
USING CLASS-LEVEL STATIC PROPERTIES TO 
PREDICT OBJECT LIFETIMES

A THESIS SUBMITTED TO

T h e  U n i v e r s i t y  o f  K e n t

IN THE SUBJECT OF COM PUTER SCIENCE 

FOR THE DEGREE  

OF DOCTOR OF PHILOSOPHY

By
Sébastien Nicolas Marion 

May 2009



Abstract (English)

Today, most modern programming languages such as C #  or Java use an automatic 

memory management system also known as a Garbage Collector (GC). Over the 

course of program execution, new objects are allocated in memory, and some older 

objects become unreachable (die). In order for the program to keep running, it 

becomes necessary to free the memory of dead objects; this task is performed 

periodically by the GC.

Research has shown that most objects die young and as a result, generational 

collectors have become very popular over the years. Yet, these algorithms are not 

good at handling long-lived objects. Typically, long-lived objects would first be 

allocated in the nursery space and be promoted (copied) to an older generation 

after surviving a garbage collection, hence wasting precious time.

By allocating long-lived and immortal objects directly into infrequently or 

never collected regions, pretenuring can reduce garbage collection costs signifi

cantly. Current state of the art methodology to predict object lifetime involves 

off-line profiling combined with a simple, heuristic classification. Profiling is slow 

(can take days), requires gathering gigabytes of data that need to be analysed 

(can take hours), and needs to be repeated for every previously unseen program.

This thesis explores the space of lifetime predictions and shows how object 

lifetimes can be predicted accurately and quickly using simple program character

istics gathered within minutes. Following an innovative methodology introduced 

in this thesis, object lifetime predictions are fed into a specifically modified Java 

virtual machine. Performance tests show gains in GC times of as much as 77% 

for the “SPEC jvm98” benchmarks, against a generational copying collector.

ii



Résumé (français)

Aujourd’hui, la majorité des langages de programmations modernes tels que C #  

ou Java font appel à un “ramasse-miettes” (GC) pour gérer l’utilisation de la 

mémoire. Durant l’exécution d ’un programme, de nouveaux objets sont créés, 

et d ’anciens objets deviennent inaccessibles (meurent). Afin que le programme 

puisse continuer son exécution, il est parfois nécessaire de libérer la mémoire de 

tous les objets morts. Cette tâche est accomplie par le GC.

Dans la mesure où la plupart des objets meurent jeune, les GC générationnels 

sont devenus, au fil des ans, très populaires. Pourtant, ces algorithmes ne gèrent 

pas efficacement les objets ayant un long cycle de vie. Tout nouvel objet est 

d ’abord créé dans la maternité (nursery en anglais). Si ce dernier survi à une 

phase de GC, il est alors copié dans l’espace mature, moins fréquemment collecté.

En créant les objets à long cycle de vie directement dans l’espace mature, le 

procédé dit de pretenuring permet de réduire considérablement le temps imparti 

au GC. La méthode la plus efficace pour prédire la durée de vie d ’un objet consiste 

à enregistrer la trace du programme à optimiser, ce qui peut prendre plusieurs 

jours et générer plusieurs giga-octets de données qui doivent alors être analysés. 

De plus, cette analyse doit être faite pour chaque nouveau programme.

Cette thèse démontre comment la durée de vie d ’objets jamais rencontrés au

paravant peut être prédite précisément en quelques minutes en exploitant de sim

ples caractéristiques statiques propres à chaque programme. Ces prédictions, sont 

alors utilisées dans une machine virtuelle spécialement modifiée.

Par rapport à un GC copieur générationnel, nous enregistrons des gains de per

formance pouvant atteindre jusqu’à 77% pour des programmes de“ SPEC jvm98” .

iii



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Mr. Richard Jones, 

who always guided me and pushed me throughout this long journey. He spent 

countless hours answering my questions and reviewing my work. He forced the 

best out of me through our weekly supervision meetings.

I would like to sincerely thank Dr. Chris Ryder, who helped me countless times 

during my Ph.D and who allowed us to use his experimental JVM.

I wish to thank Dr. Jeremy Singer with who it was a real pleasure collaborating.

I am very grateful to Dr. Alex Freitas for all the help he provided me with 

regards to data-mining as well as Dr. Gisele Pappa and Fernando E. B. Otero.

A warm thank you to Hsuen Pei Ting for helping me with some statistics.

I would like to express my sincere thanks to Dr. Carolina Filippini, Pulitha 

Liynagama and Dr. Philipp Mohr for being supportive of my Ph.D. even during 

critical business times at Comufy.

A warm thank you to all my friends, housemates and Ph.D. fellows who shared 

this long journey with me, in particular Axel, Carlos, Caro, Damian, Damjee, 

Erick, Fernando, Gift, Gisele, Kitty, Leishi, Lingfang, Lukas, Martino, Mudassar, 

Myo, Nick, Olaf, Phil (s), Patrick, Poul, Puli, Rodolfo, Sabrina and Tooba.

My loving thanks to my girlfriend, Ann, whose support and understanding 

helped me carry on.

Enfin, je voudrais particulièrement remercier toute ma famille et en particulier 

mes parents, Gérard et Laurence, qui m’ont toujours soutenu pendant ces longues 

années. Au creux de la vague, quand je perdais espoir, ils étaient toujours là et 

continuaient à croire en moi. Merci, je vous dois tant.

IV



Contents

Abstract (English) ii

Résumé (français) iii

Acknowledgements iv

List of Tables xii

List of Figures xvi

1 Introduction 1

1.1 Context Of This Thesis..........................................................................  2

1.2 Aim Of This Thesis.................................................................................  6

1.3 A p p r o a c h .................................................................................................  6

1.4 Contributions........................................................................................... 7

1.5 Structure Of This T h esis .......................................................................  8

2 Background 10

2.1 Main GC A lgorithm s.............................................................................. 10

2.1.1 Reference Counting....................................................................  12

2.1.2 Tracing Collectors.......................................................................  16

2.1.3 Generational G C .......................................................................  23

2.2 Object Lifetime Prediction.....................................................................  37

2.2.1 Using Lifetime Predictors to Improve Memory Allocation

Performance.................................................................................  38

v



2.2.2 Predicting Lifetimes In Dynamically Allocated Memory . . 39

2.2.3 Segregating Heap Objects by Reference Behavior and Lifetime 39

2.2.4 Object Lifetime Prediction in J a v a .................................  40

2.3 Garbage Collection Discussion.............................................................. 41

2.3.1 S u m m a ry ............................................................................... 41

2.3.2 A Unified Theory of Garbage Collection .............................  43

2.4 Pretenuring..............................................................................................  44

2.4.1 C o n ce p t .................................................................................. 44

2.4.2 Self-Prediction and True Prediction .................................  46

2.4.3 Generational Stack Collection And Profile-Driven Pretenuring 46

2.4.4 Dynamic Adaptive P retenuring........................................ 47

2.4.5 Adaptive Pretenuring Schemes For Generational GC . . .  49

2.4.6 Dynamic Object Sampling For Pretenuring....................  50

2.4.7 Pretenuring for J a v a ...........................................................  52

2.4.8 Conclusions...........................................................................  55

2.5 Extracting Knowledge From D a ta .......................................................  57

2.5.1 Problem Characteristics..................................................... 57

2.5.2 Data Mining: A Solution To Many Problem s........................  59

2.5.3 The Classification Task Of Data Mining .............................  61

2.5.4 Decision Tree Induction Algorithm s.................................  62

2.5.5 S u m m a ry ..............................................................................  66

3 Methodology 67

3.1 Process O verview ....................................................................................  67

3.1.1 R a tio n a le ..............................................................................  69

3.1.2 Creating A Knowledge B an k ..............................................  69

3.1.3 Exploiting The Knowledge Bank ..........................................  70

3.2 Experimental Setup.................................................................................  71

3.3 Jikes R V M .................................................................................................  72

3.3.1 A Java Virtual Machine Written in J a v a ......................... 72

vi



3.3.2 Boot Loader.................................................................................  73

3.3.3 Optimising Compiler Configuration.......................................  73

3.3.4 M M T k ........................................................................................... 74

3.4 Discovering Object Lifetimes................................................................. 74

3.4.1 Optimising Compiler Setup .................................................... 75

3.4.2 Recording Trace Files................................................................. 75

3.4.3 Inside a Trace F i l e ....................................................................  79

3.5 Training Data S e t ....................................................................................  79

3.5.1 The Case for CVLOO .............................................................. 80

3.5.2 DaCapo Benchmarks................................................................. 81

3.6 Lifetime Classification ..........................................................................  83

3.6.1 Lifetime Classification Schem e................................................. 83

3.6.2 Immortal Classification.............................................................  85

3.7 Lifetime P red ictors.................................................................................  86

3.7.1 Source and Destination.............................................................  86

3.7.2 Mapping Sets Of Predictors To L ife t im e .............................  87

3.8 Mining The D a t a ....................................................................................  88

3.8.1 The D ataset.................................................................................  88

3.8.2 B oosting.......................................................................................  89

3.8.3 Generating R u le s .......................................................................  89

3.8.4 Using The Rules .......................................................................  90

3.9 From Predictors To Allocation S ites.................................................... 91

3.9.1 Reusing Data-Mining Rules “As-Is” ....................................... 91

3.9.2 A p p r o a c h ....................................................................................  92

3.10 Testing P h a se ........................................................................................... 93

3.10.1 Test Benchm arks.......................................................................  93

3.10.2 A Generic A p p ro a ch ................................................................. 93

3.10.3 User M od e ....................................................................................  94

3.10.4 Best of Five R u n s.......................................................................  94

3.10.5 Compiler Replay O p t io n ..........................................................  94

vii



3.10.6 Varying Prediction Accuracy.................................................... 95

3.10.7 Varying Heap S ize s ....................................................................  95

3.10.8 Programs I n p u t s .......................................................................  96

3.10.9 Compiler Configuration.............................................................. 96

3.10.10 Garbage Collector.......................................................................  97

4 Implementation 98

4.1 Implementation O v e rv ie w ....................................................................  98

4.1.1 Command-line Parameters.......................................................  99

4.1.2 Input F i l e ....................................................................................  100

4.1.3 Allocation P o l i c y .......................................................................  100

4.2 Advice Files Format .............................................................................. 101

4.3 Storing Advice In M em ory ....................................................................  102

4.3.1 Parsing The Input F i le .............................................................  102

4.3.2 Using a HashM ap.......................................................................  102

4.3.3 Improving The Storage M echanism .......................................  103

4.4 Allocation Policies .................................................................................  103

4.4.1 Whom To T r u s t? .......................................................................  104

4.4.2 Implementing The S w it c h .......................................................  105

4.5 Advice Loading O v erh ea d ....................................................................  106

4.5.1 Execution Time O verhead .......................................................  106

4.5.2 Estimated Space Overhead.......................................................  112

4.6 Self Prediction Perform ance................................................................. 114

4.6.1 GC Time Perform ance.............................................................. 114

4.6.2 Performance Over Execution T i m e .......................................  116

4.6.3 Self-Prediction C onclusion .......................................................  121

4.7 Conclusion.................................................................................................  121

5 Using Software Metrics 122

5.1 Software Metrics .....................................................................................  123

5.1.1 What Are Software M etrics?.....................................................  123

viii



5.1.2 Which Software Metrics Are Available?..................................  123

5.1.3 CK M e tr ic s .................................................................................  126

5.2 Information Theoretic Analysis ..........................................................  127

5.2.1 NMI V a lu es .................................................................................  127

5.2.2 Combining M e tr ics ....................................................................  128

5.2.3 Conditional Mutual Information Maximisation.....................  130

5.3 Using Scalar M e tr ic s .............................................................................. 131

5.3.1 Using All M etrics .......................................................................  132

5.3.2 Top 4 m etrics .............................................................................. 133

5.3.3 A n alysis .......................................................................................  133

5.4 Using Ternary Values.............................................................................. 138

5.5 Using Inter-Quantile V a lu e s ................................................................. 141

5.6 Conclusion.................................................................................................  144

6 Using Micro-Patterns 148

6.1 Background..............................................................................................  148

6.2 M otivation.................................................................................................  152

6.3 Methodology ........................................................................................... 153

6.4 GC Time .................................................................................................  154

6.4.1 Individual Benchmark C om p arison .......................................  154

6.4.2 S u m m a ry ....................................................................................  160

6.5 Overall execution t i m e ..........................................................................  160

6.6 GC pause time .......................................................................................  162

6.7 Performance Considerations.................................................................  170

6.7.1 db’s Behaviour Reviewed...........................................................  170

6.8 A n a lysis ....................................................................................................  173

6.9 Statistical S ignificance........................................................................... 177

6.10 Conclusion.................................................................................................  180

7 Conclusions 182

7.1 Summary of the T h esis ...........................................................................  182

IX



7.1.1 State Of The Art Pretenuring................................................. 183

7.1.2 Methodology .............................................................................. 184

7.1.3 Software M e tr ic s .......................................................................  184

7.1.4 Micro P a tte rn s ..........................................................................  185

7.2 D iscussion.................................................................................................  186

7.2.1 P red ictors....................................................................................  186

7.2.2 L im itation s.................................................................................  187

7.3 Future W ork ............................................................................................... 188

7.3.1 Exploring Lifetime-Specific M icro-Patterns..........................  188

7.3.2 Pointer Analysis..........................................................................  189

7.3.3 Decision Making Inside the Class-Loader.............................  190

7.3.4 A More Suitable Garbage C ollector .......................................  191

7.3.5 A Larger Training Set .............................................................. 191

7.3.6 Final W ord s .................................................................................  192

Bibliography 193

A Information Theoretic Analysis Of CK Metrics 213

A .l Data-mining algorithm u s e d ................................................................  213

A.2 Calculation of Information Theory

Measurements........................................................................................... 214

A.3 Correlation of Individual fea tu res ......................................................  216

A.4 Cross-Correlation...................................................................................  216

A.5 Correlation of Pairs of F eatu res.........................................................  217

A.6 Conditional Mutual Information Maximisation.................................  217

A.7 Prototype Prediction Schem es............................................................. 220

A.8 Explanation of Analysis ......................................................................  223

x



List of Tables

1 Harness statistics for DaCapo and jv m 9 8 ..........................................  80

2 The DaCapo benchmark suite, v. 051009, BaseBase compiled. . . 82

3 Site, predictors and lifetime mappings.................................................. 88

4 “Spec JVM98” benchmarks characteristics..........................................  96

5 Allocation P o l i c y ....................................................................................  105

6 Advices And Spaces Binary V a lu e s .................................................... 106

7 Advice file loading time percentage overhead over benchmarks’ de

fault execution times................................................................................. 109

8 Garbage collection counts for ‘ -202-jess', Speed 100..........................  I l l

9 Advice file space overhead over benchmark default space usage. . 113

10 Garbage collection counts for i_228-jack\ Speed 100.........................  116

11 The Chidamber and Kemerer metrics suite.........................................  125

12 Spinellis’s additional m etrics................................................................. 126

13 NMI-based correlation of single features with life tim e ...................  128

14 Cross-correlation of features with other features................................  129

15 CMIM-based ranking of features for prediction of object lifetime. . 132

16 List of micro-patterns.............................................................................. 149

17 Number of DTLB cache misses for _209_db at various heap sizes for

advice and no advice................................................................................. 173

18 Pretenuring placement at 75% confidence, all benchmarks with

speed 100 input..........................................................................................  175

19 Normality Tests for Self-MP75...............................................................  179

20 Normality Tests for Self-MP95...............................................................  179

xi



21 Sign Rank and Student’s T Tests........................................................... 179

22 Correlation of pairs of features with lifetime.......................................  218

23 CMIM-based ranking of features for prediction of object lifetime. . 219

xii



List of Figures

1 Decision tree for determining the sweetness of a strawberry . . . .  63

2 Creating a knowledge bank.....................................................................  70

3 Using the knowledge bank.......................................................................  71

4 Advice system time overhead, Speed 1 0 0 ..........................................  108

5 Advice system time overhead for ^202-jess'. Speed 100.................... 110

6 Self-prediction: improvement in GC time, Speed 100........................  115

7 Self-prediction: throughput improvement, Speed 100 (lower is better). 118

8 Self-prediction: GC time as a fraction of throughput, Speed 100. . 119

9 Self-prediction: GC time as a fraction of throughput, Speed 100,

logarithmic scale........................................................................................  120

10 GC time improvement, all metrics, all sites, Speed 100, confidence

75%............................................................................................................... 134

11 GC time improvement, all metrics, all sites, Speed 100, confidence

85%............................................................................................................... 134

12 GC time improvement, all metrics, all sites, Speed 100, confidence

95%............................................................................................................... 135

13 GC time improvement, all metrics, all sites, Speed 100, confidence

99%............................................................................................................... 135

14 GC time improvement, top 4 metrics, all sites, Speed 100, confi

dence 75%...................................................................................................  136

15 GC time improvement, top 4 metrics, all sites, Speed 100, confi

dence 85%...................................................................................................  136

xiii



16 GC time improvement, top 4 metrics, all sites, Speed 100, confi

dence 95%...................................................................................................  137

17 GC time improvement, top 4 metrics, all sites, Speed 100, confi

dence 99%...................................................................................................  137

18 GC time improvement, all metrics, all sites, ternary classification

N=0.25, Speed 100, confidence 75%......................................................  139

19 GC time improvement, all metrics, all sites, ternary classification

N=0.25, Speed 100, confidence 85%......................................................  139

20 GC time improvement, all metrics, all sites, ternary classification

N=0.25, Speed 100, confidence 95%......................................................  140

21 GC time improvement, all metrics, all sites, ternary classification

N=0.25, Speed 100, confidence 99%......................................................  140

22 GC time improvement, all metrics, all sites, ternary classification

N = l, Speed 100, confidence 75%...........................................................  142

23 GC time improvement, all metrics, all sites, ternary classification

N = l, Speed 100, confidence 85%...........................................................  142

24 GC time improvement, all metrics, all sites, ternary classification

N = l, Speed 100, confidence 95%...........................................................  143

25 GC time improvement, all metrics, all sites, inter-quartile, Speed

100, confidence 75%..................................................................................  145

26 GC time improvement, all metrics, all sites, inter-quartile, Speed

100, confidence 85%..................................................................................  145

27 GC time improvement, all metrics, all sites, inter-quartile, Speed

100, confidence 95%..................................................................................  146

28 GC time improvement, all metrics, all sites, inter-quartile, Speed

100, confidence 99%..................................................................................  146

29 GC time relative to no advice for GenCopy configurations at 75, 85

and 95% confidence and for self-prediction..........................................  155

30 GC time relative to no advice for GenCopy configurations at 75, 85

and 95% confidence and for self-prediction..........................................  156

xiv



31 GC time relative to no advice for GenCopy configurations at 75, 85

and 95% confidence and for self-prediction..........................................  157

32 GC time relative to no advice for GenCopy configurations at 75, 85

and 95% confidence and for self-prediction..........................................  158

33 GC time relative to no advice for GenCopy configurations at 75%

confidence and for self-prediction........................................................... 161

34 GC time relative to no advice for GenCopy configurations at 85%

confidence and for self-prediction...........................................................  161

35 GC time relative to no advice for GenCopy configurations at 95%

confidence and for self-prediction........................................................... 162

36 Overall execution times relative to no advice.....................................  163

37 Overall execution times relative to no advice.....................................  164

38 Overall execution times relative to no advice.....................................  165

39 Overall execution times relative to no advice.....................................  166

40 Cumulative pause time distributions, compared with no advice. A 

point (x, y ) on the line indicates that y collections had a pause time

less than x  ms............................................................................................  167

41 Cumulative pause time distributions, compared with no advice. A

point (x,y)  on the curve indicates that y collections had a pause 

time less than x  ms...................................................................................  168

42 GC time as a fraction of overall execution time for MMTk GenCopy

(without advice)........................................................................................  171

43 The number of times that the write barrier’s slow path is taken,

with and without advice, by db at 75% confidence............................  171

44 Comparing self prediction with micro-pattern advice at 75%. . . . 174

45 Instances of rules used by SPEC jvm98 sites at confidence 75%. . 176

46 Plot of histogram for Self-MP75...........................................................  178

47 Plot of histogram for Self-MP95........................................................... 179

48 Graph showing how C4.5 predictor accuracy changes with number

of metric features for lifetime prediction ..........................................  221

xv



49 Two-dimensional map showing how allocation sites with various

metric values map onto different lifetimes............................................ 222

xvi



Chapter 1 

Introduction

From personal computers to mobile phones, from global positioning systems to 

microwaves, we encounter processors, memory, and software. The never ending 

increasing demand for new and more complex programs combined with regular 

hardware improvements has had important repercussions in terms of memory and 

software architecture. Top of the range personal computers now come with as 

much as 32 GB of main memory, and are powered by processors made of up to 

eight cores. IBM’s Roadrunner [13], the current most powerful supercomputer in 

the world, built for the U.S. Department of Energy, manages as much as 103.6 

TiB of main memory and is powered by 12,960 IBM PowerXCell 8i processors and 

6,480 AMD Opteron dual-core processors for a peak throughput of 1.7 petaflops.

In order to adapt to the growing complexity of computer architecture and soft

ware, programming languages are evolving. Strong emphasis is put on reusable 

components at all levels, from the core of the operating system to the end-user 

software. To facilitate this process, the concept of Object Oriented (0 0 )  pro

gramming was introduced in 1967 in a programming language known as Simula 

67 [114]. In 1979, Bjarne Stroustrup at Bell Labs gave a new dimension to OO, 

by developing the language C with Classes, later renamed to C + +  [150], bringing 

object oriented paradigm to the popular C programming language. Today, OO 

has become extremely popular and many languages such as C + + , C # , Eiffel, 

PHP, Python and Ruby support object oriented concepts.

1



CHAPTER 1. INTRODUCTION 2

However, as a natural consequence of growing software complexity, manual 

memory management has become increasingly more difficult, and it is sometimes 

impossible to determine prior to execution the lifetime of certain objects or data 

structures in highly complex systems. For this reason, and despite the rapid 

growth in memory sizes, automatic memory management, also known as Garbage 

Collection (GC) is still an important area of research today. GC was introduced 

in Lisp in 1958 [16] to relieve the programer from the fastidious and error-prone 

task of manually managing memory resources. While programmers still have to 

request memory from the runtime in order to create new objects, they do not 

have to free it, allowing them to concentrate on higher level problems, and to 

make more efficient use of their time. When enough memory space is no longer 

available to allocate new objects, a garbage collection is triggered and any object 

that cannot be used by the program in future is reclaimed. The space that has 

been reclaimed is then reused to allocate new objects, in order to keep the program 

running safely. Today, GC is a very popular feature and is implemented in most 

modern programming languages such as Eiffel, Smalltalk, Ruby, Python, D, Java 

and C #.

Unfortunately, automatic memory management does not come free and pro

grams developed in a language that allows garbage collection often have associated 

overheads. This is because the execution environment, in which the program runs, 

has to perform periodic garbage collections in order to ensure that the program 

has enough memory available to work correctly. As a result, the overall time 

needed to execute a program is extended, and occasional pause-times, needed to 

perform the task of garbage collection, are introduced.

1.1 Context Of This Thesis

The role of any garbage collector is to reclaim the memory space used by dead 

objects in order for it to be reused, fdeally, a garbage collector should do only 

this. Unfortunately, garbage collectors do not know the lifetime of objects ahead of



CHAPTER 1. INTRODUCTION 3

time, and therefore are unable to optimise automatically the placement of objects 

in such a way that dead objects can be reclaimed all at once. Hence, garbage 

collectors often have to perform an expensive scanning process to determine which 

objects are dead, or have to copy non-dead objects from one part of memory to 

another.

Researching on the lifetime of objects, Ungar developed in 1984 the weak 

generational hypothesis, based on the observation that “most objects die young” 

[163]. To take advantage of this discovery, generational garbage collectors have 

been introduced, and remain a very popular choice today. Generational garbage 

collectors divide the heap into two or more spaces. Objects are allocated into a 

first space called the nursery, where most of them will die. Objects surviving a 

nursery GC are then promoted (or copied) into the second space (also known as 

the mature space), where they are given more time to die (see Chapter 2 for more 

information on generational collectors). If a nursery GC can not reclaim enough 

space to resume normal activity, then a full heap GC is triggered, where both 

nursery and mature spaces are collected.

At each nursery GC, only live objects and objects referenced from the mature 

space have to be traced and copied. Conversely, not processing dead objects is 

cheap since they are not traced, nor copied.

Unfortunately, because not all objects die young, generational collectors do 

not perform well with certain programs [12, 26, 22], Generational GCs do not 

handle objects with long lifetimes well because they may be processed several 

times: promoted to the mature space, and then copied during each full heap GC 

until they die. For this reason, some memory management implementations such 

as MMTk [21] and HotSpot [113] treat objects that remain live during the entire 

execution of the program specially. These objects that never die are often referred 

to as immortal objects, and the dedicated space in which they are allocated is 

never processed, thereby saving processing time.

Because processing (tracing and copying) live objects is expensive, we do not 

want to process objects unnecessarily, but we would like to process them as soon



CHAPTER 1. INTRODUCTION 4

as they die [131] to avoid wasting space. A popular technique for reclaiming 

dead objects as soon as they die consists of grouping objects with similar lifetimes 

together. Several techniques have been explored to do so, such as offline processing 

and pretenuring [14, 46, 171, 88, 26, 22]; region inference in functional languages 

to get a stack discipline [160, 155, 166, 17, 43, 44, 68, 67, 69]; pointer analysis 

with Connectivity Based Garbage Collection (CBGC) [80, 79, 66]. The above 

mentioned techniques are detailed briefly below. For a further description, please 

refer to Chapter 2.

Rojemo and Runciman studied the lag (time between the creation of an object 

and its first use) and drag (time between the last use of an object and its deal

location) of objects throughout their lifetime [131, 134], Their research revealed 

that many objects are allocated long before they are first used, while some are 

simply never used (void). Using this information, it should be possible to allocate 

objects in such a manner as to reduce the effect of lag, drag and void in heap 

memory.

Tofte and Talpin provide region-based memory management [160, 161, 162, 

158, 154, 155, 157, 159, 156] where all values are stored in a so-called stack of re

gions at runtime. Regions can grow dynamically to accommodate recursive types, 

such as lists and trees. Regions and objects to put in each are identified offline, 

using a pointer analysis: a static code analysis technique that establishes which 

pointers, or heap references, can point to which variables. By using a stack of re

gions, less objects need to be allocated in the heap, hence reducing the overhead of 

a garbage collector. Also, regions are reclaimed as a whole, rather than individual 

objects. However, the price to pay for region-based memory management is added 

complexity for the programmer who needs to get familiar with the concept and 

learn the syntax necessary for its use.

To overcome this issue, Rugina and Cherem [41] propose a static analysis 

that automatically transforms standard Java code to add region specific code. 

Their analyses indicates that this approach is able to place a large fraction of the 

objects in regions or on stack. But while their system yields significant absolute



CHAPTER 1. INTRODUCTION 5

memory savings for several benchmarks when compared to not running a GC, 

it increases the space requirements in most cases when compared to a garbage 

collected system.

On the basis that connected objects share similar lifetimes [79], Guyer and 

McKinley [66] seek to colocate them in the same space. Their scheme, called 

Connectivity Based GC (CBGC), combines static analysis, with a specialised al

locator, that places the new object in the same space as the object to which it is 

connected. As well as reducing copying, colocation also reduces pressure on the 

write barrier (see Section 2.1.3). Experiments with jvm98 show that GC time can 

be reduced by up to 75%.

In order to avoid processing objects that are not dead, Cheng et al. [39], and 

Blackburn et al. [26, 22] record and analyse the objects lifetime behaviour of a 

program offline, before running it again with specific allocation. By knowing ahead 

of time how long an object is going to live, they allocate objects with a shorter 

life-span together in the nursery, and objects with longer life-span in the mature 

space or in an immortal space which is never collected. This technique, called 

pretenuring, reduces the amount of objects that survive the garbage collection of 

the nursery and have to be promoted (copied) to the mature space. Furthermore, 

by using an immortal space, they avoid processing immortal objects completely.

Cheng et al. make offline pretenuring decisions based on the fraction of objects 

allocated at a specific site that survive a minor GC.

Blackburn et al. [26, 22] improve this approach by normalising the lifetime 

of objects against the maximum volume of objects live at any time in the run of 

the program. After recording and analyse tracefiles, they categorize the lifetime 

of each allocated object as either short-lived, long-lived or immortal. From this 

information, they calculate which allocations sites allocate mostly short-lived, 

long-lived and immortal objects. Once lifetimes have been determined, a second 

run of the program is performed, where objects allocated at mostly long-lived 

sites are allocated directly into the mature space, and objects allocated at mostly 

immortal sites are allocated directly into the immortal space. Their scheme shows



CHAPTER 1. INTRODUCTION 6

impressive GC-time improvements of between 40% to 70% on average for most 

heap configurations.

But while pretenuring can reduce the time spent in GC, it suffers from impor

tant drawbacks, such as the necessity to perform offline recording and analysis of 

program traces prior to running that same program. This task can easily take 

days, and is very impractical for the end-user.

1.2 Aim Of This Thesis

Knowing ahead of execution time the lifetime of objects can be useful. This 

thesis revolves around the belief that the understanding of object lifetimes and 

their behaviours throughout the execution of the program holds a key to major 

time-saving optimisations.

With an accurate knowledge of object lifetimes, we can avoid repeatedly pro

cessing objects, and reclaim them soon after they die. Grouping objects with 

similar lifetimes can be achieved using region inference, colocation (CBGC), or 

pretenuring.

In this thesis, we focus on making pretenuring more practical to the end- 

user. This thesis explore ways by which the lifetime of objects can be predicted 

ahead of time, without the need for a resource consuming recording and analysis 

of program traces. This thesis also demonstrates how the analysis of class-level 

static properties can be done in seconds, and yet reduces the time spent in garbage 

collection by as much as 77%.

1.3 Approach

This section introduces the notion of predictors, which identify specific class-level 

related features and are the basis of the object lifetime prediction system. This 

thesis explores two possible predictors, namely Chidamber and Kemerer’s [42] 

software metrics (CK metrics), and Micro-Patterns [62].



CHAPTER 1. INTRODUCTION 7

CK metrics are some of the most commonly used software metrics in the 

industry, and are generally used to assess code quality. Micro-patterns on the 

other hand are similar to design-patterns, but are mechanically recognisable and 

target class-level features rather than interaction between classes.

This thesis shows how to record and analyse program traces, and match each 

allocation site1 with a lifetime prediction and a set of predictors.

By applying data-mining techniques to this information, rules are generated 

where the presence or absence of certain predictors indicates a specific lifetime. 

These rules are stored in a knowledge bank, which needs to be gathered only 

once, typically by the researcher or the vendor. Once this knowledge bank has 

been constituted, the end-user can reuse these rules to predict the lifetime of 

objects within programs never encountered before.

Thanks to the knowledge bank, a quick analysis of a previously unknown 

program is sufficient to uncover its predictors and generate lifetime predictions by 

matching these predictors against the rules stored in the knowledge bank.

The advice we generate is written into an advice file which is then loaded by a 

specially modified virtual machine capable of taking advantage of such prediction 

to allocate objects in the most appropriate space and ultimately reduce the time 

spent in GC.

1.4 Contributions

This thesis makes the following contributions to the field of garbage collection:

• It is shown how data mining can be used to generate accurate lifetime pre

dictions.

• It is shown that the intent of the programmer can be captured by the use 

of predictors.

1 Every point in the program at which the allocation of memory occurs.



CHAPTER 1. INTRODUCTION 8

• It is shown that certain predictors exist whose presence strongly correlates 

with a particular lifetime category, that can be used to predict object life

times.

• A knowledge bank is used to obtain predictions for the lifetimes of objects 

allocated by individual sites; this lifetime advice is generated quickly.

Furthermore, reductions in garbage collection time of up to 77% for the jvm98 

benchmarks are obtained against a generational copying collector.

1.5 Structure Of This Thesis

The rest of this thesis is organised in 7 chapters.

Chapter 2 covers the background necessary for a good understanding of this 

thesis. It explores the different garbage collection algorithms that have been 

developed over time as well their strengths and weaknesses. It then reviews work 

relevant to object lifetime prediction and pretenuring.

Chapter 3 details the methodology used to carry out experiments. In par

ticular, it describes the approach to object lifetime classification, as well as how 

program trace files were produced and analysed . It then reviews the use of 

data-mining to create an object lifetime knowledge bank.

Chapter 4 describes implementation in detail and the way that advice files are 

loaded and treated by the JVM. It also describes the modifications made to the 

JVM to support the experiments.

Chapter 5 introduces software metrics and shows how the CK metrics were 

used to drive object lifetime prediction. It presents and discusses the performance 

achieved in our modified JVM when using advice generated via the use of the CK 

metrics.

Chapter 6 explains the notion of micro-patterns and shows how we successfully 

employed them to predict object lifetimes. It presents several sets of experimental 

results and discusses performance obtained in this case.



CHAPTER 1. INTRODUCTION 9

Finally, Chapter 7 presents a summary of this thesis, the results achieved and 

discusses the potential for future work.



Chapter 2

Background

This chapter comprises of four parts. The first part is a review of the main garbage 

collection algorithms such as reference counting, basic tracing collectors, and gen

erational garbage collectors. The second part is a detailed review of pretenuring, 

an optimisation technique based on the prediction of object lifetimes on which 

the whole of this thesis is based. The third part summarises garbage collection 

techniques and present the conclusions in this domain. The final part gives the 

reader an introduction to data-mining, which is used in this thesis.

2.1 Main GC Algorithms

The purpose of any garbage collector is to collect pieces of data that are no longer 

used by the program, in order for the space they occupy to be reused. In this 

context, one such piece of data can interchangeably be called a cell, a node, or an 

object. When an object is no longer used by the program, it is considered dead. 

Conversely, an object that is still used by the program is considered live.

Computer programs regularly manipulate registers, the program stack and 

global variables. Any such location holding references to a heap object is consid

ered part of the root set.

An object in the heap is considered live if it is directly reachable from roots, 

or by following a chain of pointers from other live objects. The ‘points-to’ relation

10



CHAPTER 2. BACKGROUND 11

is defined as — For any object M  and any heap object N, M  —> N  if and only 

if M  holds a reference to N. The set of live objects is defined as the transitive 

referential closure of the set of roots. Jones and Lins [93] define the set of live 

objects as:

live =  {N  £ Objects | (dr £ Roots.r —> N) V (dM  £ live.M  —> N )}  (1)

At any point during execution, the live set can be described as the actual set of 

objects potentially accessible by the program. However, there may exist amongst 

this set, some objects that a data-flow analysis by an optimising compiler would 

reveal dead. The above definition therefore constructs an over-estimate of the live 

set. For example, there may exist in a register a pointer that is no longer valid, 

but has not yet been cleared in order to save computation time.

During computation, objects die because of mutations in the graph of reachable 

objects introduced by pointer updates. For this reason, the running program is 

often referred to as the mutator (or scavenger) because as far as garbage collection 

is concerned, the only thing it does is mutate the graph of reachable objects.

Throughout this thesis, the lifetime of an object is referred to as the time 

elapsed between when it was first allocated, and when it was last reachable. Time 

however can be measured in different ways. Using wall-clock time may seem like 

the obvious way of measuring time, but it has a few weaknesses when applied 

to computers and garbage collection. For instance, wall-clock time would vary 

based on the particular implementation, environment and machine the tests are 

run on. Instead, a standard way of measuring time for garbage collection is to 

measure time in bytes of heap allocated. Measuring time in bytes gives a standard 

machine-independent way for measuring objects lifetimes.

Note that this is not a perfect way of measuring time because it is indetermi

nate in the presence of threads. Also, a particular lifetime measurement problem 

arises in the Jikes RVM [1], a Java Virtual Machine (JVM) written in Java, for

mally known as the Jalapeno virtual machine. This J VM, on which experiments



CHAPTER 2. BACKGROUND 12

are performed, comes with a “Just In Time” (JIT) compiler which compiles and 

optimises Java bytecode at run-time. This involves the allocation of data to per

form compilation, therefore artificially increasing the lifetimes of user program 

objects even if all user threads are stopped.

This thesis focuses on mechanisms to accurately predict object lifetimes in 

order to improve garbage collector efficiency when reclaiming dead objects. The 

first algorithm reviewed is reference counting because it is ideal in terms of object 

lifetime management —  this algorithm allows (theoretically) for objects to be 

deallocated as soon as they become unreachable1.

2.1.1 Reference Counting

Reference counting was first introduced by Collins in 1960 [47] and remains used 

in some implementations today, such as real-time systems and libraries such as 

boost [31] for C + + . This algorithm has been the primary choice by many early 

systems which could not tolerate pause-times, such as Modula-2+, SISAL, awk 

and perl [63, 132, 35, 50]. In the past few years, a resurgence of interest in reference 

counting has occurred, and some recent papers readdress this technique, partly in 

the context of multi-core applicability [103, 104, 49, 108, 7, 8, 10, 24, 121, 120, 122],

In this algorithm, every cell in the heap keeps a counter in its header called a 

reference count (RC) which is used to store the number of objects pointing to the 

cell. Every time a reference to the object is created, the RC is incremented, and 

every time a reference to an object is removed, the RC of the pointed to object 

is decremented. When the RC of a cell drops down to zero, no pointers to the 

cell remain. The cell is therefore considered garbage and can as such be recycled. 

When a cell X  is deleted, any pointers originating from X  must also be deleted, 

and RCs of cells originally pointed to by X  must be decreased. This operation 

is recursive and if any cell’s reference count becomes 0, then it is deleted in the 

same manner.

1Unless in the case of a cyclic reference (see Section 2.1.1).



CHAPTER 2. BACKGROUND 13

The principal advantage of this algorithm is that the overhead associated with 

updating reference counts is distributed throughout the program, making it el

igible for real-time systems. This algorithm does not incur pause-time, unless 

reclaiming large linked data-structures. In that respect, it very much differs from 

a stop the world collector such as a tracing collector (see Section 2.1.2).

However, reference counting has some drawbacks. For instance, every time a 

reference is created or destroyed, the reference counters of its old and new tar

gets need to be updated to reflect the change. As a consequence, maintaining 

reference counts is computationally intensive, leading to comparatively bad pro

gram throughput [24], In multi-threaded environments, reference counting can be 

a problem since each modification of the reference count would typically require 

synchronisation. Finally, the major drawback of reference counting, first noted by 

McBeth [110], is its inability to naturally collect cyclic structures. For instance, 

if two cells A and B reference each other and the last external pointer to each cell 

has been destroyed, then each of them will still have a reference count of 1 and so 

will not be collected. This causes memory leaks which will reduce the available 

memory and can potentially lead to an out of memory condition.

Several approaches have been taken to tackle this problem, such as using a 

hybrid-algorithm [168] where most cells would be handled by reference-counting, 

but occasionally a mark-sweep collector will be invoked to collect cyclic references.

The overhead of maintaining reference counts is high. Every pointer update 

requires adjustments of reference counts for both the old and the new target cells, 

making naive reference counting unfeasible for real systems.

Loading and updating local variables located in the stack or in registers when

ever necessary is very expensive. To tackle this problem Deutsch and Bobrow [52] 

propose a scheme, called deferred reference counting, in which they only store the 

reference counts of cells referenced by other cells in the heap. Local variables in 

the stack are not reference counted, saving computation time. All cells with a 

reference count of 0 are added to a Zero Count Table (ZCT). If a cell referenced 

by the ZCT becomes reachable by another cell in the heap, its original reference



CHAPTER 2. BACKGROUND 14

is removed from the ZCT. The periodical finding of dead cells is done by checking 

what cells referenced by the ZCT are not referenced by any local variables in the 

stack. This algorithm is interesting because a lot of time can be saved by not 

reference counting the stack. Furthermore, by deferring some of the processing 

to later, this algorithm has a much faster throughput than naive reference count

ing. This is possible because all garbage cells can be identified by scanning the 

stack and the ZCT. Its downside, however, is that by not reference counting vari

ables in the stack, it is no longer possible to reclaim cells as soon as they become 

unreachable.

Bobrow [27] on the other hand has proposed that the programmer should 

assign all nodes to groups, and that only groups should be reference counted. 

This way, cyclic structures inside a group would still be reclaimed as soon as the 

group is reclaimed. The downside of this technique is that it requires a certain 

programming paradigm or relies on programmer intervention.

Brownbridge [32] introduced the idea of differentiating cycle-closing pointers 

from other pointers, but Salkild [136] identified a flaw in Brownbridge’s algorithm, 

and fixing the algorithm would introduce termination problems. Pepels et al. [124] 

and Thompson et al. [153] found new ways of handling the termination of this 

algorithm, but their implementations were prohibitively computation intensive.

Extending over previous work by Martinez et al. [109], Lins [107] proposes 

an extension to the classic reference counting algorithm. Every time a pointer 

to a cell with multiple references is deleted, a reference to these cells is added 

onto a queue. Most cells with multiple references are reclaimed naturally when 

their reference count comes down to zero (i.e: they are not cyclic structures). 

Whenever the free-list becomes empty, or when the queue is full, a mark-scan 

phase using the queue as the root set is performed to reclaim the space used by 

cyclic structures. Unfortunately, this algorithm considers roots one at a time, 

performing the reference count updates for that root before processing the next 

root. In other words, a complete scan will be performed from each root. Bacon 

and Rajan address this problem by adding an extra flag to every object to ensure



CHAPTER 2. BACKGROUND 15

that objects or structures are not visited more than once [10], leading to a much 

improved throughput.

Levanoni and Petrank [103] have devised a scheme where they use reference 

counting for concurrent garbage collection. In this scheme, pointer updates and 

creation of objects require no synchronisation overhead. Program threads are 

never stopped simultaneously to cooperate with the collector, and each program 

thread cooperates with the garbage collector at its own pace. Thread pauses are 

kept very short and infrequent. Their sliding views algorithm uses local history 

buffers to record pointer changes since the last time the thread cooperated with 

the GC. During each thread cooperation, the local history buffer associated with 

the thread is processed and reference counts are updated. Periodically, a tracing 

collector is used to reclaim cyclic structures. Several papers have been published 

based on this technique in the past few years [105, 121, 122],

Blackburn and McKinley’s ulterior reference counting [24] combines deferred 

reference counting with a copying nursery, observing that the majority of pointer 

mutations occur in young objects. Their collector is divided into two spaces, the 

former being collected more frequently than the latter2. The frequently collected 

space is small, and is collected using a copying collector (see Section 2.1.2). The 

infrequently collected space, which is larger, is collected using a deferred reference 

counting algorithm, in order to avoid pause-times introduced by tracing the entire 

space. This algorithm achieves throughput comparable with the fastest genera

tional copying collectors (see Section 2.1.3) with the low bounded pause times of 

reference counting. It is interesting with regards to this thesis because it makes 

efficient use of object lifetimes (using a generational GC), and reduces pause-times 

by using a deferred reference counting algorithm to manage the infrequently col

lected space.

As was seen in this section, reference counting is attractive because garbage 

collection is interleaved with the program’s execution, hence reducing GC related 

pauses. But reference counting has drawbacks. First, tracking pointer changes

2More precisely, they use a generational collector which is detailed in Section 2.1.3.



CHAPTER 2. BACKGROUND 16

requires the use of a write-barrier, which by performing extra checks at each 

pointer write adds a constant overhead to the program (see Section 2.1.3 for a 

discussion about write-barriers). Second, since the overhead of reclaiming objects 

as soon as they become unreachable would in practice be too high because of the 

number of instructions required to update the reference counts of both the old and 

new target cells, techniques such as deferred reference counting have to be used. 

This in turn implies that high-performance reference counting garbage collectors 

do not collect garbage as soon as it becomes unreachable. Third, because reference 

counting is unable to reclaim cyclic structures naturally, an extra mechanism needs 

to be used from time to time, often a tracing collector.

With an oracle capable of accurately predicting lifetime, one could have an 

ideal GC algorithm that has reduced pauses times like reference counting does, 

but without the overhead of keeping track of reference counts at each pointer 

write, hence increasing throughput. This thesis reveals the design of a lifetime 

prediction system which is both cheap and accurate.

2.1.2 Tracing Collectors

This section reviews the fundamentals of tracing collectors.

In tracing collectors, GC roots are used as a starting point for garbage collec

tion. They are usually made of temporary variables on the stack (of any thread) 

and static variables. Any object (or cell) reachable from the GC roots by travers

ing the graph of connected objects is considered reachable or live. In contrast, a 

cell is considered dead if it is unreachable.

During the execution of a program, references between objects are created, and 

a graph linking live objects together is produced. At every GC, tracing collectors 

walk the graph of reachable objects to identify live objects. All non-live objects 

are considered dead, and are therefore reclaimed.

Unlike naive reference counting, where the overhead is distributed throughout 

the program, collections in a tracing collector are triggered once a certain memory 

threshold is reached, typically when no more memory is available. For stop the



CHAPTER 2. BACKGROUND 17

world collectors (as opposed to concurrent collectors), all running threads are 

stopped while the collection is performed in order to prevent the graph of live 

objects from being modified while the garbage collector is running. Failing to stop 

every thread before collection could cause an object to be incorrectly reclaimed if 

it was not identified as live during the tracing phase.

A major improvement over reference counting is that by walking a graph of live 

objects, cyclic references are naturally dealt with, but on the other-hand stopping 

active threads and performing GC induces pauses in the program.

This thesis introduces below Mark and Sweep collection and Copying collec

tion (also referred to as semi-space collection), as the two main tracing mecha

nisms used today. Tracing algorithms form the underlying basis of most leading 

edge garbage collectors including those such as generational collectors (see Section 

2.1.3).

Mark And Sweep collector

Mark and sweep garbage collection, introduced in 1958 by McCarthy [112], was 

the first automatic memory management algorithm discovered. Despite its age, 

mark and sweep collection still performs well in certain cases and is still used in a 

variety of different contexts. Under this scheme, dead objects are left in memory 

until no more memory can be allocated, at which point the next allocation request 

will be suspended until the mark-sweep algorithm has reclaimed all dead objects.

Mark and sweep traverses the graph of reachable objects from the roots by 

following pointers. It identifies all reachable (hence live) cells in a phase known as 

marking. This operation usually (but not always) requires dedicated extra room in 

each object header to tag objects that the marking phase detected as live. There 

are a variety of techniques to perform the marking phase, and the most popular 

techniques are reviewed later in this section.

At the end of the marking phase, all reachable objects are marked and all 

unmarked objects are considered dead. Dead objects are returned to the pool of 

free cells in a phase called sweeping. This is usually achieved by walking the heap



CHAPTER 2. BACKGROUND 18

linearly from bottom to top and returns to the pool of free cells every unmarked 

cell (dead). If the sweeping phase fails to reclaim enough memory, the heap must 

be expanded or the application would have to be aborted.

The pool of free cells can be managed by different data-structures which all 

have their strengths and weaknesses. The following paragraph reviews briefly 

some of these implementations.

Using a mark stack In order to perform marking, researchers often use it

erative loops coupled with auxiliary data-sructures. For instance, one can use 

an auxiliary stack to hold pointers to live nodes that have not yet been visited. 

This stack would initially contain pointers to the root nodes. During the mark 

phase, nodes are repeatedly popped from the stack, and any unmarked children 

are marked and pushed onto the stack.

Using a mark stack, time and space requirements are made explicit. The 

maximum depth of the marking stack depends on the size of the longest path that 

has to be traced. Some studies have focused on trying to reduce the depth of the 

stack [45, 102, 29]. Others have focused on detecting and recovering from stack 

overflows [5, 99, 29].

Processors often provide instructions that allow data to be prefetched into the 

cache ahead of time, in order to reduce the delay associated with retrieving it 

from RAM. New studies have investigated how prefetching objects located in the 

stack can reduce cache misses [28, 40, 61].

In a 1991 study, Zorn explores the effect of garbage collection on cache perfor

mance and found that garbage collector activity can have a significant impact on 

cache performance. For instance, he found that on certain processors, a genera

tional GC with a copy mature space has a cache-miss rate up to four times higher 

than a generational GC with a mark-sweep mature space.

Pointer reversal Using a mark-stack requires a potentially unbounded amount

of space. While research has investigated how to reduce the space requirement



CHAPTER 2. BACKGROUND 19

or recover from a stack overflow, pointer reversal [137, 99] can perform marking 

without requiring any extra space at all. Rather than using an auxiliary data- 

structure or some extra header bits to store the visited nodes, pointer reversal 

simply stores back-pointers to the previously marked node in a pointer field. As 

the marking phase traverses the graph recursively, every pointer followed is re

versed by putting the address of the parent cell in one of the pointer fields of the 

cell being examined. As the recursion unwinds, the original values of all pointer 

fields are restored. Unfortunately, this technique is very expensive because of 

the number of pointer writes required to traverse the graph, considerably slowing 

down the marking phase. Furthermore, pointer reversal does not work well with 

incremental GC. For these reasons, very few implementations use pointer reversal 

today.

Bitmap marking This technique takes away the need for an extra-bit in the 

header of each object by using a dedicated bitmap table to store object mark-bits. 

More specifically the bitmap table associates a bit for each object address in the 

heap that may contain the start of an object. Instead of using a simple linear array 

of bits, Boehm and Weiser suggest that this structure could be further improved 

by using separate bitmap tables for each different type of objects [29]. A hash 

table or search tree would then be used to access the information.Separate bitmap 

tables also have the advantage that they cope well with a very fragmented heap 

and that not every location in the heap requires a mark-bit.

Using a bitmap has repercussions on virtual memory and RAM: if the bitmap 

is small enough to fit in cache, then accessing a mark-bit does not require loading 

the associated object into memory, so reading and writing mark-bits would not 

incur cache misses.The downside to this implementation however, is that accessing 

the bit associated with each object through the bitmap is more expensive than 

accessing it through the object’s header [172],



CHAPTER 2. BACKGROUND 2 0

Lazy sweeping One way to reduce the stop the world time consists of doing a 

fixed amount of sweeping at each allocation [87]. This semi-incremental technique, 

known as lazy sweeping was introduced by Hughes as a mechanism for reducing 

paging and pause times. Rather than reclaiming all free cells atomically, lazy 

sweeping reclaims free cells on demand (by the allocator). Unlike a classical mark- 

sweep garbage collector, the pause-time involved is proportional to the amount 

of the heap in use, not to the size of the heap. If the heap is relatively empty, 

allocating new cells is fast, but as the heap becomes full, allocating new cells takes 

longer.

Conclusion Mark-sweep collection usually requires the maintenance of a free

list that needs to be updated at each collection and accessed at each allocation. At 

every garbage collection cycle, each live cell has to be checked and an associated 

mark-bit set. Then the collector has to visit every cell in the heap linearly and 

return dead cells to the free list. On top of this, classic mark-sweep algorithms 

tend to fragment memory with cells located at different places in the heap. This 

in turn has implications at two levels. First, the locality of objects is degraded 

since objects are scattered all over the heap, which can lead to performance degra

dation through poor cache behaviour. Second, the time required to find a suitable 

memory slot for each allocated object can be high since the allocator needs to 

find a slot big enough for that particular object but still small enough to avoid 

wasting too much space. However, if response-time is not of critical importance, 

this algorithm offers a better throughput than reference counting.

Because the algorithm visits every live cell during marking, and all dead cells 

during the sweeping phase, the complexity of mark-sweep is proportional to the 

size of the heap, not to the amount of live objects.

Copying Collector

This algorithm became popular after Cheney’s discovery of a non-recursive im
plementation in 1970 [38], improving upon Fenichel and Yochelson’s recursive



CHAPTER 2. BACKGROUND 21

copy-collector [55]. Even today, copying collection is part of many state-of-the-art 

algorithms, and the basis upon which generational collectors build.

Unlike mark and sweep, copying collectors divide equally the heap into two 

semi-spaces. One of the semi-spaces is used to store current data (Fromspace) 

while the other semi-space contains free space ( Tospace). Although copying col

lectors require twice as much memory to run the collector compared to a mark 

and sweep collector, Cheney’s algorithm does not require any additional space 

to store meta-data or auxiliary data-structures. Copying collectors identify live 

objects by traversing the graph (in Fromspace), and recursively copy every live 

object into Tospace. Once all live cells have been copied to Tospace, Fromspace 

is considered to contain only garbage and the roles of Fromspace and Tospace are 

reversed for the next collection.

Cheney’s copying collector In order to save CPU-time, space usage and avoid 

stack-overflows, Cheney implemented the first iterative copying-collector [38]. His 

implementation makes use of two pointers, scan and free, pointing to each end of 

a queue. When the GC starts, the algorithm flips the roles of Tospace and From

space and initialises the two pointers to point to the bottom of Tospace. Then, 

the roots are copied into Tospace and the cell pointed by scan is scanned for 

pointers that have not been copied yet. When live cells are found, they are copied 

into Tospace at the location pointed at by free. Every time an object is copied, a 

forwarding pointer is left in Fromspace so that unprocessed live cells pointing at 

this object can update their references. The reference of the original pointing cell 

is updated with the new location and free is moved along by the size of the object 

copied while scan is moved along by the size of the object scanned. Termination 

happens once the scan pointer catches up with the free pointer, meaning all live 

cells have been copied.

Conclusion The biggest attraction of copying collection comes from the fact

that the amount of work to be performed is directly proportional to the number



CHAPTER 2. BACKGROUND 2 2

of live objects. This makes the algorithm particularly attractive if the amount of 

live objects to be copied is small. Copying collectors also exhibit an important 

side-effect in that by copying data from one space to another, it naturally performs 

a compaction of the heap into fewer pages, diminishing the size of the program’s 

working set. This may improve locality if related data is kept together [65, 139, 

85, 140]. One of the biggest advantages of copying collectors is that they allow 

very fast allocation by using a bump-pointer allocator, where the next free cell is 

simply the following cell in the heap. This avoids the potentially expensive search 

for a suitable free memory slot, and object sizes are naturally handled.

Unfortunately, copying collectors have several drawbacks. First, the memory 

requirements are high since at any one time, half the heap, usually referred to as 

copy reserve, needs to be free to copy GC surviving objects into. Second, objects 

with a long lifetime are repeatedly copied from one semi-space to another during 

GC. Third, Cheney collectors perform a breadth-first search which will change 

the layout of the graph and may interfere with locality [170, 140].

Finally, while it is very efficient when few cells are live, the cost of copying 

objects can be particularly high when many objects are live at the time the GC 

is triggered.

Mark-Compact

One of the major drawback of mark-sweep collectors is their tendency to fragment 

the heap. This is especially true when a variety of objects of different sizes have 

to be handled. In a fragmented heap, after a GC, it may happen that there are 

many small ‘holes’ available in which new objects can be allocated. These, may 

not be big enough to accommodate a large object, even though the total amount 

of free space is sufficient. A standard mark-sweep collector would then have to 

expand the heap or abort execution. In terms of allocation, while mark-sweep 

allocators typically have to find a place to allocate a new object into, allocation 

in a copying collector can be done extremely fast using a bump-pointer.

A solution to solve these issues consists in compacting the heap. A compacted



CHAPTER 2. BACKGROUND 23

heap consists of a contiguous area of live data at one end of the heap, and a 

contiguous area of free space at the other end. Compacting is usually performed 

in three passes over the heap. The first phase consists of marking live objects 

in the graph. The second phase and the third phase interchangeably consist of 

compacting the graph by relocating cells, and updating the values of pointers that 

refer to moved cells.

A study by Warren [167] shows that some objects remain at the bottom of the 

heap and never die throughout computation. He referred to these quasi-immortal 

objects as a sediment.

The open-source HotSpot Java Virtual Machine [113] uses a mark-compact 

algorithm to manage the old generation (see Section 2.1.3). HotSpot allows the 

size of this sediment to be varied through a parameter that controls the degree of 

fragmentation of the oldest prefix of its old generation: this prefix is not moved 

at compaction time.

By making the heap contiguous, a mark-compact collector can perform fast 

allocation like a copying collector. It improves over a copying collector in the 

fact that it does not require a copy reserve, and can be tuned to avoid repeatedly 

copying objects with a long lifetime [113]. Mark-compact may also improve the 

spatial locality of objects in the heap and reduce the number of page faults. 

Despite these advantages, mark-compact collectors are very expensive because of 

the number of phases necessary to compact data.

2.1.3 Generational GC

To the end-user, the biggest disadvantage of a traditional tracing collector is the 

often prohibitive pause-time introduced during a GC. To a large extent, this can 

be attributed to the need for scanning large heap regions.

Another weakness of these algorithms is their inability to take advantage of 

the fact that every object is unique, has its own purpose, its own lifetime, its own 

size, its own type, its own connectivity with other objects, and the method that 

allocated it has its own calling context etc.. Many studies have been published



CHAPTER 2. BACKGROUND 24

on the lifetime of objects, and there is clear evidence that the lifetime of objects 

is not uniform, nor is it random [52, 57, 163, 172, 74, 4, 169, 131, 134], However, 

traditional tracing collectors such as mark-sweep collectors and copying collectors 

treat all objects uniformly.

By partitioning the heap into separate smaller regions (or partitions, or spaces), 

objects can be segregated according to various attributes and collect these parti

tions independently [160, 161, 162, 155, 159, 156, 41, 79, 66]. To reduce pause- 

times, regions that are likely to contain the most number of dead objects might 

be garbage collected first, and if not enough space can be reclaimed, then other 

regions can be collected.

Collecting small regions with mostly dead objects can drastically reduce pause- 

times.

Partitioning The Heap Into Regions

Bishop suggests a practical way of reducing GC pauses (usually induced by tra

ditional tracing collectors) which consists of splitting the heap into two or more 

regions [19]. Allocation into each of these regions is performed according to pre

defined policies.The most common criteria based on which objects are allocated 

together are explored below. These include the age the object to be allocated, the 

size of the object, the connectivity of the object towards other objects, and the 

class of the object [85].

The heap organisation used in this scheme allows for regions to be garbage 

collected independently, or even reclaimed as a whole [160, 161, 162, 155, 159, 156].

The effectiveness of this scheme relies on several factors. First, it allows for 

smaller portions of memory to be garbage collected, rather than the whole heap. 

Second, by targeting regions where most objects are likely to be dead, reclaim

ing unused space can be fast. Third, splitting the heap into regions offers the 

possibility to choose the most appropriate GC algorithm for each region, based 

on known characteristics of the objects within it. For example, a region which 

contains mostly large objects would probably be best suited for a non-moving



CHAPTER 2. BACKGROUND 25

garbage collection algorithm.

Since objects are allocated into different regions, some objects may point to 

objects in other regions, therefore creating Inter-Region pointers. This implies 

that a region should not be collected independently without considering incoming 

pointers as extra GC roots.

Tracking inter-region pointers is performed by using a write-barrier (write- 

barrier techniques are reviewed later in this section). This usually consists of a 

small piece of code emitted by the compiler, but some implementations for specific 

architectures implement a hardware trap [90, 77]. It is in charge of monitoring 

all writes of pointers, and adding every object with a cross-region pointer into a 

specific data-structure (see later in this section). This data-structure is then used 

as an extra root-set when performing a region-independent GC. Another drawback 

is that region-based GC becomes inefficient if most objects within a region are 

not dead at the time of collection.

The paragraph below reviews different policies used to group objects within 

regions.

Tofte And Talpin’s Scheme Tofte and Talpin provide region-based memory 

management [160, 161, 162, 155, 159, 156]. They store all values in a stack of re

gions at run-time, and each of these regions is lexically scoped. As a consequence, 

regions do not need to be garbage collected, but are instead reclaimed as whole 

once the reference to a region is no longer available in the stack. They prove that 

stack allocation is safe, which entails that no deallocated cells are used by the rest 

of the program. Regions can grow dynamically and store recursive types, such as 

lists and trees.

However, their analysis is specific to functional programming.

Region Analysis and Transformation for Java Programs Building upon 

Tofte and Talpin’s idea, Cherem and Rugina [41] propose a static analysis that 

automatically transforms standard Java code to add region specific code. Their



CHAPTER 2. BACKGROUND 26

analysis is capable of handling the imperative, object-oriented constructs of the 

Java language, whereas Tofte and Talpin’s approach was used in the context of a 

simply typed lambda calculus functional language.

Their analysis works on any Java program and does not require any help from 

the programmer. They find that a large fraction of objects can be placed in regions 

or on stack, but not all.

Their system yields significant absolute memory savings for several bench

marks against a non-GCed system. However, it sometimes shows absolute mem

ory increase compared to a garbage collected system. Another drawback of this 

technique is the need for an offline static analysis of the Java program prior to 

running it, which in their case accounts for around 16% of compilation time. Un

fortunately, they do not perform performance analysis, and the benchmarks they 

use are small (Java Olden [34]).

Large Object Space Large objects can be considered a special group of ob

jects because they are more costly to allocate and to copy. Because of this, many 

garbage collectors allocate large objects in a separate region managed by a non

moving GC. A number of implementations incorporate this strategy [36, 86, 130, 

165, 21], some not collecting it at all, some managing this Large Object Space 

(LOS) with a mark-sweep collector, and some using a treadmill GC (an incremen

tal non-moving garbage collector [11]). Hicks et al. survey the different techniques 

used for the management of large objects spaces and identify a wide variety of 

issues that might affect its design [76].

Immortal Space Objects that are used throughout computations and are only 

deallocated at the very end of the program are called immortal objects. If one 

knows ahead of time which objects are going to be immortal, or at least are 

very likely to be, it makes sense to handle these objects specially. Several GC 

implementations now use an immortal space where all objects known or believed 

to be immortal are allocated [22, 21, 135, 30, 144, 24], Objects within the immortal



CHAPTER 2. BACKGROUND 27

space are added to the GC roots and the immortal space is never garbage collected.

Finding Your Chronies On the basis that connected objects share similar 

lifetimes [79], Guyer and McKinley [66] seek to colocate them in the same space. 

They combine an inter-procedural static analysis, that identifies the object to 

which a new object might be connected, with a specialised allocator, that places 

the new object in the same space as the object to which it is connected. By doing 

a basic collocation analysis, they build a graph that represents a conservative 

approximation of the connectivity between objects.

As well as reducing copying, colocation also reduces pressure on the write- 

barrier (see the following section). They tune their algorithm to prevent overly 

aggressive colocation from increasing pressure on the mature-space. Experiments 

with jvm98 show that GC time can be reduced by up to 75% [66].

Write-barrier

Region-based GC, objects are segregated into different regions. Ideally, the algo

rithm should garbage collect the region with the most objects likely to be dead.

However, care has to be taken when designing mechanisms to garbage collect 

regions independently. When collecting a region independently, other regions are 

not traced, and a mechanism to discover which objects within the region to be 

collected are being referenced by objects in other regions is therefore needed. 

Objects within the region to be collected that are referenced by objects in other 

regions should therefore be considered live.

To overcome this problem, researchers usually record references of objects 

pointing to other regions that have to be collected independently. This record is 

then considered part of the GC roots, and it can be implemented in several dif

ferent ways. When performing a region-independent collection, it is then possible 

to identify every object that is being referenced by objects within other regions. 

More generally, if one wishes to collect a region B independently from a region A 

(or simply collect region B before region A), it is necessary to keep a record of



CHAPTER 2. BACKGROUND 28

pointers from region A to region B.

Unfortunately, the use of such records raises another concern. During the 

execution of the program, references between objects are modified. It is therefore 

necessary to ensure that the records are up to date. This is done using a write- 

barrier which tracks, during program execution, all writes of pointers from one 

region into another region that need to be collected independently. When an 

object creates a pointer to another object located within a region that is collected 

independently from the others, the records need to be amended to reflect the 

change. This process of updating records is usually referred to as write-barrier 

slow path. On the contrary, the write-barrier fast path is used when a pointer 

write has been trapped but does not need to be recorded (see below).

Write barriers are expensive because of the extra computation required to 

check every time a pointer write occurs. The price to pay to record a pointer from 

one region to a region that needs to be collected independently is even higher.

Recording Inter-Region Pointers

A write barrier needs an associated data-structure to keep track of the pointers 

from an old to a younger generation. This data-structure can be implemented in 

different ways the most popular techniques are reviewed below.

Entry tables Entry tables were used by Lieberman and Hewitt [106] as part 

of the first generational collector. They associate an entry table with each region 

that requires independent GC. During the execution of the program, if an object 

X  is to point to an object Y  in a region that needs to be collected independently, 

an entry pointing to object Y  is created in the table associated with the region 

of object Y, and object X  is updated to point to the appropriate table slot. If 

object X  is already pointing to an entry in the table, the reference is updated to 

the new entry, and the old entry is destroyed. The advantage of this algorithm 

is that in order to collect independently a region, it is not necessary to trace 

every other region. Instead, it is only necessary to scan the entry table associated



CHAPTER 2. BACKGROUND 29

with the region to be collected. However, if two objects refer to the same object 

in a region that needs to be collected independently, multiple references to the 

same object will be added to the entry table. Also, the costs associated with this 

technique are acceptable on a specifically designed machine, but would be very 

high on commodity hardware.

Remembered Sets Instead of keeping a table of entries to objects referenced by 

objects in other regions, Ungar [163] records objects pointing to a region requiring 

independent GC using a remembered set. At each point in time, if an object points 

to another object which is located in a region that needs to be garbage collected 

independently, the location of the parent object is added to a remembered set. 

Also a dedicated bit is added to the header of each object to avoid duplicates in 

the remembered set. Under this policy, scanning time is dependent on the number 

of objects remembered. Drawbacks include the fact that checks are repeated if an 

object is stored into several times between two GCs. Also, the cost of scanning 

objects pointed to by the remembered set at collection time can be high if objects 

pointed to are large. Despite these drawbacks, remembered sets remain a popular 

choice today.

Sequential Store Buffers Hudson and Diwan fill a fixed-size Sequential Store 

Buffer (SSB) with addresses that might contain pointers to regions that need to 

be collected independently. These addresses are added at the end of the SSB and 

buffer overflows are trapped using a ‘no access’ guard page. Adding addresses to 

the SSB is very quick, and can even be done in just two instructions if the pointer 

to the next free slot in the buffer if kept in a register. Values are moved to the 

remembered sets on two occasions: if the SSB overflows, or at collection-time. 

By building the remembered sets as circular hash tables using linear hashing, the 

algorithm can ensure that no duplicate addresses are added to the remembered 

sets [81].



CHAPTER 2. BACKGROUND 30

Card Marking Another popular alternative is card m ark in g  [143, 82, 6]. The 

heap is divided into many small regions (cards). The size of these regions can be 

made smaller or larger to optimise locality of reference or reduce scanning time 

but are generally less than the size of a page. A table of bytes is associated with 

these cards where each entry in the table corresponds to one card in memory. 

Every time the pointer location of an object is modified, the byte corresponding 

to the card in which the object is located is set {d ir tied ). A  second-level data 

table called the s eg m en t m od ifica tion  ca ch e  is usually used, where each entry 

corresponds to an entire table of card-tables [143]. Every time a card is dirtied, 

the associated bits in the tables at both levels are dirtied. At collection-time, the 

memory regions covered by each dirty card need to be scanned for inter-region 

pointers. The memory requirements for this technique are low: less than 1 percent 

of the heap for a 128-byte card. On the other hand, this technique is less precise 

than remembered sets which records at pointer-level.

Generations

In 1976, Deutsch and Bobrow identified that newly allocated objects are likely to 

be abandoned within a relatively short time [52]. In 1981, Foderaro and Fateman 

found that at each GC, over 98 percent of dead objects to be recycled have been 

allocated since the previous garbage collection [57]. In 1984, Ungar introduced 

the famous w eak g e n era tio n a l h yp o th esis  which identifies that most “objects die 

young” [163]. Since then, several studies have confirmed Ungar’s findings. In 

1989, Zorn identified that between 50 and 90 percent of Common Lisp objects 

die before they are 10 kilobytes old [172]. In 1991, Hayes observed that in the 

Cedar language, a Modula-like language developed at Xerox, only 1 percent of 

objects survive beyond 721 kilobytes [74], In 1992, Appel observed that over 

98 percent of any given generation is reclaimed at each collection [4], In 1994, 

Wilson observed that typically 80 to 98 percent of objects die before one further 

megabyte of heap storage has been allocated [169]. In 2006, Jones et al. analysed 

the demographics of objects, arguing that garbage collectors should be lifetime



CHAPTER 2. BACKGROUND 31

aware [92], These studies provide strong evidence that a vast majority of objects 

have a short lifetime, while a small proportion of objects may live a very long 

time.

Generational garbage collection was developed to take advantage of these ob

servations by focusing on newly allocated objects. In this garbage collector, the 

heap is divided into two or more regions called g en era tio n s . The number of 

generations varies between implementations. For instance, an early implemen

tation of Standard ML of New Jersey used two generations, when Tektronix 

4406 Smalltalk used seven [2, 36]. Hudson et al.’s University of Massachusetts 

Language-Independent Toolkit [86] was capable of dynamically varying the num

ber of generations. To facilitate the description of this algorithm, it is assumed 

that a generational collector has only two generations, but observations apply 

equally to a generational garbage collector with more than two generations.

In a generational collector, new objects are typically allocated in a region 

usually referred to as y o u n g  g e n er a tio n  or n u rsery . When it is no longer possible 

to allocate new objects due to lack of available heap space, a garbage collection of 

the nursery is triggered. This is called a m in o r  co llec tio n . After a minor garbage 

collection, surviving objects are usually copied (promoted) into the old generation 

which is collected less frequently. However, if not enough space can be reclaimed 

by doing a minor garbage collection, then a fu l l (or m a jo r ) garbage collection 

is triggered, and both the young generation and the old  g e n er a tio n  (the m a tu re  

sp a ce ) are garbage collected. Since young objects are allocated in the nursery 

and older objects promoted to the mature space, objects in a generational GC 

are in essence segrega ted  by age. Because the young generation can be collected 

independently, the use of a write barrier and a structure to hold references to 

pointers from the old generation to the young generation is necessary (see below). 

For simplicity, this section assumes that this structure is a remembered set.

The youngest generation is usually comparatively small and is collected much 

more frequently than the old generation, because it is expected that most objects 

in the young generation will be dead. Write barriers and remembered sets in the



CHAPTER 2. BACKGROUND 32

context of a generational collector are reviewed below, followed by the description 

of some interesting garbage collection techniques taking advantage of object life

times. At the end of this section, the efficiency of generational garbage collection 

is reviewed.

Write Barrier And Remembered Sets For Generational GC

Generational GCs split the heap into different generations (regions), and the young 

generation is always collected before the old generation. Therefore, generational 

GCs require a write-barrier and a unidirectional remembered set (not bidirec

tional) to hold references to pointers from the old generation to the young genera

tion. Having a unidirectional remembered set reduces dramatically the number of 

pointers that need to be remembered, since most pointers are from young objects 

to old objects. Most writes are to young objects located in the nursery, and many 

of these objects are close to each other [148].

Pointers from the old to the young generation are relatively rare because they 

only arise through (usually destructive) assignments such as “putfield” and “put- 

static” in Java. Therefore, write-barriers in Java need only check the “putfield” 

and “putstatic” assignements. When an old-to-young reference is created, the 

write-barrier needs to store the old object in the remembered set. This process 

is called the write-barrier slow path. On the contrary, the write-barrier fast path 

is used when a pointer write has been trapped but does not need to be recorded. 

For example, in the case of an old-to-old, young-to-young, or young-to-old pointer 

write.

Appel-Style Collector

In 1989, Appel introduced an elegant, efficient and easy to implement GC with 

a fast allocation time [3]. This collector, often known as the Appel-style collector 

comprises of only two generations. The nursery size is flexible, giving objects 

longer to die, hence reducing the chance that a young object will ever be copied. 

In his implementation for the Standard ML of New Jersey compiler, only 2% of



CHAPTER 2. BACKGROUND 33

objects are expected to survive a minor GC.

After a major GC, the unused portion of the heap is divided into two equal

sized parts. The first part acts as a copy reserve where survivors of a minor 

collection will be copied into, and the second part acts as the free region. When 

the remaining free space is exhausted, a minor GC is triggered. He estimates that 

a minor GC is about fifty times faster than a major GC. After a minor GC, if the 

old generation occupies around half the heap, a major GC is triggered.

This algorithm is still popular today, and was used by Blackburn et al. in their 

pretenuring work, upon which this thesis builds (see Section 2.4.7). In order to 

compare this work to theirs, an Appel-style garbage collector is also used in the 

experiments.

Age-Oriented Garbage Collection

Paz et al. propose a garbage collector similar to a generational GC in the sense 

that it segregates objects by age [123]. They implement their collector for a multi

processor environment where throughput is a concern, but pauses times are not. 

They argue that by using an on-the-fly collector, which does not need to stop the 

program threads simultaneously to collect garbage [54, 122], these pause times 

are naturally very short. Unlike a traditional generational collector, they always 

perform a full heap collection, meaning they do not have to be concerned about 

remembering old-to-young generation pointers. Old objects are managed using 

a reference counting GC, and young objects using a mark-sweep collector. The 

interest in this scheme with regards to this thesis is limited to showing the reader 

the possibilities offered by lifetime-aware collectors, and the reader is therefore 

referred to Paz et al.’s paper for more information on this complex system.

There are a few advantages to this technique such as the fact that they do not 

need to record inter-generational pointers. Also, in a multi-threaded environment 

with several processors, their implementation has the advantage or requiring less 

collections than a typical generational collector, therefore requiring less thread 

synchronisation and reducing the time spent on GC initialisation. Of course, the



CHAPTER 2. BACKGROUND 34

downside of this approach is that pause-times are increased since they always 

collect the full heap.

This approach is interesting to this thesis as it shows a different way to make 

use of object lifetimes. This thesis focuses on predicting the lifetime of objects, 

which can then be exploited by various lifetime aware garbage collectors, such as 

this scheme and the following ones reviewed.

Older-First Garbage Collection

Generational collection helps improve the efficiency of garbage collection in fast

allocating programs by focusing its garbage collection efforts on young garbage. 

However, pauses introduced by full heap collections, when they occur, are still 

comparatively long. Stefanovic argues that current generational collectors focus on 

the fact that “most objects die young” but he states that the very newest objects 

are patently not garbage [148]. Therefore, a technique known as older-first garbage 

collection was introduced to give objects more time to die [71, 72, 148, 149].

Older-first (OF) garbage collectors avoid collecting the very youngest objects 

that have not had enough time to die. The heap is divided into an allocation 

region A and the copy region C. New objects are allocated at the back of the 

region A. Each region contains several windows, and whenever the heap is full, 

the window located at the front of region A (the older objects) is collected, and 

surviving objects are copied into the back of region C. When region A becomes 

empty, the roles of region A and region C are flipped.

This collector requires the write barrier to remember more pointers than a 

generational GC, because all pointers from younger to older windows need to be 

remembered. When a window is collected, surviving objects with pointers to older 

windows are added to the remembered set.

Interesting findings include the fact that the number of recorded younger-to- 

older pointers is typically between one and three times the number of recorded 

older-to-younger pointers. In terms of performance, older-first collectors are par

ticularly effective at managing data with queue-like or random lifetimes and heaps



CHAPTER 2. BACKGROUND 35

containing large amounts of live data. However, as one would expect, their perfor

mance dramatically decreases if the scavenger allocates mostly short-lived objects.

Beltway: Getting Around Garbage Collection Gridlock

Blackburn et al. generalise the concept of generational garbage collection by 

proposing the Beltway framework [23]. This framework combines and exploits 

five important principles that are important to copying GCs:

1. The weak generational hypothesis that “most objects die young” .

2. Avoid collecting old objects (this is what generational GCs do).

3. Use incrementally to reduce pause-times.

4. Use of small nurseries to improve locality.

5. Give the very youngest objects time to die, like in the older-first GC.

This framework segregates objects by age incrementally. Objects are grouped 

into segments of memory called increments, and increments are grouped into 

regions called belts. The number of increments and belts can be configured using 

command-line options.

Using these options, their collector can be configured as a semi-space, genera

tional, or older-first collector. The command-line options allows them to specify 

any number of belts and any number of increments. New objects are allocated on 

the last increment of the lowest belt (nursery belt). Objects surviving a GC are 

promoted into the next higher belt, if there is one. When a GC occurs, the oldest 

increment on the lowest belt is collected first.

The beltway framework is very efficient at exploiting the lifetime of objects. 

Objects are segregated by age, and are given time to die. It is more flexible than 

the older-first GC, because the size of each increment and the number of belts 

can be tuned. With regards to this thesis, an oracle capable of predicting the 

object lifetimes could allocate objects more efficiently into the most appropriate 

increment.



CHAPTER 2. BACKGROUND 36

The Beltway framework allows the easy experimentation of different garbage 

collection configurations. Their collector is efficient, and they are able to demon

strate important throughput performance gains over other generational collectors 

by up to 40%.

Efficiency

Generational collectors use a heuristic (the weak generational hypothesis) as a ba

sis and have proved very successful on many occasions. They are often regarded 

as the best choice for non real-time implementations. During minor collections, 

pause-times can be reduced drastically for some applications. Paging is often im

proved since the collector usually deals with a fraction of the memory at each 

collection. Each generation of a generational GC can be managed by its own 

garbage collector algorithm, giving more flexibility to the GC implementer and 

offering more scope for optimisation. Also, the nursery can be collected indepen

dently, reducing the average pause time (not worse case).

On the other hand, recording pointers from old generations to young genera

tions requires an extra structure, which takes space, and requires a write-barrier 

which is expensive in terms of computation time. To reduce overheads, only point

ers from the old generation to the new generation are tracked, which implies that 

the mature space cannot be collected independently. This issue could be tackled 

by also recording pointers from the younger generation to the older, but the costs 

associated with tracking young-to-old generation pointers would be prohibitively 

high because they are much more common than old-young pointers. Another con

cern of generational collectors is that they require a copy reserve where surviving 

objects are copied into. For the Appel-style collector, the space overhead is 100% 

since half the heap needs to be available as copy reserve at any point in time.

Although exhibiting a number of enhancements over other collectors, genera

tional collectors have a core problem: while most programs allocate objects which 

tend to die young, some programs do not and this can defeat the weak generational 

hypothesis. Such behaviour would not only make minor collections inefficient, but



CHAPTER 2. BACKGROUND 37

will also tend to tenure many objects in the older generations, hence reducing the 

space available for the nursery (in the case of an Appel-style collector [3]), and 

requiring more frequent expensive major collections. Baker emphasises this prob

lem and shows an example which defeats the weak generational hypothesis [12] 

based on the physics Radioactive Decay Model. He then generalises to garbage 

collection to show that in some cases, the weak generational hypothesis does not 

apply.

2.2 Object Lifetime Prediction

Today, even leading edge garbage collectors can not predict the future. They are 

incapable of knowing ahead of time for certain how long an object is going to live.

If they were able to, garbage collection could be made extremely cheap, and 

more efficient object allocation could be performed in the heap. This could be 

achieved by allocating objects of similar lifetimes together in the heap into regions 

to which a time of death would be associated ahead of time. A region could then 

be collected as a whole, once its time of death had passed.

Over the past twenty years, a number of studies have tried to predict object 

lifetimes. Some research has focused on predicting object lifetimes using pointer- 

analysis, a technique that establishes which pointers, or heap references, can point 

to which storage locations [133, 51]. However, pointer-analysis is expensive to 

compute accurately, even more so for complex programs or systems with dynam

ically loaded libraries. This thesis does not investigate pointer-analysis literature 

because it is not directly relevant to the work presented, but the reader is invited 

to refer to Hind’s paper for an interesting discussion on the topic [78].

This section presents the most relevant studies on object lifetime prediction 

with regards to this thesis.



CHAPTER 2. BACKGROUND 38

2.2.1 Using Lifetime Predictors to Improve Memory A l

location Performance

Barrett and Zorn propose a profile-based system capable of accurately predicting 

objects that will be short-lived at allocation time [14]. Their predictions are based 

on the size of the object at the time of allocation, as well as the call-chain: an 

abstraction of the program’s call-stack at the time that the event occurred. Life

time data is gathered from instrumented C programs which maintain the current 

call-chain state and associate each object with its call-chain. At each allocation, 

the object and its call-chain are added to a database. Their data shows that over 

half of the objects in each program live less than 10,000 bytes. They defined an 

object to be short-lived if it lived less than 32 kilobytes and found that short-lived 

objects accounted for more than 90% of all bytes allocated in every program.

Once lifetime data has been gathered, they reuse the lifetime database to drive 

the allocation of short-lived objects by performing a non-instrumented run of the 

same program. At each allocation, they determine if an object is certain to be 

short-lived by checking its size and call chain against the database of lifetimes. 

Short-lived objects are allocated into dedicated areas, in order to make allocation 

and deallocation faster. When an object within a dedicated area is freed3, a 

counter recording the number of objects in the area is decreased. When the 

counter drops to zero, the entire area is reclaimed.

Their paper demonstrates that a call-chain of events combined with the size 

of an object can efficiently predict object lifetimes. However, while this offers 

great precision, less predictions can be made and checking the call-chain at each 

allocation is expensive.

3Remember this is a C program, where allocated memory must explicitely be freed



CHAPTER 2. BACKGROUND 39

2.2.2 Predicting Lifetimes In Dynamically Allocated Mem

ory

Cohn and Singh extend Barrett and Zorn’s work by data-mining the lifetime 

database [46]. They create decision trees (see Section 2.5) based on the top 20 

words in the stack and the size of the object allocated. From the trees, they 

derive rules that predict short-lived objects and immortal objects (which they 

call p e r m a n en t ) from other objects. However, using Barrett and Zorn’s memory 

organisation, allocating an immortal object into a memory block for short-lived 

objects may make the entire block non-reclaimable.

The results show interesting potential in applying machine learning techniques 

to object lifetimes predictions. Despite being a short paper, this study is interest

ing for this thesis, as new ways of predicting object lifetimes using data-mining 

are explored.

2.2.3 Segregating Heap Objects by Reference Behavior 

and Lifetime

Using profile-based information, Zorn and Seidl show that the behaviour of objects 

in the heap is predictable [171] and can be used to reduce page faults. In previous 

work, they identified that for some programs, a small number of objects receive a 

majority of the references, while other objects receive almost no references [138]. 

Building upon this work, they suggest dividing the heap into four different seg

ments which are: highly  r e fe r en ced  (HR), n o t  h ighly r e fe r en ced  (NHR), sh o r t-liv ed  

(SL) and oth er.

To predict object behaviour and reference density, they analyse program fea

tures such as:

• S ta ck  p o in te r : value of the stack pointer at the time of heap allocation.

• P a th  p o in t : one specific point in the call-chain of events.

• S ta ck  co n te n ts : subset of the call chain at the time of allocation.



CHAPTER 2. BACKGROUND 40

• O b jec t  size.

Based on measurements taken from six allocation-intensive programs written 

in C, they find correlation between object characteristics and the four different 

segments. They use program features as predictors of object lifetimes, and perform 

a cross-validation to avoid the case where a program could predict itself. In 

other words, each program is used to predict a different program, but never itself. 

To perform experiments, they use a wrapper around the allocation method to 

determine what segment to place the objects in based on the predictors described.

Their scheme allows for a significant decrease in page faults (up to 95% in 

some memory sizes), and confirms that the behaviour of objects can be predicted 

and exploited.

2.2.4 Object Lifetime Prediction in Java

A recent study by Inoue et al. also highlights the relation between the state of 

the stack and the allocated object’s lifetime [89]. They predict lifetimes using 

information such as the call chain and the type of the object.

To gather relevant lifetime information, they collect program traces recording 

the times of birth and death of each object, the object identifier, its type, and 

the call chain. They identify that a large percentage of objects (at least 13% in 

for the jvm98 benchmarks) die as soon as they are allocated, and suggest that 

an optimising compiler might take advantage of this discovery. Surprisingly, they 

show that in some applications, it is possible to predict the lifetime of an object 

to the byte.

Unfortunately, they do not report performance tests as they do not possess a 

virtual machine tuned with specialised allocators.

This section has shown that predicting the lifetime of objects is possible, and 

that there exist ways to take advantage of such prediction. Section 2.3 reviews 

object lifetime predictions in the context of a generational collector where objects 

with a long lifetime are allocated directly into the mature space.



CHAPTER 2. BACKGROUND 41

2.3 Garbage Collection Discussion

2.3.1 Summary

In the previous sections, three main families of garbage collection algorithm were 

examined.

The first one is reference counting, which by keeping a counter of the number 

of references to any object at any time aims at reclaiming objects as soon as they 

become garbage. This algorithm is interesting because garbage collection is inter

leaved with mutator activity, allowing for very small pause-times. At every pointer 

write, reference counts of objects are updated, and dead objects are reclaimed. 

However, it was also shown that this algorithm has weaknesses such as the inabil

ity to naturally reclaim cyclic data-structures. Reclaiming cyclic data-structure 

requires the use of an extra tracing collector [168], or an additional data-structure 

to store pointers to cells with multiple references, which are potentially part of 

a cyclic data-structure [107]. Furthermore, while the basic reference counting al

gorithm aims at reclaiming objects as soon as they become garbage, doing so is 

too costly because of the maintenance imposed by keeping object reference counts 

up to date. Often, deferred reference counting techniques are used to reduce the 

processing costs of keeping references up to date, but by doing so, the algorithm 

is no longer able to reclaim objects as soon as they die [52, 24], Finally, the space 

requirement of a reference counting algorithm is high since it requires extra room 

in each object’s header to keep the reference count.

The second family of algorithms discussed are tracing collectors. They are 

able to reclaim cyclic-structures naturally. There are two main sorts of tracing 

collector, which are mark-sweep collector, and copying collectors.

Mark-sweep has a lower overhead than reference counting, but still requires the 

storage of the mark-bit in the header of each object. It requires the maintenance 

of a free-list that has to be updated at each collection. Mark-sweep algorithms 

have fragmentation issues, and the amount of work to be performed at each GC is 

proportional to the size of the heap. Also allocation can be slow due to the need



CHAPTER 2. BACKGROUND 42

to identify a memory slot suitable for the object to be allocated in. However, its 

throughput is higher than reference counting.

Copying collectors perform allocation in a linear manner, using a bump-pointer. 

Allocation is very cheap because new objects can be allocated in the next free cell, 

which is simply the following cell in the heap. The cost of copying GCs is pro

portional to the amount of live objects that have to be copied. Therefore, a very 

large heap with few live objects can be reclaimed cheaply. Copying GCs perform 

a compaction of the heap naturally at every GC, which has positive repercussions 

for paging. Finally, copying GCs can perform very fast allocation. The main 

drawback of this algorithm is the fact that only half the heap can be used at any 

one time.

The third family of GCs explored are generational GCs.

The disadvantage of generational collectors lies in the fact that in order to 

garbage collect the nursery independently, the algorithm needs to be aware of all 

objects within the nursery that are referenced by objects in an older generation. 

This is performed using a write barrier that tracks pointer writes from older 

generations to the nursery and records such pointers in a data-structure such 

as a remembered set. In this algorithm, the time overhead of the write-barrier 

and the space overhead introduced by recording old-to-young pointers are the 

main concerns. Another concern is the fact that this algorithm is based on the 

assumption that most objects dies young. This is true for many programs, but 

not all, and for mutators that do not exhibit this hypothesis, a generational GC 

would not perform well.

By allocating young objects together, this algorithm can perform nursery GCs 

cheaply because few objects typically survive a GC and need to be copied into an 

older generation. In most cases, generational GCs perform well, and they are the 

basis of many high-performance garbage collection algorithms today.



CHAPTER 2. BACKGROUND 43

2.3.2 A  Unified Theory of Garbage Collection

Having reviewed the major garbage collection algorithm, Bacon et al.’s unified 

theory of garbage collection is now reviewed [9]. These authors observe that while 

reference counting algorithms and tracing algorithms have universally been viewed 

as being fundamentally different approaches, the more they are optimised, the 

more similar they become. These authors in fact see these two types of garbage 

collectors as dual to each other, much like “matter” and “anti-matter” . Reference 

counting collectors concentrate on dead objects (anti-matter), and traverse the 

graph of dead objects starting from other dead objects with a reference count 

of 0. Tracing collectors concentrate on live objects (matter), and traverse the 

graph of reachable objects, starting from live objects (GC roots). They show that 

high-performance collectors such as deferred reference counting and generational 

collectors are hybrids of tracing and reference counting collectors. Mark-bits (for

warding addresses) are seen as playing similar roles to reference counts. E.g. mark 

bits (0 or 1) and reference counts are approximations -  because of cycles -  of the 

number of live references to any object.

The most fundamental advantage of reference counting is the fact that it is 

incremental by nature. But because the run-time overhead of a basic reference 

counting implementation is much too high, deferred reference counting techniques 

are often used [52, 24], in which references from stack frames are accounted for 

separately. Doing so, however, results in delayed reclamation of garbage and 

longer pause-times, just like a tracing collector.

Conversely, high-performance tracing collectors reduce the long pause-times 

imposed by this algorithm by implementing generational garbage collection. By 

doing so, they introduce the need for a write-barrier and a structure to store old- 

to-young pointers, therefore introducing a regular run-time overhead, much like 

in a reference counting algorithm.

Bacon et al. then compare algorithms against each other and show that trac
ing collectors and reference counting algorithms are really opposite to each other.



CHAPTER 2. BACKGROUND 44

As optimisations are applied to each of these algorithms, they start taking char

acteristics of each other, and become similar in many ways.

This paper is interesting as it provides a higher-level view of garbage collection 

algorithms, and gives a better understanding of the trade-offs involved in designing 

high-performance GCs.

2.4 Pretenuring

2.4.1 Concept

In a generational GC, young objects are allocated into the nursery, and at each 

collection, survivors are promoted/copied from the nursery to an older generation 

[3]. The efficiency of a generational GC relies on the fact that most objects die 

young. While this is often true, inefficiencies arise when objects have a longer 

lifetime than expected [12, 26, 22],

By knowing ahead of time how long an object is going to live, objects can be 

allocated in a more efficient manner. For instance, objects with a short lifetime 

can be allocated in the nursery, while objects with a longer lifetime can be al

located directly in the mature space. This technique, referred to as pretenuring 

can save the unnecessary copying of objects from young to old generations. By 

knowing all the objects allocated in the nursery are dead at the time of the col

lection, a young-generation collection is virtually free since the whole region can 

be reclaimed as a whole. In this ideal world, a write-barrier, and its associated 

run-time overhead, would not be necessary since it is known that all the objects 

in the young generation are dead. Furthermore, to avoid processing immortal ob

jects several times, these can be allocated into a separate “immortal” space which 

will never be collected.

A popular unit to measure the efficiency of a garbage collector is the “mark/- 

cons” ratio. This is the number of bytes that the collector copies divided by the 

number of bytes it allocates. This allows researchers to measure the amount of



CHAPTER 2. BACKGROUND 45

work done by a copying collector. Higher ratios mean the collector will require 

more time, because more objects must be copied. The goal of any pretenuring 

system is to reduce the mark/cons ratio as much as possible, by reducing the 

amount of copying required.

In a pretenuring scheme, it is important to keep a conservative approach when 

trying to predict object lifetimes because pretenuring objects wrongly can have 

a negative impact on performance. In the case of an Appel-style collector [3], it 

would reduce the space available for the nursery since the nursery size is flexible 

and is equal to the size of the heap minus the size of the mature space (and 

sometimes an immortal space). This would also lead to more frequent nursery 

collections (because the nursery size is reduced), and more frequent full heap 

collections if there is too much garbage in the mature space.

Furthermore, it may result in some young-lived objects, which would otherwise 

have been dead, to be promoted after a minor collection only because they are 

referenced by a wrongly pretenured object. This effect is known as nepotism [164]. 

Allocating objects wrongly in the immortal region can have a larger negative 

impact on performance since none of their referents would ever be collected, and 

would have to be processed at every major GC.

The potential offered by a well-designed pretenuring system is high, but even 

then, pretenuring has drawbacks. For instance, because some objects are allocated 

in the nursery, and some in the mature space, the locality of objects may be 

disturbed with respect to a non-pretenuring scheme, resulting in damaged cache 

performance at run-time. Also, by allocating some objects directly into the mature 

space, pretenuring may increase the number of old-to-young pointers that have 

to be trapped by a write-barrier. This not only increases the number of pointers 

that have to be processed by the GC, but also increases the run-time overhead of 

the write-barrier which may have more pointers to add to the remembered set (or 

any other suitable structure).



CHAPTER 2. BACKGROUND 46

2.4.2 Self-Prediction and True Prediction

Predictions based on the analysis of a previous program recording are called 

program-specific predictions, or self-prediction. For instance, Harris [73] records 

allocation sites that consistently allocate long-lived objects using an instrumented 

VM, and later reuses this information to perform pretenuring. This is self

prediction. This is also the case for CHL [84] and Jump et al. [96] because 

they first sample the lifetime of objects based on specific criteria, respectively the 

type of the object and the allocation site during the execution of a program. Once 

they have some confidence that a certain criteria is associated with long object 

lifetime, they can pretenure objects exhibiting this criteria.

The notion of self-prediction is opposed to the notion of true-prediction, whereby 

the lifetime of an object allocated in a program never encountered before can 

be predicted based on the characteristics of this object, such as its size, calling 

context, connectivity towards other objects, type, and the allocation site that 

allocated it.

In an abstracted view, self-prediction consists of predicting the behaviour of 

an item based on the past behaviour of that item, whereas true prediction consists 

of predicting the behaviour of an item based on the behaviour of other items.

2.4.3 Generational Stack Collection And Profile-Driven 

Pretenuring

In [39], Cheng, Harper and Lee (CHL) observe that savings might be made if long- 

lived objects are allocated directly into an older generation. Their implementation 

comprises a two-generation garbage collector where all new objects are allocated 

into a nursery and objects surviving a GC are copied into the old generation. 

Objects suitable for pretenuring are identified via program profiling, dynamic 

sampling at run time, or program analysis.

Each point in the program at which some memory allocation is performed

is called an allocation site. In Java for instance, every new instruction in the



CHAPTER 2. BACKGROUND 47

code is an allocation site. Dynamic sampling is performed by tagging each object 

with the allocation site in the program that allocated it, and inspecting tags of 

dead objects after each collection. From this profile, they identify those sites that 

allocate promoted objects consistently in their collector. An allocation site is said 

to consistently promote objects based on the fraction of objects that that get 

promoted out of all the objects it allocates. They found that over 96% data that 

is copied is allocated at allocation sites whose survival rate is at least 80%. In light 

of this finding, they use a threshold of 80% in their experiments, so allocation sites 

allocating more than 80% of promoted objects are considered for pretenuring.

Objects allocated from a site considered for pretenuring are allocated directly 

into the mature space. With this scheme, CHL observe savings in GC times 

of between 12% and 50%. While the speed improvements in terms of GC time 

are very good, dynamic sampling schemes usually come with run-time overheads 

due to the extra work that has to be performed throughout computation. In 

their experiments, CHL observe that a profiled program typically runs 50% to 

200% slower than its unprofiled version, which is too expensive for any end-user. 

However, they are able to record these statistics and reuse them directly in a 

second run of the program where dynamic sampling is turned off. In this case, 

the execution time is reduced by 4% on average against the unprofiled version of 

their GC.

CHL’s sampling scheme is very dependent on their specific configuration. For 

instance, they consider an allocation site for pretenuring if it consistently allocates 

objects that survive a GC of a specific configuration.This policy gives them GC 

time speedups, but a different setup triggering GCs at different times is likely to 

give different results. Therefore, this approach does not scale well to different GC 

configurations, different promotion policies or different heap sizes.

2.4.4 Dynamic Adaptive Pretenuring

In [73], Harris instrumented a JVM to sample object lifetimes at run-time and 

generate pretenuring decisions, therefore avoiding the need for a profile-gathering



CHAPTER 2. BACKGROUND 48

phase. This paper is the first to consider profile-driven allocation in the context 

of an 0 0  language with automatic memory management. His implementation 

comprises a two-generation generation garbage collector and an object sampling 

module.

A Local Allocation Buffer (LAB) is a thread-specific space in memory, usually 

allocated in the nursery, where a thread can allocate objects. LABs allow threads 

to allocate objects without having to worry about thread synchronisation as each 

thread has its own LAB. Therefore, most objects are allocated in the nursery 

using a bump-pointer within local allocation buffers.

To perform sampling, Harris uses weak references, which unlike normal ref

erences, are not followed by the garbage collector. This means that during GC, 

objects pointed by weak references will not be kept alive if all other references 

to these objects have been deleted. His object sampling is performed every time 

a thread-specific LAB overflows. An auxiliary data structure separate from the 

garbage collected heap records the relevant allocation site of each object being 

sampled along with a weak-reference pointing to this object. When a majority 

of sampled objects at a given site are long-lived, pretenuring decisions are made 

to ensure that any future objects allocated by that site would be allocated in the 

mature space. Reciprocally, using this threshold-based approach, if a majority of 

sampled objects at a given site are short-lived, then pretenuring decisions can be 

reversed. To allocate objects in the appropriate generation, Harris patches the 

code generated by the just-in-time compiler.

By reversing and re-enabling pretenuring decisions if they become harmful, 

this scheme can adapt efficiently to phased behaviour.

One inconvenience of the mechanism is that his work is specific to Java since 

it uses weak pointers.

A second shortcoming of Harris’s approach is that object sampling is imple

mented as part of the LAB overflow handler, meaning objects will only be sam

pled when the buffer overflows, skewing samplings towards large objects. Instead, 

Jump et al. sample objects every n bytes of allocation [96], but this scheme also



CHAPTER 2. BACKGROUND 49

skews sampling (see Section 2.4.6). Sampling has the problem of being reactive, 

which implies that pretenuring decisions can only be made in hindsight, which 

may be too late. The work presented in this thesis does not suffer this drawback.

As part of future work, Harris proposed to use objects types as predictors. This 

idea is implemented by Huang et al. where their sampling technique consists on 

sampling objects at every GC [84] (see Section 2.4.5) rather than on LAB overflow. 

Another alternative for pretenuring proposed by Harris consists of considering a 

combination of the class being instantiated, a single frame of allocation context 

and the allocation site. This would give much more precision to the analysis, but 

the cost of storing and computing this information is higher. To further increase 

precision, one could consider using the call-chain, which defines the sequence of 

functions of a program have been called up to a given point.

2.4.5 Adaptive Pretenuring Schemes For Generational GC

As explained earlier in this chapter, objects may have many different attributes 

such as lifetime, size, type, connectivity with other objects, its own calling context 

etc.. Huang et al. propose a dynamic sampling mechanism to evaluate class-type 

based predictors, as opposed to allocation site based predictors or call-chain based 

predictors [84]. Although using type as a predictor is not as precise as using the 

call-chain, it has the advantage of imposing much less overhead on the system since 

determining the type of an object is relatively cheap at run-time. Potentially, 

this limited overhead can be made virtually free if type-specific allocators are 

implemented and the compiler inserts calls to the appropriate allocator based on 

the type of the object to be allocated. If the survival ratio of objects of a given 

class type is higher than a specified threshold, then future instances of the same 

type will be allocated in the mature space (pretenured).

Huang et al. combine two dynamic feedback techniques, namely Jumpstart 

feedback and Continuous feedback. The first technique, based on the idea that 

some programs have very consistent survival ratios, gathers life-spans of objects 

from each class during the first few GC cycles. This information is then used to



CHAPTER 2. BACKGROUND 50

drive later object allocations.

They use the second technique to tackle programs that do not have consistent 

survival. In this scheme, they continuously collect information during each GC and 

update allocators with such information. Continuous feedback has a higher over

head than the Jumpstart feedback technique. In order to track object lifetimes, 

they gather per-class statistics at each garbage collection, removing the need for 

weak references to track object lifetimes. This alternative is cheaper than weak 

references for two reasons. First, there is no constant sampling overhead since 

sampling is performed at collection time only. Second, it is more space-efficient 

because there is no need to record every weak-reference in a data-structure. How

ever, because sampling is performed during GC, longer pauses may be introduced 

that will have to be offset by the time savings offered by pretenuring.

They show improvements of up to 37% in GC time, and up to 28% in execution 

time. Unfortunately, they report results using the Jikes RVM BaseBase compiler, 

rather than the optimising compiler which may amplify the benefits of pretenuring. 

It is therefore difficult to judge the efficiency of their scheme since researchers 

usually publish results obtained using the optimising compiler, and it is very 

likely that if they did so, the performance improvements they observe would be 

reduced. Furthermore, they only report results from 5 benchmarks (Jess, Javac, 

Jack, GCBench and GCOld) which are known to yield a high number of long-lived 

objects.

2.4.6 Dynamic Object Sampling For Pretenuring

Jump et al. [96] propose a collector with built-in dynamic object sampling where 

sampled objects are tagged. Their sampling mechanism samples objects every 

2" bytes of allocation and piggybacks on a bump-pointer allocator. At every 

allocation, the bump-pointer allocator checks whether the allocation exceeds some 

boundary. If not, the object is allocated: this is the allocation fast path. If yes, 

the allocator executes the allocation slow path which normally just checks if more 

memory needs to be requested, or if a GC should be triggered. At this level an



CHAPTER 2. BACKGROUND 51

extra check is inserted to see if the object being allocated should be sampled or 

not. If the object needs to be sampled, the new allocation sample path is taken.

Each sampled object is marked with an additional word that identifies the 

object’s allocation site and an allocation counter is incremented. They note that 

since a four byte allocation site identifier is added to each sampled object, space 

requirements are increased by at most 0.8% for a 512 byte sample rate, and 

1.6% for 256. During a GC, the collector finds any surviving sampled object and 

computes a survival ratio for each allocation site.

Their implementation yields some interesting properties. First, by not using 

weak-references, they avoid having to trace both dead and live objects, hence 

reducing overheads. Second, by also sampling the actual lifetime of pretenured 

objects, they can efficiently adapt to program-phases. This secondary sampling 

mechanism is performed by periodically allocating objects of a pretenured site 

into the nursery for one allocation phase, allowing the system to reassess the 

prediction.

The system has a lower time and space requirement than Harris’s, because 

they do not keep track of all sampled objects using weak-references. Rather, 

they discover sampled objects that survived GC during tracing. This sampling 

algorithm has the same drawback as Harris’s because sampling is performed when 

a certain boundary of allocation is crossed, which is more likely to happen when 

allocating large objects.

However, their experiments show poor results as they only improve GC time 

in one of eight benchmarks, and degrade throughput by an average of 3% when 

sampling objects every 256 bytes.

In general, sampling-based techniques have the downfall of not handling long- 

lived objects allocated at the beginning of the program. Unfortunately, evidence 

shows, in programs like Jikes RVM4, that a large fraction of long-lived objects are 

indeed allocated at the start of the program [22],

4Jikes RVM is a JVM on top of which a Java program is executed, but since it is written in 
Java and shares the same heap as the program, is is here considered as a program.



CHAPTER 2. BACKGROUND 52

2.4.7 Pretenuring for Java

CHL performs pretenuring decisions based on the fraction of objects allocated 

at a specific site that survive a minor GC. Blackburn et al. [26, 22] extend 

this approach. They remove implementation dependency by normalising object 

lifetime as a multiple of live size, which is the maximum volume of objects live at 

any time in the run of the program.

With an instrumented virtual machine, they record traces of programs in order 

to analyse them. Using these trace files, they compute the lifetime of each object 

and classify each object as short-lived, long-lived or immortal. They observe that 

objects which will never be copied have a lower space requirement than objects 

that may be copied because they do not need a copy reserve. In an Appel-style 

collector (see Section 2.1.3), the copy reserve space overhead is half the heap (100% 

overhead). Therefore, they establish that if the object is going to live longer than 

the time elapsed between its death and the end of the program, more space would 

be saved by allocating it in the immortal region, which does not require a copy 

reserve.

Their classification scheme works as follows:

• An object dying later than halfway between its time of birth and the end of 

the program is classified immortal.

• Otherwise if the object’s age less than a certain threshold5, it is considered 

short-lived.

• In all other cases, the object is considered as long-lived.

Based on the fraction of objects of each kind allocated, allocation sites are 

split into 3 categories: generating predominantly short-lived, long-lived or immor

tal objects. Given an allocation site that allocates a fraction Ss of short-lived 

objects, Ls of long-lived objects and Is of immortal objects, they classify sites 

using homogeneity thresholds Htj  and Hij as follows:

5They use 0-45 x max live size in their experiments.



CHAPTER 2. BACKGROUND 53

• 1. If Is >  Ss +  Ls +  Hif, the site is classified immortal.

• 2. Else, if Is +  Ls > Ss +  Hif, the site is classified long.

• 3. Otherwise, the site is classified short.

The homogeneity thresholds determine the degree of conservativeness: the 

higher Hif is, the more conservative will the predictions be with regards to im

mortal objects. Likewise, the higher Hif is, the more conservative the predictions 

regarding long-lived objects will be.

Wrong predictions can be split into two categories: Type 1 errors and Type 2 

errors. Type 1 are those that classify a long-lived (or immortal) object as young. 

The more conservative one is, the more likely these errors are. However, Type 1 

errors do not incur any additional cost because they are the default behaviour of 

generational garbage collectors.

Type 2 errors, on the other hand, are those that classify short-lived objects as 

long-lived or immortal. These errors are costly because they increase the amount 

of garbage in older generations, reducing the space available for the nursery, and 

potentially increase the number of full-heap GCs. Therefore, in the context of 

this thesis, being conservative means minimising Type 2 errors.

Predictions based on the analysis of a previous recording program are called 

program-specific predictions, or self-predictions. For instance, Harris [73] records 

allocation sites that consistently allocate long-lived objects using an instrumented 

VM, and later reuse this information to perform pretenuring. This is self-prediction. 

To a certain extent, this is also the case for CHL [84] and Jump et al. [96] because 

they first sample the lifetime of objects based on specific criteria, respectively the 

type of the object and the allocation site during the execution of a program. Once 

they have some confidence that a certain criteria is associated with a long object 

lifetime, they can pretenure objects exhibiting this criteria.

Up to this point, Blackburn et al.’s study has investigated self-prediction, 

where the analysis of past runs of a program is used to predict its future behaviour. 

However, by analysing a variety of benchmarks, they are able to isolate allocation



CHAPTER 2. BACKGROUND 54

sites common to these programs and generate lifetime predictions. By using this 

advice, programs never encountered before that make use of any of these common 

allocation sites can benefit from pretenuring (this is true-prediction). Common 

allocation sites can be found in libraries or even the virtual machine itself if the 

VM is written in Java. Furthermore, because they use Jikes RVM, which is written 

in Java, they can make the VM itself benefit from pretenuring, by burning the 

advice into the compiler (build-time advice).

For each trace t, they associate a weight wt with each site where

Wt =  vs/vt (2)

and vs is the volume allocated at the site and vt is the total volume of objects 

allocated in this trace. For each site s, they then generate combined bins SCtS, Lc s, 

Ic,s using weighted averages for all sites. Using Ss(t) as the value of short-lived 

objects generated at the site s for trace t, and using

n

wc =  ^ 2 w t (3)
t = i

they calculate the fraction of short-lived objects using the following formula:

n

S c,s =  s3(t) * w^j / wc (4)
t = i

Fractions of long-lived objects and immortal objects are calculated in the same 

manner. Finally, they re-apply their classification algorithm using these new frac

tions of short-lived, long-lived and immortal objects to classify sites as short-lived, 

long-lived or immortal.

For each individual program that has been analysed, an advice file matching 

allocation sites with pretenuring advice is created.

In their experiments, they use an Appel-style generational collector (see Sec

tion 2.1.3) with a separate immortal space that is never collected. The mature 

space is managed by a semi-space collector. After each nursery collection, all



CHAPTER 2. BACKGROUND 55

surviving objects are copied into the old-generation.

Their VM implements a command line option allowing loading of a program- 

specific advice file. During allocation, objects believed to be short-lived are allo

cated in the nursery. Objects born at sites with long-lived advice are pretenured 

into the mature space, while objects born at sites classified as immortal are allo

cated into the immortal space.

Their experiments show impressive speedups in both GC time and execution 

time, for both build-time advice and program-specific advice. Combining their 

build-time advice and program-specific advice, they are able to achieve GC-time 

improvements of between 40% to 70% on average for most heap configurations. 

Further, total execution time improves on average by 36% for a tight heap.

Their paper is extremely interesting at many levels, and forms an important 

base on which this thesis builds. First, their paper shows how object lifetimes 

can be captured independently of GC specific configurations. Second, their clas

sification allows for impressive speedups in garbage collection time. Since they 

normalise advice with respect to total allocation for a specific execution, they 

can combine advice from different applications that share allocation sites. This 

build-time advice helps in reducing GC time further. Note that their speedups 

are reduced to about 5% when immortal objects are pretenured into the mature 

space instead of the immortal space.

It was shown that using self-prediction can lead to great speedups. However, 

the major downside of self-prediction is that it requires recording and analysing 

large trace files. Gathering trace files and generating advices can take days, render

ing the process very impractical to the end-user. On the other hand, by computing 

a simple offline static analysis of the program, true prediction such as type-based 

predictions could provide important speedups.

2.4.8 Conclusions

Garbage collection is a fundamental feature of most modern programming lan
guages. Many new algorithms and optimisations have been introduced over the



CHAPTER 2. BACKGROUND 56

years, and garbage collection remains an important area of research. It was ac

knowledged that generational collectors often yield good performance, but the 

performance of these algorithms can be greatly diminished if the mutator does 

not follow the weak generational hypothesis which states that “most objects die 

young” . The potential gains that can be achieved by performing pretenuring, 

an optimisation technique consisting of allocating objects believed to have a long 

lifetime directly into the mature space in order to save copying time in these 

collectors were reviewed.

The major downside of pretenuring is the need to record and analyse trace files, 

a very time-consuming task. This thesis shows how data-mining techniques can 

help to predict object lifetimes based on code-level static properties, and hence 

provide true predictions. The following section reviews what data-mining is, how 

it works, and how it can be used.



CHAPTER 2. BACKGROUND 57

2.5 Extracting Knowledge From Data

In recent years, with the dramatic increase in computer storage capacity, gather

ing data has become standard practice. Advances in modern experimental and 

observational methods coupled with the amount of scientific data gathered and 

its complexity have grown massively over the past years. Many sectors such as 

finance, astrology and biology have acquired very large amounts of data. For 

example, banks might gather information such as consumer spending, age, sex, 

marital status, occupation and so on. Biologists on the other hand have gathered 

large amounts of data such as the human gene pool.

Gathering data is essential to all these sectors because of the information that 

can be derived from it. By gathering and analysing data, one can predict future 

events with a certain probability. For instance, banks gather statistics about each 

type of customer and give or refuse loans based on the probability that this type 

of customer would repay. By analysing the gene pool, biologists can predict which 

individuals are susceptible to develop specific diseases based on their DNA.

But extracting knowledge from millions of records is difficult. This section 

presents the characteristics of the dataset, before reviewing the different methods 

one could employ to analyse it. The following section focuses on the different 

techniques and the background necessary to understand the content of this thesis. 

This thesis does not research on knowledge extraction from data, but rather uses 

existing research and tools for the purpose of object lifetime prediction.

2.5.1 Problem Characteristics

Extracting knowledge from non-trivial data is a complex problem. Choosing the 

appropriate technique depends on the dataset and the kind of knowledge one 

wishes to extract.

Before describing the available techniques that could be used in this context, 

the dataset is described with respect to object lifetime prediction. The goal is 

to find correlations between the life span of an object in memory and different



CHAPTER 2. BACKGROUND 58

characteristics of a program, in an attempt to predict how long each about-to- 

be-allocated object is likely to live (categorised as short-lived, long-lived or im

mortal). For a more complete description of the dataset with regards to lifetime, 

pretenuring, and more generally garbage collection, refer to Chapter 3.

The goal is to be able to predict the lifetime of an object based on many 

different attributes (see Chapters 5 and 6).

Available Data

In this thesis, the inputs (or fields) and outputs have different types. In terms of 

lifetime (the output), the data is categorical: following Blackburn et al., objects 

are divided into 3 different categories (or classes), namely ‘short-lived’ , ‘long-lived’ 

and ‘immortal’. Inputs, however, can be of different types such as real numbers, 

boolean numbers, ranges or categories. In Chapter 5, where software metrics are 

used as predictors, 16 inputs of real type corresponding to different measurements 

and particularities gathered from the source code of Java programs are used. In 

Chapter 6 however, where micro-patterns are used to drive the predictions, 60 

input fields of type boolean are used to answer the question “does the class of this 

record exhibit micro-pattern X ” .

Problem size

The used training dataset contains many records (29,234) corresponding to the 

number of allocation sites gathered from the training set (see Chapter 3). Up to 

60 attributes are used for each record from which predictions are generated.

Goal

In a pretenuring system (see Section 2.4), allocating a long-lived object in the 

nursery is not very costly, because this is the default behaviour of a traditional 

generational algorithm. However, it is shown that allocating a short-lived object 

into the mature space or into the immortal space can be very costly. For this 

reason, only those objects that have a very high probability of being long-lived or



CHAPTER 2. BACKGROUND 59

immortal are pretenured. Furthermore, this work strives to understand the deci

sion process in order to draw unexpected, yet useful lessons from it. A correlation 

between some specific object characteristics, or combinations of characteristics to 

specific lifetimes is sought.

Therefore, a method capable of generating rules such as if A and B then (7, 

and associate a probability with each rule is needed. The most accurate prediction 

rules are then selected to minimise the misclassification rate and apply these to 

the data. The result of this procedure would be the prediction of object lifetimes, 

classified as ‘short-lived’ , ‘long-lived’ or ‘immortal’ .

2.5.2 Data Mining: A  Solution To Many Problems

Traditional analytic methods require a sound mathematical and statistical knowl

edge and do not scale well to very large datasets [70]. Analysing vast quantities of 

data gathered by modern techniques calls for a computer-based analytical method.

Data mining has been described as “the nontrivial extraction of implicit, pre

viously unknown, and potentially useful information from data” [58]. It uses 

real-world data and is a popular choice in industry where large quantities of data 

are usually abundant. Used appropriately, it can bring valuable insights and aid 

decision making.

Over the years, many data mining algorithms have been used and developed 

[152], They are used to solve many different problems, and each algorithm has its 

own purpose, strengths and weaknesses. The basic principles of the most common 

data mining problems are explained below.

The Most Common Data Mining Tasks

Regression consists of finding a function capable of predicting the real value of a 

variable based on available data. Linear regression, which uses the formula of a 

straight line (y =  a • x +  b), is the simplest form of regression. It is capable of 

finding the appropriate values for a and b, for which y can be predicted given x.



CHAPTER 2. BACKGROUND 60

This is useful for problems such as predicting the yearly spending of a household 

based on factors like the number of children and the income of the parents.

Clustering tries to group similar data items into clusters based on the values 

of the attributes that describe each item. Clusters are usually created using a 

similarity measure which calculates how similar two data-items are to each other. 

The output of a clustering algorithm is a finite set of categories or clusters that 

describe the data. An example of a clustering problem could consist of identifying 

a category of consumers that tend to default on their loan repayments.

Change and Deviation Detection is used to discover significant changes in the 

data from a previous analysis. For example, meteorologists might use change and 

deviation detection to visualise major changes in climate from month to month 

or year to year.

Association Rides are a set of rules derived from the dataset. They are asso

ciated with a confidence, and all rules with a confidence greater than or equal to 

user-specified thresholds are extracted. These rules are of the form “If attribute X  

then attribute Y ” . For example, supermarkets often group products next to each 

other based on objects frequently bought together. Association rules can help 

them discover these relationships.

Dependence Modeling is a data mining task that involves the discovery of 

dependences among attributes. It helps to relate attributes with each other. De

pendence modeling differs from association rules in that it allows the modeling of 

more complex data. Dependence models are of the form “If a given set of condi

tions are satisfied for data X, then predict the value of the goal attribute for data 

X ” For instance, a bank might find that there is a strong relationship between 

the salary of the customer and their age.

Classification is the task of finding a model capable of predicting the class of a 

data item amongst several predefined classes based on values of attributes of that 

data item. While clustering tries to group output data into relevant categories, 

based on input data, in a classification task, categories (the output) are already 

given to the classification algorithm. In other words, clustering allows you to



CHAPTER 2. BACKGROUND 61

identify categories of data (categories of customers for example), and classification 

allows you to make decisions based on categories.

For example, a bank might wish to issue or refuse a loan based on the income 

of the client their total debt and their age. In this case, the income, debt and age 

of the customer would be the attributes, and issuing or refusing the loan would 

be the class.

Data Mining In The Context Of This Thesis

In this research, only 3 classes of objects are considered with respect to their 

lifetime (short-lived, long-lived or immortal): this is the output. A variation of 

inputs is used to predict the lifetime of an object from it. Therefore, this is a 

classification problem. The following section, reviews classification algorithms in 

more detail.

2.5.3 The Classification Task Of Data Mining

For a specific dataset, classification involves finding a model to predict the class 

of a data item based on its attributes.

The most well known data mining classification models are Decision Trees and 

Rules, Support Vector Machines (SVMs), and Neural networks.

Algorithms such as SVMs and neural networks have a black-box model, while 

decisions trees and rules have a white-box model. In a black-box model, the 

data item’s class is predicted without giving the researcher any indication of the 

way this prediction was achieved. A white-box model instead offers much insight 

into the decision making process to the researchers. Researchers can visualise 

the process, and they might discover unexpected relationships which can be of 

interest.

For this research, it was decided that a white-box approach is more suitable, 

because this work seeks to understand the decision process and learn from it. For 

instance, finding relations such as "I f  the object is of size X, then it ’s long-lived”



CHAPTER 2. BACKGROUND 62

would be useful to the GC community.

Therefore, SVMs and neural networks are discarded from the studied set be

cause of their black-box model. Decision tree models, on the other hand, allow 

the understanding of the decision process and can easily be applied to the dataset. 

Decision tree induction algorithms are reviewed in the following section.

2.5.4 Decision Tree Induction Algorithms

Decision tree induction algorithms create classification models represented in the 

form of a decision tree (which can be converted into a set of rules, as explained 

below) and can be used to understand the decision making process involved in 

reaching each classification. A decision tree can have many internal nodes (non

leaf), where each internal node is labelled with the name of an attribute. In 

decision trees, each arc starting from an internal node represents a possible value 

of the input variable labelling that node, and each leaf node represents the value 

of the class to be predicted for any data item that has the variable values specified 

along the path from the root node to that leaf node.

For instance, to predict the quality of a strawberry (classes ‘Sweet’ or ‘Not 

sweet’) based on its concentration of sugar (‘Low’ or ‘High’) and its concentra

tion of water (‘Low’ or ‘High’), decision trees are suitable. Figure 1 shows a 

hypothetical classification model in the form of a decision tree.

In this model, ‘Sugar Level’ and ‘Water Level’ are nodes, ‘Low’ and ‘High’ are 

arcs, and ‘Sweet’ and ‘Not Sweet’ are leaves.

Building a decision tree model requires the notion of information gain, also 

called Kullback-Leibler divergence [101]. The information gain value is the reduc

tion in entropy (a measure of the uncertainty associated with a random variable) 

from a prior state to a new state.

For example, if one was to guess a number between 1 and 1000, he would 

probably start by asking “is the number less or equal to 500?” . Most people 

would do so intuitively, because this question splits the dataset into two equal 

parts, hence providing the most information gain. The entropy of the dataset at



CHAPTER 2. BACKGROUND 63

Sugar level?

Figure 1: Decision tree for determining the sweetness of a strawberry

the beginning is 10, because we need to ask 10 questions to be sure to find the 

answer. Once the dataset has been split by the above mentioned question, the 

entropy of either remaining part is 9. A decision tree model is built with the 

following steps:

1. Calculate the information gain value for each attribute.

2. Select one attribute with the highest information gain and create a node for 

that attribute.

3. Make a branch from this node for every value of the selected attribute.

4. Partition the dataset in such a way that each new branch is associated with 

the fraction of data that exhibits the attribute value.

5. Recursively repeat the process from step 1 for each of the newly created 

branches until no more partitioning can be performed.

Decision tree induction algorithms have the advantage of creating tree models 

that are easy for humans to understand (provided the tree size is relatively small):



CHAPTER 2. BACKGROUND 64

the classification process is easily understandable. This contrasts with other black

box like algorithms where understanding the classification process is difficult, if 

not impossible. Decision tree models can also be converted into rulesets. I.e. sets 

of if-then rules. This conversion can be done by creating one rule for each path 

from the root node to a leaf node so that the number of rules will be equal to the 

number of leaf nodes.

For instance, the previous example of a decision tree in figure 1 would be 

converted into the set of rules:

• IF sugar =  ‘Low’ THEN class =  ‘Not sweet’ .

• IF sugar =  ‘High’ AND water =  ‘High’ THEN class =  ‘Not sweet’.

• IF sugar =  ‘High’ AND water =  ‘Low’ THEN class =  ‘Sweet’ .

Decision tree induction algorithms can also handle different types of data, 

numerical or categorical, and cope well with large datasets.

For this research, Clementine [64], a well known commercial data mining sys

tem which provides many different data mining algorithms in an integrated envi

ronment, in a plug and play manner was used.

A summary of the requirements explained above is as follows:

• The model must be easy to understand.

• Rules are needed in order to apply the model easily to the data.

• An algorithm capable of coping with different types of data input, such as 

ranges, booleans and categories is needed.

• There is no need to be able to predict every object, but predictions with a 

very high confidence are required.

• Ideally, the algorithm should associate a confidence level with each rule so 

that only those rules with a very high confidence are selected, in order to 

limit misclassihcations.



CHAPTER 2. BACKGROUND 65

Based on these requirements, it was decided to use the C5.0 algorithm which is 

the only algorithm available in Clementine capable of meeting all the requirements. 

Its capabilities are briefly reviewed below.

C5.0

C5.0 [128] was developed by Ross Quinlan as an improvement over the well-known 

C4.5 algorithm [129]. The latter is a powerful and widely used data mining algo

rithm designed to analyse datasets containing thousands to hundreds of thousands 

of records and tens to hundreds of fields. It allows different types of input such 

as booleans, categories, ranges and real numbers. Classifiers can be expressed as 

decision trees or sets of rules, which are easy to understand. Furthermore, this 

algorithm allows for decision trees to be turned into a set of if-then rules, to which 

confidence levels can be added. C4.5, and C5.0 are popular decision tree induction 

algorithms renowned for (amongst other things) the quality of their outputs, their 

flexibility in handling different types of attributes, and their speed.

In a complex dataset, even the best algorithm can not perfectly model all the 

data items. Adaptive boosting [59], a technique implemented in C5.0, aims at 

further refining previously generated models. It is capable of generating and com

bining multiple classifiers to improve predictive accuracy. Boosting reassesses the 

previously generated model, and focuses on data items that have a high misclas- 

sification error rate. This process can be reapplied iteratively (in several rounds) 

in order to further improve the final model. During each boosting round, weights 

are applied to the data items based on their classification error rate: the harder 

an example is to classify, the higher its weight. The algorithm will then focus 

mainly on the most weighted example in order to improve the overall accuracy of 

the model. At the end of each round, weights are re-evaluated to take account of 

the latest changes.



CHAPTER 2. BACKGROUND 66

2.5.5 Summary

Data mining is a technique capable of extracting potentially valuable information 

from vast amounts of data. By choosing a white-box algorithm such as a deci

sion tree induction algorithm, information can be easily understood by humans, 

and lessons can be drawn from it. Using Clementine and C5.0, a large object 

lifetime database can easily be data- mined, and predictions can be derived. The 

possibility offered by C5.0 for generating rules and associating confidence levels 

is particularly useful since only those rules that have a very high confidence level 

can be used, in order to avoid misclassifications.

The next chapter reviews the methodology employed to gather and data-mine 

lifetime information, derive predictions from it, and use these to drive allocation 

inside a specifically modified JVM.



Chapter 3

Methodology

This chapter describes the methodology employed to carry out the experimen

tation. This methodology was chosen with the goal of maximising the accuracy 

of the predictions and maximising the potential performance gains. At the same 

time, this approach is general enough to allow comparison with other research 

carried out in this area.

Section 3.1 gives an overview of the process from recording trace files to gen

erating a knowledge bank. Section 3.2 describes the experimental platform, while 

Section 3.3 describes Jikes RVM in detail. Section 3.4 describes the process by 

which allocation sites are associated with lifetimes before reviewing how this the

sis takes advantage of this knowledge to predict object lifetimes ahead of time. 

Section 3.5, explains how the predictions are made. Section 3.6 discusses how 

objects are classified with respect to their lifetime. Section 3.7 introduces the 

lifetime predictors. Finally, Section 3.8 describes the methodology employed to 

run the data-mining process.

3.1 Process Overview

This thesis discusses how the lifetime of objects within programs never encoun

tered before can be predicted ahead of time. In order to do this, it is necessary to 

associate certain characteristics of the program with object lifetimes. This section

67



CHAPTER 3. METHODOLOGY 68

gives a high-level overview of the process to help the reader visualise the stages 

involved. Each stage is described in greater depth in the remainder of this chapter.

The main stages involved in the methodology are as follows:

1. Gather object lifetimes statistics by recording and analysing tracefiles from 

a training set comprising of as many programs as possible (see Sections 3.4 

and 3.5).

2. Associate a lifetime to each allocation site, based on the lifetimes of the 

objects it allocates (see Section 3.6).

3. Discover specific characteristics about the classes of each program within the 

training set. These class-level characteristics are referred to as predictors, 

because they are used to predict object lifetimes at a later stage (see Section 

3.7).

4. Map each allocation site with two sets of predictors: those associated with 

the class that contains the allocation site, and those associated with the 

class allocated (see Section 3.7).

5. From the two previous stages, derive mappings between predictors and life

times (see Section 3.7.2). In more general terms, this mapping associates 

characteristics of a source class and a destination class with a lifetime.

6. Data-mine the relation from step 5 and generate rules predicting the lifetime 

of an object based on predictors. This information is stored into a knowledge 

bank (see Section 3.8).

7. Determine predictors of a program never encountered before, and query the 

knowledge bank to predict the lifetime of each allocation site (see Section 

3.9).

The remainder of this section highlights the reasoning behind this method

ology, the necessary steps towards the creation of a knowledge bank, and this 

knowledge bank is exploited.



CHAPTER 3. METHODOLOGY 69

3.1.1 Rationale

The process described allows the prediction of the lifetime of objects within a pro

gram never encountered before. This work explores how static program properties, 

based on source-code, can be exploited to predict the lifetime of objects.

Intuitively, the goal is to understand if specific programming patterns or coding 

practices have an impact on object lifetimes, and if these can be captured by 

predictors. Since this work is trying to detect hints from the code itself to predict 

lifetimes, it is hypothesised that there might be some classes or types of classes 

allocating exclusively or predominantly objects of a specific lifetime.

Existing state of the art techniques require either gathering and analysing pro

gram traces for every program, or are performed on the fly using online sampling. 

The first technique requires a large amount of time and needs to be performed 

for each individual program, and each input. The second technique is not able 

to handle long-lived objects allocated at the beginning of the program, and has 

a relatively high runtime overhead due to sampling. A more complete discussion 

about the trade-offs associated with each technique was presented in Section 2.4.

Although pretenuring techniques based on the analysis of trace files are expen

sive, Blackburn et al.’s scheme offers important speedups in both GC time and 

throughput (see Section 2.4.7).

Therefore, if simple program characteristics can give us an indication about 

program lifetimes, state of the art pretenuring systems can be improved by pre

dicting the lifetime of objects in programs never encountered before at a low pre 

runtime cost.

3.1.2 Creating A  Knowledge Bank

The creation of the knowledge bank is performed in several steps. First, the 

execution of several programs is recorded and stored into trace files (see Section 

3.4.2). Trace files are then analysed in order to associate a lifetime with each 

allocation site (see Section 3.6). The source predictors and destination predictors



CHAPTER 3. METHODOLOGY 70

Benchmark
bytecode

Record
benchmark
executions

Tracefile Tracefile analyser 
engine

Predictors-finder
engine

Predictors file

SUe1. SicPreOs. DstPieds 
Sile2. SrcPreds. DstPreds 
Srte3. SrcPreds. DstPreds 
Site4. SrcPreds. DslPreds 
Site5 SrcPreds. DstPreds 
Site6. SrcPreds. DslPreds

Lifetimes file

Sttel, %s. %l. %i. lifetime 
S*e2. %s. %l. %i. lifetime 
Site3. %s. %l. %i. lifetime 
Site4, %s. %l. %i. lifetime 
Site5. %s. %l. %i. lifetime 
SHe6. %#, %l. %i. lifetime

f
r \ i  l u w i c u y c

bank

If predl and pred2 
Then lifetime = 1 Datamine relation
If pred2 and not pred3 
Then lifetime = 3

(C5.0)

If pred5 and pred6 and 
pred9 and not pred 10 
Then lifetime = 2

Predictors /  
lifetime file

Site. SrcPreds. DstPreds 
Site. SrcPreds. DstPreds 
Site. SrcPreds. DstPreds 
Site. SrcPreds. DstPreds 
Site. SrcPreds. DstPreds 
Site. SrcPreds. DstPreds

Figure 2: Creating a knowledge bank.

associated with each allocation site is then retrieved, and the lifetime classification 

gathered previously (see Section 3.7.1) is then added. Finally, this information 

is data mined and rules matching predictors with lifetimes (see Section 3.8) are 

generated. Figure 2 summarises this process.

3.1.3 Exploiting The Knowledge Bank

Exploiting the knowledge bank is a simple process. First, predictors are extracted 

from the program to be run. Then, these predictors are matched against the 

knowledge bank and a lifetime advice file is generated. Finally, the JVM loads 

the advice file and executes the program, pretenuring when necessary. Figure 3 

summarises this process.



CHAPTER 3. METHODOLOGY 71

Knowledge
bank

If predl and pred2 
Then lifetime = 1

If pred2 and not pred3 
Then lifetime = 3

If pred5 and pred6 and 
pred9 and not predIO 
Then lifetime = 2

Rules matching 
engine

i
Advice file

Benchmark Execution
Sitel. Lifetime

1 ih» timo
"  SHe3. Lifetime

Site4. Lifetime 
Site5. Lifetime 
Site€. Lifetime

Bytecode of 
previously 

unseen program

Predictors-finder
engine

Predictors file

Sitel. SrcPreds. DstPreds 
Site2. SrcPreds. DstPreds 
Site3. SrcPreds. DstPreds 
Site4. SrcPreds. DstPreds 
Srte5 SrcPreds. DslPreds 
Site6. SrcPreds, DstPreds

Figure 3: Using the knowledge bank.

3.2 Experimental Setup

The following list describes the hardware platform in which both training and 

testing experiments were performed:

• Model: Dell Optiplex GX270.

• Processor: Intel Pentium 4 2.6 GHz processor with 800 MHz front side bus 

and Hyper-Threading.

• Level 1 Cache: 8 KB.

• Level2 Cache: 512 KB.

• Memory: 1 GB (dual-channel shared DDR SDRAM, 333MHz).

• Operating System: Debian GNU Linux, 2.6.12 kernel.

• Jikes RVM version 2.4.4 (described in Section 3.3).



CHAPTER 3. METHODOLOGY 72

3.3 Jikes RVM

Jikes Research Virtual Machine (Jikes RVM) [1] is an open source virtual machine 

developed by IBM, previously known as the Jalapeno virtual machine. In 2001, 

Jikes RVM was donated to the open source community in an attempt to facili

tate research and offer a standard experimentation platform where novel virtual 

machine ideas could be explored, measured and evaluated. Today, Jikes RVM is 

the most popular experimentation platform in the GC research community and is 

well supported. Programmers can modify and experiment with every part of the 

system.

3.3.1 A  Java Virtual Machine Written in Java

One of the main attractions of Jikes RVM is its interesting property of being a Java 

virtual machine written in Java. Commercial JVM implementations often favour 

a lower-level language such a C or C + + . However, Jikes RVM was developed for 

research purposes and as a proof of concept to show that a Java virtual machine 

could actually be written in Java. Because the implementation is Java based, 

it offers some benefits. For instance, it allows the use of an automatic memory 

manager within the JVM itself, therefore reducing the potential for memory leaks 

and preventing dangling pointers. It also offers type safety as well as object 

oriented design and other benefits offered by the Java language.

Although most of Jikes RVM’s code is implemented in Java, the implemen

tation must sometimes evade the restrictions of the Java language through Jikes 

RVM Magic. Magic methods are used by Jikes RVM’s various compilers to per

form operations such as raw memory access, perform unsafe casts or trigger op

erating system calls which cannot be implemented in Java code. Despite this 

necessity, users remain restricted to the limitations of the Java language in order 

to ensure code safety. For critical sections of the JVM, such as interfacing with 

the operating system, Jikes RVM uses some C code (glue code). The proportion 

of C code in the overall implementation is small (less than a few thousand lines).



CHAPTER 3. METHODOLOGY 73

3.3.2 Boot Loader

Because Jikes RVM is written in Java, it requires a substantial set of services -  

a class loader, an object allocator and a compiler — before even being able to 

run its own code and start the complete virtual machine. The boot-loader is in 

charge of loading the boot-image which encapsulates all the essential core services 

for Jikes RVM to run [146]. Later, the boot-image is loaded into memory and 

executed before running the Jikes RVM itself.

The boot-image itself is created by an external boot-image writer based on the 

existing Jikes RVM code. Part of the C code used in Jikes RVM has the purpose 

of implementing the boot loader.

3.3.3 Optimising Compiler Configuration

Unlike standard JVMs, Jikes RVM does not use a bytecode interpreter. Instead, 

Jikes RVM compiles bytecode into machine-code using a Just In Time (JIT) com

piler. Researchers can choose (and experiment) between several JIT compilers, 

including an optimising compiler, which comprises several levels of optimisation.

The optimising compiler is in charge of increasing the efficiency of hot methods 

(methods that are frequently accessed) by recompiling them at a higher level of 

optimisation. Recompiling a method at a higher level of optimisation is expensive, 

and the adaptive system ensures this operation is done asynchronously [33].

To achieve performance speedups, the optimising compiler performs aggres

sive method inlining (replaces a function call site with the body of the callee), 

increasing the size of the program instruction set. To optimise hot methods, the 

optimising compiler itself needs to allocate temporary data, resulting in an in

crease in the program’s memory footprint. The induced side effect for this work 

is that the lifetime of objects allocated by the mutator is artificially increased 

(remember that time is measures in number of bytes allocated).



CHAPTER 3. METHODOLOGY 74

3.3.4 M M Tk

Jikes RVM uses a very well defined and highly reusable memory management 

toolkit called MMTk [21]. This module is now part of the standard distribution 

of Jikes RVM.

This framework is flexible because it allows the quick implementation of new 

garbage collectors. Its reusable components offer a common base for the main 

garbage collector algorithms. Its modularity and portability allow it to be easily 

reused in other virtual machines.

MMTk natively supports many garbage collectors such as copying collectors, 

mark-sweep, reference counting and different flavours of generational collectors. 

Researchers wishing to implement a new garbage collector can usually extend an 

existing collector.

MMTk also implements several allocators to suit different purposes: a bump- 

pointer allocator, a segregated free-list allocator and a treadmill allocator [11]. 

The bump-pointer allocator allocates objects in a sequential manner where the 

next memory slot available is found by incrementing the bump-pointer by the size 

of the last allocated object. The free-list allocator divides memory into blocks of 

different sizes. In a treadmill allocator, objects are allocated by moving the free 

pointer forward in a doubly finked fist [11]. A size-segregated free-list maintains 

references to the available memory blocks. New objects are then allocated in a 

block of memory which accommodates the size of that object.

As a results of its well defined structure and enthusiastic community combined 

with its efficiency and ease of use, Jikes RVM is the ideal Java platform to perform 

experiments and advance the state of the art in areas such as dynamic compilation, 

adaptive optimization, garbage collection, thread scheduling and synchronization.

3.4 Discovering Object Lifetimes

Knowing ahead of time when an object is likely to die is a very appealing idea (see 

Section 2.2). Appropriate exploitation of this information can significantly reduce



CHAPTER 3. METHODOLOGY 75

the time spent tracing objects, hence reducing GC pause times [22], This section 

discusses the compiler setup used to gather object lifetimes, before discussing how 

trace files are gathered and analysed to discover object lifetimes.

3.4.1 Optimising Compiler Setup

Section 3.3.3 described how the optimising compiler can help improve perfor

mance. However, in order to optimise hot methods, the optimising compiler needs 

to allocate temporary data.

Because the focus is on application allocated data, the wish is to minimise 

the effect of compiler-allocated data exaggerating object lifetimes. Therefore, the 

training data set is profiled with the “BaseBase” configuration. In this configura

tion, the compiler does not perform any type of optimisation either at build-time, 

or run-time. Since this thesis is not concerned about performance at this stage, 

using the BaseBase configuration is the best choice for measurement purposes as 

objects lifetimes can be captured with more precision.

3.4.2 Recording Trace Files

In order to analyse object lifetimes, object information such as the time of allo

cation and death is recorded into files referred to as trciceftles. This process is 

explained below.

Time

As explained in Chapter 2, measuring the time during which an object lives can 

prove difficult. This is due to the non-determinism nature of the JVM itself and 

on the operating system underneath.

In a JVM, many things can happen at different times from one run of a par

ticular input and settings to another. A list (by no mean exhaustive) of the main 

causes of non-derminism in the JVM is listed below:



CHAPTER 3. METHODOLOGY 76

• VM thread switches typically happen at different times, and depending on 

the place in the code at which they occur, can extend or decrease the pro

gram’s runtime. A typical example happens when threads have to synchro

nise.

• JIT compilation happens at different times depending on how “hot” a method 

is (see Section 3.3.3), which in turns depends on how many times the method 

has been executed.

• Garbage collections also happen at different times depending on the amount 

of free memory available in the heap. This in turns depends on several factors 

including the amount of data allocated by the JIT compiler which can be 

triggered at different times.

• Cache also plays an important role because depending on the code being 

executed, the cache can get filled with relevant or irrelevant data.

On top of these, the operating system itself can cause non-determinism with 

threads switching at different times, allocating more or less time for the JVM 

to run.

Because of these issues, the time spent by the program, the GC, or the lifetime 

of an object is highly variable if measured in wall clock time. Instead, it is common 

practice in the world of garbage collection to measure time in terms of bytes 

allocated.

Unfortunately, this measure is not perfect because it is still non-determinate 

in the presence of threads. Also, an optimising JIT compiler allocates data to 

perform compilation, therefore artificially increasing the lifetimes of user program 

objects even if all user threads are stopped. Note that as described in section 

3.10.9, the BaseBase compiler configuration is used for the measurements, which 

does not perform any type of optimisation either at build-time, or run-time.



CHAPTER 3. METHODOLOGY 77

Recording Allocations

In Jikes RVM, each object is allocated via a method known as the allocator. 

This method is in charge of allocating objects in the relevant part of the heap 

depending on allocation policies. For instance, immortal objects are allocated in 

the immortal region while large objects are allocated in the Large Object Space. In 

the case of a generational collector, all other objects are allocated in the nursery.

In order to create trace files, the allocator is modified so that each allocation 

is recorded into a trace file. However, a more subtle mechanism is required to 

record the time of death of an object.

Merlin

Recording the exact time of death of an object is ideal. However, a brute force 

approach consisting of triggering a full-heap GC at every allocation could take a 

simple program months to run.

Merlin is a trace generation algorithm that was developed to allow researchers 

to gather exact lifetime data in a shorter period of time [75]. Unlike a brute force 

approach, it does not trigger extra GCs (apart from those GCs generated by the 

fact that Merlin itself generates some garbage). Instead, Merlin timestamps live 

objects whenever they may become unreachable. After each GC, Merlin finds out 

which objects are dead, and reconstructs the time of death of each object, based 

on the last timestamp. If a dead object has a timestamp older than one of its 

descendents, then the timestamp is propagated to its decendents, since they had 

to be live at the time that particular object was last timestamped.

Unfortunately, gathering traces with Merlin can still be slow. For example, 

profiling javac from the jvm98 benchmarks suite with Merlin can take a week 

whereas a non-instrumented run of the program would usually be completed 

within less than 10 seconds.



CHAPTER 3. METHODOLOGY 78

McmTrace

MemTrace, developed Richard Jones and Chris Ryder [94], performs a full garbage 

collection at regular intervals (e.g. 64 KB) and records dead objects in a trace 

Hie after each garbage collection. Garbage collection is done using a semi-space 

garbage collector as MemTrace requires all GCs to be full heap collections. In

ternally, MemTrace keeps a bitmap matching each entry to a specific memory 

location. Whenever a new object is allocated, a bit corresponding to its location 

is set in the bitmap.

During a GC, surviving objects are copied to to-space. The bits associated 

with their old location are then unset, and new bits are set to record their new 

locations. At the end of the GC phase, the from-space part of the bitmap is 

scanned, and every object with an associated bit still set is considered dead, and 

a new death record is created.

The Jikes RVM compiler is modified to cause the object ID (which corresponds 

to its time of birth) and the allocation site ID (which is mapped to the object’s 

allocation site in a separate file) to be written into the header of each allocated 

object. MemTrace can therefore output death records containing the object ID, 

the age of the object and the allocation site ID that created the object.

Unlike Merlin, MemTrace is capable of profiling javac in 3.5 hours. On the 

other hand, because MemTrace performs garbage collections every 64 KB of allo

cation, object death times are only accurate to 64 KB.

Although a granularity of 64KB tends to exaggerate the lifetime of short-lived 

objects, it c an be argued that no practical garbage collector can take advantage 

of a finer granularity. The trace files analysed in this thesis were recorded using 

MemTrace and acquired from MemTrace’s creators.



CHAPTER 3. METHODOLOGY 79

Size of a Trace File

MemTrace’s recorded trace files usually contain hundreds of megabytes of data, 

and can sometimes consume several gigabytes uncompressed. In comparison, Mer

lin’s trace files are much bigger as they also contain records about each pointer 

update.

3.4.3 Inside a Trace File

Structure of a Trace File

The MemTrace trace files have the following line-based format:

• Allocation record: A objectID size sitelD

• Immortal allocation record: I objectID size sitelD

• Death record: D objectID size age sitelD

The objectID is an identifier unique to each object, and the sitelD  is an identifier 

unique to an allocation site. Size and age are recorded in bytes.

Note that while the death record contains the age of the object, recording 

allocations is still necessary because some objects do not die.

Once trace files have been recorded, they are analysed, and the lifetime of 

each object is computed. Likewise, each allocation site needs to be associated a 

lifetime based on the lifetimes of objects allocated at each site. Then, for each 

program and each input, a unique file is created which associates allocation sites 

with lifetime.

The next section discusses the lifetime classification policy.

3.5 Training Data Set

The previous section discussed how trace files are gathered and analysed. This 

section reviews the training set for data mining, from which trace files are gath

ered.



CHAPTER 3. METHODOLOGY 80

Benchmark Files N C L O C
DaCapo Package 268 42244
DaCapo Shared 24 3789
DaCapo Shared Ratio 8.95% 8.97%
jvm98 Package 177 58873
jvm98 Shared 46 6006
jvm98 Shared Ratio 26% 10.2%

Table 1: Harness statistics for DaCapo and jvm98

The purpose is to explore the extent to which program-specific prediction can 

be provided to guide pretenuring. However, it is important that such program- 

specific prediction nevertheless be true prediction rather than self-prediction [14], 

that is, the prediction should not be derived simply from a past execution of the 

same program (see Section 2.4.2).

The next section discusses the Cross Validation Leave Out One technique in 

the context of this work’s training set.

3.5.1 The Case for CVLOO

Cross Validation Leave Out One [100] is a common machine learning technique 

which consists of dynamically splitting the dataset into a training set and a test 

set until all combinations have been covered. For example, given 10 benchmarks, 

CVLOO would train on 9 benchmarks and test on the remaining one. Each 

possible combination of training set and test set is tested before generating results. 

It was decided not to use CVLOO to be sure that no element of self-prediction 

would be found in the methodology.

For instance, all benchmarks of jvm98 share common code such as the test 

harness, input/output (10) code, reporter code, as well as libraries. In the same 

manner, the DaCapo benchmarks (see Section 3.5.2) also share common code.

Table 1 shows the quantity of code that is shared between benchmarks, ex

cluding libraries. In this table, “DaCapo Package” and “jvm98 Package” refer to 

the source code of each set of benchmarks, excluding libraries. “DaCapo Shared”



CHAPTER 3. METHODOLOGY 81

and jvm98 Shared show how much of the code within each package is shared. 

“DaCapo Shared” Ratio and jvm98 Shared Ratio are the ratios of shared code 

when compared to the whole package. The second column “Files” is a count of 

the number of corresponding files and “NC LOC” is the non-comment lines of 

code. As can be seen from the table, excluding libraries, the DaCapo benchmarks 

share 8.97% of lines of code, and the jvm98 benchmarks share 10.2%.

What is more, the DaCapo benchmarks are all real-world open-source applica

tions that share a large amount of library code [20]. If the CVLOO approach had 

been chosen, there would have been the risk of allowing some code to be available 

both in the training set and the test set.

Instead of using CVLOO, benchmarks are divided into a training set and 

a testing set. Training is performed using the DaCapo benchmarks, a set of 

benchmarks gathered from real-world applications. Testing, on the other hand, is 

performed on the jvm98 suite [147] which provides a set of well-tested benchmarks 

commonly used in the GC field to measure performance. While jvm98 benchmarks 

are not as large as DaCapo, they offer a well tested environment to run programs 

and allow the comparison of findings with previous research. Using this approach 

ensures that the training set and the test set are two completely different sets of 

benchmarks.

3.5.2 DaCapo Benchmarks

As explained above, the analysed benchmarks are the DaCapo benchmarks (ver

sion 051009), a set of open-source real-world application [20]. This set of bench

marks is referred to as the training set. DaCapo was used to construct rule-sets 

because it is the best representative of ‘real-world’ programs: it comprises a set 

of benchmarks with a large number of classes, written in an object-oriented style, 

generates intensive memory loads, and provides a large knowledge bank for the 

rule sets. Table 2 reports the maximum livesize of each benchmark, the amount 

of data it allocates and the number of allocation sites it exhibits for each input 

size available.



CHAPTER 3. METHODOLOGY 82

Program Input Max. live (M B ) Allocated (M B ) Sites
antlr d e fa u lt 7 .09 270.21 2014
antlr large 8.21 649.6 2014
antlr sm all 6 .15 19.37 1180
b lo a t d e fa u lt 9 .90 389.98 996
b lo a t large 12.72 3218 1940
b lo a t sm all 10.35 66.62 1696
fo p d e fa u lt 16 .47 130.63 2334
fo p large 17.61 132 2336
fo p sm all 11.81 82 .65 2269
h sq ld b d e fa u lt 19.8 1025 1265
h sq ld b sm all 8 .34 227 .63 1268
jy t h o n d e fa u lt 7 .56 387.85 1464
jy t h o n large 9 .02 1724 1432
jy t h o n sm all 8 .86 49 .45 1410
p m d d efa u lt 15 .38 281.91 1384
p m d large 16.56 1533 1393
p m d sm all 9 .42 54 .84 1358
ps d e fa u lt 4 .12 548.81 1179
ps large 15 .39 1676 1166
ps sm all 5 .03 157.03 1176

Table 2: The DaCapo benchmark suite, v. 051009, BaseBase compiled.
Max. live is th e  la rgest v o lu m e  o f  d a ta  live  at an y  p o in t  in  th e  p ro g ra m , Allocation  is 
t o ta l a llo ca t io n  an d  Sites is th e  n u m b er o f  sites  u sed  at ru n -t im e  b y  th e  b e n ch m a rk ,

Jikes R V M  o r  libraries .



CHAPTER 3. METHODOLOGY 83

3.6 Lifetime Classification

In order to predict accurately the lifetime of an object, self-prediction techniques 

such as those described by Blackburn et al. and Chen et al. (see Section 2.4) 

require analysing previously recorded data. This step is a crucial in their method

ology, and also in this thesis. The approach outlined in this thesis differs from 

theirs because of the fact that this thesis only need to do this once, whereas they 

need to trace and analyse any previously unseen programs.

Classifying the lifetime of an object in order to generate accurate pretenuring 

advice is a difficult task (see Chapter 2.4). Ideally, the classification scheme needs 

to be generic enough to be applicable to any type of generational garbage collector.

Accurate and exploitable lifetime predictions would allow us to make correct 

pretenuring decisions, hence reducing the time spent copying data and reducing 

the overall GC time. On the contrary, wrong lifetime predictions, would fill the 

mature and immortal spaces with short-lived objects, hence requiring more fre

quent GCs, or would allocate objects with a long life span in the nursery. It is 

therefore crucial for the classification scheme to deliver accurate and exploitable 

pretenuring advice.

3.6.1 Lifetime Classification Scheme

This thesis analyses ways by which the lifetime of an object can be predicted 

ahead of time. After reviewing the relevant literature (see Section 2.4), it was 

decided to use Blackburn et al.’s [26, 22] classification scheme (see Section 2.4.7). 

The reasons for this choice are reviewed below.

Performance

The classification scheme of Blackburn et al. offers impressive performance gains 

over GC time and throughput. Their scheme has been proven to offer good results 

across many different conditions (different heap sizes, different programs, different 

inputs, etc.).



CHAPTER 3. METHODOLOGY 84

Reusability

They capture and classify object lifetimes independently of GC specific configu

rations. Therefore, by using this scheme, the predictions could be applied to any 

generational GC.

Lifetime Groups

Despite important speedups, their scheme uses only three lifetime groups: short

lived, long-lived and immortal. This factor is important because the data-mining 

algorithm needs only to consider three potential lifetime predictions, hence reduc

ing the possibilities for error (see Section 2.4.7).

Point of Reference

A natural consequence of the choice is that by using the same classification tech

nique as Blackburn et ah, their results can be used as a point of reference with 

which to compare the work carried out in this thesis.

After recording and analysing traces, their scheme classifies directly each al

location site into one of three categories. Instead, predictions for each allocation 

site are generated by matching the predictors at each allocation site against the 

knowledge bank. Therefore, the new scheme is less precise than Blackburn’s since 

unlike self-prediction, this thesis applies the predictions to previously unseen pro

grams, and this thesis considers self-prediction (direct lifetime prediction from 

traces analysis) as the best-case scenario. Achieving performance gains close to, 

or better than self-prediction would be siginificant achievement.

Homogeneity Thresholds

Like Blackburn et ah, this thesis classifies objects in three categories short-lived, 

long-lived and immortal, by using thresholds expressed as fractions of the max

imum live size1 of the program. In the experiments, a homogeneity Hif =  0.45 *

M a x im u m  volum e o f  ob jects  live at any tim e during the program ’s execution.



CHAPTER 3. METHODOLOGY 85

and Hif =  0.0 are used as these are the thresholds used in their experiments2. For 

a more complete description of the classification process, please refer to Section 

2.4.7.

An important consideration for the research of this thesis is the definition of 

immortal objects. While Blackburn et al. define an immortal object as an object 

dying later than halfway between its time of birth and the end of the program, 

this thesis investigates the isolation of predictors that have a direct correlation 

with a more traditional definition of an immortal object: an object that dies only 

at the very end of the program. This immortal classification is discussed in the 

following paragraph.

3.6.2 Immortal Classification

While it is commonly acknowledged [113, 1] that segregating immortal objects 

in a different space can lead to performance improvements, the definition of an 

immortal object can be ambiguous. Blackburn et al. [26, 22] define an immortal 

object as an object dying later than halfway between its time of birth and the end 

of the program (see Section 2.4.7). This definition of immortal objects is effective 

in the context of an Appel-style collector since the copy reserve space overhead 

is 100% (half the heap). In this context if an object is going to live longer than 

the time elapsed between its death and the end of the program, more space would 

be saved by allocating it in the immortal region, which does not require a copy 

reserve (see Section 2.4.7).

While Blackburn et al.’s scheme has proved to work very well, this thesis also 

investigated a different classification scheme of immortal objects. A more natural 

definition of immortal, which would apply equally to any collector possessing an 

immortal space, is for objects that die at the very end of the program. Using 

this definition, it is expected that less objects would be considered immortal. 

However, as explained in Section 3.1.1, the intuition was that there might be

2Recall that Hif is the hom ogeneity threshold for long-lived ob jects , and Hif is the hom o
geneity threshold for im m ortal ob jects  (see Section 2.4.7).



CHAPTER 3. METHODOLOGY 8 6

some programming constructs that can be captured, which correlate with the 

allocation of objects dying only at the very end of the program.

In general, this thesis found that where pretenuring advice provides perfor

mance gains, the benefit is sometimes greater with the heuristic definition (Black

burn) than with the ‘true’ definition (object dying at the end of the program). 

Otherwise, results are similar. For this reason, only results using the heuristic 

definition (Blackburn et al.’s definition) of immortal objects are reported3.

3.7 Lifetime Predictors

This thesis explores two different types of information about object classes in order 

to predict their lifetime: software metrics (see Chapter 5) and micro-patterns (see 

Chapter 6). Software metrics help describing the quality and complexity of a 

software system in an impartial and objective way. Instead, micro-patterns, are 

similar to design patterns [60] but closer to the implementation: a set of micro

patterns may implement a design pattern.

Because the following sections of this chapter apply to both approaches, these 

different types of information are simply referred to as predictors. This section 

assumes that for any class, there is a static analysis that provides a predictor set. 

In both cases, each class is associated with its corresponding set of predictors.

3.7.1 Source and Destination

In order to gain more information about each allocation site, this thesis not only 

considers the class of the object it allocates, but it also considers the class of the 

object that allocated it. In the remainder of this chapter, the following definitions 

are used:

• source refers to the class within which the object is allocated.

• destination refers to the class of the object allocated.

3R em em ber that tim e is calculated in num ber o f  bytes a llocated (see Section 2.1)



CHAPTER 3. METHODOLOGY 87

For example:

p u b lic  c la ss  F o o  {

B a r  b a r  =  new B a r  ( ) ;

M u m b le  m u m b le  =  new B a r  ( ) ;

}
In the code sample above, a new object bar of type Bar is allocated within a class 

of type Foo. An object mumble of static type Mumble and dynamic type Bar is 

also allocated in the same class Foo.

Because both allocation sites are located in class Foo, the class of type Foo is 

considered as the source, and the class of type Bar as destination in both cases. 

Note that for simplicity, only the dynamic type of an object is considered, and 

therefore Mumble is not considered in the second allocation. Future work could 

explore the use of static type instead of dynamic type and generics as predictors.

To the best of our knowledge, the only publication considering the use of source 

object as well as the destination object is the paper Decrypting The Java Gene 

Pool published at the International Symposium in Memory Management in 2007 

by Marion et al. [95].

3.7.2 Mapping Sets Of Predictors To Lifetime

The gathering of trace files in order to calculate object lifetimes, and how they 

are used to associate a lifetime with each allocation site was previously discussed. 

The association of source and destination classes with each allocation site in order 

to gather more context was also discussed. This section discusses how all this 

information is mapped together, in order for the data-mining tool to process it 

and generate predictions.

Consider a finite set of predictors M V  (table 3) and a lifetime C T . Each 

allocation site is associated a lifetime and a set of source predictors and destination 

predictors (mapping S).



CHAPTER 3. METHODOLOGY

M V  = {Po,Pl,--- ,Pn} (Set of all predictors)
C T  = {short, long, immortal} (lifetime)
SC = SitelD -»• C T

<s = SitelD - »  P ( M V )  x P ( M V )
VC = F ( M V )  x P ( M V )  -»• CT

Table 3: Site, predictors and lifetime mappings.

Using this information, the mapping VC =  SC oS~l is needed to associate sets 

of source predictors and destination predictors with a lifetime. In other words, 

the association of characteristics of a source class and a destination class with a 

lifetime is needed.

The aim is to find predictors of the source class, the destination class, or a 

combination of both, which correlate highly with specific lifetimes. The follow

ing section reviews how the data-mining tool can use this information to find 

predictors that highly correlate with object lifetimes.

3.8 Mining The Data

Previous sections showed how to map sets of source predictors and destination 

predictors to lifetimes. In order to be able to make predictions regarding the 

lifetime of Java objects, the site-lifetime relation VC  is data-mined to discover 

which attributes (combinations of patterns) are good lifetimes predictors.

This section describes the data-mining setup used in this thesis, how rules are 

generated, and how they are exploited them.

3.8.1 The Dataset

The dataset comprises of 29,234 records which correspond to the number of al

location sites gathered from the DaCapo benchmarks. Each record is composed 

of a set of source predictors, a set of destination predictors and the allocation 

site’s computed lifetime. Records for software metric predictors contain 16 differ

ent inputs (8 source predictors and 8 destination predictors) only, while records



CHAPTER 3. METHODOLOGY 89

for micro-pattern predictors contain 60 different inputs (30 source micro-patterns, 

and 30 destination micro-patterns).

Before performing data-mining, classical approaches usually require the re

searcher to clean  the data set before feeding it to the algorithm. Cleaning the 

data set is done to ensure that there are no duplicate entries that may skew the 

results. This process is usually necessary due to the way data is gathered in 

domains such as biology.

Unlike the classical data mining approach, it was decided not to clean the data 

set by removing duplicate or contradictory data. There are two reasons for this 

choice. First, V C  is one-to-many. Second, this research intends to take account of 

reinforcement of a prediction (i.e. if many inputs make the same prediction, this 

strengthens the merit of the prediction).

3.8.2 Boosting

In order to improve the accuracy of the predictions, the boosting feature offered 

in C5.0 (see Section 2.5.4) was used. This allowed the authors to refine the final 

model, and optimise the rules. In the experiments, 10 rounds of boosting were 

performed, allowing the boosting algorithm to refine the classification model to a 

high level.

3.8.3 Generating Rules

Using Clementine’s C5.0 algorithm (see Section 2.5), and using the training dataset 

results as explained above, the following type of rules were generated:

//Rule 57 for IMMORTAL (351.712, 0.996)

if Src=#x and Dst!=#y and Dst=#x then IMM

Outputs from C5.0 rules are in disjunctive normal form. The rule above is 

true in 99 .6 %  of the cases: this is the confidence level. “Src # x ” and “Dst # y ” 

refer to specific predictors used as source and destination predictors respectively. 

The rule states “I f  the source exhibits p red ictor  # x  and the destination  does not



CHAPTER 3. METHODOLOGY 90

exhibit predictor # y  but also exhibits predictor jfx, then instances allocated by this 

site are immortal in 99.6% of the cases”.

C5.0 thus provides a set of rules associating predictors with lifetime advice 

and a confidence level. This data constitutes a historical knowledge bank which 

allocation sites can query by matching predictor-sets; it can be refined at any time 

as further programs are analysed. Such queries can be built into the compiler or 

performed off-line and stored as (allocation-site,lifetime) pairs.

The use of confidence levels in the context of the experiments is reviewed 

below.

3.8.4 Using The Rules

In this thesis, the confidence level is used to define the conservatism of the pre

diction system. The higher the confidence level, the more likely the rule is to 

make a correct prediction (although it might be desirable to use a lower level to 

capture more predictions). Therefore, the level of conservatism can be varied by 

not considering rules with a low confidence level, in order to reduce the number 

of wrong pretenuring decisions made.

The reader is reminded that it is not essential to predict the lifetime of all 

objects. Rather, for objects that can be predicted, it is important to predict their 

lifetime with high confidence.

This is a crucial part of the system developed in this thesis, because varying 

the degree of conservatism of the system can have a big impact on performance. 

For instance, if pretenuring yields good performance for a certain program, it may 

be worth trying a more aggressive (lower) confidence level. Alternatively, if the 

pretenuring system yields bad results for a certain program, putting the confidence 

level at a higher level might improve performance.

The pretenuring scheme used works as follows:

1. Any rule with confidence less than a fixed threshold is exluded.

2. For any allocation site where the allocator and the allocatee match a set a



CHAPTER 3. METHODOLOGY 91

rules, the rule r with the highest confidence level was selected.

Theoretically, conflicting rules with identical confidences are possible. In prac

tice, it was found that advice with a confidence higher than 80% never conflicts.

3.9 From Predictors To Allocation Sites

This chapter discussed the way data-mining rules are computed and associated 

with lifetimes to create a knowledge bank. Below is a description of the different 

ways by which the knowledge bank can be exploited.

3.9.1 Reusing Data-Mining Rules “As-Is”

While possessing data-mining rules is enough in theory to make predictions about 

the lifetime of an object, reusing it in the virtual machine “as is” would bear some 

significant disadvantages. For instance, a mechanism to discover the predictors 

associated with each object about to be allocated and match it with the knowl

edge bank would be required . This process would have to be performed on-line, 

typically by the class loader, as classes are loaded into the JVM.

The corollaries are as follows.

1. First, the class-loader would have to implement a potentially heavy infras

tructure in order to discover the predictors (micro-patterns or software met

rics) of each object about to be allocated.

2. Second, the compiler would have to determine (at run-time) the best allo

cation advice by matching the first mention of object predictors with the 

data-mining rules database.

3. Only then would the compiler be able to generate the allocation code (for 

the object to be allocated in the appropriate region).

This methodology has some obvious drawbacks. The infrastructure required

to be created and inserted into various parts of Jikes RVM would be significant,



CHAPTER 3. METHODOLOGY 92

and the extra time-overhead induced by all the extra computation required would 

very unlikely be regained by the copying time saved during GCs.

3.9.2 Approach

To avoid a costly runtime overhead, off-line reusable advice files mapping alloca

tion sites directly to lifetimes are computed. The format of these advice files is 

described in Section 4.2.

Considering a finite set of predictors M V  and a lifetime C T  (table 3), the 

knowledge bank initially contains mappings from predictors to lifetimes (mapping 

VC).  In order to prepare the advice files, the process below is followed:

1. All the allocation sites (SitelD) within the program to be executed are iden

tified by parsing the program’s bytecode and identifying every object allo

cation statement (=  allocation sites).

2. For each allocation site, the source class and the destination class are lo

cated from the bytecode. Therefore, for each allocation site, is it possible to 

know the type of the object being allocated (destination) and the class that 

allocated the object (source).

3. Predictors of both source and destination classes are then identified by using 

the relevant predictor identifier tool. For instance, for this research on micro

patterns, a micro-patterns detector tool would be used, while for the research 

on software metrics, a metrics detector tool would be used. The mapping S 

is obtained.

4. Once the relevant predictors have been identified and associated with each 

allocation site, they are matched with the lifetime knowledge bank, and as

sociated the relevant lifetime. If the knowledge bank does not contain advice 

for the predictors exhibited by a particular allocation site, then the site is 

considered “short-lived” . The mapping SC =  S o VC  which associates sets 

of source predictors and destination predictors with a lifetime is produced.



CHAPTER 3. METHODOLOGY 93

5. At this stage, is it possible to associate a lifetime with every allocation site. 

Files matching allocation sites to lifetimes are then generated. The format 

of the advice files is described in Section 4.2.

Once these files have been generated, they are then ready to be used by the VM 

that can make use of the advices they contain. Chapter 4 discusses implementation 

details.

3.10 Testing Phase

The previous sections explained the way lifetime data was gathered, and the way 

lifetime predictions were generated. This section details the methodology used to 

test the predictions.

3.10.1 Test Benchmarks

As explained above, testing was performed on the jvm98 suite [147] which pro

vides a set of well-tested benchmarks commonly used in the GC field to measure 

performance. jvm98 benchmarks are a set of benchmarks offering a well tested 

environment to run programs and allowing the comparison of findings with previ

ous research. Also, because they run much faster than the DaCapo benchmarks, 

much more tests were performed than would otherwise have been possible, which 

helped refining the methodology.

3.10.2 A  Generic Approach

Because training is performed on the DaCapo benchmarks and rules are applied 

to jvm98, the approach taken is generic: this is true prediction.



CHAPTER 3. METHODOLOGY 94

3.10.3 User Mode

To allow minimum interference from other applications of the system, all the tests 

were performed in single user mode4 on this test Linux machine.

3.10.4 Best of Five Runs

When performing experiments, one could decide to run several iterations of the 

same program in the same JVM instance. At each iteration, objects predicted im

mortal would be allocated into the immortal space which is never collected. At the 

end of the iteration, all immortal objects allocated using the system would become 

garbage, reducing the amount of heap space available for the next iteration.

To avoid the above mentioned problem, each tests is run several times, in 

several different JVM instances. It was decided that each test would be run 5 

times.

In the analyses, results from the test performed in the least wall-clock time are 

taken, since this is supposedly the test which encountered the least interference 

from other parts of the system. Also, the intuition behind taking the best of several 

runs is that the aim is to measure mostly program execution, and not other parts 

of the system such as class loading and JIT compilation. It is therefore assumed 

that this test has the most accurate value.

3.10.5 Compiler Replay Option

In a recent study, Blackburn et al. [25] advocate that due to non-deteminism in 

the JVM and the platform being tested, researchers should have a sound method

ology to evaluate the performance of its optimisations. Although this paper had 

not yet been published at the time the experiments in this thesis were performed, 

the experimental methodology used matches their advice. Because tests are per

formed using an adaptive optimising compiler, doing measurements on the system

4Single user m ode ensures that on ly the very necessary program s are loaded to  allow the 
operating system  to  run.



CHAPTER 3. METHODOLOGY 95

is hazardous because the optimising compiler might not recompile methods at the 

same time from one run to another (see Section 3.3.3).

Jikes RVM provides a compiler replay option, allowing reuse of the profiling 

of the adaptive compiler from a previous run to allow fair comparisons. It ensures 

each method will be optimized at the same level from one run to another of the 

program in Jikes RVM, therefore removing the unpredictability of the adaptive 

compiler system, while keeping the same level of performance. In the experiments, 

this feature is used to improve the stability of results.

3.10.6 Varying Prediction Accuracy

The datamining tool associates a level of confidence to each predicted rule. Tests 

are performed by varying the minimum confidence level required for a rule to be 

taken into account.

3.10.7 Varying Heap Sizes

The impact of heap sizes on performance was also measured by performing tests 

on different heap sizes. The minimum heap size5 required was experimentally de

termined by the system equipped with a copy mature-space for each SpecJVM98 

benchmark. Table 4 details the volume of data allocated, the minimum heap size 

and the maximum livesize associated with each benchmark.

The heap size is varied from the minimum heap size to 4 times the minimum heap 

size, so measurements are performed with 7 different heap sizes. Measurements 

are performed using the following multipliers of minimum heap size: 1, l|, l|, 2, 

2|, 3 and 4.

5T he minim um  heap size is the minimum heap size value necessary to  run a program . Since 
a copy  m ature space is used, space for the copy-reserve also needs to  be reserved.



CHAPTER 3. METHODOLOGY 96

Program Max. live (MB) Allocated (MB) Minimum heap size
-201-compress 15 MB 133 MB 21 MB
_202_jess 12 MB 393 MB 22 MB
-205-raytrace 16 MB 255 MB 30 MB
-209-db 21 MB 144 MB 39 MB
_213_javac 21 MB 295 MB 40 MB
_222_mpegaudio 11 MB 54 MB 18 MB
_227-mtrt 21 MB 261 MB 38 MB
_228_jack 11 MB 408 MB 22 MB

Table 4: “Spec JVM98” benchmarks characteristics.

3.10.8 Programs Inputs

The DaCapo benchmarks provide three input sizes which are small, default and 

large. The DaCapo benchmarks were profiled using the small and large inputs to 

ensure the system is robust against most input sizes. However, input default was 

not profiled for any of the benchmarks, as this input is in some cases the same as 

input large, and including it may skew the training set.

The jvm98 benchmarks allow three input sizes which are Speed 1, Speed 10 and 

Speed 100. Speed 1 is intended as a quick checkout of the benchmark programs on 

a JVM, while Speed 10 is provided for test purposes. Results are reported using 

input size 100.

3.10.9 Compiler Configuration

Jikes RVM allows many different build configurations. Researchers can configure 

the compilation level of the main system, as well as the JIT compiler to be used.

To measure the performance improvements of this method, tests are performed 

using a FastAdaptive configuration. This configuration means that the optimising 

compiler is used at both build-time and run-time.





CHAPTER 3. METHODOLOGY 97

3.10.10 Garbage Collector

Tests were run using an Appel-style generational collector[3]. In this scheme, 

objects are allocated in the nursery, and when the nursery is full, a nursery col

lection is triggered. The surviving objects are then copied into the mature space, 

increasing the size of the mature-space and decreasing the space available for the 

nursery accordingly. Consequently, the more space gets used by the mature-space, 

the less space is available for the nursery, and minor-collections become more fre

quent. Finally, when the size of the nursery is less than a certain threashold, a 

full heap collection is triggered to free some memory from the mature-space.

Although the default collector in Jikes RVM is currently a generational collec

tor with a mature space managed by a mark and sweep policy (genMS), it was 

decided to use an Appel-style collector (genCopy) because this is the collector 

used by Blackburn et al. [26, 22] in their experiments. Since Blackburn et al.’s 

methodology is the best case scenario, the aim was to obtain results that are 

comparable to that point of reference.



Chapter 4

Implementation

Chapter 3 described the methodology employed to perform the experiments. The 

framework and the different steps involved in generating lifetime predictions were 

discussed. The framework is flexible and extensible to other measures than soft

ware metrics and micro-patterns.

In order to make use of these predictions, a system in the Jikes RVM Java 

virtual machine[l] which allocates objects in relevant parts of the heap according 

to their expected lifetime was developed. This chapter details the main charac

teristics of the system.

Section 4.1 gives an overview of the implementation. A description of the 

advice file format (see Section 4.2) is discussed and the way advice (see Section 

4.3) is stored described. The allocation policy is discussed in Section 4.4. Finally 

Section 4.5 reviews the performance overhead induced by the implementation, and 

Section 4.6, to create a point of reference, details the performance gains of the 

system when doing self-prediction.

4.1 Implementation Overview

Chapter 3 described the experimental platform used for this research. This section 

provides a brief overview of the way the advice system was implemented into Jikes 

RVM. This section is written as a way to give the reader a general view of the

98



CHAPTER 4. IMPLEMENTATION 99

system, as opposed to a fine-grained understanding of the system. The following 

sections of this chapter, on the other hand, explain the system in more detail.

4.1.1 Command-line Parameters

To perform allocation decisions, the virtual machine needs to query the pre

computed knowledge bank. There are several ways this mechanism could be 

implemented.

One strategy would be to hard-code the knowledge bank into the JVM, and 

recompile it. This strategy would avoid having to dynamically load the knowledge 

bank at each JVM execution, but would lack flexibility, since any changes in the 

knowledge bank would require the JVM to be recompiled.

A second strategy would involve storing the knowledge bank in separate files 

that would be loaded and burned into Jikes RVM’s allocator at the time the JVM 

is being compiled. This strategy is more flexible than the previous one since no 

code needs to be rewritten when upgrading the knowledge bank. Unfortunately, 

this technique still requires the JVM to be recompiled every time the policy is 

changed.

Because it is not desirable to have to recompile the JVM every time the knowl

edge bank is upgraded, it was decided to go for a third strategy. Advice is kept in 

unique program-specific files which are derived from the knowledge bank. They 

are computed ahead of time based on the predictors exhibited by each program. 

The name of the advice file to be used is supplied to the JVM using command-line 

arguments.

A high-level explanation of the way the JVM is initialised is as follows. Ini

tially, the JVM is started by the boot program, which is responsible for doing the 

low-level preparations such as establishing the initial virtual memory map and 

installing the C wrapper functions in memory so that they are accessible by the 

JVM. Once this step is complete, all further initialisation of the JVM is done in 

Java, or by using the previously registered C wrapper functions. Initialisation 

continues by performing a variety of operations such as initialising the memory



CHAPTER 4. IMPLEMENTATION 100

manager, the JIT compiler and the class-loader. Finally, the JVM parses the 

command line arguments and loads the input file provided, before loading and 

executing the program class supplied on the command line.

By using this strategy, new allocation policies can be explored without the 

need to recompile the Jikes RVM.

4.1.2 Input File

When the input file is loaded into the JVM, it is then parsed and allocation advice 

is stored into an internal structure. For more information regarding the advice 

file format, refer to Section 4.2. For more information regarding the way advice 

is stored internally, refer to Section 4.3.

4.1.3 Allocation Policy

Once the advice file has been loaded and parsed, an internal structure holds infor

mation mapping allocation sites to lifetimes. When a site is compiled by the JIT 

compiler, the system checks if any advice for the allocation site is available, and if 

so, that advice is burned into the generated code as a constant. If no information 

is available for a particular allocation site, the default advice is inserted into the 

generated code. Therefore, the system only needs to check for advice when a site 

is compiled, not at every object allocation.

Under the default policy of the system, large objects are allocated in a special 

region called Large Object Space (LOS) where they are managed separately. Some 

VM specific objects required by the JVM are allocated in the immortal space. All 

other objects are allocated into the nursery.

More information regarding the allocation policy, is given in Section 4.4.



CHAPTER 4. IMPLEMENTATION 101

4.2 Advice Files Format

Section 3.9 described how advice files are created for each particular program 

about to be run. This section describes the format used to match allocation sites 

with advice.

In Java, every class and interface has a fully qualified name used to uniquely 

identify it. For example, the fully qualified name of the class “String” in Java is 

“java.lang. String” .

The Advice files contain a line for each allocation site whose lifetime can be 

predicted. Each line displays the fully qualified name of the class in which the 

allocation occurs, followed by the method in which the allocation occurs, followed 

by its offset in the bytecode and the advice. This format can be expressed as 

follows:

ClassName: MethodName: Offset prediction

“ClassName” is the fully qualified name of a class, “MethodName” is the fully 

qualified name of the method, and “Offset” is the bytecode offset of the allocation 

statement within the method. For example:

Ljava/security/AllPermission;:newPermissionCollection()Ljava/security/Permis- 

sionCollection;:0 2

The fully qualified name here shows a call site from the class AllPermission 

(from package java.security), in method newPermissionCollection(), which re

turns a PermissionCollection object, and the offset within the method is 0. Re

garding the lifetime convention, 0 means short-lived, 1 means long-lived and 2 

means immortal. Consequently, the advice predicts that this allocation site allo

cates mostly immortal objects.



CHAPTER 4. IMPLEMENTATION 102

4.3 Storing Advice In Memory

The previous section showed how advice files are created. This section analyses 

how advice is stored in Jikes RVM’s memory.

4.3.1 Parsing The Input File

When reading an advice file, the aim is to extract its advice and store it into 

memory to be reused at a later point in the program.

To this end, Chris Ryder, at the University of Kent added a parser to the 

JVM. For each line of the input file, the parser extracts the allocation site along 

with the allocation advice associated with it. Mappings between allocation sites 

and allocation advice are then stored into memory in one of two ways, discussed 

below.

4.3.2 Using a HashMap

The storage mechanism used to store advice should require as little memory as 

possible while allowing very fast retrieval of data. In his first prototype, Ryder 

stored information in a “HashMap” , mapping fully qualified names with lifetime. 

For instance, the storing mechanism associated a key object (String class, String 

method, String type, int offset) with its lifetime (int):

(String class, String method, String type, int offset) key —> (int lifetime) value

In the association above, class is the fully qualified name of the class in which the 

allocation site resides. Likewise, method is the name of the method containing 

the allocation site, while type is the type returned by the method and offset, is 

the offset at which the allocation site can be found.

The way this storage mechanism can be improved is investigated below.



CHAPTER 4. IMPLEMENTATION 103

4.3.3 Improving The Storage Mechanism

The naive implementation used in the first prototype suffers the overhead of hav

ing to store fully qualified name strings for each allocation site possessing ad

vice, therefore incurring duplication of information since none of those strings are 

shared. For example, all the sites of a single class would duplicate the class String.

Ryder therefore developed a less memory-intensive approach. JikesRVM’s 

class loader maintains its own HashMap holding strings referring to class names, 

method names and type names, and ensures there are no duplicates. In the class 

loader, these Strings are wrapped into objects called VM.Atom , which are used 

to represent names, descriptors, and string literals appearing in a class’s constant 

pool.

Rather than associating raw Strings with advice, Ryder now reuses the class 

loader’s information and maintains the HashMap as follows:

(VM_Atom class, VM_Atom method, VM_Atom type, int offset) key 

—> (int lifetime) value

Note that the VM^Atoms are now just references to the class loader’s VM.Atoms. 

As a consequence, reusing VM^Atoms that would have been allocated anyway can 

reduce the memory requirements of the system.

4.4 Allocation Policies

As described in Section 4.2, the format of the advice files offer an estimated 

prediction of the lifetime of objects allocated at specific sites. However, it is the 

responsibility of the JVM to decide how to use this advice and in which region to 

allocate an object. This section explains the allocation policies used during the 

experiments.

In the Jikes RVM, every new object is allocated via the same allocation 

method, which takes in a parameter known as the allocator. The allocator defines 

the space in which the JVM would normally allocate an object. For instance, in



CHAPTER 4. IMPLEMENTATION 104

the case of a generational collector with a copy mature space, the allocator can 

be nursery, mature space, large object space or immortal space.

Ryder modified the compiler and the allocation method so that for every new 

object, an advice parameter is passed to the method, along with the default alloca

tor parameter given by the JVM. This way, the allocation method is supplemented 

with a custom advice.

When an allocation site is being compiled by the JIT compiler, the system 

checks if any advice for the allocation site is available. If so, that advice is burned 

into the generated code as a constant.

The allocation method then has to decide the space in which the object needs 

to be allocated, based on the allocator and the advice (see following Section).

4.4.1 W hom  To Trust?

For each object allocated, it is necessary to make the following choice: “Should 

the advice system or the allocator provided by the JVM be trusted, given the 

JVM might happen to know more about this particular object?” . Unfortunately, 

there is no definite answer to this question, and different cases require different 

decisions. For instance, if the JVM’s allocator is the default space, it might be 

assumed that the JVM does not know what to do with this particular object. On 

the other hand, if the JVM’s allocator is the immortal space or the large object 

space, then following the allocator is probably a good idea.

It was decided to follow only the advice when the allocator suggests allocating 

in the default space. When the allocator wishes to allocate in any other region, 

it is assumed that the JVM knows more about the object than the advice does, 

and therefore follow its policy.

By default, Jikes RVM allocates all objects of certain VM packages in the im

mortal region, because these are not expected to die before the end of the program. 

Examples of such packages include GCSpy “Lorg/m m tk/vm /gcspy/” a heap vi

sualisation framework [127], and Jikes RVM’s memory management subsystem 

“Lorg/mmtk/” .



CHAPTER 4. IMPLEMENTATION 105

~ ....  Advice
A llo c a to r ^ ^ -^ ^ ^ Short-lived/No Advice Long-lived Immortal

Nursery Nursery Mature Immortal
Mature Mature Mature Immortal
LO Space LO Space LO Space Immortal
Immortal Immortal Immortal Immortal

Table 5: Allocation Policy 
LO Space-, large object space.

Table 5 summarizes this allocation policy.

4.4.2 Implementing The Switch

For every new object allocated, the allocation method has to decide whether to 

trust the advice or the allocator. Implementing a combination of if statements 

that would be executed at every new allocation could prove costly.

In the implementation, binary values were associated to each allocator, each 

advice and each space. Binary values were chosen in such a manner that the 

result of a binary AND between the allocator and the advice would give us the 

code of the space in which to allocate the object. This way, only a single bytecode 

instruction is required to decide in which space the object should be allocated.

In the implementation of Jikes RVM modified for this thesis, the nursery al

locator is given a value of OxF (1111), the mature space allocator a value of OxC 

(1100), the large object space allocator a value of 0x9 (1001), and the immortal 

space allocator a value of 0x0 (0000). Similarly, short-lived advice is given the 

value OxF (1111), long-lived advice is given the value OxC (1100), and the im

mortal advice is given the value 0x0 (0000). Table 6 summarises these values and 

shows how they are used.



CHAPTER 4. IMPLEMENTATION 106

....... .. .......  Advice
Allocator Short/NA (1111) Long (1100) Imm(OOOO)

Nurs (1111) 
Mat (1100) 
LOS (1001) 
Imm (0000)

Nurs (1111) 
Mat (1100) 
LOS (1001) 
Imm (0000)

Mat (1100) 
Mat (1100) 
LOS (1001) 
Imm (0000)

Imm (0000) 
Imm (0000) 
Imm (0000) 
Imm (0000)

Table 6: Advices And Spaces Binary Values

4.5 Advice Loading Overhead

This section investigates the execution time overhead incurred by loading and 

parsing the advice file.

All the tests are performed using a generational copy collector memory man

agement system. Jikes RVM is compiled using the FastAdaptive optimising com

piler (see Section 3.3.3). In this configuration, the compiler turns off all assertion 

checks and uses an adaptive JIT compiler capable of optimising frequently used 

methods. Details of the experimental platform are available in Section 3.2. For a 

complete description of the experimental methodology, please refer to Chapter 3.

Loading an advice file and storing its information has a cost, both in terms of 

memory space and loading time. These overheads are discussed in the following 

sections.

4.5.1 Execution Time Overhead

To estimate the execution time overhead, the regular execution time of the VM 

running a test benchmark is measured against the execution time of the VM run

ning the same benchmark, which also loads a neutral advice file where all advice 

is short-lived. Unlike regular performance tests, in which the interest mostly lies 

in GC time, the focus is here on the execution time of the entire program (using 

the time command on linux), including the VM bootup time. The reason for this 

is that the overhead of loading the file is carried by the virtual machine itself at 

bootup, so the best way to understand the global impact that loading an advice



CHAPTER 4. IMPLEMENTATION 107

file has on the system consists on timing the execution time of the entire VM 

using an external tool. Also, Jikes RVM’s time statistics were not used for these 

experiments because Jikes RVM cannot start gathering any time statistics before 

the entire JVM is fully booted, which is precisely the aim of this experiment.

With the exception of using the time command instead of Jikes RVM’s re

portable time statistics, the methodology employed to calculate the time overhead 

of the system is the same as described in Chapter 3. In particular, the optimising 

compiler settings, the compiler replay options, the “best of 5 runs” approach, the 

varying heap size, and the garbage collector used are the same as described in 

Chapter 3.

The Tests

The implementation was tested using SPEC’s jvm98 benchmarks with different 

heap sizes, shown as multiples of the minimum heap size required to successfully 

run the program. Note that Jikes RVM allows the heap size to be dynamically 

resized using some heuristics to determine when a bigger or smaller heap would be 

more efficient. Since this can have unexpected impact on the performance tests, 

it was decided to fix the minimum heap size and the maximum heap size to the 

same value to ensure this does not happen.

jvm98 allows benchmarks to be run using three different problem sizes, namely 

Speed 1, Speed 10 and Speed 100. These tests follow SPEC’s recommendation that 

reportable results must be run with a problem size of 100.

Figure 4 shows the relative degradation or improvement of the program’s run

time with a neutral advice file against the default run. Here, +2  would mean that 

loading the advice slows down the program by an average of 2%.

For clarity purposes, these results are also reported in Table 7. In this table, 

each line corresponds to a specific heap size, and each column to a specific bench

mark.

This data show that the advice system induces a small overhead in execution



CHAPTER 4. IMPLEMENTATION 108

aiuu uo^noaxa %

Figure 4: Advice system time overhead, Speed 100

He
ap

 s
ize



CHAPTER 4. IMPLEMENTATION 109

Bench 201 202 205 209 213 222 227 228 Avg
Heap size 

1 X +2.49 -14.66 +1.38 +0.28 +2.70 +0.33 +0.26 +0.52 -0.84
1.25 X +0.00 +17.23 -1.64 +0.19 +0.82 +3.11 +0.52 +0.34 +2.57
1.5 X -0.17 +2.82 +0.27 +0.00 +2.94 +2.15 +0.00 -0.17 +0.98
1.75 X +3.17 +  1.41 +0.82 -0.19 -0.11 -0.16 +0.79 +0 .87 +0.82

2 X -2.18 +0.35 +0.83 +0.47 -0.76 +0.49 +0.78 -0.17 -0.02
2.33 X -0.72 -6.09 +0.82 +0.09 +1.28 -0.49 +0.52 +1.40 -0.40
2.67 X -4.75 +0.35 +0.82 -0.09 +1.39 +0.66 +0.52 +0.35 -0.09

3 X -0.73 +19.86 +1.09 +0.19 +  1.18 +0.16 +  1.32 +0.88 +2.99
3.5 X -0.19 -15.54 +1.09 +0.28 +0.96 +0.16 +0.79 +0.71 -1.47
4 X -2.40 +0.29 +0.82 +0.09 +1.18 +0.16 +0.52 +1.43 +0.26

Average -0.55 +0.60 +0.63 +0.13 +1.16 +0.66 +0.60 +0.61 +0.48

Table 7: Advice file loading time percentage overhead over benchmarks’ default 
execution times.

time.

Because the maximum heap size is fixed and the advice system is stored into 

the default Jikes RVM immortal space, the space devoted to the nursery and the 

mature space is reduced. This may affect GC scheduling and hence increase the 

amount of live data that needs to be promoted at the first GC. This effect may 

also accumulate with further GCs.

_202_jess in more details

Table 7 shows that -2020ess has a rather erratic behaviour, with spikes of up to 

20% overhead. The analysis below shows the reasons for this behaviour. Figure 5 

shows the absolute execution times for both _202-jess not loading an advice file, 

and _202-jess loading a neutral advice file.

For clarity purposes, this paragraph uses the notation ‘A ’ to refer to the case 

when an advice file is loaded, and ‘NA’ to refer to the case when no advice hie is 

loaded.

Unexpected behaviours happen at heap sizes IX, 1.5X, 3X, 3.5X, and 4X. A 

big jump from IX to 1.5X is noticed. The height of the jump can be explained by 

the fact that between IX and 1.5X, where NA performs badly, A performs better, 

and vice-versa. Likewise, at 3X and 4X, A performs worse than NA, whereas at 

3.5X, NA performs worse than A.



Figure 5: A
dvice system

 tim
e overhead for 1-202-jess\ Speed 100.

o

C
H

A
P

T
E

R
 4. 

IM
P

L
E

M
E

N
T

A
T

IO
N



CHAPTER 4. IMPLEMENTATION 111

Heap size No advice loading 
(Minor, Major)

Advice loading 
(Minor, Major)

1 X 298,1 304,1
1.25 X 88,0 93,0
1.5 X 43,0 44,0

1.75 X 33,0 33,0
2 X 27,0 27,0

2.33 X 21,0 21,0
2.67 X 18,0 18,0

3 X 16,0 16,0
3.5 X 14,0 14,0
4 X 13,0 13,0
5 X 13,0 13,0

Table 8: Garbage collection counts for ‘.202-jess’ , Speed 100.

In general, due to non-determinism in the JVM, both A and NA are unstable 

in terms of execution time as the heap grows bigger, which explains the variations 

in relative execution time.

Next, _202-jess benchmark is analysed in Table 8 which shows the minor 

garbage collections, and full garbage collections triggered during the run of the 

program. Each column shows two numbers separated by a comma. The first 

number indicates the total number of collections (both minor and major) that 

occured during the run of the benchmark, while the second number indicates the 

number of major collections that occured.

At minimum heap size, 1 full heap collection had to be triggered in both 

cases. However, as the heap grows bigger, minor collections alone were sufficient 

to reclaim space for the application to run.

At tight heaps (1 X to 1.5 X), the system (loading an advice file) requires more 

minor GCs to happen.

An average percentage overhead of 0.48% is reported. In real life, this overhead 

is likely to be even less significant since programs would typically run much longer 

than the SpecJVM98 test benchmarks.



CHAPTER 4. IMPLEMENTATION 112

4.5.2 Estimated Space Overhead

To estimate the space overhead of the advice system, code was inserted inside Jikes 

RVM to print ont the heap usage of the system. Loading the advice file involves 

some extra work to be performed by the JVM, such as loading Java classes like 

HashMap into memory earlier than it would otherwise. Likewise, some VM.Atoms 

have to be created. For this reason, it was decided to compare heap usage at two 

key points: before the program starts running and at the end of the program. The 

intuition is that at the end of the program, these classes that were loaded earlier 

due to the modifications made for this work would have been loaded anyway.

At each of these key points, the heap usage of the system is compared with a 

neutral advice file, against the heap usage of the system without such advice. To 

ensure fair comparison, a full heap GC is triggered before each of the key points 

to make sure the heap does not contain any garbage.

Table 9 below summarises the findings. The first part of the table shows the 

results for the first key point, and the second part of the table the results for 

the second key point. Note that apart from the number of advice lines in the 

advice hie loaded (Nb Ad), all the data is expressed in numbers of pages, each 

page having a size of 4KB. This is because Jikes RVM only keeps count of how 

many pages are being used at any given time by each region. Hence there is an 

error margin of plus or minus 4KB.

At key point 1, the system constantly uses 8 pages more in the immortal region 

when loading advice. In one case however ( ‘L213_javac” ), the system also require 

8 extra pages in the mature space.

At key point 2, a constant increase of 8 pages is witnessed in the immortal 

space when loading an advice hie. In 2 cases ( “_209_db” and “2213_javac” ), 8 

extra pages are also used in the mature space.

In most cases, as expected, the overhead at the hrst key point is higher than 

the overhead at the second keypoint. This is due to some VM^Atoms being 

generated earlier than they would otherwise when loading an advice hie, which



CHAPTER 4. IMPLEMENTATION 113

Benchmark 201 202 205 209 213 222 227 228
Nb Ad 363 523 463 373 656 426 462 538
Boot 0 0 0 0 0 0 0 0
Immo 32 32 32 32 32 32 32 32

<D Meta 1 1 1 1 1 1 1 1
"a?

i-H
> LOS 884 884 884 884 884 884 884 884

£
CD

<3 Nurs 0 0 0 0 0 0 0 0O Mature 1024 1024 1024 1024 1024 1024 1024 1024
1“H Total 1941 1941 1941 1941 1941 1941 1941 1941
g Boot 0 0 0 0 0 0 0 0
oa Immo 40 40 40 40 40 40 40 40
>■> Meta 1 1 1 1 1 1 1 1

<D LOS 884 884 884 884 884 884 884 884
Nurs 0 0 0 0 0 0 0 0

< Mature 1024 1024 1024 1024 1032 1024 1024 1024
Total 1949 1949 1949 1949 1957 1949 1949 1949

Overhead 8 8 8 8 16 8 8 8
Boot 0 0 0 0 0 0 0 0
Immo 32 40 32 32 40 32 32 32

CD
U Meta 4 2 2 3 4 2 2 2
> LOS 1026 1161 1156 1026 1179 1159 1156 1178a3 Nurs 0 0 0 0 0 0 0 0O

2 ; Mature 1136 1320 1184 1128 1600 1248 1184 1368
CN Total 2198 2523 2374 2189 2823 2441 2374 2588
_g Boot 0 0 0 0 0 0 0 0
o
a Immo 40 48 40 40 48 40 40 40
>> Meta 4 2 2 3 4 2 2 2

(D LOS 1026 1161 1156 1026 1176 1159 1156 1178
Nurs 0 0 0 0 0 0 0 0

<1 Mature 1136 1320 1184 1136 1608 1248 1184 1376
Total 2206 2531 2382 2205 2836 2449 2382 2604

Overhead 8 8 8 16 13 8 8 16

Table 9: Advice file space overhead over benchmark default space usage.



CHAPTER 4. IMPLEMENTATION 114

are then shared with the compiler. The biggest space overhead observed is 16 

pages (64KB), although most of the time, the overhead is 8 pages (32KB). Note 

that a tuple is used in order to record the number of pages in each region, and 

this mechanism has itself some space overhead which is reflected in table 9. 

These figures show that the space overhead of the system is minimal.

4.6 Self Prediction Performance

This section analyses the performance of the implementation using self-prediction. 

The trace files previously generated are analysed and their lifetimes are computed 

using Blackburn et al’s formula (refer to Section 2.4.7 for more details). Because 

advice is generated based on past runs of the program, self-prediction provides 

each allocation site of each program the best possible lifetime advice.

By applying Blackburn et al’s formula (see Section 2.4.7), one advice file per 

benchmark is generated, matching each allocation site with its associated lifetime. 

For each experiment, Jikes RVM is given the advice file corresponding to the 

program about to be run.

4.6.1 GC Time Performance

Figure 6 presents a performance graph (as percentage improvement in GC time) of 

the system using self-prediction. This set of experiments was performed using the 

homogeneity thresholds described in Section 3.6.1. The methodology employed 

to carry out these experiments is the same methodology as described in Section 

3.10.

This graph shows constant improvements in GC time of up to 80% for most 

programs.

However, ‘_228_jack’ behaves badly as the heap grows bigger. Table 10 shows 

the number of GCs triggered during a run of the program, both with and without 

advice, at each specific heap size. As the heap becomes large (>  3 times), the 

number of GCs with and without advice remains constant at 16 minor GCs.



60

40

20

0

■20

■40

■60

■80

m
ot

-

T “ I----------------I-------------
201_compress

202Jess — b —  
205_raytrace — e—

-ô ......... 209Jdb"
213_javac

222_mpegaudio ---v — 
227_mtrt 
228Jack — ■&—

_ l ___________________ I___________________ I ~ ~ A -------------A - ................ ............. A ----------- - -  - A -  - ---------------- 4  -

1.5 2 2.5 3 3.5 4 4.5
Heap size (X times minimum heap size)



CHAPTER 4. IMPLEMENTATION 116

Heap size No advice loading 
(Minor, Major)

Advice loading 
(Minor, Major)

1 X 115,2 149,3
1.25 X 104,1 129,2
1.5 X 37,1 38,1

1.75 X 102,1 124,1
2 X 57,0 59,0

2.33 X 28,0 29,0
2.67 X 22,0 22,0

3 X 18,0 18,0
3.5 X 16,0 16,0
4 X 16,0 16,0
5 X 16,0 16,0

Table 10: Garbage collection counts for 1-228-jack\ Speed 100.

It is reasoned that when using the advice, since pretenuring is performed with 

a fixed sized heap, less space is available for the nursery. Therefore, GCs are 

triggered earlier, and objects are given less time to die. The expected consequence 

is that more objects survive and need to be copied into the mature space, hence 

increasing GC time. Note that this was not noticed by Blackburn et al. in their 

study, because they do not consider heap sizes large than three times the maximum 

heap size.

This experiment confirms Blackburn et al.’s findings that pretenuring can offer 

improvements in GC time (of up to 80%). However, making wrong predictions 

can sometimes harm the program and predictions must therefore be used with 

caution when deciding on the pretenuring policies.

4.6.2 Performance Over Execution Time

It was shown that improvements over GC time can be high using self-predicted 

pretenuring (the best possible scenario). Unfortunately, GC time improvements 

do not always translate into throughput improvements. This section discusses the 

reasons for this.

Reference fields from immortal objects need to be remembered in order to



CHAPTER 4. IMPLEMENTATION 117

avoid them being garbage collected at the next GC. In MMTk, this is achieved by 

using the remembered set during minor collections. However, at major GCs, it is 

achieved by scanning the immortal space to ensure that only reachable immortal 

objects are traced.

The downside of this technique is that immortal objects need an extra mark-bit 

to be set during the marking phase. Every time a new immortal object is allocated, 

the allocator needs to set the mark-bit to the appropriate value, requiring extra 

computation and reducing throughput. On the other hand, by considering only 

reachable immortal objects as part of the root set, this technique reduces nepotism 

(see Section 2.4).

Furthermore, objects consume less space in the immortal region than they 

would in the mature space because there is no need to keep a copy reserve. When 

pretenuring into the mature space, objects consume twice as much space as they 

would in the immortal space because of the necessity to keep a copy-reserve. This 

reduces the space available for the nursery, and can increase the number of GCs 

required. Furthermore, the more pretenuring is employed, the greater the chance 

the write barrier slow path1 has to be taken, slowing down the overall throughput.

The overall throughput of the system is studied using self-predictions as op

posed to the default case.

Graph 7 details the relative throughput improvement using self-prediction at 

input size 100. On average, throughput is improved by up to 20% (-202-jess). 

However, some benchmarks, such as _209-db show degradations of up to 9%.

“_209-db” has the pecularity of being sensitive to the layout of data since it 

repeatedly traverses long singly-linked lists [22]. Also, since GC time only accounts 

for a small fraction of execution time (see Tables 8 and 9), the GC improvements 

introduced can easily be overridden by small mutator overheads. Studying the

xAt every pointer write, the write barrier compares the address of the source pointer with the 
address of the destination pointer. If the source pointer is in the mature space or the immortal 
space and the destination pointer is in the nursery, then the source pointer needs to be recorded 
in a buffer, routinely refered to as remset. This operation of adding a reference inside the remset 
is performed by following the write barrier’s slow path.



CHAPTER 4. IMPLEMENTATION 118

IO

LO

LO
CO

co

LO
evi

C\J

Figure 7: Self-prediction: throughput improvement, Speed 100 (lower is better).

He
ap

 s
ize

 (X
 ti

m
es

 m
in

im
um

 h
ea

p 
si

ze
)



Figure 8: Self-prediction: G
C

 tim
e as a fraction of throughput, Speed 100.

co

C
H

A
P

T
E

R
 4. 

IM
P

L
E

M
E

N
T

A
T

IO
N



CHAPTER 4. IMPLEMENTATION 120

SUM} 0 8 X 8  /  8 W ! l  0 0

Figure 9: Self-prediction: GC time as a fraction of throughput, Speed 100, loga
rithmic scale.

He
ap

 s
ize

 (X
 ti

m
es

 m
in

im
um

 h
ea

p 
si

ze
)



CHAPTER 4. IMPLEMENTATION 121

hardware performance counters for _209_db revealed that despite a similar cache 

behaviour for the mutator, there is an increase in DTLB misses2 of 33%.

This proves that even using the best predictions, pretenuring can, while di

minishing the time spent doing GC, actually reduce a program’s throughput. The 

following sections discuss these aspects further in the context of this work.

4.6.3 Self-Prediction Conclusion

Pretenuring has interesting potential when applying appropriate predictions. Im

provements in GC time can be as great as 80%. However, even with the best 

predictions, pretenuring can in some cases impose an overhead on the overall 

program execution time.

4.7 Conclusion

This chapter showed how the system is implemented to take advantage of ahead- 

of-time lifetime predictions. As far as performance is concerned, this implemen

tation has a low runtime overhead and the potential benefits can be significant 

(self-prediction). Chapter 6 shows how we can predict lifetime ahead of time using 

static properties captured by micro-patterns. Chapter 5 describes how is is possi

ble to take advantage of more general program engineering properties to predict 

object lifetimes using software metrics.

2A Data Translation Look-aside Buffer (DTLB) is used to perform address translation from 
virtual addresses to physical page addresses (and vice-versa) for data.



Chapter 5

Using Software Metrics

The previous chapters of this thesis explored how it is possible to take advantage 

of object lifetime predictions. Previous trace based self-prediction techniques are 

extremely time consuming [39, 84, 26, 22], This is because they require gathering 

and analysing gigabytes of data in order to generate lifetime predictions. Other 

dynamic techniques do not usually incur significant speedups [73, 96].

It was discussed in chapter 3 how the use of accurate predictors would allow 

the exploitation of lifetime predictions at a much cheaper analysis cost than is 

currently required [26, 22]. A simple static analysis of the program would allow us 

to identify predictors stored in the lifetime knowledge bank and make pretenuring 

decisions.

Chapter 3 discussed the framework developed for creating a knowledge bank 

matching specific predictors with lifetimes. Creating the knowledge bank involves 

gathering traces from a training set, computing the lifetimes of objects and allo

cations site, and matching this information with predictors. This information is 

then data mined, and the rules generated by the data mining software are stored 

in the knowledge bank. As mentioned in previous chapters, this thesis explores 

the use of two types of predictors: Software Metrics and Micro-Patterns.

This chapter reviews the use of Software Metrics as a predictor. Most of the 

work in this chapter was conducted in collaboration with Jeremy Singer from the 

University of Manchester.

122



CHAPTER 5. USING SOFTWARE METRICS 123

The first Section of this chapter introduces the notion of software metrics and 

describes those used. The second Section of this chapter presents an information 

theoretic analysis of the software metrics selected. The third Section shows the 

results obtained using this approach in the experimental setup.

5.1 Software Metrics

5.1.1 W hat Are Software Metrics?

With the ever increasing complexity of computer systems, software architects need 

to design flexible structures and ensure the quality of the code developed. The 

emergence of Object Oriented (0 0 )  programming and its advantages have helped 

software architects in several ways [119]. Systems became more robust and more 

reliable while code reuse saved a lot of development time. At the same time, 

however, the complexity of software systems started to increase dramatically [97]. 

Therefore, it became important for software architects and project managers to 

assess the quality of the code being developed. New focuses on software security 

make the quality of code an even more important concern.

In very large systems, however, assessing the quality of the code is an extremely 

challenging problem. Software metrics were developed in an attempt to produce 

a concise and quantitative analysis of certain aspects of a software system. They 

help to describe the quality and complexity of a software system in an impartial 

and objective way. They can be used to assess the overall quality of code from a 

particular programmer. Finally, they are easy to compute, and tools are usually 

readily available.

5.1.2 Which Software Metrics Are Available?

Over time, a number of software metrics have been proposed and used. All have 

a different focus and can be used to describe many aspects of a system. A few of 

these metrics are detailed below.



CHAPTER 5. USING SOFTWARE METRICS 124

The easiest software metric to calculate is probably Source Lines Of Code 

which consists on counting the number of lines of code in a program and is com

monly used to estimate the amount of effort that will be required to develop a 

program [15]. This metric, however, does not take into account the complexity of 

the code nor the interaction between different components of the program.

Cyclomatic Complexity [111] measures the complexity of a program by calcu

lating the number of linearly independent paths within a program’s source code. 

In essence, the more linearly independent paths there are, the more complex the 

program is. For the purpose of this work, however, it is not possible to derive 

object lifetimes from a measure of the complexity of a program itself. Rather, it 

would be interesting to measure the complexity of a class.

The Function Point [97] metric measures the usefulness of the program in 

terms of the functionality that is perceived by the user. Functions interacting 

with the user are split into five categories: outputs, inquiries, inputs, internal files, 

and external interfaces. These are assessed for complexity and awarded a number 

of function points. This measure is end-user focused and tends to underestimate 

the necessity of internal functions or algorithms. This metric is also difficult to 

gather and is not relevant for this work.

Code Coverage is used to measure the degree to which code has been tested

[15]-

Of all the software metrics analysed, those proposed by Chidamber and Ke- 

merer [42] are the most well-known and generally accepted metrics amongst soft

ware engineers. They propose a set of six metrics for object oriented languages. 

These metrics were developed in an attempt to give software engineers an impar

tial insight to help them judge the quality of their own system. In research, they 

have been used in important projects such as the DaCapo project [20] to analyse 

different aspects of the benchmarks and compare them with other benchmarks 

such as jvm98. These metrics are described in Table 11.

Spinellis [145] proposed the addition of two other software metrics, namely 

afferent coupling, and number of public methods. These metrics are described in



CHAPTER 5. USING SOFTWARE METRICS 125

weighted methods per class (W M C): This metric is simply a count of the 
number of methods defined by the current class.

depth of inheritance tree (DIT): The java. lang.Object class has a DIT 
score of 1. The DIT score increases by 1 for every edge on the path through 
the inheritance tree from the root to the current class.

number of children (NOC): The number of classes that are immediate sub
classes of the current class.

coupling between object classes (CBO): The number of classes upon which 
the current class depends. This coupling can occur through method calls, 
field accesses, inheritance, arguments, return types, and exceptions.

response for a class (RFC): Ideally, this should measure the number of differ
ent methods that can be executed when an instance method of the current 
class is invoked, summed over all instance methods for this class. This would 
involve calculating the transitive closure of the method’s call graph, which 
has the potential to be expensive and inaccurate. Instead, the metrics mea
surement tool calculates a rough approximation to RFC by simply counting 
method calls within the class’s method bodies. This simplification was also 
used in the original CK metrics paper [42],

lack of cohesion in methods (LCOM): This counts sets of methods in the 
current class that are not related through the sharing of some of the class’s 
fields. The metrics measurement tool considers all pairs of the class’s meth
ods. In some of these pairs, both methods access at least one common field 
of the class, while in other pairs the two methods do not access any common 
fields. The LCOM score is calculated as the difference between the number 
of pairs that do share at least one field from the number of pairs that do 
not share any fields.

Table 11: The Chidamber and Kemerer metrics suite.



CHAPTER 5. USING SOFTWARE METRICS 126

afferent couplings (AC): This measures the number of classes that depend on 
the current class. Coupling is defined in the same way as for CBO above. 
Conceptually, Ca is the inverse of CBO.

number of public methods (NPM): This is simply a count of the methods 
in the current class that are declared as public. It can be used to give an 
indication of the size of an API provided by a package.

Table 12: Spinellis’s additional metrics

table 12.

This chapter, combines the use of Chidamber and Kemerer’s metrics with 

Spinellis’s metrics. This set of 8 metrics are referred to as the CK  metrics suite.

5.1.3 CK Metrics

CK software metrics [42] target object oriented languages and identify relation

ships between different classes of a program. These metrics were developed to ad

dress the criticism expressed towards previous metrics regarding drawbacks such 

as their lack of theoretical basis and the fact that they are too difficult to col

lect. The authors provide a tool capable of automatically calculating each metric’s 

value by analysing the bytecode of the target Java program. They may be used 

easily by managers to track software development progress.

More generally, they describe certain aspects of interactions between classes. 

This is important for this work because studying the way classes interact together 

could provide indications of how long objects of certain types generally live. For 

instance, one could reasonably assume that objects of two classes with high cou

pling (CBO) are likely to die at the same time.

CK software metrics have recently been used in the GC field. On the basis 

that no garbage collector is the best for every program, Singer used CK metrics to 

predict what garbage collector is most appropriate for a particular program [141].



CHAPTER 5. USING SOFTWARE METRICS 127

5.2 Information Theoretic Analysis

This section provides a theoretic analysis of the correlation between software met

rics and object lifetimes. Please note that this section is based on the paper “An 

Information Theoretic Evaluation of Software Metrics for Object Lifetime Pre

diction” [142] which was largely written by Jeremy Singer from the University of 

Manchester with whom the author was collaborating on this research (see Ap

pendix A). The content of this section originally written by Singer is provided 

because of its relevance to this thesis.

5.2.1 N M I Values

In order to find which metrics could be good lifetime indicators, the correlation 

between the lifetime of an object and each of the eight possible source metrics and 

the eight possible destination metrics is calculated. This is done using Normalized 

Mutual Information (NMI), also known as transinformation, an information the

ory measure calculating the dependence of two variables. A high value (close to 1) 

indicates a good correlation, whereas a value close to 0 indicates a bad correlation.

Table 13 shows the results obtained for the NMI-based correlation of single 

features with lifetime.

Table 13 shows relatively bad correlation between metrics and lifetime. The 

metric which correlates the most with object lifetimes is the source LOOM, which 

measures the coheasion (or lack of) between methods. Intuitively, this makes sense 

as objects with a high cohesion are likely to have related lifetimes. However, with 

a highest NMI of 0.37, using only one metric to predict lifetime is unlikely to 

produce good results.

This table also shows an interesting result: the two metrics with the highest 

correlation are two source metrics, which suggest that considering the source of an 

object is an important criteria. Most type-based lifetime studies have consisted 

on analysing the destination object and hence, this is an important discovery. 

As explained in Chapter 3, the only published research we are aware of which



CHAPTER 5. USING SOFTWARE METRICS 128

metric NMI
lifetime 1.000
source LCOM 0.370
source RFC 0.342
dest LCOM 0.324
dest RFC 0.314
dest NPM 0.261
dest WMC 0.257
source WMC 0.233
source CBO 0.180
source NPM 0.163
source Ca 0.117
dest DIT 0.079
dest Ca 0.056
source DIT 0.037
source NOC 0.035
dest CBO 0.030
dest NOC 0.012

Table 13: NMI-based correlation of single features with lifetime

considers the use of source object as well as the destination object is the paper of 

this author [95],

For more information regarding the way these measures were obtained, please 

refer to Appendix A.

5.2.2 Combining Metrics

The previous section showed that metrics individually do not correlate well with 

lifetimes. However, it would be interesting to see if using combinations of metrics 

may be more suited to predicting object lifetimes. This section analyses the 

correlation between combinations of metrics.

Table 14 shows the results of the cross-correlation analysis. In this table each 

column and each row correspond to a particular metric (apart from lifetime). This 

allows us to see the correlation of metrics with respect to each other considering 

the lifetime. As expected, comparing a metric with itself gives an NMI value of



CHAPTER 5. USING SOFTWARE METRICS

K C L C L C L Û - Ü C L C L C L ® 1 03 03 03 03 03 O3 03

2". l-ö p Q td O 3
g s  o o g g ^ S g  O O O Q ^

t—*
b00
p

b b0 Oi0 4̂
0 O

b b b0 4̂ -40 CnCn
p O p

b b b b0 Cn -40 CO CO
p p O p

b b b b b0 CO00~40 co 004̂ Oi
p p p p O

b b b b b b0 O 4̂ Cn0 1-1to CnCnto

p p 0 O O O
b b b b b i—1b0 0 00Oi Oi CO0 “4 co to -4 1-100

p p p p p O p
b co b b b b b b0 co 00Oi co -4 000 co Oi Oi co 00Oi
0 0 0 0 p p p p

b to P b b P P P b0 CO-4 00-4 -4 -4 CO000 Oi Cn 1-1Oi 4̂ co to
H*p 0 O 0 0 p O 0 0
b b to b b b p b b b0 co 0 Oi co co Oi Of CO0 Cn 4̂ COco COOi 004̂ to

p O O p p 0 0 p 0 p
b COb P b b b b b b p0 to Oi cn Oi Oi -4 -41to ►K000 1-1001-1 co to to0 to 4̂

i—*p p p O p p 0 O 0 O O
b P b b P P b b b b b b0 co Oi Oi 000 COtoOi 4̂ CO0 CO-4 hJ 4̂ Oi co 00Oi to0 to

0 p 0 p p p p p p 0 p p
b b b b b b b b b b b P b

to CO-4 to -4 -4 00
0 -4 Oi COco 1-1Oi Oi 00 Oi Oi Oi
p p p p p p p p O 0 p p p

b b b b b b b b b b b b p b
0 00Oi 4̂ O Oi co co b CO4̂ -4 4^0 ~4 Ol CnOi co -4 COOi 1-1to cn O CO
0 O O p p 0 p p p O 0 O p p

b b b COP b b b b b b b b b b0 CO00 Oi 4̂ -4 to 01 CnOi 00co CO0 to 00 -4 -4 Or CnOi Oi toCnto to -4

0 p p O O O O p p 0 p p p p p
b COb b co b COb b p b b P b P b
c 00Oi -4 CO -4 COOi “4 O co 00i—>CO0 -4 Oi co004̂ 1-1 -4 ~4 CO Cnto 4̂ 0
p 0 p p p O O 0 O O O 0 p p O p

b to b COco b b b b p p b b p b b b0 Oi o< to CO -4 cn Oi -4 b 00COco CO0 l“Jo> 4̂ 4̂ 0 to CO-4 co ~4 0 to 0 Cn-4 co

sWMC

s D IT

sNOC

sCBO

sRFC

sLC O M

sCa

sN P M

d W M C

d D IT

dN O C

dC B O

dR F C

d L C O M

dCa

d N P M

lifetime

Table 14: Cross-correlation of features with other features



CHAPTER 5. USING SOFTWARE METRICS 130

1, meaning the correlation is perfect. The closer the NMI is to 1, the higher the 

correlation between the two metrics.

This analysis shows that source metrics correlate highly with other source met

rics, while destination metrics correlate highly with other destination metrics. On 

the other hand, there is a low correlation between source metrics and destination 

metrics. Therefore, a combination of source metrics and destination looks most 

appropriate to predict object lifetimes.

5.2.3 Conditional Mutual Information Maximisation

Table 13 revealed that single features all have low NMI scores. Therefore, a 

combination of features is required to obtain reliable predictions.

However selecting features based only on NMI does not take any cross-correlation 

between features into account. Ideally, metrics that have a high individual cor

relation with lifetime, and have low cross-correlation with each other should be 

selected.

Fleuret in [56] presents an attractive algorithm known as Conditional Mutual 

Information Maximisation (CMIM) that automatically selects the most appropri

ate features (metrics in this case). The approach iteratively chooses features that 

maximise their mutual information with the class to predict (lifetime in the con

text of this work), conditioned on features already picked. This CMIM criterion 

does not select a feature similar to already picked ones, even if it is individually 

informative, since such a similar feature does not carry additional information 

about the class to predict.

Conditional mutual information is calculated as:

I{U;V\W) =  H (U \ W )-H (U \ W ,V )  (5)

This value is an estimate of the quantity of information shared between U 

and V when W  is known. If V and W  carry the same information about U, then 

the two terms on the right are equal and the conditional mutual information is



CHAPTER 5. USING SOFTWARE METRICS 131

zero, even if both V and W  are individually informative. Conversely if V contains 

information about U which is not present in W, then the difference is large and 

the conditional mutual information is high.

The CMIM algorithm operates as follows. It aims to pick k features from a 

total of n, in order of relevance with the most relevant feature first. Incidentally, 

if CMIM is used to select n features from n, then a relevance-ordered ranking of 

the entire feature set which takes into account cross-correlations happens in a way 

that the simple ranking based on NMI scores in Table 13 did not.

The algorithm maintains a score vector, with one element for each feature. 

Initially, the score vector is set up so score[i} contains the unnormalized mutual 

information score for the ith feature (with the lifetime). At each iteration, the 

feature with the highest score value is taken as the next selected feature. Then 

the score vector is recomputed, with each element score[i] set to the minimum 

value of (score[i],/(lifetime; ¿th feature|last selected feature)). This ensures that 

score[i\ is low if at least one of the features already picked is similar to the ¿th 

feature.

His algorithm is implemented and uses to rank each metric in order of relevance 

for object lifetimes prediction. Table 15 gives the results of this CMIM analysis. 

Note that in the table, each score is the highest value in the score vector at that 

particular iteration, for a feature that has not been selected by previous iterations.

This table confirms that considering the source when predicting the lifetime of 

an object is important. As with the NMI values, the most relevant metric is once 

again source LOOM. If it was decided to use only a limited amount of metrics to 

predict lifetime, metrics with the highest values should be used.

Experimental results are presented in the following sections of this chapter.

5.3 Using Scalar Metrics

In the first set of experiments, a combination of 8 source metrics and 8 destination
metrics were used. Metrics values were used as they were reported by Spinellis’s



CHAPTER 5. USING SOFTWARE METRICS 132

metric CMIM score
source LCOM 0.407
dest RFC 0.345
source RFC 0.177
source CBO 0.144
dest LCOM 0.142
source NPM 0.113
source WMC 0.104
source Ca 0.086
dest NPM 0.085
dest WMC 0.072
dest Ca 0.061
source DIT 0.041
dest DIT 0.038
dest CBO 0.033
source NOC 0.025
dest NOC 0.007

Table 15: CMIM-based ranking of features for prediction of object lifetime.

metrics tool. These values were then fed into Clementine, which generated rules 

that were incorporated into a metrics-lifetime knowledge bank (see Chapter 3). 

Results of these experiments are reported below.

5.3.1 Using All Metrics

This section reports the results obtained using all metrics as predictors. In con

trast, Section 5.3.2 uses only a subset of the metrics. Figures 10, 11, 12 and 13 

show graphs reporting the GC time performance improvement (in milli-seconds) 

of the system when compared with a default run of each benchmark, with a default 

JVM which does not implement the advice system (see Chapter 3).

In these graphs, +n% would mean that the benchmark is running n% slower 

with the advice system than it would otherwise. In other words, positive num

bers mean the system is degrading GC time performance while negative numbers 

indicate improvements.

These four graphs show different degrees of conservatism with confidence levels



CHAPTER 5. USING SOFTWARE METRICS 133

varying from 75% to 99%.

These graphs show significant performance degradation on most benchmarks 

and at most heap sizes. Varying the confidence level to a higher threshold slightly 

improves performance, but the advice system remains harmful.

Next, the impact on performance is studied by using only the four metrics 

having the best conditional mutual information (CMIM score see Section 5.2.3) 

with the data. They are: source LCOM, destination RFC, source RFC, and source 

CBO (see Table 23).

5.3.2 Top 4 metrics

In an attempt to improve the quality of the advice, this section considers only the 

top 4 metrics with regards to their CMIM values. Figures 14, 15, 16 and 17 show 

graphs reporting the GC time performance improvement of the system, using only 

the top four scalar metrics, when compared with a default JVM which does not 

implement the advice system (see Chapter 3).

Once again, these graphs show performance degradation at most confidence 

levels (75%, 85% and 95%). At confidence 99% however, the system shows im

provements of up to 9% for ‘_228_jack’ while ‘_213_javac’ behaves badly and shows 

performance degradations of up to 43%. The advice is mostly neutral for other 

benchmarks.

5.3.3 Analysis

These graphs show us that obtaining GC time speedups using these software 

metrics is rarely effective. In most instances, the advice generated from metrics 

data is harmful to the system, with the exception of graph 17 where results are 

reported using only the top 4 metrics at 99% confidence. In this case, performance 

improvement is seen for just one benchmark, ‘_228_jack’ , of up to 9%.

During this research, the segregation of sites allocating scalar objects from 

sites allocating arrays was explored, but such segregation did not help producing



CHAPTER 5. USING SOFTWARE METRICS 134

Confidence 0.75

60

50

40

0)
•f 30
O
CD

20

10

-10

*

_201_compress 
.. _202Jack — b—  

^205_raytrace — e —  
\  _209_db - * • -  
2?13Javac

_222_m)negaudio - -v — 
__22/_mtrt - - - - - -
_228Jack «

\
...ifc'* ■ 1

...................... -Ì
à

. . w
it

Ô-

\
>0*' <>. o - .  o ......... .......

-Ar — I ’ *  jfc..--» --"Ö = ------ A.-

1 __ 1__

‘*0'*'***..
*+'

1 1

-----

1 1
1.5 2 2.5 3 3.5 4 4.5 £

Heap size

Figure 10: GC time improvement, all metrics, all sites, Speed 100, confidence 
75%.

Confidence 0.85

60

50

40

I  30
O
CD

20

10

-10

-  :

1-------------- 1-------------------1----------------- jr.----------7 *— n ---------------- 1------------------
: \  20-1 compress 

/  r ' '  \2 0 2 J a c k  — H— ■ - 
: ■■ '• 205-cay trace — e —

*  ! : \  _^Q9 db 
;  \  ■ : \  21 3 jav ac

■ /  \  : \ 222 mpegaudio v  -
227 mth. ------- -

*• /  \  ¡ j  \  _228Jack \ -a -

- X •' *, •! \ *\
* k*

..

—

[ :

; * '

I \
K' \ ;1 \ ; \
1 ’ * \• /  •
! \  ; *. ................... -J

f \  ...15
: \  .-€>■...........-Ô-'

\
------— « f . — i t — • _ J ......^ ................. ̂ ; ";**;; — - — ̂

-J-------------------1___________ 1___________ 1___________ 1___________ 1___________

0 ‘ —

1.5 2.5 3
Heap size

3.5 4.5

Figure 11: GC time improvement, all metrics, all sites, Speed 100, confidence
85%.



CHAPTER 5. USING SOFTWARE METRICS 135

Confidence 0.95

<DE
oo

-10 ------------------------ 1-------------------------'------------------------ 1------------------------ 1----------
1 1.5 2 2.5 3

Heap size

7TT 
■ *

7̂11---------- 1-------------
_2Q1 compress

'•.._202Jack — a-------
_205 raytrace — e—  

v209_db — a. -  
_213\javac

_222_mpegapdio -v - 
_227_mtrt - o ■■■ 
_228JacK — «■■■

1i

ò- hi

3.5 4 4.5 5

Figure 12: GC time improvement, all metrics, all sites, Speed 100, confidence 
95%.

Confidence 0.99

Figure 13: GC time improvement, all metrics, all sites, Speed 100, confidence
99%.

44+
$-



CHAPTER 5. USING SOFTWARE METRICS 136

Confidence 0.75

E
oO

60 

50 

40 

30 

20 

10 

0

-10
1 1.5 2 2.5 3 3.5 4 4.5 5

Heap size

201 compress
202Jack ----B ------  -

205 ravtrace
209 db A r - - -

213Javac
222 mpeqaudio ■ ■ • • V —  -

■*. 227 mtrt
_228Jack

»

\ / Ô-"

J________________ I________________ I________________ I________________ I________________ L

Figure 14: GC time improvement, top 4 metrics, all sites, Speed 100, confidence 
75%.

Confidence 0.85

n>E
o
CD

60 

50 

40 

30 

20 

10 

0

-10
1 1.5 2 2.5 3 3.5 4 4.5 5

Heap size

------------------ TT I---------- ------- 1-------------------1-----------------j-n -----------------1-------------------1------------------
201 compress

■ \  .•’*•. 202Jack — a-------
'205 raytrace — e —

209 db - a- -
2T3Javac -

• * '  222 mpegpudio -  -v -  -
.  :  \ 2 2 7 'njtrt

:
/ /  \

:
j  1

X
$> \

•.**.* ■. ....... <*  ; \ .....................
" * ô .........

.......... ^
<!:...... <i —  -Ô-...

"■•-Ô
.a '

1 1 1 1 1 1 1

Figure 15: GC time improvement, top 4 metrics, all sites, Speed 100, confidence 
85%.



CHAPTER 5. USING SOFTWARE METRICS 137

Confidence 0.95

E
O
CD

60 

50 

40 

30 

20 

10 

0

-10
1 1.5 2 2.5 3 3.5 4 4.5 5

Heap size

n

1 1 : 1 1 1

: Y  

¥

1 1 
g,201_compress 

..•• \  _202Jack — b—  - 
2.05 raytrace e —

\  _209_db - -  
_2.13Javac

_222_mpegaudio -  v  — - 
22-7 mtrt

.......<>••- ........................... - ........- 2 2 8 y a c k . -

* V '

#

o f) \
\ . - <

+ \  *■■■
Ô-. **•. /

Ò"

'¡o''

- - “- I

-A ------- ....... + ' ------jfc -•-yfc-'-'---*-------------------------- -

1

----A"

___1_________ __l______ ____ 1__ ________ 1________ __ 1___________ 1___________

Figure 16: GC time improvement, top 4 metrics, all sites, Speed 100, confidence 
95%.

Confidence 0.99

Figure 17: GC time improvement, top 4 metrics, all sites, Speed 100, confidence
99%.



CHAPTER 5. USING SOFTWARE METRICS 138

advice leading to better performance. These results are not reported in this thesis.

5.4 Using Ternary Values

One of the problems of generating advices using the raw metrics values as done 

the previous section, is the disparity of values. Ranges of values for each metric 

are generally very large and generating advice based on these values is imprecise 

and might lead to misclassihcations. For example, values for the WMC metric 

can range from 0 to 1300.

The way metrics ranges could be turned into ternary data in order to ease clas

sification is explored in this section. First, the mean and the standard deviation 

(SD) of each metric is calculated for the training set (the DaCapo benchmarks). 

Then, each object’s metrics is classified in 3 categories:

• Low: allocation sites allocating objects whose metric value is more than 

n *  SD  below the calculated mean.

• High: allocation sites allocating objects whose metric value is more than 

n *  SD  above the calculated mean.

• Middle: allocation sites allocating objects whose metric value is between the 

Low and the High boundaries.

The results obtained using advice generated using metrics ternary values, for 

different values of n are analysed below.

Figures 18, 19, 20 and 21 show the results obtained using all 16 metrics (8 

source metrics and 8 destination metrics) at confidence levels of respectively 75%, 

85%, 95% and 99% using n =  0.25.

Using the top 4 metrics only, the data-mining algorithm was unable to find 

any rule with a confidence higher or equal to 85%. At confidence 75%, the system 

was able to generate some advice for only 3 benchmarks, but the advice degrades 

performance. For this reason, no figures are reported for the top 4 metrics.



CHAPTER 5. USING SOFTWARE METRICS 139

Confidence 0.75

Figure 18: GC time improvement, all metrics, all sites, ternary classification 
N=0.25, Speed 100, confidence 75%.

Confidence 0.85

Figure 19: GC time improvement, all metrics, all sites, ternary classification
N=0.25, Speed 100, confidence 85%.



CHAPTER 5. USING SOFTWARE METRICS 140

Confidence 0.95

Figure 20: GC time improvement, all metrics, all sites, ternary classification 
N=0.25, Speed 100, confidence 95%.

Confidence 0.99

Figure 21: GC time improvement, all metrics, all sites, ternary classification
N=0.25, Speed 100, confidence 99%.



CHAPTER 5. USING SOFTWARE METRICS 141

Figures 22, 23 and 24 show the results obtained using all 16 metrics (8 source 

metrics and 8 destination metrics) at confidence levels of respectively 75%, 85% 

and 95%, using n =  1. The data-mining algorithm was unable to find any rule 

with a confidence equal or higher than 99%.

These graphs show that GC time performance is greatly affected by the ad

vice. For most tests, results are not satisfactory as GC time degrades on some 

benchmarks, and improves few.

However, of all these tests, one in particular, seem to stand out with slightly 

better results than others. Using ternary values with n=100 at 95% confidence 

shows GC time improvements in ‘_213_javac’ and ‘_222_mpegaudio’.

In general ternary values produced more stable results (less jumps in perfor

mance) than using raw values, but performance results are still disappointing.

5.5 Using Inter-Quantile Values

Sued et al. advocate using median and inter-quartile ranges for discretizing CK 

metrics data [151]. They demonstrate how the use of mean and standard devi

ations can create problems such as unrealistic values and impossible fractional 

limits.

In this section inter-quartile values are used to segregate each metric into one 

of three categories: high (+1), middle (0) and low (-1). For each metric at each 

allocation site, the classification scheme works as follows:

• A value of -1 is given if the inter-quartile value of a metric is in the bottom 

25% of the range of values for that metric.

• A value of 0 is given if the inter-quartile value of a metric is in middle 50% 

(i.e. close to median).

• A value of +1 is given if the inter-quartile value of a metric is in the top 

25% of the range of values for that metric.



CHAPTER 5. USING SOFTWARE METRICS 142

Confidence 0.75

Figure 22: GC time improvement, all metrics, all sites, ternary classification N = l, 
Speed 100, confidence 75%.

Confidence 0.85

Figure 23: GC time improvement, all metrics, all sites, ternary classification N=l,
Speed 100, confidence 85%.



CHAPTER 5. USING SOFTWARE METRICS 143

Confidence 0.95

Figure 24: GC time improvement, all metrics, all sites, ternary classification N=l ,  
Speed 100, confidence 95%.



CHAPTER 5. USING SOFTWARE METRICS 144

Figure 25 reports the results using a confidence of 75%. In this graph, ‘_222_mpeg- 

audio’ does not appear because the VM ran out of memory due to the advice 

pretenuring too much data. ‘_202_jess’ however did run completely, but does not 

appear either because the time overhead was too large to fit on the graph. In 

general, this test shows no improvements and makes the GC slower.

Figure 26 reports the results using a confidence of 85%. Again, ‘_222_mpeg- 

audio’ made the VM run out of memory due to the advice pretenuring too much 

data. This shows slightly better performance than Figure 25 but still degrades 

performance.

Figure 27 reports the results using a confidence of 95%. Here, all bench

marks ran properly, performance is reported for all of them. ‘_205_raytrace’ and 

‘_227_mtrt’ , as well as ‘_213_javac’ at small heap sizes show important degrada

tions. The advice is mostly neutral to other benchmarks.

Finally, Figure 28 reports results using a confidence of 99%. Here, results 

are better than at lower confidences, but results are not stable and big jumps in 

performance can be observed. Again, results show mostly degradation.

5.6 Conclusion

In this chapter, the use of Chidamber and Kemerer’s software metrics was exper

imented to derive lifetime predictions. These metrics are attractive because they 

can be gathered easily by analysing program source code using Spinellis’s tool. 

Furthermore, this tool provides us with real numbers for each metric (for both 

source and destination) that can be associated with each allocation site.

Unfortunately, the information theoretic analyses showed little correlation be

tween metrics and lifetime. The experimental results confirmed these findings by 

performing poorly. This Chapter attempted to discretise efficiently the data-set 

into meaningful values using metrics means and inter-quartile values. This Chap

ter also attempted using only a subset of all the metrics, but both these attempts 

were unsuccessful. It is therefore concluded that CK software metrics are not



CHAPTER 5. USING SOFTWARE METRICS 145

<D.1
o
CD

Confidence 0.75
250

200

150

100

50

0

-50

_201_compress
_202Jack — a—  

_205_raytrace — e —  
_209_db

_213Javac - 
222_mpegaudio v 

_227_mtrt o 
_228Jack a -

o-

I
1 1 5 2 2.5 3 3.5 4 4.5 5

Heap size

Figure 25: GC time improvement, all metrics, all sites, inter-quartile, Speed 100, 
confidence 75%.

Confidence 0.85

Figure 26: GC time improvement, all metrics, all sites, inter-quartile, Speed 100,
confidence 85%.



CHAPTER 5. USING SOFTWARE METRICS 146

Confidence 0.95

Figure 27: GC time improvement, all metrics, all sites, inter-quartile, Speed 100, 
confidence 95%.

Confidence 0.99

Figure 28: GC time improvement, all metrics, all sites, inter-quartile, Speed 100, 
confidence 99%.



CHAPTER 5. USING SOFTWARE METRICS 147

good lifetime predictors.

The fact that CK metrics are not good predictors can be explained by a com

bination of several factors specific to software metrics.

Firstly, software metrics ranges can be very wide. For example, the RFC metric 

in the training set ranges from 1 to 1,370, where class “com/ibm/JikesRVM/VM.A- 

ssembler.java” as an RFC value of 1,370. Likewise, the WMC metric ranges from 

1 to 1,303, where that same class has a value of 1,303. The LCOM metric ranges 

from 1 to 16214, where class “com/ibm/JikesRVM/VM-BaselineCompiler” has a 

value of 16,214.

This makes classification difficult, as the algorithm has to decide which ranges 

of values correlate best to specific lifetimes. This is unfortunately imprecise and 

can lead to misclassihcations.

Secondly, CK Metrics are general purpose metrics. They were created in order 

to produce a concise and quantitative analysis of certain aspects of a software 

system. They define and quantify interactions between classes. However, they 

offer no insight on the programmer’s intent as they do not focus on class level 

properties, but rather on inter-class relationships.

It is possible that lower-level metrics could give a better indication of object 

lifetimes. The following chapter analyses the use of micro-patterns to derive pre

dictions.



Chapter 6

Using Micro-Patterns

The previous chapter explored the use of software metrics to predict object life

times. In this chapter, a new approach taking advantage of class-level information 

and developers coding practices is analysed via the use of Micro-Patterns [62].

The results are summarised in our paper Decrypting The Java Gene Pool 

published at the International Symposium on Memory Management in 2007 [95].

The first section of this chapter describes micro-patterns, what they are and 

what this work uses them for. The following sections show the experimental 

results and the effect on GC time (both overall and pause time distribution) of 

the pretenuring scheme. The effect of pretenuring on overall run-time, and on 

pause time is then studied. Finally, object placement (number of sites identified 

for pretenuring, volume pretenured, etc.) and the accuracy of the predictions are 

analysed.

6.1 Background

Every human in the planet is unique. Attributes like hair colour, eyes colour, 

skin colour etc. are encoded into human genes. Likewise, in Java, each class is 

unique and has its own characterisctis. In 2005, Gil and Maman [62] introduced 

micro-patterns, which allow the mechanical characterisation and classification of 

class features.

148



CHAPTER 6. USING MICRO-PATTERNS 149

M icro-pattern D efinition
All

Src-D st
SPEC

Src-Dst

D
eg

en
er

at
e 

cla
ss

es

D esignator
Taxonomy
Joiner
Pool
Function Pointer 
Function Object

Cobol Like 
Stateless 
Common State 
Immutable

Restricted Creation

Sampler

Interface with no members.
Empty interface extending another interface.
Empty interface joining two or more superinterfaces.
Class which declares only static final fields, but no methods. 
Class with a single public instance method, but with no fields. 
Class with a single public instance method, and at least 
one instance field.
Class with a single static method, but no instance members. 
Class with no fields, other than static final ones.
Class in which all fields are static.
Class with several instance fields, which are assigned 
exactly once, during instance construction.
Class with no public constructors, and at least one static 
field of the same type as the class.
Class with one or more public constructors, and at least 
one static field of the same type as the class.

0-0
4- 0 
0-1 
8-0 
1-3

9-5
1-0

15-6
18-0

5- 6

6- 4 

8-9

0-0
1-0
0-0
3- 0 
1-1

4- 3 
0-0
5- 4 
7-0

3-3

5-2

7-3
4-3£ Box Class which has exactly one, mutable, instance field. 6-14 2-10
3 Compound Box Class with exactly one non primitive instance field. 32-22 17-12
a Canopy Class with exactly one instance field that it assigned exactly
-e once, during instance construction. 4-13 2-6
Ho Record Class in which all fields are public, no declared methods. 0-0 0-0O Data Manager Class where all methods are either setters or getters. 1-10 0-5

Sink Class whose methods do not propagate calls to any other class. 11-9 4-5
Outline Class where at least two methods invoke an abstract

method on this. 7-4 5-2
CPo Trait Abstract class which has no state. 4-0 2-0
ad State M achine interface whose methods accept no parameters. 0-0 0-0

•4-3 Pure Type Class with only abstract methods, and no static members,
CP and no fields. 0-0 0-0c Augm ented Type Only abstract methods and three or more static final fields

of the same type. 0-0 0-0
Pseudo Class Class which can be rewritten as an interface: no concrete

methods, only static fields. 5-2 3-1
Implementor Concrete class, where all the methods override inherited

abstract methods. 19-11 9-3
Overrider Class in which all methods override inherited, non-

abstract methods. 27-20 11-14
Extender Class which extends the inherited protocol, without

overriding any methods. 0-8 3-5
Limited Self Subclass that does not introduce new fields and all self

method calls are to its superclass. 13-9 6-5
Recursive Class that has at least one field whose type is the same

as that of the class. 7-11 3-7

Table 16: List of micro-patterns
Gil &; Maman [62] classify micro-patterns as (a) Degenerate classes and interfaces which do not define any 
variable or methods, (b) Containment classes which explicitly manage their internal fields, or (c) Inheritance 
classes which inherit from other classes. The table includes counts of patterns used in all rules generated and 
in rules discovered in the SPEC benchmarks, as either sources or destinations. Rules were computed by using 
DaCapo benchmarks as the training set. In both cases, only rules with confidence greater than 75 are counted 
%. Micro-patterns never exploited (including those only discovered in classes compiled at build-time) are shown 
in italic.



CHAPTER 6. USING MICRO-PATTERNS 150

Micro-patterns are similar to design patterns [60] except that micro-patterns 

stand at a lower level of abstraction, closer to the implementation. Gil and Ma- 

man define a micro-pattern to be “a non-trivial, formal condition on the attributes, 

types, name and body of a class and its components, which is mechanically recog

nisable, purposeful, prevalent and simple” .

While design patterns focus on interaction between classes, micro-patterns 

define class-level properties. Each micro-pattern can be expressed as a formal 

condition on the structure of a class, so a class may exhibit several micro-patterns. 

A set of micro-patterns may implement a design pattern.

In addition, the authors show that different implementations of a same spec

ification are likely to implement similar micro-patterns. Statistical analysis of a 

very large corpus, drawn from a wide variety of application domains, indicates 

that use of these patterns is not random. In Java, fields and methods can be:

• Static

• Final

• Private, public, protected, or default

• Inherited

On top of the above, methods can also be:

• Abstract

• Overriding

• Refining

• Constructor method

• Anonymous static initialiser

The properties above demonstrate the richness of the Java language, and Java 

classes can have numerous fields and methods exhibiting any combination of the 

above properties.



CHAPTER 6. USING MICRO-PATTERNS 151

In their paper, the authors identified 30 different micro-patterns, which reflect 

the different characteristics of a class and its behaviour (see Table 16). Each 

micro-pattern describes a certain behaviour and state of a class.

Consider an example. Sampler is a ‘controlled creation’ micro-pattern1. It 

defines classes which have a public constructor and one or more public static fields 

of the same type as the class. Such classes provide clients with pre-made instances 

of the class as well as being able to make their own. java.awt. Color, which provides 

pre-defined colours, is a Sampler. The following code extract taken from the class 

java.awt.Color illustrates the above.

i public class Color implements Paint , S er ia l i za b le

’  {
public static final Color white := new Color (0 x f f f f f f , fa lse );

public static final Color WHITE = white ;

public static final Color lightGray=new Color (0 xcOcOcO , fa lse )

public static final Color LIGHT_GRAY — l ightGray;

public static final Color gray = new Color (0 x808080 , false);

public
r i

static final Color GRAY = gray ;

public Color ( int r e d , int green , int blue ) {

this ( red , green , blue , 255);

14 }

15

16 public C o l o r  (int r e d ,  int g r e e n ,  int b l u e ,  int a l p h a ) {

17 if ( ( r e d  & 2 5 5 )  != r e d  || ( g r e e n  &  2 5 5 )  != g r e e n  ||

is ( b l u e  &  2 5 5 )  ! =  b l u e  || ( a l p h a  &  2 5 5 )  ! =  a l p h a )

19 throw new I l l e g a l A r g u m e n t E x c e p t i o n  ( ” B a d  JR.GEL v a l u e s  T ’

20 + ” r e d = O x ” +  I n t e g e r  . t o H e x S t r i n g ( r e d )

1‘Controlled’ creation differs from ‘restricted’ creation because the former defines a public 
constructor.



CHAPTER 6. USING MICRO-PATTERNS 152

23

21

22

+” green=Ox”+Integer  . toHexString ( green )

+ ” blue=Ox” + Integer . toHexString (b lue )

+” alpha=Ox”+Integer  . toHexString ( a lpha) );

24

26

27

25 value =  (alpha «  24) | (red «  16) | (green «  8) | blue;

falpha = 1; 

cs =  null ;

28 }
29

30 }

As one would expect, sampler objects turn out to be very likely immortal.

Another example is Joiner, which is defined as “an empty interface joining two 

or more superinterfaces” .

The catalogue they provide captures a wide spectrum of common coding prac

tices, including particular uses of immutability, wrapping, restricted creation and 

emulation of different programming paradigms with object-oriented constructs.

Often, programmers have an intuition about the lifetime of some objects. Yet, 

this intuition might be unreliable, because programmers make mistakes, but also 

because as code evolves, the lifetimes of objects might change. Determining object 

lifetimes by asking the programmer is therefore unreliable.

Programmers are often encouraged to follow coding style guidelines to ensure 

their code is as reliable and as reusable as possible. This is sometimes enforced 

by company policies, or learned through experience or education (courses, books, 

design patterns, etc.). The use of standard libraries might also require program

mers to adopt a particular programming style. Although programs are written in 

different styles, programmers tend to adopt similar practices and idioms.

It was shown that micro-patterns can capture particular aspects of Java classes.

6.2 Motivation



CHAPTER 6. USING MICRO-PATTERNS 153

They are interesting for several reasons.

Firstly, in terms of level of abstraction, they are close to the implementation. 

Therefore, they are potentially capable of capturing common coding practices. 

The intuition is that by capturing common coding practices, it may be possible to 

discover a correlation between objects that belong to certain classes and lifetimes.

Secondly, Gil and Maman found that different implementations of the same 

specification are likely to implement similar micro-patterns. If different imple

mentations of a same specification also have similar object lifetimes distributions, 

then there likely exists a correlation between micro-patterns and object lifetimes.

6.3 Methodology

The methodology employed is detailed in Chapter 3. A brief reminder of the way 

the experiments were conducted is presented below:

1. Object lifetimes were gathered from the training set (the DaCapo bench

marks).

2. Each allocation site was associated a lifetime, based on the lifetimes of the 

objects that were allocated at this site.

3. Source micro-patterns and destination micro-patterns were associated with 

allocation sites using Gil and Maman’s tool.

4. Ar elation between sets of micro-pattern source and destinations and object 

lifetimes was then derived.

5. This relation is then data-mined and rules at various confidence levels are 

generated.

6. Finally, the experiment is run by loading the relevant advice into the JVM 

using the command-line parameter.



CHAPTER 6. USING MICRO-PATTERNS 154

The following sections compare the results against self-prediction for both GC 

time and throughput. Note that the self-prediction results were gathered by load

ing a pre-generated self-prediction advice file into the experimental JVM. Also, 

note that in the experiments, results are compared against Jikes RVM version 

2.4.4, which incorporates an immortal space by default, whereas Blackburn et 

al. [26, 22] compare their results against a version of Jikes RVM which did not 

incorporate an immortal space.

6.4 GC Time

This section analyses the performance improvements in terms of GC time achieved 

by generating pretenuring advice, based on the set of source and destination micro

patterns of each allocation site. The performance of the system is analysed for each 

benchmark individually, before reviewing the overall performance improvements 

obtained using particular confidence levels.

6.4.1 Individual Benchmark Comparison

Each graph shows the relative time spent doing GC when compared with a run 

of the same program using a default JVM which does not implement the advice 

system (see Chapter 3). This paragraph analyses the performance of the system 

for each benchmark individually.

Figures 29, 30, 31 and 32 show relative GC time performance for the eight 

jvm98 benchmarks and contain two graphs each. In each figure, three curves show 

performance at various confidence levels (75%, 85% and 95%). The remaining 

curve shows the performance of self-prediction, the best possible scenario (see 

Chapter 3). In these Figures, a performance of +X %  would mean that perfor

mance is degraded by X% while -X% would mean performance is increased by 

X% (hence spending X% less time in GC).

In Figure 29, the advice is neutral for compress in most cases, except at 75% 

confidence where it is slightly worse, with a GC time performance degradation



CHAPTER 6. USING MICRO-PATTERNS 155

_201_compress, speed 100

.202Jess, speed 100

Figure 29: GC time relative to no advice for GenCopy configurations at 75, 85
and 95% confidence and for self-prediction.



CHAPTER 6. USING MICRO-PATTERNS 156

_205_raytrace, speed 100

(a) raytrace

_209_db, speed 100

(b) db

Figure 30: GC time relative to no advice for GenCopy configurations at 75, 85
and 95% confidence and for self-prediction.



CHAPTER 6. USING MICRO-PATTERNS 157

_213Javac, speed 100

_222_mpegaudio, speed 100

Figure 31: GC time relative to no advice for GenCopy configurations at 75, 85
and 95% confidence and for self-prediction.



CHAPTER 6. USING MICRO-PATTERNS 158

_227_mtrt, speed 100

(a) mtrt

.228Jack, speed 100

(b) jack

Figure 32: GC time relative to no advice for GenCopy configurations at 75, 85
and 95% confidence and for self-prediction.



CHAPTER 6. USING MICRO-PATTERNS 159

of up to 1.5%. Note that in this case, self-prediction does not produce any per

formance gain either. Jess shows performance improvements for self-prediction 

of up to 8.5% while the advice produces a performance degradation of 2% on 

average.

Figure 30 shows performance graphs for ra y tra ce  and db. In both instances, 

the advice performs extremely well, with performance improvements of up to 50% 

for ra y tra ce  and up to 78% for db. When the heap size is less than 2.5 times 

the minimum heap size, using the advice at 75% confidence, the JVM runs out 

of memory. However, when the heap size is more than 2.5 times the minimum 

heap size, the advice at 75% confidence performs closely to self-prediction for db , 

and even improves over self-prediction for ra y trace . This behaviour is explained 

by the fact that 75% confidence is an aggressive confidence level, which in this 

case advises pretenuring a large number of objects. If the heap is large enough, it 

improves performance, but if the heap is too small, the JVM runs out of memory 

due to over-pretenuring. In d b , at very tight heap sizes (1.25 times minimum), 

the advice at 75% confidence performs better than self-prediction, and follows the 

curve of self-prediction thereafter by 1 to 2%.

In Figure 31, performance improvements can be seen for ja v a c  of up to 7% at 

large heap size when using a confidence level of 85% or above. However, m pe g a u d io  

is mostly unaffected by the advice except for a performance spike at 1.75 times 

the minimal heap size, which is also noticed for self-prediction.

Finally, Figure 32 shows significant performance improvements for m tr t ,  which 

is a variant of ra y tra ce , of up to 64% for a prediction level of 75%. For m tr t  and 

at large heap sizes, the advice is also able to beat self-predict ion. Regarding ja c k , 

the advice offers no performance improvements and remains neutral, except at 

75% confidence, where performance is degraded by a very large factor (the graph 

does not show the degradation as the performance degradation is too high) due 

to over-pretenuring. Note however that ja c k ’s performance is also degraded when 

using self-prediction if the heap is larger than 2.5 times the minimum heap size.



CHAPTER 6. USING MICRO-PATTERNS 160

6.4.2 Summary

In summary, 75% confidence generally offers the largest performance gains, im

proving ra y tra ce  and m tr t  by around 50% and db  by 65% on average. However, 

in tight heaps 75% confidence pretenures too much, causing ra y tra ce  and m tr t  to 

run out of memory. J a v a c  in contrast only shows improvements (around 7%) for 

confidences > 75%, in large heaps.

Figure 33 shows a summary of the prediction efficiency at 75% confidence. 

75% confidence gives good GC improvement for the three benchmarks ray tra ce , 

m t r t  and db. One benchmark however ( ja c k )  performs very poorly due to wrong 

predictions and does not appear on the figure, while other benchmarks are mostly 

neutral.

Figure 34 shows a summary of the prediction efficiency at 85% confidence. In 

this graph, given a large enough heap (>  1.75 times the minimum heap size), the 

advice improves greatly 2 benchmarks ( m t r t  and ra y tra ce ) by up to 58% while 

being neutral with regards to GC performance for other benchmarks.

Figure 35 shows a summary of the prediction efficiency at 95% confidence. In 

this graph, performance gains are modest and 2 benchmarks ( ja va c  and m tr t )  are 

improved upon. Excluding tight heaps (<  2 times the minimum heap size), the 

advice degrades performance in only one case (jess) and by only up to 3%.

6.5 Overall execution time

Figures 36, 37, 38 and 39 show overall execution times relative to no advice for 

a range of confidences. At 75% confidence, the gains in GC performance are 

generally not reflected in overall execution time. Given that GC time represents 

only a small fraction of overall execution time for the jvm98 benchmarks (see 

Figure 42), it is not surprising that changes in GC time lead to much smaller 

changes in execution time. However, micro-pattern advice offers performance 

similar to self-prediction for raytrace and mtrt at 85%, and for javac at 75% in 

large heaps.



CHAPTER 6. USING MICRO-PATTERNS 161

Figure 33: GC time relative to no advice for GenCopy configurations at 75% 
confidence and for self-prediction.

Figure 34: GC time relative to no advice for GenCopy configurations at 85%
confidence and for self-prediction.



CHAPTER 6. USING MICRO-PATTERNS 162

Figure 35: GC time relative to no advice for GenCopy configurations at 95% 
confidence and for self-prediction.

But, some results are counter-intuitive. For example for db, 75% confidence 

pretenuring improves GC time by 65% but gives extremely poor performance 

overall. The reasons for this behaviour are explored in Section 6.7.

6.6 GC pause time

Pretenuring aims to reduce the volume of data copied at each collection. Because 

a copy-reserve is not needed when pretenuring immortal objects, the effective heap 

can be increased, thereby giving objects more time to die and reducing the volume 

of objects to be copied. Since less data should be copied, one could anticipate that 

the scheme should reduce pause times. For minor collections, pretenuring increases 

the proportion of short-lived objects allocated in the nursery which again should 

reduce pause times.

Figures 40 and 41 show the pause time distributions of several benchmarks at 

specific configurations where the system improves overall GC time. Configurations 

where the system performs well in terms of GC time we purposefully chosen in



%
 e

xe
cu

tio
n 

tim
e 

%
 e

xe
cu

tio
n 

tim
e

CHAPTER 6. USING MICRO-PATTERNS 163

_201_compress, speed 100

(a) compress

202Jess, speed 100

(b) jess

Figure 36: Overall execution times relative to no advice



CHAPTER 6. USING MICRO-PATTERNS 164

_205_raytrace, speed 100

(a) raytrace

209_db, speed 100

(b) db

Figure 37: Overall execution times relative to no advice.



CHAPTER 6. USING MICRO-PATTERNS 165

_213Javac, speed 100

(a) javac

222_mpegaudio, speed 100

Figure 38: Overall execution times relative to no advice.



%
 e

xe
cu

tio
n 

tim
e 

%
 e

xe
cu

tio
n 

tim
e

CHAPTER 6. USING MICRO-PATTERNS 166

227_mtrt, speed 100

228Jack, speed 100

(b) jack

Figure 39: Overall execution times relative to no advice.



C
um

ul
at

iv
e 

nu
m

be
r o

f G
C

s 
Cu

m
ul

at
iv

e 
nu

m
be

r o
f G

C
s

CHAPTER 6. USING MICRO-PATTERNS 167

(a) raytrace, 3 x , conf. 75%

No advice 
BI75

60 80 100 
Time (ms)

120 140 160 180

(b) db, 1.25x , conf. 75%

Figure 40: Cumulative pause time distributions, compared with no advice. A 
point (x, y ) on the line indicates that y collections had a pause time less than x
ms.



C
um

ul
at

iv
e 

nu
m

be
r o

f G
Cs

 
C

um
ul

at
iv

e 
nu

m
be

r o
f G

C
s

CHAPTER 6. USING MICRO-PATTERNS 168

(b) mtrt, 2 .33x , conf. 75%

Figure 41: Cumulative pause time distributions, compared with no advice. A 
point (x, y ) on the curve indicates that y collections had a pause time less than x
ms.



CHAPTER 6. USING MICRO-PATTERNS 169

order to demonstrate the potential pause-time savings that this approach can 

offer.

The Y  axis shows the cumulative number of GCs compared with the cumulative 

time in which GCs were performed (X axis). Lower curves indicate that fewer GCs 

were triggered, and more-left curves indicate that the pauses were shorter.

Each graph compares a run of a non-modified JVM (no advice) with a run of 

the experimental JVM loading an advice file. In these graphs, BI15 means that 

Blackburn et al.’s version of immortal objects (see Section 2.4.7) is used at 75% 

confidence. Likewise, BI95 means that Blackburn et al.’s version of immortal 

objects is used at 95% confidence.

Figure 40 (a) shows the pause-time distribution for ra y tra ce , at 3 times the 

minimum heap size and using a confidence level of 75%. As can be seen, the same 

number of GCs were triggered in both cases, but the default system spent 41 ms 

performing GC, while the advice system spent 17 ms.

Figure 40 (b) shows the pause-time distribution for db, at 1.25 times the min

imum heap size and using a confidence level of 75%. Here, the default JVM 

performed a total of 22 GCs, and spent 176 ms performing GCs, the longest 

pause being of 116 ms. In comparison, the system required only 20 GCs, and 

spent a total of only 31 ms doing GC.

Figure 41 (a) shows the pause-time distribution for ja v a c , at 3.5 times the 

minimum heap size and using a confidence level of 95%. Here, 13 GCs were 

triggered in each case, but the advice curve is shifted left with the advice system, 

indicating that the system spent less time in GC than the default JVM. The 

pauses were in general shorter with the advice system than the default JVM, with 

the exception of the 12th GC, which was longer using the advice system. In both 

cases, the longest pause was 27 ms.

Finally, Figure 41 (b) shows the pause-time distribution for m tr t ,  at 2| times 

the minimum heap size and using a confidence level of 75%. In this case, the 

default system spent a total of 68 ms performing GC, the longest pause being 67 

ms. In comparison, the system spent only 19 ms in GC, the longest pause being



CHAPTER 6. USING MICRO-PATTERNS 170

of 16 ms.

This study demonstrates that in the cases where overall GC time is improved, 

pause time is also reduced for both full heap collections (although jvm98 bench

marks do very few frill collections) and minor collections. In the case of db at 1.25 

times the minimum heap size and using a confidence level of 75%, the time spent 

in GC was reduced by a dramatic 546%, while the longest pause was reduced by 

400%.

6.7 Performance Considerations

When considering pretenuring, there are several implications one has to bear in 

mind. First, objects allocated in the immortal space must have a bit set to the 

current value of the marking bit (see Section 4.6.2). Second, although pretenuring 

increases the space used by the immortal region, this frees copy reserve, thereby 

increasing the effective heap available to other spaces, provided the pretenuring 

decision is correct and does not increase the volume of floating garbage. Pretenur

ing at 75% confidence places no objects in the mature space (although pretenuring 

at more aggressive, lower confidence levels does) but places many objects in the 

immortal space. Third, increasing the volume of objects in the immortal and 

mature spaces might change the number of cross-region references which have to 

be trapped by the write-barrier’s slow path and added to the remembered set (see 

Section 6.7.1).

6.7.1 db’s Behaviour Reviewed

Unfortunately, improvements in GC time do not always translate into improve

ments in execution time.

When comparing GC time performance with execution time performance, db 

at 75% confidence shows the most disparity by improving GC time and degrading 

overall throughput. The causes of the extra mutator overhead are explored below.



CHAPTER 6. USING MICRO-PATTERNS 171

No advice graphs only, speed 100

Figure 42: GC time as a fraction of overall execution time for MMTk GenCopy 
(without advice).

Figure 43: The number of times that the write barrier’s slow path is taken, with 
and without advice, by db at 75% confidence.



CHAPTER 6. USING MICRO-PATTERNS 172

Cost Of Setting Bits

As explained above, a bit needs to be set to the current value of the marking bit 

every time an immortal object is allocated. To estimate a lower bound on the 

additional cost of allocating objects in the immortal region, the cost of setting a 

header bit at all allocations was measured and the fraction of this cost proportional 

to the number of immortal allocations was calculated.

This is a lower bound because it can be assumed that the value of the bit 

will stick in the cache, which it might not if bit-setting is unusual (as it would 

be for immortal allocation). Under this pretenuring scheme db allocates 40,047 

objects in the immortal space. However, the performance results obtained show 

negligible throughput variation between performing bit-setting at each allocation 

and running the system without advice.

Write-Barrier Slow Path

Every-time a pointer is written to point to an object located in a different region, 

which can be independently collected, the write-barrier slow path is taken in order 

to update the remembered sets (see Chapter 2.1.3). This operation is costly.

Figure 43 shows the number of times that the write-barrier’s slow path is taken, 

with and without advice, by db at 75% confidence. As can be seen, for no-advice, 

the larger the heap size, the more frequently the write-barrier slow path has to 

be taken. This is because in an Appel-style collector [3], the larger the nursery is, 

the fewer collections are required, and the later the object is promoted. Delaying 

the promotion of objects increases the number of potential old-to-young pointers, 

and hence increases the number of times the write-barrier has to be taken.

However, using the advice, objects advised to be pretenured are immediately 

allocated together in the same space. Therefore, rather than increasing the number 

of times the write-barrier slow path is taken, pretenuring substantially reduces it.



CHAPTER 6. USING MICRO-PATTERNS 173

Heap Size 1.5 X 1.75 X 2 X
No Advice 244889997 247169698 247057737
Advice 326828354 328105942 328808123
% variation +33.5% +32.7% +33.1%

Table 17: Number of DTLB cache misses for _209_db at various heap sizes for 
advice and no advice.
Heap sizes are expressed as multiples of the minimum heap size. No Advice and 

Advice show the number of DTLB cache misses for a system running without 
advice, and a system running with advice respectively.

Layout Of Data

Pretenuring can disrupt the layout of data by allocating objects that would oth

erwise be allocated together in different regions. In the case of db, this is of prime 

importance since db is sensitive to the layout of data as it repeatedly traverses 

long singly-linked lists [22].

Examination of the hardware performance counters in table 17 indicates that, 

although the number of instructions executed and the cache behaviour for the 

mutator is similar with and without advice, advice increases DTLB misses by 

33%.

Finally, as can be seen in figure 42, it is worth mentioning that GC time 

accounts for only a very small proportion of overall execution time, so even small 

mutator overheads will override any improvements in GC time.

6.8 Analysis

In MMTk, objects that are known to be immortal are allocated directly in the 

immortal space. Table 18 summarises the consequences of the pretenuring deci

sions made by MMTK as well as the consequences of using the advice at 75% 

confidence.

The third column of Table 18 shows the number of sites in the jvm98 suite for 

which predictions with confidence greater than 75% are obtained. At this confi

dence level (and above), there are no predictions of long-lived objects, although



CHAPTER 6. USING MICRO-PATTERNS 174

\  ^  
\

\ \% X
X

Figure 44: Comparing self prediction with micro-pattern advice at 75%.

these appear at lower confidence levels. Most predictions are of immortal sites.

Amongst the 97 rules at 75% confidence or above generated by the data-mining 

tool, less than half are used in jvm98. Figure 45 shows the number of times each 

rule is used in each benchmark. Most rules apply to only a few sites, but some 

rules apply to many sites. Furthermore, most rules are used the same number of 

times in each benchmark, and different benchmarks are distinguished by use of 

only a very small number of rules.

Figure 45 is interesting as it shows that some rules are responsible for a large 

amount of pretenuring. Consider the case of ra y tra ce  and m tr t ,  two benchmarks 

in which the system dramatically reduces GC time at 75% confidence. Rule 25 in 

Figure 45 is more prevalent (with 72 instances) in these benchmarks than in other- 

benchmarks. The rule states that the source is Immutable while the destination 

is Immutable and not a CompoundBox. This rule applies to sites which provide 

graphical components of the scenes to be raytraced: the S c e n e  (the source) and 

objects within it (the destinations) are never changed, and common components 

like P o in t s  have only primitive fields.



Program
Min.
heap

All
sites Rules

Loading overhead 
time% before after

Advice sites 
Advice MMTk

Count
Advice MMTk Advice

Volume
MMTk All

compress 21 6655 230 -0.55 8 8 203 83 1467 369 139 114 128
jess 22 6935 289 0.60 8 8 255 83 14871 647 535 133 299
raytrace 30 6757 328 0.63 8 8 303 83 2491889 416 54194 118 166
db 39 6665 246 0.13 8 6 215 83 140067 377 23784 114 101
javac 40 7269 271 1.16 16 13 204 83 25786 665 559 149 225
mpegaudio 18 7656 243 0.66 8 8 217 83 1463 461 140 120 44
m tr t 38 6756 331 0.60 8 8 306 83 2656466 419 57548 118 176
ja ck 22 6954 308 0.48 8 6 209 83 573176 469 13255 122 312

Table 18: Pretenuring placement at 75% confidence, all benchmarks with speed 100 input.
Min. heap is the size in MB of the smallest heap in which the program would run. All sites is the total number of sites compiled 

(including Jikes RVM, application and library code used). Rules is the number of sites with advice other than short-lived. Loading 
overhead is the percentage execution time overhead to load the advice file, and the space overhead (in pages) before and after the run. 

Advice sites is the number of sites pretenured to the mature space or the immortal space, either by advice or by MMTk; similarly, 
Volume and Count are the number and volume (in KB, or MB for All) of objects pretenured.

—4Or

C
H

A
P

T
E

R
 6. 

U
SIN

G
 M

IC
R

O
-P

A
T

T
E

R
N

S



0 5 10 15 20 25 30 35 40
Rule number

Figure 45: Instances of rules used by SPEC jvm98 sites at confidence 75%.

-1
0 5

C
H

A
P

T
E

R
 6. 

U
SIN

G
 M

IC
R

O
-P

A
T

T
E

R
N

S



CHAPTER 6. USING MICRO-PATTERNS 177

Figure 44 compares the accuracy of the micro-pattern predictions at 75% 

against self-prediction. The height of each bar is the total number of sites that 

allocated data, and each bar corresponds to a specific benchmark. White blocks 

illustrate the sites that were not predicted. Light blue and dark blue blocks are 

sites that the system predicted accurately (immortal sites and short-lived sites 

respectively). Green blocks are sites misclassified as immortal (Expensive Error), 

and red blocks are sites misclassified as short-lived ( Cheap Error).

This graph shows that although the micro-pattern predictions are fewer than 

self-prediction, on average they match self-prediction advice for 81% of the sites 

for which they give advice. The prediction system makes few expensive errors (9% 

on average).

6.9 Statistical Significance

The previous sections of this chapter highlighted some significant improvements 

when using the methodology proposed in this thesis over a default system. While 

this approach offers important savings in GC time, it is important to statistically 

validate the results to establish that there really is a difference between self

prediction and the approach advocated in this thesis. The goal is to ensure these 

results were not obtained by pure luck.

To this aim, the primary objective of the analysis is to determine if there is 

any difference between:

• Self-prediction and micro-patterns at confidence 75% (Self-MP75).

• Self-prediction and micro-patterns at confidence 95% (Self-MP75).

A Sign Rank test can be used in replacement of a Student’s T test when the 

normality assumption of the data is not met. The nonparametric Sign Rank does 

not require specific distributional assumptions about the data. When data is not 

normal, the parametric Student’s T-test may not be robust, and the efficiency 

or power of the test may be compromised. Whereas when the data is normal,



CHAPTER 6. USING MICRO-PATTERNS 178

Sel f-V P 7 5

Figure 46: Plot of histogram for Self-MP75.

loss of efficiency or power may occurr with a nonparametric test. Therefore, it 

is important to check the distribution of the data prior to analysis. Also to be 

noted, here we assume that program is not a group variable of interest. Hence, 

the data is pooled across all 8 programs.

The histogram plots, normality probability plots and the normality tests can 

provide information about the distribution of the data.

Figure 46 shows the data for variable Self-MP75 (difference between Self and 

MP75) is left skewed. The same data distribution also applies for variable Self- 

MP95, see Figure 47.

The normality tests and the normal probability plots also suggest that the 

data for both Self-MP75, and Self-MP95 are non-normal. At 5% significance, the 

p-values for the 4 different variations of normality tests are all less than 0.05 (see 

Table 19 and 20). Therefore, we have evidence against the null hypothesis that 

the data is normal and Sign Rank test is the preferred test.

At 5% significance, the p-values are less than 0.05 (see Table 21). Therefore, 

we have evidence against the null hypothesis that the median is equal between



CHAPTER 6. USING MICRO-PATTERNS 179

Figure 47: Plot of histogram for Self-MP95.

Test P-value
Shapiro-Wilk <0.0001
Kolmogorov-Smirnov <0.0100
Cramer-von Mises <0.0050
Anderson-Darling <0.0050

Table 19: Normality Tests for Self-MP75.

Test P-value
Shapiro-Wilk <0.0001
Kolmogorov-Smirnov <0.0100
Cramer-von Mises <0.0050
Anderson-Darling <0.0050

Table 20: Normality Tests for Self-MP95.

Variable Sign Rank P-value Student’s T P-value
Self-MP75 <0.0001 <0.0012
Self-MP95 <0.0001 <0.0001

Table 21: Sign Rank and Student’s T Tests.



CHAPTER 6. USING MICRO-PATTERNS 180

• Self and MP75 (Sign Rank P-value <0.0001).

• Self and MP95 (Sign Rank P-value <0.0001).

Even though the Student’s T test is not the preferred test here, it is worth 

noting that the Student’s T P-values also suggest similar conclusions, see Table 

2 1 .

Therefore, we can conclude that there is a difference between self-prediction 

and the advice system at 75% confidence. There is also a difference between 

self-prediction and the advice system at 95% confidence.

6.10 Conclusion

Pretenuring long-lived and immortal objects into regions that are infrequently 

or never collected can reduce garbage collection costs significantly. However, ex

tant approaches either require extremely computationally expensive, application- 

specific, off-line profiling, or consider only allocation sites common to all programs,

i.e. those invoked by the virtual machine rather than application programs.

By data mining a large corpus of Java programs, it was possible to find rela

tionships between micro-patterns exhibited at an allocation site and the lifetimes 

of the objects allocated by that site. This analysis is effective at discovering 

short-lived and immortal objects, but predicts fewer sites that allocate long-lived 

data. The system is capable of predicting the lifetime of objects in programs never 

encountered before within minutes.

Advice is loaded into the JVM at the start of the program, and the program 

can benefit immediately from the pretenuring decisions. Section 6.8 showed that 

the rules generated at 75% confidence matched self-prediction in 81% of the cases 

on average.

This analysis is cheap and could be provided in a class loader (though currently 

advice is loaded from files prepared off-line). Performance gains between 6 and 

77% in GC time were obtained against a generational copying collector for several



CHAPTER 6. USING MICRO-PATTERNS 181

jv m 9 8  programs.

As demonstrated in Section 6.6, pretenuring decisions allow a significant re

duction in pause-times, by up to 546%.

Unlike software metrics, which provide an understanding of relationships be

tween classes, micro-patterns [62] offer an insight on the structure of each class. 

This lower-level view allowed us to capture programmer’s intentions, mechani

cally categorise program classes and apply this classification to allocation sites. 

Furthermore, the data-mining classification process is much easier using micro

patterns than software metrics because micro-patterns are binary: a class exhibits 

a micro-pattern or it does not.

An example of the system predicting the lifetime of objects was shown in 

ra y tra ce  and m tr t  which provide graphical components of scenes to be raytraced. 

This example showed that certain components within a program have particular 

lifetime characteristics. The system successfully captures some of it. With a larger 

training set, it is believed that the lifetimes of more object can be predicted, which 

may lead to more important and more consistent speedups across programs2.

The next chapter presents the conclusions and future work.

2While is was not possible to acquire a larger training set, training on numerous real-life 
programs may lead to the discovery of more quality rules.



Chapter 7 

Conclusions

This chapter presents the conclusions of this thesis and plans for future work. 

Section 7.1 of this chapter summarises the novel approach to pretenuring explored 

in this thesis and the results this approach led to. Section 7.2 discusses the 

reasons behind the poor results obtained using software metrics, compared to the 

convincing results obtained using micro-patterns. Finally, Section 7.3 presents 

plans for future work. In particular, this last section discusses enhancements that 

could be made to this approach, what other predictors could be explored, and 

what other types of garbage collector could be used.

7.1 Summary of the Thesis

This thesis has presented a study of how predictors based on static class prop

erties can be used to efficiently predict the lifetime of objects in memory. This 

research has shown very good results when using the right kind of predictors, and 

opportunities- for future work are promising.

The remainder of this sections discusses the main contributions of this thesis.

182



CHAPTER 7. CONCLUSIONS 183

7.1.1 State Of The Art Pretenuring

By allocating long-lived objects directly into longer-lived generations, pretenuring 

can reduce the amount of copying work the garbage collector has to perform at 

each collection [26, 22] . By allocating immortal objects directly into the immortal 

generation, pretenuring can not only save precious copying time at every garbage 

collection, but also increase the overall usable heap size. This is because in any 

type of GC that uses copying, including an Appel-style collector [3] which was used 

in the experiments, allocating objects in the mature space requires the system to 

keep a copy reserve of at least the same size as the mature space, essentially 

doubling the amount of space required for the mature space (see Chapter 2). 

Objects allocated in the immortal space, however, do not have this effect since 

they will never have to be moved.

Experimental results both in this thesis (see Chapter 4) and in Blackburn et 

al.’s original papers [26, 22] indicate that pretenuring schemes can considerably 

reduce garbage collection time by up to 80%. Recall however that pretenuring 

short-lived objects into the mature-space or the immortal space can decrease per

formance and diminish the effective space available in the heap. It is therefore 

essential for any pretenuring scheme to provide conservative advice.

Prior to this thesis, the research had investigated ways to produce the best 

possible pretenuring decisions by recording and analysing program traces [26, 22], 

However, performing such analysis, could take days for each program and would 

require very large tracefiles (2 GB compressed files are not uncommon) to be 

recorded and analysed.

This thesis reviewed a substantially faster way of performing lifetime analysis 

using class-level static properties. This lifetime advice was successfully exploited 

to show important performance improvements when using the right kind of pre

dictors. This novel methodology is summarised in the following section.



CHAPTER 7. CONCLUSIONS 184

7.1.2 Methodology

As explained in Chapter 3, allocation sites are first classified as short-lived, long- 

lived or immortal, following Blackburn et al.’s methodology [26, 22] . This step is 

done by recording tracefiles and then analysing them. During this process, each 

allocation site is classified as allocating mostly short-lived, long-lived or immortal 

objects.

The predictors of both source and destination classes are then recorded at 

each allocation site, along with the expected lifetime. A data-mining analysis 

allows us to derive rules matching certain predictors with lifetimes at different 

levels of confidence. This information is stored in a knowledge bank. Unlike 

previous approaches, this analysis is performed once, and from that point onwards, 

it is possible to predict the lifetime of objects within programs never encountered 

before based on the predictors they exhibit.

Finally, before running a program, the source and destination predictors are 

checked at every allocation site within that program and generate lifetime advice 

for every object by matching their predictors against the knowledge bank of rules. 

This analysis is cheap and can be performed within seconds.

7.1.3 Software Metrics

Software metrics were developed in an attempt to produce a concise and quanti

tative analysis of certain aspects of a software system. They help to describe the 

quality and complexity of a software system in an impartial and objective way. 

The use of software metrics as predictors is analysed, in Chapter 5.

The information theoretic analysis (see Chapter 5.2) showed that metrics do 

not correlate very well with lifetimes, and that using combinations of metrics, 

especially combining source metrics with destination metrics, improves the corre

lation only slightly.

Various approaches were explored, including using only the top four or top six 

metric values in the analysis. Different methods of discretising software metrics



CHAPTER 7. CONCLUSIONS 185

values into more usable data were also explored. Unfortunately, all the experimen

tal results indicate that the CK  software metrics are not good lifetime predictors.

The fact that CK metrics are not good predictors can be explained by a combi

nation of several factors specific to software metrics. Firstly, as shown in Chapter 

5, software metric ranges can be very wide (the RFC metric in the training set 

ranges from 1 to 1,370). Secondly, CK Metrics are general purpose metrics. They 

were created in order to produce a concise and quantitative analysis of certain as

pects of a software system. They define and quantify interactions between classes. 

However, they offer no insight on the programmer’s intent as they do not focus 

on class level properties, but rather on inter-class relationships.

7.1.4 Micro Patterns

Chapter 6 showed how micro-patterns, which allow the mechanical classification 

of Java classes, can be successfully used as lifetime predictors. Micro-patterns 

are defined as “a non-trivial, formal condition on the attributes, types, name and 

body of a class and its components, which is mechanically recognisable, purposeful, 

prevalent and simple” [62], They are similar to design patterns, but closer to the 

implementation and describe properties of a single class.

It was shown that programmer’s intentions can be captured with micro-patterns, 

applied to object allocation sites. By data mining a large corpus of Java programs, 

relationships between patterns exhibited at an allocation site and the lifetimes of 

the objects allocated by that site are found.

This analysis is effective at discovering short-lived and immortal objects, but 

predicts fewer sites that allocate long-lived objects. Experimental results show 

impressive performance gains in terms of GC time of between 6 and 77% in GC 

time, against a generational copying collector for several jv m 9 8  programs. It was 

also shown that pause-times can be reduced by up to 546%.

With regards to the accuracy of the advice, advice generated at 75% confidence 

matched self-prediction advice 81% of the time on average.

Micro-patterns are good object lifetimes predictors because they are capable



CHAPTER 7. CONCLUSIONS 186

of capturing programmer intentions. Furthermore, they are not subject to inter

pretation, which makes them easily exploitable. Finally, the data-mining classifi

cation process is much easier using micro-patterns than software metrics because 

micro-patterns are binary: a class exhibits a micro-patterns or it does not.

7.2 Discussion

This thesis demonstrated that it is possible for a fast static analysis to accurately 

predict the lifetime of objects. By knowing ahead of time the lifetime of an object, 

it is possible to make some pretenuring decisions and reduce the overall GC time, 

as well as the number and the length of pause times.

7.2.1 Predictors

One of the predictors, software metrics, did not produce good results. It was shown 

that software metrics ranges can be wide. Despite several different approaches, 

discretising effectively the data-set into meaningful values is hard. CK  metrics 

are also general purpose metrics. They define interaction between classes and do 

not capture programmer intent.

Using micro-patterns as a predictor, on the other hand, proved very successful, 

with speedups in GC time by up to 77%. There are several reasons for micro

patterns giving better predictions than software metrics. First, micro-patterns are 

boolean values: a class exhibits a certain micro-pattern or it does not. Second, 

there are 30 different micro-patterns, providing a combination of 30 * 30 =  900 

micro-patterns if both source and destination are considered, which helps discrim

inate allocation sites. Finally, micro-patterns are capable of capturing the intent 

of the programmer by capturing common coding practices (such as controlled 

creation, interfaces, etc.) which software metrics are unable to do.



CHAPTER 7. CONCLUSIONS 187

7.2.2 Limitations

The work presented in this thesis is novel and results obtained with our training 

and testing set are good. However, it is important to note that the technique 

developed in this thesis is not applicable to all types of programs. Below is a 

non-exhaustive list of cases where this technique is not recommended:

• Long-running programs. Long-running programs such as application servers 

may run for many months in a row without being restarted. If using the 

technique advocated in this thesis, certain objects will be allocated in the 

immortal space. However, if too many objects are allocated in the immortal 

region over the days, the program may run out of memory. To prevent this 

from happening, it is advisable to pretenure all objects predicted immortal 

into the mature space so that they can be reclaimed once the mature space 

becomes too large.

• Critical applications. Another type of applications where this technique is 

not advisable are critical applications that cannot tolerate failure. Examples 

of such applications can be found in the aeronautics industry, the space 

industry, the nuclear and energy industry, transports and many more. For 

these critical applications, as with long-running programs, it is recommended 

to allocate all objects predicted immortal in the mature space so that they 

can be reclaimed if the mature space becomes too large.

• Programs with phases. This technique may not apply well to programs 

that change behaviour throughout execution (phases). Objects predicted 

immortal may become dead when the program enters a new phase.

• Programs with dramatically varying inputs. This technique was successfully 

tested against a variety of difference programs loading a variety of different 

inputs. However, it is possible that certain programs capable of loading 

very different inputs may dramatically change behaviour based on the input



CHAPTER 7. CONCLUSIONS 188

being loaded. For these programs, the technique developed in this thesis 

may not be applicable.

7.3 Future Work

This thesis demonstrated that class level properties can be exploited to predict 

object lifetimes. In particular, it was shown that micro-patterns are good lifetime 

predictors. In contrast, interaction between classes using software metrics does 

not give good results.

This section presents key areas of future work. Section 7.3.1 discusses find

ing lifetime-specific micro-patterns. Section 7.3.2 discusses how pointer analysis 

could potentially be used to predict object lifetimes. Section 7.3.3 discusses in

corporating the decision making process inside the class-loader. Finally, Section 

7.3.4 discusses the possibility of making more detailed predictions and using a 

specially designed garbage collector capable of taking advantage of this.

7.3.1 Exploring Lifetime-Specific Micro-Patterns

Gil and iVlaman [62] identified 30 micro-patterns (see Table 16). Micro-patterns 

were identified in a logical manner in order to capture common coding practices.

Each Java class has a set of characteristics, and the presence of a micro

pattern in a class means that the class exhibits several characteristics. Currently, 

Gil and Maman’s catalog of micro-patterns capture only a small set of all possible 

combinations of characteristics.

With regards to predicting lifetimes, certain combinations of characteristics not 

part of Gil and Maman’s micro-patterns catalogue could have a high correlation 

with the lifetime of objects. The discovery of new GC-specific micro-patterns 

could add great value to the existing system and reduce further the time spent in 

GC by the JVM.

The procedure leading to the discovery of GC-specific micro-patterns would

be as follows:



CHAPTER 7. CONCLUSIONS 189

1. List all different characteristics that a class can exhibit. Note that while 

a characteristic like “ the class has more than 1 private method” is accept

able, uthe class has 3 private methods” is not advisable as the number of 

characteristics would be infinite.

2. Calculate every combination of characteristics possible.

3. Evaluate each combination to see how frequently it is used within programs, 

and how well it correlates with object lifetimes.

By dramatically increasing the number of micro-patterns in the catalogue, the 

hope is to find more micro-patterns correlating highly with object lifetimes. This 

would help improve the quality of the advice, which would then lead to more 

important time savings.

The next section discusses the use of static analysis techniques to predict object 

lifetimes.

7.3.2 Pointer Analysis

Chapter 6 showed how micro-patterns can be exploited to predict object lifetimes. 

To discover micro-patterns within a program, Gil and Maman’s tool analyses Java 

byte-code to identify the properties of each class. This task is performed stati

cally offline. Experimental results indicate that micro-patterns are good lifetime 

predictors.

Since static analysis of class-level properties (micro-patterns) can predict ob

ject lifetimes with high accuracy, other static analysis techniques may be capable 

of predicting the lifetime of objects. A particular area of interest for future work 

is pointer analysis, a static code analysis technique that aims at discovering which 

pointers, or heap references, can point to which objects. Many publications on 

this topic exist, and much research remains to be done. Hind summarises the 

current state of the field in his paper [78].

Using pointer analysis, it may be possible to discover statically the lifetime of 

some objects. For example, if the pointer analysis can determine that an object



CHAPTER 7. CONCLUSIONS 190

is used throughout the code until the end of the program, then this object is 

immortal. Likewise, if the analysis reveals that an object does not escape the 

method’s scope, then it may be short-lived.

However, statically measuring the lifetime of objects that escape the scope 

of the method they were allocated in is difficult [78]. Therefore, the main goals 

of this approach are expected to lie in finding immortal and short-lived objects 

which do not escape the scope of the method they were allocated in.

The next section analyses the possibility of integrating the decision making 

engine inside the class-loader.

7.3.3 Decision Making Inside the Class-Loader

In the current setup, source predictors and destination predictors for each allo

cation site are discovered offline, before running the program. Source predictors 

and destination predictors are then matched against the knowledge bank, and an 

advice file is created, matching allocation sites with lifetime advice. Finally, the 

advice hie is loaded into the JVM before the Java program starts.

In order to take advantage of lifetime predictions, the methodology currently 

imposes waiting for the above process to be completed before starting the program. 

While waiting a few minutes before starting the program is acceptable in the 

context of research, it is not acceptable for end-users, although it would only need 

to be done once.

In order to improve the usability of the system, the decision making engine 

could be incorporated inside the class loader, instead of having to generate pre

dictions prior to running their program. Every time a class is loaded into the 

class-loader, the source predictors and destination predictors of each allocation 

site would need to be checked and matched against a local knowledge bank. For 

the end-user, this scheme would be transparent, and the user would not have 

to wait minutes for the advice to be generated before starting their program. 

The cost of the analysis would be distributed throughout the program’s execution 

(whenever a class is loaded into memory), as opposed to be an upfront cost as it



CHAPTER 7. CONCLUSIONS 191

currently is.

However, for such implementation to be successful, it is extremely important 

to ensure that the overhead on the system is limited, as the extra overhead could 

easily outweigh the benefits of pretenuring. King shows how this analysis could 

be run in the background without the need for thread synchronisation at GC time

[98]. The advice generated by this analysis could then be fed into the optimising 

compiler to perform pretenuring decisions.

7.3.4 A  More Suitable Garbage Collector

As explained in Chapter 3, the prototype was implemented inside a standard 

Appel-style collector [3]. These are classified as short-lived, long-lived or immortal 

following Blackburn et al.’s classifications. This garbage collector is well suited to 

take advantage of the predictions since long-lived objects can be allocated directly 

into the mature space, and immortal objects can be allocated directly into the 

immortal space.

Jones and Ryder propose a lifetime aware collector which is capable of taking 

advantage of more precise object lifetimes predictions [92], Using appropriate 

predictors such as micro-patterns, it may be possible to predict the lifetime of 

objects more accurately. By using a different lifetime classification than used 

in this thesis, it may be possible to take advantage of a lifetime aware garbage 

collector .

7.3.5 A  Larger Training Set

This work was carried out using a limited training set and test set. While this 

is enough to prove the viability of the approach, using a larger training set may 

lead to significant improvements in performance. A larger training set taken from 

real-life applications may allow the discovery of new rules capable of predicting 

object lifetimes with high accuracy.

In general, the larger the training set is, the more generic the knowledge bank



CHAPTER 7. CONCLUSIONS 192

would become. This would lead to an increased probability of accurately predict

ing the lifetime of objects in programs never encountered before. This would also 

lead to the discovery of more rules, increasing the probability of being able to 

predict the lifetime of particular objects.

7.3.6 Final Words

This thesis discussed a novel approach to object lifetime prediction for pretenuring 

by combining data-mining techniques with static analysis. In particular, this 

thesis demonstrated some important speedups in GC time using micro-patterns 

as predictors.

Nevertheless, a lot of work remains to be done, and several approaches can be 

taken to improve the system, both in terms of usability and prediction accuracy. 

Having shown that static properties can be good indicators of object lifetimes, a 

few questions remain:

• “What is the most accurate predictor in the Java language?”

• “Which predictor offers the best accuracy versus cost ratio?”



Bibliography

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P Cheng, J.-D. 

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, 

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, 

J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 

The jalapeno virtual machine. In IBM System Journal, Vol 29, No 1. IBM, 

2000 .

[2] Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Com

putation, 2:153-162, 1989.

[3] Andrew W. Appel. Simple generational garbage collection and fast alloca

tion. Software Practice and Experience, 19(2): 1T1—183, 1989.

[4] Andrew W. Appel. Compilers and runtime systems for languages with 

garbage collection. In Proceedings of SIGPLAN’92 Conference on Program

ming Languages Design and Implementation, volume 27 of ACM SIGPLAN 

Notices, San Francisco, CA, June 1992. ACM Press.

[5] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. 

ACM  SIGPLAN Notices, 26(4):96-107, 1991. Also in SIGARCH Computer 

Architecture News 19 (2) and SIGOPS Operating Systems Review 25.

[6] Alain Azagury, Elliot K. Kolodner, Erez Petrank, and Zvi Yehudai. Com

bining card marking with remembered sets: How to save scanning time. In 

Jones [91], pages 10-19.

193



BIBLIOGRAPHY 194

[7] Hezi Azatchi and Erez Petrank. Integrating generations with advanced refer

ence counting garbage collectors. In Proceedings of the Compiler Construc

tion: 12th International Conference on Compiler Construction, CC 2003, 

volume 2622 of Lecture Notes in Computer Science, pages 185-199, Warsaw, 

Poland, May 2003. Springer-Verlag Heidelberg.

[8] David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and 

Stephen Smith. Java without the coffee breaks: A nonintrusive multipro

cessor garbage collector. In Proceedings of SIGPLAN 2001 Conference on 

Programming Languages Design and Implementation, ACM SIGPLAN No

tices, Snowbird, Utah, June 2001. ACM Press.

[9] David F. Bacon, Perry Cheng, and V.T. Rajan. A unified theory of garbage 

collection. In OOPSLA [118].

[10] David F. Bacon and V.T. Rajan. Concurrent cycle collection in reference 

counted systems. In Jorgen Lindskov Knudsen, editor, Proceedings of 15th 

European Conference on Object-Oriented Programming, ECOOP 2001, vol

ume 2072 of Lecture Notes in Computer Science, Budapest, June 2001. 

Springer-Verlag.

[11] Henry G. Baker. The Treadmill, real-time garbage collection without motion 

sickness. ACM  SIGPLAN Notices, 27(3):66 70, March 1992.

[12] Henry G. Baker. ‘Infant mortality’ and generational garbage collection. 

ACM  SIGPLAN Notices, 28(4), April 1993.

[13] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang, 

Scott Pakin, and Jose C. Sancho. Entering the petaflop era: the architec

ture and performance of Roadrunner. In SC ’08: Proceedings of the 2008 

ACM/IEEE conference on Supercomputing, pages 1-11, Piscataway, NJ, 

USA, 2008. IEEE Press.



BIBLIOGRAPHY 195

[14] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to im

prove memory allocation performance. In PLDI [125], pages 187-196.

[15] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold 

Co., New York, NY, USA, 1990.

[16] E. C. Berkeley and Daniel G. Bobrow, editors. The Programming Language 

LISP: Its Operation and Applications. Information International, Inc., Cam

bridge, MA, fourth edition, 1974.

[17] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference 

to von Neumann machines via region representation inference. In Confer

ence Record of the Twenty-third Annual ACM Symposium on Principles of 

Programming Languages, ACM SIGPLAN Notices. ACM Press, 1996.

[18] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor

mation Science and Statistics). Springer, 1 edition, October 2007.

[19] Peter B. Bishop. Computer Systems with a Very Large Address Space and 

Garbage Collection. PhD thesis, MIT Laboratory for Computer Science, 

May 1977. Technical report M IT/LCS/TR-178.

[20] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, 

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, 

A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, 

T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo 

benchmarks: Java benchmarking development and analysis. In OOPSLA 

’06: Proceedings of the 21st annual ACM  SIGPLAN conference on Object- 

Oriented Programing, Systems, Languages, and Applications, New York, 

NY, USA, October 2006. ACM Press.

[21] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and 

water? high performance garbage collection in Java with MMTk. In ICSE



BIBLIOGRAPHY 196

2004, 26th International Conference on Software Engineering, Edinburgh, 

May 2004.

[22] Stephen M. Blackburn, Matthew Hertz, Kathryn S. Mckinley, J. Eliot B. 

Moss, and Ting Yang. Profile-based pretenuring. ACM Transactions on 

Programming Languages and Systems, 29(1): 1-57, 2007.

[23] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B. 

Moss. Beltway: Getting around garbage collection gridlock. In PLDI [126], 

pages 153-164.

[24] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference count

ing: Fast garbage collection without a long wait. In OOPSLA [117].

[25] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoff

mann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg, 

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria 

Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik, 

Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. Wake up 

and smell the coffee: evaluation methodology for the 21st century. Commun. 

ACM, 51(8):83-89, 2008.

[26] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKin

ley, and J. Eliot B. Moss. Pretenuring for Java. In OOPSLA [115], pages 

342-352.

[27] Daniel G. Bobrow. Managing re-entrant structures using reference counts. 

ACM  Transactions on Programming Languages and Systems, 2(3):269-273, 

July 1980.

[28] Hans-Juergen Boehm. Reducing garbage collector cache misses. In Hosking 

[83].

[29] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooper

ative environment. Software Practice and Experience, 18(9):807-820, 1988.



BIBLIOGRAPHY 197

[30] G. Bollella and J. Gosling. The real-time specification for Java. Computer, 

33(6):47 54, Jun 2000.

[31] boost.org. Boost C + +  Libraries. Boost.org, 2009.

[32] David R. Brownbridge. Recursive Structures in Computer Systems. PhD 

thesis, University of Newcastle upon Tyne, September 1984.

[33] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, 

Vivek Sarkar Michael Hind, Mauricio J. Serrano, V. C. Sreedhar, Harini 

Srinivasan, and John Whaley. The Jalapeno dynamic optimizing compiler 

for Java. In JAVA ’99: Proceedings of the ACM 1999 conference on Java 

Grande, pages 129-141. ACM Press, 1999.

[34] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching 

linked data structures. In International Conference on Parallel Architectures 

and Compilation Techniques (PACT), Barcelona Spain, 2001.

[35] D. C. Cann and Rod R. Oldehoeft. Reference count and copy elimination for 

parallel applicative computing. Technical Report CS-88-129, Department 

of Computer Science, Colorado State University, Fort Collins, CO, 1988.

[36] Patrick J. Caudill and Allen Wirfs-Brock. A third-generation Smalltalk-80 

implementation. In Norman Meyrowitz, editor, OOPSLA’86 ACM Con

ference on Object-Oriented Systems, Languages and Applications, volume 

21(11) of ACM SIGPLAN Notices, pages 119-130. ACM Press, October 

1986.

[37] Proceedings of the lfth  International Conference on Compiler Construction, 

Edinburgh, April 2005. Springer-Verlag.

[38] C. J. Cheney. A non-recursive list compacting algorithm. Communications 

of the ACM, 13(11):677—8, November 1970.



BIBLIOGRAPHY 198

[39] Perry Cheng, Robert Harper, and Peter Lee. Generational stack collection 

and profile-driven pretenuring. In Proceedings of SIGPLAN’98 Conference 

on Programming Languages Design and Implementation, ACM SIGPLAN 

Notices, Montreal, June 1998. ACM Press.

[40] Chen-Yong Cher, Antony L. Hosking, and T. N. Vijaykumar. Software 

prefetching for mark-sweep garbage collection: hardware analysis and soft

ware redesign. SIGOPS Oper. Syst. Rev., 38(5): 199-210, 2004.

[41] Sigmund Cherem and Radu Rugina. Region analysis and transformation for 

Java programs. In Diwan [53].

[42] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented 

design. IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

[43] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Re

gion inference for an object-oriented language. Technical report, National 

University of Singapore, November 2003.

[44] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Region 

inference for an object-oriented language. In Proceedings of SIGPLAN 200f  

Conference on Programming Languages Design and Implementation, ACM 

SIGPLAN Notices, pages 243-254, Washington, DC, June 2004. ACM Press.

[45] Douglas W. Clark and C. Cordell Green. An empirical study of list structure 

in Lisp. Communications of the ACM, 20(2):78-86, February 1977.

[46] David Cohn and Satinder Singh. Predicting lifetimes in dynamically allo

cated memory. In M. Mozer et al., editors, Advances in Neural Information 

Processing Systems 9, 1997.

[47] George E. Collins. A method for overlapping and erasure of lists. Commu

nications of the ACM, 3(12):655-657, December 1960.



BIBLIOGRAPHY 199

[48] David Detlefs, editor. ISMM’02 Proceedings of the Third International Sym

posium on Memory Management, ACM SIGPLAN Notices, Berlin, June 

2002. ACM Press.

[49] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free 

reference counting. Distributed Computing, 15:255-271, 2002.

[50] John DeTreville. Experience with garbage collection for Modula-2+ in the 

Topaz environment. In Eric Jul and Niels-Christian Juul, editors, OOP- 

SLA/ECOOP ’90 Workshop on Garbage Collection in Object-Oriented Sys

tems, Ottawa, October 1990.

[51] A. Deutsch. On determining lifetime and aliasing of dynamically allocated 

data in higher-order functional specifications. In Conference Record of the 

Seventeenth Annual ACM Symposium on Principles of Programming Lan

guages, ACM SIGPLAN Notices, pages 157 -  168, San Francisco, CA, Jan

uary 1990. ACM Press.

[52] L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental automatic 

garbage collector. Communications of the ACM, 19(9):522—526, September 

1976.

[53] Amer Diwan, editor. ISMM’Of Proceedings of the Fourth International Sym

posium on Memory Management, Vancouver, October 2004. ACM Press.

[54] Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational on-the- 

fly garbage collector for Java. In Proceedings of SIGPLAN 2000 Conference 

on Programming Languages Design and Implementation, ACM SIGPLAN 

Notices, Vancouver, June 2000. ACM Press.

[55] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage collec

tor for virtual memory computer systems. Communications of the ACM, 

12(11):611612, November 1969.



BIBLIOGRAPHY 200

[56] François Fleuret. Fast binary feature selection with conditional mutual in

formation. J. Mach. Learn. Res., 5:1531-1555, 2004.

[57] John K. Foderaro and Richard J. Fateman. Characterization of VAX Mac- 

syma. In 1981 ACM Symposium on Symbolic and Algebraic Computation, 

pages 14-19, Berkeley, CA, 1981. ACM Press.

[58] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. 

Matheus. Knowledge discovery in databases: An overview. In The American 

Association for Artificial Intelligence, pages 57-70, 1992.

[59] Yoav Freund. Boosting a weak learning algorithm by majority. In Informa

tion And Computation. ACM, 2008.

[60] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design 

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 

1995.

[61] Robin Garner, Stephen M. Blackburn, and Daniel Frampton. Effective 

prefetch for mark-sweep garbage collection. In The 2007 International Sym

posium on Memory Management. ACM Press, October 2007.

[62] Joseph (Yossi) Gil and Itay Maman. Micro patterns in Java code. In 

Object-Oriented Programming, Systems, Language and Applications (OOP- 

SLA’05), pages 97-116, San Diego, CA, 2005. ACM Press.

[63] Adele Goldberg and D. Robson. Smalltalk-80: The Language and its Imple

mentation. Addison-Wesley, 1983.

[64] Udo Grimmer. Clementine: Data mining software. In Hans-Joachim Mucha 

and Hans-Hermann Bock, editors, Classification and Multivariate Graphics: 

Models, Software and Applications, number 10, pages 25-31. Weierstrass- 

Institut für Angewandte Analysis und Stochastik, Berlin, 1996.



BIBLIOGRAPHY 201

[65] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the 

cache locality of memory allocation. In PLDI [125], pages 177-186.

[66] Samuel Guyer and Kathryn McKinley. Finding your cronies: Static analysis 

for dynamic object colocation. In OOPSLA [118].

[67] N. Hallenberg. Combining garbage collection and region inference in the ML 

Kit. Master’s thesis, Department of Computer Science (DIKU), University 

of Copenhagen, June 1999.

[68] Niels Hallenberg. A region profiler for a Standard ML compiler based on 

region inference. Student Project 96-5-7, Department of Computer Science 

(DIKU), University of Copenhagen, June 1996.

[69] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region infer

ence and garbage collection. In PLDI [126], pages 141-152.

[70] D.J. Hand. Data mining: Statistics and more? In The American Statisti

cian., number 52, 1998.

[71] Lars Thomas Hansen. Older-first Garbage Collection in Practice. PhD 

thesis, North-eastern University, November 2000.

[72] Lars Thomas Hansen and William D. Clinger. An experimental study of 

renewal-older-first garbage collection. In Proceedings of the 2002 ACM SIG- 

PLAN International Conference on Functional Programming (ICFP02), vol

ume 37(9) of ACM SIGPLAN Notices, pages 247-258, Pittsburgh, PA, 2002. 

ACM Press.

[73] Timothy Harris. Dynamic adaptive pre-tenuring. In Hosking [83].

[74] Barry Hayes. Using key object opportunism to collect old objects. In An

dreas Paepcke, editor, OOPSLA’91 ACM Conference on Object-Oriented 

Systems, Languages and Applications, volume 26(11) of ACM SIGPLAN 

Notices, pages 33-46, Phoenix, Arizona, October 1991. ACM Press.



BIBLIOGRAPHY 202

[75] Matthew Hertz, Steve M. Blackburn, K. S. McKinley, J. Eliot B. Moss, and 

Darko Stefanovic. Error-free garbage collection traces: How to cheat and not 

get caught. In Proceedings of the International Conference on Measurements 

and Modeling of Computer Systems, Marina Del Rey, CA, June 2002.

[76] Michael Hicks, Luke Hornof, Jonathan T. Moore, and Scott Nettles. A study 

of Large Object Spaces. In Jones [91], pages 138-145.

[77] M. Teresa Higuera, Valerie Issarny, Michel Banatre, Gilbert Cabillic, Jean- 

Philippe Lesot, and Frederic Parain. Memory management for real-time 

Java: an efficient solution using hardware support. Real-Time Systems Jour

nal, 2002.

[78] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In 2001 

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software 

Tools and Engineering (PASTE’01), Snowbird, UT, June 2001.

[79] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based 

garbage collection. In OOPSLA [117].

[80] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael Hind. Under

standing the connectivity of heap objects. In Detlefs [48], pages 36-49.

[81] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. A compara

tive performance evaluation of write barrier implementations. In Andreas 

Paepcke, editor, OOPSLA ’92 ACM Conference on Object-Oriented Systems, 

Languages and Applications, volume 27(10) of ACM SIGPLAN Notices, 

pages 92-109, Vancouver, British Columbia, October 1992. ACM Press.

[82] Antony L. Hosking and Richard L. Hudson. Remembered sets can also 

play cards. In Eliot Moss, Paul R. Wilson, and Benjamin Zorn, editors, 

OOPSLA/ECOOP ’93 Workshop on Garbage Collection in Object-Oriented 

Systems, October 1993.



BIBLIOGRAPHY 203

[83] Tony Hosking, editor. ISMM 2000 Proceedings of the Second International 

Symposium on Memory Management, volume 36(1) of ACM SIGPLAN No

tices, Minneapolis, MN, October 2000. ACM Press.

[84] Wei Huang, W. Srisa-an, and J. M. Chang. Adaptive pretenuring schemes 

for generational garbage collection. In Proceedings of IEEE International 

Symposium on Performance Analysis of Systems and Software (ISPASS- 

04), pages 133-140, Austin, TX, March 2004.

[85] Xianlong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. 

Moss, Z. Wang, and Perry Cheng. The garbage collection advantage: Im

proving program locality. In OOPSLA [118].

[86] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. 

Weight. A language-independent garbage collector toolkit. Technical Re

port COIiXS 91-47, University of Massachusetts at Amherst, Department of 

Computer and Information Science, September 1991.

[87] R. John M. Hughes. A semi-incremental garbage collection algorithm. Soft

ware Practice and Experience, 12(11): 1081—1084, November 1982.

[88] H. Inoue, Darko Stefanovic, and S. Forrest. Object lifetime prediction in 

Java. Technical Report TR-CS-2003-28, University of New Mexico, May 

2003.

[89] Hajime Inoue, Darko Stefanovic, and Stephanie Forrest. On the prediction 

of Java object lifetimes. IEEE Transactions on Computers, 55(7):880-892, 

2006.

[90] Douglas Johnson. The case for a read barrier. ACM SIGPLAN Notices, 

26(4) :279—287, 1991.

[91] Richard Jones, editor. ISMM’98 Proceedings of the First International Sym

posium on Memory Management, volume 34(3) of ACM SIGPLAN Notices, 

Vancouver, October 1998. ACM Press.



BIBLIOGRAPHY 204

[92] Richard Jones and Chris Ryder. Garbage collection should be lifetime aware. 

In Olivier Zendra, editor, Implementation, Compilation, Optimization of 

Object-Oriented Languages, Programs and Systems (ICOOOLPS’2006), 

page 8, Nantes, France, July 2006.

[93] Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic 

Memory Management. Wiley, Chichester, July 1996. With a chapter on 

Distributed Garbage Collection by R. Lins.

[94] Richard E Jones and Chris Ryder. A study of java object demographics. 

In ISMM ’08: Proceedings of the 7th international symposium on Memory 

management, pages 121-130, New York, NY, USA, 2008. ACM.

[95] Sebastien Marion Richard Jones and Chris Ryder. Decrypting the Java gene 

pool: Predicting objects’ lifetimes with micro-patterns. In Mooly Sagiv, edi

tor, ISMM’07 Proceedings of the Fifth International Symposium on Memory 

Management, pages 67-78, Montréal, Canada, October 2007. ACM Press.

[96] Maria Jump, Stephen M. Blackburn, and Kathryn S. McKinley. Dynamic 

object sampling for pretenuring. In Diwan [53].

[97] C. F. Kemerer. Reliability of function points measurement: A field experi

ment. In Commun, pages 85-97, 1993.

[98] Andy C. King. Removing GC synchronisation. In OOPSLA [116], pages 

112-113 (Companion).

[99] Donald E. Knuth. The Art of Computer Programming, volume I: Funda

mental Algorithms, chapter 2. Addison-Wesley, second edition, 1973.

[100] Ron Kohavi. A study of cross-validation and bootstrap for accuracy esti

mation and model selection, pages 1137-1143. Morgan Kaufmann, 1995.

[101] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of 

Mathematical Statistics, 22:77-86, 1951.



BIBLIOGRAPHY 205

[102] T. Kurokawa. A new fast and safe marking algorithm. Software Practice 

and Experience, 11:671-682, 1981.

[103] Yossi Levanoni and Erez Petrank. A scalable reference counting garbage 

collector. Technical Report CS-0967, Technion —  Israel Institute of Tech

nology, Haifa, Israel, November 1999.

[104] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage 

collector for Java. In OOPSLA [115].

[105] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage 

collector for Java. ACM Transactions on Programming Languages and Sys

tems, 28(1), January 2006.

[106] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on 

the lifetimes of objects. Communications of the ACM , 26(6):419-429, 1983. 

Also report TM-184, Laboratory for Computer Science, MIT, Cambridge, 

MA, July 1980 and AI Lab Memo 569, 1981.

[107] Rafael D. Lins. Cyclic reference counting with lazy mark-scan. Informa

tion Processing Letters, 44(4):215-220, 1992. Also Computing Laboratory 

Technical Report 75, University of Kent, July 1990.

[108] Rafael D. Lins. An efficient algorithm for cyclic reference counting. Infor

mation Processing Letters, 83:145-150, 2002.

[109] A. D. Martinez, R. Wachenchauzer, and Rafael D. Lins. Cyclic reference 

counting with local mark-scan. Information Processing Letters, 34:31-35, 

1990.

[110] J. Harold McBeth. On the reference counter method. Communications of 

the ACM, 6(9):575, September 1963.

[111] T.J. McCabe. A complexity measure. IEEE Transactions on Software En

gineering, 2(4):308-320, 1976.



BIBLIOGRAPHY 206

[112] John McCarthy. Recursive functions of symbolic expressions and their com

putation by machine. Communications of the ACM, 3:184-195, 1960.

[113] SUN Microsystems. The Java HotSpot Virtual Machine, 1999. Technical 

White Paper.

[114] K.Nygaard O.Dahl, B.Myhrhaug. The Simula67 Base Common Base Lan

guage. Technical report, Norwegien Computing Center, 1970.

[115] OOPSLA’Ol ACM  Conference on Object-Oriented Systems, Languages and 

Applications, volume 36(10) of ACM SIGPLAN Notices, Tampa, FL, Octo

ber 2001. ACM Press.

[116] OOPSLA’02 ACM Conference on Object-Oriented Systems, Languages and 

Applications, ACM SIGPLAN Notices, Seattle, WA, November 2002. ACM 

Press.

[117] OOPSLA’OS ACM  Conference on Object-Oriented Systems, Languages and 

Applications, ACM SIGPLAN Notices, Anaheim, CA, November 2003. ACM 

Press.

[118] OOPSLA’Oj ACM Conference on Object-Oriented Systems, Languages and 

Applications, ACM SIGPLAN Notices, Vancouver, October 2004. ACM 

Press.

[119] Patrik Paetau. On the Benefits and Problems of the Object-Oriented 

Paradigm including a Finnish Study. PhD thesis, Swedish School of Eco

nomics and Business Administration, October 2005.

[120] Harel Paz and Erez Petrank. Using prefetching to improve reference

counting garbage collectors. In Proceedings of the 16th International Con

ference on Compiler Construction (C C ’O7), March 2007.

[121] Harel Paz, Erez Petrank, David F. Bacon, V.T. Rajan, and Elliot K. Kolod- 

ner. An efficient on-the-fly cycle collection. In CC [37].



BIBLIOGRAPHY 207

[122] Harel Paz, Erez Petrank, David F. Bacon, V.T. Rajan, and Elliot K. Kolod- 

ner. An efficient on-the-fly cycle collection. ACM Transactions on Program

ming Languages and Systems, 29(4): 1-43, 2007. Article 20.

[123] Harel Paz, Erez Petrank, and Stephen M. Blackburn. Age-oriented garbage 

collection. In CC [37].

[124] E. J. H. Pepels, M. C. J. D. van Eekelen, and M. J. Plasmeijer. A cyclic 

reference counting algorithm and its proof. Technical Report 88-10, Com

puting Science Department, University of Nijmegen, 1988.

[125] Proceedings of SIGPLAN’93 Conference on Programming Languages De

sign and Implementation, volume 28(6) of ACM SIGPLAN Notices, Albu

querque, NM, June 1993. ACM Press.

[126] Proceedings of SIGPLAN 2002 Conference on Programming Languages De

sign and Implementation, ACM SIGPLAN Notices, Berlin, June 2002. ACM 

Press.

[127] Tony Printezis and Alex Garthwaite. Visualising the Train garbage collector. 

In Detlefs [48], pages 100-105.

[128] J. Ross Quinlan. Data mining tools See5 and C5.0.

[129] J. Ross Quinlan. Cf.5: programs for machine learning. Morgan Kaufmann 

Publishers Inc., San Francisco, CA, USA, 1993.

[130] John H. Reppy. A high-performance garbage collector for Standard ML. 

Technical memorandum, AT&T Bell Laboratories, Murray Hill, NJ, De

cember 1993.

[131] Niklas Röjemo and Colin Runciman. Lag, drag, void, and use: heap profiling 

and space-efficient compilation revisited. In Proceedings of First Interna

tional Conference on Functional Programming, pages 34-41, Philadelphia, 

PA, May 1996. ACM Press.



BIBLIOGRAPHY 208

[132] Paul Rovner, Roy Levin, and John Wick. On extending Modula-2 for build

ing large, integrated systems. Technical Report 3, DEC Systems Research 

Center, Palo Alto, CA, Palo Alto, CA, 1985.

[133] Christina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynami

cally allocated objects. In Conference Record of the Fifteenth Annual ACM  

Symposium on Principles of Programming Languages, ACM SIGPLAN No

tices, pages 285-293. ACM Press, January 1988.

[134] Colin Runciman and Niklas Rojemo. Lag, drag and post-mortem heap 

profiling. In Implementation of Functional Languages Workshop, Bpastad, 

Sweden, September 1995.

[135] Narendran Sachindran, J. Eliot B. Moss, and Emery D. Berger. MC2: High- 

performance garbage collection for memory-constrained environments. In 

OOPSLA [118].

[136] Jon D. Salkild. Implementation and analysis of two reference counting al

gorithms. Master’s thesis, University College, London, 1987.

[137] H. Schorr and W. Waite. An efficient machine independent procedure for 

garbage collection in various list structures. Communications of the ACM, 

10(8):501-506, August 1967.

[138] Matthew L. Seidl and Benjamin G. Zorn. Segregating heap objects by ref

erence behavior and lifetime. In In Proceedings of the Eighth International 

Conference on Architectural Support for Programming Languages and Op

erating Systems (ASPLOS-VIII), pages 12-23, 1998.

[139] Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and 

Jaswinder Pal Singh. Creating and preserving locality of Java applications 

at allocation and garbage collection times. In OOPSLA [116].

[140] David Siegwart and Martin Hirzel. Improving locality with parallel hier

archical copying gc. In J. Eliot B. Moss, editor, ISMM’06 Proceedings of



BIBLIOGRAPHY 209

the Fourth International Symposium on Memory Management, pages 52-63, 

Ottawa, Canada, June 2006. ACM Press.

[141] Jeremy Singer, Gavin Brown, Mikel Lujan, and Ian Watson. Towards intel

ligent analysis techniques for object pretenuring. In Principles and Practice 

of Programming in Java, Lisbon, September 2007. ACM Press.

[142] Jeremy Singer, Sebastien Marion, Gavin Brown, Richard Jones, Mikel 

Lujan, Chris Ryder, and Ian Watson. An information theoretic evaluation 

of software metrics for object lifetime prediction. In 2nd Workshop on Sta

tistical and Machine Learning Approaches to Architectures and Compilation 

(SMART’08), page 15, Goteborg, Sweden, January 2008.

[143] Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems on 

general-purpose computers. Technical Report AITR-1417, MIT AI Lab, 

February 1988. Bachelor of Science thesis.

[144] Sunil Soman and Chandra Krintz. Application-specific garbage collection. 

Journal of Systems and Software, 80(7): 1037 -  1056, 2007. Dynamic Re

source Management in Distributed Real-Time Systems.

[145] Diomidis Spinellis. CKJM— Chidamber and Kemerer Java metrics, 2005. 

http ://www.spinellis.gr/sw/ckjm/.

[146] IBM Staff. The jikes research virtual machine (rvm), 2000.

[147] Standard Performance Evaluation Corporation. SPECjvm98 Documenta

tion, release 1.03 edition, March 1999.

[148] Darko Stefanovic. Properties of Age-Based Automatic Memory Reclamation 

Algorithms. PhD thesis, University of Massachusetts, 1999.

[149] Darko Stefanovic, Matthew Hertz, Stephen Blackburn, Kathryn McKinley, 

and J. Eliot Moss. Older-first garbage collection in practice: Evaluation in

http://www.spinellis.gr/sw/ckjm/


BIBLIOGRAPHY 210

a Java virtual machine. In ACM SIGPLAN Workshop on Memory System 

Performance (MSP 2002), Berlin, June 2002.

[150] Bjarne Stroustrup. A history of C + + : 1979-1991. SIGPLAN Notices, 

28:271-297, 1993.

[151] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo. An empirical ex

ploration of the distributions of the Chidamber and Kemerer object-oriented 

metrics suite. Empirical Software Engineering, 10( 1) :81 104, 2005.

[152] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data 

Mining. Addison Wesley, 2005.

[153] Simon J. Thompson and Rafael D. Lins. Cyclic reference counting: A cor

rection to Brownbridge’s algorithm. Unpublished notes, 1988.

[154] Mads Tofte. A brief introduction to Regions. In ISMM98, pages 186-195.

[155] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Trans

actions on Programming Languages and Systems, 20(4):734-767, July 1998.

[156] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retro

spective on region-based memory management. Higher-Order and Symbolic 

Computation, 17(3), September 2004.

[157] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,

Tommy Hpjfeld Olesen, and Peter Sestoft. Programming with Re

gions in the ML Kit, version 4. Technical report, IT University of 

Copenhagen, October 2001.

[158] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,

Tommy Hpjfeld Olesen, Peter Sestoft, and Peter Bertelsen. Program

ming with Regions in the ML Kit. Technical Report DIKU-TR-97/12, 

Department of Computer Science (DIKU), University of Copenhagen, April 

1997.



BIBLIOGRAPHY 211

[159] Mads Tofte and Niels Hallenberg. Region-based memory management in 

perspective. In Proceedings of the First workshop on Semantics, Pro

gram Analysis and Computing Environments for Memory Management 

(SPACE’01), London, January 2001. Invited talk.

[160] Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in poly- 

morphically typed languages. Technical Report Computer Science 93/15, 

University of Copenhagen, July 1993.

[161] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call- 

by-value A-calculus using a stack of regions. In Conference Record of the 

Twenty-first Annual ACM Symposium on Principles of Programming Lan

guages, ACM SIGPLAN Notices, pages 188-201, Portland, OR, January 

1994. ACM Press.

[162] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. 

Information and Computation, February 1997.

[163] David M. Ungar. Generation scavenging: A non-disruptive high perfor

mance storage reclamation algorithm. ACM SIGPLAN Notices, 19(5): 157- 

167, April 1984. Also published as ACM Software Engineering Notes 9, 

3 (May 1984) —  Proceedings of the ACM/SIGSOFT/SIGPLAN Software 

Engineering Symposium on Practical Software Development Environments, 

157-167, April 1984.

[164] David M. Ungar and Frank Jackson. Tenuring policies for generation-based 

storage reclamation. ACM SIGPLAN Notices, 23(11): 1 17, 1988.

[165] David M. Ungar and Frank Jackson. An adaptive tenuring policy for gener

ation scavengers. ACM Transactions on Programming Languages and Sys

tems, 14(1): 1 27, 1992.

[166] Daniel C. Wang and Andrew W. Appel. Safe garbage collection =  regions 

+  intensional type analysis. Technical report, Princeton, July 1999.



BIBLIOGRAPHY 212

[167] David H. D. Warren. An abstract Prolog instruction set. Technical Note 

309, SRI International, 1983.

[168] J. Weizenbaum. Recovery of reentrant list structures in SLIP. Communica

tions of the ACM , 12(7):370-372, July 1969.

[169] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical re

port, University of Texas, January 1994. Expanded version of the IWMM92 

paper.

[170] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching consider

ations for generational garbage collection. In Conference Record of the 1992 

ACM Symposium on Lisp and Functional Programming, pages 32-42, San 

Francisco, CA, June 1992. ACM Press.

[171] Benjamin Zorn and M. Seidl. Segregating heap objects by reference behavior 

and lifetime. In Eighth International Conference on Architectural Support 

for Programming Languages and Operating Systems, San Jose, CA, October 

1998.

[172] Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Col

lection Algorithms. PhD thesis, University of California at Berkeley, March 

1989. Technical Report UCB/CSD 89/544.



Appendix A

Information Theoretic Analysis 

Of CK Metrics

This Appendix presents the full details of the paper “An Information Theoretic 

Evaluation of Software Metrics for Object Lifetime Prediction” [142].

The lead author of this paper is Jeremy Singer from the University of Manch

ester with whom we were collaborating on this research. Singer also introduced 

the information theoretic approach.

The author of this thesis provided the idea of using data-mining, provided the 

scripts necessary to parse the data-mining rules and match them with predictors 

to generate lifetime predictions. The author of this thesis also performed the 

runtime measurements using the experimental JVM.

A .l Data-mining algorithm used

Because this research was not carried out at the same university and because C5.0 

is a commercial product, this part of the research was done using the data-mining 

algorithm C4.5 and not C5.0 that we use for the bulk of this thesis.

C5.0 is the evolution of C4.5 and improves on a few points. It performs faster 

than the previous version and uses less memory by using smaller decision trees. 

Also, it introduced support for boosting (see Chapter 2.5), weighting (see Chapter

213



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS2U

2.5) and winnowing (a technique which helps reduce noise in the data). When 

there are numerous attributes, winnowing operates by pre-selecting a subset of 

attributes with valuable predictive information that will be used to construct the 

rule-set.

A .2 Calculation of Information Theory 

Measurements

The fundamental information theoretic measure is entropy, which quantifies the 

information content in a given source of data: the more ‘randomness’ or unpre

dictability in the data source, the higher the entropy value. Consider a device 

producing symbols according to a random variable X , defined over a finite al

phabet of possible symbols Sx- If we assume each successive symbol sl e  Sx is 

independent of the previous ones, the unconditional entropy is defined as,

where p(i) is the probability of the ith symbol being produced. Note that all 

logarithms are base 2. Inpractical terms, p(i) can be calculated with frequency 

counts, i.e.:

We assume the produced symbols to be a common CK metric measurement on 

a sequence of dynamic object allocations. This gives us a stream of metric values, 

for which we can calculate an entropy measure.

The conditional entropy measures the dependence between two different sym

bol streams. In our case, we could take two measurements on each element in a 

sequence of dynamic object allocations. For instance we could measure a CK met

ric for each newly created object and its lifetime. These are two different random 

variables X  and Y  respectively with two different alphabets Sx and Sy but there

|5x|
(6)

number of occurrences of symbol .s.
(7)total number of symbols seen



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS215

may be some dependence between them, which we can quantify by conditional

entropy.
|5xl |SVI

H(y|x) = -  £ > (» )  £  K?'N) iog(p(j|*))
¿=1 j = i

(8)

This is the first order conditional entropy. The required probabilities can again 

be computed from frequency counts:

number of times Sj occurs with s.L 
number of occurrences of S{ (9)

First order conditional entropy has a minimum value of zero and a maximum 

value of log(|iSV|). In the example above, it measures the uncertainty we have in 

the lifetime of an object given the value of a certain CK metric. If lifetime values 

are produced uniformly at random over the alphabet Sy, then eq.(8) will converge 

tO log (| Sy |).

The mutual information between X  and Y  is a measure of the agreement, or 

correlation, between them. The mutual information is,

I ( X - Y )  =  H ( Y ) - H ( Y \ X )  (10)

This is easily computed from the entropy measurements we have already described 

above. This measurement is symmetric, i.e. I ( X ; Y )  =  I ( Y ; X ), and quantifies the 

reduction in our uncertainty of Y  when the value of X  is revealed. Unlike Pearson’s 

R correlation coefficient, which only detects linear correlations between random 

variables, mutual information can detect arbitrary nonlinear relationships.

I ( X ] Y )  can be normalized to a value between 0 and 1 by dividing it by 

m in (ii(X ), H(Y)) .  The maximum value of normalized mutual information (NMI) 

indicates that there is perfect correlation between the two variables. Given the 

value of one variable, it is always theoretically possible to construct a predictor 

that will predict the value of the other variable with 100% accuracy. A low value 

of NMI indicates that there is little information, and therefore little opportunity 

for accurate prediction of Y  given X.  A zero value of NMI indicates that the two



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS216

variables are entirely uncorrelated, so knowing the value of one variable does not 

avail for making predictions about the other variable’s value.

A .3 Correlation of Individual features

Our first analysis assesses the utility of single CK metrics as features for predicting 

object lifetimes. The NMI scores are shown in Table 13. The rows are sorted 

according to NMI values. Each row reports the NMI of a single metric with the 

object lifetime. Most of the figures are disappointingly low. For instance, knowing 

the NOC metric (number of child classes) for source and destination classes is 

almost useless for predicting lifetimes. Other metrics show limited potential: six 

metrics have NMI scores above 0.25.

The top two metrics in Table 13 are CK metrics for source objects. We might 

assume that it is more important to know about the source object than the des

tination object, or at least, it is important to know something about the source 

object as well as the destination object. This is an important insight: until now, 

most type-based object lifetime studies only consider characteristics of the desti

nation object (the allocatee) rather than the source (the allocator).

A .4 Cross-Correlation

Given the low NMI scores of single metrics with lifetime, one might ask if a 

combination of metrics is required to obtain accurate predictions. When selecting 

a set of features to supply as input to a predictor, the following heuristic should be 

followed: “Selected features should have low correlations with each other (cross

correlation) and high correlation with the output.” So in our case, we need to 

identify CK metrics that do not correlate highly with other metrics, but have 

relatively high correlation with object lifetime.

Table 14 shows the cross-correlation values of metrics with other metrics. A 

metric’s cross-correlation with itself is always 1, hence the unit diagonal in the



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS217

matrix. Since NMI is a symmetric score, then the matrix is symmetric about its 

diagonal, so the table only reports the upper triangle of values.

This table shows that source metrics correlate highly with other source met

rics, and destination metrics correlate highly with other destination metrics. How

ever, there is a low correlation between source metrics and destination metrics in 

general. Therefore a good selection of metrics for predictor inputs would be a 

combination of source and destination metrics.

A .5 Correlation of Pairs of Features

Table 22 gives the NMI correlation scores of pairs of features with object lifetime. 

We only consider single features that have correlation above 0.25 with NMI from 

Table 13. It is important to note that this table conveys different information 

from Table 14. Now the row X and column Y  indicate metrics X and Y  whose 

values are paired. The table cell value for (X,Y) is the NMI of this pair of metrics 

with lifetime. So the diagonal values of pairs (X,X) are the same as the values 

for individual metrics in Table 13. The other values show the correlation of pairs 

of features with lifetime. Note that using one source metric and one destination 

metric (top right hand corner of table) gives significantly better NMI scores than 

using two source metrics (top left hand corner of table) or two destination metrics 

(bottom right corner of table). This is empirical confirmation of the notion we 

outlined in the previous section—that a mixture of source and destination metrics 

are better than all source or all destination metrics alone.

A .6 Conditional Mutual Information Maximisa

tion

Table 13 reveals that single features all have low NMI scores. We require a com

bination of features to obtain reliable predictions. However one problem with 

selecting features based only on NMI is that this selection process does not take



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS‘218

sR
FC

sL
C

O
M

dW
M

C

dR
FC

dL
C

O
M

dN
PM

sRFC 0.342 0.531 0.660 0.722 0.666 0.642
sLCOM 0.370 0.656 0.699 0.661 0.637
dWMC 0.257 0.412 0.389 0.350

dRFC 0.314 0.443 0.426
dLCOM 0.324 0.401

dNPM 0.261

Table 22: Correlation of pairs of features with lifetime.

account of cross-correlation between features. It is best to select features that have 

high individual correlation with the class to predict and have low cross-correlation 

with each other. Fleuret [56] presents an attractive algorithm to do automatic fea

ture selection based on mutual information that considers cross-correlation. His 

technique is known as conditional mutual information maximization (CMIM). The 

approach iteratively picks features that maximize their mutual information with 

the class to predict, conditioned on features already picked. This CMIM criterion 

does not select a feature similar to ones already picked, even if it is individually 

informative, since such a similar feature does not carry additional information 

about the class to predict.

Conditional mutual information is calculated as:

I(U\V\W) =  H(U\W) -  H(U\W,V)  (11)

This value is an estimate of the quantity of information shared between U and 

V when W  is known. If V and W  carry the same information about U, then 

the two terms on the right are equal and the conditional mutual information is 

zero, even if both V and W  are individually informative. Conversely if V contains 

information about U which is not present in W, then the difference is large and 

the conditional mutual information is high.

The CMIM algorithm operates as follows. It aims to pick k features from a



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS219

m etric C M IM  score
source LCOM 0.407
dest RFC 0.345
source RFC 0.177
source CBO 0.144
dest LCOM 0.142
source NPM 0.113
source WMC 0.104
source Ca 0.086
dest NPM 0.085
dest WMC 0.072
dest Ca 0.061
source DIT 0.041
dest DIT 0.038
dest CBO 0.033
source NOC 0.025
dest NOC 0.007

Table 23: CMIM-based ranking of features for prediction of object lifetime.

total of n, in order of relevance with the most relevant feature first. Incidentally, if 

we use CMIM to select n features from n, then we get a relevance-ordered ranking 

of our entire feature set which takes into account cross-correlations in a way that 

our simple ranking based on NMI scores in Table f3 did not.

The algorithm maintains a score vector, with one element for each feature. 

Initially, the score vector is set up so score[i] contains the unnormalized mutual 

information score for the ith feature (with the lifetime). At each iteration, the 

feature with the highest score value is taken as the next selected feature. Then the 

score vector is recomputed, with each element score[i] set to the minimum value 

of (score[*], /(lifetime; ith feature|last selected feature). This ensures that score[i] 

is low if at least one of the features already picked is similar to the ith feature.

Fleuret [56] gives a full explanation of the algorithm, including various opti

mization techniques using lazy evaluation and boolean bit-vectors. We implement 

his CMIM algorithm and use it to rank the CK metric features in order of rel

evance for object lifetime prediction. Table 23 gives the results of this CMIM 

analysis. Note that in the table, each score is the highest value in score vector 

at that particular iteration, for a feature that has not been selected by previous 

iterations.



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS220

A .7 Prototype Prediction Schemes

In order to evaluate the feature selection and ranking decisions above, we generate 

several predictors using the C4.5 tree learner algorithm. We report the accuracy 

of these decision tree predictors, but as yet we have not used the predictions to 

optimize generational GC, so we are unable to give real benchmark speedups at 

this stage.

Recall that the total object lifetime database contains around 40,000 entries. 

Each entry records source and destination CK metrics for a single scalar allocation 

site, together with the most likely lifetime for objects allocated at that site. The 

data is randomly split 50:50 into training/test sets. This is repeated for five trials. 

To use just five trials may not seem enough for statistical significance. However 

the results in all our experiments have such low variance that more than five trials 

is not necessary.

We investigate how the (mean) accuracy of the generated decision tree varies 

as different numbers of features are added. The features are selected according 

to their ranking from the CMIM algorithm, as shown earlier in Table 23. Figure 

48 presents the results, including error bars to indicate plus/minus one standard 

deviation. It is evident that a tree built using all 16 features has an accuracy 

of approximately 78%. This is significantly better than the performance of the 

Weka baseline ZeroR predictor, which has an accuracy score of 44.8%. The Ze- 

roR predictor always selects the most frequently occurring outcome, assuming all 

allocation sites are equally likely.

Note that when we select just the top three features indicated by CMIM, the 

generated predictor achieves 77.6% accuracy, for a significantly reduced decision 

complexity. After pruning, the three-feature trees had on average just 10 nodes, 

while the 16 feature trees had on average 40 nodes. It is clear to see that three 

features provide similar accuracy to 16 features, at a much lower complexity cost. 

This is clear justification for the application of feature selection techniques outlined 

earlier.



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS221

Figure 48: Graph showing how C4.5 predictor accuracy changes with number of 
metric features for lifetime prediction

As a further extreme example, we consider only the top two features identified 

by CMIM. This feature reduction, combined with aggressive pruning, enables us to 

visualize the decision boundaries of a small C4.5 decision tree. Figure 49 illustrates 

this map. It is a graphical presentation of a simple set of rules, that achieves 

75% accuracy on the test data. The primary advantage of this visualization is 

that it can also support interpretation of the rules. We present three ‘intuitive’ 

instantiations of the rules below:

1. The point marked + in the map corresponds to an allocation site in the 

Dacapo pmd benchmark. The source class is pmd. ast. JavaParser. The 

destination class is the LookaheadSuccess inner class of the source. The 

map shows that this allocation is predicted to be short-lived. This seems 

likely, given domain-specific knowledge that look-ahead events are frequent 

in the parsing process, and the specific inner class contains no long-term 

state.

2. The * point corresponds to an allocation site in DaCapo bloat. The source 

class is bloat. tree. PrintVisitor. The destination class is StringBuf f er.



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS222

SLCOM

Figure 49: Two-dimensional map showing how allocation sites with various metric 
values map onto different lifetimes.
Shaded areas represent short-lived allocations. Unshaded areas represent immor
tal allocations.

This allocation is predicted to be short-lived. This seems appealing, since 

StringBuffer objects are generally ephemeral and the PrintVisitor class 

presumably makes a traversal over the entire tree, creating and emitting 

a textual representation of the tree nodes. We speculate that this narrow 

band of short-lived objects between 58 and 59 on the dRFC axis is almost 

entirely due to StringBuffer objects.

3. The l  point corresponds to any allocation site whose destination class is 

String. All such allocations are predicted to be long-lived. Again, this 

appeals to intuition since String objects are immutable and often contain 

long-term information.

When using rules (as explained in Chapter 3) a single rule is equivalent to a 

single path from the root node to a leaf node in the decision tree. Some paths 

match many cases in the dataset, whereas others only have a single match. Some 

paths have 100% successful prediction rate, whereas other paths have lower ac

curacy. Selecting a subset of rules from the decision tree enables us to eliminate 

unpopular or inaccurate decisions. In addition, single rules are easier to interpret 

than a complete decision tree.



APPENDIX A. INFORMATION THEORETIC ANALYSIS OF CK METRICS223

A .8 Explanation of Analysis

Feature selection is a fundamental topic in Machine Learning. Too many features 

can lead to over fitting of a learning model, and hence poor performance when 

the learning system is deployed in the field. It is important to distinguish here 

between feature selection, and feature extraction. The former is the focus of this 

section. The latter encompasses techniques such Principal Components Analysis 

(PCA) and Bayesian Automatic Relevance Determination (ARD) [18].

Extraction techniques measure functions of features, which are linear for PCA 

and nonlinear for ARD. The typical result is a ‘black-box’ mathematical function 

of the original data. The meaning of the original features is lost. In contrast, 

feature selection techniques such as those based on conditional mutual information 

maximization allow us to retain original meaning and provide human-readable 

explanations of how a feature is useful in combination with others.

For instance, we can attempt to interpret the feature ranking provided by 

CMIM in Table 23. This shows us that LCOM and RFC are important metrics, 

and that source metrics are generally more important than destination metrics. 

Note how there is only one out of eight CK metrics for which the destination value 

is ranked above the source value in the table.

The LCOM and RFC metrics measure the complexity of a class, in terms of 

methods. Recall that LCOM measures how various sets of methods in a class 

access disjoint field sets in the class, and RFC measures how many methods are 

called directly by the methods of a class. These two values provide a precise way 

to characterize a class. Perhaps this kind of precise metric ‘fingerprint’ what is 

needed to get accurate object lifetime predictions.


