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ABSTRACT

This thesis addresses species richness estimation for benthic data by describing the 

clustering of individuals within a species using a Neyman Type A distribution, and 

incorporating this into species richness estimates.

A review of current species richness estimation methods is included. The maximum- 

likelihood approach to species richness estimation is extended to incorporate the 

Neyman Type A model, with a gamma mixing distribution on the mean abundance 

of individuals within a species. Species richness estimates of this model are compared 

to those of the simpler negative binomial and Poisson models. The use of a penalised- 

likelihood is applied to avoid spuriously large estimates of species richness that can 

be associated with the "boundary problem’.

The Bayesian approach to species richness is considered, using uninformative and 

informative priors. Informative priors are elicited using expert opinion obtained 

from a number of benthic ecologists at the Centre for Environment, Fisheries and 

Aquaculture Science. These are incorporated into species richness estimation in the 

form of priors, and also converted into penalties for use in the frequent.ist approach. 

Several benthic data sets are analysed throughout, along with a Lepidoptera data set, 

and a data set from a common bird census carried out in the USA. In addition, several 

simulation studies are undertaken to illustrate the performance of the estimators. 

The research culminates in the application of species richness estimators to estimate 

species mortality due to dredging carried out off the Norfolk coast. Several estimators 

can be considered to gain a picture of the effect of dredging, and I recommend that 

species richness estimators should reflect the underlying distribution of the data. I 

also recommend that a precautionary approach should be taken when using these 

estimators in practical applications.
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GLOSSARY

The following notation will be used throughout this thesis:

N  total number of species in a population.

Xi number of times the ith species is observed in the sample, i =  0,1,2, ...,D  

(Only those species with x, > 0 are observable in the sample).

fk number of species that are represented exactly k times in the sample, k =  0, 1,..., r.

/o number of species unobserved in the sample but present in the population, 

/o =  N -  D.

D  r
n total number of individuals in the sample, n =  ^  Xj =  kfk-

2—1 k=l

1(A) indicator function, 1(A) — 1 if the event A occurs, 0 otherwise.

N
D number of distinct species discovered in the sample, D =  7(xj > 0) =  fk-

¿—1 k>1

g number of samples/grabs. 

a area of the grab.

A area of the region of interest.

Nci lower bound estimator of Chao (1984), given by Nci =  D +  / i / ( 2/ 2).

Nji zth order jackknife estimator.

Ng bootstrap species richness estimator.

N a c e  Abundance-based Coverage Estimator.

6 vector of parameters describing the abundance distribution of the data.



List o f Tables X V I I

L{6) likelihood function for parameter vector 9.

1(0) log-likelihood function for parameter vector 6. 

lp(0) profile log-likelihood function for parameter vector 6. 

d dimension of parameter vector.

Xd a a% P°int f°r the chi-squared distribution. 

za/2 ot% point for the standard normal distribution. 

r  truncation point of the data.

7 penalty parameter.

h(0) penalty function for parameter 6.

i/j(9) odds function, ip(0) =  po(6)/(l — po(Q))-

p(0) Bayesian prior on 9.

tt(G\x ) posterior distribution of 9 given data x.

Ns number of species in a data augmented super-population.

Tg coefficient of overlap of the prior and posterior.



1. INTRODUCTION

1.1 Background

This research is undertaken in collaboration with the Centre for Environment, 

Fisheries and Aquaculture Science (CEFAS), an agency of the UK Department for 

Environment, Food and Rural Affairs (DEFRA). CEFAS’ primary purpose is to 

provide advice and support to the UK government and its agencies on a wide spectrum 

of issues, including climate change impacts and adaptation, marine planning and 

environmental licensing, sustainable fisheries, and marine biodiversity and habitats.

The world’s oceans are an indispensable resource and must be protected and managed 

for future generations. The negative impacts of changes in marine biodiversity should 

be fully considered and minimised. Ecologists work to assess critical threats to marine 

systems and develop management strategies to mitigate them.

Ecology has evolved from a descriptive discipline to a highly quantitative field 

(Ludwig and Reynolds, 1988), and the use of statistics can play a vital role in 

assessing the impacts of threats to marine systems, such as climate change or marine 

aggregate extraction. There are various statistical methods that can be utilised 

to aid biodiversity conservation. Whole ecosystems can be modelled, exploring 

complex interactions between organisms and the environment. However, due to these 

complexities it can be advantageous to use key species as indicators of the health of 

the ecosystem.

Marine benthic organisms live in, on, or near the seabed. The ocean floor habitats 

in which they live constitute the largest single ecosystem on earth in terms of spatial
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coverage (Snelgrove, 1997). Benthic organisms not only have value as an indicator 

species in the assessment of human impacts at sea, but also significantly effect 

major ecological processes including the regulation of carbon, nitrogen and sulphur 

cycling, water column processes, and pollutant distribution and fate (Snelgrove, 1997). 

Therefore, benthic organisms are frequently used for assessing biodiversity change as 

they may indicate impacts on the wider marine ecosystem.

Benthic organisms are largely sessile and so will give a good indication of locally 

induced changes. When impacts of activities such as dredging are considered, both 

the initial impact and the predicted rates of recovery of marine benthos are important 

(Kenny and Rees, 1996). In this research I concentrate on modelling initial impacts, 

which can include a reduction in species diversity, abundance and biomass.

The variety and abundance of benthos vary with latitude, depth, water temperature, 

pH and salinity, and also locally determined conditions such as the nature of the 

substrate (Britannica, 2012). Ecological factors such as predation and competition 

also have an effect on the community structure.

Benthic organisms vary in size, and in this research I concentrate on analysing data 

for Macrofauna, animals that are one centimetre or longer, and Megabenthos, which 

includes large crustaceans and molluscs. In benthic environments some organisms 

are colonial, that is individuals cannot always be separated and counted, but these 

species will be excluded from the analysis.

The effects of activities such as dredging depend not only on the magnitude and 

intensity of impact but also on the composition and spatial variability of benthic 

assemblages in different areas. There are many statistical aspects of the analysis and 

sampling of benthic data that are not well understood, and these need to be further 

developed in order that robust conclusions can be drawn from scientific research.
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1.2 Statistical analysis o f benthic data

The study and analysis of benthic organisms presents a number of statistical 

challenges. The data available for analysis are not ideal, because they are often limited 

to few samples because of the expense and difficulty of sampling. The complexity 

of benthic communities complicates modelling, because individuals of species are 

often found in clusters. Therefore many species can be missed during a sampling 

programme.

Modelling the spatial distribution of benthic organisms as cluster processes has been 

shown to work well and provides answers to important practical questions, for example 

regarding species loss (Boyd et ah, 2006; Barry et ah, 2010). The research of this thesis 

will build on this previous work.

The benthic abundance data analysed in this thesis consist of samples collected from 

the seabed by Hamon grab. The grab is a sample bucket attached to a pivoted arm, 

supported by a frame (Figure 1.1). The Hamon grab is activated by releasing tension 

in a wire and the sample bucket is driven through the sediment of the seabed (Boyd 

et ah, 2006).

Figure 1.1: How a Hamon grab sampler works.
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Under ideal conditions the Hamon grab should take a sample of known volume and 

surface area. Two grab sizes are used, and trials have indicated that the average 

sample surface area for the larger grab is 0.25m2, and for the smaller grab is 0.1m2 

(Kenny and Rees, 1996). There are potential sources of sample error associated with 

the Hamon grab; for example the tendency of the grab to push itself away from the 

seabed when sampling coarse sediments results in obtaining only a scrape of sediment. 

However, for the purpose of this research I assume that surface area sampled is without 

error.

Replicate samples are collected, located randomly within the study region to avoid 

bias. After collection the whole sample is washed over square mesh sieves to remove 

the fine sediment and to separate the fauna into size-based fractions for later sorting 

and identification of species in the laboratory. This can be time consuming and a 

high level of expertise is required. This puts a constraint on the number of samples 

that can be processed.

Additional assumptions include that the community is ‘closed' within a sampling 

period, and that sampling is carried out ‘with replacement,’, in the sense that 

the community structure remains unchanged by sampling. This is a reasonable 

assumption to make, since the sampling fraction is small.

The specific benthic data sets analysed in this thesis have been collected around the 

UK coast during sampling programmes aboard CEFAS’ research vessel, the CEFAS 

Endeavour. I will refer to them throughout by the name of the area. These areas 

include the coast off Norfolk, the Isle of Wight, Hastings, and the Eastern Channel. 

The Norfolk data contain five replicates per survey period, and the Isle of Wight 

and Hastings data contain ten replicates each. This level of replication is typical of 

benthic surveys. The Eastern Channel data set, however, is much larger, arising from 

an extensive survey programme of 225 replicate samples. For further details on the 

data sets see Kenny and Rees (1996); Boyd et, al. (2006); Cooper et. al. (2007).
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During the thesis I also analyse the well-known Lepidoptera data used in 

Fisher et al. (1943) and the data set from the National Audubon Society 

Christmas Bird Count (CBC) of 1989 at Fort Myers, Florida (available from 

http://birdsource.tc.cornell.edu/cbcdata/). These data sets have been used in the 

literature to illustrate methods of species richness estimation and will be used for 

comparison of our methods.

1.3 Outline o f the thesis

The study and analysis of benthic organisms presents a number of statistical 

challenges, and this thesis addresses some of these issues, focussing mainly on 

modelling the spatial distribution of benthic organisms as cluster processes. The aim 

is to answer critically important ecological questions relating to benthic organisms 

through the formulation and application of robust statistical procedures based on a 

range of appropriate stochastic models.

The specific objectives of the research are categorised into five parts: the first is to 

review the current state of the art and identify a gap in the knowledge, the following 

three focus on methodological development, and the last part examines the links 

between methods and the application of the models to assessing human impact on 

marine biodiversity.

Firstly, there are many diversity measures that can be utilised to look at differences in 

biodiversity between areas or years. However these are not adequate when analysing 

benthic data. The thesis focuses on estimating one aspect of biodiversity, species 

richness, and Chapter 2 reviews the appropriate literature in this field. The current 

state of the art is outlined, and the need for the research is clarified. This chapter 

also introduces a clustering process that is used to model the spatial distribution 

of benthic organisms, and with the aim of improving species richness estimation for 

benthic communities. It is shown that clustering needs to be accounted for when

http://birdsource.tc.cornell.edu/cbcdata/
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estimating species richness.

Chapters 3 and 4 develop multinomial models for estimating species richness using 

contagious distributions, from a frequentist and a Bayesian approach respectively, 

incorporating a spatial aspect in the form of a cluster process. Chapter 3 highlights 

problems associated with parametric species richness estimation, including the choice 

of method for constructing confidence intervals, and how to deal with spuriously large 

estimates, specifically using penalties.

Chapter 4 investigates the Bayesian equivalent approach to species richness 

estimation, using uninformative priors, and extends current methods to account 

for the spatial clustering of benthic organisms. Since some species are not seen in 

the sample, alternative approaches used for handling missing data are considered, 

including reversible jump MCMC and data augmentation in a hierarchical Bayes 

framework.

Fourthly, I consider the use of informative priors, formed by eliciting expert 

information. Chapter 5 describes a process of elicitation of information from experts 

and incorporates this into priors. This is a particularly interesting aspect of the 

research, which as far as I am aware has not been done previously for benthic data. 

This chapter highlights difficulties within the elicitation process and applies the priors 

in estimating species richness for a number of benthic data sets.

Chapter 6 considers the link between the various methods of species richness 

estimation, by considering how elicited priors can be converted into penalties within a 

frequentist approach. The results of the frequentist approach are compared to those 

of the Bayesian approach and to the non-parametric estimators currently used for 

species richness estimation. I make a recommendation of the best method to use to 

estimate species richness for benthic data, and use this method to investigate the 

impacts of dredging on the Norfolk coast. These results are compared to those found
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by Barry et al. (2010), who utilised a clustering model to describe the spatial pattern 

of each species and modelled the impact of dredging directly.

Chapter 7 emphasises the main contributions of this thesis and highlights future 

directions for the development of statistical models for benthic data. Supporting 

information is provided in the Appendix. The findings of this research can help refine 

current guidelines with regard to dredging and also be used to assess the impact of 

changes in biodiversity as a result of direct and indirect human impact.

An additional aim of this research is to construct a library of appropriate computer 

software, written in R. which will be made freely available, and which will link 

naturally with other statistical ecology software within the National Centre for 

Statistical Ecology (NCSE).



2. METHODS OF SPECIES RICHNESS ESTIMATION

2.1 Introduction

To monitor the impact on benthic organisms from activities such as marine dredging, 

we need to be able to measure changes in the community. This can be done by 

measuring biodiversity and how it changes over time and between sites. There are 

several levels of biological diversity one could evaluate, including ecosystem diversity 

and genetic diversity, but I concentrate on the most commonly measured aspect, 

species diversity.

Biodiversity can be defined as ‘the variety and abundance of species in a defined unit 

of study ’ (Magurran, 2004). This definition specifies two components to be measured, 

variety and abundance of a species. Abundance can be defined as ‘the total number 

of individuals or the density of individuals within an area’ (Buckland et ah, 2005), 

but variety is less easily defined.

There are numerous indices that are used as measures of biodiversity, outlined in great 

detail in Magurran (1991, 2004) and Gotelli and Colwell (2010). Most of these indices 

assume that individuals are randomly sampled from an indefinitely large population 

and that all species are represented in the sample (Magurran, 1991).

However, the small sampling fraction and clustering nature of benthic organisms 

is such that we will not sample all species present in the area. Therefore, diversity 

indices may not behave as we would expect for benthic data, and may need to be 

adapted. A paper that I have contributed to, outlining the behaviour of diversity 

indices when applied to benthic data, is to be submitted to Ecological Indicators
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shortly. However this thesis concentrates on how we can estimate the number of 

benthic species, namely ‘species richness’.

This chapter reviews species richness estimators, and highlights the failure of some of 

these when applied to spatially clustered data. A clustering model is introduced to 

describe the spatial distribution of benthic organisms, and a simulation study shows 

the inadequacies of current species richness estimators in analysing clustered data. I 

also apply several non-parametric estimators applied to benthic data collected off the 

Isle of Wight coast.

2.2 Species richness estimation

Species richness is one of the earliest and most intuitive measures of biodiversity 

(McIntosh, 1967), and can be defined as ‘the number of species present m the area 

of study’. The need for the continued development of species richness estimators and 

the importance of knowledge transfer to biologists is encapsulated in this quote from 

(Kery and Royle, 2008, p591)

‘The most common approach to species-richness estimation is really no 

estimation at all: mere use of raw totals of detected species. ’

However, sampling from populations will rarely give a complete inventory of species 

due to constraints such as time and cost, and in marine ecosystems there is also the 

added constraint of the requirement of a high level of taxonomic expertise to avoid 

misidentification (Foggo et ah, 2003).

The question of how to estimate the number of species in a population has been of 

interest for over six decades, and there are over 20 different techniques described that 

will produce an estimate of total species richness from sample data (Foggo et ah, 2003; 

Chao, 2004; Magurran, 2004; Gotelli and Colwell, 2010). Some of these estimators 

are summarised here, and others are described in more depth in Chapters 3 and 4.
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In some cases organisms may not be defined to species level. However within a 

particular sampling program organisms are identified to the same level, such as genus, 

and the same estimators can be used to estimate the richness at that particular level. 

I also concentrate on abundance-based species richness estimators, since that is the 

type of data that I am working with for benthic organisms. Some mention is made of 

incidence-based estimators, developed for data that are a measure of presence only.

2.2.1 Early approaches to species richness estimation

Early approaches to solve the species richness problem considered the relationship 

between species richness and the area sampled (Fisher et al., 1943), presenting this as 

a species accumulation curve. Samples are randomised and the cumulative number of 

species across a number of samples is plotted. A species richness estimate is obtained 

by fitting models to the curve, such as the Michaelis-Menten model or hyperbolic 

model (Keating and Quinn, 1998; Colwell and Coddington, 1994). A species richness 

estimate is extrapolated for the area of interest at the point where the curve reaches 

an asymptote.

A more recent adaptation of this approach is the Total-Species accumulation method 

(T-S), which incorporates spatial heterogeneity of samples into the estimate of 

species richness for large areas, by grouping samples into subsets based on shared 

environmental characteristics (O ’Deaet ah, 2006). First a species-accumulation curve 

is obtained for randomised samples of all the single subareas, and then the species- 

accumulation curve for all combinations of two subareas is calculated, and so on up to 

the combinations of all subareas. From these curves a total species curve is obtained, 

which can then be extrapolated to estimate the probable total number of species in 

the whole study area (Ugland et al., 2003).

Another estimator of species richness, related to species accumulation curves, is SQ, 

proposed by Karakassis (1995). This method calculates a number that is theoretically 

the upper limit of the asymptote. A number of random permutations of the samples
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are produced, and the cumulative number of species for a certain number of samples, 

Ng, is estimated by averaging over the random permutations. The estimator is 

calculated by extrapolation, plotting the cumulative number of species in g samples 

against the cumulative number of species in g+ 1 samples, and obtaining the regression 

line of these points. The estimator is the intercept between this line and the line 

Ng =  Ng+i, i.e. the point where two successive samples are expected to present the 

same cumulative number of species (Figure 2.1) (Karakassis, 1995).

n9

Figure 2.1: Illustration of the method of the S^ estimator. Abundances of 1000 species 

over 100 grabs were simulated from a negative binomial distribution, a =  0.5, 

¡3 = 0.5. The points are the cumulative number of species in g samples plotted 

against the cumulative number of species in g + 1 samples and the solid line 

is the regression line of these points. The dashed line is the line Ng — Ng+1. 

Using 30 permutations, S^ = 717.

2.2.2 Parametric approaches

The earliest parametric approaches to the species richness problem by Fisher et al. 

(1943) and Craig (1953) introduced the approach of modelling species abundance 

data using a Poisson model. In this model the distribution of the number of observed
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individuals depends on only one parameter: the mean abundance, A. This assumes 

that the abundance is equal for all species (Ax =  A2 =  ... =  Ajv, where there are N 

species in a population), which is unlikely in practical applications.

If species are not equally abundant, a mixture of distributions corresponding to 

different values of A can be used. Parametric estimators model the mean abundances 

(Ai, A2, A j v )  as a random sample from a mixing distribution with density / ( A,d), 

where 6 is a low-dimensional parameter vector. This density has been modelled by 

many researchers as a gamma distribution, which, when combined with the Poisson 

distribution, leads to a negative binomial distribution for the number of individuals 

per species (Fisher et ah, 1943).

Other parametric models that have been used to estimate species richness include 

the broken stick, the log normal, the inverse Gaussian and the generalized inverse 

Gaussian (Chao, 2004). However, when using parametric models we must make 

assumptions regarding species abundances. In addition, two models may fit the 

data equally well but give very different estimates and a good-fitting model does 

not necessarily give a satisfactory species richness estimate (Chao, 2004).

The parametric approach to species richness estimation will be considered in further 

detail in Chapter 3.

2.2.3 Non-parametric approaches

Concerns about making assumptions regarding the species abundances in a parametric 

approach led to the development of non-parametric approaches to species richness 

estimation. Here I outline some of the widely used and best performing of the non- 

parametric species richness estimators for abundance data.

The bootstrap method was developed for estimating species richness from quadrat 

sampling (Chao, 2004). Given the n individuals observed, a random sample of size
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n is drawn from these with replacement. Assuming the proportion of the individuals 

for the ith species in the generated sample is pi, and D is the number of observed 

species, then a bootstrap estimate of the total species richness is calculated using the 

formula
D

NB =  D +  ' £ f( l - p i)n. (2.1)
i=l

The mean of a number of bootstrap estimates is taken as the final species richness 

estimate (Smith and van Belle, 1984). This estimate is considered as a conservative 

lower bound for N  (Mao, 2007).

The Chaoi estimator is based on the concept that rare species carry the most 

information about the number of missing species, using only singletons and doubletons 

(those species represented by only one or two individuals respectively) to estimate the 

number of missing species (Chao, 2004). These estimators are based on Alan Turings 

frequency formulae used in cryptanalysis in World War II (Good, 1953; Chao et ah, 

2009). The original form of the estimator is

*  =  D  +
( 2.2)

where J) and / 2 are the number of singletons and doubletons. This formula breaks 

down if / 2 =  0, but a modified bias-corrected version of the estimator that is always 

obtainable is
/ i ( / i  -  1)

NC1 D  +  2 ( /2 +  1)

(Chao, 2004).

The variance of the Chaoi estimator is calculated as

var(tVci) =  / 2 

for / i  > 0 and / 2 > 0.

i ( h
2 \ f 2

bb + + U !±
4 \

(2.3)

(2.4)

Chao2 applies the same approach as the Chao\ estimator, but looks at species 

that occur in only one or two samples, and is applied to replicated incidence data 

(Chao, 1987). These estimators, however, have been found to be robust estimators
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of minimum species richness (Shen et al., 2003).

These non-parametric estimators are based on the assumption that sampling units are 

sampled with replacement. However, if sampling is carried out such that no sampled 

unit can be repeatedly observed, these estimators tend to overestimate richness for 

relatively high sampling fractions and do not converge to the true species richness 

(Chao and Lin, 2012). Therefore, Chao and Lin (2012) proposed a non-parametric 

lower bound for species richness

Ncl =  D + ft (2.5)
T A 2/2  +  r ^ / i

where q is the ratio of sample size to population size. To use this method it is assumed 

that the total number of individuals in the population is known. When a small portion 

of individuals are taken from the entire population of individuals in the community, 

so that q approaches zero, this lower bound approaches the Chao\ estimator (Chao 

and Lin, 2012).

The Abundance-based Coverage Estimator (ACE) is based on the estimated sample 

coverage (the sum of the cell probabilities of the observed classes)

C O = l -
k> 1

It is a function of the rare species’ frequencies, calculated as

NicB = D^n+D™  + hf, (2.6)
w CJ

where Drare are the number of rare species, and Dâ un are the number of abundant 

species observed in the sample. Here,

CV — max {Nrare Y  k(k -  1 )fk/\CO(Y, k f t f t  - 1 . 0 }  (2.7)
k> 1 k>

denotes the estimated squared coefficient of variation (Chao, 2004). It is assumed 

that all species seen fewer than ten times in the sample are rare, and all those seen 

ten or more times are abundant and that the species abundances are well described by 

their mean and coefficient of variation (Chao, 2004). The Incidence-based Coverage
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Estimator (ICE) yields similar estimates to ACE for presence only data.

Jackknife estimators were developed to reduce the bias of a biased estimator, and 

for species richness estimation this biased estimator would be the number of observed 

species. The idea behind the jackknife estimators is to average estimates calculated 

for subsets of the data by successively deleting a number of individuals from the 

original data. The first-order jackknife is calculated as

Nj i  = D +  {n -  l)/i/n,

so only the number of singletons is used to estimate the number of unseen species. 

This is the most commonly used of the jackknife estimators, along with the second- 

order jackknife defined as

Nj2 =  D +  2 h - f 2.

2.3 Inadequacies o f current species richness estimation methods

applied to benthic data

Studies have suggested that species richness estimation is dependent on spatial 

patterns (Baltanas, 1992; Fager, 1972) and Walther and Moore (2005) explained that 

performance is dependent on total species richness, sample size, and aggregation 

of species within samples. We would hope for a species richness estimator that is 

unbiased, precise and efficient. None of the commonly used estimators described here 

adequately account for spatial heterogeneity in species distributions, with the possible 

exception of the Total-Species accumulation method, the accuracy of which is yet to 

be fully investigated (Ugland and Gray, 2004).

When using species accumulation curves, various models may fit the data well, 

but give drastically different estimates (Chao, 2004). The method cannot be 

used on sparsely sampled communities because there will not be sufficient data to 

construct the accumulation shape, and the curve may not approach an asymptote. 

Alternatively, it has been seen that the number of individuals that need to be sampled
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before the curve reaches an asymptote can be very large (Chao et ah, 2009). Heck 

et al. (1975) noted that in a patchy environment, the species accumulation curve could 

even appear to approach an asymptote before many species were sampled (Figure 2.2). 

In most of the benthic data sets to be considered there are very few grabs samples, 

so this method would not be effective.

o

Num ber o f sam ples

Figure 2.2: Species accumulation curve of negative binomial simulated abundance data for 

1000 species. The shaded area shows the 95% confidence interval from the 

standard deviation produced from 100 permutations of the data.

Baltanas (1992) found that the performance of a species-area method was strongly 

affected by spatial aggregation of species, giving poor estimates that underestimate 

total species richness. Therefore this method is not recommended for benthic data 

sets, where spatial clustering of individuals within a species is anticipated.

In the study by Ugland and Gray (2004) the Total-species (T-S) accumulation method
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gave a reasonable estimate for a benthic data set. However, when used on data from 

bird surveys taking into account habitat type and altitude, it overestimated total 

species richness (O'Dea et ah, 2006). Further investigation into the strengths and 

limitations of this approach are required. This estimator also requires additional 

information to construct the subareas used within the estimator, which may not 

always be available.

The Soo estimator is not suitable for benthic data sets, because with few samples this 

estimator tends to underestimate and could possibly even produce negative species 

richness estimates (Karakassis, 1995). Moreover, an assumption of this model, pointed 

out by Ugland and Gray (2004), is that the probability of being caught for any 

individual is proportional to sampling effort, and that ‘catchability’ is independent of 

the effort and is the same for all individuals. However, for large benthic communities, 

the catchability of rare species may not be the same as the catchability of more 

common species (Ugland and Gray, 2004).

Non-parametric estimators have been shown to be less biased and more precise than 

species accumulation curve extrapolation methods in general (Brose et ah, 2003). 

However, when the performance of a number of estimators was ranked in a study on 

marine data sets, the results were in contrast to previous studies (Foggo et ah, 2003; 

Walther and Morand, 1998; Hellmann and Fowler, 1999; Condit et ah, 1996); in the 

study by Foggo et al. (2003) using three marine data sets, the first-order jackknife 

produced low variability, but showed decreasing precision with increasing numbers 

of unique species in the data set. The Chaoi estimator also produced low precision 

when applied to a low-richness, low-abundance data set (Foggo et ah, 2003).

Ugland and Gray (2004) analysed the performance of the Chaoi estimator on a 

benthic data set and found that it was significantly underestimating the true species 

richness with limited sampling effort. The Chao\ estimator was originally proposed 

to be a lower bound, however it has recently been justified for use as a point estimate
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in extreme heterogeneous cases when the singletons in the sample have the same 

relative abundances in the community (Shen et ah, 2003).

Studies suggest that the patchy spatial distribution of macrobenthic assemblages 

represents a hurdle to incidence-based estimators such as the Chao2 estimator and 

IC E  (Chao, 2004). The Chao2 estimator overestimated total species richness and 

displayed poor precision and accuracy when applied to marine data (Foggo et ah, 

2003). Using ACE, estimation of the number of missing species is based entirely on 

the rare species’ frequencies, and as previously mentioned the assumption that rare 

species carry most information about unobserved species is not likely to be satisfied 

for benthic data sets. The bootstrap estimator has been shown to underestimate 

the number of species if there are a large number of rare species and the number of 

samples is small (Smith and van Belle, f984).

Brose et al. (2003) found that no single estimator performed best at estimating species 

richness in all cases. However, most perform considerably better than taking the 

observed number of species as an estimate. Walther and Moore (2005) pointed out 

that there are no estimators that are suitable for all situations, or especially effective 

for a particular taxon, unless their performance is tied to the species-abundance 

distribution and sampling protocol used for that taxon. Therefore we may wish to 

incorporate the distribution of the species within an estimator.

2.4 Clustering o f benthic organisms

In the natural world, clustered patterns are very common. For example, trees in 

natural forests have a clustered distribution, the pattern of which depends on the seed 

dispersal mode (Li et ah, 2009). Populations of most benthic marine invertebrate 

species also have a clustered distribution (Heip, 1975), and estimates of species 

richness can be biased because rarer species are often missed during sampling, and 

clustering of individuals within a species means that a species is more likely to be 

missed during sampling.
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Spatial clustering can be caused by a number of different processes, but I assume 

that the pattern occurring in benthic organisms can be adequately modelled by a 

mechanism involving 'parent points’ and ‘daughter points’; where the daughter points 

are scattered around the parent points. Such patterns are best described by the 

classical cluster model below.

Every point, y, in a given initial point process, Cp, is replaced by a cluster of Cy 

points, not including the original point y (Illian et al., 2008). The clusters, Cy, are 

finite point processes, and their set-theoretic union is the cluster point process

Where the parent points form a Poisson process, Neyman-Scott cluster models can 

be utilised (Neyman and Scott, 1958). These model the location of cluster centres as 

a homogeneous Poisson process; the number of individuals in each cluster is modelled 

as a Poisson variable and these are located these around the cluster centre according 

to an isotropic spatial process.

A particular type of Neyman-Scott process, the Matern process (Matern, 1986) is 

used to model the spatial distribution of benthic organisms.

The Matern process has three components:

1. Parent events form a Poisson process with intensity A (i.e. ‘parents’ are 

randomly distributed over the area with mean A per unit area),

2. Each parent produces a Poisson number of ‘daughters’ with mean

(2.8)

yCiCp

2.4.1 Matérn process

3. The positions of the ‘daughters’ relative to their ‘parents’ are randomly chosen

within a circle of radius R.
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We are interested in the number of individuals (daughters) that fall into a given area 

representing the area sampled by a single grab in a benthic survey. If A is low and 

(f) is high, then the Matern process is very clustered when the radius is small (Figure 

2.3a). If A is high and 0 is low, the process looks more random (Figure 2.3b). As 

the radius parameter, R, increases, the realisations move further towards a random 

distribution (Figures 2.3c and 2.3d). The Matern process assumes that clusters are 

independent of each other.

(a) A=10, 0=100, R=0.05. (b) A=100, 0—10, R=0.05.

(c) A=10, 0=100, R=0.2. (d) A=100, 0=10, R=0.2.

Figure 2.3: Realisations of the Matérn process.
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Data can be simulated using the three components of the Matern process, and the 

number of points falling within a defined area can be summed to give a sample for 

a particular grab size. Data can be simulated by producing a Matern realisation of 

points using parameters of choice, by first generating a number of parents with their 

locations randomly distributed within an area equal in size to the grab area plus a 

boundary of width R to allow for any parents that may lie outside the grab area, 

but generate children within the grab area (See Figure 2.4). Then a Poisson number

Figure 2.4: Example of a realisation of the Matern process for R = 0.2, A = 5 and cj) =  30.

The square indicates the grab area of unit size. The closed circles represent the 

parents and the stars the children, with the open circles indicating the outer 

limits of the clusters. We can see that in some cases the parents lie outside the 

grab area, but can still produce children which lie within the grab area.

of children are allocated per parent, with intensity 4>, and located randomly within 

a circle of radius R around the parent. The number of children located within the 

grab area are then output to the data set as the result of one grab sample. This was 

repeated g times for each species, where g is the number of grab samples.
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2.5 Performance o f species richness estimators

I investigated the performance of the non-parametric species richness estimators 

Chaoi, the first and second order jackknife, ACE  and the bootstrap when applied 

to clustered data. These estimators were chosen because they are commonly used to 

estimate species richness, and were found to perform well in some previous studies 

(Foggo et ah, 2003; Brose et ah, 2003).

I did not include species accumulation methods as in most of the benthic data sets to 

be considered there are very few grabs samples, so this method would not be effective. 

I also did not include incidence based estimators such as IC E  and Chao2 as it has 

previously been shown that these estimators do not perform well for data exhibiting 

clustering, and also I have abundance data so it seemed wasteful to use an incidence 

based estimator which will throw away some of the available data.

Using the Matern process I simulated populations of 1000 species, using various 

Matern parameters. I compared the performance of the estimators over varying 

sample sizes, and would expect that as the number of grabs increases, the performance 

of estimators should improve. I also investigated the effect of increasing the radius, 

and varying the mean number of children per parent, that is clustering intensity.

During these simulations I not only considered the effect of varying each individual 

parameter, but also the simultaneous variation of the three parameters. A similar 

pattern emerged across the results, and it was clear to see the effect of changing each 

parameter, and so only the results of varying the individual parameters are reported.

I also considered how the estimators performed when applied to benthic data collected 

off the coast of the Isle of Wight.
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2.5.1 Varying sample size

To investigate the effect of varying sample size I performed simulations for various 

number of grabs. I performed the simulations for various cluster intensities, however 

a similar pattern emerged in each case, so I show here only the results for g =  10, 

A =  5, R =  0.05, where g =  \<j).

We can see that for these parameter values, when the number of grabs increases 

to over 50 we are observing most of the species present in the survey area (Table 

2.1). At 50 grabs the first order jackknife and bootstrap estimators are slightly over 

estimating the species richness on average, however the 95% central interval shows a 

tight range of estimates with low variation between them.

As we might expect, at 100 grabs all the estimators give a species richness of 

N =  1000, which is equal to the observed number of species and the true species 

richness. The estimators should perform well when all species have been seen, because 

they are primarily based on the number of singletons and doubletons in the sample.

When our sample size is only five grabs, we see that the estimators are negatively 

biased, and underestimate the true species richness significantly at 10 grabs also. 

However, the second order jackknife gets relatively close to the true species richness 

within its 95% central interval over the 50 simulations.

2.5.2 Varying cluster radius

To investigate the effect of varying the cluster radius 1 performed simulations for 

various R values. I performed the simulations for various clusterings, however a 

similar pattern emerged in each case so I show here only the results for g — 10, 

A-= 5.

Table 2.2 shows that as the radius increases, the non-parametric estimators improve 

in their performance. All of the estimators perform reasonably well when the radius
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No. grabs Estimator Mean Median SD RMSE MAE 95% central interval

5 D 451 451 14 549 549 (426, 478)

Nci 530 529 25 471 470 (485, 576)

584 583 23 416 416 (544, 625)

ÑJ2 603 606 34 399 397 (531, 665)

Nace 506 506 18 494 494 (475, 540)

ÑB 521 521 18 479 479 (491, 552)

10 D 699 696 14 301 301 (673, 725)

Ñci 777 772 22 224 223 (736, 822)

Ñji 846 844 21 155 154 (809, 888)

Ñ j2 852 848 34 152 148 (776, 917)

Nace 745 741 16 256 255 (719, 777)

ÑB 780 776 16 220 220 (753, 812)

50 D 998 998 1 2 2 (995, 1000)

Ñci 1000 1000 3 3 2 (996, 1006)

Ñn 1004 1004 3 5 4 (998, 1009)

Ñj2 998 998 7 7 6 (984, 1011)

Nace 999 999 1 2 1 (996, 1001)

Ñb 1004 1004 1 4 4 (999, 1006)

100 D 1000 1000 0 0 0 (1000, 1000)

Ñci 1000 1000 0 0 0 (1000, 1000)

Ñn 1000 1000 0 0 0 (1000, 1001)

Ñ j2 1000 1000 ] 1 0 (999, 1002)

Ñace 1000 1000 0 0 0 (1000, 1000)

Ñb 1000 1000 0 0 0 (1000, 1000)

Table 2.1: Summary statistics of non-parametric species richness estimators over 50 

simulated data sets from the Matern process with N — 1000, p — 10. A — 5, 

B. =  0.05 and varying the sample size. Results shown are the mean, median, 

standard deviation, SD, root mean squared error, RMSE, mean absolute error, 

MAE, and 95% central interval across the 50 estimates.
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R Estimator Mean Median SD RMSE MAE 95% central interval

0.01 D 666 664 12 334 334 (640, 688)

Ncx 719 717 16 281 281 (694, 747)

Ñn 786 784 17 215 214 (752, 819)

ÑJ2 769 769 27 232 231 (724, 816)

Nace 701 700 13 299 299 (674, 725)

Nb 737 735 13 264 263 (706, 761)

0.05 D 701 702 14 300 299 (663, 726)

Ñcl 774 774 20 227 226 (732, 826)

Ñjx 845 846 20 156 155 (795, 893)

ÑJ2 845 840 30 158 155 (787, 922)

Nace 745 748 16 255 255 (703, 778)

Ñb 781 784 16 219 219 (737, 813)

0.1 D 732 732 15 268 268 (694, 761)

Ncx 830 830 25 172 170 (788, 882)

Njx 902 902 22 100 98 (864, 943)

Ñj2 921 920 36 87 79 (853, 996)

Nace 788 788 17 213 212 (753, 821)

Nb 824 824 17 177 176 (785, 857)

0.5 D 870 868 10 130 130 (849, 886)

NCx 978 978 21 31 26 (935, 1021)

Nn 1087 1087 18 88 87 (1047,1122)

to 1083 1081 36 90 83 (1004,1158)

Nace 954 954 12 48 46 (928, 976)

ÑB 991 990 11 15 12 (967, 1009)

Table 2.2: Summary statistics of non-parametric species richness estimators over 50 

simulated data sets from the Matern process with N = 1000, ¡i — 10, A =  5, 

and varying the Matern radius. Results shown are the mean, median, standard 

deviation, SD, root mean squared error, RMSE, mean absolute error, MAE, and 

95% central interval across the 50 estimates.
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is large at 0.5, in comparison to the grab size of 0.25m2. However we can see that 

jackknife estimators overestimate the true species richness.

For all estimators and parameter values, the species richness estimators are performing 

better than the observed species richness. However when the radius is small the 

estimators are biased. The variation in the estimates decreases as I increase the 

radius.

Overall, the jackknife estimators seem to be performing the best in terms of bias. 

However the bootstrap estimator and the Chaoi estimator show much less variance. 

ACE performs the worst, showing greater negative bias in its estimates than the 

other non-parametric estimators, even when the radius is larger. However, ACE does 

perform better than D , showing that any species richness estimator is better than 

just using the raw species count.

2.5.3 Varying clustering intensity

To investigate the effect of varying clustering intensity, I performed simulations for 

various A values, the mean number of parents. I performed the simulations for various 

abundances, however a similar pattern emerged for each so I show here only the results 

for /x = 10. Therefore the corresponding clustering intensity is 10/A =  (10,2,1,0.5).

Table 2.3 shows that as the clustering intensity decreases, the non-parametric 

estimators improve in their performance. All of the estimators perform reasonably 

well when clustering intensity is low at 0.5. However we can see that the first order 

jackknife seems to overestimate the true species richness.

Again the species richness estimators are performing better than the observed species 

richness. However, when clustering intensity is higher, they do not estimate much 

more than the observed species richness, and are highly biased. The variance in 

the estimates is reflected in the variance of the observed number of species between
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A Estimator Mean Median SD RMSE MAE 95% central interval

1 D 276 278 14 724 724 (245, 305)

Nci 287 288 15 713 713 (254, 318)

Nn 293 291 15 708 707 (258, 322)

Ñj2 295 295 16 705 705 (262, 328)

Nace 279 280 14 721 721 (247, 308)

ÑB 285 286 15 715 715 (252, 315)

5 D 694 694 17 307 306 (657, 726)

ÑCi 767 766 21 234 233 (733, 810)

Ñji 838 836 21 164 162 (796, 880)

Ñj2 837 833 31 166 163 (790, 903)

Nace 739 740 17 262 261 (700, 769)

ÑB 774 776 18 226 226 (733, 808)

10 D 812 812 13 189 188 (772, 833)

Ñci 921 923 21 82 79 (875, 956)

Ñji 1013 1018 19 23 19 (965, 1043)

ÑJ2 1026 1029 34 42 35 (955, 1078)

ÑaCE 885 886 15 116 115 (843, 908)

ÑB 921 923 15 80 79 (878, 947)

20 D 871 872 10 130 129 (849, 888)

ÑCi 977 981 19 30 24 (934, 1012)

Ñji 1086 1087 19 88 86 (1049, 1121)

Ñj2 1081 1090 36 89 81 (1000,1141)

Nace 953 955 13 48 47 (927, 977)

ÑB 991 992 12 15 12 (966, 1011)

Table 2.3: Summary statistics of non-parametric species richness estimators over 50 

simulated data sets from the Matern process with N = 1000, p — 10, R =  0.05 

and varying the clustering intensity. Results shown are the mean, median, 

standard deviation, SD, root mean squared error, RMSE, mean absolute error, 

MAE, and 95% central interval across the 50 estimates.
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simulations which we can see by looking at the variance of D.

The jackknife estimators seem to be performing the best in terms of bias, and the 

bootstrap estimator and the Chao\ estimator show much less variance. ACE performs 

the worst of the richness estimators used.

2.5.4 Estimators applied to Isle of Wight benthic data

Here 1 show the inadequacy of these estimators in estimating species richness for 

benthic data. I use the Isle of Wight data set as an example, where a survey collected 

data using two grab sizes, large 0.25m2 and small 0.1m2. Overall 273 species were 

recorded in the area, 240 using the large grabs, and 198 using the small grabs. Ten 

grabs were collected for each grab size.

For a species richness estimator to be adequate in modelling these data, the minimum 

number of species it should estimate is 273, the observed number of species seen in 

this area. An estimator that gives a value less than this is underestimating the species 

richness, and will not be useful for similar benthic data sets.

Table 2.4 shows the estimates given by the non-parametric estimators for the Isle of 

Wight data. There were not readily available variance formulae for all estimators, but 

the variance and confidence intervals have been calculated where possible. We can 

see that for the data collected using the small grabs, only the second order Jackknife 

gives an estimated species richness above the total observed number of species of 273. 

All the other estimators perform poorly, however the observed species richness does 

lie within the 95% confidence interval of the Chao^ estimator.

For the data collected using the large grabs, the bootstrap estimator again does 

not reach the total observed number of species of 273. However, the other estimators 

do. Comparing the estimates from the first and second order jackknife, we see that 

including more data in our estimation increases the species richness estimate, and I
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Grab size Estimator Estimate SD 95% Confidence Interval

0.25 m2 D 240 - -

Nei 286 16.71 (263, 332)

Ñji 293 10.26 (273, 313)

ÑJ2 314 - -

Nace 285 - -

ÑB 265 - -

0.1m2 D 198 - -

Nei 241 15.6 (219, 284)

Ñji 258 6.85 (245, 271)

IO 287 - -

Ñ a c e 246 - -

ÑB 226 - -

Table 2.4: Non-parametric species richness estimates for Isle of Wight benthic data sets.

Results shown are the species richness estimate, standard deviation, SD, and 

95% confidence interval (where available) for the species richness estimators 

D: the number of observed species, NcT- the Chao\ estimator, Njp. the first 

order jackknife, Nj2 '- the second order jackknife, Nace'- the Abundance-based 

Coverage Estimator, NB: the bootstrap estimator.

would expect that the larger estimate is therefore closer to the true species richness. 

This estimate is substantially larger than that of the Chaoi species richness estimator, 

however it does lie within the 95% confidence interval of the latter.

On the whole we can see that the non-parametric species richness estimators perform 

badly for this benthic data set, possibly as they were not designed for clustered data, 

and therefore do not account for this during their estimation.
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2.6 Discussion

The aims of this chapter were to introduce the concept of species richness, and describe 

some of the methods from the literature which have been developed to estimate this 

measure of biodiversity. Some of these estimators were considered in more detail, 

with the aim to highlight that they are inadequate when applied to clustered data, 

and this was shown by a simulation study and also by application to a benthic data 

set. A clustering model was introduced, that might be used to model the spatial 

distribution of benthic organisms.

A review of the species richness literature showed that there is no estimator that 

is best in all cases, and this was supported by our results. In the simulation study I 

found that the jackknife estimators performed the best in terms of bias. However the 

bootstrap estimator and the Chao\ estimator show much less variance.

I have shown that as the sample size increased, the estimates improved. However 

they did underestimate species richness significantly when there was a low number of 

grabs. A similar pattern emerged when increasing the cluster radius, and decreasing 

the clustering intensity of the individuals.

As the radius increases and the clustering intensity decreases, the spatial distribution 

of the individuals within a species becomes more like a Poisson process. Since the 

non-parametric estimators were based on the Poisson distribution, they should be 

able to estimate species richness well at this level.

All of the species richness estimators perform better than using the observed number 

of species, showing that any species richness estimator is better than just using the 

raw species count. However, when clustering intensity is higher, they do not estimate 

much more than the observed species richness, and are highly biased. The variance of 

the estimates is high in some cases, but this reflects the high variance in the observed 

number of species between simulations which is shown by the variance of D.
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When applying the estimators to the benthic data all the estimators behaved poorly. 

They do not estimate species richness well for a benthic data set, probably because 

of spatial clustering, suggesting an alternative approach is required.

Some of the non-parametric estimators were developed as lower bound estimators, 

however we require an estimator that will accurately estimate the true species richness, 

and a confidence interval for the estimate.

This chapter has shown the importance of using a species richness estimator other 

than just taking the observed number of species. Although the non-parametric 

estimators considered are limited by their bias, 1 have shown they improve on the 

observed number of species, but are not suitable for our purpose. The review of the 

literature has also shown that species accumulation methods fail for clustered data. 

Therefore I will consider an alternative approach to species richness estimation, using 

a parametric approach.

Walther and Moore (2005) pointed out that there are no estimators that are especially 

effective for a particular taxon, unless their performance is tied to the species- 

abundance distribution and sampling protocol used for that taxon. Therefore, in 

Chapter 3 I introduce an estimator that is linked to the species abundance distribution 

of benthic organisms, thus making it suitable for the estimation of species richness 

for benthic organisms in many situations.

2.7  Conclusions

This chapter shows that there is clearly some scope for the development of a new 

species richness estimator for use with benthic data. Current methods such as non- 

parametric estimators, do not deal well with spatially clustered data, and this has 

been confirmed by my simulation study. 1 have also shown that merely using the 

number of observed species is inadequate for biodiversity estimation.
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I have introduced a clustering model that could be used to describe the spatial 

distribution of the benthic organisms, and Chapter 3 will consider how this can be 

built into a parametric species richness estimator.



3. SPECIES RICHNESS ESTIMATION - A

MAXIMUM-LIKELIHOOD FREQUENTIST APPROACH

3.1 Introduction

Chapter 2 described a range of species richness estimators. It is important that species 

richness is estimated accurately, as underestimation may mean that an important 

area for biodiversity is missed. Alternatively, overestimation might mean wasting 

conservation effort on areas that are not very diverse. Chapter 2 showed that current 

methods that do not account for spatial clustering are not adequate for analysing 

benthic data. Therefore, this chapter will present an approach to species richness 

estimation which incorporates the spatial pattern of the individuals of each species. 

As species spatial heterogeneity factors will be taken into account, this estimator 

should be more suitable for estimating total species richness for benthic data.

This chapter applies the frequentist approach to species richness estimation, and 

introduces a method using the Neyman Type A distribution to model the spatial 

pattern of individuals within a species. The chapter aims to present a model which 

can accurately estimate species richness when species are clustered, using a maximum- 

likelihood approach. Methods to calculate confidence intervals and goodness of fit 

measures are examined.

Problems which arose with the maximum-likelihood approach include the question of 

truncating data and the boundary problem, and I introduce an approach to dealing 

with the boundary problem using penalties. Several data sets are analysed using the 

maximum-likelihood approach.
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3.2 Maximum-likelihood estimation

Barry (2009) proposed a parametric approach to estimate species richness by 

combining variable species abundance and the spatial pattern of the species’ members. 

As species heterogeneity factors will be taken into account, this estimator should be 

suitable for estimating species richness for benthic data from grab samples. Models 

are fitted by the method of maximum likelihood, which was first developed in this 

context by Craig (1953), following Fisher et al. (1943) in fitting a parametric model 

to observed species abundances.

The aim is to estimate the total number of species in a survey area. Barry (2009) 

notes that the number of species that will be detected in g grabs will be determined 

by the total number of species in the area, the number of individuals per species, 

and the spatial pattern of individuals of each species. Barry (2009) describes his 

approach as method-of-moments estimation, but the method can also be regarded as 

maximum-likelihood.

If we let Xi be the observed number of individuals of species i in our sample, for 

i — 1, and f k be the number of species seen k times, then of the N  species

present in the population, only D have been observed, and there are N —D unobserved 

species in cell /o-

Letting pk(0) be the probability of seeing a species k times, for k =  1 ,...,r, 

distributed according to some abundance distribution with parameters 6 , we can 

write po{Q) =  1 — ^2Pk{S)- Then pk{6)/{ 1 — Po{0)) are the zero-truncated cell
fc>i

probabilities.

The likelihood for N and 6 can be written as

( < r ^ y  '*• (3.)
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This can be factorised as L(N,0) =  Lb(N,9)Lc(9) (Sanathanan, 1977) where the 

first likelihood, Lb(N,9),  can be written as

U (N, 6 )  =  (^ !p ) !P ,(9)JV~P{ l - P o ( 9 ) } c ,

and the second as
Pk(0) \

- P o m )

fk

(3.2)

(3.3)

There are two widely used estimators of the parameters (N , 9 ) (Fewster and Jupp, 

2009):

1. The maximum-likelihood estimator (MLE) (N,0),  which maximises the full 

likelihood (Equation 3.1) simultaneously with respect to N  and 9 ,

2. The conditional maximum-likelihood estimator (.NC10C), where 9C is the value 

of 6 which maximises the conditional likelihood of 9 based on the conditional 

distribution of / i , ..., f r (Equation 3.3), and Nc is the value of N that maximises 

Lb(N,9c). This approach results in the conditional likelihood estimator for N 

(Sanathanan, 1977):

Nr =
D

1 -P o (0c)
(3.4)

Theorem 3 of Sanathanan (1972) states that the estimators N  and Nc satisfy Nc >  N. 

Despite the discrepancy between Nc and N,  which is often small in practice, in many 

cases it is simpler to calculate the conditional likelihood estimator, and this method 

most certainly had computational advantage when these estimators were considered 

in the 1970s.

Fewster and Jupp (2009) have shown that the difference between Nc and N  is of 

order 1, and as N —> oo, Nc/N —> 1 (Chao and Bunge, 2002).



3. Species richness estimation - A maximum-likelihood frequentisi approach 36

3.3 Species abundance models

In the simple case that the population species abundances come from a Poisson 

distribution, with equal mean abundance of A for each species, then the probability 

of seeing a species k times in a single grab is

(A S)ke~xs
Pk( A) Ad

where S is the sampling effort. The probability that a species is not found is

Po(A) =  e- A S

For a single grab of area a from a total area A, S =  a/A. Since grabs are independent, 

and in our case a «  A (Bolam, 2011), the possibility that grab samples overlap can 

be ignored in practice. I can extend this to get the probability that a species is not 

detected in g grabs by letting S =  ga/A. Within each survey, sampling effort, is 

constant, and therefore I can incorporate S into the abundance parameter A.

We can extend the Poisson model by allowing the parameter A to vary between species. 

Specifically, the expected numbers of individuals per unit area, A, are modelled as 

a random sample from a mixing distribution with density / ( \;0).  The marginal 

probability that a particular species is observed k times in the sample is
OO

Pk{0) =  J Pfc(A)/(A; 0)dA, k =  0,1,... (3.5)
o

where d are the parameters describing the abundance distribution.

A density commonly adopted to describe the distribution of the species abundances 

is the gamma density:

/ (  A;ct,/3) =
T ( a )

(3.6)

The probability of observing a species k times in the sample becomes

Pk{6) =  J
o

(A)fce-A /3a\a~1e~l3X
k\ T(a)

dA. (3.7)
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This corresponds to a negative binomial distribution for the species counts, and Pk{0) 

can be written as

For a =  1, the gamma distribution simplifies to an exponential distribution and the 

number of individuals seen per species will follow a geometric distribution, where

I wish to assume the realistic situation for benthic species that densities vary between 

species, and also that individuals of a species are highly clustered. I therefore describe 

the species abundances using a Neyman-Scott clustering process (Neyman and Scott, 

1958).

Barry (2009) proposed the use of a Matern process (Matern, 1986) to model the 

spatial distribution of benthic organisms. If we suppose that the radius of the clusters, 

R, is very small in comparison to the size of the grab sample, we will have very tight 

clusters and can assume to a good approximation that an individual will be located in 

the grab sample if and only if the cluster centre is located in the grab sample area. If 

R — 0 the Matern process reduces to a Neyman Type A distribution (Johnson et ah, 

1997) with probability function

(3.8)

(3.9)

3.3.1 Incorporating clustering into the species abundance model

(3.10)

This seems a plausible step to take as Skellam (1958) states that

‘the type A distribution exhibits considerable robustness, and can be 

employed as an approximation in certain circumstances where the 

condition requiring compact clustering can be greatly relaxed'.
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In addition, the Neyman Type A distribution has been widely used to model spatial 

distributions for ecological data including plants, larvae and bacteria (Evans, 1953; 

Bliss and Fisher, 1953; Martin and Katti, 1962).

3.3.2 The Neyman Type A model

If the distribution of the individuals has a Neyman Type A distribution, then for a 

particular species

Pk{ K<t>) k\ y
j=0

e x4>k AA (Ae j k
.1-

(3.11)

where

E(Y)  =  X(p, and Var(T) =  A0(1 +  </>)■

Given this Neyman Type A distribution for the spatial distribution of a particular 

species, we can assume that both parameters A and <fi will vary between species. 

To estimate the Neyman Type A parameters we can assume that each is a random 

variable from some mixing distribution (or if the parameters are not thought to be 

independent, from a bivariate distribution).

To use the estimate N  we find the expectation over the joint distribution of A and <fi. 

If I give the mean abundance, A<fi =  p, a gamma distribution, then the probability 

that a species is observed k times in a sample is the marginal likelihood

Pk(0)
e x((p)k 

k\ £
3 = 0

(Ae j k ) /5“ (A(j))a 1e
]■ r ( a )

dA, (3.12)

where 0 =  ((f),a,/3). This allows the species density to vary, but assumes that the 

mean number of individuals per cluster, <fi, does not vary between species. I term this 

the Neyman Type A-gamma distribution.

If we extend the model so that not only the mean abundance but also the clustering 

parameter, <A can vary between species, the probability that a species is observed k
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times in a sample becomes

oo oo

Pk(0) = J J k\ %  l  j\ /o o

r f e X(pk i  (Ae * y j k ]

where <fi comes from a gamma distribution with parameters a and 6, and 9 =  

(a,/3,a,b). This model links more closely to the actual behaviour we see in benthic 

organisms, however the double integral greatly complicates computation of these 

probabilities. Therefore, I chose to work with the simpler Neyman Type A-gamma 

distribution where 0 does not vary between species, and this can be extended later.

I can use these probabilities to obtain the maximum-likelihood estimate for N. For the 

conditional likelihood estimator, I need to maximise only the likelihood of the zero- 

truncated probabilities of the abundance distribution. I can then use 9 to obtain an 

estimate for N.

In addition to obtaining a point estimate for the species richness, N, I also need to 

calculate a confidence interval for the estimate of N.

3.4.1 Horvitz-Thompson interval estimation 

The Horvitz-Thompson point estimate, defined as

where A =  1 if species i is present in the survey, and It =  0 otherwise, is equivalent to

van der Heijden et al. (2003) show that the variance of Nc can be estimated using the 

law of total variance, by

3.4 Confidence interval estimation

the conditional likelihood estimate Nc, where 6C maximises the log-likelihood of the
N

zero truncated abundance distribution of the data and D =  h-
i = 1

var(iVc) =  E[var(iVc|71, ..., IN)} +  var(E[iVc|/i,..., IN)]), (3.15)
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where the first term on the right hand side is estimated using the ¿-method, and 

reflects sampling fluctuation in the abundance distribution conditional on the data 

(van der Heijden et ah, 2003).

The second term on the right hand side of Equation 3T5 reflects variation in the 

obtained sample. Nc is assumed equal to E(iVc|/i,..., 1^)) for a sufficiently large 

sample size, and so the variance in this second term is estimated by

Po(0)
N

var[E(iVc|/i,..., 7^)] =
( i - p o ( 0 ))2 tT

x > (3.16)

So the variance of Nc in Equation 3.15 is

Po(0)
N

var(Nc) =  aTJ { Q y 1 a\~e +  V  Iu
9 (1 -P o (0 ))2 t r

(3.17)

where J{9)  is the observed Fisher information matrix and aT is the vector of 

derivatives

Ta =
dNr 8Nr
d d d n (3.18)

evaluated at 6C, where d is the dimension of the parameter vector Qc

For example, when using the Poisson distribution to model the abundance of the 

observed data, X  — xi ,...,Xd , we can use Equation 3.17 to calculate the variance of

the estimator as

var (Nc)
exp(-A) \ 

(1 -  exp(—A))2y
D exp( —A) \ exp(-A)

(1 -  exp(-A ))2y (1 -  exp(-A ))2’
(3.19)

Using this variance estimate we can construct a symmetric 95% confidence interval 

for Nc as

Nc ±  1.96 var(fVc)1/2.

However, Cruyff and van der Heijden (2008) show through simulations that, especially 

for smaller samples, confidence intervals should be asymmetric. They suggest
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development of a confidence interval for the logarithm of TV, which will allow for 

asymmetry, and such an interval is outlined in Section 3.4.3.

3.4.2 Confidence regions from profile likelihoods

A standard method of interval estimation uses the approximate 100(1 — «)%  

confidence limits satisfying

2{ l r ( N , e ) - l r(N,9)]=xl« ( 3.20)

where lp(N,G) denotes the profile log-likelihood of TV, and d is the dimension of the 

parameter vector (Fewster and Jupp, 2009). Therefore, the confidence set consists of 

all values of TV for which the log-likelihood lies within \x2d.a of the maximum value of

lP(N,0).

Since I am interested in estimating TV, I can treat, the abundance parameter vector 

0 as a vector of nuisance parameters, and fix the values at their maximum for each 

possible TV. Therefore, I let of =  1 and use to obtain 95% confidence limits for 

TV (Morgan, 2009, p90). An example of this profile confidence interval is shown in 

Figure 3.1a using the Poisson to model species’ abundances. Here I use the full profile 

log-likelihood to find the species richness estimates.

In theory this approach can be applied when using any abundance distribution, but 

when using the negative binomial I have shown that it is possible to get an almost flat 

log-likelihood profile (Figure 3.1b). It might be an advantage where this may arise to 

consider a profile confidence interval for log(TV), calculated using the same method, 

to reduce the flatness of the profile.

However, it is possible that the upper confidence limit for TV could be infinite, 

and this possibility was shown by Morgan and Ridout (2009) for the beta-binomial 

model. They showed that the overall log-likelihood tends to a constant as TV —> oo, 

but depending on the value of this constant in relation to the log-likelihood at the
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N N

(a) Poisson (b) negative binomial

Figure 3.1: Profile confidence intervals for TV using (a) the Poisson and (b) the negative 

binomial distributions to model species’ abundances. Abundance data were 

simulated from the Poisson and negative binomial distributions respectively, 

with TV = 500. The values of TV corresponding to log-likelihood values above 

the horizontal line lie within the 95% confidence limit of TV, and the vertical line 

illustrate the upper and lower limit of the 95% confidence interval for TV. We 

can see that there appears to be no upper limit for TV for the negative binomial 

example.
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maximum-likelihood estimate it could lead to an infinite upper confidence limit for N. 

This possibility is shown in the following example, for the negative binomial model.

Infinite upper confidence limit for N

As N  —> oo, Morgan and Ridout (2009) showed that the value of the full likelihood 

depends only on the conditional term of the likelihood, and that this conditional 

likelihood should approach a constant. The mean of the abundance distribution, in 

this case the negative binomial, can be approximated by equating the conditional 

mean number of times a species is seen to its expectation giving

¡1 Np
~  -------- ~  ——, so that (3.21)

1 -  Pc D
1 r

«  (3.22)
V k= 1

E kfk
k= 1

D

A

1 present an example where a data set has been simulated from the negative binomial 

distribution with a =  2 and ¡3 =  2. The number of observed species was D =  103 and 

the conditional mean number of times a species is seen is 453/103 =  4.398. Table 3.1 

shows the contributions to the log-likelihood from the first and second components in 

the log-likelihood , If, and /c, the overall profile log-likelihood, lp, and the maximum- 

likelihood estimate of //, the mean of the negative binomial distribution, conditional 

on N, and the corresponding value from Equation 3.22, p. The estimate of the 

negative binomial parameter, a, is also shown.

The first row of the table corresponds to the number of species observed in the 

sample, D, with the second and third corresponding to the approximate chi-squared 

lower confidence limit and the maximum-likelihood estimate respectively. This table 

shows that the likelihood values stabilise as IV -> oo as we would expect, and the 

approximate value of p is accurate for all values of N  considered. In addition,

lb »  D { \ o g D -  f )  =  374.3771 (3.23)
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N lb lc Ip T A à

103 364.0682 -249.7406 114.3276 4.3989 4.3981 1.5649

147 374.7233 -238.6929 134.9750 3.0820 3.0816 0.6000

320 374.5712 -237.6117 136.9590 1.4155 1.4155 0.1766

1,000 374.4312 -237.8920 136.5390 0.4350 0.4530 0.0455

10,000 374.3822 -238.1181 136.2641 0.0452 0.0453 0.0042

100,000 374.3772 -238.1430 136.2342 0.0045 0.0045 0.0004

1,000,000 374.3750 -238.1504 136.2246 0.0005 0.0005 0.0001

Table 3.1: The behaviour of the profile log-likelihood for N for a data set of 200 species 

simulated from the negative binomial distribution with parameters a =  2 and 

P — 2. The number of species observed in the simulated data set was D = 103.

is approximate as N  —> oo and very accurate for N > 100, 000.

So we see that the profile log-likelihood tends to a limit as N —> oo. However, the 95% 

confidence set consists of all values of N  for which the log-likelihood lies within |x l -5 

of the maximum value of lp(N, 6). For this example the limit is at the log-likelihood 

value of 135.0484, and so it appears that the upper 95% profile confidence limit for 

N  is infinite.

Morgan and Ridout (2009) surmise that this result is not particular to the beta- 

binomial model, and I have shown that this can also occur for the negative binomial 

model.

3.4.3 Confidence intervals for logN

If it is difficult to evaluate the profile log-likelihood, lp, then Fewster and Jupp (2009) 

suggest use of the intervals

q(è)Ttc{ è y 1q{è) +Po{0)
1/2

logiV ±  Zal2
N ( l - p o ( 0 ))

(3.24)
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based on the asymptotic distribution of N, or the analogous expression based 

on (NC,0C) when using the conditional MLE. This gives asymptotic 100(1 -  a)% 

confidence intervals for logAfi where ic(0) is the Fisher information on 6 based on 

a single observation from the zero-truncated abundance distribution, and q(0) is a 

column vector defined as
q\t dlog(l — po(0)) 

=  --------- ------------ (3.25)

As logfV is asymptotically normally distributed, we form a 95% confidence interval 

for logfV using z2.5 =  1-96.

This method should be an improvement on the Horvitz-Thompson interval as it is 

able to produce an asymmetric confidence interval for N .

If we assume the abundances of the observed species, come from a Poisson

distribution we will have 1 — po(0) =  1 — e~A. The probability mass function for the 

zero-truncated Poisson is

f(y\y > 0; A) = f(y\tf e~x\y

f ( y >  0|A) y\(l — e~x) 

and so the conditional log-likelihood can be written as

iV f ) 2, • • • (3.26)

D

Ici A) =  log Â) “  A “  -  e A) -  log(xj!)) . (3.27)
i = 1

Therefore we can calculate q(0) as

q(Q)T =  —° g^  -  e X
d 0 1 - e - A’ (3.28)

and the observed Fisher information on A as

d2L D De - A

i —1 (1 - e - A)2’ (3.29)

and form the confidence interval for log(TV) using Equation 3.24.

We can use the same method to construct confidence intervals when the species
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abundances are described by a negative binomial distribution. The conditional log- 

likelihood for the zero-truncated negative binomial can be written as

lc(0) =  XI l°g(r(ct +  Xi)) -  log(xj!) -  log(r(a))
i=l

+a log ij^ ) + Xi -  log(l -  )•

Now we have

and we can calculate

1 -  po{6) =  1 -
a

m
/ dlog(l -  po(9) dlog(l -  po(8) 
\ da d/3

l «
i+0 a

l - ^ - a1+0 1+0V1 l+B )

The derivatives for ic(0) can be found in Appendix A. However, instead of using these 

equations directly I could use the Hessian matrix which is produced when maximising 

the conditional log-likelihood for 0 within R. This would be helpful when extending 

to more complicated distributions such as the Neyman Type A-gamma model.

For the Neyman Type A-Gamma distribution I can calculate a value for po{0) within 

R using the integrate function, and also obtain a Hessian matrix during optimisation 

of the conditional log-likelihood. However I also need to calculate q(0), which must 

be done numerically.

3.4.4 Bootstrap confidence intervals

We can use one of several bootstrap approaches to construct confidence intervals. 

The first is an abundance-model-based bootstrap, as described by Wang and Lindsay 

(2005), in which we plug our fitted parameters into our abundance model and use 

it to simulate N new observations, Xj, for our population. Species with Xj =  0 are 

omitted, because they would not be present in our sample, and we have a new data 

set on which to apply the estimator. An estimate is computed, and the whole process 

is repeated to generate S bootstrap samples for N.
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95% confidence limits are then obtained using Efron’s percentile method (Efron, 

1981), by using the 2.5 and the 97.5 percentiles of the bootstrap distribution as 

the limits of the confidence interval. This method can be refined by using the bias- 

corrected and accelerated (BCa) bootstrap, which adjusts for both bias and skewness 

in the bootstrap distribution (Efron, 1987).

However, as Wang and Lindsay (2005) state, it is individuals which are sampled from 

the population, not the species counts, which come from aggregating individuals. 

Therefore, we can consider a multinomial-based bootstrap, proposed by Wang and 

Lindsay (2005), in which we create an estimated population and simulate draws of 

individuals from it.

Wang and Lindsay (2005) do this by creating N  cells, with each cell corresponding 

to a species. The cells are then divided into r groups, corresponding to the species 

abundance levels, and weighted. The multinomial parameter for each cell in the jth 

group is then calculated as Pj} and bootstrap samples of fixed size S are generated by 

drawing individuals from a multinomial distribution, of S trials and event probabilities 

Pj. Again, the estimator can be computed for each sample, and a confidence interval 

constructed using the percentile method.

Further bootstrap methods suggested by Wang and Lindsay (2005) include a more 

non-parametric bootstrap, which generates n non-zero observations of X  from the 

multinomial corresponding to the empirical distribution of the non-zero counts, where 

n is the number of individuals in the sample, and a hybrid bootstrap, which involves 

sampling n from a binomial and then drawing n times from the empirical multinomial.

Wang and Lindsay (2005) found that the multinomial-based bootstrap tended to 

be more reliable than the others. However as the bootstrap sample size is fixed, this 

method best matches data collected by sampling a fixed number of individuals, which
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is not the kind of data I have, van der Heijden et al. (2003) used an abundance-model 

based parametric bootstrap and found that coverage probabilities (the percentage of 

confidence intervals that contain the true value of the parameter) could be low when 

the population size and density were small.

3.5 Goodness o f fit and model selection

To quantify the fit of a model, I can use the Pearson y2 test, which makes a comparison 

between the observed and fitted values. The Pearson goodness-of-fit statistic is given 

by:

X'2 = E
i= 1

(Oi ~ E ,f
Ei (3.30)

where r is the number of categories comparing observed and expected values over. 

Since we cannot observe / 0, the zero category is excluded from the calculation. When 

more than 20% of the categories have a frequency less than five, the Pearson goodness- 

of-fit statistic breaks down, and therefore in this case I group the data, and r is the 

number of groups. This should ensure the y 2 test is accurate.

We then calculate the degrees of freedom, df =  r — 1 — d, where d is the number of 

parameters estimated, and look at the corresponding chi-squared percentage point, 

Xdf-.a, where a indicates the ct/100 probability we reject the fit.

When using this method we may expect some degree of mismatch between model 

and data. However, as suggested by Morgan (2009), we can use this goodness-of-fit 

measure as a guideline.

To choose between models we can select the model with the smallest values of an 

information criterion, such as the Akaike Information Criterion (AIC). The AIC is 

defined as

A IC  =  -21og L + 2 d (3.31)



3. Species richness estimation - A maximum-likelihood frequentisi approach 49

where L is the likelihood of the fitted model, and d is the number of parameters 

estimated (Akaike, 1973).

This is a simple way to choose between competing models, that does not require 

models to be nested. The AIC can be thought of as a measure of lack of model fit 

plus a penalty for estimating d parameters (Burnham et ah, 1995).

To compare the fit of models, we can look at the difference between each model 

and that with the lowest AIC, termed the AAIC, and (Burnham and Anderson, 

2002, p 70) suggest that models with AAIC < 2 are plausible, 4 < AAIC < 7 are 

considerably less plausible, and AAIC > 10 means that the model is unlikely.

In fitting the full likelihood to the data it is possible to obtain positive log-likelihood 

values and therefore negative AIC values, as the likelihood is not itself the probability 

of observing the data, but just proportional to it. However, using the conditional 

likelihood only negative values are obtained as we are just calculating the probability 

of observing the data. Where negative AIC values occur, we still take the model with 

the lowest AIC as the best of the set.

3.6 Excluding highly abundant species

If we have a species in our sample that is highly abundant, its large numbers of 

individuals may skew the estimator by having a significant effect on the model fitting. 

Therefore excluding these abundant species from the estimation of the number of 

missing species may give a more accurate estimate of species richness.

To illustrate the importance of excluding abundant species, I use the microbial 

organisms sample data presented in Barger and Bunge (2008). The non-zero observed 

frequencies for the full data set, listed as (k, f k), are: (1, 15),(2, 6),(3, 7),(4, 2),(5, 

1),(6, 1),(7, 1),(8, 1),(9, 1),(12, 1),(15, 1),(20, 1),(164, 1). The observed number of 

species is 36 and the observed number of individual organisms is 303. If we include all
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of the observed data, and use the conditional log-likelihood estimator and a Poisson 

model for the species abundances, the fitted model corresponds very badly to the 

observed data, as seen in Figure 3.2.

Figure 3.2: Observed (red) and expected (black) frequencies evaluated at (7VC, 6C) for the 

Poisson model fitted to the microbial data without using truncation (data point 

at 164 not shown).

We need to decide on the criteria to define a species as abundant before we can 

proceed with data truncation, and there are several ways that this could be done. 

Firstly, an abundant species could be defined as a species that is seen in every single 

grab. However, although not likely, there is the possibility that a species may fall 

into this category even if there is only a single individual of the species in each grab.

Alternatively, we could define a species as abundant if there is more than a certain 

number of individuals of that species present over all the grabs. Under this definition, 

an abundant species may be seen only in a single grab, but it would be more likely 

to skew the overall species richness estimate.
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If we were considering a single grab, or pooling data over the grabs, we could split 

the sample into ‘rare’ species and ‘abundant’ species by partitioning the data into 

those species seen up to r times in the sample, and those seen more than r times, 

where r < r (Chao et al., 2000). An estimate, NT, is obtained by maximising the 

likelihood based completely on the ‘rare’ species data, and then the final estimate of 

species richness is calculated as

N  =  Nt +  Et ,
r

where ET — V) /,, the number of truncated species.
i = T  + 1

Previous studies have chosen r by applying a goodness of fit method (Behnke 

et ah, 2006; Barger and Bunge, 2008). Behnke et al. (2006) considered data subsets 

consisting the observed frequency counts from one up to some maximum value, which 

they called the right truncation point. They then fitted all models at all right 

truncation points and selected the ‘best of the best’ model, based on goodness of 

fit (defined by two chi-square statistics), the minimal standard error (among the 

fitted models), and the maximal data usage (highest right truncation point).

This method would be computationally intensive, because every model is calculated 

for every possible r. This would not be a practical approach when fitting the 

Neyman Type A-gamma distribution to the abundance data, as because of the 

summation within the Neyman Type A probability calculations, and the need to 

integrate the marginal likelihood, fitting this model by maximum-likelihood can be 

computationally expensive. Also, if the estimator is sensitive to the choice of r, then 

we are assuming that certain species hold most of the information on the missing 

species, namely the ’rare’ ones (Chao et al., 2000).

Using this truncation method discards some of the data from the maximum-likelihood 

estimator. To avoid throwing away these data, I truncated the data at a point r, but 

instead of using N = NT +  Er, I include ET within the likelihood calculation.
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So instead of maximising the conditional log-likelihood

lc{0) =  5 ^ / f c l o g ( p fc( 0 )  -  ( 1  - p o ( 0 ) ) ) , (3.32)
k>  1

T

lc{0) =  £ >  loë (Pk{0) -  (1 -  Po(0))) +  Et log(<2v). (3.33)
k = 1

When using the full likelihood I adjust in the same way.

Using this approach, I am still required to select r, although we might expect that the 

choice of r in this approach may be less influential on the species richness estimate 

because no data is discarded. The ‘best’ choice of truncation point may vary between 

models, and so I follow the approach of using the r suggested by the goodness of fit 

method, if this value is already available in the literature for a particular data set.

For some data sets, when the number of individuals for a particular species exceeds 

approximately 150, an error is produced within E when fitting the Neyman Type A- 

gamma model. Therefore, in these cases it is necessary to truncate the data at r =  150 

to obtain a species richness estimate, and the likelihood of Equation 3.33 is used in 

maximisation. In all other cases, unless otherwise stated, the data are not truncated.

Computational difficulties arise in R when fitting the Neyman Type A-gamma model 

to the data using the maximum-likelihood approach.

The marginal likelihood for the abundance probabilities, (Equation 3.12)

cannot be easily computed. Firstly, the probability density function of the 

Neyman Type A distribution contains an infinite summation, which must be

3.7 Computational difficulties in fitting the

Neyman Type A  - gamma model

(3.34)
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truncated. I used a truncation point of 100 for this summation, which was shown to 

estimate the probabilities well in most cases. However, when A —> 0 and <f> —>■ oo, even 

when the terms up to ten million in this summation were calculated, the probability 

estimates showed an error of 0.01. However, since such extreme parameter values 

were not used for simulations, I did not increase the truncation point.

When using function integrate to calculate the marginal probabilities, computation 

could be slow, and further investigation is required into how this could be improved. 

In addition, when the number of individuals for a particular species exceeded 150, 

the marginal probabilities could not be calculated and it was necessary to truncate 

the data at this point to obtain a species richness estimate.

3.8 Boundary problem

The ‘boundary problem’ is a serious issue that can occur when estimating species 

richness parametrically through maximum-likelihood estimation, often occurring 

when heterogeneity is severe (Pledger and Phillpot, 2008). It arises when a great 

deal of positive mass is located near the origin of the abundance distribution (Wang 

and Lindsay, 2005; Kuhnert et al., 2008; Bohning, 2009). This increases the influence 

of that part of the abundance distribution, which can give a spuriously large species 

richness estimate. The concept of the ‘boundary problem’ is complex, and more 

detail, in terms of non-parametric mixtures, is outlined in Wang and Lindsay (2008).

The boundary problem presents a hurdle to several estimators, such as the 

nonparametric maximum-likelihood estimator of Wang and Lindsay (2008), for which 

they found it caused a severe instability problem. It has also been demonstrated 

that mixtures of several exponential family distributions suffer under the boundary 

problem (Wang and Lindsay, 2008; Kuhnert et al., 2008), and it is stated by Bohning 

(2009) that it is so far impossible to detect which data set has this problem and which 

does not.
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3.8.1 Proposed solutions to the boundary problem

Penalising the likelihood has been found to be useful where the likelihood function is 

relatively flat, to combat the boundary problem (Wang and Lindsay, 2005; Moreno 

and Lele, 2010). However, Moreno and Lele (2010) point out that there is no unique 

specification of the penalty term to be used, or theoretical basis to choose one.

Wang and Lindsay (2005) proposed a class of nonparametric maximum-likelihood 

estimators (NPMLE) for the species richness problem, using a penalty term on the 

log-likelihood to eliminate the instability problem. The estimators are constructed 

using the conditional likelihood, and Wang and Lindsay (2005) hoped that the penalty 

functions considered would attain high stability whilst retaining sensitivity.

There are several properties that we would like a penalty to have. As the sample 

size increases, Moreno and Lele (2010) state that the penalty should tend to zero 

to maintain the asymptotic properties of the MLE. Also, if sampling depth, defined 

as the proportion of the species in the population which have been observed in the 

sample, is high, the penalty should tend to zero, because the data should be well 

behaved.

As the probability of not seeing a species, po, approaches 1, the species richness 

estimate, N, tends to infinity (Figure 3.3). This is when we would require a penalty, 

to obtain a realistic species richness estimate. However, if the true value of po is low, 

then a species richness estimate should not be penalised, as the boundary problem 

should not occur. If we do apply a penalty in this case, then we risk bias in the 

species richness estimate.

Penalising the likelihood can be seen as an attempt to incorporate prior information 

from a naive estimator (Wang and Lindsay, 2005), such as the number of observed 

species. The goal is then to penalise estimates that are too far from this naive 

estimate. However, it would be important to use a suitable naive estimate, because
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Po

Figure 3.3: Graph showing how the maximum-likelihood species richness estimate TV —> oo 

as the probability of not seeing a species po(0) —> 1.

if this initial estimate is too low in comparison to the true species richness, then the 

penalty could be too harsh and negatively bias the final species richness estimate.

Bohning (2009) proposed an alternative method to combat the boundary problem 

in species richness estimation, using a non-parametric empirical Bayes approach. 

This method uses information from the sample to inform the model, and does not 

suffer under the boundary problem (Bohning, 2009). However, if the sample size 

is small, there will be large variation, and Bohning (2009) suggest using smoothing 

probabilities to combat this.

Penalised log-likelihood

The objective of Wang and Lindsay (2005) was to see if there was a way to penalise 

the nonparametric likelihood such that the resulting maximum-likelihood estimator 

retained much of its flexibility, but behaved more stably. Parametric maximum- 

likelihood estimates have a tendency to become spuriously large, and it is hoped that
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by adding a penalty term to the likelihood we will obtain estimates of species richness 

that are accurate and stable.

If l (N,6 ) is a log-likelihood function then the penalised log-likelihood corresponding 

to penalty parameter 7 and penalty function h(N. 9) is defined as (Wang and Lindsay, 

2005)

P(N,0)  =  l (6 ) - 'rh (N ,0 ) .  (3.35)

We can consider maximising the full penalised likelihood of Equation 3.35; or to 

estimate N  using the conditional penalised log-likelihood where we first find the 

penalised MLE of 9 from the penalised conditional log-likelihood corresponding to 

the conditional likelihood Lc in Equation (3.3) of

Pc (9) =  lc( 9 ) -^ h (9 ) .  (3.36)

and then use Equation 3.4 to find the penalised conditional MLE of N

Ñ? =  D / { l - p 0(e¡)}.(3.37)

Wang and Lindsay (2005) remark that for 7 > 0 and h(9) > 0, a maximiser of the 

penalised conditional log-likelihood in Equation (3.36) tends to avoid 9 with large 

values of h(9), that is with a large penalty function.

Wang and Lindsay (2005) considered three penalty functions. The first of these 

was

hi(9) = log (po(0)) , 7i =  0.5, (3.38)

which did not eliminate the boundary problem. As po increases, the penalty term 

becomes flat rapidly, and therefore ignorable (Wang and Lindsay, 2005) (Figure 3.4). 

This means that there will not be enough penalty where it is required at large values 

of po) and too much penalty elsewhere.

The second choice of penalty function by Wang and Lindsay (2005) was the odds
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Figure 3.4: Graph showing how penalty 1, 71 h\ = 0.51og po, becomes flat rapidly as p0 

increases.

function, if>(0) =  po(0)/(l ~ Po(0)). As Nc =  D/{ 1 - p 0(6 c)}, then Nc =  D(1 +  ^); 

so imposing a penalty on ip reduces the magnitude of Nc.

(Wang and Lindsay, 2005) highlight that the penalised likelihood

h(0) =  lc(0) ~ 72̂ (0), 72 > 0

cannot have its maximum at ip(6 ) =  00, so extreme estimates due to the boundary 

problem cannot occur (Figure 3.5).

The penalty parameter y2 can be tuned to control the variability of Nc. However, the 

optimal choice of 72 depends strongly on the value of the odds function (Wang and 

Lindsay, 2005). So far there is no known method devised to choose the best penalty 

for a particular problem.

The final penalty to be considered by Wang and Lindsay (2005) was a more severe 

penalty,

h(0) =  lc(0) -  73C0 -  V)2I{^ > 77), 73,7 > 0,
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Figure 3.5: The behaviour of penalty 2, 72/12 = 0.5^, as p0 increases, where ip is the odds 

function ip =  po/(l — Po).

Po

Figure 3.6: Graph plotting the behaviour of penalty 3, 73(1/: -  r/)2I(ip > rj), as p0 increases, 

where ip is the odds function, 73 = l/2r/ and rj = NC\/D -  1. For this example, 

D — 200 and Nci =  300.
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where /  is the indicator function. This penalises the quadratic distance between 

0  and 7/ when 0 exceeds threshold p, and offers no penalty for small 0, but as 0  

becomes larger, the penalty becomes much larger (Figure 3.6) (Wang and Lindsay, 

2005). Comparing the two graphs in Figures 3.5 and 3.6 we see that this is indeed a 

much harsher penalty than penalty 2.

This penalty requires the choice of two parameters, y3 and p. In an attempt to 

avoid under- or over-penalising, Wang and Lindsay (2005) used adaptive values for 

the penalty parameters and let

p = Nci
D (3.39)

and

•» =  h  <3-40)

where Nci is the lower bound estimator of Chao (1984), given by Nci =  D + f l / (2 /2).

This penalty term shrinks the MLE towards the naive estimate Nci, which is likely 

to cause negative bias in some cases, especially when applied to benthic data, as we 

have seen in Chapter 2 that the Chao\ estimator Nci can severely underestimate the 

true species richness when dealing with clustered individuals.

Therefore we might consider an alternative naive estimator to Nci- However none 

of the nonparametric species richness estimators mentioned in Chapter 2 are suitable 

because they were unable to give an adequate estimate for clustered data. Instead 

I could use an iterative approach, to avoid this negative bias. We could obtain an 

initial species richness estimate using this penalty with the Chao estimate as a naive 

species richness estimate. This would enable us to get an estimate for N, which we 

might call N0. Then using this estimate in place of Nci in ?7, I could repeat the 

maximisation of the likelihood, and obtain another estimate of TV, N1. If I repeated 

this process, I would hope the estimates Nq, N i, N2 ,... would converge to some final 

value, which I would take as my final species richness estimate.
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I would hope that using this approach would penalise the log-likelihood, but not 

as harshly as using the Chao estimate in the penalty. However, this would require a 

high computation time when applied to more complicated distributions, depending on 

the number of iterations required for convergence (if they converge at all). Therefore, 

we might use a one-step iteration in the hope that this would still give a more realistic 

estimate than merely using the Chao\ estimator within the penalty.

3.9 Analysis o f methods via simulation

As well as assessing the performance of the maximum-likelihood method for various 

models, there are several aspects that have been highlighted that require further 

investigation. These include:

• the calculation of confidence intervals,

• the sampling depth required to avoid the boundary problem,

• how we might combat the boundary problem using penalties.

I did this using simulated data. In all of these simulations unless stated otherwise 

I applied the negative binomial MLE and no penalty. I simulated data sets Y  such 

that yl ~  Poisson(Aj), and Aj ~  Gamma(a, /3). The data were generated for 10 grabs, 

and an example of the data when pooled is shown in Table 3.2.

3.9.1 Confidence intervals

I wished to investigate the coverage properties of the confidence intervals, because 1 

hoped that when using 95% confidence intervals, the true species richness would lie

k 1 2 3 4 5 6 7 8 9 10

fk 54 33 34 10 10 3 2 1 2 1

Table 3.2: Example abundance data simulated for a population of N =  200 from the 

negative binomial distribution with parameters a = 2 and (3 — 1. D = 150.
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within the interval 95% of the time, van der Heijden et al. (2003) reported a simulation 

study that assesses the stability of the Horvitz-Thompson variance estimators, and 

also evaluate the coverage probability of confidence intervals obtained by abundance- 

model-based parametric bootstrapping. I repeated this study using the Poisson model 

and the conditional maximum-likelihood estimator, and also included the coverage 

results for the other confidence interval estimators mentioned in Section 3.4, the profile 

confidence intervals for N, and the confidence interval for log(TV). Although van der 

Heijden et al. (2003) found the coverage of the abundance-model-based parametric 

bootstrap low when the population size and density were small, I chose to use the 

same method for comparison with their results.

I simulated data from a Poisson distribution, with parameters shown in Table 3.3. 

As far as I am aware, a comparison of the coverage of these confidence interval 

methods has not been published before. Coverage was calculated as the proportion 

of confidence interval estimates for which the true species richness fell between the 

upper and lower confidence limit.

The results given by van der Heijden et al. (2003) indicated that the Horvitz- 

Thompson confidence interval had a higher coverage probability than that of the 

bootstrap confidence interval when both A and N  were small. However for other 

values they were comparable. My results for the bootstrap confidence intervals were 

slightly different (See Table 3.3). However, looking at the mean widths of the intervals 

in Table 3.4, I can see that the bootstrap intervals are very wide for the low values 

of A and N  due to spuriously large estimates arising in the bootstrap process.

Table 3.3 shows good coverage probabilities for the profile confidence intervals, 

performing well in all cases, and outperforming the Horvitz-Thompson confidence 

intervals in some cases.

van der Heijden et al. (2003) suggested the use of confidence intervals which can
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N

A Method 100 250 500 1000

0.5 UT 0.948 0.944 0.960 0.952

PR 0.936 0.946 0.954 0.952

BOOT 0.942 0.916 0.912 0.930

LN 0.684 0.668 0.684 0.644

1 HT 0.958 0.948 0.948 0.946

PR 0.960 0.954 0.942 0.956

BOOT 0.932 0.914 0.902 0.916

LN 0.832 0.792 0.778 0.792

1.5 HT 0.950 0.960 0.946 0.936

PR 0.944 0.962 0.952 0.938

BOOT 0.914 0.908 0.910 0.888

LN 0.864 0.846 0.852 0.830

2 HT 0.924 0.948 0.950 0.948

PR 0.938 0.944 0.944 0.952

BOOT 0.896 0.914 0.912 0.918

LN 0.876 0.888 0.880 0.890

2.5 HT 0.960 0.952 0.964 0.948

PR 0.966 0.962 0.964 0.944

BOOT 0.944 0.936 0.946 0.930

LN 0.938 0.926 0.926 0.918

Table 3.3: Coverage of 95% confidence intervals calculated using HT: Horvitz-Thompson, 

PR: Profile log-likelihood for N, BOOT: abundance-based Bootstrap, and LN: 

logfV following Fewster and Jupp (2009), for the Poisson MLE applied to Poisson 

simulated data sets over 100 simulations.
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N

A Method 100 250 500 1000

0.5 HT 121.0 175.0 235.5 325.0

PR 109.0 183.9 240.9 328.7

BOOT 6890.8 181.4 224.5 301.1

LN 56.5 82.6 112.2 155.5

1 HT 48.4 75.2 105.5 146.2

PR 49.8 76.1 106.0 146.6

BOOT 46.1 67.5 92.7 126.9

LN 31.1 48.4 67.9 94.6

1.5 HT 28.5 44.7 62.6 88.4

PR 28.9 45.0 62.8 88.5

BOOT 26.0 39.8 55.5 78.0

LN 21.4 33.7 47.2 66.7

2 HT 19.0 29.8 42.0 59.2

PR 19.2 30.0 42.1 59.3

BOOT 17.6 27.2 38.4 54.0

LN 15.7 24.7 34.8 49.1

2.5 HT 13.5 21.2 29.9 42.0

PR 14.1 21.4 30.0 42.1

BOOT 12.8 19.9 28.0 39.5

LN 11.9 18.7 26.3 37.1

Table 3.4: Width of 95% confidence intervals, HT: Horvitz-Thompson, PR: Profile 

likelihood for N, BOOT: Bootstrap, LN: logiV, for the Poisson MLE applied 

to Poisson simulated data sets over 100 simulations.
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be asymmetric, such as those of log(TV). However, the confidence intervals for log(fV) 

suggested by Fewster and Jupp (2009) surprisingly were much narrower than those 

from the other methods, and this was the likely cause of the much lower coverage 

probabilities associated with this method. When I increased the value of A. the 

Fewster and Jupp (2009) log(lV) method did give excellent coverage. For example, 

for N  =  1000, A =  5 I obtained coverage of 95.4% over 500 simulations. However in 

reality we are more likely to have low sampling depth (the proportion of the species in 

the population which have been observed in the sample), not 0.99 as in this example. 

As sampling depth decreases with the decrease in A, the coverage probability also 

decreases.

The poor performance of the log(Ar) confidence intervals warranted further 

investigation, but since the other methods were performing well I did not investigate 

further at this time.

I wished to run the same investigation for the negative binomial case, however 

I experienced a number of problems which arose due to the boundary problem. 

Therefore I needed to investigate the use of these confidence intervals with penalties. 

Since Table 3.3 shows good coverage probabilities for the profile intervals, I 

investigated their performance for the penalised MLE and used them for further 

confidence interval estimation when applying the maximum-likelihood estimator.

3.9.2 Sampling depth required to avoid the boundary problem

To investigate the boundary problem, I looked at the homogeneous case where data 

were simulated from the Poisson distribution. As defined previously, sampling depth 

is the proportion of the species in the population which have been observed. Table

3.5 shows that in most cases the conditional maximum-likelihood estimator gave a 

value close to the true N for the Poisson model, and when applying a Poisson model 

to Poisson simulated data, there was no significant evidence of the boundary problem 

occurring when sampling depth was more than 10%. The maximum estimate over
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these simulations was 1784, and the minimum was 593.

However, when I decreased sampling depth we see clear signs of the boundary problem 

occurring. When sampling depth decreased to less than 10% we see that the standard 

deviation of the species richness estimates increased significantly. The median of the 

sample remained respectable until the sampling depth decreased to 2.5%, but the 

central 95% interval clearly showed that the boundary problem is occurring in several 

cases when sampling depth was 5% or smaller.

I repeated the simulation for the heterogenous case and simulated data from the 

negative binomial distribution, for populations of various gamma parameter values, 

and N  =  1000. For each simulation setting, I generated 200 data sets, and the 

summary statistics of the sampling distributions of the estimators based on 200 

samples are presented in Table 3.6, following Wang and Lindsay (2005).

The results show that when sampling depth fell below 50% that there was evidence 

of the boundary problem. The mean estimate became large, and compared to the 

median estimate, we see that the distribution of the estimates is skewed, with some 

very large estimates contributing to the large mean estimate. This is highlighted 

in the 95% confidence interval, which is extremely wide and as the sampling depth 

decreased, the standard deviation increased.

Compared to the results for the Neyman Type A-gamma model, (Table 3.7) signs 

of the boundary problem were now evident at higher sampling depths, and when 

sampling depth was at 20% we see some extreme species richness estimates. I would 

expect the standard deviation to increase because the number of parameters in the 

model increase, less information is used to estimate each parameter, so there will 

be more variance in the estimates. However, the spuriously large estimates can be 

attributed to the boundary problem.
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Depth A Mean Median SD RMSE MAE Central 95%

0.025 0.03 419,622 511,924 284,056 506,327 419,015 (501, 633,810)

0.05 0.05 317,227 1089 541,478 626,391 316,575 (633, 999,470)

0.075 0.08 154,855 1148 509,875 531,651 154,083 (813, 2223)

0.1 0.11 1223 1047 770 1444 438 (812, 1410)

0.2 0.20 1049 1015 211 213 166 (882, 1182)

0.3 0.40 1018 1004 141 142 108 (923, 1104)

0.4 0.50 1007 1011 82 83 65 (948, 1053)

0.5 0.70 1004 1001 59 59 48 (961, 1044)

0.6 0.90 999 1000 40 40 32 (970, 1025)

0.75 1.40 1001 998 24 24 19 (984, 1017)

0.9 2.30 1001 1000 1 1 11 9 (993, 1007)

Table 3.5: Sample mean, median, standard deviation, SD, root mean squared error, RMSE, 

mean absolute error, MAE, and a central 95% interval of the Poisson MLE, 

calculated for 200 data sets of 1000 species simulated using a Poisson distribution 

for each sampling depth/Poisson parameter combination.
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Depth (a,/?) Mean Median SD RMSE MAE Central 95%

0.2 (4,0.06) 2490 1078 2850 3216 1677 (608, 9553)

(2,0.11) 2217 893 2709 2970 1592 (194, 9288)

(1,0.25) 1844 850 2053 2219 1252 (195, 7827)

(0.5,0.56) 1966 889 1959 2184 1357 (407, 7575)

0.3 (4, 0.09) 1404 961 1657 1706 688 (284, 7689)

(2,0.20) 1373 983 1280 1333 571 (659, 6170)

(1,0.43) 1500 928 1491 1573 748 (559, 6169)

(0.5,1.04) 1215 944 827 854 444 (598, 4274)

0.4 (4,0.13) 1106 990 484 496 221 (770, 2064)

(2,0.29) 1057 977 345 350 208 (716, 1918)

(1,0.67) 1132 1005 524 540 273 (701, 2411)

(0.5,1.79) 1176 1000 572 598 305 (708, 2761)

0.5 (4,0.19) 1017 990 139 140 105 (823, 1402)

(2,0.41) 1033 1005 155 158 115 (821, 1393)

(1,1) 1029 980 320 321 135 (753, 1459)

(0.5,3) 1040 996 202 206 138 (795, 1559)

0.75 (4,0.41) 1004 1000 42 43 34 (934, 1103)

(2.1) 1002 999 46 46 36 (921, 1108)

(1,3) 1001 994 48 48 36 (920, 1119)

(0.5,15) 1005 1000 58 58 44 (905, 1161)

0.9 (4,0.78) 1001 1000 17 17 13 (968, 1039)

(2,2.17) 1002 1002 18 18 14 (967, 1039)

(1,9) 1000 1000 16 16 13 (971, 1032)

(0.5,100) 1002 1001 21 21 16 (966, 1050)

Table 3.6: Sample mean, median, standard deviation, SD, root mean squared error, RMSE, 

mean absolute error, MAE, and a central 95% interval of the negative binomial 

MLE, calculated for 200 data sets of 1000 species simulated using a negative 

binomial distribution for each sampling depth/ negative binomial parameter

combination.
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Depth Mean Median SD RMSE MAE Central 95%

0.2 2715 984 5656 5910 2080 (188, 13,303)

2564 942 3607 3932 1974 (192, 14,336)

2094 701 3080 3269 1696 (194, 11,661)

2952 833 3810 4281 2430 (324, 13,109)

0.3 2180 974 3201 3411 1479 (285, 14,296)

2256 929 3321 3551 1570 (286, 12,603)

2280 870 3502 3729 1646 (308, 14,761)

1643 900 2335 2422 978 (469, 9563)

0.4 1157 964 971 984 410 (382, 4369)

1290 950 1489 1517 522 (418, 8485)

1423 983 1683 1735 621 (607, 5438)

1338 999 1363 1404 521 (644, 3832)

0.5 1095 986 414 425 232 (511, 2099)

1058 964 336 341 212 (741, 1864)

1079 986 328 338 222 (709, 2096)

1109 1016 322 340 225 (739, 2011)

0.75 1011 1002 91 91 70 (866, 1219)

1008 994 91 91 70 (862, 1236)

1020 1016 88 90 69 (861, 1223)

1057 1005 277 283 128 (756, 1953)

0.9 1002 1001 27 27 21 (948, 1070)

1002 1000 28 28 23 (945, 1068)

1028 996 193 195 55 (891, 1007)

998 996 32 32 24 (954, 1059)

Table 3.7: Sample mean, median, standard deviation, SD, root mean squared error, RMSE, 

mean absolute error, MAE, and a central 95% interval of the Neyman Type A- 

gamma MLE, calculated for 200 data sets of 1000 species simulated using a 

Neyman Type A-gamma distribution for each sampling depth/ Neyman Type A- 

gamma parameter combination.
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3.9.3 Combatting the boundary problem using penalties

To combat the boundary problem, I opted to use penalties, however before 

implementing the penalised maximum-likelihood estimators, further investigation was 

required in these areas:

• how to choose the penalty parameter 72 for the second Wang and Lindsay (2005) 

penalty,

• bias for penalty 3 when using clustered data,

• an iterative approach to penalty 3.

• using confidence intervals with penalties.

Choice of penalty parameter 72

A value of 72 =  0.5 was selected by Wang and Lindsay (2005). However it was shown 

by simulation in Wang and Lindsay (2005) that the optimal choice of 72 depended 

strongly on the true value of the odds function ip. A larger true value of ip required 

more bias correction, and vice versa. I performed a simulation study to examine the 

performance of penalty 3 using one-step iteration, again simulating data sets from 

the negative binomial and Neyman Type A-gamma distributions for 1000 species.

To investigate which values of 72 were effective for benthic data sets, I set up 

simulations as before from the negative binomial model (Tables 3.8 and 3.9). We 

can see from the results that as the sampling depth decreased, the variance of the 

estimates increased as we would expect. As a decreased, the estimates had less bias 

overall, but as the penalty parameter 72 increased, there was too much penalty in 

some cases. This suggests that as a gets smaller the estimates are more sensitive to 

the penalty parameter used.

I repeated the simulations using the Neyman Type A-gamma species richness 

estimator and again there was an increase in variance as the sampling depth decreased
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D ep th a 72 N M SD R A ISE M A E C en tra l 95 %

0.2 4 0.25 1168 959 624 646 374 (6 2 8 , 33 43 )

0.5 1001 913 339 339 240 (62 0 , 21 29 )

1 889 863 191 221 184 (6 1 2 , 1450)

1.5 841 836 150 219 188 (60 0 , 1173)

2 0 .25 1229 857 1027 1052 537 (5 3 7 , 44 81 )

0.5 989 824 533 533 345 (53 4 , 27 05 )

1 830 758 275 323 274 (52 7 , 1741)

1.5 762 722 189 303 277 (5 2 2 , 1384)

1 0 .25 1116 775 922 929 533 (47 4 , 42 2 8 )

0.5 892 720 494 506 381 (47 1 , 2508 )

1 734 664 268 377 343 (45 8 , 1585)

1.5 662 614 187 387 363 (450 , 1244)

0 .5 0 .25 1028 725 802 803 534 (38 6 , 35 06 )

0.5 815 664 440 477 403 (38 4 , 20 85 )

1 660 589 245 419 385 (382, 1317)

1.5 586 545 174 449 422 (37 2 , 1044)

0.3 4 0 .25 1130 983 505 522 280 (71 8 , 2501)

0.5 1046 944 339 342 216 (71 6 , 1931)

1 960 900 220 223 171 (71 2 , 1533)

1.5 910 864 166 189 158 (70 1 , 1337)

2 0.25 1258 941 982 1015 472 (67 0 , 37 60 )

0.5 1101 909 575 584 342 (660 , 2675 )

1 968 854 345 346 257 (64 3 , 1914)

1.5 896 812 254 275 229 (63 2 , 1546)

1 0 .25 1067 915 500 504 310 (567 , 2567 )

0.5 977 881 346 347 252 (55 9 , 1945)

1 880 827 235 264 223 (54 7 , 1472)

1.5 820 785 184 258 227 (53 8 , 1252)

0.5 0.25 1135 901 702 715 427 (52 4 , 36 43 )

0.5 1001 861 453 453 326 (52 0 , 24 40 )

1 877 801 290 315 268 (510, 1700)

1.5 807 754 221 294 262 (50 2 , 1398)

Table 3.8: Summary statistics of the negative binomial penalised MLE using penalty 2 

and a range of penalty parameter values, calculated for 200 data sets of 1000 

species simulated using a negative binomial distribution for each sampling depth/ 

negative binomial parameter combination.
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D e p th a 72 N M SD R A ISE M A E C en tra l 9 5 %

0.4 4 0.25 1033 975 227 229 161 (76 2 , 1785)

0.5 1010 959 201 201 148 (76 0 , 1631)

1 973 935 166 168 131 (75 8 , 1438)

1.5 945 918 142 153 125 (75 6 , 1315)

2 0.25 1017 934 297 298 202 (703, 1874)

0.5 989 919 256 256 188 (70 2 , 1742)

1 948 895 208 214 172 (700 , 1565)

1.5 917 873 179 197 165 (69 8 , 1442)

1 0.25 1046 958 355 358 214 (68 3 , 1937)

0.5 1009 940 284 285 192 (67 6 , 1746)

1 958 904 220 224 170 (66 7 , 1518)

1.5 921 879 186 202 163 (65 7 , 1377)

0.5 0.25 1041 980 268 271 193 (69 6 , 1691)

0.5 1006 959 230 230 175 (69 1 , 1543)

1 954 920 186 191 157 (68 4 , 1362)

1.5 914 888 158 180 151 (67 7 , 1249)

0.5 4 0.25 1010 980 162 162 110 (81 5 , 1500)

0.5 1001 972 152 152 107 (81 1 , 1452)

1 984 958 138 139 102 (80 5 , 1375)

1.5 969 945 127 130 99 (80 3 , 1312)

2 0 .25 998 969 141 141 104 (79 9 , 1373)

0.5 988 960 134 135 101 (79 5 , 1345)

1 970 946 123 127 100 (78 8 , 1297)

1.5 954 934 114 123 101 (78 1 , 1256)

1 0.25 1018 983 148 149 109 (80 9 , 1389)

0.5 1006 974 141 141 106 (80 4 , 1353)

1 985 958 128 129 101 (79 6 , 1296)

1.5 967 943 118 123 100 (78 7 , 1248)

0.5 0.25 1012 963 191 192 134 (76 0 , 1509)

0.5 998 953 178 178 129 (75 7 , 1450)

1 974 934 158 161 123 (75 1 , 1360)

1.5 953 920 144 151 121 (74 5 , 1292)

Table 3.9: Summary statistics of the negative binomial penalised MLE using penalty 2

and a range of penalty parameter values, calculated for 200 data sets of 1000 

species simulated using a negative binomial distribution for each sampling depth/ 

negative binomial parameter combination, cont.
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(Tables 3.10 to 3.12). We also see a pattern of less bias as a increased, and less 

sensitivity to the penalty parameter used.

A penalty parameter between 0.25 and 1 performed best, although the exact value 

did vary between depths and with the parameter values of the negative binomial and 

Neyman Type A-gamma used. Therefore we see that the choice of 72 =  0.5 was fairly 

effective for the negative binomial and gave a reasonable estimate oi N =  1000 in all 

cases. However, to avoid too much negative bias, I may want to consider a smaller 

penalty parameter of 72 =  0.25 when using the Neyman Type A-gamma model when 

sampling depth is low.

Penalty 3

I investigated the bias of penalty 3 for negative binomial and Neyman Type A-gamma 

estimators. I performed a simulation study to examine the performance of penalty 3 

using one-step iteration, again simulating data sets from the negative binomial and 

Neyman Type A-gamma distributions for 1000 species. The results showed that this 

penalty caused negative bias in the richness estimate, particulary for smaller values 

of a (Tables 3.13 and 3.14). When the depth was greater than 0.5 there was no need 

to apply a penalty, and the results showed that the estimates here were close to the 

true species richness of N =  1000. However, overall this penalty was too harsh, and 

when a =  0.5 and sampling depth was 0.2 or 0.3 we can see a very low mean estimate 

of N  of 616 and 761 respectively, and the true species richness did not lie within the 

95% central interval of the sample estimates.

When using the Neyman Type A-gamma model, at every depth the penalised MLE 

over-penalised the likelihood, and the bias increased significantly as the sampling 

depth decreased (Table 3.14). The true species richness was only included within the 

95% central interval when sampling depth reached 90%, despite the estimates without 

penalty giving good results for sampling depths of 0.75 and over. This penalty was 

clearly too harsh for data with a spatial aspect, and introduced too much bias towards



3. Species richness estimation - A. maximum-likelihood frequentist approach 73

D ep th a 72 N M SD R.M SE M A E C en tra l 9 5 %

0.2 4 0.25 1092 945 590 597 397 (20 3 , 3053)

0.5 914 859 394 404 302 (190, 2006 )

1 739 734 334 424 342 (18 8 , 1582)

1.5 652 666 312 467 393 (18 8 , 1412)

2 0.25 932 760 636 639 448 (190 , 26 45 )

0.5 725 665 384 472 401 (184 , 1736)

1 610 600 263 470 419 (190 , 1262)

1.5 536 543 251 527 481 (182 , 1167)

1 0 .25 912 672 648 654 469 (21 9 , 2635 )

0.5 679 604 358 481 411 (18 7 , 1570)

1 534 521 209 511 478 (194 , 1006)

1.5 453 464 176 574 549 (18 8 , 798)

0.5 0.25 974 669 835 835 590 (31 5 , 35 89 )

0.5 715 587 440 524 451 (31 0 , 20 05 )

1 532 476 238 525 491 (19 5 , 1150)

1.5 458 428 172 568 546 (19 4 , 87 0 )

0.3 4 0.25 1139 942 613 628 382 (375, 2805)

0.5 908 868 424 434 331 (29 1 , 1850)

1 781 803 278 354 285 (29 2 , 1318)

1.5 719 749 255 379 306 (28 0 , 1175)

2 0.25 1115 927 578 590 394 (51 0 , 2914 )

0.5 913 889 336 347 279 (30 8 , 1818)

1 735 728 264 374 310 (29 1 , 1328)

1.5 657 664 206 400 350 (28 5 , 1068)

1 0 .25 1065 856 648 651 385 (47 5 , 3220 )

0.5 869 776 347 371 281 (46 8 , 1805)

1 737 713 239 355 308 (283 , 1352)

1.5 674 657 161 364 333 (28 5 , 1041)

0.5 0 .25 1026 750 794 794 471 (46 4 , 40 88 )

0.5 874 713 446 464 361 (44 9 , 2444)

1 743 630 282 382 336 (421, 1590)

1.5 669 590 205 390 358 (39 9 , 1236)

Table 3.10: Summary statistics of the Neyman Type A-gamma penalised MLE using 

penalty 2 and a range of penalty parameter values, calculated for 200 data 

sets of 1000 species simulated using a Neyman Type A-gamma distribution for 

each sampling depth/ Neyman Type A-gamma parameter combination.
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D ep th a 72 Ñ M SD R M S E M A E C en tra l 95 %

0.4 4 0.25 1065 938 608 612 295 (39 7 , 2091)

0.5 955 913 408 410 255 (38 5 , 1683)

1 871 874 285 312 230 (38 0 , 1376)

1.5 798 821 250 321 253 (37 9 , 1227)

2 0.25 1140 982 727 740 356 (40 4 , 2803)

0.5 1006 923 465 465 283 (39 4 , 2014)

1 900 874 310 326 240 (381, 1591)

1.5 818 817 267 323 256 (37 9 , 1330)

1 0.25 1079 923 691 695 329 (40 5 , 2803 )

0.5 966 884 449 450 279 (39 4 , 1934)

1 875 849 302 326 247 (38 1 , 1591)

1.5 800 797 251 321 263 (37 9 , 1245)

0 .5 0.25 1080 953 619 624 313 (40 5 , 2091 )

0.5 974 913 418 418 269 (39 4 , 1778)

1 885 866 290 312 236 (38 1 , 1485)

1.5 811 813 249 313 251 (37 9 , 1310)

0.5 4 0.25 1062 978 363 368 217 (50 9 , 2219 )

0.5 1004 964 329 329 219 (49 9 , 2030)

1 941 922 283 289 207 (48 9 , 1719)

1.5 893 901 243 265 200 (48 8 , 1533)

2 0 .25 1035 974 225 228 168 (719, 1618)

0.5 1007 956 205 205 156 (71 3 , 1570)

1 963 923 173 177 146 (70 2 , 1363)

1.5 925 889 151 168 144 (69 3 , 1304)

1 0.25 990 937 210 211 167 (71 6 , 1502)

0.5 965 916 190 193 156 (71 9 , 1420)

1 923 878 162 180 153 (69 2 , 1299)

1.5 890 859 135 174 148 (67 7 , 1204)

0.5 0.25 1045 967 277 281 191 (73 0 , 1824)

0.5 1014 940 243 243 177 (72 5 , 1676)

1 965 922 197 201 157 (71 4 , 1467)

1.5 927 885 169 184 155 (70 5 , 1356)

Table 3.11: Summary statistics of the Neyrnan Type A-gamma penalised MLE using 

penalty 2 and a range of penalty parameter values, calculated for 200 data 

sets of 1000 species simulated using a Neyman Type A-gamma distribution for 

each sampling depth/ Neyman Type A-gamma parameter combination, cont.
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D e p th a 72 N M SD R M S E M A E C en tra l 9 5 %

0.75 4 0.25 1000 979 94 94 66 (86 5 , 1292)

0.5 997 978 93 93 67 (8 6 2 , 1250)

1 989 968 93 94 71 (85 5 , 1243)

1.5 969 956 74 80 64 (84 8 , 1177)

2 0 .25 995 989 109 110 82 (8 2 8 , 1252 )

0.5 991 985 104 105 79 (82 6 , 1233)

1 981 976 102 103 79 (8 1 9 , 1216)

1.5 972 971 98 102 79 (81 4 , 1196)

1 0 .25 996 984 87 87 71 (85 6 , 1197)

0.5 991 979 85 85 70 (85 3 , 1189)

1 984 975 83 84 68 (84 6 , 1172)

1.5 973 965 81 86 70 (8 4 0 , 1168)

0.5 0 .25 1083 1020 272 285 150 (74 0 , 1961)

0.5 1085 1018 269 282 144 (76 9 , 1961)

1 1087 1003 278 292 156 (77 2 , 1961 )

1.5 1060 993 280 286 151 (73 7 , 1961)

0.9 4 0.25 1000 1003 31 31 25 (91 4 , 1063)

0.5 999 1001 30 30 24 (93 0 , 1061)

1 995 997 30 30 24 (92 0 , 1057)

1.5 990 994 34 36 26 (90 0 , 1056)

2 0.25 1002 995 29 29 24 (95 2 , 1069)

0.5 1002 995 32 32 24 (95 1 , 1089)

1 997 992 28 28 23 (95 0 , 1064)

1.5 992 988 29 30 24 (92 7 , 1061)

1 0.25 1014 1003 141 142 48 (91 6 , 1285)

0.5 1013 1001 142 142 47 (9 1 6 , 1284)

1 1011 999 142 142 47 (91 6 , 1281)

1.5 1011 996 141 141 44 (91 6 , 1280)

0.5 0 .25 990 985 34 36 29 (9 1 6 , 1062 )

0.5 988 983 35 37 30 (90 9 , 1058)

1 984 980 34 37 30 (90 9 , 1052)

1.5 979 976 33 39 32 (9 1 5 , 1046)

Table 3.12: Summary statistics of the Neyman Type A-gamma penalised MLE using 

penalty 2 and a range of penalty parameter values, calculated for 200 data 

sets of 1000 species simulated using a Neyman Type A-gamma distribution for 

each sampling depth/ Neyman Type A-gamma parameter combination, cont.



3. Species richness estimation - A maximum-likelihood frequentisi approach 76

Depth {a, P) Mean Median SD RMSE MAE Central 95%

0.2 (4,0.06) 958 950 239 243 190 (210, 1377)

(2,0.11) 796 800 253 325 258 (193, 1291)

(1,0.25) 684 696 179 363 320 (195, 1008)

(0.5,0.56) 616 613 127 405 384 (393, 885)

0.3 (4, 0.09) 894 928 281 301 211 (286, 1406)

(2,0.20) 918 886 174 192 159 (660, 1275)

(1,0.43) 840 816 162 228 194 (557, 1185)

(0.5,1.04) 761 759 109 263 242 (571, 963)

0.4 (4,0.13) 1007 967 167 167 129 (770, 1443)

(2,0.29) 957 943 152 158 129 (715, 1277)

(1,0.67) 943 930 148 159 131 (697, 1265)

(0.5,1.79) 894 870 120 160 136 (695, 1185)

0.5 (4,0.19) 1002 985 119 119 93 (822, 1289)

(2,0.41) 1003 986 117 117 93 (821, 1264)

(1.1) 968 954 121 125 97 (750, 1237)

(0.5,3) 952 941 106 116 96 (773, 1217)

0.75 (4,0.41) 1003 1000 42 42 33 (934, 1102)

(2,1) 1001 997 45 45 35 (920, 1106)

(1.3) 999 992 46 46 36 (919, 1115)

(0.5,15) 999 994 54 54 42 (902, 1134)

0.9 (4,0.78) 1001 1000 17 17 13 (968, 1039)

(2,2.17) 1002 1002 17 18 14 (967, 1039)

(1,9) 1000 1000 16 16 13 (971, 1032)

(0.5,100) 1001 1001 20 20 16 (966, 1049)

Table 3.13: Summary statistics of the negative binomial penalised MLE using penalty 

3, calculated for 200 data sets of 1000 species simulated using a negative 

binomial distribution for each sampling depth/ negative binomial parameter

combination.
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Depth Mean Median SD RMSE MAE Central 95%

0.2 203 204 14 797 797 (178, 231)

204 204 14 797 796 (176, 230)

204 203 13 796 796 (175, 231)

206 205 15 794 794 (180, 231)

0.3 304 306 15 696 696 (274, 334)

303 302 15 698 697 (271, 334)

308 308 17 692 692 (273, 348)

324 317 32 676 676 (276, 396)

0.4 408 408 15 593 592 (374, 438)

407 407 16 593 593 (376, 441)

429 418 41 572 571 (379, 542)

456 452 40 545 544 (388, 532)

0.5 511 508 23 490 489 (476, 545)

520 515 32 481 480 (481, 621)

558 546 47 444 442 (491, 649)

587 586 45 415 413 (508, 672)

0.75 766 733 66 243 234 (688, 900)

780 784 54 226 220 (695, 882)

796 805 51 210 204 (705, 888)

791 784 67 220 214 (714, 898)

0.9 936 925 34 72 65 (891, 1007)

954 958 31 55 47 (954, 1059)

956 957 26 51 46 (948, 1055)

954 951 31 56 49 (901, 1010)

Table 3.14: Summary statistics of the Neyman Type A-gamma penalised MLE using 

penalty 3, calculated for 200 data sets of 1000 species simulated using a Ney

man Type A-gamma distribution for each sampling depth/ Neyman Type A- 

gamma parameter combination.
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the naive estimator of Chao (1984), Nci- Therefore I would strongly consider using 

an alternative.

Iterative approach to penalty 3

I investigated an iterative approach, which started by calculating the penalised 

estimate using penalty 3, and then used this species richness estimate as an alternative 

to the Chaoi species richness estimate in rj. I looked at the convergence of an iterative 

penalty, because if it did not converge then it would not act to reduce the bias of 

penalty 3.

I found that the iterative penalised likelihood estimator converged towards a final 

estimate. When there was no boundary problem present, and the estimate of species 

richness without a penalty was not spuriously large, the iterative species richness 

estimate converged towards this non-penalised estimate, reaching it after two or three 

iterations even when the Chao\ estimate was not close to the true species richness, 

as in the example in Figure 3.7a. In this example 252 species were observed, and the 

Chaoi estimate was 342 while the non-penalised MLE was 483. Using the penalised 

MLE with iterative penalty 3, the estimate converged to the same value after three 

iterations.

When the boundary problem was present, as in the example shown in Figure 3.7b, 

the iterative penalised likelihood estimator converged towards a final estimate. For 

this example, 1 simulated abundance data for 500 species over 5 grabs from a negative 

binomial distribution with negative binomial parameters a =  0.1 and (3 =  0.1.

Eighteen species were observed in the sample, and the non-penalised MLE w'as 7701 

and the Chao\ estimate was 74. Applying the penalised MLE with penalty 3, without 

iteration, gave a species richness estimate of 76, which is not a good estimate of 

the species richness. After one-step of the iteration, using this estimate in place of 

the Chao\ estimate within penalty 3, the estimate improved greatly to 245. This 

estimate wras still low, but a vast improvement on the estimate given using penalty
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5 10 15

iteration

(a) a = 0.5, ¡3 — 0.5 (b) a =  0.1, ¡3 =  0.1

Figure 3.7: Plot of the convergence of the negative binomial MLE using iterative penalty 3 

when applied to simulated abundance data for 500 species over 5 grabs from a 

negative binomial distribution, with (a) a = 0.5, ¡3 = 0.5 (b) a — 0.1, ¡3 = 0.1. 

The open circle shows the Chao\ estimate.

3 without iteration. The fully iterative approach gave a species richness estimate of 

330, converging after 901 iterations, which is again an improvement, but did not reach 

the true species richness of N  =  500.

However, in some cases where the non-penalised estimate was relatively large, the 

iterative penalty still converged to that value. For example, N =  3441, and the 

iterative penalty converged to 3367 after 76 iterations. The Chaoi estimate was 744. 

Here the iterative penalty was not improving the non-penalised estimate. However 

it also did not degrade it, and if there was a possibility of the boundary problem 

occurring, it might be wise to utilise this penalty.

A problem with an iterative approach is the high computation time required when 

it applied to more complicated distributions, such as the Neyman Type A-gamma. 

To compute each iterative step for the Neyman Type A-gamma takes appropriately 

ten minutes, and so 901 iterations would take around 150 hours. Therefore I opted
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for a one-step iteration, which as we can see in Figure 3.7 can already improve the 

species richness estimate greatly. If computation time could be improved, an area I 

am currently working on, then it might be possible to use more iterative steps. Also, 

using more iterations may be appropriate when fitting the negative binomial model, 

where computational costs are not high.

Another issue that may occur when applying this iterative penalty was that when 

the Chaoi estimate was greater than the true species richness, then iterating the 

penalty could put more bias on the estimate.

I performed a simulation study to examine the performance of penalty 3 using one-step 

iteration, again simulating data sets from the negative binomial and Neyman Type A- 

gamma distributions for 1000 species. Comparing the results for the negative binomial 

model from this method to those of penalty 3 without iteration, we see that using 

iteration means that the true value of the number of species, N =  1000, always falls 

within the 95% central interval of the estimates over the 200 simulations (Tables 3.13 

and 3.15).

When sampling depth was low, we see that this method gave smaller variance 

compared to the penalty without iteration. However, if I increased the proportion 

of species seen the variance also increased, and all the mean estimates were larger. 

At sampling depth greater than 0.5 the results were similar for both methods, and 

the results without a penalty. A penalty was no longer needed here as the boundary 

problem was not occurring.

We still see a significant negative bias in the estimates for a low sampling depth, 

which could be reduced if I introduced further iterative steps into the estimation. This 

would not be too computationally intensive for the negative binomial case, however, 

it may not be possible for more complex distributions such as the Neyman Type A-

gamma.
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Depth {u ,0 ) N M SD RMSE MAE Central 95%

0.2 (4,0.06) 982 940 243 244 197 (630, 1530)

(2,0.11) 890 846 235 260 220 (580, 1480)

(1,0.25) 779 748 200 298 255 (473, 1201)

(0.5,0.56) 690 673 187 362 320 (396, 1087)

0.3 (4, 0.09) 1041 967 244 248 195 (723, 1604)

(2,0.20) 982 909 266 267 219 (623, 1624)

(1,0.43) 940 906 239 247 207 (566, 1449)

(0.5,1.04) 891 877 202 229 193 (555, 1258)

0.4 (4.0.13) 1038 990 216 220 167 (746, 1611)

(2,0.29) 1040 1002 231 234 177 (713, 1584)

(1,0.67) 1053 1019 220 226 173 (739, 1576)

(0.5,1.79) 1003 974 211 211 166 (669, 1501)

0.5 (4,0.19) 1003 988 140 140 103 (800, 1336)

(2,0.41) 1000 983 136 136 106 (803, 1392)

(1,1) 1004 971 158 158 121 (778, 1407)

(0.5,3) 1030 1016 154 156 121 (799, 1385)

0.75 (4,0.41) 1002 1000 40 40 31 (924, 1093)

(2,1) 997 990 43 43 35 (929, 1109)

(1,3) 999 996 46 46 37 (920, 1101)

(0.5,15) 1004 999 49 50 39 (923, 1101)

0.9 (4,0.78) 1001 1001 16 17 13 (970, 1037)

(2,2.17) 1002 1001 16 16 12 (972, 1032)

(1,9) 1000 999 18 18 14 (968, 1041)

(0.5,100) 1001 1001 18 18 14 (966, 1044)

Table 3.15: Summary statistics of the negative binomial penalised MLE using penalty 3 with 

one-step iteration, calculated for 200 data sets of 1000 species simulated using 

a negative binomial distribution for each sampling depth/ negative binomial 

parameter combination.
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Depth N M SD RMSE MAE Central 95%

0.2 205 204 14 795 795 (180, 232)

204 203 12 796 796 (182, 231)

203 203 12 797 797 (180, 225)

210 205 32 791 790 (179, 330)

0.3 303 303 15 697 697 (273, 332)

306 306 15 694 694 (275, 337)

308 303 34 693 692 (279, 333)

396 323 118 615 604 (285, 637)

0.4 409 409 21 591 591 (378, 443)

409 405 39 592 591 (379, 440)

479 415 132 538 521 (380, 800)

639 665 154 392 361 (393, 895)

0.5 507 509 17 493 493 (473, 538)

557 512 122 459 443 (480, 932)

706 760 179 344 296 (485, 1016)

840 839 109 194 167 (536, 1067)

0.75 832 727 149 224 191 (691, 1129)

896 934 138 173 131 (696, 1105)

981 979 90 92 70 (739, 1164)

974 978 93 96 72 (746, 1169)

0.9 948 922 46 70 60 (895, 1050)

988 997 41 43 31 (903, 1053)

998 1000 31 31 23 (918, 1057)

992 991 27 28 22 (946, 1051)

Table 3.16: Summary statistics of the Neyman Type A-gamma penalised MLE using 

penalty 3 with one-step iteration, calculated for 200 data sets of 1000 species 

simulated using a Neyman Type A-gamma distribution for each sampling 

depth/ Neyman Type A-gamma parameter combination.
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For the Neyman Type A-gamma, introducing an iterative step to the species richness 

estimation did have the desired effect of reducing negative bias when the sampling 

depth was larger (Table 3.16). However, for sampling depth of 0.4 and lower, the 

iterative step had little effect on the species richness estimates.

Comparing these results to those using no penalty, for depths greater than 0.4 the 

non-penalised estimator performed better in terms of bias (Table 3.7). We therefore 

need to consider whether we are concerned primarily with variance or with bias in 

our species richness estimator.

Confidence Intervals for penalised likelihood

I found that the profile confidence intervals worked well for the MLE, so I used these 

intervals when applying the penalised likelihood. I ran a simulation for the negative 

binomial to check coverage when using penalties.

Table 3.17 shows the coverage of the profile confidence intervals for negative binomial 

simulated data using penalty 2 with 72 =  0.5, penalty 3 and penalty 3 using one-step 

iteration.

The coverage varied a lot between the penalties in some cases. At low sampling depth, 

when a was small the coverage of MLE with penalty 3 was very low. This illustrates 

the severity of the penalty, and suggests that using this penalised likelihood introduces 

too much bias to the estimate. Using the iterative step increased the coverage, but 

it can still be low. However, the coverage increased as the depth increased.

As expected, as depth increased, so did the coverage of the 95% profile confidence 

intervals. Penalty 2 had the best coverage, performing well in all cases, but when 

sampling depth was less than 0.75 the width of the confidence interval was significantly 

larger than those of the other penalties.
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Coverage Width

Depth a P2 P3 P3 IT P2 P3 P3 IT

0.2 4 1.00 0.98 0.99 2542.76 969.72 1049.2

2 0.99 0.93 0.96 2540.60 826.70 967.54

1 0.97 0.77 0.79 2349.94 722.24 850.82

0.5 0.92 0.38 0.68 2187.60 572.19 762.27

0.3 4 0.99 0.97 0.99 2304.90 875.84 1011.22

2 0.97 0.97 0.94 2027.18 824.94 966.82

1 0.96 0.90 0.93 2598.64 708.33 928.69

0.5 0.91 0.73 0.88 2002.78 587.59 875.25

0.4 4 0.97 0.95 0.97 1341.97 726.32 849.36

2 0.96 0.95 0.95 1575.17 693.21 896.58

1 0.95 0.94 0.96 1608.88 621.60 862.33

0.5 0.94 0.89 0.93 1610.04 536.46 798.71

0.5 4 0.94 0.97 0.96 637.65 553.97 567.6

2 0.97 0.94 0.97 683.98 528.76 629.37

1 0.93 0.95 0.93 1190.14 498.85 629.07

0.5 0.94 0.94 0.96 1336.37 453.64 669.88

0.75 4 0.94 0.94 0.97 166.24 170.38 170.07

2 0.98 0.95 0.95 172.60 175.79 176.26

1 0.97 0.94 0.91 181.17 183.26 185.28

0.5 0.97 0.94 0.96 195.41 191.95 198.58

0.9 4 0.94 0.93 0.96 63.93 64.52 64.85

2 0.95 0.96 0.97 66.04 67.99 67.61

1 0.96 0.97 0.94 69.45 69.37 69.71

0.5 0.92 0.94 0.94 54.40 54.04 53.94

Table 3.17: Coverage and widths of 95% profile likelihood confidence intervals for N for the 

negative binomial MLE using penalty 2, P2, penalty 3, P3, and penalty 3 with 

one-step iteration, P3 IT, for various sampling depths and negative binomial 

parameter values, a.
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Since I have seen good coverage probabilities for the profile confidence intervals, I will 

use them for any further confidence interval estimation when applying the penalised 

maximum-likelihood estimator.

3.10 Analysis o f real data

I applied the models to several real data sets: the well-known Lepidoptera data used 

in Fisher et al. (1943), Christmas Bird Count (CBC) data and benthic data sets from 

CEFAS, for which the species richness estimators including clustering were developed.

3.10.1 Lepidoptera data

The data contain 15,609 individuals, 240 species and maximum frequency 2,349. As 

estimation methods are affected by the long right tail of the distribution of frequencies, 

the data were truncated at r =  112, the same value used in Barger and Bunge (2010).

Table 3.18 shows the MLE of N for the Lepidoptera data set based on different 

models, and the species richness estimates varied between the models. Both the 

negative binomial and Neyman Type A-gamma models were judged to provide an 

acceptable fit to the observed data by the Pearson chi-squared test. Using the AIC to 

compare models directly, the negative binomial model was selected as the best model 

for this data set. The Neyman Type A-gamma model had a AAIC value below ten,

Model N 95% Confidence X2 (df) 5%y2 point AIC AAIC

PO 241 (241, 241) 2282.00 (17) 27.59 3733.0 3,964.20

NB 338 (285, 487) 21.17 (25) 37.65 -231.2 0.00

NTAG 475 (330, 1172) 25.75 (23) 35.17 -221.5 9.70

Table 3.18: Species richness estimates with 95% confidence interval for the Lepidoptera data 

set using the Poisson, PO, negative binomial, NB, and Neyman Type A-gamma, 

NTAG, maximum-likelihood estimator. The Pearson chi-squared value, degrees 

of freedom, df, 5%x2 point, AIC and AAIC are also reported.
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so may be plausible for this data set.

The AIC and chi-squared values of the Poisson model were very high, indicating a 

poor fit to the data and that this model was unsuitable (Figure 3.8a). The extremely 

narrow confidence interval for the Poisson model, which in fact was the same as the 

estimate of only one unseen species, showed that any parameter values away from the 

optimal ones were very different in likelihood value.

(a) Poisson
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(b) Negative binomial

Figure 3.8: Observed data (red) and fitted data (black) for the (a) Poisson, (b) negative 

binomial and (c) Neyman Type A-gamma MLE for the Lepidoptera data set.
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The fit of the negative binomial model looks good for this data set (Figure 3.8c), 

and Figure 3.9 shows that the profile log-likelihood for the number of unseen species 

is asymmetric.

N-D

Figure 3.9: Profile log-likelihood for the number of unseen species in the Lepidoptera data 

set assuming the negative binomial model.

Since the estimates obtained from these models were not spuriously large, use of 

the penalised log-likelihood was not warranted. However, a suitable penalty would 

allow for this and only penalise the likelihood where necessary. When calculating the 

penalised MLE for the negative binomial and Neyman Type A-gamma models, the 

estimated number of species was not greatly affected by the use of penalties (Table 

3.19).

For the negative binomial model, penalty 3 with one-step iteration gave the closest 

result to the non-penalised MLE, which I would expect as it was demonstrated in 

Section 3.9.3 that the iterative penalty converged to the non-penalised estimate. 

Penalties 2 and 3 gave estimates close to the non-penalised MLE, and the closeness 

of the AIC values shows that there was not much difference in the fit of the models 

to the data, with penalty 2 giving the best fit,. The standard chi-square percentage 

points for these degrees of freedom led me to accept the fit of all of these models at 

the 5% level of significance for the Lepidoptera data.
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Model N  95% Confidence X2 (df) 5%x2point AIC AAIC

NB 338 (285, 487) 21.17 (25) 37.65 -241.2 0.8

NB P2 330 (282, 459) 20.02 (25) 37.65 -242.0 0.0

NB P3 333 (285, 437) 21.67 (25) 37.65 -241.1 0.9

NB P3 IT 337 (285, 461) 21.19 (25) 37.65 -241.2 0.8

NTAG 475 (330, 1172) 25.75 (23) 35.17 -235.5 10.5

NTAG P2 452 (322, 1084) 25.84 (23) 35.17 -235.5 10.5

NTAG P3 400 (318, 547) 31.39 (24) 36.42 -234.0 12.0

NTAG P3 IT 452 (329, 723) 25.85 (23) 35.17 -235.4 10.6

Table 3.19: Species richness estimates with 95% confidence interval for Lepidoptera data set 

using negative binomial and Neyman Type A-gamma model in the penalised 

MLE, with penalty 2, P2, penalty 3, P3 and penalty 3 with one-step iteration, 

P3 IT. The Pearson chi-squared value, degrees of freedom, df. 5%y2 point, AIC 

and A AIC are also reported.

The Neyman Type A-gamma model showed slightly greater differences in estimates 

when the penalties were used. Penalty 3 was the worst model according to AIC, and 

we can see that it was quite a harsh penalty, reducing the species richness estimate 

by 75 from the non-penalised estimate. It also had a much narrower confidence 

interval. Using one-step iteration gave the same estimate as using penalty 2, which 

is interesting, but the confidence interval was narrower.

Therefore, I concluded that for this data, where the boundary problem was not 

present, use of the penalised MLE did not adversely effect the species richness estimate 

when using the negative binomial model, but when using the Neyman Type A-gamma 

model one must be more wary.
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3.10.2 CBC data

In the CBC data set 20,042 individuals from 126 species were seen. The data were 

truncated at 150, as a value above this cannot be calculated for the Neyman Type A- 

gamma model due to computational limitations. Barger and Bunge (2010) used a 

truncation point of 221 selected using the criteria described in Section 3.6. Again 

we see the extremely narrow confidence interval for the Poisson model (Table 3.20). 

However, the negative binomial model and Neyman Type A-gamma model fitted the 

data well according to the Pearson goodness-of-fit test.

Figures 3.10 and 3.11 show the observed and fitted values for these two models to 

the data, and we notice that the negative binomial fits better to the low frequency 

data. The AIC judged the negative binomial model as the most suitable model, but 

the Neyman Type A-gamma model was still plausible.
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Figure 3.10: Observed data (red) and fitted data (black) for the negative binomial MLE for

the CBC data set.
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Model N 95% Confidence X2 (df) 5%x2p°int AIC AAIC

PO 126 (126, 127) 7535 (3) 7.82 24228.0 24097.1

NB 154 (134 218) 14.77 (17) 27.59 130.9 0.0

NTAG 202 (148 432) 20.92 (16) 26.30 138.1 7.2

Table 3.20: Species richness estimates with 95% confidence interval for the CBC data set 

using the Poisson, PO, negative binomial, NB, and Neyman Type A-gamma, 

NTAG, maximum-likelihood estimator. The Pearson chi-squared value, degrees 

of freedom, df, 5%x2 point, AIC and AAIC are also reported.
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Figure 3.11: Observed data (red) and fitted data (black) for the Neyman Type A-gamma

MLE for the CBC data set.
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3.10.3 Isle of Wight benthic data sets

I applied the models to benthic data, and the first data set was from the Isle of Wight 

area, where a survey collected data using two grabs sizes, large 0.25m2 and small 

0.1m2. Overall 273 species were recorded in the area, 240 using the large grabs, and 

198 using the small grabs. Ten grabs were collected for each grab size. I hoped that 

estimators would be able to give approximately the same species richness estimate 

regardless of the grab size used to collect the data, by accounting for the distribution 

pattern of individuals on the sea bed.

Tables 3.21 and 3.22 clearly show the boundary problem was present when using the 

negative binomial model and the Neyman Type A-gamma model, which reinforces 

the requirement for a penalised MLE. The profile log-likelihood of the MLE using 

the negative binomial model was very flat, and showed no upper limit to the 95% 

confidence interval for this data set and model (Figure 3.12a). The same can be seen 

for this model applied to the Isle of Wight 0.1m2 data (Figure 3.12b).
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(a) 0.25m2 grabs (b) 0.1m2 grabs

Figure 3.12: Profile log-likelihood for the number of unseen species using the negative 

binomial MLE applied to the Isle of Wight data sets collected with (a) large 

grabs and (b) small grabs.
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Model N 95% Confidence X 2 (df) 5%x2point AIC AAIC

PO 241 (241, 241) 3571.98 (17) 27.59 5357.0 5937.5

PO P2 241 (241, 241) 3571.98 (17) 27.59 5340.0 5920.5

PO P3 241 (241, 241) 3571.98 (17) 27.59 5357.0 5937.5

PO P3 IT 241 (241, 241) 3571.98 (17) 27.59 5357.0 5937.5

NB 3263 (5500, oo ) 20.46 (22) 33.92 -580.5 0 . 0

NB P2 895 (459, 2859) 24.36 (23) 35.17 -578.8 1.7

NB P3 496 (388, 650) 34.20 (24) 36.42 -571.2 9.3

NB P3 IT 720 (469, 1116) 29.78 (23) 35.17 -577.9 2.6

NTAG 13,816 (1234, 54,535) 46.40 (23) 35.17 -553.5 27.0

NTAG P2 0.5 4206 (904, 16,103) 50.47 (23) 35.17 -550.1 30.4

NTAG P2 0.25 6818 (1026, 26,541) 47.12 (23) 35.17 -551.7 28.8

NTAG P3 561 (441, 719) 79.85 (25) 37.65 -533.1 47.4

NTAG P3 IT 936 (616, 1380) 61.04 (24) 36.42 -545.8 34.7

Table 3.21: Species richness estimates with 95% confidence interval for Isle of Wight benthic 

data set with 0.25m2 grabs, using the Poisson, PO, negative binomial, NB, and 

Neyman Type A-gamma, NTAG, maximum-likelihood estimator, with penalty 

2, P2, penalty 3, P3 and penalty 3 with one-step iteration, P3 IT. The Pearson 

chi-squared value, degrees of freedom, df, 5%x2 point, AIC and AAIC are also 

reported.
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Model N 95% Confidence X'2 (df) 5%x2point AIC AAIC

PO 198 (198, 198) 12351.26 (3) 7.81 17789.0 18288.8

PO P2 198 (198, 198) 12349.22 (3) 7.81 17790.0 18289.8

PO P3 198 (198, 198) 12320.67 (3) 7.81 17839.0 18338.8

PO P3 IT 198 (198, 198) 12351.26 (3) 7.81 17789.0 18288.8

NB 19,906 (1021,oo) 27.11 (18) 28.87 -499.8 0.0

NB P2 1862 (595, 6854) 26.05 (18) 28.87 -496.2 3.6

NB P3 469 (363, 611) 34.71 (20) 31.41 -481.2 18.6

NB P3 IT 767 (498, 1143) 29.17 (19) 30.14 -492.3 7.5

NTAG 17,009 (1704, 67,444) 51.20 (19) 30.14 -469.8 30.0

NTAG P2 0.5 6344 (1198, 24,782) 51.93 (19) 30.14 -465.9 33.9

NTAG P2 0.25 9859 (1393, 38,820) 51.48 (19) 30.14 -467.7 32.1

NTAG P3 515 (404, 660) 86.62 (20) 31.41 -441.3 58.5

NTAG P3 IT 920 (615, 1326) 67.52 (20) 31.41 -458.4 41.4

Table 3.22: Species richness estimates with 95% confidence interval for Isle of Wight benthic 

data set with 0.1m2 grabs, using the Poisson, PO, negative binomial, NB, and 

Neyman Type A-gamma, NTAG, maximum-likelihood estimator, with penalty 

2, P2, penalty 3, P3 and penalty 3 with one-step iteration, P3 IT. The Pearson 

chi-squared value, degrees of freedom, df, 5%x2 point, AIC and AAIC are also 

reported.
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The Poisson model was clearly inadequate for modelling these data, as shown by 

the high AIC and chi-squared values. We know that the estimates given for the Isle 

of Wight area by the Poisson model were too low, as overall between the two grab 

sizes, the total number of observed species in the area was 273. Three models were 

plausible for the data according to the AIC, the negative binomial, and the negative 

binomial with penalty 2 and one-step iterated penalty 3.

Using penalties decreased the estimates of species richness considerably, and penalty 

3 was much harsher than the others. The iterated penalty performed well in terms of 

combatting the boundary problem and not penalising the estimate as much as penalty 

3 in both cases, and gave a reasonably similar estimate of species richness from the 

two data sets using the negative binomial model and Neyman Type A-gamma model.

The estimates given by the penalised log-likelihood estimator using the negative 

binomial model and penalty 2 were not very similar for the two data sets. I hoped 

that an estimator would be able to provide a similar estimate of species richness using 

the two data sets. The choice of y2 =  0.5 played a part in these estimates, and I saw 

in Section 3.9.3 through simulations that a penalty parameter between 0.25 and 1 

performed well, and the choice of y2 =  0.5 was fairly effective. However, the best 

choice of penalty parameter did vary with sampling depth.

For the Neyman Type A-gamma model, the estimates of species richness were higher 

than with the other models. The fit of the Neyman Type A-gamma models were 

rejected by the chi-squared test, and the AAIC suggested that the models were not 

plausible to describe this data. Using the Neyman Type A-gamma model, the results 

of the MLE with penalty 2 showed very wide confidence intervals and large estimates, 

and suggested that not enough penalty was applied.
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3.10.4 Eastern Channel benthic data set

In this data set the sample size is much larger, as 225 grabs were collected and 

649 species observed, and therefore I expected the estimators to perform better for 

this data set. Table 3.23 shows a large estimate of species richness for the Eastern 

Channel data using the negative binomial model, with infinite upper confidence limit. 

However, the fit. of the negative binomial model to the observed data without using 

a penalty was good (Figure 3.13 ) and this model was not rejected by a Pearson 

goodness-of-fit. test and it was selected as the best model by the AIC. However, Figure

3.14 shows that the profile log-likelihood was flat and the species richness estimate 

was not well defined. Therefore, we must exercise caution in relying on chi-squared 

tests and AIC to determine the most suitable model for our data.
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Figure 3.13: Observed data (red) and fitted data (black) for the negative binomial MLE 

fitted to the Eastern Channel data set.

Applying penalty 2 with y2 =  0.5 still resulted in a flat profile log-likelihood for 

N, as seen by the large confidence interval, and so a harsher penalty was required 

to avoid the spuriously large estimates associated with the boundary problem. The
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Model N 95% Confidence X2 (df) 5%x2point AIC AAIC

PO 650 (650, 650) 16009.81 (18) 28.87 10278 13321

PO P2 650 (650, 650) 16009.81 (18) 28.87 10264 13307

PO P3 650 (650, 650) 16009.81 (18) 28.87 10278 13321

PO P3 IT 650 (650, 650) 16009.81 (18) 28.87 10278 13321

NB 63,956 (3691, oo) 31.53 (38) 53.38 -3043 0

NB P2 11,143 (2787, 42,607) 32.45 (38) 53.38 -3040 3

NB P3 1686 (1382, 2075) 51.56 (40) 55.76 -3017 26

NB P3 IT 2883 (1981, 4117) 37.64 (39) 54.57 -3035 8

NTAG 44,145 (8845, 174,629) 99.50 (37) 52.19 -2970 73

NTAG P2 0.5 28,740 (6958, 112,527) 99.64 (37) 52.19 -2968 75

NTAG P2 0.25 34,890 (7781, 137,560) 99.32 (37) 52.19 -2970 73

NTAG P3 1961 (1629, 2360) 143.20 (39) 54.57 -2921 122

NTAG P3 IT 3900 (2799, 5277) 113.14 (38) 53.38 -2955 88

Table 3.23: Species richness estimates with 95% confidence interval for Eastern Channel 

benthic data set, using the Poisson, PO, negative binomial, NB, and Neyman 

Type A-gamma, NTAG, maximum-likelihood estimator, with penalty 2, P2, 

penalty 3, P3 and penalty 3 with one-step iteration, P3 IT. The Pearson chi- 

squared value, degrees of freedom, df, 5%x2 point, AIC and AAIC are also 

reported.
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Figure 3.14: Profile log-likelihood for the number of unseen species for the negative binomial 

MLE fitted to the Eastern Channel data.

harsher penalty of penalty 3 decreased the estimate to a reasonable value. Using the 

one-step iterative penalty improved the fit of the model to the data according to the 

AAIC. Applying the iterative step also widened the associated confidence interval, 

however it was still within the limit of number of known species in UK coastal waters 

of 10,000. As the Eastern Channel data was collected over a very large area, it was 

plausible that many of the species present around the UK coast could be present in 

this area.

Again the Poisson model performed poorly, with estimates not much larger than 

the observed number of species, and very high AIC in all cases.

The Neyman Type A-gamma, model also performed poorly according to the chi- 

squared values and AIC, which was disappointing. We would hope that by modelling 

spatial clustering we would improve the fit of the model, although this was fixed 

across species, so perhaps by allowing the number of individuals per cluster to vary 

between species we can describe the data better.
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3.11 Discussion

This chapter presented a maximum-likelihood approach to species richness estimation 

which incorporated the spatial pattern of the species’ members using the 

Neyman Type A distribution to model the spatial pattern of individuals within a 

species. Chapter 2 described a range of species richness estimators that could be 

used to analyse sample data, however it was shown that these methods, which did not 

account for spatial clustering, were not adequate for analysing benthic data. Therefore 

I hoped that by using the Neyman Type A I would account for this clustering and 

improve the species richness estimates.

Three models were investigated: the Poisson, the negative binomial, and the 

Neyman Type A-gamma. A maximum-likelihood approach was taken to fit the models 

to the data, and obtain a species richness estimate. Fewster and Jupp (2009) showed 

that the difference between using the conditional and unconditional estimators is of 

order 1, and I used both methods during my investigation into the approach.

Simulation studies were carried out and it was necessary to consider approaches to 

estimate confidence intervals for the MLE, and several methods were investigated. 

As far as I was aware, a comparison of the coverage of these particular confidence 

interval methods had not been published before.

Although the Horvitz-Thompson confidence intervals performed well, profile 

confidence intervals performed equally well in terms of coverage, van der Heijden 

et al. (2003) suggested the use of confidence intervals which can be asymmetric, and 

hence the consideration of the confidence intervals for log(A^) suggested by Fewster 

and Jupp (2009). However, these were found to be narrow and therefore coverage was 

lower than expected, especially when detection rates were low. This was in contrast to 

the results of Fewster and Jupp (2009), who found the method performed well in the 

examples they analysed. However, detection rates in the examples they looked at were 

higher than those considered in my simulations. This warrants further investigation,
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but since the other methods performed well I did not pursue this further.

The bootstrap confidence intervals were very wide in comparison to the other 

methods, and this may have been attributed to the boundary problem when 

sampling depth was low. van der Heijden et al. (2003) also found the bootstrap 

confidence intervals performed poorly in comparison to their Horvitz-Thompson 

variance estimators.

When considering coverage of the confidence intervals for the negative binomial case, 

spuriously large species richness estimates arose due to the boundary problem. The 

profile confidence interval method had good coverage probabilities and these were used 

for confidence interval estimation when applying the maximum-likelihood estimator. 

1 would recommend the use of profile confidence intervals, as they had the advantage 

that they could be asymmetric. When calculating profile confidence intervals for N 

it was simple to use the full log-likelihood, and therefore this method was used rather 

than the conditional MLE.

Evidence of the boundary problem was found at various sampling depths, dependant 

on the model used and the parameters of that model. For the Poisson model 

fitted to simulated Poisson data there was no significant evidence of the boundary 

problem occurring when sampling depth was more than 10%. However, for the 

negative binomial case, when sampling depth fell below 50% there was evidence of 

the boundary problem. For the Neyman Type A-gamma model there were signs of 

the boundary problem at higher sampling depths, and when sampling depth was low 

some extreme species richness estimates occurred.

Several possible solutions have been considered to combat the boundary problem, 

and I opted to use penalties, and considered those suggested by Wang and Lindsay 

(2005). In simulations, penalty 2, based on the odds function, worked well for 

particular penalty parameter values, however it relied on the specification of a penalty
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parameter. Simulations showed that a value of 0.5 worked well in the negative 

binomial case, however as the parameters changed the estimator became more 

sensitive to the penalty parameter chosen. When I considered the Neyman Type A- 

gamma model I noticed more sensitivity in the estimator to the value of the penalty 

parameter chosen.

The adaptive penalty 3 was also considered, which used the the Chao\ species richness 

estimate as a naive estimate and penalised the estimate towards it. Chapter 2 showed 

that the Chao\ estimator can severely underestimate the true species richness, and 

therefore introduce too much bias to the MLE when using penalty 3. Evidence of the 

over-penalisation was seen when this MLE estimator was applied to simulated data. 

Therefore I would exercise caution when using this penalty on the MLE applied to 

clustered data.

To combat the negative bias of penalty 3, I considered using an iterative penalty. Due 

to computational constraints, I opted for a one-step iteration and using this penalty 

the MLE performed much better than using penalty 3 in simulations. Using the 

iterative step meant that the true value of the number of species always fell within the 

95% central interval when using the negative binomial model in simulations, whereas 

it had not using penalty 3 alone. However, for Neyman Type A-gamma model 1 still 

saw a significant negative bias in the estimates at a low sampling depth using this 

penalty, where data were simulated from a clustered population.

In reducing the bias of the MLE using penalties, I did increase the variance of the 

estimate and the width of the confidence interval. Ideally we would reduce both 

variance and bias, and it is important to consider which is preferred during application 

of the estimators. In our case, I would argue that a species richness estimate with 

less bias would be preferable when applied to benthic data sets. Alternatively, we 

could use the mean square error, which incorporates both the variance and bias of

the estimator.
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When applying the MLE to the real data sets, I found that the species richness 

estimates varied substantially between the models. According to the AIC, the 

negative binomial model gave the best fit for all the data sets. However, the 

Neyman Type A-gamma model was plausible for the Lepidoptera data and the CBC 

data and provided an acceptable fit according to the chi-squared values. This was 

encouraging, and suggested that modelling the spatial clustering of individuals within 

species could be beneficial when estimating species richness.

The chi-squared values and AIC for the benthic data sets suggested that the negative 

binomial model with no penalty fitted the data well, and was the best model, but 

the species richness estimates obtained in these cases were very large. This suggested 

that we can not always rely on these measures to select the most appropriate model. 

Chao (2004) highlights a general problem with parametric methods

‘A model which gives a good fit to the data does not necessarily result in 

a satisfactory species richness estimate. ’

We have seen this illustrated in some of the species richness estimates we obtained, 

as there have only been approximately 10,000 benthic species recorded in UK coastal 

waters (personal communication, Keith Cooper) so we would not expect the true 

species richness to be as high as the estimate of 63,956 that we obtained for the 

Eastern Channel using the negative binomial model.

Using a penalised MLE on benthic data had an effect on the species richness estimates 

obtained, and decreased the estimates of species richness to something more realistic. 

Penalty 2 was not always harsh enough to combat the flatness of the log-likelihood 

with the penalty parameters of y2 =  0.5 and y2 =  0.25 1 used. Wang and Lindsay 

(2005) stated that the optimal value for the penalty parameter of penalty 2 depended 

on the value of the odds function, and our estimates showed that for benthic data, 

where we have not observed a high proportion of the species, the penalty parameter 

we used was important. A method to select an appropriate value for this parameter
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would be very useful, and should improve estimation, and this is an area for future 

investigation. One link considered by Wang and Lindsay (2005) was that penalties 

may be considered as priors in a Bayesian framework, and I consider this in Chapter 6.

In contrast, penalty 3 was much harsher. For the Isle of Wight data set both penalty 3 

and the penalised estimator using one-step iteration gave reasonably similar estimates 

of species richness from the two grab sizes using both the negative binomial and 

Neyman Type A-gamma models, suggesting that this may be working well. The 

one-step iterative penalty performed well in both application to the benthic data sets 

and to the simulated data, and I would suggest the use of this penalty over penalty 

2 while there is no method to select the best penalty parameter 72, as otherwise we 

may not avoid the spuriously large estimates associated with the boundary problem. 

If the sampling depth was known we could be more confident in the estimates gained 

using penalty 2, however in practice knowledge of the actual sampling depth is highly 

unlikely.

To check the suitability of using the penalised likelihood when the boundary problem 

was not present, I considered the estimates given by the penalised MLE for the 

Lepidoptera data. A suitable penalty would only penalise the likelihood where 

necessary, and the estimated number of species was not affected much by the use of 

penalties. Therefore I can conclude that where the boundary problem is not present, 

use of the penalised MLE will not greatly effect the species richness estimate.

The results showed the inadequacy of the Poisson model in describing benthic data, 

with estimates not much larger than the observed number of species, and very high 

AIC in all cases. When applying the MLE I allowed the abundance to vary between 

species, but not the spatial clustering. I suspect that this could be the cause of the 

lack of fit of the Neyman Type A-gamma given by the chi-squared values, because in 

reality species are likely to exhibit differing spatial clustering patterns. When I applied 

both the negative binomial and Neyman Type A-gamma models to data simulated
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from Neyman Type A where both abundance and spatial clustering varied between 

species, the Neyman Type A-gamma model fitted the data better. This reassures me 

that the Neyman Type A-gamma model is more suitable for use in estimating species 

richness for spatially clustered data than the negative binomial.

To build the extra variation into the model involves computation of a double 

integral, and the computation time of fitting this model compared with the negative 

binomial and simple Neyman Type A-gamma is greatly magnified. Currently the 

Neyman Type A-gamma takes 8 hours to fit, when profile confidence intervals are to 

be calculated, whereas the negative binomial takes less than ten minutes. Adding in 

the extra parameter allowing clustering to vary between species greatly increased the 

number of integrations to be carried out within the optimisation, and takes sixteen 

days to complete. It is possible that the optimisation gets stuck in a flat area of the 

likelihood, and future work will look at ways to avoid this, and other possibilities to 

decrease computation time.

Another possible area of future research is to consider alternative distributions to 

describe the spatial clustering of individuals within benthic species. Neyman and 

Scott (1958) suggested three contagious distributions, so perhaps the Neyman Type 

B or C models could be more appropriate. I wished to consider a distribution that was 

a simplification of the Matern process introduced in Chapter 2; however an alternative 

clustering distribution not based on parents and daughters may be more suitable.

3.12 Conclusions

In this chapter I extended the maximum-likelihood approach from the negative 

binomial model to the Neyman Type A-gamma distribution in an attempt to 

incorporate the spatial pattern of the species’ members into species richness 

estimation. I have seen through simulations that this model does perform well for 

clustered data, and also when applied to real data sets.
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I considered several approaches to estimate confidence intervals for the MLE, and 

found that confidence intervals based on profile log-likelihoods perform well in terms 

of coverage. Therefore I used this method in estimating confidence intervals for the 

MLE and penalised MLE.

To improve species richness estimates for benthic data, further work will include 

an extension to allow clustering intensity to vary between species, and I would expect 

that then the model fit may improve. Also, further work on investigating alternative 

clustering distributions to describe the spatial patterns of benthic organisms could be 

a valuable contribution to the field of species richness research.

I found that the boundary problem caused spuriously large species richness estimates, 

and attempted to combat this by penalising the log-likelihood. However, some of the 

penalties used were subjective, and an alternative to this is to use priors within a 

Bayesian framework to avoid spuriously large estimates. Using the Bayesian approach 

can also remove the need to compute the marginal likelihood during optimisation, and 

this should reduce the computation time of the estimate. The Bayesian approach to 

species richness estimation is considered in Chapter 4.



4. SPECIES RICHNESS ESTIMATION - A BAYESIAN

APPROACH

4.1 Introduction

In Chapters 2 and 3 I explored non-parametric and parametric frequentist approaches 

to estimating species richness. This chapter considers parametric Bayesian approaches 

and the aim is to explore these methods for species richness estimation, and extend 

them for the Neyman Type A-gamma model.

I first introduce both parametric and non-parametric approaches to Bayesian species 

richness estimation from the literature. I then proceed with a parametric Bayesian 

approach. First I describe the methodology used, introduce the priors investigated 

and the models used, and then provide species richness estimates for the Lepidoptera 

data set and the CBC data set. The chapter concludes with a discussion of the 

Bayesian approach.

One standard consideration in the use of the Bayesian approach is the requirement to 

specify an appropriate prior distribution for the parameters. In many applications, 

including ecological, the prior is a convenient way to incorporate expert opinion or 

information from previous or related studies.

There are two situations that could occur (King et ah, 2010, p76):

• there is no prior information;

• there is prior information which needs to be expressed in the form of a suitable 

probability distribution.
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In this chapter I investigate the use of non-informative (objective) priors. Objective 

priors are used in cases where prior information is unavailable or controversial, because 

an objective Bayesian procedure may be regarded as a default method which can be 

applied in cases where prior information is sparse or not well understood, or differs 

between the stakeholders (Sweeting, 2001).

Chapter 5 considers the Bayesian approach to estimating species richness using priors 

that have been informed by expert opinion.

4.2 Bayesian species richness estimation methods

There are several approaches that one could take to tackle the species richness problem 

from a Bayesian viewpoint. These can be categorised into parametric and non- 

parametric approaches, and a brief review of some of the methods developed in each 

approach is given below.

4.2.1 Parametric Bayesian approach

In the parametric Bayesian approach a prior is placed on the number of species, N, 

and on the parameters of the abundance distribution. Several models and priors 

have been suggested for the species richness estimation problem. Barger and Bunge 

(2008) and Barger and Bunge (2010) prefered objective priors, and presented Jeffrey’s 

prior, p(N) oc (where m is the dimension of the nuisance parameter), and the

reference prior, p(N) oc 7V~2, for several abundance models including the Poisson 

and negative binomial.

Others used informative priors, including Poisson and negative binomial priors for the 

number of species again applied with various abundance models (Madigan and York, 

1997; Rodrigues et ah, 2001: Wang et ah, 2007). Wang et ah (2007) considered several 

priors of the form p(N) oc l/Nc, where c is a non-negative constant, which include 

the improper uniform prior when c =  0. Rodrigues et ah (2001) made a comparison 

between the hierarchical Bayesian approach and the empirical Bayes approach, both
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of which are discussed in more detail later in this chapter.

Advantages of the parametric Bayesian approach highlighted by Barger and Bunge 

(2010) are that smoothing the abundance data stabilises the estimate of the number 

of unobserved species, that the point and interval estimates will be greater than the 

number of species seen, and that credible intervals can be asymmetric.

However, problems with the approach do exist, and include the justification of the 

use of specific priors, and model selection as in the frequentist approach. In addition, 

there is the issue of truncating the data before performing the analysis, which some 

do (Barger and Bunge, 2010), while others do not (Quince et ah, 2008).

4.2.2 Non-parametric Bayesian approach

Bayesian non-parametric inference is a relatively recent area of research (Lijoi et ah, 

2007), and the use of these methods has increased more recently, for example in 

statistical machine learning (Blei et al., 2010).

The non-parametric Bayesian approach requires the specification of a prior to assign 

probability distributions to function spaces (Barger and Bunge, 2010). Random 

discrete probability measures, such as the commonly used Dirichlet process, are used 

as priors within hierarchical mixture models for density estimation (Favaro et al., 

2011). The class of Dirichlet process priors was first presented by Ferguson (1973) 

when interest in Bayesian non-parametric inference was in its infancy, and alternative 

ways to define a Dirichlet prior and to establish its properties were given in Blackwell 

and MacQueen (1973) and Blackwell (1973).

An alternative non-parametric approach to the species richness problem presented 

by Lijoi et al. (2007) looked at the probability of discovering new species during 

further sampling. Additional work in this area was detailed in Favaro et al. (2011), 

who studied the limiting behaviour of the number of new species to be observed in
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a new sample. These approaches use a general class of discrete random probability 

measures, termed species sampling models, which were introduced by Pitman (1996) 

and discussed in Favaro et al. (2009). However, this addresses a slightly different 

question to the one I wish to answer.

4.3 Parametric Bayesian methods

4.3.1 Bayesian inference

In the Bayesian approach we specify a model for some observed data, y =  yi, . . . ,  

given a vector of unknown parameters, 0, as f(y\9), and suppose that 6 is a random 

quantity with a prior distribution p{9).

If we express the joint probability distribution for y and 6 as p(y, 9) =  p{9) f  (y\9), we 

base inference for 6 on its posterior distribution:

*<%) = 4 ^  = (4.D
p{y) p{y)

where

p(y) =  f  p(yi = J p{0)f{y\6)de, (4.2)

or the sum over all possible values of 9 when 9 is discrete. This may be expressed as

*■(%) oc f(y\6)p(d), (4.3)

the likelihood times the prior if the factor p(y), which does not depend on 9 for fixed 

y, is considered as a constant (Gelman et ah, 2004, p 8).

Figure 4.1 shows an example of a directed acyclic graph (DAG) for this approach, 

where the data aq ~  Poisson(Aj) and A* ~  Gamma(ft, J3).

4.3.2 Hierarchical Bayes

In the hierarchical Bayes (HB) approach, the parameters of the priors are assumed 

to be unknown, and are themselves given ‘hyperpriors’ (George et al., 1993). This
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Figure 4.1: Directed acyclic graph of the Poisson-gamma model where the data x% ~ 

Poisson(Ai) and \  ~ Gamma(a,/3).

essentially incorporates random effects in the model parameters, and reduces the 

influence of prior assumptions on the posterior.

Therefore, we suppose that in our model, f(y\9), 9 has prior distribution p(9\u) and 

the hyperparameter v is unknown. Then u has a prior distribution, p(i/). The joint 

prior distribution is

p(u,9) =  p(u)p(9\u) (4.4)

and the corresponding joint posterior is

n(9, u\y) oc f(y\v,9)p(u,d)

=  f(y\9)p(v,9).

This holds as the hyperparameters v only affect y through 9 (Gelman et ah, 2004, 

pl24).

Figure 4.2 shows an example of a DAG for this approach, where the data ay ~  

Poisson(A,) and A* ~  Gamma(a,/3) but a and ¡3 also have priors.
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Figure 4.2: Directed acyclic graph of the Poisson-gamma model where the data xx ~ 

Poisson(Aj) and \  ~ Gamma(«,/3), and a and (3 have hyperpriors with 

parameters ahi and cp ,̂ and (3hi and (3h2 respectively.

4.3.3 Markov chain Monte Carlo

To estimate the posterior distribution, I use Markov chain Monte Carlo (MCMC) 

methods. There are two components to MCMC; Monte Carlo integration, and Markov 

chains. Monte Carlo integration allows us to obtain an estimate of a given integral 

which is too complex to evaluate explicitly.

For example, given a sample of observations, 01, ..., 6n from the posterior distribution, 

we can estimate the expectation of a function g{.) of parameter 6 given observed data 

x

=  j g(0)-K(d\x)dO (4.5)

by the average

= ¿ ¿ 9 ^ )  I4'6)
i= 1

(Morgan, 1984, p. 163), which, for independent samples, tends to ~En[g{d)\ as n tends 

to infinity, by the Law of Large Numbers.
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When we are unable to sample the posterior directly, we are able to generate these 

samples via the use of a Markov chain; a discrete time stochastic process where each 

value in the sequence depends only on the last (Roberts, 1996, p. 45). The Markov 

chain is successful because at each step in the chain the distribution of the samples 

gets closer to the posterior. This approach is often the easiest way to get reliable 

results (Gelman et ah, 2004, p. 287).

To simulate a Markov chain we generate the new state of the chain, say 9k+1, from 

some density dependent on 9k such that

9k+1 ~  K(9k, 9),

where K  is the transition kernel for the chain (King et ah, 2010, p. 101), which 

represents the probability distribution of moving from 9k to a point in the target 

distribution.

The aim is to create a Markov process whose stationary distribution is the specified 

target distribution. For the distribution of the values of the Markov chain to converge 

to a stationary distribution, it must be irreducible, aperiodic and positive recurrent 

(Appendix B). Our chain will be positive recurrent if we can show it is irreducible, 

and a Markov chain is irreducible if we can get from any state 9k to any other. For 

an aperiodic, positive recurrent Markov chain, according to the Ergodic Theorem 

(Appendix C), the target distribution is the limiting distribution of the chain

9n -A ^[g{9)\ as n —> oo

(Roberts, 1996, p. 47).

As we update the parameters in the Markov chain, the probability distribution 

associated with the kth observation gets closer and closer to tt{9\x ) as k increases. 

Therefore, if the chain is run for long enough, the distribution of the chain will 

converge to the posterior distribution of interest. We must discard any observations
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from before the chain converges, and we refer to this initial period of the chain as the 

burn-in.

To construct a Markov chain we can use a form of rejection sampling, whereby we 

draw samples from a candidate distribution conditional on the last observation and 

accept the move with some probability. This forms the transition kernel for the chain. 

This method was developed by Metropolis et al. (1953) and generalised in Hastings

The proposal distribution, q(4>\9k), from which we generate these candidates typically 

depends on the current state of the chain, plus some noise. We can chose any sensible 

distribution for q, such as (fr\6 ~  N (9 ,o2), where o'2 is to be specified; which is easily 

sampled and symmetric.

We introduce an acceptance function, and accept the candidate observation and set 

9k+1 =  <j) with probability a(9k,(/)); otherwise if the candidate is rejected the chain 

remains at 6k, and 6k+l =  9k.

The optimal form for the acceptance function, in terms of not rejecting candidate 

values too frequently, is given by

4.3.4 Metropolis-Hastings algorithm

(1970).

(4.7)

which is determined by requiring that, the reversibility condition

n(9k\x)q((p\9k)a(9k, (f>) = 'K{(f>\x)q{9k\(j))a{(j),9k (4.8)

is met (Peskun, 1973). This ensures that the Metropolis-Hastings kernel has n(9\x) 

as its invariant density (Chib and Greenberg, 1995).
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Thus the algorithm for the Metropolis-Hastings (MH) method is:

1. Draw (f) ~  q((f>\9k)

2. Set 9k+1 =  (f> with probability a(6k, </>), otherwise set 8k+1 =  6k.

3. Repeat steps 1 and 2.

If we specify a proposal distribution that is symmetric, such as a normal distribution, 

the proposal densities cancel in the acceptance function (Equation 4.7). We are left 

with

which is the Metropolis algorithm.

One construct of the MH algorithm is the single update MH algorithm; where MH 

is used in stages, updating each parameter one at a time. Gibbs sampling can be 

viewed as a special case of the single update MH algorithm, in which the proposal 

distribution for any parameter is set as the conditional posterior distribution of that 

parameter given the current value of the others (Gelman, 1996, p328). Therefore the 

acceptance probability will always equal one. Gibbs sampling is especially useful for 

conjugate models, that is where one can directly sample from the conditional posterior 

distribution as it will follow a known parametric form (Gelman, 1996, p 40).

If parameters are correlated, using block updates can be beneficial to reduce 

computation time and improving mixing (exploration of the parameter space). In 

this case correlated parameters can be updated in a single MH step. This requires a 

multivariate proposal distribution for these parameters.

To construct a covariance matrix for a multivariate normal proposal distribution, 

I can perform pilot tuning and obtain posterior standard deviations and correlations 

for the parameters of the model using the single-update MH algorithm; these are used

(4.9)

4.3.5 Block updates
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in the construction of a suitable covariance matrix.

We simulate a set of candidate values for the parameters, u;, from a multivariate 

normal proposal distribution given by

(

u\9k ~  J\fi

(  9k \ <j01 #6162
\

\  V ei )  \  CTelt

(4.10)

...........  / /

where 9k are the parameter values at iteration k of the Markov chain, cr| is the 

proposal variance of cu, and a$iej is the covariance of 9t and 9r

Following (King et ah, 2010, pl34), I allow a slightly larger covariance between

parameters when performing the MCMC than given by the single-update pilot tuning, 

to explore the parameter space sufficiently.

The acceptance probability of the MH algorithm is given by

a(9k, uj) =  min(l, A), (4-11)

where

_  Tr(uj\x)q(9k\uj)
7i(9k\x)q(u:\9k) 
f(x\u)p{u) 
f  (x\9k)p(9k)

since the proposal distribution is symmetric and cancels in the acceptance probability.

4.3.6 Performing MCMC within BUGS and R

The BUGS (Bayesian inference Using Gibbs Sampling) software has been developed 

to perform Bayesian analysis of complex statistical models using MCMC methods 

(Lunn et al., 2000). It is a useful tool which allows one to perform MCMC simply by 

specifying a model and the data to be analysed.
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WinBUGS (designed to run BUGS in Windows), is a user-friendly interface which not 

only performs MCMC, but also incorporates several of the diagnostic tools that I 

will mention in this chapter. As suggested by the name, BUGS uses Gibbs sampling, 

however alternative methods, such as the Metropolis-Hastings algorithm, are used for 

difficult full conditional distributions.

Several common distributions are built into WinBUGS, and those that are not can 

be implemented by expressing the negative log-likelihood, —l, and using the ‘zeros 

trick' which operates using the following code:

fo r  ( i  in 1:N) { 

ze ro s [i]  <- 0 

p h i[i]  <- —lo g (1 [ i ] ) 

ze ros [i] ~ d p o is (p h i[ i ] )

}

Here, the observed data zeros is a vector of zeros, and a Poisson(</>) observation of 

zero has likelihood exp(—<p). As phi [i]  is set to —lo g (1 [ i ] ), we will obtain the 

correct likelihood contribution for our specified distribution (Lunn et al., 2000).

However, for more flexibility and control one can use bespoke code in R to run MCMC. 

One can also run WinBUGS from within R, and use established R functions to analyse 

the MCMC output.

4.4 Summarising the posterior distribution

We use statistics to summarise the posterior distribution of 9 and obtain a point 

estimate from the posterior by selecting one of these summary features, such as its 

mean, median or mode.

When the prior is fiat the mode will be equal to the maximum-likelihood estimate, 

however the mean is commonly used as it minimises the posterior variance with
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respect to the point estimate of the posterior (Carlin and Louis, 2000, p. 34). I 

report the mean and the median, which is preferred for asymmetric posteriors as it 

is intermediate to the mode and the mean.

To determine the accuracy of a point estimate, the standard deviation of the posterior 

with respect to that estimate is reported. However, this gives no information on the 

skewness of the distribution, and so we describe the spread of the distribution through 

credible intervals (King et ah. 2010, p. 86).

The interval (a, b) is defined as a 100(1 — a)%  credible interval for 9 if

b

1 — a < P(6 G [a, b]\x) =  J p(9\x)d9, (4-12)
a

where integration is replaced by summation for discrete parameters (Carlin and Louis, 

2000, p. 35).

A 100(1 -  a)%  credible interval is an exact interval for which the probability that 9 

lies in the interval (a, b) given the observed data is at least (1 — a) (Carlin and Louis, 

2000, p. 36). This is in contrast to the confidence interval of the frequentist approach, 

which is the confidence that if a trial were repeated several times, 9 would be within 

the interval.

The 100(1 — a)%  credible interval is not unique. To calculate a 100(1 — a)%  credible 

interval, one can take the a/2 and (1 — a/2) quantiles. This gives a central credible 

interval with equal tails, which is invariant to one-to-one transformations and easy 

to compute. This is the highest posterior density interval (HPDI) if the posterior is 

symmetric, otherwise it is wider than the HPDI.

The HPDI is the shortest possible interval having a given credible level (1 — a) (King 

et ah, 2010, p. 86). Assuming there is a single mode, this interval is centered around 

the mode, and is always computable from the posterior density. A 100(1 — a)%
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credible interval is a 100(1 —a)%  highest posterior density interval if for all O' E [a, b\ 

and 6" qL [a, b], p(0'\x) > p(6"\x) (King et ah, 2010, p. 86).

I assume that the posterior distribution is uni-modal, and this can be confirmed 

by looking at posterior density plots.

4.5 Diagnostic tools

4.5.1 Convergence

As stated in Section 4.3.3, we must discard any observations previous to the 

convergence of the chains to estimate the posterior density. Therefore I must 

determine how long it takes the chain to converge and where to set this burn-in 

period. We can do this by looking at trace plots. However, these may be misleading 

and it is preferable to use multiple chains run from different initial values to observe 

if all chains converge to the same result.

A more formal analysis of convergence can be made using diagnostics, such as the 

Brooks-Gelman-Rubin (BGR) diagnostic (Brooks and Gelman, 1998). The BGR 

diagnostic uses a comparison similar to a classical analysis of variance to determine 

whether or not there are differences in estimates from different chains. When the 

BGR statistic is close to unity, one can assume that convergence has been achieved 

and the outputs from all chains are indistinguishable.

Another useful tool is the Heidelberger and Welch convergence diagnostic, which uses 

the Cramer-von-Mises statistic to test the null hypothesis that the sampled values in 

the Markov chain come from a stationary distribution (Brooks and Gelman, 1998). 

The test is applied successively, first to the whole chain, then after discarding the first 

10%, 20%, . . .  of the chain. This continues until either the null hypothesis that the 

sampled values in the MCMC chain come from a stationary distribution is accepted, 

or 50% of the chain has been discarded.



4. Species richness estimation - A Bayesian approach 118

If the stationarity test is passed, the function reports the number of iterations to 

keep and the number to discard. However, if 50% of the chain has been discarded the 

test has failed and indicates that a longer MCMC run is needed.

The half-width test calculates a 95% confidence interval for the mean of the posterior, 

using the portion of the chain that passed the stationarity test (Heidelberger and 

Welch, 1983). Half the width of this interval is compared with the posterior estimate 

of the mean, and if the ratio between the half-width and the mean is lower than a 

certain value e, the half-width test is passed. Otherwise the length of the sample is 

deemed not long enough to estimate the mean with sufficient accuracy.

Such diagnostics are useful tools, however they can only provide evidence for lack 

of convergence rather than proof of convergence. Therefore, it is sensible to be 

conservative when setting burn-in levels, and choose a longer burn-in than indicated 

by trace plots and diagnostics.

4.5.2 Pilot tuning

To ensure adequate convergence of the Markov chains and reasonable acceptance 

probabilities within the MH algorithm, one can perform pilot tuning. The variances 

of the proposal distributions are adjusted to obtain MH acceptance probabilities in 

the range 35 — 40%. This level of acceptance should ensure adequate mixing (Gelman, 

1996).

Excessive pilot tuning is often unnecessary for fast simulations, because we can 

tolerate a higher rejection rate if not computationally costly. However, for more 

complicated models pilot tuning becomes more important to reduce computational

cost.
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4.5.3 Autocorrelation

A useful tool to assess the performance of the Markov chain is the autocorrelation 

function (ACF), which examines the correlation between successive values in the 

Markov chain. The autocorrelation at lag t, that is the values of the chain separated 

by t iterations, is defined as cor(9k,6k+t) (King et al., 2010, pl36).

For good mixing we would like low levels of autocorrelation. The ideal is a fast 

decrease in the value of the autocorrelation as the lag increases, showing that values 

of the chain are not highly correlated as in the second plot of Figure 4.3.

LL
o<

0 5 10 15 20 25 30

Lag Lag

Figure 4.3: Example ACF plots showing (a) high and (b) low levels of autocorrelation.

The chain in the second plot has been thinned to every 100ift iteration, and 

autocorrelation has greatly decreased.

One possibility to reduce autocorrelation is to make adjustments within the pilot 

tuning to increase the acceptance rate of the MH algorithm, which will allow the 

chain to move around more within the parameter space. To increase the acceptance 

rate, we decrease the variance of the proposal distribution and vice versa.

Thinning could also be used to reduce autocorrelation, that is where we keep only
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every ith iteration of the sample. However, this will discard a very large number of 

sampled values, which is not favourable when computation is expensive. Thinning 

will not solve the problem of poor mixing so it is preferable to resolve the cause of 

the autocorrelation.

Another possibility to reduce autocorrelation is the use of block updates (Section 

4.3.5). If parameters are correlated, their range of acceptable new values are 

constrained in a single-update MH by the values of the correlated parameters. If 

parameters are updated in blocks this should increase the movement around the 

parameter space.

4.5.4 Model checking and discrimination

A commonly used Bayesian method to check goodness-of-fit is calculating Bayesian 

p-values, which match predicted or imputed data against observed data,

Given observed data x , at each MCMC iteration, k , a new data set, x k, is generated by 

simulating from the model with parameters 6k, and a discrepancy statistic, D {x k, e^), 

such as the negative of the log-likelihood function is used to measure the difference 

between this generated data and the expected values at that iteration, e*,. This value 

is then compared to the discrepancy function evaluated at the observed data, D (x, ek) 

(King et al., 2010, pl38).

The Bayesian p-value is the probability that the simulated data could be more extreme 

than the observed data, that is the proportion of times D (x , e*,) < D (x k:, e^). If the 

model is a good fit to the data, then we would expect the Bayesian p-value to be 

close to 0.5. Figure 4.4 shows an example of a Bayesian p-value scatter plot of the 

discrepancy function. The Bayesian p-value is the proportion of points lying above 

the line of unit slope in the plot of the discrepancy statistic of the observed data 

versus the discrepancy statistic of the simulated data.
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Figure 4.4: Example scatter plot of the negative log-likelihood of the observed data versus 

the negative log-likelihood of data simulated from the parameter values at each 

MCMC iteration. The proportion of points lying above the dashed line gives 

the Bayesian p-value, which is close to 0.5 when the model is a good fit to the 

data.

There are several suitable choices for the discrepancy statistic, including a measure 

of ‘deviance’ , defined as -2 times the log-likelihood of the data x k at Qk. One could 

alternatively use the Freeman-Tukey statistic

i

or the Pearson chi-squared statistic,

-  e.i)2/e,.
i

In some cases Bayesian p-values can differ substantially depending on the discrepancy 

function used (King et ah, 2010, p!40), reflecting different aspects of the model.

To make comparisons between competing models, we can again use discrepancy 

measures to compare the data to different models. We work with the ‘deviance’ , 

defined

D ( x , 6 )  =  -2\ogf(x\6) (4.13)
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which can be averaged over the posterior distribution to estimate the expected 

deviance, Davg(x). The model with lowest expected deviance will have the highest 

posterior probability (Gelman et al., 2004, p 181).

Using a point estimate for 6, such as the mean of the posterior simulations, we define 

D§(x) =  D (x,d(x)) and we can use this within the Deviance Information Criterion 

(DIC):

D IC  =  2Davg(x) -  Dg(x), (4.14)

to estimate the expected predictive deviance, that is the error which would be 

expected when applying the model to future data (Gelman et al., 2004, p 182).

The DIC was developed to compare complex hierarchical models in which the number 

of parameters is not clearly defined (Spiegelhalter et al., 2002). The effective number 

of parameters for the model can be measured using the difference between the 

posterior mean deviance and the deviance at 6,

Pd Davg(x̂ ) D q[x  ̂. (4.15)

DIC can be problematic as it is possible to obtain a negative effective number of 

parameters (King et al., 2010, p. 151), and so caution will be applied when using this 

method.

4.6 Estimating species richness using Bayesian methods

This section explores Bayesian methods for species richness estimation, and extends 

them for the Neyman Type A-gamma distribution.

Recall the species richness model likelihood (Equation 3.1 of Chapter 3)

m « )  =  {N Aj D )M ef ~ D{1 -  p ° w } c  n  f t  w / > . ( 4 . i 6 )

where N  is the unknown number of species in the population, D is the number of 

species in our sample, f k is the number of species observed k times in the sample, po(Q)
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is the probability of not seeing a species, gfc(0 ) are the zero truncated probabilities of 

seeing a species k times, and 6 is the vector of parameters describing the abundance 

distribution .

Under a Bayesian framework, the posterior for our species richness model can be 

written as

n(N, 0\x) oc p (N .G )L (N ,9 :x ) (4-17)

= r(N , o) {N  m D )lM e f -D{1 - p « m D n WA. (4-18)
where the parameters of the abundance distribution, 9. are treated as nuisance 

parameters as our goal is to estimate N.

4.6.1 Marginal probability calculation

The posterior distribution for the model can be evaluated by calculating the marginal 

probabilities as in the frequentist approach, by evaluating the integral
OO

Pk(0) =  J g(k\X)f(X;d)d\, (4.19)
o

and setting priors on the parameters of the mixing distribution, 6.

4.6.2 Hierarchical Bayes approach to species richness estimation

One possible advantage of using the Bayes approach is that we can eliminate the need 

to evaluate an integral to calculate the non-hierarchical likelihood. If we construct a 

hierarchical model we remove this integral, and model the data using a random effects 

approach. This approach gives us less informative priors, because we are adding an 

extra level to the model.

For each observation we estimate an abundance parameter, and the abundance 

parameters are distributed with some distribution. For example, observations xt ~  

Poisson(Aj) and A* ~  Gamma(a, /3), for all i =  1 iV. This model is simple to 

implement, and can be defined in WinBUGS using the following short code:
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model{

for (i in 1 : N) {

theta[i] ~ dgamma(alpha, beta) 

x[i] ~ dpois (theta [i])

>

alpha ~ dexp(l)

beta ~ dgamma(0.1, 1.0)

}

where a and ¡3 have been given particular exponential and gamma priors respectively.

However, this requires that N is a fixed value, so to implement a hierarchical Bayes 

(HB) approach in WinBUGS when we have missing species we can utilise reversible 

jump Markov chain Monte Carlo (RJMCMC) or data augmentation. These methods 

enable us to model the data using this random effects approach, and give us an 

estimate of the total species richness.

4.6.3 Varying clustering between species

An advantage of the Bayesian approach is that we can allow the clustering parameter 

to vary between species within the Neyman Type A-gamma model.

Previously, in the frequentist, approach of Chapter 3, I have given the abundance data 

a Neyman Type A distribution, and to estimate N  I assumed that one parameter is 

constant across all species and assume that the mean abundance, \<fi =  p, follows a 

gamma distribution. The probability that a species is observed k times in a sample 

is

Pk{&)
, - A  Ak

k\ E
i=o

(\e~*Yjk \ Pa(X<t>)a~1e - ^
V- 1»

dA, (4.20)

which allows the species density to vary, but I assumed that clustering intensity does 

not vary between species.



4. Species richness estimation - A Bayesian approach 125

Considering this from a hierarchical Bayes viewpoint, I can extend the model so that 

not only the mean abundance but also the clustering parameter, 0 , can vary between 

species. The probability that a species is observed k times in a sample becomes
OO OO

Pk{0) =
= - A  Ak

k\
0 0

£
3=0

(Ae~*)ijk\ /3a\a~1e~0X 6a0a_1e
r-

-1 p -b(j>

r(a) r(o) -d A # , (4.21;

if I give 0 a gamma prior with parameters a and b. However, we do not need 

to evaluate this double integral when using the hierarchical Bayes approach, and 

therefore calculation of the species richness estimate of this model becomes simpler.

By allowing clustering to vary between species, I should be able to describe benthic 

data more accurately using this model, and I would hope that the fit of the 

Neyman Type A-gamma-gamma would improve over the Neyman Type A-gamma.

When applying this model within WinBUGS, multiple errors were produced. A possible 

source of error could be that there is insufficient data to inform so many parameters 

when each species is given a different clustering parameter and abundance parameter. 

This theory could be tested by running the model on larger data sets. To combat this 

problem, one approach might be to group species and allow the clustering parameter 

to vary between these groups. Using fewer parameter values should then allow the 

model to be fitted.

The question arising then is how to group the data or species, especially when dealing 

with the species that have not been seen in the sample. One option could be to use 

particular traits of the species, such as body length, or feeding type. Alternatively, 

the groupings could be made with respect to the abundance of a species. This area 

requires further research, as we would not have data on the missing species, and 

therefore we must consider how such species will be grouped within the model.
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Reversible jump Markov chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) is used when 

we consider more than one model with different numbers of parameters in each, and 

allows us to choose between them. It allows a change in dimension of the Markov 

chain which is not possible using a standard MH algorithm.

RJMCMC produces a Markov chain with stationary distribution equal to the joint 

posterior of the models and parameters; that is:

n(0m,m\x) oc f(x\0m,rn)p(0m\m)p(m), (4.22)

where m is the model, 0m denotes the corresponding parameters of that model and 

p(m) is the prior probability for model m.

I can use this approach to tackle the missing data problem, by treating each value of 

N  as a separate model, with the corresponding number of random effects.

The RJ algorithm is a form of the MH algorithm. At each iteration there are two 

steps (King et ah, 2010, pl56);

1. update the parameters, 9m, conditional on the model using the MH algorithm,

2. update the model, m, conditional on the current parameter values using 

RJMCMC.

For each iteration the second step consists of two parts,

1. propose to move to a different model with some given parameter values,

2. accept this move with some probability.

Within this step, the shared parameters between the models are set to their previous 

values, and for any new ones a parameter value u is simulated from a proposal 

distribution q as in the MH algorithm.
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The acceptance probability for the model move becomes

7t{Q', m x)P(m m') <*(ft,ft)
7t{6, m x)P(m ' m)q(u) d(fio, u)

(4.23)

where d(P'nA )
d(P o,«) is the Jacobian if (3[ and f3'0 are the parameters of the proposed model 

m!, and model m only has parameter /?0, and P{m\m') is the probability of proposing 

to move to model m from model m' (King et al., 2010, pl58). So the model move to 

state (6',m') is accepted with probability min(l,A).

For the reverse move, from (■O',m') to (9,m ), we set u =  /3[ and /30 =  (3'0 and the 

move is accepted with probability min(l,A_1). The posterior model probabilities are 

then estimated as the proportion of time the Markov chain is in any model.

The specification of the proposals, q, is important in achieving efficient random jump 

algorithms, and due to the form of the acceptance probability it is not possible to 

specify improper priors on parameters which are not common to all models (King 

et al., 2010, pl59).

Data augmentation

An alternative to RJMCMC is the data augmentation (DA) approach. This has 

been used in capture-recapture and occupancy models, to estimate population size 

or species richness over one or more sites (Royle et al., 2007; Kery and Royle, 2008; 

Royle and Young, 2008; Royle, 2009). The strategy, developed by Royle et al. (2007), 

is to augment the observed data set with a fixed number of all-zero observations, and 

model the augmented data set as a zero-inflated version of the complete data model 

using an unknown, but estimable zero inflation parameter (Figure 4.5).

This augmented data set can be thought of as a super-population, of size Ns, from 

which the sampled community was drawn, and we formulate the model for the data 

as if all N species were observed, and include a zero-inflation parameter ip to allow for
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Figure 4.5: Concept of the super-population model, where species 1 are observed in 

the data set, species D + are in the population but not in the data

set, and species N + l , ..., Ns are not within the population, but form a super

population of possible species in the population.
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excess zeros (Kery and Royle, 2008). This can be justified in a Bayesian framework 

as the prior on N is induced in the super-population, the marginal distribution for N 

arising from a binomial mixture, the mixing given by the prior on ip (Schofield and 

Barker, 2010).

A convenient way to model the zero-inflated outcomes is to specify ay conditional 

on a latent value zt. More formally, if ip is the probability that a data point x u 

i =  1, ...,Ns, is from the population of interest, then we define an indicator variable 

Zi such that

{1 if the Ah element of the data set is in the population, size N 

0 otherwise (an excess zero).

So we assume zt ~  Bernoulli^), and zt are independent (Royle et ah, 2007).

In this approach N  is a derived parameter, such that

Ns

2—1
Therefore we can assume that N  has a binomial prior distribution with index Ns 

and success parameter ip. If ip ~  Uniform(0,1), removing ip from the joint prior 

p(N\Ns,ip)p(ip) by integration
lJ Binomial(./V|A(s, ip)dip =  Discrete Uniform(0, Ns) (4.24)

o

gives a discrete uniform prior for N on the integers between 0 to Ns (Royle et al., 

2007).

This approach is fast and easy to implement in WinBUGS. However since N  is a derived 

parameter we are restricted to implied priors for N that are based on binomial mixture 

models (Schofield and Barker, 2010). Ns must be chosen large enough such that the 

posterior of ip can be adequately explored, so there is no risk of underestimating the 

value of N  (Royle et al., 2007). However, if we assign too large a value to N$ then 

this will increase computational costs, which could become very high when dealing
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with complex distributions. Royle et al. (2007) advocate Ng to be chosen by trial- 

and-error, such that the mass of the posterior of N is not concentrated near N$.

Schofield and Barker (2010) show that the RJMCMC approach is equivalent to the 

data augmentation approach, but RJMCMC is more general because it does not 

restrict the prior on At to a family based on binomial mixtures. They also showed 

that RJMCMC can result in substantial gains in efficiency over the data augmentation 

method, because fewer parameters need be sampled at every step, especially when 

the posterior for N  is skewed. This is something to be considered during analysis.

4.6.4 Incorporating information from multiple grabs

A benefit of the hierarchical Bayes approach, highlighted in Kery and Royle (2008), is 

that we are able to incorporate information from more than one sample. Previously 

I have pooled data across grabs for use in the estimators, but the hierarchical set-up 

allows us to use all of the data by specifying ~  Poisson(Aj), where j  — 1, ...,g and 

g is the number of grab samples.

To implement this in WinBUGS requires little change to the code (See Appendix D.3). 

This should improve the species richness estimates, because we are obtaining as much 

information as possible from our samples. Typically in benthic surveys we have five 

or ten replicates from each site.

4.6.5 Non-informative priors

When there is an absence of prior information on the model parameters, we would like 

to reflect this in the priors used. That is we wish the prior to play a minimal role in 

the posterior distribution. Flat priors can be used, which assign equal probability to 

all possible parameter values. However these priors are improper distributions unless 

there are bounds on the parameter space, which may restrict the posterior values 

unrealistically (King et ah, 2010, p77). A density is proper if it does not depend on 

data, and integrates to one (Gelman et ah, 2004, p61).
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Improper priors can lead to improper posteriors (although not always), and this could 

mean that the posterior mean does not exist (King et ah, 2010, p77). Barger and 

Bunge (2010) show that the posterior in Equation 4.18 can be integrated with respect 

to N and 9, therefore the posterior is proper. The posterior will be finite as long as 

the prior for the nuisance parameters, p(9), is proper (Barger and Bunge, 2010).

Since in this chapter I wish the priors to be non-informative, the choice among them 

should not matter as the likelihood should be dominant in the posterior distribution 

(Gelman et ah, 2004, p65). The two non-informative priors to be considered are the 

reference and Jeffrey’s priors, as used by Barger and Bunge (2010), which allows us 

to make a direct comparison with their results.

Alternatively one could chose vague priors which are proper and with large variance 

and use hyperparameters to dilute the influence of any prior assumptions on the 

posterior. This essentially creates random effects of the model parameters, as 

discussed in Section 4.3.2.

Jeffrey’s prior

The Jeffrey’s prior attempts to minimise the influence of the prior on the posterior 

and is based upon the expected Fisher information matrix. If (jV, 9) are the model 

parameters for data x, Jeffrey’s prior is given by

v {N ,9)^\F{N ,9\x)}l/\

where F(N, 9\x) is the Fisher Information given by

d2\ogL(N, 9\x)
F(N, 9\x) =  —E

d(N,9f
(4.25)

and L(N,9\x) is the likelihood for N  and 9. The Fisher information can only be 

found for likelihoods which are differentiable with respect to the parameters, using 

Equation 4.25. Since N  is a discrete parameter, the likelihood is not differentiable in 

N. However I can use the linear difference score to define the Fisher information.
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The linear difference score is defined as

If U(N) is of the form

U(N)
L(N) -  L(N -  1) 

L(N)

U(N) =  ( Y -  pN)/cN

(4.26)

where pN and cx  are functions of N, and Y  is random data, then var(U(N))  is 

the inverse information in N (Lindsay and Roeder, 1987). This is termed the linear 

difference property, and the species likelihood can be shown to satisfy this property 

(Barger and Bunge, 2010).

Using this method, Barger and Bunge (2008) obtain the information for N and 9

F { N , 9) = ^ V -J M 1 ( -5 7 log^(°))^

y - ^ logM °) N q(9)

where -^logpe(O) is the column vector of partial derivatives

d d d
—  logp0(O), —  logp0(O),..., ~ \ o g p e(0)

\

/

1 T

and

—  log pe(X)6(0) =  Ex

Expectation is taken with respect to pe and m is the dimension of the nuisance 

parameter 9 (Barger and Bunge, 2010).

As the diagonal elements of this matrix contain terms that factor into a function 

of N  multiplied by a function of 9, these can be treated independently. Taking the 

square root of the determinant of the Fisher Information, Jeffrey’s prior is

p(N,6)  oc det[F(iV, 0|x)]1/2

= p(6)

(4.27)

(4.28)

where p{6) is some function of the nuisance parameters (Barger and Bunge, 2010),

p2(.o) =  m  ix
1 - M 0)

Pei 0)
^ io g p e(o)") ( e ( d ) )  1 ^ i o g p 0(o; (4.29)
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Jeffrey’s prior is often used as it is invariant to reparameterisations of the model (King 

et al., 2010, p77). However it is an improper prior, and therefore integrability of the 

posterior must be shown.

This multi-parameter form of Jeffrey’s prior, used by Barger and Bunge (2010), is not 

of the form generally used. Instead, a product of the priors for each parameter is often 

used, which is less informative on the posterior and gives better results. However, 

I have chosen to use Jeffrey’s prior in multi-parameter form so that my results are 

comparable to those of Barger and Bunge (2010), who also analysed the Lepidoptera 

and CBC data sets using their species richness estimation approach.

Reference prior

The reference prior is a non-informative prior based on maximising the expected 

entropy of an experiment, i.e. maximising the distance between the posterior and the 

prior.

The derivation of the reference prior for our model depends on the asymptotic results 

of Sanathanan (1972), and is defined in Theorem 1 of Barger and Bunge (2010). 

It is based on the general method for deriving a reference prior for continuous- 

valued parameters (Bernardo and Ramon, 1998) and the information for integer

valued parameters as described in the previous section (Lindsay and Roeder, 1987).

Barger and Bunge (2010) show that the conditional reference priors are

p(0m|W,01, . . . ,0m-1)o c p (0) i £ (4.30)

and

p(6k\N,91, . . .A —i) oc exp (log h1/2'i
kk ) [ p(9j\N, 6fi,..., 6j-i (\0k+1

< j= k + 1
(4.31)

where d0k+i =  ddk+i x ... x d 6m if all of the p(0k\N, d i,..., 9k-i), k — 1 ,...m are 

proper. If any are not, then a compact approximation is required for the corresponding
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integrals (Barger and Bunge, 2010).

Again the joint prior, p(N, 0) factors into two independent priors for N  and 6. The 

marginal reference prior for N is

p(N) (x N -1/2. (4.32)

Regardless of the abundance distribution used, the form of the reference prior for N 

is the same (Barger and Bunge, 2010).

When we have a one parameter problem, that is assuming all nuisance parameters 

are known, it can be seen that the reference and Jeffrey’s prior are equivalent.

4.7 Analysis o f methods via simulation

I explored the performance of the Bayesian methods, using non-informative priors on 

simulated data. MCMC was run in R or WinBUGS, and the output analysed using 

using package coda in R . Manual tuning was carried out when running MH in R, and 

for the single-update MH I used a normal proposal distribution for sampling each of 

the parameters for simplicity. Although in reality TV is a discrete parameter, I set the 

model up this way for ease of computation.

I explored the effects of:

1. using single versus block updates,

2. the choice of uninformative prior on N,

3. using the data augmentation method versus R.JMCMC within a hierarchical 

Bayes framework,

4. using multiple grabs versus pooled data within a hierarchical Bayes framework,

5. using the non-hierarchical likelihood versus the hierarchical Bayes method.
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To do this, I simulated a data set Y  such that y% ~  Poisson(A¿), and A¿ ~  

Gamma(2,1). This gave a sampling depth of 75%, which meant a 0.75 probability of 

catching a randomly selected species over all grabs. TV was chosen as 200. The data 

were generated for 10 grabs, and the data when pooled are shown in Table 4.1. The 

number of species seen in the sample was D =  150.

In all of these simulations unless stated otherwise I used the negative binomial model 

for the abundances, a reference prior for N and non-informative half Cauchy priors on 

the gamma parameters 6 =  {a ,/? }. Half Cauchy priors were used so that the results 

would be comparable with those in Barger and Bunge (2010), although results are 

given there for this model only when the data are truncated to frequency counts less 

than 10 (The other results are given for an abundance distribution that is a mixture 

of two exponentials).

k 1 2 3 4 5 6 7 8 9 10

fk 54 33 34 10 10 3 2 1 2 1

Table 4.1: Data simulated from the negative binomial and pooled over grabs, a — 2,(3 = 

1,7V =  200; D = 150.

4.7.1 Single versus block updates

It is likely that the nuisance parameters of the model will be highly correlated, and I 

know that the estimate of N depends on these parameters, therefore block updates 

should prove useful in reducing computation time and improving mixing for the 

Markov chains. Therefore, I investigated the advantage of using block updates to 

allow better exploration of the parameter space, and therefore better estimates. This 

should decrease autocorrelation and speed up convergence.

I used the non-hierarchical likelihood method using MH MCMC, within R, with 

acceptance probabilities tuned to approximately 35 — 40%. The proposal distributions
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for the single-update method were normal, with the previous value of the chain 

as the mean, and standard deviations of 27, 0.4, and 0.2 respectively, defined 

through pilot tuning of 1,000 iterations with the first 500 as a burn-in. The initial 

values for the pilot tuning were set at 150, 5.1 and 0.5 respectively. The initial 

value for N  was chosen as the number of species seen in the sample, and the 

initial values for the gamma parameters were estimated from the data by setting 

P =  V ar(X )/E (X )(l -  E (X )/V ar(X )) and a =  E(X)/0.

For the single updates I ran 150,000 iterations for three chains, after a burn-in of 

80,000. 1 used the BGR, HW and half-width diagnostics to look for convergence of 

the chains, which was apparent after 40,000 iterations (Figure 4.6). Figure 4.7 shows 

that there was a high autocorrelation between successive values of the chains.

The posterior densities and summary statistics are shown in Figure 4.8 and Table 

4.2, showing that the posterior estimates were close to the true parameter values of 

N =  200, a =  2 and ¡3 =  1. The Bayesian p-value was close to 0.5 showing that this 

model was a good fit for the data, as one would expect.

Using the results from one of the single-update chains as a pilot for the block update

Method Mean Median SD 95% Credible Bayesian p-value

Single updates 221 215 33.11 (173, 282) 0.49

Block updates 219 213 33.22 (181, 290) 0.51

Table 4.2: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N using MH single and block updates for the negative binomial model applied 

to negative binomial simulated data. The data were simulated with N = 200. 

The Bayesian p-value showing the fit of the model to the data is also reported.
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last iteration in chain

F ig u r e  4 .6 : Convergence (black line) and confidence of the BGR statistic (dashed line) for 

the MCMC chain for TV for the negative binomial model applied to the negative 

binomial simulated data, using single update MH. Plots for a  and ¡3 show a 

very similar pattern. 1 used the reference prior on TV and half-Cauchy priors on 

a  and (3.

N alpha beta

F ig u r e  4 .7 : ACF plots for the MCMC chain for TV, a  and /3 for the negative binomial model 

using single update MH applied to the negative binomial simulated data. I used 

the reference prior on TV and half-Cauchy priors on a  and /?.
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F ig u r e  4 .8 : P osterior density  p lots for N ,  a  and /3 for the negative b in om ial m od el using 

single u pd a te  M H  applied  to  the negative b inom ial sim ulated data. I used the 

reference prior on  N  and half-C auchy priors on  a  and ¡3.

method, I constructed a multivariate normal proposal distribution as

u>19k ~  M,

(

\

(  e\ \

0k2

\ 0 I )

( \Oß102 ^8163

00102 O q2 00302

Os 103 Og302 003 J

\

(4.33)

using the posterior correlations from the pilot run. This gave a covariance matrix of

(  1 no« at o in oon i n nvn ^

E =

1096.418 -19.820 10.070

-19.820 0.676 -0.279

10.070 -0.279 0.157

(4.34)

The posterior standard deviations from the single update MH MCMC of 33.11, 0.82 

and 0.40 were reasonably close to those which were used in the proposal distribution 

of 27, 0.4, and 0.2. For direct comparison, I used the same standard deviations for the 

block updates. The correlation between parameters was high (Figure 4.9). over 0.7 

between all pairs of parameters. Therefore I expected the block updates to perform 

better.

Figures 4.10 to 4.12, and the summary statistics of Table 4.2, show some differences in 

the results when using block updates rather than single updates. The most notable 

difference when running the MCMC was that fewer iterations were required using
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N

Figure 4.9: Correlation between values of the MCMC chain for N and ¡3 using single update 

MH for the negative binomial model applied to negative binomial simulated 

data.

block updates to see convergence in the chain. It was only necessary to run 100,000 

iterations using block updates, and convergence is indicated after 20,000 iterations 

(Figure 4.10).

Figure 4.11 shows that the autocorrelation has decreased. Therefore the mixing of 

the chains has improved. This indicated that the chains converged quickly, which we 

have already seen in Figure 4.10.

The results produced by the two methods were very similar (Figure 4.12 and Table 

4.2). There were slight differences in the credible intervals for N, but the posterior 

estimates for all parameters were close to the true parameter values from which I 

simulated the data, N  =  200, a =  2, /3 =  1.

Only considering the faster convergence rates of the block updating method, it would 

seem that this method is preferable. However, the autocorrelation is still high, and 

the results produced were similar for both methods.
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last iteration in chain

Figure 4.10: Convergence (black line) and confidence of the BGR statistic (dashed line) for 

the MCMC chain for N for the negative binomial model applied to the negative 

binomial simulated data, using block updates. Plots for a and ¡3 show a very 

similar pattern. I used the reference prior on N and half-Cauchy priors on a 

and (3.

N alpha beta

Lag Lag Lag

Figure 4.11: ACF plots for the MCMC chain for N, a and ¡3 for the negative binomial 

model using block updates applied to the negative binomial simulated data. I 

used the reference prior on N and half-Cauchy priors on a and (3.
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N alpha beta

Figure 4.12: Posterior density plots for N, a and /? for the negative binomial model using 

block update MH applied to the negative binomial simulated data. I used the 

reference prior on N and half-Cauchy priors on a and ¡3.

As the block update method required a pilot study using the single-update MH 

to estimate posterior correlations and variances, it may not be beneficial to use it 

overall. In addition, if we were using a hierarchical approach in WinBUGS, it would 

not be possible to apply block updates for this type of model. Therefore I use single

updates as the preferred MH method.

4.7.2 Choice of prior for N

Section 4.6.5 introduced two uninformative priors for N, Jeffrey’s prior, , and 

the reference prior, N~z,  where m is the dimension of the nuisance parameters. I 

investigated the effect of these priors on the posterior. As they were objective priors, 

by design, they should have little effect on the posterior. I also compare them to using 

an uninformative flat, uniform prior, and highlight any advantages or disadvantages 

of each.

I again used the negative binomial simulated data set and the non-hierarchical 

likelihood method using MH MCMC, with tuned acceptance probabilities and normal 

proposal distributions for all parameters. I ran 150,000 iterations using each prior, 

using three chains each time; again using a burn-in of 80,000. This meant that I could
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compare the results of the Jeffrey’s prior and uniform prior to those already given 

for the reference prior in Section 4.7.1. Uninformative half-Cauchy priors were again 

used for the nuisance parameters 0 — {<*>£}•

Since there were two nuisance parameters, Jeffrey’s prior became N 5. When a 

uniform(0, M ) prior on N  was used, this cancelled in the acceptance probability. 

Therefore, the value of M  used was arbitrary.

Table 4.3 shows the summary statistics for the three posteriors, which are plotted 

in Figure 4.13. All priors gave very similar results, which was what I would have 

hoped. This implies that the likelihood was contributing all the information to the 

posterior. I would expect this as in the simulated data set there was a fairly high 

probability of seeing a species (0.75).

Method Mean Median SD 95% Credible Bayesian p-value

Reference 221 215 33.11 (173, 282) 0.50

Jeffrey’s 225 218 36.80 (174, 290) 0.49

Uniform 223 215 34.55 (173, 289) 0.50

Table 4.3: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N using reference, Jeffrey’s and uniform priors on N for the negative binomial 

model applied to negative binomial simulated data. The data were simulated 

with N = 200. The Bayesian p-value measuring the fit of the model to the data 

is also reported.

When using data with high probability of seeing a species, the choice of uninformative 

prior that I used on N  appeared to be arbitrary. I could therefore select the 

prior which was most convenient for the application. The uniform prior has the 

disadvantage of being bounded on the parameter space, and as Jeffrey’s prior is 

improper, so 1 preferred to use the reference prior. Barger and Bunge (2010) also 

preferred the reference prior, especially as it does not depend on the dimension of the
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N

Figure 4.13: Posterior density plots for the simulated data for the negative binomial model 

with reference (solid), Jeffrey’s (dashed) and uniform (dotted) priors on N. I 

used half-Cauchy priors on a and ¡3, and the data were simulated with N =  200.

nuisance parameter. When m — 1 Jeffrey’s prior is flat, but as m >  1, Jeffrey’s prior 

is increasing, such that larger values of N  are more likely a priori (Barger and Bunge, 

2010).

It was expected that the prior would have a larger effect on the posterior if the 

probability of seeing a species decreased. Therefore, I repeated the analysis for a 

simulated data set where only 40% of species were observed.

It was necessary to increase the number of iterations used appreciably, because the 

chains moved wildly around the parameter space and did not converge. Even after 

increasing the number of iterations to over three million per chain, the chains still 

did not converge. Therefore, I cannot give a posterior distribution for this data set. 

This lack of convergence was an indication of the boundary problem which we have 

seen in Chapter 3.
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4.7.3 Data augmentation method versus Reversible Jump MCMC

The equivalence of the RJMCMC approach to the data augmentation (DA) approach 

is interesting. These HB approaches could reduce computational costs and reduce 

the likelihood of underestimating N.

I ran the the MCMC in WinBUGS for the negative binomial model using the simulated 

data set, and initial values used in the previous MCMCs (For code see Appendix D). 

Uninformative half-Cauchy priors were placed on the gamma parameters, as in the 

previous examples. I gave the zero-inflation parameter ijj a uniform prior over (0,1)., 

which was equivalent to a Discrete uniform(0, M) prior on N  (Equation 4.24).

The DA method was sensitive to the initial values used, in that unless they were well 

specified it could get stuck in an area of unrealistic parameter values, i.e. N =  20. 

When I specified initial values for all parameters this problem disappeared. I used a 

super-population size of M =  750 to ensure that the whole posterior was captured.

The DA method seemed to converge after 40,000 iterations (Figures 4.14a, 4.15), 

so I used a burn-in of 40,000, and ran another 40,000 for the posterior sample. The 

RJMCMC method required 200,000 iterations with a burn-in of 80,000 (Figure 4.14b). 

Data augmentation was a great deal faster to run in WinBUGS than RJMCMC, and 

required fewer iterations.

The posterior for the DA method was very similar to that of the RJMCMC method 

(Figure 4.16). The summary statistics in Table 4.4 confirmed the similarity of the 

posteriors, and indicated that the two methods gave essentially indistinguishable 

results for this particular example.

1 showed that the two methods of reversible jump MCMC and data augmentation 

were essentially equivalent in this case. It was important to consider alternative 

specifications of distributions to avoid compiling errors within WinBUGS, especially
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la s t ite ra tio n  in ch a in
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(a) data augmentation

la s t ite ra tio n  in cha in

(b) RJMCMC

Figure 4.14: Convergence (black line) and confidence of the BGR statistic (dashed line) for 

the MCMC chain for N for the negative binomial model applied to the negative 

binomial simulated data using data augmentation and RJMCMC. Plots for a 

and f3 show a very similar pattern.

Trace of N

0 20000 40000 60000 80000

Iterations

Figure 4.15: Trace plot of the MCMC chain for N for the negative binomial model applied 

to the negative binomial simulated data using data augmentation.
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Method Mean Median SD 95% Credible interval

DA 221 216 27.92 (175, 273)

RJMCMC 218 202 29.52 (172, 275)

Table 4.4: M ean, m edian , standard  dev ia tion , SD , and 95%  cred ib le  interval o f  the posterior 

o f  N using D A  and R J M C M C  for the negative b inom ial m od el app lied  to  negative 

b inom ial sim ulated data. T h e  d ata  were sim ulated w ith  N —  200.

N

Figure 4.16: P osterior density  p lots  for N for the negative b inom ial m od el fitted  to  the 

negative b in om ial sim ulated d ata  set in WinBUGS using d a ta  augm entation  

(yellow ) and R J M C M C . T h e  data  were sim ulated w ith  N =  200.

when using the zeros trick, and it was also important to input initial values to get 

realistic posterior values.

RJMCMC was more computationally intensive than DA for my models, and more 

iterations were required to ensure adequate mixing. This was in contradiction to 

Schofield and Barker (2010), who found that RJMCMC resulted in substantial gains 

in efficiency over the DA method, because fewer parameters needed to be sampled 

at every step. Schofield and Barker (2010) suggested that implementation of MCMC 

in software JAGS (Just Another Gibbs Sampler) (Plummer, 2003) might mix better 

than BUGS, and there might also be other computational implications. To specify the 

Neyman Type A distribution using the zeros trick was not as straightforward in JAGS,
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and therefore I used WinBUGS for all computations using HB models.

4.7.4 Multiple grabs versus pooled data within a hierarchical Bayes framework

I ran MCMC in WinBUGS for the negative binomial model using the simulated data set 

over 10 grabs to investigate whether there was an advantage to use sample data from 

individual grabs rather than to pool. I used the DA method, because this showed 

computational advantages over RJMCMC in Section 4.7.3. I used the same priors 

as previously, so that the results from the multiple grab MCMC could be compared 

directly to those already calculated.

To implement this in WinBUGS required little change to the code (see Appendix D.3). 

For the multiple grabs data I ran 100,000 iterations using a 50,000 burn-in period 

to allow for convergence. Figure 4.17 shows the posterior for the multi-grab method 

and the pooled data method, and the distributions are fairly similar, with that of 

the pooled data slightly positively skewed. The summary statistics are shown in 

Table 4.5.

There was not much difference in the posterior using pooled versus multiple grabs. 

The species richness estimate for the pooled data was slightly higher, with a wider 

confidence interval. This indicated a less precise estimate in this instance, with more 

bias. However the data set was simulated from negative binomial, so I considered a 

data set with more variation, simulated from the Matern distribution, to see if this

Method Mean Median SD 95% Credible interval

Pooled data 221 216 27.92 (175, 273)

Multiple grabs 238 228 39.62 (177, 319)

Table 4.5: M ean, m edian , standard  devia tion , SD , and 95%  cred ib le  interval o f  the posterior 

o f  N for the negative b inom ial m od el applied  to  negative b inom ial sim ulated data  

using p oo led  d a ta  and m ultip le grabs. T h e  d ata  were sim ulated w ith  N =  200.



4. Species richness estimation - A Bayesian approach 148

o
CM
O  ~1

150 200 250 300 350 400
N

Figure 4.17: P osterior density  for N for the negative b inom ial m odel fitted  to  the negative 

b in om ial sim ulated  d ata  set in WinBUGS using D A . P oo led  d ata  in red , m ultip le 

grabs in yellow . T h e  d ata  were sim ulated  w ith  N = 200.

showed a greater difference between the two methods.

Matern simulated data

I again simulated a population of 200 species, with 75% sampling depth. I used the 

Matern process and allowed the mean abundance to vary between species. I used 

parameters of a =  1, /3 — 1, — 5, and R — 0.1 and set the number of grabs at ten.

So the mean number of individuals per unit area, \(f>, for each species, was simulated 

from a Gamma (a, ft), and the number of parents, A, was equal to the mean over the 

number of children per parent, where the number of children per parent is distributed 

Poisson((p). R is the radius of the circle around the parent in which the children are 

located. So in this simulation all the species had an equal number of children per 

parent.

Using a 50,000 burn-in, and 50,000 iterations I obtained the posteriors summarised 

in Table 4.6 (Figure 4.18) for the pooled data and multiple grabs using the negative 

binomial model. Again, there was little difference in the results and I can see no 

advantage to using multiple grabs rather than pooling data.
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Method Mean Median SD 95% Credible interval

Pooled data 154 154 2.12 (150, 159)

Multiple grabs 154 153 1.99 (150, 158)

Table 4.6: M ean, m edian , standard  dev ia tion , SD , and 95%  cred ib le  interval o f  the posterior 

o f  N for the negative b inom ial m od el app lied  to  M atern  sim ulated  d a ta  using 

p o o le d  d ata  and m ultip le grabs and D A . T h e  data  were sim ulated w ith  N =  200.
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Figure 4.18: P osterior density  for N for the negative b inom ial m od el fitted  to  M atern  

sim ulated d a ta  set fitted  in WinBUGS using D A . P oo led  d a ta  in red, m ultip le 

grabs in yellow .

I extended the model to account for species distribution as well as abundance, 

replacing the Poisson by the Neyman Type A distribution. More priors were specified. 

I already had a gamma prior for the mean abundance of the Neyman Type A, ¡i =  A0, 

for which I have uninformative half-Cauchy hyper-priors. So I specified a prior on one 

of the Neyman Type A parameters, </>, the clustering parameter, as a gamma prior, 

again with uninformative half-Cauchy hyper-priors. I fixed 0 across species as this 

was how I simulated the data. Appendix D.4 shows the code used to fit the model.

f it* .
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Method Mean Median SD 95% Credible interval

Pooled data 187 178 29.48 (156, 265)

Multiple grabs 187 184 14.99 (162, 216)

Table 4.7: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N for the Neyman Type A-gamma model applied to Matern simulated data 

using pooled data and multiple grabs and DA. The data were simulated with 

N = 200.

Table 4.7 shows that the Neyman Type A-gamma model gave a better estimate for 

the true species richness of 200. The 95% Credible interval for the negative binomial 

model was very narrow, and did not include the true species richness, however the 

Neyman Type A-gamma model did. The main difference in the results was that the 

credible interval for the pooled data was wider, suggesting that using multiple grab 

data was more accurate.

4.7.5 The non-hierarchical likelihood versus the hierarchical Bayes method

Comparing the results between the non-hierarchical likelihood and the hierarchical 

Bayes method for the negative binomial model, where a uniform prior was used for N 

and data were pooled over grabs, we see that the two methods produce very similar 

results as we would expect (Table 4.8). Speed and number of iterations required 

were roughly equal, therefore it is our choice to use whichever method is easiest to 

implement for each data set when using the negative binomial model.

4.8 Analysis o f data

I investigated the performance of the Bayesian approach to species richness estimation 

using simulations, but now present the results of applying the models to real data 

examples of the Lepidoptera data and Christmas Bird Count data.
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Method Mean Median SD 95% Credible interval

Non-hierarchical 223 215 34.55 (173, 289)

Hierarchical Bayes 221 216 27.92 (175, 273)

Table 4.8: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N for the negative binomial model applied to negative binomial simulated 

data using non-hierarchical and hierarchical Bayes (DA) methods. The data 

were simulated with N =  200.

4.8.1 Lepidoptera data

The data set used was the Lepidoptera data, containing 15,609 individuals, 240 species 

and maximum frequency 2,349. The data were truncated at a point r =  112, as in 

Barger and Bunge (2010), and I did the same so that the results were comparable.

Results are presented from the Poisson, Poisson-exponential, negative binomial and 

Neyman Type A-gamma models. The priors that were used were uniform on N, with 

uninformative half-Cauchy priors on the nuisance parameters.

Results are shown in Table 4.9. The negative binomial estimates of species richness 

were slightly higher than those found by Barger and Bunge (2010) when using the 

Jeffrey’s prior of 342 with SE =  666.9, and 95% HPDI (272, 910), although our 

model had a much narrower credible interval. I used the uniform prior on N for ease 

of computation, but 1 expected to obtain a similar estimate as it was shown in Section

4.7.2 that the choice of uninformative prior had little effect on the estimate for the 

negative binomial model.

However, Barger and Bunge (2010) posterior estimate using the reference prior was 

less than 300 using a mixture of two exponentials for the abundance distribution 

instead of a gamma, so I did not expect the results to be exactly the same. This 

estimate lies between the estimates obtained by the Poisson-exponential and negative
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Method Mean Median SD 95% Credible B. p-value DIC ADIC

PO 240 240 0.09 (240, 240.23) 0.00 2656.29 2901.30

PE 252 252 3.52 (245, 259) 0.52 -237.49 7.63

NB 357 344 60.03 (275, 469) 0.48 -245.12 0.00

NTAG 450 445 223.95 (292, 1130) 0.25 -236.78 8.34

Table 4.9: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N for the Poisson, PO, Poisson-exponential, PE, negative binomial, NB and 

Neyman Type A-gamma, NTAG, models applied to the Lepidoptera data using 

the non-hierarchical approach. As a measure of fit, the Bayesian p-value is also 

reported.

binomial models in Table 4.9.

The Bayesian p-values showed the best fitting distributions were the Poisson- 

exponential and the negative binomial. The DIC judged the negative binomial as the 

best model, although the Poisson-exponential was plausible. The negative binomial 

was also found to be the best model in terms of AIC in the frequentist approach. The 

Neyman Type A-gamma was a poorer fit to the data set, and the confidence interval 

was wide compared to those of the other models.

4.8.2 CBC data

For the analysis of the CBC data, where 126 species were seen, results are presented 

from the Poisson, Poisson-exponential, negative binomial and Neyman Type A- 

gamma models. The priors that were used were again uniform on N with 

uninformative half-Cauchy priors on the nuisance parameters. Results are shown 

in Table 4T0. Truncation of the data was at 221, except when fitting the 

Neyman Type A-gamma model, which cannot cope with abundance values of over 

150 due to limitations within the software when calculating the probabilities of the 

Neyman Type A distribution. Therefore, data above 150 were truncated and added 

to the results after MCMC.
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Method Mean Median SD 95% Credible B. p-value DIC ADIC

PO 126 126 0.05 (126, 126.1) 0.00 3021.29 2898.02

PE 129 129 1.27 (126, 132) 0.50 123.27 0.00

NB 166 160 31.24 (131, 227) 0.45 131.63 8.36

NTAG 241 238 88.74 (133, 450) 0.23 139.50 16.23

Table 4.10: Mean, median, standard deviation, SD, and 95% credible interval of the

posterior of N for the Poisson, PO, Poisson-exponential, PE, negative binomial, 

NB and Neyman Type A-gamma, NTAG, models applied to the CBC data using 

the non-hierarchical approach. As a measure of fit, the Bayesian p-value is also 

reported.

According to the Bayesian p-values, the best fitting distribution was the Poisson- 

exponential. The Poisson was not a good fit at all, with a Bayesian p-value of 0. 

The Neyman Type A-gamma was also not a good fit to the data, agreeing with the 

conclusions of the frequentist analysis in Chapter 3.

The DIC judged the Poisson-exponential to be the best model, and the negative 

binomial also to be plausible. The Poisson model did not describe the data well at 

all.

Barger and Bunge (2010) found a species richness estimate of approximately 140 

(130,160) for the CBC data using a finite mixture of two exponentials, which is 

higher than the estimate using the Poisson-exponential, but lower than the estimate 

using the negative binomial.

4.8.3 Benthic data

I attempted to analyse the benthic data using non-informative priors on N and the 

nuisance parameters. However, as seen in Section 4.7.2, when the probability of seeing 

a species falls below a particular level, the MCMC algorithms will not converge using 

non-informative priors.
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An example of this is shown for the Hastings data set (Figure 4.19). When using 

the reference prior the MCMC algorithm had not converged even after ten million 

iterations using the negative binomial model. The chains moved wildly around 

the parameter space. The same pattern was apparent when using the uniform

0 2000 4000 6000 8000 10000
I te ra tio n s

0 2000 4000 6000 8000 10000
I te ra tio n s

Figure 4.19: Trace plots for IV, a and /3 for the negative binomial model fitted to the 

Hastings data using reference prior for N and uninformative priors on the 

nuisance parameters (iterations shown in thousands).

and Jeffrey’s priors for N, and also for alternative benthic data sets. Using the 

Neyman Type A-gamma did not solve the problem, as we might expect. 1 believe 

this lack of convergence was attributed to the boundary problem.
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4.9 Discussion

This chapter aimed to explore parametric Bayesian approaches for species richness 

estimation using noninformative priors, and extend them for the Neyman Type A 

model. I briefly summarised both parametric and non-parametric Bayesian 

approaches to the problem from the literature, and proceeded with a parametric 

Bayesian approach.

The Bayesian methodology was described, and the reference and Jeffrey’s prior were 

introduced, along with the models to be used. I demonstrated some of the properties 

of the alternative approaches to model data with unobserved species using simulated 

data. 1 then analysed the Lepidoptera data and CBC data, using various models, and 

demonstrated the boundary problem appearing as a lack of convergence in MCMC 

chains for the benthic data.

After exploring Bayesian species richness methods, I found the Bayesian approach to 

species richness estimation to be flexible. There were a number of approaches to model 

data with unobserved species that were outlined in the literature, including data 

augmentation and RJMCMC, and 1 have applied these using the negative binomial 

model and extended them to the Neyman Type A-gamma model.

I found some interesting results from the investigation using simulated data. Single

update MH was the preferred MH method, because although fewer iterations were 

required using block updates, the block update method required a pilot study using 

the single-update MH to estimate posterior correlations and variances, so block- 

updates did not seem beneficial.

1 showed that when using data with high probability of seeing a species, the choice 

of uninformative prior applied to N  was arbitrary. However, when I decreased the 

probability of seeing a species, the MCMC algorithm failed to converge. Therefore, 

if we wish to estimate species richness for data sets where a high proportion of the
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species have not been recorded, an uninformative prior may not be sufficient to ensure 

convergence of the MCMC chains.

The non-hierarchical likelihood and the hierarchical Bayes method for the negative 

binomial model produced very similar results in terms of the posterior distribution, 

but also in speed of calculation and number of iterations required. Therefore, I would 

suggest personal choice of whichever method is easiest to implement for each case. 

However, to incorporate varying clustering between species, it would be advantageous 

to use the hierarchical approach and view the variation between species as random 

effects. This allows for more straightforward set up within WinBUGS.

Within the hierarchical Bayes framework, the data augmentation method and 

RJMCMC gave essentially indistinguishable results, although in contrast to Schofield 

and Barker (2010), DA was faster and required fewer iterations than RJMCMC. 

When using these methods it was important to consider alternative specifications of 

distributions to avoid errors within WinBUGS, and to set initial values to get realistic 

posterior values.

We might expect that when we use data from multiple grabs, rather than pooling 

data across grabs, the species richness estimate would improve. However there was 

not much difference in the posterior distributions of the two methods.

When I investigated the performance of the Bayesian approach to species richness 

estimation applied to real data examples, the estimate of species richness using the 

negative binomial model appeared high compared to the results of Barger and Bunge 

(2010) for the Lepidoptera data. However, this model was judged the best of the 

models investigated. The best estimate was also higher than the estimate found by 

Barger and Bunge (2010) for the CBC data, and the best fitting model I fitted here was 

the Poisson-exponential. According to the Bayesian p-values the Neyman Type A- 

gamma model did not fit the data well, and this could be due to the spatial distribution
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of birds and butterflies, which may not be found in clusters. In addition, alternative 

sampling methods such as transects may not fit a clustering model.

When applying the species richness models to benthic data I found that when using 

an uninformative prior, the MCMC chains did not converge even after millions 

of iterations. I supposed that this was due to the boundary problem that arises 

when the probability of seeing a species falls below a particular level. A standard 

consideration in the use of the Bayesian approach is the requirement to specify a prior 

of an appropriate form. In ecological applications the prior is a convenient way to 

incorporate expert opinion or information from previous or related studies. Chapter 

5 considers the Bayesian approach to estimating species richness using priors that 

have been informed using expert opinion. Using an informative prior on N  should 

combat the non-convergence of the MCMC chains that we have seen when analysing 

the benthic data with uninformative priors.

Software has been developed to perform Bayesian analysis of complex statistical 

models using MCMC methods including WinBUGS, which not only performs MCMC, 

but also incorporates several diagnostic tools. However, not all distributions, 

including the Neyman Type A, are incorporated in WinBUGS. and for more flexibility 

and control one might, prefer to use bespoke code in R to run MCMC.

Additional hurdles to application of the parametric Bayesian approach include the 

justification of the use of specific priors, and, as in the frequentist approach, model 

selection. To mitigate the effect of choosing priors, a hierarchical framework can be 

adopted, which allows more uncertainty in the model.

4.10 Conclusions

I explored parametric Bayesian approaches for species richness estimation using 

noninformative priors, and extended them for the Neyman Type A-gamma model 

using a hierarchical and non-hierarchical approach, which has not previously appeared
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in the literature for this model. 1 analysed data sets using this model, however 

uninformative priors were not sufficient to model benthic data, and the boundary 

problem arose again through lack of convergence of chains within MCMC.

The difficulty in analysing benthic data has been highlighted, and it is expected 

that the use of informative priors will combat the boundary problem and that this 

will allow us to obtain realistic species richness estimates for the study areas. Chapter 

5 considers the elicitation of informative priors for benthic data and how these can 

be incorporated into a Bayesian framework.



5. ELICITATION OF INFORMATIVE BAYESIAN PRIORS

5.1 Introduction

In Chapter 4, a Bayesian approach using uninformative priors was unable to estimate 

species richness for benthic data. This chapter considers the Bayesian approach to 

estimating species richness using informative priors.

Recall that there are two situations that could occur. Firstly that there is no prior 

information, and then I proceed with the method outlined in Chapter 4 using non- 

informative priors. Secondly, there is prior information which needs to be expressed 

in the form of a suitable probability distribution. The use of an informative prior will 

have an effect on the posterior, which is proportional to the product of the likelihood 

and the prior. The objective was to elicit priors for benthic data with the help 

of CEFAS scientists. Using an informative prior on N  would hopefully contribute 

more information to the posterior for large proposed values of N than the objective 

priors used previously, and stop the spurious estimates associated with the boundary 

problem. I could also elicit information on suitable informative priors for the nuisance 

parameters.

This chapter summarises the current literature and techniques used in elicitation, 

and then presents an outline of the process used to elicit information for benthic 

data. I present a summary of the pilot study that was undertaken, and describe 

the main elicitation process. The results of the process, and converting the elicited 

information to priors will be discussed, and 1 present the results of using the elicited 

priors in a Bayesian analysis of several benthic data sets.
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5.2 Eliciting expert knowledge

Expert knowledge is used to solve problems every day, from large scale management 

decisions, to deciding what to wear. There is a growing trend to utilise expert 

judgements in a more structured and formal way to inform decisions and processes, 

in areas such as conservation science and landscape ecology (Martin et ah, 2012; 

McBride and Burgman, 2012).

Although not a new topic, there has been a recent surge of interest in eliciting expert 

knowledge, with many papers published and software developed for the purpose 

of elicitation over the last year or so (Martin et ah, 2012; McBride and Burgman. 

2012; Fisher et ah, 2012; Burgman et ah, 2011; Kuhnert, 2011). However, there is 

little literature on the use of expert knowledge to inform models involving benthic 

organisms (Allan et ah, 2011), and none is apparent for marine benthos.

Expert knowledge can be the result of not only personal experience, but also 

training, research and skills; and what counts as expertise often depends on the 

context (Burgman et ah, 2011). Expert judgements can be used directly to inform 

management decisions or indirectly to provide information about model parameters 

when data are scarce. However, there is some controversy surrounding the use of 

expert knowledge because of its subjective and potentially biased nature (Kuhnert, 

2011).

If little information is available regarding a system, then expert opinion can be 

indispensable, and as long as the elicitation process is undertaken rigorously and 

is carefully structured into a model, it has a vital role in ecological analysis. Use of 

expert knowledge could be criticised because of the difficulty of testing or evaluating 

the accuracy of the informed models. However, in cases when appropriate data are 

difficult to obtain it can be the only reasonable option (Allan et ah, 2011).

The elicitation process generally includes several steps: deciding how information will
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be used, determining what to elicit, designing the process of elicitation, performing 

the elicitation and translating the information to be used into a model (Martin et ah, 

2012). How the information will be used will determine what variables to elicit, and 

the best process to obtain the information. Discussion of the questions with experts, 

and training in the elicitation format and procedure should help to manage bias and 

subjectivity in the results. This can be checked by performing a pilot elicitation.

Additional steps can be taken to reduce bias and uncertainty in elicited judgements. 

In a situation where participants estimate an unknown value, by starting from some 

initial value which is then adjusted to yield a final answer, different starting points 

can typically yield different estimates, which are biased towards the initial value. This 

is the phenomenon of anchoring (Tversky, 1974). Subjective probability distributions 

can be obtained by using one of two formally equivalent procedures: by asking the 

subject to select values that correspond to specified percentiles of the probability 

distribution, or by asking the subject to assess the probability that the true value of 

the quantity will exceed some specified values (Tversky, 1974).

Other sources of bias may be motivational, if the expert has a personal stake in 

a decision, or accessible, when judgement is influenced by the information that comes 

more easily to mind (Martin et ah, 2012). Some of this bias can be overcome 

by asking experts to evaluate rather than produce intervals, and also by ensuring 

regular systematic feedback (Martin et ah, 2012). Bias could also arise from experts’ 

overconfidence in their judgements, and a possible mitigation technique for this source 

of bias would be to ask the same question more than once with alternative wording, 

to ascertain uncertainty (Martin et al., 2012).

Multiple experts can be involved in the elicitation procedure, in order to obtain a 

group consensus. Stakeholders from a variety of backgrounds may have differing 

opinions on a topic, so this could be a complicated process. Methods have been 

developed to ease this process, including the Delphi method (Linstone and Turoff,
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1975), which elicits individual estimates from experts and allows each one to adjust 

their estimate in light of the response of others by means of successive iterations of 

given questions (Grupp and Linstone, 1999).

An alternative approach to incorporate the opinions of multiple experts is Cooke’s 

method, in which the opinion of each expert is weighted on the basis of its accuracy 

(Cooke and Goossens, 2004). This involves the expert answering a set of test 

questions, the accuracy of answers to which is used as a basis to weight their 

judgement. However, there is a trade-off between the number of variables that can 

be elicited accurately and the need to retain the experts’ focus (Martin et ah, 2012).

5.3 Elicitation o f priors within a Bayesian framework

I wanted to build expert knowledge into the models used for estimating species 

richness in Chapter 4. To choose a suitable family of prior distributions for each 

model parameter, and select parameters for those priors, I first obtained an idea of 

plausible values from experts. Once the values were elicited they could be used to 

inform priors in a Bayesian framework.

An approach to elicit information on the distribution of parameters, following the 

methodology of O’Hagan (1998), is firstly to get estimates of upper and lower bounds, 

U and L, and the most likely value, the mode M, for a parameter. Then experts are 

asked to give probabilities for the quantity lying in the following intervals, denoted 

pi, .... p5 respectively:

1. (L,M),

2. (L,(L+M)/2),

3. ((M+U)/2,U),

4. (L.(L+3M)/4),

5. ((3M+U)/4,U).
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The questions are chosen and asked in this order to avoid asking experts to assess

These elicited probabilities are then used to calculate six probabilities that can be 

used to fit a distribution using the least squares method.

Least squares minimises the sum of squared differences between the observed values 

and the fitted values. If Y  is a vector random variable of dimension d with expectation 

p(0), where 6 is the vector of parameters of the distribution to be fitted, then we can 

estimate 0 by minimising

(Morgan, 2009, pl50). This can be minimised using function optim in R, or the 

least squares function nls.

An alternative approach to elicit the same underlying distribution, as mentioned 

in Section 5.2, is to ask the subject to select values that correspond to specified 

percentiles of the probability distribution, such as the quartiles of the distribution. 

In this approach we would elicit estimates of upper and lower bounds, and the median 

of the parameters of interest.

very small probabilities and to avoid problems of anchoring (O'Hagan, 1998).

d

s(0) =  { y -  MW(y - -  ̂ e)}2 (5.1)
i = l
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The elicited distributions can then be used within a Bayesian framework as priors.

5.4 Tools to aid elicitation

The focus on the subject of eliciting expert knowledge in recent years, along with the 

increase in use of technology, has led to the development of various tools to aid the 

elicitation process.

The Sheffield Elicitation Framework (SHELF) (Oakley and OTIagan, 2010) is a formal 

procedure for elicitation. Various computer packages have been developed to aid the 

elicitation process including within SHELF (Oakley and O'Hagan, 2010), Elicitator 

(James et. ah, 2010), and a new package ElictN in R for eliciting expert knowledge 

about species richness (Fisher et ah, 2012).

The Elicitator (http://elicitator.uncertweb.org/) is a website where one can upload 

problems and get experts to log on and give their opinions. It is necessary to 

specify the experts before uploading and defining the problem. There are benefits to 

specifying the experts before considering the approach, however this does not allow 

the elicitor to get a feel for the process and there are no clear instructions available. 

Thus this is only any good if the experts are inaccessible; otherwise a face-to-face 

process would be preferable.

Elicitor (Kynn, 2005) implements an indirect approach to elicitation for Generalised 

Linear Models, and is implemented as a module within WinBUGS. The elicitation tool 

Elicitator (James et ah, 2010) assists in quantifying expert knowledge for use as 

a prior model in Bayesian regression, using an alternative to estimating probabilities. 

Instead, experts estimate the response in a regression for a set of cases given covariates 

corresponding to each case. This elicitation approach suits experts who are less 

comfortable estimating probabilities, but is only applicable to regression problems.

An exciting recent development is the ElictN software developed in R by Fisher

http://elicitator.uncertweb.org/
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et al. (2012). This is a template developed for eliciting expert knowledge of species 

richness, and uses coral reefs as a case study. This software is designed to support 

elicitation of knowledge from a single expert, and has an interface withinR that allows 

data to be entered directly by the elicitor to generate graphical output for feedback 

to the expert during elicitation.

The approach of Fisher et al. (2012) is based on taxonomy and estimates the total 

species richness of particular taxon, by breaking it down into subcomponents based 

on the number of species discovered and named, the number of species discovered 

and unnamed and the number of species yet to be discovered. ElictN is designed to 

estimate species richness within this framework. However the benefit of the software 

is that a simplified version is available, which can be modified to suit any application 

where elicitation is desired for frequency or count data (Fisher et al., 2012). The 

simplified version of the software is designed to be modified for the elicitation of 

species richness in any ecosystem, at any spatial scale by someone with only limited 

knowledge of programming in R and the t e l  programming language. Therefore, it 

could prove a useful tool in future elicitation of information on benthic species.

5.5 Pilot study

5.5.1 Method

Considering the Bayesian framework for which I wished to elicit priors, elicitation 

was carried out for questions in three areas: number of species, abundance of species 

and clustering.

I produced an elicitation spreadsheet in Excel on which the experts carried out the 

exercise, since I was unable to be present at the time. The pilot was carried out with 

Jon Barry of CEFAS as facilitator. Three scientists were involved as experts, and 

each considered a different area when completing the elicitation.
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I used Excel as most ecologists are familiar with the software. The spreadsheet 

contained a brief introduction to myself and the aim of the exercise. Then there 

were cells to fill in for each elicitation, to give probabilities for the quantity lying in

5.3. An example of this was shown on a second sheet of the Excel workbook.

For the number of species, which is the key variable for which I hoped to elicit a 

prior, an estimated frequency graph was produced in Excel during the process to aid 

understanding, and offered the experts the chance to modify their estimates. Due to 

the limitations of using Excel this was not an estimate of a fitted distribution, but a 

representation of the probabilities given.

After the spreadsheet was completed, I used the elicited probabilities to fit a smooth 

density function, and plots and summaries were produced and shown to the experts 

via email. The experts were then asked to provide feedback on these distributions, 

indicating whether they were consistent with their beliefs.

5.5.2 Distribution fitting to the elicited information

Chapter 4 showed that the hierarchical Bayes data augmentation (IiBDA) approach 

was useful for estimating species richness. However, it was restricted to implied 

priors for N  that were based on a binomial distribution. In the HBDA approach, 

N  was a derived parameter, such that N  =  zu where the inclusion parameters 

Zi ~  Bernoulli^) and Ns was the size of the super-population. This results in 

N ~  Binomial(Afg, ip) and ip ~  Uniform(0, 1). Within this approach N  had a discrete 

uniform prior.

To use a more informative prior for N I extend this approach by letting ip, be a 

random variable with a beta distribution. Then removing ip from the joint prior 

p(N\Ns,ip)p(ip) by integration:

particular intervals, following the framework of O’Hagan (1998) mentioned in Section

(5.2)
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gives a beta-binomial prior for N.

Therefore, I fitted a beta-binomial distribution to the elicited probabilities for the 

number of species present in the population for the pilot study. This prior was 

flexible as it can also be used in the non-hierarchical Bayesian method. I fitted the 

distribution in R by minimising the sum of the squared differences between qi,..n qe 

and the corresponding probabilities q{,...,ql (See Section 5.3) implied by the beta- 

binomial distribution for each of the areas.

I also fitted a scaled beta distribution and a normal distribution to the elicited 

information, because it may be preferable to use an alternative prior. When using 

the non-hierarchical Bayesian method it is possible to select from a range of priors. 1 

can then select the best-fitting prior to use on N in the species richness estimation.

Figure 5.1a shows the elicited distributions for the Eastern Channel, and Figure 5.1b 

for the Hastings Shingle Bank. For the Eastern Channel, the elicited estimate of the 

mode of 300, upper bound of 500 and lower bound of 200 did not correspond well 

with the fitted distributions. However, for the Hastings Shingle Bank, although the 

mode and upper bound of 800 fitted the elicited distribution well, the lower bound 

of 457 was too high compared with the distributions shown in Figure 5.1b. As this 

figure was exact, I assumed that it was the number of species that had been observed 

in the area. So without prior knowledge of this value, perhaps the fitted distribution 

would have reflected what one would expect before undertaking a survey.

Adjusting the distribution to see if different bounds could fit the experts beliefs more 

accurately, could improve the fit of the distribution. This is described as ‘stepping 

back’ by (O’Hagan, 1998), and involves adjusting the distribution and consulting 

the experts as to if the adjusted distribution represents their beliefs better than the 

original elicited distribution. A ‘stepping back' step would likely be useful here to 

gauge what the experts’ beliefs really were, especially as there was little feedback
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Figure 5.1: Prior distributions for N, elicited from benthic experts during the pilot study 

for (a) the Eastern Channel and (b) the Hastings Shingle Bank. The elicited 

information is shown in the form of a histogram, and three distributions have 

been fitted: the beta-binomial (solid black line), normal (dashed red line) and 

scaled beta (dashed blue line).

during the actual elicitation process.

Although the fits of the elicited distributions to the elicited information were poor, 

it would be possible to use them as priors for the number of species within MCMC. 

However, the elicited priors did not always correspond to the species abundance data 

that I hoped to use. However, at least we can see that the priors used for the Bayesian 

analysis should be very different to the non-informative ones.

In the Hastings Shingle Bank sampling programme, there were 353 species found 

in the survey area between 2001 and 2004. The lower bound as given by the expert 

was 457, which despite being larger than the observed number of species in the survey 

of interest, does not seem unreasonable if the expert had knowledge of the particular 

area. However, in the Eastern Channel data set, 649 species were observed over 225 

grabs, but in the elicitation the mode for the number of species was given as 300, 

with lower bound 200 and upper bound 500. When questioned, the expert explained 

that there are many data sets available within each area, and within a single sampling
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program it is usual that around 300 species would be found over multiple grabs.

One of the elicitation results was not useable, because the upper and lower bounds 

were mixed up, and the probability estimates did not make sense, in the way that, for 

example, the probability N > 50 was less than the probability N > 75. I was unable 

to deduce what the expert meant, and unfortunately did not have the opportunity to 

clarify it further. I put the issues down to unfamiliar language of bounds used on the 

spreadsheet, and also a lack of feedback to the expert during the process. There was 

no facilitator present during this pilot elicitation.

5.5.3 Issues arising from the pilot study

There were several issues that arose from the pilot study. O’Hagan (1998) highlighted 

the importance of making the elicitation process simple and familiar for experts in 

terms of language and quantities used. I attempted to achieve this, but issues arose 

during the process that made it clear that I had not succeeded entirely. The first was 

that some estimates by the experts of number of species were made per sample not 

for the population as a whole.

In some cases, the results produced did not tie in with the data sets that I was 

thinking of when I asked for the elicited information. More clarity was required to 

avoid a misunderstanding. More information given to experts prior to the elicitation 

and a discussion of what I hoped to achieve could have gone some way to improving 

clarity. Being there in person to facilitate elicitation and assist with any queries would 

have improved understanding of the task. These issues highlighted the importance of 

the ‘facilitator’ .

One interesting issue that arose was the definition of species richness. One scientist 

said that the answer to the number of species present in the survey was highly 

dependent on the sampling method, sample processing, and what fraction of the 

fauna you are targeting (Megafauna, Macrofauna, Meiofauna, or bacteria). It was
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clear that I did not define the problem well enough and I should have been present 

to clarify that these estimators are being developed for data on Macrofauna greater 

in size than 1 mm.

The elicitation process could also have been improved through use of interactive 

computer software. This enables experts to verify their ideas, by gaining feedback on 

their opinions and values adjusted if required. However, I did not have the resources 

to achieve this during the pilot study. This point reaffirms the need for further work 

in elicitation, highlighted by O'Hagan (1998), in developing general-purpose software 

to encourage serious elicitation.

Using interactive computer software would also have avoided confusion filling in the 

elicitation form, and the definition of terms such as upper and lower bounds, and 

clustering. This would be reaffirmed with a facilitator present.

For each of the benthic data sets considered, a different expert was consulted. It 

might have been worthwhile to use more than one expert per data set and gain a 

consensus to improve the elicitation process, but this was not possible within the 

scope of this pilot study.

In this pilot study I fitted the beta-binomial distribution along with the scaled beta 

and the normal distribution to the elicited information about the number of species. 

Using a beta-binomial prior I am able to apply the HBDA method. However, the non- 

hierarchical Bayesian method produced valid estimates and had a similar computation 

time to the HBDA method, and using this approach I could use a normal prior on N 

to simplify computations in terms of the acceptance probability within the MCMC.

5.6 Elicitation using SHELF

Many important issues were highlighted during the pilot study. One of these was the 

importance of feedback during the elicitation process. In addition, the procedure must
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be rigorous to ensure validity of the results. 1 therefore decided to complete the formal 

elicitation process following the Sheffield Elicitation Framework (SHELF) (Oakley 

and O’Hagan, 2010), and adapting it to my needs. SHELF is a formal procedure for 

elicitation, including briefing documents, and R software to utilise during the process.

5.6.1 Method

In the pilot study, following O’Hagan (1998), I elicited information on probabilities, 

which some of the scientists had difficulty with. Therefore where necessary in the 

main elicitation procedure I elicited information using the quartile (Q) method in 

SHELF. After defining the bounds of the distribution, the experts were asked for 

their estimates of the median, and upper and lower quart-iles. This method gives 

adequate distributions, while keeping the process simple. The percentile (P) method 

was used when experts were more comfortable working with probabilities; in which 

case a probability was elicited for the intervals (L, (2M  + L)/3) and ((2M  +  U)/3, U) 

after defining the bounds and the median.

Each participant was given a pre-elicitation briefing, to make clear what I hoped 

to achieve and clarify any notation. This also included a brief presentation of my 

work so far and how the information elicited would contribute, including an example 

on how the present methods used for species richness estimation are not adequate for 

benthic communities.

We then decided on an area to elicit information for, and recorded the scientists’ 

expertise in this area. I then went through an example in which I hoped to elicit the 

distance between Lowestoft and London, to demonstrate the process and clarify any 

misunderstandings. This also enabled me to determine which method (Q or P) the 

expert felt most comfortable with. A mixture of percentile and quartile methods was 

used, because some questions lent themselves better to a particular method, and it 

was important to keep the process user-friendly for the experts involved.
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The process was carried out using the shelf 2 function in R. Using the SHELF software 

in R enabled me to fit distributions to the elicited probabilities while the experts were 

present. This had the advantage of immediate feedback, and therefore included the 

‘stepping back' step. Figure 5.2 gives an example of the output produced during the 

SHELF elicitation procedure using the quartile method. The values for the median 

and quartiles were adjusted during the elicitation procedure, producing the fitted 

distribution shown. The choice of distribution fitted could be easily adjusted during 

the process, and the best fitting of the available distributions could be selected, as 

calculated by least squares.

During the SHELF process one was able to compare the fitted distributions, and 

the software calculated which distribution best fitted the data. However, it was 

useful to consider several of these distributions with the experts and select the one 

which best represented their view, because often the shape of the distributions could 

be quite different, and the best-fitting one might not always have been the one the 

expert agreed with. A drawback of using the shelf 2 software was that only a limited 

selection of distributions were built-in, namely the normal, the Student-t, scaled beta, 

log normal, log Student-t and gamma distributions, which is a good range but does 

not include the beta-binomial which would enable use of the HBDA method.

The sampling areas considered by the experts were Hastings, Isle Of Wight (IOW), 

Eastern Channel, East Coast Regional Environmental Characterisation Survey (REC) 

and Norfolk. During the process I made clear that I wanted the experts to consider 

their answers over the whole area and not per sample.

I elicited information on four parameters: N, the number of species in the area, G 

the number of grabs required to find a certain percentage of the observed species, C 

the average number of individuals found in a cluster, and U the total species richness 

of UK coastal waters.
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lower quartile: 2800.0

1000 1500 2000 2500 3000

median: 3000.0

1000 2000 3000 4000 5000

upper quartile: 3500.0

3000 3500 4000 4500 5000

Sum of squares: 0.00761 
0.05 quantile: 2200 
0.95 quantile: 4000

o

Normal
mean = 3090 , sd = 568

Figure 5.2: SHELF graphical output produced using the quartile method. First the bottom 

left graph is displayed and the median is elicited. Then the lower quartile 

and the upper quartile graphs are displayed and can be adjusted. The fitted 

distribution is then displayed in the bottom right.
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After each distribution had been elicited, the expert was able to adjust his or her 

answer to make sure it reflected their beliefs. I then noted down any additional 

comments and finally gained feedback on the process and thanked the experts for 

taking part. Each elicitation meeting took approximately 40 minutes.

5.7 Distribution fitting to elicited information

Although the elicitation process was carried out using the sh e lf2 function in R, the 

limited number of distributions available within the software meant that some fitting 

of additional distributions to the elicited values was necessary subsequently. Some 

alternative distributions could be useful if the distribution was severely skewed, and 

in some cases the shelf 2 function was unable to fit a distribution that reflected the 

expert’s views, especially when the range of possible values was high, as with the 

clustering parameter.

The elicited information is shown in Table 5.1. Due to the two methods of collecting 

the information, using the quartile method or the percentile method, some cells in 

the table are blank. In addition, no information was elicited for C for the East Coast 

REC.

5.7.1 Number of specues

Fitting the elicited information for N gave the priors shown in Figures 5.3 and 5.4, 

which were the best fitting distributions during the elicitation process. Table 5.2 

shows the observed number of species in each of the data sets, and we can see if the 

values given for the number of species during elicitation were realistic by comparing 

the values in Table 5.1 to those of Table 5.2.

From these data, it would seem that the estimates given for the East Coast REC 

were below the observed number of species, and therefore were not very useful. For 

the Eastern Channel, the observed number of species was at the top end of the elicited 

distribution. The other estimates were close to the observed values, except for the
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Area 9 M Q1 Q3 A B prob(A) prob(B)

IOW N 750 - - 590 800 0.28 0.36

C 0.70 - - 0.47 0.80 0.15 0.11

G 2 1 3 - - - -

U 1,500 - - 1,400 1,600 0.10 0.34

Eastern N 500 398 626 - - - -

C 10-15 1 200 - - - -

G 158 115 180 - - - -

U 3,702 3,295 4,364 - - - -

East Coast N 220 - - 210 250 0.2 0.1

REC C - - - - - - -

G 3 1 5 - - - -

U 2,100 1,000 2,500 - - - -

Norfolk N  (pre) 248 199 277 - - - -

N  (post) 20 7 22 - - - -

C 400 1 100s / l ,000s - - - -

G 2 1 3 - - - -

U 2,038 1,519 3,519 - - - -

Hastings N 340 220 430 - - - -

C 5 1 7.5 - - - -

G 3 2 8 - - - -

U 10,000 9,840 11,400 - - - -

Table 5.1: Elicited information for the parameters: N the number of species in the area, G 

the number of grabs required to find a certain percentage of the observed species, 

C the average number of individuals found in a cluster, and U the total species 

richness of UK coastal waters. M: median of 9, Q1 and Q3: elicited lower and 

upper quartiles of 6 such that P(L < 9 < QT) — P{Q1 < 9 < M) =  0.25 = 

P(M < 9 < Q3) = P(Q3 < 9 < 17), A: (2M+L)/3, B: (2M+U)/3, prob(A), 

prob(B): the elicited probabilities of A and B respectively.
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Gamma(19.7,0.027)

N

(a) Isle of Wight

Gamma(14.3,0.028)

N

(b) Eastern Channel

(c) East Coast REC (d) Hastings

Figure 5.3: Elicited prior distributions for N for (a) Isle of Wight, (b) Eastern Channel, (c)

East Coast REC and (d) Hastings.
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Area Number of species observed

Isle of Wight 0.1m2 198

Isle of Wight 0.25m2 240

Isle of Wight overall 273

Eastern 649

East Coast REC 391

Norfolk pre-dredge 64

Norfolk post-dredge 26

Hastings 141

Table 5.2: Number of species observed in each benthic data set.

Scaled Beta(1.70,3.57)

N

Normal (17.0,11.32)

N

(a) Pre Dredging (b) Post Dredging

Figure 5.4: Elicited prior distributions for N for Norfolk, (a) pre- and (b) post-dredging.
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Isle of Wight, where the estimate was considerably more than the observed number of 

species. However, this was not a problem as I expected that there were many species 

that were not observed in the samples due to their clustering nature.

5.7.2 Number of species in UK coastal waters

The results for the parameter U, the total species richness of UK coastal waters were 

interesting, because the estimates spanned a significant range. The lowest estimate 

given was 1,200 and the highest was 12,000. The number of recorded species on the 

UNICORN©(copyright© 1995-2004 Unicomarine) database of known benthic species 

is approximately 10,000 (personal communication, Keith Cooper), so we can see that 

the lowest estimate of 1,200 was far too small.

I also elicited some information informally from a researcher in marine biodiversity 

and macroecology, who gave a range of 2,000- 10,000 benthic species, with a best guess 

of around 4,500. However, he also had a list of ~  825 benthic invertebrate species 

which are more regularly found around Britain (Tyler et ah, 2012). These species 

were defined as those that occurred in more than 1% of all samples, or in more than 

ten individual samples, whichever was greater, from five spatially extensive surveys 

of benthic habitats which sampled 2,641 unique t.axa, fully identified to species level.

As these estimates referred to the total number of species in UK waters, they may 

not be the most insightful for informing the species richness model for a particular 

area, because the species present will be dependent on variables such as substrate or 

activity level. This may account for the low estimate given by one of the experts, if 

they had a particular substrate or habitat in mind when answering this question.

These results could provide an upper limit on the number of species that we would 

expect to see on a particular surveying programme. The estimates obtained using the 

maximum-likelihood method in Chapter 3 were considerably larger than these values, 

and this helps justify the requirement for using a Bayesian approach with informative
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priors, and confirms the reality of the boundary problem that I have discussed.

5.7.3 Clustering of individuals within a species

The concept of clustering is difficult to build into the model. For example, in some 

cases there could be isolated individuals, and in other cases there could potentially 

be hundreds of individuals within 0.1m2. The variation in scale of the species could 

cause difficulties in expressing these values as a distribution. The extent of clustering 

also depends on the substrate.

Table 5.1 highlights some of these issues, as we can see that some results for C are 

left blank, and in another the estimate is given only as in the hundreds or thousands. 

The expert was unable to be more precise. Therefore for some surveys I was not able 

to use this information to generate an informative prior for the model.

For the Isle of Wight area, the expert did not find the question of the number of species 

that cluster realistic, so the question was changed to ‘What proportion of species in 

the area can be found in clusters?’ . I am unsure how this can be incorporated into the 

model, however it was interesting to get some kind of information on the clustering 

from the expert even if it wasn’t exactly what I wanted. Also, this would assist in 

developing a better question for future elicitation procedures.

For the Hastings data I was able to fit distributions to the clustering parameter 

during the elicitation process. Figure 5.5 shows the normal, gamma and scaled-beta 

distributions fitted to the elicited information. The scaled-beta gave the best fit by 

least squares, and the normal distribution was not suitable as a non-trivial portion 

of it is negative, whereas we could not have a negative number of species within an

area.
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c

Figure 5.5: Normal (solid), gamma (dashed) and scaled-beta (dotted) distributions fitted 

to elicited information for C, the number of species that cluster, for Hastings 

data.

5.7.4 Number of grabs

Elicitation results on the number of grabs required to find a given percentage of 

observed species were interesting. This reaffirmed my belief that there were many 

rare species. Experts stated that a high proportion of species would be found in 

the first few grabs, with a few more found in each additional grab, but not many. 

However, experts were of the opinion that however many grabs you took you would 

not find all the species in the area due to the extreme rarity of some species.

An interesting aspect to consider here is that if a species is so rare that you would 

be highly unlikely to find it during a survey, is it playing a significant role in the 

ecosystem or is it negligible? If the latter, then does it matter if it is included in 

the species richness estimate or not? We must bear in mind the application of these 

estimates when considering the importance of estimating the species richness of an 

area.

In many cases, benthic surveys consist of only a few grabs samples, such as five 

or ten, of a relatively small size, 0.1m2 or 0.25m2, over a large area. These small 

sample sizes cause concern when estimating species richness for benthic organisms.
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If organisms were distributed randomly across the seabed, we could define the 

probability that a member of a particular species is found by at least one grab as:

P =  1 -  (1 -  a/A)v\ (5.3)

where a is the area of the grab, y is the number of individuals of that species in the 

region, g is the number of samples and A is the area of the region.

This can be rearranged to calculate the number of individuals that you would need 

to have in the region in order to give a probability, P, that the species is found:

log(l -  P)
9 log(l -  a/A)'

(5.4)

Number of grabs Abundance (Density) needed for

P =  50% P =  75% P  =  90%

5 74,860 (0.55) 149,720 (1.11) 248,679 (1.84)

10 37,430 (0.28) 74,860 (0.55) 124,340 (0.92)

25 14,972 (0.11) 29,944 (0.22) 49,736 (0.37)

50 7,486 (0.05) 14,972 (0.11) 24,868 (0.18)

100 3,743 (0.03) 7,486 (0.05) 12,434 (0.09)

Table 5.3: Number (and density per m2) of individuals required to give probability levels 

of 0.5, 0.75 and 0.9 to see a species for 5, 10, 25, 50 and 100 grabs of 0.25m2 

across a region of 135,000m2 if individuals were randomly distributed.

Table 5.3 shows how many individuals would need to be present in the study area to 

give a 50%, 75% and 90% chance of a finding that species, when taking 5, 10, 25, 50, 

100 grabs of 0.25m2. I set the area of the region as 135,000?722, which is the size of 

the Norfolk coast study area (Barry et ah, 2010).

We can see that we require a large number of individuals within a region in order
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for the species to be found. However, if we look at the density per m2 required, it 

is always less than two individuals per square metre. This does not seem much for 

organisms that are as small as 1 mm, however for a larger species such as a starfish 

this density is less likely. If we introduced clustering within species, the number of 

individuals required would increase.

5.8 Quantifying the influence o f elicited priors

When estimating species richness for the data sets, I wanted to quantify the 

influence of the elicited priors on the posteriors and evaluate whether the data supply 

information about certain parameters. Aside from displaying the prior-posterior pair 

plots as a visual aide, one could evaluate the overlap for each non-hierarchical prior- 

posterior pair numerically (Gimenez et al., 2009, pl057).

The overlap between the two distributions can be computed as:

re = J min(p(0), 7r(#|W))d$, (5.5)

where n{6\X) is a marginal posterior distribution for data X , parameter 6 and prior 

distribution p{9) (Schmid and Schmidt, 2006). When ir(9\X) ~  p{9), the data are 

supplying little information to the posterior for parameter 6.

This can be regarded as the sum of two error probabilities (Schmid and Schmidt, 

2006):

Te =  J m in(/(x), g(x))dx

=  J l { f ( X ) < g ( X ) } f ( x ) d x +  I  l { g ( X ) < f ( X ) } 9 { x ) d x  

=  A ( 1  { / ( , * ) < „ ; * ) } )  + E ( 1  { g ( X ) < f ( X ) } )

= P { f { X ) < g(X))  + P(g(X)  < f ( X ) )

To estimate Tg, firstly the posterior distribution n{6\X) is estimated using a kernel
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density estimator:

/M (5.6)
1=1 s  '

where K  is a kernel function centred at the MCMC generated values xt,i =  1, 

and h is the bandwidth.

A standard Gaussian kernel

ifl>) = c f c exp( r  t )  <5-7)

is used, along with its associated optimal bandwidth

h* =  1.0 6cm~0'2

where a =  min(standard deviation, interquartile range/1.34) (Silverman, 1986, p48).

We obtain a sample of the posterior from the MCMC generated values ay, i =  1,..., n, 

and generate a sample from the prior, yj , j  =  l,...,m . We can then use these to 

estimate the error probabilities (Schmid and Schmidt, 2006):

P(I(X) < by the relative frequency 1 v
i = 1

P(g(x)  < f(X)i by the relative frequency
 ̂ m

772 '  ̂ { 9m( yi ) <fn{ yi ) }  
3=1

such that the estimator of overlap becomes

1
re  =  -  n E

1=1
{ f n ( X i ) < g  m  C i ) }

1
m

m

^  { 3 m ( 2 / i ) < / n ( ? / i ) }

J =  1

(5.8)

Values of Tg lie in the interval (0,1). When rg is above some pre-determined threshold 

then the parameters are declared weakly identifiable (Gimenez et ah, 2009, pl057). 

A threshold of 0.35 has been suggested (Garrett and Zeger, 2000).

5.9 Use of priors applied to benthic data

I continued by using the Norfolk, Hastings and Isle of Wight data sets, because 

the elicitation process provided sensible looking priors for the number of species for
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these areas. These priors could be utilised within the MCMC framework to aid the 

estimation of species richness.

I used the negative binomial model under the non-hierarchical likelihood method, 

because the priors elicited were not in the form of a binomial mixture. However, the 

pilot study showed that the fitted distributions were very close for the normal, scaled 

beta and beta-binomial so to use the hierarchical approach it would be possible to 

use the elicited information to generate a prior of this form for N.

5.9.1 Bayesian analysis using an elicited prior on N and negative binomial model

Table 5.4 shows the results of MCMC to produce a posterior using the elicited 

priors on N  for the benthic data sets, and non-informative half-Cauchy priors for 

the nuisance priors. The overlap of prior and posterior varies between the areas 

(Table 5.5).

Area Mean Median SD 95% Credible B. p-value DIC

Hastings 410 405 98.92 (279, 546) 0.71 -426.97

Isle of Wight 0.1m2 818 805 216.93 (535, 1,117) 0.80 -421.36

Isle of Wight 0.25m2 776 758 215.96 (494, 1,084) 0.63 -407.96

Norfolk pre-dredging 171 168 37.79 (104, 245) 0.79 -28.05

Norfolk post-dredging 38 38 8.09 (28, 50) 0.75 24.56

Table 5.4: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N using elicited priors on N and the negative binomial model. The Bayesian 

p-value and DIC are also reported.

Figure 5.6 shows prior and posterior distributions for N  for the Hastings data. In 

the samples, 141 species were seen, and the estimate of the species richness was 410 

(279, 546). The prior had a relatively large effect on the posterior, as shown by the 

tq value in Table 5.5, which was well above the 0.35 suggested by Garrett and Zeger
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Area re

Hastings 0.58

Isle of Wight 0.1m2 0.79

Isle of Wight 0.25m2 0.87

Norfolk pre-dredging 0.40

Norfolk post-dredging 0.17

Table 5.5: Coefficient of overlap, t$, values for the negative binomial model fitted to the 

benthic data.

N

Figure 5.6: Prior (dashed line) and posterior (solid line) for N for Hastings data using 

elicited prior and negative binomial model.
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(2000).

N N

(a) Small grabs (b) Large grabs

Figure 5.7: Prior (dashed line) and posterior (solid line) for N for Isle of Wight data using 

elicited prior.

Figure 5.7a shows the prior and posterior for Isle of Wight with small grabs. The prior 

had quite an influence on the species richness estimate as the posterior distribution 

was very close to the prior distribution. The prior contributed most of the information 

to the posterior, rather than the likelihood. The same applied for the data collected 

with large grabs (Figure 5.7b).

Figure 5.8 shows the posterior estimates pre- and post-dredging for the Norfolk data. 

Post-dredging, the prior had much less influence over the posterior distribution than 

pre-dredging. Dredging took place over three days in April 1992, resulting in the 

removal of 50,000 tonnes of marine aggregate. Surveys of the marine benthos were 

carried out pre-dredging in March 1992 and post-dredging in May 1992 (Barry et ah, 

2 0 1 0 ).

There is a shift to the right in all of these graphs from the prior to the posterior. 

In all cases apart from Norfolk, the prior was having a large effect on the posterior, 

as shown by the tq values in Table 5.5. Therefore I concluded that either the model



5. Elicitation o f informative Bayesian priors 187

(a) Pre-dredging (b) Post-dredging

Figure 5.8: Prior (dashed line) and posterior (solid line) for N for Norfolk data using elicited 

prior.

was very well informed by this prior, and the data matched well to the expectation of 

the experts, or that the sample size was not large enough for the data to contribute 

much to the posterior. The effect of increasing sample size is investigated in Section 

5.10.

The Bayesian p-values for the fit of the negative binomial model to the data were all 

above 0.64, and we would expect a value close to 0.5 for a good-fitting distribution. 

Therefore in the next section I fit the Neyman Type A-gamma model to the data 

which will account for clustering and hopefully improve the fit and the species richness 

estimates.

5.9.2 MCMC using elicited prior on N and Neyman Type A - gamma model

Table 5.6 shows the results of the MCMC using elicited priors on N for the benthic 

data sets and the Neyman Type A-gamma model. The priors for the nuisance 

parameters of the abundance distribution remained uninformative half-Cauchy priors.

The estimates of species richness increased slightly, but the fit to the data, as given 

by the Bayesian p-values, were not as good as the negative binomial model apart
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Area Mean Median SD 95% Credible B. p-value DIC

Hastings 429 426 70.33 (297, 567) 0.74 -408.58

Isle of Wight 0.1m2 903 889 159.64 (605, 1,220) 0.87 -388.95

Isle of Wight 0.25m2 890 875 154.73 (600, 1,194) 0.73 -483.85

Norfolk pre-dredging 165 161 39.60 (94, 243) 0.76 -252.94

Norfolk post-dredging 40 40 6.08 (29, 52) 0.75 27.78

Table 5.6: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N using elicited priors on N and the Neyman Type A-gamma model. The 

Bayesian p-value and DIC are also reported.

from for the Norfolk data. The pre-dredging data had a Bayesian p-value closer to 

0.5 after fitting the Neyman Type A-gamma model, and for the post-dredging data 

the Bayesian p-values were the same for each model. A comparison of DIC values 

also suggested that the Neyman Type A-gamma outperformed the negative binomial 

model for the Norfolk pre-dredging survey, and that both models were plausible.

One reason that the Neyman Type A-gamma model might not have fitted as well 

to the data, was the use of uninformative prior on the clustering parameter. Table

5.1 showed a lot of variation in the distribution of the clustering parameter between 

sampling programs, and therefore it is likely that an informative prior for the 

clustering parameter would play a significant role in the posterior. However, I was 

unable to use an elicited prior for C  for all of these data sets.

5.9.3 MCMC using elicited prior on N and informative prior for C

Through the elicitation process I was able to elicit information on clustering that 

could be used to inform a prior for the Hastings data set. Therefore I compared the 

results using an informative prior for the clustering aspect of the Neyman Type A 

distribution to those obtained above. I expected that by including the prior on C the 

fit of the model to the data would improve, as quantified by the Bayesian p-value.
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Area Mean Median SD 95% Credible B.p-value DIC

NB

N 410 405 69.94 (279, 546) 0.71 -426.97

a 0.1772 0.17 0.03 (0.1061, 0.2945)

0 10.9348 10.71 1.40 (7.7098, 15.3958)

NTAG N

N 429 426 70.33 (297, 567) 0.74 -408.58

a 0.1979 0.19 0.05 (0.1216, 0.3173)

0 9.2847 9.10 1.67 (6.5535, 13.0905)

0 0.6496 0.64 0.11 (0.4815, 0.8960)

NTAG N  and C

N 436 433 67.59 (309, 567) 0.76 -1262.85

a 0.215 0.21 0.05 (0.1342, 0.3396)

0 8.501 8.36 1.53 (5.9413, 11.9285)

<P 1.027 1.01 0.06 (1.0000, 1.1606)

Table 5.7: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N assuming the negative binomial model, NB, using elicited prior on N 

and the Neyman Type A-gamma using elicited prior on N, NTAG N, and 

Neyman Type A-gamma using elicited prior on N and <f>, NTAG N and C.
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Table 5.7 shows that when I included an informative prior on C, the fit of the model 

to the data got slightly worse according to the Bayesian p-value. The species richness 

estimate increased, however the 95% credible interval narrowed slightly. However, the 

DIC showed this model as by far the best of the three, with a much lower DIC value. 

However, caution must be taken when interpreting this value, as in some cases the 

DIC can have undesirable properties such as obtaining a negative number of effective 

parameters. In fact the Neyman Type A-gamma model with informative prior on 

C does have a negative number of effective parameters here, and so the DIC cannot 

reliably be used to select the best model.

Previously I used a half-Cauchy reference prior for the clustering parameter in the 

Neyman Type A-gamma model. The posterior values for <p in Table 5.7 show 

that the credible interval for this parameter was (0.4815, 0.8960). This parameter 

corresponded to the number of individuals per cluster, so it is estimating rather low 

when compared to the elicited information. To quantify the influence of the prior on 

<fi I considered the coefficient of overlap, rg (Table 5.8).

Table 5.8 shows that as I included an informative prior on (p, the coefficient of

Parameter NB model NTAG model N NTAG model N  and C

N 0.55 0.49 0.43

a 0.16 0.18 0.18

P 0.08 0.08 0.08

$ - 0.23 0.54

Table 5.8: Coefficient of overlap, Tg, values for the models fitted to the Hastings data, 

assuming the negative binomial model, NB, using elicited prior on N and 

the Neyman Type A-gamma using elicited prior on N, NTAG N, and 

Neyman Type A-gamma using elicited prior on N and 0, NTAG N and C.



5. Elicitation o f informative Bayesian priors 191

overlap for (p increased. However, the coefficient of overlap for N  decreased slightly. 

We might expect this as the prior on (p will have contributed more to the joint posterior 

than before, and so we would expect the prior on N  to have less influence on the joint 

posterior.

The coefficient of overlap for <p is below the 0.35 threshold when an uninformative 

prior is used on the clustering parameter of the Neyman Type-A model. This is to be 

expected, because an uninformative prior should not influence the posterior greatly. 

When I included an informative prior for the clustering parameter (p, the overlap 

between prior and posterior increased and is above this threshold. This suggested 

that the prior is having a significant influence on the posterior.

The overlap for a and (3 respectively was fairly similar for the three models, and 

well below the suggested identifiability threshold of 0.35. This suggested that the 

priors for these parameters were not significantly influencing the posterior, as we 

would expect when using uninformative priors.

5.10 Identifiability and sample size

A model may be subject to weak identifiability when the sample size is not large 

enough to estimate parameters accurately. Therefore I increased the sample size 

artificially to investigate the relationship between prior and posterior. I expected that 

as I increased the sample size, the influence of the prior on the posterior distribution 

should decrease.

I used the Isle of Wight data to investigate the fink between sample size and 

identifiability as this showed the greatest influence of prior on posterior for the 

negative binomial model (Table 5.9). In addition, I combined the two Isle of Wight 

datasets to increase the sample size, because both were taken at the same locations 

(although we must remain aware that different, grab sizes were used for each survey).
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Area Mean Median SD 95% Credible Bayesian p-value

Isle of Wight 0.1m2 818 805 216.93 (535, 1117) 0.80

Isle of Wight 0.25m2 776 758 215.96 (494, 1084) 0.63

Isle of Wight combined 838 825 202.40 (577, 1127) 0.71

Table 5.9: Mean, median, standard deviation, SD, and 95% credible interval of the posterior 

of N using elicited priors on N and the negative binomial model fitted to the 

Isle of Wight data sets. The Bayesian p-value is also reported.

Area T0

Isle of Wight 0.1m2 0.79

Isle of Wight 0.25m2 0.87

Isle of Wight combined 0.68

Table 5.10: Coefficient of overlap, t $, values for N for the negative binomial model using 

elicited prior on N fitted to the Isle of Wight data, for each data set, and 

combined.

Table 5.10 shows that combining the data from the large and small grabs did decrease 

the overlap between prior and posterior for the Isle of Wight data. The posterior 

distribution moved away from the prior, which implies that the data were having a 

greater influence in the posterior than before, however the overlap value was still very 

high (Figure 5.9).

However, the observed number of species also increased, (198 for small, 240 for large, 

273 overall), so this may have caused the higher mean and confidence intervals of the 

posterior for the combined data set, therefore decreasing the overlap between prior 

and posterior.

To clarify the cause of the extent of the overlap, I used the data set for the larger 

grabs and sampled with replacement over the ten grabs. I took a sample of 20, 50
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Figure 5.9: Prior (dashed line) and posterior (solid line) for N for combined Isle of Wight 

data using elicited prior and negative binomial model.

and 100 to create new data sets of 20 grabs, 50 grabs, and 100 grabs. I expected that 

as the sample size increased, the overlap between prior and posterior would decrease 

if the data were being swamped by the prior in the posterior.

Tables 5.11 and 5.12 show that as the sample size increased, there was not much 

impact on the posterior distribution or the overlap between prior and posterior. This 

indicated that it was not the prior swamping the data which was causing the overlap 

between prior and posterior in this case.

Sample size Mean Median SD 95% Credible B. p-value

Isle of Wight 0.25m2 776 758 152.71 (494, 1,084) 0.63

20 grabs 772 760 150.10 (491, 1,064) 0.64

50 grabs 781 766 153.03 (501, 1,083) 0.63

100 grabs 783 768 149.17 (518, 1,076) 0.64

1000 grabs 764 752 145.78 (497, 1045) 0.64

10,000 grabs 771 761 145.78 (513, 1068) 0.63

Table 5.11: Mean, median, standard deviation, SD, and 95% credible interval of the 

posterior of N using elicited priors on N and the negative binomial model 

fitted to the sampled Isle of Wight data sets.
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Sample size rg

Isle of Wight 0.25m2 0.87

20 grabs 0.87

50 grabs 0.85

100 grabs 0.85

1000 grabs 0.89

10,000 grabs 0.89

Table 5.12: Coefficient of overlap, rg, values for N for the negative binomial model using 

elicited prior on N fitted to the sampled Isle of Wight data, after sampling the 

0.25m2 data with replacement for 20, 50, 100, 1000 and 10,000 grabs.

I repeated the above sampling method to investigate the effect of increasing sample 

size applied to the Hastings data as a comparison. Table 5.13 shows that as the 

sample size increased, the overlap between prior and posterior decreased rapidly. 

Table 5.14 shows that the posterior estimates decreased, and the credible 95% interval 

was narrowing. The point estimates approached the number of observed species in 

the sample, 141. We can see that as the sample size increased, the prior had less 

influence on the posterior (Figure 5.10). This is in contrast to the results from the 

Isle of Wight.

Sample size re

Hastings 0.58

20 grabs 0.67

50 grabs 0.07

100 grabs 0.01

Table 5.13: Coefficient of overlap, rg, values for N for the negative binomial model using 

elicited prior on N fitted to the sampled Hastings data, after sampling with 

replacement for 20, 50 and 100 grabs.
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Sample size Mean Median SD 95% Credible Bayesian p-value

Hastings 410 405 69.94 (279, 546) 0.71

20 grabs 272 262 62.58 (173, 397) 0.45

50 grabs 157 155 7.48 (144, 172) 0.45

100 grabs 144 143 1.98 (141, 148) 0.46

Table 5.14: Mean, median, standard deviation, SD, and 95% credible interval of the 

posterior of N using elicited priors on N and the negative binomial model 

fitted to the sampled Hastings data sets, for 20, 50 and 100 grabs sampled with 

replacement.

N N

(a) 20 grabs (b) 50 grabs

Figure 5.10: Prior (dashed line) and posterior (solid line) for N for 20 and 50 grab sampled 

Hastings data using elicited prior on N and negative binomial model.

In some cases the data was swamped by the prior, however a higher overlap value 

might not always indicate this. It could just be that the prior could be a very good 

fit to the actual population, and this was most likely the case for the Isle of Wight

data.
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5.11 Discussion

The aim of this chapter was to explore the elicitation process, and produce informative 

priors which could be used within a Bayesian framework to estimate species richness 

and avoid spuriously large estimates. 1 did this for certain data sets, and the elicitation 

procedure could be repeated for additional data sets. A review of the relevant 

literature showed that the elicitation process consists of several steps and the entire 

process requires structure and rigor. This chapter highlights the importance of a pilot 

study, the role of the facilitator and the use of appropriate software.

From feedback given by the experts, during and after the elicitation process, on 

the whole they were happy with the elicitation procedure. The more structured 

framework and formal procedure of the main elicitation task was important in 

improving the process. The supply of more background information about why the 

elicitation was needed was valuable, because the experts realised that there was a 

need for the research being undertaken in this area.

Running through the example was useful in demonstrating the process and 

understanding the best way to approach the questions with the experts. One expert 

commented that the process was a ‘different, way of thinking to the scientists’ , in the 

way the questions were posed, so I made it explicit exactly what I wanted them to 

do. I also adjusted the procedure to be familiar in terms of language and quantities 

used.

The pilot study and elicitation procedure highlighted difficulties regarding the scale 

of benthic organisms. Data on benthic organisms are collected using Hamon grabs, 

and the small organisms are recorded to different levels depending on the study, so 

it was crucial to ensure that both myself and the experts were considering the same 

scale of identification. Throughout this research I have concentrated on Macrofauna 

greater than 1 mm in size, but it was important to clarify this with the scientists who 

sometimes work to different scales.
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In addition, the range of sizes of organisms and scales of habitat regarding clusters 

of species was raised. For a small species of 2mm, a grab of 0.1???2 could be its whole 

world, whereas for a large species such as a starfish, an aggregation might extend well 

beyond the grab area sampled.

The pilot study highlighted the importance of the facilitator in the elicitation 

procedure, and this was confirmed in the main elicitation process. It was also 

interesting to note that additional unsolicited information arose while completing 

the elicitation, giving useful background information on benthic organisms and their 

relationship with the substrate and other species.

For each of the data sets, a different expert was consulted. As mentioned previously, 

it would be worthwhile to use more than one expert per data set and gain a consensus 

to improve the elicitation process. I did elicit the number of species throughout UK 

waters from all experts, so this could be useful as an upper bound to any species 

richness estimates, and also could be used as an indicator of the accuracy of the 

estimates of the other parameters. This is not something that 1 consider within this 

thesis, but is an interesting area for further research.

Priors were elicited for both N  and nuisance parameters, but not all were incorporated 

into the model. In some cases the elicited distributions of the number of species 

did not correspond well to the data sets available. This was possibly because there 

were several sampling programmes carried out in each area over time and space and 

therefore as more species were found the expert’s opinion might change.

Information on clustering proved difficult to incorporate into priors, due to the 

extreme variation in cluster size between species, and within species. Also, the scale 

of the clusters in proportion to the grabs sizes was a barrier to elicitation of this 

parameter for some experts.
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The area sampled in proportion to the study region in most benthic surveys, and the 

clustering of individuals means that there will be many reasonably common species 

that will be missed in a sampling program. This has been demonstrated for randomly 

distributed individuals, but will be accentuated when we incorporate clustering into 

the calculation. The importance of the inclusion of all species in a species richness 

estimate needs to be carefully considered when designing a sampling program and 

analysing data.

When applied to benthic data sets, the elicited priors influenced the posterior 

and avoided the spuriously large species richness estimates seen previously. This 

reaffirmed the fact that elicitation can play a pivotal role in informing models and 

decisions (Martin et ah, 2012).

As the species demonstrate a clustering behaviour, we expected the Neyman Type A- 

gamma model to fit the data better than the negative binomial. However, according 

to the Bayesian p-values and DIC this was only the case for the Norfolk data. This 

could be occurring if the prior on the clustering parameter was not suitable to model 

the data. Including an informative clustering parameter had some influence on the 

species richness estimate. However. 1 would suggest caution in using such a prior as 

it was difficult to define during elicitation and therefore may not be very reliable. 

The number of effective parameters of the DIC for this model was negative, and this 

highlighted an undesirable property of this information criterion.

The influence of the prior on the posterior was quantified by calculating the coefficient 

of overlap, and in some cases the sample size influenced this overlap. When sampling 

from the Hastings data set, I found that the overlap between prior and posterior 

decreased rapidly as I increased the sample size. However, for the Isle of Wight data 

there were no significant changes in the posterior as sample size increased, suggesting 

that the prior fitted the data well.
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Although benthic ecologists were consulted in order to construct priors for the number 

of species in an area, the limitations of expert knowledge can lead to mis-specification 

of these priors. Experts were asked to specify upper and lower bounds for the 

distribution of N, and a prior was fitted to the information given, in the form of 

gamma, normal and scaled-beta distributions. These priors could have a strong 

influence over the posterior. This was illustrated by the Hastings data, for which 

a normal prior was used. The prior was shown to have a strong influence over the 

posterior, in terms of prior-posterior overlap, which was greatly reduced by increasing 

the sample size.

A possible solution to reduce the influence of the prior would be to fit an alternative 

prior to the elicited information, such as the t-distribution, which has heavier tails 

than the normal distribution, meaning that it is more prone to producing values that 

fall further from the mean. This could decrease the influence of the prior over the 

posterior. An alternative approach might be to fit the elicited information firstly 

ignoring the upper and lower bounds, and then cut off the distribution above and 

below the bounds. The use of a fat-tailed distribution may not only reduce the 

influence of the prior, but also be less sensitive to mis-specification of the prior, as 

found by Chen et al. (2000) in the case of using elicited information to inform priors 

in fisheries-stock assessment.

This chapter highlighted a key barrier to elicitation, in that statisticians and biologists 

approach a problem from very different, vantage points, and to perform a successful 

elicitation, one must consider both of these when designing the procedure, but also 

ensure that each party is benefitting from the process. Once I was able to highlight 

the reasoning behind my models and how they would benefit benthic ecologists, the 

scientists were much more receptive to what I was asking them, and very forthcoming 

with additional information that could assist in the models. This would be applicable 

to any application.
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The process has highlighted several benefits of using software in the elicitation 

procedure. It ensured fast feedback to experts so that they could adjust their 

views, ensuring that elicited information adequately reflected the experts’ opinions. 

This is especially important when dealing with non-statisticians who may not be 

comfortable with the concept of probability. Automation of model-fitting calculations 

and streamlining of the elicitation process, reducing the length of elicitation sessions, 

also keeps the expert engaged as much as possible (Fisher et al., 2012).

I found that it was much better to carry out elicitation face-to-face, using a facilitator. 

The facilitator is able to phrase the elicitation questions to suit the individual experts’ 

understanding and knowledge of probability. Also it is important to use appropriate 

language, and questions should refer to terms and concepts familiar to the expert, 

including the way they measure things.

Elicitation is a mechanism for capturing not only an expert’s best estimate of a 

value, but also the uncertainty of that estimate. Eliciting uncertainty is particularly 

important when only a single expert is available (Kuhnert. et ah, 2010), as in this case. 

For benthic organisms, as with other species, it is likely that there are few experts 

with suitable expertise for situations where elicitation of expert knowledge is useful.

As highlighted by Fisher et al. (2012), the quality and value of elicited knowledge 

is highly dependent on the specific experience and expertise of the experts involved. 

I assumed that the experts had the necessary knowledge and experience to provide 

reasonable answers to the questions posed. However, there was no guarantee that 

their answers were not biased (Kuhnert et al., 2010), and I found that estimates did 

not always correspond with reality. This could be seen especially when I elicited the 

number of species in UK waters, the results of which varied immensely.
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5.12 Conclusions

Through elicitation 1 was able to obtain priors that gave much more realistic species 

richness estimates when applied to benthic data sets. Although the fit using the 

Neyman Type A-gamma was not as good as the negative binomial, which seems 

anomalous, this could perhaps be explained by the fact that clustering was not allowed 

to vary between species within the model. Further work will look at incorporating 

this variation into the model.

Elicitation of information about marine benthic data has not previously been 

discussed in the literature as far as I know, but this research has contributed 

to developing a structured procedure that can be used for this purpose. I have 

shown that the elicitation process is complex and requires careful planning and 

implementation. However, the results can be very beneficial. The elicitation process 

must be applied with rigor to ensure the validity of the priors and there are several 

ways that 1 could potentially improve the elicitation that I have performed, to get 

more accurate and useful information to include in a model. These include improving 

the use of software, appropriate language, and understanding of benthic communities.

It would be worthwhile to use more than one expert per data set and gain a consensus 

to improve the elicitation process. The results from the elicitation of information on 

the number of species throughout UK waters could be used as an indicator of the 

accuracy of the estimates of the parameters from each expert. Although this is not 

something that I considered within this thesis, it is an interesting area for further 

research.

This work could be extended by an investigation of the validity of elicitation when 

only one expert is available, along with the development of more specialised software 

for the elicitation of information particular to benthic organisms. This could be 

incorporated into a larger software package to be used by benthic ecologists which is 

able to estimate diversity of benthic organisms for a particular area, In addition, this
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R package could be used for other taxonomic groups.

Using elicited priors avoided the spuriously large estimates associated with the 

boundary problem, and a link between Bayesian priors and penalties in a frequentist 

framework is explored in Chapter 6.



6. COMPARISON OF SPECIES RICHNESS ESTIMATION

APPROACHES

6.1 Introduction

This chapter considers the link between the various methods of species richness 

estimation. Firstly, I consider how elicited priors can be converted into penalties 

within a frequentist approach. I then compare the results of the frequentist approach 

to those of the Bayesian approach, and discuss my preferred method. I also consider 

the results of the non-parametric estimators, and how they compare.

Finally 1 make a recommendation of the best method to use to estimate species 

richness for benthic data, and use this method to investigate the impacts of dredging 

on the Norfolk coast. These results will be compared to those found by Barry et al. 

(2010), who utilised a clustering model to describe the spatial pattern of each species.

6.2 Penalties as priors

In Chapter 3 1 considered penalising the maximum-likelihood estimator to avoid 

spuriously large species richness estimates. Recall that if l(N,9)  is a log-likelihood 

function where (N, 9) represent the unknown parameters, then the penalised log- 

likelihood corresponding to penalty parameter 7 and penalty function h(9) is defined

as

P { N , d )  =  l ( N , e ) - ' y h ( N , 0 ) .  (6.1)

In the Bayesian approach we base inference for 9 on its posterior distribution which
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may be expressed as

jr(0|x) ct fir.\U)p[0\. ( 6.2)

and the log of the posterior is

log(7r(0|x)) =  \og(f(x\9)) +  log (p{9)) +  constant (6.3)

the log-likelihood plus the log of the prior. So interpreting the log-likelihood function 

in a Bayesian context, it is the log of the probability distribution, combined with a 

penalty, which corresponds to a prior contribution on the distribution of 6.

For large samples and a uniform prior, the mode of the posterior and MLE will 

be equivalent. If we use an alternative prior this may be considered equivalent to 

using a penalty.

We have seen in Chapters 3 and 4 that if the true odds parameter of the population 

is low, that is if many of the species were sampled. I would want the prior to have 

less influence on the posterior to allow the species richness estimate to reach the 

appropriate value. This corresponds to using a less harsh penalty.

Conversely, if the true odds parameter is large, then 1 want to have an informative 

prior that will influence the posterior and avoid the spuriously large species richness 

estimates arising from the boundary problem.

In Chapter 3 I considered two penalties suggested by Wang and Lindsay (2005). 

The first, was a penalty based on the odds function, ip — po/{l — Po)> which was 

found to combat the boundary problem. As Nc =  D/{ 1 — Po(9c)}  is equivalent to 

N = D(l  + ip), imposing a penalty on ip reduces the magnitude of N.

The penalised log-likelihood for this penalty is

l2(N,9) =  l ( N , 9 ) - l2iP(9), 72 > 0 .
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However, the optimal choice of 72 depended strongly on the value of ip (Wang and 

Lindsay, 2005). No method has been devised that can choose the best penalty for 

a particular problem, but using simulations in Chapter 3 I found that a value of 

72 =  0.5 worked reasonably well in all cases. When I extended the estimator to the 

Neyman Type A-gamma model we saw that this was more sensitive to the value of 

72 used in the penalty, and in some cases a value of 72 = 0.25 was more appropriate.

If we interpret this particular penalty function as a prior, then this penalty 

corresponds to an exponential prior for the odds function with mean 1 /72 (Wang 

and Lindsay, 2005).

I also considered the penalised log-likelihood,

h{N,0) =  l(N, 0) -  73(ip ~ ??)2/( '0  > 0)1 1,V > 0,

where 7 =  Nci/D — 1, 73 =  I /27, and Nc  1 — D +  / 12/ ( 2 /2) is the lower bound 

estimator of Chao (1984).

This penalty corresponds to a uniform prior for the odds function on (0,7) and a 

normal prior with mean and variance a2 =  ~  on (7, 00) (Wang and Lindsay, 2005). 

The shape of the posterior of the odds parameter is determined by the choice of 73 

and 7.

Using this penalty with one-step iteration I would run the MCMC algorithm with the 

prior described above, and then repeat MCMC using the posterior mean as a naive 

estimator in place of Nci-

6.2.1 Converting elicited priors to penalties

If I elicited information on the proportion of the species in the area that were caught 

during the sampling program, this would relate to the odds ratio. I did not elicit 

information on this, however, if I asked experts to give the proportion of species in 

the population that they estimate would be caught, then this information can be used
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directly to form a Bayesian prior for the odds parameter.

A normal Bayesian prior on the odds parameter would correspond to a penalised 

log-likelihood of

l(N,0) =  l ( N , e ) -  7 3 ^ 7 3 , 7  > 0 ,

where rj is the mean of the elicited distribution, and 73 =  1/(2a2). Larger values of 

rj give a flatter prior, which implies more unsampled species and more uncertainty in 

the estimate (Wang and Lindsay, 2005).

Instead I elicited information on TV, the total number of species that are in the 

population, which as previously stated is a function of the odds parameter. Since 

the family of normal distributions is closed under linear transformation, that is if 

X  is normally distributed with mean p and variance a2 then aX  +  6 is normally 

distributed with mean ap +  b and variance a2a2, I can use the elicited normal prior 

for N  to specify the values of 7 and 73 to use as a penalty in the MLE.

The elicited prior for TV for the Hastings data was Normal(313.2, 97.12). Under the 

conditional likelihood approach, TV = D +  Dip, and I can use the linear transform 

property of the normal family of distributions to convert the prior for TV into a penalty. 

For the Hastings data set D — 141, so a =  b =  D and ip ~  Normal(1.22, 0.474).

This prior is shown in Figure 6.1. The distribution extends below 0, which is not 

possible for this parameter. This reflects the inaccuracy of using elicited information 

on TV, and the prior could be improved for the odds parameter by eliciting information 

on it directly. However, this is a less intuitive parameter, and therefore may cause 

confusion during the elicitation process.

I can then use this to construct the penalised likelihood

/(TV, 0) = /(TV, 6) -  1/0.9480/ -  1.22)2, (6.4)
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0 1 2  3 4

Figure 6.1: Elicited prior for the odds parameter, ip ~ Normal(1.22, 0.474), for the Hastings 

data.

which should lead to the same estimate for N  as the point estimate given by the 

Bayesian approach using the elicited prior for N  and uniform priors for the nuisance 

parameters. I have disregarded the log(\/27rcj2) term in the log likelihood, because 

this does not depend on the parameters and will not affect the maximisation.

This MLE approach gives a species richness estimate of 411 (285, 584) using the 

negative binomial model. The profile log-likelihood for the number of unseen species 

is shown in Figure 6.2a. This corresponds very well to the estimate of the Bayesian 

approach given in Chapter 5 which was 410 (279, 546) when using half-Cauchy priors 

on the nuisance parameters, and 415 (278, 554) using uniform priors on the nuisance 

parameters, which are non-informative.

Alternatively, I could use the prior for N  directly converted into a penalty. For 

the Hastings data that gives us

l(N, 0) =  l(N,0) -  313-2)2' <6-5 >

When calculating the MLE including profile confidence intervals I use the full 

likelihood. This approach gives us a result very similar to that above, namely
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(a) Profile log-likelihood for /o (b) Goodness of fit

Figure 6.2: (a) Profile log-likelihood for the number of unseen species, fo — N — D, and (b) 

goodness of fit for the penalised MLE of Eqn 6.4 to the Hastings data assuming 

the negative binomial model.

411 (288, 568), where the confidence interval is skewed slightly to the right. The 

fit of this distribution (excluding the zero class) can be seen in Figure 6.2b.

Using this approach allows us easily to create a penalty using the information 

elicited for the other sampling areas, which were fitted with gamma and scaled 

beta distributions. For gamma distributed priors, N ~  Gamma(a, ¡3) we have the 

penalised log-likelihood

l(N, 9) =  l(N , 9) +  (a -  1) log(iV) -  N/0, (6.6)

which is just the log-likelihood plus the log of the gamma density, excluding terms 

which do not involve N. Similarly for the scaled beta we add the log density of the 

scaled beta to the log-likelihood to form the penalty term corresponding to the scaled 

beta prior.

MLE using these penalties gave approximately equivalent results to the Bayesian 

approach using elicited priors (Tables 6.1 and 6.2).
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Penalised MLE Bayes with elicited prior

Area N 95% Confidence Mean 95% Credible

Hastings 411 (288, 568) 410 (279, 546)

IOW 0.1m2 822 (567, 1,178) 818 (535, 1,117)

IOW 0.25m2 773 ( 533, 1,120) 776 (494, 1,084)

Norfolk Pre 174 (105, 262) 171 (104, 245)

Norfolk Post 38 (29, 52) 38 (28, 50)

Table 6.1: M axim u m -likelihood  estim ates for N  for H astings, Isle o f  W igh t and N orfolk  

d ata  sets, using elicited  penalties on N  and fitting  the negative b in om ial m odel.

Penalised MLE Bayes with elicited prior

Area N 95% Confidence Mean 95% Credible

Hastings 432 (306, 586) 429 (297, 567)

IOW 0.1m2 897 (634, 1,255) 903 (605, 1,220)

IOW 0.25m2 877 (623, 1,231) 890 (600, 1,194)

Norfolk Pre 189 (116, 268) 165 (94, 243)

Norfolk Post 39 (29, 54) 40 (29, 52)

Table 6.2: M axim u m -likelihood  estim ates for N  for H astings, Isle o f  W igh t and N orfolk  

d ata  sets, using elicited  penalties on  N  and fitting  the N eym an T y p e  A -g a m m a

m odel.
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(b) Norfolk post-dredging data

Observed data (red) and fitted data (black) for the penalised MLE using elicited 

penalty and the negative binomial model fitted to (a) the Hastings data and 

(b) Norfolk post-dredging data.

For the Hastings data the estimates were very close, but the 95% confidence and 

95% credible intervals did not quite correspond. This may have been due to the 

difference in the way the confidence interval was calculated.

The same pattern occurs for the Isle of Wight data sets and the Norfolk pre- and 

post-dredging survey estimates. For the latter data set the fit of the negative binomial 

distribution was not extremely good (Figure 6.3b). This was reflected in the Bayesian 

p-value of 0.75 that I found in Chapter 5.

The results using the Neyman Type A-gamma model were slightly more different 

between the two methods for the Isle of Wight 0.25m2 and Norfolk pre-dredging 

survey. In the former, the penalised MLE gave a lower estimate of species richness, 

and in the latter the penalised MLE was higher than using the Bayesian approach 

with elicited prior, although the differences were not that large.

Our results show that the two methods were approximately equivalent. There were
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slightly more differences between the two approaches when using the Neyman Type A- 

gamma model, however we might expect this as there were more parameters to 

be estimated within the model. The differences in confidence intervals was more 

interesting, and due to the differing methods of calculation employed. The HPDI 

appeared more symmetrical than the corresponding profile confidence intervals, which 

were more positively skewed.

6.3 Comparison o f species richness estimation methods

1 compared the species richness estimates obtained using the various methods 

described throughout the thesis. Table 6.3 shows results for the two Isle of Wight 

data sets.

The non-parametric estimates of species richness were substantially lower than those 

given by the parametric approaches. I already showed in Chapter 2 that these 

estimators were insufficient to model benthic data, because the estimates did not reach 

the total observed species for this area of 273 in most cases. However, I included them 

here as these estimators are currently used by ecologists to estimate species richness 

of benthic data. The parametric species richness estimators did produce plausible 

estimates when using penalties or informative priors.

I have not shown the results of the non-penalised MLEs, as the spuriously large 

estimates given by these estimators clearly demonstrated they were not suitable. The 

best of these models, according to AIC, for each of the data sets was the negative 

binomial using penalty 2. The negative binomial model using penalty 3 with one-step 

iteration was also a plausible model.

Despite the negative binomial showing a better fit to the data than the 

Neyman Type A-gamma, the Neyman Type A-gamma model performed well in 

simulations when applied to clustered data, and should not be dismissed. The 

negative binomial model has shown negative bias when applied to clustered data,
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Grab size Estimator N SD 95% Confidence AIC AAIC

0.25m2 D 240 - - -

Nci 286 16.71 (263, 332) -

Nji 293 10.26 (273, 313) -

NB P2 72 =  0.5 895 - (459, 2859) -578.8 0.0

NB P3 496 - (388, 650) -571.2 7.6

NB P3 IT 720 - (469, 1116) -577.9 0.9

NB EP 773 - (533, 1120) -566.9 11.9

NTAG P2 72 -  0.5 4206 - (904, 16,103) -550.1 28.7

NTAG P2 72 =  0.25 6818 - (1026, 26,541) -551.7 27.1

NTAG P3 561 - (441, 719) -533.1 45.7

NTAG P3 IT 936 - (616, 1380) -545.8 33.0

NTAG EP 877 - (623, 1231) -533.9 44.9

0.1m2 D 198 - - -

NCi 241 15.60 (219, 284) -

N ji 258 6.85 (245, 271) -

NB P2 72 =  0.5 1862 - (595, 6854) -496.2 0.0

NB P3 469 - (363, 611) -481.2 15.0

NB P3 IT 767 - (498, 1143) -492.3 3.9

NB EP 822 - (567, 1178) -472.0 24.2

NTAG P2 72 =  0.5 6344 - (1198, 24,782) -465.9 30.3

NTAG P2 72 =  0.25 9859 - (1393, 38,820) -467.7 28.5

NTAG P3 515 - (404, 660) -441.3 54.9

NTAG P3 IT 920 - (615, 1326) -458.4 37.8

NTAG EP 897 - (634, 1255) -433.5 62.7

Table 6.3: Comparison of species richness estimates for Isle of Wight 0.25m2 and 0.1m2 

benthic data sets. Estimators shown are D: observed number of species, Nci- 

the Chao\ estimator, Njp. the first order jackknife, NB: the negative binomial 

and NTAG: the Neyman Type A-gamma model, with penalty 2, penalty 3 and 

penalty 3 with one-step iteration, P3 IT, and the elicited penalty on N, EP.
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and therefore we need to be wary not to underestimate species richness by using this 

model.

The approximate agreement in species richness estimates using the parametric models 

between the two Isle of Wight data sets improves our confidence in the results. The 

precision of the estimates for the two grabs sizes were very similar, and we might 

expect that the smaller grabs should give a less precise estimate. However, in patchy 

environments a more precise estimate can be gained using small grabs than large 

grabs, per overall unit grab area (Boyd et ah, 2006). Since we analysed ten samples 

for each of the grab sizes, we sample a larger area using the 0.25m2 grabs, and the 

precision should increase. An additional analysis incorporating the grab size and area 

into the model would be beneficial to tease out these aspects.

The Neyrnan Type A-gamma model was constrained by having clustering fixed across 

species. However, by increasing the flexibility of the model to allow clustering to vary 

between species the fit of the model should improve, and hopefully also the species 

richness estimate. However, such a model would have many more parameters and 

there would be more possible sources of variation within the model. It is also possible 

that the model may be difficult to fit due to a flat likelihood, which is already a 

possible source of the slow computation time of fitting the Neyman Type A-gamma 

model.

Although the models incorporating expert opinion did not come out top, if possible 

I would recommend the use of elicitation to inform the model. Using penalty 2 

is subjective, and the penalty parameter chosen can have a large effect on the 

resulting species richness estimate. Simulations in Chapter 3 showed that the choice 

of y2 =  0.5 was reasonable for the data analysed. However the estimates given by the 

Neyman Type A-gamma model using this penalty were high, and the upper confidence 

limit rises above the 10,000 known species to inhabit UK coastal waters. Although 

it is possible that some species may be missing from this list, an extensive number of
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benthic surveys have been carried out and so we can be reasonably confident in this 

figure as an upper limit.

Several approaches could be used for species richness estimation in practice, and 

this could give some form of measure of confidence in the results.

6.4 Estimating the impact o f dredging

The motivation behind the development of species richness estimators for benthic 

data, was to be able to monitor the impact on benthic organisms from activities such 

as marine dredging.

Approximately 16 million tonnes of sand and gravel were removed from around 70 

offshore licensed extraction areas located around the coast of England and Wales in 

2010 (Crown Estate, 2010). License decisions take into account the amount to be 

extracted, the rate and duration of extraction, the size of the area to be effected, and 

the proximity of sensitive areas such as fish feeding and breeding areas (Crown Estate, 

2002), and predictions of the consequences of marine aggregate extraction are needed 

before a licence is awarded. A licence is only issued when predicted environmental 

impacts are deemed acceptable.

Currently there is a lack of scientific knowledge regarding cause and effect 

relationships of marine biota, and the assessment relies on a site-specific impact 

assessment, which can be subjective as there are no standardised criteria (Barry 

et ah, 2010). By developing tools to aid the decision-making process we are able to 

reduce this subjectivity.

Both the initial impact and the predicted rates of recovery of marine benthos are 

important. However I concentrated on modelling one of the initial impacts of 

dredging, the reduction in species diversity. Monitoring programs are carried out 

before and after aggregate extraction, and these data can be used to assess impacts
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on biodiversity.

Barry et al. (2010) used simulation of Matern processes to estimate the number 

of species eliminated by dredging. This incorporated individual impact, individuals 

eliminated during dredging, and species impact, the elimination of an entire species 

for example due to removal of suitable habitat. The species richness estimator can be 

used to estimate the impacts of dredging on benthic organisms by comparing pre-and 

post dredging estimates.

6.4.1 Estimating the impact of dredging using the Matern process

Barry et al. (2010) used a Matern process to model the abundance and spatial 

clustering of individual benthic species. Recall that the Matern process has three 

components:

1. ‘Parent’ events form a Poisson process with intensity A,

2. Each ‘parent’ produces a Poisson number of ‘daughters’ with intensity 0,

3. The positions of the ‘daughters’ relative to their ‘parents’ are randomly 

distributed within a circle of radius R.

Barry et al. (2010) estimated the Matern parameters A, 0 and R for each species 

using a pseudo-maximum-likelihood approach, assuming that species were located 

independently of each other, and A and 0 were constrained such that the mean of the 

Matern process was equal to the mean observed count.

Barry et al. (2010) considered two types of impact corresponding to a loss at 

the individual level and the species level respectively. The individual impact of 

dredging was estimated for species found in both the pre- and post-dredging surveys, 

conditioning on whether an individual was in a dredged or clear area, and assuming 

that an individual of species j  was killed with probability p  ̂ or pc respectively. It 

was assumed that species densities would be greater in the non-dredged areas.
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The mortalities of each species, p and pCj, were estimated for each species by 

simulation, by repeating the following steps over a grid of potential pd, and pCj, 

and then finding the maximum likelihood of these potential values.

First a spatial realisation from the Matern process was simulated on a 10x10 square 

and 2.5m wide dredge strips were randomly placed onto the spatial realisation to 

cover a certain percentage of the area to simulate dredging. The points of the spatial 

realisation were thinned with probability p if in a dredged area, or pc. in a non- 

dredged area, and a grab was randomly placed onto the square, and the number of 

individuals recorded.

This was repeated one thousand times to give a probability distribution for the 

number of individuals in a grab. The observed counts from the post-dredging survey 

and this probability distribution were used to calculate the log-likelihood of the 

Matern parameters, and estimates of 9j — (Rj,\j,(pj) were found by maximising 

the log-likelihood over a 5x5 grid of potential values for Rj and Aj.

By using the estimated mortalities and the estimated Matern parameters, the 

frequency distribution of the number of individuals of each species in a post-dredging 

grab was simulated, assuming the species was not eliminated. For those species 

observed in the pre-dredge survey, but not the post-dredge survey, a pair of mortality 

probabilities were randomly allocated from those of the species observed in both 

surveys.

This gave an estimate of the probability that species j  was absent from a post-dredging 

grab given individual impacts, qy  The log-likelihood for the species-level probability 

that a species was eliminated by dredging, pe was then estimated , assuming that the 

presence of each species in the post-dredging survey was independent across species 

Barry et al. (2010).
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When maximised, this likelihood gave an estimate of the probability a species was 

eliminated, and Barry et al. (2010) obtained an estimate of the number of species 

eliminated by multiplying the change in the number of species across the two surveys, 

multiplied by the species elimination probability,

ijtp Tlb)Pei

where np was the number of species seen in the pre-dredging survey, and was the 

number of species seen in both surveys. A 95% likelihood interval was estimated by 

taking the values of pe satisfying 2(l(pe) ~ l{pe)) < Xns (Barry et ah, 2010).

6.4.2 Alternative approach to estimating impact of dredging

I improved the approach of (Barry et ah, 2010), using a finer grid of possible 

parameters of the Matern process and smoothing the likelihood function across 

this grid using cubic splines. The same was done when estimating the mortality 

probabilities of each species. Although not detailed here, this improved the accuracy 

of the estimates of the Matern parameters.

However, there are several disadvantages of this approach. For those species observed 

in the pre-dredge survey, but not the post-dredge survey, a pair of mortality 

probabilities were randomly allocated from those of the species observed in both 

surveys, which may not represent the true mortality probabilities of those species. 

Another disadvantage is that the estimate of the number of eliminated species does 

not take into account species that were missed in the pre-dredging survey.

Therefore, I used the species richness estimators developed in Chapters 3, 4 and 5 of 

this thesis. I estimate species richness pre- and post-dredging, and use the difference 

between the two as an estimate of the number of species eliminated by dredging. This 

simplifies the calculations of the impact of dredging, and takes into account species 

that were missed in the pre-dredging survey. This assumes that no new species have 

entered the population since the pre-dredging survey.
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No explicit estimates of the mortality probabilities are required in the species richness 

estimators, and therefore there is no need to assign arbitrary probabilities to these 

values for species unobserved in the post-dredging survey. In addition, the probability 

that a particular species is eliminated by dredging can vary across species.

6.4.3 Estimating the impact of dredging in Norfolk - an example

Kenny and Rees (1996) investigated the impacts of marine gravel extraction off the 

Norfolk coast in 1992, over an area of 135,000m2. Dredging of 70% of this area was 

carried out over a period of three days, and surveys of marine benthos were carried 

out during the month before and the month after dredging. Survey data consisted 

of species counts from five randomly-placed 0.25m2 Hamon grabs. The number of 

individuals per grab was recorded for each species, and Kenny and Rees (1996) found 

a significant reduction in the variety, abundance and biomass of benthic organisms 

after dredging.

A total of 64 species were found in the pre-dredging survey, and 26 in the post

dredging survey, of which three were not seen in the pre-dredging survey. These 

observed numbers of species are smaller than in the other data sets I have considered, 

and this is likely to be due to the more gravelly substrate in the Norfolk area, making 

it suitable for dredging. Also, since a dredging licence had been granted for the area 

only after an environmental impact assessment was carried out, we might expect that 

biodiversity was low before dredging took place.

Barry et al. (2010) estimated the number of species that were eliminated by dredging, 

of those seen in the pre-dredging survey, by modelling the spatial patterns of the 64 

species seen in the pre-dredging survey, and the individual impact for the 23 species 

seen in both surveys. This gave an estimate of four species of those observed pre

dredging eliminated by dredging, with a 95% likelihood interval of 0-14 species.

Table 6.4 shows the estimates of species richness for the Norfolk area pre- and post-
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Data Estimator N SD 95% Confidence AIC AAIC

Pre-dredging D 64 - - - -

N ci 87 28.0 (72, 129) - -

N j i 84 4.2 (76, 92) - -

NB P2 463 - (123, 1658) -43.5 0.0

NB P3 145 - (99, 218) -39.5 4.0

NB P3 IT 201 - (116, 336) -42.7 1.2

NB EP 174 - (105, 262) 7.8 35.7

NTAG P2 780 - (156, 2919) -25.7 17.8

NTAG P3 154 - (106, 228) -19.5 23.9

NTAG P3 IT 225 - (131, 367) -24.0 19.5

NTAG EP 189 - (116, 268) 38.8 82.3

Post-dredging D 26 - - - -

N ci 29 15.6 (27, 42) - -

N j 1 34 4.6 (25, 43) - -

NB P2 89 - (34, 279) 23.0 0.0

NB P3 42 - (30, 64) 26.6 3.6

NB P3 IT 57 - (34, 100) 23.7 0.7

NB EP 38 - (29, 52) 35.9 12.9

NTAG P2 136 - (38, 466) 25.7 2.8

NTAG P3 44 - (31, 66) 30.7 7.8

NTAG P3 IT 61 - (36, 107) 27.0 4.0

NTAG EP 39 - (29, 54) 40.1 17.1

Table 6.4: Comparison of species richness estimates for Norfolk pre- and post-dredging 

benthic data sets. Estimators shown are D: observed number of species, Nci '■ 

the Chao\ estimator, Njp. the first order jackknife, NB: the negative binomial 

and NTAG: the Neyman Type A-gamma model, with penalty 2 with 72 =  0.5, 

penalty 3 and penalty 3 with one-step iteration, P3 IT, and the elicited penalty 

on N, EP.
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Estimator Estimated species mortality 95% Confidence

Matern modelling 4 (0, 14)

D 38 -

Nci 58 (30, 102)

Nj i 50 (33, 67)

NB P2 373 (-157, 1624)

NB P3 103 (35, 188)

NB P3 IT 144 (16, 302)

NB EP 136 (53, 233)

NTAG P2 644 (-310, 2881)

NTAG P3 110 (40, 197)

NTAG P3 IT 164 (24, 331)

NTAG EP 150 (62, 239)

Table 6.5: Estimates of number of species eliminated by dredging in 1992 for the Norfolk 

area, for estimators D: observed number of species, Nci'- the Chao\ estimator, 

Njp. the first order jackknife, NB: the negative binomial and NTAG: the 

Neyman Type A-gamma model, with penalty 2 penalty 3 and penalty 3 with 

one-step iteration, P3 IT, and the elicited penalty on N, EP.
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dredging, and the estimated numbers of eliminated species are given in Table 6.5, 

along with confidence intervals formed by taking the greatest and smallest differences 

between the pre- and post dredging confidence limits. Table 6.5 shows that the 

estimated impact of dredging using species richness estimators was very different 

from the estimated number of species eliminated of 4 (0, 14) estimated by Barry 

et al. (2010). However, this estimate was concerned with estimating only how many 

were eliminated of those species observed in the pre-dredging survey.

If we consider the number of observed species for each survey, D, we would estimate 

that 38 species were eliminated. However, this did not account for those which were 

unobserved un the pre-dredging survey, so this was not a good estimator for the 

number of eliminated species.

The rest of the estimators attempt to account for missed species by estimating species 

richness before and after impact, and the estimated species mortality given by these 

estimators was much higher than the estimate of Barry et al. (2010).

The estimates of mortality given by the negative binomial and Neyman Type A- 

gamma models using the elicited priors are fairly similar, suggesting that the prior is 

having a strong influence over the posterior or that the priors fit the data well. The 

coefficients of overlap for the Norfolk data, calculated in Chapter 5 for the negative 

binomial model, were fairly low values of Tg =  0.4 and Tg =  0.17 for the pre- and 

post-dredging data respectively. Therefore this suggested that the prior was not 

having total influence over the results and these estimates of species richness are 

reasonable. Therefore, the estimate of dredging impact from these models should 

also be reasonable.

In Section 5.9.2 the DIC judged the Neyman Type A-gamma to be the best fitting 

model for the Norfolk pre-dredging data, but the AIC values in Table 6.4 judged the 

negative binomial MLE using penalty 2 to be the best fitting. This highlighted that



6. Comparison o f species richness estimation approaches 2 2 2

caution should be used when considering these information criteria to choose between 

models, especially the DIC.

The estimated species mortality using both the negative binomial and Ney- 

man Type A-gamma model and the penalised MLE with penalty 2 had negative 

mortality as a lower bound, because of the way the upper and lower limits for the 

estimate were calculated. The highest estimate within the 95% confidence interval 

of species richness post-dredging was greater than the lowest estimate of the 95% 

confidence interval of species richness pre-dredging. This suggested that there could 

be more species present post-dredging than there were pre-dredging.

This is not impossible, as some species could colonise the substrate very quickly after 

dredging, and also some species may prefer a more sandy habitat which is left post

dredging. However, this goes against our assumption of no new species entering the 

population, so this negative mortality estimate was due to the very wide confidence 

intervals associated with penalty 2 when the penalty parameter has not been tuned. 

A value of 72 =  0.5 was used here. Although this model was judged best by the AIC, 

I would advise against using this estimate until some way to choose the appropriate 

penalty parameter had been found, and we can be more confident in the results given 

by this estimator.

Excluding the estimators using penalty 2, the estimate of dredging impact given 

by the parametric models are fairly similar, in the order of 100-170 species. This is 

encouraging, and by considering several estimators we can gain a rough idea of the 

impact dredging has had on the biodiversity in the Norfolk area.

6.5 Discussion

The aim of this chapter was to consider the link between the frequentist and Bayesian 

approaches to species richness estimation, and to compare these methods with 

established methods of species richness estimation when applied to the assessment
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of dredging impact on benthic organisms. I outlined the link between priors in the 

Bayesian approach, and penalties in a frequentist approach, and illustrated this using 

the penalties described in Chapter 3. For large samples and a uniform prior, the 

Bayes estimate and MLE will be equivalent, so using an informative prior may be 

considered equivalent to using a penalty in the frequentist approach.

I showed that since TV is a function of the odds parameter, 1 was able to transform a 

normal prior on TV to a penalty on the odds parameter. However, it was also possible 

to use the prior on TV directly as a penalty in the log-likelihood of the MLE, and this 

allowed the conversion of a prior on TV such as the gamma. The two methods were 

approximately equivalent, as we would expect.

This allowed us to incorporate expert opinion easily into the frequentist approach, 

which will overcome the boundary problem and allow use of the MLE for cases where 

this phenomenon is present. The frequentist approach may be preferred in some cases, 

especially when using the more complicated Neyman Type A-gamma to model the 

abundance distribution of benthic organisms. An original motivation behind using 

a Bayesian approach was to eliminate the calculation of the marginal likelihood for 

the Neyman Type A-gamma model, however using the DA method constrained us 

to using particular priors for TV, and RJMCMC within WinBUGS also proved difficult 

when trying to incorporate the elicited priors.

I compared several species richness estimators for the Isle of Wight area, and found 

that the estimates given by the non-parametric estimators were appreciably lower 

than those given by the parametric approach. These estimators were insufficient to 

model benthic data. However the parametric species richness estimators did produce 

plausible estimates when using penalties or informative priors.

I would recommend, if possible, the use of elicitation to inform the prior or penalty to 

be used to combat the boundary problem. Simulations showed that the best penalised
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method, MLE with penalty 2, was not always reliable, and using expert knowledge 

could enhance the accuracy of the species richness estimates. The negative binomial 

showed a better fit to the benthic data analysed than the Neyman Type A-gamma, 

but the Neyman Type A-gamma performed well in simulations, and should not be 

dismissed.

The precision of the species estimates using the MLE on the two Isle of Wight data 

sets were very similar, and an additional analysis incorporating the grab size and area 

into the model, as touched upon in Section 3.3, would be beneficial to tease out these 

aspects.

The motivation for the development of species richness estimators for benthic data 

was to be able to quantify impacts on benthic organisms caused by activities 

such as dredging, or climate change. As licences for dredging are only awarded 

after environmental impacts have been deemed acceptable, the development of 

good performing species richness estimators can contribute to improving the 

decision-making process, by reducing subjectivity and ensuring impacts are assessed 

accurately.

Barry et al. (2010) focused on estimating the initial impact of dredging, and the 

decline in species number, by modelling the impact on each species directly using 

a Matern process to model the spatial distribution of individuals within a species. 

However, although clustering is accounted for, there was no accounting for species 

that were unobserved in the surveys. It is likely that several species were missed 

during surveying and by estimating species richness in the pre- and post-dredging 

surveys we can see the whole picture, rather than a snapshot of species observed. 

I compared several methods of estimating these impacts, and found that it was 

important to consider unobserved species in the estimates, otherwise the impact of 

dredging could be significantly underestimated. I found an impact of around 100-170 

species eliminated by dredging, and the estimates of dredging impact given by the
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parametric models were fairly similar, and I would recommend considering several 

estimators.

The use of species richness estimates also has advantages over the approach taken 

by Barry et al. (2010). For those species observed in the pre-dredge survey, but 

not the post-dredge survey, a pair of mortality probabilities were randomly allocated 

from those of the species observed in both surveys. These assigned values may not 

be very representative of the true mortality probabilities of such species, and if such 

unrepresentative values are used within the estimate of impact, the estimate given 

may also be unrepresentative. We did not make this assumption using the species 

richness estimators.

Some species are more sensitive to disturbance of the seabed than others, and by 

using the species richness estimates we are not constraining the probability that a 

species is eliminated due to dredging to be fixed across species. Rates of biodiversity 

recovery in dredged areas will depend on whether time between dredging activity is 

sufficient for organisms to reproduce and for new recruits to settle. Many species 

start out in an initial phase of flotation, which may allow the rapid colonisation of 

previously dredged areas if the substrate is in a suitable condition (Kenny, personal 

communication).

The approach of modelling species impacts using a Matern process assumed that 

dredging was carried out in even strips across the study area. However in practice 

dredging tends to be targeted to particular deposits (Barry et ah, 2010). This would 

also correspond to sediment type, so that if species were clustering in areas of preferred 

large sediment habitat, they were much more likely to be eliminated by targeted 

dredging of gravel. This could be incorporated into the Barry et al. (2010) approach, 

however to do so it would be necessary to have more information about the aggregate 

being targeted, the proposed tonnage to be extracted and the rate and duration of 

extraction, all things taken into account before a dredging licence is granted (Barry
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et al., 2010). Therefore it should be possible to acquire the information needed to be 

able incorporate these aspects into the model without too much difficulty.

The application of the estimators was illustrated through an example looking at initial 

dredging impact, but these estimators can also be used to monitor the recovery of 

the seabed after dredging, or track changes in species richness over time in general. 

In addition, species interact with each other, and with their habitat, and it would be 

interesting to incorporated these aspects into the estimators.

6.6 Conclusions

In this chapter I highlighted the equivalence of the frequentist and Bayesian 

approaches incorporating penalties and priors, and by comparing several estimators 

I concluded that the best approach is to use several estimators in practice, and this 

would give some kind of measure of confidence in the results.

The negative binomial model proved to be the most plausible model, but I believe 

the Neyman Type A-gamma model could be improved by allowing clustering to vary 

between species. Theoretically this could be incorporated easily into the model. 

However, in practice this has proved more complicated to implement, and this is an 

area of further work.

Using the species richness estimators allows us to explore the effects of impacts 

such as dredging, incorporating the spatial distributions of benthic organisms. The 

species richness approach to estimating dredging impact is one that could be used in 

decision making if software was made freely available. If site-specific elements were 

also incorporated, then this would be a useful tool in understanding the implications 

of local changes due to dredging, and reduce subjectivity of decisions on granting of 

dredging licences.



7. CONCLUSIONS AND FURTHER WORK

The study and analysis of benthic organisms presents a number of statistical 

challenges, and this thesis has addressed some of these issues. The main focus 

of the thesis research has been on modelling the spatial distribution of benthic 

organisms, specifically by describing the clustering of individuals within a species 

using a Neyman Type A distribution.

The objectives of the research were to review the current state of the art in species 

richness estimation, develop methodology to incorporate the spatial clustering of 

individuals within a species into multinomial species richness models, and to apply 

these models to benthic data in order to assess impacts on marine biodiversity.

Chapter 2 showed that there is scope for the development of a new species richness 

estimator for use with benthic data. Current methods, including non-parametric 

estimators, do not deal well with spatially clustered data, and this was confirmed 

by a simulation study. In some instances the number of observed species is used as 

an estimate of species richness, but merely using the number of observed species is 

inadequate for species richness estimation for benthic organisms, as it will clearly be 

an underestimate.

I also introduced a clustering model that could be used to describe the spatial 

distribution of benthic organisms. Chapter 3 considered how this model could be 

built into a parametric species richness estimator via a multinomial model.

Multinomial models have been used for estimating species richness within a maximum-
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likelihood framework for some time, and much work has been carried out in this 

area. However, the distributions used to describe the abundance of species within 

these models do not encompass the spatial clustering of individuals. I incorporated 

this into the model in the form of the Neyman Type A distribution. The mean 

abundance of species was allowed to vary according to a gamma distribution, and 

the mean number of individuals per cluster was fixed across species. Further work 

will include an extension to this model to allow clustering intensity to vary between 

species, and I would expect that this would improve the fit of the model to benthic 

data. Alternative clustering distributions, to describe the spatial patterns of benthic 

organisms, could also be investigated.

Problems associated with parametric species richness estimation included the choice 

of method for constructing confidence intervals, and how to deal with spuriously large 

estimates.

I considered several approaches to estimate confidence intervals, and found that 

confidence intervals based on profile log-likelihoods performed well in terms of 

coverage. Therefore, I used this method in estimating confidence intervals for the 

MLE and penalised MLE. However, further investigation into the theory behind 

using these confidence intervals for penalised likelihoods is required. The profile 

log-likelihood intervals were quite wide in some cases, and the question arises as to 

whether these are appropriate. In addition, the calculation of profile log-likelihood 

confidence intervals for the Neyman Type A-gamma model is computationally 

intensive, increasing the computation time considerably, so alternative methods may 

be preferred.

Wang and Lindsay (2005) used bootstrap intervals for their non-parametric MLE, and 

so some form of bootstrap interval could be appropriate. Wang and Lindsay (2005) 

suggested the use of multinomial-based bootstrap confidence intervals, and further 

investigation into these could prove fruitful. During simulations, the confidence
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intervals for log(TV), suggested by Fewster and Jupp (2009), were very narrow, and 

did not perform well in terms of coverage. However, these intervals did perform well 

for data sets described in Fewster and Jupp (2009) and it would be beneficial to 

investigate this method further.

I found that spuriously large species richness estimates obtained during maximum- 

likelihood estimation were caused by the boundary problem. I combatted this problem 

by penalising the log-likelihood, following the method of Wang and Lindsay (2005). 

One of these penalties used the Chaoi species richness estimate as a naive estimate, 

and penalised the log-likelihood towards that value. However, simulations showed that 

this penalty could be too harsh for clustered data, as the Chaoi estimator showed 

large negative bias. Therefore, I proposed the use of an iterative approach to decrease 

the harshness of this penalty, focussing on one-step iteration due to the computational 

cost of applying this method for the complex Neyman Type A-gamma model.

Another of the penalties considered was subjective, requiring the specification of 

a penalty parameter, the optimal value of which depended on the sampling depth 

of the data. Since there was no easy way to choose the optimal penalty parameter, 

as sampling depth cannot readily be determined for real data sets, an alternative 

approach to avoiding the ‘boundary problem1 was considered. This was the use of 

priors within a Bayesian framework. A Bayesian approach could also eliminate the 

need to evaluate the marginal likelihood, which would speed up the computation time 

of fitting the Neyman Type A-gamma model.

The Neyman Type A-gamma model is a reasonably complex model to use in species 

richness estimation, as the probability density function includes a summation, which 

complicates the calculation of the integrated or marginal likelihood. In addition, 

the calculation of confidence intervals is also time consuming. The profile log- 

likelihood confidence intervals take several hours to calculate, and it is likely that the 

optimisation is getting stuck. Further investigation into this problem could reduce
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computation time. I used the built-in optimise and optim functions within R both 

based on the Nelder-Mead algorithm, but perhaps using the EM algorithm could 

increase computational speed.

Chapter 4 investigated the Bayesian approach to species richness estimation, using 

uninformative priors on the number of species and the parameters of the abundance 

distribution. To be able to model the species that were not seen in the sample, 

reversible jump MCMC and data augmentation approaches were considered in a 

hierarchical Bayesian framework. I analysed the Lepidoptera. and CBC data sets 

using this approach with the Poisson, Poisson-exponential, negative binomial and 

Neyman Type A-gamma models. Unfortunately, uninformative priors were not 

sufficient to model benthic data. When fitting the models to these data, the boundary 

problem manifested itself through a lack of convergence of the Markov chains within 

MCMC.

Chapter 5 considered the elicitation of informative priors for benthic data, and how 

these could be incorporated into a Bayesian framework. A process of elicitation of 

information from experts was described, and the resulting priors for the total number 

of species were incorporated into the species richness estimates. This is a particularly 

interesting aspect of the research, which as far as 1 am aware has not been considered 

previously for benthic data. This chapter highlighted difficulties within the elicitation 

process and applied the elicited priors in estimating species richness for a number of 

benthic data sets.

Through elicitation I was able to obtain priors that gave realistic species richness 

estimates, and although the fit using the Neyman Type A-gamma using these priors 

was not as good as the negative binomial, the species richness estimates seemed 

realistic. The best-fitting model to the data may not always give better real- 

world answers. Gelman et al. (2004) illustrated this when estimating populations of 

municipalities in New York. They showed for this example that even when a model
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appears to fit well to observed data, it can yield inaccurate inferences. Therefore, 

there is a need to include realistic prior assumptions into the model, such as the 

clustering of organisms in the benthic case. Evidence exists of the clustering nature 

of benthic organisms (Heip, 1975), therefore a suitable model to analyse benthic data 

should be flexible enough to incorporate this spatial clustering.

The elicitation process is complex and requires careful planning and implementation. 

However, the results can be very beneficial. As we have a database of 10,000 known 

species in UK waters, the results from the elicitation of the number of species found 

throughout UK waters could be used as an indicator of the accuracy of the other 

estimates given by the experts. Although this is not something that I considered 

within this thesis, it is an interesting area for further research. The number of species 

found throughout UK waters could also be incorporated into the model as an upper 

estimate of the species richness.

It has been shown that the use of appropriate software can greatly improve the 

elicitation process, and the development of more specialised software for the elicitation 

of information particular to benthic organisms could encourage this practice to be 

more widely used. This software could be incorporated into a larger package to be 

used to estimate species richness and diversity of benthic organisms. In addition, the 

software could be made flexible enough to be used for other taxonomic groups, or 

alternative applications.

The link between Bayesian priors, and penalties in a frequentist framework for species 

richness estimation was explored in Chapter 6. The parametric estimates were then 

compared to those of some of the non-parametric estimators that are currently used 

for species richness estimation of benthic organisms. If we are confident in the expert 

opinion available, we should try and incorporate this into species richness estimates. 

However, if this is not possible then the one-step iterative penalty 3 has proved 

reasonable. Several approaches could be used in practice, and this would give an
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additional measure of confidence in the results.

It is sensible to start with a simple model, and expand it, which is what I have 

done, considering the Poisson, negative binomial and Neyman Type A-gamma 

models. I believe the model could be improved further by allowing clustering to 

vary between species. Theoretically, this could be incorporated easily into the model 

using the hierarchical Bayes approach and giving the clustering parameter a prior. 

However, in practice this has proved complicated to implement within WinBUGS using 

uninformative priors, but might be improved by using an informative prior on this 

clustering parameter or by considering grouping for the clustering parameter. Often 

a more complex model can make more sense and fit the data better, but will be more 

difficult to understand and compute (Gelman et ah, 2004, p 180). Therefore, we 

should consider the application of the models when adding complexity to the model.

A result that has been shown throughout the thesis, is that the estimate of species 

richness given by the Neyman Type A-gamma model is always higher than that given 

by the negative binomial model for a particular data set. This could be an aspect of 

the increased variance in the Neyman Type A distribution. By allowing clustering of 

individuals within the model, we would expect to miss more species during sampling 

and therefore gain a larger species richness estimate. It would be interesting to 

investigate this further, and prove if this would always be the case.

The species-richness methodology allows us to explore the effects of impacts such as 

dredging, incorporating the spatial distributions of benthic organisms. The species- 

richness approach to estimating dredging impact is one that could be implemented 

by ecologists and other end users if software was made freely available. If site-specific 

elements, such as substrate, were also incorporated into the estimation of species 

richness, this would be a useful tool in understanding the implications of local changes 

due to dredging, and better predictions would be possible to aid the decision on the 

granting of dredging licences.
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For some of the benthic data sets, the estimates arising from applying the different 

models and penalties were quite different. I would suggest a precautionary approach 

to estimating species richness. For example, if we are interested in determining 

whether a dredging licence should be granted for a particular area, we would not 

want to grant a licence if there was any possibility that the area could be rich in 

biodiversity. Therefore, adopting a precautionary approach, overestimation of species 

richness would be preferred to underestimation.

Several additional statistical questions arise from the analysis of benthic data, such 

as the design of benthic surveys to assess dredging impact. This area requires some 

consideration, as in many cases only five or ten samples are taken per survey. This 

limits the possibility to validate models, and only allows for estimates of low precision. 

More grabs are needed to make robust inferences about, species, particularly those 

that will be rare after dredging. However, increasing the sample size greatly increases 

sampling effort and therefore may not be economically viable.

In this research I have focussed on estimating species richness, but there are several 

other biodiversity measures which could be used to analyse impacts. Numerous 

indices have been developed to calculate measures of biodiversity, and many of these 

measures incorporate not only the number of species, but also a measure of variation 

in numbers of individuals of each species. These indices assume that individuals 

are randomly sampled from an indefinitely large population and that all species are 

represented in the sample, and are therefore not suitable for use on benthic data 

in their current form. Despite this, they are commonly used by ecologists, so an 

adjustment to account for unobserved species and also clustering of organisms would 

be beneficial.

Other alternative measures of biodiversity consider traits of species within a 

community, believing that it is not the specific species but the functions they perform
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within the ecosystem that are important. This is an area of growing interest (Petchey 

and Gaston, 2006). Under this approach, the loss of a particular species may not be 

as important as the loss of a particular function within an ecosystem.

It is also suggested that biodiversity measures should not only measure species 

richness and abundance, but also include a measurement of the relatedness of those 

species. Such measures will be higher in an area where species are evenly spread over 

many genera, rather than all in the same genus (Clarke and Warwick, 1998).

A key concern is to make sure that any measure of biodiversity, whether species 

richness or taxonomic distinctiveness, is easily understandable and computable. This 

will ensure that these approaches are taken up by scientists and decision makers. It 

is all very well developing complicated models and estimators, but without ease of 

application, it is time wasted.

There are already many species richness estimation methods available for analysis 

of data, and often a key concern for ecologists is which is the most appropriate 

statistical method to use. Although I have shown that several of the non-parametric 

species richness estimators are not suitable for clustered data, they did all show an 

improvement on using the observed number of species alone. Realistically, this is 

the measure of species richness that is used in many analyses, and so the use of any 

species richness estimator is better than this.

I would recommend the use of a number of estimators, instead of choosing the ‘best’ 

method. This will allow the user to make an informed decision, and also give some 

form of measure of uncertainty. This kind of thinking should be encouraged, and can 

be achieved through continued collaboration between statisticians and ecologists.
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A. DERIVATIVES OF THE CONDITIONAL LOG-LIKELIHOOD

FUNCTION OF THE NEGATIVE BINOMIAL MODEL

For the truncated negative binomial conditional log-likelihood function,

Dlc{0) = E log(r(a + Xi ) )  -  log(xi!) -  log(r(a))
i=1

+ «lo g (î^ g )+ X i 10g(ï|g) - l ° g ( i  -  ( ^ g )  ),\+p> V1+/9 J

the first and second order partial derivatives of the function with respect to a and 

p =  1/(1 +  (3) required to calculate the Fisher information are given below:

D

dp E X j Oi
--------- b -  ,
1 — P  p p(l — pa)

rvp a

dp2

D Xi a(pa +  paa  — 1)
“ M 1 - P f  p2{pa - l ) 2i=1

di_
da

D

=  T(o: +  Xi) -  T (q) +  log(p) +
i=1

pa\og{p)
1 — pr

d2i
da2

T  # '( «  +  X.) -  ¥ '(a) + '0g(p)V“
i=l

(;pa — l)2

d2l 1 — pa +  paa\og{p)
dadp p(pa — l )2



B. MARKOV CHAIN DEFINITIONS

Definition 1 (Roberts, 1996, p. 46)

Let X  be a Markov chain such that

P[Xt 6 A \ X q , X i , X t_i] =  P[Xt e  A|Xt_i]

for any set A, where P[-|-] denotes a conditional probability. We consider transition 

probabilities of the form Pij(t) =  P[Xt =  j\Xo =  i]. Let 7r(-) be a stationary 

distribution, such that if the initial value X$ is sampled from 7r(-) then all subsequent 

iterates will also be distributed according to 7r(-). Let Ta be the time of the first return 

to state i,{ja  =  min{t > 0 : X t =  i\X$ — ¿ } ) .

(%) X  is called irreducible if for all i , j  there exists a t  > 0 such that Pij(t) > 0.

(ii) An irreducible chain X  is recurrent if P[th < oo] =  1 for some (and hence for 

all) i. Otherwise, X  is transient. Another equivalent condition for recurrence 

is

^ P l3{t) =  oo
t

for all i ,g .

(Hi) An irreducible recurrent chain X  is called positive recurrent if E [ tiz } <  oo 

for some (and hence for all) i. Otherwise, it is called null-recurrent. Another 

equivalent condition for positive recurrence is the existence of a stationary 

probability distribution for X , that is there exists n(-) such that

^7r(f)P y(i) = 7r(j)
i

for all j  and t >  0.

(iv) An irreducible chain X  is called aperiodic if for some (and hence for all) i,

greatest common divider {t > 0 : Pa(t) > 0} =  1.



C. ERGODIC THEOREM

Theorem  1 If X  is positive recurrent and aperiodic then its stationary distribution 

7r(-) is the unique probability distribution satisfying YOt — M R f or 3 and

t > 0. We then say that X  is ergodic and the following hold:

(i) Pij(t) 7r(j) as t —>■ oo for all i , j .

(ii) (Ergodic theorem) If Ew[\f(X)\\ < oo, then

P[ fN - > E n[f (X)]\=  1,

where En[f(X)]\ — 'ff j f(i)Tv(i), the expectation of f ( X )  with respect to vr(-).



D. WINBUGS CODE

D.l Negative binomial data augmentation model

raodel{

for (i in 1:2){ # These lines set

U[i]~dnorm(0,1) # up the half cauchy

V[i]~dnorm(0,1) # priors for the

} # gamma parameters

a<-abs(U[1]/V [1]) #

b<-abs(U[2]/V[2]) #

psi~dunif(0,1) 

for (i in 1 :M){

p [i]~dgamma(a,b) 

z[i]~dbin(psi,1) 

pi [i] <-p [i] *z [i] 

x[i]~dpois(pi [i])

>

# These steps are repeated over the

# super-population size M

# This is the indicator variable

N<-sum(z [] ) # N is the sum of the indicator variables

}
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D.2 Negative binomial RJMCMC model

model{

for (i in 1:2){ # These lines set

U [i]~dnorm(0,1) # up the half cauchy

V [i]~dnorm(0,1) # priors for the

} # gamma parameters

a<-abs (U [1] /V [1] ) #

b<-abs(U[2]/V[2]) #

for (i in 1 :M){

p[i]~dgamma(a,b) # Gamma prior for Poisson means

pi [i] <-p [i] *w[i]

w[i]<-step(N-i) # w[i] is set to zero if i > N

x[i]~dpois(pi[i])

>

N~dcat(pee[1 :M]) # N is a discrete value with some

n~dbin(0.00001,N) # probability distribution

}
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D.3 Negative binomial data augmentation model for multiple grabs

model{

for (i in 1:2){ # These lines set

U[i]"dnormCO,1) # up the half cauchy

V[i]~dnorm(0,1) # priors for the

} # gamma parameters

a<-abs(U[1]/V[1]) #

b<-abs(U[2]/V[2]) #

psi~dunif(0,1)

for (i in 1:M){ # These steps are repeated over the

p[i]~dgamma(a,b) # super-population size M

z[i]~dbin(psi,1) # This is the indicator variable

pi [i] <-p [i] *z [i]

for (j in 1:g){ # This sets up the model for g grabs

x[i,j]~dpois(pi [i])

}

}

N<-sum(z[]) # N is the sum of the indicator variables

}
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DA Neyman Type A-gamma data augmentation model

model{

for (i in 1:4){ # These lines set

U[i]~dnorm(0,1) # up the half cauchy

V [i]~dnorm(0,1) # priors for the

> # gamma parameters

a<-abs(U[1]/V [1]) #

b<-abs(U[2]/V [2]) #

c<-abs(U[3]/V[3]) #

d<-abs(U [4]/V [4]) #

psi~dunif(0,1)

ph~dgamma(c,d) # Prior on the clustering parameter

for (i in 1:M){

z [i]~dbin(psi,1)

mu[i]~dgamma(a,b)

li [i] <-(mu[i] /ph[i]) *z [i]

lam[i]<- li [i] - x[i]*log(ph[i]) + logfact(x[i]) - logCsums[i])

}

# The above lines specify the

# prior on the mean of the Neyman Type A

# and the negative log-likelihood

for (i in 1:M) {

for (j in 1:50){

ss [i,j]<- exp((j-1)*(log(li[i])-ph[i])+x[i]*log(j-l)

-logfact(j-1))

}

sums[i]<-sum(ss[i,]) # This section calculates the summation

} # in  th e  Neyman Type A p d f
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zero<-0 # These lines are the 'zeros' trick

zero~dpois(lik) # which allows us to specify any

lik<-sum(lam[]) # log-likelihood in the model

N<-sum(z []) # N is a derived by summing the indicator


