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ABSTRACT

Quenouille has developed a procedure, later termed the jackknife 

by Tukey, for reducing the bias of a consistent estimator of an 

unknown parameter. A measure of the variance of the resulting estimator 

can be obtained and used to provide approximate confidence intervals 

and tests of significance. Thus the jackknife technique may be 

especially interesting when the estimator under consideration is biased 

but consistent and mathematically intractable distribution theory 

prevents the construction of exact confidence intervals.

Considerable research has been devoted to studying the jackknife 

technique, predominantly in the fields of biometrics, statistics and 

numerical analysis. So far the use of the jackknife method in 

econometrics has been negligible, although one very important class of 

econometric estimators, the simultaneous equation estimators, is biased 

in finite samples and, in general, has a mathematically intractable 

distribution.

In this thesis we investigate the application of the jackknife 

technique to the Two-Stage Least Squares (2SLS) structural parameter 

estimator in a simultaneous equation system. The bias reducing property 

was found to be present in the majority of cases considered in an 

investigation of the effects of jackknifing on the exact bias of the 

2SLS estimator in a two equation model. Conditions are given for which 

it is unlikely that jackknifing will reduce the bias of the 2SLS estimator.

Since the exact variance of the jackknifed 2SLS estimator is 

unknown, an examination of the effect on the variance of 2SLS of 

applying the jackknife had to be made by a simulation experiment.

Whilst the 2SLS estimator always had a smaller mean square error than
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the jackknifed 2SLS estimator, a comparison of absolute errors 

rarely produced a significant difference between them.

Finally, it was observed that t statistics formed using the 

2SLS estimator may not be distributed according to the Student t 

distribution. The actual distribution may be highly skewed and serious 

errors could result if the postulated theoretical distribution was 

used for statistical inference. In general, this feature was less 

noticeable for the J2SLS estimator which appeared to have a reasonably 

symmetric distribution, and consequently there is less likelihood 

of serious errors being made if the postulated theoretical distribution 

is used for the purpose of statistical inference.
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"Grown-ups love figures. When you tell them you have made a 

new friend, they never ask you any questions about essential 

matters. They never say to you, 'What does his voice sound 

like? What games does he love best? Does he collect 

butterflies?' Instead, they demand: 'How old is he? How many 

brothers lias he? How much does he weigh? How much money does 

his father make?' Only from these figures do they think they 

have learned anything about him."

Antoine de Saint-Exupéry, The Little Prince
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CHAPTER 1

INTRODUCTION

Quenouille [45] has developed a technique, later termed the 

jackknife by Tukey [72], for reducing the bias which may be present in 

an (otherwise consistent) estimator of an unknown parameter. Quenouille's 

original justification for using the technique was based upon the 

assumption of the existence of a Taylor series expansion for the bias 

of an estimator whereupon, by applying the jackknife technique, the

reducing properties, the jackknife technique can also be used to provide 

approximate confidence intervals and tests of significance. Thus the 

jackknife technique is a viable proposition where the estimator under 

consideration is biased, but consistent, and/or where mathematically 

intractable distribution theory prohibits the formation of exact 

confidence intervals.

Considerable research has been devoted to studying the jackknife 

technique, predominantly in the fields of biometrics, statistics and 

numerical analysis. Its use in econometrics has been negligible, yet 

a class of consistent econometric estimators possess both bias and 

intractable distribution theory in finite samples, which would suggest 

that application of the jackknife technique may be a fruitful exercise. 

This class of estimators is the class of simultaneous equation estimators.

This thesis considers the effects of applying the jackknife 

technique to one of this class of estimators, the Two-Stage Least Squares 

(2SLS) estimator.

2SLS is a "limited information" estimator in the sense that it 

estimates the equations comprising a simultaneous economic system one

bias term to order could be removed. In addition to its bias
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at a time. In order to estimate any one equation, 2SLS only requires 

a specification of the equation being estimated and a list of the 

other predetermined variables appearing in the system. It does not 

therefore take account of contemporaneous correlation between the 

disturbances of the equations in the system. Neither does it use the 

information contained in the overidentifying restrictions on the 

other equations in the system. Consequently, if the entire system has 

been specified, 2SLS may not make the most effective use of all the 

available information and a"full-information" estimator may be preferred. 

Under the assumption that the hypothesized model is correctly specified, 

the most efficient method of estimation would be one of the full 

information methods. Most economists, however, would consider this 

assumption rather heroic and would select one of the limited information 

estimators in order to isolate the deleterious effects of any 

specification errors to the equations in which they arise.

There are two reasons for selecting the 2SLS estimator from 

such a wide class of estimators.

Firstly, the exact bias (and higher order moments) of the 2SLS 

estimator have been derived for a two equation model and this allows 

an exact investigation of the jackknife's bias reducing ability 

vis-a-vis 2SLS, albeit under rather restrictive assumptions.

Secondly, the other limited information simultaneous equation 

estimators of any importance are the Ordinary Least Squares (OLS) and 

the Limited Information Maximum Likelihood (LIML) estimators. OLS is 

not a candidate for jackknifing since it contravenes Quenouille's 

assumption of a consistent estimator, whilst the non-finite moments 

of the LIML estimator (see Mariano and Sawa [30]) precludes any 

examination of the effects of the jackknife technique on its "bias".

In addition, within the class of limited information simultaneous
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Section 8) 2SLS is generally preferred on the grounds of "all-round" 

performance and computational efficiency and simplicity.

"Full information" methods of estimation were not considered 

as possible candidates for jackknifing as this would seem to be the 

logical step forward after the limited information estimators had been 

considered. This point is discussed further in Chapter 8.

The general form of the simultaneous equation system which will 

be used throughout this thesis, together with the relevant notation 

and assumptions, is defined in Chapter 2. The 2SLS estimator and its 

asymptotic properties are derived for the parameters of any single 

equation in the system. Conditions and assumptions under which the 

exact finite sample results of the 2SLS estimator have been derived 

are also stated.

Chapter 2 continues with a description of the jackknife 

statistic, its bias reducing properties, and its use in formulating 

approximate confidence intervals and tests of significance. The 

literature on the jackknife and its applications is so extensive that 

only (what the author considers to be) the more relevant works are 

cited, although a bibliographical reference is given.

The asymptotic properties of the jackknife 2SLS (J2SLS) estimator 

are investigated in Chapter 3. A proof of the asymptotic equivalence 

of the J2SLS and 2SLS estimators is given, and a t ratio formed using 

the J2SLS estimator is shown to be asymptotically distributed as the 

standardized normal distribution.

The small sample properties of the J2SLS estimator are 

investigated by a series of simulation experiments in Chapters 5, 6 

and 7. The computer algorithms used in the experiments are described

equation estimators, on the basis of numerous Monte Carlo results

(the major works are summarized in Johnston [20], Chapter 13,
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in Chapter 4 together with results of verification where they do not 

already exist. A formula given in Chapter 3 reduces the computational 

burden involved in calculating J2SLS parameter estimates, and should 

reduce the probability of significant inaccuracies due to the build-up 

of rounding errors resulting from repeated use of the matrix inversion 

algorithm. Chapter 4 also contains a method for evaluating the 

accuracy of the asymptotic approximations to the exact moments of the 

2SLS estimator.

For an equation containing just two endogenous variables the 

exact first and second order moments of the 2SLS estimator have been 

derived. It is relatively easy to adapt the exact bias of the 2SLS 

estimator to obtain the exact bias of the J2SLS estimator, but the 

exact mean square error of the J2SLS estimator has not, as yet, been 

derived. In Chapter 5 the exact relative biases of the 2SLS and 

J2SLS estimators are compared, under conditions which prevail for 

"exact" theory, by means of a simulation experiment. This experiment 

gives exact results on the ability of the jackknife to reduce the bias 

of the 2SLS estimator. For the general model, however, this form of 

analysis is not possible, and the author has only been able to derive 

a rather weak conditon under which jackknifing is "unlikely" to reduce 

the bias of the 2SLS estimator.

Chapter 6 presents the results of a Monte Carlo experiment into 

the properties of the two estimators. Comparisons of relative bias, 

mean square error and mean absolute error are made using a two equation 

model. The use of the jackknife statistic to form approximate 

confidence intervals and tests of significance using the 2SLS estimator 

is also investigated and the results are presented in Chapter 7.

It is well known that standardized normal ratios and t ratios formed 

using the 2SLS estimator are only valid asymptotically, and that in 

small samples they could diverge significantly from their postulated
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theoretical distributions. A comparison of the small sample 

distributions of test statistics using both 2SLS and J2SLS estimators 

is made.

Concluding remarks are contained in Chapter 8.
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CHAPTER 2

THE TWO-STAGE LEAST SQUARES ESTIMATOR AND
THE BIAS REDUCING PROPERTIES OF THE JACKKNIFE STATISTIC

2.1 The General Linear Simultaneous Equations Model

2.1.1 Specification of the Model

The analysis in this thesis is concerned with a simultaneous 

economic system of G linear stochastic equations relating G endogenous 

(or jointly-dependent) variables and K exogenous variables, which can 

be written as

We are interested in the estimation of just one equation from

this system, (say) the jth, which can be written as

and we will refer to this equation as the jth structural equation 

(j =1,2,...,G). For notational simplicity we will generally omit the j 

subscript.

2.1.2 Notation

Y is a matrix of N observations on the G endogenous variables in the 

entire system;

y_ is a vector of N observations on the "dependent" endogenous variable;

Y is a matrix of N observations on the other g endogenous variables 

included in the jth equation. In the unlikely event that all G 

endogenous variables appear in the jth equation then g = G-l and

YB + XT = U ( 2 . 1)

( 2 . 2)
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[y_: Y] = Y , otherwise g < G-l ;

X is a matrix of N observations on K exogenous variables partitioned 

as X = [X1 : X ] ;

X^ is a matrix of observations on the exogenous variables included 

in the jth equation;

X2 is a matrix of observations on the exogenous variables excluded 

from the jth equation (i.e. K = + K^);

U is a matrix of N unobservable disturbances for each of the G equations, 

with jth column denoted by u.. ;

B is a GxG matrix of unknown structural coefficients;

$_ is an unknown g component sub-vector of B with non-zero elements.

T is a KxG matrix of unknown structural coefficients;

is a component sub-vector of r with non-zero elements;

Y_2 is a I<2 component sub-vector of f with zero elements.

2.1.3 Basic Assumptions

The following conventional assumptions are made for the system

(2 .1), and for the jth structural equation (2 .2):

(i) B is non-singular;

(ii) the jth structural equation,(2 .2), is just- or over-identified by 

zero restrictions on the structural coefficients, i.e. K2 > g ;

(iii) the matrix X consists of non-stochastic elements and is of full 

rank, K. Further, as N -»-00 the matrix N *(x'x) converges to a 

finite matrix, denoted by

lim
N ->oo

i • (X'X) _ y
N XX ’

where is a finite positive definite matrix

(iv) the sample size (N) is greater than the total number of exogenous 

variables (K) in the system;
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(v) the N rows of U are independently and identically distributed 

with zero mean vector and unknown finite covariance 

matrix, E. In addition, the analysis in Chapter 3 requires 

that the structural disturbances have finite fourth order moment.

Postmultiplying equation (2.1) by we obtain the reduced form 

of the system, which can be written as

y = xn + v ,

where n = - fB  ̂ ,

(2.3)

and V = UB .

The reduced form equation for the jth "dependent" endogenous 

variable and the reduced form equations for the g "explanatory" 

endogenous variables can be written as

and

y. = Xtt. + v  
~J ~J -3

y . = xn. + v.
3 J 3

(2.4)

respectively. Since, for notational convenience, we are omitting the 

j subscripts, this explains the necessity to write equation (2.3) in the 

above form rather than in the more common form which would coincide 

with equation (2.4) when the subscripts are omitted.

2.1.4 The Two Endogenous Variables Case

The majority of results on the exact properties of the 2SLS 

estimator have been derived under the assumption that g = l, i.e. 

the equation being estimated contains only two endogenous variables. 

In addition, it is assumed that the matrices X^ and X£ contain no 

lagged endogenous variables.



Under the above conditions, the first structural equation can 

be written as

2-1 = X20 + Xlll + ^2—2 + -1 * (2.5)

with reduced form equations

* 1  " Xlill * X2—12 *

£ 2  "  X l —2 1  *  X 2—22  *  —2 •

where 2Ln> —12’ anc* —21’ —22 are vectors constant coefficients.

The random vector (v̂ * : v̂ ' ) is assumed to be distributed as bivariate 

normal with zero mean and positive definite covariance matrix ft (g) 1^ 

where ft = u)^ (i,j = 1 ,2) is a matrix of reduced form parameters. -

2.2 The Two-Stage Least Squares Estimator

It is well known that OLS is, in general, an inconsistent 

estimator of the parameters in the structural equation (2.2). This 

inconsistency is due to the correlation between the explanatory 

endogenous variables (Y) and the vector of structural disturbances (u) 

Basmann [3] and Theil [70] derived, independently, an alternative 

estimator which "purges" Y of the stochastic component associated 

with the disturbance term, and then estimates the revised equation by 

OLS. This "alternative" estimator is called the Two-Stage Least 

Squares Estimator.

From equation (2.2) we write the jth structural equation as 

L  = Y£  + xiXi + H. •

If we rewrite the above equation as



11

then using equation (2.4), (Y - V) = XII is uncorrelated with (u + VB) 

since X is non-stochastic by assumption (iii).
A

Since V is unobservable we must use its estimated value V,

where V = Y - XII. Provided plimft = II,it follows that plim (Y - V) = (Y - V)
N oo N ̂  00

and hence (Y - V) and (u + ̂ 3) are asymptotically uncorrelated.

Thus if the least squares estimator is applied to

y = (Y - V)J + X ^  + u + V3_ ,

we can obtain consistent estimates of 3  ̂and y. . Since this process 

of estimation involves two successive applications of least squares 

it is known as Two-Stage Least Squares (2SLS).

In this thesis we shall work with the Instrumental Variables 

type formulation of the 2SLS estimator, viz:

0

where Z =

X(X'X) Xx'z
[*’

[ Y :  h j

1  -1

and 0 =

Z'X(X'X) 1 x'y , ( 2 . 6)

In order to apply tests of significance, knowledge of the 

distribution of the 2SLS estimator is required. The finite sample 

distribution of 2SLS is only known for a few specific cases, thus 

reliance is usually placed upon its asymptotic distribution.

Substituting for y in equation (2.6) we obtain

0 -  0 = Z'X(X’X) - V z ]
-1

z'x(x'x) “ 1 x'u ,

and we require the limiting distribution of the sequence
- , - 1

A (0 - 0) =
-1

1 . z'x /1 . x'x 1 . x'z
l N N

,-1
1 . Z'X 1 . x'x 1 . x'u .
N 7 n

Since X is (by assumption) non-stochastic, it follows that

1_. X'Z = X' [Y : X ] = X' [xn + V : X ]
N N N
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converges in probability to a finite limit, denoted by

plim ]_. x'z = Z^7 
N + “ N

We have already assumed the existence of a finite limit for 

N~* . x'x , and thus we can denote its inverse by

lim [ 1 _ . X’X 
N-K» \ n

Under assumption (V),-modified application^of the Lindeberg-Levy theorem 

(see e.g. Theil [71; pp.498-499]) using the above results will yield

yiT (0_-6)
r / r 1 -1

N 0, a2 plim . 
N -»-co

1 . z'x
Nto

l . X X  
\N /

I 1 . X z 
N J

► (2.7)

where a2 denotes the variance of the jth structural disturbance,

i.e. the jjth component of L

A consistent estimator of a2 is given by

d2 = u'u /(N - Kx - g) , 

where u = [y_- Y8 - X^y^ ]

Since the asymptotic covariance matrix of the 2SLS estimator 

coincides with the Cramer-Rao bound (when the structural disturbances 

are normally distributed), 2SLS is an efficient estimator in its class 

of limited information simultaneous equation estimators. Its relative 

(small sample) efficiency however has not, in general, been ascertained.

2.3 The Jackknife Statistic

2.3.1 Definition

Let ct be an unknown parameter, and let X^ .... ,X^ be N 

independently and identically distributed observations from the cumulative
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distribution function F . Further, let a be a biased estimatora ’
of a such that

a a a
E(a - a) = —  + —  + ___ + —  + ___ , (2 .8)

N N2 Nr

where a^, a^, ar are constants and not dependent upon N. If the

N observations can be divided into n groups, each of r observations 

(i.e. N = nr), then the estimator

J-^a) = na - ( n-l)ai , (i = 1 ,2, ...,n)

where a^ denotes the estimate of a obtained with the ith group 

of observations omitted, removes the term in 1/N from equation (2.8). 

Applying the technique to equation (2.8) gives

al a2 a3E [J± (ot) ] = na + —  + —  + — —  + 1
2 3 2r r n r n

1- (n-l)a - —
r2(n-1 ) r 3(n-1 )

(2n-l)a_
i.e. E[J.(a)] = a - —

1 .2r^nfn-l) r3n2(n-l)

(i = 1 ,2,...,n) .
1 ~Tukey, in unpublished work, has named J^a) the pseudo-jackknife

A

estimator. He defined the jackknife estimator, J(a), as the average 

of the i pseudo-jackknife values (i = l,2,..., n), i.e.

n
J(a) = -  l  J. (a) = 

n i=l
na ^  j

n i=l
(2.9)

1. The definition that follows is taken from Brillinger [7] 
who cites an unpublished paper and an abstract [72] of a 
conference paper by Tukey.
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J(a) will have the same expected value as J^(a), but a smaller 

variance. The term jackknife was coined for this procedure since 

it shared two characteristics with a boy scout's jackknife:

(i) wide applicability to many different problems;

(ii) inferiority to special tools for those problems for which special 

tools have been designed.

In most problems however the property of removing bias would 

not be sufficient to recommend the use of the jackknife. A comparison 

of the dispersion of the original estimator with that of the jackknife 

estimator is needed. Tukey noted that not only are the pseudo-jackknife 

estimates nearly unbiased, but their average sum of squares of 

deviations is nearly N(N-l) times the variance of their means. He 

proposed that in many instances the J^(a) are approximately independently 

and identically distributed and hence an approximate estimate of the
Avariance of J(a) is given by 

n [J (a) - J (a) ] 2
l  -------------------------  ’ (2 . 10)
i=l n(n-l)

whilst

n
I
i=l

[J (a) - a] 
[•^(a) - J(a) ] 2

n(n-l)

( 2 . 11)

is approximately distributed as a t variate with (n-1 ) degrees of 

freedom.

The jackknife can be re-applied in order to remove the bias 

term of order 1/N2 which remains after the initial application. 

Quenouille [45] and Kendall and Stuart [24] give a formula to achieve 

this further bias reduction, but if a^= 0 for all k > 2 then the 

second application of the jackknife does not yield an exactly unbiased
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statistic as one would have desired. Schucany, Gray and Owen [62] 

give a higher order transformation which provides an algorithm for 

eliminating, exactly, bias terms of higher order.

This thesis considers the jackknife technique when r = l (i.e. 

N = n) . Thus each of the N pseudo-jackknife estimates is calculated 

from the total number of observations less one, and the jackknife 

statistic is defined as

Intuitively, choosing r =1 is appealing since problems of 

dividing up samples and being left with awkward remainders are 

avoided. In addition, several studies involving applications of the 

jackknife have found r = l to be the "optimal" value of r (e.g. see 

Robson and Whitlock [56] and Rao [47]).

2.3.2 The Generalized Jackknife

Schucany et al. [62] provide a general method for bias reduction 

which includes the jackknife as a special case. Suppose that there
/N /\ /«vare k + 1 biased estimators of a, viz: a a , .... ,a , , defined

1 ’ 2’ k+1

over the N(=n) observations, and further suppose that the biases of 

these k + 1 estimators can be written as

N i=1
( 2 . 12)

k
E(a.) - a  = l  f (N)b.(a) , 

j=l J J
(i = 1,2,.. . ,k + 1)

then the estimator
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A

«l
A

a 2 ’ • ‘
/\

• • • V i
fll f 12 ' • • • • • £l,k+l

f f f ,kl k2 k,k+l

1 1 . . . . . .  1

f f f ,
11 12 • • • • • • 1 ,k+l

f 21
f
r 22 ' • ‘ • • * f2,k+2

f. f fkl k2 ' • k,k+l

(2.13)

reduces the order of bias to terms of order (k +1) in 1/N, i.e.

~(k)a - a = 0 N-(k+1)

where the argument of the f„ functions has been suppressed for 

notational convenience, and these functions are assumed to be known. 

Further, it is assumed that 1 $ k <; N-l and that the denominator 

of equation (2.13) is non-zero.

N
If k = 1, then = a, = —  £ ou ,

i=l

fll(-N-) N" ’ and f12('N') = (N-l) ’

and equation (2.13) reduces to the "regular" jackknife as defined 

by equation (2 .1 2) .

The formula given by equation (2.13) is exact, in the sense 

that if the bias of the original estimator takes the form of 

equation (2 .8) with only the first k terms non-zero, application of

will remove all bias.
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Schucany et al. only considered the problem of bias reduction.

The effect of their higher order transformation on the variance of 
~nc1

J was not investigated for the general case.

2.4 Previous Applications of the Jackknife Technique in Econometrics

2.4.1 Partial Correlation Coefficient

If the estimated value of the partial correlation coefficient 

is used as an approximate test for serial correlation in time series, 

Quenouille [44] has shown that the bias of the estimator is inversely 

proportional to the sample size, N. He suggested using (what later 

became known as) the jackknife technique with n = 2, i.e. the sample 

was split in half, in order to remove the bias term of order (1/N). In 

a later paper, Quenouille [45] generalized this procedure by noting 

that the same amount of bias reduction could be achieved by splitting 

the sample into n groups each of size r (where N = nr).

2.4.2 Autoregressive Processes

Quenouille's [44] original method of jackknifing (i.e. n =2) was 

later applied by Orcutt and Winokur [39] to the least squares estimator 

in an attempt to reduce the bias of ¡3 (the least squares estimator of 3) 

in the autoregressive process

y t = a + Byt_1 + et (t=1,2,...,N)

(ê  normally and independently distributed).

Using a Monte Carlo study they compared sample means and mean 

square errors of three estimators of 3 : least squares, jackknife least 

squares, and an estimator based upon correcting the bias of least 

squares using an expression derived by Marriott and Pope [31]. Whilst
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both modified least squares estimators reduced bias, the jackknife 

estimator exhibited a larger mean square error than the other two 

estimators and consequently was not to be preferred.

2.5 Use of the Jackknife Technique in Other Disciplines

A substantial body of literature on the application of the 

jackknife technique in various disciplines has evolved since Tukey's 

[72] initial conjecture. A survey of these applications, together 

with a comprehensive bibliography, has been compiled by Miller [35]. 

With the exception of the two papers cited in the previous section, few 

of the applications have any direct relevance to econometrics.

Perhaps the most successful area in which the jackknife has been 

used to date is that of ratio estimation. Given a bivariate sample 

(Xi, Y^) (i=1,2,— ,T) from a population of size N (T< N) with means y 

and q respectively, we are interested in estimation of the ratio 

R= y/r). In many instances the classical ratio estimator r = X/Y 

(i.e. the ratio of sample means) with X known, may exhibit a large 

bias compared to its standard error in surveys with many strata and 

small samples within strata. Durbin [14] suggested the jackknife with 

n = 2 as a bias reducing tool and investigated its properties under two 

distributional assumptions on the stochastic error term in the general 

linear model. Under both assumptions the jackknife not only reduced 

the bias of the ratio estimator, but also reduced the mean square 

error. Rao [47] and Rao and Webster [48] showed that the optimal 

choice of n under both of Durbin's [14] distributional assumptions is 

n = N.

Subsequent research investigated the performance of the jackknife 

in ratio estimation as compared with several other estimators. In 

general, the jackknife appeared to rank close behind the most efficient
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estimators but had the disadvantage of being more complicated to 

compute.

An application of the jackknife with direct relevance to 

econometrics is Miller's [36] proof that the jackknife OLS estimator 

of the vector of parameters in the general linear model is asymptotically 

normally distributed under conditions that do not require the vector 

of stochastic disturbances to be normally distributed. He conjectured 

that his proof extended to the case of non-linear least squares.

The jackknife has also been applied in the areas of maximum 

likelihood estimation, functions of a U-statistic, stochastic processes, 

inference on variances, and multivariate analysis. This list is far 

from exhaustive and the interested reader is referred to Miller's [35] 

bibliography for additional areas of application, and his synthesis 

for a review of the performance of the jackknife statistic over the 

many disciplines in which it has been used.

2.6 Alternative Methods of Bias Reduction Using the 2SLS Estimator

2.6.1 General Remarks

Methods designed to reduce the bias of the 2SLS estimator, without 

increasing the mean square error, have been devised by Nagar [37] and 

Sawa [60, 61]. Strictly speaking neither author "manipulates" the 

2SLS estimator specifically, but since both proposed estimators converge 

in distribution to the 2SLS estimator as the sample size increases 

indefinitely, they could offer themselves as alternatives to the J2SLS 

estimator, at least on a bias reduction criterion.

2.6.2 Nagar's Unbiased k-Class Estimator

Nagar [37] has derived an expression for the bias to order 1/N 

of a distribution approximating the distribution of the k-class
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estimators. He noted that for k = l + v/N, where v is the degree of 

overidentification of the equation being estimated, the bias vanishes 

to order 1/N. Asymptotically, Nagar's unbiased estimator is clearly 

equivalent to the 2SLS estimator.

Using Klein's model I, Nagar showed that whilst this choice of 

k certainly exhibited a smaller "bias" than the corresponding 2SLS 

estimator, 2SLS dominated on a "mean square error" criterion. Sawa

[59] , however, has shown (for a two endogenous variables model) that 

if k > 1 and nonstochastic then no moments of the k-class estimators 

are finite; hence Nagar's "unbiased" k-class estimator does not possess 

a finite first order, or any other order, moment.

2.6.3 Sawa's Combined Estimator

On the basis of an asymptotic expansion of the exact bias of 

the k-class estimators in a two endogenous variables model, Sawa

[60] proposed an estimator which uses a weighted combination of the 

2SLS and OLS estimators in order to remove the leading term of the 

asymptotic expansion. The weights are such that, asymptotically, Sawa's 

combined estimator converges to 2SLS.

In a series of experiments, the combined estimator dominated the 

2SLS estimator (on a mean square error criterion) when the number of 

exogenous variables excluded from the equation being estimated was 

very large. The reduction in bias (over 2SLS) obtained by using the 

combined estimator was always evident and frequently substantial.

The experiments were only conducted for an equation containing 

just two endogenous variables. Sawa [61] justified the extension of his 

combined estimator to equations containing an arbitrary number of 

endogenous variables by using Kadane's [23] small a approximations.

As yet, however, no Monte Carlo results have been published on the
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relative merits of the combined estimator vis-a-vis other limited 

information estimators. Clearly if the combined estimator dominates 

other limited information estimators on a mean square error criterion 

only for a large number of excluded exogenous variables, a Monte Carlo 

study may be impracticable, or at least very expensive.

2.7 Justification for Applying the Jackknife Technique to the 
Two-Stage Least Squares Estimator

The author has been unable to produce a rigorous justification

for applying the jackknife technique to the 2SLS estimator, as he

cannot express the bias of 2SLS as a Taylor series expansion in terms

of increasing powers of 1/N. Nagar [37], however, has shown that the

bias of the 2SLS estimator can be approximated by an expression
u

involving terms of increasing powers of order (1/N2) in probability.

In addition, using Kadane's [23] approximation to the bias of the 

2SLS estimator, the author has been able to derive a condition under 

which the jackknife is "unlikely" to reduce the bias of the 2SLS 

estimator. This analysis is contained in Chapter 5.

Whilst these results cannot provide a rigorous justification for 

using the jackknife technique as a bias reducing tool, it suggests that 

its application may be worth pursuing.
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CHAPTER 3 

ASYMPTOTIC THEORY

3.1 Derivation of the Computing Formula for the J2SLS Estimator

From equation (2.6) the 2SLS estimator can be written, in 

instrumental variable form, as

§ = [ Z , X ( X , X ) " 1X , Z ] - 1 Z , X ( X , X ) ' 1X ,2: (3.1)

We denote the 2SLS estimator of 0_ based upon (N-l) observations

as

§. = [Z.'x. ( X . 'X . ) " 1X., Z . ] _1 Z.'x. (X., X . ) " AX.'y. ,—i  L l  i v l  i '  i i J  i  i v i  i '  l —i  *
- 1, (3.2)

where the i subscript denotes that the ith observation (i=1,2,...,N) 

has been removed from the relevant data matrix. Using Appendix A we 

can show that

. . . (X’xr^.x.’iX'x) " 1
(X.'X.) = ( X * X -  x.x.')" = (X 'X )  + ------- — — ,-----l i  —l—i' v ' , i,„i, - 1

(3.3)
i - x : ( x ' x )  x .—i —i

where jo (a K dimensional column vector) denotes the ith row of X;

i.e. the ith observation on X.

Using equation (3.3), we can rewrite equation (3.2) as
f N

[ Z ' X - z . x ^ ] r x ' x ) " 1 +
( X ' X ) ‘ 1x i x { ( X , X ) " 1

[X Z-j¡ojo] >
1 - J o i x ' X ) " 1̂

f
)
N

[ Z ' X - ^ x ? ] ( x ' x ) " 1 +
(X*X)~* jo jo ( x ' x ) -1

l - x ^ X ' X ) " 1̂ .

s, /

where jo (a Kj + g dimensional column vector) and (scalar) denote 

ith observations on Z and respectively.

(3.4)

the
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Consider the term to be inverted in equation (3.4). Upon

expansion we obtain

Z'X(X,X)'1X'Z + z_x^ (x'x) " Z'XCX'X)"1̂ !  -z.ix!(X,X) 1x'z

z'x(x'x) 1x.x.'(x'x) V z  z.x.'(x'x) ix.x.'(x'x) 1x.z.'—l—i ' —l—iv —l—iv —l—i+ ---------------------------------------  +
' ' v-, “ 1 ' “ 1 '

1 - x.' (x'x) -1x.—l —l 1 - x.' (X'X) 1x. —l J —x

z'xu'xrVx.' (X'x)“1x.z.' Z.X.'(X'X) 1x.x!(X,X) ix'z—l—i —l—i —l—i —l—i
, ' ^ - 1

1 - x.' (X'x)'1x.—l —l 1 - x.' (x'x)_1x.—l —l

-1

. (3.5)

Let P = Z'X(X'X) V z  , 

s. = x.'(X'X)_1X. ,l —l —l (scalar)

= x^(X'X) x̂'y_ = x_Nj) , (scalar)

and = z'x(x'x) 1xi ,

then equation (3.5) can be rewritten as

a.a.' s?z.z.’ c 1 c 's . a. z. s. z. a._ I —l—i l—i—i I I l—i—i l—i—iP + s..z.z. +-----+ --------a.z. - z.a. --------- -------l—i—i ,, ,, , ,,  ̂ . —l—i —l—i(l-sp (1 -s.) (1-s.) (1-s.)

-1

P - z.z! + ----—  (z.-a.)(z. -a.)'
(1-5 ) X X X X- Ì -

- 1
(3.6)

Let P + ----—  (z, - a .) (z. - a,) '
(i-sp

C ,

then, using Appendix I, equation (3.6) can be rewritten as
f~i ~ 1 i ~ 1, , C z. z. C

1 , - 1 „ - 1 —1—1(C -z.z.) = C + ------- --- >—l—i . i „ - 11 - z. C z.
— l  — l

(3.7)

and using the same expansion, it follows that
, . P_1 (z. - a.)(z. - a.)'P_1C "1 _ p-l _ —i —i —i —i

(1-s.) + (z. - a.)'p 1 (z. - a.)v i J —l —l —i —l
(3.8)
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-1

Combining equations (3.7) and (3.8) and simplifying we obtain

n-1 'P - z.z. + 
— 1— 1

— —  (z. - a.) (z. - a.)*
(1-s.) -l —l —l —l

P 1 -<
P (z. -a.)(z.-a.) 1—l —l —l —a/ --------------- + —

(1 - s. + d.) k.i i' l

. P (z.-a.)(z.-a.) P ^z.z.
P z_.z_.-------------------------

1 1  (1 - s. + d.)v 1 1J

P z.z.P (z.-a.)(z.-a.) P (z.-a.) (z.-a.) P z.z.P (z. -a,) (z.-a.)—1—1 —1 —i' —i —1 —i — —1 —1 —1—1 —l —i' —1 — 1/------------------------- + -----------------------------------------
' „ - 1 I n — 1 i

(1 -si + di) (1-s. + d.): v 1 1J

. -1

(3.9)

where d^ = (z^-£u) 'P (z^-a^) 5 (scalar)

. z'.P * (z. -a. ) (z.-a. ) 'p *z.
and k. . 1 - z.'p-b. * =1---x-----------------i

1 1 1 (l-s1 * d 1)
(scalar)

The last term in equation (3.9) can be rewritten as

P 1 [z. -a.] [z.-a.] '—l —iJ —l —iJ
"k. - (l-z.'p  ̂z. ) 

1 —1 —xJ

(1 -s. + d.)- v l l —

and combining this with the first term in curly brackets gives

P 1 [z.-a.] [z.-a.]'—l —iJ —l —iJ
(l-z.'P  ̂z. )v —l
k. (1 - s.+ d.)l i l

Thus equation (3.9) can be written as

P 1 + —  
k.l

( 1 ~Z_- P_1£. ) _.
---------- —  P (z.-a. ) (z.-a. ) ' + P z.z.'. —l —l —l —l —l—i(1-s. + d. )v l i J

(li-ii) 'P'V; _i ,
-------------  P (z.-a.)z.' - -----------  P z.(z.-a.)—l —l —i „ —l —i —l(1-s. + d.)V 1 l-' (1 - s. + d.) v 1 (3.10)
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Now consider the second "term" in equation (3.4), viz :

[Z'X- z.x.']
L — l — i J

( X ' X) -1 x. x •' ( X ' X) -1
(X'X) - 1 + ------------------

1 - x^X'X)“1̂

Z ,X(x'x)‘1x'y + z.xJ (X'xr^.y.

(1 -sp
+ 1 .z'x(x'x) ^xJCx'x) V y  + 1 . z-xjçx'x) ^ x !  (x'x) 1xiyi

(1-s.)

- z'x(x'x) " 1 x i V i  - z ^ x ' x r V y

_1__. z'x(x'x)"1xix:(X,X) 1xiyi 1 . z.xl (X'X^x.x? ( X ' x f V y
(1 -s.) d - s p

(3.11)

Let

q = z'x(x'x) V y  ,

then equation (3.11) can be written as

a - y ± L i  +
d - si)

( V ^ i )  (Xi-Ü-(x’xi^x'y) (3.12)

To obtain an expression for (X in (3.2), we must postmultiply 

equation (3.10) by expression (3.12). Postmultiplying equation (3.10) 

by q we obtain

0 +
k.i

d  - i , _i ,
----------—  P" 1 (£i -a- ) (£i - £i) + P lili
(1 -s + d)

(z.-a.)'P z. , z.'p i(z.-a.) .—i — —i . ? -i '--i „ - 1
-1

(1 -si + di)
P (z.-a.)z. -—i —i —i (l-si + di)

P z.(z.-a.)—l —i —i
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Postmultiplying equation (3.10) by -y^z^ and simplifying we obtain

k.
1

(z.-a.) ,P"1 z .
P_1 z . -----— ------- — P" 1 (z. -a.)

—1 ,, , . ;1 —1u - s i  + di )

Postmultiplying equation (3.10) by the term in square brackets in 

expression (3.12) and simplifying we obtain

k.i

(l-z.'p"1 z.) . z.V*(z.-a.)
- - 1— P" 1 (z. -a. ) + ^ P " 1*.—l —l . —i
(1 - s± + d±) (l-s.+d.)v 1 l' [y l  ■  i £ ]

Then rearranging the above expressions we obtain

0.  =  0 +—l —
(z.-a.) P *z. . . ,—l —l —l - 1 . 1 n-l------------- P (z_. -a_.) - —  P z.
k.(l-s.+d.) 1 1 k. 1- lv 1 . XJ 1

1

y . - z . eJ l —l—

(1 - z.'p xz.) . Z:P 1 (z. -a.) . .—x —1 n-l, . —1 —1 — l' n-l------------ P (z.-a.) + ------------- P z.—i —i , . — ik.(l-s.+d.)i v l ki(1 "Si+di)

(i = l,2,...,N) (3.13)

f ̂Note that (y^ - component of the reduced form

residual vector v̂  = (I - M )̂Z. » we denote it therefore by v^. Similarly,
/\ A ^

tu = (y^ - z^£) is the ith component of the structural form residual
A A A  | A

vector = (%_- Z0), and = (y^ - a^0) is the ith component of the 

"second-stage" residual vector w_ = (£-M^Z§) where = X(X^X) 1 'X".

Equation (3.13) was used for computing the J2SLS estimator and 

its associated test statistic in the Monte Carlo study of Chapters •

6 and 7.
. *

For future analysis, it will be convenient to rewrite equation

(3.13) as
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A
0.—X = £  + P %  » (i = l,2,...,N) (3.14)

where g. —x = (h. + i.)u. -x X + h. (v. - "i> • (3.15)

h
(l-z.’p-1z.)

■ (z.-a.) —x —1
z!p"1(z.-a.) —X —x —XJ (3.16)—x k.(l-s.+d.)

— x  »
k.(l-s.+d.)XV X x'

(z.-a.) P *z. .
and j, = -------------  ( z .  -a.)----z. .

1 k.(l-s.+d.) 1 1  k. xxv x x' l
The result in (3.14) is given in Phillips. [42]

3.2 An Expression for the J2SLS Estimator

(3.17)

To form the J2SLS estimator we are required to take the summation 

of equation (3.14) over all i (i= 1 , 2 , ...,N) omitted observations.

Using equation (3.14) we can form the J2SLS estimator as

(N-l) N ^
J(0) = N0 -

N i=l
l  § -. L . —l

„ (N-l) • N
* £  - — —  f I %

N i=l

and using equation (3.15) we then obtain

. . (N-D • _
J(0) = 0 -

N

N N ^
y (h. + i.)u. + y h.(v.-w.)

—1 -¿-X X . ' ' , —1  X 1i=l i=l

Substituting for h. from (3.16) we obtain— i

(3.18)

N
l

„ /V A
hi(vi " wi)

i=l 1 i*l _k± (l-s.+d.)

N l-z.'p^z.
7 ---------—  (z.-a.) (v.-w.)l i —x v 1 i '

N z.'p- 1 (z. -a.)r —1 —1 —1 ,»■ ~ .I  -------------  z. (V. -W. ) .
i=l ki(l-si+di) —1 ' X 1'

(3 . 19)
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Since (z_.-aL.') and z. are the ith columns of Z'(I-MY) and z'1 1 1  A

respectively, it follows that

N 1 -z_! P 1z_.
I -- ---- —  (z-a.)(v-w) = Z'(I-MJA3(v-w)

i=l k. (l-s.+d.) _1 _1 1 1 Xi v l i
(3.20)

and
N (z.-a.)'p-1 z. v —1 —1 —1  ̂ _ i.
L -------------£iCvi " V  = - Z A2(v -w) ;

i=l k.(l-s.+d.) i v i

where is an N x N  diagonal matrix with iith component

1 'r.”l1 - z. P z.
( V i i  = ----------- > (i = 1,2,...,N)

k.(l-s.+d.) i v l

(3.21)

and is an N x N diagonal matrix with iith component

(i = 1,2,...,N)(A_).. 2' n
-z .'p ''■(z.-a.)—l —l —i
k.(l-s.+d.) i^ i i

Substituting from equations (3.20) and (3.21) into equation (3.19)

gives
N
.E M V " ! )  = Z 'CI-Mx)A3 (i-w) - z 'A2(v -w ). (3.22)

Similarly it can be shown that
N
l  hiui = Z'(I-M^)A^u - z 'A2u . (3.23)

N
Consider the term £ j.u. in equation (3.18). Substituting for

i=l- 1  1
from equation (3.17) gives

N
. U i u i =  1

( z . - a . ) *P A.—1 —1 —1

i=l i=l k.(1 -s.+d.)l l i
(z.-a.)u. —l —i J i

N
l  -

i=l k. i

A

Z. 
—1

u.
1

= - z ' (I-Mx)A2u - z'AjU ,

where A^ is an N x N  diagonal matrix with iith component

(3.24)
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Substituting from equations (3.22), (3.23), and (3.24) into 

equation (3.18) we obtain

J (9) = £  + [~P"1Z'(A1 + 2A2 - A3)u

- p_1 z 'm x (A2 - A3)u 

+ P_1 Z ' (A2 - A3)(v - w )

+ P_1 z 'm xA3(v - w)| . (3.25)

The ensuing analysis is simplified by writing equation (3.25) in a 

slightly amended form. Recall that 

u = [I - Z f Z ' M ^ r V M ^ y  ,

v = [I - Mx]y ,

and

w = [I - MxZ(Z,MxZ)“1 Z'Mx]y , 

from which it follows that
I A AZ (v - w) = ,

Z'Mxu = 0 ,

and z 'm x (v - w ) = 0̂ .

Thus, if we define

we can rewrite equation (3.25) as

J (0) = 0 + (N-l). P"1 |z'(A1 + 2A„ - A,) u
N *- 1 * 5

- Z 'MX (A2 - V “
+ z '(A2 - A3)(v - w)

+ z 'm xA3(v - w)j . (3.26)
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3.3 The Asymptotic Equivalence of J2SLS and 2SLS 

3.3.1 Preliminary Results

In this section the asymptotic behaviour of the three diagonal 

matrices (viz: A^, and introduced earlier in this Chapter will

be investigated.

Essentially we must consider the following terms: 

k., (1 - S. + d.)s z!P-1 z. and z!p *(z. - a.),i* v i ’ —i —l —l —l — ’

where s. = x!(x'X) * x. ,l —lv —l

di = (z* - ai)'P_1 (ẑ  - aT} ,

and k. = 1 - z'.P z. +l —l —l
1 ¿ p~ 1 (li ’ li1 (li - li) 'p 1L i

(1 - s i * d i )

The reader is reminded of the following results which were 

established in Chapter 2:

-i-l
(a) plim

N + 00
1 . z'X( 1 . 1 . x'z
N N N

= plim N.P * = Ep  ̂ ,
N -»■“

where Ep'*’ is a finite positive definite matrix; 

and

(b) plim 1_ . X'Z = Ey7 ,
N+°° N

where EXZ is a finite matrix.

For the ensuing analysis result (b) will be expressed in a 

different form. Since

x'z = x'[xn + V : Xx]

we can rewrite result (b) as

plim 1_ .. x'z
N ->-oo N
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It follows from assumption (iii), section 2.1.3, that

lim Ns. = lim x! ( l  . X'x\ ^x. = x! x. ,
N ~  1 N ~  - 1 (n )  - 1 - 1 XX - 1

which is a finite constant, and consequently 

lim s. = 0  .
N-xx> 1

Consider the vector a! , where—l ’

£U = xi'(X'X)"1X,Z = x|(X,X)"1x’ [Y : Xj] ;

'  r '  tt ' ii.e. a. = x.n : x,.J .—l —l —1 i

Using result (a) it follows that

plim N . a^P_1a^ = [ x l j l : x pJE"1 [n'x. : x,,] ,
N

a finite constant, where x'. is the ith row of X, .—li 1

This result can be shown as follows:

the matrix (X'X) ^X'X^

is a submatrix of (X’X) ^x'x = I ,K

and thus consists Qf columns of the KxK identity matrix, 

premultiplying these columns by x| we obtain x ^  .

It will be convenient to write equation (3.29) as

plim N . a! P *a. = a! a. ,f, —i —i —i P —i *N -VOO

where plim _a. = a_. , a finite constant vector.
N 00 1 1

We can conclude, therefore, that

t _iplim a. P a. =0.
N -* °° 1 _1

(3.27)

(3.28)

(3.29)

By

(3.30)

(3.31)
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Consider the term

(z. - a. ) ' P 1 (z. - a.) , —l —l —i -l ’

where the vector (z. - a.) is the ith observation on the matrix—i —a/

[Z - x ( x 'x ) "1x 'z ]  .

Partitioning this matrix we obtain 

[Y : Xx] - X(X,X)"1 X' [Y : X^

= [Y : Xx] - [xn : Xj]
= [V : 0] ,

which will have ith observation denoted by

[v! : O'] .

It follows that

! _1 /N . _ 1 ̂
(z.-a.) P (z.-a.)= v - P 1v-, —1 —1 —1 —a/ —1 —1

(z. - a.) P ■ = [v! : 0 ' ] P 1 [v. + Ü* x. : x. . ] ,—l —i J —l —l —  —l —l —li ’
 ̂I „ I -, n-l I

(3.32)

(3.33)

and

a!P  ̂(z. - a. )—i —i — i J [x!ïï : X^] P-1 : o] (3.34)

Since each element of the OLS reduced form residuals matrix 

converges in distribution to the corresponding element of the 

disturbance matrix, from equation (3.32) and using result (a) we can 

write

plim N . v_! P v̂. = v_.' Z v. . (3.35)
N + “ 1 1 1 1

Since Zp'*' is a finite positive definite matrix, and since 

the v^ (i=1,2,...,N) are independently and identically distributed 

with mean zero and finite covariance matrix (this fact follows from 

assumption (v), section 2.1.3, since the reduced form disturbances are



just linear combinations of the structural form disturbances), it

follows that

is a random variable with finite mean and variance. Hence

 ̂I - X /splim v. P v. = 0  ,
N+oo - 1  - 1

v.—l (3.36)

since 1_ . v̂  Ep  ̂ v. converges in probability to zero. 
N 1

Combining equations (3.32), (3.33), and (3.34) we can write

The probability limit of the last term in equation (3.37) can 

be written as

are independently and identically distributed with mean zero and finite 

covariance matrix, it follows that

v. E a.—l P —l

is a random variable with mean zero and finite variance. Thus

plim (z. - a. ) ' P”1 a. = 0  ,
N + °°

since 1_. v_! Ep  ̂a_. converges in probability to zero.
N 1 1

Combining the above result with that given by equation (3.36), and 

substituting into equation (3.37), we have shown that

plim N.(z. - a.)'P 1 a. = f.  ̂ —l —l —l (3.38)

Since Ep^ a^ is a finite vector, and since the v_̂ (i = 1,2,... ,N)

plim (z. - a-) P^z. = 0 .f, —i —i —lN -*■ °°
(3.39)

We now consider the scalar z! P~^z. which can be written as—l —l
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Using equations (3.29), (3.32), (3.36), and (3.39) it follows

that

plim zj P_1 z. = 0 . ‘ (3.40)
N -*-00 1 1

From equations (3.27), (3.32), and (3.36) we have shown that

plim (1 - s. +d.) = 1 , ' (3.41)
N -*■«

and from equations (3.39), (3.40), and (3.41) we have shown that

plim k. = 1 . (3.42)
N + oo 1 •

3.3.2 Proof of Asymptotic Equivalence

To prove that the 2SLS and J2SLS estimators are asymptotically 

equivalent, we are required to show that

plim A[J(0)-f] = 0 .
N -»■ “

From equation (3.26) we can write this requirement as

plim [J0-6] 
N->°°

,plim[l_.Pj *Jplim 1 Z*(A. + 2A„ - A_)u
N \N / ] N 00 7n *

-plim 1 . Z’My(A_-A )u + plim 1 . z' (A_ - A_) (v - w) 
N-»-“ 7Ü N +  ° ° 7 n 5

+ plim 1 . z 'MxA3(v - w ) = 0 .
N 7iT

A term by term evaluation of equation (3.43) now follows.

(3.43)

Consider the first term in curly brackets in equation (3.43), viz:

. Z ' ( A 1 +2A2 - A3)G . (3.44)

We know that:

the iith component of A^ is 1 /k^ ;
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- (z. - a .)'p *z.
the iith component of is ---------------

k. (1 - s . + d.)i v i i J

Cland the iith component of is ------------ ;
k. (1 - s. + d.)l ̂ l i J

thus, after some algebraic manipulation, the iith component of the 

bracketed term in expression (3.44) can be written as

(A1 * 2A2 * V
s.1

1 1 k. (1 - s. +d.)iv l i J

a! P_1a.—l —l
k. (1 - s. +d.)i i i

Let a's P be the largest of the a^ P'^a^ (i = 1,2,. . . ,N),

then it follows from equation (3.30) that 

plim N.a' P-1a = a ' E” * 1 a" ,
S+co ~ s -s - s p -s

a finite positive definite quadratic form. It follows, therefore, that

plim vfa max a_! P~̂ a_. = 0 . (3.45)
N+°° l$i<:N 1 1

Using a similar argument it can be shown that

lim vfa max s. = 0 . (3.46)
N-*°° l<i$N 1

Combining equations (3.41), (3.42), (3.45), and (3.46) we obtain

plim »fa max (A + 2A - A ).. = 0  . (3.47)
N+°° l<:î N z 6 11

The jth component of the random vector (3.44) can be written as
N
y m. . (A + 2A - A_) . . u.. L . iiv 1 2 3J n  ii=l J

N
+ I (A + 2A_ - A )..u.v..v 1 2 3 li l ij (3.48)
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where the nu^ (i = 1,2,...,N; j =1,2,...,K^ + g) represent the 

nonstochastic part of the z„  (the ijth element of Z), and the 

vij(i = 1,2,...,N; j =1,2,... + g) represent the reduced form

disturbance part of the z^ (where appropriate). Without loss of 

generality we can assume that the observations on the (g) explanatory 

endogenous variables occur in the first g columns of Z; thus v ^  = 0 

for all j >g (for all i) .

Consider the first term in expression (3.48), viz:

N
T m. . (A- + 2A„ - A_) . . u. .A. ii^ 1 2 y  il li=l J

Since the nr . are nonstochastic, it follows from equation (3.47)

that

plim max
N -*00 l<d£N mijtAl * 2A2 - A3>ii (3.49)

We now require the following theorem which is taken from Malinvaud 

[27; pp. 322-323] and is cited without proof.

THEOREM I.

Let xtT (t = 1,2,. . . ,T; T = l,2,. ..) be random variables. If

plim max x _ = 0 , 
T+°° i$t$T r

and if the û. are mutually independent random variables identically 

distributed with zero mean, then:

plim i l  x T = 0 and plim \ u x _ = 0 
T+°° t = l T-»-» 1 t = l Z
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Since each component of the 2SLS residual vector converges in 

distribution to the corresponding element of the disturbance vector, 

using Theorem I together with equation (3.49) if follows that

1 N
Elim N ^  (A1 * 2A2 - V i A  = 0 •N->-°° i=l J

Now consider the second term in expression (3.48), viz:

i=l
(A1 ♦ 2A„ - A,).. u. v..

2 y  ii i i j (3.50)

The reduced form disturbances associated with the g explanatory 

variables can be decomposed into a term (u ) which is proportional 

to the disturbance term in the ith structural equation, and a term (E) 

which is uncorrelated with u (e.g. see Nagar [37; p.577]), viz:

V = u T' + E . (3.51)

The ith row of v can be written as

v! = u4 v' + e! , (i = 1 ,2,...,N)

whereupon by substituting for v „  in (3.50) we obtain 

N
£ (A, + 2A_ - A ).. î .u.u.. L, v 1 2 3 n  i l l1=1 J

N
+ T (A, + 2A„ - A_).. u.e.. , 

> , 1  2 3'n l iii=l J

where denotes the jth element of .

Let E(u?) = a2 then, since u^-*u^ as N + ®, it follows that the 

(u? - a2) are (asymptotically) independently and identically distributed 

random variables with mean zero.

Since the ip̂  are nonstochastic it follows, using equation

(3.47), that

plim yN max (A + 2A„ - A ).. ip. 
N + °° l<:i<N 1 Z 5 ii j

= 0 .
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Combining this result with Theorem I it follows that 

P1 1 "1 k  J / N (A 1 + 2A2 “ A3> ii («iui - O2) = 0  .N-̂ -oo 1 = i ■>

This result implies that

piimi £ AfA * 2A - A ) V i ui
N̂ -oo x = l ■>

* Piim R- I PH(A *2A -A ) * a2
N-J-oo x = l J

1 Nplim ^  ^  v̂ I(A1 + 2A,
N-+°° i = i

A ). . 3'n

= 0 from Theorem I .

Since u^e^ ->-u^e^^(as N-+00) which are mutually independent randomij
variables (i.e. u. ,e. _ . is independent of u.e..) it follows from v l+l l+l,j r l ij
Theorem I that

1 Nplim I A(A * 2A - A ) u e « 0. 
N-+0O x = l ■>

This concludes the analysis on the first term in curly brackets 

in equation (3.43). To summarize, we have shown that

plim 1 . z'CA. + 2A. - A,)u = 0 .
N + °° At

Consider the second term in curly brackets in equation (3.43),

viz:

“ Z MX<A2 " V "  ’ (3.52)

where the iith component of the term in brackets can be written as

(z.-a.)'P^z. (1 - z! P 1 z.), . T  - —1 — 1 —1 i —1 —
(A2 ^3) xi +

ki(l-si +di) k.d-s.+d.)
(3.53)
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Expressing equation (3.53) in terms of a common denominator, the 

numerator can be written as

- (z. - a.)'P  ̂z. + s- - s • z. P  ̂z. - d. + d. z! P  ̂z.—1 -iJ —l l l—i — l l l—i —l

z! P ■'"(z. -a.)(z. -a.)'P ẑ. . —1 —1 —x J —1 —1

The following probability limits can now be established:

plim N(s. z! P 1 z.) = plim 1 . x! ( l . x'x\ x. . z! ( l  . p\ z. = 0 ,
N + «> 1 1 N \N / 1 1 \N ) 1

using equation (3.40) and the knowledge that x! E  ̂x. is a finite—1 AA 1

constant;

plim I z! P 1 (z. - a.) (z. - a.)'P 1z_. \ = plim
N+°° \ )

z!P  ̂(z. - a.) —i —l — i
—I 2

= 0,

using equation (3.39); 

and

plim N(d.z_.'P ■*■£.) =plim 1_ 
N -> °° 1 1 N ii \ = 0 ,

\N N

using equations (3.35) and (3.40).

Combining the above three results with equations (3.41) and (3.42) 

we have shown that

plin, N(A2 - A3).. = x! Xj - 2v! V. (3.54)

and, by the same proof, that

plim N(A) =
N

I r”l I r.“l
- £ i  £xx l i  * Z i  Ep S i (3.55)

Expression (3.52) can be written as

- 1_. Z-X/l . X ' x)"1 . X'  (A - A )u .
N In 7 2 3

(3.56)
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The rth element of 

X'(A2 - Â3)u

can therefore be written as

1_
N

N
I
i=l

x ’x

2
N

N
l
i=l

(3.57)

where (r=1,2,...,K) is the rith element of x ' .

Rearranging the first term in expression (3.57) and taking its 

probability limit in the context of expression (3.56) gives

JZX LXX
N
l
i=l

lim * (i  . x ' x V 1 . l  5 -
Si liî ) ïi- PU ” n .¿»ir“! - £\ / N -»-00 1=1

This result is obtained by noting that the limit term is a finite 

constant, whilst the Law of Large Numbers (e.g. see Malinvaud [27; 

Proposition 12, p.322]) ensures that the probability limit term is zero.

Since each element of the 2SLS residual vector converges in 

distribution to the corresponding element of the disturbance vector, 

and since each element of the OLS reduced form residuals matrix 

converges in distribution to the corresponding element of the disturbance 

matrix, it follows that

converges in probability to

v! ^p1 . (3.58)

Using equation (3.51), expression (3.58) can be written as

( u V  + e!) Z" 1 (T u. + e^u.,
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which upon expansion gives

y X 1 T uf + 2e! El1 ¥ u2 + e! Zl1 e.u. . (3.59)

In the context of the second term in expression (3.57), the first 

term in expression (3.59) can be written as

- y Zp1 I plim
N
I

N̂ -oo i = l
X. [u?îr l E(u, 3 )] = 0

Noting that the quadratic form in the above equation is a constant, 

the Law of Large Numbers ensures the result.

In the context of expression (3.56) this result implies that

- Z Z-'*'zx ^xx y z-1 N
D ¥ plim rr T x. u? P —  f. N .i. îr lN-*co i  = i

in a finite matrix, provided E(u?) is finite.

Since u^ and e^ are uncorrelated random variables (by assumption) 

it follows, using Theorem I, that the second and third terms in 

expression (3.59), in the context of expression (3.57), converge in 

probability to zero.

Collecting results, we have shown that

plim z 'm x (A2 - A3)u 
N -»-oo

is a finite constant, and hence

plim 1 . z'my(A - 7T )u = 0
N+co A 1 3 -  -

J  N
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The third terra in curly brackets in equation (3.43) is

Z'(A2 - A3)(v - w) (3.60)

We know that

u = (y - Z0) ,

and

v = (I - Mx)y ,

w = (y - MXZ9) ,

from which it follows that
/\(v - w) = - Mxu (3.61)

Substituting from equation (3.61), expression (3.60) can be written as

Z' (A2 - A3)X x 'x (3.62)

Consider the term

z '(A2 - a3)x

which has jsth element given by

N1 r ,  i / 1 . X'X 
N i=i i;i~i V N

-1
X .  X .  
—1 I S

2 y f 1 .p V 1-T7 > Z .  . V .  I — I V .  X .N >  lj—:l \N y —l is (3.63)

where x^g (s = 1,2,...,K) is the isth element of X.

The first term in expression (3.63) can be expanded as

, ( l  . X’X X 1— V m x ' ( — N ij-i 1 N x. x.
—1 I S

N , /l . X'X \ 1
+ F X  -1 (fi=l

x.x. v.. ,
—1 I S  1 J  ’

whence the first term of the above expression converges to a finite 

constant and the second term converges in probability to zero by the
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Law of Large Numbers.

The second term in expression (3.63) can be expanded as

2_
N

2
N

ij "is —i \N ) -i

N ( i  n \ ‘ 1v / 1 . P \ ~
/  X .  v .  T7 V .  V .  .is -i yN J  -i ij (3.64)

Using the argument preceding expression (3.58), and substituting for 

v^ from equation (3.51), expression (3.64) can be rewritten as

2_
N

N

i=l
m . .x. 
ij is t 'z: 1 T u ? + 2e! El1 T u . + e! — P — l —l P —  l —l

2
N

N

i=lxis
T'E 1’fu? + 2e! -  P - i -i

e. —i

OibjUi + eij}

From our analysis to date, it follows that both terms in the above 

expression converge in probability to finite constants.

Since, from our initial assumptions, the term to be inverted in 

expression (3.62) converges to a finite matrix and the term on its 

right converges in probability to a null vector, we have shown that

plim 1_ . Z' (Â  - A^) (v - w) = 0_ .

The fourth term in curly brackets in equation (3.43) is 

Z''MX 7T3(v - w)

which, using equation (3.61), can be rewritten as
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From our initial assumptions, the first three terms in round brackets 

converge in probability to finite matrices, whilst the fourth converges 

in probability to a null vector.

Using equation (3.55) the rsth element of the "middle" term 

in the above expression can be written as

i N il r i v-i
r r  /  X .  X .  Z v v  X .  X .N ir —i XX —i isi=l

1 N !1 V 1 v”l+  r r  ) X .  V .  Zin  V .  X .  ,N . ir —i P —i isi=l

whence the first term converges to a finite limit whilst the second 

term converges in probability to a finite limit. Thus we have shown 

that

plim J_ 
N * “ ^

Z'M^ (v - w ) = 0_ .

Using the above results, we have shown that

plim A  [J(§) - 0_] = 0_ ;
N + °°

i.e. the J2SLS and 2SLS estimators are asymptotically equivalent.

3.4 Asymptotic Normality of J2SLS t-Ratios

From equation (2.10) the variance of the J2SLS estimator of 9 

can be written as

V[J(§)] = 1 N 
—  I

N(N-l) i=l
J.(0) - J(0) V i )  - J ® (3.65)
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Using the definition of the jackknife it can be shown that

r* —t i— N
J (0)-J(0) = N .8 - (N-l)8. - N.9- (N-l) £ 0. , (3.66)

L J L N i=l ->

— N/\ V1 ̂whereupon, if we let 0_̂ = ^ I 0  ̂,
i=l

equation (3.65) can be rewritten as ,

i N -  -
V[J0] = -- --- (N-l)2 l (0 - 0.)(0. - 0.) .

N(N-l) i=l 1
(3.67)

Using equations (3.25) and (3.66) we can write

0̂  = 0 - N 1 . P"1[Z’(A1 + 2A2 - A3)u

- ZV A2 - A3 ^

Z’(A2 - A3)(v - w)

+ z 'm xA 3(v - w)J (3.68)

1 N
Let g = N  ̂h  i=l

represent the terms within the square brackets in equation (3.68), then 

equation (3.68) can be written as

0. = 0 - N . P 1 g ,

and thus

N /—  \ -  V N _ . \
/\ A || A «A. | p | A / \  _ 4 ]

- i ^ i i - i i )  = + N'i-p“ii)lvi - £ i + N_1 .p_1 i^

Expanding the right hand side of the above expression gives
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¿ ( M M H I f M i ' p_1

, N . , N
- 1  i p ¿cii - £ ) + - 2 i  p ¿ r  p_1

i=l N2 i=l

Since
N N

/A /\ r—i /\ /S

I c i i  - £ >  = li=l i=l
0. - N0 —i — = -P-1

we can write

N
r~i »A — »

l  (£, - £)g p
i=l

-1
N

i=l
P_1 g g' p 1

From equation (3.14) it follows that 

N N
p A A A A t p I |

. 1 (£ - £i)(£ - £i) = I ? §i %  p
i=l i=l

and using the definition of g_. as given by equations (3.15), (3.16), 

(3.17) we can write

N N
l  = l
i=l i=l

A A A

(vi -wi + ui)hi +uija
A A A

(Vj. - wi + + Uij

IN j—
V ^  A -.2 1 1 * -a= > (v. - w. + u.) h.h. + (v. - w. + u.)u.h.i.1_  l i l —l—i v i i l—i—i

~ n . , I . .T1+ U. (V. -W. +U.)j.h. + U. 1 . 1 . i i i i — i—i i —i

, A /A /ALetting e^ = (v^ - w^ + u^) and expanding the above terms 

individually we obtain the following four expressions:

and
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¿  c-i - \  * üiüi = î - ( V u  tx  - Si) ( il  - Si)

* 4 , ®itA2>ii ¿ili 
1=1

* . ^ i ' V u ' V i i d i - î i ^ î
1=1

N
+ i^ i cV i i t A3)ii L i ^ L i - ^ y  ■>

N
i cC± - ij * v ^ ü i l i  = ¿ V i t V i i ' V ü t i i - i i i t í i - í d ) '

N
¿ « A t V i i W P ü t i i - i P  h

N
+ Y ê.û. (A„)2. . z.(z. -a.)'i i^ 2^ii —iv—i —iJ

N
¿ W V i i f V i i  z j z l  ;

N

4 1uie4 ‘'Vii|7 'l4i iitij Z j )

* j  V i C v l i C i i - i i i z :  
i=l

N
lili >i=l
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NV 2̂ • - ' 
2. u • J • 1 •.L . i —l—i i=l

N
= 1 

i=l
N

- I
i=l
N

- I
i=l
N

- 1 
i=l

~2 , , 2

~2 2

where, as before, the ii subscript on a matrix indicates the iith 

component of that matrix.

Gathering terms, we can write

I g-g- = £ e?(A )2. + 2e.u.(A_)..(A_).. + u? (A„), L i^ 3'n i r  3Jn v 2h i  i  ̂ 2'i=l i=l
N

 ̂ I
i=l
N

+ l
i=l

2

Ü ti.i-tlHi.i-iP

AO 2 A A  A O Oe2(A„).. - 2e.u.(A„)..(A,).. + u?(A,)?. iv 2' n  i i1- 2'n^ 1 ' n  l'n lili

e?(A )..(A„).. - e.u. (A_).. (A.). . + u.e.(A„) 3 ' n v 2'n i 3'n^ l'n i 2'
A A _ _ 2

Ü

- S?(AJ..(A.)..r  2 ii l'li (z . - a .) z—i —i —i

I S!(A2)ii(A3)ii * eiGi(A2)2ii - SiGiCAPiitAj)
i=l _

- u?(A0)..(A.).. z.(z. -a.)' .r  2'n^ l'li —l —i —i'

ii

(3.69)

We define the following matrices

Ri = Cy - zi) (y - z!) ’ = u £' ,

R2 =
(I-Mx) (y-Z0) (I-Mx)(y-Z0)J’ = (I -Mx)u u'(I-Mx) , > (3.70)

and R3 = (y “ z£_) ( I  -M x ) ( y - Z § ) j '  = u u'(I-Mx) ,
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which allows us to rewrite equation (3.69) as 

N
I Si!.! = Z'(I-MX) [A2(diag R ^ A  +A (diag R2)A3 

i=l

+ 2A2(diag R3)A3] (I -Mx)Z

+ z'[A2(diag R2)A2 - 2A2(diag R3)\ + \  (diag R-^A^Z 

+ Z'(I-MX) [A3(diag R2)A2-A3(diag R^Aj 

+ A2(diag R3)A2 - A2(diag R1)A1]Z 

+ z'[A2(diag R2)A3+A2(diag R3)A2

- A3(diag R3)Ax - A2(diag R^Aj] (I - Mx)Z , (3.71)

where (diag ) denotes that the relevant matrix has all off-diagonal 

components equal to zero.

If we also define = z'A^ + Z'(I-MX)A2

and S2 = - Z'A2 + Z'(I - MX)A3 ,

then equation (3.71) can be rewritten as 

N
I JLili = sx (diag RjiSj + S2(diag R2)S2 

i=l
- Sj(diag R3)S2 - S2(diag R3)S{ .

We also require g^which can be written, using equation (3.68), as 

£  = Z' (Ax + 2A2 - A3)u - Z'MX(A2 - A3)u

+ Z' (A2 - A3) (v - w) + z 'MxA3 (v - w ) ;

i.e. g = S u - S2(v - w + u) , 

and hence

¿ ¿ ’ = S1R1 S; + S2R2S2 ' S1R3S2 - S2R3SI *
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Upon substituting the above results into equation (3.68), and then 

into equation (3.67), we obtain

V [ j ( § ) ]  = ( N - l )  . P ' 1 fs.
N L

^diag + 1 . 
N N

I s ;

« s 2 |̂ d ia g  R2 + 1 . 
N % >s ;

-  s l (
d ia g  R3 + 1 . 

N ' I s 2

-  S 2 Î d ia g  Rs + 1 . 
N R3>

| s j j  p_1 . (3 .72)

It is shown in Appendix B that the expression in square 

brackets in equation (3.72) converges to

a 2 Zp

i n  probability as N *► 00 .

It follows from equation (3.72) that

plim V[J(|)] = a2 Z l 1 ,
N 00

since (N-l)/N -> 1 as N .

Since J(§) has been shown to be asymptotically equivalent to Q_ 

i t  follows that, asymptotically,

' (j(0,) - 9 J
— ± ---- ^ ( 0 , 1 )  . ( j  = 1,2,..., K1 + g) .
^ [ J ( 0j)]
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CHAPTER 4

COMPUTATIONAL ASPECTS

4.1 Computer Algorithms and their Certification

From equation (2.6) the 2SLS estimator of 0̂ can be written as

6_ = [Z'X(X'X)-1X’Z]"1Z'X(X,X)_1X'y (4.1)

In all but the simplest cases, equation (4.1) must be evaluated 

using a computer. Matrix manipulations can be performed using either 

standard algorithms designed for a specific computer and usually 

incorporated in the software library, or machine independent algorithms 

published in computer programming journals. Alternatively one could 

write one's own algorithms although this might be inadvisable for the 

more complicated operations such as matrix inversion.

In all computational work in this thesis, matrix manipulations 

were performed with algorithms written by the author, except for the 

matrix inversion algorithm. To perform inversions an algorithm 

written by Devine [11], which inverts a symmetric positive definite 

matrix by the Choleski decomposition method was selected. All programs 

were written in Algol 60.

Certification of Devine’s algorithm was carried out by the 

author. This was performed by multiplying the original matrix by its 

calculated inverse and then obtaining the maximum absolute deviation 

of elements from the unit matrix. These maximum absolute deviations 

are given in Table 4.1 for the eight different data matrices which 

are inverted during the Monte Carlo study in Chapters 6 and 7. The 

column headed K represents the dimensions of the matrix (i.e. the 

number of exogenous variables in the model), whilst the column headed X
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Table 4.1: Maximum Absolute Deviations (M.A.D.) of 
(X'X) ^(X'X) from the Unit Matrix

denotes the theoretical pairwise correlation between the K variables.

The sample correlation matrices are given in Table 6.2.

K A M..A.D.

5 0.00 5.46 X

(NJT—H 1o

5 0.45 8.19 X io"12

8 0.00 2.32 X 10-11

8 0.45 2.46 X io“ 11

8 0.90 1.36 X 10"11

11 0.00 2.91 X 10-11

11 0.45 2.18 X 10-11

11 0.90 2.18 X 10"11

The accuracy of the matrix inversion, as reflected by the 

maximum absolute deviations given in Table 4.1, is certainly satisfactory 

for our purposes.

For K = 5 and A = 0.90, whilst the moment matrix of predetermined 

variables was inverted satisfactorily, a further inversion incorporating 

stochastic matrices which is required at each replication in the Monte 

Carlo experiment exhibited substantial "inversion errors" and 

consequently "inconsistent" results were obtained. This problem is 

discussed in Chapter 6 .

A machine independent pseudo-random number generator devised 

by Pike and Hill [43] was used for generating uniformly distributed 

pseudo-random numbers for the experiments in Chapters 5, 6 and 7. 

Favourable evidence of randomness for this algorithm is given by 

serial and poker tests conducted by Pike and Hill, and by frequency 

tests in the certification by Sullins [65].
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The Box and Muller [6] transformation for generating normally 

distributed pseudo-random variates is given by

x = (-2 log r.) 2 sin 2irr )
) (4.2)

x2 = (-2 logg rp 2 cos 2irr2 , )

where x^ and x2 are two uncorrelated pseudo-random standardized normal 

variates, and r^ and r2 are uniformly distributed pseudo-random variates 

defined on the [0,1] interval. This transformation produces exact 

results conditional upon the accuracy of evaluation of the sin and cos 

functions and the correct distribution of r^ and r2- When used in 

conjunction with a multiplicative congruential pseudo-random number 

generator however, Neave [38] has shown how the transformation may break 

down. Amendments to equation (4.2), as suggested by Chay, Fardo and 

Mazumbar [9], were used in this research, therefore, to avoid Neave's 

objections. With these amendments the transformation becomes

x 1 = (-2 logg r2) 2 sin 2irr1 ,

where it should be noted that only the sin transformation is used and 

the uniformly distributed variates have been interchanged.

The Monte Carlo study reported in Chapters 6 and 7 necessitated 

the generation of 4,400 pseudo-random standardized normal variates 

(this figure excludes the additional normally distributed variates 

required to calculate the power functions in Chapter 7). The Kolmogorov- 

Smirnov test was conducted to test for any significant divergence 

between the theoretical (standardized normal) and empirical distributions 

of the pseudo-random variates. The maximum absolute value of D 

(the difference between the two distributions) was 0.01306. At the 

5% level of significance the hypothesis of equality cannot be rejected.
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The pseudo-random normal variates were subsequently transformed 

into pseudo-random bivariate normal variates by using the transformation

Z2 = ^22* ^ X1 + 1/1 _ 5 x2) »

where and are correlated normal variates with coefficient of 

correlation equal to 6 . and are the specified population

variances of and Z^ respectively, and the covariance of Ẑ  

and Z^ is given by 600̂ 2 -

4.2 Computing J2SLS Parameter Estimates

In order to apply the jackknife to the 2SLS estimator we must have 

some method by which the ith observation can be extracted from 

equation (4.1). Clearly one could calculate equation (4.1) N times 

using a 2SLS program and omitting a different observation on each 

occasion, but this would be a tedious and computationally expensive 

procedure especially for "large" N and/or K as it would require 

inverting both matrices in square brackets in equation (4.1) (minus 

one observation) at each iteration. In addition, rounding errors from 

the inversion algorithm may lead to a build-up of inaccuracies.

In Chapter 3 we derived equation (3.13) for calculating the 2SLS 

estimator with the ith observation removed which obviates the need to 

perform matrix inversions additional to those required for 2SLS with 

all N observations included. This formula was checked by calculating 

the J2SLS estimator both ways with a test program and noting that 

the parameter estimates were identical to at least the sixth decimal 

place.
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4.3 Computing Exact Results

Calculation of the exact moments of the 2SLS estimator, and 

exact bias in the case of J2SLS, requires evaluation of the confluent 

hypergeometric function

Although tables are available (e.g. see Slater [64]), relatively few 

values of a, y and x have been tabulated. In general, therefore, 

the function must be calculated by direct summation of an infinite 

series or via an asymptotic approximation.

An algorithm for calculating the confluent hypergeometric 

function with complex parameters via the method of direct summation 

has been written by Relph [49]. Thacher [69] in his certification of 

this algorithm mentioned its inefficiency for real arguments.

A problem frequently encountered in this thesis was that of 

relatively small a and y, but relatively large x, whence evaluation of 

equation (4.3) is characterized by slow convergence. When this problem 

arose it was resolved by using an asymptotic approximation to the 

confluent hypergeometric function, which for integer a and y = a + 1 

contains a finite number of terms. A check on the error involved 

in using the approximation can be made if a is an integer and, if 

necessary, a correction made.

For a model containing just two endogenous variables, Richardson 

and Wu [55] have derived the bias of the 2SLS estimator (g) of g in 

equation (2.5) as

1F1 (a;y ; x) . (4.3)

2 2
(4.4)
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- -i • i _ i _i '
where y = w22 t[22 X2 [In~ x1 x̂1 X]̂  X1 ] x2 I22 is the

concentration parameter so named because for every e > 0

lim Pr(18 - B|> e) = 0 .
2y -»■<»

All other notation was explained in Chapter 2.

Clearly a= (K2/2 - 1) is an integer if is even.

From Appendix C (equation (C.l)) the asymptotic (in y2) expansion 

of the confluent hypergeometric function (for y = a + 1) can be written as

00 p

1F1 (a; a + l;x) ~ £  ex £ (1 - a) (|) , (4.5)
r=0

and thus the asymptotic approximation to the bias (4.4) is

(4.6)

The error incurred by applying this approximation for finite y2 and 

integer a is given (from Appendix C (equation C.8)) by

a)22g_a)12 -y2/2 r  I —  11- — 1 (4.7)
0).22

where k = (K2 - 2)/2.

It is interesting to note from equation (4.6) that for "large" 

y2 and K2 = 2 the 2SLS estimator is unbiased.

Thus provided the asymptotic approximation of the confluent 

hypergeometric function terminates after a finite number of terms, 

equations (4.5) and (4.7) will ensure exact evaluation of this function.

The gain in computational efficiency will be particularly marked

when the summation of the infinite series required for direct evaluation

of the confluent hypergeometric function is slow to converge.



For a non-integer, equation (4.5) is an infinite series, although 

it'can be truncated after (say) n terms. -'If this is done the error 

involved in truncating the infinite series after the nth term will 

not exceed the (n + l)th term, and will be of the same sign as the 

(n + l)th term (Luke [25; p. 127]) .

In this thesis, when a is not an integer the confluent 

hypergeometric function had to be truncated in such a way as to ensure 

that all values of bias and mean square error were correct to at least 

the number of decimal places given in the text. For integer a, all

results are "exact".
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CHAPTER 5

THE EXACT BIASES OF THE TWO-STAGE LEAST SQUARES 
AND JACKKNIFE TWO-STAGE LEAST SQUARES ESTIMATORS

5.1 Resume of "Exact" Studies

In his pioneering work on the exact finite sample distribution 

function of the 2SLS estimator, Basmann [4] demonstrated analytically 

that for a two equation simultaneous equations model, under certain 

conditions, the moments may not exist (i.e. they may not be finite).

Prior to Basmann's [4] paper, Monte Carlo studies of the relative 

properties of simultaneous equations estimators had frequently used 

as their objective function the mean square error in order to compare 

the relative properties of the estimators. Basmann remarked that an 

objective function which involved moments of the estimators would 

have little significance if the moments of the estimators did not 

exist. In addition, non-finite moments could give rise to "outliers" 

when this form of objective function is used in Monte Carlo studies, 

and thus uncritical rejection of these outliers is not a valid procedure.

On the basis of his early work, Basmann [4] conjectured that the 

moments of the 2SLS estimator exist up to the order of over-identification 

of the equation being estimated. Basmann's proof was only valid for 

a two-equation model with K^ = ^  = 2 and K̂  = 1, K^ = 3, although 

in a later paper (Basmann [5]) he extended it to a three equation model 

with g = 2, K^ = 1 and K^ = 3.

Kabe [21, 22] greatly simplified Basmann's derivations, and 

this was followed by analytical proofs of Basmann's conjecture for 

g = 1, K2 > 2, by Richardson [52] and Sawa [58].
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For the general case (i.e. g and K2 both arbitrary) Mariano [28] 

has provided a proof of Basmann's conjecture for the even-ordered moments 

of the 2SLS estimator, whilst Hatanaka [17] has shown that the same 

conjecture provides a sufficient condition for the existence of the 

odd-ordered moments.

Sawa [58] and Richardson and Wu [55] derived, independently, 

the distribution function of the OLS estimator, and then showed how 

the distribution function of the 2SLS estimator could be derived as 

a corollary to the derivation of the OLS estimator. For g = 1 the 

exact moments of the coefficient (8) of the right-hand side endogenous 

variable in equation (2.5) have been calculated by Sawa [58],

Takeuchi [67], and Richardson and Wu [55] for both estimators. From 

Richardson and Wu [55], the first order moment of the 2SLS estimator 

can be written as

Second and higher order moments take a more complicated form 

and the interested reader is referred to the literature previously 

cited.

The fundamental parameter in all "exact" studies is the

As y2 increases indefinitely, the 2SLS estimator of 8 converges 

to its true parameter value (i.e. it is a consistent estimator).

indefinitely is for the sample size to increase indefinitely.

In general, the concentration parameter for the jth equation 

is defined by

w 22

(5.1)

concentration parameter y2, and not the sample size which does not 

enter equation (5.1) explicitly, although it is implicit in y2.

A sufficient, but not a necessary, condition for y2 to increase

p r> — 1y . = trace (M. I ) ,J J *
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where M. = II ' x' [I - X-.Cx'.X,.) 1 x'] X,.ILj J 22 2j iy  2j 22

V -1and £ is the covariance matrix of non-normalized endogenous*
variables included in the structural equation.

Essentially, therefore, the moments of the 2SLS estimator are

derived in terms of "nuisance" parameters. Sawa [58] assigned "reasonable"

values to these nuisance parameters in order to ascertain the relative
W12importance of N, p = ——  and K^. He observed that the bias of

2SLS is an increasing function of |p| and that frequently it "is not 

negligible". In addition, he found that the distribution of the 2SLS 

estimator was often considerably asymmetric.

Mariano and Ramage [29] considered the effects on 2SLS of 

excluding relevant exogenous variables and including extraneous 

exogenous variables in the equation to be estimated. Mathematical 

complexity precludes useful analysis of the former specification 

error, but under the latter type of misspecification both the 

concentration parameter and the degrees of freedom are smaller than 

for a correctly specified model. The decrease in the concentration 

parameter increases the bias and mean square error of both estimators, 

whilst the effect of the decrease in the degrees of freedom is 

indefinite and depends on other unknown parameters in the model.

5.2 The Concentration Parameter and a Change in Sample Size

Let and denote the concentration parameter based upon N

and (N-l) observations respectively, then

yN W22 -22 X2 j_Z " X1^X1 Xl̂  X1 X2 -22
and

^ f *

y N-l = W22 -22 X2
' -i '* * * — 1 *

I - X1(X1 x x) X: ^2 —22

(5.2)

(5.3)
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where the asterisk superscript refers to the relevant data matrix 

with one observation removed. Without loss of generality we assume 

that the Nth observation has been removed, i.e.

where and x_2 are and ^  dimensional column vectors representing 

the omitted observation from and X2 respectively.

Noting that

(X* X*) = (X* X1 - xx xJ ) ,

(X2 X2) = (X2 X2 - x2 x2 )

and (X* X*) = (Xj X£ - Xj x^ ) »

equation (5.3) can be written as

y N-l W22 -22 < v“2 "2 -2-2_1 I 77 [  (x? *7 ~ * 7* 7 )

- (X2 X: - x2xx' ) (Xj Xx - x^' )“1(X1' X2 - XjXj ) -2 2

It can be shown (see Appendix A) that

(X'X )_1 x x ' (X ' X ) 
(x; X1 - XjXj* y 1 = (X/ x p " 1 + _ L 1 ----± ± ----— —

1 -L i CXi* xp-1̂

-1

Using this result, and after considerable algebraic manipulation, 

equation (5.3) can be written as

y 2
N-l yN ' 0) -1

(l-c) 22 *22 (x2 -
)(x2 - ^' —22

where c = Xj (Xj' xp 1 xj

d = (X2' Xp(Xx' Xp"1 Xj

0 < c < 1

(5.4)

and
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Since 2̂ 22* (x^ ~ d) (£2 " ¡Q* —22 *s a Positive semi-definite 

quadratic form, and as w22 and (1 - c) are both greater than zero, it

follows that • .

i.e. the concentration parameter is a monotonically non-decreasing 

function of sample size.

5.3 The Exact Bias of the Jackknife Two-Stage Least Squares Estimator

5.3.1 Introduction

Since only y2 is dependent upon changes in N, the bias of the 

2SLS estimator of 3 with the ith observation omitted (3^) can be 

written, using equation (5.1), as

ECSi-3) = U 22P " w12 exp
(1)22 (4 M t - “ 7 ‘ ' - ¥ )

Thus, when the exact bias of the 2SLS estimator can be calculated, 

it is relatively easy to calculate the exact bias of the J2SLS 

estimator.

Differentiating the absolute bias with respect to y^/2 , and 

utilizing the contiguity relations of the confluent hypergeometric 

function (e.g. see Slater [64; p.19] gives

d | E t e - B ) |

d  *  V 2

w226 '  “ 12 2 - U„/2
w22

. -  . e HN' 
K0 1F1J 1 ; —  t1;

N (5.6)

From equation (5.6) is is apparent that the absolute value of 

the bias is a monotonically decreasing function of the concentration

parameter y^, provided 3 > ^ 12^22 * 8 = ^ 12^22 n0 ex^sts>

whilst if 3 < a)i2^CJ22 ** ^°H°WS that the actual bias is a monotonically

decreasing function of y2. Similarly, the mean square error of the
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2SLS estimator can be shown to be a monotonically decreasing 

function of the concentration parameter (see Owen [40]).

Earlier in this Chapter is was shown that the concentration 

parameter is a monotonically non-decreasing function of sample size. 

Thus, combining these two results, it has been shown that the bias 

(and the mean square error) of the 2SLS estimator are monotonically 

non-increasing functions of the sample size; conditional, of course, 

on the exogenous variables.

We have already seen that the bias of the J2SLS estimator can 

be written as

— N ''l
E (6_ - 0) + (N-l) e (|-£) - |  E< y. (6, - 0)

i=l _1 “  ,

It follows from the above result that the term in square brackets 

in equation (5.7) will be either zero or opposite in sign to E(0 — 0). 

Consequently, application of the jackknife will have one of three 

possible effects on the bias of the 2SLS estimator:

1. The absolute bias decreases but its sign remains unchanged;

2. The absolute bias decreases and its sign changes;

3. The absolute bias increases and its sign changes.

If the bias decreases slowly or approximately linearly with 

sample size, then it seems reasonable to expect possibilities 1. or 2. 

to occur. When the bias is decreasing rapidly with sample size however, 

there could be a tendency for the jackknife to "over-correct" for 

bias and possibility 3. could occur.

Since the above eventualities are somewhat vague, we turn from 

heuristic analysis to consider an analytical investigation of the 

conditions under which jackknifing is unlikely to decrease the 

bias of the 2SLS estimator. First we consider the exact bias of 

the 2SLS estimator of 3 as given by equation (5.1) for the special
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case of K= 2, then we consider a more general approach using 

Kadane’s [23] approximation to the bias of the 2SLS estimator.

5.3.2 Effect of Jackknifing on the Exact Bias of 2SLS when = 2

From equation (5.1), if = 2 the exact bias of the 2SLS estimator 

of 6 degenerates to

E(B - 6)
(w 22$ u12) -y2/2- —  eco22

since ^  (0,1 ,y2/2) = 1 .

(5.8)

Expanding the exponential term in equation (5.8) and setting 
12—  gives 
22

E(B-B) = -(B-P) 1 +

(5.9)

Since y2 is of order N, when = 2 the bias of the 2SLS estimator 

is clearly a function of terms (with alternating signs) of increasing 

powers of order N. Whilst alternating signs will not weaken the 
jackknife's bias reducing properties, equation (5.9) clearly contravenes 

Quenouille's basic assumption regarding the application of the 

jackknife, viz: that the bias can be expressed as an expansion in 

terms of increasing powers of order (̂ ) . This suggests that application 

of the jackknife technique is unlikely to be successful if K2 = 2.

When K2 > 2

F11 2 ’ 2 ’ 2 )
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takes the form of an infinite series and the bias cannot be expanded 

into an expression such as equation (5.9). We can however fall 

back on equation (4.6) which gives a "large" y2 expansion of the bias, 

equation (5.1), in terms of increasing powers of order jjj- , provided 

I<2 > 2 (although if is an integer this expansion will terminate 

after a finite number of terms). This suggests that for "large" y2 and 

K ^ > 2 , application of the jackknife technique could reduce the 

bias of the 2SLS estimator.

Both of the above observations will be investigated by means of 

a simulation experiment in Section 5.5.

5.4 Jackknifing the Approximate Bias of the 2SLS Estimator

Kadane [23] has derived the leading terms of the first two 

moments of a distribution approximating the exact distribution of the 

2SLS estimator, although it should be emphasized that the moments of 

approximate distributions are not necessarily identical to approximations 

to the moments of the exact distribution.

Nagar's [37] work in this field carries a similar interpretation.

Kadane's approximations are based on a "small" a asymptotic 

expansion of the moments of the k-class estimators (N.B. in our notation 

ct = cô  ̂- 0)̂ 2P + w 2 2 ^ - P)2 anc* as not be confused with the a used 

elsewhere in this thesis. The definition of a given here is restricted 

solely to this Section). For N fixed, y2-*°° if a ->■ 0 and it can be 

shown (see Sawa [59; Appendix C]) that Kadane's (and Nagar's) expansion 

coincides with "large" y2 expansions of the exact moments, provided 

the latter exist.

Kadane [23] has approximated the bias of the 2SLS estimator by
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E(0_-£) = cr2(L-l)Qg_ + 0(aJ), (5.10)

where L = K2 ~g, i.e. the degree of. overidentification of the equation 

being estimated , . ^

W = [xn  : Xj],

Q = (W'W)"1

i.E[Y:X1]'u ,•

and 0 =

h

Let 0. denote the 2SLS estimator of 0 with the ith observation

(5.11)

removed then, -

E(O .-O )  = o2 (L-l)Q.q + 0(a3) ,
—L ~  1~

where = (W'W - w^w!)~* and w. is a ^  + g dimensional column vector 

representing the omitted observation from W.

From Appendix A, it can be shown that

(W'W) w. w. (W W) Qw.w. Q
Q. = (W’W)-1 + ----:----— --------  =, Q + — — --

1 - wi (W'W)-1 .̂. 1 - w .Qw.—l —i

and hence

Qw. w! Q
E(£. -0) = 02(L-l)Qq + 02(L-1) — — -—  q 

1 1 - w! Qw., —l —l
• Qw. w! Q

= E(|_-0) + CT2(L-1) — —  q ,
1 - w! Qw.—l —l

(5.12)

where terms of higher order in 0 have been neglected.

From the definition of the jackknife, and using equation (5.12),
> *

we obtain

N
E[J(0) - 0] >  NE(0 - 0) (N-l)

N i=ll  EC£i-£)
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A (N-l) N C^w-’ Q
NE(§- 0) - (N-1)E(0_-0) - a 2-----  £ (L-l)

N i=l L-w’.Qw.
— l — i

(N-l) N Qwr.w.Q
E(£ - 0)- a 2(L-l)---- l   -i-

N i=l 1-w^Qw.
(5.13)

Ft>r jackknifing not to increase the absolute value of the bias 

of the 2SLS estimator over all parameters being estimated, we require

E [ J ( 6 )  - 0] E [J(§)-£]' - E [§ - 0] E [§ - 0] (5.14)

to have all main diagonal components <: 0.

Consider the last term in equation (5.13) which can be rewritten

as

(N-l) N Qw.w.Q (N-l) N
• a2 (L-l)--- 1 -1-1—  cr2 (L-l)----  Q l

N i=l l-w.'Qw. N i=l

W .  w.
— 1— 1

1-w.Ow.— l —l
Qq

Let A be an N x N diagonal matrix with iith component equal 

to w !Qw^ , then

[I - A] -1

is an N x N diagonal matrix with iith component equal to

1 - w . qw. 

and hence

N w.w.
I  1i=l 1-jw/ Qw\

= w' [I -A ]_1W . (5.15)

Thus equation (5.13) can be rewritten as

E [J (0) -£] = E(§-0) - q2(L-l)-^~—  QW' [I - A]"XWQq , (5.16)
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and upon substituting into equation (5.14) we obtain 

E[J(§) - 0]E[J(0) -£]' = E[0 - 0]E[O - 6J'

- a2(L-l)-^^- QW* [I - A]-1 WQq E[£- 0]'

- P2 ( L - E  [£ - 9] q ' QW' [I - A] -1WQ

+ ©‘‘(L-l)2- ^ - ^ -  QW.'[I - A]-1W.Qqq’ Qw'[I - A]_1WQ ,
N2 . -----

which can be rewritten as * ' '

E[J'(0)-9JE[J(£)-0J ' = o’CL-l? KQqq' Qw'

■[> - - ^ r 1  .

where a2(L-l)Qq has been substituted for E[0_-0].

Thus, for the jackknife not to increase the bias of the 2SLS 

estimator, we are required to show that

Qw’

- CT-CL-l/Qqq' Q (5.17)

has all main -diagonal components 0.

If we denote the iith component of A by X^, then Teekens 

[68; pp.103-106] has shown that, in general,

i  1, ( i  = 1, 2, . . .  , N)

CN-1)
N (I-A) J] WQcr* (L-l)2 QW I - (N-l)

N (I-A)

and it follows that

(N-l)
N (I-A) -1

-*n
< 0 ( i = l ,  2, , N) (5.18)

where the ii subscript refers to the iith component o f the matrix 

formed by- those terms in the square brackets.
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Thus, when equation (5.18) holds,

- QW* fl - (I-A)'1! WQ

must be positive definite.
We now require the following theorem from Rao [46; p.37]:

THEOREM
Let A and B be real mxm symmetric matrices of which B is positive ' 

definite. Then there exists a matrix R such that

A = R'"1 AR-1 and B = R,_1 R_1 
where A is a diagonal matrix.

Using this theorem, there exists a matrix R such that 

-r 'qw' [l - (I-A)_1J W.QR = A

and r ’qR = I ,

where A is a diagonal matrix whose main diagonal components are positive 
and equal to the roots of the equation

| " QW* [l - (I - A)-1J WQ - XQ| = 0 ,

or | - QV £  - (I - A)_1J W.Q% - XI | = 0 .
Thus, from equation (5.17), for the jackknife not to increase bias 

we require

a4(L-l)2 (R')_1 R'QRR"1̂ ' (R,)_1R,QRR_1

- a4 (L-l)2 (R,)"1R'QW I ~ (I - A) 1N

.R’QW'
[ ■ -

W QRR 1qq’R'”1

t i l  ( i - A) - l
]

-1

a4(L-l)2 H r '.)"1 r 1q.q'R'~1 (R 1) - (R') 1 ar ^q' r '

WQRR

1A R“̂ j

to have non-negative main diagonal components. This cannot be shown but the 

sum of squared biases will be reduced in the general case and, in the case of 

two included endogenous variables, the squared bias of the endogenous
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coefficient estimator will be reduced if the roots of the matrixl

-  qV  -  -~îp- ( i  -  A ) -1J  wQJi

are such that .

0 < Xi < 1 . (i = 1, 2, ... , Kj + g) (5.20)

Since this condition is dependent upon W it is not possible to 

give a general statement concerning its existence. However, a 

sufficient condition for equation (5.20) to hold is that

(i = 1, 2, ... , N)

(i = 1, 2, ... , N)

J w.' Qw. = trace W(w'W) AW' = K. + g ;  
i=l 1 1

and so the "average" value of w / Qw^ is (K^ + g)/N.
t ‘

But for

K. + g N + 1 N + l
— —  > ~ 2̂ ~  > or identically ^  + g > — j —  ,

the sufficient condition cannot hold.

-This suggests that when the number of observations is not at. 

least twice the number of included variables, the jackknife should

$ -1 ,
XX

x. e. (N-l) 1 - 1 * 1

o r  Qw^

N 1 - w/ qw i 

N+l
2N

It is known that 
N

not be used.
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5.5 A Comparison of the Exact Bias of the 2SLS and J2SLS Estimators

The analytical results derived in this Chapter can be summarized 

as follows:

(i) for a structural equation containing just two endogenous 

variables, if = 2 jackknifing is unlikely to be successful;

(ii) in general, even when >2 and y2 is "reasonably large", 

jackknifing is unlikely to be successful unless the number of observations 

is at least twice the number of variables included in the equation being 

estimated.

It is apparent from these results that analytical guidelines on 

criteria for applying the jackknife to the 2SLS estimator are rather 

vague. A series of experiments was conducted therefore to observe 

circumstances in which the jackknife is successful in reducing the 

bias of the 2SLS estimator.

The experiments compare the exact biases of 2SLS and J2SLS 

as given by equations (5.1) and (5.7) (using equation (5.5)) respectively, 

but take no account of any resulting change in variance.

The exogenous variables were generated as pseudo- random numbers 

from the uniform distribution in the range 0 to 100. A specified 

level of theoretical multicollinearity (A) was applied such that the 

theoretical pairwise correlation between exogenous variables was the 

same for each experiment. X took values from 0.0 to 0.8 in steps of 0.2.

The relative biases of the 2SLS and J2SLS estimators were calculated 

exactly for specified values of N, K^, w22’ an<̂  sub_vector

of reduced form coefficients, ^2 2‘

The values of u>̂ 2 and w22 were set at 0.0 and 1000.0 respectively 

for all experiments. From equations (5.1) and (5.5) it can be seen
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that u)^2 and (¿22 enter the expressions for bias only through p.

Consequently a change in either or both of these parameters only has a 

simple multiplicative effect on the biases and can be ignored without 

loss of generality.

K-̂ was fixed at 2 for the majority of the experiments, whilst 

took on values of 2, 4 and 6. N took values of 10, 20 and 30.

Tables 5.1 - 5.7 give the results of the experiments. The 

relative bias of both estimators is given, together with the corresponding 

value of the concentration parameter, y^.

Table 5.7 gives the results of experiments designed to test the 

conclusion derived in Section 5.4, viz: if the number of observations is 

not at least twice the number of included variables the jackknife 

should not be used. For the purpose of these experiments N and 

were fixed at 20 and 4 respectively, whilst took values of 4, 6 and 8.

An asterisk indicates experiments where the jackknife did not 

reduce the bias of the 2SLS estimator.

It was suggested in Section 5.3.2 that if = 2 jackknifing may 

not be successful in reducing bias. From Tables 5.1 and 5.4 it is 

apparent that jackknifing is indeed generally unsuccessful. In addition, 

in Section 4.3 it was shown that for "large" y2 and = 2 the 2SLS 

estimator is "nearly" unbiased. The results in Table 5.4 indicate the 

deleterious effects of using the jackknife under such conditions, even 

though y* is not very "large".

For > 2 application of the jackknife, in general, produces a 

fairly substantial reduction in the bias of the 2SLS estimator. Note 

that for fixed N, J2SLS does not exhibit a consistent pattern of bias 

as X increases, whereas the bias of 2SLS always increases with increasing X.

In general, except for very small values of y^ , jackknifing 

changes the sign of the 2SLS bias.
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The results in Table 5.7 indicate that it would be unwise to

apply the jackknife to the 2SLS estimator when the number of observations

is not at least twice the number of included variables. For "small" y2N
the jackknife produces a substantial reduction in bias, but the ensuing 

Monte Carlo study will indicate that there is likely to be a substantial

increase in the variance of the J2SLS estimator when y2 is "small".N
However, since y2 is never known in practice, it would be unwise to use 

the jackknife when this condition prevails.

These exact results suggest that the jackknife can be most useful 

in reducing bias when the equation being estimated is "well" over­

identified. It would certainly be unwise to use the jackknife when 

= 2 or when the number of observations is not at least twice the 

number of included variables.

/



Table 5.1: Exact Relative Biases of the 2SLS and J2SLS Estimators

k2 = 2 ^22 = (°-5> -°-5)

N = 10 N = 20 N = 30

X n2
Relat ive Bias

yN
Relative Bias

u2
Relative Bias

yN 2SLS J2SLS 2SLS J2SLS yN 2SLS J2SLS

0.0 5.8775 -0.0529 +0.1873* 8.9645 -0.0113 +0.0592* 12.0464 -0.0024 +0.0179*

0.2 4.7927 -0.0910 +0.2156* 7.4405 -0.0242 +0.0924* 10.3583 -0.0056 +0.0317*

0.4 3.5482 -0.1696 +0.2259* 5.6726 -0.0586 +0.1418* 8.3496 -0.0154 +0.0611*

0.6 2.2820 -0.3195 +0.1421 3.7775 -0.1513 +0.1732* 6.0012 -0.0498 +0.1189*

0.8 1.0954 -0.5783 -0.1826 1.8411 -0.3983 -0.0028 3.2606 -0.1959 +0.1490

K1 =  2 w12 =  0.0  U)22 =  1000.0



Table 5.2: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 4 ir = (0.5, -0.5, 0.5, -0.5)

N = 10 N = 20 N = 30

X
Relative Bias

<

Relative Bias
..2

Relative Bias

2SLS J2SLS 2SLS J2SLS mn 2SLS J2SLS

0.0 4.8967 -0.3731 -0.0161 15.5754 -0.1284 +0.0194 29.7400 -0.0672 +0.0071

0.2 3.6992 -0.4556 -0.0906 12.3167 -0.1620 +0.0241 21.4978 -0.0930 +0.0101

0.4 2.8151 -0.5366 -0.1842 9.4623 -0.2095 +0.0242 15.0562 -0.1328 +0.0143

0.6 2.0354 -0.6275 -0.3146 6.6289 -0.2907 +0.0011 9.6338 -0.2059 +0.0131

0.8 1.1894 -0.7538 -0.5275 3.5345 -0.4692 -0.1395 4.6532 -0.3879 -0.0745

K = 2 O)12 = 0.0 co22 = 1000.0



Table 5.3: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 6 7T22 -0.5, 0. 5, -0.5, 0.5, -0.5)

N = 20 N= 30

X <

Relative Bias
u2

Relative Bias

2SLS J2SLS yN 2SLS J2SLS

0.0 32.8269 -0.1144 +0.0101 52.3695 -0.0735 +0.0046

0.2 23.0495 -0.1585 +0.0070 36.8341 -0.1027 +0.0039

0.4 15.3959 -0.2261 -0.0054 24.5283 -0.1498 +0.0001

0.6 9.2195 -0.3407 -0.0544 14.6172 -0.2362 -0.0191

0.8 4.2646 -0.5502 -0.2455 6.6967 -0.4252 -0.1300

= 2 00-̂ 2 = 0-0 w22 = 1000.0



Table 5.4: Exact Relative Biases of the 2SLS and J2SLS Estimators

k2 = 2 n22 = (1 .0, -1 .0)

N = 10 N = 20 N = 30

X
Relative Bias

n2
Relative Bias

u 2
Relative Bias

2SLS J2SLS yN 2SLS J2SLS yN 2SLS J2SLS

0.0 23.5099 0.0000 +0.0008* 35.8579 0.0000 0.0000* 48.1854 0.0000 -0.0005*

0.2 19.1710 -0.0001 +0.0027* 29.7621 0.0000 0.0000* 41.4331 0.0000 0.0000*

0.4 14.1927 -0.0008 +0.0141* 22.6905 0.0000 +0.0003* 33.3983 0.0000 0.0000*

0.6 9.1281 -0.0104 +0.0777* 15.1101 -0.0005 +0.0058* 24.0050 0.0000 +0.0001*

0.8 4.3816 -0.1118 +0.2585 7.3645 -0.0252 +0.0918* 13.0424 -0.0015 +0.0107*

Kx = 2 w12 = 0.0 U)22 = 1000.0



Table 5.5: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 4 tt22 = (1.0, -1.0, 1.0, -1.0)

N = 10 N = 20 N = 30

Relative Bias
•i.

Relative Bias
y2N

Relative Bias

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 19.5866 -0.1021 +0.0409 62.3016 -0.0321 +0.0051 118.9602 -0.0168 +0.0018

0.2 14.7967 -0.1351 +0.0578 49.2668 -0.0406 +0.0070 85.9910 -0.0233 +0.0026

0.4 11.2603 -0.1770 +0.0778 37.8492 -0.0528 +0.0098 60.2250 -0.0332 +0.0036

0.6 8.1416 -0.2415 +0.0849 26.5155 -0.0754 +0.0145 38.5351 -0.0519 +0.0061

0.8 4.7575 -0.3814 +0.0017 14.1380 -0.1413 +0.0248 18.6126 -0.1074 +0.0127

=  2 wi 2 =  0.0  co22 =  1000.0



Table 5.6: Exact Relative Biases of the 2SLS and J2SLS Estimators

k2 = 6 tt = (1.0, -1.0, 1.0, -1.0, 1.0, -1.0)

N = 20 N= 30

n2
Relative Biases Relative Bias

2SLS J2SLS 2SLS J2SLS

0.0 131.3077 -0.0300 +0.0046 209.4781 -0.0189 +0.0019

0.2 92.1980 -0.0424 +0.0058 147.3363 -0.0268 +0.0024

0.4 61.5836 -0.0628 +0.0081 98.1132 -0.0399 +0.0031

0.6 36.8780 -0.1026 +0.0102 58.4687 -0.0661 +0.0040

0.8 17.0585 -0.2070 +0.0024 26.7869 -0.1382 +0.0016

K =2 (d12 = 0.0 co22 = 1000.0

«D



Table 5.7: Exact Relative Biases of the 2SLS and J2SLS Estimators (K̂  + g "large" relative to N)

K2 = 4 tt22 = (0.5, -0.5, 0.5, -0.5)

Kx = 8 N = 20 K = 10 N= 20 K = 12 N = 30

u2
Relative Bias

yN
Relative Bias

yN
Relative Bias

yN 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 10.5786 -0.1881 +0.1529 11.7998 -0.1690 + 0.2040* 4.4360 -0.4018 +0.5649*

0.2 8.6514 -0.2281 +0.1626 8.8120 -0.2242 +0.2356* 2.9796 -0.5199 +0.3831

0.4 6.7927 -0.2846 +0.1608 6.2274 -0.3069 +0.2373 1.8676 -0.6500 +0.0091

0.6 4.8248 -0.3774 +0.1174 3.8990 -0.4399 +0.1422 1.0282 -0.7819 -0.2801

0.8 2.5090 -0.5698 -0.1007 1.8195 -0.6566 -0.1904 0.4652 -0.8922 -0.6428

<j012 = O.O u)22 = 1000.0
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CHAPTER 6 

MONTE CARLO STUDY

6.1 Design of Experiments

An evaluation of the effects of applying the jackknife technique 

to the 2SLS estimator necessitates the use of Monte Carlo methods. 

Although the exact finite sample distribution and exact moments (where 

they exist) have been derived for several simultaneous equation 

estimators in the context of the model used in the ensuing study (e.g. 

see the bibliographical paper compiled by Owen and Knight [41]), neither 

the exact finite sample distribution nor exact second and higher order 

moments of the J2SLS estimator have been derived. Consequently, a 

Monte Carlo analysis is our only method of evaluating the effects of 

applying the jackknife technique to the 2SLS estimator.

The model used for one-third of the experiments was

2-1 = ^12—2 + Y10 + Yl l —1 + - i  t 6 - 1)

1-2 = ^21—1 + Y20 + Y22-2 + Y23-3 + Y24-4 + -2 ’ (-6-2-)

whilst for the remaining experiments equation (6.2) was augmented by 

an additional three or six exogenous variables.

The reduced form of this two-equation model is given by

4
Xi = lio * I id " a  + ii 1 = 1

(6.3)

4
Ï-2 - —20* 1 li ”21 * ■ 1 = 1

(6.4)

where both equations should be augmented by the relevant additional 

terms when = 6 and K2 = 9.
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The set of parameter values used in the experiments is given in

Table 6.1.

Table 6.1: Parameter Values Used in Monte Carlo Experiments

^12 0.8 g21 -0.7 Y25 -1.0 OOO'! 1.2

Y10 50.0 Y20 50.0 Y26 1.9 Y29 -1.5

Y11 1.2 Y22 1.3 Y27 -1.1 Y210 0.9

Y23 1,6
Y24 -2.0

The exogenous variables were generated as rectangularly and 

independently distributed pseudo-random variables in the range 0 to 100, 

but were then transformed in order to obtain a specified theoretical 

pairwise correlation (A) between them. The sample correlations are 

given in Table 6.2. Values for experiments using less than the full 

set of exogenous variables (i.e. less than 10, excluding the constant) 

should be read-off from the upper left corner of the table.

All experiments were based on a sample size of 20.

The reduced form disturbances, the v^ (i = 1,2), were generated 

as bivariate normal variates with zero mean and covariance matrix

W11 U12 1600 15206

W21 W22 15206 1444
—

where the coefficient 6 was given the value 0.19 in half of the 

experiments, and 0.76 in the other half.

Each estimate of the parameters in equation (6.1) (i.e. the first 

equation only) was calculated as the mean of 100 replications of the



0.00 +1.0000 Tabl
X1 0.45 +1.0000

0.90 +1.0000
0.00 -0.2977 +1.0000

X2 0.45 +0.1317 +1.0000
0.90 +0.5001 +1.0000
0.00 +0.0628 +0.0971 +1.0000

X3 0.45 +0.1084 +0.5244 +1.0000
0.90 +0.3874 +0.7815 +1.0000
0.00 -0.0818 -0.1558 -0.0404 +1.0000

X4 0.45 -0.0215 +0.0791 +0.3923 +1.0000
0.90 +0.2987 +0.5786 +0.7979 +1.0000
0.00 +0.1821 -0.3951 -0.0084 -0.0513

X5 0.45 +0.1606 -0.2720 +0.0516 +0.3636
0.90 +0.3811 +0.3987 +0.6353 +0.8106
0.00 -0.3281 +0.0148 +0.1738 -0.0418

X6 0.45 -0.2641 -0.2447 +0.1183 +0.1618
0.90 +0.1171 +0.1936 +0.5301 +0.6734
0.00 +0.2261 -0.1912 -0.2425 +0.1720

X7 0.45 +0.1211 -0.2045 -0.2060 +0.1037
0.90 +0.2562 +0.1639 +0.3414 +0.5461
0.00 +0.1431 +0.0475 +0.3820 -0.2319

X8 0.45 +0.1829 +0.0039 +0.2346 +0.0241
0.90 +0.2746 +0.2069 +0.4450 +0.5172
0.00 +0.0028 +0.3188 +0.1081 -0.0222

X9 0.45 +0.0979 +0.3869 +0.3884 +0.1222
0.90 +0.2714 +0.3866 +0.6075 +0.6528
0.00 +0.1320 +0.1307 +0.2076 -0.1996

X10 0.45 +0.1426 +0.3024 +0.3545 +0.0024
0.90 +0.2598 +0.3838 +0.5766 +0.5465

X, X„ X, X,1 2 3 4

6 . 2 : Matrix of Sample Correlations Between the Exogenous 
Variables

+1.0000
+1.0000
+1.0000
-0.2519
+0.1851
+0.7453

+1.0000
+1.0000
+1.0000

+0.1684
+0.2572
+0.6784

-0.3381
+0.1454
+0.7272

+1.0000
+1.0000
+1.0000

+0.0195
+0.1246
+0.6199

+0.0832
+0.1440
+0.6784

-0.0321
+0.4693
+0.8658

-0.3941
-0.3117
+0.5936

+0.1093
+0.0447
+0.6996

-0.1402
+0.0636
+0.8171

+0.4577
+0.2026
+0.6131

-0.0002
+0.1517
+0.6751

-0.0124
+0.0708
+0.7360

X5 X6 X7

+1.0000
+1.0000
+1.0000
-0.4943 +1.0000
-0.0715 +1.0000
+0.7982 +1.0000
-0.0414 +0.3131 +1.0000
-0.0348 +0.6672 +1.0000
+0.6869 +0.9206 +1.0000

X8 X9 X10 00Ü4
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relevant estimator. All experiments were devised to ensure that 

at least the first two integer moments of the 2SLS estimator were 

finite. This would not be so with the second equation, (6.2).

6.2 Exact Results

Although exact values for the bias and mean square error (MSE) 

of the 2SLS estimator, and for the bias of the J2SLS estimator, in 

equation (6.1) are known (and for 3 are given in Table 6.3), for 

compatibility reasons comparison of variance and MSE must necessarily 

be based upon a Monte Carlo study.

The values in Table 6.3 can serve as a guide to the accuracy 

of the experiments which follow.

It should be noted that when 5 = 0.76, the 2SLS and J2SLS 

estimators of 3 ^  are both unbiased.

From equation (5.1) it can be seen that the 2SLS estimator of 312

is unbiased if 3 ^  = P (= a)i2^w22̂  * t îe exPeriments conducted here,

3i2= 0-8 whilst

p = i u r = °*8 (if 6 = °-76) •

It follows from equation (5.5) and the definition of the jackknife 

that the J2SLS estimator of 3 ^  will also be unbiased under the same 

conditions.

Richardson and Wu [55, pp.977-978] have shown that if the 2SLS 

estimator of 3 ^  is unbiased, then the 2SLS estimator of the coefficients 

of the exogenous variables must also be unbiased.

If 3-̂ 2 = P> then it follows that y^ is independent of u^, and 

hence estimation of equation (6.1) becomes a mixed stochastic regression 

problem. In these circumstances ordinary least squares would be an 

unbiased estimator and would be the appropriate method of estimation.
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Table 6.3: Exact Values of Relative Bias and M.S. E. (312 only)

Reiative M.S.E. Relative
Bias Bias

K2 X <5 P2 2SLS J2SLS

0.00 0.19 41.2725 -0.01865 0.03552 +0.00631

0.45 0.19 29.1234 -0.02675 0.05094 +0.00968
3

0.00 0.76 41.2725 0.0 0.01163 0.0

0.45 0.76 29.1234 0.0 0.01668 0.0

0.00 0.19 95.7945 -0.03066 0.01483 +0.01093

0.45 0.19 56.3108 -0.05138 0.02514 +0.01633

0.90 0.19 8.4440 -0.27237 0.01576 -0.04342
6

0.00 0.76 95.7945 0.0 0.00478 0.0

0.45 0.76 56.3108 0.0 0.00801 0.0

0.90 0.76 8.4440 0.0 0.04246 0.0

0.00 0.19 118.3348 -0.04252 0.01156 +0.01082

0.45 0.19 61.3857 -0.07889 0.02405 +0.01527

0.90 0.19 9.1349 -0.35015 0.15709 -0.12009
9

0.00 0.76 118.3349 0.0 0.00379 0.0

0.45 0.76 61.3857 0.0 0.00701 0.0

0.90 0.76 9.1349 0.0 0.03113 0.0
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For an equation containing an arbitrary number (g) of explanatory 

endogenous variables, Revankar and Hartley [51] have generalized the 

above result. An F test was derived by Revankar and Hartley for 

testing the hypothesis of equality of and P-

The selection of 6 to be 0.76 for half of the experiments allowed 

a comparison of test statistics to be made (see Chapter 7) without the 

added complications of bias and skewness entering the comparisons.

6.3 Computational Considerations

6.3.1 The Problem of "Outliers"

The satisfactory inversion of all moment matrices for all sets 

of exogenous variables was commented upon in Chapter 4. At each 

replication of the experiments however, it was necessary to invert the 

matrix

Z'X(X'X)_1X'Z

and to check against singularity (or near-singularity) caused by the 

build-up of rounding errors. If singularity was found to be present, 

the relevant sample values were disgarded and an additional replication 

performed.

For experiments involving 1^ = 3 and A = 0.9, although no replication 

was rejected, the 2SLS and J2SLS parameter estimates were grossly in 

error as compared with their exact values for Rather than design

an ad hoc procedure to allow rejection of "unrepresentative" sample 

values, or outliers, in order to achieve "reasonable" parameter 

estimates, it was decided to reject this particular experiment completely.

It is difficult to justify the rejection of "outliers" since any 

cut-off point obviously suffers from a great degree of arbitrariness. 

Indeed, one could very well be rejecting "true" sample values as well as 

"rounding error" sample values by applying such a procedure.
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6.3.2 Antithetic Variates

The technique of antithetic variates was used in an attempt 

to reduce (to an unknown degree) the sampling error of the Monte Carlo 

study when estimating the biases of both estimators (see Hammersley 

and Handscomb [16] for a description of the technique).

Whilst the antithetic method produced estimates of B-^ which were 

marginally closer (than direct simulation) to their exact values for 

the majority of experiments, there was little to choose between the 

two methods for estimating the MSE of the 2SLS estimator of B^- 

This latter feature was noticed by Mikhail [33] in a similar experiment, 

although he managed to achieve a substantial reduction in sampling error 

when estimating the bias of the 2SLS estimator.

The additional computer time and storage required to calculate 

parameter estimates using antithetic variates is minimal, as it merely 

requires a sign change at an advanced stage in the calculations. 

However, there is a considerable increase in computer time and storage 

involved in constructing, storing and sorting twice as many test 

statistics as were generated by direct simulation. Since this study 

was already facing computer time and storage constraints using direct 

simulation, the author did not feel that the small decrease in 

sampling error justified the increased computer time and storage.

6.4 Results of Monte Carlo Study

Tables 6.4, 6.5 and 6.6 (which are situated at the end of this 

Chapter) summarize the Monte Carlo results on relative bias, variance, 

MSE and mean absolute error (MAE) for the three parameters of interest; 

viz Bj2» Yjo anc* ^11* Values of the standardized normal statistic 

for the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
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Each of these three tables is subdivided into two parts, (a) and 

(b) . Results for 6 = 0.19 are given in part (a) of each table, whilst 

part (b) contains the results for the situation where both estimators 

are unbiased, i.e. 6 = 0.76.

We now consider, in turn, four criteria for discriminating 

between the two estimators.

6.4.1 Bias

The "large" relative bias of 2SLS which was evident in the exact 

study (Chapter 5) for high levels of multicollinearity was also apparent 

in the Monte Carlo study when 6 = 0.19. For these experiments the 

jackknife never failed to reduce the bias of the 2SLS estimator, although 

this reduction was more marked for 812 than for the coefficients of 

the (2) exogenous variables, y ^  and y .

All estimates of relative bias had the correct sign. From Table 6.3 

it can be seen that the exact relative bias of B  ̂for both 2SLS and 

J2SLS were very close to the simulation results when K^ = 6. For K2 = 3 

and = 9, however, the degree of agreement between the simulated and 

exact results was not as good.

For 6 = 0.76 (i.e. both estimators unbiased) the "relative bias" 

figures obtained from the experiments must be due to sampling and 

rounding errors. These errors are particularly noticeable when the 

level of multicollinearity (X) is high.
We can be reasonably pleased with the degree of agreement between 

the exact and experimental results on bias. It is interesting to note 

that in Summer's [66] experiments 1A - 4A and IB - 4B, with a model which

pp.47-52]) under the hypothesis of equality of absolute errors of the

two estimators are given in the final column.
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only differed from the one used in this study by the inclusion of 

fewer exogenous variables, the mean of the 2SLS estimator of B-^ 

over 50 replications had an incorrect bias sign on four (of the eight) 

occasions.

6 .4.2 Variance

In general, 2SLS exhibited a smaller variance than J2SLS for 

all three parameter estimates, and this was particularly noticeable 

as the degree of multicollinearity increased. Where the jackknife 

produced a smaller variance, its superiority was never significant.

As increased, the discrepancy between the 2SLS variance and the 

larger J2SLS variance widened for all parameter estimates.

6.4.3 Mean Square Error

In general, the reduction in bias due to the application of the 

jackknife was not of sufficient size to offset the smaller variance of 

2SLS. In most cases (for both estimators) the square of the bias was 

small and had little additional effect when added to the variance. 

Consequently, in common with the variance, 2SLS was generally superior 

(for all parameters) on a MSE criterion.

It should be noted, however, that this superiority was particularly 

marked for "small" values of y2 (e.g. when y2 = 8.440 and y2 =9.1349).

For "larger" values of y2, the MSEs of the two estimators did not 

differ greatly. Frequently, the Wilcoxon test picks up this substantial 

difference between the two estimators for "small" y2, but this statistic 

is based on testing absolute errors.

With only one exception, the MSE of the 2SLS estimator of 8 ^  

obtained from the experiments underestimated the exact MSE. Despite this,
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the exact and experimental values were very close for all values of 

and A.

6.4.4 Mean Absolute Error

In general, 2SLS was superior on a MAE criterion, although its 

superiority was not as marked as for the MSE criterion. Again, "small" 

values of lead to a great discrepancy between the MAEs of the 2SLS 

and J2SLS estimators.

6.5 Difference of Absolute Errors

At each replication the absolute error of both estimators was

calculated. Let b. and b. be the absolute errors at the ith replicationi i  y

of the 2SLS and J2SLS estimators of 8 ^  respectively, then the 

difference score is defined as

d. = b . - b . . (i = 1,2,...,R)

We wish to test the hypothesis of equality of b^ and b^ over all R 

replications.

The usual parametric technique for handling such a problem is 

Student's t distribution, but this requires the assumption that the 

difference scores (the d^) are normally and independently distributed 

in the population from which the sample was drawn. Since this assumption 

has no theoretical justification for the case being considered here, 

the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63; 

pp.75-83]) was used to test the hypothesis of equality of absolute errors. 

If the assumptions of the parametric t test are in fact met, the 

asymptotic efficiency near the null hypothesis of the Wilcoxon test 

compared with the t test is 95.5%.

Under the stated hypothesis, the Wilcoxon test was conducted for
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all three parameters being estimated, and the resulting Z statistics 

are given in the last column of Tables IV, V, and VI. Negative values 

favour 2SLS.

At a 5% level of significance, the hypothesis of equality of 

absolute errors is rejected only twice over all parameters when 6 = 0.19. 

Both rejections are in favour of the 2SLS estimator, and both occur 

for 1̂ 2 = 9 and X =0.90 (i.e. when y^ is "small").

When 6 = 0.76, however, the hypothesis is rejected on four 

occasions for 3 ^  alone, all four rejections in favour of the 2SLS 

estimator. Surprisingly, this result did not carry over to the 2SLS 

estimates of y10 and y^.

6.6 Conclusion

The results of the Monte Carlo study are not encouraging for 

proponents of the jackknife technique. Whilst 2SLS was clearly superior 

when there existed a high degree of multicollinearity, application of 

the jackknife technique, in general, could not produce superior results 

using either a MSE or MAE criterion. In view of the increased complexity 

and computation time involved in applying the jackknife, its use cannot 

be recommended on the basis of the above results alone.

On the basis of the above results, the following statements can 

be made:

(i) for a relatively high degree of overidentification (i.e. K2 = 6 

or K2 =9 in these experiments), application of the jackknife technique 

produces a substantial reduction in the bias of the 2SLS estimator;

(ii) over all experiments 2SLS is superior on a MSE criterion, this 

superiority being particularly marked when yz is "small";
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(iii) when 6 = 0.19, there appears to be little significant difference 

between the two estimators over all parameters, using the absolute error 

criterion, on the basis of the Wilcoxon Matched-Pairs Signed-Ranks test;

(iv) over all experiments, differences between 2SLS and J2SLS 

estimates of using MAE, MSE, and variance criteria are far less 

marked than the same differences for y and

(v) when the 2SLS estimator is unbiased (i.e. 6 =0.76), application 

of the jackknife is clearly unwarranted and its application in error

is likely to have a detrimental effect on the parameter estimates. 

Clearly, to avoid this possibility, Revankar and Hartley's [51] test 

should be used prior to estimation.



Table 6.4(a): Results of Monte Carlo Experiments

Parameter = (3̂ 2

RELATIVE BIAS VARIANCE M.S E. M.A E. WILCOXON

K2 A P2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

3
0.00 41.2725 -0.02739 -0.00151 0.03014 0.03044 0.03062 0.03044 0.14138 0.14030 +0.7324

0.45 29.1234 -0.04351 -0.00052 0.04022 0.04433 0.04143 0.04433 0.16927 0.17156 +0.1977

0.00 95.7945 -0.02911 +0.01092 0.01329 0.01473 0.01382 0.01480 0.09423 0.09717 -0.4487

6 0.45 56.3108 -0.05176 +0.01428 0.01963 0.02315 0.02134 0.02327 0.11690 0.12211 -0.6223

0.90 8.4440 -0.26531 -0.03903 0.09687 0.32332 0.14192 0.32429 0.30989 0.38605 -0.4986

0.00 118.3349 -0.03588 +0.02243 0.01123 0.01327 0.01205 0.01359 0.08642 0.09118 -0.4590

9 0.45 61.3857 -0.06731 +0.03637 0.01977 0.02815 0.02267 0.02900 0.12234 0.13239 -0.4590

0.90 9.1349 -0.30998 -0.03315 0.08634 0.37555 0.14784 0.37626 0.32287 0.44477 -2.3088

Sample size = 20 6 = 0.19



Table 6.4(b): Results of Monte Carlo Experiments

Parameter =

RELATIVE BIAS VARIANCE M.S .E. M.A .E. WILCOXON

K2 X y 2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

3
0.00 41.2725 -0.00629 -0.00215 0.00939 0.00946 0.00942 0.00946 0.08139 0.08130 +0.4109

0.45 29.1234 -0.00814 -0.00136 0.01326 0.01431 0.01330 0.01431 0.09392 0.09762 -1.2705

0.00 95.7945 -0.00524 -0.00328 0.00438 0.00490 0.00439 0.00490 0.05223 0.05582 -1.9444

6 0.45 56.3108 -0.00668 -0.00305 0.00655 0.00799 0.00657 0.00800 0.06450 0.07098 -2.5616

0.90 8.4440 -0.00844 +0.01385 0.03462 0.10562 0.03466 0.10573 0.14633 0.22304 -5.1540

0.00 118.3349 -0.00235 +0.00143 0.00371 0.00445 0.00371 0.00445 0.04988 0.05334 -1.5576

9 0.45 61.3857 -0.00191 +0.00588 0.00624 0.00880 0.00624 0.00883 0.06383 0.07461 -2.7232

0.90 9.1349 -0.00188 +0.03911 0.02810 0.09701 0.02811 0.09799 0.12742 0.22593 -6.4812

Sample size = 20 6 = 0.76



Table 6.5(a): Results of Monte Carlo Experiments

Parameter = Y^q

RELATIVE BIAS VARIANCE M.S E. M.A.E. WILCOXON

K2 \ u 2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 +0.05783 +0.03567 494.50 509.77 502.86 512.95 17.80 18.16 -0.8218
Ó

0.45 29.1234 +0.05958 +0.03691 532.11 552.15 540.98 555.55 18.52 18.69 -0.3335

0.00 95.7945 +0.07142 +0.01475 521.61 552.85 534.36 553.40 18.30 18.89 -0.8011

0.45 56.3108 +0.07951 +0.01679 554.61 590.48 570.42 591.19 18.87 19.14 -0.1169
D

0.90 8.4440 +0.21776 +0.07183 1712.25 2487.70 1830.80 2500.60 34.24 37.75 -1.7811

0.00 118.3349 +0.08609 -0.00401 524.09 560.12 542.62 560.16 18.60 18.63 +0.1994

9 0.45 61.3857 +0.10527 -0.00937 568.82 636.35 596.53 636.57 19.52 19.55 +0.2571

0.90 9.1349 +0.26538 +0.02130 1717.59 3005.34 1893.66 3006.47 35.04 39.50 -1.3169

Sample size = 20 6 = 0.19



Table 6.5(b): Results of Monte Carlo Experiments

Parameter = Y-̂ q

RELATIVE BIAS VARIANCE M.S E. M.A.E. WILCOXON

K2 X u2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

z
0.00 41.2725 +0.02198 +0.01713 159.76 161.79 160.97 162.52 10.10 10.19 -0.2372

0.45 29.1234 +0.02128 +0.01546 175.59 178.15 176.73 178.75 10.66 10.74 -0.6292

0.00 95.7945 +0.02206 +0.01941 174.43 177.16 175.65 178.10 10.58 10.69 -0.0688

6 0.45 56.3108 +0.02064 +0.01770 188.26 190.72 189.32 191.50 10.95 10.89 +0.6464

0.90 8.4440 +0.01336 +0.00231 664.16 789.39 664.61 789.40 20.49 21.88 -0.4573

0.00 118.3349 +0.01833 +0.01135 176.50 182.49 177.34 182.81 10.68 10.86 -0.5123

9 0.45 61.3857 +0.01673 +0.00717 194.44 205.75 195.14 205.88 11.10 11.35 -0.7427

0.90 9.1349 +0.01557 -0.01026 642.99 798.66 643.59 798.92 20.24 22.14 -1.2103

Sample size = 20 6 = 0.76



Table 6.6(a): Results of Monte Carlo Experiments

Parameter =

RELATIVE BIAS VARIANCE M.S .E. M. A E. WILCOXON

K2 X y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 -0.01578 -0.00552 0.12200 0.12560 0.12236 0.12564 0.27814 0.27567 +1.1175
Ô

0.45 29.1234 -0.01522 -0.00789 0.13579 0.14115 0.13612 0.14124 0.29161 0.29209 +0.0499

0.00 95.7945 -0.02943 +0.00569 0.13652 0.13946 0.13777 0.13951 0.29307 0.29189 +0.5794

6 0.45 56.3108 -0.03245 +0.00222 0.14783 0.15137 0.14934 0.15138 0.30267 0.29797 +1.1346

0.90 8.4440 -0.11355 -0.03921 0.56781 0.79627 0.58637 0.79849 0.61435 0.67577 -1.7501

0.00 118.3349 -0.03078 +0.01239 0.12644 0.13457 0.12780 0.13479 0.27999 0.28116 +0.2201

9 0.45 61.3857 -0.03260 +0.01124 0.14321 0.15645 0.14474 0.15664 0.29747 0.30058 -0.1221

0.90 9.1349 -0.06151 +0.02542 0.55360 0.79839 0.55905 0.79932 0.59897 0.67042 -2.1954

Sample size = 20 6 = 0.19



Table 6.6(b): Results of Monte Carlo Experiments

Parameter =

RELATIVE BIAS VARIANCE M.S .E. M A. E . WILCOXON

K2 X y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 -0.00167 +0.00144 0.04010 0.04035 0.04010 0.04036 0.15781 0.15610 +0.4968

0.45 29.1234 -0.00082 +0.00282 0.04498 0.04577 0.04498 0.04578 0.16653 0.16748 -0.6533

0.00 95.7945 -0.00307 -0.00161 0.04666 0.04552 0.04667 0.04552 0.16974 0.16665 +1.0762

6 0.45 56.3108 -0.00165 +0.00019 0.05082 0.04981 0.05083 0.04981 0.17583 0.17240 +1.2808

0.90 8.4440 +0.00305 +0.00767 0.21889 0.26339 0.21890 0.26348 0.36742 0.40131 -1.5163

0.00 118.3349 +0.00022 +0.00334 0.04273 0.04391 0.04273 0.04393 0.16162 0.16309 -0.1083

9 0.45 61.3857 +0.00155 +0.00551 0.04836 0.05005 0.04836 0.05010 0.17096 0.17022 +0.6017

0.90 9.1349 +0.00250 +0.00808 0.19668 0.22882 0.19670 0.22892 0.34628 0.36884 -0.7375

Sample size = 20 6 = 0.76

to
00
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CHAPTER 7 

INFERENCE

7.1 Tests of Significance

7.1.1 Conventional Tests of Significance

So far we have only considered point estimation of the 

parameters in a simultaneous equation system. In applied economics 

however it is usual to test for significance of the parameter estimates, 

or (identically) to formulate interval estimates.

From equation (2.6), the 2SLS estimator of 0 is written as

0 z ' x ( x ' x ) -1x ' z z ' x ( x ' x ) -1 X 'y  ,

and from equation (2.7) the limiting distribution of the sequence 

vW (§_ - 0) is given by

vT (§ - 0) ~ N 0, 02 plim
N  +  oo

z ' x
-1

x ' x 1_
N

x ' z
-1

(7.1)

provided lim
N^-oo

i_ x ' x  \ 1
N- j exists .

The correct asymptotic test of significance therefore is the 

standardized normal test statistic, and a consistent estimator of a2 

is given by

~  9 /v I /v /a = u u / N , (7.2)

where u = y_ - Y$ - .

It has become common practice however to adjust the estimator of 

a2 for loss of degrees of freedom and use the t statistic, rather 

than the standardized normal, when dealing with finite samples (e.g. see
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Johnston [20; p.384]. Thus in finite samples a consistent estimator 

of a2 is given by

A n A I A /

o = u u /(N - K1 - g) .

From equations (7.1) and (7.2) it follows that, asymptotically,

^  <§k - V ^  N(0,1) , (7.3)

/N A

where 0^ and 0^ are the kth components of 0_ and 0_ respectively 

(k=1,2,...,Kj+ g), and is the kkth component of

1_ Z ' X M  X'X
n ‘ I n '

x ' z
-l

Let denote the kkth component of [ z ' x ( x ' x )   ̂ x ' z ]  * , then 

Sk = NS^ and expression (7.3) can be rewritten as

(ek - V— -----—  ~  N(0,1) . (7.4)
a /~Sk

The conventional finite sample counterpart of expression (7.4) 

is the statistic (0̂  - 0̂ ) , (7.5)

a / a .k

which is tested as though it is distributed as Student t with 

N - - g degrees of freedom.

7.1.2 Dhrymes1 Alternative Test of Significance

An alternative asymptotic test of significance based on Student's 

t distribution has been proposed by Dhrymes [12]. Use of the t statistic 

is customary for testing the significance of 2SLS parameter estimates
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yet, until Dhrymes showed the asymptotic validity of his test, no 

theory existed to justify the practice. On the basis of the 

asymptotic distribution of the 2SLS estimator, the relevant test of 

significance should have been based on the standardized normal 

distribution as described by expression (7.4).

Rewrite the equation being estimated as

y_ = Z9_ + u_ (7.6)

where Z = [Y : X^] and 0_' = [£_' : t J], then define a square, non­

singular matrix R of order K such that RR' =X'X. Further define 

P = R *x', then premultiplying equation (7.6) by P gives

w = Q0_ + e_ ,

where w = Py, Q = PZ and ê = Pu. Dhrymes showed that the 2SLS estimator 

of 6_ in equation (7.6) is the OLS estimator of 0_ in this transformed 

system. Further, by analogy with least squares, Dhrymes showed 

that, asymptotically,

where an asymptotically unbiased, but inconsistent, estimator 

is given by

(7.7)

of a2

Ü2 = ê'ê/(K2 -g) = û'X(X,X)_1X ,u/(K2 -g).

Thus the test is only valid if the structural equation in question is 

over-identified.

Revankar [50], however, has shown that information is lost when 

a dimension reducing transformation is used as a basis for testing, 

thus Dhrymes1 test could be expected to be inefficient compared to

the conventional test based on the standardized normal distribution.
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In a Monte Carlo study, Maddala [26] observed that the Dhrymes 

test had low power compared with the conventional tests in a two 

equation model. Richardson and Rohr [54] came to the same conclusion 

on the basis of a Monte Carlo study using a three equation model.

7.2 The Exact Distribution of a t Statistic

The exact finite sample distribution functions of several t 

statistics for hypothesis testing and the construction of confidence 

intervals on 2SLS parameter estimates have been studied by Richardson 

and Rohr [53] and Rohr [57]. As with many other finite sample studies 

into the properties of the 2SLS estimator, the results were derived 

for a model with just two jointly-dependent variables.

Richardson and Rohr [53] considered the finite sample distribution 

of Dhrymes' t statistic, expression (7.7), which Dhrymes had already 

shown to be asymptotically distributed as Student t with - g degrees 

of freedom. However, since the sample size does not appear 

explicitly in their finite sample derivations, convergence of the t 

statistic to Student's t distribution was analysed for y2 (the 

concentration parameter) increasing indefinitely.

The moments of the exact distribution were found not to exist 

to order - g and higher, but where they did exist they converged 

to the moments of Student's t distribution with - g degrees of 

freedom as y2->°°. On the basis of their results Richardson and 

Rohr conjectured that, for large y2, the exact distribution function 

of the t statistic can be adequately approximated by Student's t 

distribution with - g degrees of freedom.

Richardson and Rohr investigated their conjecture for one 

degree of freedom and for several values of y and 3. On the basis
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of their computations they concluded that the actual probability 

of Type I error (for a significance level of 5%) will be less than 

5% if 3 is positive, and greater than 5% if 6 is negative. If p > 3 

the exact t statistic was found to be a good approximation to the 

Student t, but for small 3 and p < 3 differences between the two could 

lead to serious errors.

Richardson and Rohr also tabulated the exact value of the second 

moment and the exact absolute values for the first and third moments 

of the t statistic for various values of degrees of freedom,3, and 

p2, from which they concluded that the density function is highly 

skewed and that often the moments differ considerably from those 

of Student's t distribution with - g degrees of freedom.

Rohr [57] has derived the exact distribution of two "more 

conventional" test statistics, only one of which is used in this 

study, viz:

~ /--  ’
° / s k

which is identical to expression (7.5).

Rohr showed that asymptotically (in p2) expression (7.5) 

converges to Student's t distribution with N - - g degrees of

freedom, but that in finite samples the moments of the statistic

(7.5) exist only up to order N - - g + 1.

It should be noted, however, that mathematical complexity in 

the derivation of the moments of expression (7.5) forced Rohr to 

consider only the special case where 3= ai2 ^ ° 2 2 > ^'e‘ 2SLS unbiased- 

Under this restriction, expression (7.5) has all odd moments (where 

they exist) equal to zero, and 2SLS and OLS are equivalent.

Rohr also showed that the variance of expression (7.5) is 

always less than or equal to the variance of its limiting distribution.
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7.3 Student's t Distribution and its use with the Two-Stage Least 
Squares Estimator

The ratio

•w §k - E(0k)

Vv7r* S.E. (6k)
(k =1,2,...,Kj + g) (7 .8 )

is distributed as Student t if w is normally 

distributed with zero mean and unit variance and if v has a x 

distribution with r degrees of freedom, provided that v and w are 

stochastically independent. '
A A

For 2SLS, in general, E(0k) ^ 9^ and a is a consistent, 

but not unbiased, estimator of a 2. Consequently the denominator of 

expression (7.8) only approximates a y2 distribution. In addition, 

§k - E(0k) is not stochastically independent of its standard error
A

(S.E.) in finite samples. . It should be noted that E(0k) may not 

even be finite, although in the ensuing Monte Carlo analysis the 

experiments were designed in such a way as to ensure that the first 

two moments of the 2SLS estimator were always finite.

7.4 An Approximate t Statistic constructed using the Jackknife 
Technique .

Tukey [72] has suggested that the N pseudo-jackknife estimates 

could be treated as approximately independent, identically distributed 

observations from which an approximate t statistic.could be constructed 

as - •

[ J ( \ )  -  ek ]

, N - —
2]

(N-l)"1 l
i=l 1

V. )

(7.9)
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We have already shown (in Chapter 3) that expression (7.9) is 

asymptotically distributed as the standardized normal distribution in 

the context of the J2SLS estimator.

Although in general E[J(0^)]  ̂0̂ ., in many instances it will 

exhibit a smaller deviation from 0^ than 2SLS, as was observed in 

Chapter 4. In common with 2SLS, the numerator and the denominator 

of expression (7.9) will not be stochastically independent in finite 

samples.

Miller [34] gives several counterexamples to Tukey's conjecture, 

but Arvesen [1] gives a wide class of situations where this suggestion 

is valid, i.e. when J^fc^) and *1(0̂ ) are U statistics (see Hoeffding 

[19]) or functions of U statistics.

Recently, Miller [36] provided an asymptotic justification of 

Tukey's conjecture for a function of the regression parameters in a 

general linear model.

7.5 Independence of the Pseudo-Jackknife Estimates

Walsh [73] has demonstrated the deleterious effects of using 

correlated samples for the construction of certain significance tests. 

If the N pseudo-jackknife estimates could be considered as a single 

observation of a normal multivariate population, for which the N 

variables have common mean y and variance a2, the effect on the t 

statistic of a common level of pairwise correlation between the pseudo- 

jackknife estimates would be to raise or lower the true confidence 

coefficient depending on whether the correlation was positive or 

negative. Thus if the pairwise correlation (r) was positive, a test 

result which would be significant for a random sample need no longer 

be so. To correct the t statistic the multiplying factor
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/ a - r )
J  1+ (N-l)r 

is required.

Walsh illustrated the error incurred in assuming r =0 by 

tabulating the true value of the confidence coefficient for varying 

values of N and r. Even for small r the deleterious effect of correlation 

was very marked; e.g. for N = 8 and r= 0.1 the true value of the 95% 

confidence coefficient is 86.5%, and for N = 32 and r = 0.1 the true 

value falls to 68%. Thus the dangers of ignoring the possibility of 

|r|>0 are evident.

Miller [34], using different initial assumptions, has also shown 

the deleterious effect on the t statistic of correlation among the 

pseudo-jackknife estimates.

Three statistics were selected, therefore, to test for the 

"approximate" independence of the pseudo-jackknife 2SLS estimates, 

and for this purpose the pseudo-jackknife estimates were expressed as 

deviations from their mean, viz:

di k = J i ( v  -  J ( V ’ g = i »2’ •••» n)

for all k (k = l,2, ..., + g) . The three tests used for this purpose

are well known tests for departures from randomness, and a detailed 

explanation of all three (the Swed-Eisenhart One Sample Runs Test, 

the Fisher Exact Probability Test, and Spearman's Rank Correlation 

Coefficient) is given in Siegel [63].

The Swed-Eisenhart test (denoted by SE in Table 7.1) was used 

to ascertain whether the sequence of signs of the d ^  was random. The 

Fisher test (denoted by FI) was also based on sign sequences. A 2x2 

contingency table was set-up for each value of k and scores allotted 

according to the sequence of the signs of successive d ^  over the 

i observations. Spearman's Rank Correlation Coefficient (denoted by SR)
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The problem with using these aforementioned tests is that no 

general statement can be made about the efficiency of any of them.

In the context in which they are used in this study, each of these 

three tests will produce a different "measure" of randomness. All 

three reject a certain amount of relevant information and therefore, 

at best, the test results can only be used as an approximate guide 

to departures from randomness of the pseudo-jackknife 2SLS estimates.

The number of times the hypothesis of randomness was rejected 

for each test over the 100 replications is given in Table 7.1. A visual 

appraisal of the results indicates that the hypothesis of randomness 

is upheld "approximately" 95% of the time. These results appear to 

offer some support to Tukey's conjecture for this particular application.

7.6 Validity of Test Statistics

It is essential to examine the validity of the standard tests 

of significance to ensure that the test statistics do not diverge 

significantly from their postulated theoretical distribution. To 

this end, the Kolmogorov-Smirnov One-Sample Test (see e.g. Siegel 

[63; pp.47-52])was employed to test five hypotheses:

was used to test for association between the natural ordering of the

d ^  and their ranked ordering. All three tests were repeated over

all replications.

0.k 0 .k ^  N(0,1) (7.10a)
a/s7k

5 /sTk
(7.10b)

0.k 0.k ~  t
a /“STk

(7.10c)
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/S [ j(8k)-eJ
^  N(0,1) , (7.lOd)

and
/N[jcSk)-0k]

'v t (7.10e)N-l

i=l

(k = 1,2,...,^ + g).

Tables 7.2(a) and 7.2(b) set out the values of the maximum 

deviation, D, between the relevant empirical and theoretical 

distributions for each of these five hypotheses. The distributional 

assumptions are rejected at the 5% level for D > 0.13403.

Over all experiments 48 "sets" of values for D were obtained, 

i.e. 24 sets for each value of 6. The lowest D value in each set 

was designated "1st", the second lowest "2nd", and so on. Table 7.3 

summarizes the number of firsts, seconds, etc., for each test statistic 

over all parameters and all values of K f o r  6 = 0.19 and for 6 = 0.76. 

The following abbreviations are used:

CT1 - "Conventional Test No. 1", formula (7.10a);

CT2 - "Conventional Test No. 2", formula (7.10b);

DT - "Dhrymes Test", formula (7.10c);

JT1 - "Jackknife Test No. 1", formula (7.10d);

JT2 - "Jackknife Test No. 2", formula (7.10e).

Care must be taken in interpreting these figures, as the postulated 

theoretical distribution differs across each set.

When 2SLS was biased (i.e. 6 = 0.19) the jackknife-based test 

statistics always dominated the others for B12> anc* and for six

out of the eight sets of values for y^. The t statistic based upon 

the Dhrymes derivation (DT) consistently produced the poorest fit.



109

Table 7.1: Tests of Independence of Pseudo-Jackknife Estimates 
(Number of rejections at 5% level of significance)

6 = 0.19

K2 A FI SR SE

3 0.00 4 1 2
0.45 2 3 2
0.00 7 5 5

6 0.45 6 3 4
0.90 1 3 0
0.00 5 6 4

9 0.45 5 4 2
0.90 4 5 1

6= 0.76

K2 A FI SR SE

0 oo 9 6 7J
0 .45 5 3 5
0.00 4 7 4

6 0 .45 3 4 3
0 .90 3 7 3
0.00 4 10 4

9 0 .45 4 4 3
0 .90 7 8 2

K2 A FI SR SE

0.00 3 8 2
0.45 2 6 1
0.00 6 6 7

6 0.45 6 5 5
0.90 6 7 6
0.00 5 7 4

9 0.45 4 9 2
0.90 2 6 2

K2 A FI SR SE

3 0.00 2 7 3
0.45 2 5 1
0.00 1 7 2

6 0.45 1 7 4
0.90 3 7 2
0.00 3 9 1

9 0.45 5 8 3
0.90 2 5 2

K2 A FI SR SE

0 Oo 6 4 3
0 .45 4 4 0
0 oo 7 3 4

6 0.45 9 4 2
0 .90 5 5 3
0 oo 2 2 2

9 0.45 1 4 1
0.90 5 4 4

K2 A FI SR SE

3 0.00 1 4 0
0.45 5 3 3
0.00 4 3 2

6 0.45 4 5 3
0.90 3 4 2
0.00 6 2 4

9 0.45 3 5 4
0.90 2 3 2
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Table 7.2(a): Kolmogorov-Smirnov D Statistic

2SLS
t

Dhrymes J2SLS

K2 X Normal t t Normal t

7 0.00 0.1336 0.1329 0.1342 0.0929 0.0941
0.45 0.1478 0.1471 0.1406 0.0878 0.0871
0.00 0.1454 0.1429 0.1290 0.0912 0.0944

6 0.45 0.1888 0.1853 0.1743 0.1014 0.1055
0.90 0.3608 0.3578 0.3410 0.1381 0.1385
0.00 0.1406 0.1384 0.1546 0.0900 0.0925

9 0.45 0.1996 0.1987 0.2039 0.1009 0.1032
0.90 0.3965 0.3896 0.4000 0.1589 0.1530

7 0.00 0.1062 0.1068 0.1166 0.0907 0.0918
0.45 0.1115 0.1083 0.1047 0.0952 0.0965
0.00 0.1085 0.1051 0.1206 0.0439 0.0455

6 0.45 0.1222 0.1229 0.1199 0.0601 0.0603
0.90 0.1560 0.1561 0.1562 0.1052 0.1065
0.00 0.1224 0.1190 0.1300 0.0532 0.0551

9 0.45 0.1340 0.1343 0.1345 0.0540 0.0543
0.90 0.1968 0.1947 0.1892 0.1040 0.1039

7 0.00 0.0996 0.0987 0.1066 0.0680 0.0682
J

0.45 0.0778 0.0771 0.0969 0.0783 0.0790
0.00 0.0893 0.0881 0.0901 0.0851 0.0893

6 0.45 0.1225 0.1235 0.1121 0.0832 0.0851
0.90 0.1087 0.1082 0.1183 0.1200 0.1200
0.00 0.0957 0.0948 0.1156 0.0790 0.0840

9 0.45 0.1060 0.1061 0.1086 0.0843 0.0881
0.90 0.0761 0.0764 0.0768 0.0780 0.0779

Sample size = 20 6 = 0.19
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Table 7.2(b): Kolmogorov-Smirnov D Statistic

2SLS Dhrymes J2SLS

K2 A Normal t t Normal t

*7 0.00 0.1206 0.1184 0.0792 0.0790 0.0863J
0.45 0.0710 0.0696 0.0623 0.0967 0.1023
0.00 0.0424 0.0391 0.0573 0.0477 0.0525

6 0.45 0.0576 0.0617 0.0474 0.0489 0.0532
0.90 0.0761 0.0818 0.0754 0.0594 0.0614
0.00 0.0843 0.0820 0.0787 0.0650 0.0620

9 0.45 0.0654 0.0629 0.0551 0.0778 0.0724
0.90 0.0558 0.0607 0.0530 0.1252 0.1204

7 0.00 0.0683 0.0707 0.0971 0.0501 0.0513
J

0.45 0.0798 0.0792 0.0747 0.0594 0.0614
0.00 0.0764 0.0748 0.0809 0.0497 0.0513

6 0.45 0.0683 0.0702 0.0709 0.0829 0.0841
0.90 0.0602 0.0608 0.0583 0.0494 0.0549
0.00 0.0693 0.0681 0.0747 0.0571 0.0559

9 0.45 0.0613 0.0628 0.0611 0.0383 0.0400
0.90 0.0500 0.0515 0.0500 0.0511 0.0570

7 0.00 0.0536 0.0596 0.0633 0.0777 0.0811O
0.45 0.0799 0.0796 0.0706 0.0876 0.0913
0.00 0.0523 0.0598 0.0545 0.0905 0.0957

6 0.45 0.0629 0.0642 0.0584 0.0843 0.0877
0.90 0.0646 0.0681 0.0527 0.0751 0.0793
0.00 0.0546 0.0620 0.0508 0.0827 0.0871

9 0.45 0.0564 0.0592 0.0493 0.0746 0.0786
0.90 0.0536 0.0588 0.0505 0.0705 0.0757

Sample size = 20 6 = 0.76
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Table 7.3: Ranking of D Statistic over the Five Tests of Significance

RANK 1st* 2nd* 3rd* 4 th* 5th

CT1 1 1 5 11 6

CT2 1 2 9 10 2

DT 0 0 9 0 15

JT1 19 3 1 0 1

JT2 4 17 1 2 0

RANK 1st* 2nd* 3rd 4 th 5th

CT1 4 7 4 6 3

CT2 1 5 9 5 4

DT 11 2 7 0 4

JT1 7 3 2 10 2

JT2 2 6 2 3 11

Sample size = 20

* Denotes that column total does not sum
to 24 because of ties (to 4 decimal places).
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For 2SLS unbiased, however, the superiority of the jackknife- 

based test statistics was less marked. This was particularly noticeable 

for where the two jackknife-based test statistics always produced 

the poorest fit.

The number of rejections, at the 5% level of significance, of 

the hypothesis that each sample was drawn from the specified theoretical 

distribution is given in Table 7.4 In any one cell the total possible 

number of rejections is 24; percentages of rejections are given next to 

the absolute figures.

Table 7.4: Number of Rejections of the Null Hypothesis

6 = 0.19 0.76

CT1 9 37.5% 0

CT2 10 41.7% 0
DT 10 41.7% 0
JT1 2 8.3% 0
JT2 2 8.3% 0

Sample size = 20

Clearly when 6 = 0.19 the distribution of the t statistic formed 

using the 2SLS estimator gives a poor approximation to both Student's 

t distribution and the standardized normal distribution. Thus if the 

bias of the 2SLS estimator is significantly different from zero, the 

distribution of 2SLS-based test statistics may be a poor approximation 

to their postulated theoretical distributions.

7.7 Inference

7.7.1 Tests of Significance

In the preceding section it was shown that the distributions of
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expressions (7.10a), (7.10b) and (7.10c) show a substantial divergence 

from their postulated theoretical distributions when 6 = 0.19, even for 

relatively large values of y2. It is important to ascertain the 

effect of this divergence on statistical inference.

In this section we consider the degree of accuracy afforded 

by using the relevant theoretical distributions as approximations for 

making statistical inference.

The hypotheses that the biases of the 2SLS and J2SLS estimators 

were not significantly different from zero were tested at both the 

5% and 10% levels of significance. The proportion of samples falling 

in the .05 and .95 percentiles of the relevant theoretical distributions 

are given in Tables 7.5, 7.6 and 7.7. These tables are further 

divided into parts (a) and (b), the former for results when 6 = 0.19, 

the latter for 6 = 0.76.

In these tables each cell contains three values. The number of 

"rejections" are tabulated according to whether they were rejected in 

the lower or upper tail of the relevant distribution, and are given 

by the figures in parentheses on the left and right respectively at 

the top of each cell. The total number of "rejection^'is given below 

these two figures.

For the parameter both JT1 and JT2 show a number of

"rejections" nearer the nominal level of significance than CT1 and 

CT2 in just over half of the experiments for 6 = 0.19. There is little 

to choose between these two jackknife-based test statistics, although 

JT2 (i.e. the t statistic given by formula (7.10e)) was marginally 

closer to the nominal level of significance for = 6 and 9 and 

A =0.45 and 0.90. CT2 is to be preferred to CT1 as the number of 

"rejections" were, in general, nearer the nominal level of significance. 

Using the same criterion, CT2 is to be preferred to JT1 but not to JT2.
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Dhrymes' test statistic (DT) gave a similar pattern of "rejections" 

to the other t statistics, but it should be noted that approximate 

confidence intervals using DT will be much wider than those using 

either CT2 or JT2.

The striking feature about these results however is the distribution 

of "rejections"between the tails of the relevant distributions. The 

downward bias of the 2SLS estimator of B^2 ensured that virtually all 

rejections for CT1, CT2 and DT fell in the lower tail, this being most 

noticeable when was relatively large.

The constant term,!^, gave a fairly even spread of "rejections" 

between the tails for all tests, whereas y ^  showed a similar, but 

less marked, pattern to that for B^2-

For all three parameters, the three t statistics (CT2, DT and 

JT2) are to be preferred to those tests based on the normal distribution, 

although this preference is most marked for B12-

The skewness of the foregoing statistics, which is particularly 

noticeable for the 2SLS-based statistics, can have important 

consequences when the postulated distributions are used as a basis 

for constructing approximate critical regions for one-sided tests of 

hypotheses. From Tables 7.5(a), 7.6(a) and 7.7(a), it can be seen that 

if the lower tail of the CT1, CT2 and DT distributions is used to 

construct an approximate test for B^2, the estimate of the level of 

significance is generally considerably higher than the postulated 

level of either 2.5% or 5%, i.e. the level of significance is under­

estimated. Conversely, if the upper tail is used then the level of 

significance will be overestimated. Moreover, in general, the degree 

of error is larger the higher the level of multicollinearity and the 

greater the degree of overidentification.

By comparison, test statistics for B^2 based on the jackknife 

statistics JT1 and JT2 give a more even spread of rejections and
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consequently a smaller error of over- or under-estimation when performing 

one-sided tests of hypothesis. Even here, however, for large X and 

= 6 or K2 = 9 the lower tail was markedly larger than its nominal 

level, although generally very much less than for CT1, CT2 or DT.

For 6 = 0.76 all five tests generally only differ to a small 

degree over the three parameters, although for JT1, JT2 and DT

tend to overestimate the total nominal level of significance in both 

tails by approximately the same margin as CT1 and CT2 tend to 

underestimate it. For = 9 and A = 0.9 the jackknife-based tests 

produced a "wayward" result.

When 6 = 0.76 the 2SLS estimator is not only unbiased, but the 

odd order moments (those that exist) of both CT2 and DT are zero (see 

Section 7.2) in the model under consideration. Thus selecting 6 = 0.76 

has not only removed the location problem but also the problem of 

skewness of the distribution of CT2 and DT, provided that the first 

three moments exist (which they do for = 6 and = 9). It is hardly 

surprising, therefore, that the jackknife-based test statistics cannot 

show superiority over CT1, CT2 and DT under such circumstances.

From the preceding results it can be concluded that the t 

statistic based on the J2SLS estimator (JT2) will, in general, produce 

confidence intervals which are at least as accurate as those produced 

using test statistics based on the 2SLS estimator.

7.7.2 Power of the Tests

Finally we consider the power of the alternative tests under 

the hypothesis that w^ere ^ 2* was sPecifi-ed to be 0.8.

Tables 7.8 (a-c) present power functions for the five tests 

when 6 = 0.19. The computational expense involved in computing 

power functions prohibited further calculations. The significance 

level for all tests was 5%.



Table 7.5(a): Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: B

K2 A CT1 CT2 DT JT1 JT2

3
0.00

(3) (1) 
4

(2) (1) 
3

(3) (2) 
5

(2) (2) 
4

(2) (2) 
4

0.45
(4) (0) 

4
(3) (0) 

3
(1) (3) 

4
(2) (2) 

4
(2) (1) 

3

6

0.00
(6) (2) 

8
(6) (2) 

8
(5) (3) 

8
(5) (2) 

7
(5) (2) 

7

0.45
(6) (2) 

8
(4) (1) 

5
(5) (3) 

8
(6) (2) 

8
(3) (2) 

5

0.90
(15) (0) 

15
(12) (0) 

12
(7) (3) 
10

(8) (5) 
13

(6) (3) 
9

9

0.00
(10) (2) 

12
(7) (1) 

8
(6) (2) 

8
(5) (4) 

9
(5) (3) 

8

0.45
(7) (2) 

9
(7) (1) 

8
(6) (2) 

8
(4) (3) 

7
(4) (3) 

7

0.90
(19) (0) 

19
(17) (0) 

17
(16) (0) 

16
(13) (7) 

20
(11) (7) 

18

a = 5% 6 = 0.19

PARAMETER: S

K2 A CT1 CT2 DT JT1 JT2

3
0.00

(8) (4) 
12

(5) (4) 
9

(5) (3) 
8

(2) (2) 
4

(2) (2) 
4

0.45
(8) (3) 
11

(7) (1) 
8

(4) (5) 
9

(4) (3) 
7

(2) (2) 
4

6

0.00
(8) (3) 
11

(6) (3) 
9

(7) (4) 
11

(6) (2) 
8

(6) (2) 
8

0.45
(11) (4) 

15
(9) (3) 
12

(5) (4) 
9

(6) (5) 
11

(6) (4) 
10

0.90
(21) (1) 

22
(2) (0) 
20

(14) (3) 
17

(11) (7) 
18

(ID (6)
17

9

0.00
(10) (2) 

12
(10) (1) 

11
(10) (2) 

12
(6) (6) 
12

(6) (5) 
11

0.45
(10) (2) 

12
(9) (2) 
11

(10) (3) 
13

(6) (8) 
14

(6) (6) 
12

0.90
(26) (0) 

26
(23) (0) 

23
(23) (0) 

23
(17) (10) 

27
(16) (8) 

24

a = 10% 6 = 0.19
Sample size = 20
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Table 7.5(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: B12

CM A CT1 CT2 DT JT1 JT2

3

0 .00
( 1 )  ( 3 )  

4

U )  C D  

2

( 3 )  ( 3 )  

6

(1) ( 2 )  

3

( 1 )  ( 2 )  

3

0 . 4 5
( 2 )  ( 1 )  

3

( 1 )  ( 0 )  

1

( 2 )  ( 3 )  

5

( 2 )  ( 2 )  

4

( 1 )  C D  

2

0.00
( 4 )  ( 2 )  

6

( 2 )  ( 2 )  

4

( 4 )  ( 4 )  

8

( 4 )  ( 1 )  

5

( 3 )  ( 1 )  

4

6 0 . 4 5
( 4 )  ( 2 )  

6

( 2 )  ( 2 )  

4

( 3 )  ( 2 )  

5

( 4 )  ( 3 )  

7

( 3 )  ( 1 )  

4

0 . 9 0
( 3 )  ( 1 )  

4

( 2 )  ( 0 )  

2

( 2 )  ( 4 )  

6

/—\ 
v—

>

00
t—\
"Tfv—/ ( 4 )  ( 4 )  

8

0.00
( 5 )  ( 3 )  

8

( 4 )  ( 3 )  

7

( 2 )  ( 2 )  

4

( 3 )  ( 6 )  

9

( 3 )  ( 4 )  

7

9 0 . 4 5
( 4 )  ( 4 )  

8

( 2 )  ( 2 )  

4

( 1 )  ( 3 )  

4

( 3 )  ( 5 )  

8

( 3 )  ( 5 )  

8

0 . 9 0
( 3 )  ( 3 )  

6

( 3 )  ( 2 )

5 i

( 4 )  ( 4 )  

8

( 5 )  ( 8 )  

13

( 3 )  ( 6 )  

9

a = 5% & = 0.76

PARAMETER: B12

K2 \ CT1 CT2 DT JT1 JT2

3
0.00

(3) (6) 
9

(3) (5) 
8

(7) (6) 
13

(3) (4) 
7

(1) (2) 
3

0.45
(4) (3) 

7
(4) (2) 

6
(4) (6) 
10

(3) (4) 

7

(2) (3) 
5

6

0.00
(7) (4) 
11

(6) (3) 
9

(6) (5) 
11

(5) (5) 
10

(5) (4) 
9

0.45
(6) (4) 
10

(5) (3) 
8

(5) (5) 
10

(6) (6) 
12

(5) (5) 
10

0.90
(5) (2) 

7
(5) (2) 

7
(4) (4) 

8
(5) (7) 
12

(5) (7) 
12

9

0.00
(5) (4) 

9
(5) (4) 

9
(7) (4) 
11

(6) (7) 
13

(6) (7) 
13

0.45
(5) (4) 

9
(5) (4) 

9
(6) (6) 
12

(6) (5) 
11

(5) (5) 
10

0.90
(4) (5) 

9
(4) (5) 

9
(5) (6) 
11

(9) (12) 
21

(7) (9) 
16

a = 10% 6 = 0.76
Sample size = 20
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Table 7.6(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: y

!K2
I

X CT1 CT2 DT JT1 JT2

T

0 . 0 0
( 3 )  ( 4 )  

7

( 2 )  ( 4 )  

6

( 4 )  ( 3 )  

7

( 1 )  ( 4 )  

5

(1) ( 4 )  

5
J

0 . 4 5
( 3 )  ( 4 )  

7

( 2 )  ( 4 )  

6

( 3 )  ( 3 )  

6

( 1 )  ( 4 )  

5

C D  ( 4 )  

5

0 . 0 0
( 2 )  ( 5 )  

7

(1) ( 4 )  

5

( 2 )  ( 4 )  

6

( 1 )  ( 6 )  

7

( 1 )  ( 5 )  

6

6 0 . 4 5
( 3 )  ( 4 )  

7

( 1 )  ( 4 )  

5

( 2 )  ( 3 )
r*o

( 1 )  ( 7 )  

8

( 1 )  ( 4 )  

5

0 . 9 0
( 1 )  ( 5 )  

6

( 1 )  ( 5 )  

6

( 1 )  ( 3 )  

4

( 2 )  ( 6 )  

8

( 2 )  ( 4 )  

6

0 . 0 0
( 3 )  ( 5 )  

8

( 3 )  ( 4 )  

7

( 1 )  ( 4 )  

5

( 2 )  ( 4 )  

6

( 1 )  ( 4 )  

5

9 0 . 4 5
( 3 )  ( 4 )  

7

( 2 )  ( 4 )  

6

( 1 )  ( 5 )  

6

( 2 )  ( 4 )  

6

( 0 )  ( 4 )  

4

0 . 9 0
C D  ( 5 )  

6

( 1 )  ( 5 )  

6

(1) ( 3 )  

4

( 6 )  ( 6 )  

12

( 5 )  ( 4 )  

9

PARAMETER: y

K2 X CT1 CT2 I DT i JT1
________ _________1

JT2

3
0.00

(5) (8) 
13

(4) (4) j  (4) (5) 
8 j 9

_L

1 (2) (7) 
9

(2) (6) 
8

0.45
(5) (7) 
12

(4) (7) 
11

(3) (7) 
10

| (2) (8) 
10

(2) (8) 
10

6

0.00
(5) (8) 
13

(4) (6) 
10

(2) (8) 
10

(3) (7) 
10

(3) (7) 
10

0.45
(5) (9) 
14

(4) (7) 
11

(4) (8) 
12

(3) (7) 
10

(3) (7) 
10

(3) (10) 
130.90

(4) (10) 
14

(3) (8) 
11

(4) (8) 
12

(4) (11) 
15

9

0.00
(5) (5) 
10

(4) (5) 
9

(4) (8) 
12

(4) (8) 
12

(3) (7) 
10

0.45
(6) (6) 
12

(5) (5) 
10

(4) (7) 
11

(5) (7) 
12

(4) (6) 
10

0.90
(5) (5) 
10

(3) (4) 
7

(6) (5) 
11

(6) (6) 
12

(6) (5) 
11

a = 10% 6 = 0.19
Sample size = 20

119



Table 7.6(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : y 10

!K2 1 z
A CT1 CT2 DT JT1 JT2

.
1 ( 1 )  ( 4 ) ( 1 )  ( 3 ) ( 4 )  ( 4 ) ( 2 )  ( 4 ) ( 0 )  ( 3 )

3

0.00 5 4 8 6 | 3

( 2 )  ( 4 ) ( 1 )  ( 3 ) ( 3 )  ( 5 ) ( 3 )  ( 4 ) ( 1 )  ( 4 )
0.45 6 4 8 7 5

( 1 )  ( 4 ) C D  ( 4 ) ( 2 )  ( 4 ) ( 1 )  ( 5 ) ( 0 )  ( 4 )
0.00 5 5 6 6 4

( 1 )  ( 4 ) ( 1 )  ( 4 ) ( 2 )  ( 4 ) ( 2 )  ( 7 ) ( 0 )  ( 4 )

6 0.45 5 5 6 9 4

( 2 )  ( 4 ) ( 1 )  ( 4 ) ( 2 )  ( 3 ) ( 2 )  ( 5 ) ( 1 )  ( 3 )
0.90 6 5 5 7 4

( 3 )  ( 4 ) ( 2 )  ( 3 ) ( 1 )  ( 2 ) ( 1 )  ( 5 ) ( 1 )  ( 3 )
0.00 7 5 3 6 4

( 2 )  ( 4 ) ( 1 )  ( 3 ) (1) ( 2 ) ( 2 )  ( 5 ) ( 1 )  ( 4 )
9 0.45 6 4 3 7 5

( 3 )  ( 3 ) ( 1 )  ( 3 ) ( 2 )  ( 2 ) ( 4 )  ( 5 ) ( 3 )  ( 4 )
0.90 6 4 4 9 7

a = 5% 5 = 0.76

PARAMETER: Y10
1
K2 X CT1 CT2 DT JT1 JT2

0.00
(5) (4) 

9
(4) (4) 

8
(6) (7) 
131

i (3) (5) 

8

(3) (4) 
7

3

0.45
(4) (4) 

8
(4) (4) 

8
(5) (9) 
14

1 (3) (5) 

8

(3) (4) 
7

0.00
(5) (6) 
11

(3) (5) 
8

(4) (7) 
11

(3) (8) 
11

(3) (8) 
11

6 0.45
(6) (6) 
12

(3) (5) 
8

(4) (7) 
11

(3) (7) 
10

(2) (7) 
9

0.90
(3) (5) 

8
(3) (4) 

7
(3) (7) 
10

(5) (6) 
11

(4) (5) 
9

0.00
(5) (5) 
10

(4) (5) 
9

(4) (8) 
12

(4) (8) 
12

(3) (7) 
10

9 0.45
(6) (6) 
12

(5) (5) 
10

(4) (7) 
11

(5) (7) 
12

(4) (6) 
10

0.90
(5) (5) 
10

(3) (4) 
7

(6) (5; 
11

(6) (6) 
12

(6) (5) 

11 i
a = 10% 6 = 0.76

Sample size = 20
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Table 7 .7(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : y
11

1
K2 A CT1 CT2 DT JT1 JT2

3
0.00

(3) (1) 
4

(2) (1) 
3

(4) (2) 
6

(5) (1) 
6

(3) (1) 
4

0.45
(2) (1) 

3
(2) (1) 

3
(4) (1) 

5
(3) (2) 

5
(3) (1) 

4

0.00
(5) (2) 

7
(4) (2) 

6
(1) (2) 

3
(4) (2) 

6
(3) (2) 

5

6 0.45
(3) (2) 

5
(3) (1) 

4
(1) (3) 

4
(3) (2) 

5
(3) (1) 

4

0.90
(4) (1) 

5
(3) (1) 

4
(2) (2) 

4
(5) (2) 

7
(4) (2) 

6

0.00
(4) (2) 

6
(3) (2) 

5
(2) (1) 

3
(4) (3)

7
(3) (2) 

5

9 0.45
(4) (2) 

6
(2) (2) 

4
(4) (1) 

5
(4) (3) 

7
(4) (1) 

5

0.90
(3) (1) 

4
(3) (1) 

4
(3) (1) 

4
(4) (6) 
10

(3) (4) 
7

“ = 5% 6 = 0.19

PARAMETER : Yj 1

K2 X CT1 CT2 DT • JT1 JT2

3
0.00

(3) (4) 
9

(5) (4) 
9

! (6) (6) 

-

| (5) (2) 
7

(5) (2) 
7

0.45
(4) (5) 

9
(4) (2) 

6
(5) (5) 
10

! (4) (4) 
8

(4) (2) 
6

6

0.00
(7) (3) 
10

(5) (2) 
7

(8) (4) 
12

(7) (5) 
12

(5) (4) 
9

0.45
(6) (3) 

9
(6) (2) 

8
(6) (4) 
10

(5) (5) 
10

(4) (5) 
9

0.90
(7) (2) 

9
(7) (1) 

8
(6) (3) 

9
(8) (5) 
13

(6) (4) 
10

9

0.00
(5) (5) 
10

(4) (3) 
7

(6) (6) 
12

(5) (4) 
9

(5) (4) 
9

0.45
(5) (4) 

9
(4) (3) 

7
(5) (3) 

8
(5) (6) 
11

(5) (4) 
9

0.90
(8) (4) 
12

(4) (2) 
6

(8) (3) 
11

(5) (8) 
13

(5) (7) 
12

a = 10% <5 = 0.19

Sample size = 20
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Table 7.7(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: y
1
K2 A CT1 CT2 DT JT1 JT2

3
0.00

(3) (2) 
5

(2) (1) 
3

v_/
oo

(3) (2) 
5

(3) (1) 
4

0.45
(2) (1) 

3
(2) (1) 

3
(4) (3) 

7
(3) (1) 

4
(3) (1) 

4

6

0.00
(3) (3) 

6
(2) (2) 

4
(0) (2) 

2
(4) (4) 

8
(3) (3) 

6

0.45
(3) (2) 

5
(2) (2) 
. 4

(2) (3) 
5

(3) (3) 
6

(3) (3) 
6

0.90
(2) (1) 

3
(2) (1) 

3
(3) (2) 

5
(5) (2) 

7
(3) (2) 

5

9

0.00
(3) (3) 

6
(3) (3) 

6
(2) (3) 

5

£
00

r3"V-/ (4) (3) 
7

0.45
(4) (3) 

7
(2) (3) 

5
(3) (2) 

5
(4) (3) 

7
(4) (3) 

7

0.90 (2) (2) 
4

(2) (1) 
3

(2) (4) 
6

(3) (3) 
6

(2) (3) 
5

a  = 5% 6 = 0.76

PARAMETER : Yn

K2 A CT1 CT2 DT JT1 JT2!

0.00
(5) (5) 
10

| (5) (5) 
10

; (5) (6) 
11

| (5) (5) 
10

| (5) (5) 
10

O

0.45
(4) (4) 

8
(4) (3) 

7
(7) (5) 
12

' (4) (4) 

»

(4) (4) 
8

0.00
(6) (5) 
11

(6) (3) 
9

(4) (4) 
8

(7) (5) 
12

(6) (4) 
10

6 0.45
(6) (5) 
11

(6) (4) 
10

(4) (4) 
8

(5) (6) 
11

(5) (4) 
9

0.90
(6) (3) 

9
(6) (3) 

9
(5) (3) 

8
(6) (5) 
11

(5) (3) 
8

0.00
(4) (6) 
10

(4) (4) 
8

(4) (5) 
9

(4) (4) 
8

(4) (4) 
8

9 0.45
(4) (6) 
10

(4) (4) 
8

(5) (7) 
12

(4) (5) 
9

(4) (4) 
8

0.90 (4) (5) 
9

(4) (4) 
8

(4) (7) 
11

(7) (5) 
12

(7) (4) 
11

a = 10°s 6 = 0.76
Sample size = 20
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When 3j2 = 0-8, the power reported in the tables is of course 

equivalent to the probability of a Type I error.

Strictly speaking the term "power" is not appropriate as one 

cannot compare the powers of a number of tests when the probability 

of Type I errors are clearly not equal. Perhaps "probabilities of 

rejection" would be a more appropriate term.

Tests based on the standardized normal distribution (CT1 and 

JT1) showed greater "power" than their counterparts based on Student's 

t distribution, although we have already noted that the former produce 

higher Type I errors. Of the two tests based on the standardized normal 

distribution, CT1 generally had higher "power" than JT1 except for 

"large" 1^(6 or 9) and high levels of multicollinearity (A = 0.9). A 

similar pattern was evident for comparisons of "power" between CT2 and 

JT2. On the other hand, the Type I errors associated with CT1 and 

CT2 were often greater than those of JT1 and JT2 (which themselves were 

generally greater than the nominal level of significance).

Dhrymes' test (DT) consistently exhibits the lowest "power" of 

the five tests, a result also noted by Maddala [26], although the Type I 

errors associated with this test are frequently nearer the nominal 

level than those associated with the other tests.

As one would expect, high levels of multicollinearity reduce the 

"power" of all five tests.

In conclusion, CT1 and CT2 dominate JT1 and JT2 respectively 

(i.e. they have higher "probabilities of rejection") although rarely 

over the entire range of values of 3^* This superiority however will 

be offset by the lower Type I errors which JT1 and JT2 frequently

For each value of 3^, ranging from 0.0 to 1.6 in steps of 0.2,

a new set of 100 replications was generated and the power of each test

was evaluated.
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exhibit. No definitive statement can be made, therefore, concerning 

the relative powers of these four tests. The substantially lower "power" 

which is generally exhibited by DT suggests that this test is not a 

practical proposition, despite its accuracy for estimating the level of 

significance.
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Table 7.8(a) Power of the Test Statistics

X ^12“ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CT1 1 .00 0.92 0.62 0.11 0.04 0.30 0.70 0.87 0.96
CT2 0.99 0.91 0.52 0.05 0.03 0.24 0.68 0.86 0.95

0.00 DT 0.52 0.27 0.15 0.07 0.05 0.14 0.38 0.43 0.71
JT1 0.96 0.82 0.48 0.11 0.04 0.19 0.62 0.77 0.92
JT2 0.95 0.79 0.44 0.09 0.04 0.18 0.60 0.77 0.90

CT1 0 96 0 82 0 43 0 06 0 04 0 24 0 65 0 77 0 88
CT2 0 93 0 75 0 36 0 03 0 03 0 21 0 62 0 74 0 85

0.45 DT 0 40 0 29 0 13 0 05 0 04 0 12 0 33 0 38 0 62
JT1 0 93 0 68 0 37 0 .10 0 04 0 18 0 55 0 64 0 85
JT2 0 89 0 61 0 30 0 07 0 03 0 15 0 52 0 59 0 82

K2 = 3 N = 20 6 = 0.19
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Table 7.8(b): Power of the Test Statistics

X g12= 0.0 0 .2 0 4 0 6 0 8 1 0 1 .2 1.4 1.6

CT1 1.00 1 .00 0 90 0 35 0 08 0 50 0 94 1.00 1.00
CT2 1.00 0 99 0 88 0 29 0 08 0 47 0 93 1 00 1.00

0.00 DT 1.00 0 98 0 80 0 23 0 08 0 37 0 90 0 97 1.00
JT1 1 .00 0 99 0 83 0 32 0 07 0 25 0 77 0 97 0 .99
JT2 1 .00 0 00o 0 78 0 31 0 07 0 24 0 74 0 LOOl 0 99

CT1 1 OO 0 96 0 70 0 14 0 00o 0 45 0.82 1.00 1 00
CT2 1.00 0 95 0 65 0 12 0 05 0 41 0.79 0 98 0 98

0.45 DT 0 .99 0 87 0 54 0 11 0 08 0 31 0.69 0 91 0 99
JT1 1.00 0 88 0 70 0 20 0 08 0 28 0.65 0 85 0 94
JT2 1.00 0 85 0 64 0 15 0 05 0 28 0.60 0 85 0 94

CT1 0 00 0 19 0 00o 0 04 0 15 0 30 0 58 0 76 0 85
CT2 0 .41 0 15 0 04 0 03 0 12 0 24 0 50 0 71 0 oo

0.90 DT 0 35 0 14 0 08 0 06 0 10 0 24 0 37 0 56 0 74
JT1 0 .45 0 28 0 16 0 12 0 13 0 19 0 27 0 47 0 64
JT2 0 45 0 26 0 13 0 09 0 09 0 16 0 24 0 04 00 0 60

N = 20 6 = 0.19
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Table 7.8(c): Power of the Test Statistics

À ®12~ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CT1 1.00 1.00 0.95 0.26 0.12 0.73 0.97 1.00 1.00
CT2 1.00 1.00 0.94 0.21 0.08 0.63 0.95 1.00 1.00

0.00 DT 1.00 1.00 0.92 0.15 0.08 0.58 0.96 1.00 1.00
JT1 1.00 1.00 0.92 0.29 0.09 0.35 0.87 1.00 1.00
JT2 1.00 1.00 0.91 0.25 0.08 0.32 0.86 0.99 1.00

CT1 1 oo 0 98 0 76 0 11 0 .09 0 59 0 88 0 99 0 .99
CT2 1.00 0 98 0 72 0 08 0 00o 0 55 0 84 0 99 0 99

0.45 DT 1.00 0 93 0 62 0 07 0 08 0 44 0 82 0 97 0 99
JT1 1.00 0 91 0 73 0 16 0 07 0 28 0 75 0 94 0 96
JT2 1.00 0 89 0 72 0 15 0 07 0 27 0 74 0 90 0 96

CT1 0 36 0 17 0 07 0 10 0 19 0 48 0 75 0 00oo 0 96
CT2 0 27 0 15 0 05 0 08 0 17 0 44 0 74 0 87 0 96
DT 0 20 0 17 0 05 0 07 0 16 0 36 0 68 0 81 0 96
JT1 0 41 0 34 0 13 0 11 0 20 0 29 0 56 0 60 0 75
JT2 0 36 0 31 0 12 0 09 0 18 0 27 0 53 0 57 0 72

K2 = 9 N = 20 6 = 0.19
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CHAPTER 8 

CONCLUSION

8.1 General Remarks

In Chapter 3 it was shown that, asymptotically, the 2SLS and 

J2SLS estimators are equivalent. Thus, one would expect the MSEs 

of the two estimators not to be significantly different from each 

other for "large" values of y2. If this were indeed so, the 

superiority of the jackknife technique for constructing confidence 

intervals and performing tests of significance would justify its 

use in applied economics.

From the preceding Monte Carlo study it is evident that the 

jackknife technique, whilst reducing the bias of the 2SLS estimator 

is not to be recommended for "small" y2 if the criterion for selection 

of an estimator is either minimum MSE or MAE. For "large" values 

of y2 there was little difference between the MSEs and MAEs of the 

2SLS and J2SLS estimators, whilst the Wilcoxon Matched Pairs Signed 

Ranks test indicated significant differences between the two 

estimators only for small y2.

It was then observed (Chapter 7) that t(and z) statistics formed 

using the 2SLS estimator were not distributed according to the 

Student t or standardized normal distributions when 6 = 0.19. The 

actual distributions are highly skewed and serious errors could 

result if these postulated distributions were used for statistical 

inference. In general, this feature was less noticeable for the 

J2SLS estimator which, on the basis of Kolmogorov Smirnov tests, 

appears to have a reasonably symmetric distribution, and consequently
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there is less likelihood of serious errors being made if the postulated 

theoretical distributions are used for the purpose of statistical 

inference.

Even under "ideal" conditions (i.e.S =0.76), test statistics 

based on the 2SLS estimator cannot show superior (to J2SLS) fit 

to their postulated theoretical distributions for the parameter 3^*

Finally, the "power" functions of the alternative tests were 

calculated over a range of values for 3^- The problem involved 

in comparing the "power" of two or more statistics when the Type I 

errors are not equal was recognized, but even making allowance 

for this problem Dhrymes' t statistic showed considerably lower "power" 

than the other statistics considered. This latter result confirms 

Maddala's [26] conclusions.

Clearly, therefore, a decision on circumstances under which 

application of the jackknife would be fruitful, hinges on one's 

definition of "large" in the context of the concentration parameter, y2.

8.2 When is the Concentration Parameter "Large"?

Whilst selection by "informed guesswork" of a value of y2 which 

could be taken as "large" is a somewhat haphazard procedure, two 

other problems of greater magnitude present themselves:

(i) can a value of the concentration parameter which is designated 

as "large" for an equation containing just two endogenous variables 

also be designated as "large" for an equation containing three (or 

more) endogenous variables?

(ii) how can the value of the concentration parameter be 

calculated?

To date, most of our knowledge concerning y2 is in the context of 

an equation containing just two endogenous variables, but preliminary
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work by Richardson and Rohr [54] appears to indicate that a value 

of p2 which is considered "large" in the context of an equation con­

taining two endogenous variables may be "small" in the context of 

an equation containing three endogenous variables.

With regard to the second problem Rohr [57] has proposed that 

y2 be estimated from the sample and that this value be used to 

indicate whether y2 was "large" or "small" (he was interested in 

determining if y2 was large enough to enable the limiting distribution 

function (Student's t distribution) to be used as an approximation 

to the conventional t statistic without involving appreciable error).

Unfortunately, in the absence of knowledge of the sampling 

distribution of y2, when a and are replaced by their estimated 

values it would not be possible to obtain any measure of the 

reliability (i.e. the sampling variance) of our estimate. It 

should also be noted that there would be a conflict regarding the 

optimal method for estimating and ^ 2 '  The Unrestricted Least 

Squares estimator would, intuitively, seem to be inefficient relative 

to the 2SLS induced Restricted Reduced Form estimator (although 

Dhrymes [13] has shown that, asymptotically, this may not be so), 

but the latter estimator may not possess moments of any order (see 

McCarthy [32]).

Clearly, therefore, considerably more knowledge concerning both 

the distribution of y2 and the properties of reduced form estimators 

is required before Rohr's [57] proposal can be properly evaluated.

8.3 Extension of the Results

The Monte Carlo experiments did not investigate the effects 

of an increase in sample size on the two estimators, although a 

proof that both the bias and the MSE of the 2SLS estimator are



monotonically non-increasing functions of the sample size was given 

in Chapter 5. As the sample size increases, other variables being 

constant, the concentration parameter will, in general, increase in 

size and hence one would expect the MSE of the J2SLS estimator to 

tend towards (perhaps not monotonically) that of the 2SLS estimator. 

Conversely, a decrease in sample size might be expected to have the 

opposite effect on the J2SLS estimator.

The estimation of "large" (e.g. economy-wide) models may present 

a problem if use of the J2SLS estimator is contemplated. In such 

circumstances, the computing time and storage requirements will increase 

more rapidly for J2SLS than for 2SLS as the size of the model increases.

It is unlikely however that 2SLS (and hence J2SLS) would be 

a feasible proposition anyway in large models, since it is probable 

that K would exceed N and consequently 2SLS would degenerate to OLS 

(see Fisher and Wadycki [15]). The jackknife could however be applied 

to an Instrumental Variables estimator which only considered a sub-set 

of the excluded predetermined variables when estimating any one 

structural equation, thus ensuring that K<N. Although such a procedure 

may yield inconsistent (perhaps of a minor nature) parameter estimates 

and would thus contravene Quenouille's original assumption that a 

consistent estimator is necessary for the jackknife to be successfully 

applied, Brundy and Jorgenson [8] cite conditions under which Instrumental 

Variables estimators based on sub-sets of the predetermined variables 

retain the property of consistency.

8.4 Extension to Three-Stage Least Squares

The foregoing analysis suggests that an extension of the jackknife 

technique to the Three-Stage Least Squares (3SLS) estimator may be an

131
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extremely tedious procedure. Having obtained 2SLS estimates of all 

structural coefficients in the system, the 3SLS estimator can be 

calculated by applying Generalized Least Squares to the entire system 

(where the equations are written in stacked form) to obtain

^ z '  [ft“ 1 © X C X ' X J ' V J  Z j  Z ' j ^ " 1 ©  X ( X , X ) " 1X ,J y ,  ( 8 . 1 )

where ©  denotes the Kronecker product.

In general, ft will be unknown and must be replaced by ¿2, 

the matrix of mean’squares and products of the 2SLS residuals. With 

ft replaced by ft we obtained the 3SLS estimator.

If the jackknife were applied to the 3SLS estimator,ft would have 

to be replaced by the matrix of mean squares and products of the J2SLS 

residuals, and (8.1) would have to be estimated N times with the ith 

observation omitted at each (of the N) replications.

It is the author's contention that this would not be a very 

fruitful exercise, especially as no exact results on the moments of 

the 3SLS estimator are available to provide an exact analysis of the 

jackknife's bias reducing potential. In addition, it is unlikely 

that the "simplifying" formula developed for J2SLS could be extended 

to J3SLS without considerable difficulty and, even then, the additional 

(to 3SLS) computer run-time involved would probably be substantial.

8.5 The Final Word

In this thesis we have demonstrated the value of the jackknife 

statistic for forming "accurate" confidence intervals and tests of 

significance when y2 is "large". The bias reducing property of the 

jackknife is generally present in the context of the 2SLS estimator, 

although it would certainly be unwise to jackknife the 2SLS estimator
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if the sample size is less than twice the number of variables included 

in the equation being estimated.

In applied economics, if the above condition is met and provided 

the degree of multicollinearity is not excessive, it is the author's 

contention that the true (unknown) value of the concentration parameter 

would, in general, be large enough to enable the jackknife technique 

to be used on the 2SLS estimator.



134

APPENDIX A

LEMMA

0 Proof of the following lemma is due to Bartlett [2]

LEMMA:

If A is a k x k  non-singular matrix, and £  and d_ are two 

k dimensional column vectors, then

(A + c d')“1 = A"1
A-1c d'A“1

1 + d,A”1c

PROOF:

(À + c d') 1 = A 1 (l+£ d'A-1)

= A“1(I - c d'A“1 + c d'A“1 c d'A-1

A"1 - A_1c d'A“1 {I - d'A“1c + (d'A^cf

= A'-1
A“1c d'A“1 

1 + d,A"1c



h ■ ^
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APPENDIX B

DERIVATION OF A RESULT ON ASYMPTOTIC NORMALITY

Consider the first term in square brackets in equation (3.72), viz:

S1(diag R: + N"1. R1)S|

z'(A1 + A2)(diag R1 + N"1. R^fA, + A?)Z1 1J "1 2

(B.l)

+ Z'MxA2(diag Rx + N"1. R ^ A ^ Z

- Z,(A1 +A2)(diag Rx + N"1. R ^ A ^ Z

- z’MxA2(diag Rx + N"1. R1)(A1 + A ^ Z  ,

where R^ = u u 1 = [u - Z(0_ - 0_) ] [u - Z(0 - 0) ]

/\

The ith element of u can be written as

u. = u. - z\ (0 - 0) , i i —i — —

and consequently the jkth element of the first term in equation (B.l) 

can be written as

N
V z. .z., (A, + A„).. [u. - z.(6 - 6)] , . L - it ik^ 1 2-'ll l —x K— — ’i=l J

(B.2)

T-1ignoring, for the present, the term incorporating N . R^ . 

Upon expansion, equation (B.2) can be written as

N N
y z. .z., (A. + A_) . . u? - 2 y z. . z., (A. + A_)2. . z! (0 - 0)u.. ii ikv 1 2'n  l . L , ii lk1- 1 2Jn  —i —  — ii=l J i=l J

N
+ y z. .z ., (A, + A J 2 . [ z \(0 - 0) ]2 .. L , i j  ik^ 1 2'n —i — —i=l

(B.3)

In the forthcoming analysis we will assume, without loss of 

generality, that the observations on the (g) explanatory endogenous
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variables occur in the first g elements of z! .& —l
Expanding the second term in equation (B.3) we obtain

N
2,5>ijzik('i * A2)iii=l " i A ' V  + Z i 2 $ 2 - Q2> +

Zi,K1+g(;0K1-g“ 9K1+g;i u.1

Consider the first (of the K^+g) term of the above expansion:

N
- 2 y z. . z ( A  + A )2. . z.. (§. - eju. ..L, in lk'- 1 2^ii il^ 1 1J i  i=l J

(B.4)

(B.5)

We can partition z„ and z ^  as

__  - m.. + v., , (for j,k < g) where13 13 13 lk lk lk ’ v j  > ^z.. = m. . + v. . and z.. ij il 1

nr ̂ and represent the nonstochastic part of z and z ^  respectively 

(j,k = 1,2,...,K^+ g), and v ^  and v ^  represent the reduced form 

disturbance part of z.. and z., respectively (for j,k>g this will ofJL J lK

course be zero).

Expression (B.5) can therefore be written as

N N
el> I

i = l
(A1 + A Sf. .m. .m., m. ,u. 

2 ' 1 1 13 lk ll 1 + I (A!i=l

2
+ A„). .m. .m.. v. nu. 2J 1 1 13 lk ll 1

N N
+ I
i=l

(A1+A_)2. .m. .v., v..u. + 2' n  13 lk ll 1 l (A! 4
i=l

A - ) 2, .m. .m. ,v., u. 
2' n  13 ll lk 1

N N
+ I
i=l

CA1 + A„)2. .v. .v.. m. ,u. 2^ n  13 lk ll 1 + I (A!i=l
+ A-)2, .v. .m.. v. .u. 

2Jn  13 lk ll 1

N N —1

+ I
i=l

(A1 + A„)2. .v. .m-.m.-u. 
2 ' 1 1 13 lk ll 1 + l (A!i=l

+ A_)2. .v. .v., v. .u. 2Jn  13 ik ll 1

Recall the decomposition introduced as equation (3.51), viz:

V = u y' + E ,

(B.6)



137

the ijth element of which can be written as

v. . = u. \b. + e. . . ij i 1 il (B. 7)

Substituting for and in expression (B.6) we obtain

- 2(Q1 - 0j)
N
y (A, + A„). .m. .m., m..u. . L . y 1 2'n ii lk ll ii=l J

/ N 2 N 2+ y (A, + A0). .m. .m., iu? + J (A, + A.). .m. .m., e. ,u.y \ i 1 2 J i i  i j lk 1 l  ̂1 2'n 13 ik ll 1

/ N N 2 \
* (.^<*1 * A2>iimi j V l ui * . H A1 * A2himijeikeilui )

N N
♦( J , (*1+ V i i " i j ' i i V i  * H V Vk. i=1

N

i=l
. .m. .m., eM u.\ 11 13 ll lk 1

* Vi=l<Al * ¿ ( Al * A2hi“il0ijeikui

N N
+ y (A. + A_). .m., iJj.^.u . + y (A, + A_)..m., e..e..u.1 2yn  ikr3yl 1 1 2'11 lk 13 ll 1

N N
+ y (A, + A„)..m.. m.,^.u? + y (A, + A„)..m., m.,e..u.1 2'n lk ilr3 1 1 2'n ik ll 13 1

+ ( j ^ l  * V i i V k V i  * , H A1 * A2)iieijeikeilui

(B.8)

Consider the first term in expression (B.8) and note that

max
l£i£N

CSj-Bj) fAj * A2)iin.ijmikmil

<: max 
' l<i<N

(0f 0X)
2(A, + A„). .m. .m., m., v 1 2An  13 lk ll

= 0 -a max1 1 l<:i$N <A1 * A2)iimijmik"il
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Since plim (0.
N+oo J - v - 0 , (j =1,2,.. .Kj +g) (B.9)

it follows that

plim tl§i - ei ) plim ¡max 2(A_ +A„)..m..m., m...  ̂ 1 2'll 13 lk ll = 0 . (B.10)
N ->0O N ->o° l<i<N

Then using Theorem I (from Chapter 3) it follows that

plim
N + 00

1_
N

N
2(0 - 9,) I (A1 +A)..m..m.,m.1u.  ̂ 1 1J ,L, 1 2;n  ij lk ll ii=l

= 0

Consider the second term in expression (B.8). Using the above 

logic it follows that

plim (|01 - 0 |) plim max 
N ->-o° N l$i^N

(A1 + A„). .m. .m., \p1 ̂ 1 2J li ij ikrl 0 .

Then using Theorem I it follows that

plim jlfN + °o

N
- 2(01 " 91) l  (Ai + V i ^ i / i k ^ l ^ i  " = 0 5i=l J

where E(u?) = a2(finite) .

This result implies that

PlimN -*■«>

piim i
N ->-o°

N
- 2(0 -©,) I (A + A„) . .m. .m., ̂ ,u? 1 1 . ^ 1  2hi li lk 1 ii=l J

N
- 2(0 -0 ) V (A +A„). .m. .m.,^a2 1 1 ■ , 1 2 l i  ij  i k r l1=1 J

2 • 1 a2 plim jj-
N

- 2(0, -6-) I (A.. + A~). .m. .m.. ifu K 1 V  .L . v 1 2-'n li ikrli=l J

0, from Theorem I. (B.11)
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With minor variations, this analysis can be used to show that, in 

the probability limit, the fourth, sixth, eighth, tenth, twelfth 

and fourteenth terms in expression (B.8) are all zero. Since u^ 

and e^ are, by assumption, uncorrelated random variables with mean 

zero, it follows using Theorem I that the remaining terms in expression 

(B.8) all converge in probability to zero.

Expression (B.5) was analysed under the assumption that 

j, k $ g. If both j and k are greater than g then no partitioning 

of z„ and z ^  is necessary as they only contain nonstochastic 

(corresponding to X^) elements. Under such circumstances, the 

resulting expansion of expression (B.5) is limited to the first two 

terms of expression (B.6) and thus the first three terms of expression 

(B.8). We have already argued that, in the probability limit, these 

three terms are zero.

If either j or k is less than g then one partitioning of z„

(or z^) is necessary. The subsequent expansion of expression (B.5) 

will be limited to just four terms of expression (B.6) and we have 

already argued that the corresponding terms in expression (B.8) converge 

in probability to zero.

This concludes the analysis of the first term in expression 

(B.4). The remaining + g - 1 terms can be dealt with in an analogous 

manner noting, once more, that the last values of z^. (j =1,2,....,

+ g) contain no stochastic component.

Returning to expression (B.3) we have shown that the second 

term converges in probability to zero.
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Consider the third term in expression (B.3), viz:

N
y z. .z., (A. + A0)2. . [z! (6 - 0) ]2. l] ikv 1 2'n —l — —i=l ^

J z. . z., (A, + A„)2. . ,L, ij lk1- 1 2^iii=l Zil<°l ' V *  zi2(02 - 62) +

—  2
.... + z . „ (0J, - 0„ )1,K1+g'- Kx + g K1 + ĝ J

Upon squaring the term in square brackets we obtain

N
y (At + A„). . z. . z L K 1 2 ^ n  ij lk

i=l

2 „  ̂ 2
zll(0l - 6,) + zf2(92 - 02) + •••• ♦ zi,K1+gteK1+g-eK1+g^

+ zilZi2(0i - 0i) (02 02) + zn zi3^i 0l ^ ® 3 ' 03:)

+ z..z. (0, - 0.) (0„ - Qv )ll i,K1+g'- 1 Kx+g K1+g-'

+ Zi2Zil(§2 - 02 ^ §l - 0l̂  + Zi2Zi 3 ^ 2 - 02 ^ §3 - 03̂  +

+ Zi2Zi,K1+g(02 " 02)(0K1+g _0K1+g)

+ Zi,K1+gZil(0K1+g " 0K1+g)C® r 0l3 +Zi,K1+gZi2(0K1+g_9K1 + g)(02"02) +

+ z. „ z."ijKj+g^ijKj+g-l ̂0K1+g-0K;l+ĝ  ̂ 0K1+g-l_0K1+g-l̂

(B.12)

Consider the first term of the above expression, viz:

N
y (A + A ) ..z..z.1z?1(01 -01) , 1 2 J li 13 lk ll^ 1 ’ ( B . 13)

where the z^ can again be partitioned only now

zu  = * mu  * vn  + 2miivn  ■ ( j < g)
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Upon expansion, expression (B.13) can be written as

il
N N

el)2 y (A, + A„)2. .m. .m.. m2 + . L- 1 2J 1 1 il îk il i=l J
l
i=l

N N
+ 2 y (A. +AJ..m..m.lm.1v.1. v 1 2^ii il îk il il i=l

- 1 
i=l

N N

il

+ Y (A, + A0)2. .m. .v., v2 + 2 y (A, + A„)2. .m. .v.. m...v.,1 2J il ii îk il . L. K 1 2^ii il îk il il i=l J i=l J

N N
+ y (A , + A„)2 . v. .m.. m2 + y (A, + A_)2.-v. .m.. v2 ,L, 1 2Jil il îk il .  ̂1 2 ii 13 îk ili=l J i=l

+ 2 y (A, + A„)2. .v. .m., m., v., + y (A, + A_)2. .v. .v., m2 1 27n  11 îk il il 1 2'11 il îk ili=l J i=l J

N N
+ y (A, + A„)2. . v. .v., v?, + 2 F (A1 + A )2. .v. .v., m., v.. 1  2J 1 1 il îk il 1 2^n ii îk il ili=l J i=l J

(B•14)

Using the decomposition given by equation (B.7), expression 

(B.14) can be evaluated in a similar term by term manner to the 

analysis used for evaluating expression (B.6).

Consider the first term in expression (B.14). Since

plim (0 . - 0 . )2 = plim (§. - 0.) plim (0.-0.) = 0, for all j , 
N ->°0 J J N-*-00 J J N ~̂ °°  ̂ ^

and since m?^ is a constant, it follows by an analogous proof to

that used in deriving equation (B.10) that

plim max
N -*-«> l$i<:N

(0, - 0, )2(A1 + A0)2. .m. .m., m., k 1 1 ^ 1  2^11 l] îk il = 0 .

Using equation (B.7) the second term in expression (B.14) can 

be written as
N

(0n - 01)2 y (A + A )2. .m. .m.vif£u?  ̂ 1 V  . 1 2 h i  11 i k r l  1i=1
N

+ (0n - 0.)2 V (An + A0)2. .m. .m., e?, '-I K 1 2hi 11 îk ili=l J
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N
+ (0-. - 9,) y (A, + A_)2. .m. .m.. iu. e..'■I 1 2J n  lj ikrl l lli=l J

(B.15)

Since m. m., and \b. are constants the first two terms in ij5 lk rl
expression (B.15), multiplied by V n , converge in probability to zero 

by the same proof used to derive the result given by equation (B.ll), 

assuming E(e?^) is finite. Further, since u^ and e ^  are uncorrelated 

random variables with mean zero, it follows from Theorem I that the 

third term in expression (B.15) (multiplied by ^/N) converges in 

probability to zero.

Evaluation of the remaining terms in expression (B.14) follows 

a similar pattern, all converging in probability to zero.

Returning to expression (B.13) if either j or k (or both) are 

greater than g then the above analysis involves fewer terms in 

expression (B.14), as was shown when dealing with the second term in 

expression (B.3). The analysis, however, is identical.

Returning to expression (B.12), a similar analysis can be used 

to show that the remaining terms in the first line of this expression 

all converge in probability to zero. The same result holds for the 

terms in the remaining lines of expression (B.12), although the 

analysis is more tedious due to the introduction of another (the 

fourth) term in z.

To summarize, we have shown that the second and third terms 

in expression (B.3) converge in probability to zero. Thus we have 

shown that

plim 1_ . Z'(A^ + A ) (diag (Â  + A2)Z 
N-»-“ N

= plim 1 . z’(A1 + A„)(diag u u1)(A. + A?)Z .
N ->-00 N 1 2  1 2
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Noting that

z! P_1(£. -a.)
plim (A ) . . = - plim — ------ ----—  = 0 , (B.16)
N —  2 11 N ^ »  1.(1-s. *d.)1 V 1 1

using equations (3.39), (3.41) and (3.42), the remaining terms 

in (diag R^) in equation (B.l) can be analysed in an analogous manner 

to the first term. We have shown therefore that

plim 1_ . S (diag R1)S' = plim 1_ . S (diag u u')S' .
N+°° N 1 1 1  N+°° N 1 1

We now consider the terms in N  ̂ in expression (B.l). The 

first term can be expanded as follows:

N'1 . Z’(A1 + A2)R1(A1 + A2)Z 

= N“1 . Z,(A1 + A2)u u (A1 + A2)Z

= N"1. Z,(A1 + A2) u u '(A1 + A2)Z

+ N"1 . Z,(A1 + A2)Z(§ - 6.)(£- 0)'Z'(A + a2)z

- N"1 . Z'(A1 + A2)Z(0_- £)u '(A1 + A2)Z

- N-1 . Z,(A1 + A2)u(£ - 0)'z'(A1 + A2)Z .

Since 2SLS is a consistent estimator we know that

plim (0 - 0) = 0_ ,
N -><»

and from the preceeding analysis it is easy to show that 

plim £  . Z1(A- + A )Z
N->o° n  i  z

is a finite matrix. Now consider the term 

Z'(A1 + A2) u . (B.17)
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The jth component of this random vector can be written as

N
y z..(A + A }..u.. ij 1 2J n  l

Partitioning z^. into its stochastic and nonstochastic components, 

and using the decomposition of v „  given by equation (B.7) we 

obtain

N N
l m. . (A1 + A )..u. + T (A + A ). . \p. u? . L , iiv 1 2 ii l 1 2 n  Yi li=l J i=l J

N
+ y (A, + A J  . . u. e. . . v 1 2 li l ij (B. 18)

Since the nu . are constants, and using the result that

plim (A + A ) = 1
N+°° 1 i

it follows that

N1 Vplim rr > m. . (A, + A„) . . u. ii N i] 1 2n  lN -»00 i=l

by the Law of Large Numbers. The same Law ensures that the second 

term in equation (B.18) (multiplied by ^/N) converges in probability 

to a finite constant, provided E(u?) is finite, and that, since u^ 

and e„ are uncorrelated random variables, the third term (multiplied 

by V n) converges in probability to zero.

Combining the above results, we have shown that

plim 1_
N+°° N

plim 1_
N ->-oo n

I- Z'(A1 +A2)R1(A1 +A2)Z
N

1_. Z,(A1 +A2)u u ' (Ax +A2)Z
N
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Using the result given by equation (B.16), in addition to 

the above results, it can be shown that the remaining terms containing 

N 1.R̂  in equation (B.l) can be analysed in an analogous manner. All 

three remaining terms converge in probability to zero.

Thus we have shown that the first term in square brackets in 

equation (3.72) can be written as

plim 1_. S (diag R1 + N * .R. ) S* = plim 1_. S (diag u u ' + N ^u u ') s' .
N+co N 1 1 1 N + °° N 1 1

Consider the second term in square brackets in equation (3.72), 

viz: S2(diag R2 + N ^.R^S^

= Z'(A2 - Ag)(diag R2 + N"1.R2)(A2 - A3)Z

+ z'MxA3(diag R2 + N"1.R2)A3 MxZ

+ Z'(A2 - A3)(diag R2 + N_1.R2)A3 MxZ

+ z'MxA3(diag R2 + N“1.R2)(A2 - , (B.19)

where R2 = (I - Mx)u u' (I - M )

= (I - Mx)[u- Z(0 - 0)][u- Z(0 - 0)]'(I -Mx) .

The following results can be easily derived:

plim
N -*00 Â2 A3^ii “ 1 ’ (B. 20)

plim
N -»-«> *-A2 A3^ii = 1 ’ (B.21)

plim ‘V i i  = 1 ’ (B.22)
N -̂oo

and plim (A - A ) (A ) = 1 .
N

(B. 23)
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The first term in equation (B.19) can be written as 

Z'(A2 - A3)(diag R2)(A2 - A3)Z

+ z ’(A2 - A3) CN".1R2) CA2 - A3)Z , (B.24)

whereupon, using the definition of R2> the first term in equation 

(B.24) can be written as

z '(A2 - A3)(diag u u ')(A2 - A ^ Z  

- z '(A2 - A3)Mx(diag u u')(A2 - A ^ Z

z '(A2 - A3)(diag u u ')Mx (A2 - A^)Z

+ z '(A2 - A3)Mx(diag u u')Mx(A2 - A3)Z (B.25)

The jkth element of the first term in equation (B.25) can 

be written as

N
I z. .z (A - A S ) . ■ [u. - z! (0 - 0) ] ii ikv 2 3'n i -l —  —i=l

Since
2 2plim max (A + A ).. = plim max (A - A3),. = 1 , 

N->°° l<i<N N l$i$N

this expression does not differ, asymptotically, from expression 

(B.2) and can therefore be analysed in an analogous manner. It 

follows that

pliml_.Z,(A2 - A3) (diag u u') (A2 - A^)Z
N +°° N

= plim 1_. Z' (A - A3) (diag u u') (A2 - A ) Z .
N + °° N

Consider the remaining terms in expression (B.25). We have 

already shown (equation (3.27)) that

lim (M ) = 0 ,
N —>-00

(i = l,2,....,N) (B. 26)
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and thus the remaining terms must all converge in probability to 

zero by an analogous proof to that employed in analysing the first 

term.

Further, equations (B.22), (B.23) and (B.26) allow the 

remaining terms containing (diag R^) in equation (B.19) to be analysed 

in an identical manner to their corresponding terms containing 

(diag R^) in equation (B.l). It follows that

plim 1_ . S (diag R„)s' = plim 1_. S (diag u u')S' .
N -*-00 N N->°° N

The terms containing N 3 r 2 in equation (B.19) can also be 

analysed in a similar manner to their counterparts in equation (B.l). 

Consider the first term containing N *R2 equation (B.19), viz

N"1. z' (A2 - A3)R2(A2 - A3)Z

= N_1.Z'(A2 - A3)(I - Mx)u u'(I - Mx)(A2 - A3)Z

= N"1.Z'(A2 - A3)(I - Mx)u u'(I - Mx)(A2 - A3)Z

+ N_1.Z'(A2 - A3)(I - Mx)Z(0 - 0) (£ - 0)' Z' (I - m x)(A2 - A3)Z

- N".1z '(A2 - A3)(I - Mx)u(0 - 0)'z'(I - Mx)(A2 - A3)Z

- N_1.Z'(A2 - A3)(I - Mx)Z(0 - 0)u'(I - Mx)(A2 - A3)Z . (B. 27)

The first term in equation (B.27) can be written as

N"1.z '(A2 - A3)u u'(A2 - A3)Z - N_1.z'(A2 - A3)Mxu u'(A2 - A3)Z

- N_1.Z'(A2 - A3)u u'Mx(A2-A3)Z+N_1.Z'(A2 - A3)MX u u' MX(A2 -A3)Z .

From our initial assumptions (specifically, Assumption (iii) in 

Section 2.1.3) it follows that

plim l_. Z' (A - A3)Mxu = 0 ,
N+oo N
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and hence, asymptotically, the first term in equation (B.27) can be 

written as

plim 1_ 1_ . z' (A - A )u u' (A2 - A3)Z
N + “ N N

Since (I - M^) is a nonstochastic matrix, using equation (B.20) 

it follows that the last three terms in equation (B.27) (multiplied 

by i- ) all converge in probability to zero. Thus we have shown that

plim 1_ 1_. Z (A - A )R (A - A )Z
N ->°° N N ^

plim 1_
N ̂  00 N

l  . Z'(A2 - A3)u u '(A2 - A3)Z

Clearly the third and fourth terms in equation (3.72) can be 

analysed in an identical manner since the relevant results have 

already been derived.

To conclude, we have shown that

plim 1_ . S (diag R + N * .R. )s'
N^oo n 1 1 1

plim 1_. S1 (diag u u + N \ u u')s',
N + °° N

plim 1_ . S2 (diag R2 + N * .R2) S'
N N

plim 1_ . (diag u u' + N u u') s' ,
N+°° N

and

plim 1_. S (diag R + N  ̂.R3)
N -*00 N

plim 1_ . S1 (diag u ;u' + N \ u_ u ' ) S' .
N+°° N i

Consider the following summation

(diag u u' + N"1. u u')Sj + S2(diag u u'+N *. u u')S2

- (diag u u' + N'1. u u')S2 + S2(diag u u' + N 1. u u')S

which can be simplified to



(Si - S2)(diag u u' + N_1u u')(S1 - S2)'

= Z' (Â  + 2A2 - A^) (diag u u ' + N ■*’u u ') (Â  + 2A2 - A^) Z

- Z'MX(A2 - A^) (diag u u' +N‘1uu')(A1 + 2A2 -A3)Z

- z' (Â  + 2A2 - A^) (diag u u ' + N u ) (A2 - A^M^Z

+ Z'MX(A2 -A3)(diag u u' +N_1u u’)(A2 -A3)MxZ . (B.28)
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The jkth element of the first term containing (diag u u') 

in equation (B.28) can be written as

N N
T m. .m., (A.. + 2A„ - A_)2. .u? + Tv. .m., (A.. + 2A„ - A_)2. .u? 

i j  i k v 1 2  3' n  l  13 i k ^  1 2 3^ i i  li=l

N N
+ T m. .v., (A, + 2A0 - A_)2. .u? + 7 v. .v., (A1 + 2A_ - A_)2. .u? . 

^  i j  l k ' -  1 2 37 n  l  .L, i ]  l k * -  1 2 3J i i  li-1 1J
(B. 29)

We have already shown (equation (3.47)) that

plim vfo max (A + 2A_ - A_).. = 0, (B.30)
N + °° l<i<N ii

from which it follows that

plim y/N max m. .m.. (A, + 2A~ - A_). . t, . i . i] ikl 1 2 3 iiN+oo l<i^N

Using Theorem I it follows that 

1 Nplim i  i m..m.. (A1 + 2A0 - A„)?.u? = 0 , . „ N . L . ij ikv 1 2 3ui l ’i=l JN̂ -oo

provided E(u^2) is finite.

The decomposition given by equation (B.7) is required in order 

to evaluate the three remaining terms in equation (B.29). The second 

term can be written as

N N
J j  fAl * 2A2 - A3)ilmik,|'jui * <A1 + 2A2 - A3>li’ikeijui
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Equation (B.29) and Theorem I ensure that the first term in this

expression (multiplied by 1/N) converges in probability to zero;

and since the e.. and u. are uncorrelated random variables with mean il 1

zero, Theorem I ensures that the second term in this expression 

(multiplied by 1/N) also converges in probability to zero. Similarly 

the third term in equation (B.29) (multiplied by 1/N) converges in 

probability to zero.

The fourth term in expression (B.29) can be written as

N

N
l  (A, + 2A

i=l
- A_)2. .ip.e., uf 3 li j ik i

N
* T / V  2V  V i i V i j ui * , H V 2V  V i i eijeikui 1=1 J 1=1 J

The first term of this expression (multiplied by 1/N) converges in

probability to zero by virtue of equation (B.30) and Theorem I.

The three remaining terms (multiplied by 1/N) also converge in

probability to zero, using Theorem I and the assumption that e„ and

u. are uncorrelated random variables with mean zero. i

The first term in N ^. u u ' in equation (B.28) is 

N"1.Z'(A + 2A2 - A3)u u '(Ax + 2A2 - A )Z.

We have already shown in Chapter 3 that

plim J_ . Z' (A + 2A - A )u = 0_ .
N "°° A

Since each element of the 2SLS residual vector converges in distribution 

to the corresponding element of the disturbance vector, this implies 

that

plim _1_ . Z1 (A + 2A„ - A )u = 0_ .
N + ” A,

It follows that

plim 1_ [1_ . Z '  (A + 2A2 - A )u u' (A + 2A2 - A )Z] = 0  .
N + oo N N

(B.31)
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Thus we have shown that the first term in equation (B.28) converges 

in probability to zero.

Consider the second term in equation (B.28), viz:

- Z'Mx (A2 - A3) (diag u u') (A1 + 2A2 - k j l

- Z'Mx (A2 - A3)(N_1. u u ')(A1 + 2A2 -A3)Z , (B.32)

and we will analyse the term in (diag u u') first.

,-l
Since plim i 1_. X X

N->oo \ n
1 . x z ) - sxx zxz ,
N

(B.33)

we need only consider the limiting form of 

X'(A2 - A3)(diag u u')(A1 + 2A2 - A3)Z .

The rjth element of this term can be written as

N
y X. (A. - A_)..(A1 + 2A„ - A_)..(m.. + v..)u? . L . irv 2 y  n *  1 2 3 ' n v ii l y  ii=l

(j = 1,2,...,^ + g ; r = 1,2, ...,K) ,

1-e- X .xir^A2 " V i i < Al + 2A2 ' A3')iimijUi i=l

N
* ¿ xirtV A3)iiiV 2V A3)ii V i  

N
+ y x. (A, - A„)..(An + 2A„ - A_).. u?e.. .V ,  i r ^  2 3 ' n ^  1 2 3^11 l  i i1=1 J

Using equations (B.20) and (B.30), by Theorem I

plim rr y x. (A - A ) .. (A + 2A0 - A_). .m. .u? = 0 , t, N irv 2 3 ' 1  2 3hi ii lN^-oo i = l J

N

provided E(u?) is finite. By the same argument

PlimiT T,xir(A2-A3)ii(Al*2A2-A3)ill,'juI =N-S-oo 1 = 1 J
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provided E(u?) is finite. Finally, since and e^. are uncorrelated 

random variables with mean zero it follows, using Theorem I, that 

the remaining term in the above expression (multiplied by 1/N) converges 

in probability to zero.

Now consider the limiting form of the second term in expression 

(B.32), viz

z ’m x (A2 - A3) ( i- u  u ')(A1 + 2A2 -A3)Z .

In view of equation (B.33) we are concerned with the limiting form of

N_1.X'(A2 - A )u u ' (A + 2A2 - A )Z .

Combining Assumption (v), Section 2.1.3., with equation (B.20) it 

follows that

plim 1_ . X' (A - A )u = £  ,
N-voo N

which when combined with equation (B.31) ensures that

plim 1_ 1_. Z'MX(A2 -A )(u u ')(A1 +2A2 -A3)Z 
N -y°° N N

= 0 .

Thus the second, and hence the third, term in equation (B.28) 

has been shown to converge in probability to zero.

The fourth term in equation (B.28) can be written as

Z'X(X'X)-1X'(A2 - A )(diag u u')(A2 - A )X(X'X)-1x'Z

+ z ' x ( x ' x ) -1 x ' (A2 - A3)(N_1.U u')(A2 - A3)X(X'X)-1x 'z . (B.34)

Again, combining Assumption (v), Section 2.1.3, with equations (B.20) 

and (B.33) we have shown that

Consider the expression 

X'(A2 -A3)(diag u u ’)(A2 -A3)X ,

= 0 .plim l  1_. Z'M (A -A )(u u')(A -A )M Z
N-yoo n  N
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which has rsth term

N
. 1 *  irxisCW i i  
1 =  1

From equation CB.21)

plim (A , -  A3)ii = 1

- A ")2. • u? . (r,s = 1,2,. ..,K)
ii i

N
- .. . ,  mi from which it follows thatfor all 1 (1 = 1 , 2 , . . . ,

plim max 
N -*-00 l<i$N

i - (A2 - y
2
ii 1 = 0 .

Thus, using Theorem I, it follows that

plim m .£ xirXisM^-oo i=l

N
1 - (A2 - ̂ 3  ̂ii (u? - a2) = 0 ,

(B.35)

and hence we deduce that

P11” Ti E W i  ’   ̂ 'M->co 1=1 •

Substituting this result back into equation (B.M). and using equation 

(B.J3) we have shown that the fourth term in equation CB.28), and 

hence the entire expression, converges in probability to
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APPENDIX C

THE TORONTO FUNCTION

Copson [10] has shown that, for large |x| ,

p (a; Y ; x J - ^  /„C y - o,, 1-a; ; I )  ,
F(a) x

® (Y-a)r(l-a)r
where _F (y - a; 1-a; ; 1/x) = l  ------------

z r=0 r !

and Pochhammer's symbol means

(Y-a)r T (y - a + r)
r c y - a )

If y = a + 1 then

x °° r
F ( a ; a + 1; x)~ 2f- £ (1 - a) (i) , (C.l)
i t  x r=o r x

which has a finite number of terms if a is a positive integer.

Equation (C.l) is required for evaluation of the first order 

moment of the 2SLS estimator. For second and higher order moments 

Y = a + k (where k is the order of the moment under consideration), but 

can be expressed in terms of equation (C.l) by utilizing the recurrence 

relations for the confluent hypergeometric function (see Slater [64] ;

P •19) .

The Toronto function was developed by Heatley [18] and is 

defined as

T(2a-l,Y-l,x2) (Y-a) -x r(a) c .x e — —  , F (a; y ; x)
r (Y )

(C.2)

(N.B. Slater [64] gives this formula with an incorrect sign, p.99) _
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If y = a + 1, then equation (C.2) can be rewritten as

T(2a - 1, a , x 2) = £ e"x Fx (a ;a + l; x) . (C.3)

This function is characterized by convergence to unity as x increases

indefinitely.

We state two special forms of the Toronto function that are 

required in the forthcoming analysis:

T(1 , 1, x 2) = 1 - e-x

and T(l, 2, x ) = 1 - (1 + x)e

(C.4)

(C.5)

In addition, we require two of the recurrence formulae for the Toronto 

function (see Heatley [18; p.17]):

and

T(V +2,a + l, T Cv,a + l, x%) + T(v, a , x 2), (C.6)

T(v + 4,a + 2, x 2) =-^“ T(v, a, x 2) - T(v+2,a+l ,x%),

(C.7)

where v = 2a - 1. Thus all values of a can be evaluated with ease.
-XIf e .is assumed to be zero, the Toronto functions in equations 

(C.4) and (C.5) will both be unity. Thus, by setting a = 1, initial 

values for the recurrence formulae can be determined, and it is then 

possible to evaluate the Toronto function for all integer values of a 

by repeated application of equations (C.6) and (C.7).

Following the above procedure, equation (C.3) can be rewritten 

as 1F1(a;a+l;x) = |  ex J (l-a)r ,

which is identical to the asymptotic approximation to the confluent 

hypergeometric function given in equation (C.l). Thus the error 

incurred in utilizing the asymptotic approximation for finite x is 

simply the error caused by assuming e to be zero in the Toronto

function.
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It is easy to show that this error can be expressed as

r(a+l)
r -\a(-x)

(C.8)

thus as x increases indefinitely (for a fixed), the error of approximation 
tends to zero.

This analysis is only valid when a is an integer, a condition 

which will not always be upheld (e.g. when considering the moments of 

the 2SLS estimator, even values of will yield integer values for a, 
whereas odd values of will yield non-integer values for a).

For a non-integer, equation (C.l) is an infinite series, although 
it can be truncated after (say) n terms. If this is done the error 

involved by truncating the infinite series after the nth term will not 

exceed the (n+l)th term, and will be of the same sign as the (n+l)th 

term (e.g. see Luke [25; p.127]).
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ABSTRACT

Quenouille has developed a procedure, later termed the jackknife 

by Tukey, for reducing the bias of a consistent estimator of an 

unknown parameter. A measure of the variance of the resulting estimator 

can be obtained and used to provide approximate confidence intervals 

and tests of significance. Thus the jackknife techniaue may be 

especially interesting when the estimator under consideration is biased 

but consistent and mathematically intractable distribution theory 

prevents the construction of exact confidence intervals.

Considerable research has been devoted to studying the jackknife 

technique, predominantly in the fields of biometrics, statistics and 

numerical analysis. So far the use of the jackknife method in 

econometrics has been negligible, although one very important class of 

econometric estimators, the simultaneous equation estimators, is biased 

in finite samples and, in general, has a mathematically intractable 

distribution.

In this thesis we investigate the application of the jackknife 

technique to the Two-Stage Least Squares (2SLS) structural parameter 

estimator in a simultaneous equation system. The bias reducing property 

was found to be present in the majority of cases considered in an 

investigation of the effects of jackknifing on the exact bias of the 

2SLS estimator in a two equation model. Conditions are given for which 

it is unlikely that jackknifing will reduce the bias of the 2SLS estimator.

Since the exact variance of the jackknifed 2SLS estimator is 

unknown, an examination of the effect on the variance of 2SLS of 

applying the jackknife had to be made by a simulation experiment.

Whilst the 2SLS estimator always had a smaller mean square error than
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the jackknifed 2SLS estimator, a comparison of absolute errors 

rarely produced a significant difference between them.

Finally, it was observed that t statistics formed using the 

2SLS estimator may not be distributed according to the Student t 

distribution. The actual distribution may be highly skewed and serious 

errors could result if the postulated theoretical distribution was 

used for statistical inference. In general, this feature was less 

noticeable for the J2SLS estimator which appeared to have a reasonably 

symmetric distribution, and consequently there is less likelihood 

of serious errors being made if the postulated theoretical distribution 

is used for the purpose of statistical inference.
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"Grown-ups love figures. When you tell them you have made a 

new friend, they never ask you any questions about essential 

matters. They never say to you, 'What does his voice sound 

like? What games does he love best? Does he collect 

butterflies?' Instead, they demand: 'How old is he? How many 

brothers has he? How much does he weigh? How much money does 

his father make?' Only from these figures do they think they 

have learned anything about him."

Antoine de Saint-Exupéry, The Little Prince
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CHAPTER 1

INTRODUCTION

Quenouille [45] has developed a technique, later termed the 

jackknife by Tukey [72], for reducing the bias which may be present in 

an (otherwise consistent) estimator of an unknown parameter. Quenouilie's 

original justification for using the technique was based upon the 

assumption of the existence of a Taylor series expansion for the bias 

of an estimator whereupon, by applying the jackknife technique, the

reducing properties, the jackknife technique can also be used to provide 

approximate confidence intervals and tests of significance. Thus the 

jackknife technique is a viable proposition where the estimator under 

consideration is biased, but consistent, and/or where mathematically 

intractable distribution theory prohibits the formation of exact 

confidence intervals.

Considerable research has been devoted to studying the jackknife 

technique, predominantly in the fields of biometrics, statistics and 

numerical analysis. Its use in econometrics has been negligible, yet 

a class of consistent econometric estimators possess both bias and 

intractable distribution theory in finite samples, which would suggest 

that application of the jackknife technique may be a fruitful exercise. 

This class of estimators is the class of simultaneous equation estimators.

This thesis considers the effects of applying the jackknife 

technique to one of this class of estimators, the Two-Stage Least Squares 

(2SLS) estimator.

2SLS is a "limited information" estimator in the sense that it 

estimates the equations comprising a simultaneous economic system one

bias term to order could be removed. In addition to its bias



3

at a time. In order to estimate any one equation, 2SLS only requires 

a specification of the equation being estimated and a list of the 

other predetermined variables appearing in the system. It does not 

therefore take account of contemporaneous correlation between the 

disturbances of the equations in the system. Neither does it use the 

information contained in the overidentifying restrictions on the 

other equations in the system. Consequently, if the entire system has 

been specified, 2SLS may not make the most effective use of all the 

available information and a"full-information" estimator may be preferred 

Under the assumption that the hypothesized model is correctly specified, 

the most efficient method of estimation would be one of the full 

information methods. Most economists., however, would consider this 

assumption rather heroic and would select one of the limited information 

estimators in order to isolate the deleterious effects of any 

specification errors to the equations in which they arise.

There are two reasons for selecting the 2SLS estimator from 

such a wide class of estimators.

Firstly, the exact bias (and higher order moments) of the 2SLS 

estimator have been derived for a two equation model and this allows 

an exact investigation of the jackknife's bias reducing ability 

vis-a-vis 2SLS, albeit under rather restrictive assumptions.

Secondly, the other limited information simultaneous equation 

estimators of any importance are the Ordinary Least Squares (OLS) and
I

the Limited Information Maximum Likelihood (LIML) estimators. OLS is 

not a candidate for jackknifing since it contravenes Quenouille's 

assumption of a consistent estimator, whilst the non-finite moments 

of the LIML estimator (see Mariano and Sawa [30]) precludes any 

examination of the effects of the jackknife technique on its "bias".

In addition, within the class of limited information simultaneous
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equation estimators, on the basis of numerous Monte Carlo results 

(the major works are summarized in Johnston [20], Chapter 13,

Section 8) 2SLS is generally preferred on the grounds of "all-round" 

performance and computational efficiency and simplicity.

"Full information" methods of estimation were not considered 

as possible candidates for jackknifing as this would seem to be the 

logical step forward after the limited information estimators had been 

considered. This point is discussed further in Chapter 8.

The general form of the simultaneous equation system which will 

be used throughout this thesis, together with the relevant notation 

and assumptions, is defined in Chapter 2. The 2SLS estimator and its 

asymptotic properties are derived for the parameters of any single 

equation in the system. Conditions and assumptions under which the 

exact finite.sample results of the 2SLS estimator have been derived 

are also stated.

Chapter 2 continues with a description of the jackknife 

statistic, its bias reducing properties, and its use in formulating 

approximate confidence intervals and tests of significance. The 

literature on the jackknife and its applications is so extensive that 

only (what the author considers to be) the more relevant works are 

cited, although a bibliographical reference is given.

The asymptotic properties of the jackknife 2SLS (J2SLS) estimator 

are investigated in Chapter 3. A proof of the asymptotic equivalence 

of the J2SLS and 2SLS estimators is given, and a t ratio formed using 

the J2SLS estimator is shown to be asymptotically distributed as the 

standardized normal distribution.

The small sample properties of the J2SLS estimator are 

investigated by a series of simulation experiments in Chapters 5, 6 

and 7. The computer algorithms used in the experiments are described
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in Chapter 4 together with results of verification where they do not 

already exist. A formula given in Chapter 3 reduces the computational 

burden involved in calculating J2SLS parameter estimates, and should 

reduce the probability of significant inaccuracies due to the build-up 

of rounding errors resulting from repeated use of the matrix inversion 

algorithm. Chapter 4 also contains a method for evaluating the 

accuracy of the asymptotic approximations to the exact moments of the 

2SLS estimator.

For an equation containing just two endogenous variables the 

exact first and second order moments of the 2SLS estimator have been 

derived. It is relatively easy to adapt the exact bias of the 2SLS 

estimator to obtain the exact bias of the J2SLS estimator, but the 

exact mean square error of the J2SLS estimator has not, as yet, been 

derived. In Chapter 5 the exact relative biases of the 2SLS and 

J2SLS estimators are compared, under conditions which prevail for 

"exact" theory, by means of a simulation experiment. This experiment 

gives exact results on the ability of the jackknife to reduce the bias 

of the 2SLS estimator. For the general model, however, this form of 

analysis is not possible, and the author has only been able to derive 

a rather weak conditon under which jackknifing is "unlikely" to reduce 

the bias of the 2SLS estimator.

Chapter 6 presents the results of a Monte Carlo experiment into 

the properties of the two estimators. Comparisons of relative bias, 

mean square error and mean absolute error are made using a two equation 

model. The use of the jackknife statistic to form approximate 

confidence intervals and tests of significance using the 2SLS estimator 

is also investigated and the results are presented in Chapter 7.

It is well known that standardized normal ratios and t ratios formed 

using the 2SLS estimator are only valid asymptotically, and that in 

small samples they could diverge significantly from their postulated
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theoretical distributions. A comparison of the small sample 

distributions of test statistics using both 2SLS and J2SLS estimators 

is made.

Concluding remarks are contained in Chapter 8.
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CHAPTER 2.

THE TWO-STAGE LEAST SQUARES ESTIMATOR AND 
THE BIAS REDUCING PROPERTIES OF THE JACKKNIFE STATISTIC

2.1 The General Linear Simultaneous Equations Model

2.1.1 Specification of the Model

The analysis in this thesis is concerned with a simultaneous 

economic system of G linear stochastic equations relating G endogenous 

(or jointly-dependent) variables and K exogenous variables, which can 

be written as

YB + XT = U . (2.1)

We are interested in the estimation of just one equation from 

this system, (say) the jth, which can be written as

h  ’  YA  + h f l i j  * h it - 2 )  * “ j  >

and we will refer to this equation as the jth structural equation

(j =1,2,...,G). For notational simplicity we will generally omit the j

subscript.

2.1.2 Notation

Y is a matrix of N observations on the G endogenous variables in the 

entire system;

is a vector of N observations on the "dependent" endogenous variable;

Y is a matrix of N observations on the other g endogenous variables 

included in the jth equation. In the unlikely event that all G 

endogenous variables appear in the jth equation then g = G-l and
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[y : Y] = Y , otherwise g < G-l ;

X is a matrix of N observations on K exogenous variables partitioned 

as X = [Xx : X2] ;

X^ is a matrix of observations on the exogenous variables included 

in the jth equation;

X2 is a matrix of observations on the exogenous variables excluded 

from the jth equation (i.e. K = + K^);

U is a matrix of N unobservable disturbances for each of the G equations, 

with jth column denoted by u.. ;

B is a G x G  matrix of unknown structural coefficients;

£  is an unknown g component sub-vector of B with non-zero elements.

T is a Kx G  matrix of unknown structural coefficients;

Yj is a component sub-vector of T with non-zero elements;

Y2 is a K2 component sub-vector of f with zero elements.

2.1.3 Basic Assumptions

The following conventional assumptions are made for the system

(2.1), and for the jth structural equation (2.2):

(i) B is non-singular;

(ii) the jth structural equation,(2.2), is just- or over-identified by 

zero restrictions on the structural coefficients, i.e. K2 ^ g ;

(iii) the matrix X consists of non-stochastic elements and is of full 

rank, K. Further, as N -+ «  the matrix N- ^ ( x ' x )  converges to a 

finite matrix, denoted by

lim
N

I  . (X'X) y 
N XX »

where EXX is a finite positive definite matrix

(iv) the sample size (N) is greater than the total number of exogenous 

variables (K) in the system;
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(v) the N rows of U are independently and identically distributed 

with zero mean vector and unknown finite covariance 

matrix, £. In addition, the analysis in Chapter 3 requires 

that the structural disturbances have finite fourth order moment.

Postmultiplying equation (2.1) by B-1 we obtain the reduced form 

of the system, which can be written as

Y = Xl + V , • (2.3)

where n = - TB_1 , . 

and V = U B_1 .

The reduced form equation for the jth "dependent" endogenous 

variable and the reduced form equations for the g "explanatory" 

endogenous variables can be written as

and
h

sTII

Y. = xn. + V.
J j j

(2.4)

respectively. Since, for notational convenience, we are omitting the 

j subscripts, this explains the necessity to write equation (2.3) in the 

above form rather than in the more common form which would coincide 

with equation (2.4) when the subscripts are omitted.

2.1.4 The Two Endogenous Variables Case

The majority of results on the exact properties of the 2SLS 

estimator have been derived under the assumption that g = l, i.e. 

the equation being estimated contains only two endogenous variables. 

In addition, it is assumed that the matrices and contain no 

lagged endogenous variables.



Under the above conditions, the first structural equation can 

be written as

Z-1 * + Xlll + X2—2 + -1 ' • (2.5)

with reduced form equations

h  ■ Xl-ll * X2—12 * Ï1 

X-2 ~ Xl—21 * X2-22 * - 2  •

where tt, ,, ir, and u01, tt are vectors of constant coefficients.

The random vector (v^ : v^ ) is assumed to be distributed as bivariate 

normal with zero mean and positive definite covariance matrix SI (g) 1^ 

where Q = uu ̂ (i,j =1,2) is a matrix of reduced form parameters;

2.2 The Two-Stage Least Squares Estimator

It is well known that OLS is, in general, an inconsistent 

estimator of the parameters in the structural equation (2.2). This 

inconsistency is due to the correlation between the explanatory 

endogenous variables (Y) and the vector of structural disturbances (u) 

Basmann [3] and Theil [70] derived, independently, an alternative 

estimator which "purges" Y of the stochastic component associated 

with the disturbance term, and then estimates the revised equation by 

OLS. This "alternative" estimator is called the Two-Stage Least 

Squares Estimator.

From equation (2.2) we write the jth structural equation as

21 = Yi  + XlXl + u .

If we rewrite the above equation as
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then using equation (2.4), (Y - V) = XII is uncorrelated with (u.+ V&) 

since X is non-stochastic by assumption (iii).
, t ASince V is unobservable we must use its estimated value V,

f\
where V = Y - XII. Provided plimfi = II,it follows that plim (Y - V) = (Y - V)

fj OO -> 00
and hence (Y - V) and (u + ̂ $) are asymptotically uncorrelated.

Thus if the least squares estimator is applied to

z  = ( Y - n e  + x 1y 1 + u + % ,

we can obtain consistent estimates of and . Since this process 

of estimation involves two successive applications of least squares

it is known as Two-Stage Least Squares (2SLS).
*

In this thesis we shall work with the Instrumental Variables 

type, formulation of the 2SLS estimator, viz:

where Z =

J z ' x ( x , x ) ' 1x ' z J

P  :  X P

-1

and 0 =

(2 .6)

In order to apply tests of significance, knowledge of the 

distribution of the 2SLS estimator is required. The finite sample 

distribution of 2SLS is only known for a few specific cases, thus 

reliance is usually placed upon its asymptotic distribution.

Substituting for y in equation (2.6) we obtain

6 0_ = |̂ Z,X(X'X)~1X'Z J
-1

z ' x f x ' x ) ' 1 x 'u

and we require the limiting distribution of the sequence 

»^(§-0) =

Since X is (by assumption) non-stochastic, it follows that

-1 (  \ - l
1 . z ' x (  1 . X X t 1 . X z 1 . z ' x 1 . X X 1 . X u
N \N ) N N VN / 7 n

1_. x'z = 1_. X ' [Y : X, ] = x' [XÏÏ + V : X. ] 
N N N
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converges in probability to a finite limit, denoted by

plim 1_. x'z = Exz 
N co N

We have already assumed the existence of a finite limit for 

N~* . x'x , and thus we can denote its inverse by

lim [ 1_. X ’X 
N -> » y N

Under assumption (V), modified application-of the Lindeberg-Levy theorem 

(see e.g. Theil [71; pp.498-499]) using the above results will yield

(!_-£) - N

where a2 denotes the variance of the jth structural disturbance,

i.e. the jjth component of Z.

A consistent estimator of a2 is given by

&2 = E E  /(N - - g) ,

where u = [^-Yg - ]

Since the asymptotic covariance matrix of the 2SLS estimator 

coincides with the Cramer-Rao bound (when the structural disturbances 

are normally distributed), 2SLS is an efficient estimator in its class 

of limited information simultaneous equation estimators. Its relative 

(small sample) efficiency however has not, in general, been ascertained.

2.3 The Jackknife Statistic

2.3.1 Definition

Let cx be an unknown parameter, and let X^,X2» • • • • »X^ be N 

independently and identically distributed observations from the cumulative

r / -1
0, a2 plim < 1 . z'x [1 . X X 1 . X z ►

N + co [n \N /1 N J —m
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distribution function F . Further, let a be a biased estimatora
of a such that

a, a a
E(a - a) = —  + —  + ___ + —  + ___ , (2.8)

N N2 Nr

where a^, a2, ar are constants and not dependent upon N. If the

N observations can be divided into n groups, each of r observations 

(i.e. N = nr), then the estimator

J^a) = na - ( n - 1)^ , (i = 1,2,... ,n)

where ou denotes the estimate of a obtained with the ith group 

of observations omitted, removes the term in 1/N from equation (2.8). 

Applying the technique to equation (2.8) gives

^ al a2 a3E [J . (a) ] = na + —  + —  + — +
1 2 3 2r r n r n

- (n-l)a ------
r2(n-1) r3(n-1):

i.e. E[J.(a)] = a - —  
1 .2

(2n-l)a,

r^n(n-l) r3n2(n-l)2

(i — 1,2,...,n) .
1 ~Tukey, in unpublished work, has named J^(a) the pseudo-jackknife

A

estimator. He defined the jackknife estimator, J(a), as the average 

of the i pseudo-jackknife values (i = l , 2 , . . . ,  n), i.e.

n
J ( a )  = -  l  J ^ S )  = nS  -  - ^ 1  l  a  .

n i=l n i=l
(2.9)

1. The definition that follows is taken from Brillinger [7] 
who cites an unpublished paper and an abstract [72] of a 
conference paper by Tukey.
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A A

J(a) will have the same expected value as J^(a), but a-smaller • 

variance. The term jackknife was coined for this procedure since 

it shared two characteristics with a boy scout's jackknife:

(i) wide applicability to many different problems;

(ii) inferiority to special tools for those problems for which special 

tools have been designed.

In most problems however the property of removing bias would 

not be sufficient to recommend the use-of the jackknife. A comparison 

of the dispersion of the original estimator with that of the jackknife 

estimator is needed. Tukey noted that not only are the pseudo-jackknife 

estimates nearly unbiased, but their average sum of squares of 

deviations is nearly N(N-l) times the variance of their means. He
/v

proposed that in many instances the J^a) are approximately independently 

and identically distributed and hence an approximate estimate of the
A

variance of J(a) is given by 

n [J. (a) - J (a) ] 2
I — ------------ ’ (2.10)
i=l n(n-l)

whilst
[J (a) - a]

n [Ji(a) - J(a)] 

i=l n(n-l)

( 2 . 11)

is approximately distributed as a t variate with (n-1) degrees of 

freedom.

The jackknife can be re-applied in order to remove the bias 

term of order 1/N2 which remains after the initial application. 

Quenouille [45] and Kendall and Stuart [24] give a formula to achieve 

this further bias reduction, but if a^= 0 for all k > 2 then the 

second application of the jackknife does not yield an exactly unbiased



statistic as one would have desired. Schucany, Gray and Owen [62] 

give a higher order transformation which provides an algorithm for 

eliminating, exactly, bias terms of higher order.

15

This thesis considers the jackknife technique when r=l (i.e.

N = n). Thus each of the N pseudo-jackknife estimates is calculated 

from the total number of observations less one, and the jackknife 

statistic is defined as

J(a) = Na - ■̂ -— ■3- l  a, . (2.12)
N i=l

Intuitively, choosing r=l is appealing since problems of 

dividing up samples and being left with awkward remainders are 

avoided. In addition, several studies involving applications of the 

jackknife have found r = l to be the "optimal" value of r (e.g. see 

Robson and Whitlock [56] and Rao [47]).

2.3.2 The Generalized Jackknife

Schucany et al. [62] provide a general method for bias reduction

which includes the jackknife as a special case. Suppose that there

are k + 1 biased estimators of a, viz: a a .... ,a , , defined1* 2 k+1
over the N(=n) observations, and further suppose that the biases of 

these k + 1 estimators can be written as

k
E(a.) - a = l  f (N)b (a) , (i=1,2,...,k +1) 

j=l J J

then the estimator
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A A /\

al a2 - • • • • ak+l

fll f12 * • ' * ‘ • fl,k+l

fki fk2 £k,k+l

1 1 .......... 1

fn f12 ..........  fl,k+l

f21 f22 ..........  f2,k+2

(2.13)

£k,k+l

reduces the order of bias to terms of order (k +1) in 1/N, i.e.

E

where the argument of the f „  functions has been suppressed for 

notational convenience, and these functions are assumed to be known. 

Further, it is assumed that 1 $ k $ N-l and that the denominator 

of equation (2.13) is non-zero.

A i N
If k =1, then a. =' a, a_ = —  Y a. ,

i=l

fll(-N-) = N ’ and f12*-N  ̂ = (N-l) ’

~ (k) a - a = 0 N-(k+l)

and equation (2.13) reduces to the "regular" jackknife as defined 

by equation (2.12).

The formula given by equation (2.13) is exact, in the sense

that if the bias of the original estimator takes the form of

equation (2.8) with only the first k terms non-zero, application of 
~(k)J will remove all bias.
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Schucany et al. only considered the problem of bias reduction.

The effect of their higher order transformation on the variance of
-no

J was not investigated for the general case.

2.4 Previous Applications of the Jackknife Technique in Econometrics

2.4.1 Partial Correlation Coefficient

If the estimated value of the partial correlation coefficient 

is used as an approximate test for serial correlation in time series, 

Quenouille [44] has shown that the bias of the estimator is inversely 

proportional to the sample size, N. He suggested using (what later 

became known as) the jackknife technique with n=2, i.e. the sample 

was split in half, in order to remove the bias term of order (1/N). In 

a later paper, Quenouille [45] generalized this procedure by noting 

that the same amount of bias reduction could be achieved by splitting 

the sample into n groups each of size r (where N = nr).

2.4.2 Autoregressive Processes

Quenouille's [44] original method of jackknifing (i.e. n = 2) was 

later applied by Orcutt and Winokur [39] to the least squares estimator 

in an attempt to reduce the bias of B (the least squares estimator of B) 

in the autoregressive process

y't  = a + Byt _1 + et (t  = 1 , 2 , . . .  ,N)

(et normally and independently distributed).

Using a Monte Carlo study they compared sample means and mean 

square errors of three estimators of B: least squares, jackknife least 

squares, and an estimator based upon correcting the bias of least 

squares using an expression derived by Marriott and Pope [31], Whilst
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both modified least squares estimators reduced bias, the jackknife 

estimator exhibited a larger mean square error than the other two 

estimators and consequently was not to be preferred.

2.5 Use of the Jackknife Technique in Other Disciplines

A substantial body of literature on the application of the 

jackknife technique in various disciplines has evolved since Tukey's 

[72] initial conjecture. A survey of these applications, together 

with a comprehensive bibliography, has been compiled by Miller [35]. 

With the exception of the two papers cited in the previous section, few 

of the applications have any direct relevance to econometrics.

Perhaps the most successful area in which the jackknife has been 

used to date is that of ratio estimation. Given a bivariate sample 

(Xi, Y^) (i=1,2,...,T) from a population of size N (T< N] with means y 

and q respectively, we are interested in estimation of the ratio 

R= y/q. In many instances the classical ratio estimator r = X/Y 

(i.e. the ratio of sample means) with X known, may exhibit a large 

bias compared to its standard error in surveys with many strata and 

small samples within strata. Durbin [14] suggested the jackknife with 

n = 2  as a bias reducing tool and investigated its properties under two 

distributional assumptions on the stochastic error term in the general 

linear model. Under both assumptions the jackknife not only reduced 

the bias of the ratio estimator, but also reduced the mean square 

error. Rao [47] and Rao and Webster [48] showed that the optimal 

choice of n under both of Durbin's [14] distributional assumptions is 

n = N.

Subsequent research investigated the performance of the jackknife 

in ratio estimation as compared with several other estimators. In 

general, the jackknife appeared to rank close behind the most efficient
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estimators but had the disadvantage of being more complicated to 

compute.

An application of the jackknife with direct relevance to 

econometrics is Miller's [36] proof that the jackknife OLS estimator 

of the vector of parameters in the general linear model is asymptotically 

normally distributed under conditions that do not require the vector 

of stochastic disturbances to be normally distributed. He conjectured 

that his proof extended to the case of non-linear least squares.

The jackknife has also been applied in the areas of maximum 

likelihood estimation, functions of a U-statistic, stochastic processes, 

inference on variances, and multivariate analysis. This list is far 

from exhaustive and the interested reader is referred to Miller's [35] 

bibliography for additional areas of application, and his synthesis 

for a review of the performance of the jackknife statistic over the 

many disciplines in which it has been used.

2.6 Alternative Methods of Bias Reduction Using the 2SLS Estimator

2.6.1 General Remarks

Methods designed to reduce the bias of the 2SLS estimator, without 

increasing the mean square error, have been devised by Nagar [37] and 

Sawa [60, 61]. Strictly speaking neither author "manipulates" the 

2SLS estimator specifically, but since both proposed estimators converge 

in distribution to the 2SLS estimator as the sample size increases 

indefinitely, they could offer themselves as alternatives to the J2SLS 

estimator, at least on a bias reduction criterion.

2.6.2 Nagar's Unbiased k-Class Estimator

Nagar [37] has derived an expression for the bias to order 1/N 

of a distribution approximating the distribution of the k-class
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estimators. He noted that for k = l + v/N, where v is the degree of 

overidentification of the equation being estimated, the bias vanishes 

to order 1/N. Asymptotically, Nagar's unbiased estimator is clearly 

equivalent to the 2SLS estimator.

Using Klein's model I, Nagar showed that whilst this choice of 

k certainly exhibited a smaller "bias" than the corresponding 2SLS 

estimator, 2SLS dominated on a "mean square error" criterion. Sawa

[59] , however, has shown (for a two endogenous variables model) that 

if k > 1 and nonstochastic then no moments of the k-class estimators 

are finite; hence Nagar's "unbiased" k-class estimator does not possess 

a finite first order, or any other order, moment.

2.6.3 Sawa's Combined Estimator

On the basis of an asymptotic expansion of the exact bias of 

the k-class estimators in a two endogenous variables model, Sawa

[60] proposed an estimator which uses a weighted combination of the 

2SLS and OLS estimators in order to remove the leading term of the 

asymptotic expansion. The weights are such that, asymptotically, Sawa's 

combined estimator converges to 2SLS.

In a series of experiments, the combined estimator dominated the 

2SLS estimator (on a mean square error criterion) when the number of 

exogenous variables excluded from the equation being estimated was 

very large. The reduction in bias (over 2SLS) obtained by using the 

combined estimator was always evident and frequently substantial.

The experiments were only conducted for an equation containing 

just two endogenous variables. Sawa [61] justified the extension of his 

combined estimator to equations containing an arbitrary number of 

endogenous variables by using Kadane's [23] small c approximations.

As yet, however, no Monte Carlo results have been published on the
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relative merits of the combined estimator vis-a-vis other limited 

information estimators. Clearly if the combined estimator dominates 

other limited information estimators on a mean square error criterion 

only for a large number of excluded exogenous variables, a Monte Carlo 

study may be impracticable, or at least very expensive.

2.7 Justification for Applying the Jackknife Technique to the
Two-Stage Least Squares Estimator

The author has been unable to produce a rigorous justification 

for applying the jackknife technique to the 2SLS estimator, as he 

cannot express the bias of 2SLS as a Taylor series expansion in terms 

of increasing powers of 1/N. Nagar [37], however, has shown that the 

bias of the 2SLS estimator can be approximated by an expression 

involving terms of increasing powers of order (1/N2) in probability.

In addition, using Kadane's [23] approximation to the bias of the 

2SLS estimator, the author has been able to derive a condition under 

which the jackknife is "unlikely" to reduce the bias of the 2SLS 

estimator. Th:s analysis is contained in Chapter 5.

Whilst these results cannot provide a rigorous justification for 

using the jackknife technique as a bias reducing tool, it suggests that 

its application may be worth pursuing.
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CHAPTER 3 

ASYMPTOTIC THEORY

3.1 Derivation of the Computing Formula for the J2SLS Estimator

From equation (2.6) the 2SLS estimator can be written, in 

instrumental variable form, as
• *

e_ = [ z ' x c x ' x r V z j ^ z ' x c x ' x r V ^  . (3.1)

We denote the 2SLS estimator of 0 based upon (N-l) observations

as

§. = [Z.'X. (X., X . ) ‘ 1X . 'Z . ] " 1 Z.'X. ( X . ' x . ) " i X.,y.  , —i L ii^ii' l iJ a. a.'- l a/ l—i *
-1, (3.2)

where the i subscript denotes that the ith observation (i=1,2,...,N) 

has been removed from the relevant data matrix. Using Appendix A we 

can show that

( x l l x . r 1 * ( x ' x - x . x p " 1 * (X 'X)  x+
, ( X , X ) ‘ 1x i x ^ ( X ' x ) " 1

1 - x !(X X) x. —1 —1
(3.3)

where x. (a K dimensional column vector) denotes the ith row of X;—l
i.e. the ith observation on X.

Using equation (3.3), we can rewrite equation (3.2) as
f ■ N

[ Z ' X - z . x ! ] r x ' x ) " 1 +
( X , X ) * 1x i x ! ( X , X ) " 1

. [ X ' Z - X j Z ? ]  V
1 - x ^ x ' X ) ' 1̂

L
/

)\

( X ' X ) ' 1 +
( X , X>’ 1x i x ? ( X , X ) " 1 t x ' t V i 1 l1 - ^ ( X  ' X ) ' 1̂ .

V. /

-1

>, (3.4)

where _z.̂ (a + g dimensional column vector) and y^ (scalar) denote the 

ith observations on Z and respectively.
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Consider the term to be inverted in equation (3.4) Upon

expansion we obtain

Z ,X(X,X)"1X,Z + z.x.' (X,X)'1x.z! - Z,X(X'X)-1x.z! - z.x! (x'x)_1x'zv ' —l—i —l—i -l-i —l—iv

Z ,X(X,X)"1x.x.' (X,X)'1X ,Z z . x ! (x'X)_1x.x* (x'x)_1x.z!—l—iv J —l—i J —l—i ' —l—i+ -------------------------- ;------------  +
1 - x.' ( x ' x ) _1x.—l —l 1 - X.' ( x ' x ) _1x.—l —l

z ' x ( x ' x ) ' 1x . x . , ( x ' x ) " 1x . z !  z . x !  ( X ' x ) _1x . x !  ( X , X ) " 1X , Z ̂ —1—1 —1—1 —1—1 ' —1—1k
1 - x.,(X,X)'1x.—lv —l 1 - x ! ( x ' x ) “1x.—1 —1

-1

(3.5)

Let P = Z,X(X'X)_1X,Z , 

s. = x.'(X,X)_1x. ,l —l J —i (scalar)

b^ = x^(X'x) -*x'i = x̂ 2L * (scalar) 

and a_± = z'xix'x)”1̂  ,

then equation (3.5) can be rewritten as

c 2 t e . f e •a.a. srz.z. . s.a.z. s.z.a.
„  -  I — 1— 1 1 — 1— 1 !  r 1— 1— 1 1— 1— 1P + s . z. z. + ----- + -------- a. z. - z.a. -----------------i—i—i ,, . ,, e . —l—i —l—i

-i-l

(l_s.) (l-s.) ( 1 - s . )  ( l - s . )

P - z.z! + ----—  (z.-a.)(z. -a.)'— i—i —i i i i(i-s0  i i i i

-1
(3.6)

Let P + ----—  (z. - a. ) (z. - a.)’
d - si) 1 1 1 1 _

= C ,

then, using Appendix I, equation (3.6) can be rewritten as

. . C-1z .z! C"1
CC-^z*)-1 ^ c - 1 + — .

1 -J-i c li
(3.7)

and using the same expansion, it follows that
. . P_1(z. -a.)(z. - a . ) ’p_1

• c-1 = P“1 -i -i -i —i
(l-s.) + (z. - a.)'P_1(z. - a.)  ̂ i J —1 —1 —1 —xJ

(3.8)
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1

Combining equations (3.7) and (3.8) and simplifying we obtain

.-1 z. z! + ----—  (z. - a.)(z. - a.)'—l—i ,, .. —1 —i J —1 —x J

P“1 -<

d - s p

P (z.-a.) (z. -a. ) 1—l —l —l —l ------------------  + —
(1 - s. + d.) k. ̂ i î  l

. P . (z.-a.)(z.-a.) P z.z.
P z. z_.-- ------------------------

(l-s.+d.)l x J

P"1z.z.'P_1(z.-a.) (z.-a.) ' P* 1 (z. -a. ) (z . -a. )'p_1z. z .'P_1 (z . -a. ) (z.-a. )'— l— i — l — l — l — l — l — l — l — l — i— i — i — i — l — i

(1 -si + di) (1 -  S .  + d . )  
v 1

.-1

(3.9)

where d . =  (z.-a.) 'P-*(z.-a.) ,l —l —l —l —i' ’ (scalar)

. z'.P (z. -a. ) (z. -a. ) P z., , , in-l —l —l —l —i — —land k. = 1 - z.P z.+ ----------- --------------l —l —l (scalar)
(1 - s. + d.)

The last term in equation (3.9) can be rewritten as

P [z. -a. ] [z . -a. ] '—l —iJ L—l —iJ
k. - (l-z.'P_1z. )l v —l

(l-s.+d.)- v 1 1 —

and combining this with the first term in curly brackets gives

, - lP-i[z.-a.][z.-a.]'—l —l L—l —iJ
(1 - z.,P"1z.) 

k. (1 - s.+ d. )lv l i'

Thus equation (3.9) can be written as

Pn  +
k.l

(l-£.' P”1̂ . )
----------—  P (z.-a. ) (z.-a. ) ' + P” z.z.'
(1 - s. + d.)

(z.-a.),P-Iz.—l —l „-1 ^.'P'1^.-a.) ,
P "(z.-a.Jz! - — ----- -— — P z.(z.-a.)—l —l —i ,, , . —l —i -1'(1 - s. + d. )v l i'(1 - s .+di)

(3.10)
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Now consider the second "term" in equation (3.4), viz :
/ 1— X

[z'x - z.x.']—l—i
. (X1 X)_13C.x.' (X'X)-1

(x'x)-1+ 1-1 . [x'x-x.y.] 1
1 - ̂ ( X  X) Xi

V» y

z ' x C x W y  + £ixJ(X,X)~1xiyi

+ 1 . Z,X(X,X)~1xix^(X,X)~1X ly + 1 . ¿¡x! (x'x) _1x (*'X)'1xiyi
Cl-sp

z'x(x'x)'1 x.y. - z . x ^ x ' x r V y

(l-si)

_1__. Z ,X(X'X)'1xix;[(X'x)“1xiyi - 1 . ZjX? (X,X)~1xix|(X'x)"1X,y
Cl-s^ d - s p

(3.11)

Let

q = z'x(X,X)“1x'y ,

then equation (3.11) can be written as

3. - +
(i-si)

C £i-fLi)(yi-í.i(x,x)"1x ,tí (3.12)

To obtain an expression for 6L in (3.2), we must postmultiply 

equation (3.10) by expression (3.12). Postmultiplying equation (3.10) 

by we obtain

------------ p (iili) +pk.i (1 - s. + d.)> i i

(z.-a.)'P ^z. z.'p 1(z.-a.) .—i —i —i , i -i '•-i - i J r,-l
-1

Cl -si + di)
P (z.-a.)z. -—i — i J —i (l-s.+d.)

P z.(z.-a.)—1 —1 —i'
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Postmultiplying equation (3.10) by -y^z^ and simplifying we obtain

k.

(z.-a.) *P 1z. .
?~ l z . -----— ------ — P“1 (z. -a.)—i ,, j -v :—i —i(i-Si + df)

Postmultiplying equation (3.10) by the term in square brackets in 

expression (3.12) and simplifying we obtain

(l-z.'P_1z.) _ z.’p-  ̂(z. -a.) •—i —l n-l, . — l — i — i n-l----------- P (z.-a.) + ------------- P z.— i —i . —ia  - si + di) (l-s.+d.) [ y i  -  & ]

Then rearranging the above expressions we obtain

0. = 0 +
— l  —

(z.-a.) P z. . .—i  —l  —l  n- l ,  . 1 _ - l------------- p (£. -a..) -----p z .
k. (l-s.+d.) 1 1  k. 1— i' l.i

y.-z.0 J i — l—

. j  ¡ ¿ f ' 1 _ i
-----1---- —  P fej-ap * — ---- i— i- P V
k.(l-s.+d.) i i i

(yi - x^I) -

k . ( l - s . + d . )l*- i i'

( i  = l , 2 , . . . , N ) (3.13)

Note that (y^ - is the ith component of the reduced form

residual vector v̂ = (I - My)X. , we denote it therefore by v^. Similarly, 

= (yi - z^0) is the ith component of the structural form residual 

vector û = (y - ZQ) , and = (y^ - â j9) is the ith component of the 

"second-stage" residual vector w_ = (y.-M^Z0) where = X(X^X) "X"'.

Equation (3.13) Was used for computing the J2SLS estimator and 

its associated test statistic in the Monte Carlo study of Chapters 

6 and 7. •

For future analysis, it will be convenient to rewrite equation

(3.13) as
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A
e.—i = 0 + P"1̂ i , (i = 1,2,...,N) (3.14)

where g.—i = (h. + i. )u. + h.(v. - w.) , '•-1 x —1 v 1 x * (3.15)

h.—l
(1 - z !p -1z .) z !p _1(z.-a.)—l - i J f . —l '•—l —x J= ------------  (z.-a.) + -------------z..,
k.(l-s.+d.) 1 1 k.(l-s.+d.) 1 

1 1 l' lv 1 x J
(3.16)

and ¿jL
(z.-a.)'p~*z. ,-i -i -l , . 1= -------------  (z.-a.)----z. .
k.(l-s.+d.) 1 1  k. 1l v 1 XJ X

(3.17)

The result in (3.14) is given in Phillips. [42].

3.2 An Expression for the J2SLS Estimator

To form the J2SLS estimator we are required to take the summation 

of equation (3.14) over all i (i=1,2,...,N) omitted observations.

Using equation (3.14) we can form the J2SLS estimator as

. (N-l) N
J (0) = N0 -

N i=l
l  e.

a CN~ 13 • -i V= 0 -------p l  K
N i=l 1

and using equation (3.15) we then obtain

. ~ (N-D • ,j(0) = 0 ------ P 1
N

N N
T (h. + i.)u. + y h.(v.-w.). —1 *-x X .'',—1 1 1i=l i=l

Substituting for h^ from (3.16) we obtain

N N l-z.,P~1z.
V h . (v. - w .) = y ---i-----—  (z.-a.)(v.-w.)

1 l i' .L.• , . — i —x J v 1 i1=1 1=1 k.(l-s.+d.)iv l i

(3.18)

N z'p"1(z.-a.)
► l  —----= ± ^ L .
i=l ki(l-s.+di)

#A Az. (v.-w.)— 1 1 XJ
(3. 19)
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Since (z. -a_.) and z. are the ith columns of Z'(I-MY) and Z*1 1 1  A
respectively, it follows that

N l-z,.'p-1z.
I  --------—  (z.-a.)(v -w ) = Z'(I-M )A,(v-w)

i=l k.(l-s.+d.) 1 1 1 1 X
1 3/

and
N (z.-a.)’p^z.
I  --------- L  z.(v.-w ) = - Z'A (v - w ) ;

i=l k.(l-s.+d.) zl xJ

where is an N x N  diagonal matrix with iith component

1 -z.’p _11-
(A3)ii = ----1----L , (i = 1,2, .. .,N)

k.(l-s.+d.) i i'

(3.20)

(3.21)

and ^2 is an N x N diagonal matrix with iith component

(i = 1,2,...,N)( A _ ) . .  = v 2'n
-z.V1 (z.-a.) —l —i —
^(l-Si+d.)

Substituting from equations (3.20) and (3.21) into equation (3.19)

gives
N

= Z 'C I -M x )A 3 (v - w) -  z 'A2(v - w) .

Similarly it can be shown that

(3.22)

N
l  hiGi = Z'fl-M^AjG - z ’A2u . (3.23)

i=l
N

Consider the term £ j.u. in equation (3.18). Substituting for
i=l-1 1

from equation (3.17) gives 

N N (z.-a.)'P_1z. Nv • * V —1 —1 —1 ,  . ~ r l . Z
l  2iui = l  -------------  Du - l  —i=l 1 1 i=l k.(l-s.+d.) i i i  i=1 k iv i i i

1 . z.u.■1 1

= - Z (I-Mx)A2u - z ' A xu ,

where A^ is an N x N diagonal matrix with iith component

t V u - r -  •l

(3. 24)
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Substituting from equations (3.22), (3.23), and (3.24) into, 

equation (3.18) we obtain

J (0) = 0 + (N— 1) 
N P"1z'(A1 + 2A2 A3)u

- p "1z 'm x (A2 - A3)u

„ A /\

+ P"1z '(A2 - A3)(v - w )

+ P_1Z'm xA3(v - w)J . (3.25)

The ensuing analysis is simplified by writing equation (3.25) in a 

slightly amended form. Recall that 

u = [I - Z t Z ' M ^ r V i y y  ,

v = [1 - Mx]y ,

and

w = [I - M ^ i Z ' M ^ r V M ^ y  ,

from which it follows that 

Z ' (v - w) = 0 , 

z *Mxu = 0 ,

and z 'm x (v - w ) = 0̂ .

Thus, if we define

*3 - 1 - V -

we can rewrite equation (3.25) as

J (0) = 0 + (N-l) . P
N

" Z V A2 - A3 ^
+ z ’(A2 - A3)(v - w)

+ z'MxA3(v - w)l .

L z CAi * 2A2 - A3) u

(3 .2 6 )
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3.3 The Asymptotic Equivalence of J2SLS and 2SLS

3.3.1 Preliminary Results

In this section the asymptotic behaviour of the three diagonal 

matrices (viz; A , and A ) introduced earlier in this Chapter will 

be investigated.

Essential-ly we must consider the following terms:

k. , (1 - S. + d.) Z!P *z. and z^P ^(z. - a.)x’ v i i J ’ —1 —1 —1 —1

where s. = x!(X'-X) * x. , i —i v —l

di = (zj. - a_i)'p’1 Ui - £¿3 ,

and.
. z.P (z. - a. 3(z. - a.) P z.i , , D-1 —i —l —l —i —i —ik. = 1 - z.P z. + ---------------------------l —l —l

(1-Si + d.)

The reader is reminded of the following results which were 

established in Chapter 2:

(a) plim 
N

1 . z'Xf 1 . x'x^ 1 . x'z
-1-1

N N N
plim N.P  ̂= Ep'*' ,
N+co

where Ep^ is a finite positive definite matrix; 

and

(b) plim 1 . X'Z = E
N -»-oo N

where E ^  is a finite matrix.

For the ensuing analysis result ■ (b) will be expressed in a 

different form. Since

x'z = x'[xn + V : X ]

we can rewrite result (b) as

plim 1_ . X Z =
N -»-oo N

E H : E XX XX,
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It follows from assumption (iii), section 2.1.3, that

1_ • X'X
N

which is a finite constant, and consequently 

lim s. = 0 .
N-K° 1

Consider' the vector a_| , where

a! = x i’ ( X ' X ) ' 1x ' z  = X ^ ( X 'X ) " 1X’ ' [Y : X j ]  ;

i.e. a! = [x'.il : x' . ] .-l —i —lo­

using result (a) it follows that

plim N . a!p-1a. = [x!IT : xl • lEp1 [n'x. : x. . ] ,
N-̂ -oo x 1 i-L r 1 —il

a finite constant, where x'. is the ith row of X, .—li 1

This result can be shown as follows:

the matrix (X'X) ~*X' X^

is a submatrix of CX'X)~1X’X = I„ ,K.

and thus consists 0f columns of the K x K  identity matrix, 

premultiplying these columns by x^ we obtain x ^  .

It will be convenient to write equation (3.29) as

plim N . a! P *a. = a! a. ,\T “I -1 —1 P —1 *N -»■ OO

where plim _a. = a_. , a finite constant vector.
N ->-°o 1 1

We can conclude, therefore, that

» _iplim a. P a. = 0.
N + °°

■1 . V-1
^  = h  Exx i i  •lim Ns. = lim x-

N-k» x N”̂00 ^

(3.27)

(3.28)

(3.29)

By

(3.30)

(3 .3 1 )
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Consider the term

(z. - a.)' P * (z. - a.) ,
—1 —1 '-—l

where the vector (z^ - a_̂ )' is the ith observation on the matrix

[.z - x(x'x)_1x'z] .
Partitioning this matrix we obtain 

[Y : Xx3 - X(X'X)"V[Y : Xx]

= [Y : Xx] - [Xn : ^ ]

= [V : 0]

which will have ith observation denoted by

[viro’] .

It follows that

ili " ' P_1 OLi " ± 0  = xìp 1£i »

(li - £¿3,p 1z_i  = [v!! : O’ ] p~i[vi + n'jo : x^] ,-1

(3.32)

(3.33)

and

iip_1(!i-!i) = [ x l  : x^] p"1 : 0] (3.34)

Since each element of the OLS reduced form residuals matrix 

converges in distribution to the corresponding element of the 

disturbance matrix, from equation (3.32) and using result (a) we can 

write

plim N . v! P_1v. = v.' Z"1 v. . . . (3.35)N i r —l

Since Ip* is a finite positive definite matrix, and since 

the v\ (i =1,2,...,N) are independently and identically distributed 

with mean zero and finite covariance matrix (this fact follows from 

assumption (v), section 2.1.3, since the reduced form disturbances are
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just linear combinations of the structural form disturbances), it 

follows that

' v-1v. En v.
—1 P —1

is a random variable with finite mean and variance. Hence

plim v! P  ̂v_. = 0  > (3.36)
N+°° 1 1

since 1_ . v̂  E"1 v. converges in probability to zero.
N F 1

Combining equations (3.32), (3.33), and (3.34) we can write

(z; - a.)'P~1z. = (z. -a.)'P_1(z. - a.) + (z. - a.) ’P_1a. . (3.37)
—i  — l  — i  — x  '•— l  — i  — i  — i  —l

The probability limit of the last term in equation (3.37) can

be written as

plim N.(z. - a.) P 1a. = v. 2L a. fT —l —l —l P —lN ->°o
(3.38)

Since a^ is a finite vector, and since the vf (i= 1,2,...,N) 

are independently and identically distributed with mean zero and finite 

covariance matrix, it follows that

. v-1 -v. En a.—l P —l

is a random variable with mean zero and finite variance. Thus

plim (z. - a. ) ’ P_1 a. = 0  ,
N+°°

since 1_. v! Ep  ̂ a\ converges in probability to zero.
N 1 1

I
Combining the above result with that given by equation (3.36), and 

substituting into equation (3.37), we have shown that

(3.39)plim (z_. - £• ) ' = 0 •
N + oo 1 1  1

We now consider the scalar z! P~*z. which can be written as
— l  — l

i ? - 1 ! . !  -  t C i i - i i )  + S J . 1 '  P ' 1

= (z.-a.) P~*(z. - a. ) + a!P xa.—1 —3/ —1 —a/ —1 —1
-1

+ 2a! P_1 (z.-a.) . —1 —i —x J
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Using equations (3.29), (3.32), (3.36), and (3.39) it follows

that

plim z .  P *z_. = 0 . (3.40)
N-*-» 1 1

From equations (5.27), (3.32), and (3.36) we have shown that

plim (1 - s . + d.) = 1 , (3.41)
N**00 •

and from equations (3.39), (3.40), and (3.41) we have shown that

plim k. * 1 . (3.42)
N + °° 1

3.3.2 Proof of Asymptotic Equivalence

To prove that the 2SLS and J2SLS estimators are asymptotically 

equivalent, we are required to show that

plim Al[J(£)-0_] = 0 .
N-»-00

From equation (3.26) we can write this requirement as

plim vfa [J(0)-0]
N ->■ oo

plim f 1_. P) ^pli 
N \N / ¡N +

îm 1 Z'(A. + 2A2 - A^)u
00 7ÎT ’

-plim 1 . Z'MV(A. - A_)u + plim 1 . Z* (A, - A_) (v - w)N^oo VÎT X 2 3 -  ^  2 3 ---- .

+ plim 1 . z 'MxA,(v - w ) 
N-*°° 75V

= 0 . (3.43)

A term by term evaluation of equation (3.43) now follows.

Consider the first term in curly brackets in equation (3.43), viz:

z'iAj+2A2 - A3)u . (3.44)

We know that:

the iith component of A^ is 1/k^ ; *
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the iith component of is
k. (1 - s . + d. )iv l

and the iith component of is
(i - zÎP-1̂ .)

k. (I - s. + d.)l i'

thus, after some algebraic manipulation, the iith component of the 

bracketed term in expression (3.44) can be written as

< V 2W i i  ■

' D-l
.fl____  5-1 p * i

ki(1- si * dl) kitl- si * di)

Let a* P_1a be the largest of the a! P-1a. (i = 1,2,...,N),
then it follows from equation (3.30) that

plim N.a' P ^a = a ' a ,
5-voo - s -s -s P -s

a finite positive definite quadratic form. It follows, therefore, that

plim »44 max a_! P~̂ a_. = 0 .
N-*-« l£i$N 1 1

(3.45)

Using a similar argument it can be shown that

1 im A  max 
N->°° l<i$N

s. = 0 .l (3.46)

Combining equations (3.41), (3.42), (3.45), and (3.46) we obtain

plim vfo max (A + 2A - A ).. = 0 . 
N-»-« l$i£N 1 4 3 li

(3.47)

The jth component of the random vector (3.44) can be written as 
N
¿ mlj(Al + 2A2 - V i i  “i

N
+ £ (A. + 2A_ - A ). .u. v. .

¿= 1  1 2 3 l i  l  i j
(3 .4 8 )
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where the (i = 1,2,... ,N; j =1,2,..,,K^ + g) represent the 

nonstochastic part of the (the ijth element of Z), and the 

v.j(i = 1,2,...,N; j=l,2, ... + g) represent the reduced form

disturbance part of the z^. (where appropriate). Without loss of 

generality we can assume that the observations on the (g) explanatory 

endogenous variables occur in the first g columns of Z; thus v ^  =0 

for all j >g (for all i).

Consider the first term in expression (3.48), viz:

N
y m. . (A.. + 2A. - A,) . . u. . ij i 2 y  xi i

Since the nr. are nonstochastic, it follows from equation (3.47)

that

Pi im max
N 00 l$i$N * 2A2 ' A3>11

= 0 (3.49)

We now require the following theorem which is taken from Malinvaud 

[27; pp. 322-323] and is cited without proof.

THEOREM I.

Let x ^  (t = 1,2,... ,T; T = l,2,....) be random variables. If

plim max 
T UtST

and if the u^ are mutually independent random variables identically 

distributed with zero mean, then:

plim ^ ÿ x T = 0 and plim £ u x T = 0 
T-»-«» t=l T o o  1 t=l t t
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Since each component of the 2SLS residual vector converges in 

distribution to the corresponding element of the disturbance vector, 

using Theorem I together with equation (3.49) if1 follows that'

N
p U m  w I n, /J (A ♦ 2A - A ) G = 0 .
N 00 i=l J

Now consider the second term in expression (3.48), viz:

N

i=l
CA1 * 2A0 - A_).. u. v.. 2 3'ii l lj (3.50)

The reduced form disturbances associated with the g explanatory 

variables can be decomposed into a term Cu ¥*) which is proportional 

to the disturbance term in the ith structural equation, and a term (E) 

which is uncorrelated with u (e.g. see Nagar [37; p.577]), viz:

V = u f '  + E  . (3.51)

The ith row of v can be written as

v! = Uj l  + e! , (i = 1,2,...,N)

whereupon by substituting for v „  in (3.50) we obtain 

N
T (An + 2A_ - A_).. iJj . u . u .1 2 3hi ri l l1=1 J

N
* tAl + 2A2 ' A3>ii Gieij >

where denotes the jth element of f' .

Let E(u?) = a2 then, since u ^ u ^  as N -*■ °°, it follows that the 

(u? - a2) are (asymptotically) independently and identically distributed 

random variables with mean zero.

Since the \p̂ are nonstochastic it follows, using equation 

(3.47), that

plim A  max (A + 2A9 - A ).. ip.
N + °° l$i$N 1 li j = 0
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Combining this result with Theorem I it follows that 

1 Nplim — 7 /N (A, + 2A_ - A_). . ^.(u.u. -a2) = 0 . t, N .L. v 1 2 3 ii rj v l l JN-+°° i=l J

This result implies that 

N
p l l m i  l  A ( A  *2A - A  ) t  G.u 
N + ®  1 = 1 J

piim i  I ^ ( A 1 + 2A2 -A3)u  2
N-voo 1=i ■> .

1 N
° 2 plim jT r ^(A +2A -A ) ^

N-+°° i=l j j

N

= 0 from Theorem I .

Since ^ u^e^j(as N-+00) which are mutually independent random

variables (i.e. u. ,e. . . is independent of u.e..) it follows from l+l i+l,3 1 ij
Theorem I that

1 Nplim rr l  V̂ N(A + 2A - A ),.u e = 0.
N - + 0 0  i  =  l  1 *  o  1 J .  1  1 J

This concludes the analysis on the first term in curly brackets 

in equation (3.43). To summarize, we have shown that

plim 1 . z'CA. + 2A - A,)u = 0 .
N + ° °  A t

Consider the second term in curly brackets in equation (3.43),

viz:

- Z Mx (A2 - A3)u , (3.52)

where the iith component of the term in brackets can be written as 

_  (z, - a.) 'P~1 z. (1 - z- P_1 z.)
' ( W i i - — — ---- ~ - 1 + — ~ — —  •k. (1 - s. + d.) lv i i J ki (1 " sj_ + d,)

(3.53)
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Expressing equation (3.53) in terms of a common denominator, the 

numerator can be written as

- P"1!! - di * diil P’1!!

z! P"1 (z. -a.)(z. -a.)'P_1 z. .—l —i —i —a/ —l

The following probability limits can now be established:

plim N(s. z_!P 1 z, ) = plim 1_. x! fl_'. X 'x \  x. . z l  f l _ , p\ z_. = 0 , 
N N  \N /' 1 1\N )  1

using equation (3.40) and the knowledge that x! £Yy x. is a finite—1 AA 1

constant;

plim ( z! P“ 1 (z. - a. ) (z. - a.) ' P_1 z_. \ = plim 
N V 1 1 1 1  1 j N+°°

z!P * (z. - a.)—l —i — i J
— 2

= 0,

using equation (3.39); 

and

plim N(d. z _!p - 1 z . ) = plim 1_ I v! ( l  . P^ v. . z \  ( l  . P ̂  z .  ^ =  0  ,  
N + oo 1 1 N+°° N | 1 \N / 1 \N

u s in g equations (3.35) and (3.40).

Combining the above three results with equations (3.41) and (3.42) 

we have shown that

plim N(A2 -I3)u  = x! Z’x £i - 2v! Z; V. , (3.54)

and, by the same proof, that

plim N(A ) =
N+°°

T f

i i  Exx l i  * l i  £P l i (3.55)

Expression (3.52) can be written as

1_. z ' x A  . x ' x ) " 1 . X' (A - A )u 
N \N J  Z 6

(3.56)
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The rth element of 

X'(A2 - Â3)u

can therefore be written as

N
l  x. x! L , ir —ii = l

N
V  "  f> X. V.. L. lr —l i=l

x.—l

ui

u.
1

> (3.57)

where x^r (r = 1,2,... ,K) is the rith element of x'.
Rearranging the first term in expression (3.57) and taking its 

probability limit in the context of expression (3.56) gives

JZX ^XX
N
I

i = l
lim
N -»-°0

= 0

This result is obtained by noting that the limit term is a finite 

constant, whilst the Law of Large Numbers (e.g. see Malinvaud [27; 

Proposition 12, p.322]) ensures that the probability limit term is zero.

Since each element of the 2SLS residual vector converges in 

distribution to the corresponding element of the disturbance vector, 

and since each element of the OLS reduced form residuals matrix 

converges in distribution to the corresponding element of the disturbance 

matrix, it follows that

converges in probability to

v- E“ 1 v^. . (3.58)

Using equation (3.51), expression (3.58) can be written as 

( u V  + e!) I” 1 (V u. + e-Ou.,
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which upon expansion gives

V'e : 1 T  u .3 + 2e! Zi1 Ÿ-u? + e! Zl1 e.u. .—  P —  1 —1 P —  x —1 P —1 1 (.3.59)

In the context of the second term in expression (3.57), the first 

term in expression (3.59) can be written as

Noting that the quadratic form in the above equation is a constant, 

the Law of Large Numbers ensures the result.

In the context of expression (3.56) this result implies that

it follows, using Theorem I, that the second and third terms in 

expression (3.59), in the context of expression (3.57), converge in 

probability to zero.

Collecting results, we have shown that

plim Z'MX (A2 - A3)u 
N

is a finite constant, and hence

Z Z~* Z~*ZX AXX -  P

in a finite matrix, provided E(u?) is finite.

Since u^ and e^ are uncorrelated random variables (by assumption)

plim 1 . Z My(A - 7T )u = 0 N -*00 a z s -
7 n
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The third term in curly brackets in equation (3.43) is

z' (A2 - fij) (v - w) .

We know that

u = (y - Z0) ,

(3.60)

and

v = (! - Mx)y ,

W = (y - MxZ0) ,

A A

from which it follows that

(3.61)

Substituting from equation (3.61), expression (3.60) can be written as

(v - w) = - Mxu .

z ' ( A 2 -  I 3)X . x ' x

Consider the .term 

z '(A2 - A3)X

which has jsth element given by

I  y z ' f  L  - x ' x V 1
N i f 1 ij-i \ N J  -i Xi;

1 1 1 - x’i
V N

(3.62)

N
—  y z v ■ —N ij-i V N

1=1 J v
1 . P

V .  X .  —1 I S
(3.63)

where x^s (s = 1,2,...,K) is the isth element of X.

The first term in expression (3.63) can be expanded as

I  y m < A .  x ' x  Y 1
N i ^1 ij-i J  -ixi

» t l  - i (
, ( l_ . X'X

N X . X .  v .  . , —1 I S  1J *

whence the first term of the above expression converges to a finite 

constant and the second term converges in probability to zero by the
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Law of Large Numbers.

The second term in expression (3.63) can be expanded as

2 y A .  p\_1-
' N ^ i j  Xis -i\N ) -i

2 ? m /i .p V 1
N i“1Xis —i 77 1 v-* v-  ‘, N -l 13 (3.64)

Using the argument preceding expression (3.58), and substituting for 

from equation (3.51), expression (3.64) can be rewritten as

N
- 4  y m . .x.N , L , 13 isi=l

t 'e : 1 Tu? + 2e! El1 Tu. + e! Z^e. —  P —  1 —1 P —  1 —1 P —1

N£ y x.N . L , isi=l l ' ^ 1^  * 2ii S 1 i-ui " 5 - 1 £  ^ (lii .u- + e • •) 
y J 1 13

From our analysis to date, it follows that both terms in the above 

expression converge in probability to finite constants.

Since, from our initial assumptions, the term to be inverted in 

expression (3.62) converges to a finite matrix and the term on its 

right converges in probability to a null vector, we have shown that

plim 1_ . Z ' (A ^3) (£"£.) = 0_ .

The fourth term in curly brackets in equation (3.43) is 

Z'MX X 3 (v - w)

which, using equation (3.61), can be rewritten as
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From our initial assumptions, the first three terms in round brackets 

converge in probability to finite matrices, whilst the fourth converges 

in probability to a null vector.

Using equation (3.55) the rsth element of the "middle" term 

in the above expression can be written as

N
1 V i V-1-  rr ) X .  X.  Xv v  X .  X .N . L . ir —i XX —i i 1=1 I S

N1 V 1 v-l+ — ) X.  V.  V.  X .  ,N . L . lr —i P —i is 
1=1

whence the first term converges to a finite limit whilst the second 

term converges in probability to a finite limit. Thus we have shown 

that

plim J_ . Z'MX ^3 Cv - w) = 0_ .

Using the above results, we have shown that

plim v̂I [ J (§) - 0_] = 0_ ;
N ->-°o

i.e. the J2SLS and 2SLS estimators are asymptotically equivalent.
i

3.4 Asymptotic Normality of J2SLS t-Ratios

From equation (2.10) the variance of the J2SLS estimator of 9 

can be written as

1 N
V[J(§)]= — -—  l J.(§) - J(0) J± (©) - J(6)

N(N-l) i—1
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Using the definition of the jackknife it can be shown that

Ji0 - J(0) = [n .0 - (N-i)67] - [n .0 - (N-l) l  0.
L  1J L N i= 1 K

(3.66)

/S J  ri ^

whereupon, if we let ^  l  (K ,
~  i=l~

equation (3.65) can be rewritten as ,

V [J(§)] = ---1--  (N-l)2 l  (6 - 0 )(0 - 0 )' . (3.67)
N(N-l) i=l 1 1 1  1

Using equations (3.25) and (3.66) we can write

§i = 0_ - N" 1 . P_1 [Z'(A1 + 2A2 - A3)u

- 2 *MX Â2 " A3>£

+ z' (A2 - A3) (v - w)

+ z 'm ^ A ^ v - w )] . (3.68)

1 N
Let £  = n l  £i i=l

represent the terms within the square brackets in equation (3.68), then 

equation (3.68) can be written as

/\ /v - 1 — 1 —0i = 0 - N . P g , 

and thus

N

Expanding the right hand side of the above expression gives
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P-1

1 N _i  _ ^ ~ ' i  p _ i _  _i
- N £ P l(£i - 0) + I P g g P 

i=l N2 i=l

Since
N N
u h - b  -  Xi=l i=l

0. - N0—l — -P"1 g

we can write

N
- . „ - 1I (0 - 0)i’P

i=l

N
- - l P" 1 g g' P’ 1

i=l

From equation (3.14) it follows that 

N N
n A A A A t t-i _ I I _ I

l  (0 - 0.) (0 - 0.) = l  P £  gi P ,
i=l i=l

and using the definition of as given by equations (3.15), (3.16), and 

(3.17) we can write

N N
S . M i - 1 (v. - w. + u- )h. + u. i • v 1 1 !•'—1 liL
=1 i=l

N [—
= £ (v. - w.

iil 1-  1 1

A .2 l  , f+ u.) h.h. +i J —l—i
A . /\(v. - w. + u. )u.h.i l i' l—i

i

A ~ ! ~2 . . f Iu. (v. -w. +u.)i.h. + u. i. i.i i i i —i —i  i —i ¿dj

Letting e^ = (v^ - w^ + (L) and expanding the above terms 

individually we obtain the following four expressions:
' (Vi :



II 
II 

t—
3”7?
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(v. - w. + u . ) h.h! = £ ef (A )2. . ( z . -  a. ) ( z . - a .) ' ̂ i i i —l—i iv 3 li —i —i —i —i'
 ̂ 2̂ f p ^2 a J

N
+ .Ï M V i !  lili1 =  1

N
+ T e?(A„)..(A„)..(z. -a.)z-'. L . iv 2' n  —i —i'—i1=1

N
+ 1 |1*iCA2î±iCA3Jil li(li-li)' ’

^ N a ^
(v. -w. + u.)u.h.j! = T ê.û. (A_) . . (A ). . (z . -a.Hz. -a.l^  i i l—i—i H  i H  S^n'- 2J il —i — i —iJ

N
- y ê .û . (A,) . . (A.) . . Cz. - a.) z!i iv 3Hi.v H u  —i — i J —i

N
* ¿ « A c V u i i d i - i i ’'

N
- y ê.û.(A0)..(A ).. z.z! : 

i  H  2H i ' -  l ' n  — i — i  5

N
jUi[«.-«i + Úl)¿.hi = J iuie1 CA3)il(A2)il(ii -a 1 )(l i -ai)'

N a
J u.e. (A,). . (A, ). . z.fz. -a.)' i i 3 ^ n v- H u  —i'-—i —H

N
* j J j V i t V u t i i - i i ’ ii

¿ V A V i i H u  l i l i  ;
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N

i=l
r» '“'o - I  n  . Z t¿ j .j * = Y u.(A0)..(z. -a.)(z. -a.)í\ i — í— i . i v 2' n - i  — i — i'1=1

N
y U.(A .) . . (A .) . . (z. - a.)z!. i^ 2 ' n ^  l-'n — i — 1 — 1 1=1

N ,Y ü. (A_). . (A.). . z.(z. -a.)i v 2^ii^ l ' n  — í — i —

N
+ I G.CA,)2 . z . z ! ;i l'n —í—i ’

where, as before, the ii subscript on a matrix indicates the iith 

component of that matrix.

Gathering terms, we can write 

N N
I g-g- = I e?(A ).. + 2e.u.(A )..(A0).. + u? (A0).. .L.-i-i i 3'n i i*- 3'n^ 2'n i 2'n1=1 1=1

Ci.i-liKi.i-iP

-|2 
'iiy ( S ? ( A 0 )2. . -  2 e . u .  ( A _ ) . .  ( A . )  . . + i i ? ( A , ). L . \  i v 2 '  i i  i  i v 2 ' n v l -' i i  i v 1 J  1=1 L

N r
£ e?(A_)..(A_).. - e.u.(A„)..(A.).. + u.e.(A~) > ^ | _ i v 3 ' n v 2 ' n  i  i K l ' l i  i  i v 2 J

lili

2
Ü

- G2(Aj. -c a j ..i v 2'n^ l'n (z. - a. )zT.—l —l —i
N r-

* l
i=l e i C A2 ) i i ( A 3 ) i i t e i u i CA2 ) i i  -  e i u i CA3 3 i i CA 1 J

Gl < V i i < V i i  i i C i i - l P '  •

11

(3.69)

We define the following matrices

Ri = Cy - z£> Cy-Z£)' = u u ' ,

R 2 = -Mx)(y-Z0)j' = (I -  Mx)u u ’(I -Mx) ,

and R3 = (y - Z§) ĵ I - Mx) (y - Z0)J ' = u u’ (I-Mx) ,

> ( 3 . 7 0 )



49

which allows us to rewrite equation (3.69) as 

N
l  £ig.i = z* (I ~ Mx) [A2(diag R ^ A  +A (diag R )A3

i=l

+ 2A2(diag R3)A3] (I -Mx)Z

+ z'[A2(diag R2)A2 - 2A2(diag R3) \  + \  (diag R ^ A ^ Z  

+ Z'(I-MX) [A3(diag R2)A2 - A3(diag R^Aj 

+ A2(diag R3)A2 - A2(diag R ^ A ^ Z  

+ Z'[A2(diag R2)A3 + A2(diag R3)A2

- A3(diag RjJAj - A2(diag R ^ A J  (I - MX)Z , (3.71)

where (diag ) denotes that the relevant matrix has all off-diagonal 

components equal to zero.

If we also define = Z ,A1 + Z'(I-MX)A2

and S2 = - Z'A2 + Z'(I - MX)A_ ,

then equation (3.71) can be rewritten as 

N
.1 = si(diag R:)Sj + S2(diag R2)S2

- Sj(diag R3)S2 - S2(diag R3)Sj .

We also require g_ which can be written, using equation (3.68), as 

¿  = Z'(A1 + 2A2 -A3)u - Z'MX(A2 -A3)u

+ z ' (A2 - A3) (v - w) + z 'MxA3(v - w ) ;

i.e. g = SjU - S2(v - w + u) , 

and hence

i i *  = S1R1S; + S2R2S2 - S1R3S2 - S2R3S1 *



Upon substituting the above results into equation (3.6S), and then 

.into equation (3.67), we obtain

V[J(0)] = (N-l) . P ' 1 jsj ^diag Rj + 1 . 
N ■ 0lsi

♦ S2Î diag R2 + 1 . 
N %K

- si( diag R3 + 1 . 
N • Is2

- S2Î diag R3 + 1 . 
N

|sjj P_1 . (3.72)

It is shown in Appendix B that the expression in square 

brackets in equation (3.72) converges to

o 2 Ip •

in probability as N -*■ 00 .

It follows from equation (3.72) that

plim V [J (§) ] = a2 El1 , ’
N -> co r

since (N-l)/N -> 1 as N -*• 00 .

Since J(§) has been shown to be asymptotically equivalent to 9_ 

it follows that, asymptotically,

^[JCSj)]
^  N (0,1 ) . (j = 1 ,2,..., Kj + g) •
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CHAPTER 4

COMPUTATIONAL ASPECTS

4.1 Computer Algorithms and their Certification

From equation (2.6) the 2SLS estimator of 9_ can be written as

9_ = [Z,X(X'X)_1X'Z]"1Z'X(X'X)'1X'y (4.1)

In all but the simplest cases, equation (4.1) must be evaluated 

using a computer. Matrix manipulations can be performed using either 

standard algorithms designed for a specific computer and usually 

incorporated in the software library, or machine independent algorithms 

published in computer programming journals. Alternatively one could 

write one's own algorithms although this might be inadvisable for the 

more complicated operations such as matrix inversion.

In all computational work in this thesis, matrix manipulations 

were performed with algorithms written by the author, except for the 

matrix inversion algorithm. To perform inversions an algorithm 

written by Devine [11], which inverts a symmetric positive definite 

matrix by the Choleski decomposition method was selected. All programs 

were written in Algol 60.

Certification of Devine's algorithm was carried out by the 

author. This was performed by multiplying the original matrix by its 

calculated inverse and then obtaining the maximum absolute deviation 

of elements from the unit matrix. These maximum absolute deviations 

are given in Table 4.1 for the eight different data matrices which 

are inverted during the Monte Carlo study in Chapters 6 and 7. The 

column headed K represents the dimensions of the matrix (i.e. the 

number of exogenous variables in the model), whilst the column headed A
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denotes the theoretical pairwise correlation between the K variables. 

The sample correlation matrices are given in Table 6.2.

Table 4.1: Maximum Absolute Deviations (M.A.D.) of 
(X'X) ^(X'X) from the Unit Matrix

K X M,.A.D.

5 0.00 5.46 X i o " 12

5 0.45 8.19 X 1 0 '12

8 0.00 2.32 X ID“ 11

8 0.45 2.46 X IQ '11

8 0.90 1.36 X 10"11

11 0.00 2.91 X 10-11

11 0.45 2.18 X 10"11

11 0.90 2.18 X 10-11

The accuracy of the matrix inversion, as reflected by the 

maximum absolute deviations given in Table 4.1, is certainly satisfactory 

for our purposes.

For K = 5 and X = 0.90, whilst the moment matrix of predetermined 

variables was inverted satisfactorily, a further inversion incorporating 

stochastic matrices which is required at each replication in the Monte 

Carlo experiment exhibited substantial "inversion errors" and 

consequently "inconsistent" results were obtained. This problem is 

discussed in Chapter 6 .

A machine independent pseudo-random number generator devised 

by Pike and Hill [43] was used for generating uniformly distributed 

pseudo-random numbers for the experiments in Chapters 5,6 and 7. 

Favourable evidence of randomness for this algorithm is given by 

serial and poker tests conducted by Pike and Hill, and by frequency 

tests in the certification by Sullins [65].
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The Box and Muller [6] transformation for generating normally

distributed pseudo-random variates is given by

variates, and r^ and are uniformly distributed pseudo-random variates 

defined on the [0,1] interval. This transformation produces exact 

results conditional upon the accuracy of evaluation of the sin and cos 

functions and the correct distribution of r^ and r£. When used in 

conjunction with a multiplicative congruential pseudo-random number 

generator however, Neave [38] has shown how the transformation may break 

down. Amendments to equation (4.2), as suggested by Chay, Fardo and 

Mazumbar [9], were used in this research, therefore, to avoid Neave's 

objections. With these amendments the transformation becomes

where it should be noted that only the sin transformation is used and 

the uniformly distributed variates have been interchanged.

The Monte Carlo study reported in Chapters 6 and 7 necessitated 

the generation of 4,400 pseudo-random standardized normal variates 

(this figure excludes the additional normally distributed variates 

required to calculate the power functions in Chapter 7). The Kolmogorov- 

Smirnov test was conducted to test for any significant divergence 

between the theoretical (standardized normal) and empirical distributions 

of the pseudo-random variates. The maximum absolute value of D 

(the difference between the two distributions) was 0.01306. At the 

5% level of significance the hypothesis of equality cannot be rejected.

)
)
)

(4.2)

where x^ and x^ are two uncorrelated pseudo-random standardized normal
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The pseudo-random normal variates were subsequently transformed 

.into pseudo-random bivariate normal variates by using the transformation

Z2 = ^22 ('<Sxl + ^  - 5 x2) »

where and are correlated normal variates with coefficient of 

correlation equal to 6 . and câ  are the specified population

variances of Z^ and Z  ̂respectively, and the covariance of Z^ 

and Z^ is given by

4.2 Computing J2SLS Parameter Estimates

In order to apply the jackknife to the 2SLS estimator we must have 

some method by which the ith observation can be extracted from 

equation (4.1). Clearly one could calculate equation (4.1) N times 

using a 2SLS program.and omitting a different observation on each 

occasion, but this would be a tedious and computationally expensive 

procedure especially for "large" N and/or K as it would require 

inverting both matrices in square brackets in equation (4.1) (minus 

one observation) at each iteration. In addition, rounding errors from 

the inversion algorithm may lead to a build-up of inaccuracies.

In Chapter 3 we derived equation (3.13) for calculating the 2SLS 

estimator with the ith observation removed which obviates the need to 

perform matrix inversions additional to those required for 2SLS with 

all N observations included. This formula was checked by calculating 

the J2SLS estimator both ways with a test program and noting that 

the parameter estimates were identical to at least the sixth decimal 

place.
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4.3 Computing Exact Results

Calculation of the exact moments of the 2SLS estimator, and 

exact bias in the case of J2SLS, requires evaluation of the confluent 

hypergeometric function

Although tables are available (e.g. see Slater [64]), relatively few 

values of a, y and x have been tabulated. In general, therefore, 

the function must be calculated by direct summation of an infinite 

series or via an asymptotic approximation.

An algorithm for calculating the confluent hypergeometric 

function with complex parameters via the method of direct summation 

has been written by Relph [49]. Thacher [69] in his certification of 

this algorithm mentioned its inefficiency for real arguments.

A problem frequently encountered in this thesis was that of 

relatively small a and y, but relatively large x, whence evaluation of 

equation (4.3) is characterized by slow convergence. When this problem 

arose it was resolved by using an asymptotic approximation to the 

confluent hypergeometric function, which for integer a and y = a + 1 

contains a finite number of terms. A check on the error involved 

in using the approximation can be made if a is an integer and, if 

necessary, a correction made.

For a model containing just two endogenous variables, Richardson 

and Wu [55] have derived the bias of the 2SLS estimator (0) of 3 in 

equation (2.5) as

1F1 (a;y ; x) . (4.3)

22
e

2
(4.4)
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- _ 1 • t I 1 *
where y = to22 t[22 X2 [IN~ x 1 ( x 1 xx) Xj ] x 2 ZL22 is the

concentration parameter so named because for every e > 0

lim P r ( | $ - $ ! > e ) = 0 .
2y

All other notation was explained in Chapter 2.

Clearly a = (K2/2 - 1) is an integer if K is even.

From Appendix C (equation (C.l)) the asymptotic (in y2) expansion 

of the confluent hypergeometric function (for y = a + 1 ) can be written as

„ , , . . a x.F, (a; a + 1 ;x) - —  e 1 1  x
00 y ,

1 a - o o r (£) ,
r=0

(4.5)

and thus the asymptotic approximation to the bias (4.4) is

E C3 - 3) —  --22-g--h>-1.2. Ï - 2 — L  l  (2 - )r
W22 y2 r=0 \ 2 /r\y2/

(4.6)

The error incurred by applying this approximation for finite y2 and 

integer a is given (from Appendix C (equation C.8)) by

t°22B"M12 e-y2/2 r /^2 ' (4.7)
0)22

where k = (K2 - 2)/2 .

It is interesting to note from equation (4.6) that for "large" 

y2 and K2 = 2 the 2SLS estimator is unbiased.

Thus provided the asymptotic approximation of the confluent 

hypergeometric function terminates after a finite number of terms, 

equations (4.5) and (4.7) will ensure exact evaluation of this function.

The gain in computational efficiency will be particularly marked

when the summation of the infinite series required for direct evaluation

of the confluent hypergeometric function is slow to converge.
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For a non-integer, equation (4.5) is an infinite series, although 

if can be truncated after (say) n terms. -/If this is done the error 

involved in truncating the infinite series after the nth term will 

not exceed the (n + l)th term, and will be of the same sign as the 

(n + l)th term (Luke [25; p.127]).

In this thesis, when a is not an integer the confluent 

hypergeometric function had to be truncated in such a way as to ensure 

that all values of bias and mean square error were correct to at least 

the number of decimal places given in the text. For integer a, all

results are "exact".
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CHAPTER 5

THE EXACT BIASES OF THE TWO-STAGE LEAST SQUARES 
AND JACKKNIFE TWO-STAGE LEAST SQUARES ESTIMATORS

5.1 Resume of "Exact" Studies.

In his pioneering work on the exact finite sample distribution 

function of the 2SLS estimator, Basmann [4] demonstrated analytically 

that for a two equation simultaneous equations model, under certain 

conditions, the moments may not exist (i.e. they may not be finite).

Prior to Basmann's [4] paper, Monte Carlo studies of the relative 

properties of simultaneous equations estimators had frequently used 

as their objective function the mean square error in order to compare 

the relative properties of the estimators. Basmann remarked that an 

objective function which involved moments of the estimators would 

have little significance if the moments of the estimators did not 

exist. In addition, non-finite moments could give rise to "outliers" 

when this form of objective function is used in Monte Carlo studies, 

and thus uncritical rejection of these outliers is not a valid procedure.

On the basis of his early work, Basmann [4] conjectured that the 

moments of the 2SLS estimator exist up to the order of over-identification 

of the equation being estimated. Basmann's proof was only valid for 

a two-equation model with ^  = K2 = 2 and K^ = 1, K2 = 3, although 

in a later paper (Basmann [5]) he extended it to a three equation model 

with g = 2, K^ = 1 and K2 = 3.

Kabe [21, 22] greatly simplified Basmann's derivations, and 

this was followed by analytical proofs of Basmann's conjecture for 

g = 1, K2 > 2, by Richardson [52] and Sawa [58].
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For the general case (i.e. g and both arbitrary) Mariano [28] 

has provided a proof of Basmann's conjecture for the even-ordered moments - 

of the 2SLS estimator, whilst Hatanaka [17] has shown that the same 

conjecture provides a sufficient condition for the existence of the 

odd-ordered moments.

Sawa [58] and Richardson and Wu [55] derived, independently, 

the distribution function of the OLS estimator, and then showed how 

the distribution function of the 2SLS estimator could be derived as 

a corollary to the derivation of the OLS estimator. For g = 1 the 

exact moments of the coefficient (3) of the right-hand side endogenous 

variable in equation (2.5) have been calculated by Sawa [58],

Takeuchi [67], and Richardson and Wu [55] for both estimators. From 

Richardson and Wu [55], the first order moment of the 2SLS estimator

can be written as

E(B - B) = - “22B - “l2

to 22
1 (5.1)

Second and higher order moments take a more complicated form 

and the interested reader is referred to the literature previously 

cited.

The fundamental parameter in all "exact" studies is the 

concentration parameter y2, and not the sample size which does not 

enter equation (5.1) explicitly, although it is implicit in y2.

As y2 increases indefinitely, the 2SLS estimator of B converges 
to its true parameter value (i.e. it is a consistent estimator).

A sufficient, but not a necessary, condition for y2 to increase 

indefinitely is for the sample size to increase indefinitely.

In general, the concentration parameter for the jth equation 

is defined by

y2. = trace (M. £ - 1 ) ,
J J *
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where M. = II ' x '  [I - X. . ( x ' . X  .) ” 1 x ' ]  X n.j 22 2j lj lj lj lj 2j 22

v - 1and l  is the covariance matrix of non-normalized endogenous
*

variables included in the structural equation.

Essentially, therefore, the moments of the 2SLS estimator are 

derived in terms of "nuisance" parameters. Sawa [58] assigned "reasonable'

values to these nuisance parameters in order to ascertain the relative
to. „

12importance of N, p = --- and K„. He observed that the bias of
“ 22 2

2SLS is an increasing function of |p| and that frequently it "is not 

negligible". In addition, he found that the distribution of the 2SLS 

estimator was often considerably asymmetric.

Mariano and Ramage [29] considered the effects on 2SLS of 

excluding relevant exogenous variables and including extraneous 

exogenous variables in the equation to be estimated. Mathematical 

complexity precludes useful analysis of the former specification 

error, but under the latter type of misspecification both the 

concentration parameter and the degrees of freedom are smaller than 

for a correctly specified model. The decrease in the concentration 

parameter increases the bias and mean square error of both estimators, 

whilst the effect of the decrease in the degrees of freedom is 

indefinite and depends on other unknown parameters in the model.

5.2 The Concentration Parameter and a Change in Sample Size

Let y* and y ^ d e n o t e  the concentration parameter based upon N 

and (N-l) observations respectively, then

yN = W22 - 2 2  X2 j j  "  X1^X1 XP  X1 X2 —22

and

y N-l W22 -22 X2
' i '* * * - 1  *

I - X1 (X1 x p  Xj X2 —22

(5.23

(5.3]
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where the asterisk superscript refers to the relevant data matrix

with one observation removed. Without loss of generality we assume

that the Nth observation has been removed, i.e.
* *

X1
and X =

X2

f

-1
2

---
1

- 04X
l

___
l

where and x^ are anĉ  X2 dimensional column vectors representing 

the omitted observation from and X2 respectively.

Noting that

(X*' X*) = (X j  X 1 -  x2 x j  ) ,

(x2 x2) = (x2 x2 ■ x2 x j  )

and ( x j  X*) = (X j  X2 - x x Xg  ̂ >

equation (5.3) can be written as

2 -1y „ , = w —77 I  (X7 X7 ~ -7^7 )N-l 22 -22 <  ̂ 2 2 -2^2

-  (X2 Xx - x 2x ^  ) (X^ X l  -  x ^ /  ) " 1 (X1' X2 - x ^ '  ) f —22

It can be shown (see Appendix A) that

(X/ Xx - x ^ '  ) _1 (Xj' xp
( X j x p " 1 x ^ i  Cx i' xp

1 - 2Li* (X1 xp  _1Xi

Using this result, and after considerable algebraic manipulation, 

equation (5.3) can be written as

2 2 
y N-l = % (1 -c) W22 - 2 2 *--2 d ) (x_2 ~ ) —22 * (5.4)

where c = xp CXj* Xj) " 1 Xj 0 < c < 1

d = (X2' x p ( X j '  x p " 1 Xxand
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Since t(_22 (*.2 ~ — —̂2 ~ —  ̂— 22 *s a Positive semi-definite 

quadratic form, and as w 22 and ( 1 - c) are both greater than zero, it 

follows that • .

"'m * "n -i • . '

i.e. the concentration parameter is a monotonically non-decreasing 

function of sample size.

S .3 The Exact Bias of the Jackknife Two-Stage Least Squares Estimator

5.3.1 Introduction

Since only y2 is dependent upon changes in N, the bias of the 

2SLS estimator of g with the ith observation omitted (g^) can be 

written, using equation (5.1), as

E ( S . - S )  = -  - 2-2? - - - -12- exp
w 22

Thus, when the exact bias of the 2SLS estimator can be calculated, 

it is relatively easy to calculate the exact bias of the J2SLS 

estimator.

Differentiating the absolute bias with respect to y^/2 , and 

utilizing the contiguity relations of the confluent hypergeometric 

function (e.g. see Slater [64; p.19] gives

d|E(6 -S)I

d d V2
“ 226 - “l2 2 -U5/2

0)22
. -  . e F. —  - 1; —  + 1;
K2 1 \2 2 2

N (5.6)

From equation (5.6) is is apparent that the absolute value of 

the bias is a monotonically decreasing function of the concentration

parameter y^, provided g > ^ 2 ^ 2 2  ' ^  ^ ~ w 1 2 /̂ tJJ22 no exi-sts»

whilst if g < w1 2/w22 it follows that the actual bias is a monotonically

decreasing function of y 2. Similarly, the mean square error of the
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2SLS estimator can be shown to be a monotonically decreasing 

function of the concentration parameter (see Owen [40]).

Earlier in this Chapter is was shown that the concentration 

parameter is a monotonically non-decreasing function of sample size. 

Thus, combining these two results, it has been shown that the bias 

(and the mean square error) of the 2SLS estimator are monotonically 

non-increasing functions of the sample size; conditional, of course, 

on the exogenous variables.

We have already seen that the bias of the J2SLS estimator can 

be written as

E(§ - 0) + (N-l) E(|.-£) - ^  E-
NJ. c i i - s ?L 1=1 J J

It follows from the above result that the term in square brackets 

in equation (5.7) will be either zero or opposite in sign to E(0-0). 

Consequently, application of the jackknife will have one of three 

possible effects on the bias of the 2SLS estimator:

1. The absolute bias decreases but its sign remains unchanged;

2. The absolute bias decreases and its sign changes;

3. The absolute bias increases and its sign changes.

If the bias decreases slowly or approximately linearly with 

sample size, then it seems reasonable to expect possibilities 1. or 2. 

to occur. When the bias is decreasing rapidly with sample size however, 

there could be a tendency for the jackknife to "over-correct" for 

bias and possibility 3. could occur.

Since the above eventualities are somewhat vague, we turn from 

heuristic analysis to consider an analytical investigation of the 

conditions under which jackknifing is unlikely to decrease the 

bias of the 2SLS estimator. First we consider the exact bias of 

the 2SLS estimator of B as given by equation (5.1) for the special
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case of Y. = 2, then we consider a more general approach using 

Kadane's [23] approximation to the bias of the 2SLS estimator.

5.3.2 Effect of Jackknifing on the Exact Bias of 2SLS when = 2

From equation (5.1), if = 2 the exact bias of the 2SLS estimator 

of B degenerates to

CW22̂  ” W12̂  -u2/2E(S-3) = ----— ----—  e y /Z<jo„„22

since (0,1 ,y2/2) = 1 .

(5.8)

Expanding the exponential term in equation (5.8) and setting 
w12P = —  gives 
w22

E(6 - 3) = -C3-P)

(5.9)

Since y2 is of order N, when = 2 the bias of the 2SLS estimator 

is clearly a function of terms (with alternating signs) of increasing 

powers of order N. Whilst alternating signs will not weaken the 

jackknife's bias reducing properties, equation (5.9) clearly contravenes 

Quenouilie's basic assumption regarding the application of the 

jackknife, viz: that the bias can be expressed as an expansion in 

terms of increasing powers of order (̂-) . This suggests that application 

of the jackknife technique is unlikely to be successful if 1(2 = 2.

When I<2 > 2

F ( h . v  h . vJ )
1 1 ^ 2  ’ 2 ’ 2 /
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takes the form of an infinite series and the bias cannot be expanded 

into an expression such as equation (5.9). We can however fall 

back on equation (4.6) which gives a "large" y2 expansion of thebias, 

equation (5.1), in terms of increasing powers of order jjj- , provided 

K2 > 2 (although if is an integer this expansion will terminate 

after a finite number of terms). This suggests that for "large" y2 and 

K2 > 2, application of the jackknife technique could reduce the 

bias of the 2SLS estimator.

Both of the above observations will be investigated by means of 

a simulation experiment in Section 5.5.

5.4 Jackknifing the Approximate Bias of the 2SLS Estimator

Kadane [23] has derived the leading terms of the first two 

moments of a distribution approximating the exact distribution of the 

2SLS estimator, although it should be emphasized that the moments of 

approximate distributions are not necessarily identical to approximations 

to the moments of the exact distribution.

Nagar's [37] work in this field carries a similar interpretation.

Kadane's approximations are based on a "small" a asymptotic 

expansion of the moments of the k-class estimators (N.B. in our notation 

o = + - P) 2 an<̂  as not t 0 be confused with the a used

elsewhere in this thesis. The definition of a given here is restricted 

solely to this Section). For N fixed, y2->°° if a + 0 and it can be 

shown (see Sawa [59; Appendix C]) that Kadane's (and Nagar's) expansion 

coincides with "large" y2 expansions of the exact moments, provided 

the latter exist.

Kadane [23] has approximated the bias of the 2SLS estimator by
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E(0 - 0) = a2(L-l)Qq + 0 (a3), (5.10)

where L = K2 ~g, i.e. the degree of. overidentification of the equation 

being estimated , . ^

w = [xn: X.],

Q = (W'W)"1

a -  ffBlYtXil'u

and 0 =
LXiJ

Let 0^ denote the 2SLS estimator of 0, with the ith observation

(5.11)

removed then, -

E(§.-0) = o2(L-l)Q,q + 0(a3) ,e> —1 —  A-r

where Qi = (w'w - w^w!)~* and w. is a K, + g dimensional column vector 

representing the omitted observation from W.

From Appendix A, it can be shown that

Q. = (W If] +
, ( W ' W j ' W ' d f ' W ) ' 1 Q w ^ '  Q

= Q +
l - w! (w'w)“1»^ 1 - w.Qw.

and hence

Qw. w! Q
E(0. -0) = 02(L-l)Qq + O 2 (L-l) — — -—  q 

1 1 - w! Qw., —l —l
. Qw. w! Q

* F.(§-£) + a2 (L-l) — — -—  q ,
1 - w ! Qw.—l —l

(5.12)

where terms of higher order in a have been neglected.

■ From the definition of the jackknife, and using equation (5.12), 

we obtain

N(N-l)E[J(0) -0j >  NE(0_- 0) - l  E(0^ - 0)
N i=l
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= NE (6 - 0) - (N-l)E(e - 6) - O'
(N-l) N

N i=l
I (L-l)

Qyt- w • Q1 — UL

L-w'.Qw.

„ (N-l) N Q w ^ Q
E(0-0) -a 2 (L-l)--- l  ■-1-1-

N i=l 1-w.jQ^
(5.13)

FOr jackknifing not to increase the absolute value of the bias 

of the 2SLS estimator over all parameters being estimated, we require

E[J(6)-0J E[J(£)-£]’ - E[§- 0] E[§-0] (5.14)

to have all main diagonal components <: 0 .

Consider the last term in equation (5.13) which can be rewritten

as

(N-l)
o (L—1)- Q ^ i—i.Q

N i=l 1-W!Qwi
g, = a2 (L-l)-

(N-l) N
Q lN i=l

w. w.
— l — i

1 -w.Ow.— l —l
Qq

Let A be an N x N diagonal matrix with iith component equal 

to w? Qw , then

[I - A]

is an N x N  diagonal matrix with iith component equal to

1 - " i QUi 

and hence

N w.w.
I - 1 “ 1

i=l 1-w.1 Qw.— l —l
= w' [I - A ]-1W . (5.15)

Thus equation (5.13) can be rewritten as

E[J(0) - 0] = E(0_-0) - a2(L-l)-^~QW' [I - A]_1WQq , (5.16)
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and upon substituting into equation (5.14) we obtain

E[J(6) - 0]E[J(6) - 6] = E[0 - 0]E[0 - 0]

- q2(L-l) t y  QW1 [I - A ] - 1 WQq E[§ - 0_] ‘

- Oz (L-l)-~ p —  E [0 - 0]q* QW’ [I - A]-1WQ

+ ™'rr r, — 1.
N2

QW [I - A] W.Qq q' QW [I - A] *WQ ,

which can be rewritten as

E[J(|)-8JE[J(£)-6j' '■ 0I,(E-1)2 QW'fi- 0 ~ il (I-A)~M KQq q' Qw'-(I-A)

L  ... I«Q .

where a2(L-l)Qq has been substituted for E[9_-0J.

Thus, for the jackknife not to increase the bias of the 2SLS 

estimator, we are required to show that

(N-l)cr (L-l) QW CI-A) - 1 WQq q' QW' I - N (I-A) WQ*J WQ

- u (L-l)2 Qq q' Q (5.17)

has all main diagonal components s  0 .

If we denote the iith component of A by L  , then Teekens 

[68; pp.103-106] has shown that, in general,

H *  Xi * l- (i = 1, 2, ... , N)

and it follows that

t
^ ( I - A ) - 1 < 0 , (i=l, 2, ... ,- N) (5.18)

li

where the ii subscript refers to the iith component of the matrix 

formed by- those terms in the square brackets.
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Thus, when equation (5.18) holds,

- QW' [i - (I - A)_1J| WQ

must be positive definite.

Vie now require the following theorem from Rao [46; p . 37]:

THEOREM

Let A and B be real m x m  symmetric matrices of which B is positive ' 

definite. Then there exists a matrix R such that

A = R ,_1 AR" 1 and B = R 1 - 1 R_1 

where A is a diagonal matrix.

Using this theorem, there exists a matrix R such that 

-R'q w ' - - 2 ^ -  (I-A)_1J W.QR = A 

and r 'q R = I ,

where A is a diagonal matrix whose main diagonal components are positive 

and equal to the roots of the equation

| - Ql(' ["l - -fcU- (I-A)’1] WQ - XQ| = 0 ,

or | - qV  [l - (I - A)_1J  t l f t  - XI | = 0 .

Thus, from equation (5.17), for the jackknife not to increase bias 

we require

a V - 1 ) 2 

- a4 (L-l) 2

= a4 (L-l) 2

(R') 1 R'QRR 1qq, (R') 1R'QRR 1

(R’)~1R'QW I - ~ 1 1  (I - A) " 1N

.R 'QW'

(R' ) _1 R 1qq'R' 1 (R *) - (R1) 1

W QRR

(I ~ A) 

AR q̂q_'

to have non-negative main diagonal components. This cannot be shown but the 

sum of squared biases will be reduced in the general case and, in the case of 

two included endogenous variables, the squared bias of the endogenous
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coefficient estimator will be reduced if the roots A., of the matrix1

- qV  £  - (I-A) WQ'2

are such that

0 < < 1 • (i = 1, 2, ... , K1 + g) (5.20)

Since this condition is dependent upon W it is not possible to 

give a general statement concerning its existence. However, a 

sufficient condition for equation (5.20) to hold is that

i . Æ i i a - A ) - 1 S -1  , ( i  -  1,  2,  . . . .  N)
11

i.e. (N-l)
N 1 - w/

- 1 < 1

• V  N+l
or Si ^ i * - w  •

It is known that

(i = 1, 2, ... , N)

N
£ w.‘ Qw. = trace WO'/’W)-1!'/’ = K. + g ;  

i=l 1

and so the "avorage" value of w / Qw\ is (K̂  + g)/N.
i ;

But for

Kj + g N+l 
N ' 2N

N + l
, or identically K + g ■> —  »

the sufficient condition cannot hold.

This suggests that when the number of observations is not at. 

least twice the number of included variables, the jackknife should

not be used.
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5.5 A Comparison of the Exact lias of the 2SLS and J2SLS Estimators

The analytical results derived in this Chapter can be summarized 

as follows:

(i) for a structural equation containing just two endogenous 

variables, if = 2 jackknifing is unlikely to be successful;

(ii) in general, even when > 2 and y2 is "reasonably large", 

jackknifing is unlikely to be successful unless the number of observations 

is at least twice the number of variables included in the equation being 

estimated.

It is apparent from these results that analytical guidelines on 

criteria for applying the jackknife to the 2SLS estimator are rather 

vague. A series of experiments was conducted therefore to observe 

circumstances in which the jackknife is successful in reducing the 

bias of the 2SLS estimator.

The experiments compare the exact biases of 2SLS and J2SLS 

as given by equations (5.1) and (5.7) (using equation (5.5)) respectively, 

but take no account of any resulting change in variance.

The exogenous variables were generated as pseudo- random numbers 

from the uniform distribution in the range 0 to 100. A specified 

level of theoretical multicollinearity (X) was applied such that the 

theoretical pairwise correlation between exogenous variables was the 

same for each experiment. X took values from 0.0 to 0.8 in steps of 0.2.

The relative biases of the 2SLS and J2SLS estimators were calculated 

exactly for specified values of N, K^, (jJ22’ anc* sub_vector

of reduced form coefficients,

The values of anc* 22 were set at 0*0 am* 1000-0 respectively 

for all experiments. From equations (5.1) and (5.5) it can be seen



that to12 and w „2 enter the expressions for bias only through p.

Consequently a change in either or both of these parameters only has a 

simple multiplicative effect on the biases and can be ignored without 

loss of generality.

was fixed at 2 for the majority of the experiments, whilst 

took on values of 2, 4 and 6. N took values of 10, 20 and 30.

Tables 5.1 - 5.7 give the results of the experiments. The 

relative bias of both estimators is given, together with the corresponding 

value of the concentration parameter, y2.

Table 5.7 gives the results of experiments designed to test the 

conclusion derived in Section 5.4, viz; if the number of observations is 

not at least twice the number of included variables the jackknife 

should not be used. For the purpose of these experiments N and 

were fixed at-20 and 4 respectively, whilst took values of 4, 6 and 8.

An asterisk indicates experiments where the jackknife did not 

reduce the bias of the 2SLS estimator.

It was suggested in Section 5.3.2 that if K2 = 2 jackknifing may 

not be successful in reducing bias. From Tables 5.1 and 5.4 it is 

apparent that jackknifing is indeed generally unsuccessful. In addition, 

in Section 4.3 it was shown that for "large"y2 and K2 = 2 the 2SLS 

estimator is "nearly" unbiased. The results in Table 5.4 indicate the 

deleterious effects of using the jackknife under such conditions, even 

though y2 is not very "large".

For K2 > 2 application of the jackknife, in general, produces a 

fairly substantial reduction in the bias of the 2SLS estimator. Note 

that for fixed N, J2SLS does not exhibit a consistent pattern of bias 

as \ increases, whereas the bias of 2SLS always increases with increasing X.

In general, except for very small values of y2 , jackknifing 

changes the sign of the 2SLS bias.

72
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The results in Table 5.7 indicate that it would be unwise to 

apply the jackknife to the 2SLS estimator when the number of observations 

is not at least twice the number of included variables. For "small" y^ 

the jackknife produces a substantial reduction in bias, but the ensuing 

Monte Carlo study will indicate that there is likely to be a substantial 

increase in the variance of the J2SLS estimator when y* is "small". 

However, since y^ is never known in practice, it would be unwise to use 

the jackknife when this condition prevails.

These exact results suggest that the jackknife can be most useful 

in reducing bias when the equation being estimated is "well" over­

identified. It would certainly be unwise to use the jackknife when 

1̂ 2 = 2 or when the number of observations is not at least twice the 

number of included variables.



Table 5.1: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 2 tt22 = (0.5, -0.5)

N = 10 N= 20 N* 30

X u2
Relat ive Bias

yN
Relative Bias

yN
Relative Bias

PN 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 5.8775 -0.0529 +0.1873* 8.9645 -0.0113 +0.0592* 12.0464 -0.0024 +0.0179*

0.2 4.7927 -0.0910 +0.2156* 7.4405 -0.0242 +0.0924* 10.3583 -0.0056 +0.0317*

0.4 3.5482 -0.1696 +0.2259* 5.6726 -0.0586 +0.1418* 8.3496 -0.0154 +0.0611*

0.6 2.2820 -0.3195 +0.1421 3.7775 -0.1513 +0.1732* 6.0012 -0.0498 +0.1189*

0.8 1.0954 -0.5783 -0.1826 1.8411 -0.3983 -0.0028 3.2606 -0.1959 +0.1490

K1 = 2 U)12 = 0'° “22 = 1000.0



Table 5.2: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 4 tt 2 = (0.5, -0.5, 0.5, -0.5)

N = 10 N = 20 N = 30

X <
Relative Bias

<
Relative Bias Relative Bias

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 4.8967 -0.3731 -0.0161 15.5754 -0.1284 +0.0194 29.7400. -0.0672 +0.0071

0.2 3.6992 -0.4556 -0.0906 12.3167 -0.1620 +0.0241 21.4978 -0.0930 +0.0101

0.4 2.8151 -0.5366 -0.1842 9.4623 -0.2095 +0.0242 15.0562 -0.1328 +0.0143

0.6 2.0354 -0.6275 -0.3146 6.6289 -0.2907 +0.0011 9.6338 -0.2059 +0.0131

0.8 1.1894 -0.7538 -0.5275 3.5345 -0.4692 -0.1395 4.6532 -0.3879 -0.0745

K = 2 cj12 = 0.0 w22 = 1000.0

Ol



Table 5.3: Exact Relative Biases of the 2SLS and J2SLS Estimators

K2 = 6 *22 - (0.5, -0.5, 0. 5, -0.5, 0.5, -0.5)

N = 20 N= 30

u2
Relative Bias

ii2
Relative Bias

2SLS J2SLS PN 2SLS J2SLS

0.0 32.8269 -0.1144 +0.0101 52.3695 -0.0735 +0.0046

0.2 23.0495 -0.1585 +0.0070 36.8341 -0.1027 +0.0039

0.4 15.3959 -0.2261 -0.0054 24.5283 -0.1498 +0.0001

0.6 9.2195 -0.3407 -0.0544 14.6172 -0.2362 -0.0191

0.8 4.2646 -0.5502 -0.2455 6.6967 -0.4252 -0.1300

Kl = 2 O)12=0.0 a)22 = 1000.0

ON



Table 5.4: Exact Relative Biases of the 2SLS and J2SLS Estimators

k2 = 2 n22 = (1.0, -1.0)

N = 10 N= 20 N = 30

X n2
Relative Bias Relative Bias

u2
Relative Bias

PN 2SLS J2SLS 2SLS J2SLS PN 2SLS J2SLS

0.0 23.5099 0.0000 +0.0008* 35.8579 0.0000 0.0000* 48.1854 0.0000 -0.0005*

0.2 19.1710 -0.0001 +0.0027* 29.7621 0.0000 0.0000* 41.4331 0.0000 0.0000*

0.4 14.1927 -0.0008 +0.0141* 22.6905 0.0000 +0.0003* 33.3983 0.0000 0.0000*

0.6 9.1281 -0.0104 +0.0777* 15.1101 -0.0005 +0.0058* 24.0050 0.0000 +0.0001*

0.8 4.3816 -0.1118 +0.2585 7.3645 -0.0252 +0.0918* 13.0424 -0.0015 +0.0107*

Kx = 2 u 2 = 0.0 w22 = 1000.0



Table 5.5: Exact Relative Biases of the 2SLS and J2SLS Estimators

k 2 = 4 tt22 = (1.0 ,  - 1 .0 ,  1 .0 , -1.0)

N = 10 N= 20 N = 30

X ^  .

Relative Bias Relative Bias
P2N

Relative Bias

2SLS J2SLS 2SLS J2SLS 2SLS J2SLS

0.0 19.5866 -0.1021 +0.0409 62.3016 -0.0321 +0.0051 118.9602 -0.0168 +0.0018

0.2 14.7967 -0.1351 +0.0578 49.2668 -0.0406 +0.0070 85.9910- -0.0233 +0.0026

0.4 11.2603 -0.1770 +0.0778 37.8492 -0.0528 +0.0098 60.2250 -0.0332 +0.0036

0.6 8.1416 -0.2415 +0.0849 26.5155 -0.0754 +0.0145 38.5351 -0.0519 +0.0061

0.8 4.7575 -0.3814 +0.0017 14.1380 -0.1413 +0.0248 18.6126 -0.1074 +0.0127

K = 2 w12 = 0.0 w22 = 1000.0



Table 5.6: Exact Relative Biases of the 2SLS and J2SLS Estimators

k 2 = 6 tt12 = ( 1 . 0 ,  - 1 . 0 ,  1 .0 ,  - 1 . 0 ,  1 . 0 ,  - 1 . 0 )

N = 20 N = 30

X K

Relative Biases Relative Bias

2SLS J2SLS 2SLS J2SLS

0.0 131.3077 -0.0300 + 0.0046 209.4781 -0.0189 +0.0019

0.2 92.1980 -0.0424 +0.0058 147.3363 -0.0268 +0.0024

0.4 61.5836 -0.0628 +0.0081 98.1132 -0.0399 +0.0031

0.6 36.8780 -0.1026 +0.0102 58.4687 -0.0661 +0.0040

0.8 17.0585 -0.2070 +0.0024 26.7869 -0.1382 +0.0016

K =2 w12 = 0.0 w22 = 1000.0



Table 5.7: Exact Relative Biases of the 2SLS and J2SLS Estimators (K^+ g "large" relative to N)

K2 = 4 tt22 = (0.5, -0.5, 0.5, -0.5)

Kx = 8 N = 20 K = 10 N= 20 K = 12 N = 30

\ ii2
Relative Bias

yN
Relative Bias

n2
Relative Bias

yN 2SLS J2SLS 2SLS J2SLS yN 2SLS J2SLS

0.0 10.5786 -0.1881 +0.1529 11.7998 -0.1690 + 0.2040* 4.4360 -0.4018 +0.5649*

0.2 8.6514 -0.2281 +0.1626 8.8120 -0.2242 +0.2356* 2.9796 -0.5199 +0.3831

0.4 6.7927 -0.2846 +0.1608 6.2274 -0.3069 +0.2373 1.8676 -0.6500 +0.0091

0.6 4.8248 -0.3774 +0.1174 3.8990 -0.4399 +0.1422 1.0282 -0.7819 -0.2801

0.8 2.5090 -0.5698 -0.1007 1.8195 -0.6566 -0.1904 0.4652 -0.8922 -0.6428

w 12 =  0.0  ^ 2 2  ~ 1000-0

00
o
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CHAPTER 6

MONTE CARLO STUDY

6.1 Design of Experiments

An evaluation of the effects of applying the jackknife technique 

to the 2SLS estimator necessitates the use of Monte Carlo methods. 

Although the exact finite sample distribution and exact moments (where 

they exist) have been derived for several simultaneous equation 

estimators in the context of the model used in the ensuing study (e.g. 

see the bibliographical paper compiled by Owen and Knight [41]), neither 

the exact finite sample distribution nor exact second and higher order 

moments of the J2SLS estimator have been derived. Consequently, a 

Monte Carlo analysis is our only method of evaluating the effects of 

applying the jackknife technique to the 2SLS estimator.

The model used for one-third of the experiments was

whilst for the remaining experiments equation (6.2) was augmented by 

an additional three or six exogenous variables.

where both equations should be augmented by the relevant additional

(6 . 1)

( 6 . 2)

IThe reduced form of this two-equation model is given by

4
(6.3)

4
(6.4)

terms when K2 = 6 and K2 = 9.
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The set of parameter values used in the experiments is given in

Table 6.1.

Table 6.1: Parameter Values Used in Monte Carlo Experiments

*12 0.8 *21 -0.7 Y25 -1.0 Y28 1.2

Y10 50.0 Y20. 50.0 Y26 1.9 Y29 -1.5

Y11 1.2 Y22 1.3 Y27 -1.1 Y210 0.9

Y23 1-6

Y24 - 2 -0

The exogenous variables were generated as rectangularly and 

independently distributed pseudo-random variables in the range 0 to 100, 

but were then transformed in order to obtain a specified theoretical 

pairwise correlation (X) between them. The sample correlations are 

given in Table 6.2. Values for experiments using less than the full 

set of exogenous variables (i.e. less than 10, excluding the constant) 

should be read-off from the upper left corner of the table.

All experiments were based on a sample size of 20.

The reduced form disturbances, the v^ (i = 1,2), were generated 

as bivariate normal variates with zero mean and covariance matrix

"“ll (jl)_  ̂12 1600 15206

_W21 22 15206 1444

where the coefficient 6 was given the value 0.19 in half of the 

experiments, and 0.76 in the other half.

Each estimate of the parameters in equation (6.1) (i.e. the first 

equation only) was calculated as the mean of 100 replications of the



0.00 +1.0000 Table 6.2: Matrix of Sample Correlations Between the Exogenous
X1 0.45 +1.0000 Variables

0.90 +1.0000
0.00 -0.2977 +1.0000

X2 0.45 +0.1317 +1.0000
0.90 +0.5001 . +1.0000
0.00 +0.0628 +0.0971 +1.0000

X3 0.45 +0.1084 +0.5244 +1.0000
0.90 +0.3874 +0.7815 +1.0000
0.00 -0.0818 -0.1558 -0.0404 +1.0000

X4 0.45 -0.0215 +0.0791 +0.3923 +1.0000
0.90 +0.2987 +0.5786 +0.7979 +1.0000
0.00 +0.1821 -0.3951 -0.0084 -0.0513 +1.0000

X5 0.45 +0.1606 -0.2720 +0.0516 +0.3636 +1.0000
0.90 +0.3811 +0.3987 +0.6353 +0.8106 +1.0000
0.00 -0.3281 +0.0148 +0.1738 -0.0418 -0.2519 +1.0000

X6 0.45 -0.2641 -0.2447 +0.1183 +0.1618 +0.1851 +1.0000
0.90 +0.1171 +0.1936 +0.5301 +0.6734 +0.7453 +1.0000
0.00 +0.2261 -0.1912 -0.2425 +0.1720 +0.1684 -0.3381 +1.0000

X7 0.45 +0.1211 -0.2045 -0.2060 +0.1037 +0.2572 +0.1454 +1.0000
0.90 +0.2562 +0.1639 +0.3414 +0.5461 +0.6784 +0.7272 +1.0000
0.00 +0.1431 +0.0475 +0.3820 -0.2319 +0.0195 +0.0832 -0.0321 +1.0000

X8 0.45 +0.1829 +0.0039 +0.2346 +0.0241 +0.1246 +0.1440 +0.4693 +1.0000
0.90 +0.2746 +0.2069 +0.4450 +0.5172 +0.6199 +0.6784 +0.8658 +1.0000
0.00 +0.0028 +0.3188 +0.1081 -0.0222 -0.3941 +0.1093 -0.1402 -0.4943' +1.0000

X9 0.45 +0.0979 +0.3869 +0.3884 +0.1222 -0.3117 +0.0447 +0.0636 -0.0715 +1.0000
0.90 +0.2714 +0.3866 +0.6075 +0.6528 +0.5936 +0.6996 +0.8171 +0.7982 +1.0000
0.00 +0.1320 +0.1307 +0.2076 -0.1996 +0.4577 -0.0002 -0.0124 -0.0414 +0.3131 +1.0000

X10 0.45 +0.1426 +0.3024 +0.3545 +0.0024 +0.2026 +0.1517 +0.0708 -0.0348 +0.6672 +1.0000
0.90 +0.2598 +0.3838 +0.5766 +0.5465 +0.6131 +0.6751 +0.7360 +0.6869 +0.9206 +1.0000

X1 X2 ’ X3 V X5 X6 X7 X8 X9 X10 0004
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relevant estimator. All experiments were devised to ensure that

at least the first two integer moments of the 2SLS estimator were

finite. This would not be so with the second equation, (6.2).

6.2 Exact Results

Although exact values for the bias and mean square error (MSE) 

of the 2SLS estimator, and for the bias of the J2SLS estimator, in 

equation (6.1) are known (and for 3-^ are given in Table 6.3), for 

compatibility reasons comparison of variance and MSE must necessarily 

be based upon a Monte Carlo study.

The values in Table 6.3 can serve as a guide to the accuracy 

of the experiments which follow.

It should be noted that when 6 = 0.76, the 2SLS and J2SLS 

estimators of 3-^ are both unbiased.

From equation (5.1) it can be seen that the 2SLS estimator of 312

is unbiased if 3-^ = P (= a)l2//,(jJ22̂  ' t*ie exPeraments conducted here,

3i2 = 0.8 whilst

15205 » r ■ e x r\
p = "Ï444" = °'8 (lf 6 = 0,76) ‘

It follows from equation (5.5) and the definition of the jackknife 

that the J2SLS estimator of 3 ^  will also be unbiased under the same 

conditions.

Richardson and Wu [55, pp.977-978] have shown that if the 2SLS 

estimator of 3 ^  as unbiased, then the 2SLS estimator of the coefficients 

of the exogenous variables must also be unbiased.

If 3-̂ 2 = P» then it follows that ^  is independent of u^, and 

hence estimation of equation (6.1) becomes a mixed stochastic regression 

problem. In these circumstances ordinary least squares would be an 

unbiased estimator and would be the appropriate method of estimation.
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Table 6.3: Exact Values of Relative Bias and M.S. E. (312 only)

Relative M.S.E. Relative
Bias Bias

K2 X 6 y 2 2SLS J2SLS

0.00 0.19 41.2725 -0.01865 0.03552 +0.00631

0.45 0.19 29.1234 -0.02675 0.05094 +0.00968
3

0.00 0.76 41.2725 0.0 0.01163 0.0

0.45 0.76 29.1234 0.0 0.01668 0.0

0.00 0.19 95.794 5 -0.03066 0.01483 +0.01093

0.45 0.19 56.3108 -0.05138 0.02514 +0.01633

0.90 0.19 8.4440 -0.27237 0.01576 -0.04342
6

0.00 0.76 95.7945 0.0 0.00478 0.0

0.45 0.76 56.3108 0.0 0.00801 0.0

0.90 0.76 8.4440 0.0 0.04246 0.0

0.00 0.19 118.3348 -0.04252 0.01156 +0.01082

0.45 0.19 61.3857 -0.07889 0.02405 +0.01527

0.90 0.19 9.1349 -0.35015 0.15709 -0.12009
9

0.00 0.76 118.3349 0.0 0.00379 o ;o

0.45 0.76 61.3857 0.0 0.00701 0.0

0.90 0.76 9.1349 0.0 0.03113 0.0
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For an equation containing an arbitrary number (g) of explanatory 

endogenous variables, Revankar and Hartley [51] have generalized the 

above result. An F test was derived by Revankar and Hartley for 

testing the hypothesis of equality of 3 ^  an<3 P*

The selection of 6 to be 0.76 for half of the experiments allowed 

a comparison of test statistics to be made (see Chapter 7) without the 

added complications of bias and skewness entering the comparisons.

6.3 Computational Considerations

6.3.1 The Problem of "Outliers"

The satisfactory inversion of all moment matrices for all sets 

of exogenous variables was commented upon in Chapter 4. At each 

replication of the experiments however, it was necessary to invert the 

matrix

Z ,X(X,X)“1X ,Z

and to check against singularity (or near-singularity) caused by the 

build-up of rounding errors. If singularity was found to be present, 

the relevant sample values were disgarded and an additional replication 

performed.

For experiments involving = 3 and A =0.9, although no replication 

was rejected, the 2SLS and J2SLS parameter estimates were grossly in 

error as compared with their exact values for 312* Rather than design 

an ad hoc procedure to allow rejection of "unrepresentative" sample 

values, or outliers, in order to achieve "reasonable" parameter 

estimates, it was decided to reject this particular experiment completely.

It is difficult to justify the rejection of "outliers" since any 

cut-off point obviously suffers from a great degree of arbitrariness. 

Indeed, one could very well be rejecting "true" sample values as well as 

"rounding error" sample values by applying such a procedure.
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6.3.2 Antithetic Variates

The technique of antithetic variates was used in an attempt 

to reduce (to an unknown degree) the sampling error of the Monte Carlo 

study when estimating the biases of both estimators (see Hammersley 

and Handscomb [16] for a description of the technique).

Whilst the antithetic method produced estimates of 3 ^  which were 

marginally closer (than direct simulation) to their exact values for 

the majority of experiments, there was little to choose between the 

two methods for estimating the MSE of the 2SLS estimator of 3^*

This latter feature was noticed by Mikhail [33] in a similar experiment, 

although he managed to achieve a substantial reduction in sampling error 

when estimating the bias of the 2SLS estimator.

The additional computer time and storage required to calculate 

parameter estimates using antithetic variates is minimal, as it merely 

requires a sign change at an advanced stage in the calculations. 

However, there is a considerable increase in computer time and storage 

involved in constructing, storing and sorting twice as many test 

statistics as were generated by direct simulation. Since this study 

was already facing computer time and storage constraints using direct 

simulation, the author did not feel that, the small decrease in 

sampling error justified the increased computer time and storage.

6.4 Results of Monte Carlo Study

Tables 6.4, 6.5 and 6.6 (which are situated at the end of this 

Chapter) summarize the Monte Carlo results on relative bias, variance, 

MSE and mean absolute error (MAE) for the three parameters of interest; 

viz 812> Y^q and Yijy Values of the standardized normal statistic 

for the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63;
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pp.47-52]) under the hypothesis of equality of absolute errors of the 

two estimators are given in the final column.

Each of these three tables is subdivided into two parts, (a) and 

(b) . Results for 6 = 0.19 are given in part (a) of each table, whilst 

part (b) contains the results for the situation where both estimators 

are unbiased, i.e. 5 = 0.76.

We now consider, in turn, four criteria for discriminating 

between the two estimators.

6.4.1 Bias

The "large" relative bias of 2SLS which was evident in the exact 

study (Chapter 5) for high levels of multicollinearity was also apparent 

in the Monte Carlo study when 6 = 0.19. For these experiments the 

jackknife never failed to reduce the bias of the 2SLS estimator, although 

this reduction was more marked for B ^  than for the coefficients of 

the (2) exogenous variables, y1Q and y .

All estimates of relative bias had the correct sign. From Table 6.3 

it can be seen that the exact relative bias of B ^  f°r both 2SLS and 

J2SLS were very close to the simulation results when K2 = 6. For = 3 

and = 9, however, the degree of agreement between the simulated and 

exact results was not as good.

For 6 = 0.76 (i.e. both estimators unbiased) the "relative bias" 

figures obtained from the experiments must be due to sampling and 

rounding errors. These errors are particularly noticeable when the 

level of multicollinearity (X) is high.

We can be reasonably pleased with the degree of agreement between 

the exact and experimental results on bias. It is interesting to note 

that in Summer's [66] experiments 1A - 4A and IB - 4B, with a model which
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only differed from the one used in this study by the inclusion of 

fewer exogenous variables, the mean of the 2SLS estimator of 3j2 

over 50 replications had an incorrect bias sign on four (of the eight) 

occasions.

6.4.2 Variance

In general, 2SLS exhibited a smaller variance than J2SLS for 

all three parameter estimates, and this was particularly noticeable 

as the degree of multicollinearity increased. Where the jackknife 

produced a smaller variance, its superiority was never significant.

As increased, the discrepancy between the 2SLS variance and the 

larger J2SLS variance widened for all parameter estimates.

6.4.3 Mean Square Error

In general, the reduction in bias due to the application of the 

jackknife was not of sufficient size to offset the smaller variance of 

2SLS. In most cases (for both estimators) the square of the bias was 

small and had little additional effect when added to the variance. 

Consequently, in common witli the variance, 2SLS was generally superior 

(for all parameters) on a MSE criterion.

It should be noted, however, that this superiority was particularly 

marked for "small" values of y2 (e.g. when y2 = 8.440 and y2 =9.1349).

For "larger" values of y2, the MSEs of the two estimators did not 

differ greatly. Frequently, the Wilcoxon test picks up this substantial 

difference between the two estimators for "small" y2, but this statistic 

is based on testing absolute errors.

With only one exception, the MSE of the 2SLS estimator of 8^2 

obtained from the experiments underestimated the exact MSE. Despite this,
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the exact and experimental values were very close for all values of 

and X.

6.4.4 Mean Absolute Error

In general, 2SLS was superior on a MAE criterion, although its 

superiority was not as marked as for the MSE criterion. Again, "small" 

values of p2 lead to a great discrepancy between the MAEs of the 2SLS 

and J2SLS estimators.

6.5 Difference of Absolute Errors

At each replication the absolute error of both estimators was
A ~

calculated. Let b. and b. be the absolute errors at the ith replicationi i  r
of the 2SLS and J2SLS estimators of ¡3^ respectively, then the 

difference score is defined as

di = t>i " *i • (i = 1,2,. .. ,R)

We wish to test the hypothesis of equality of b^ and b^ over all R 

replications.

The usual parametric technique for handling such a problem is

Student's t distribution, but this requires the assumption that the

difference scores (the d^) are normally and independently distributed

in the population from which the sample was drawn. Since this assumption «
has no theoretical justification for the case being considered here, 

the Wilcoxon Matched-Pairs Signed-Ranks test (e.g. see Siegel [63; 

pp.75-83]) was used to test the hypothesis of equality of absolute errors. 

If the assumptions of the parametric t test are in fact met, the 

asymptotic efficiency near the null hypothesis of the Wilcoxon test 

compared with the t test is 95.5%.

Under the stated hypothesis, the Wilcoxon test was conducted for
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all three parameters being estimated, and the resulting Z statistics 

are given in the last column of Tables IV, V, and VI. Negative values 

favour 2SLS.

At a 5% level of significance, the hypothesis of equality of 

absolute errors is rejected only twice over all parameters when 5= 0.19. 

Both rejections are in favour of the 2SLS estimator, and both occur 

for K2 = 9 and A =0.90 (i.e. when y* is "small").

When 6 = 0.76, however, the hypothesis is rejected on four 

occasions for (3^ alone, all four rejections in favour of the 2SLS 

estimator. Surprisingly, this result did not carry over to the 2SLS 

estimates of y10 and y .

6.6 Conclusion

The results of the Monte Carlo study are not encouraging for 

proponents of the jackknife technique. Whilst 2SLS was clearly superior 

when there existed a high degree of multicollinearity, application of 

the jackknife technique, in general, could not produce superior results 

using either a MSE or MAE criterion. In view of the increased complexity 

and computation time involved in applying the jackknife, its use cannot 

be recommended on the basis of the above results alone.

On the basis of the above results, the following statements can 

be made:

(i) for a relatively high degree of overidentification (i.e. = 6

or =9 in these experiments), application of the jackknife technique 

produces a substantial reduction in the bias of the 2SLS estimator;

(ii) over all experiments 2SLS is superior on a MSE criterion, this 

superiority being particularly marked when y2 is "small";
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(iii) when 6 = 0.19, there appears to be little significant difference 

between the two estimators over all parameters, using the absolute error 

criterion, on the basis of the Wilcoxon Matched-Pairs Signed-Ranks test;

(iv) over all experiments, differences between 2SLS and J2SLS 

estimates of 3 ^  usi-ng MAE, MSE, and variance criteria are far less 

marked than the same differences for y and y^;

(v) when the 2SLS estimator is unbiased (i.e. 6 =0.76), application 

of the jackknife is clearly unwarranted and its application in error

is likely to have a detrimental effect on the parameter estimates. 

Clearly, to avoid this possibility, Revankar and Hartley's [51] test 

should be used prior to estimation.



Table 6.4(a): Results of Monte Carlo Experiments

Parameter = ß12

RELATIVE BIAS VARIANCE M S.E. M.A E. WILCOXON

K2 X y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

3
0.00 41.2725 -0.02739 -0.00151 0.03014 0.03044 0.03062 0.03044 0.14138 0.14030 +0.7324

0.45 29.1234 -0.04351 -0.00052 0.04022 0.04433 0.04143 0.04433 0.16927 0.17156 +0.1977

0.00 95.7945 -0.02911 +0.01092 0.01329 0.01473 0.01382 0.01480 0.09423 0.09717 -0.4487

6 0.45 56.3108 -0.05176 +0.01428 0.01963 0.02315 0.02134 0.02327 0.11690 0.12211 -0.6223

0.90 8.4440 -0.26531 -0.03903 0.09687 0.32332 0; 14192 0.32429 0.30989 0.38605 -0.4986

0.00 118.3349 -0.03588 +0.02243 0.01123 0.01327 0.01205 0.01359 0.08642 0.09118 -0.4590

9 0.45 61.3857 -0.06731 +0.03637 0.01977 0.02815 0.02267 0.02900 0.12234 0.13239 -0.4590

0.90 9.1349 -0.30998 -0.03315 0.08634 0.37555 0.14784 0.37626 0.32287 0.44477 -2.3088

Sample size = 20 6 = 0.19



Table 6.4(b): Results of Monte Carlo Experiments

Parameter =

RELATIVE BIAS VARIANCE M.S .E. M A.E. WILCOXON

K2 X y 2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

3
0.00 41.2725 -0.00629 -0.00215 • 0.00939 0.00946 0.00942 0.00946 0.08139 0.08130 +0.4109

0.45 29.1234 -0.00814 -0.00136 0.01326 0.01431 0.01330 0.01431 0.09392 0.09762 -1.2705

0.00 95.7945 -0.00524 -0.00328 0.00438 0.00490 0.00439 0.00490 0.05223 0.05582 -1.9444

6 0.45 56.3108 -0.00668 -0.00305 0.00655 0.00799 0.00657 0.00800 0.06450 0.07098 -2.5616

0.90 8.4440 -0.00844 +0.01385 0.03462 0.10562 0.03466 0.10573 0.14633 0.22304 -5.1540

0.00 118.3349 -0.00235 +0.00143 0.00371 0.00445 0.00371 0.00445 0.04988 0.05334 -1.5576

9 0.45 61.3857 -0.00191 +0.00588 0.00624 0.00880 0.00624 0.00883 0.06383 0.07461 -2.7232

0.90 9.1349 -0.00188 +0.03911 0.02810 0.09701 0.02811 0.09799 0.12742 0.22593 -6.4812

Sample size = 20 ô = 0.76



Table 6.5(a): Results of Monte Carlo Experiments

Parameter = Y^q

RELATIVE BIAS VARIANCE M.S .E. M.A.E. WILCOXON

K2 A y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 +0.05783 + 0.03567. 494.50 509.77 502.86 512.95 17.80 18.16 -0.8218

0.45 29.1234 +0.05958 +0.03691 532.11 552.15 540.98 555.55 18.52 18.69 -0.3335

0.00 95.7945 +0.07142 +0.01475 521.61 552.85 534.36 553.40 18.30 18.89 -0.8011

0.45 56.3108 +0.07951 +0.01679 554.61 590.48 570.42 591.19 18.87 19.14 -0.1169
o

0.90 8.4440 +0.21776 +0.07183 1712.25 2487.70 1830.80 2500.60. 34.24 37.75 -1.7811

0.00 118.3349 +0.08609 -0.00401 524.09 560.12 542.62 560.16 18.60 18.63 +0.1994

9 0.45 61.3857 +0.10527 -0.00937 568.82 636.35 596.53 636.57 19.52 • 19.55 +0.2571

0.90 9.1349 +0.26538 +0.02130 1717.59 3005.34 1893.66 3006.47 35.04 39.50 -1.3169

Sample size = 20 6 = 0.19



Table 6.5(b): Results of Monte Carlo Experiments

Parameter = Y^q

RELATIVE BIAS VARIANCE M.S .E. M.A.E • WILCOXON

K2 À y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

0.00 41.2725 +0.02198 +0.01713 159.76 161.79 160.97 162.52 10.10 10.19 -0.2372

0.45 29.1234 +0.02128 +0.01546 175.59 178.15 176.73 178.75 10.66 10.74 -0.6292

0.00 95.7945 +0.02206 +0.01941 174.43 177.16 175.65 178.10 10.58 10.69 -0.0688

6 0.45 56.3108 +0.02064 +0.01770 188.26 190.72 189.32 191.50 10.95 10.89 +0.6464

0.90 8.4440 +0.01336 +0.00231 664.16 789.39 664.61 789.40 20.49 21.88 -0.4573

0.00 118.3349 +0.01833 +0.01135 176.50 182.49 177.34 182.81 10.68 10.86 -0.5123

9 0.45 61.3857 +0.01673 +0.00717 194.44 205.75 195.14 205.88 11.10 11.. 35 -0.7427

0.90 9.1349 +0.01557 -0.01026 642.99 798.66 643.59 798.92 20.24 22.14 -1.2103

Sample size = 20 <5 = 0.76



Table 6.6(a): Results of Monte Carlo Experiments

Parameter =

RELATIVE BIAS . VARIANCE M.S .E. M.A .E. WILCOXON

K2 X y 2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

T 0.00 41.2725 -0.01578 -0.00552 0.12200 0.12560 0.12236 0.12564 0.27814 0.27567 +1.1175

0.45 29.1234 -0.01522 -0.00789 0.13579 0.14115 0.13612 0.14124 0.29161 0.29209 +0.0499

0.00 95.7945 -0.02943 +0.00569 0.13652 0.13946 0.13777 0.13951 0.'29307 0.29189 +0.5794

6 0.45 56.3108 -0.03245 +0.00222 0.14783 0.15137 0.14934 0.15138 0.30267 0.29797 +1.1346

0.90 8.4440 -0.11355 -0.03921 0.56781 0.79627 0.58637 0.79849 0.61435 0.67577 .-1.7501

0.00 118.3349 -0.03078 +0.01239 0.12644 0.13457 0.12780 0.13479 0.27999 0.28116 +0.2201

9 0.45 61.3857 -0.03260 +0.01124 0.14321 0.15645 0.14474 0.15664 0.29747 0.30058 -0.1221

0.90 9.1349 -0.06151 +0.02542 0.55360 0.79839 0.55905 0.79932 0.59897 0.67042 -2.1954

Sample size = 20 6 = 0.19



Table 6.6(b): Results of Monte Carlo Experiments

Parameter = y „

RELATIVE BIAS VARIANCE M.S.E. M.A.E. . WILCOXON

K2 X y2 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS 2SLS J2SLS TEST

3
0.00 41.2725 -0.00167 +0.00144 0.04010 0.04035 0.04010 0.04036 0.15781 0.15610 +0.4968

0.45 29.1234 -0.00082 +0.00282 0.04498 0.04577 0.04498 0.04578 0.16653 0.16748 -0.6533

0.00 95.7945 -0.00307 -0.00161 0.04666 0.04552 0.04667 0.04552 0.16974 0.16665 +1.0762

6 0.45 56.3108 -0.00165 +0.00019 0.05082 0.04981 0.05083 0.04981 .0.17583 0.17240 +1.2808

0.90 8.4440 +0.00305 +0.00767 0.21889 0.26339 0.21890 0.26348 0.36742 0.40131 -1.5163

0.00 118.3349 +0.00022 +0.00334 0.04273 0.04391 0.04273 0.04393 0.16162 0.16309 -0.1083

9 0.45 61.3857 +0.00155 +0.00551 0.04836 0.05005 0.04836 0.05010 0.17096 0.17022 +0.6017

0.90 9.1349 +0.00250 +0.00808 0.19668 0.22882 0.19670 0.22892 0.34628 0.36884 -0.7375

Sample size = 20 6 = 0.76
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CHAPTER 7 

INFERENCE

7.1 Tests of Significance

7.1.1 Conventional Tests of Significance

So far we have only considered point estimation of the 

parameters in a simultaneous equation system. In applied economics 

however it is usual to test for significance of the parameter estimates, 

or (identically) to formulate interval estimates.

From equation (2.6), the 2SLS estimator of 6_ is written as

Z ' X ( X ' X ) _1 x ' y  ,_9 = j z , X ( X , X ) " 1X ' Z

and from equation (2.7) the limiting distribution of the sequence 

SN (6_- 6) is given by

s ir  (6 - 6) ~ n 1 z ' x A  X ' X N\ 1 x ' z
_1

0, o plim 
N 00

(7.1)

provided lim 
N ->o°

1 x ' x  \  1
N- ) exists .

The correct asymptotic test of significance therefore is the 

standardized normal test statistic, and a consistent estimator of a2 

is given by

o2 = u U / N , (7.2)

where u = £  - Y3 - X^ •

It has become common practice however to adjust the estimator of 

a for loss of degrees of freedom and use the t. statistic, rather 

than the standardized normal, when dealing with finite samples (e.g. see
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Johnston [20; p.384]. Thus in finite samples a consistent estimator 

of a2 is given by

O = u u /(N - Kx - g) .

From equations (7.1) and (7.2) it follows that, asymptotically,

^  -  V ^  N(0,1) , (7.3)

A A

where 0^ and 0^ are the kth components of 0_ and 0_ respectively

1
N •

Kl  + g)> and Sk 1

z ’ x (  1 x ' x yu / N -

Let denote the kkth component of [Z'X(X’X) * x'Z] * 

£>k = NS^ and expression (7.3) can be rewritten as

(ek - ek)
— -----—  ~  N(0,1) .

a /T.k

then

(7.4)

The conventional finite sample counterpart of expression (7.4) 

is the statistic (0^ - 0^) , (7.5)

S ^ s k

which is tested as though it is distributed as Student t with 

N - - g degrees of freedom.

7.1.2 Dhrymes1 Alternative Test of Significance

An alternative asymptotic test of significance based on Student's 

t distribution has been proposed by Dhrymes [12] . Use of the t statistic 

is customary for testing the significance of 2SLS parameter estimates
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yet, until Dhrymes showed the asymptotic validity of his test, no 

theory existed to justify the practice. On the basis of the 

asymptotic distribution of the 2SLS estimator, the relevant test of 

significance should have been based on the standardized normal 

distribution as described by expression (7.4).

Rewrite the equation being estimated as

where Z = [Y : X^] and 0_' = [3_' : ̂ ], then define a square, non­

singular matrix R of order K such that RR1 =X'X. Further define

w_ = Q0_ + e_ ,

where w = Py, Q = PZ and e_= Pu. Dhrymes showed that the 2SLS estimator 

of 6_ in equation (7.6) is the OLS estimator of 0_ in this transformed 

system. Further, by analogy with least squares, Dhrymes showed 

that, asymptotically,

where an asymptotically unbiased, but inconsistent, estimator of a2 

is given by

Thus the test is only valid if the structural equation in question is 

over-identified.

Revankar [50], however, has shown that information is lost when 

a dimension reducing transformation is used as a basis for testing, 

thus Dhrymes' test could be expected to be inefficient compared to

y = Z9 + u (7.6)

P = R *x', then premultiplying equation (7.6) by P gives

(7.7)

the conventional test based on the standardized normal distribution.
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In a Monte Carlo study, Maddala [26] observed that the Dhrymes 

test had low power compared with the conventional tests in a two 

equation model. Richardson and Rohr [54] came to the fame conclusion 

on the basis of a Monte Carlo study using a three equation model.

7.2 The Exact Distribution of a t Statistic

The exact finite sample distribution functions of several t 

statistics for hypothesis testing and the construction of confidence 

intervals on 2SLS parameter estimates have been studied by Richardson 

and Rohr [53] and Rohr [57]. As with many other finite sample studies 

into the properties of the 2SLS estimator, the results were derived 

for a model with just two jointly-dependent variables.

Richardson and Rohr [53] considered the finite sample distribution 

of Dhrymes* t statistic, expression (7.7), which Dhrymes had already 

shown to be asymptotically distributed as Student t with - g degrees 

of freedom. However, since the sample size does not appear 

explicitly in their finite sample derivations, convergence of the t 

statistic to Student's t distribution was analysed for y2 (the 

concentration parameter) increasing indefinitely.

The moments of the exact distribution were found not to exist 

to order - g and higher, but where they did exist they converged 

to the moments of Student's t distribution with - g degrees of 

freedom as y2+°°. On the basis of their results Richardson and 

Rohr conjectured that, for large y2, the exact distribution function 

of the t statistic can be adequately approximated by Student's t 

distribution with - g degrees of freedom.

Richardson and Rohr investigated their conjecture for one 

degree of freedom and for several values of y and 0. On the basis



103

of their computations they concluded that the actual probability 

of Type I error (for a significance level of 5%) will be less than 

5% if 3 is positive, and greater than 5% if 3 is negative. If y >  3 

the exact t statistic was found to be a good approximation to the 

Student t, but for small 3 and y < 3 differences between the two could 

lead to serious errors.

Richardson and Rohr also tabulated the exact value of the second 

moment and the exact absolute values for the first and third moments 

of the t statistic for various values of degrees of freedom,3, and 

y2, from which they concluded that the density function is highly 
skewed and that often the moments differ considerably from those 

of Student's t distribution with - g degrees of freedom.

Rohr [57] has derived the exact distribution of two "more 

conventional" test statistics, only one of which is used in this 

study, viz:

tek - V  

3 VsjT
>

which is identical to expression (7.5).

Rohr showed that asymptotically (in y2) expression (7.5) 

converges to Student's t distribution with N - - g degrees of

freedom, but that in finite samples the moments of the statistic

(7.5) exist only up to order N - - g + 1.

It should be noted, however, that mathematical complexity in 

the derivation of the moments of expression (7.5) forced Rohr to 

consider only the special case where 3= ° i2 ^ 0 22'’ ^SLS unbiased.

Under this restriction, expression (7.5) has all odd moments (where 

they exist) equal to zero, and 2SLS and OLS are equivalent.

Rohr also showed that the variance of expression (7.5) is 

always less than or equal to the variance of its limiting distribution.
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7 .3 Students t Distribution and its use with the Two-Stage Least 
Squares Estimator

The ratio

-w 6 - E(6 )
------- : = J S -----------L _  (k  = 1 , 2 , . . . ,K.  + g) (7 .8 )
/ W T  S.E. (§k) * 1

is distributed as Student t if w is normally

distributed with zero mean and unit variance and if v has a y2 

distribution with r degrees of freedom, provided that v and w are 

stochastically independent. '

For 2SLS, in general, E £ 6^ and a is a consistent, 

but not unbiased, estimator of a2. Consequently the denominator of 

expression (7.8) only approximates a y2 distribution. In addition,

§k - E(§k) is not stochastically independent of its standard error
A

(S.E.) in finite samples. • It should be noted that E(0jJ may not 

even be finite, although in the ensuing Monte Carlo analysis the 

experiments were designed in such a way as to ensure that the first 

two moments of the 2SLS estimator were always finite.

7 .4 An Approximate t Statistic constructed using the Jackknife
Technique .

Tukey [72] has suggested that the N pseudo-jackknife estimates 

could be treated as approximately independent, identically distributed 

observations from which an approximate t statistic.could be constructed 

as

A i  [
“7

i N
' (N-l)"1 l

i=l

' '■ww  j

A  % *
(7 .9 )
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We have already shown (in Chapter 5) that expression (7.9) is 

asymptotically distributed as the standardized normal distribution in 

the context of the J2SLS estimator.

Although in general E[J(0^)] =j=0^, in many instances it will 

exhibit a smaller deviation from 0^ than 2SLS, as was observed in 

Chapter 4. In common with 2SLS, the numerator and the denominator 

of expression (7.9) will not be stochastically independent in finite 

samples.

Miller [34] gives several counterexamples to Tukey's conjecture, 

but Arvesen [1] gives a wide class of situations where this suggestion 

is valid, i.e. when J^C0̂ ) and J(S^) are U statistics (see Hoeffding 

[19]) or functions of U statistics.

Recently, Miller [36] provided an asymptotic justification of 

Tukey's conjecture for a function of the regression parameters in a 

general linear model.

7.5 Independence of the Pseudo-Jackknife Estimates

Walsh [73] has demonstrated the deleterious effects of using 

correlated samples for the construction of certain significance tests. 

If the N pseudo-jackknife estimates could be considered as a single 

observation of a normal multivariate population, for which the N 

variables have common mean y and variance a2, the effect on the t 

statistic of a common level of pairwise correlation between the pseudo 

jackknife estimates would be to raise or lower the true confidence 

coefficient depending on whether the correlation was positive or 

negative. Thus if the pairwise correlation (r) was positive, a test 

result which would be significant for a random sample need no longer 

be so. To correct the t statistic the multiplying factor
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/ a - r )
J 1+ (N-l)r

is required.

Walsh illustrated the error incurred in assuming r =0 by 

tabulating the true value of the confidence coefficient for varying 

values of N and r. Even for small r the deleterious effect of correlation 

was very marked; e.g. for N = 8 and r=0.1 the true value of the 95% 

confidence coefficient is 86.5%, and for N = 32 and r = 0.1 the true 

value falls to 68%. Thus the dangers of ignoring the possibility of 

|r|>0 are evident.

Miller [34], using different initial assumptions, has also shown 

the deleterious effect on the t statistic of correlation among the 

pseudo-jackknife estimates.

Three statistics were selected, therefore, to test for the 

"approximate" independence of the pseudo-jackknife 2SLS estimates, 

and for this purpose the pseudo-jackknife estimates were expressed as 

deviations from their mean, viz:

dik = JiCV  ' J(V >  (i = 1 ’ 2 ’ •••’ N)

for all k (k = l,2, ..., + g) . The three tests used for this purpose

are well known tests for departures from randomness, and a detailed 

explanation of all three (the Swed-Eisenhart One Sample Runs Test, 

the Fisher Exact Probability Test, and Spearman's Rank Correlation 

Coefficient), is given in Siegel [63].

The Swed-Eisenhart test (denoted by SE in Table 7.1) was used 

to ascertain whether the sequence of signs of the d ^  was random. The 

Fisher test (denoted by FI) was also based on sign sequences. A 2x2 

contingency table was set-up for each value of k and scores allotted 

according to the sequence of the signs of successive d^^ over the 

i observations. Spearman's Rank Correlation Coefficient (denoted by SR)
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The problem with using these aforementioned tests is that no 

general statement can be made about the efficiency of any of them.

In the context in which they are used in this study, each of these 

three tests will produce a different "measure" of randomness. All 

three reject a certain amount of relevant information and therefore, 

at best, the test results can only be used as an approximate guide 

to departures from randomness of the pseudo-jackknife 2SLS estimates.

The number of times the hypothesis of randomness was rejected 

for each test over the 100 replications is given in Table 7.1. A visual 

appraisal of the results indicates that the hypothesis of randomness 

is upheld "approximately" 95% of the time. These results appear to 

offer some support to Tukey's conjecture for this particular application.

7.6 Validity of Test Statistics

It is essential to examine the validity of the standard tests 

of significance to ensure that the test statistics do not diverge 

significantly from their postulated theoretical distribution. To 

this end, the Kolmogorov-Smirnov One-Sample Test (see e.g. Siegel 

[63; pp.47-52]) was employed to test five hypotheses:

was used to test for association between the natural ordering of the-

d ^  and their ranked ordering. All three tests were repeated over

all replications.

~  N(0 ,1)  , (7.10a)

(7.10b)

0.k 0-k t
a  / ~ S k

'X/ (7.10c)
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/ » [ j ( e k)-ek J
'V N(0,1) , (7.10d)

(N-l)_1 1 ij.(0k) - J(0k
i=l

and

~  t (7.lOe)N-l

i=l

(k = 1,2,...,^ + g).

Tables 7.2(a) and 7.2(b) set out the values of the maximum 

deviation, D, between the relevant empirical and theoretical 

distributions for each of these five hypotheses. The distributional 

assumptions are rejected at the 5% level for D > 0.13403.

Over all experiments 48 "sets" of values for D were obtained, 

i.e. 24 sets for each value of 5. The lowest D value in each set 

was designated "1st", the second lowest "2nd", and so on. Table 7.3 

summarizes the number of firsts, seconds, etc., for each test statistic 

over all parameters and all values of K^, for 6 = 0.19 and for 5 = 0.76. 

The following abbreviations are used:

CT1 - "Conventional Test No. 1", formula (7.10a);

CT2 - "Conventional Test No. 2", formula (7.10b);

DT - "Dhrymes Test", formula (7.10c);

JT1 - "Jackknife Test No. 1", formula (7.10d);

JT2 - "Jackknife Test No. 2", formula (7.10e).

Care must be taken in interpreting these figures, as the postulated 

theoretical distribution differs across each set.

When 2SLS was biased (i.e. 6 = 0.19) the jackknife-based test 

statistics always dominated the others for and Y^q > and for six

out of the eight sets of values for y . The t statistic based upon 

the Dhrymes derivation (DT) consistently produced the poorest fit.
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Table 7.1: Tests of Independence of Pseudo-Jackknife Estimates 
(Number of rejections at 5% level of significance)

6 = 0.19

K2 X FI SR SE

3 0.00 4 1 2
0.45 2 3 2
0.00 7 5 5

6 0.45 6 3 4
0.90 1 3 0
0.00 5 6 4

9 0.45 5 4 2
0.90 4 5 1

6= 0.76

K2 X FI SR SE

Z 0.00 9 6 7
0.45 5 3 5
0.00 4 7 4

6 0.45 3 4 3
0.90 3 7 3
0.00 4 10 4

9 0.45 4 4 3
0.90 7 8 2

K2 X FI SR SE

•z 0.00 3 8 2J
0.45 2 6 1
0.00 6 6 7

6 0.45 6 5 5
0.90 6 7 6
0.00 5 7 4

9 0.45 4 9 2
0.90 2 6 2

K2 X FI SR SE

3 0.00 2 7 3
0.45 2 5 1
0.00 1 7 2

6 0.45 1 7 4
0.90 3 7 2
0.00 3 9 1

9 0.45 5 8 3
0.90 2 5 2

K2 X FI SR SE K2 X FI SR ' SE

Z 0.00 6 4 3 3 0.00 1 4 0
c 0.45 4 4 0 0.45 5 3 3

0.00 7 3 4 0.00 4 3 2
6 0.45 9 4 2 *11 6 0.45 4 5 3

0.90 5 5 3 0.90 3 4 2
0.00 2 2 2 0.00 6 2 4

9 0.45 1 4 1 9 0.45 3 5 4
0.90 5 4 4 0.90 2 3 2
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Table 7.2(a): Kolmogorov-Smirnov D Statistic

2SLS Dhrymes J2SLS

K2 X Normal t t Normal t

3 0.00 0.1336 0.1329 0.1342 0.0929 0.0941
0.45 0.1478 0.1471 0.1406 0.0878 0.0871
0.00 0.1454 0.1429 0.1290 0.0912 0.0944

6 0.45 0.1888 0.1853 0.1743 0.1014 0.1055
0.90 0.3608 0.3578 0.3410 0.1381 0.1385
0.00 0.1406 0.1384 0.1546 0.0900 0.0925

9 0.45 0.1996 0.1987 0.2039 0.1009 0.1032
0.90 0.3965 0.3896 0.4000 0.1589 0.1530

z 0.00 0.1062 0.1068 0.1166 0.0907 0.0918
0.45 0.1115 0.1083 0.1047 0.0952 0.0965
0.00 0.1085 0.1051 0.1206 0.0439 0.0455.

6 0.45 0.1222 0.1229 0.1199 0.0601 0.0603
0.90 0.1560 0.1561 0.1562 0.1052 0.1065
0.00 0.1224 0.1190 0.1300 0.0532 0.0551

9 0.45 0.1340 0.1343 0.1345 0.0540 0.0543
0.90 0.1968 0.1947 0.1892 0.1040 0.1039

z 0.00 0.0996 0.0987 0.1066 0.0680 0.0682o
0.45 0.0778 0.0771 0.0969 0.0783 0.0790
0.00 0.0893 0.0881 0.0901 0.0851 ■ 0.0893

6 0.45 0.1225 0.1235 0.1121 0.0832 0.0851
0.90 0.1087 0.1082 0.1183 0.1200 0.1200

9 0.00 0.0957 0.0948 0.1156 0.0790 0.0840
9 0.45 0.1060 0.1061 0.1086 0.0843 0.0881

0.90 0.0761 0.0764 0.0768 0.0780 0.0779

Sample size = 20 6 = 0.19
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Table 7.2(b): Kolmogorov-Smirnov D Statistic

2SLS Dhrymes J2SLS

K2 X Normal t t Normal t

z 0.00 0.1206 0.1184 0.0792 0.0790 0.0863
0.45 0.0710 0.0696 0.0623 0.0967 0.1023
0.00 0.0424 0.0391 0.0573 0.0477 0.0525

6 0.45 0.0576 0.0617 0.0474 0.0489 0.0532
0.90 0.0761 0.0818 0.0754 0.0594 0.0614
0.00 0.0843 0.0820 0.0787 0.0650 0.0620

9 0.45 0.0654 0.0629 0.0551 0.0778 0.0724
0.90 0.0558 0.0607 0.0530 0.1252 0.1204

z 0.00 0.0683 0.0707 0.0971 0.0501 0.0513
0.45 0.0798 0.0792 0.0747 0.0594 0.0614
0.00 0.0764 0.0748 0.0809 0.0497 0.0513

6 0.45 0.0683 0.0702 0.0709 0.0829 0.0841
0.90 0.0602 0.0608 0.0583 0.0494 0.0549
0.00 0.0693 0.0681 0.0747 0.0571 0.0559

9 0.45 0.0613 0.0628 0.0611 0.0383 0.0400
0.90 0.0500 0.0515 0.0500 0.0511 0.0570

z 0.00 0.0536 0.0596 0.0633 0.0777 0.0811
0.45 0.0799 0.0796 0.0706 0.0876 0.0913
0.00 0.0523 0.0598 0.0545 0.0905 ■ 0.0957

6 0.45 0.0629 0.0642 0.0584 0.0843 0.0877
0.90 0.0646 0.0681 0.0527 0.0751 0.0793

« 0.00 0.0546 0.0620 0.0508 0.0827 0.0871
9 0.45 0.0564 0.0592 0.0493 0.0746 0.0786

0.90 0.0536 0.0588 0.0505 0.0705 0.0757

Sample size = 20 6 = 0.76
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Table 7.3: Ranking of D Statistic over the Five Tests of Significance

RANK 1st* 2nd* 3rd* 4th* 5 th

CT1 1 1 5 11 6

CT2 1 2 9 10 2

DT 0 0 9 0 15

JT1 19 3 1 0 1

JT2 4 17 1 2 0

RANK 1st* 2nd* 3rd 4 th 5th

CTl 4 7 4 6 3

CT2 1 5 9 5 4

DT 11 2 7 0 4

JT1 7 3 2 10 2

JT2 2 6 2 3 11

Sample size = 20

* Denotes that column total does not sum
to 24 because of ties (to 4 decimal places).
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For 2SLS unbiased, however, the superiority of the jackknife- 

based test statistics was less marked. This was particularly noticeable 

for where the two jackknife-based test statistics always produced 

the poorest fit.

The number of rejections, at the 5% level of significance, of 

the hypothesis that each sample was drawn from the specified theoretical 

distribution is given in Table 7.4 In any one cell the total possible 

number of rejections is 24; percentages of rejections are given next to 

the absolute figures.

Table 7.4: Number of Rejections of the Null Hypothesis

6 = 0.19 0.76

CT1 9 37.5% 0

CT2 10 41.7% 0
DT 10 41.7% 0
JT1 2 8.3%. 0
JT2 2 8.3% 0

Sample size = 20

Clearly when 6 = 0.19 the distribution of the t statistic formed 

using the 2SLS estimator gives a poor approximation to both Student's 

t distribution and the standardized normal distribution. Thus if the 

bias of the 2SLS estimator is significantly different from zero, the 

distribution of 2SLS-based test statistics may be a poor approximation 

to their postulated theoretical distributions.

7.7 Inference

7.7.1 Tests of Significance

In the preceding section it was shown that the distributions of
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expressions (7.10a), (7.10b) and (7.10c) show a substantial divergence 

from their postulated theoretical distributions when 6 = 0.19, even for 

relatively large values of p2. It is important to ascertain the 

effect of this divergence on statistical inference.

In this section we consider the degree of accuracy afforded 

by using the relevant theoretical distributions as approximations for 

making statistical inference.

The hypotheses that the biases of the 2SLS and J2SLS estimators 

were not significantly different from zero were tested at both the 

5% and T0% levels of significance. The proportion of samples falling 

in the .05 and .95 percentiles of the relevant theoretical distributions 

are given in Tables 7.5, 7.6 and 7.7. These tables are further 

divided into parts (a) and (b), the former for results when 5 = 0.19, 

the latter for 5 = 0.76.

In these tables each cell contains three values. The number of 

"rejections" are tabulated according to whether they were rejected in 

the lower or upper tail of the relevant distribution, and are given 

by the figures in parentheses on the left and right respectively at 

the top of each cell. The total number of "rejections?' is given below 

these two figures.

For the parameter both JT1 and JT2 show a number of

"rejections" nearer the nominal level of significance than CT1 and 

CT2 in, just over half of the experiments for 6 = 0.19. There is little 

to choose between these two jackknife-based test statistics, although 

JT2 (i.e. the t statistic given by formula (7.10e)) was marginally 

closer to the nominal level of significance for = 6 and 9 and 

A =0.45 and 0.90. CT2 is to be preferred to CT1 as the number of 

"rejections" were, in general, nearer the nominal level of significance. 

Using the same criterion, CT2 is to be preferred to JT1 but not to JT2.
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Dhrymes' test statistic (DT) gave a similar pattern of "rejections" 

to the other t statistics, but it should be noted that approximate 

confidence intervals using DT will be much wider than those using 

either CT2 or JT2.

The striking feature about these results however is the distribution 

of "rejections"between the tails of the relevant distributions. The 

downward bias of the 2SLS estimator of B ^  ensured that virtually all 

rejections for CT1, CT2 and DT fell in the lower tail, this being most 

noticeable when was relatively large.

The constant term,y^Q, gave a fairly even spread of "rejections" 

between the tails for all tests, whereas y ^  showed a similar, but 

less marked, pattern to that for B^-

For all three parameters, the three t statistics (CT2, DT and 

JT2) are to be preferred to those tests based on the normal distribution, 

although this preference is most marked for B-^*

The skewness of the foregoing statistics, which is particularly 

noticeable for the 2SLS-based statistics, can have important 

consequences when the postulated distributions are used as a basis 

for constructing approximate critical regions for one-sided tests of 

hypotheses. From Tables 7.5(a), 7.6(a) and 7.7(a), it can be seen that 

if the lower tail of the CT1, CT2 and DT distributions is used to 

construct an approximate test for B^» the estimate of the level of 

significance is generally considerably higher than the postulated 

level of either 2.5% or 5%, i.e. the level of significance is under­

estimated. Conversely, if the upper tail is used then the level of 

significance will be overestimated. Moreover, in general, the degree 

of error is larger the higher the level of multicollinearity and the 

greater the degree of overidentification.

By comparison, test statistics for B ^  based on the jackknife 

statistics JT1 and JT2 give a more even spread of rejections and
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consequently a smaller error of over- or under-estimation when performing 

one-sided tests of hypothesis. Even here, however, for large A and 

= 6 o r . = 9 the lower tail was markedly larger than its nominal 

level, although generally very much less than for CT1, CT2 or DT.

For 6 = 0.76 all five tests generally only differ to a small 

degree over the three parameters, although for JT1, JT2 and DT

tend to overestimate the total nominal level of significance in both 

tails by approximately the same margin as CT1 and CT2 tend to 

underestimate it. For = 9 and A = 0.9 the jackknife-based tests 

produced a "wayward" result.

When 6 = 0.76 the 2SLS estimator is not only unbiased, but the 

odd order moments (those that exist) of both CT2 and DT are zero (see 

Section 7.2) in the model under consideration. Thus selecting 5 = 0.76 

has not only removed the location problem but also the problem of 

skewness of the distribution of CT2 and DT, provided that the first 

three moments exist (which they do for = 6 and = 9). It is hardly 

surprising, therefore, that the jackknife-based test statistics cannot 

show superiority over CT1, CT2 and DT under such circumstances.

From the preceding results it can be concluded that the t 

statistic based on the J2SLS estimator (JT2) will, in general, produce 

confidence intervals which are at least as accurate as those produced 

using test statistics based on the 2SLS estimator.

7.7.2 Power of the Tests

Finally we consider the power of the alternative tests under 

the hypothesis that ^i2 = ̂ 12*’ w^ere ^12* was sPecifiec* to be 0.8.

Tables 7.8 (a-c) present power functions for the five tests 

when 6 = 0.19. The computational expense involved in computing 

power functions prohibited further calculations. The significance 

level for all tests was 5%.



Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

Table 7.5(a):

PARAMETER: 3

K2 A CT1 CT2 DT JT1 JT2

3
0.00

(3) (1) 
4

(2) (1) 
3

(3) (2) 
5

(2) (2) 
4

(2) (2) 
4

0.45
(4) (0) 

4
(3) (0) 

3
(1) (3) 

4
(2) (2) 

4
(2) (1) 

3

6

0.00
(6) (2) 

8
(6) (2) 

8
(5) (3) 

8
(5) (2) 

7
(5) (2) 

7

0.45

ON v—/
00

N) (4) (1) 
5

(5) (3) 
8

(6) (2) 
8

(3). (2) 
5

0.90
(15) (0) 

15
(12) (0) 

12
(7) (3) 
10

(8) (5). 
13

(6) (3) 
9

9

0.00
(10) (2) 

12
(7) (1) 

8
(6) (2) 

8
(5) (4) 

9
(5) (3) 

8

0.45
(7) (2) 

9
(7) (1) 

8
(6) (2) 

8
(4) (3) 

7
(4) (3) 

7

0.90
(19) (0) 

19
(17) (0) 

17
(16) (0) 

16
(13) (7) 

20
(11) (7) 

18

PARAMETER: 3J2

K2 A CT1 CT2 DT JT1 JT2

3
0.00

(8) (4) 
12

(5) <4) 
9

(5) (3) 
8

(2) (2) 
4

(2) (2) 
4’

0.45
(8) (3) 
11

(7) (1) 
8

(4) (5) 
9

(4) (3) 
7

(2) (2) 
4

6

0.00
(8) (3) 
11

(6) (3) 
9

(7) (4) 
11

(6) (2) 
8

(6) (2) 
8

0.45
(11) (4) 

15
(9) (3) 
12

(5) (4) 
9

(6) (5) 
11

(6) (4) 
10

0.90
(21) (1) 

22
(2) (0) 
20

(14) (3) 
17

(11) (7) 
18

(ID (6)
17

9

0.00
(10) (2) 

12
(10) (1) 

11
(10) (2) 

12
(6) (6) 
12

(6) (5) 
11

0.45
(10) (2) 

12
(9) (2) 
11

(10) (3) 
13

(6) (8) 
14

(6) (6) 
12

0.90
(26) (0) 

26
(23) (0) 

23
(23) (0) 

23
(17) (10) 

27
(16) (8) 

24

a = 5% 6 = 0.19 a = 10% 6 = 0.19
Sample size = 20



Table 7.5(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: 312

K2 X CT1 CT2 DT JT1 JT2

0.00
( 1 )  ( 3 )  

4

( 1 )  C D  

2

( 3 )  ( 3 )  

6

( 1 )  ( 2 )  

3

C D  ( 2 )

3
J

0 . 4 5
( 2 )  ( 1 )  

3

( 1 )  ( 0 )  

1

( 2 )  ( 3 )  

5

( 2 )  ( 2 )  

4

C D  C D  

2

0.00
( 4 )  ( 2 )  

6

( 2 )  ( 2 )  

4

( 4 )  ( 4 )  

8

( 4 )  ( 1 )  

5

( 3 )  ( 1 )  

4

6 0 . 4 5
( 4 )  ( 2 )  

6

( 2 )  ( 2 )  

4

( 3 )  ( 2 )  

5

( 4 )  ( 3 )  

7

( 3 )  ( 1 )  

4

0 . 9 0
( 3 )  ( 1 )  

4

( 2 )  ( 0 )  

2

( 2 )  ( 4 )  

6

( 4 )  ( 4 )  

8

( 4 )  ( 4 )  

8

0.00
( 5 )  ( 3 )  

8

( 4 )  ( 3 )  

7

( 2 )  ( 2 )  

4

( 3 )  ( 6 )  

9

( 3 )  ( 4 )  

7

9 0 . 4 5

f-N
00

( 2 )  ( 2 )  

4

(1) ( 3 )  

4

( 3 )  ( 5 )  

8

( 3 )  ( 5 )  

8

0 . 9 0
( 3 )  ( 3 )  

6

( 3 )  ( 2 )

5 1
( 4 )  ( 4 )  

8

( 5 )  ( 8 )  

13

( 3 )  ( 6 )  

9

a = 5% <5 = o. 76

PARAMETER: B12

K2 X CT1 CT2 | DT JT1 j JT2

0.00
(3) (6) 

9
(3) (5) 

8
(7) (6) 
13

(3) (4) 
7

(1) (2) 
3

0.45
(4) (3) 

7 .
(4) .(2) 

6
(4) (6) 
10

(3) (4) 

7

(2) (3) 
5

0.00
(7) (4) 
11

(6) (3) 
9

(6) (5) 
11

(5) (5) 
10

(5) (4) 
9

6 0.45
(6) (4) 
10

(5) (3) 
8

(5) (5) 
10

(6) (6) 
12

(5) (5) 
10

0.90
(5) (2) 

7
(5) (2) 

7
(4) (4) 

8
(5) (7) 
12

(5) (7) 
12

0.00
(5) (4) 

9
(5) (4) 

9
(7) (4) 
11

(6) (7) 
13

(6) (7) 
13

9 0.45
(5) (4) 

9
(5) (4) 

9
(6) (6) 
12

(6) (5) 
11

(5) (5) 
10

0.90
(4) (5) 

9
(4) (5) 

9
(5) (6) 
11

(9) (12) 
21

(7) (9) 
16

a = 10% 5 = 0.76
Sample size = 20
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Table 7.6(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: y

K2 X CT1 CT2 DT JT1 JT2

'Z
0.00

(3)
7
(4) (2) (4) 

6
(4) (3) 

7
(1) (4) 

5
(1) (4) 

5
J

0.45
(3)

7
(4) (2) (4) 

6
(3) (3) 

6
(1) (4) 

5
(1) (4) 

5

0.00
(2)

7
(5) CD (4) 

5
(2) (4) 

6
(1) (6) 

7
(1) (5)

6'

6 0.45
(3)

7
(4) .(1) (4) 

5
(2) (3) 

5
(1) (7) 

8
(1) ‘(4) 

5

0.90
(1)

6
(5) (1) (5) 

6
(1) (3) 

4
(2) (6) 

8
(2) (4) 

6

0.00
(3)

8
(5) (3) (4) 

7
(1) (4) 

5
(2) (4) 

6
(1) (4) 

5

9 0.45
(3)

7
(4) (2) (4) 

6
(1) (5) 

6
(2) (4) 

6
2o_
_

_
__

_
0.90

CD
6
(5) (1) (5) 

6
(1) (3) 

4
(6) (6) 
12

(5) (4) 
9

“ = 5% 6 = 0.19

PARAMETER: y

K2 X CT1 CT2 I DT. . . . .  . j  . .
i

JT1 j JT2

3
0.00

(5) (8) 
13

(4) (4) 
8

(4) .(5)
! 9

(2) (7) 
9

| (2) (6) 
8

0.45
(5) (7) 
12

(4) (7) 
11

(3) (7) 
10

(2) (8) 
10

(2) (8) 
10

(3) (7) 
10

6

0.00
(5) (8) 
13

(4) (6) 
10

(2) (8) 
10

(3) (7) 
10

0.45
(5) (9) 
14

.(4) (7) 
11

(4) (8) 
12

(3) (7)' 
10

(3) (7) • 
10

0.90
(4) (10} 
14

(3) (8) 
11

(4) (8) 
12

(4) (11) 
15

(4) (8) 
12

(3) (10) 
13

(3) (7) 
10

9

_ _ _ 1

0.00
(5) (5) 
10

(4) (5) 
9

(4) (8) 
12

0.45
(6) (6) 
12

(5) (5) 
10

(4) (7) 
11

(5) (7) 
12

(4) (6) 
10

(6) (5) 
110.90

(5) (5) 
10

(3) (4) 
7

(6) (5) 
11

(6) (6) 
12

a = 10% 5 = 0 . 1 9
Sample size = 20

TUT



Table 7.6(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : y10
I---
K2 X CT1 CT2 DT JT1 JT2

(1) (4) (1) (3) (4) (4) (2) (4) (0) (3)

*7
0.00 5 4 8 6 3

«J
(2) (4) (1) (3) (3) (5) (3) (4) (1) (4)

0.45 6 4 8 7 5

(1) (4) (1) (4) (2) (4) CD (5) (0) (4)
0.00 5 5 6 6 4

CD (4) (1) (4) (2) (4) (2) (7) (0) (4)
6 0.45 5 5 6 9 4

(2) (4) (1) (4) (2) (3) (2) (5) (1) (3)
0.90 6 5 5 7 4

(3) (4) (2) (3) (1) (2) (1) (5) (1) (3)
0.00 7 5 3 . 6 4

(2) (4) (1) (3) (1) (2) (2) (5) CD (4)
9 0.45 6 4 3 7 5

(3) (3) (1) (3) (2) • (2) (4) (5) (3) (4)
0.90 6 4 4 9 7

a = 5% 5 = 0.76
Sample siz

PARAMETER: Y1Q

K2 X CT1 j CT2 I DT | JTl | JT2

3
0.00

(5) (4) 
9

(4) (4) 
8

(6) (7) 
13

(3) (5) 
8

i (3) (4) 
7

0.45
(4) (4) 

8
(4) (4) 

8
(5) (9) 
14

(3) (5) 
8

(3) (4) 
7

6

0.00
(5) (6) 
11

(3) (5) 
8

(4) (7) 
11

(3) (8) 
11

(3) (8) 
11

0.45
(6) (6) 
12

(3) (5) 
8

(4) (7) 
11

(3) (7) 
10

(2) (7) 
. 9

0.90
(3) (5) 

8
(3) (4) 

7
(3) (7) 
10

(5) (6) 
11

(4) (5) 
9

(3) (7) 
10

9

0.00
(5) (5) 
10

(4) (5) 
9

(4) (8) 
12

(4) (8) 
12

0.45
(6) (6) 
12

(5) (5) 
10

(4) (7) 
11

(5) (7) 
12

(4) (6) 
10

(6) (5) 

11
0.90

(5) (5) 
10

(3) (4) 
7

(6) (s;
li

(6) (6) 
12

a = 10% 6 = 0.76
= 20

120



Table 7.7(a) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER : y
11

K2 A CT1 CT2 DT JT1 JT2

3
0.00

(3) (1) 
4

(2) (1) 
3

(4) (2) 
6

(5) (1) 
6

(3) (1) 
4

0.45
(2) (1) 

3
(2) (1) 

3
(4) (1) 

5
(3) (2) 

5
(3) (1) 

4

6

0.00
(5) (2) 

7
(4) (2) 

6
(1) (2) 

3
(4) (2) 

6
(3) (2) 

5

0.45
(3) (2) 

5
(3) (1) 

4
(1) (3) 

4
(3) (2) 

5
(3) (1) 

4

0.90
(4) (1) 

5
(3) (1)

4'
(2) (2) 

4
(5) (2) 

7
(4) (2) 

6

9

0.00
(4) (2) 

6
(3) (2) 

5
(2) (1) 

3
(4) (3) 

7
(3) (2) 

5

0.45
(4) (2) 

6
(2) (2) 

4
(4) (1) 

5
(4) (3) 

7
(4) (1) 

5

0.90
(3) (1)
' 4

(3) (1) 
4

(3) (1) 
4

(4) (6) 
10

(3) (4) 
7

a = 5% 6 = 0.19

PARAMETER; Yn

K2 X CT1 CT2 | DT JT1 j JT2

0.00
(5) (4) 

9
(5) (4) 

9
(6) (6) 
12

(5) (2) 
7

1
(5) (-2) 

7

0.45
(4) (5) 

9
(4) (2) 

6
(5) (5) 
10

(4) (4) 
8

(4) (2) 
6

0.00
(7) (3) 
10

(5) (2) 
7

(8) (4) 
12

(7) (5) 
12

(5) (4) 
9

6 0.45
(6) (3) 

9
(6) (2) 

8
(6) (4) 
10

(5) (5) 
10

(4) (5) 
9

0.90
(7) (2) 

9
(7) (1) 

8
(6) (3) 

9 '
(8) (5) 
13

(6) (4) 
10

0.00
(5) (5) 
10

(4) (3) 
7

(6) (6) 
12

(5) (4) 
9

(5) (4) 
9

9 0.45
(5) (4) 

9
(4) (3) 

7
(5) (3) 

8
(5) (6) 
11

(5) (4) 
9

0.90
(8) (4) 
12

(4) (2) 
6

(8) (3) 
11

(5) (8) 
13

(3) (7) 
12

a = 10% 6 = 0.19
Sample size = 20



Table 7.7(b) : Distribution of Rejections of Hypothesis that the Bias of the Relevant Estimator is not Significantly
Different from Zero.

PARAMETER: y

K2 A CT1 CT2 DT JT1 JT2

■z
0.00

(3) (2) 
5

(2) (1) 
3

(4) (4) 
8

(3) (2) 
5

(3) (1) 
4

J

0.45
(2) (1) 

3
(2) (1) 

3
(4) (3) 

7
(3) (1) 

4
(3) (1) 

4

0.00
(3) (3) 

6
(2) (2) 

4
(0) (2) 

2
(4) (4) 

8
(3) (3) 

6

6 0.45
(3) (2) 

5
(2) (2) 
. 4

(2) (3) 
5

(3) (3) 
6

(3) (3) 
6

0.90
(2) (1) 

3
(2) (1) 

3
(3) (2) 

5
(5) (2) 

7
(3) (2) 

5

0.00
(3) (3) 

6
(3) (3) 

6
(2) (3) 

5
(4) (4) 

8
(4) (3) 

7

9 0.45
(4) (3) 

7
(2) (3) 

5
(3) (2) 

5
(4) (3) 

7
(4) (3) 

7

0.90 (2) (2) 

4
(2) (1) 

3
(2) (4) 

6
(3) (3) 

6
(2) (3) 

5
a = 5% 6 = 0.76

PARAMETER : Yn

K2 \ CT1 CT2
J

DT JT1 | JT2
1

(5) (5) (5) (5) (5) (6) (5) (5) (5) (5)
0.00 10 10 11 10 10

3

0.45
(4) (4) 

8
(4) .(3) 

7
(7) (5) 
12

(4) (4) 
8

(4) (4) 
8

0.00
(6) (5) 
11

(6) (3) 
9

(4) (4) 
8

(7) (5) 
12

(6) (4) 
10

6 0.45
(6) (5) 
11

(6) (4) 
10

(4) (4) 
8

(5) (6) 
11

(5) (4) 
9

0.90
(6) (3) 

9.
(6) (3) 

9
(5) (3) 

.8
(6) (5) 
11

(5) (3) 
8

0.00
(4) (6) 
10

(4) (4) 
8

(4) (5) 
9

(4) (4) 
8

(4) (4) 
8

9 0.45
(4) (6) 
10

(4) (4) 
8

(5) (7) 
12

(4) (5) 
9

(4) (4) 
8

0.90
(4) (5) 

9
(4) (4) 

8
(4) (7) 
11

(7) (5) 
12

(7) (4) 
11

a = 10% 6 = 0.76
Sample size = 20
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For each value of B-^» ranging from 0.0 to 1.6 in steps of 0.2, 

a new set of 100 replications was generated and the power of each test 

was evaluated.

When B^2 = 0.8, the power reported in the tables is of course 

equivalent to the probability of a Type I error.

Strictly speaking the term "power" is not appropriate as one 

cannot compare the powers of a number of tests when the probability 

of Type I errors are clearly not equal. Perhaps "probabilities of 

rejection" would be a more appropriate term.

Tests based on the standardized normal distribution (CT1 and 

JT1) showed greater "power" than their counterparts based on Student’s 

t distribution, although we have already noted that the former produce 

higher Type I errors. Of the two tests based on the standardized normal 

distribution; CT1 generally had higher "power" than JT1 except for 

"large" ^( 6  or 9) and high levels of multicollinearity (A = 0.9). A 

similar pattern was evident for comparisons of "power" between CT2 and 

JT2. On the other hand, the Type I errors associated with CT1 and 

CT2 were often greater than those of JT1 and JT2 (which themselves were 

generally greater than the nominal level of significance).

Dhrymes' test (DT) consistently exhibits the lowest "power" of 

the five tests, a result also noted by Maddala [26], although the Type I 

errors associated with this test are frequently nearer the nominal 

level than those associated with the other tests.

As one would expect, high levels of multicollinearity reduce the 

"power" of all five tests.

In conclusion, CT1 and CT2 dominate JT1 and JT2 respectively 

(i.e. they have higher "probabilities of rejection") although rarely 

over the entire range of values of B^- This superiority however will 

be offset by the lower Type I errors which JT1 and JT2 frequently
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exhibit. No definitive statement can be made, therefore, concerning 

the relative powers of these four tests. The substantially lower "power" 

which is generally exhibited by DT suggests that this test is not a 

practical proposition, despite its accuracy for estimating the level of 

significance.
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Table 7.8(a) Power of the Test Statistics

X *12= 0.0 CMO 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CT1 1.00 0.92 0.62 0.11 0.04 0.30 0.70 0.87 0.96
CT2 0.99 0.91 0.52 0.05 0.03 0.24 0.68 0.86 0.95

0.00 DT 0.52 0.27 0.15 0.07 0.05 0.14 0.38 0.43 0.71
JT1 0.96 0.82 0.48 0.11 0.04 0.19 0.62 0.77 0.92
JT2 0.95 0.79 0.44 0.09 0.04 0.18 0.60 0.77 0.90

CT1 0.96 0.82 0.43 0.06 0.04 0.24 0.65 0.77 0.88
CT2 0.93 0.75 0.36 0.03 0.03 0.21 0.62 0.74 0.85

0.45 DT 0.40 0.29 0.13 0.05 0.04 0.12 0.33 0.38 0.62
JT1 0.93 0.68 0.37 0.10 0.04 0.18 0.55 0.64 0.85
JT2 0.89 0.61 0.30 0.07 0.03 0.15 0.52 0.59 0.82

N = 20 <5 = 0.19
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Table 7.8(b): Power of the Test Statistics

X .*12“ 0.0 0.2 0.4 0.6 0.8 1.0 ■ 1.2 1.4 1.6

CT1 1.00 1.00 0.90 0.35 0.08 0.50 0.94 1.00 1.00
CT2 •1.00 0.99 0.88 0.29 0.08 0.47 0.93 1.00 1.00

0.00 DT 1.00 0.98 0.80 0.23 0.08 0.37 0.90 0.97 1.00
JT1 1.00 0.99 0.83 0.32 ‘ 0.07. 0.25 0.77 0.97 0.99
JT2 1 .00 0.98 0.78 0.31 0.07 0.24 0.74 0.95 0.99

CT1 1 .00 0.96 0.70 0.14 0.08 0.45 0.82 1.00 1.00
CT2 1.00 0.95 0.65 0.12 0.05 0.41 0.79 0.98 0.98

0.45 DT 0.99 0.87 0.54 0.11 0.08 0.31 0.69 0.91 0.99
JT1 1.00 0.88 0.70 0.20 0.08 0.28 0.65 0.85 0.94
JT2 1.00 0.85 0.64 0.15 0.05 0.28 0.60 0.85 0.94

CT1 0.48 0.19 0.08 0.04 0.15 0.30 0.58 0.76 0.85
CT2 0.41 0.15 0.04 0.03 0.12 0.24 0.50 0.71 0.84

0.90 DT 0.35 0.14 0.08 0.06 0.10 0.24 0.37 0.56 0.74
JT1 0.45 0.28 0.16 0.12- 0.13 0.19 0.27 0.47 0.64
JT2 0.45 0.26 0.13 0.09 0.09 0.16 0.24 0.38 0.60

N = 20 <5 = 0.19
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Table 7.8(c): Power of the Test Statistics

X ^12" 0.0 0.2 0.4 0.6 0.8 1.0. 1.2 1.4 1.6

CT1 1.00 1.00 0.95 0.26 0.12 0.73 0.97 1.00 1.00
CT2 1.00 1.00 0.94 0.21 0.08 0.63 0.95 1.00 1.00

0.00 DT 1.00 1.00 0.92 0.15 0.08 0.58 0.96 1.00 1.00
JT1 1.00 1.00 0.92 0.29- 0.09 0.35 0.87 1.00 1.00
JT2 1.00 1.00 0.91 0.25 0.08 0.32 0.86 0.99 1.00

CT1 1.00 0.98 0.76 0.11 0.09 0.59 0.88 0.99 0.99
CT2 ■ 1.00 0.98 0.72 0.08 0.08 0.55 0.84 0.99 0.99

0.45 DT 1.00 0.93 0.62 0.07 0.08 0.44 0.82 0.97 0.99
JT1 1.00 0.91 0.73 0.16 0.07 0.28 0.75 0.94 0.96
JT2 1.00 0.89 0.72 0.15 0.07 0.27 0.74 0.90 0.96

CT1 0.36 0.17 0.07 0.10 0.19 0.48 0.75 0.88 0.96
CT2 0.27 0.15 0.05 0.08 0.17 0.44 0.74 0.87 0.96

0.90 DT 0.20 0.17 0.05 0.07 0.16 0.36 0.68 0.81 0.96
JT1 0.41 0.34 0.13 0.11 0.20 0.29 0.56 0.60 0.75
JT2 0.36 0.31 0.12 0.09 0.18 0.27 0.53 0.57 0.72

N = 20 6 = 0.19
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CHAPTER 8 

CONCLUSION

8.1 General Remarks

In Chapter 3 it was shown that, asymptotically, the 2SLS and 

J2SLS estimators are equivalent. Thus, one. would expect the MSEs 

of the two estimators not to be significantly different from each 

other for "large" values of y2. If this were indeed so, the 

superiority of the jackknife technique for constructing confidence 

intervals and performing tests of significance would justify its 

use in applied economics.

From the preceding Monte Carlo study it is evident that the 

jackknife technique, whilst reducing the bias of the 2SLS estimator 

is not to be recommended for "small" y2 if the criterion for selection 

of an estimator is either minimum MSE or MAE. For "large" values 

of y2 there was little difference between the MSEs and MAEs of the 

2SLS and J2SLS estimators, whilst the IVilcoxon Matched Pairs Signed 

Ranks test indicated significant differences between the two 

estimators only for small y2.

It was then observed (Chapter 7) that t(and z) statistics formed 

using the 2SLS estimator were not distributed according to the 

Student t or standardized normal distributions when 5 = 0.19. The 

actual distributions are highly skewed and serious errors could 

result if these postulated distributions were used for statistical 

inference. In general, this feature was less noticeable for the 

J2SLS estimator which, on the basis of Kolmogorov Smirnov tests, 

appears to have a reasonably symmetric distribution, and consequently
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Even under "ideal" conditions (i.e.6 =0.76), test statistics 

based on the 2SLS estimator cannot show superior (to J2SLS) fit 

to their postulated theoretical distributions for the parameter 3^2'

Finally, the "power" functions of the alternative tests were 

calculated over a range of values for The problem involved

in comparing the "power" of two or more statistics when the Type I 

errors are not equal was recognized, but even making allowance 

for this problem Dhrymes' t statistic showed considerably lower "power" 

than the other statistics considered. This latter result confirms 

Maddala's [26] conclusions.

Clearly, therefore, a decision on circumstances under which 

application of the jackknife would be fruitful, hinges on one's 

definition of "large" in the context of the concentration parameter, y2.

8.2 When is the Concentration Parameter "Large"?

Whilst selection by "informed guesswork" of a value of y2 which 

could be taken as "large" is a somewhat haphazard procedure, two 

other problems of greater magnitude present themselves:

(i) can a value of the concentration parameter which is designated 

as "large" for an equation containing just two endogenous variables 

also be designated as "large" for an equation containing three (or 

more) endogenous variables?

(ii) how can the value of the concentration parameter be 

calculated?

To date, most of our knowledge concerning y2 is in the context of 

an equation containing just two endogenous variables, but preliminary

there is less likelihood of serious errors being made if the postulated

theoretical distributions are used for the purpose of statistical

inference.
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work by Richardson and Rohr [54] appears to indicate that a value 

of y2 which is considered "large" in the context of an equation con­

taining two endogenous variables may be "small" in. the context of 

an equation containing three endogenous variables.

With regard to the second problem Rohr [57] has proposed that 

y2 be estimated from the sample and that this value be used to 

indicate whether y2 was "large" or "small" (he was interested in 

determining if y2 was large enough to' enable the limiting distribution 

function (Student's t distribution) to be used as an approximation 

to the conventional t statistic without involving appreciable error).

Unfortunately, in the absence of knowledge of the sampling 

distribution of y2, when a ^  and are replaced by their estimated 

values it would not be possible to obtain any measure of the 

reliability (i.e. the sampling variance) of our estimate. It 

should also be noted that there would be a conflict regarding the 

optimal method for estimating a^  and tt̂ • The Unrestricted Least 

Squares estimator would, intuitively, seem to be inefficient relative 

to the 2SLS induced Restricted Reduced Form estimator (although 

Dhrymes [13] has shown that, asymptotically, this may not be so), 

but the latter estimator may not possess moments of any order (see 

McCarthy [32]).

Clearly, therefore, considerably more knowledge concerning both 

the distribution of y2 and the properties of reduced form estimators 

is required before Rohr's [57] proposal can be properly evaluated.

8.3 Extension of the Results

The Monte Carlo experiments did not investigate the effects 

of an increase in sample size on the two estimators, although a 

proof that both the bias and the MSE of the 2SLS estimator are
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monotonically non-increasing functions of the sample size was given 

in Chapter 5. As the sample size increases, other variables being 

constant, the concentration parameter will, in general, increase in 

size and hence one would expect the MSE of the J2SLS estimator to 

tend towards (perhaps not monotonically) that of the 2SLS estimator. 

Conversely, a decrease in sample size might be expected to have the 

opposite effect on the J2SLS estimator.

The estimation of "large" (e.g. economy-wide) models may present 

a problem if use of the J2SLS estimator is contemplated. In such 

circumstances, the computing time and storage requirements will increase 

more rapidly for J2SLS than for 2SLS as the size of the model increases.

It is unlikely however that 2SLS (and hence J2SLS) would be 

a feasible proposition anyway in large models, since it is probable 

that K would exceed N and consequently 2SLS would degenerate to OLS 

(see Fisher and Wadycki [15]). The jackknife could however be applied 

to an Instrumental Variables estimator which only considered a sub-set 

of the excluded predetermined variables when estimating any one 

structural equation, thus ensuring that K<N. Although such a procedure 

may yield inconsistent (perhaps of a minor nature) parameter estimates 

and would thus contravene Quenouille's original assumption that a 

consistent estimator is necessary for the jackknife to be successfully 

applied, Brundy and Jorgenson [8] cite conditions under which Instrumental 

Variables estimators based on sub-sets, of the predetermined variables 

retain the property of consistency.

8.4 Extension to Three-Stage Least Squares

The foregoing analysis suggests that an extension of the jackknife 

technique to the Three-Stage Least Squares (SSLS) estimator may be an
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extremely tedious procedure. Having obtained 2SLS estimates of all 

structural coefficients in the system, the 3SLS estimator can be 

calculated by applying Generalized Least Squares to the entire system 

(where the equations are written in stacked form) to obtain

Ẑ' [ft-1 ©xcx’xr.vj zj Z* [if1 ©xcx'x^x'jy, (8.1)

where ©  denotes the Kronecker product.

In general, ft will be unknown and must be replaced by 

the matrix of mean’squares and products of the 2SLS residuals. With
A

ft replaced by ft we obtained the 3SLS estimator.

If the jackknife were applied to the 3SLS estimator,ft would have 

to he replaced by the matrix of mean squares and products of the J2SLS 

residuals, and (8.1) would have to be estimated N times with the ith 

observation omitted at each (of the N) replications.

It is the author's contention that this would not be a very 

fruitful exercise, especially as no exact results on the moments of 

the 3SLS estimator are available to provide an exact analysis of the 

jackknife's bias reducing potential. In addition, it is unlikely 

that the "simplifying" formula developed for J2SLS could be extended 

to J3SLS without considerable difficulty and, even then, the additional 

(to 3SLS) computer run-time involved would probably be substantial.

8.5 The Final Word

In this thesis we have demonstrated the value of the jackknife 

statistic for forming "accurate" confidence intervals and tests of 

significance when p2 is "large". The bias reducing property of the 

jackknife is generally present in the context of the 2SLS estimator, 

although it would certainly be unwise to jackknife the 2SLS estimator
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if the sample size is less than twice the number of variables included 

in the equation being estimated.

In applied economics, if the above condition is met and provided 

the degree of multicollinearity is not excessive, it is the author's 

contention that the true (unknown) value of the concentration parameter 

would, in general, be large enough to enable the jackknife technique

to be used on the 2SLS estimator.



APPENDIX A

LEMMA

Proof of the following lemma is due to Bartlett [2],

LEMMA:

If A is a k x k  non-singular matrix, and £  and d_ are two 

k dimensional column vectors, then

1 ‘ A-1c d'A"1
(A + £  d')~ = A'1 ------------

. 1 + d,A"1c

PROOF:
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APPENDIX B

DERIVATION OF A RESULT ON ASYMPTOTIC NORMALITY

Consider the first term in square brackets in equation (3.72), viz:

S1(diag R: + N"1. R^sj

= Z'(A1 + A2)(diag Rr + N"1. R^ (A][ + A^Z 

+ z'MxA2(diag R: + N'1 . R ^ A ^ Z

- Z,(A1 +A2).(diag Rx + N"1. R ^ A ^ Z

- z’MxA2(diag Rx + N'1. R ^  ̂  + A )Z , (B.l) 

where R^ = u u' = [u - Z(6_ - 6) ] [u - Z(9 - 0) ]' .

A

The ith element of y can be written as 

G. = u. - - 0) ,

and consequently the jkth. element of the first term in equation (B.l) 

can be written as

E ZijZikCAl + V i i  [ui - ‘ ®)]2 ’ (B*2)1=1 J

ignoring, for the present, the term incorporating N *. R^ .

Upon expansion, equation (B.2) can be written as

T ,  V i k ' W u  ui  -  2T 1I i j zi k t Ai * A2 A i i l t i - £ )ui1=1 J i=l J
N

* T y i f i k i W u  t i(cl-e; ]2 •i=l J
(B.3)

In the forthcoming analysis we will assume, without loss of 

generality, that the observations on the (g) explanatory endogenous
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variables occur in the first g elements of z! .
—1

Expanding the second term in equation (B.3) we obtain

N
- 2J , zijzi k ' W i i1=1 J

zilC®1 ' V  + zi2C§2 ' 02) +

+ z.i,K1+g(0K1 -̂g" 9K1+ĝ u. .l (B.4)

Consider the first (of the K^+g) term of the above expansion: 

N
(B.5)- 2 7 z. .z., (A + A«)2. . z.. (§. - eju. .. L . ii ikv 1 2^n il^ 1 1J li=l

We can partition z„ and z.^ as

z.. = m.. + v.. and z., = m., + v.. , (for j.k < g) where 

m _  and represent the nonstochastic part of z_ and z ^  respectively 

(j,k = 1,2, ...,K.. + g), and v. . and v., represent the reduced form 

disturbance part of z.. and z., respectively (for j,k>g this will ofX J X K
course be zero).

Expression (B.5) can therefore be written as

- 2(6^0,)
N N

V l
i=l <Ai

+ A - ) 2. .m. .m.. m. ,u. 2'n 13 lk ll 1 + l  (A2.
i=l + A2

N N
+ li=l

+A_)2. .n. .v.,v.,u. + 2^n 13 lk ll 1 l
i=l

A2)

N N
+ li=l <A1

+ A0)2. .v. .v., m. .u. 2'n 13 lk ll 1 + I ( A x
i=l + A2

N N
+ l
i=l ( A 1

+ A_)2. .v. .m., m. .u. 2 11 13 lk ll 1 + l  (A j.
i=l + A2

ii

13

*

ij

(B.6)

Recall the decomposition introduced as equation (3.51), viz:

V = u ¥ + E ,
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the ijth element of which can be written as

v. . = u. \1j . + e. . . il i 1 iJ
(B.7)

Substituting for and in expression (B.6) we obtain

2C01 - 91)
N
T (A, + A„). .m. .m.. m. ,u. . v 1 2'n it lk ll ii=l J

/ N 2 N 2
+ y (A, +A„l..m. .m..-lu?+ J (A, + A_) . .m. .m.. e. ,u.'\ , L. 1 2^ii li lk 1 l . . L. *■ 1 2'n ii lk ll l.i=l i=l

( N 2 N 2 V
+ y (A, + A_). .m. -4), 1/J,u? + y (A, + A»). .m. .e.,e.,u. |1 2^ n  ijykTl l 1 2' n  ii ik ll l J

/ N 2 N 2
+ ( y (A, + A-V. .m. .m. -ib, u? + J (A, + A„) . .m. .m.. e., u.\ V >  1 2J11 13 il^k 1 1 2 J11 13 ll lk 1

(  N 2 N 2 v
+ ( y (A. + A„). .m. .lii.U/, u? + y (A- + A-). .m... e. .e., u. \y f; v 1 2J11 ilr3rk 1 1 2 J11 ll 13 lk 1 j

N N
+ 1 y (A, + A_) . .m., i|).lu. + y (A, + A0) . .m.. e. .e.-u. 

y i £ 1 " 1 2 J i i  i k r 3 r l  i  v 1 2 ' n  l k  13 l l  1

/  N 2 N 2 N
+ I y fA, + A-l..m., m.^.u? + y (A, + A_)..m., m.,e..u.\ . L. K 1 2^ii lk ilM 1 1 2 J11 lk ll 13 1ki = l i=l

/ N N
+ y (A. + A0)2. .\p.ip, ip.u“! + y (An + A.) .. e. . e., e. .u. ŷ f; v 1 2^nr3ykrl 1 v 1 2 J 11 13 lk ll 1

(B.8)

Consider the first term in expression (B.8) and note that

max
l$i$N

(0., — BOCA, + A„) . .m. .m., m... v 1 1 J K 1 2;n  13 lk ll

5 max J (0.- 0.) 
l<i<N 1 1 1 1

(A. + A„) ..m-.m-.m., v 1 2^11 13 lk ll

z: 0 - a maxJL 1 l<:î N
(A, + A ~ ) . . m. .m., m., v 1 2 J 11 13 lk ll
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Since plim (0. - 9.) = 0 ,
N ->o°

it follows that

1
(j = 1,2,...,KX + g) (B.9)

plim (|0 - 0, |) plim .max 
N-*-o° N-*-°° l<i<N

2(A,+A„)..m..m., m.,v 1 2"ii ij ik ll 0 • (B.10)

Then using Theorem I (from Chapter 3) it follows that

piim i
N->oo

N
- 2(0, -0,) J (A, + A.). .m. .m., m. .u. v 1 1J . 1 2J li ij lk ll i1=1 J

Consider the second term in expression (B.8). Using the above 

logic it follows that

plim (|0, - 01 |) plim max 
N-»-oo N -9-0° l$i$N

(A, + A„) . .m. .m., ip .  
K  1  2 J l i  i j  i k y l = 0 .

Then using Theorem I it follows that

Plim bN-9-oo
2(01 - ex)

N
7 (A, + A_). .m. .m., ip ,■ 1 2J n  ij ikrl1=1 J

= 0 ,

where E(u?) = a2(finite) . 

This result implies that

Plira bN-9-OO

N
2(0-, -0n) y (A + A-) . .m. .m., iKu? 

1 1 i=l 1 2  1 1  1 ] lk 1 1

i • 1plim
N -»-oo N

N
2(0, -0,) y (A, + A0) . .m. .m.-if^a2  ̂ 1 1 . v 1 2Jn  li ikyli=l J

2 i • 1a plim
N -9-00 N - 2(0, -0,) A (A, + A_). .m. .m.. i|), v 1 1 J 1 2^li ij ikrl

0, from Theorem I. (B.11)
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With minor variations, this analysis can be used to show that, in 

the probability limit, the fourth, sixth, eighth, tenth, twelfth 

and fourteenth terms in expression (B.8) are all zero. Since u^ 

and e^j are, by assumption, uncorrelated random variables with mean 

zero, it follows using Theorem I that the remaining terms in expression 

(B.8) all converge in probability to zero.

Expression (B.5) was analysed under the assumption that 

j, k < g. If both j and k are greater than g then no partitioning 

of z^ and z ^  is necessary as they only contain nonstochastic 

(corresponding to X^) elements. Under such circumstances, the 

resulting expansion of expression (B.5) is limited to the first two 

terms of expression (B.6) and thus the first three terms of expression 

(B.8). We have already argued that, in the probability limit, these 

three terms are zero.

If either j or k is less than g then one partitioning of z^

(or z^) is necessary. The subsequent expansion of expression (B.5) 

will be limited to just four terms of expression (B.6) and we have 

already argued that the corresponding terms in expression (B.8) converge 

in probability to zero.

This concludes the analysis of the first term in expression 

(B.4). The remaining + g - 1 terms can be dealt with in an analogous 

manner noting, once more, that the last values of z^ (j = 1,2,....,

K. + g) contain no stochastic component.

Returning to expression (B.3) we have shown that the second 

term converges in probability to zero.



140

Consider the third term in expression (B.3), viz:

N
£ z..z.,(A, +A_)2 .[z! (0-9)]2 . it ikv 1 2' n  —l —  —i-1 1J

N
‘ i , z i j 2 l k f A l * A 2 )i=l n zil(-9l ■ Gl^+ Zi2(-02 ‘ e2̂  +

— 1 2
*••• + Zi,K1+g(0K1+g ‘ 0K1+g)J

Upon squaring the term in square brackets we obtain

N
V (A, + A_). . z. . z 
L K 1 2 J n  i j  l k

i=l
? i l W l  ' V ' + Zi2<02 - 02> + ’ * • • + Zi,K1+gi6K1+g-6K1+g)

+ ZilZi2(0l - 6l)C02 ' e2) - zilZi3C0l - C§3 “ 03) +

+ ZilZi,K1+g(6l " 61} C0K1+g ‘ 0Kr+g:i

+ Zi2ZilC02 - 62:)(0l - 0l) + Zi2Zi3Cg2 - 02)(§3 - 03) +

+ Zi2Zi,K1+g(02 " 62) (0K1+g ‘ 0K1+g3

+ z. „ Z..C0,, - 0„ )(0.-0,)+z. „ z.o(0K -0„ ) (0_-0„) +ljKj+g ilv K1+g K2V  1 l.Kj+g 12v Kj+g 1̂ +g7 2 2"

+ z. ,, z. ,, , (0„ -0„ 1C0„ ,-0», ,)i.Kj+g i,K1+g-l'' Kx+g K1+g-’v- K1+g-l K1+g-l

(B.12)

Consider the first term of the above expression, viz:

N
I (A + A ). .z..z., zf, (0, - 0,) ,. , 1 2 li ii lk ll'- 1 1J1=1 J

(B .13)

where the Z^ can again be partitioned only now

z2 = (m.. +v..)2 = m?, +v?, +2m..v.1 .■il v ll il' ll ll ll ll (j.k < g)
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Upon expansion, expression (B.13) can be written as

t0i -
N N
y (A, + A„)2. .m. .m., m2 + ) (A, ♦ A_) . .m. .m., v21 2J 1 1 ii îk il • t 1 2J xx ij îk il i=l J 1=1 •

N 2 N 2
+ 2 J (A, + A„)..m..m.. m..v.. + Y (A. + A„)..m..v.,m?. . L , K 1 2'n il îk il il 1 2'n in îk ili=l i=l

N • N
+ y (A, + A0)2. .m. .v., v?. + 2 y (A, + A_)2. .m. .v.. m. T v.,.*•, Vl 2J X X  11 îk il .L,v- 1 2'll 11 îk il ili=l i=l

N N
+ y (A, +-A_)2. .v. .m.. m2 + y (A, + A„)2.-v. .m.. v?,1 2'n i l  îk i l  . L , K  1 2'n i l  îk i li=l i=l

N N
* 2. £ t V V i i vijBikmiivii + J ,  CAi * V i i vijvikn,n  1=1 J 1=1 J

N N
+ y (A. + A_)2. .v. .v., v?, + 2 I (An + A„)2. .v. .v., m., v..1 2J il il îk il . 1  2^ii n  îk il ili=l i=l

(B.14)

Using the decomposition given by equation (B.7), expression 

CB. 14) can be evaluated in a similar term by term manner to the 

analysis used for evaluating expression (B.6).

Consider the first term in expression (B.14). Since

plim (0. - 0.)2 = plim (0. - 0.) plim (0. - 0.) = 0, for all j ,
JJ->-00 J J ¡\J-> CO J  ̂ J J

and since m?^ is a constant, it follows by an analogous proof to 

that used in deriving equation (B.10) that

plim max 
N -»-oo l<i<N

(0, - 0.3^A, + A0)2. .m-. .m., m.. ̂ 1 1M  1 2 il i] îk il 0 .

Using equation (B.7) the second term in expression (B.14) can 

be written as
N

(0. - 0 J 2 ); (A. + A„)2. .m. .m..i|/?u? v 1 1J . L , 1 2Jn  li ikrl l

N
+ (0 - 0 )2 y (A + A )2, .m. .m., e?.v 1 1'  ̂ 1 2^ii ij îk il
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N
+ (9-. - 9, )2 y (A. + A.)2, .m.v 1 , 1 2J n  i j  i k Y l  l  l l1=1 J

(B.1S)

Since m... m., and \i), are constants the first two terms in i j’ lk rl
expression (B.15), multiplied by */n , converge in probability to zero 

by the same proof used to derive the result given by equation (B.ll), 

assuming E(e?^) is finite. Further, since u^ and e ^  are uncorrelated 

random variables with mean zero, it follows from Theorem I that the 

third term in expression (B.15) (multiplied by */n) converges in 

probability to zero.

Evaluation of the remaining terms in expression (B.14) follows 

a similar pattern, all converging in probability to zero.

Returning to expression (B.13) if either j or k (or both) are 

greater than g then the above analysis involves fewer terms in 

expression (B.14), as was shown when dealing with the second term in 

expression (B.3). The analysis, however, is identical.

Returning to expression (B.12),. a similar analysis can be used 

to show that the remaining terms in the first line of this expression 

all converge in probability to zero. The same result holds for the 

terms in the remaining lines of expression (B.12), although the 

analysis is more tedious due to the introduction of another (the 

fourth) term in z.

To summarize, we have shown that the second and third terms 

in expression (B.3) converge in probability to zero. Thus we have 

shown that

plim 1_ . Z' (Â  + A2)(diag R1)(A1 + A2)Z 
N -+°° N

= plim 1 . z’(A. + A„)(diag u u')(A. + A~)Z .
N +oo n 1 z i /
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Noting that

z\ P_1(z. - a.)
plira (A ).. = - plim — --- — ----—  = 0 , (B.16)
N->o° 11 N -*-00 k^(l-s^ + d^)

using equations (3.39), (3.41) and (3.42), the remaining terms 

in (diag R^) in equation (B.l) can be analysed in an analogous manner 

to the first term. We have shown therefore that

plim 1 . S (diag R-JS' = plim l_ ' . S (diag u u')S' .
N-s-oo n 1 1 N-*°° N

We now consider the terms in N  ̂. R^ in expression (B.l). The 

first term can be expanded as follows:

N'1 . Z’(A1 + A2)R1(A1 + A2)Z 

= N'1 . z'(Aj_ + A2)u u ' (Ax + A2)Z

= N"1. Z,(A1 + A2) u u ,(A1'+ A2)Z 

+ N'1 . Z' (A1 + A )Z(§ - 0_) (0_ - 9) 'Z' (A1 + A2)Z

- N"1 . Z '(A 1 + A2)Z(§ - Q J u  + A2)Z

- N"1 . Z '(A X + A 2)u (6 - 0 ) 'z ' (A 1 + A2)Z .

Since 2SLS is a consistent estimator we know that

plim (0_ - 9) = 0_ ,
N -y°°

and from the preceeding analysis it is easy to show that

plim 1_ . Z' (A1 + A_)Z 
N->oo n

is a finite matrix. Now consider the term 

Z’(A1 ■+ A2) u . (B.17)
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The jth component of this random vector can be written'as

N
T z. . (A, + A.). .u. . 13 1 2 n  1

Partitioning z„  into its stochastic and nonstochastic components, 

and using the decomposition of v ^  given by equation (13.7) we 

obtain

N N
y m. . (A, + A ). . u. + I (A + A •).. ip. u? .4 it 1 2 ii l • , 1 2^ii ri- li=l i=l

N
+ y (A + A„).. u. e. . . 1 2 ii i 13 (B.18)

Since the are constants, and using the result that

plim (A + A ) 
N->°° 11 1 ,

it follows that

N
piiml l  m (A + A ) u.
N-> 00 i=i -LJ 1 -LX 1

= 0

by the Law of Large Numbers. The same Law ensures that the second 

term in equation (B.18) (multiplied by */n) converges in probability 

to a finite constant, provided E(u?) is finite, and that, since u^ 

and e^. are uncorrelated random variables, the third term (multiplied 

by V n ) converges in probability to zero.

Combining the above results, we have shown that

plim 1_
N+°° N

plim 1_
N + oo N

1_. Z'(A1 +A2)R1(A1 + A2)Z
N

1_. Z (A +A )u u (A + A )Z
N
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Using the result given by equation (B.16), in addition to 

the above results, it can be shown that the remaining terms containing 

N *.R^ in equation (B.l) can be analysed in an analogous manner. All 

three remaining terms converge in probability to zero.

Thus we have shown that the first term in square brackets in 

equation (3.72) can be written as

plim 1_. S (diag R. + N 1 .R,)S.j = plim 1 . S (diag u u'+ N ~lu u')S' 
N->°o N 1 1 1 1  N^°° N 1 1

Consider the second term in square brackets in equation (3.72),

S?(diag R2 + N 1,• R2):S2

Z'(A2 - A^)(diag R2 ‘)- n " 1 .R2) (A

Z'MxA3(diag R2 + N-1 . r 2) a 2; Mx z

z '(A2 - A^)(diag R2 ■t- N"1.r 2) A 3

Z ' MX ^ 3 ^ i a g  R2 + r 1 .R2)(A2 - A (B.19)

where R2 = (I - Mx)u u' (I - Mx)

= (I - Mx)[u- Z(0 - 0)][u- Z(§- 0)]'(I -Mx) . 

The following results can be easily derived:

plim (A - A ) . . = - 1 , (B. 20)
N+oo

plim (A - A ).i = 1 , (B.21)

plim (A3)2.i = 1 , (B.22)
N-»-oo

and plim (A - A )..(A ) . = 1 .
N + CO C o -L-L O 11 (B.23)
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The first term in equation (B.19) can be written as

Z'(A2 - Ag) (diag R2)(A2 - A^Z 

+ z 'ca2 - a 3)cn”1r2) ca2 - A3)Z , (B.24)

whereupon, using the definition of R2> the first term in equation 

(B.24) can be written as

The jkth element of the first term in equation (B.25) can 

be written as

this expression does not differ, asymptotically, from expression 

(B.2) and can therefore be analysed in an analogous manner. It 

follows that

plim 1_. z ' (A2 - A )(diag u u')(A2 - A^)Z
N -»■<» N

= plim 1_. Z* (A - A_) (diag u u') (A_ - A ) Z .
N->oo N * *

Consider the remaining terms in expression (B.25). We have 

already shown (equation (3.27)) that

z '(A2 - Aj)(diag u u ')(A2 - Aj)Z 

- Z'(A2 - A3)Mx(diag u u ’)(A2 - A3)Z

- Z'(A2 - A3)(diag u u ’)Mx (A2 - A3)Z 

+ Z'(A2 - A3)Mx(diag u u')Mx(A2 - A£ Z  . (B.25)

Since
2 2plim max (A + A_).. = plim max (A0 - A_).. = 1 , 

N + °° l<i<N 1 N + «> l$i$N

lim CM 3 = 0 ,
N ->00

(i = 1,2 N) (B.26)
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and thus the remaining terms must all converge in probability to 

zero by an analogous proof to that employed in analysing the first 

term.

Further, equations (B.22), (B.23) and (B.26) allow the 

remaining terms containing (diag R^) in equation (B.19) to be analysed 

in an identical manner to their corresponding terms containing 

(diag R^) in equation (B.l). It follows that

plim 1_ . S (diag R~)S' = plim 1_. S (diag u u')S' .
N+oo N N+°° N

The terms containing N".*R2 in equation (B.19) can also be 

analysed in a similar manner to their counterparts in equation (B.l). 

Consider the first term containing N ^R^ in equation (B.19), viz

N'1. Z' (A2 - A3)R2(A2 - A3)Z

= N"1.Z,(A2 - A3)(I - Mx)u u'(.I - Mx )(A2 - A3)Z

= N"1 .Z,(A2 - A3)(I - Mx)uu'(I - Mx)(A2 - A3)Z

+ N'1.Z'(A2 - A3)(I - Mx)Z(0 - 0)(§ - 0) ’Z* (I - Mx )(A2 - A3)Z

- N".1Z'(A2 - A3)(I - Mx)u(§ - 0)'Z'(I - Mx)(A2 - A3)Z

- N"1.Z,(A2 - A3)(I - Mx)Z(0 - 0)u* (I - Mx )(A2 - A3)Z . (B.27)

The first term in equation (B.27) can be written as

n "1.z '(a2 - A3)u u '(A2 - a3)z - n"1.z '(A2 - a 3)m xu u '(a 2 - a3)-z

- N_1.Z'(A2 - A3)u u'Mx(A2-A3)Z + N_1.Z'(A2 - A3)MX u u' MX(A2 - A3)Z .

From our initial assumptions (specifically, Assumption (iii) in 

Section 2.1.3) it follows that

plim 1 . Z1(A - A )M u = 0 ,
• T V T ~ J  AN+oo N
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and hence, asymptotically, the first term in equation (B.27) can be 

written as

plim ^  l_.z'(A - A„)u u '(A9 - A_)Z
N -*00 N N

Since (I - M^) is a nonstochastic matrix, using equation (B.20) 

it follows that the last three terms in equation (B.27) (multiplied 

by ) all converge in probability to zero. Thus we have shown that

plim
N + oo N

= plim 1_
N ->°° N

1 .z ’(A2 - A )R CA - A3)Z ■
N

1 . Z' (A - A )u u' (A - A )Z .
N I O

Clearly the third and fourth terms in equation (3.72) can be 

analysed in an identical manner since the relevant results have 

already been derived.

To conclude, we have shown that

plim 1_. S (diag R +N ^.R^-Sj 
N ->-co N

plim 1_ . S„ (diag R„ + N  ̂.R-) S9 
N N

plim 1_ . S1 (diag u u_ + N \ u u')S', 
N + oo n 1

plim 1_. S? (diag u u' + N \ u u* )S' ,
N+oo n

and

plim 1_. S (diag R„ + N_1 .R_)S' = plim 1_. S (diag u u' + N l u u ' j s '  . 
N+°° N 1 5 N N

Consider the following summation .

S^(diag u u ' + N * . u u')s| + S^(diag u u' + N *. u u ') Ŝ,

- S^ (diag u u ' + N ■*". u u'jS^ + S£ (diag u u' + N \  u u')S| ,

which can be simplified to
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(Si - S2)(diag u u ' + N Xu u')(S - S2)'

= z' (Aj + 2A2 - A^) (diag u u ' + N *u u_*) (A^ + 2A2 - A^) Z

- Z'Mx (A2 - A3)(diag u u' + N 1u u')(Â  + 2A2 - A^)Z

- z'(Ai + 2A2 - Ag)(diag u u' + N 1u £  )(A2 - A3)MXZ

+ Z'MX(A2 - A3)(diag u u' + N_1u u)(A2 - A3)MXZ . (B.28)

The jkth element of the first term containing (diag u u') 

in equation (B.28) can be written as 

N N
7 m. .m.. (A, + 2A„ - A_)2. .u? + Tv. + 2A0 - A )2. .u?ij ikv 1 2 S-'n l 13 ikv 1 2 3' n  1i=l

+ J 1mijvik'Al * 2A2 - A3A i ui * J. viiVik-’l + 2A2 - V i i uli=l 12
(B. 29)

We have already shown (equation (3.47)) that

plim A  max (A + 2A„ - A ).. = 0, 
N-»"» l<i<N 6 11

(B. 30)

from which it follows that

plim max |m .m , (A + 2A, - A ). . I 
l<?i<;N 1 3 k 1 Z 6 1

= 0

Using Theorem I it follows that 
N

ifi” *  ¿ “ij-ik^l * 2A2 - A3>iiul " 0 •

provided E(ui2) is finite.

The decomposition given by equation (B.7) is required in order 

to evaluate the three remaining terms in equation (B.29). The second 

term can be written as

N N
, H A1 * 2A2 - A3>iimik’',jui * , H A1 * 2A2 - A_)2. .m.. e. .u? 3' 1 1  lk ij 1
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Equation (B.29) and Theorem I ensure that the first term in this

expression (multiplied by 1/N) converges in probability to zero;.

and since the e.. and u. are uncorrelated random variables with mean 
ij i

zero, Theorem I ensures that the second term in this expression 

(multiplied by 1/N) also converges in probability to zero. Similarly 

the third term in equation (B.29) (multiplied by 1/N) converges in 

probability to zero.

The fourth term in expression (B.29) can be written as

l  (A * 2A - + . I (Al + 2A2 - A3)2i i V i k ui1=1 1=1

* X  <A1 + 2A2 - V i i V l A  * T.tAl * 2A2 - A3)2iieiieikUii=l i=l

The first term of this expression (multiplied by 1/N) converges in 

probability to zero by virtue of equation (B.30) and Theorem I.

The three remaining terms (multiplied by 1/N) also converge in 

probability to zero, using Theorem I and the assumption that e „  and 

u. are uncorrelated random variables with mean zero.l
The first term in N . u u' in equation (B.28) is

N"1.Z'(Ax + 2A2 - A3)u u '(Aj + 2A2 - Aj)Z.

We have already shown in Chapter 3 that 

plim 1 . Z1 (A, + 2A - A )u = 0̂ .

Since each element of the 2SLS residual vector converges in distribution 

to the corresponding element of the disturbance vector, this implies 

that

plim 1 . z' (A + 2A„ - A,)u = 0_ .
N -  ^  1 2  3

It follows that

plim 1 [1 . Z'(A + 2A - A )u u'(A + 2A - A )Z] = 0 . 
N + co N N 1 2  3 1

(B.31)
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Thus we have shown that the first terra in equation (B.28) converges 

in probability to zero.

Consider the second term in equation (B.28), viz:

- Z'Mx (A2 - A3)(diag u u')(Ax + 2A2 - A3)Z

- Z'Mx (A2 -A3)(N-1. u u ')(A1 + 2A2 - A3)Z , (B.32)

and we will analyse the term in (diag u u') first.

Since p l i m ^ . x ’x^ = ^XX ^XZ * (B.33)

we need only consider the limiting form of 

X' (A2 - A3) (diag u u') (Aj + 2A2 - A3)Z .

The rjth element of this term can be written as

JjXirCAj - V i i iAl * 2A2 - A3)iitmij * vij)ui

(j = 1 > 2, . . . , + g \ v — 1,2,...,K) , 

i.e. j iXirCA2 -A3)ii(A1 *2A2 -A3)lin,iju|

* j U i r ^  -  V i i ( A l  * 2 A 2 -  V i i V i

N
+ y X. (A-- A_)..(A. + 2A_ - A_).. u?e.. >  ir^ 2 y  n v 1 2 3'n l ij

Using equations (B.20) and (B.30), by Theorem I

J , xlrtA2 - A3)ii(Al t2A2 ^ A3)limijui ” 0 ’ N->°° 1=1

provided E(u?) is finite. By the same argument

p H m l  .i x (A -A )litA1 *2A,-A3)ii<.ju| - 0, 
N->-°° i=l
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provided E(u?) is finite. Finally, since and e ^  are uncorrelated 

random variables with mean zero it follows, using Theorem I, that 

the remaining term in the above expression (multiplied by 1/N) converges 

in probability to zero.

Now consider the limiting form of the second term in expression 

(B.32), viz

Z'MX (A2 -A3)(ju u ')(A1 + 2A2 -A3)Z .

In view of equation (B.33) we are concerned with the limiting form of

N'1.X,(A2 - A 3)u u' (A1 +2A2 -A3)Z .

Combining Assumption (v), Section 2.1.3., with equation (B.20) it 

follows that

plim 1_. x'  (A - A )u = 0̂ ,
N+°° N

which when combined with equation (B.31) ensures that

= 0 .

Thus the second, and hence the third, term in equation (B.28) 

has been shown to converge in probability to zero.

The fourth term in equation (B.28) can be written as

z'xfX'Xj'V (A2 - A3) (diag u u') (A2 - A )X(X'X) “V  Z

+ Z'X(X'X)“1X'(A2 -A3)(N"1.U u ')(A2 -A3)X(X,X)"1X,Z . (B.34)

Again, combining Assumption (v), Section 2.1.3, with equations (B.20) 

and (B.33) we have shown that

plim 1 1_. Z'MX(A2 - A ) (u u')(A + 2A2 - A ^ Z
N N N

plim 1_ 1_. Z'MX(A - A ) (u u') (A -
N -»-00 N N

= 0 .

Consider the expression 

X'(A2 - A3)(diag u u ’)(A2 -A5)X ,
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i

|

I •

I

which has rsth term

N
y x. x. (A^-A-).^. ’ r̂,s 1 > 2,..., K)

. L .  I T  I S  2  ò  1 1  1 1=1
From equation (B.21)

plim (A, - A,)ii = 1
N-»-co ‘2 ‘3'ii

for all i(i = 1 , 2 , from which it follows that

plim max 
N-»-« l<i<N

1 - (A2 - A / u  ̂  = 0

Thus, using Theorem I, it follows that 

N
Y isE11"1 R- J , xirxi N->°° 1=1 1 ' (A2 ' V i i (u? - a 2) = 0 ,

and hence we deduce that

N N
Elim n .I,xirxisui “ 0’ X xItx:N-»-oo 1=1 i=l is

(B.35)

Substituting this result back into equation (B.34), and using equation 

(B.33) we have shown that the fourth term in equation (B.28), and 

hence the entire expression, converges in probability to

J
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APPENDIX C

THE TORONTO FUNCTION

Copson [10] has shown that, for large |x| ,

1F1 (a; y ; x) ~ r (Y )  ex
T (a) xY-a-

2F0(Y - a, 1 - a;

00 (Y-aWl-a)
where 7Fn(Y-a; 1 - a; ; i/x) = I — 1— 1

r=0 r !

9

9

and Pochhammer's symbol means

CY-cO, =
r ( Y - a )

If y = a + 1 then

X 00 2!*
i F. ( a ; a  + 1; x) ~ l  (1 -  a) ( h  , (C.l)
1 1  x r=0

which has a finite number of terms if a is a positive integer.

Equation (C.l) is required for evaluation of the first order

moment of the 2SLS estimator. For second and higher order moments

Y = a + k (where k is the order of the moment under consideration), but

can be expressed in terms of equation (C.l) by utilizing the recurrence

relations for the confluent hypergeometric function (see Slater [64] ;
#

p .19) .

The Toronto function was developed by Heatley [18] and is 

defined as

T(2a-l,Y-l,xis) = x (Y"°° e~x -Li“! f (a; Y > *) (C.2)
r(Y)

(N.B. Slater [64] gives this formula with an incorrect sign, p.99) ,
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This function is characterized by convergence to unity as x increases 

indefinitely.

If y = a + 1, then equation (C.2) can be rewritten as

T(2a - 1, a , x'2) = ^  e'x 1F1 (a ;a + 1; x) . • (C.3)

We state two special forms of the Toronto function that are 

required in the forthcoming analysis:

T(1 , 1, x 2) = 1 - e~x , (C.4)

and T(1, 2, x 2) = 1 - (1 + x)e"X . (C.5)

In addition, we require two of the recurrence formulae for the Toronto 

function (see Heatley [18; p.17]):

T(v + 2,o + 'l, x*)

and

T(v + 4,a + 2, x 2)

Cv-2a-l)
2x T(v,a + 1, + Tfv, a , (C .6)

Q i )
2x T(v, a , 2(a+l-x)

2x T(v+2,a+l >

(C.7)

where v = 2a - 1. Thus all values of a can be evaluated with ease.

If e is assumed to be zero, the Toronto functions in equations 

(C.4) and (C.5) will both be unity. Thus, by setting a = 1, initial 

values for the recurrence formulae can be determined, and it is then 

possible to evaluate the Toronto function for all integer values.of a 

by repeated application of equations (C.6) and (C.7).

following the above procedure, equation (C.3) can be rewritten 

as ^(aja+ljx) = ^  ex £ (l-a)r ,

which is identical to the asymptotic approximation to the confluent 

hypergeometric function given in equation (C.l). Thus the error 

incurred in utilizing the asymptotic approximation for finite x is
— Xsimply the error caused by assuming e to be zero in the Toronto

function.
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It is easy to show that this error can he expressed as

, (C.8)
C-x)a

thus as x increases indefinitely (for a fixed), the error of approximation 

tends to zero.

This analysis is only valid when a is an integer, a condition 

which will not always be upheld (e.g. when considering the moments of 

the 2SLS estimator, even values of will yield integer values for a, 

whereas odd values of will yield non-integer values for a).

For a non-integer, equation (C.l) is an infinite series, although 

it can be truncated after (say) n terms. If this is done the error 

involved by truncating the infinite series after the nth term will not 

exceed the (n+l)th term, and will be of the same sign as the (n+l)th 

term (e.g. see Luke [25; p.127]).
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