known that

N . .
| o : (] =1 1 _ :
izl w, Qu, = trace WWW) "W =K +g ,

" . " ' . ‘
and so the '"avorage' value of W QE& is (K14-g)/N.

But for
Kl+g. N+1 N+1
N > T or identically K14-g'2 ) s

the sufficient condition cannot hold.
-This suggests that when the number of observations is not at.
least twice the number of included variables, the_ja;kknife should

not be used.
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5.5 A Comparison of the Exact Bias of the 2SLS and J2SLS Estimators

The analytical results derived in this Chapter can be summarized

as follows:

(1) for a structural equation containing just two endogenous

variables, if K, =2 jackknifing is unlikely to be successful;

2

(ii) in general, even when K, > 2 and u? is ''reasonably large",
g

2
jackknifing is unlikely to be successful unless the number of observations
is at least twice the number of variables included in the equation being

estimated.

It is apparent from these results that analytical guidelines on
criteria for applying the jackknife to the 2SLS estimator are rather
vague. A series of experiments was conducted therefore to observe
circumstances in which the jackknife is successful in reducing the
bias of the 2SLS estimator.

The experiments compare the exact biases of 2SLS and J2SLS
as given by equations (5.1) and (5.7) (using equation (5.5)) respectively,
but take no account of any resulting change in variance.

The exogenous variables were generated as pseudo- random numbers
from the uniform distribution in the range 0 to 100. A specified
level of theoretical multicollinearity (A) was applied such that the
theoretical pairwise correlation between exogenous variables was the
same for each experiment. A took values from 0.0 to 0.8 in steps of 0.2.

The relative biases of the 2SLS and J2SLS estimators were calculated
exactly for specified values of N, Kl’ K2, Wy5s Wy and the sub-vector
of reduced form coefficients, Thoe

The values of w,, and w,, were set at 0.0 and 1000.0 respectively

12 22

for all experiments. From equations (5.1) and (5.5) it can be seen
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that w5 and w,, enter the expressions for bias only through p.

Consequently a change in either or both of these parameters only has a
simple multiplicative effect on the biases and can be ignored without
loss of generality.

K1 was fixed at 2 for the majority of the experiments, whilst

K2 took on values of 2, 4 and 6. N took values of 10, 20 and 30.

Tables 5.1 - 5.7 give the results of the experiments. The

relative bias of both estimators is given, together with the corresponding

2
N

Table 5.7 gives the results of experiments designed to test the

value of the concentration parameter, u

conclusion derived in Section 5.4, viz: if the number of observations is
not at least twice the number of included variables the jackknife
should not be used. For the purpose of these experiments N and K2

were fixed at 20 and 4 respectively, whilst K, took values of 4, 6 and 8.

|
An asterisk indicates experiments where the jackknife did not
reduce the bias of the 2SLS estimator.
It was suggested in Section 5.3.2 that if K2= 2 jackknifing may
not be successful in reducing bias. From Tables 5.1 and 5.4 it is
apparent that jackknifing is indeed generally unsuccessful. In addition,
in Section 4.3 it was shown that for "large”lJzand K2= 2 the 2SLS
estimator is ''mearly'" unbiased. The results in Table 5.4 indicate the
deleterious effects of using the jackknife under such conditions, even
though uﬁ is not very '"large'.
For K2> 2 application of the jackknife, in general, produces a
fairly substantial reduction in the bias of the 2SLS estimator. Note
that for fixed N, J2SLS does not exhibit a consistent pattern of bias
as A increases, whereas the bias of 2SLS always increases with increasing A.

In general, except for very small values of uﬁ , jackknifing

changes the sign of the 2SLS bias.
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The results in Table 5.7 indicate that it would be unwise to
apply the jackknife to the 2SLS estimator when the number of observations
is not at least twice the number of included variables. For ''small" u§
the jackknife produces a substantial reduction in bias, but the ensuing
Monte Carlo study will indicate that there is likely to be a substantial
increase in the variance of the J2SLS estimator when u§ is ”small".
However, since uﬁ is never known in practice, it would be unwise to use
the jackknife when this condition prevails.

These exact results suggest that the jackknife can be most useful
in reducing bias when the equation being estimated is "well' over-
identified. It would certainly be unwise to use the jackknife when
K2= 2 o when the number of observations is not at least twice the

number of included variables.




Table 5.1: Exact Relative Biases of the 2SLS and J2SLS Estimators
K2= 2 Moy = (0.5, -0.5)
N N= 20 N=30
Relative Bias Relative Bias Relative Bias
2SLS J2SLS 2S8LS J2SLS 2SLS J2SLS
0.0 5.8775 -0.0529 +0.1873% 8.9645 -0.0113 +0.0592% 12.0464 -0.0024 +0.0179*
0.2 4.7927 -0.0910 +0.2156% 7.4405 -0.0242 +0.0924% 10.3583 -0.0056 +0.0317*
0.4 3.5482 -0.1696 +0.2259* 5.6726 -0.0586 +0.1418*% 8.3496 -0.0154 +0.0611*
0.6 2.2820 -0.3195 +0.1421 3.7775 -0.1513 +0.1732% 6.0012 -0.0498 +0.1189*%
0.8 1.0954 -0.5783 -0.1826 1.8411 -0.3983 -0.0028 3.2606 -0.1959 +0.1490
K1= w12=(L0 w22=1000.0
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Table 5.2: Exact Relative Biases of the 2SLS and J2SLS Estimators
K2=44 ﬂ22 = (0.5, =0.5, 0.5, =0.5)
N=10 N =20 N =30

Relative Bias Relative Bias Relative Bias
A My By Hyy

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS
0.0 4.8967 -0.3731 -0.0161 15.5754 -0.1284 +0.0194 29.7400 -0.0672 +0.0071
0.2 3.6992 -0.4556 -0.0906 12.3167 -0.1620 +0.0241 21.4978 -0.0930 +0.0101
0.4 2.8151 -0.5366 -0.1842 9.4623 -0.2095 +0.0242 15.0562 -0.1328 +0.0143
0.6 2.0354 -0.6275 -0.3146 6.6289 -0.2907 +0.0011 9.6338 -0.2059 +0.0131
0.8 1.1894 -0.7538 -0.5275 3.5345 -0.4692 -0.1395 4.,6532 -0.3879 -0.0745
K1= w12= w22=1000.0

G4



Table 5.3: Exact Relative Biases of the 2SLS and J2SLS Estimators
K2= 6 ﬂzz = (0.5, -0.5, 0.5, -0.5, 0.5, -0.5)
N =20 N = 30
5 Relative Bias Relative Bias
2SLS J2SLS 2SLS J2SLS

0.0 32.8269 -0.1144 +0.0101 52.3695 -0.0735 +0.0046
0.2 23.0495 -0.1585 +0.0070 36.8341 -0.1027 +0.0039
0.4 15.3959 -0.2261 -0.0054 24 .5283 -0.1498 +0.0001
0.6 9.2195 -0.3407 -0.0544 14.6172 -0.2362 -0.0191
0.8 4.2646 -0.5502 -0.2455 6.6967 -0.4252 -0.1300
K1= w12=0.0 w22=1000.0
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Table 5.4:

Exact Relative Biases of the 2SLS and J2SLS Estimators

K2= 2 My, = (1.0, -1.0)
N=10 N=20 N =30

Relative Bias Relative Bias Relative Bias

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS
0.0 23.5099 0.0000 +0.0008* | 35.8579 0.0000 0.0000* 48.1854 0.0000 -0.0005%
0.2 19.1710 -0.0001 +0.0027* | 29.7621 0.0000 0.0000* 41.4331 0.0000 0.0000*
0.4 14.1927 -0.0008 +0.0141* | 22.6905 0.0000 +0.0003* 33.3983 0.0000 0.0000*
0.6 9.1281 -0.0104 #0.00777% | 15:1101 -0.0005 +0.0058* 24.0050 0.0000 +0.0001*
0.8 4.3816 -0.1118 +0.2585 7.3645 -0.0252 +0.0918* 13.0424 -0.0015 +0.0107¥
K1= w12=0.0 w22=1000.0

Ll




Table 5.5:

Exact Relative Biases of the 2SLS and J2SLS Estimators

K2==4 Moy = (1.0, -1.0, 1.0, -1.0)
N= N=20 N=

\ ) Relative Bias ) Relative Bias ) Relative Bias

"N 2SLS J2SLS uN- 2SLS J2SLS UN 2SLS J2SLS
0.0 19.5866 -0.1021 +0.0409 62.3016 -0.0321 +0.0051 118.9602 -0.0168 +0.0018
0.2 14.7967 -0.1351 +0.0578 49.2668 -0.0406 +0.0070 85.9910 -0.0233 +0.0026
0.4 11.2603 -0.1770 +0.0778 37.8492 -0.0528 +0.0098 60.2250 -0.0332 +0.0036
0.6 8.1416 -0.2415 +0.0849 26.5155 -0.0754 +0.0145 38.5351 -0.0519 +0.0061
0.8 4.7575 -0.3814 +0.0017 14.1380 -0.1413 +0.0248 18.6126 -0.1074 +0.0127
K1= w12=0.0 w22=1000.0
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Table 5.6:

Exact Relative Biases of the 2SLS and J2SLS Estimators

K2= 6 Mg = .0, -1.0, 1.0, -1.0, 1.0, -1.0)
N=20 N =30

Relative Biases Relative Bias

2SLS J2SLS 2SLS J2SLS
0.0 131.3077 | -0.0300 +0.0046 209.4781 -0.0189 +0.0019
0.2 92.1980 | -0.0424 +0.0058 147.3363 -0.0268 +0.0024
0.4 61.5836 | -0.0628 +0.0081 98.1132 -0.0399 +0.0031
0.6 36.8780 | -0.1026 +0.0102 58.4687 -0.0661 +0.0040
0.8 17.0585 | -0.2070 +0.0024 26.7869 -0.1382 +0.0016
K1= w12=0.0 w22=1000.0
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Table 5.7:

Exact Relative Biases of the 2SLS and J2SLS Estimators

(K14-g "large'" relative to N)

K2==4 Ty = (0.5, -0.5; 0.5, =0.5)
K1=8 N=20 K1=10 N=20 K1=12 N = 30
Relative Bias Relative Bias Relative Bias
2SLS J2SLS 2SLS J250LS 2SLS J2SLS
0.0 10.5786 -0.1881 +0.1529 11.7998 -0.1690 +0.204 0% 4.4360 -0.4018 +0.5649%
0.2 8.6514 -0.2281 +0.1626 8.8120 -0.2242 +0.2356* 2.9796 -0.5199 +0.3831
0.4 6.7927 -0.2846 +0.1608 6.2274 -0.3069 +0.2373 1.8676 -0.6500 +0.0091
0.6 4.8248 -0.3774 +0.1174 3.8990 -0.4399 +0.1422 1.0282 -0.7819 -0.2801
0.8 2.5090 -0.5698 -0.1007 1.8195 -0.6566 -0.1904 0.4652 -0.8922 -0.6428
w12=0.0 w22=1000.0

08




81

CHAPTER 6

MONTE CARLO STUDY

6.1 Design of Experiments

An evaluation of the effects of applying the jackknife technique
to the 2SLS estimator necessitates the use of Monte Carlo methods.
Although the exact finite sample distribution and exact moments (where
they exist) have been derived for several simultaneous equation
estimators in the context of the model used in the ensuing study (e.g.
see the bibliographical paper compiled by Owen and Knight [41]), neither
the exact finite sample distribution nor exact second and higher order
moments of the J2SLS estimator have been derived. Consequently, a
Monte Carlo analysis is our only method of evaluating the effects of
applying the jackknife technique to the 2SLS estimator.

The model used for one-third of the experiments was
Yy =Bi¥o Yot ¥y vy (6.1)
Yo = Byn¥y * Yoo * YooKy * YozXz * YpuX, + Uy, (6.2}

whilst for the remaining experiments equation (6.2) was augmented by
an additional three or six exogenous variables.

The reduced form of this two-equation model is given by

éi MT,. + V (6.3)

21~ 40 i | -1

<
1
=3
+

Il 1

x

(KT Yy (6.4)

I o~

0. " 230"
7

where both equations should be augmented by the relevant additional

terms when K2 =6 and K2 =9,
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The set of parameter values used in the experiments is given in

Table 6.1.

Table 6.1: Parameter Values Used in Monte Carlo Experiments

612 0.8 621 -0.7 Yos -1.0 Yo8 i 12
Y10 50.0 Y20 50.0 Yo 1.9 Y29 -1.5
Y11 1.2 Yoo 153 Yoy -1.1 Y210 0.9
Yoz 1.6
You -2.0

The exogenous variables were generated as rectangularly and
independently distributed pseudo-random variables in the range 0 to 100,
but were then transformed in order to obtain a specified theoretical
pairwise correlation (A) between them. The sample correlations are
given in Table 6.2. Values for experiments using less than the full
set of exogenous variables (i.e. less than 10, excluding the constant)
should be read-off from the upper left corner of the table.

All experiments were based on a sample size of 20.

The reduced form disturbances, the v.

it (i=1,2),were generated

as bivariate normal variates with zero mean and covariance matrix

w 1600 15208

15208 1444

where the coefficient § was given the value 0.19 in half of the
experiments, and 0.76 in the other half.
Each estimate of the parameters in equation (6.1) (i.e. the first

equation only) was calculated as the mean of 100 replications of the
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relevant estimator. All experiments were devised to ensure that
at least the first two integer moments of the 2SLS estimator were

finite. This would not be so with the second equation, (6.2).

6.2 Exact Results

Although exact values for the bias and mean square error (MSE)
of the 2SLS estimator, and for the bias of the J2SLS estimator, in
equation (6.1) are known (and for 612 are given in Table 6.3), for
compatibility reasons comparison of variance and MSE must necessarily
be based upon a Monte Carlo study.

The values in Table 6.3 can serve as a guide to the accuracy
of the experiments which follow.

It should be noted that when § = 0.76, the 2SLS and J2SLS
estimators of 812 are both unbiased.

From equation (5.1) it can be seen that the 2SLS estimator of Bl

2

is unbiased if 812= p (= wlz/w In the experiments conducted here,

22)'

812= 0.8 whilst

_ 15208 _ ok g
P = 75 = 0.8 (if §=10.76)

It follows from equation (5.5) and the definition of the jackknife
that the J2SLS estimator of 812 will also be unbiased under the same
conditions.

Richardson and Wu [55, pp.977-978] have shown that if the 2SLS
estimator of 812 is unbiased, then the 2SLS estimator of the coefficients
of the exogenous variables must also be unbiased.

If 812= p, then it follows that y; is independent of U and
hence estimation of equation (6.1) becomes a mixed stochastic regression
problem. In these circumstances ordinary least squares would be an

unbiased estimator and would be the appropriate method of estimation.



Table 6.3: Exact Values of Relative Bias and M.S.E. (812 only)
Relative M.S.B: Relative
Bias Bias
) A 5 u? 2SLS J2SLS
0.00 0.19 41.2725 -0.01865 . 03552 +0.00631
0.45 0.19 29.1234 -0.02675 .05094 +0.00968
’ 0.00 0.76 41.2725 0.0 .01163 0.0
0.45 0.76 29.1234 0.0 .01668 0.0
0.00 0.19 95.7945 -0.03066 .01483 +0.01093
0.45 0.19 56.3108 -0.05138 .02514 +0.01633
0.90 0.19 8.4440 -0.27237 .01576 -0.04342
} 0.00 0.76 95.7945 0.0 .00478 0.0
0.45 0.76 56.3108 0.0 .00801 0.0
0.90 0.76 8.4440 0.0 .04246 0.0
0.00 0.19 118.3348 -0.04252 .01156 +0.01082
0.45 0.19 61.3857 -0.07889 .02405 +0.01527
0.90 0.19 9.1349 -0.35015 .15709 -0.12009
; 0.00 0.76 118.3349 0.0 .00379 0.0
0.45 0.76 61.3857 0.0 .00701 0.0
0.90 0.76 9.1349 0.0 .031183 0.0
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For an equation containing an arbitrary number (g) of explanatory
endogenous variables, Revankar and Hartley [51] have generalized the
above result. An F test was derived by Revankar and Hartley for
testing the hypothesis of equality of 812 and p.

The selection of § to be 0.76 for half of the experiments allowed
a comparison of test statistics to be made (see Chapter 7) without the

added complications of bias and skewness entering the comparisons.

6.3 Computational Considerations

6.3.1 The Problem of '"Qutliers"

The satisfactory inversion of all moment matrices for all sets
of exogenous variables was commented upon in Chapter 4. At each
replication of the experiments however, it was necessary to invert the

matrix
1 1 —1 ]
Z'X(X'X) 'X'Z
and to check against singularity (or near-singularity) caused by the
build-up of rounding errors. If singularity was found to be present,
the relevant sample values were disgarded and an additional replication
performed.

For experiments involving K,=3 and A =0.9, although no replication

2

was rejected, the 2SLS and J2SLS parameter estimates were grossly in

error as compared with their exact values for 612. Rather than design

an ad hoc procedure to allow rejection of 'unrepresentative'' sample

values, or outliers, in order to achieve 'reasonable' parameter

estimates, 1t was decided to reject this particular experiment completely.
It is difficult to justify the rejection of 'outliers' since any

cut-off point obviously suffers from a great degree of arbitrariness.

Indeed, one could very well be rejecting 'true'" sample values as well as

"rounding error'" sample values by applying such a procedure.
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6.3.2 Antithetic Variates

The technique of antithetic variates was used in an attempt
to reduce (to an unknown degree) the sampling error of the Monte Carlo
study when estimating the biases of both estimators (see Hammersley
and Handscomb [16] for a description of the technique).

Whilst the antithetic method produced estimates of 812 which were
marginally closer (than direct simulation) to their exact values for
the majority of experiments, there was little to choose between the
two methods for estimating the MSE of the 2SLS estimator of 812.

This latter feature was noticed by Mikhail [33] in a similar experiment,
although he managed to achieve a substantial reduction in sampling error
when estimating the bias of the 2SLS estimator.

The additional computer time and storage required to calculate
parameter estimates using antithetic variates is minimal, as it merely
requires a sign change at an advanced stage in the calculations.
However, there is a considerable increase in computer time and storage
involved in constructing, storing and sorting twice as many test
statistics as were generated by direct simulation. Since this study
was already facing computer time and storage constraints using direct
simulation, the author did not feel that the small decrease in

sampling error justified the increased computer time and storage.

6.4 Results of Monte Carlo Study

Tables 6.4, 6.5 and 6.6 (which are situated at the end of this
Chapter) summarize the Monte Carlo results on relative bias, variance,
MSE and mean absolute error (MAE) for the three parameters of interest;
313_812, Y10 and Y11° Values of the standardized normal statistic

for the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
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pp.47-52]) under the hypothesis of equality of absolute errors of the
two estimators are given in the final column.

Each of these three tables is subdivided into two parts, (a) and
(b) . Results for 6=0.19 are given in part (a) of each table, whilst
part (b) contains the results for the situation where both estimators
are unbiased, i.e. §=0.76.

We now consider, in turn, four criteria for discriminating

between the two estimators.

6.4.1 Bias

The '"large' relative bias of 2SLS which was evident in the exact
study (Chapter 5) for high levels of multicollinearity was also apparent
in the Monte Carlo study when §=0.19. For these experiments the
jackknife never failed to reduce the bias of the 2SLS estimator, although
this reduction was more marked for 812 than for the coefficients of
the (2) exogenous variables, Y10 and Yi1°

All estiﬁates of relative bias had the correct sign. From Table 6.3
it can be seen that the exact relative bias of 812 for both 2SLS and
J2SLS were very close to the simulation results when K2==6. For K2= 3
and K2==9, however, the degree of agreement between the simulated and
exact results was not as good.

For § =0.76 (i.e. both estimators unbiased) the 'relative bias"
figures obtained from the experiments must be due to sampling and
rounding errors. These errors are particularly noticeable when the
level of multicollinearity (A) is high.

We can be reasonably pleased with the degree of agreement between
the exact and experimental results on bias. It is interesting to note

that in Summer's [66] experiments 1A - 4A and 1B - 4B, with a model which
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only differed from the one used in this study by the inclusion of
fewer exogenous variables, the mean of the 2SLS estimator of 812
over 50 replications had an incorrect bias sign on four (of the eight)

occasions.

6.4.2 Variance

In general, 2SLS exhibited a smaller variance than J2SLS for
all three parameter estimates, and this was particularly noticeable
as the degree of multicollinearity increased. Where the jackknife
produced a smaller variance, its superiority was never significant.
As K, increased, the discrepancy between the 2SLS variance and the

2

larger J2SLS variance widened for all parameter estimates.

6.4.3 Mean Square Error

In general, the reduction in bias due to the application of the
jackknife was not of sufficient size to offset the smaller variance of
2SLS. In most cases (for both estimators) the square of the bias was
small and had little additional effect when added to the variance.
Consequently, in common with the variance, 2SLS was generally superior
(for all parameters) on a MSE criterion.

It should be noted, however, that this superiority was particularly
marked for '"small" values of p? (e.g. when p? =8.440 and u2==9.1349).
For "larger' values of uz, the MSEs of the two estimators did not
differ greatly. Frequently, the Wilcoxon test picks up this substantial
difference between the two estimators for "small" p?, but this statistic
is based on testing absolute errors.

With only one exception, the MSE of the 2SLS estimator of 612

obtained from the experiments underestimated the exact MSE. Despite this,
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the exact and experimental values were very close for all values of

K2 and A.

6.4.4 Mean Absolute Error

In general, 2SLS was superior on a MAE criterion, although its
superiority was not as marked as for the MSE criterion. Again, ''small"
values of p? lead to a great discrepancy between the MAEs of the 2SLS

and J2SLS estimators.

6.5 Difference of Absolute Errors

At each replication the absolute error of both estimators was
calculated. Let Ei and gi be the absolute errors at the ith replication
of the 2SLS and J2SLS estimators of 812 respectively, then the

difference score is defined as
& =B, ~b. . (1i=1,2,...,R)

We wish to test the hypothesis of equality of Bi and gi over all R
replications.

The usual parametric technique for handling such a problem is
Student's t distribution, but this requires the assumption that the
difference scores (the di) are normally and independently distributed
in the population from which the sample was drawn. Since this assumption
has no theoretical justification for the case being considered here,
the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
pp.75-83]) was used to test the hypothesis of equality of absolute errors.
If the assumptions of the parametric t test are in fact met, the
asymptotic efficiency near the null hypothesis of the Wilcoxon test
compared with the t test is 95.5%.

Under the stated hypothesis, the Wilcoxon test was conducted for
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all three parameters being estimated, and the resulting Z statistics
are given in the last column of Tables IV, V, and VI. Negative values
favour 2SLS.

At a 5% level of significance, the hypothesis of equality of
absolute errors is rejected only twice over all parameters when 6= 0.19.
Both rejections are in favour of the 2SLS estimator, and both occur
for K2==9 and A=0.90 (i.e. when p? is "small").

When 6§ =0.76, however, the hypothesis is rejected on four
occasions for 812 alone, all four rejections in favour of the 2SLS
estimator. Surprisingly, this result did not carry over to the 2SLS

estimates of Y10 and Yll'

6.6 Conclusion

The results of the Monte Carlo study are not encouraging for
proponents of the jackknife technique. Whilst 2SLS was clearly superior
when there existed a high degree of multicollinearity, application of
the jackknife technique, in general, could not produce superior results
using either a MSE or MAE criterion. In view of the increased complexity
and computation time involved in applying the jackknife, its use cannot
be recommended on the basis of the above results alone.

On the basis of the above results, the following statements can

be made:

(1) for a relatively high degree of overidentification (i.e. K2= 6
or K2==9 in these experiments), application of the jackknife technique

produces a substantial reduction in the bias of the 2SLS estimator;

(ii) over all experiments 2SLS is superior on a MSE criterion, this

superiority being particularly marked when p* is '"small";
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(iii) when §=0.19, there appears to be little significant difference
between the two estimators over all parameters, using the absolute error

criterion, on the basis of the Wilcoxon Matched-Pairs Signed-Ranks test;

(iv) over all experiments, differences between 2SLS and J2SLS
estimates of 812 using MAE, MSE, and variance criteria are far less

marked than the same differences for Y10 and Yi13

(v) when the 2SLS estimator is unbiased (i.e. § =0.76), application
of the jackknife is clearly unwarranted and its application in error

is likely to have a detrimental effect on the parameter estimates.
Clearly, to avoid this possibility, Revankar and Hartley's [51] test

should be used prior to estimation.



Table 6.4(a): Results of Monte Carlo Experiments

Parameter = 612

RELATIVE BIAS VARIANCE M.S:E. M.A.E. WILCOXON

K A u? 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 | -0.02739 -0.00151 0.03014 0.03044 0.03062 0.03044 0.14138 0.14030 | +0.7324

0.45 29.1234 | -0.04351 -0.00052 | 0.04022 0.04433 | 0.04143 0.04433 | 0.16927 0.17156 | +0.1977

0.00 95.7945 | -0.02911 +0.01092 | 0.01329 0.01473 | 0.01382 0.01480 | 0.09423 0.09717 | -0.4487

6 | 0.45 56.3108 | -0.05176  +0.01428 | 0.01963 0.02315 | 0.02134 0.02327 | 0.11690  0.12211 -0.6223

0.90 8.4440 | -0.26531 -0.03903 | 0.09687 0.32332 | 0.14192  0.32429 0.30989 0.38605 | -0.4986

0.00 |118.3349 | -0.03588 +0.02243 | 0.01123 0.01327 | 0.01205 0.01359 0.08642 0.09118 | -0.4590

9 |0.45 61.3857 | -0.06731  +0.03637 | 0.01977 0.02815 | 0.02267 0.02900 | 0.12234 0.13239 | -0.4590

0.90 9.1349 | -0.30998 -0.03315 | 0.08634 0.37555 | 0.14784  0.37626 | 0.32287  0.44477 | -2.3088

Sample size = 20 § =0.19

¢£6




Table 6.4(b):

Results of Monte Carlo Experiments

Parameter = 812
RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A . 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | -0.00629 -0.00215 .00939 . 00946 .00942  0.00946 .08139  0.08130 |[+0.4109
3
0.45 29.1234 | -0.00814 -0.00136 .01326 .01431 .01330 0.01431 .09392  0.09762 |-1.2705
0.00 95.7945 | -0.00524 -0.00328 .00438 .00490 .00439  0.00490 .05223  0.05582 |[-1.9444
6 | 0.45 56.3108 | -0.00668 -0.00305 .00655 .00799 .00657  0.00800 .06450 0.07098 |[-2.5616
0.90 8.4440 -0.00844 +0.01385 .03462 .10562 .03466 0.10573 .14633 0.22304 -5.1540
0.00 |118.3349 | -0.00235 +0.00143 .00371 .00445 .00371  0.00445 .04988 0.05334 |[-1.5576
9 | 0.45 61.3857 | -0.00191  +0.00588 .00624 .00880 .00624 0.00883 .06383  0.07461 |[-2.7232
0.90 9.1349 | -0.00188 +0.03911 .02810 .09701 .02811 0.09799 .12742  0.22593 |-6.4812
Sample size = 20 = 0.76
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Table 6.5(a):

Parameter = YlO

Results of Monte Carlo Experiments

RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A u? 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | +0.05783 +0.03567 494 .50 509.77 502.86 512.95 17.80 18.16 | -0.8218
A 0.45 29.1234 | +0.05958 +0.03691 532.11 552,15 540.98 555.55 18752 18.69 -0.3335
0.00 95.7945 | +0.07142 +0.01475 521 .61 552.85 534.36 553.40 18.30 18.89 | -0.8011
0.45 56.3108 | +0.07951 +0.01679 554.61 590.48 570.42 591..19 18.87 19.14 -0.1169
: 0.90 8.4440 | +0.21776 +0.07183 1712:25 2487.70 1830.80 2500.60 34.24 ST TS -1.7811
0.00 | 118.3349 | +0.08609 -0.00401 524.09 560.12 542.62 560.16 18.60 18.63 | +0.1994
9 |0.45 61.3857 | +0.10527 -0.00937 568.82 636.35 596.53 636.57 19.52 19,55 .J. #0.2571
0.90 9.1349 | +0.26538 +0.02130 | 1717.59 3005.34 | 1893.66 = 3006.47 35.04 39.50 | -1.3169
Sample size = 20 § = 0.19

S6




Table 6.5(b): Results of Monte Carlo Experiments

Parameter = YlO

RELATIVE BIAS VARIANCE M.5.E. M.A.E. WILCOXON
l(2 A u? 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | +0.02198 +0.01713 159.76 161.79 160.97 162.52 10.10 10.19 -0.2372
: 0.45 29.1234 | +0.02128 +0.01546 17559 178.15 17673 178.75 10.66 10.74 -0.6292
0.00 95.7945 | +0.02206 +0.01941 174.43 177.16 175.65 178.10 10.58 10.69 -0.0688
6 0.45 56.3108 | +0.02064 +0.01770 188.26 190.72 189,32 191.50 10.95 10.89 | +0.6464
0.90 8.4440 | +0.01336 +0.00231 664.16 789.39 664.61 789.40 20.49 21.88 -0.4573
0.00-F 118.3349 | +0.01833- - +0.01135 176.50 182.49 177.34 182.81 10.68 10. 86 -0.5123
9 0.45 61.3857 +0.01673 +0.00717 194 .44 205.75 195.14 205.88 11.10 11.35 -0.7427
0.90 9.1349 | +0.01557 -0.01026 642.99 798.66 643.59 798.92 20.24 22.14 -1.2103
Sample size = 20 § =0.76
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Table 6.6(a):

Parameter = Yll

Results of Monte Carlo Experiments

RELATIVE BIAS VARIANCE M.S.E M.A.E. WILCOXON
K2 A it 2SLS J28LS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 -0.01578 -0.00552 0.12200 0.12560 .12236 0.12564 .278%4 0.27567 | +1.1175
5 0.45 29.1234 -0.01522 -0.00789 0.13579 0.14115 .13612 0.14124 .29161 0.29209 +0.0499
0.00 95.7945 -0.02943 +0.00569 0.13652 0.13946 ~A37775 10.13951 29307 0.29189 +0.5794
6 0.45 56.3108 -0.03245  +0.00222 0.14783 0. 15137 .14934 0.15138 .30267 0.29797 | +1.1346
0.90 8.4440 -0.11355 -0.03921 0.56781 0.79627 .58637 0.79849 .61435 0.67577 -1.7501
0.00 | 118.3349 -0.03078 +0.01239 0.12644 0.13457 .12780 0.13479 .27999 0.28116 +0.2201
9 0.45 61.3857 -0.03260 +0.01124 0.14321 0.15645 .14474 0.15664 .29747 0.30058 -0.1221
0.90 9.1349 -0.06151 +0.02542 0.55360 0.79839 «55905  0.79932 .59897 0.67042 -2.1954
Sample size = 20 § = 0.19

L6




Table 6.6(b):

Parameter = Yll

Results of Monte Carlo Experiments

RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A u? 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | -0.00167 +0.00144 0.04010 0.04035 0.04010 0.04036 .15781 0.15610 | +0.4968
; 0.45 29.1234 | -0.00082 +0.00282 0.04498 0.04577 0.04498 0.04578 .16653 0.16748 | -0.6533
0.00 95.7945 | -0.00307 -0.00161 0.04666 0.04552 0.04667 0.04552 .16974 0.16665 | +1.0762
6 | 0.45 56.3108 | -0.00165 +0.00019 0.05082 0.04981 0.05083 0.04981 .17583 0.17240 | +1.2808
0.90 8.4440 | +0.00305 +0.00767 0.21889 0.26339 0.21890 0.26348 .36742 0.40131 | -1.5163
0.00 |118.3349 | +0.00022 +0.00334 0.04273 0.04391 0.04273 0.04393 .16162 0.16309 | -0.1083
9 |0.45 61.3857 | +0.00155 +0.00551 0.04836 0.05005 0.04836 0.05010 .17096 0.17022 | +0.6017
0.90 9.1349 | +0.00250 +0.00808 0.19668 0.22882 0.19670 0.22892 .34628 0.36884 | -0.7375
Sample size = 20 § = 0.76

86
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CHAPTER 7

INFERENCE

7.1 Tests of Significance

7.1.1 Conventional Tests of Significance

So far we have only considered point estimation of the
parameters in a simultaneous equation system. In applied economics
however it is usual to test for significance of the parameter estimates,
or (identically) to formulate interval estimates.

From equation (2.6), the 2SLS estimator of 6 is written as
A~ ' SR -1 1 ) O
0= [ZXX'X)"'X'Z Z X(X'X) Xy,

and from equation (2.7) the limiting distribution of the sequence

/N (6-6) is given by

- -1

2R RX X'Z Wy ¢

1 1
N - N ° N

0, o? plim

L— N > o
1

RN |
provided 1lim Sy A eéxists .
N > N

A (E-0)~N

The correct asymptotic test of significance therefore is the
standardized normal test statistic, and a consistent estimator of o2

is given by

52=G'G/N, (7.2)

where U = y - YB - X1 Y;

It has become common practice however to adjust the estimator of
o? for loss of degrees of freedom and use the t statistic, rather

than the standardized normal, when dealing with finite samples (e.g. see
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Johnston [20; p.384]. Thus in finite samples a consistent estimator

of 0% is given by

From equations (7.1) and (7.2) it follows that, asymptotically,

VN (0, - 8,)

Y N(Oﬁl) > (7.3)

~ f—

where ék and ek are the kth components of §_and 0 respectively

(k=1,2,...,K +g), and §£ is the kkth component of

-1
1 2'%f31 ®'%y1 x'z .
N - N° N
-1

Let Sk denote the kkth component of [Z'X(X'X)_1 %'z} , then

§k = NSk and expression (7.3) can be rewritten as

6, -6,)
R B BT (7.4)
o f@k

The conventional finite sample counterpart of expression (7.4)

is the statistic (ék 1B (14 (7.5)

o /’gk

which is tested as though it is distributed as Student t with

N-—Kl-g degrees of freedom.

7.1.2 Dhrymes' Alternative Test of Significance

An alternative asymptotic test of significance based on Student's
t distribution has been proposed by Dhrymes [12]. Use of the t statistic

is customary for testing the significance of 2SLS parameter estimates
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yet, until Dhrymes showed the asymptotic validity of his test, no
theory existed to justify the practice. On the basis of the
asymptotic distribution of the 2SLS estimator, the relevant test of
significance should have been based on the standardized normal
distribution as described by expression (7.4).

Rewrite the equation being estimated as

1}
&
P
c

L (7.6)

where Z = [Y: Xl] and §f= [@f :Xi]’ then define a square, non-
singular matrix R of order K such that RR'=X'X. Further define

1

P=R"X', then premultiplying equation (7.6) by P gives

w=0Q +¢e,

where w=Py, Q=PZ and e =Pu. Dhrymes showed that the 2SLS estimator
of 6 in equation (7.6) is the OLS estimator of 6 in this transformed
system. Further, by analogy with least squares, Dhrymes showed

that, asymptotically,

@6, -86) [ BN

_k ko, g | 2 2 Eé (7.7)
pea S =g i | ‘\7 .
o V5, é \>» 2/

where an asymptotically unbiased, but inconsistent, estimator of o2

is given by

i 1
o* = &

8/ (K- g) = A'XX'0 X'/ (K, - g) .
Thus the test is only valid if the structural equation in question is
over-identified.

Revankar [50], however, has shown that information is lost when
a dimension reducing transformation is used as a basis for testing,

thus Dhrymes' test could be expected to be inefficient compared to

the conventional test based on the standardized normal distribution.




102

In a Monte Carlo study, Maddala [26] observed that the Dhrymes
test had low power compared with the conventional tests in a two
equation model. Richardson and Rohr [54] came to the same conclusion

on the basis of a Monte Carlo study using a three equation model.

7.2 The Exact Distribution of a t Statistic

The exact finite sample distribution functions of several t
statistics for hypothesis testing and the construction of confidence
intervals on 2SLS parameter estimates have been studied by Richardson
and Rohr [53] and Rohr [57]. As with many other finite sample studies
into the properties of the 2SLS estimator, the results were derived
for a model with just two jointly-dependent variables.

Richardson and Rohr [53] considered the finite sample distribution
of Dhrymes' t statistic, expression (7.7), which Dhrymes had already
shown to be asymptotically distributed as Student t with K2-g degrees
of freedom. However, since the sample size does not appear
explicitly in their finite sample derivations, convergence of the t
statistic to Student's t distribution was analysed for u? (the
concentration parameter) increasing indefinitely.

The moments of the exact distribution were found not to exist
to order Kz-g and higher, but where they did exist they converged
to the moments of Student's t distribution with KZ- g degrees of
freedom as u2—+W. On the basis of their results Richardson and
Rohr conjectured that, for large uz, the exact distribution function
of the t statistic can be adequately approximated by Student's t
distribution with K2-g degrees of freedom.

Richardson and Rohr investigated their conjecture for one

degree of freedom and for several values of y and B. On the basis
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of their computations they concluded that the actual probability

of Type I error (for a significance level of 5%) will be less than

% if B is positive, and greater than 5% if B is negative. If pu > 3
the exact t statistic was found to be a good approximation to the
Student t, but for small B and p < 3 differences between the two could
lead to serious errors.

Richardson and Rohr also tabulated the exact value of the second
moment and the exact absolute values for the first and third moments
of the t statistic for various values of degrees of freedom,B, and
u?, from which they concluded that the density function is highly
skewed and that often the moments differ considerably from those
of Student's t distribution with Kz-g degrees of freedom.

Rohr [57] has derived the exact distribution of two '"more
conventional' test statistics, only one of which is used in this
study, viz:

@, - 6

SVE
which is identical to expression (7.5).

Rohr showed that asymptotically (in uz) expression (7.5)
converges to Student's t distribution with N-Kl- g degrees of
freedom, but that in finite samples the moments of the statistic
(7.5) exist only up to order N-Kl- g+1.

It should be noted, however, that mathematical complexity in
the derivation of the moments of expression (7.5) forced Rohr to
consider only the special case where B = 012/022; i.e. 2SLS unbiased.
Under this restriction, expression (7.5) has all odd moments (where
they exist) equal to zero, and 2SLS and OLS are equivalent.

Rohr also showed that the variance of expression (7.5) is

always less than or equal to the variance of its limiting distribution.
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7.3  Student's t Distribution and its use with the Two-Stage Least

Squares Estimator

The ratio

D M e ————— (k=1,2,...,K, +g) (7.8)
AT S.E. (6k) !

is distributed as Student.t if w‘is normally
distribuged wifh zero mean and unit variance and if v has a *
distribution with r degrees of freedom, provided that v and w are
stochastically independent. _

For 2SLS, in general, E(gk)'# 6, and 6% is a consistent,
bu; not unbiaéed, estimator of 02. Consequently the denominator of
{ expfession (7.8) only approximates a x? distribution. In addition,
6k.' E(ﬁk) is not stochastically in&epéndcnt of its standard efror
(S.E.) in finite samples. . It should be noted that E(ék) méy not
‘even be finite, although in the ensuing Monte Carlo analysis the
e#periments were designed in such a.way as-to ensure that the first
_two moments of the 2SLS estimator were always finite.

7.4 An Approximate t Statistic constructed using the Jackknife
Technique

Tukey [72] has suggested that the N pseudo-jackknife estimates
could bé tréated as approximately independent, identically distributed
observations from which an.apprbximate t . statistic could be constructed
as | |

N [J(Sk) - 8]

CRVE) [1 cek) Jcek)J

) ' ' (7.9)

i=1
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We have already shown (in Chapter 3) that expression (7.9) is
asymptotically distributed as the standardized normal distribution in
the context of the J2SLS estimator.

Although in general E[J(@k)] +6k, in many instances it will
exhibit a smaller deviation from ek than 2SLS, as was observed in
Chapter 4. In common with 2SLS, the numerator and the denominator
of expression (7.9) will not be stochastically independent in finite
samples.

Miller [34] gives several counterexamples to Tukey's conjecture,
but Arvesen [1] gives a wide class of situations where this suggestion
is valid, i.e. when Ji(&k) and J(&k) are U statistics (see Hoeffding
[19]) or functions of U statistics.

Recently, Miller [36] provided an asymptotic justification of
Tukey's conjecture for a function of the regression parameters in a

general linear model.

7.5 Independence of the Pseudo-Jackknife Estimates

Walsh [73] has demonstrated the deleterious effects of using
correlated samples for the construction of certain significance tests.
If the N pseudo-jackknife estimates could be considered as a single
observation of a normal multivariate population, for which the N
variables have common mean Y and variance 02, the effect on the t
statistic of a common level of pairwise correlation between the pseudo-
jackknife estimates would be to raise or lower the true confidence
coefficient depending on whether the correlation was positive or
negative. Thus if the pairwise correlation (r) was positive, a test
result which would be significant for a random sample need no longer

be so. To correct the t statistic the multiplying factor
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/ (A-r)
1+ (N-Dr

is required.

Walsh illustrated the error incurred in assuming r =0 by
tabulating the true value of the confidence coefficient for varying
values of N and r. Even for small r the deleterious effect of correlation
was very marked; e.g. for N=8 and r=0.1 the true value of the 95%
confidence coefficient is 86.5%, and for N=32 and r=0.1 the true
value falls to 68%. Thus the dangers of ignoring the possibility of
|r|>0 are evident.

Miller [34], using different initial assumptions, has also shown
the deleterious effect on the t statistic of correlation among the
pseudo-jackknife estimates.

Three statistics were selected, therefore, to test for the
"approximate' independence of the pseudo-jackknife 2SLS estimates,
and for this purpose the pseudo-jackknife estimates were expressed as

deviations from their mean, viz:

d., = Ji(ek) - J(® (i=1,2, ..., N)

ik K’

for all k (k=1,2," «i:, Kl-rg). The three tests used for this purpose
are well known tests for departures from randomness, and a detailed
explanation of all three (the Swed-Eisenhart One Sample Runs Test,
the Fisher Exact Probability Test, and Spearman's Rank Correlation
Coefficient) is given in Siegel [63].

The Swed-Eisenhart test (denoted by SE in Table 7.1) was used
to ascertain whether the sequence of signs of the dik was random. The
Fisher test (denoted by FI) was also based on sign sequences. A 2x2
contingency table was set-up for each value of k and scores allotted
according to the sequence of the signs of successive dik over the

i observations. Spearman's Rank Correlation Coefficient (denoted by SR)
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was used to test for association between the natural ordering of the
dik and their ranked ordering. All three tests were repeated over
all replications.
The problem with using these aforementioned tests is that no
general statement can be made about the efficiency of any of them.
In the context in which they are used in this study, each of these
three tests will produce a different "measure'" of randomness. All
three reject a certain amount of relevant information and therefore,
at best, the test results can only be used as an approximate guide
to departures from randomness of the pseudo-jackknife 2SLS estimates.
The number of times the hypothesis of randomness was rejected
for each test over the 100 replications is given in Table 7.1. A visual
appraisal of the results indicates that the hypothesis of randomness
is upheld "approximately' 95% of the time. These results appear to

offer some support to Tukey's conjecture for this particular application.

7.6 Validity of Test Statistics

It is essential to examine the validity of the standard tests
of significance to ensure that the test statistics do not diverge
significantly from their postulated theoretical distribution. To
this end, the Kolmogorov-Smirnov One-Sample Test (see e.g. Siegel

[63; pp.47-52])was employed to test five hypotheses:

6 -0
k ko4 N(0,1) " (7.10a)
0/'s—k
6 -0
k ~ k

v EN-K, -g (7.10b)
G VS, ;
8, -6
L% n e , (7.10¢)
/S 2
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/N D @) 'ek]

- ~oON(O,1) (7.10d)
_1 N ~ e : 2 1/2
(N-1)7" ) <Ji(6k) - J(Gk)>
. i=1 \
and
YN|J(®,)-6
[380-8] Nt (7.10e)
N A \u 5 N-1
CEINES) <ﬁi(ek) - 36,
i=1

(k = 1,2,...,K1 + i)

Tables 7.2(a) and 7.2(b) set out the values of the maximum
deviation, D, between the relevant empirical and theoretical
distributions for each of these five hypotheses. The distributional
assumptions are rejected at the 5% level for D > 0.13403.

Over all experiments 48 '"sets'" of values for D were obtained,
i.e. 24 sets for each value of §. The lowest D value in each set
was designated ''lst'", the second lowest '"2nd", and so on. Table 7.3
summarizes the number of firsts, seconds, etc., for each test statistic
over all parameters and all values of K2, for §=0.19 and for §=0.76.
The following abbreviations are used:

CT1 - "Conventional Test No. 1'", formula (7.10a);

CT2 - "Conventional Test No. 2", formula (7.10b);

DT - '"Dhrymes Test'", formula (7.10c);

JT1 - "Jackknife Test No. 1", formula (7.10d);

JT2 - "Jackknife Test No. 2", formula (7.10e).

Care must be taken in interpreting these figures, as the postulated
theoretical distribution differs across each set.

When 2SLS was biased (i.e. §=0.19) the jackknife-based test
statistics always dominated the others for 812, and Y102 and for six
out of the eight sets of values for Yi1° The t statistic based upon

the Dhrymes derivation (DT) consistently produced the poorest fit.



Tests of Independence of Pseudo-Jackknife Estimates

(Number of rejections at 5% level of significance)

Table 7.1:
0 =019
K2 A FI SR SE
3 0.00 4 1 2
0.45 2 3 2
0.00 7 5 5
312 6 0.45 6 3 4
0.90 1 3 0
0.00 5 6 4
9 0.45 5 4 2
0.90 4 5 i
K2 A FI SR SE
3 0.00 3 8 2
0.45 2 6 1
0.00 6 6 7
YlO 6 0.45 6 5 5
0.90 6 7 6
0.00 5 7 4
9 0.45 4 9 2
0.90 2 6 2
K2 A FI SR .'SE
3 0.00 6 4 3
0.45 4 4 0
0.00 7 3 4
Yl 6 0.45 9 4 2
0.90 5 5 3
0.00 2 2 2
9 0.45 1 4 1
0.90 5 4 4
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Table 7.2(a): Kolmogorov-Smirnov D Statistic

2SLS Dhrymes J2SLS

K2 A Normal t t Normal t
. 0.00 0.1336 0.1329 0.1342 0.0929 0.0941
0.45 0.1478 0.1471 0.1406 0.0878 0.0871
0.00 0.1454 0.1429 0.1290 0.0912 0.0944
8, 6 0.45 0.1888 0.1853 0.1743 0.1014 0.1055
=== 0.90 0.3608 0.3578 0.3410 0.1381 0.1385
0.00 0.1406 0.1384 0.1546 0.0900 0.0925
9 0.45 0.1996 0.1987 0.2039 0.1009 0.1032
0.90 0.3965 0.3896 0.4000 0.1589 0.1530
d 0.00 0.1062 0.1068 0.1166 0.0907 0.0918
0.45 0.1115 0.1083 0.1047 0.0952 0.0965
0.00 0.1085 0.1051 0.1206 0.0439 0.0455
Yo 6 0.45 0.1222 0.1229 0.1199 0.0601 0.0603
i 0.90 0.1560 0.1561 0.1562 0.1052 0.1065
0.00 0.1224 0.1190 0.1300 0.0532 0.0551
9 0.45 0.1340 0.1343 0.1345 0.0540 0.0543
0.90 0.1968 0.1947 0.1892 0.1040 0.1039
. 0.00 0.0996 0.0987 0.1066 0.0680 0.0682
0.45 0.0778 0.0771 0.0969 0.0783 0.0790
0.00 0.0893 0.0881 0.0901 0.0851 0.0893
iy 6 0.45 0.1225 0.1235 0.1121 0.0832 0.0851
—— 0.90 0.1087 0.1082 0.1183 0.1200 0.1200
0.00 0.0957 0.0948 0.1156 0.0790 0.0840
9 0.45 0.1060 0.1061 0.1086 0.0843 0.0881
0.90 0.0761 0.0764 0.0768 0.0780 0.0779

Sample size = 20 6 =0.19
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Table 7.2(b): Kolmogorov-Smirnov D Statistic

2SLS Dhrymes J2SLS

K2 A Normal t t Normal &
3 0.00 0.1206 0.1184 0.0792 0.0790 0.0863
0.45 0.0710 0.0696 0.0623 0.0967 0.1023
0.00 0.0424 0.0391 0.0573 0.0477 0.0525
812 6 0.45 0.0576 0.0617 0.0474 0.0489 0.0532
0.90 0.0761 0.0818 0.0754 0.0594 0.0614
0.00 0.0843 0.0820 0.0787 0.0650 0.0620
9 0.45 0.0654 0.0629 0.0551 0.0778 0.0724
0.90 0.0558 0.0607 0.0530 0:1252 0.1204
3 0.00 0.0683 0.0707 0.0971 0.0501 0.0513
0.45 0.0798 0.0792 0.0747 0.0594 0.0614
0.00 0.0764 0.0748 0.0809 0.0497 0.0513
Y10 6 0.45 0.0683 0.0702 0.0709 0.0829 0.0841
0.90 0.0602 0.0608 0.0583 0.0494 0.0549
0.00 0.0693 0.0681 0.0747 0.0571 0.0559
9 0.45 0.0613 0.0628 0.0611 0.0383 0.0400
0.90 0.0500 0.0515 0.0500 0.0511 0.0570
3 0.00 0.0536 0.0596 0.0633 0.0777 0.0811
0.45 0.0799 0.0796 0.0706 0.0876 0.0913
0.00 0.0523 0.0598 0.0545 0.0905 0.0957
Y11 6 0.45 0.0629 0.0642 0.0584 0.0843 0.0877
0.90 0.0646 0.0681 0.0527 0.0751 0.0793
0.00 0.0546 0.0620 0.0508 0.0827 0.0871
9 0.45 0.0564 0.0592 0.0493 0.0746 0.0786
0.90 0.0536 0.0588 0.0505 0.0705 0.0757

Sample size = 20 § =0.76
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Table 7.3: Ranking of D Statistic over the Five Tests of Significance

§ = 0.19

§ =0.76

RANK | 1st* 2nd* 3rd* 4th* 5th
CT1 1 1 5 11 6
CT2 1 2 9 10 2
DT 0 0 9 0 15
JT1 19 3 1 0 1
JT2 4 17 1 2 0
RANK [ 1st*  2nd* 3rd 4th 5th
CT1 4 7 4 6 3
CT2 1 5 9 5 4
DT 121 2 7 0 4
JT1 7 3 2 10 2
JT2 2 6 2 3 11
Sample size = 20

* Denotes that column total does not sum

to 24 because of ties (to 4 decimal places).
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For 2SLS unbiased, however, the superiority of the jackknife-
based test statistics was less marked. This was particularly noticeable
for Y11 where the two jackknife-based test statistics always produced
the poorest fit.

The number of rejections, at the 5% level of significance, of
the hypothesis that each sample was drawn from the specified theoretical
distribution is given in Table 7.4 In any one cell the total possible
number of rejections is 24; percentages of rejections are given next to

the absolute figures.

Table 7.4: Number of Rejections of the Null Hypothesis

$ = 0.19 0.76
CT1 9 37.5% 0 -
CT2 10 41.7% 0 -
DT 10 41.7% 0 -
JT1 2 8.3% 0 -
JT2 2 8.3% 0 -

Sample size = 20

Clearly when ¢ =0.19 the distribution of the t statistic formed
using the 2SLS estimator gives a poor approximation to both Student's
t distribution and the standardized normal distribution. Thus if the
bias of the 2SLS estimator is significantly different from zero, the
distribution of 2SLS-based test statistics may be a poor approximation

to their postulated theoretical distributions.

T5d Inference

7.7.1 Tests of Significance

In the preceding section it was shown that the distributions of
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expressions (7.10a), (7.10b) and (7.10c) show a substantial divergence
from their postulated theoretical distributions when §=0.19, even for
relatively large values of pu?. It is important to ascertain the
effect of this divergence on statistical inference.

In this section we consider the degree of accuracy afforded
by using the relevant theoretical distributions as approximations for
making statistical inference.

The hypotheses that the biases of the 2SLS and J2SLS estimators
were not significantly different from zero were tested at both the

% and 10% levels of significance. The proportion of samples falling

in the .05 and .95 percentiles of the relevant theoretical distributions
are given in Tables 7.5, 7.6 and 7.7. These tables are further
divided into parts (a) and (b), the former for results when §=0.19,

the latter for §=0.76.

In these tables each cell contains three values. The number of
"rejections'" are tabulated according to whether they were rejected in
the lower or upper tail of the relevant distribution, and are given
by the figures in parentheses on the left and right respectively at
the top of each cell. The total number of '"rejections'is given below
these two figures.

For the parameter B both JT1 and JT2 show a number of

12*
"rejections'" nearer the nominal level of significance than CT1 and

CT2 in just over half of the experiments for §=0.19. There is little
to choose between these two jackknife-based test statistics, although
JT2 (i.e. the t statistic given by formula (7.10e)) was marginally
closer to the nominal level of significance for K2==6 and 9 and
A=0.45 and 0.90. CT2 is to be preferred to CTl as the number of

"rejections'" were, in general, nearer the nominal level of significance.

Using the same criterion, CT2 is to be preferred to JT1 but not to JT2.
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Dhrymes' test statistic (DT) gave a similar pattern of '"'rejections"
to the other t statistics, but it should be noted that approximate
confidence intervals using DT will be much wider than those using

either CT2 or JT2.

The striking feature about these results however is the distribution

of '"rejections''between the tails of the relevant distributions. The
downward bias of the 2SLS estimator of 812 ensured that virtually all
rejections for CTl, CT2 and DT fell in the lower tail, this being most
noticeable when K2 was relatively large.

The constant term,Y;,, gave a fairly even spread of 'rejections"
between the tails for all tests, whereas Y11 showed a similar, but
less marked, pattern to that for 812.

For all three parameters, the three t statistics (CT2, DT and
JT2) are to be preferred to those tests based on the normal distribution,
although this preference is most marked for 812.

The skewness of the foregoing statistics, which is particularly
noticeable for the 2SLS-based statistics, can have important
consequences when the postulated distributions are used as a basis
for constructing approximate critical regions for one-sided tests of
hypotheses. From Tables 7.5(a), 7.6(a) and 7.7(a), it can be seen that
if the lower tail of the CT1l, CT2 and DT distributions is used to

construct an approximate test for B the estimate of the level of

i
significance is generally considerably higher than the postulated
level of either 2.5% or 5%, i.e. the level of significance is under-
estimated. Conversely, if the upper tail is used then the level of
significance will be overestimated. Moreover, in general, the degree
of error is larger the higher the level of multicollinearity and the
greater the degree of overidentification.

By comparison, test statistics for B,, based on the jackknife
P 12

statistics JT1 and JT2 give a more even spread of rejections and
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consequently a smaller error of over- or under-estimation when performing
one-sided tests of hypothesis. Even here, however, for large A and

K2==6 or K,=9 the lower tail was markedly larger than its nominal

2
level, although generally very much less than for CT1, CT2 or DT.
For §=0.76 all five tests generally only differ to a small

degree over the three parameters, although for B JT1, JT2 and DT

1
tend to overestimate the total nominal level of significance in both
tails by approximately the same margin as CT1 and CT2 tend to
underestimate it. For K2==9 and A =0.9 the jackknife-based tests
produced a '"wayward" result.

When 6§ =0.76 the 2SLS estimator is not only unbiased, but the
odd order moments (those that exist) of both CT2 and DT are zero (see
Section 7.2) in the model under consideration. Thus selecting §=0.76
has not only removed the location problem but also the problem of
skewness of the distribution of CT2 and DT, provided that the first
three moments exist (which they do for K2==6 and K2==9). It is hardly
surprising, therefore, that the jackknife-based test statistics cannot
show superiority over CT1l, CT2 and DT under such circumstances.

From the preceding results it can be concluded that the t
statistic based on the J2SLS estimator (JT2) will, in general, produce

confidence intervals which are at least as accurate as those produced

using test statistics based on the 2SLS estimator.

772 Power of the Tests

Finally we consider the power of the alternative tests under

the hypothesis that 812= B where 612* was specified to be 0.8.

*
12-*
Tables 7.8 (a-c) present power functions for the five tests

when 6=0.19. The computational expense involved in computing

power functions prohibited further calculations. The significance

level for all tests was 5%.




Table 7.5(a):

Different from Zero.

PARAMETER: 812

PARAMETER: 812

Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly

K, A CcT1 CT2 DT JT1 JT2
(3)-(1)] (2) (1)] (3) (2}] €2) (2) 1(2) (2)
Va0 4 3 5 4 4
3
4) (Of (3 O 1) 3 2 2|2
0.45 4 3 4 4 3
(6) (2)] 6) (21 (5 A B) 2 |1
e 8 8 8 7 7
(6) (2)] @) W)} &) 3] ) (2)‘ (3) (2
6 0.45 - ; . g :
(15) (0){(12) (0O)| (7) (3)f (8 (5) |[(6) (3
s 0 15 12 10 13 9
(10) (2)| (7) ()] ) (2)f B)Y B [ )y (3
L 12 8 8 9 8
(7 2 (M M) 6 (2 W) BB 3
9 0.45 4 : E ; ,
(19) (0)|(17) (0)] (16) (O)| (13) (7) (11) (7)
90 19 17 16 20 18
o = 5% éd =0.19

Sample size

K A CT1 CT2 DT JT1 JT2
(8) (M| (5 M) 5 (3] (2 (2 (2) (2)
0.00 12 9 8 4 4
3 .
(8) (3| (M) (VL] &) B W 3 (2) (2)
0.45 11 8 9 7 4
(8) (3)] (6)°(3)] (7) £4)] (6) (2) (6) (2)
i 11 9 11 8 8
(11) 4] ) A 5) B 6) (5 (6) (4)
@ .43 15 12 9 11 10
(21) (|2 (0) |14 ()| (7 (A1) (&)
£.50 22 20 17 18 17
(10) (2)|(10) (V|10 (2| ®) (6) (6) (5)
0.00 12 11 12 12 11
(10) (2)| (9 (2|10 | 6) (8) (6) (6)
2 s 12 11 13 14 12
(26) (0)|(23) (0)](23) (0)|(17) (10)|(16) (8)
.59 26 23 23 27 24
a = 10% § = 0.19
= 20

LTT




Table 7.5(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: B, , PARAMETER : 8,
K, A CT1 CT2 DT JT1 JT2 K, A cri | crz2 DT | JTL | JT2
¢ : T |
WEOOe oo oo (3 @ 3 &) (D ©®)] () @ | Q) @
0.00 0.00 ! !
4 2 6 3 3 9 8 | 13 | 7 3
3 3 , i A SR
(2) (] @A) O (2 )| (2 (2 (1) (1D 4) (3 B 2, B (6)2 (3) (4) (2) (3)
0.45 3 ] 5 4 2 0.45 7 6 10 | 7 5
4) 212 @4 O » (3) (1) (7) (4)] (6) (3)] (6) (5); (5) (5) (5) 4)
0.00 6 4 8 5 4 0.00 11 9 11 10 9
4) D2 @D @B 3 (3) (1) (6) (4| (5) ()] (5) (5] (6) (6) (5) (5)
6 0.45 6 4 5 7 4 6 0.45 10 8 10 12 10
SN IEGEOININOINGONG) 4) 4 (5) (2] B) ] ) W] B (5) (7)
0.90 4 2 6 8 8 0.90 7 7 8 12 12
(5)A(3) 4) 3! (2 (2] (3) (6) (3) (4) (5) M) (5) O] (M) W] 6) (7N (6) (7)
0.00 8 7 4 9 7 0.00 9 9 11 13 13
GOEOINGOEGINONCORNCONS) (3) (5) (5) (4] (5) 4| (6) (B)| () (5 (5) (5)
9 0.45 8 4 4 8 8 9 0.45 9 9 12 11 10
(3) (3)] (3) (2] 4D W] (5 (8 (3) (6) (4) (5] 4) (B (5) B)f (9 (12| (7) (9)
0.90 6 5 8 13 9 0.90 9 9 11 21 16
a = 5% § =0.76 a = 10% = 0.76

Sample size = 20

811




Table

7.6(a) :

Different from Zero.

Distribution of Rejections of Hypothesis that the Bias of

the Relevant Estimator is not Significantly

PARAMETER: Y10

PARAMETER: Y,
K2 A CT1 CT2 DT JT1 JT2
3 Wl wlwoem @l o
0.00 7 6 7 5 5
3
3 @] @ @G oo
0.45 7 6 6 5 5
2 G L@@ @] e | a o)
0.00 7 5 6 7 6
3 @Ol o @woealonlow
6 0.45 7 5 5 8 5
O &l o elo ele e | @@
0.90 6 6 4 8 6
3 &6 @l oo e | o e
0.00 8 7 5 6 5
3 @ @@ o6l ]| o
9 0.45 4 6 6 6 4
O & O G O @] 6 6 | 6) @)
0.90 6 6 4 12 9
o = 5% o 19

Sample size

A CT1 CT2 DT JT1 , JI2
G) 8 | ) @) @G| @@ (@ ©
.00 13 8 9 % 9 8
G| @O GO @®E @
.45 12 11 10 1 10 10
) ® | @ ©] @ @ oGO
.00 13 10 10 10 10
SOl @w el o| e o
.45 14 11 12 10 10
@ a0l 3 ®] @ ® @ an| 3 aon
.90 14 11 12 15 13
) ] @ & @ e @e| oo
.00 10 9 12 12 10
© ©| & & @ o )| @ ©
.45 12 10 11 12 10
) | 3 @ © G| © 6] © G
.90 10 7 11 12 11
= 10% § = 0.19

61T




Table 7.6(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : YlO PARAMETER : YlO
K2 A CTl CT2 DT - JT1 JT2 K2 A CT1 ; CT2 DT : JT1 | JT2
W @wl ool e ool oo ‘ ) W[ @ @ © D (| 3@
0.00 5 4 8 6 | 3 0.00 9 8 15 |8 |7
3 g A ' I TR SRl
@ @ | @ G 3 G 3 @] Q) @ GO CROHOEOINONORNONG
0.45 6 4 3 7 g 0.45 8 8 14 | 8 7
W @] W@ @@ @O 6| 0 @ 5) )] 3 G| @ D 3 &) | (3) (8)
0.00 5 3 6 6 4 0.00 11 8 11 11 11
W ®O] O @ @ ®» @@ o @ © ©] 3 G @ D D] @ D
6 0.45 5 5 o 9 4 6 0.45 12 8 11 10 9
@D @ O @ @6 @6 e 6 B3 G| & @ & @ 66 @ G
0.90 6 5 5 7 4 0.90 8 ¥ 10 11 9
@l @6 O ol o6 | ) )| @ 6 @6 @@ 3o
0.00 7 £ 3 6 4 0.00 10 9 12 12 10
Q@] vl oo ol o © ©] 5 6 @ 7 &) | @ ©
9 0.45 6 4 3 ¢ 5 9 0.45 12 10 11 12 10
H 3l 0ol o @6l 6@ | 5) )| (3) 4] (6) (5] (6 ©)| (6) (5)
.90 6 4 4 9 7 0.90 10 7 11 12 11
5w 5% § = 0.76 a = 10% § = 0.76

Sample size = 20

0Z1




Table 7 7(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : Y PARAMETER: Yi]
K, A CT1 CT2 DT JT1 JT2 K, A cti | crz | o | Jm LT
(3) (1) 2 M|®W 26 M (3) (1) (5) 4) (5) (4)5 (6) (6)§ (5) (2 | (5) (2
£-90 4 3 8 6 4 0.00 9 9 12 | 7 7
3 Z e e
(2) (1) 2 M@ V]G3 @ (3) (1) (4) (5) (4) (20 (5) (5 (4 @) | @ (2
@83 3 3 5 5 4 0.45 9 6 10 8 6
(5) (2 4) (M) |4 2 (3) (2) (7) (3) (5) (2)| (8) (4): L7} {5) (5) (4)
0.00 7 6 3 6 5 0.00 | 49 7 12 12 9
(3) (2) 3 M} @ A3 (2 (3) (1) (6) (3) (6) (2) (6) B¢ (5 (5 4) (5)
B . 4045 % - ¢ 4 4 5 4 L Lo B 8 10 10 9
4) (1) (3 M) (2 (2] B 2 4) (2) (7) (2) (7) ()} (6) (3) (8) (5) (6) 4)
-39 5 4 4 7 6 0.90 9 8 9 13 10
4) (2) (3) (2] (2 (O &H 3 (3) (2) (5) (5) (4) (3)1 (6) (6)] (5) 4) (5) 4)
O, 00 6 5 3 7 5 0.00 1 4 7 12 9 9
4) (2) 2 1@ O] W 3 (4) (1) (5) 4 (4) (3)) (5) (3)| (5) (6) (5) 4
9 0.45 6 4 5 7 5 9 0.45 9 7 8 11 9
{3} €1) (3 (D 3 V)| 4 (o (3) (4)“ (8) (4) (4) (20} (8 (3] (5 (8 (5) (7)
0.50 4 4 4 10 7 0.90 12 6 11 13 12
G = 5% = 0.19 o = 10% éL:i_Q;Ei

Sample size = 20

TET



Table 7.7(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : Yll PARAMETER : Yll
K, A CT1 CT2 DT JT1 JT2 K, A c1 . crz . or | JT1 T2
(3) (2) (2) ] B B 3 2@ (3) (1) (5) (5) | (5) (5)5 (5) ()i (5) (5) g (5) (5)
0.00 5 3 8 5 4 0.00 10 10 1 10 | 10
" . | Ll
(2) (1) (2) (] 4 3] (3 (1 (3) (1) 4) 1 (4) (3)§ (7) )i 4 b 4) 4
0.45 3 3 7 4 4 0.45 8 7 2 -} 8 8
k TN
(3) (3) (2) 2 0 2 W) » (3) (3 (6) (5) 6) (3] @) @i (M) ) (6) 4)
0.00 6 4 2 8 6 0.00 11 9 8 12 10
(3) (2) (2) (2)] (2 )] 3 (3) (3) (3) (6) (5) 6) 4] ) B 5) () (5) 4)
6 0.45 5 4 5 6 6 6 0.45 11 10 8 11 9
(2) (1) (2) ()} 3 2 5 @ (3) (2) (6) (3) (6) (3)] (5) (3) ) (5 (5) (3)
0.90 3 3 5 7 5 0.90 9 9 8 11 8
(3) (3) (3) (3)] (2) )] 4 ) (4) (3)- (4) (6) 4) B @) B @ » 4) 4
0.00 6 6 5 8 7 0.00 10 8 9 8 8
Dol eoolwel o @D ©| @@ oo e @@
9 0.45 7 5 5 7 7 9 0.45 10 8 iz 9 8
080 (2) (2) (2) (] (2 W] (3) (3 (2) (3) ., (4) (5) 4) @A) @ D (M (5 (7) (4)
g4 -3 6 5 e - | 9 8 11 12 11|
o = 5% I = 0.76 o = 100{, § = 0.76

Sample size = 20

el
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For each value of 812, ranging from 0.0 to 1.6 in steps of 0.2,
a new set of 100 replications was generated and the power of each test
was evaluated.

When 812==O.8, the power reported in the tables is of course
equivalent to the probability of a Type I error.

Strictly speaking the term ''power'" is not appropriate as one
cannot compare the powers of a number of tests when the probability
of Type I errors are clearly not equal. Perhaps "probabilities of
rejection' would be a more appropriate term.

Tests based on the standardized normal distribution (CT1 and
JT1) showed greater ''power'" than their counterparts based on Student's
t distribution, although we have already noted that the former produce
higher Type I errors. Of the two tests based on the standardized normal
distribution, CT1 generally had higher '"power'" than JT1 except for
"large" K2(6 or 9) and high levels of multicollinearity (A=0.9). A
similar pattern was evident for comparisons of ''power'" between CT2 and
JT2. On the other hand, the Type I errors associated with CT1 and
CT2 were often greater than those of JT1 and JT2 (which themselves were
generally greater than the nominal level of significance).

Dhrymes' test (DT) consistently exhibits the lowest ''power'" of
the five tests, a result also noted by Maddala [26], although the Type I
errors associated with this test are frequently nearer the nominal
level than those associated with the other tests.

As one would expect, high levels of multicollinearity reduce the
"power" of all five tests.

In conclusion, CT1l and CT2 dominate JT1 and JT2 respectively
(i.e. they have higher '"probabilities of rejection'") although rarely
over the entire range of values of 812. This superiority however will

be offset by the lower Type I errors which JT1 and JT2 frequently
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exhibit. No definitive statement can be made, therefore, concerning

the relative powers of these four tests. The substantially lower ''power'
which is generally exhibited by DT suggests that this test is not a
practical proposition, despite its accuracy for estimating the level of

significance.




Table 7.8(a)

Power of

the Test Statistics
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A 812= 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6

CT1 1:00. 0:92 0:62 0:11 0.04 0.30 0.70 :0.87 0,96
CT2 0.99-:0:91 0.52.0.05 0.03..0.24 :0.68 :0.86 '0:95

0.00 | DT 0.52470.27 -0.15-,0.07 0.05  0.14° 0.38 10,435 .0.71
JT1 0.96 0.82 0.48 0.11 0.04 0.19 0.62 0.77 0.92
JT2 0.95 0.79 0.44 0.09 0.04 0.18 0.60 0.77 0.90
CT1 0.96 0.82 0.43 0.06 0.04 0.24 0.65 0.77 0.88
CT2 0.93:4.75 0.36 0.03 0.053 0.2r 0.62 0.74 0.85

0.45 DT 0.40 +0.29"+:0.13 ©.05 0.04 0.12 0.3370.38 0.62
JT1 0.93 0.68 0.37 0.10 0.04 0.18 0.55 0.64 0.85
JT2 0.89 0.61 .0.30.0:07 0.03 0.15 0.52:0.59 '0.82
K = N = 20 (S = 0.19




Table 7.8(b):

Power of the Test Statistics
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A 812= 050 DL 0.4 06 88 L0l T 1A Y6
CT1 1.00 1.00 0.90 0.35 0.08 0.50 0.94 1.00 1.00
CT2 1.00 0.99 0.88 0.29 0.08 0.47 0.93 1.00 1.00

0.00 | DT 1.00 0.98: 080 0.23-0.08 0.37 0.90. 0.97 1.00
JT1 1.00 0.99 0.83 0.32 0.07 0.25 0.77 0.97 0.99
JT2 .00 0,98 0.78"0.51 0.07. 0.24 0.74 0.95 0.99
CT1 1.00 0.96 0.70 0.14 0.08 0.45 0.82 1.00 1.00
CT2 1.00 0.95 0.65 0.12 0.05 0.41 0.79 0.98 0.98

0.45 | DT 0.9% 0,87 0.540.11,. 0.08 .0.31 0.69 0.91 0.99
JT1 1.00 0.88 0.70 0.20 0.08 0.28 0.65 0.85 0.94
JT2 1.00 0.85 0.64 0.15 0.05 0.28 0.60 0.85 0.94
CT1 0.48 0.19 0.08 0.04 0.15 0.30 0.58 0.76 0.85
CT2 0.41 0.15 0.04 0.03 0.12 0.24 0.50 0.71 0.84

0.90 | DT 0.35> 0-14 0.08 0.06 0.10 0.24 0.37 0.56 0.74
JT1 0.45 0.28 0.16 0.12 0.13 0.19 0.27 0.47 0.64
JT2 0.45 0.26 0.13 0.09 0.09 0.16 0.24 0.38 0.60
K, =6 N = 20 § = 0.19



Table 7.8(c):

Power of the Test Statistics
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A 812= 0.0 052 0,4 " 0:.6 " 0:8, @10, 202 =104 71.6
CT1 1500 .1:00 0.95. 0.26- 50512 %0575 ;.0 .975.1.00" 1,00
CT2 1.00 . 1.00 " 0:94. -0.21 .:0.08..:,0.63-"0.95,"1.00:. 1,00

0.00 | DT 1.00 1.00 0.92)+0,157%°0.08 10.58:+0.96:.71.00. 1.00
JT1 1.00-:1.00  0.92" 0.29. 0.09 0.35 0,87 "1:00 "1.00
JT2 1200;£1.00. .0:91 ~0.25  0.08 0732 0.86 6,99 .1:00
CT1 1.00 0.98: 0.76- 0.11 +0509 -0.59 . 0:88.0.99 0.99
CT2 1.00 0.98 0.72 0.08 0.08 0.55 0.84 0.99 0.99

0.45 | DT 1.00 0.95 0.62 0.07 0.08 0.44 0.82. 0.97 0.99
JT1 1.00 0.91 0.73 0.16 0.07 0.28 0.75 0.94 0.96
JT2 1.00:=0.89v. 0572:=0:15. 0.07 -0.27 :0.747:090° 0.96
CT1 0.36 0.17 0.07 0.10 0.19 0.48 0.75 0.838 0.96
CT2 0.27 0.15 0.05 0.08 0.17 0.44 0.74 0.87 0.96

0.90 | DT 020 0.17 "0.05 0:07. 0.16 0,36, .0.68..0.81 . 0.96
JT1 0.41 0.34 0.13 0.11 0.20 0.29 0.56 060 0.75
JT2 8,36 0.31 0.12 0.09 0.18 0.27 0.53 0.57 0.72
K, = N = 20 § =0.19
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CHAPTER 8

CONCLUSION

8.1 General Remarks

In Chapter 3 it was shown that, asymptotically, the 2SLS and
J2SLS estimators are equivalent. Thus, one would expect the MSEs
of the two estimators not to be significantly different from each
other for '"large" values of py?. If this were indeed so, the
superiority of the jackknife technique for constructing confidence
intervals and performing tests of significance would justify its
use in applied economics.

From the preceding Monte Carlo study it is evident that the
jackknife technique, whilst reducing the bias of the 2SLS estimator
is not to be recommended for ''small" p? if the criterion for selection
of an estimator is either minimum MSE or MAE. For ''large'" values
of p? there was little difference between the MSEs and MAEs of the
2SLS and J2SLS estimators, whilst the Wilcoxon Matched Pairs Signed
Ranks test indicated significant differences between the two
estimators only for small p2.

It was then observed (Chapter 7) that t(and z) statistics formed
using the 2SLS estimator were not distributed according to the
Student t or standardized normal distributions when §=0.19. The
actual distributions are highly skewed and serious errors could
result if these postulated distributions were used for statistical
inference. In general, this feature was less noticeable for the
J2SLS estimator which, on the basis of Kolmogorov Smirnov tests,

appears to have a reasonably symmetric distribution, and consequently
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there is less likelihood of serious errors being made if the postulated
theoretical distributions are used for the purpose of statistical
inference.

Even under "ideal' conditions (i.e.§ =0.76), test statistics
based on the 2SLS estimator cannot show superior (to J2SLS) fit
to their postulated theoretical distributions for the parameter 612.

Finally, the 'power'" functions of the alternative tests were
calculated over a range of values for 612. The problem involved
in comparing the '"power'" of two or more statistics when the Type I
errors are not equal was recognized, but even making allowance
for this problem Dhrymes' t statistic showed considerably lower 'power"
than the other statistics considered. This latter result confirms
Maddala's [26] conclusions.

Clearly, therefore, a decision on circumstances under which
application of the jackknife would be fruitful, hinges on one's

definition of '"large'" in the context of the concentration parameter, o

8.2 When is the Concentration Parameter ''Large'?

Whilst selection by 'informed guesswork" of a value of u? which
could be taken as '"large' is a somewhat haphazard procedure, two
other problems of greater magnitude present themselves:

(i) canavalue of the concentration parameter which is designated
as '"'large'" for an equation containing just two endogenous variables
also be designated as '"large'" for an equation containing three (or
more) endogenous variables?

(ii) how can the value of the concentration parameter be
calculated?

To date, most of our knowledge concerning u? is in the context of

an equation containing just two endogenous variables, but preliminary




130

work by Richardson and Rohr [54] appears to indicate that a value
of p? which is considered "large" in the context of an equation con-
taining two endogenous variables may be '"small" in the context of
an equation containing three endogenous variables.
With regard to the second problem Rohr [57] has proposed that
p? be estimated from the sample and that this value be used to
indicate whether u? was "large" or 'small" (he was interested in
determining if p? was large enough to enable the limiting distribution
function (Student's t distribution) to be used as an approximation
to the conventional t statistic without involving appreciable error).
Unfortunately, in the absence of knowledge of the sampling

distribution of p?, when o_._. and T,, are replaced by their estimated

22

values it would not be possible to obtain any measure of the
reliability (i.e. the sampling variance) of our estimate. It
should also be noted that there would be a conflict regarding the

optimal method for estimating 0,, and T The Unrestricted Least

22

Squares estimator would, intuitively, seem to be inefficient relative

22°

to the 2SLS induced Restricted Reduced Form estimator (although
Dhrymes [13] has shown that, asymptotically, this may not be so),
but the latter estimator may not possess moments of any order (see
McCarthy [32]).

Clearly, therefore, considerably more knowledge concerning both
the distribution of u? and the properties of reduced form estimators

is required before Rohr's [57] proposal can be properly evaluated.

8.3 Extension of the Results

The Monte Carlo experiments did not investigate the effects
of an increase in sample size on the two estimators, although a

proof that both the bias and the MSE of the 2SLS estimator are
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monotonically non-increasing functions of the sample size was given
in Chapter 5. As the sample size increases, other variables being
constant, the concentration parameter will, in general, increase in
size and hence one would expect the MSE of the J2SLS estimator to
tend towards (perhaps not monotonically) that of the 2SLS estimator.
Conversely, a decrease in sample size might be expected to have the

opposite effect on the J2SLS estimator.

The estimation of '"large'" (e.g. economy-wide) models may present
a problem if use of the J2SLS estimator is contemplated. In such
circumstances, the computing time and storage requirements will increase
more rapidly for J2SLS than for 2SLS as the size of the model increases.
It is unlikely however that 2SLS (and hence J2SLS) would be
a feasible proposition anyway in large models, since it is probable
that K would exceed N and consequently 2SLS would degenerate to OLS
(see Fisher and Wadycki [15]). The jackknife could however be applied
to an Instrumental Variables estimator which only considered a sub-set
of the excluded predetermined variables when estimating any one
structural equation, thus ensuring that K<N. Although such a procedure
may yield inconsistent (perhaps of a minor nature) parameter estimates
and would thus contravene Quenouille's original assumption that a
consistent estimator is necessary for the jackknife to be successfully
applied, Brundy and Jorgenson [8] cite conditions under which Instrumental
Variables estimators based on sub-sets of the predetermined variables

retain the property of consistency.

8.4 Extension to Three-Stage Least Squares

The foregoing analysis suggests that an extension of the jackknife

technique to the Three-Stage Least Squares (3SLS) estimator may be an
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extremely tedious procedure. Having obtained 2SLS estimates of all
structural coefficients in the system, the 3SLS estimator can be
calculated by applying Generalized Least Squares to the entire system

(where the equations are written in stacked form) to obtain

: s : : - %

'.(z'Ez'IQDX(x'X)’.lx':] z) z'Ez‘I(X)X(x’X)‘lx'Jy, (8.1)
where () denotes the Kronecker produg§..

In ‘general,  will be unknown ahd must be replaced by Q,
the matrix of mean squares and products of the 2SLS residuals. With
! replaced by @ we obtained the 3SLS estimator.

If the jackknife were applied to the 3SLS estimator, wouid have
to'be.réplaced by the matrix of mean squares and products of the JZSLS.
" residuals, and (8.1) would have to be estimated N times with the ith
r ébservation Qmitted at each (of the N) replications.

It i# the author's contention that this would not be a very
fruitful exercise, especially as 'no exact results 6n the moments of
the 3SLS egtimator are available'td provide an exact analysis of the
jéckknife;s bias reducing potential. in addition, it is unlikely
that the "simplifying" formula developed for J2SLS could be extended

to J3SLS without considgrable difficulty and, even then, the additional

(to 3SLS) computer run-time involved would probably be substantial.

8.5 The Final Word

In this thesis we have demonstrated the value,éf the jackknife’
statistic for forming "accurate" confidence intervals and tesfs of
" significance when ﬁz is "large'". The bias reducing property of the
jackknifg is generally present in the context of the ZSLS'estimator,

' although it would certainly be unwise to jackknife the 2SLS estimator
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if the sample size is less than twice the number of variables included
in the equation being estimated.

In applied economics, if the above condition is met and provided
the degree of multicollinearity is not excessive, it is the author's
contention that the true (unknown) value of the concentration parameter
would, in general, be large enough to enable the jackknife technique

to be used on the 2SLS estimator.
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ne APPENDIX A
LEMMA
Proof of the following lemma is due to Bartlett [2].
LEMMA :

If A is a kxk non-singular matrix, and ¢ and d are two

k dimensional column vectors, then

PROOF:
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APPENDIX B

DERIVATION OF A RESULT ON ASYMPTOTIC NORMALITY

Consider the first term in square brackets in equation (3.72), viz:

5, (diag R + NL Rl)Si
= 2' (A + M) (diag R + N1 R (A + A)Z
+ Z'MXAz(diag R, + Nt Rp)AM,Z
- Z'(A1-+A2)(diag R, + N1, R )AM,Z
- 2'M, A (diag R, + N1, R (A + Az, (B.1)

where R, = uu' = [u- Z(§_' 91 - Z(§.' 9)]'

The ith element of g_can be written as
A '/\
ui_ui_ii(-e—-—e-) )
and consequently the jkth element of the first term in equation (B.1)

can be written as

H.MZ

A 2
: lzijzik(Al + 0 luy - 2;8- 91, (B.2)

ignoring, for the present, the term incorporating N_l. R1 .

Upon expansion, equation (B.2) can be written as

N N
2 2 5 PN
izlzijzik(Al'FAZ)ii u; - zizlzijzik(Ali—AZ)ii 2] (8- 9O,
3 2 1.0 2
' izl'zijzikml )y L2,8-91 . (B.3)

In the forthcoming analysis we will assume, without loss of

generality, that the observations on the (g) explanatory endogenous
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variables occur in the first g elements of Ei

Expanding the second term in equation (B.3) we obtain

N
2 A A
2 Zizlzijzik(Al-rAz)ii {%11(61 —61) +ziz(92..92) PR T

+ 2y g +g(el<1+g' eK1+g)“ u, . (B.4)

Consider the first (of the K1+g) term of the above expansion:

N
- 2y

A K+ A2)2 zil(é1 -6 )u; . (B.5)

g d B2 o
iy Rt ii

We can partition zij and Ziy 2s

zij = mij + vij and Zig T Mip * Vi o (for j,k < g) where

m.. and m,, represent the nonstochastic part of z.,. and z., respectively
ij ik ij ik

(j,k = 1,2,...,K1-+g), and Vij and Vik represent the reduced form

disturbance part of Zij and Z:x respectively (for j,k >g this will of
course be zero).
Expression (B.5) can therefore be written as

N N
P 2
- @y 8,3 [Zl (Ay + AyX5ams 5mypcyY * iZI(Al Fhp) 1M 5MiY51%

2

. 1M
11

N N
2
* iZI(A1+A2)iimijVikVilui $ iZI(A1 *05)55™5 5% Vi

N N
2 2
$ 121 Ay 3+ Dol Vi e izl(’H *A)55Ye ™V Y

+
I o~ 2

N
2 2
L (Ay it BT 4 ¥ 5 My 0y gy izl(Al k Az)iivijvikvilu;]

(B.6)

Recall the decomposition introduced as equation (3.51), viz:

1

Vs'a¥W B
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the ijth element of which can be written as

1
c
e
+

V.. . s
1] 1]

Substituting for vij’

(B.7)

Vik and v;, in expression (B.6) we obtain

By - 61){: L L A2)11 1Mk

N

I (A +Ay)5m
1 A2)11
2
2)11

24 )11

(
(
(
(
{
(

N
2
LT izl (4 + Az)iimijmikeilui>

N
2
15%%Ys '21 (A +A5)55m5 503505194 >
N 2
Y (A, +A)..m. .m,
ij 11wk i i=1 1 27117 ed ®ikYi

N
11w 1pku 'Fiz (A o )11 11° ij ®ik 1>

N

1kw ¢101'+ z (A +h )11 1ke1]ellu1>

N N
IZI(A 'FA2)11 ik 11¢ .Z (A 4 )11 §k™41%5 1>
N N .

d 121( LS PR A ROLH izl(Al +A2)iieijeikeilui) '

Consider the first term in

2
max | (6 -0 )(A + A)..m
1<igN 2711
< max ’(e 5] )II(A -+A2)
1<igN
= |6 Gll max | l+A

1<igN

(B.8)

expression (B.8) and note that

13Mik™i1 '

ii™ ij s € i1|

2
2)11 ij Mik™i1 |
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Since plim (0. - 8,) =0, (5= 1,2, 0055K 8} (B.5)

N >0
it follows that

plim (|§1 1|) plim max |[(A,+A )

N+ o N> 1gigN

1 =0 . (B.10)

ii 13 k™1

Then using Theorem I (from Chapter 3) it follows that

N
| & 2
plim & | - 2(6,-6.) } (A, +A)..m..m..m. u.| =0 .
N+ N [‘ 1 1 i=1 1 "27iiijik'il }

Consider the second term in expression (B.8). Using the above
logic it follows that

plim (|8 - 61|) plim max (A + A )

v
N> N>o 1<igN ii"ij"ik%1

Then using Theorem I it follows that
1 i A N 2 |
plim g |- A8y =6} iz (il e ily) 5 o ij 1k1‘bl(u -0 =0,

where E(ui) = o?(finite)

This result implies that

— -

N
s 1 2 2 2

plim & | - 2(6; -6)) L (A +A));m;myyyuf

N +o = i=1 ]

. _

_ L1 F- 2 2
= plim g | - 208 -0;) ] (Ap + ) m;my 40

N > 1:1 _

. _
= o2 plim L |- 2¢b
= o? plim [: 2(0; -9;) 12 (A +4A )11 ij TS|

= 0, from Theorem I. (B.11)
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With minor variations, this analysis can be used to show that, in

the probability limit, the fourth, sixth, eighth, tenth, twelfth

and fourteenth terms in expression (B.8) are all zero. Since uy

and eij are, by assumption, uncorrelated random variables with mean
zero, it follows using Theorem I that the remaining terms in expression
(B.8) all converge in probability to zero.

Expression (B.5) was analysed under the assumption that
j, k < g. If both j and k are greater than g then no partitioning
of zij and Zix is necessary as they only contain nonstochastic
(corresponding to Xl) elements. Under such circumstances, the
resulting expansion of expression (B.5) is limited to the first two
terms of expression (B.6) and thus the first three terms of expression
(B.8). We have already argued that, in the probability limit, these
three terms are zero.

If either j or k is less than g then one partitioning of zij
(or Zik) is necessary. The subsequent expansion of expression (B.5)
will be limited to just four terms of expression (B.6) and we have
already argued that the corresponding terms in expression (B.8) converge
in probability to zero.

This concludes the analysis of the first term in expression
(B.4). The remaining Kl-fg -1 terms can be dealt with in an analogous
manner noting, once more, that the last K1 values of zij (3=1,2,....,
K1+- g) contain no stochastic component.

Returning to expression (B.3) we have shown that the second

term converges in probability to zero.



140

Consider the third term in expression (B.3), viz:

2 1 ~ 2
2552k (M * A yslz; (B-9))

o~z

i=1

N
2 2 .
i izlzijzik(Al-FAZ)ii[E;I(el =0+ 2;,(0,-0,) + ...l

~

2
+ Zi,K +g(eK1+g- 6K1+gZI .

Upon squaring the term in square brackets we obtain

IiIA+A2 2/6\62+2§62+ b g2 é 0 ?
My *)ia2ay2ac (70100 =00 * 25200 =990 + oo+ 25 g 4Ok g0k 49
i=1 —
+ zilziz(e1 —61)(82 —62) + zilzis(el..el)(es-es) ¥ owens
* Zilzi,K +g(61'-61) (6K1+g.-eKl+g)
+25,2:,(0,-0,)(0;-0,) + zizziscéz-ez)(es-es) o
* ZiZzi,K +g(82 _62)(8K1+g'-eK1+g)
+
+
+

i K +gzi1(eK1+g - 6K1+g) (Ry=0y) * Zi,K1+gzi2(eKl+g_eK1+g) (85=05)+ +..

* LK +gzi,Kl+g—1(eKl+g_eKl+g)(6K1+g—1_6K1+g—1)~]

(B.12)

Consider the first term of the above expression, viz:

(A, + A )

2 2 A
1 *82)44%15%4x%11 (81 - 81) (B.13)

I o~

i=1

where the zij can again be partitioned only now

2 2 2
= L.+ V. = m°
zZ, (m \' 1) m

2 .
it 3 1 *Vip tamyyvy; - Guk 2 g)



Upon expansion, expression (B.13) can be written as

N N
A 2 2 2 2 2
{8; ~85J izl(Al'*Az)iimijmikmil * izl(A1 %l g s V5
N N , )
20 (e hpdgmgmmyg iy L U+ 0 my sy
N 2 N
2 2
* izl(Al'*Az)iimijVikVi1 * Zizl(Al'*Az)iimijvikmi1vil

-+

N N
2 2 2 2
izl(Al'*Az]iiVijmikmi1 * izchl'FAz)iivijmikvil

2 2
VijVik™i1

+

+

(A + 85055

I ~1'2

N
2

2 L (A + A vyamamy vy *

i=1 i=1

+
o~z

N
2 2 2
" 1(A1'+A2)iivijvikvi1 + zizl(Al'FAZ)iiVijVikmilvi;} . (B.14)

Using the decomposition given by equation (B.7), expression
(B.14) can be evaluated in a similar term by term manner to the
analysis used for evaluating expression (B.6).

Consider the first term in expression (B.14). Since

plim (@. -ej)2= plim (éj -ej) plim (éj-ej) = 0, for all j ,

N> N> N >

2

and since m g is a constant, it follows by an analogous proof to

that used in deriving equation (B.10) that

plim max [(8, - 6,)%(A; + A )% m, .m. m.
N->o 1<igN 1 71 1 27ii"ij ik il

Using equation (B.7) the second term in expression (B.14) can

be written as

N
A 2 2 2
{6y - el)izl(Al ¥ Xy gy iy
2 N 2
A 2
+ (9 - 8 121(A1 + Ay)sims5Mix®s)
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. m

N
A 2
+ (8 - 00 L (A + AGymygmybiuges (B w12}

i=1

Since mij’ m. and wl are constants the first two terms in
expression (B.15), multiplied by 1/N, converge in probability to zero
by the same proof used to derive the result given by equation (B.11),
assuming E(eil) is finite. Further, since us and e;; are uncorrelated
random variables with mean zero, it follows from Theorem I that the
third term in expression (B.15) (multiplied by 1/N) converges in
probability to zero.

Evaluation of the remaining terms in expression (B.14) follows
a similar pattern, all converging in probability to zero.

Returning to expression (B.13) if either j or k (or both) are
greater than g then the above analysis involves fewer terms in
expression (B.14), as was shown when dealing with the second term in
expression (B.3). The analysis, however, is identical.

Returning to expression (B.12), a similar analysis can be used
to show that the remaining terms in the first line of this expression
all converge in probability to zero. The same result holds for the
terms in the remaining lines of expression (B.12), although the
analysis is more tedious due to the introduction of another (the

fourth) term in z.

To summarize, we have shown that the second and third terms
in expression (B.3) converge in probability to zero. Thus we have

shown that

. 1 .
g{:ﬁ %_. Z (A1 + Az)(dlag Rl)(A1 + A2)Z

= plim 1 . Z'(A + Az)(diag u u') (A, + AZ)Z ;
N—>00N 1 - 1
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Noting that

1 -1
: o Zg Pz -ay)
plim (Az)ii = - plim =0, (B.16)

N+ oo N+e k. (1-s;+d;)

using equations (3.39), (3.41) and (3.42), the remaining terms
in (diag Rl) in equation (B.1) can be analysed in an analogous manner
to the first term. We have shown therefore that

plim 1 . Sl(diag Rl)Si = plim 1 . Sl(diag E.Ef)si
N>~ N N—>c N

We now consider the terms in N-1 . R, in expression (B.1). The

1

first term can be expanded as follows:

- '
N Lz ¢ AR (A + A)Z
_ -1 ' A AL
= N Lz ¢ AT E () + A2
-1

= NLZ'(A v M) uu' (A + )z

+ N, z'(A1 + A2)2(§_- 8) (8 - 9)'2'(A1 + M)z
1 Pl 1

- N L zT(A ¢ ADZB - Bu' (A + A)Z

1 A 1 1
- N . Z (A1 + Az)Eﬁg_— 9) Z (A1 + AZ)Z ;
Since 2SLS is a consistent estimator we know that

plim (§ - 8) =0,

N >0

and from the preceeding analysis it is easy to show that

plim 1 . Z'(A1 + M)z
N+>o N

is a finite matrix. Now consider the term

z'(A1 =), (B.17)
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The jth component of this random vector can be written as

u

N
izlzij (A + Ady5u

Partitioning zij into its stochastic and nonstochastic components,
and using the decomposition of vij given by equation (B.7) we

obtain

N
. 2
HypCly +dplqqu, * izl(Al tliglay s ug

N
!

i=1

1(A1 #h,)55 Uil - (B.18)

+
o~z

i
Since the mij are constants, and using the result that

plim (A, + A

)i =1,
- 1 2711

it follows that

N
plim = ) m..(A, +A).. u, =0
Now N 5= 1 241

by the Law of Large Numbers. The same Law ensures that the second
term in equation (B.18) (multiplied by 1/N) converges in probability
to a finite constant, provided E(u;) is finite, and that, since uy
and eij are uncorrelated random variables, the third term (multiplied
by 1/N) converges in probability to zero.

Combining the above results, we have shown that

. [~ 1 -
E}l-:on: 1%1_ I{I_ Z (Al +A2)R1(A1 +A2)ZJ
. r ! 1
= plim 1 |1.Z (A1-+A2)E_E_(Al-+A2)Z
N-+o N |N
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Using the result given by equation (B.16), in addition to

the above results, it can be shown that the remaining terms containing

N_l.R1 in equation (B.1l) can be analysed in an analogous manner. All

three remaining terms converge in probability to zero.

Thus we have shown that the first term in square brackets in

equation (3.72) can be written as

plim 1 .S (diag R, +N ".R))S! =plin 1 .S (diag u u'+N Tuu
N—»ooﬁ 1 1 1 N»ooN' - -

1

1
)S; -

Consider the second term in square brackets in equation (3.72),

-1
+ N .R2)S

. . 1
viz: Sz(dlag R2 5

1

. -1
= Z (A2 - AS)(dlag R2 + N .Rz)(A2 - AN)Z

3
+ 7'M\ (diag R) + N‘l.Rz)A3 M,Z

+ 2' (A - A) (diag R, + N‘l.Rz)A3 M,Z

s LR (A, - Az, (B.19)

1 .
+ Z MXAS(dlag R2

1

where R (I - MX)E.E. (I - MX)

(1 -M)lu-2@-0)1u-28-0)1"(1-M)

The following results can be easily derived:

5{32 (h, - Ay, = -1, (B.20)
N 2

E{:g (A2 - As)ii =1, (B.21)

plim (As)zii =1, (B.22)

N >

and plim (A, - A =1 . (B.23)

prim (A = 5)13(hg)sy
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The first term in equation (B.19) can be written as

z' (A, - A (diag Ry (A, - A)Z
. =1
+ 2 (A, - A (NTR) (A, - A2, (B.24)

whereupon, using the definition of R2, the first term in equation

(B.24) can be written as

z' (A

|e>

. n 1
) AS)(dlag u )(A2 - AS)Z

= Z'(A2 - MMy (diag

|e>

EU(AZ- Az

1 o A Ay
- Z (A2 AS)(dlag E.E.)Mx(Az - A3)Z

e

+ 2" (A, - MMy (diag 0 0 IM (A, - AJZ . (B.25)

The jkth element of the first term in equation (B.25) can

be written as

. 2 DA 2
255250y - M)y [uy -2 (8- 9]
i=1

Since

2

A

5 2 .
plim max (A1 + A2)ii = plim max (A2 - 3)ii =1,

N>~ 1<igN N> 1<igN

this expression does not differ, asymptotically, from expression
(B.2) and can therefore be analysed in an analogous manner. It
follows that

o ' & A Ay
ﬁ{:g %_.Z (A2 - AS)(dlag E.E.)(Az - AS)Z
= plim1.2z'(A

L )2
N> N

. 1
5 - AS)(dlag B.E.)(Az - A3

Consider the remaining terms in expression (B.25). We have

already shown (equation (3.27)) that

lim (M

N>

i =0, (1=1,2,....,N) (B.26)
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and thus the remaining terms must all converge in probability to
zero by an analogous proof to that employed in analysing the first
term.

Further, equations (B.22), (B.23) and (B.26) allow the
remaining terms containing (diag R2) in equation (B.19) to be analysed
in an identical manner to their corresponding terms containing
(diag Rl) in equation (B.1). It follows that

plim 1 .S, (diag Rz)Sé = plim 1. S,(diag u u')Sé i
N->o N N-»>wo N -

Z

The terms containing NIR. in equation (B.19) can also be

2

analysed in a similar manner to their counterparts in equation (B.1).

Consider the first term containing N_le in equation (B.19), viz

-1
Nz (A, - AR, (A, - A2

-1 _» % A
Nz (A, - A(T - MG B (T - M) (A, - AJZ

= N'l.z'(A2 - A (T - My)u u' (I - M) (A, - A)Z

* N'l.z'(/\2 - A (T - MX)Z(§ -0 -9'z'(1 - M) (A, - Az
- Nlz'a, - A (T - M)u(d - 9)'2' (T - M) (A, - Az
-zt - A - M)z - Bu' (T - M) (A, - A)Z (B.27)

The first term in equation (B.27) can be written as

1

-1 . ' - ' '
N ~.Z (A2 - A3)E.E.(A2 - AB)Z - N".2 (Az- As)MxE.E.(Az 'AS)Z

-1 ' -1 '
- N ".Z (A2 - Ag)EEMx(Az‘As)Z‘“N o2 (AZ-AS)MX uu Mx(Az'As)Z >

From our initial assumptions (specifically, Assumption (iii) in

Section 2.1.3) it follows that

plim 1. 2" (A

- A)JMyu =0 ,
Noo N 37X= -

2
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and hence, asymptotically, the first term in equation (B.27) can be

written as

- B 1 1
E{:z %_ %_.Z (A2 - AS)E-E-(AZ - AS)Z—].

Since (I - MX) is a nonstochastic matrix, using equation (B.20)
it follows that the last three terms in equation (B.27) (multiplied

by %-) all converge in probability to zero. Thus we have shown that

. 1
5{32 %_ %_.Z (A2 - AS)Rz(A2 - AS)Z:J
. . 1 1
E El_:zno%l_ % Z (AZ - ASJEE (AZ - AS)Z].

Clearly the third and fourth terms in equation (3.72) can be
analysed in an identical manner since the relevant results have
already been derived.

To conclude, we have shown that

plim 1.5, (diag R, +N-1.R1)Si = plim 1.5 (diag ud+NL uu')s;,
plim 1 .S,(diag R, +N '.R,)S) = plim 1.S,(diag u u'+N " u u')s
N+ N _ N> N

and
plim 1. S (diag R, +N '.R;)S}) = plim 1.5 (diag uu' +N'\ u u')s
N> N N> N

Consider the following summation

1

s (diag uu' +N. uu')s] +S, (diag u w+N . uu')s)

|e
|

1

- s (diag uu' +N'. wu')sh+s,(diaguu' +N. uu')s

e
k=

which can be simplified to



-1

. ! 1 1
(S1 - 52)(dlag1_1__li + N EE)(Sl - SZ)

z' (A1 + 2A2 - AS) (diag u 1_1' +N—1E y__')(A1 + 2A2 -A

1

1 . ' = 1
Z MX(AZ_AS)(dlag uu +N uu )(A1+2A2-A3)Z

1

' . 1 - !
Z (A1 + 2A2 -A3) (diag uu +N uu )(A2 _AS)MXZ

-1

+

. 1
Z'MX(AZ -Ap) (diag uu +N u W)(A, - MM Z .

3

)Z

149

(B.28)

The jkth element of the first term containing (diag E.Ef)

in equation (B.28) can be written as

N
2 can2

N

s (g j

We have already shown (equation (3.47)) that

plim N max (A, + 2A,-A)).. =0,
N o0 1<isN 1 2 33
from which it follows that
g{:g AN lziiN [mijmik(A1+2A2--A3)ii =0 .
Using Theorem I it follows that
1 . 2
. 2 _
plin N izlmijmik(Al'*ZAz Adisu3 =0,

provided E(uiz) is finite.

N
3 D
+ izlmijvik(Al-PZAz-AS) us + izlvi.vik(Al-bzAz-A

A N
izlmijmik(Al-+2A2-A3)iiui + izlvijmik(Al-+2A2-A3)

3)

2 aut
iii

2u2

iivi v

(B.29)

(B.30)

The decomposition given by equation (B.7) is required in order

to evaluate the three remaining terms in equation (B.29).

term can be written as

N

2

N
2 3 2
. I(Al'*ZAz"As)iimik¢j“i'* iZl(Ar*ZAz"As)ii

m

2

ik®ij%i

The second
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Equation (B.29) and Theorem I ensure that the first term in this
expression (multiplied by 1/N) converges in probability to zero;
and since the eij and u, are uncorrelated random variables with mean
zero, Theorem I ensures that the second term in this expression
(multiplied by 1/N) also converges in probability to zero. Similarly
the third term in equation (B.29) (multiplied by 1/N) converges in
probability to zero.

The fourth term in expression (B.29) can be written as
N

2 L 2 3
(A) + 24, - Ay, ¥shuy + izl(Al * 26y = gty Vs oty

o~z

i=1

N N
¥ iZI(Al +20y - Al guy ¢ izl(Al 20y - M) sl el
The first term of this expression (multiplied by 1/N) converges in
probability to zero by virtue of equation (B.30) and Theorem I.
The three remaining terms (multiplied by 1/N) also converge in
probability to zero, using Theorem I and the assumption that eij and
u, are uncorrelated random variables with mean zero.

The first term in N _. u u' in equation (B.28) is
-1 ! 1
N ".2 (Al-bZAz-AS)E_E_(A1-+2A2 -AS)Z.
We have already shown in Chapter 3 that

. 1 A_
51_)12/}_1\1_.2 (A1+2A2-A3)_1£—9_ .

Since each element of the 2SLS residual vector converges in distribution
to the corresponding element of the disturbance vector, this implies

that

. 1
plim 1 .Z (A1+2A2—A3)g 0 . (B.31)

N > /N

It follows that

- U 1 _
i}ljﬁé [_1N.z (A, +28, - AJu u (A +2h, - A)2] = 0 .
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Thus we have shown that the first term in equation (B.28) converges
in probability to zero.

Consider the second term in equation (B.28), viz:

1 .
-Z MX(AZ-AS)(dlag E_Ej)(Al-rzAz-A )Z

3

- Z'M (- A (N w ut) (A + 28y - A2, (B.32)

and we will analyse the term in (diag u u') first.

-] A
since plim (1.X'Xx) (1.X'z) = Iz, , (B.33)
N> \N N

we need only consider the limiting form of

X' (A, - A;) (diag u u') (A + 20, - AJZ .

3)
The rjth element of this term can be written as

e 2
Xjplhy = Ag) g s Xy + 20y - Ag) 5 (my 5 + V55005

1

e~z

i

G = 1,2,...,K1-+g s r=1,2,...,K) ,
| 2
i.e. ileir(A2 -5 (A 20, - As)iimijui
S 3
* izlxir(AZ ~A);3 Ay + 20y - Ay 5050y
) 2
* iEl"ir(/\z =dgd gy 20y = hedyy Yyos

Using equations (B.20) and (B.30), by Theorem I

N
1 2 _
gljf: N i__Z_lxir(AZ “lg) 5 (8 + 28y - Ag) gm0 = 0,

provided E(ui) is finite. By the same argument

N
1
pUR & ) iy () = Ag)ys Uy + 205 - A9y

N >
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provided E(u;) is finite. Finally, since u, and eij are uncorrelated
random variables with mean zero it follows, using Theorem I, that

the remaining term in the above expression (multiplied by 1/N) converges
in probability to zero.

Now consider the limiting form of the second term in expression

(B.32), viz
1 1 ; _
Z MX(AZ-AS)(N-E_E_)(Ald-ZAZ AS)Z .
In view of equation (B.33) we are concerned with the limiting form of
-1 ;
N ~.X (AZ-AS)y_t_J_ (A1+2A2—A3)Z :
Combining Assumption (v), Section 2.1.3., with equation (B.20) it
follows that

plim 1 .X'(AZ—AS)u =0,
N->oo_I\T -

which when combined with equation (B.31) ensures that

. 1 _
51:2% |:% Z MX(AZ-ASJ(E E')(A1+2A2-A3)Z] =0 .

Thus the second, and hence the third, term in equation (B.28)
has been shown to converge in probability to zero.

The fourth term in equation (B.28) can be written as

2' X0 X' (A - M) (diag w u') (A, - A)X(X'X) X'z

+ 2 XX 0T (A - A R ) (A, - ADX' D) TIX'Z L (BL34)

Again, combining Assumption (v), Section 2.1.3, with equations (B.20)

and (B.33) we have shown that

e

. | _
51:2% I_%I' Z'My (A, - A) (w u') (A, -AS)MXZ:' =0 .

Consider the expression

X'(A, - Ag) (diag u u') (A, - A )X,
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which has rsth term

N “
2 xirxis(AZ -A3)ziiu1?- 5 (x,s = ; oy SPLRIR 1 (3.,35)
i=1 _

From equation (B.21)

plim (A, - )2. =1

N+ 11

~ for all i(i= , B FERPRG. | P from which it follows that

. ‘£ 2
plim max 1 - (A, =AY =0.
N+ 1<igN 2 311

Thus, using Theorem I, jt follows that

‘g ) |
Y | ; 2 2 3 '
pllm—}:x.x. 1 - (A, =A% (uw?-0) =0,
N-H»Ni=1 1r.1s‘—: 2 311 i

and hence we deduce that

plim1 Zx =02-1—-r§xx
N_’mN ir 1s i N.izl.lr is

" Substituting this result back into equation (B.34), and using equation
(B 33) we have shown that the fourth term in equat:.on (B.28), and"

hence the entire expressmn, converges in probablllty to

2
02?.
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APPENDIX C

THE TORONTO FUNCTION

Copson [10] has shown that, for large |x| ,

T(y) e~ 1
F. (@;Y;Xx) ~ —=—=—— _F (Y-0, 1-0; ; =),
11 T'(a) xy-a 20 X
®  (y-o)_(1-0) &
where 2FO(Y--OL; 1=a; 3 1f5) = ¥ - L (2 ’
X
r=0 T ;
and Pochhammer's symbol means
F'(y-a+
('Y—G,)r = _(.Y_____I.‘_l .
I'(y-a)
If vy =o0o + 1 then
X (00
) . ae 1%
lFl(OL’OL+ 1’ X) ~ _X—-rzo (l-OL)r(;(') ’ (C'l)

which has a finite number of terms if o is a positive integer.

Equation (C.1) is required for evaluation of the first order
moment of the 2SLS estimator. For second and higher order moments
Y = a + k (where k is the order of the moment under consideration), but
can be expressed in terms of equation (C.1) by utilizing the recurrence
relations for the confluent hypergeometric function (see Slater [64] ;
p.19).

The Toronto function was developed by Heatley [18] and is
defined as

-x T'(a)
r'm

1 =
T(20c—1,Y—1,x2)==x(Y o) e lFl(a;y'; x) (C.2)

(N.B. Slater [64] gives this formula with an incorrect sign, p.99),
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This function is characterized by convergence to unity as x increases
indefinitely.

If vy = a+1, then equation (C.2) can be rewritten as

Ny

=X

= =
T(2a-1,0, Xx =z ® 1

F1 (o0 so+13 x) . (C.3)

We state two special forms of the Toronto function that are

required in the forthcoming analysis:

1

T(L , 1, x) =1-¢e ", (C.4)

X

1 -
and T(1, 2, x3) =1 - (1 + x)e {C.5]

In addition, we require two of the recurrence formulae for the Toronto

function (see Heatley [18; p.171):

1 -20i- L 1,
T(V+2,0+1, X?) = —(—\%—QT(\),WL x?) + T(v,a, x3), (C.6)
and
L L = L
Twed,a+2, ¥ = G o1y, o, % - 280 1(yag,001, 57,

(C.7)

where v = 20 - 1. Thus all values of o can be evaluated with ease.

If e * is assumed to be zero, the Toronto functions in equations
(C.4) and (C.5) will both be unity. Thus, by setting o = 1, initial
values for the recurrence formulae can be determined, and it is then
possible to evaluate the Toronto function for all integer values of o
by repeated application of equations (C.6) and (C.7).

Following the above procedure, equation (C.3) can be rewritten

[eel

. . _ o X I\ T
1F1(u,a+1,x) =z rzo (l—a)r (§5 s

as

which is identical to the asymptotic approximation to the confluent
hypergeometric function given in equation (C.1). Thus the error
incurred in utilizing the asymptotic approximation for finite x is
simply the error caused by assuming e ™ to be zero in the Toronto

function.
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It is easy to show that this error can be expressed as

Tlorl) (C.8)
(-x%
thus as x increases indefinitely (for o fixed), the error of approximation
tends to zero.
This analysis is only valid when o is an integer, a condition
which will not always be upheld (e.g. when considering the moments of

the 2SLS estimator, even values of K, will yield integer values for o,

2
whereas odd values of K2 will yield non-integer values for a).

For o non-integer, equation (C.1) is an infinite series, although
it can be truncated after (say) n terms. If this is done the error
involved by truncating the infinite series after the nth term will not

exceed the (n+l1)th term, and will be of the same sign as the (n+l)th

term (e.g. see Luke [25; p.127]).
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ABSTRACT

Quenouille has developed a procedure, later termed the jackknife
by Tukey, for reducing the bias of a consistent estimator of an
unknown parameter. A measure of the variance of the resulting estimator
can be obtained and used to provide approximate confidence intervals
and tests of significance. Thus the jackknife techniaue may be
especially interesting when the estimator under consideration is biased
but consistent and mathematically intractable distribution theory
prevents the construction of exact confidence intervals.

Considerable research has been devoted to studying the jackknife
technique, predominantly in the fields of biometrics, statistics and
- numerical analysis. So far the use of the jackknife method in
econometrics has been negligible, although one very important class of
econometric estimators, the simultaneous equation estimators, is biased
in finite samples and, in general, has a matﬁematically intractable
distribution.

In this thesis we investigate the application of the jackknife
technique to the Two-Stage Least Squares (2SLS) structural parameter
estimator in a simultaneous equation system. The bias reducing property
wés found to be present in the majority of cases considered in an
investigation of the effects of jackknifing on the exact bias of the
2SLS estima;or in a two equation model. Conditions are given for'which
it is unlikely that jackknifing will reduce the bias of the 2SLS estimator.

Since the exact variance of the jackknifed 2SLS estimator is
unknown, an examination of the effect on the variance of 2SLS of
applying the jackknife had to be made by a simulation experiment.

Whilst the 2SLS estimator always had a smaller mean square error than
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the jackknifed 2SLS estimator, a comparison of absolute errors
rarely produced a significant difference between them.

Finally, it was observed that t statistics formed using the
2SLS estimator may not be distributed according to the Student t
distribution. The actual distribution may be highly skewed and serious
errors could result if the postulated theoretical distribution was
used for statistical inference. In general, this feature was less
noticéable for the J2SLS éstimator which appeared to have a reasonably
symmetrié distribution, and consequently thére is less likelihood
of serious errors feing made if the postulated theoretical distribution

is used for the purpose of statistical inference.
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"Grown-ups léve figuresf When you tell them you have made a
new f;iend,‘they never ask you any questions about essential
matters. They never say to you, 'What does his voice sound
like? What games does he love best? Does he collect
butterflies?' Instead, they démand: 'How old is he? How many
brothers has he? How much does he weigh? How much money does
his father make?! Only from these figures do they think they

have learned anything about him."

Antoine de Saint-Exupéry, The Little Prince




CHAPTER 1

INTRODUCTION

Quenouille [45] has developed a technique, iater termed the
jackknife by Tukey [72], for reducing the bias which may be present in
an (otherwise consistent) estimator of an unknown parameter. Quenouille's
original justification for using the technique was based upon the
.assumption of the existence of a Taylor series expénsion for the bias
of an estimator whereupon, by applying the jackknife technique, the
bias term to order (l/N) could be removed. In addition to its bias
reducing properties, the jackknife tecﬁnique can also be used to provide
approximate confidence intervals and tests of significance. Thus the
‘jackknife technique is a viable proposition where the estimator under
"consideration is biased, but consistent, and/or where mathematicallyl
intractable distribution theory prohibits the formation of exact
confidence intervals.

Considerable research has been devoted to studying the jackknife
techniqué, predominantly in the fields of biometrics, statistics and
numerical analysis. Its use in econometrics has been negligible, yet
a class of consistent econometric estimators possess both bias and"
intractable distribﬁtion theory in finite sémples, which would suggest
that application of the jackknife technique may be a fruitful exercise.
This class of estimators is the class of simultaneous equation estimators.

This thesis considers the effects of applying the jackknife
technique to one of this class of estimators, the Two-Stage Least Squares
(2SLS) estimator.

2SLS" is a "limited information" estimator in the sense that it

estimates the equations comprising a simultaneous economic system one




at a time. In order to estimate any one equation,-ZSLS only requires
a specification of the equation being estimated and.a list of the

other predetermined variables appearing in the system. It does not
therefore take account of contémporaneous.correlation between the
disturbances of the equations in the system. Neithef does it use the
information contained in the overidentifying restrictions on the
other equations in the system. Consequently, if the entire system has
béen specified, 2SLS may not maké the most effective use of all the
available information and a'"full-information" estimator may be preferred.
Under the assumption that the hypothesized model is correctly specified,
the most efficient method of estimation would be one of the full
information methods. Most economists, however, would consider this
assumption rather heroic and would select one of the limited information
estimators in order to isolate the deleterious effects of any
specification errors to the equations in which they arise.

There are two reasons for selecting the 2SLS estimator from
suchla‘wide class of estimators.

Firstly, tﬁe exact bias (and higher order moments) of the 2SLS
estimator have been derived for a two equation model and this allows
an exact investigation of the jackknife's bias reducing ability
vis-a-vis 2SLS, albeit under rather restrictive assumptions.

Secondly, the other limited information simultaneous equation
estimators of any importance are the Ordinary Least Squares (OLS) and
thg Liﬁgted Inforﬁation Maximum Likelihood (LIML) estimators. OLS is
not a candidate for jackknifing since it contravenes Quenouille's
assumption of a consistent estimator, whilst the non-finite moments
of the LIML estimator (see Mariano and Sawa [30]) precludes any
examination of the effects.of the jackknife technique on its '"bias'.

In addition, within the class of limited information simultaneous



equation estimators, on the basis of numerous Monte Carlo results

~ (the major works are summarized in Johnston [20], Chapter 13,
Section 8) 2SLS is generally preferred on the grounds of "all-tound"
performance and computational efficiency and simplicity.

"Full information' methods of estimation-were not considered
as possible candidates for jackknifing as this would seem to be the
logical step forward after the limited information estimators had been
considered. This point is discussed furtherlin Chapter 8.

The general form of the simultaneous equation system which will
be used throughout this thesis, together with the relevant notation
and assumptions, is defined in Chapter 2. The 2SLS estimator and its
asymptotic properties are derived for the parameters of any single
equation in the systém. Conditions and assumptions under which the
exact finite sample results of the 2SLS estimator have been derived
are also stated.

Chapter 2 continues with a deséription of the jackknife
statistic, its bias feducing properties, and its use in formulating
approximate confidence intervals and tests of significance. The
literature on the jackknife and its applications is so extensive that
only (what the author considers to be) the more relevant works are
cited, although a bibliographical reference is given.

The asymptotic properties of the jackknife 2SLS (J2SLS) estimator -
are investigated in Chapter 3. A proof of the asymptotic equivalence
of the J2SLS and 2SLS estimators is given, and‘a t ratio formed using
the J2SLS esfimator i$ shpwﬁ to be asymptotically distributed as the
standardized normal distribution.

The small sample properties of the J2SLS estimator are
investigated by a series of simulation experiments in Chapters 5, 6

and 7. The computer algorithms used in the experiments are described




in Chapter 4 together with results of verification where they do not
‘already exist. A formula given in Chapter 3 reduces the computational
burden involved in calculating J2SLS parameter estimates, and should
reduce the probability of significant inaccuracies due to the build-up
of rounding errors resulting from repeated use-of the matrix inversion
algorithm. Chapter 4 also contains a method for evaluating the
accuracy of the asymptotic approximations to the exact moments of the
2SLS estimator.

For an equation containing just fwo endogenous variables tﬁe
exact first and second order moments of the 2SLS estimator have been
derived. It is relatively easy to adapt the exact bias of the 2SLS
estimator to obtain the exact bias of the J2SLS estimator, but the
exact mean square error of the JéSLS'estimator has not, as yet, been
derived. In.Chapter 5 the exact relative biases of theIZSLS and
JZSLS estimators are compared, under conditions which prevail for
"exact' theory, by means of a simulafion experiment. This experiment
gives exact results on the ability of the jackknife to reduce the bias
of the 2SLS estimator. For the general model, however, this form of
analysis is not possible, and the author has only been able to derive
a rather weak conditon under which jackknifing is "unlikely'" to reduce
the bias of the 2SLS estimator.

Chapter 6 presents the results of a Mgnte Carlo experiment into
the properties of the two esfiﬁatofg. Comparisons of relative bias,
mean square error and mean absolute error are made using a two equation
model. The ﬁse of the jackknife étatistic to form approximate
confidence intervals and tests of significance using the 2SLS estimator
is also investigated and the results are presented in Chapter 7.

It is well known that standardized normal ratios and t ratios formed
using the 2SLS estimator are only valid asymptotically, and that in

small samples they could diverge significantly from their postulated




theoretical distributions. A comparison of the small sample
" distributions of test statistics using both 2SLS and J2SLS estimators
is made.

Concluding remarks are contained in Chapter 8.




CHAPTER 2

THE TWO-STAGE LEAST SQUARES ESTIMATOR AND
THE BIAS REDUCING PROPERTIES OF THE JACKKNIFE STATISTIC

2.1 The General Linear Simultaneous Equations Model

2.1.1 Specification of the Model

The analysis in this thesis is concerned with a simultaneous
economic system of G linear stochastic equations relating G endogenous
(or jointly-dependent) variables and K exogenous variables, which can

be written as
YB+X =U . (2:1)

We are interested in the estimation of just one equation from

this system, (say) the jth, which can be written as

=Yg+ Xy XYoo+ U 2.2
Y5 7 T3k T iyt Nogtey v Y0 s

and we will refer to this equation as the jth structural equation
(=1,2,...,G). For notational simplicity we will generally omit the j

subscript.

2.1.2 Notation

Y is a matrix of N observations on the Q endogenous yariables in the
entire system;

Y is a vector of N observations on the 'dependent" endogenous variable;

Y is a matrix of N observations on the other g endogenous variables
included in the jth equation. In the unlikely event that all G

endogenous variables appear in the jth equation then g=G-1 and




[y:Y]=Y , otherwise g<G-1 ;

X is a matrix of N observations on K exogenous variables partitioned
asX=[X1:X2]; |

Xl is a matrix of observations on the K1 exogenous variables included
in the jth equation;

X2 is a matrix of observations on the K2 exogenous variables excluded

from the jth equation (i.e. K=K, + K

1 2)3

U is a matrix of N unobservable disturbances for each of the G equations,
with jth column denoted by Ej :

B is a Gx G matrix of unknown structural coefficients;

B is an unknown g component sub-vector of B with non-zero elements.

I'' is a KxG matrix of unknown structural coefficients;

Y; is a K1 component sub-vector of T with non-zero elements;

Y, is a K2 component sub-vector of ' with zero elements.

2.1.3 Basic Assumptions

The following conventional assumptions are made for the system
(2.1), and for the jth structural equation (2.2):
(1) B is non-singular;
(ii) the jth structural equation, (2.2), is just- or over-identified by
zero restri;tions on the structural coefficients, i.e. K2>g;;
(iii) the matrix X consists of non-stochastic elements and is of full
rank, K. Further, as N>« the matrix N—I(X'X) converges to a

finite matrix, denoted by

1. (X%

lim XX

N>
: where ZXX is a finite positive definite matrix ;

(iv) the sample size (N) is greater than the total number of exogenous

variables (K) in the system;




) the N rows of U are independently and identically distributed
with zero mean vector and unknown finite covariance
matrix, ZXZ. In additibn, the analysis in Chapter 3 requires

that the structural disturbances have finite fourth order moment.

Postmultiplying equation (2.1) by B—1 we obtain the reduced form

of the system, which can be written as

Y=XT+V, . (2.3)
- -1

where [ = -T'B 5 .

and -V = UB_1

The reduced form equation for the jth '"dependent'" endogenous
variable and the reduced form equations for the g "explanatory"

.endogenous variables can be written as

= XT. + v,
L=y
and

Y.
J

XI, + V., - 2.4

I + V., | (2.4)
respectively. Since, for notational convenience, we are omitting the

j subscripts, this explains the necessity to write equation (2.3) in the

above form rather than in the more common form which would coincide

with equation (2.4) when the subscripts are omitted.

2.1.4 The Two Endogenous Variables Case

The majority of results on the exact properties of the 2SLS
estimator have been derived under the assumption that g=1, i.e.
the equation being estimated contains only two endogenous variables.

and X, contain no

In addition, it is assumed that the matrices X 2

1

lagged endogehous variables.
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Under the above conditions, the first structural equation can

be written as

Yy = YB +‘xlli 4 xé!g ; Y : - (2.5)
with reduced form equations‘

ol Sl TR (g &

Yy = Xyl * Xpyy + ¥y ;
Topr 98¢ Bois B

" The random vector (!1': 15 ) is assumed to be distributed as bivariate

where LEPE) are vectors of constant coefficients.

normal with zero mean and positive definite covariance matrix QDIN g

where Q = wij (i,j=1,2) is a matrix of reduced form parameters: - .

2.2 The Two-Stage Least Squares Estimator

It is well known that OLS is, in general, an inconsistent

- estimator of the parameters in the structural equation (2.2). This

~ inconsistency is due to the correlation between the explanatory

) endogéﬁous variables (Y) and the vector of structural digturbances w).
Basmann [3] and Theil [70] derived, independently, an alternative
estimator which '"'purges'" Y of the stochastic com%onent associated

with the disturbance term, and then estimates the revised equation by
OLS. This "alternative'" estimator is called thé Two-Stage Least
Squares Estimator. .

Ffom equation (Z.2) we write the jth structural equation as

YEYB+ Xy, +u.
If we rewrite the above equction as

Y= (Y-V)8 + Xy, vu+ Vg,
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then using equation (2.4), (Y-V) = XII is uncorrelated with (u+Vg)
sin;e X is non-stochastic by assumptién (iii).
Since V is unobservable we must use its estimated value v,
where ¢ = Y- XII. Provided plimfi=1T,it follows that plim (Y -) = (Y-V)
REL - N>

and hence (Y -V) and (u+ Vg) are asymptotically uncorrelated.

Thus if the least squares estimator is applied to

_}1=(Y-0)§+X +'1_1_+\7§,

14
we can obtain consistent estimates of 8 and 11.. Since this process
of»estimation involves two successive applications of least squares
it is known as Two-Stage Least Squares (2SLS).

In this thesis we shall work with the Instrumental Variables

type. formulation of the 2SLS estimator, viz:
1 & -1
= [z'X(x'X)‘ x'z] 2'(x'x)7" X'y , (2.6)

where Z ‘—Y $ XIJ and Q' = [_B:' : i'jl

|@>
I

In ord.er to apply fests of significance., knowledge of the
distribution of the 2SLS estimator is required. The finite sample
distribution of 2SLS is only known for a few specific cases, thus
reliance is usually placed upon its asymptotic distribution.

Substituting for y in equation (2.6) we obtain

6-06-= [Z'X(x'x')'lx'z] sixat ™ e,

and we require the limiting distribution of the sequence

: -1
MNE-08) =[1.z2'x(1.x"'x) 1.x'z _1_.z'x<l.x'x> 1 .X'u
N N N N N N
Since X is (by assumption) non-stochastic, it follows that

X'z X'[Y:X,] =1.X"[XI + V:X]
Al 2 e 1

=1.
N

zZ|-
=
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converges in probability to a finite limit, denoted by

plim 1.X'Z = 2

Nboh 5 0

We have already assumed the existence of a finite limit for

-1

N L XX , and thus we can denote its inverse by

‘ : < OISR
lim (1.X'X ) = I3 .
N->ew \ N

Under assumption (V), modified application of the Lindeberg-Levy theorem

_(see e.g. Theil [71; pp.498-499]) using the above results will yield

R - -1 -1
VN (6-6)~N |0,0%plim {1.2"X (1 .x'x) L. o x'z} e -
' N

N+eo |N N N
where o2 denotes the variance of the jth structural disturbance,

i.e. the jjth component of Z.

A consistent estimator of o2 is given by

Aga

82 =P_}1/(N'K1'8) ’

‘where p’: [oAg ~ xlil S

Since the asymptotic covariance matrix of .the 2SLS estimator
coincides with the Cramer-Rao bound (when the structural disturbances
are normally distributed), 2SLS is an efficient estimator in its class

of limited information simultaneous equation estimators. Its relative

(small sample) efficiency however has not, in general, been ascertained.

2.8 The Jeekknite Statistic

2.3.1 Definition

Let © be dan unknown parameter, and let X ,X,,....,X, be N

k- oo N

independently and idcntically distributed observations from the cumulative
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distribution function Fa' Further, let o be a biased estimator

. of o such that

[+

——
T

a
. 2

NZ

a
Bla o) = —= AT B e s (2.8)
. |

=

where ays 2y,

N observations can be divided into n groups, each of r observations

.., @, are constants and not dependent upon N. If the

(i.e. N=nr), then the estimator

Ji(a) = no - ( n-—l)ai . i=1,2,...,n)

where &i denotes the estimate of o obtained with the ith group
of observations omitted, removes the term in 1/N from equation (2.8).'

Applying the technique to equation (2.8) gives

a

o a
E[J; ()] =n0t+—1 PR S I
1 r r2n r3n2
- (n-1ao - il——' *2 - °s = 555 s
: T r2(n-1) r3(n-1)2
o a, (2n-1)a3
i.e. E[Ji(a)] = Q- - = e

r?n(n-1) r’n?2(n-1)2

(3-= 1,2, ..s,0)
Tukey,1 in unpublished work, has named Ji(a) the pseudo-jackknife
estimator. He defined the jackknife estimator, J(a), as the average

of the i pseudo-jackknife values (i=1,2,..., n), i.e.

PN n A A 8 n N
J@ =L Ji@-n-&A ¥ 5 . (2.9)
ni= i= :

1. The definition that follows is taken from Brillinger [7]
who cites an unpublished paper and an abstract [72] of a
conference paper by Tukey.
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J(&) will have the same expected value as Ji(&), but a-smaller
variance. The term jackknife was coined for this procedure since
it shared two characteristics with a boy scout's jackknife:
(1) wide applicability to many different problenms;
(ii) iﬁferiority to special tools for those probiems for which special
tools have been designed.

In most problems however the property of removing bias would
not be sufficient to recommend the use. of the jackknife. A comparison
of the dispersion of the original estimator with that of the jackknife
estimator is neede&. Tukey noted that not only are the pseudo-jackknife
estimates nearly unbiased, but their average sum of squares of
deviations is nearly N(N-1) times the variance of their means. He
proposed that in many instances the Ji(&) are approximately independently
and identically distributed and hence an approximate estimate of the

variance of J(&) is given by

;@ - I@1°

(2.10)

ne~13

i=1  n(n-1)
whilst &
I@) -a
n (3, - I@]°

(2.11)

i=1 n(n-1)

is approximately distributed as a t variate with (n-1) degrees of
freedom.

The jackknife can be re-applied iq order to remove the bias
term of order 1/N? which remains after the initial application.
Quenouille [45] and Kendall and Stuart [24] give a formula to achieve

this further bias reduction, but if a 0 for all k > 2 then the

k:
second application of the jackknife does not yield an exactly unbiased
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statistic as one would have desired. Schucany, Gray and Owen [62]
~ give a higher order transformation which provides an algorithm for
eliminating, exactly, bias terms of higher order.

This thesis considers the jackknife technique when r=1 (i.e.
N=n). Thus each of the N pseudo-jackknife egtimates is calculated
from the total number of observations less one, and the jackknife
statistic is defined as |

J@ =nNo - (N-1)
N i

I o~

a. . (2.12)
I = :

Intuitively, choosing r=1 is appealing since problems of
dividing up samples and being left with awkward remainders are
avoided. In addition, several studies involving applications of the
jackknife have found r=1 to be the "optimal" value of r (e.g. see

Robson and Whitlock [56] and Rao [47]).

2.3.2 The Generalized Jackknife

Schucany et al. [62] provide a general method for bias reduction

which includes the jackknife as a special case. Suppose that there

~

are k+1 biased estimators of @, viz: al’ a defined

g0 veee 2% o

over the N(=n) observations, and further suppose that the biases of

these k+ 1 estimators can be written as
. k
E(@G;) - o= J_Zlfij(N)bj(a) , (i=1,2,...,k+1)

then the estimator




0.1 0L2 < e e e e e ak+1
1 fip - B

" fri 2 Fy kil

L (2.13)

1 1
£1 f12 £1 k41
fa f2 £a,k+2
By B cvvx e Bpan

reduces the order of bias to terms of order (k+1) in 1/N, 1i.e.

’ [;(k)_;l R [N-(k-»l):l ’
where the argument of the fij functions has been sﬁppressed for
notational-convenience, and these functions are assumed to be known.
Further, it is assumed that 1 < k < N-1 and that the denominator
of equation (2.13) is non-zero.

~ ~
:'(x’a —

2 1
If k=1, then a 2N

1

1 o
f2N) =g, and £,0N) = FEy -

and equation (2.13) reduces to the 'regular" jackknife as defined
by equation (2.12).

The formula given by equation (2.13) is exact, in the sense
that if the bias of the original estimator takes the form of
equation (2.8) with only the first k terms non-zero, application of

&(k) will remove all bias.

16
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Schucany et al. only considered the problem of bias reduction.
The effect of their higher order transformation on the variance of

a®) yas not investigated for the general case.

2.4 Previous Applications of the Jackknife Technique in Econometrics

2.4.1 Partial Correlation Coefficient

If the estimated value of the partial correlation coefficient
is used as an approximate test for serial correlation in time series,
Quénouille [44] has shown that the bias of the estimator is inversely
proportidnal to the sample size, N. He suggested using (what later
became known as) the jackknife technique with n=2, i.e. the sample
was split in half, in order to remove.the bias term of order (1/N). In
a later paper, Quenouille [45] generalized this procedure by noting
that the same amount of bias reduction could be achieved by splitting

the sample into n groups each of size r (where N=nr).

2.4.2 Autoregressive Processes

Quenouille's [44] original method of jackknifing (i.e. n=2) was
later applied by Orcutt and Winokur [39] to the least squares estimator
in an attempt to reduce the bias of B (the least squares estimator of B)

in the autoregressive process

y:c = + Byt_l + € (t=1,2,...,N)

(et normally and independentiy distributed).

Using a Monte Carlo study they compared sample means and mean
square errors of three estimators of B: least équares, jackknife least
squares, and an estimator based upon correcting the bias of least

squares using an expression derived by Marriott and Pope [31]. Whilst
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both modified least squares estimators reduced bias, the jackknife
estimator exhibited a larger mean square error than the other two

estimators and consequently was not to be preferred.

2.5 Use of the Jackknife Technique in Other Disciplines

A substantial body of literature on the application of the
jackknife technique in various disciplines has evolved since Tukey's
[72] initial conjecture. A survey of these applications, together
with a comprehensive bibliography, has been compiied by Miller [35].
With the exception of the two papers cited in the previous section, few
of the applications have any direct relevance to econometrics.

Perhaps the most successful aree in which the jackknife has been
used to date is rhat of ratio estimation. Given a bivariate sample

X Yi) (i=1,2,...,T) from a population of size N (T<N) with means u

i
and n respectively, we are interested in estimation of the ratio

R= u/n. In many instances the classical ratio estimator r = X/Y

(i.e. the ratio of sample means) with X known, may exhibit a large

bias compared to its standard error in surveys with many strata and
small sémples within strata. Durbin [14] suggeéted the jackknife with
n=2 as a bias reducing tool and investigated its properties under two
distributional assumptions on the stochastic error term in the general
linear model. Under both assumptions the jackknife not only reduced
the bias of the ratio estimator, but also reduced the mean square
error. Rao [47] and Rao and Webster [48] showed that the optimal
choice of n under both of Durbin's [14] distributional assumptions is
n=N.

Subsequent research investigated the performance of the jackknife

in ratio estimation as compared with several other estimators. In

general, the jackknife appeared to rank close behind the most efficient
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estimators but had the disadvantage of being more complicated to
compute.

An application of the jackknife with direct relevance to
econometrics is Miller's [36] proof that fhe jackknife OLS estimator
of the vector of parameters in the general linear-model is asymptotically
normally distributed under conditions that do not require the vector
of stochastic disturbances to be normally distributed. He conjectured
that his proof extended to the cése of non-linear least squares.

The jackknife has also been applied in the areas of maximum
likelihood estimation, functions of a U-statistic, stochastic processes,
inference on variances, and multivariate analysis. This list is far
from exhaustive and the interested reader is referred to Miller's [35]
bibliography for additional areas of application, and his synthesis
for'a review of the performance of the jackknife statistic over the

many disciplines in which it has been used.

2.6 Alternative Methods of Bias Reduction Using the 2SLS Estimator

2.6.1 General Remarks

Methods designed to reduce the bias of the 2SLS estimator, without
increasing the mean square error, have been devised by Nagar [37] and
Sawa [60, 61]. Strictly speaking neither author '"manipulates' the
2SLS estimator spécifically, but since both proposed estimators converge
in distribution to the 2SLS estimator as the sample size increases
indefinitely, they could offer themselves as alternatives to the J2SLS

estimator, at least on a bias reduction criterion.

2.6.2 Nagar's Unbiased k-Class Estimator

Nagar [37] has derived an expression for the bias to order 1/N

of a distribution approximating the distribution of the k-class
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estimators. He noted that for k=1 + V/N, where O is the degree of
overidentification of the equation being estimated, the bias vanishes
to order 1/N. Asymptotically, Nagar's unbiased estimator is clearly
equivalent to the 2SLS estimator.

Using Klein's model I, Nagar showed that whilét this choice of
k certainly exhibited a smaller '"bias" than the corresponding 2SLS
estimator, 2SLS dominated on a 'mean square error' criterion. Sawa
[59], however, has shown (for a.two endogenous variables model) that
if k> 1 and nonstochastic then no moments of the k-class estimators
are finite; hence Nagar's "unbiased" k-class estimator does not possess

a finite first order, or any other order, moment.

2.6.3 Sawa's Combined Estimator

On the basis of an asymptotic expansion of the exact bias of
the k-class estimators in a two endogenous variables model, Sawa
[60] proposed an estimator which uses a weighted combination of the
2SLS and OLS estimators in order to remove the leading term of the
asymptotic expansion. The weights are such that, asymptotically, Sawa's
combined estimator converges to 2SLS.

In a series of experiments, the combined estimator dominated the
25LS estimator (on a mean square error criterion) when the number of
exogenous variablés excluded from the equation being estimated was
very large. The reduction in bias (over 2SLS) obtained by using the
combined estimator was always evident and frequently substantial.

The experiments were only conducted for an equation containing
just two endogenous variables. Sawa [61] justified the extension of his
combined estimator to equations containing an arbitrary number of
endogenoué variables by using Kadane's [23] small o approximations.

As yet, however, no Monte Carlo results have becen published on the
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relative merits of the combined estimator vis-a-vis other limited
_information estimators. Clearly if the combined estimator dominates
other limited information estimators on a mean square error criterion
only for a large number of excluded exogenous variables, a Monte Carlo

study may be impracticable, or at least very expensive.

2.7 Justification for Applying the Jackknife Technique to the

Two-Stage Least Squares Estimator

The author has been unable to produce avrigorous justification
for applying the jackknife technique to the 2SLS estimator, as he
cannot express the bias of 2SLS as a Taylor series expansion in terms
of increasing powers of 1/N. Nagar [37], however, has shown that the
bias of the 2SLS estimator can be ap?roximated by an expression
involving terms of increasing powers of order (l/N%) in probability.
In addition, using Kadane's [23] approximation to the bias of the
2SLS estimator, the author has been able to derive a condition under
which the jackknife is "unlikely'" to reduce tﬂe bias of the 2SLS
estimator. This analysis is contained in Chapter 5.

Whilst these results cannot provide a rigorous justification for
using the jackknife technique as a bias reducing tool, it suggests that

its application may be worth pursuing.




CHAPTER 3 t

ASYMPTOTIC THEORY

3.1 Derivation of the Computing Formula for the J2SLS Estimator

From equation (2.6)'the 2SLS estimator can be written, in

instrumental variable form, as

L

[ [Z'X(X'X)'?X'Z]'IZ'X(X'X)-lx'z_ i LS.

We denote the 2SLS estimator of 8 based upon (N-1) observations

as
8. = [zix, () "z 20k odx) Iy (3.2)
—i b T Tt s | 171 S TR R | i~ i

where the i subscript denotes that the ith observation (i=1,2,...,N)

has been removed from the relevant data matrix. Using Appendix A we

can show that . .

- ' ;lﬁ. ¥ o tgn ™l
G

xixp = X e = (00 o )

1 rvtoy =1
1-5i(x X) X5
where X; (a2 X dimensional column vector) denotes the ith row of X;

i.e. the ith observation on X.-

Using equation (3.3), we can rewrite cquation (3.2) as
g | : o

(va) -1_’_(_1_’5; (X ' X) -1
+.

8, ={[2'%-z;x{] |x'x) X'z 2;]

~"

TR By |
7 1- X5 xX'Xx) X5 |
} :

o=l —1.1
X< [2'%-2, %01 [(X'0)7 +

tpytyy -1

where 25 (a K1+-g dimensional column vector) and Y; (scalar) denote the

ith obscrvations on Z and y respectively.

22

[X'y-x,y;1 s (3.4)
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Consider the term to be inverted in equation (3.4). Upon
expansion we obtain
z'X(x'X)‘lx'Z+-z x'(x'X)'lx.z! - Z'X(X'X)-lx‘z' -z x'(x'X)'lx'z
L85 =24 =i=i =G4 '

o ' —i Voot =11 PRI B | vt =1 '
ZX(XX) _)giii(x X) X2 _Z_iii(x X) ii_)ii(x X) X;25

+ +

g et S ] e R
1j£i(x X). Xy 1-£i(x X) X5
-1
= ' - = =
2'xx'% oxl Ko xz! 0 zx!x'0 hex! x'07x'z
_ =4 i . v =i (3.5)
[P B | ) 1ty -1 :
1-_)£i(X X) X4 1-51()( X) X4
‘Let P =2z'xx'v7x'z,
s, = x'(X'X)-lx tscalar)
i = -
RS AP NS (A R o,
' bi = 5i(x X) Xys= T, (scalar)
ands g, =200 N 0
. =1 =
then equation (3.5) can be rewritten as
o -1
.a! s2.2! . . S.a.z. S.z.a!
P+si'£i£" M o WP o T aizi' _ Ziai o d-ted o ieded
-S -S = -
(1-s5;) (@-3;) (1-%;) - (1-84)
i [; 1 . 1 T-l
= - 235 (ii‘ii) (ii . Ei) . (3.6)
L (l-Si) |
Lot [P we—ticte ~a il —as) | =G
(1-5.) —1 47 4 ?
5 N
then, using Appendix I, equation (3.6) can be rewrit%ten as
R e T
(C-2z.z.) =C + —- (3.7)
—i—i P |
1-2. C "z,
i
and using the same expansion, it follows that
-1 1 -1
; P (2; -a.)(z, -a;)P
. C—l '=.P-1 _ i i 1 1 _ (3.8)
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Combining equations (3.7) and (3.8) and simplifying we obtain

' : —-1
-1 ' v

-1 ' -1 v -1
a1 JF ey (zg-a) 1y Palzg-ag)(zy-e) P oTzpzy
P - +— | P 2,25 - — .
(1 -si+di) ki (l-si+di)
-1 -1 | T . ] -1
_ P Z z. P (Z -a. )(Z -a. ) . P (E_i'ii) (-Z—l-il) P E_i_z_lp (il‘ii)(il'gl) P )
» 2
(l—si+di) | : (1—si+di)
(3.9)
L _ 1,-1 _
where di = (_z_i ii) P (-z—i gi) s (scalar)
-1 |
Z.P “(z.-a.)(z.-a.) P "z,
and k. =1 - 28 5w = o o o (scalar)
. o - l-s.+d.)
(L=5;+dy
The last term in equation (3.9) can be rewritten as
P 1 _1 —
1 o Ky - (A-23P 7z5)
[2;-3;1(z;-3,] ,
(1- s;+ di)
~and cbnibining this with the first term in curly brackets gives
-1
k (1 -_z_.'P z.)
Pz, ] (2,1 | - —
k.(1-s+4d.)
i ii
Thus equation (3.9) can be written as
g 1 (1-z! p'lgi) .
P~ +— |- (z —ai)(z -a.) + P~ -Z—iii
K. (1-s.+4d.)
i i
-1 15-1 e
(z.-a )'P z, z.P " (z;-a;) _
_ 1 i 1(21"31)31 . = 117 p- z.(z;-a )| p 1
(l—si+d) (l—si+d)

(3.10)
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Now consider the second '"term" in equation (3.4), viz:

' e x! (0w~
i),

[2'x-2,x/] [(x')7 e X'y - x;¥.]

(PR |
1—_>_c_i(X X) X4

_ ] ! —1 ] 1 1 —1
= |E X(X X) "Xy+ —Z—iii(x X) XY

! | 1 ooty =1o1 P P | TP |
+ 1 .2 X(X'X) ii_&i(x X) Xy+ 1 . _g_iii(x X) 5i§i(x X) X5
(1_si) (l_si)

1 ' -1 ' [
- ZX(X'X) X5 - giﬁi(x X) Xy

' 1oy =1 1yl -1 1 outun-1 P outos=lyt
- 1 .ZX(X'X) iiii(x X) X;Ys - | 51_;51(x X) i.lii(x X) " Xy]|.
(1-s,) (1-5.)
(3.11)
Let -

q=zxx"0 'y,

then equation (3.11) can be written as

}7( 2,-a;) (yi-_&i'(x'X)'lx'XZl . (3.12)

g~ ViZs '+
(1‘51)
To obtain an expression for _e_i in (3.2), we must postmultiply
equation (3.10) by expression (3.12). Postmultiplying equation (3.10)
by q we obtain

1

. (1-z.P""z.) )
T = A plzia) (z;-2)" 4P 12-33
— k (1_ 8. ol ) —1 —1 -1 -1 —1—1
i : i-d
1 -1 '
(z;-2;) P £ 1 z;P (31"21_) -
- P (ii——a— )z - P _z_i(z,_.-al) 0
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Postmultiplying equation (3.10) by -YiZ and simpli‘fying we obtain

-1 : *
(_z_.-g_.)'P - e
s E-lii < S A Sy
k[ (1-s;+d) ,

Postmultiplying equation (3.10) by the term in sqpare. brackets in

>

expression (3.12) and simplifying we obtain

: = i :
s : (1-_z_.'P Zs) z. P~ (z -a.) ' ~
.l.. — P-l(ii__a_i) + 1 i P—l_z_. [)’ - _)S"ﬂ'] .
x, |-s, +d) (-5, +d,) = Lt T

Then rearranging the above expressions we obtain

n . (z-a)P 1 ’1-'
9_i=_6_+ P(z-a)-—-—-P z

_ki(l—si-r_d ) e ki A
: -1 v. -1
(1-_3.'P z.) 2:P "(z.-a.).
g i i P—l(ij'-a-i) ! i —i p_l.z—i X
ki(l-si+di) ki(l—si+di)

E Y: = X: 1T) - (z; -al) :l (%32« vexN) ' (3.13)

Note that (y; - x.'?r) is the ith component of the reduced form
residual vector v = (I- Mx)x , we denote it therefore by v Similarly,
= (y - 24 6) is the ith component of thec structural form re51dua1
\;ector _11 = (y- ze), and W. = ¥ _9_19_) is the ith component of the
] "second stage" re51dua1 vector w = (y-M 26) where Mx = X(X’X)—l’ ".
Equatlon (3. 13) was used for computing the JZSLS estlmator and
its associated test statistic in the Monte Carlo study of Chapters
6 and 7.
For f_uture analysis, it will be convenient to rewrite equation

(3.13) as
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éi =8 + P-lgi : (i=1,2,...,N) (3.14)
: where £; = (hi + li)ﬁi + hi(si-ﬁi) 3 _ (3:15)
(- 2Pz P (z-2)
}"l‘i = (ii":a_i) + ; Z‘i ’ (3'16)
k. (1-s.+d.) k. (1-s.+d.)
! -
(z.-gi) P z 1 T
and j, = (z;-3,) - —z; (3.17)

kj (1-5;+d;)

The result in (3.14) is given in Phiilips [42].

3.2 An Expression for the J2SLS Estimator

To form the J2SLS estimator we are required to take the summation
of equation (3.14) over all i (i=1,2,...,N) omitted observations.

Using equation (3.14) we can form the J2SLS estimator as

i 7E 4 . (1) N
- J(®) =NE - I 8
- N i=l
L MN-1y . 77N
L o Pl g
N i=]

and using equation (3.15) we then obtain

(N—l).'_1 N Bt N he
- P izlchi-rli)ui-+izlhi(vi-wi) ) (3.18)

I =8-

Sﬁbstituting for hi from (3.16) we obtain

Pz‘ Rt ’2‘1‘_2_1'?-1.2_1 PRI
h.(v.-w.)=s ) —————— (z,-a,)(V.-W.)
i=17 t Y - fal k (les,+d,) T P
S p M
N 5;1’-1(_2_1'2_1) s ' 5
+ 1 z;(vi-we) . (3.19)
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Since (Ei-gi) and z; are the ith columns of Z'(I-Mx) and Z'

. respectively, it follows that

N 1-z;P "z, A \
— (2;-2,) (v;-w.) = Z' (I-M )\, (2-8) (3.20)
ie1ik; (Llos.ad,) * . 1 2 . .
X 24 Bt
and
NPy oA A ,
Ei(vi-wi) = -7 AZ(!_-E) 3 (3.21)

i=1 ki(l—si+di)

where A3 is an NxN diagonal matrix with iith component

1 -sz—lz.

(As)il e T ) (t=1,2,...,N)
k. (1-s.+d.)
i ii
and A2 is an NxN diagonal matrix with iith component

-1
B Ny

A).. = 1=.31,2,...,N)
2711 .
Substituting from equations (3.20) and (3.21) into equation (3.19)
gives
N A A ] A A (] A A .
izlgi(vi-wi) =2 (I-MX)AS(X—VL) - 2 AW (3.22)

Similarly it can be shown that

N
~ 1 A 1 ~
L hup = 2" (I-M)AE - 2'Au . (3.23)
i=1
N ~
Consider the term 2 jiui in equation (3.18). Substituting for
i=1"

ii from equation (3.17) gives

N (z.-a.)'P-lz. N
=1 =i A
A (z;-3,)u; - )
i=1 k. (1-s.+d.) i=
i S |

N A
inJ‘iui g

(] A ' A ¥
= - Z (I*MX)A22~- Z AIE- p - (3.24)

where A1 is an NxN diagonal matrix with iith component

' 1
M)y = ¢
1
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Substituting from equations (3.22), (3.23), and (3.24) into

equation (3.18) we obtain

—1 ' ~
Pz, + 20, - AT

_1 1 ~ ~
+ P Z(Az‘Ay,)(l'i)
=1_ 1 N A
+ Pz MxAs(y_-Eﬂ : (3.25)
The ensuing analysis is simplified by writing equation (3.25) in a

slightly amended form. Recall that

A _ ] -1 1
u= [I-2(Z MXZ) Z MX]X 3
i;__ = [I - MX]X- >
A and
A _ ] -1 1
W= 1 - MZz'MZ) T2y,

from which it follows that
2’ -w =0,
1 ~ -
Z'Md = 0,
and Z'M,T - W) =0.

Thus, if we define

K3=I-A3,

we can rewrite equation (3.25) as

A ~ -1 1 Lo
J®) =6+ (N&l). PTHZ (A, + 20, - A §

(] - e}
- Z'My (A, - B)u
+ 2", - T - W)

+ 2'M RV - @] 3 | (3.26)
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3.3 The Asymptotic Equivalence of J2SLS and 2SLS

3.3.1 Preliminary Results

In this section the asymptotic behaviour of the three diagonal

matrices (viz: A A2, and KS) introduced earlier in this Chapter will

1”
be investigated.

Essentially we must consider the following terms:

- s 15-1 15-1 _
koo (1= Sy + dg)y Z;F "z; and 2.7 “(z; - 34),

. I IV |
where s, = Ei(x X) X5
d. = (z3 - aj)'P7! |
3 = (Zi - ai) (z; -3;)
1,-1 1 -1
z.P "(z.-a.)(z.-a.) P "z,

and. B, =1 egii e, o2k = WL, W W —

i =k -1

(1-s; +d,)

The reader is reminded of the following results which were

established in Chapterbz:

‘- 1 V [] -1 | 1 "1 'l

() plim |1 . ZX|{1 . XX 1.X2Z = plim N.P * = ZP 5
N > IN N N :

where Z;l is a finite positive definite matrix;

and

() plim1l . X'z =2, ,
Yoo IF XZ

where ZXZ is a finite matrix.

For the ensuing analysis result .(b) will be expressed in a

different form. Since

X'Z = X'"[XI + V : xl] ,

we can rewrite result (b) as

plim 1 . X'Z'= |2, T : 2
aw H XX XX
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It follows from assumption (iii), section 2.1.3, ‘that

: . ' 1y\-1 LS |
lim Ns. = 1im x. <%_. X X)k X5 x ZXX X s

N0, N0

which is a finite constant, and consequently

lim's. = 0 . (3.27)
&
N>

% " 1
Consider’ the vector a; where

' Vvt yv=lyto _ ot rutey=lyt oy . .
a; = Ei(x X)) XNZ= X, (X'X)7°X [Y:X;];

' LEATI |
a; [fiH .511] . ‘ (3.28)

Using result (a) it follows that

1

R S P T P R
a; = [ziﬂ 'Eli]ZP [ Xt X (3.29)

. | R
plim N. a P —Ji] s

N >

- - ' - -
a finite constant, where X; 1s the ith row of X1

This result can be shown as follows:

the matrix (X'X)_lx'xl

is a submatrix of x'x) " x'x = I,

ahd thus consists of K1 columns of the KxK identity matrix. By

premultiplying these columns by 5; we obtain Eii

It will be convenient to write equation (3.29) as

. U -1 _ = -1 —
E{iz N -3y P a; =3 Zp a2 (3.30)
where plim a. = a. , a finite constant vector.
N> =k =

We can conclude, therefore, that

plim a} P! a. = 0. (3.31)

N+ -
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Consider the term
v -1
where the vector (Ei"éd)' is the ith observation on the matrix

to =10
[Z-X(X'X) "X Z]
Partitioning this matrix we obtain

‘ v =11
ki Xl] - X(X-X) "X [Y: Xl]

= [Y-:Xl] - [XIT: Xl]

[V:0],

which will have ith observation denoted by
Ny |

X5 0]

It.follows that

voo-1 _ Byl
(z. -a )'P-lz = [v.:0"] P'l[v +0'x, ¢ xq. ] (3.33)
- = —i -1 "= —i i R s :
and
1-1 - LR =lp~
giP (25 —Ed) = [fin 'Eli] P [Xi s 0] . (3.34)

Since each element of the OLS reduced form residuals matrix
converges in distribution to the corresponding element of the
disturbance matrix, from equation (3.32) and using result (a) we can
write

. Al | "lA . ' ‘1
5{:2 N Yy P v, o=y ZP vi e : (3.35)

Since Z;l is a finite positive definite matrix, and since
the !; (i=1,2,...,N) are independently and identically distributed
with mean zero and finite covariance matrix (this fact follows from

assumption-(v), section 2.1.3, since the reduced form disturbances are
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just linear combinations of the structural form disturbances), it

follows that

.| v
-1 P

is a random variable with finite mean and variaqcé. Hence

plim V! gt
N > B

-‘Zi =0 , (3.36)

since 1 . v{ Z;l v, converges in probability to zero.
N

Combining equations (3.32), (3.33),and (3.34) we can write

) 15-1 _ -1 15-1
(z; -2,) P 7zy = (25-3;) P " (z5-3;) + (z;-2;) Pra, . (3.37)
The probability limit of the last term in equation (3.37) can

be written as

i 1-1 e U -1 —
ﬁ{:z N.(Ei-gi) P a; = vy Zp a; . (3.38)

Since 2;1 E& is a finite vector, and since the X{ (1=1,2,..:;N)
are independently and identically distributed with mean zero and finite

covariance matrix, it follows that

is a random variable with mean zero and finite variance. Thus

g T | _
gljg (z;-a;) P a =0,

since 1 'Xi ZP E&-converges in probability to zero.

Combining the above result with that given by equation (3.36), and
substituting into equation (3.37), we have shown that

5 1 -1 A
plim (Ei"éi) P z; 0 . (3.39)

N >

We'now consider the scalar zi P_lz. which can be written as

?_;P-lii [(z a;) *311' P [(z; - ii)"ii]

'-1 1p-1
(25-2,) Pz -ay) + 3P gy

1]

-
* 2P Ty )
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Using equations (3.29), (3.32), (3.36), and (3.39) it.follows
that
TR |

plim z; P7'z, = 0. ' (3.40)
N > = e

From equations (3.27), (3.32), and (3.36) we have shown that

plim (l1-s;+d;) =1, _ ' (3.41)

N->00
and from equations (3.39), (3.40), and (3.41) we have shown that

plim k =1 . : ' | ' (3.42)

N+

3.3.2 Proof of Asymptotic Equivalence

To prove that the 2SLS and J2SLS estimators are asymptotically

equivalent, we are required to show that

plim W[J(§) -8) =0 .

N>c

From equation (3.26) we can write this.requirement as

plin W [3(5)-8] = - .plim (1.P) Wprin 1 2'(A; +24, - A0
N->w B N> ﬁ N-)co?ﬁ" : :
- plim 1 .Z'M (A, -R )0 + plim 1 .Z'(A,-RA)(V-w
Noe T k2T RO - g~ BN
+plim 1 .Z'MA,(V-w) ¢ =0 . - (3.43)
Nt 7 e S~ i bt _

A term by term evaluation of equation (3.43) now follows.
Consider the first term in curly brackets in equation (3.43), viz:
] -
Z' (Ay +2h)-Au . | : . (3.44)
We know that:

the iith component of A1 is l/ki 3
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(23 -3;) Pz
the iith component of Az is H

ki(1 -S; ¢+ di)

; (1 - i;_p-lz_i)
and the iith component of A3 is 3

ky(l=8ywd,) -

thus, after some algebraic manipulation, the iith component of the

bracketed term in expression (3.44) can be written as

. v =1
' Si hF 5
(A1+2A2—A3)ii= -k(l—s o + ETEPNY
i 3. i i i i
Let i's P'lgs be the largest of the gi P-lii i1=1,2,...,N),

then it follows from equation (3.30) ‘that
< v -1 _=1 o1
Eljino N._a_,_sP a, =ag ZP

a
-8

a finite positive definite quadratic form. It follows, therefore, that

plim W max a; Pla. 0. | (3.45)

N+o  1<igN .

Using a similar argument it can be shown that

lim /N max s. =0 ., ‘ , (3.46)
N+~ 1gisN 1t

Combining equations (3.41), (3.42), (3.45), and (3.46) we obtain

plim N max (A
N> 1<igN

L]

+ 2!\2 - A =0 . (3.47)

1 3)ii

The jth component of the réndom vector (3.44) can be written as

N
:

X 1mij (1\1 + 2A2 - AS)" u,

11 1

L (Alv + 2A2 - As)iiuivij. (3.48)
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where the mij (i=1,2,...,N; j=1,2,...,K, +g) repfesent the
nonstochastic part of the zij (the ijth element of Z), and the

vij(i =1,2,...,N; j=1,2,... Kl-+g) represent the reduced form
disturbance part of the zij (where appropfiate). Without loss of
generality we can assume that the observations on‘thé (g) explanatory
endogenous variables occur in the first g columns of Z; thus vij =0

for all j>g (for all i).

Consider the first term in'expression (3.48), viz:

mij(A1 + 2A2 - As)ii u; .

i=1

Il 2

Since the mij are nonstochastic, it follows from equation (3.47)

that

plim W max |[m..(A, + 2A, - A)..| =0 . (3.49)
- 1<i<N 3. 1 2 311
We now require the following theorem which is taken from Malinvaud

[27; pp. 322-323] and is cited without proof.

THEOREM 1I.
Let Xeq (t=1,2,...,T; T=1,2,....) be random variables. If

plim max 'x |= 0,
T>w 1t<T | OV

and if the u, are mutually independent random variables identically

distributed with zero mean, then:

T
plim % Z Xep = 0 and plim %- z ux.. =0
T t=1 T> o t=
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Since each component of the 2SLS residual vector converges in
~ distribution to the corresponding element of the disturbance vector,

using Theorem I together with equation (3.49) if follows that’

A

=0 .

=

N :
.1
plim N-izlmij N (A, + 20, - A, u,

N>

Now consider the second term in expression (3.48), viz:

N
Z (A + 2h, - A

. 3)ii e Ve b : (3.50)
i=1

2 i i)

The reduced form disturbances associated with the g explanatory
variables can be decomposed into a term (E_Xf) which is proportional
to the disturbance term in the ith structural equation, and a term (E)

which is uncorrelated with u (e.g. see Nagar [37; p.577]), viz:
V = EE’-' + E . ) (3'51)
The ith row of v can be written as

vi=u ¥ o+el, (i=1,2,...,N)

whereupon by substituting for vij in (3.50) we obtain

(A + 28y - Ay; byuzuy

N
‘

i=1

N
) (A, + 20
i=1

N
u

- Agss uieyy s

2

where wj denotes the jth element of g}

Let E(u;) = 02 then, since ﬁi-*ui as N -+ o, it follows that the
A ; ,
(ui-—oz) are (asymptotically) independently and identically distributed
random variables with mean zero.

Since the wj are nonstochastic it follows, using equation

(3.47), that

plim W max |(A, + 2A, - A).. ¥
N o 1<igN 1 2 3711

1]
(=]

j
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Combining this result with Theorem I it follows that

1 N
plim N Z

A 2 _
_ VN (A1+2A2'A3)ii wj(uiui-o }=@ .
N> 1=

1

This result implies that

N
.1 A
plim = EIVN(AI-FZAz-AS).. P.u.u

N+wNi ii "jii

1 N 2

) 21:2 NiZl‘/N(Al+2A2_A3‘)ii ¥y @
= g? pliml— %I YN, +20 -A).. ¥
N & & N i=1 1 2 3711 73

0 from Theorem I .

Since ﬁieij-+uieij(as N-+«) which are mutually independent random

variables (i.e. u . is independent of uieij) it follows from

i+1%1+41, 5

Theorem I that

s ~
plim & } /N(A, + 2A, - A)..Uu.e.. =0
N =+ N i1 1 2 341174 ij

This concludes the analysis on the first term in curly brackets

in equation (3.43). To summarize, we have shown that

n

plim 1 . 2'(A; + 20, - Au = 0 .

N > VN

Consider the second term in curly brackets in equation (3.43),

viz:

' ——— A
- 2'My (A, - B)u (3.52)

where the 1iith component of the term in brackets can be written as

-1 v -1
(z: -a.)'P "z, (1-z. P "z.)
-= = 1+ . (3.53)
ki (1= sy +dy) ky(1-s; +d,)

(A= 435)45=
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Expressing equation (3.53) in terms of a common denominator, the

numerator can be written as

[ | v -1 [ |
- (z3-2;) P Tzg 4y -85z Pz -dy vdyzy Pz

1

v -1 e
o TR TR S

The following probability limits can now be established:

-1 -1

. "1 . 1 . 1 !

plim N(s.z.P "z.) = plim 1 .%x.{1.X'X) x;.2z:{1.P} 2z, =.0

Hod i— = Noo N —I\F =17\ = ’
using equation (3.40) and the knowledge that ii Zii Xy is a finite
constant;

vin (2! Pz, -2y (z, -a.)'P L2\ = plin|z'Pl(z, —a.) | = 0

Nre | SRS T SRR 0 R iy £ R B S B

using equation (3.39);

and
plim N(d,ziP™'z.) =plim 1] §! (1.
Naw - T 2 Nem W) - \N

using equations (3.35) and (3.40).
Combining the above three results with equations (3.41) and (3.42)

we have shown that

s L | It |
Sl R T R A P (3.54)
and, by the same proof, that
o em g ol A
g{:g N(AS)ii = X ZXX X; vV ZP vy - (3.55)

Expression (3.52) can be written as

-1 .Z'X(l .x'x)'1 XA -T)0 . (3.56)
T V. 2 ¥=
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The rth element of
' — A
X (A2 - A3)E

"can therefore be written as

v f1 . x"xV\1 A
X [ = X. U.
ir =L \ N = i
i=1

1

N .
% le.'P -1
1 ir <4\ N

where X; . (r=1,2,...,K) is the rith element of x'.

o~z
tel

@ 5
<>

e~z

(3.57)

Lh
[

2
N .
i

Rearranging the first term in expression (3.57) and taking its
probability limit in the context of expression (3.56) gives
N

=1
-1 . vf1.x'X .1
Loy L ) lim x, (-—‘ X.. plim =
ZX XX ;L ghe TEAN ) S e

~
x. u. =0,
1 iri -

o~ 22

This result is obtained by noting that the limit term is a finite

constant, whilst the Law of Large Numbers (e.g. see Malinvaud [27;

Proposition 12, p.322]) ensures that the probability limit term is zero.
Since each element of the 2SLS residual vector converges in

distribution to the corresponding element of the disturbance vector,

and since each element of the OLS reduced form residuals matrix

converges in distribution to the corresponding element of the disturbance

matrix, it follows that

A.l -1 A A
R R
N

converges in probability to

. .
vy ZP Vil .o : (3.58)

Using equation (3.51), expression (3.58) can be written as

n 1y -1
(¥ +ey) p By + gy,
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which upon expansion gives

Y ui +e. Z;l e.u, . (3.59)

+ 2e! gl e e;uy

3
—"P ="1i =i P

In the context of the second term in expression (3.57), the first

term in expression (3.59) can be written as

- ¢' 23 ¥ plin x; [ - E(u?)] =0
N>

ZIN
Il o~

i=l

Noting that the quadratic form in the above equation is a constant,
the Law of Large Numbers ensures the result.

In the context of expression (3.56) this result implies that

-1 v -1 2 I 3
- Iy ZXX 4 ZP Y plim N 'z X._ U
N > 1=

in a finite matrix, provided E(u;) is finite.

Since uy and e; are uncorrelated random variables (by assumption)
it follows, using Theorem I, that the second and third terms in
expression (3.59), in the context of expression (3.57), converge in
probability to zero.

Collecting results, we have shown that

plim Z'MX(AZ - Ks)ﬁ_

N>

is a finite constant, and hence

s ' A
El.f: L. zZ2M (A, - Ku =0
JN




The third term in curly brackets in equation (3.43) is
2’ - )@ - . (3.60)

We know that

u=(y-2z8),

ve(-My,
and

E= (Z__sz_e_) 3

from which it follows that

(V-W=-Mu. (3.61)

Substituting from equation (3.61), expression (3.60) can be written as

z' (A, - THX (1 x YHiaxay . (3.62)
N N
Consider the .term '

' -—

which has jsth element given by

s f1.,.%'% =
z..x.| = Xq Xs
1 1j=1\ N - "1s

N -1
) z..vf<1-'p> V. X. , (3.63)
= 1j—1 \N —1 1S

-
N

I oS~z

i

2N

where Xsq (s =1,2,...,K) is the isth element of X.

The first term in expression (3.63) can be expanded as

‘ 1 -1
m .x! <i_.X = ) X. X.
p 11— N —171s

CfLoxex Nt
li‘_i'N H*is¥15 »

whence the first term of the above expression converges to a finite

Z|=
Il 2

i

o~z

1
"N

i

constant and the second term converges in probability to zero by the
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Law of Large Numbers,

The second term in expression (3.63) can be expanded as

Ig ST AN
Mij Xis Yi\N ) L
1=

-1
~r (1 ,P ~
X6 Vi <N' > Vi vij . (3.64)

AN

Il 12

1
4l ]

i=1

Using‘the argument preceding expression (3.58), and substituting for

vi from equation (3.51), expression (3.64) can be rewritten as

1o-1 2 T | 1 -1
Mij¥is |LZp fug v 2e; Ep Hu; ve; Zpiey

1

L}
ZIN

[l s b

i

-1

2 ' 2 1 -1 1 -1
- & lxis [% Zp gpi +2e; Zp gpi +e; Zp é;} (wjui-+eij) .

i

I 12

From our analysis to date, it follows that both terms in the above
expression converge in probability to finite constants.

Since, from our initial assumptions, the term to be inverted in
expression (3.62) converges to a finite matrix and the term on its

right converges in probability to a null vector, we have shown that

p1im1.z'(A2-7Y)(G-G) =0 .
bﬁ+mh§ 37 = - -

The fourth term in curly brackets in equation (3.43) is
'. A A
Z MX KE(X.- W)

which, using equation (3.61), can be rewritten as

<1 -1
1. z'x (_1_ .'x'x) X" TX (;_ : x'x> <£' x'g>
N N N N
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From our initial assumptions, the first three terms in round brackets
converge in probability to finite matrices, whilst the fourth converges
in probability to a null vector.

Using equation (3.55) the rsth elemeht of the '"middle' term

in the above expression can be written as

- g X Ilox x
N . Xlr = XX = “1is
i=1
N
1 1 -1
* N'.Z e Yy Zp" ¥y X o

whence the first term converges to a finite limit whilst the second
term converges in probability to a finite limit. Thus we have shown

that

plim 1 . z'MX K v -w) =0 .
Nve o - = =

Using the above results, we have shown that

plim W [J(B) - 8] =0 ;

N>

i.e. the J2SLS and 2SLS estimators are asymptotically equivalent.

[]

3.4 Asymptotic Normality of J2SLS t-Ratios

From equation (2.10) the variance of the J2SLS estimator of 6

can be written as
~ 1 N A | A_ i A A '
VW@l —— I [9,B®-3®| (3,0 -0 | . (3.65)
N(N-1) i=1 ,
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‘

Using the definition of the jackknife it can be shown that

N -
SNOEMORE E@g (N-l)_é_j] - E‘9 (N-1) ) QJ , (3.66)

A
6

I o~—2Z

whereupon, if we let 6. = 1
A

equation (3.65) can be rewritten as ,

). (3.67)

6@, - 8,

A 1 N —
VI®) = —L— 17 T 6, 8
(21

N(N-1) 1
Using equations t3.25) and (3.66) we can write
5. =8 - Nt pl[z A s 20 - A )a
-1 - 1 2 3=
- Z'Mx(AZ - As)g
220y - A)E - W)

+ z'MxAS(f/_ -wl . (3.68)

o 1 N
Let gy Z g

represent the terms within the square brackets in equation (3.68), then

equation (3.68) can be written as

~ A -1 -1 —
8, =8-N".P" g,
and thus
N o - ] N 1
z(e -e‘><§ -@> - 2<6-6.+N1 p@(e-e.m'l p‘1g>
: -1 —=1/\4 - : - — - . —
i=] i=1

Expanding the right hand side of the above expression gives




N ! N
y (6. -8)\(6, -8 -l_z<e.-e§'p‘1
i=1\ 7t T/\7* ~ N =1\ /7
N y N
1 -1 - 2’ 1 “1- =1 -1
N Z P gﬁ@i - Q) + = z P g.gf P
i=1 N°i=1
Since
N A A N A A _1 -
) ®; -9 = L ; -N=-P" g ,
i=1 i=1
we can write
N N
z (ei _ g)_é_'p—l - z P-l é_é_' P-l
i=1 i=1
From equation (3.14) it follows that
N N
A A A A v -1 ] -1
izl (8 -8;)@ -8;) = izlp g & P,

and using the-definition of g; as given by equations (3.15), (3.16), and

(3.17) we can write
N - '
7 A A A ~ . A A N A .
Bifi T iil IEVi “W tudhy vuydy | (vy oWy vugdhy fugds

Ev. - W +ﬁi)2£ip_.' + (\“zi -W, +0.)0.h.j.
1

e~

i

2 8 b E 17 I—1=

A (A A ~ ). h' ~n & "R
+ U, (V. =W, U, JAl: & W, s .
1 1 1 1 l—l—l 1 -J—l -J—l

Letting gi = (Qi - Qi + Gi) and expanding the above terms

individually we obtain the following four expressions:




N A A A 2 1 N ~2 2 1
Z (v; - +u5) hohy = _Z ei(A3)11( i ~&4 )(z %)
i=1 i=1
+ g'\z A )2 z |
. ei( 27ii %%
i=1
¥ %IAZ(A) (A)..(z: -a.)z!
i_lei b ERae R ER T R LT

N ’ ‘
+ Xe S Wo)ss (Adss 2alzy -85 ;
i=1

|
I~z

Z A /\- + o) A h .‘
L vy -wg +uJuhi,g, =
i=1 i

105 (Ag) 5 (A)) 55 (25 -2) (25 - 2p) |

N
AA 1
- L 80 (A5 (A 55(2 - 2y) 24

N
+ Ve, (A

19 2)2. z.(z, -a,)"

ii A4 o4

N
A A 1 .
A G PG P T

N N
Zui(o. -W, +8.)j.h! = ‘Zu e. (A i1 (1) 5 (z5 - 3;) (z; -a,)
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—
N
!

=

I o~—2Z
>
N

i=1

1
N o bt
>
He N
~
-

N
p—
[=]
=]
~
=
—
p—
e
H.
N
|~
LN
(W)
'_I
R —
N
e -

[
p—

!
I~z
—
>
N

1
(25 -2,)

UTICY,

ii

e

+
[l e }~4
>
N
ey
—
—
p—

N

[
p—

where, as before, the ii subscript on a matrix indicates the iith
. component of that matrix.

Gathering terms, we can write

N N
~ 2 A A A 2
zléiéi = 121 f;(AS)ii + 28,4, (Ag) s (A)e, + 08 (A)g | (24 -25) (25 - 25) '
+ ? r82(/\)2 -2e.0, (M), . (M), + Q2(A)2. | z.z!
Lo lFi2 n 28 g [y dyy + WU dyg | 235
N _AZ AN A A A 2
LS55 ()5 - 858 (g5 ()55 + 0385 (M)
A2 ; i
- u ()55 () gg | (25 -a5)2;
N ’\2 A A 2 A A
¥ 121 I:’i(Az)ii(As)ii veiuy ()iy - eiui ()3 (A5
- 00055 (A5 250z -2 (3.69)

We define the following matrices

le>
le>

Ry = (-29(x-28)" -

~
]

. Ii(I—MX)(X—ZQ):'E(I-I\IX)(X-Z_@_)]' = (I—Mx)_ﬁ_ g'(I-MX) ,» S (3.70)

o
=
o
o)
1

3= 0-20|a-m)-20] -G8 Tuy
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which allows us to rewrite equation (3.69) as

ot . -
Z (I-—Mx)[Az(dlag Rl)Az-i»A3 (diag RZ)A3

Ne~—2Z
o
loa
P -
1

i

+

2, (diag R)A;] (I-M))Z

+

Z'[Az(diag R,)A, - 21, (diag RA, + A, (diag R A 1Z

3)

+

' > o
Z (I-My) [A3(d1ag R,)A, - A (diag RA

+

Az(diag RS)AZ-Az(diag Rl)Al]Z

+

1 . .
Z [Az(dlag R2)A34-A2(d1ag R3)A2

Ag(diag ROA, - A,(diag RDA (I -M)Z , (3.71)

where (diag ) denotes that the relevant matrix has all off-diagonal

components equal to zero.

If we also define S

P, .y |
1 yA Al + Z (I-—MX)A2

and S2

1 1 g
- Z A2 + Z (I--MX)A3 5
then equation (3.71) can be rewritten as

! . ! . 1
g:8 = Sl(dlag Rl)S1 + Sz(dlag R2)82

1

[l e

i
v ¢ . 1]
- Sl(dlag RS)SZ - Sz(dlag RS)SI :

We also require é_which can be written, using equation (3.68), as

= 1 _ A_ [ _ A
g=1 (Al-i-2/\.2 A3)E. Z MX(A2 As)E
A| /\v/\ Y A A .
+ Z (AZ—AS)(X_-E) +ZMXA3(X.'!’1) 5
1.6 g=8u-58F-¥+y ,
and hence

ol T ] 1 1 '
gg = 51R131 + 823252 - SlRSSZ - 52R381
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Upon substituting the above results into equation (3.68), and then

into equation (3.67), we obtain

V[I@®)] = (N-1) -, p-l [%1 (diag R, +

Z| -

N

o,

=

%)
o

)
N

&
|-
Co
N

N— e S

W
N -

2|

It is shown in Appendix B that the expression in square
brackets in equation (3.72) converges to
: 2
(¢ EP
in probability as N>w
It follows from equation (3.72) that

plin VII(®)] = o* 5}

N>

since (N-1)/N>1 as N> ® ,

f D>

Since J(§) has becn shown to be asymptotically equivalent to

it follows that, asymptotically,

(J(ej) - Gj)

vG[Jcéj)l

“N(0,1) . e 2, K1+g)
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CHAPTER 4

COMPUTATIONAL ASPECTS

4.1 Computer Algorithms and their Certification

From equation (2.6) the 2SLS estimator of § can be written as

8 = zoxx ) "tz tzoeeexy Ty (4.1)

In all but the simplest cases, equation (4.1) must be evaluated
using a computer. Matrix manipulations can be performed using either
standard algorithms designed for a specific computer and usually
incorporated in the software library, or machine independent aléofithms
published in computer programming journals. Alternatively one could
write one's own algorithms although this might be inadvisable for the
more complicated operations such és matrix inversion.

In all computational work in this thesis; matrix manipulations
were performed with algorithms written by the author, except for the
matrix inversion algorithm. To perform inversions an algorithm
written by Devine tll], which inverts a symﬁetric positive definite
matrix by the Choleski decomposition method was selected. All programs
were written in Algol 60.

Certification of Devine's algorithm was carried out by the
author. This was performed by multiplying the.original matrix by ifs
calculated inverse and thén obtaining the maximum absolute deviation
of elements from the unit matrix. These maximum absolute deviations
are given in Table 4.1 for the eight different data matrices which
are inverted during the Monte Carlo study in Chapters 6 and 7. The
column heaacd K represents the dimensions of tHe matrix (i.e. the

number of exogenous variables in the model), whilét the column headed A
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denotes the theoretical pairwise correlation between the K variables.

The sample correlation matrices are given in Table 6.2.

Table 4.1: Maximum Absolute Deviations (M.A.D.) of
(X'X)-I(X'X) from the Unit Matrix

K A M.A.D.
5 0.00 5.46 x 10712
5 0.45 8.19 x 10712
8 0.00 2.3 x 107
8 0.45 2.46 x 10711
8 0.90 1.36 x 10711
11 0.00 2.91 x 107!
11 0.45 . 2.18 x 10711
11 0.90 2.18 x 107!

The accuracy of the matrix~inv§rsion, as reflected by the
maximum absolute deviations given in Table 4.1, is certainly satisfactory
for our purposes.

For K = 5 and A = 0.90, whilst the moment matrix of predetermined
variables was inverted satisfactorily, a further inversion incorporating
stochastic matrices which is required at each replication in the Monte
Carlo experiment exhibited substantial "inversion errors' and
consequently "inconsistent'" results were obtained. This problem is
discussed in Chapter 6.

A machine independent pseudo-random number generator devised
by Pike and Hill [43] was used for generating uniformly distributed
pseudo-random numbers for the experiments in Chapters 5, 6 and 7.
Favqurable evidence of randomness for this algorithm is given by
serial and'poker tests conducted by Pike and Hill, and by frequency

tests in the certification by Sullins [65].
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The Box and Muller [6] transformation for generating normally

.distributed pseudo-random variates is given by

X .
(i
(-2 loge rl) sin 27r

el
]

2

i (4.2)
(-2 loge rl) cos 2ﬂr2 s

»
n

e N

where X; and X, are two uncorrelated pseudo-random standardized normal

variates, and T and r, are uniformly distributed pseudo-random variates
defined on the [0,1] interval. This transformation produces exact
.results conditional upon the accuracy of>evaluation of the sin and cos
functions and the correct distribution of T and T,. When used in
conjunction with a mulﬁiplicative congruential pseudo-random number
generator however, Neave [381 has shown how the transformation'may break
down. Amendments to equatidn (4;2),>as suggested by Chay, Fardo and

Mazumbar [9]; were used in this research, therefore, to avoid Neave's

objections. With these amendments the transformation becomes

_ o
X, = (-2 loge r2) sin 2'rrr1 s

where it should be noted that only the sin transformation is used and
the uniformly distributed variates have been inferchanged.

The Monte Carlo study reported in Chapters 6 and 7 necessitated
the generation of 4,400 pseudo-random standardized normal variates
(this figure excludes the additional normally distributed variates
required to calculate the power functions in Chapter 7). The Kolmogorov-
Smirnov test was conducted to test for any significant divergence
between the theoretical (standardized normal) and empirical distributions
of the pseudo-random variatéé.. The maximum absolute value of D
(the difference between the two distributions) was 0.01306. At the

% level of significance the hypothesis of equality cannot be rejected.




54

The pseudo-random normal variates were subsequently transformed

.into pseudo-random bivariate normal variates by using the transformation

Y

dy = ipy” %

Z, = MZZ% (le + V1 - 3§ x2) ,

where Z1 and Z2 are correlated normal variates with coefficient of

correlation equal to §. and w,, are the specified population

ik | 22

variances of Zl and 22 respectively, and the covariance of Zy

and 22 is given by Gwlz.

4.2 Computing J2SLS Parameter Estimates

In order to apply the jackknifé to the 2SLS estimator we must have
some method by which the ith observation can be extracted from
equation (4.1). Clearly one could calculate equation (4.1) N times
using a 2SLS program.and omitting a different observation on each
occasion, but this would be a tedious and compﬁtationally expensive
procedure especially for "large'" N and/or K as it would require
inverting both matrices in square brackets in equation (4.1) (minus
one observation) at each iteration. In addition, rounding errors from
th¢ inversion algorithm may lead to a build-up of inaccuracies.

In Chapter 3 we derived equation (3.13) for calculating the 2SLS
estimator with the ith observation removed which obviates the need.to
perform matrix inversions additional to those required for 2SLS with
all N observations included. This formula was checked by calculating
the J2SLS estimator both ways with a test program and noting that
the parameter estimates were identical to at least the sixth decimal

place.
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4.3 Computing Exact Results

Calculation of the exact moments of the 2SLS estimator, and
exact bias in the case of J2SLS, requires evaluation of the confluent

hypergeometric function
1F1 (05 Y 3 x) . . (4.3)

Although tables are available (e.g. see Slater [64]), relatively few
values of o, Y and x have been tabulated. In general, therefore,
-the function must be calculated by direct summation of an infinite
series or via an asymptotic approximation.

An algorithm for.calculating the confluent hypergeometric
function with complex parameters via the method of direct summation
has been written by Relph [49]. Thacher [69] in his certification of
this algoritﬂm mentioned its inefficiency for real arguments.

A problem frequently encountered in this thesis was that of
relatively small a and Yy, but relatively large x, whence evaluation of
equation (4.3) is characterized by slow convergence. When this problem
arose it was resolved by using an asymptotic approximation to the
confluent hypergeometric function, which for integer ¢ and Y = o + 1
contains a finite number of terms. A check on the error involvéd
in using the approximation can be made if o is an integer and, if
necessary, a correction made.

For a model containing just two endogenous variables, Richardson
and Wu [55] have derived the bias of the 2SLS estimator (B) of B in

equation (2.5) as

R w,B-w. ., -w?/2 . K, K, u?
Bfi-g) == -2 12 ¢ 1F1<-2—1 G — —> . (4.9

w22 2 2 2
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[ =1 '
Xl(X1 Xl) X1 ] X

concentration parameter so named because for every € > 0

where p? = w X is the

_1 ] 1
22 T XplIy- 2 T2

Lim Pr(|B - B|>€) =0 .

p2> o
All other notatioﬁ was explained in Chapter 2.

Clearly a= (K,/2 - 1) is an integer if K, is even.

From Appeﬁdix C (equafion (C.1)) the asymptotic (in u?) expansion

of the confluent hypergeometric function (for y = a + 1) can be written as

) . O X v I
1Fp (@a+ 1ix) ~ —e rZO 1-0). 3 , - (4.9)

and thus the asymptotic approximafion to the bias (4.4) is

. w, ,B-w (K,-2) o K T
EB-8) ~- 2 L N S ( - —2> <i> . (4.6)
22 u?  r=0 2/ \u?

The error incurred by applying this approximation for finite u? and

integer o is given (from Appendix C (equation C.8)) by

WP 22 (K_2> (_ L)k , (4.7)
—_— e T

" , :
where k = (K2 - 2)/2.

It is interesting to note from equation (4.6) that for ''large"
u? and K2 = 2 the 2SLS estimator is unbiased.

Thus provided the asymptotic approximation of the confluent
hypergeometric function terminates after a finite number of terms,
equations (4.5) and (4.7) will ensure ézgggvevaluation of this function.
The gain in computational efficiency will be particularly marked
when the summation of the infinite series required for direct evaluation

of the confluent hypergeometric function is slow to converge.



57

For o non-integer, equation (4.5) is an infinite series, although
it can be truncated after (say) n terms. -If thiS is done the error
_involved in truncating fhe.infjnite series after the nth term will
not exceed the (n + 1)th term, and will bé of the same sign as the
(n + 1)th term (Luke [25; p.127]). . .

In this thesis, when a is not an in£eger the confluent
hypergeometric function had to be truncated in such a way as to ensure
that aii values of bias and mean squére error were correct to at least

the number of decimal places given in the text. .For integer o, all

results are "exact'.
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CHAPTER 5

THE EXACT BIASES OF THE TWO-STAGE LEAST SQUARES
AND JACKKNIFE TWO-STAGE LEAST SQUARES ESTIMATORS

5.1 Résumé of "Exact" Studies

In his pioneering work on the exact finite sample distribution
function of the 2SLS estimator, Basmann [4] demonstrated analytically
-that for a two equation simultaneous equétions model, under certain
conditions, the moments may not exist (i.e. they may not be finite).
Prior to Basmann's [4] paper, Monte Carlo studies of the relative
properties of simultaneous equations estimators had frequently used
as their objective function the mean square error in order to compare
the relative.prOPerties of the estimators. Basmann remarked that an
objective function which involved moments of the estimators would
have little significance if the moments of the estimators did not
exist. In addition, non-finite moments could give rise to "outliers"
when this form of objective function is used in Monte Carlo studies,
and thus uncritical rejection of these outliers is not a valid procedure.
On the basis of his early work, Basmann [4] conjectured that the
moments of the 2SLS estimator exist up to the order of over-identification
of the equation being estimated. Basmann's proof was only valid for
a two-equation model with K, = K, = 2 and K1 =1, K

1 2

in a later paper (Basmann [5]) he extended it to a three equation model

5 = 3, although

with g = 2, K, =1 and K2 = 3,

1
Kabe [21, 22] greatly simplified Basmann's derivations, and

this was followed by analytical pfoofs of Basmann's conjecture for

=1, K, > 2, by Richardson [S2] and Sawa [58].
g 9 .
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For the generai case (i.e. g and K2 both arbitrary) Mariano [28]
. has provided a proof of Basmann's conjecture for the even-ordered moments
of the 2SLS estimator, whilst Hatanaka [17] has shown that the same
conjecture provides a sufficient condition for the existence of the
odd-ordered moments. |

Sawa [58] and Richardson-and Wu [55] derived, independently,
the distribution function of the OLS estimator, and then showed how
the distribution function of the 2SLS estimator could be derived as
a corollary to the derivation of the OLS estimator. For g = 1 the
exact moments of the coefficient (B) of the right-hand side endogenous
variable in equation (2.5) have been calculated by Sawa [58],
Takeuchi [67], and Richardson and Wu [55] for both estimators. From
Richardson and Wu [55], the first order moment of the 2SLS estimator

can be written as

A w B—w e K K ]JZ
E(Q-Q):-L__l_ze‘ri/zlpl _2_1;_2_;_> (5.1)
w55 : 2 2 2

Second ana higher order moments take a hore complicated form
and the interested reader is referred to the literature previously
cited.

The fundamental parameter in all "exact'" studies is the
concentration parameter u®, and not the sample size which does not
enter equation (5.1) explicitly, although it is implicit in e,

As uz increases indefinitely, the 2SLS estimator of B converges
to its true parameter value (i.e. it is a consistent estimator).

A sufficient, but not a necessary, condition for u? to increase
indefinitely is for the sample size to increase indefinitely.

In general, the concentration parameter for the jth equation
is defingd by

2

-1
. = trace (M., ) .
by (JZ*)
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1 1 |A -_1 1
where Mj = I, ij [T - le(leXIj) le] ijﬂzz

“and 2_1 is the covariance matrix of non-normalized endogenous
. ;
variables included in the structural equation.
Essentially, therefore, the moments of the 2SLS estimator are
derived in terms of '"nuisance' parameters. Sawa [58] assigned ''reasonable'
values to these nuisance péramefers in order to ascertain the relative

w
importance of N, p = A and K2. He observed that the bias of

w
2SLS is an increasing fiﬁction of |p| and that frequently it "is not
‘negligible'. In addition, he found that the distribution of the 2SLS

estimator was often considerably asymmetric.

Mariano and Ramaée [29] considered the effects on 2SLS of
excluding relevant exogenous variables and including extraneous
exogenous variables in the equation to be estimated. Mathematical
complexity pfecludes useful analysis of the former specification
error, but under the latter type of misspecification both the
concentration parameter and the degrees of freedom are smaller than
for a correctly specified model. The decrease in the concentration
parameter increases the bias and mean square error of both estimators,

whilst the effect of the decrease in the degrees of freedom is

indefinite and depends on other unknown parameters in the model.

5.2 The Concentration Parameter and a Change in Sample Size

Let u§ and u;_l denote the concentration parameter based upon N

and (N-1) observations respectively, then

5 =1 ' ' 0 -1 v ) & o
g2 Tgz %z [T K0 ) % P T (5.2

and

2 -1 - o # k=l g | @ =
HiNe1 T W2 o Xp [T X (X X)Xy 1Ky Ty 5.3)




where the asterisk superscript refers to the relevant data matrix
with one observation removed. Without loss of generality we assume

that the Nth observation has been removed, i.e.

* *
Xy X5

Xl = . and Xj= .

= %2
where Xy and x, are K1 and K2 dimensional column vectors representing

the omitted observation from X1 and X2 respectively.

Noting that

x' % 1 i
X X = XX -x %),
*! % . i
(X, X)) = (X X, -x, %),
*' % i .
anl, By d) = Bk %5H)

eqﬁation (5.3) can be written as

>~

2 . -1 U ] 1
WiNal T W2 Tpp {(Xz 2 = XpX5)

o P -1 '
= o &) -~k I X - EmE )0 X - 26 00 g

It can be shown (see Appendix A) that

1

e o=l o o ¥ g ¥ g vl
%z (X XD~ xx Xy X))
T

-1 1 -1
(X = (X1 Xl) +

' ' -1
1=gy By %5 %

[}

Using this result, and after considerable algebraic manipulation,

equation (5.3) can be written as

2 _ 2 1 -1 ' . '
H N-1 ~ uN T w22 322 (12 -d )(iz - i) _T_r.22 s (5.4)
(1-¢c)
L ] ' =] )
where c =X (Xl Xl) X3 5 0<c<xl1l1
_ ' ' -1
and d= (X X)) (X' XD7 x

61
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Since 32£ (x, - D(x, - g)'EQZ is a positive semi-definite
~quadratic form, and as w,, and (1 - c) are both greater than zero, it
follows that

2 2
UNZUN_I b

i.e. the concentration parameter is a monotonically non-decreasing

~ function of'sample size.

$.3 The Exact Bias of the Jackknife Two-Stage Least Squares Estimator

5.3.1 Introduction

Since only 8.1z dependent upon changes in N, the bias.of the
2SLS estimator of B with the ith observation omitted (éi) can be

written, using equation (5.1), as

W,B - 0 n2 - /x K ®
A 22 12 -1 =
E(Bi’B)=°—~——exp.("N)1F1(—2‘13—g'3 Nl)-(5-5)
_ w,, 2/ P \2 2.0y

Thus, when the exact bias of the 2SLS estimator can be calculatced,
it is relatively easy to calculate the exact bias of the J2SLS

estimator.

Differentiating the absolute bias with respect to u§/2 , and
utiliziﬁé the contiguity relations of the ¢onfluent hypergeometric

function (e.g. see Slater [64; p.19] gives |

. ~ 7 . 2
T2 . ’ = « 9 1°11 - * > h > . ke
du N/2 Wy K, 2 2 z :

From equation (5.6) is is apparent that the absolute value of
the bias is a monotonically docreasing function of the concentration
Ay2 . _ " :
parameter My provided B > wlzlwzz W TER = wlz/w22 no bias exists,

whilst if B < w it follows that the actual bias is a monotonically

127922

decreasing function of p?. Similarly, the mean square error of the

-
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2SLS estimator can be shown to be a monotonically decreasing
function of the concentration parameter (see Owen [40]).

Earlier in this Chapter is was shown that the concentration
parameter is a monotonically nén-decreasing function of sample size.
Thus, combining these two results, it has been shoﬁn'that the bias
(and the mean squére error) of the 2SLS estimator are monotonically
non-increasing functions of the sample size; conditional, of course,
on the exogenous variables.

We have already seen that the bias.of the J2SLS estimator can
be written as

N
E@ -0+ -1 [E@-0) -+ ) B,-9 ¢ |- (5.7)
L -=1 — ===

1

It follows from the above result that the term in square brackets
in equation (5.7) will be either zero or opposite in sign to E(ﬁ—g).
Consequently, application of the jackknife will have one of three

possible effects on the bias of the 2SLS estimator:

1. The absolute bias decreases but its sign remains unchanged;
2. The absolute bias decreases and its sign changes;
3. The absolute bias increases and its sign changes.

If the bias decreases slowly or approximately linearly with
sample size, then it seems reasonable to expect possibilities 1. or 2.
to occur. When the bias is decreasing rapidly with sample size however,
thére could be a tendency for the jackknife to "over-correct'" for
bias and.possibility 3. could occur.

Since the above eventualities are somewhat vague, we turn from
heuristic analysis to consider an analytical investigation of the
conditions under which jackknifing is unlikely to decrease the
bias of the 2SLS ¢stimator. First we consider the exact bias of

the 2SLS estimator of B as given by equation (5.1) for the special
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case of Kf=2, then we consider a more general approach using

‘Kadane's [23] approximation to the bias of the 2SLS estimator.

5.3.2 Effect of Jackknifing on the Exact Bias of 2SLS when K2= 2

From equation (5.1), if K2= 2 the exact bias of the 2SLS estimator
of B degenerates to
WpaB -w5) 25

EB-B) = - — , (5.8)

since 1Fl(O,l,uz/Z) =1
Expanding the exponential term in equation (5.8) and setting

p = —— gives
W22

A - 2 r
E(B-8) = -(B-p) | 1 + <.ﬁ>+<.liz_> ._L+....+<-ﬁ> e e
2 N2 21 2_ T!

(5.9)

Since u? is of order N, when K, =2 the bias of the 2SLS estimator

2
is clearly a function of terms (with alternating signs) of increasing
powers of order N. Whilst alternating signs will not weaken the
jackknife's bias reducing properties, equation (5.9) clearly contravenes
Quénouille's basic assumption regarding the application of the

jackknife, viz: that the bias can be expressed as an expansion in

terms of increasing powers of order (%J . This suggests that application

of the jackknife technique is unlikely to be successful if K2= 2.

When K, > 2

2

2
R
1’1\ 2 ¢ 2
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4

takes the form of an infinite serieé and the bias cannot be expanded
into an expression such as equation (5.9). We can however fall
.back on equation (4.6) Which gives a "large" u? expansion of the'bias,
equation (5.1), in terms of increasing powers of order %—, provided
K2> 2 (although if K2 is an integer this expansion will terminate
after a finite number of terms). This suggests that for '"large" u? and
K2> 2, application of the jackknife technique could reduce the
bias of the 2SLS estimator.

Both of the above observations will be investigated by means of

a simulation experiment in Section 5.5.

5.4 Jackknifing the Approximate Bias of the 2SLS Estimator

Kadane [23] has derived the 1ea§ing terms of the first two
moments of a distribution approximating the exact distribution of the
2SLS estimator, although it should be emphasized that the moments of
approximate distributions are not necessarily identical to approximations
to the moments of the exact distribution. |

Nagar's [37] work in this field carries a similar interpretation.

Kadane's approximations are based on a '"small'" o asymptotic
expansion of the moments of the k-class estimators (N.B. in our notation
g = wll--mlzp-szz(s--p)2 and is not to be confused with the 0 used
elsewhere in this thesis. The definition of o given here is restricted
solely to this Section). For N fixed, p?-w if 0>0 and it can be
shown (see Sawa [59; Appendix C]) that Kadane's (and Nagar's) expansion
coincides with '"'large" uz expansions of the exact moments, provided
the latter exist.

Kadane [23] has approximated the bias of the 2SLS estimator by




E@-8) = o?(L-1)qg + 0(0?), s - (5.10)
where L==K2-g, i.e. the degree of,dveridentification of the eQuation
. being estimated , Ty Y 0 n ~
W= [XII: XI]’
Q= (W
1 1
ﬂ=_-ﬂ-E[Y:X1] u
B
and 0 = | ..
Y

oY
Let §i denote the 2SLS estimator of 8 with the ith observation

- removed then,

E@.-©) = o®(L-1)Q;q + 0(0?) , e o (s

L~
*. where Q; = W'w - ﬂiy—;.) -1 and w, is a K; + g dimensicnal column vector
. representing the omitted observation from W.

From Appendix A, it can be shown that

. P— | i pip ¥ =1 '
o (W'W) “w.w.” (WW) Qv.w. Q
Qi=(WW)1+ - A =,.Q+._.].‘__].‘_..._,
1- !”'..i (W'w -lﬂ.i | 1- ."L;_Q.‘i;
and hence
A ' QE.’ E_! Q
E(B, -0) = 0?(L-1)Qq + 02(L-1) ———— gq
—] ou l-w" Qw -
-4 -
] A . QW. w! Q ’ o T
w B0 = 8) & C2{Lrl) s  (5.12)
ki . 1 -!v_; Q}ii— . : i 5

where terms of higher order in o have been neglected.-
From the definition of the jackknife, and using equation (5.12),

. We obtain

El3§) -0] = NEB-©) -
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A ~ (N-l) N Q_V!_-W_-' Q
= NE(8 - 6) - (N-1)E(8-8) -0? 1wy ——g
: N i=1 l—géQgi
A (N-D) N Quyw;Q
= E( - 8) - 0%(L-1)— q 5 _ (5.13)

. i 1

For jackknifing not to increase the absolute value of the bias

of the 2SLS estimator over all parameters being estimated, we require
E[3(®) -0] E[3(® - 01" - E[8-0] E[B-81 gt (5.14)

to-have all main diagonal components < O.

Consider the last term in equation (5.13) which can be rewritten
as

N BV 0D N |
02 (Ll-1)— ) ———g=02(L-1)—Q ) |[——| &
N i=1 1-W.Qw, ' N i=1]1-w.Qw,

Let A be an NxN diagonal matrix with iith component eqhal

to ¥.QW, , then

m-at

~is an NxN diagonal matrix with iith component equal to

1
1 - w.' ow.
—4
and hence
N. w.w. :
Kl = WL FTY e ' (5.15)
i=1 1-w.' Qu, - : |

Thus equation (5.13) can be rewritten as

B - 8] = E@E-0) - o?-n A qu' - A1 Yweq (5.16)
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and upon substituting into equation (5.14) we obtain
JMORIEORINE E[_é_-gjﬁté—g]'
" oz(L-l)—(N—&Q Qv' [I _-)\]"1 WQq E[_é‘a_-'p_]'
o 2 (L~ 1)(‘“ D Ef- 8la’ ' [1-417"wg
+ 0" (L- 1)2(NN” @' [12A] WQqq Qv'(1-A17"w

which can be rewritten as

EW(®-0)E[I®-0]1" = o* (L-17 QW'E-(—N,;—Q(I-A)'I] WQq q' Q'
|- SR a-p

where o2 (L- 1)Qq has been substltuted for E[S 0].

E]

Thus, for the jackknife not to increase the bias of the 2SLS

estimator, we are required to show that

| o'_‘(L-nZ’Qw'E- e (I-A)'El Waa’ Q' [ L a-u ] WQ

«.o% (L1 Qgg_'Q N (5.17)

has all main diagonal components <. 0.
~If we denote the iith component of A by Ai’ then Teekens

[68; pp.103-106] has shown that, in general,

< Ai <1, ' i=1,2 ... ,N)

2|

and it follows that

,[é - £§§ll.(1..A)'%] < 0, (e, 2, wis 5N (5.18)
; ii

where the ii subscript refers to the iith component of the matrix

formed by those .terms in the square brackets.




69

Thus, when equation (5.18) holds,

- Q' F - —(—N—r‘q—ll (I-A).’l] WQ

must be positive definite.

We now require the following theorem from Rao [46; p.37]:

THEOREM
Let A and B be real mxm symmetric matrices of which B is positive °

definite. Then there exists é matrix R such that
A=R"TAR! ang B=rlgl

where A is a diagonal matrix.

Using this theorem, there exists a matrix R such that
-R'Qy' [1 it -@%U- (I- A)'l:l WQR = A
and R'QR =1,

where A is a d1agona1 matrix whose main diagonal components are p051t1ve

’and equal to the roots of the equatlon

| - Qw',l} - L) (I-A)'I:l WQ - Q| =0,

or |- Q' [I——@ﬁ—l—)—(l-l\)'l]y\r.q!i-xﬂ:o.

Thus, from equation (5.17), for the jackknife not to increase bias

we require

ota-n? @)t R'QRR—lcic_l_' G e L

- 04(L-1)2 (R')-lR'QW I:I - (N;—l) (I - A)—El W QRR—lg_c;'R

- - -1
R'QH" [1 - (NT”- G~ 1 1:] WQRR
-1 -1 .. ,~1 ,- -1, - -1, -1
= 04(Lf1)2 [}R') 1 R 1qg.R' 1 (R 1) - (R") L AR lqg' R' AR::]
to have non-negative main diagonal components. This cannot be shown but the

sum of squared biases will be reduced in the general case and, in the case of

two included endogenous variables, the squared bias of the endogenous
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coefficient estimator will be reduced if the roots Ai, of the matrix

- Q! [1 - B (I-A)‘l:l g

are such that

0gA €1 . w1y 20 030 5 By 8 (5.20)

Since this condition is dependent upon W it is not possible'td

give a general statement concerning its existence. However, a

sufficient condition for equation (5.20) to hold is that

E- e cI-A)‘;J_.a e TR
: . 111

$.6, 52 L = %81
- & -

1’ 2’ . o0 ’ N)

: N+l ’ . :
-oT gﬁfQEi < SN C (i=1,2, ... , N)

It is known that

N : '

s . : -1 1

izl w,' Qu, = trace w(w'w)‘ W' =K +g
1 ? . '

and so the '"avcorage'' value of W in is (Kl*-g)/N.

i

But for
K1+g, N+1 N+1
N > N or 1dent1ca11y K1-+g'2 %) ’

the sufficient condition cannot hold.
-This suggests that when the number of observations is not at.

least twice the number of included variables,'the_ja;kknife should

not be used.
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5.5 A Comparison of the Exact Bias of the 2SLS and J2SLS Estimators

The analytical results derived in this Chapter can be summarized

as follows:

(i) for a structural equation containing just two endogenous

variables, if K, =2 jackknifing is unlikely to be successful;

2

(ii) in general, even when K, > 2 and u? is "reasonably large',

2
jackknifiﬁg is unlikely to be successful unless the number of observations
is at least twice the number of variables included in the equation being

estimated.

It is apparent from these results that analytical guidelines on
_criferia for applying the jackknife to the 2SLS estimator are rather
Vagﬁe. A series of experiments was éonducted therefore to obsefve
circumstances-in which the jackknife is successful in reducing the
bias of the 2SLS estimator.

The experiments compare the exact biases of 2SLS and J2SLS
as given by equations (5.1) and (5.7) (using'equation (5.5)) respectively,
but take no account of any resulting change in variance.

The exogenous variables were generated as pseudo- random numbers
from the uniform distribution in.the range 0 to 100. A specified
level of theoretical multicollinearity (A) was applied such that the
theoretical bairwise correlation between exogenous variables was the
same for each experiment. A took values from 0.0 to 0.8 in steps of 0.2.

The relative biases of the 2SLS and J2SLS estimators were calculated

exactly for specified values of N, K., K , and the sub-vector

1* s Wygs Wop
of reduced form coefficients, LPPE

The values of wlz and Wyy

for all experiments. From equations (5.1) and (5.5) it can be seen

were set at 0.0 and 1000.0 respectively
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that w5 and w,, enter the expressions for bias only through p.
.Consequently a change in either or both of these parameters only has a
simple multiplicative effectbon the biases and can be ignored without
loss of generality.

Kl was fixed at 2 for the majority of the experiments, whilst
Kz took on values of 2, 4 and 6. N took values of 10, 20 and 30.
| Tables 5.1 - 5.7 give the results of the experiments. The
relative bias of both estimators is given, together with the corresponding
value of the concentration parameter, u;.‘

Table 5.7 gives the results of experiments designed to test the
conclusion derived in Section 5.4, viz: if the number of observations is
not at least twice the number of included variables the jackknife
should not be used. For the purpose of these experiments N and K

2

were fixed at-20 and 4 respectively, whilst K. took values of 4, 6 and 8.

1
An asterisk indicates experiments where the jackknife did not
reduce the bias of thg 2SLS estimator.
It was suggested in Section 5.3.2 that if K2= 2 jackknifing may
not be successful in reducing bias. From Tables 5.1 and 5.4 it is
apparent that jackknifing is indeed generally unsuccessful. In addition,v
in Section 4.3 it was shown that for "large" p? and K, =2 the 2SLS
estimator is ''mearly'" unbiased. The resultswin Table 5.4 indicate the
deleterious effects of using the jackknife under such conditions, even
though u§ is not very '"large".
For K, >2 application qf the jackknife, in general, produces é
fairly substantial reduction in the bias of the 2SLS estimator. Note
that for fixed N, J2SLS does not exhibit a consistent pattern of bias
as A increases, whereas the bias of 2SLS always increases with increasing \.
In general, except for very small values of ué , jackknifing

changes the sign of the 2SLS bias.
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The results in Table 5.7 indicate that it would be unwise to
apply the jackknife to the 2SLS estimator when the number of observations
is not at least twice the number of included variables. For '"'small" u§

the jackknife produces a substantial reduction in bias, but the ensuing

Monte Carlo study will indicate that there is likely to be a substantial

2

3 " "
N is "'small'".

increase in the variance of the J2SLS estimator when u
However, since uﬁ is never known in practice, it would be unwise to use
the jackknife when this condition prevails.

These exact results suggest that the jackknife can be most useful
in reducing bias when the equation being estimated is '"well" over-
identified. It would certainly be unwise to use the jackknife when

: K2==2 or when the number of observations is not at least twice the

number of included variables.



Table 5.1: Exact Relative Biases of the 2SLS and J2SLS Estimators
K2=2 Myp = (0.5, -0.5)
N N N=230
Relative Bias Relative Bias Relative Bias
S 4
. 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 5.8775 -0.0529 +0.1873* 8.9645 -0.0113 +0.0592* 12.0464 -0.0024 +0.0179*
0.2 4.7927 -0.0910 +0.2156* 7.4405 -0.0242 +0.0924%* 10.3583 -0.0056 +0.0317*
0.4 3.5482 -0.1696 +0.2259* 5.6726 -0.0586 +0.1418*% 8.3496 -0.0154 +0.0611*
0.6 2.2820 -0.3195 +0.1421 3.7775 -0.1513 +0.1732% 6.0012 -0.0498 +0.1189*%
0.8 1.0954 -0.5783 -0.1826 1.8411 -0.3983 A—O.0028 3.2606 -0.1959 +0.1490
K1= ‘ w12=0.0 w22=1000.0

vL




Table 5.2: Exact

Relative Biases of the 2SLS and J2SLS Estimators

=4 Moy = (0.5, =0.5, 0.5, ~0.5)
N=10 N =20 N =30
Relative Bias Relative Bias Relative Bias

~ 2SLS J2SLS 2SLS J2SLS , 2SLS J2SLS
»0.0 .8967 -0.3731 -0.0161 15.5754 -0.1284 +0.0194 29.7400. -0.0672 +0.0071
0.2 .6992 -0.4556 -0.0906 12.3167 -0.1620 +0.0241 21.4978 -0.0930 +0.0101
0.4 .8151 -0.5366 -0.1842 9.4623 -0.2095 +0.0242 15.0562 -0.1328 +0.0143
0.6 .0354 -0.6275 -0.3146 6.6289 -0.2907 +0.0011 9.6338 -0.2059 +0.0131
0.8 .1894 -0.7538 -0.5275 3.5345 -0.4692 -0.1395 4.6532 -0.3879 -0.0745

K1= w12=0.0 w22=1000.0

SL




Table 5.3: Exact Relative Biases of the'ZSLS and J2SLS Estimators

K2==6 Moy = (0.5, -0.5, 0.5, -0.5, 0.5, -0.5)°
N=20 N =30

Relative'Bias Relative Bias

2SLS J2SLS 2SLS J2SLS
0.0 32.8269 -0.1144 +0.0101 52.3695 -0.0735 ;0.0046
0.2 23.0495 -0.1585 +0.0070 36.8341 -0.1027 +0.0039
0.4 15.3959 -0.2261 -0.0054 24,5283 -0.1498 +0.0001
0.6 9.2195 -0.3407 -0.0544 14.6172 -0.2362 -0.0191
0.8 4.2646 -0.5502 -0.2455 6.6967 -0.4252 -0.1300
K1= w12=0.0 w22=1000.0
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Table S5.4: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2= 2 My, = (1.0, -1.0)
N=10 N=20 N=30

Relative Bias Relative Bias Relative Bias
o | = & &

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS
O;O 23.5099 0.0000 +0.0008* | 35.8579 0.0000 0.0000* 48.1854 0.0000 —0.000S*
0.2 19.1710 -0.0001 +0.0027* | 29.7621 0.0000 0.0000* 41.4331 0.0000 b.OOOO*
0.4 14.1927 -0.0008 +0.0141* | 22.6905 0.0000 . +0.0003* 33.3983 0.0000 0.0000*
0.6 9.1281 -0.0104 +0.0777* | 15.1101 -0.0005 +0.0058* 24,0050 0.0000 +0.0001*
0.8 4.3816 -0.1118 +0.2585 7.3645 -0.0252 +0.0918%* 13.0424 -0.0015 +0.0107*
K1= w12=0.0 w22=1000.0.




Table 5.5: Exact Relative Biases of the 2SLS and J2SLS Est_imators

K2=4 Moy = (.0, -1.0, 1.0, -1.0)
N=10 N=20 N =30

; , Re_lative Bias ) Relativé Bias " Relative Bias

"N 2SLS J2SLS N 2SLS J2SLS UN 2SLS J2SLS
0.0. 19.5866 -0.1021 +0.0409 62.3016 -0.0321 +0.0051 118..9602 -0.0168 +0.0018
0.2 14.7967 -0.1351 +0.0578 49,2668 -0.0406 +0.0070 85.9910. -0.0233 +O..0026
0.4 11.2603 -0.1770 +0.0778 37.8492 -0.0528 +0.0098 60.2250 -0.0332 +0.0036 -
0.6 8.1416 -0.2415 +0.0849 26.5155 -0.0754 +0.0145 38.5351 -0.0519 +0.0061
0.8 4.7575 -0.3814 +0.0017 14.1380 -0.1413 +0.0248 18.6126 -0.1074 +6.0127
K1= w12=0.0 w22=1000.0
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Table 5.6: Exact Relative Biases of the ZSLS and J2SLS Estimators

-

l(2=6 Tip = (.o, -1.0, 1.0, -1.0, 1.0, -1.0)
N=20 N =30

Relativé Biases Relative Bias

2SLS J2SLS 2SLS J2SLS
0.0 131.3077 | -0.0300 +0.0046 209.4781 -0.0189 +0.0019
0.2 92.1980 -0.0424 +0.0058 147.3363 -0.0268 +0.0Q24
0.4 61.5836 | -0.0628 +0.0081 98.1132 -0.0399 +0.0031
0.6 36.8780 | -0.1026 +0.0102 58.4687 | -0.0661 +0.0040
0.8 17.0585 | -0.207n +0.0024 26.7869 -0.1382 +0.0016
K1=2 w12=0.0 w22=1000.0

6L




Table 5.7: Exac't Relative Biases of the 2SLS and J2SLS Estimators

-

(K1 + g "large'" relative to N)

K2=4 Ty = (0.5, -0.5, 0.5, -0.5)
K1=8 N=20 K1=10 N=20 K1=12 N =30
Relative Bias Relative Bias Relative Bias
2SLS J2SLS 2SLS J2SLS 2SLS J2SLS
0.0 10.5786 -0.1881 +0.1529 11.7998 -0.1690 +0.2040* 4.4360 -0.4018 +0.5649*%
"0a 2 8.6514 -0.2281 +0.1626 8.8120 -0.2242 +0.2356* 2.9796. -0.5199 +0.3831
0.4 6.7927 -0.2846 +0.1608 6.2274 -0.3069 +0.2373 1.8676 -0.6500 +0.0091
0.6 4.8248 -0.3774 +0.1174 3.8990 -0.4399 +0.1422 1.0282 -0.7819 -0.280Y
0.8 2.5090 -0.5698 -0.1007 1.8195 -0.6566 -0.1904 0.4652 -0.8922 -0.6428
w12=0.0 w22=1000.0

08
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CHAPTER 6

MONTE CARLO STUDY

6.1 Design of Experiments

An evaluation of the effect; of applying the jackknife technique
to the 2SLS estimator necessitates the use of Monte Carlo methods.
“Although the exact finite sémple distribution and exact moments (where
they exist) have been derived for several simultaneous equation
estimators in the context of the model used in the ensuing study (e.g.
see the bibliographical'paper compiled by Owen and Knight [41]), neither
the exact finite éample distribution ﬁor exact second and higher order
: momeﬁts of the J2SLS estimator have been derived. Consequently, a
Monte Carlo analysis is our only method of evaluating the effects of
applying the jackknife technique to the 2SLS estimator.

The model used for one-third of the experiments was
B = Baly * Yot Yk t Yy (6.13
Ya = Bu¥y * Yoo * YaoXp * Yozkz * Yaudy * 4y - (6.2)

whilst for the remaining experiments equation (6.2) was augmented by
an additional three or six exogenous variables.

The reduced form of this two-equation model is given by
=
=MoL XMty | (6.3)
: 4 :
Iy = Mon * Z X Toq.* Xy o Lokl

where both equations should be augmented by the relevant additional

terms when K2=6 and K, =9.
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The set of parameter values used in the experiments is given in

Table 6.1.

Table 6.1: Parameter Values Used in Monte Carlo Experiments

812 0.8 621 -0.7 Yo Yo 1.2
Y10 50.0 Y20. 50.0 Yo 1.9 Yoq -1.5
Y1, 1.2 Yoo 1.3 Yo7 -1.1 Y210 0.9
Yo3 . 1.6
You -2.0

The exogenous variables were generated as réctangularly and
independently distributed pseudo—ran&om variables in the range 0 to 100, .
but were then transformed in order to obtain a specified theoretical
- pairwise correlation (A) between them. The sample correlations are-
given in Table 6.2. Values for experiments using less than the full
set of exogenous variables (i.e. less than 10, excluding the constant)
should be read-off from tﬁe upper left corner of the table.

All experiments were based on a sample size of 20.

The reduced form disturbances, the L (i=1,2),were generated

as bivariate normal variates with zero mean and covariance matrix

1600 15206

15206 1444

where the coefficient § was given the value 0.19 in half of the
experiments, and 0.76 in the other half.
Each estimate of the parameters in equation (6.1) (i.e. the first

equation only) was calculated as the mean of 100 replications of the
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relevant estimator. All experiments were devised to ensure that

at least the first two integer moments of the 2SLS estimator were

finite. This would not be so with the second equation, (6.2).

6.2 Exact Results

Although exact vaiues for the bias and mean square error (MSE)
of the 2SLS estimator, and for the bias of the J2SLS estimator, in
equation (6.1) are known (and for 812 are giQen in Table 6.3), for
cdmpatibility reasons comparison of variance and MSE must necessarily
be based upon a Monte Carlo study.

The values in Table 6.3 can serve as a guide to the accuracy
of the experiments which follow.

It should be noted that when § = 0.76, the 2SLS and J2SLS
estimators of-B12 are both unbiased.

From equation (5;1) it can be seen that the 2SLS estimator of 812
is unbiased if B, =p (=_w12/w22)L In the experimeﬁts conducted here,

B..,=0.8 whilst

12

_ 15208

= g = 0.8 (if §=0.76)

It follows from equation' (5.5) and the definition of the jackknife
that the J2SLS estimator of 812 will also be unbiased under the same
conditions.

Richardson and Wu [55, pp.977-978] have shown that if the 2SLS
estimator of 812 is unbiased, then the.éSLS estimatér of the coefficients
of the exogenous variables must also be unbiased.

If 812= p, then it follows that y; is independent of U and
hence estimation of equation (6.1) becomes a mixed stochastic regression

problem. In these circumstances ordinary least squares would be an

unbiased estimator and would be the appropriate method of estimation.



‘Table 6.3: Exact Values of Relative Bias and M.S.E. (812 only)
Relative M.S.E. Relative
Bias Bias
Ky k . ’ 25LS J2SLS
0.00 0.19 41.2725 -0.01865 0.03552 +0.00631
0.45 0.19 29.1234 -0.02675 .05094 +0.00968
. 0.00 0.76 41.2725 0.0 .01163 0.0
0.45 0.76 29.1234 0.0 .01668 0.0
0.00 0.19 95.7945 . -0.03066 .01483 +0.01093
0.45 0.19 56.3108 -0.05138 .02514 +0.01633
0.90 0.19 8.4440 -0.27237 .01576 -0.04342
° 0.00 0.76 95.7945 0.0 0.00478 0.0
0.45 0.76 56.3108 0.0 0.00801 0.0
0.90 0.76 8.4440 0.0 0.04246 0.0
0.00 0.19 118.3348 -0.04252 .01156 +0.01082
0.45 0.19 61.3857 -0.07889 .02405 +0.01527
0.90 0.19 9.1349 -0.35015 0.15709 -0.12009
’ 0.00 0.76 118.3349 0.0 .00379 0.0
0.45 0.76 61.3857 0.0 .00701 0.0
0.90 0.76 9.1349 0.0 0.03113 0.0
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For an equation containing an arbitrary number (g) of explanatory
endogenous variables, Revankar and Hartley [51] have generalized the
above result. An F test was derived by Revankar and Hartley for
testing the hypothesis of equality of 812 and 0.

The selection of § to be 0.76 for half of the experiments allowed
a comparison of test statistics to be made (see Chapter 7) without the

added complications of bias and skewness entering the comparisons.

6.3 Computational Considerations

6.35.1 The Problem of '"Outliers"

The satisfactory inversion of all moment matrices for all sets
of exogenous variables was commented upon in Chapter 4. At each
replication of the experiments however, it was necessary to invert the

matrix
ty e Py =1 1
Z'X(X'X) 'X'Z
and to check against singularity (or near-singularity) caused by the
build-up of rounding errors. If singularity was found to be present,
the relevant sample values were disgarded and an additional replication
performed.

For experiments involving K. =3 and A=0.9, although no replication

2

was rejected, the 2SLS and J2SLS parameter estimates were grossly in

error as compared with their exact values for 812. Rather than design

an ad hoc procedure to allow rejection of "unrepresentative' sample

values, or outliers, in order to achieve 'reasonable' parameter

estimates, 1t was decided to reject this particular experiment completely.
It is difficult to justify the rejection of '"outliers' since any

cut-off point obviously suffers from a great degree of arbitrariness.

Indeed, one could very well be rejecting "true" sample values as well as
J g

"'rounding error' sampie values by applying such a procedure.
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6.3.2 Antithetic Variates

The technique of antithetic variates was used in an attempt
to reduce (to an unknown degree) the sampling error of the Monte Carlo
study when estimating the biases of hoth estimators (see Hammersley
and Handscomb [16] for a description of the technique).

Whilst the antithetic method produced estimates of 812 which were
marginally closer (than direct simulation) to their exact values for
the majority of experiments, there was little to choose between the
two methods for estimating the MSE of the 2SLS estimator of 812.

This latter feature was‘noticed by Mikhail [33] in a similar experiment,
although he managed to achieve a substantial reduction in sampling error
when estimating the bias of the 2SLS estimator.

The add;tional computer time and storage required to calculate
parameter estimates using antithetic variates is minimal, as it merely
requires a sign change at an advanced stage in the calculations.
However, there is a considerable increase in computer time and storage
involved in constructing, storing and sorting twice as many test
statistics as were generated by direct simulation. Since this study
was already facing computer time and storage constraints using direcf
simulation, the author did not feel that the small decrease in

sampling error justified the increased computer time and storage.

6.4 Results of Monte Carlo Study

Tables 6.4, 6.5 and 6.6 (which are situated ét the end of this
Chapter) summarize the Monte Carlo results on relative bias, variance,
MSE and mean absolute error (MAE) for the three parameters of interegt;
213_812, YlO and Yy Values of the standardized normal statistic

for the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
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pp.47-52]) under the hypothesis of equality of absolute errors of the
-two estimators are given in the final column,

Each of these three tables is subdivided into two parts, ta) and
(b) . Results for 6=10.19 are given in part (a) of each table, whilst
part (b) contains the results for the situation where both estimators
are unbiased, i.e. §=0.76.

We now consider, in turn, four criteria for discriminating

between the two estimators.

6.4.1 Bias

The "large'" relative bias of 2SLS which was evident in the exact
study (Chapter 5) for high levels of multicollinearity was also apparent
in the Monte Carlo study when 6 =0.19. For these experiments the
jackknife never failed to reduce the bias of the 2SLS estimator, although

this reduction was more marked for B.. than for the ccefficients of

12
the (2) exogenous variables, Y10 and Y-
All estimates of relative bias had the correct sign. From Table 6.3

it can be seen that the exact relative bias of B for both 2SLS and

12

J2SLS were very close to the simulation results when K2==6. For K2= 3
and K2==9, however, the degree of agreement between the simulated and
exact results was not as good.

For § =0.76 (i.e. both estimators unbiased) the '"relative bias"
figures obtained from the experiments must be due to sampling and
rounding errors. These errors are particularly noticeable when the
level of multicollinearity (A) is high.

We can be reasonably pleased with the degree of agreement between

the exact and experimental results on bias. It is interesting to note

that in Summer's [66] experiments 1A - 4A and 1B - 4B, with a model which
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only differed from the one used in this study by the inclusion of
. fewer exogenous variables, the mean of the 2SLS estimator of 812
over 50 replications had an incorrect bias sign on four (of the eight)

occasions.

6.4.2 Variance

In general, 2SLS exhibited a smallef variance than J2SLS for
all three parameter estimates, and this was particularly noticeable
as the degree of multicollinearity increased. Where the jackknife
produced a smaller variance, its superiority was never significant.
As K, increased, the discrepancy between the 2SLS variance and the

2

larger J2SLS variance widened for all parameter estimates.

6.4.3 Mean Square Error

In general, the reduction‘in gias due to the application of the
jackknife was not of sufficient size to offset the smaller variance of
2SLS. In most cases (for both estimators) the square of the bias was
small and had little additional effect when added to the variance.
Consequently, in cocmmon with the variance, 2SLS was generally superior
(for all parameters) on a MSE criterion.

It should be noted, however, that this superiority was particularly
marked for '"small" values of uz (e.g. when u2= 8.440 and uz =9.1349).
For '"larger'" values of p?, the MSEs of the tw§ estimators did not
differ greafly. Frequently, the Wilcoxon test picks up this substantial
difference between the two estimators for "small" p?, but this statistic
is based on testing absolute errors.

With only one exception, the MSE of the 2SLS estimator of 812

obtained from the experiments underestimated the exact MSE. Despite this,



90

the exact and experimental values were very close for all values of

K2 and A.

6.4.4 Mean Absolute Error

In general, 2SLS was superior on a MAE critérion, although its
superiority was not as marked as for the MSE criterion. Again, ''small"
values of u? lead to a great discrepancy between the MAEs of the 2SLS

and J2SLS estimators.

6.5 Différence of Absolute Errors

At each replication the absolute -error of both estimators was
calculated. Let Bi and Bi be the absoiute errors at the ith replication
.of the 2SLS and J2SLS estimators of 812 respectively, then the

difference score is defined as

~

d; =b; - b, . (i=1,2,...,R)

We wish to test thé hypothesis of equality of Si and gi over all R
replications.

The usual parametric technique for handling such a.problem is
Student's t distribution, but this requires the assumption that thq
difference scores (the di) are normally and independently distributed
in the population froh which the sample was drawn. Since this assumption
‘has no theoretical justification for the case being considered here,
the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
pPp.75-83]) was used to test the hypothesis of equaiity of absolute errors.
If the assumptions of the parametric t test are.in fact met, the
asymptotic efficiency ncar the null hypothesis of the Wilcoxon test
compared with the t-test is 95.5%.

Under the stated hypothesis, the Wilcoxon test was conducted for
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all three parameters being estimated, and the resulting Z statistics
"are given in the last column of Tables IV, V, and VI. Negative values
favour 2SLS.

At a 5% level of significance, the hypothesié of equality of
absolute errors is rejected only twice over all parameters when ¢ = 0.19.
Both rejections are in favour of the 2SLS estimator, and both occur
for K,=9 and 1=0.90 (i.e. when u* is "small").

When 6 =0.76, however, the hypothesis is rejected on four

_occasions for 812 alone, all four rejections in favour of the 2SLS

estimator. Surprisingly, this result did not carry over to the 2SLS

estimates of Y10 and Yil'

6.6 Conclusion

The results of the Monte Carlo study are not encouraging for
proponents of the jackknife techniqué. Whilst 2SLS was clearly superior
- when there existed a'high degree of multicollinearity, application of
the jackknife technique, in general, could not produce sﬁperior results
gsing either a MSE or MAE criterion. In view of the increased complexity
and computation time involved in applying the jackknife, its use cannot
be recommended on the basis of the above results alone.

On the basis of the above results, the foliowing statements can

be made:

(1) for a relatively high degree of overidentification (i.e. K2= 6
or K2==9 in these experiments), application of the jackknife technique

produces a substantial reduction in the bias of the 2SLS estimator;

(ii) over all experiments 2SLS is superior on a MSE criterion, this

superiority being particularly marked when p? is 'small";
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(iii) when § =0.19, there appears to be little significant difference
between the two estimators over all parameters, using the absolute error

criterion, on the basis of the Wilcoxon Matched-Pairs Signed-Ranks test;

(iv) over all experiments, differences between 2SLS and J2SLS
estimates of 812 using MAE, MSE, and variance criteria are far less

marked than the same differences for YlO and Yll;

) when the 2SLS estimator is unbiased (i.e. § =0.76), application
of the jackknife is clearly unwarranted and its application in error
is likely to have a detrimental effect on the parameter estimates.

Clearly, to avoid this possibility, Revankar and Hartley's [51] test

- should be used prior to estimation.




Table 6.4(a): Results of Monte Carlo Experiments

Parametér = 812

RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A Tk 2SLS J2SLS 2SLS J2SLS 2SLS J28LS 2SLS J2SLS TEST
0.00 41.2725 | -0.02739  -0.00151 0.03014 0.03044 0.03062  0.03044 0.14138 0.14030 | +0.7324
3

0.45 29.1234 | -0.04351 -0.00052 | 0.04022 0.04433 | 0.04143  0.04433 | 0.16927 0.17156 | +0.1977

0.00 95.7945 | -0.02911 +0.01092 | 0.01329 0.01473 | 0.01382 0.01480 | 0.09423 0.09717 | -0.4487

6 |0.45 56.3108 | -0.05176 +0.01428 | 0.01963 0.02315 | 0.02134 0.02327 |'0.11690  0.12211 -0.6223

0.90 8.4440 -0.26531 -0.03903 | 0.09687 0.32332 0.14192 0.32429 0.30989 0.38605 | -0.4986

0.00 {118.3349 | -0.03588 +0.02243 | 0.01123 0.01327 | 0.01205 0.01359 0.08642  0.091i8 | -0.4590

9 0.45 -61.3857 | -0.06731  +0.03637 | 0.01977 0.02815 | 0.02267 0.02900 0.12234 0.13239 -0.4590

0.90 9.1349 -0.30998 -0.03315 | 0.08634 0.37555 0.14784 0.37626 0.32287 ~ 0.44477 | -2.3088

Sample size = 20 § =0.19




Table 6.4(b): Results of Monte Carlo Experiments

-

Parameter = 812
RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A : 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41,2725 -0.00629 -0.00215 . .00939 . 00946 .00942 0.00946 .08139 0.08130 +0.4109
3
0.45 29.1234 -0.00814 -0.00136 .01326 .01431 . 01330 0.01431 .09392 0.09762 -1.2705
0.00 95.7945 | -0.00524 -0.00328 .00438 .00490 .00439 0.00490 .05223 0.05582 -1.9444
6 0.45 56.3108 -0.00668 -0.00305 .00655 .00799 - .00657 0.00800 . 06450 0.07098 -2.5616
0.90 8.4440 -0.00844 +0.01385 . 03462 .10562 . 03466 0.10573 .14633 0.22304 -5.1540
0.00 . 118.3349 -0.00235 +0.00143 .00371 .00445 .00371 0.00445 .04988 0.05334 -1.5576
9 0.45 61.3857 -0.00191 +0.00588 .00624 .00880 .00624 0.00883 .06383 0.07461 -2.7232
0.90 9.1349 -0.00188 +0.03911 .02810 .09701 .02811 0.09799 ).12742 0.22593 -6.4812
Sample size = 20 = 0.76

v6



Table 6.5(a): Resuits-of Monte Carlo Experiments

Parameter = YlO

s

RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A 2 25LS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | +0.05783  +0.03567. 494 .50 509.77 502.86 512.95 17.80 18.16 -0.8218
’ 0.45 29.1234 +0.05958 +0.03691 532.11 552.15 540.98 555.55 18.52 18.69 | -0.3335
0.00 95.7945 | +0.07142 +0.01475 521.61 552.85 534.36 553.40 - 18.30 18.89‘ -0.8011
0.45 56.3108 | +0.07951 +0.01679 554.61 590.48 570.42 591.19 18.87 19.147 -0.1169
° 0.90 8.4440 | +0.21776 +0.07183 1712.25 2487.70 1830.80 2500.60. 34.24 37.75 -1.7811
0.00 } 118.3349 | +0.08609 -0.00401 524.09 560.12 542.62 560.16 18.60 18.63 | +0.1994
9 | 0.45 61.3857 | +0.10527 -0.00937 568.82 636.35 596.53 636.57 19.52 ©19.55 | +0.2571
0.90 9.1349 | +0.26538 +0.02130 1717.59 3005. 34 1893.66 3006.47 35.04 35.50 -1.3169
Sample size = 20 § = 0.19

S6



Table 6.5(b): Results of Monte Carlo Experiments

Parameter = YlO

-

RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
K2 A i 28LS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | +0.02198 +0.01713 - | 159.76 161.79 160.97 162.52 10l10 10.19 -0.2372
’ 0.45 29.1234 +0.02128 +0.01546 175.59 178.15 176.73 178.75 10.66 10.74 | -0.6292
0.00 95.7945 | +0.02206 +0.01941 174'.43 177.16 175.65 178.10 '10.58 10.69 —0.0688.
6 0.45 56.3108 +0.02064 +0.01770 188.26 190.72 ©189.32 191.50 10.95 10.89 +0.6464
0.90 8.4440 | +0.01336 +0.00231 664.16 789 .39 664.61 789.40 - 20.49 21.88 | -0.4573
0.00 | 118.3349 +0.01833 +0.01135 176.50 182.49 177.34 182.81 10.68 10.86 -0.5123
9 0.45 61.3857 | +0.01673 +0.00717 194 .44 205.75 195.14 205.88 11.10 - il.SS -0.7427
0.90 9.1349 +0.01557 -0.01026 642.99 798.66 643.59 798.92 | 20.24 22.14 -1.2103
Sample size = 20 § =0.76
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Table 6.6(a): Results of Monte Carlo Experiments

Parameter = Yll

. RELATIVE BIAS VARIANCE M.S.E.. M.A. WILCOXON
K2 A £ 2SLS J28LS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST
0.00 41.2725 | -0.01578 -0.00552 | 0.12200 0.12560 .12236 0.12564 .27814 .27567 | +1.1175
’ 0.45 29.1234 | -0.01522 -0.00789 0.13579  0.14115 .13612 0.14124 .29161 .29209 | +0.0499
0.00 95.7945 | -0.02943  +0.00569 0.13652  0.13946 .13777 0.13951 .29307 .29189 | +0.5794
6 | 0.45 56.3108 | -0.03245  +0.00222 0.14783  0.15137 .14934 0.15138 .30267 .29797 | +1.1346
0.90 8.4440 | -0.11355 -0.03921 0.56781  0.79627 .58637 0.79849 .61435 .67577 | -1,7501
0.00 {.118.3349 -0.03078 +0.01239 0.12644 0.13457 .12780 0.13479 « 279899 .28116 +0.2201
9 10.45 61.3857 | -0.03260 +0.01124 0.14321 0.15645 .14474 0.15664 - .29747 .30058 -0.1221
0.90 9.1349 | -0.06151 +0.02542 0.55360 0.79839 55905 10.799352 + 59897 .67042 | -2.1954
Sample size = 20 § = 0.19

o)
~




Table 6.6(b):

Results of Monte Carlo Experiments

Pérameter = Yll
RELATIVE BIAS VARIANCE M.S.E. M.A.E. WILCOXON
Kz 2 e 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS ~TEST
0.00 41.2725 | -0.00167 +0.00144 0.04010 0.04035 0.04010 0.04036 .15781 0.15610 | +0.4968
. .
0.45 29.1234 | -0.00082 +0.00282 0.04498 0.04577 0.04498 0.04578 .16653 0.16748 | -0.6533
0.00 95.7945 | -0.00307 -0.00161 0.04666 0.04552 0.04667 0.04552 .16974 0.16665 | +1.0762
6 | 0.45 56.3108 | -0.00165 - +0.00019 0.05082 0.04981 0.05083 0.04981 0.17583 0.17240 | +1.2808
0.90 8.4440 | +0.00305 +0.00767 0.21889 .26339 0.21890 0.26348 .36742 0.40131 | -1.5163
0.00 |118.3349 | +0.00022 +0.00334 6.04273 .04391 0.04273 0.04393 .16162 0.16309 | -0.1083
9 {o0.45 61.3857 | +0.00155 +0.00551 0.04836 0.05005 0.04836 0.05010 .17096 0.17022 | +0.6017
0.90 9.1349 | +0.00250 +0.00808 0.19668 0.22882 0.19670 0.22892 .34628 0.36884 | -0.7375
Sample size = 20 § = 0.76

86



99

CHAPTER 7

INFERENCE

7.1 Tesfs of Significance

7.1.1 Conventional Tests of Significance -

So.far wé have only considered point estimation of the
parameters in a s;multaneous equation system. In applied economics
however it is usual to test for significance of the parameter estimates,
or (identically) to formulate interval estimates.

From equation (2.6), the 2SLS estimator of 0 is written as
~ ' tyy =1yt =4 ' tyoa=1 1
6= [% X(X'X)""X'Z Z X(X'X) Xy,

and from equation (2.7) the limiting distribution of the sequence

/N (8 -6) is given by .

. 7 -1 -1
- 1 1]

AN @-0)~N |0, 0% prim [L . 2 X %-. 4%
- = N > N ’

Z| =

S|
provided lim [ &.X X exists .
N >0 N

The correct asymptotic test of significance therefore is the
standardized normal test statistic, and a consistent estimator of o2

is given by
o2 = g},g// N, (7.2)
where 4 = y - YE - X 24

It has become common practice however to adjust the estimator of
o? for loss of degrees of freedom and use the t statiétic, rather

than the standardized normal, when dealing with finite samples (e.g. see




100

Johnston [20; p.384]. Thus in finite samples a consistent estimator

of o2 is given by

62 = §_'§_/(N-Kl-g)

From equations (7.1) and (7.2) it follows that, asymptotically,

AN (6, -6))
5 /5,

where 6k and Gk are the kth components of §.and 0 respectively

~ N(O,1) , | (7.3)

‘U<=1,2,...,K1-+g), and gk is the kkth component of

. . -1
1°.2°%F1 2% %'Z | -.
N - N N
1

Let S, denote the kkth component of [Z')((X')()_1 X'z]"" , then

k

§k = NS, and expression (7.3) can be rewritten as

® - 6)
L LT , (7.4)
5 /S, -

The conventional finite sample counterpart of expression (7.4)

is the statistic (§k - ek) 3 (7.5)
o /’§k

which is tested as though it is distributed as Student t with

N-Kl-g degrees of freedom.

7.1.2 Dhrymes' Alternative Test of Significance

An alternative asymptotic test of significance based on Student's
t distribution has been proposed by Dhrymes [12]. Use of the t statistic

is customary for testing the significance of 2SLS parameter estimates
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yet, until Dhrymes showed the asymptotic validity of his test, no
theory existed to justify the practice. On the basis of the
asymptotic distribution of the 2SLS estimator, the relevant test of
significance should have been based on the standardized normal
distribution as described by expression (7.4).

Rewrite the equation being estimated as

Z8 + u ‘ (7.6)

Y

where Z [Y: Xl] and §:= [§f :Ii]’ then define a square, non-

singular matrix R of order K such that RR'=X'X. Further define

1

P=R™"X', then premultiplying equation (7.6) by P gives

E=R

2 FE s
where w=Py, Q=PZ and e =Pu. Dhrymes showed that the 2SLS estimator
of 6 in equation (7.6) is the OLS estimator of 6 in this transformed

system. Further, by analogy with least squares, Dhrymes showed

that, asymptotically,

@, -8,
——————5 _1. Vot e (7.7)
oV Sk 2-8 _

where an asymptotically unbiased, but inconsistent, estimator of 5>

is given by

= ]
0% =8

&/ (Ky-g) = A'XX'0 X'/ (K, - g).
Thus the test is only valid if the structural equation in question is
over-identified.

Revankar [50], however, has shown that information is lost when
a dimension reducing transformation is used as a basis for testing,

thus Dhrymes' test could be expected to be inefficient compared to

the corniventional test based on the standardized normal distribution.




In a Monte Carlo study, Maddala [26] observed that the Dhrymes
test had low power compared with the conventional tests in a two
equation model. Richardson and Rohr [54] came to the rame conclusion

on the basis of a Monte Carlo study using a three equation model.

7.2 The Exact Distribution of a t Statistic

The exact finite sample distribution functions of several t
statistics for hypothesis testing and the construction of confidence
intervals on 2SLS parameter estimates have been studied by Richardson
and Rohr [53] and Rohr [57]. As with many other finite sample studies
into the properties of the 2SLS estimator, the results were derived
for a model with juét two jointly-dependent variables.

Richardson and Rohr [53] considered the finite sample distribution
of Dhrymes' t statistic, expression (7.7), which Dhrymes had already
shown to be asymptotically distributed as Student t with Kz-g degrees
of freedomn. Howevef, since the sample size does not appear
explicitly in their finite sample derivations, convergence of the t
statistic to Student's t distribution was analysed for u? (the
concentration parameter) increasing indefinitely.

The moments of the exact distribution were found not to exist
to order Kz-g and higher, but where they4did exist they converged
to the moments of Student's t distribution with Kz-g degrees of
freedom as p?>-+®, On the basis of their results Richardson and
Rohr conjeétured that, for large p?, the exact distribution function
of the t statistic can be adequately approximated by Student's t
distribution with K2-g degrees of freedom.

Richardsén and Rohr investigated their conjecture for one

degree of freedom and for several values of u and B. On the basis
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of their computations they concluded that the actual probability
of Type I error (for a significance level of 5%) will be less than

% if B is positive,vand greater'than 5% if B is negative. If u.> 3
the exact t statistic was found to be a good approximation to the
Studené t, but for small B and B < 3 differences between the two could
lead to serious errors.

, Richardsgn and Rohr also tabulated the exact value of the second
moment and the exact absolute values for the first and third moments
of the t statistic for various values of degrees of freedom,B, and
uz, from which they concluded that the density function is highly
skewed and that often the moments differ considerably from those
of Student's t distribution with K2— g degrees of freedom.

Rohr [57] has derived the exact distribution of two 'more
'c&nventional” test statistics, only one of which is used in tﬂis

study, viz:

Cr - %
o VS,

which is identical to expression (7.5).
Rohr showed that asymptotically (in =) expression (7.5)

converges to Student's t distribution with N - K, - g degrees of

1
freedom, but that in finite samples the moments of the statistic
(7.5) exist only up to order N-Kl- g+1.

It should be noted, however, that mathematical complexity in
the derivation of the momentsvof expfeésion (7.5).forced Rohr té
consider only the special case where B = 012/022; i.e. 2SLS unbiased.
Under this restricfion, expression (7.5) has all odd moments (where
they exist) equal to zero, and 2SLS and OLS are equivalent.

Rohr also showed that the variance of expression (7.5) is

always less than or equal to the variance of its limiting distributicn.
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7.3 Student's t Distribution and its use with the Two-Stage Least

Squares Estimator

The ratio

) -
. k

= ———e (k=1’2,aoc,K +g) (7'8)
/T S.E. (§k) : .

is distributed'as Student't if w.is normally
distribuged wi£h zero mean and unit variance and if v has a x2
distribution with r degrees of freedom, provided that v and w are
stochastically independent.

For 2SLS, in general, E(§k)-# 6, and 62 is a consistent,
buﬁ not unbiaéed, estimator of o?. Consequently the denominator of
expiession (7.8) only approximates a ¥> distribution. In addition,
6k.° E(@k) is not stochastically indepéndcnt of its standard efror
(S.E.) in finite samples. :It should be noted that E(gk) méy not

‘even be finite, although in the ensuing Monte Carlo analysis the

experiments were designed in such a way as-to ensure that the first

two moments of the 2SLS estimator were always finite.

7.4 An Approximate t Statistic constructed using the Jackknife
Technique :

Tukey [72] has suggested that the N pseudo-jackknife estimates
could be treated as approximately independent, identically distributed
observations from which an,apprbximate t . statistic could be constructed
as

‘/ﬁ [J(ek) a ek]
1 v a o B
(N-l)-- X Ji(ek) “J(ek)

i=1

- e TSR (7.9)
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We have already shown (in Chapter 3) that expression (7.9) is
- asymptotically distributed as the standardized normal distribution in
the context of the J2SLS estimator.

Although in general E[J(@k)] *GK, in many instances it will
exhibit a smaller deviation from Gk than 2SLS, as was observed in
Chapter 4. In common with 2SLS, the numerator and the denominator
of expression (7.9) will not be stochastically independent in finite
samples.

Miller [34] gives several countereXamples to Tukey's conjecture,
but Arvesen [1] gives a wide class of situations where this suggestion
is valid, i.e. when Ji(&k) and J(&k) are U statistics (see Hoeffding
[19]) or functions of U statistics.

Recently, Miller [36] provided an asymptotic justification of
‘Tukey's conjecture for a function of the regression parameters in a

general linear model.

7.5 Independence of the Pseudo-Jackknife Estimates

Walsh [73] has demonstrated the deleterious effects of using
correlated samples for the construction of certain significance tesfs.
If the N pseudo-jackknife estimates could be considered as a single
observation of a normal multivariate population, for which the N
variables have common mean p and variance o2, the effect on the t
statistic of a common level of pairwise correlation between the pseudo-
jackknife estimates would be to raise or lower the true confidence
coefficient depending on whether the correlation was positive or
negative. Thus if the pairwise ;orrelation (r) was positive, a test
result which woﬁld be significant for a random sample need no longer

be so. To correct the t statistic the multiplying factor
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/ (1-12)
1+ (N-Dr

is required.

Walsh illustrated the error incurred in assuﬁing r=0 by
tabulating the true value of the confidence coefficient for varying
values of N and r. Even for small r the deleterious effect of correlation
was very marked; e.g. for N=8 and r=0.1 the true value of the 95%
confidence coefficient is 86.5%, and for N=32 and r=0.1 the true
. value falls to 68%. Thus the dangers of.ignoring the possibility of
|r|>0 are evident.

Miller [34], usiﬁg different initial assumptions, has also shown
the deleterious effect on the t statistic of correlation among the
pseudo-jackknife estimates. |

Three statistics were selected, therefore, to test for the
"approximate'" independence of the pseudo-jackknife 2SLS estimates,
and for this purpose the pseudo-jackknife estimates were expressed as

deviations from their mean, viz:

d., = Ji(ék) - J(@ (i=1,2, ..., N)

ik x>
for all k (k=1,2, ..., Kl-ﬁg)._ The three tests used for this purpose
are well known tests for departures from randomness, and a detailed
explanation of all three (the Swed-Eisenhart One Sample Runs Test,
the Fisher Exact Probability Test, and Spearman's Rank Correlation
Coefficient) is given in Siegel [63].

The Swed-Eisenhart test (denoted by SE in Table 7.1) was used
to ascertain whether the sequence of signs of the dik was random. The
Fisher test (denoted by FI) was also based on sign sequences. A 2x2
contingency table was set-up for each value of k and scores allotted

according to the sequence of the signs of successive dik over the

i observations. Spearman's Rank Correlation Coefficient (denoted by SR)
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was used to test for association between the natural ordering of the .
' dik and their ranked ordering. All three tests were repeated over
all replications. |
The problem with using these aforementioned tests is that no
general statement can be made about the efficiency of any of them.
In the context in which they are used in this‘study, each of these
three tests will produce a different '"measure' of randomness. All
three reject a certain amount of relevant information and therefore,
at best, the test results can only be uséd as an approximate guide
to departures from randomness of the pseudo-jackknife 2SLS estimates.
The number of times the hypothesis of randomness was rejected
for each test over the 100 replications is given in Table 7.1. A visual
appraisal of the results indicates ﬁhat the hypothesis of randomness
is upheld "approximately" 95% of the time. These results éppear to

offer some support to Tukey's conjecture for this particular application.

7.6 Validity of Test Statistics

It is essential to examine the validity of the standard tests
of significance to ensure that the test statistics do not diverge
significahtly from their postulated thecretical distribution. To
this end, the Kolmogorov-Smirnov One—Samplé Test (see e.g. Siegel

[63; pp.47-52])was employed to test five hypotheses:

6, -0 , ,
k kK o N(0,1) -, : (7.10a)
8/S_k
ek'ek,\,t

N—Kl—g (7.10b)
0'./§l_< s '
6, -6
k k & t . , (7.10c)
5V/°S 2
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/N ‘_I(ek)—ekJ

N~ ON(O,1) ' (7.10d)
-1 N A A 2 !
(N-1) E J; (8) - J(ekb
i=1\ .
and ‘
VN|J(,)-6
[ L k] BB (7.10e)
N 1 B
-1 ‘A A 2 2
(N-1) 7" iZI<Ji(ek) = J(ek)>

(k'=1,2,...,K + g).

Tables 7.2(2) and 7.2(b) set out the values of the maximum
deviation, D, between the relevant empirical and theoretical
distributions for each of these five hypotheses. The distributional
assumptions are rejected at the 5% level for D > 0.13403.

Over all experiments 48 '"sets'" of values for D were obtained,
i.e. 24 sets for each value of §. The lowest D value in each set
was designated '"lst'", the second lowest "2nd", and so on. Table 7.3
summarizes the number of firsts, seconds, etc., for each test statistic

over all parameters and all values of K,, for §=0.19 and for §=0.76.

22
The following abbreviations are used:
CT1l - "Conventional Test No. 1'", formula (7.10aj;
CT2 - "Conventional Test No. 2", formula (7.10b);
DT - '"Dhrymes Test'", formula (7.10c);

JT1

"Jackknife Test No. 1", formula (7.10d);

JT2 - "Jackknife Test No. 2", formula (7.10e).
Care must be taken in interpreting these figures, as the postulated
theéretical distribution differs across each set.

When 2SLS was biased (i.e. §=0.19) the jackknife-based test
statistics always dominated the others for 812, and Y10 and for six
out- of the‘eight sets of values for Y11+ The t statistic based upon

the Dhrymes derivation (DT) consistently produced the poorest fit.
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Table 7.1: Tests of Independence of Pseudo-Jackknife Estimates

(Number of rejections at 5% level of significance)

§=0.19 _ 8= 0.76

K, A FI SR SE K, A FI SR SE

5 [0.00 4 1 2 5 |0.00 9 6 7

0.45 2 3 2 0.45 5 3 5

0.00 7 5 5 0.00 4 7 4

B 6 0.45 6 3 4 8., 6 |0.45 3 4 3
= 0.90 1 30 = 0.90 3 7 3
0.00 5 6 4 0.00 4 10 4

9 0.45 5 4 2 9 |0.45 4 4 3

0.90 4 5 1 0.90 7 8 3

K, A FI SR SE K, A FI SR SE

5 |0.00 3 8 2 5 [0.00 2 7 7

0.45 2 6 1 0.45 2 5 1

0.00 6 6 7 0.00 1 7 2

Yip 6 0.45 6 5 5 Tig 6 |0.45 1 7 4
0.90 6 7 6 0.90 3 7 9

0.00 5 7 4 0.00 3 9 1

9 0.45 4 9 2 9 |0.45 5 8 3

0.90 2 6 2 0.90 2 5 2

K, A FI SR SE K, A FI SR SE

5 |0.00 6 4 3 5 [0.00 1 4 0

« |o0.45 4 4 0 0.45 5 3 3

0.00 7 3 4 0.00 4 3 2

on 6 0.45 9 4 2 o 6 0.45 4 5 3
0.90 5 5 3 - 090 3 4 2

0.00 2 2 2 0.00 6 2 4

9 0.45 1 4 1 9 0.45 3 5 4

090 5 4 4 0.90 2 3 2
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Table 7.2(a): Kolmogorov-Smirnov D Statistic

© 2SLS " Dhrymes J2SLS
K2 A Normal t A t Normal t
3 0.00 0.1336 0.1329 0.134é 0.0929 0.0941
0.45 0.1478 0.1471 0.1406 0.0878 0.0871
0.00 0.1454 0.1429 0.1290 0.0912 0.0944
812 6 0.45 0.1888 ‘0.1853 0.1743 0.1014 0.1055
= 0.90 0.3608 0.3578 0.3410 0.1381 0.1385
0.00 0.1406 0.1384 0.1546 0.0900 0.0925
9 0.45 0.1996 0.1987 0.2039 0.1009 0.1032
0.90 0.3965 0.3896 0.4000 0.1589 0.1530
3 0.00 0.1062 0.1068 0.1166 0.0907 0.0918
0.45 0.1115 0.1083 0.1047 0.0952 0.0965
0.00 0.1085 0.1051 0.1206 0.0439 0.0455 .
Yio 6 0.45 0.1222 0.1229 0.1199 0.0601 0.0603
= 0.90 0.1560 0.1561 0.1562 0.1052 0.1065
0.00 0.1224 0.1190 0.1300 0.0532 0.0551
9 0.45 0.1340 0.1343 0.1345 0.0540 0.0543
0.90 0.1968 0.1947 0.1892 0.1040 0.1039
3 0.00 0.0996 0.0987 0.1066 0.0680 0.0682
0.45 0.0778 0.0771 0.0969 0.0783 0.0790
0.00 0.0893 0.0881 0.0901 0.0851 - 0.0893
Y1, 6 0.45 0.1225 0.1235 0.1121 0.0832 0.0851
= 0.90 0.1087 0.1082 0.1183 0.1200 0.1200
i 0.00 0.0957 0.0948 0.1156 0.0790 0.0840
9 0.45 0.1060 0.1061 0.1086 0.0843 0.0881
0.90 0.0761 0.0764 0.0768 0.0780 0.0779

Sample size = 20 § = 0.19
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Table 7.2(b): Kolmogorov-Smirnov D Statistic

.~ 28LS * Dhrymes J2SLS
Kz A Normal t | Normal it
3 0.00 0.1206 0.1184 0.0792‘ 0.0790 0.0863
0.45 0.0710 0.0696 0.0623 0.0967 0.1023
0.00 0.0424 0.0391 0.0573 0.0477 0.0525
812 6 0.45 0.0576 0.0617 0.0474 0.0489 0.0532
0.90 0.0761 0.0818 0.0754 0.0594 0.0614
0.00 0.0843 0.0820 0.0787 0.0650 0.0620
9 0.45 0.0654 0.0629 0.0551 0.0778 0.0724
0.90 0.0558 0.0607 0.0530 0.1252 0.1204
3 0.00 0.0683 0.0707 0.0971 0.0501 0.0513
0.45 0.0798 0.0792 0.0747 0.0594 0.0614
0.00 0.0764 0.0748 0.0809 0.0497 0.0513).
Y10 6 0.45 0.0683 0.0702 0.0709 0.0829 0.0841
0.90 0.0602 0.0608 0.0583 0.0494 0.0549
0.00 0.0693 0.0681 0.0747 0.0571 0.0559
9 0.45 0.0613 0.0628 0.0611 0.0383 0.0400
| 0.90 0.0500 0.0515 0.0500 0.0511 0.0570
3 0.00 0.0536 0.0596 0.0633 0.0777 0.0811
0.45 0.0799 0.0796 0.0706 0.0876 0.0913
0.00 0.0523 0.0598 0.0545 0.0905 - 0.0957
Y11 6 0.45 - 0.0629 0.0642 0.0584 0.0843 0.0877
0.90 0.0646 0.0681 0.0527 0.0751 0.0793
) 0.00 0.0546 0.0620 0.0508 0.0827 0.0871
9 0.45 .0.0564 0.0592 0.0493 0.0746 0.0786
0.90 0.0536 0.0588 0.0505 0.0705 0.0757
Sample size = 20 §-=0.76
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Table 7.3: Ranking of D Stafistic over the Five Tests of Significance

RANK | Ist* 2nd*  3rd* 4th*  5th
CT1 1 1 5 11 6
CT2 1 2 9 10 2
§ =0.19 | DT 0 0 9 0 15
JT1 19 3 1 0 1
JT2 4 17 1 2 0

RANK | 1st* 2nd* 5rd  4th  Sth
o1l 4 7 4 6 3
CT2 1 5 9 5 4
§ =0.76 | DT 11 2 7 0 4
JT1 7 32 10 2
JT2 2 6 2 3 11

Sample size = 20

* Denotes that column total does not sum
to 24 because of ties (to 4 decimal places).
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For 2SLS unbiased, however, the superiority of the jackknife-
based test statistics was less marked. This was‘particularly noticeable
for Y11 where the two jackknife-bésed test statistics always produced
the poorest fit.

Tﬁe number of rejections, at the 5% level of significance, of
the hypothesis that each sample was drawn from the specified theoretical
distribution is given in Table 7.4  In any one cell the total possible
number of rejections is 24; percentageg of rejections are given next to

the absolute figures.

Table 7.4: Number of Rejections of the Null Hypothesis

S = 0.19 0.76
CT1 9 37.5% 0 .
cT2 | 10 41.7% 0 -
DT 10 41.7% 0 =
JT1 2 8.3%- | 0 -
Jr2 | 2 8.3% 0 -

Sample size = 20

Clearly when §=0.19 the distribution of the t statistic formed
using the 2SLS estimator gives a poor approximation to both Student's
t distribution and the standardized normal distribution. Thus if the
bias of thevZSLS estimator is significantly different from zero, the
distribution of 2SLS-based test statistics may be a poor approximation

to their postulated theoretical distributions.

Lol Inference

7.7.1 Tests of Significance

In the preceding section it was shown that the distributions of
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expressions (7.10a), (7.10b) and (7.10c) show a substantialkdivergence
from their postulated theoretical distributions when §=0.19, even for
relatively large values 6f u?. It is impértant to ascertain the
effect of this divergence on statistical inferencc.'

In this section we consider the degree oftaccuracy afforded
by using the relevant theoretical distributions as approximations for
making statistical infefence.

The hypotheses that the biases of .the 2SLS aﬁd J2SLS estimators
were not significantly different from zero were tested at both the

% and 10% levels of significance. The proportion of samples falling
in the .05 and .95 percentiles of the relevant theoretical distributiéns
are given in Tables 7.5, 7.6 and 7.7. These tables are further
divided into pafts (a) and (b), the.former for results when §=0.19,
melmxmrﬁrS=OJ&

In these tables each cell contains three values. The number of
"rejections'" are tabulated according to whether they were rejected.in
the lower or upper tail of the relevant distribution, and are given
by the figures in parentheses on the left and right respectively at
the top of each cell. The total number of "rejections'is given below
these two figures.

For the parameter 812, both JT1 and JT2 show a number of
"rejections" nearé: the nominal level of significance than CT1 and
CT2 in, just over half of the experiments for § =0.19. There is little
to choose between these two jackknife—based test statistics, although
JT2 (i.e. the t statistic given by formula (7.10e)) was marginally

closer to the nominal level of significance for K,=6 and 9 and

2
A=0.45 and 0.90. CT2 is to be preferred to CT1 as the number of
"rejections'" were, in general, nearer the nominal level of significance.

Using the same criterion, CT2 is to be preferred to JT1 but not to JTZ2.
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Dhrymes' test statistic (DT) gave a similar pattern of."rejectioﬁs"
to the other t statistics, but it should be noted that approximate
confidence intervals ﬁsing DT wiil be much wider than those using
either CT2 or JTZ.

fhe'striking feature about these results however is the distribution
of "rejections''between the tails of the relevant distributions. The
downward bias ;f the 2SLS estimator of 812 ensured that virtually all
rejections for CTl, CT2 and DT fell in the lower tail, tais being most
noticeable when K2 was relatively large.

The constant term,Y;,, gave a fairly even spread'of ”rejections"
between the tails for all tests, whereas Y11 showed a similar, but
less marked, pattérn to that for 812.

| For all three parameters, the three t statistics (CT2, DT and
JT2) are to be preferred to those tésts based on the normal distribution,
élthough thié preference is most marked for 812.

The skewness of the foregoing statistics, which is particularly
noticeable for the 2SLS-based statistics, can have important
consequences when the postulated distributiéns are used as a basis
for constructing approximate critical regions for one-sided tests of
hypotheses. From Tables 7.5(a), 7.6(a) and 7.7(a), it can be seen that
if the lower tail of the CT1l, CT2 and DT distributions is used to

construct an approximate test for B the estimate of the level of

12°
significancé is generally considerably higher than the postulated
level of either 2.5% or 5%, i.e. the level of significance is under-
estimated. Conversely, if the upper tail is used then the level of
significance will be overestimated. Moreover, in general, the degree
of error is larger the higher the level of multicollinearity and the
greater the degree of overidentification.

By cbmparison; test statistics for 812 based on the jackknife

statistics JT1 and JT2 give a more even spread of rejections and
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consequently a smaller error of over- or under-estimation when performing
one-sided tests of hypothesis. Even here, however, for large A and

K2=6 or.K2
level, although generally very much less than for CTl, CT2 or DT.

=9 the lower tail was markedly larger than its nominal

For 6§=0.76 all five tests generally only differ to a small

degree over the three parameters, although for 8 JT1, JT2 and DT

127
tend to overestimate the total nominal level of significance in both
tails by approximately the same margin as CTl and CT2 tend to

underestimate it. For K, =9 and A=0.9 the jackknife-based tests

2
produced a "wayward" result.

When §=0.76 the 2SLS estimator is not only unbiased, but the
odd order moments (those that exist) of both CT2 and DT are zero (see
Section 7.2) in the model under consideration. Thus selecting §=0.76
héS]NItonly removed the‘location problem but also the problem‘of
skewness of the distribution of CT2 and DT, provided that the first
three moments exist (which they do for K

=6 and K,=9). It is hardly

2 2
surprising, therefore, that the.jackknife-based test statistics cannot
show superiority over CTl, CT2 and DT under such circumstances.

From the preceding results it can be concluded that the t
statistic based on the J2SLS estimator (JT2) will, in general, produce

confidence intervals which are at least as accurate as those produced

using test statistics based on the 2SLS estimator.

772 Power of the Tests

Finally we consider the power of the alternative tests under

2 = *
the hypothesis that 812-812 .

where 812* was specified to be 0.8.
Tables 7.8 (a-c) present power functions for the five tests
when 6=0.19. The computational expense involved in computing

power functions prohibited further calculations. The significance

level for all tests was 5%.




Table 7.5(a): Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: 812

PARAMETER: 812

K, | A CT1 cr2 DT JT1 | JT2
3 D (2 W) 3 2 2 2|2 2
0.00 4 3 5 4 4
e s
4) O 3 O] O (3) {2).€2) Yi2) (1) %
oA 4 3 4 4 3
(6) (2 ®) (2] (5) 3 5) (2) {5) 2
9,00 8 8 8 7 7
(6) (2)] @) (W} G) (3] 6) (2)’ (3).(2)
6 0.45 . 1 ; ’ .
(15) (0){(12) (0| (7) (3)]| (8 (5): (6) (3
¥ 15 12 10 13 9
(10) (2)| (7) ()| 6) (2)] (5) 4 {(5) (3
0..00 12 8 8 9 8
(7 (21 (M )] ) (2 1) 3) |14 3
9 0.45 o ; g . ;
(19) (0){(17) (0)] (16) (O)] (13) (7) (11) (7)
L 19 17 16 20 18
o = BY § =0.19

Sample size

K A CT1 Cr2 DT - JT1 JT2
8) W] B W] B 3 & 2 (2) Fz)
0.00 12 9 8 4 PO
s | ,
8 (A (M M) 4 3 () (3 (2) (2)
0.45 11 8 9 7 4
(8) (3] (6) ()] (M) W] 6) (2 (6) (2)
00 - Gy 9 11 8 8
(11) D) (9 (3| (5) @)} 1) (5) (6) (4)
6 8.43 15 | 12 9 11 10
(21) (|2 (0 |14 O (D (A1) (6)
.20 22 20 17 18 17
(10) (2)f{(10) (1)|(10) (2)] -(6) (6) (6) (5)
0,00 12 11 12 12 11
(10) ()} (9) (2 |(10) (3] (6) (8) . (6) (6)
9 Qs 12 11 13 14 12
(26) (0)](23) (0)(23) (0)|(17) (10) [(16) (8)
.30 26 23 23 27 24
a = 10% § = 0.19
=20 &




Table

7.5(b) :

Different from Zero.

PARAMETER: 812

Distribution of Rejections of Hypothesis that the

Bias of

the Relevant Estimator is not Significantly

PARAMETER : 812

K, A CT1 CT2 DT JT1 JT2
' () (331 (1) (1)1 (3) (8| Q) (2 (1) (2)
0.00 4 2 6 3 3
"
(2) (1)1 A) (9] €2) ()| (&) () (1) (1)
0.45 3 1 5 4 2
4 D@D @O @B m (3) (1)
0.00 6 4 8 5 4
4 27 2 @A G @D @ 3 (33 (1)
6 0.45 ¢ . : : A
(3 (L} (2 O] (2 @B @ W 4) 4
0.90 1 " 4 2 6 8 8
(5) -(3) 4) 3] (2) @] 3) (6) (3) (4)
0.00 8 7 4 9 7
4 W] (2 1 M 3] 3 (5 (3) (5)
(3) (3} (3 D B D] B (8 (3) (6)
0.90 6 5 8 13 9
@ = 5% $=0.76

Sample size

K, A CT1 cr2 | DT gtz
: B i
(3) (6){ (3) (8)i (7)) (6)] (B) (4) (1) (2)
0.00 9 8 13 7 3
3 S, (S,
4) (A B (2] A B (3 (2) (3)
L D 6 10 | 7 5
| ol -
(7) (M) (6) (3] (6) (5)! (5) (5) T (5) 4)
0.00 11 "9 11 10 9
(6) ()| (5) (3)] (5) (5)] (6) (6) (5) (5)
6 Uuas 10 8 10 12 10
(5) (2] 5) (@] W) W] B N (5) (7)
0.20 7 7 8 12 12
(5) B)] 5 W} (N (4) (6) (7) (6) (7)
0.00 9 9 11 13 13
(5) (M) (5) B 6) (6| (6) (5) (5) (5)
9 0.45 9 9 12 11 10
(4) (5)| (4) (5] (5 B (9 A (M) (9
0.90 9 9 11 21 16
o = 10% § = 0.76

20

811



Table 7.6(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly

Different from Zero.

PARAMETER : Yl 0 PARAMETER: Y'l 0
K, | A cT1 crz2 | T JI1 | JT2 K, 3 cTi | cr2 ¢ DT omn !' JT2
3 @] @ @] @ @] W @3 | O @ 5) (8) | () M| @) )| (@ (D | (2 (6)
3 3
(3) @] @ @] G G| m @ | @ (5) (M | 4 (M| 3 (D] @ ® | @ &)
0.45 7 6 6 5 5 0.45 12 11 10 10 10
2 G| W @@ @|lme | o (5) (8 | 4) (6)] (2 (8)] 3) (D | (3) (7)
g.00 7 5 6 7 6 0.00 | 13 10 10 10 10
3 @ W @wle@elo oo (5) (9 | &) (M| @ ®| 3 7| 3 -
6 0.45 7 5 5 8 5 6 0.45 14 11 19 10 10
O &l o elo el@ el @ @ ao 3 & @ ® @ an} 3 aon
0.50 6 6 4 8 6 0.90 14 11 12 15 13
3 G @loolo®!|low ) &) | @ ] @ ® @ ©® | 3 m
.00 7 5 6 5 .00 10 9 }2 12 10
2 @l O ol @ oo e ) © | &) )] @ | &) | @) ©)
.45 6 6 6 4 .45 12 10 11 12 10
MW G| @ @] © 6| 6 @ ) G| 3 @] 6) (3] ©) ©) |-(6) (5)
.90 6 4 12 9 .90 10 7 11 12 11
o - 55 e o= 10% 8§ = 0.19

Sample size = 20




Table

7:6(b) =

Different from Zero.

PARAMETER : vy

Distribution of Rejections oleypothésis that the

Bias of

the Relevant Estimator is not Significantly

PARAMETER: Y,

} 10
K, A CT1 CT2 DT Jn Ji2
OROEEOESINOROINORORNONS
0.00 5 4 8 6 3
3 -
@ @] @ ® GG GO @
0.45 6 4 8 S 5
W@ O ®W @@ o oe| o
0700 5 5 6 6 4
W @] O ® @@ @onl o ®
6 0.45 5 5 6 9 4
@ @ O > @ @c]| O o3
0.90 6 5 5 7 4
@] @6 oo ol oo
0.00 7 5 3 6 4
@ oo oo @6 o
L 6 4 3 7 5
3 3] 6| @@ @6 e
0,50 6 4 4 9 7
= 5% § = 0.76

Sample size

KZ A CT1 CT2 DT | JT1 ! JT2
5) B | &) @ ©) (D] (3 G)] 3 @
0.00 9 8 13 8 7
3 N———
| @) W[ @) @ ) @ 3 )| () (4
0.45 8 8 14 | 8 7
G) 6] 3 G @ D 3 B3| (3 (8
0.00 11 - 8 11 11 11
© ©] 3 G| @ D D] @
6 0.45 12 8 11 10 9
3 G| 3 @ & 6 ®] @ 6
0.90 8 7 10 11 9
) &) @ 6] @ @6 @ ®| 3
0.00 10 9 12 12 10
© ©] 6] @ 7 &) D] @ ©
9 0.45 12 10 11 12 © 10
) &) 3 4] ) (5] 6) 6)| (6) (5)
0.90 10 7 11 12 11
o = 10% § = 0.76

20




Table 7.7(a) : Distribution of Rejections of Hypothesis that the
Different from Zero.
PARAMETER : Yy
11
K2 A CT1 - CT2 DT JT1 JT2
(B @M (@O M@M @6y @ 3 Mm
0.00 1 4 3 6 6 4
3
@M @M@ O3 @ i) m
Lkl 3 3 5 5 4
(5) (2) 4) 211 (M4 2 (3) (2)
000 1. » 6 3 6 5
3@ @M GG @]
0 Dde 5 4 4 5 4
4 @M1 MM@M@e @ |G @
0.90 5 4 4 7- 6
OROREORGIEGROIEORORES) (2)
0.00 6 5 3 7 5
@ @ @@ @ MmmE oG @M m
9 0.45 6 & 5 7 5
3 ) [ G M} G M| & 6) (3D
080 ¢ "4 4 4 10 7
& = 5% § = 0.19

Sample size

Bias of the Relevant Estimator is not Significantly
PARAMETER : Yll
K, A CT1 cT2 | DT JT1 f JT2
(5) (4) (5) 4) | (6) (6) | (5) (2) 4 (5) (2)
0.00 9 9 12 7 7
5 L
@4 G| W@ 6 G w® ¢
Q.43 9 6 | 10 8 6
(7) (3) (5) (2| (8 Mi (M) () (5) (4)
0.00 | 49 7 12 12 9
(6) (3) (6) (21 (6) B (5) (5) | 4) (5
6 0.45 9 8 10 10 9
(7) (2) (7) (1)} (6) (3)] (8) (5) (6) (4)
0.90 9. 8 9 13 10
€5) (5) (4) (3] (6) ()] (5) 4O (5) 4)
0.00 | 49 7 12 9 9
(5) (4) (4) (3| (5) (3)! (5) (6 (5) (4)
9 0.45 9 7 8 11 9
(8) (4) (4) (2)] (8) (3] (5) (8) (5) (7)
0.90 12 6 11 i3 12
a = 10% (S = O.}_g_

= 20




Table 7.7(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero. ‘ ' .

[AA

PARMETER: 7, PARAMETER © Y,

K, A CT1 CT2 DT JT1 JT2 K, A CT1 cr2 | DT JT1 ;’ JT2
(3) (2) (2) (| 4) B (3) (2) (3) (1) (5) (5) (5) (5); (5) (6)] (8) (5) I (5) (5)

LEL N 3 | 8 5 4 0.00 10 10 11 10 10
3 z - S
(2) (1) (2) ()] 4) 3 (3 (1 (3) (1) 4) 4) 4) (3 () 5)y V) 4 (4) (4)

0.85 3 3 7 4 4 0.45 8 7 12 8 8
(3) (3) (2) (2] 0O 2 V) B (3) (3) (6) (5) 6) (3] ) M)y (M (5) (6) (4)

0.00 6 4 2 8 6 0.00 11 9 8 12 10
(3) (2) (2) (2 (@ 31 3 (3)_ (3) (3) R & (6) (5) (6) (4)] 4) )| (5) (6) (5) 4

6 0.45 5 4 g 6 6 6 0.45 11 | 10 8 11 9
(2) (1) (2) (1)} 3 (2 ) 2 (3) (2) (6) (3) (6) (3) (5) (3) (6) (5) (5] (5)-

0.90 g . 3 5 7 5 0.90 9 9 8 11 8
(3) (3) (3) (3) (2) (3| 4B 1) 4) (3) (4) (6) 4) D] @ .(I5) 4) 4 (4) 4)

0.00 6 6 5 8 7 0.00 10 8 9 8 8
(4) (3) (2) (3] 3) (2 B 3 (4) (3) (4) (6) (4) (O} (5) (1] ) (5) 4) 4

S 0.45 7 5 5 vi 7 9 0.45 10 8 12 9 8
- (2) (2) (2) (D] (2 W] 3 (3) (2) (3) 5,50 (4) (5) @) B B (M (M 5 (7) 4

4 | 3 6 6 5 1 B 9 8 11 12 11

a = 5% ) 6 = 0.76 ‘ o = 10% (S = 0.76

Sample size = 20
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For each value of 812, ranging from 0.0 to 1.6 in steps of 0.2,
. a new set of 100 replications was generated and the power of each test
was evaluated.

When 812==0.8, the power reported in thg tables is of course
equivalent to the probability of a Type I error.

Strictly speaking the term ''power'" is not appropriate as one
cannot compare the powers of a number of tests when the probability
of Type I errors are clearly not equal. Perhaps "probabilities of
rejection'" would be a more appropriate term.

Tests based on the standardized normal distribution (CT1 and
JT1) showed greater '"power' than their counterparts based on Student's
t distribution, although we have already noted that the former produce
higher Type I errors. Of the two tests based on the standardized normal
distribution; CT1 generally had highef "power" than JT1 except for
"large" K2(6 or 9) and high levels of multicollinearity (A=0.9). A
similar pattern waslevident for éomparisons of '"power'" between CT2 and
JT2. On the other hand, the Type I errors associated with CT1 and
CT2 were often greater than those of JT1 and JT2 (which themselves were
generally greater than the nominal level of significance).

Dhrymes' test (DT) consistently exhibits the lowest "power" of
the five tests, a result also noted by Maddala [26], although the Type I
errors associated with this test are frequently nearer the nominal
level than those associated with the other tests.

As one would expect, high levels of mulficollinearity reduce the
"power'" of éll five tests.

In conclusion, CT1 and CT2 dominate JT1l and JT2 respectively
(i.e. they have higher "probabilities of rejection') although rarel&
over the entire range of values of 812. This superiority however will

be offset by the lower Type I errors which JT1 and JT2 frequently
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exhibit. No definitive statement can be made, therefore, concerning

the relative powers of these four tests. The substantially lower "power"
which is generally exhibited by DT suggests that this test is not a
practical proposition, despite its accuracy for e§timating the level of

significance.




" Table 7.8(a)

Power of

the Test Statistics,
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A 812 0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6

CT1 1.00 0.92 0.62.0.11 0.04 0.30 0.70 0.87 0.9¢6
CT2 0.99 0.91 0.52 0.05 0.03 0.24 0.68 0.8 0.95

0.00 | DT 0.52 0.27 0.15 0.07 0.05 0.14 0.38 0.43 .0.71
JT1 0.96 0.82 0.48 0.11 0.04 0.19 0.62 0.77 0.92
JT2 0.95 0.79 0.44 0.09 0.04 0.18 0.60 0.77 0.90
CT1 0.96 0.82 0.43 0.06 0.04 0.24 0.65 0.77 0.88
CT2 0.93 0.75 0.36 0.03 0.03 0.21 0.62 0.74 0.85

0.45 | DT 0.40 0.29 0.13 0.05 0.04 0.12 0.33 0.38 0.62
JT1 0.93 0.68 0.37 0.10 0.04 0.18 0.55 0.64 0.85
JT2 0.89 0.61 0.30 0.07 0.03 0.15 0.52 0.59 0.82
K N =20 § =0.19




Table 7.8(b):

Power of the Test Statistics
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A B,,= | 0.0 0.2 04 0.6 0.8 1.0° 1.2 1.4 1.6
CT1 | 1.00 1.00 0.90 0.35 0.08 0.50 0.94 1.00 1.00
CT2 |-1.00 0.99 0.88 0.29 0.08 0.47 0.93 1.00 1.00

0.00 | DT 1.00 0.98 0.80 0.23 0.08 0.37 0.90 0.97 1.00
JT1 | 1.00 0.99 0.83 0.32° 0.07. 0.25 0.77 0.97 0.99
JT2 | 1.00 0.98 0.78 0.31 0.07 0.24 0.74 0.95 0.99
CT1 | 1.00 0.96 0.70 0.14 0.08 0.45 0.82 1.00 1.00
CT2 -| 1.00 0.95 0.65 0.12 0.05 0.41 0.79 0.98 0.98

0.45 | DT 0.99 0.87 0.54 0.11 0.08 0.31 0.69 0.91 0.99
JT1 | 1.00 0.88 0.70 0.20 0.08 0.28 0.65 0.85 0.94
JT2 | 1.00 0.85 0.64 0.15 0.05 0.28 0.60 0.85 0.94
CTi | 0.48 0.19 0.08 0.04 0.15 0.30 0.58 0.76 0.85
cr2 | 0.41 0.15 0.04 0.03 0.12 0.24 0.50 0.71 0.84

0.90 | DT 0.35 0.14 0.08 0.06 0.10 0.24 0.37 0.56 0.74
JT1 | 0.45 0.28 0.16 0.12 .0.13 0.19 .0.27 0.47 0.64
JT2 | 0.45 0.26 0.13 0.09 0.09 0.16 0.24 0.38 0.60
K, =6 N = 20 § = 0.19




Table 7.8(c):

Power of the Test Statistics
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A 812= 0.0 0.2 0.4 0.6 0.8 1.0. 1.2 1.4 1.6
CT1 1.00 1.00 0.95 #0.26 0.12 0,75 6.97 1.00 1.00
CT2 | 1.00 1.00 0.94 0.21 0.08 0.63 0.95 1.00 1.00

0.00 | DT 1.000 1.00 0.92 0.15 0.08 0.58 0.96 1.00 1.00
JT1 1.00 1.00 0.92 0.29- 0.09 0.35 0.87 1.00 1.00
JT2 1.00 1.00 0.91 0.25 0.08 0.32 0.8 0.99 1.00
CT1 1.00 0.98 0.76 0.11 0.09 0.59 0.88 0.99 .0.99
CT2 - | 1.00 0.98 0.72 0.08 0.08 0.55 0.84 0.99 0.99

0.45 | DT 1.00 0.93 0.62 0.07 0.08 0.44 0.82 0.97 0.99
JT1 1.00 0.91 0.73 0.16 0.07 0.28 -0.75 0.94 0.96
JT2 1.00 0.89 0.72 0.15 0.07 0.27 0.74 0.90 0.96
CT1 0.36 0.17 0.07 0.10 0.19 0.48 0.75 0.88 0.96
CT2 0.27 0.15 0.05 0.08 0.17 0.44 0.74 0.87 0.96

0.90 | DT 0.20 0.17 0.05 0.07 0.16 0.36 0.68 0.81 0.96
JT1 0.41 0.34 0.13 0.11' -0.20 0.29 -0.56 0.60 0.75
JT2 0.3 0.31 0.12 0,09 0.18 0.27 0.53 0.57 -0.72
K, = N = 20 § =0.19
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CHAPTER 8

CONCLUSION

8.1 General Remarks

In Chapter 3 it was shown that, asymptotically, the 2SLS and
J28LS estimators are equivalent. Thus, one would expect the MSEs
of the two estimators not to be significantly different from each
other for "large' values of u?. If this were indeed sb, the
superiority of the jackknife technique for constructing confidence
intervals and performing tests of significance would justify its
usé in applied economics.

From the preceding Monte Carlo study it is evident that the
jackknife teéhnique, whilst reducing the bias of the 2SLS estimator
is not to be recommended for "small" p? if the criterion for selection
of an estimator is either minimum MSE or MAE. For "large'" values
of p? there was little difference between tﬁe MSEs and MAEs of the
2SLS and J2SLS estimators, whilst the Wilcoxon Matched Pairs Signed
Ranks test indicated significant differences between the two
estimators only for small T

It was then observed (Chapter 7) that t(and z) statistics formed
using the ZSLS estimator were not distributed according to the
Student t or standardized normal distributions when §=0.19. The
actual distributions are highly skewed and serious errors could
result if these postulated distributions were used for statistical
inference. In general, this feafure was less noticeable for the
J2SLS estimator which, on the basis of Koimogorov Smirno? tests,

appears to have a réasonably symmetric distribution, and consequently
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there is less likelihood of serious errors being made if the postulated
theoretical distributions are used for the purpose of statistical
inference.

Even under "ideal' conditions (i.e.d =0.76), test statistics
based on the 2SLS estimator cannot show superior (to J2SLS) fit
to their postulated theoretical distributions for the parameter 812.

Finally, the ''power' functions of the alternative tests were
calculated over a range of values for 812. The problem involved
in comparing the '"power'" of two or more statistics when the Type 1
errors are not equal was recognized, but even making allowance
for this problem Dhrymes' t statistic showed considerably lower "powef"
than the other statistics considered. This latter result confirms
Maddala's [26] conclusions.

Clearly, therefore, a decision on circumstances under which
application of the jackknife would be fruitful, hinges on one's

definition of "large" in the context of the concentration parameter, u?

8.2 When is the Concentration Parameter 'Large'?

Whilst selection by 'informed guesswork" of a value of u? which
could be taken as '"large' is a somewhat haphazard procedure, two
other problems of greater magnitude present themselves:

| (i) canavalue of the concentration parameter which is designated

as "large'" for an equation containing just two endogenous variables
also be designated as '""large'" for an equation containing three (or
more) endogenous variables?

(ii) how can the value of the concentration parameter be
calculated?

To date, most of our knowledge concerning u? is in the context of

an equation containing just two endogenous variables, but preliminary
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work by Richardson and Rohr [54] appears to indicate that a value
of u? which is considered 'large" iﬂ the context of an equation con-
taining two endogenous variables may be '"small" in the context of
an equation containing three endogenous variables.
With regard to the second problem Rohr [57] has proposed that
u? be estimated from the sample and that this value be used to
indicate whetﬁer u? was 'large" or "small" (he was interested in
determining if u? was large enough to enable the limiting distribution
function (Student's t distribution) to be used as an approximation
to the conventional t statistic without involving appreciable error).
Unfortunately, in the absence of knowledge of the sampling
distribution of p?, when o

and T,, are replaced by their estimated

22 2
vaiues it would not be pqssible to obtain any measure of the
réliability (i.e. the sampling Vafiance) of our estimate. If

should also-be noted that there would be a conflict regarding the
optimal method for estimating 95 apd THpe The Unrestricted Least
Squares estimator would, intuitively, seem to be inefficient relative
to the 2SLS induced Restricted Reduced Form estimator (although
Dhrymes [13] has shown that, asymptotically, this may not be so),

but the latter estimator may not possess moments of any order (see
‘McCarthy [32]).

Clearly, therefore, considerably more knowledge concerning both

the distribution of pu? and the properties of reduced form estimators

is required before Rohr's [57] proposal can be properly evaluated.

8.3 Extension of the Results

The Monte Carlo experiments did not investigate the effects
of an increase in sample size on the two estimators, although a

proof that both the bias and the MSE of the 2SLS estimator are
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monotonically non-increasing functions of the sample siie was givén
in Chapter 5. As the sample size increases, other variables being
constant, the concentfation paraméter will, in genéral, increase in
size and hence one would expect the MSE of the J2S5LS estimator to
tend towards (perhaps not monotonically) that of the 2SLS estimator.

Conversely, a decrease in sample size might be expected to have the

opposite effect on the J2SLS estimator.

The estimation of ''large" (e.g. economy-wide) models may present
a problem if use of the J2SLS estimator is contemplated; In such
circumstances, the computing time and storage requirements will increase
more rapidly for J2SLS than for 2SLS as the size of the model increases.
It is unlikely however that ZSLS (and hence J2SLS) would be
a feasible proposition anyway in large models, since it is probable
that K would éxceed N and consequently 2SLS would degenerate to OLS
(see Fisher and Wadycki [15]). The jackknife could however be applied
to an Instrumental VariaBles estimator which only considered a sub-set
of the excluded predetermined variables when.estimating any one
structural equation, thus ensuring that K<N. Although such a procedure
may yield inconsistent (perhaps of a minor nature) parameter estimates
and would thus contravené Quenouille's original assumption that a
consistent estimator is necessary for the jackknife to be successfully
applied, Brundy and Jorgenson [8] cite conditions under which Instrumental
Variables estimators based on sub-sets of the predetermined variables

retain the property of consistency.

8.4 Extension to Three-Stage Least Squares

The foregoing analysis suggests that an extension of the jackknife

technique to the Three-Stage Least Squares (3SLS) estimator may be an
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extremely tedious procedure. Having obtained 2SLS estimates of all
structural coefficients in the system, the 3SLS estimator can be
calculated by applying Generalized Least Squares to the entire system

(where the equations are written in stacked form) to obtain

. -1 \-1 ‘ | | -

:(z'Ez"l(X)X(x'x)'.lx':l z) Z'Ez‘1®X(x'X)“1x'Jy, (8.1)
where () denotes the Krohecker produqt.v

In ‘general, @ will be unknown and must be replaced by Q,
the matrix of mean squares and products of the 2SLS residuals. With
2 replaced by @ we obtained the 3SLS estimator.

If the jackknife were applied to the 3SLS estimator,f wouid have
to'be.réplaced by the matrix of mean squares and products of the JZSLS'
" residuals, and (8.1) would have to be estimated N times with the ith
j observation Qmitted at each (of the N) replications.

It i# the author's contention that this would not be a very
fruitful exercise, especially as ‘no exact results én the moments of
the 3SLS e;timator are available'td provide an exact analysis of the
jéckknife;s bias reducing potential. In addition, it is unlikely
that the "simplifying' formula developed for J2SLS could be extended
‘to J3SLS without considgrable difficqlty and, even then, the additional

(to 3SLS) computer run-time involved Qould probably be substantial.

8.5 The Final Word

in this thesis we have demonstrated the value,éf the jackknife
statistic for forming "accurate" confidence intervals and tesfs of
' significénce when ﬁz is "large". The bias reducing property of the
jackknifg is generally present in the context of the 2SLS'estimator,

although it would certainly be unwise to jackknife the 2SLS estimator
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if the sample size is less than twice the number of variables included
.in the equation being estimated.

In applied economics, if the above condition is met and pfovided
the degree of multicollinearity is not excessive, it is the author's
contention that the true (unknown) value of the concentration parameter
would, in general, be large enough to enable the jackknife technique

to be used on the 2SLS estimator.
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~ APPENDIX A

LEMMA
Proof of the following lemma is due to Bartlett [2].
LEMMA :

If A is a k xk non-singular matrix, and ¢ and d are two

k dimensional column vectors, then

PROOF:

|
>
'
bt
-~
+ -
e .
|
>
!
et
\/
]
p—

R+eca)t =

scd'atcdal o )
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APPENDIX B

DERIVATION OF A RESULT ON ASYMPTOTIC NORMALITY

Consider the first term in square brackets in equation (3.72), viz:

ol '

Sl(dlag Rl + N . Rl)S1

-1

\ |
= Z (A + A))(diag Ry + N7 R (4] + A)Z

' s -1
+ Z MxAz(dlag Ry + N7 Rl)AzMXZ

1 : -1
-2 (Al<+A2)(d13g Ry + N 7. Rl)AZMXZ

- 2'MA,(diag R, + gl R)(A + A)Z (B.1)

2)

' =u-28-9lu-28-971

Ie>

where R1 =

The ith element of ﬁ_can be written as
A 'A
‘ui—ui—ii(-e—--?-) s
and consequently the jkth element of the first term in equation (B.1)

can be written as

e~

2 1A 2
. lzijzik(Al Ay [uy - z;8-91, (B.2)

ignoring, for the present, the term incorporating N-l. R1 .

Upon expansion, equation (B.2) can be written as

N N
; 2 2 2 ! A
L2y s Ay v - 2 0 23525 (g + Ay 23 8- Oy
v Logrnty +hyy [2lB-0)) B.3
(LEaty Ay L -0 . Ba

In-the forthcoming analysis we will assume, without loss of

generality, that the observations on the (g) explanatory endogenous
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variables occur in the first g elements of Ei

Expanding the second term in equation (B.3) we obtain

|
N
nes- =z

2 A 0o
Z33 2k Ay * A)55 Eil(el =01) +255(0,-85) + .enn

+ Zi,K +g(6K1*g- eK1+g{] u; . (B.4)

Consider the first (of the‘K1+g) term of the above expansion:

i=1

2
ii

]
N
e~z

252 (A + A% 25,8 -0y (B.5)

i=1
We can partition zij and Ziy @s

zij = mij + vij and Zig = Mp t Vik o (for j,k < g) where

m. . and m.,, represent the nonstochastic part of z,. and z., respectively
ij ik _ ij ik

G,k = 1,2,...,K, +g), and Vij and LA represent the reduced form

disturbance part of zij and Z:x respectively (for j,k >g this will of
course be zero).
Expression (B.5) can therefore be written as

N N

N 2
- 209, -9 izl(Al bl M izl(Al +4;

.M, .M., V.. U.
i iiij ik il7i

N N
. 2 2
+ L Y g gvivsqug e L) HA))ggmams Vi
i=1 i=1
N ) N
* izl Gby + Do 5 V5 ¥y 0y By * izluﬁ 0o 5VeMkvin Y

N N
2 2
* 121 (hy + B 3 305 M Mg My * iZI(A1 * Az)iivijvikviluJ

(B.6)
Recall the decomposition introduced as equation (3.51), viz:

V=u¥t +E,



the ijth element of which can be written as

(B.7)

n
c
=
+

V. . s . €.
1] 1] 1)

Substituting for Vij’ Vik and v., in expression (B.6) we obtain

il

-2(6 -0 m

.M, .M, m, u.
11 i1 ik 1174

II 12

1

N
2 2
LI .121 (y +A2)iimijmikei1ui>

n 2

Il S22

N 2
(A +A 11 1kawlu +i-§1(A1 *d )11m1361k il 1>

I o~2Z

' 2
Vi 5m 5™ 1YY (A +A2)iimijmileikui>

II MZ

il

N
(A +A 11 11w lpku +1z (A + & )11 i1® ij ®ik 1)

II ~2Z

3 N

(A+A) u+2(A+A)

1 ii 1kw wl

IIMZ

1iMik® ij ®i1 1>

N
A +4 )11 ik 114)u +iZ (A +A )11 ik™i1® ij 1)

n N2

)[
e
(4
(Lo
e
(4
(4
et

II oS Z

N
2
S PR A AT 121 Ly + Az)iieijeikeilui>:l‘

(B.8)

Consider the first term in expression (B.8) and note that

A 2
. l (6,-6,)(A, + A )..m..m. m.
1<isN ISR S A S R § e S G B | l
. . )
§ max l(e'9)||(/\ +A)..m..m.. m,
1<igN 171 1 271i7ij ik i1

2
e1‘6’1| M | (A) +A5)55m55msp M54 |



Since plim (8, - 8.) =0, (G=1,2,...,K, +g) (B.9)
N > o J J 1

it follows that

plim (|6 -ell) plim max | (A A)
N> N>o 1<isN

1i™ij k™| © B (B,10)

Then using Theorem I (from Chapter 3) it follows that

.1 2 _
pllmN—l—:— 2(8; -9,) Z(A +A)11 i 1k 419 J =0 ,

R

Consider the second term in expression (B.8). Using the above
logic it follows that

plim (le ll) p11m max (A + A )

v
Noo N> 1<igN ii" ij Mik%1

Then using Theorem I it follows that.

N>

plinm & [ 28, -9,) Z g+ A gmy by u? - "Z)J =0,

where E(u;) = 0%(finite)

This result implies that

s ey ‘

lim = | - 2(6, -6 A, + 1)
5_)00 N B ( 1 1) izl( 17 2)11 ij 1kw1 1_4
1 B N 2 N
- s 20| o A . 2
= plim 2(6, -6)) ) (8 +A2)iimijmikwlo

N> i=1

N> =1

N S ]
= o° plim & |- 2(8; - 8)) lZ (4) +A )11 15™ik%1

—

= 0, from Theorem I. » (B.11)




With minor variations, this analysis can be used to show that, in

the probability limit, the fourth, sixth, eighth, tenth, twelfth

and fourteenth terms in eXpiession (B.8) are all zero. Since u;

and eij are, by assumption, uncorrelated random vgriables with mean
zero, it follows using Theorem I that the remaihing.terms in expression
(B.8) all converge in probability to zero.

Expression (B.5) was analysed under the assumption that
j, k < g. If both j and k are greater than g then no partitioning
of zij and Z:ik is necessafy as they only contain nonstochastic
(corresponding to Xl) elements. Under such circumstances, the
resulting expansion of expression (B.5) is limited to the first two
terms of expression (B.6) and thus the first three terms of expression
(B.8). We have'already argued that; in the probability limit, these
4three terms are zero.

If either j or k is less than g then one partitioning of Z, .

(or zik) is necessary. The subsequent expansion of expression (B.5)
will be limited to just four terms of expression (B.6) and we have
already argued that the corresponding terms in expression (B.8) converge
in probability to zero.

This concludes the analysis of the first term in expression
(B.4). The remaining K1+-g-1 terms can be dealt with in an analogous
manner noting, oncg more, that the last Kl values of zij (1=1,2,:0e05
K1+- %) contain no stochastic component.

Returning to expression (B.S) we have shown that the second

term converges in probability to zero.
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Consider the third term in expression (B.3), viz:-

N o )

Lozg52 (A + 0,055z (B-9)]
i=1

N , ) ) |
iélzijzik(Al ¥ Az)ii Eil(el - 61)+ Ziz(ez - 62) - P

E 2
e+ oz, C -0 i] )
. 1,K1+g K1+g K1+g

Upon squaring the term in square'brackets we obtain

N
2 " 12 2 A9 o8 2 a
LA +0)) 5525525, (737081 =870 +2,(0, -8, +.cn s Zi-,xl+g(exl+g‘exl+g)
i=1 L
+ zilziz(el -81)(6 -0 ) *zg 3(6 91)(63 3) F e
21121,K1+g(61"61) Oy + eKl+g)
+z,,2..(8,-6,)(6, -6;) + zizzi3(62 -8,)(6;-05) + .....
@, -6,)(b - )
2ig* s i K1+g 2 2 Kl+g K1+g
+
+ . .
* zi,K1+gZil(eK1+g —'6K1+g) (6-6) +2; ¢ 1*8 2,8 K+g Ok +g)(62 Bl «a

-+

235, K, +g%1,K, +g-1 % 1+ K1+g)( K, +g-1 -9 18- 1):[ '

(B.12)

Consider the first term of the above expression, viz:
N 2
V(A + M)z, 2 22 (B, -6.) (B.13)
e il S & & T - © b B Sl T
where the zij can again be partitioned only now

- 2 _ 2 2 . ‘
23q = (mgy +vg = myy +vgp+2mvyy - Gk s g)




Upon expansion, expression (B.13) can be written as

- N
A 2 2 2 2
(61"81) {iz (A )11m13m1k i1 * izl(Al*'A 11m13m1k il

N : N :

A : 2 2

* zizl(Al.+A2)11m1]m1km11 i1 ¢ Y (A A )11 ij Vik™i1
N - :

* izchl-FAZ)llmljvlk i Z (A o )11m13V1km11V11

2 2 -

‘ ) .

b Ly A g gmgady ¢ Ly AV 5mvEy
i=1 i=1
N N

* 2.2 (A1.+A2)11V13m1km11 i1 * .Z (A14.A2)11V13V1k il
i=1 i=1
N ) : , N

oL Uy AV vy 2D Oy AV v vy (B.14)

1

Using the decomposifion given by equation (B.7), expression
(B.14) can be evaluated in a simiiar ierm by term manner to the
analysis used for evaluating expression (B.6).

Consider the first term in expression (B.14). Since

plim (6. -6.)>= plim (8. -9, ;) plim (6.-6.) =0, for all j ,

N > I Nowe Now I 3
and since mil is a constant, it follows by an analogous proof to
that used in deriving equation (B.10) that

plim max |(B -6 )%A + A )

N->o 1<igN ii iJ ik™i1

Using equation (B.7) the second term in expression (B.14) can

be written as

N
a 2 2 u?
(61 - e1).z (Al * A2)11 ij Mik¥1%
i=1
A 2 ] ol
* (61 B 81) izl(Al ® i )11 ij Mik®i1
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N
+ (6, - 91)2 ) (A + Az)z mo.m, Yiuses (B.15)

o1 iiij ik

Since mij’ m g and wl are constants the first two terms in
expression (B.15), multiplied by 1/N, converge in probability to zero
by the same proof used to derive the result given by equation (B.11),
assuming E(eil) is finite. Further, since us and e;; are uncorrelated
random variables with mean zero, it followsvfrom Theorem I that the
third term in expression (B.15) (multiplied by 1/N) converges in
probability to zero.

Evaluation of the remaining terms in expression (B.14) follows
a similar pattern, all converging in probability to zero.

Returning to expression (B.13) if either j or k (or both) are
greater than g then fhe above analysis involves fewer terms in
expression (B.14), as was shown when dealing with the second term in
'expression (B.3). The analysis, however, is identical.

Returning to expression (B.12), a similar analysis can be used
to show that the reﬁaining terms in the first line of this expression
all converge in probability to zero. The same result holds for the
terms in the remaining lines of expression (B.12), although the
analysis is more tedious due to the introduction of another (the

fourth) term in z.

To summarize, we have shown that the second and third terms-
in expression (B.3) converge in probability to zero. Thus we have

shown that

. ] .
E{:ﬁ %_.,Z (A1 + AZ)(dlag Rl)(A1 + AZ)Z

= plim1 . Z'(A; + A)(diag u u') (A + A)Z .
Nso N : - “




Noting that

S
Ly Py - B)

plim (Az)ii = - plim , =0, (8.16)
N> N+o k. (1-5;+d;) :

using equations (3.39), (3.41) and (3.42), the rehaining terms
in (diag Rl) in equation (B.1l) can be analysed in an analogous manner

to the first term. We have shown therefore that

plim 1 . S, (diag Rl)Si = plim 1°. S, (diag y_y_‘)Si
N+ N N+ N

We now consider the terms in N_1 .R. in expression (B.1). The

1
first term can be expanded as follows:
Nz - AR (A Azjz

= N1z )BTy + Az

= Nz v Ay (e A2

s Nz ¢ AZ@ - )@ - 82 + Az

- N ztay e a2 - ou' oy ¢ Az

- Ntz e npud - 'zt + A2

Since 2SLS is a consistent estimator we know that

plim 8 - 8) =0,

N>

and from the preceeding analySis it is ‘easy to show that

1
AN W}

is a finite matrix. Now consider the term

z'(A1 +A) u . : (B.17)



The jth component of this random vector can be written as

N
Y z..(A, + A)..u..
jo1 17 1 27111

Partitioning zij into its stochastic and nonstochastic components,
and using.the decomposition of vij given by equation (B.7) we
obtain

N

N ’
s o 2
L g5y +B)gaw + B Gy #5055 ¥y

i=1 i=1 >

+
i

1(A1+A2)ii uieij . (B.18)

e~z

Since the mij are constants, and using the result that

plim (A

N >

1 F A7

it follows that

N
.1 L
plim N-izlmij(Al-+A2)ii u; = 0

N>

by the Law of Large Numbers. The same Law.ensures that the second
term in equation (B.18) (multiplied by 1/N) converges in probability
to a finite constant, provided E(u;) is finite, and that, since uy
and eij are uncorrelatéd random variables, the third term (multiplied
by 1/N) converges in probability to zero.

Combining the above results, we have shown that

- .
o 1
5{32 %_ %_.Z (Al-fAz)Rl(A1-+A2)i}
== ' i
= gl::_lﬁ %f Z (A1+A2)_113 (A1+A2)Z:[ .
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Using the result given by equation (B.16), in addition to
the above results, it can be shown that the remaining terms containing
N-l.R1 in equation (B.1) caﬁ be analysed in an analogous mannér. All
three remaining terms converge in probability_to zero.

Thus we have shown that the first term in square brackets in

equation (3.72) can be written as

plim 1.S (diag R, +N-1.R1)S£ =plim 1 .S, (diag u u'+N tu u')s;
N->o N N> N
Consider the second term in square brackets in equation (3.72),

. . -1 '
viz: Sz(dlag R2 + N 'R2)82

1+

2'(h, - A)(diag R, + N-l.Rz) (A, - Az

' . -1 .
+ Z MXAS(dlag R2 + N .R2)A3 MXZ

' : -1
+ 7 (A2 - AS)(dlag R2 + N .R2)A3 MXZ

' : ~1
+ Z MxAs(dlag RZ + N .R2)(A2 - AS)Z ;o (B.19)

where R, = (I-M)uu' (I-M

x)

(I-M)[u-z@-0)1u-208-0)1"(1-M

x)

The following results can be easily derived:

plin (1, - Apy; = -1, " (B.20)
pLin (A, - Ay =1, | (B.21)
5132 tAS)Zii -1, | | (B.22)
and plim (A2 - AS)ii(AS)ii =1, (B.23)

N>



The first term in equation (B.19) can be written as
z'(A2 - A (diag R) (A, - A2
v | '
+ Z (A2 - AS)(N ,Rz)(Az - AS)Z s (B.24)

whereupon, using the definition of R,, the first term in equation

2,

(B.24) can be written as

z' A

2 - ) (dlag LU(A, - A2
(] - A /\'

-Z (A2 - AS)Mx(dlag E.E.)(Az - A3)Z
1 o A Ay

- Z (A2 - AS)(dlag E_B_)MX(AZ - AS)Z

+ 2' (A, - MMy (diag 0 " IM (A, - AJZ . (B.25)

The jkth element of the first term in eQuation (B.25) can

be written as

N ‘. o \
zlzijzik(Az-A's)ii “ﬁ'i;@*?)l .

i=
Since
» 2 2
plim max (A, + A)).. = plim max (A, - A)).. =1
N+® 1<isN 1 2711 N> 1<isN 2 S s 2

this expression does not differ, asymptotically, from expression

(B.2) and can therefore be analysed in an analogous manner. It

follows tha»t

plim 1.2z' (A, - A;)(diag G 0" (A, - A

)z
N>wo N 3

= plim 1.2'(A, - Ay)(diag u u')(A, - A)Z
N N 2 3 - = 2 3
Consider the remaining terms in expression (B.25). We have

already shown (equation (3.27)) that

lim M) 55 =0, (i=1,2,....,N) (B.26)

N>
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and thus the remaining terms must all converge in probability to

. zero by an analogous proof to that employed in analysing the first
term.

Further, equations (B.22), (B.23) and (B.26) allow the
remaining terms containing (diag R2) in equatian (B.19) to be analysed
in an identical manner to their corresponding terms containing
(diag Rl) in equation (B.1). It follows tha;

plim 1 . S,(diag RZ)Sé = plim 1. S,(diag u u')Sé .
N>~ N N>~ N - -

The terms containing NilR in equation (B.19) can also be

2

analysed in a similar manner to their counterparts in equation (B.1).

Consider the first term containing N—lR in equation (B.19), viz

2

-1 '
N~.Z (A2 - AS)RZ(AZ - AS)Z

N1z, - AT - MR G'T - MO (A, - A2

)Z

N’l.z'(A2 - 'AS)(I - MJuu' (T - M) (A, - A,

+

Nzt - A - M)z - (8 - 92 (T - MY, - Az

N'.lz'(/\2 - A (T - MX)H@ -8)'z'(1 - M) (A, - A)zZ

3)

-] ' N 1
N ~.Z (A2 - AS)(I - MX)Z(Q_- fu (I - MX)(A2 - AS)Z : (B.27)
The first term in equation (B.27) can be written as

-1 v ' -1 v, ' .

Nz - AQuu' (A, - A)Z - NTTLZT (A, - AgMu ' (A, - A2
-1 . ! -1 ' |
-N".Z (A2 - As)B_E_MX(AZ—A3)2-+N ol (A2--A3)Mx uu MX(AZ— AS)Z .

From our initial assumptions (specifically, Assumption (iii) in
Section 2.1.3) it follows that

. ’ 1
E{:g %, Z (A2 - AS)MXE-' 0,
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and hence, asymptotically, the first term in equation (B.27) can be

written as

N> N | N

3 | LI [
plim 1 (_1_ Z (A2 - As)g_g (A2 - AS)Z:I.
Since (I - 4Mx) is a nonstochastic matrix, using equation (B.20)

it follows that the last three terms in equation (B.27) (multiplied

by %) all converge in probability to zero. Thus we have shown that

—

: ' : .
plim1l | 1.2 (A2 - 1\\7,)}12(/\.2 - AS)Z]

N*® N | N

= plim1 | 1.2'(A, - Auu'(h, - As)z].
N>> N |_N

Clearly the third and fourth terms in equation (3.72) can be
analysed in an identical manner since the relevant results have
already been derived.

To conclude, we have shown that

plim 1.5 (diag R, +N"1.R)S! = plim 1.5, (diag u d+N " uu")s],
N> N | N+ N
plim 1 .S, (diag R, +N_1.R2)Sé = plim l S,(diag u 3'+N—1. uu')s
No>w N , N> N

and
lim 1.S, (diag R, +N"1.R)S! = plim 1.5, (diag u u' +N L u u')s
§+wN- 1 3 572 T e g L . 4]

Consider the following summation .

')S; + S, (diag uu+N 't uu')s

. ' -1
Sl(dlag uu +N 7, 1

I=
|=

'
2

1

- S, (diag uu +N".u 1

1

s, . uu')s

1
1 b

k=

+$,(diag uu' +N

which can be simplified to



N>

provided E(uiz) is finite.

The décomposition given by equation (B.7).is
to evaluate the three remaining terms in equation (
term can be written as

N

N
: 2 3
iZl(Al + 20 - AgYy myvsul + ig (A + 28, - Ag)}

. ! -1 ' '
(S1 - Sz)(dlagg}i + N _112_)(81 - 52)
' - ' -1 ' )
-Z(A1+2A2—A3)(_dlag uu +N _1_1_1_1_)(A1+2A2-A3)Z
1 . ' -1 '
-2 MX(A2 —AS) (diaguu +N uu )(/\1 +2A2.-A3)Z
' 5 1 -1 '
-2 (A1+2A2-A3)(d1ag‘_1ig.+N EE)(AZ-AS)MXZ
1 . ! -1 1 A
+ Z MX(AZ AS) (diag uu +N "u 5_)(/\2 - AS)_MXZ . (B.28)
The jkth element of the first term containing (diag 9_1_1_')
~in equation (B.28) can be written as
 J. 2
lzlm o (A +2A - Ag)qud + Z vism; ik + 20, 1\3)11111
& 2 " 2
+ izl 13 vy (A + 2, Aé)llul + Zv Vi Ay + 20, A3)11u1 . (B.29)
We have already shown (equation (3.47)) that
plim W max . (A, + 2A,-A).. =0, (B.30)
N 30 1<isN 1 2 3711
from which it follows that
plim W max mm(A+2A -A)..] =0 .
N - o 1<igN [ ik 37ii
Using Theorem I it follows that
N ) -
2
plim ﬁ Z m, .m. k(Al +2A2 —As)iiui =0,

required in order

B.29). The second

12
m,.e
11k1]1



150

Equation (B.29) and Theorem I ensure that the firsf term in this
expression (multiplied by 1/N) converges in probability to zero;

~and since the e, and u, are uncorrelated random variables with mean
zero, Theorem I ensures that the second term in this expression
(multiplied by 1/N) also converges in probability to.zero. Similarly
the third term in equation (B.29) (multiplied by 1/N) converges in
probability to zero.

The fourth term in expression (B.29) can be written as

N ' N
N 3
.Z (Al.FZAZ )11w3¢kui * .Z (Al*'ZA . ) J ®ik%i
i=1 i=1
- 2 3 2
2
* izl(A1 *2h, - Aod g Moy * iZI(Al 20y = Agkis€s4®0 Y -

The first term of this expression (mﬁltiplied by 1/N) converges in
probability to zero by virtue of equation (B.30) and Theorem I.

The three remaining terms (multiplied by 1/N) also converge in
probability to zero, using Theorem I and the assumption that eij aﬁd
uy are uncorrelated random variables with mean zero.

The first term in N .. u u' in equaticn (B.28) is

-1
.z'(A1 +20, - Adu u' (A + 20, - A)Z.

3)
We have already shown in Chapter 3 that
. ' A
plim 1 .Z (A1+2A2-A3)y_-g .

N > }/N

Since éach element of the 2SLS residual vector converges in distribution

to the corresponding element of the disturbance vector, this implies

that _ ‘ |

. 1 )
plim 1 .2Z (A1+2A2—A3)5 g . (B.31) ‘

N > )/N

It folloWs that A :

plim 1 [1 2(/\ +2A—A)uu(/\ + 20, As)z]=o.'
N->o N N ‘
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Thus we have shown that the first term in equation (B.28) converges
in probability to zero.

Consider the second term in equation (B.28), viz:

1 o
g Z MX(AZ __AS) (diag u u') (A1 + 2A2 - A3)Z
' -1
-2 MX(AZ_AS)(N .gy_')(A1+2A2-A3)Z 5 (B.32)
and we will analyse the term in (diag u u') first.
Since plim [1.X'X - 1.x'z - Fe % (B.33)
Noo \N N XX “XZ

we need only consider the limiting form of

X' (A, - Ag)(diag uu') (A, + 20, - A7 .

The rjth element of this term can be written as

. |
2
izlxir.(Az mAg) g fhy + 2Ry - Ag) g5 (my g+ vy 5y
G = 1’2""’K1 g e l,2,..55K8) ;
- 2
i.e. ileir(l\2 A3) ii (A1 + 2A2 - AS)iimijui .
N
* izlxir(AZ - A3)ii(Al * ZA -A )11w3u1
N 2
i izlxir(AZ - A5)55 () + 28, - M)y vies4

2 .
AT T Rl

/\3)11(1\1 +2A, - A

2

provided E(u;) is finite. By the same argument

N
o 1 -
51:2 N Z jriiy = A (A + 24, - A )lleul B




provided E(uia) is finite. Finally, since u, and evi:j are uncorrelated
random variables with mean zero it follows, using Theorem I, that
~the remaining term in the abévg expression (multiplied by 1/N) converges
in probability to zero. |

Now consider the limiting form of the second term in expression

(B.32), viz
' 1 s
Z MX(AZ —A3) (N—Eg )(A1+ 2_/\.2 —A3)Z :
In view of equation (B.33) we are concerned with the limiting form of
=1 o ,
N ..X (AZ-AS)EE (A1+2A2—A3)Z .
Combining Assumption (v), Section 2.1.3., with equation (B.20) it
follows that

plim 1. X' (A, -AJu =0,
N->o N v

which when combined with equation (B.31) ensures that

. 1
Eljg% E_ Z MX(A2 -AS) (u E_')(Al +2A2-A3)Zjl =0 .

Thus the second, and hence the third, term in equation (B.28)
has been shown to converge in probability to zero.

The fourth term in equation (B.28) can be written as
2'X(X'0) 71X (A, - M) (diag u u') (A, - A)X(X'0) X2

+ z'x(x')()'lx'(A2 o (N'l._u_ u') (A, -AS)X(X'X)-IX'Z . (B.34)
Again, combining Assumption (v), Section 2.1.3, with equations (B.20)
and (B.33) we have shown that

s ' A ' _' -
Eljonlflq‘ E{J— 2"My (A, - A (u u") (A, AS)sz:l 0

Consider the expression

x' (A, - A;) (diag u u') (A, -ADX ,




183

which has rsth term

N .
Z xirxiS(AZ'-A3)2iu; . (r,s =1,2,...,K) (5'35)
i=1 _

From equation (B.21)

plim (A, -1\3)]?“.L =1

N+

" for all i(i=1,2,...,N), from which it follows that

. - - 2
plim max {1 - (A, =N =0 .
N+ 1<igN 2 3731

Thus, using Theorem I, it follows that

T | ' ” R 2_.2y .0
plim ﬁ-izlxirxis 1- (A, -5 Wi-o )y=0,

N>

and hence we deduce that

" Substituting this result back into equation (B.34), and using equation
(3.33) we have shown that tﬁe fourth term in equation (B.28), and - '

hence the entire expression, converges in probability to

2
ozg.



APPENDIX C

THE TORONTO FUNCTION

Copson [10] has shown that, for large ]xfi,

ry) e*

ree) x ¢ 2

oy - s 3 L
1F1 (CX,'Y,X) ~ FO(Y 0(" 1 (X, b X) ’

, ©  (y-a)_(1-a) r
where F.(y-o; 1-a; ; 1/x) = 2 = = .1 .
20 X
r=0 Tl

and Pochhammer's symbol means

If Yy =0 + 1 then

] . ae® T 1.T '
lFl(a’a+ 1: X) > Tr=0 (l-a)r(;) > (C'l)

which has a finite number of terms if a is a positive integer.

Equation (C.1) is fequired for evaluation of the first order
moment of the 2SLS estimator. For second and higher order moments
Y = o + k (where k is the order of the moment under consideration), but
can be expressed in terms of equation (C.1) by utilizing the recﬁrrence

relations for the confluent hypergeometric function (see Slater [64] ;

p.19).
The Toronto function was developed by Heatley [18] and is
defined as
5 ] ) .
T(2a-1,Y—1,x2)==x(Y.a) g T(a) 1Fl(a;Y; %) (C.2Z)
I'(y)

(N.B. Slater [64] gives this formula with an incorrect sign, p.99),




This function is characterized by convergence to unity as x increases

indefinitely.

If Y = a+1, then equation (C.2) can be rewritten as

=X

L X
T(ZC!*I,&,X):ae 1

Fl (6 so% L3 x) ¢ . (C.3)

We state two special forms of the Toronto function that are

required in the forthcoming analysis:

L
Tl , 1, x°) =

|
o
1
(0]
-

- (C.4)

1
]

and T(, 2, x) =1- (1 +x)e ™. ' (C.5)

In addition, we require two of the recurrence formulae for the Toronto

function (see Heatley [18; p.171):

o -2a- 1 %
T+ 2,041, X9 = 82D r(y041, $F 4 10,0, ¥, (C.6)
and
1 : L - 9
T(v+4,a+2, x2) = £¥§11-T(v,(x, x?%) - 3&9%%.51 T(v+2,0+1,x°),

(C.7)

where v = 2a - 1. Thus all values of o can be evaluated with ease.

If e X is assumed to be zero, the Toronto functions in equations
(C.4) and (C.5) will both be unity. Thus, by setting a = 1, initial
values for the recurrence formulae can be determined, and it is then
possible to evaluate the Toronto function for all integer values.of o
by repeated appliéation of equations (C.6) and (C.7).

Eoliowing the above procedure, equation (C.3) can be rewritten
as lFl(a;a+1;x) = %-ex 2 (l—oc)r (éﬁr "

r=0

which is identical to the asymptotic approximation to the confluent
hypergeometric function given in equation (C.1). Thus the error
incurred in utilizing the ésymptotic approximation for finite x is

simply the error caused by assuming e ™ to be zero in the Toronto

function.




It is easy to show that this error can be expressed as

I'(o+1)

(=) K ' : (€.8)
-X

thus as x increases indefinitely (for o fixed), the error of approximation

tends to zero.

This anglysis is only valid when a is an integer, a condition
which will not always be upheld (e.g. when considering the moments of
the 2SLS estimator, even values of Kzuwill yield integer values for a,
whereas odd values of K2 will yield non-integer values for o).

For o non-integer, equation (C.1) is an infinite.series, although
it can be truncated after (say) n terms. If this is done the error
involved by truncating the infinite series after the nth term will not

exceed the (n+1)th term, and will be of the same sign as the (n+l)th

term (e.g. see Luke [25; p.127]).
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