
Longley, Mark (1991) Functional programming applications. Doctor of Philosophy
(PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94491/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94491

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It

was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94491/
https://doi.org/10.22024/UniKent/01.02.94491
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

FUNCTIONAL PROGRAMMING APPLICATIONS

A THESIS SUBMITTED TO

T h e U n i v e r s i t y o f K e n t a t C a n t e r b u r y

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By

Mark Longley

August 1991

Abstract

Functional programming languages have distinct advantages over imperative lan

guages. These include ease of reasoning, formally or informally, about programs

and the concise and elegant expression of complex algorithms.

We use several large programming tasks to investigate various aspects of the pro

duction of a complete system in a functional language. These include the overall

development of an implementation, the implementation of the core algorithms and

the implementation of the external interface. We do not attempt verifications of the

implementations but instead adopt a specification style that aids informal reasoning

about the corresponding implementation.

We employ the language Miranda1 ll as our example functional programming lan

guage.

1 Miranda is a Trademark of Research Software Ltd.

ll

Acknowledgements

I would like to thank the following people for their willingness to discuss both their

work and mine; Rafael Lins, Steve Hill, Gareth Howells, Sean Supeville, John Cupitt,

Robert Duncan, Richard Jones and Sean Leviseur. Particular thanks are due to Paul

Gardiner and J. R. Abrial for their help in my understanding of the ‘B ’ system and

its logic. Simon Thompson provided many useful insights into the applications of

functional programming languages in the implementations of logics and other areas.

David Turner provided much advice on the use of Miranda2.

Most thanks are, of course, due to Allan Grimley; without his constant encour

agement and advice this work would not exist in the present form.

This research was funded by BP EMRA ‘Functional Programming In the Large’ .

2Miranda is a Trademark of Research Software Ltd.

ill

Dedication

Mum and Dad.

IV

Contents

A bstract 11

A cknow ledgem ents 111

D edication ¡v

1 Introduction 1

2 Specification and Verification 7

2.1 Specification... '

2.2 Verification ... H

2.2.1 Base C a s e .. 20

2.2.2 Induction Step .. 21

2.2.3 Result C a s e .. 29

2.2.4 Conclusion.. 30

2.3 Informal A p p roa ch .. 31

v

3 T ype Checking “ M iranda” 40

3.1 Type D iscipline.. 42

3.2 Abstract Syntax.. 54

3.3 Variable Bindings and S c o p e s ... 59

3.4 Types .. 60

3.5 Well T y p in g ... 64

3.6 Well Typing Algorithm M ... 67

3.6.1 The Basic A lgorithm .. 67

3.6.2 Type Synonyms and Abstract T y p e s .. SO

3.6.3 Type Definitions ... 82

3.6.4 E xam ple... S3

3.7 Implementation... 94

3.7.1 P a rse r .. 95

3.7.2 Type C hecker... 9S

3.7.3 Interactive User Interface.. 100

3.8 Conclusion.. 101

4 Im plem enting Logics 103

4.1 Intuitionistic L o g i c ... 105

4.1.1 P a rse r .. 109

4.1.2 Derivations .. 110

vi

4.2 Defining Logics in L F .. 122

4.2.1 Intuitionistic L o g ic ... 124

4.3 A Miranda Implementation of Paul Gardiner’s Logic of ‘B ’ 131

4.3.1 Introduction.. 131

4.3.2 Object and Meta Language .. 134

4.3.3 Sequents... 137

4.3.4 Axioms ... 139

4.3.5 Additional R u le s ... 146

4.3.6 Derived R u les ... 148

4.3.7 Relationship to ‘B ’ ... 154

4.3.8 The Im plem entation.. 156

4.3.9 Sub-goaling.. 177

4.4 Conclusion.. 180

5 M O O SE 183

5.1 Introduction... 183

5.2 E xpressions... 187

5.3 Environments.. 190

5.4 R ew ritin g .. 103

5.4.1 T l ... 194

5.4.2 7Z C .. 20S

vii

5.4.3 7 T .. 209

5.5 Pattern M atching... 210

5.5.1 Variable Bindings... 211

5.5.2 Conformality Checking... 214

5.6 Sharing Computation... 216

5.7 Implementation... 222

5.8 Conclusion.. 225

A “ M iranda” Syntax 227

B T ype Checking 238

B.l Using the Typecheck P ro g ra m ... 238

B.2 Using the Interact Program .. 239

B.3 Introduction.. 239

B.4 The Tree Structure of a S crip t... 240

B.5 Input... 250

B .6 Command Syntax... 250

B.7 Context S y n ta x 255

B. 8 Tutorial Session.. 256

C T ype Checking P roofs 268

C. l L C F ... 26S Vlll

V l l l

C.2 A Simpler A p p ro a ch .. 270

C.2.1 Type C h eck in g .. 270

C.2.2 Display ... 271

IX

List of Tables

1 “Miranda” Abstract Syntax 55

x

List of Figures

1 Maximal Strong Components ... 17

2 Sequential Nature of At ... 6S

3 The Typechecker... 94

4 Type Check Identifier... 98

5 Type Check Unary Operator E xpression .. 99

6 Derivations ... HI

7 Sequents.. 160

8 P r o o fs ... 165

9 R e w r i t e s .. 171

10 S u b t r e e s .. 172

11 Evaluation.. 223

xi

Chapter 1

Introduction

Imperative programming languages can be characterized by the fact that they have

an implicit state that is modified by the statements of the language. Programs consist

of sequences of statements that control these modifications to the state. Declarative

programming languages dispense with this implicit state and programs are presented

as sets of equations. This not only makes reasoning, both formal and informal, easier

but also allows the concise and elegant expression of complex algorithms. Functional

programming languages are based on function definitions and their applications. This

differs from the logic programming languages which are based on relations.

We shall not discuss in detail the differences between functional programming

languages and other language classes. We shall simply describe those properties of

functional languages which are of interest. For a discussion of functional programming

1

languages and their advantages see Hughes [Hug89] and Hudak [Hud89].

Programs in a functional programming language consist of a sequence of definitions

binding names to values. In general these values will be functions from some domain

of argument values to some range of result values. We do not ‘run a program’ as we

would with an imperative language but instead evaluate some expression defined in

terms of these functions.

Perhaps the most important property of functional programming languages is

that they are referentially transparent1. This means that the value of an expression

is determined only by the values of its sub-expressions and its evaluation can only

affect those expressions of which it is a sub-expression. This differs from imperative

languages, -where expressions may reference the state which may be altered in an

arbitrary fashion by assignment statements. This property greatly simplifies reasoning

about the values of expressions and implies that the proofs of verification theorems

will also be greatly simplified. Such verifications will, however, not be easy and a

great deal of detailed work would still need to be done. Even so, this property also

means that informal reasoning about a program during its development is greatly

simplified, thus reducing errors and oversights. Informal verification of functional

programs is also easier, and far more plausible arguments can be presented than for

imperative languages.

JIt can be argued that to be truly referentially transparent a functional programming language
must have a non-strict semantics.

2

We employ the language Miranda2 as our example functional programming lan

guage. Miranda has a number of advantages as an example language:

• It has a small elegant syntax which allows the clear expression of function

definitions and their applications.

• It is a polymorphic strongly typed language which allows the secure definition

of generic functions.

• It is a higher order language which allows the expression of commonly used

control structures and data structure manipulations as higher order functions.

• It has both algebraic and abstract types which allow the creation of new data

structures and secure types.

• It provides pattern matching for case analysis.

• It has a non-strict semantics which allows the manipulation of potentially infi

nite objects, allowing elegant solutions to many problems.

• It provides for separate compilation of modules which allows easy system de

velopment.

We shall not provide a detailed description of the language Miranda; for a description

of Miranda one can refer to [TurSl, Tur85, Tur79, Hil89].

2Miranda is a Trademark of Research Software Ltd.

3

In this thesis we take three large programming tasks and use them to investi

gate various issues that arise when implementing a complete system in a functional

programming language.

Experience has shown that a great many algorithms can be expressed as func

tional programs in such a way as to produce concise programs which can be easily

understood [Fle90, dV8S]. We examine the economy and elegance of the expression

of the functional solutions to these three tasks and compare the advantages obtained

for the different sections of the resulting programs. The process by which the sys

tems were developed is also noted and various conclusions about the advantages, and

disadvantages, of the functional programming approach are discussed.

We shall not, in general, concern ourselves with the run-time efficiency of our

implementations. This is partly because increasingly efficient implementations of

functional languages were being developed while this work was underway. More

importantly the efficiency of the Miranda implementation, while not up to the state-

of-the-art, was itself being improved. Thus it was not possible to obtain consistent

performance figures from Miranda and even if they had been available they would not

have properly represented the best results that could be obtained from a functional

language.

We will not attempt to provide formal verifications of the correctness of our im

plementations. This is because we would require extensive machine support for the

4

verification of our programs and this is not presently available.

This work is intended as an investigation of some of the practical details of

implementing large systems in a functional language. Unlike some previous work

[Jon85, Jon86b, WF89, BirSO, Bir84b] which examined the development of a func

tional programming style distinct from imperative solutions we instead look at more

general issues. We do not attempt to make our entire implementations exemplars of

functional programming style but instead use them to support investigation of par

ticular aspects of the overall implementation task. Thus certain aspects of some of

our implementations could be described as skeuomorphic in that we simply required a

working implementation to support that part that was our main concern. For similar

reasons we were sometimes forced to adopt inelegant implementations to cope with

bugs and inefficiencies in the pre-release versions of Miranda on which some of the im

plementations were developed. Larger systems have been implemented in functional

programming languages, such as the lazy ML compiler [AJ89]. The utility of these

implementations depends on the recent increasingly efficient implementations of func

tional languages. The description of the lazy ML compiler is mostly concerned with

the G machine and its optimizations but some remarks about the implementation

process are made. Two of the issues raised, source code related type error messages

and run-time tracing, are addressed by two of the applications we investigate.

Our investigation leads us to the following conclusions:

5

• While quite large components of a system can benefit greatly from the expres

sive power of functional languages there are some components that do not. In

particular, those parts of the system which involve multi-way case analysis, like

lexical analysers, or have have an essentially imperative nature, like an interac

tive user interface, are only slightly clearer than in an imperative language.

• The strong type system and complex evaluation path can make development of

an implementation very difficult.

The first means that as an implementation is being developed the types of the

data structures may alter and this can result in large sections of the program

becoming badly typed. This is a particular problem if extensive pattern match

ing over algebraic types is used and the types of the constructors are altered,

usually by the addition of extra arguments. Careful use of the abstract type

mechanism can help with this problem but one loses the clear expression of the

structures being manipulated.

The second means that when evaluation fails to terminate, terminates with an

error or returns an unexpected result it can be difficult to track down the source

of the problem. Careful modular development and use of higher order functions

can help with this problem. However, as it usually results from some basic error

in the implementation strategy the inability to track intermediate values means

that the cause of the error cannot be localized.

6

Chapter 2

Specification and Verification

While we will not be attempting formal verifications of our implementations we will

still require some sort of specification of what we are trying to implement. In the

following we shall first discuss the problems associated with the specification and

verification of functional programs and then the informal approach we shall adopt.

2.1 Specification

Specification languages such as Z [Spi85] VDM [Jon86a] or Clear [BG80] provide

a formal language for the specification of programs. They also provide a formal

framework for reasoning about these specifications. The initial specification will, in

general, be non-algorithmic to avoid implementation bias. This means that the initial

specifications do not provide a method for producing the required result. Thus the

7

initial specification would have to be transformed through a number of stages towards

a description of a method which could be translated into Miranda [Mor88, BD77,

Bir84a, BH87]. These transformations are often complex and difficult to justify and

only apparent if we know the algorithm we wish to employ. Recent work has provided

the possibility of calculating the next stage from the current one [Bir89, MG90] but

the process is still complex. The advantages of the transformational approach are

that each step can be made small enough that its proof is reasonably simple.

As an example, we consider a specification in the style of Z [SpiS5] of the unification

of two terms. We do not claim that this is a totally correct Z specification or even

that it is expressed in the best possible way. We merely intend to show how far the

initial specification can be from the final Miranda implementation.

The unification algorithm is of central importance to the typechecker of §3.7 and

is described in more detail in §3.4.

We are given two sets, Op of operators and Var of variables. We need know

nothing more about these sets. We can then form expressions using the functions VE

and OE as follows:

Expr = VE « Vor>>|
OE « O p X seq[Expr\ »

Thus an expression can be either a variable or a pairing of an operator with a sequence

of sub-expressions.

8

Now we define a variable substitution: this is a mapping from variables to expres

sions. This mapping won’t define a substitution for all variables and will only allow

a single substitution for a variable. We also do not allow a substitution of a variable

for itself. The following definition captures the required properties:

Vsubst = {t ’s : Var +>Eipr \ vs fl VE — { } }

Thus Vsubst is the set of all partial functions from variables to expressions that do

not take any variable to the expression consisting solely of that variable. Given such

a substitution on variables we can easily extend it to a substitution on expressions.

This is done by applying the variable substitution to the variables in the expression.

We therefore define the following function:

e : Vsubst —► (Expr —> Eipr)
Vvs : Vsubst•
(e vs) o VE = VE® vs A
Wop : Op; s : seq[Expr\ • e vs (OE (op, s)) = OE (op, (e vs) o s)

Notice that e is a total function that, when applied to an element of Vsubst, gives us

a total function from expressions to expressions. If the expression is simply a variable

we apply the variable substitution if it is in its domain otherwise we leave the variable

alone. For the more complex case we basically apply our expression substitution to

the sub-expressions and then rebuild the new expression with the same operator. The

above specifies exactly those total functions from expressions to expressions having

these properties. To unify two expressions we must find a variable substitution which

9

makes the two expressions equal. That is, applying the same substitution to both

expressions produces the same expression. Not all pairs of expressions will be unifiable

in this fashion. We also require the most general unifier of the two expressions. That

is, for any other unifying substitution the resulting expression must be an instance

of that obtained from the selected unifier. We first define the set of all expression

substitutions:

Esubsi: P (Expr —> Expr)
Esubst = ran e

We can now define the unification function:

Unify : (Expr x Expr) -+-> Esubst
Vexp 1, exp2 : Expr, es : Esubst•
Unify(expl, exp2) = es
es expl = es exp 2 A
Yes' : Esubst • es' expl = esf exp2 =>
3es" : Esubst • es" (es expl) = es1 expl

Now while the above specification does capture what we require of a unification func

tion it gives us no clue as to the form of the required algorithm. The implementation of

the unification algorithm in Miranda is a recursive function over expressions employ

ing recursive substitution and occur check functions. It is not clear what intermediate

stages could be used when refining the specification above towards the Miranda im

plementation. Without such a transformation sequence the specification does little

to increase the credibility of the Miranda implementation.

10

Even so we will still require specifications for our programs. Without a specifi

cation we cannot really be sure what we are trying to implement. We choose to use

a mathematical presentation of an algorithm as our initial specification. The math

ematical nature of the specification then allows us to be exact when discussing the

desired implementation. The algorithmic nature of the specification also allows an

easy, and credible, translation to the Miranda implementation.

2.2 Verification

Having a specification of a problem and a proposed implementation we might then

wish to formally verify the implementation. We examine a small Miranda program

implementing a fairly straightforward graph algorithm. The purpose is to show that

even when we allow ourselves to assume a great many non-trivial results about Mi

randa lists1 and to overlook the fact that they are not the same as sets we still get

an unreasonably complex verification. This particular Miranda implementation has

no great significance and is simply used to highlight the problems that arise when

attempting a verification.

The problem is that of finding the maximal strong components in a directed graph.

This description of the maximal strong components algorithm and the structure of

the verification proof are taken from [Dij76, pages 192-200]. A directed graph is an

1 We assume all the theorems needed to justify the otherwise unexplained steps in the derivations!

11

ordered pair < V ,E > where V is a finite set and E C (V x V) — Iv, where Iy is

the identity relation on V. We shall call the elements of V the vertices of the graph.

We shall write v\ *-* u2 if < , t>2 > € E and call v\ V2 an edge from tq to t>2. We

shall say that tq ► u2 involves both iq and u2. A path is a sequence of these edges

e i , . . . , ejt such that for adjacent edges e, and e,+i:

e, = Vi t—> Vj A eI+i = Vj i—► Vk

for some vertex Vj. If we have ej = tq •—♦ u2 and et = Vk- 1 •—> Vk then e i , . . . , e* is

called a path between V\ and u*. We consider there to be an empty path between each

vertex in the graph and itself. A strong component is a set of vertices such that there

is a path between any pair of vertices in the set. A maximal strong component is a

strong component to which no more vertices may be added while maintaining this

property. Thus a vertex with no edges to or from it may form a singleton maximal

strong component.

We have a number of results from [Dij76] that enable us to describe clearly the

algorithm used to find the maximal strong components of a graph. These results will

also be used in the verification proof which will be described later. These results

allow us to decide when vertices may be in the same strong component and also when

they cannot.

T heorem 1 Cyclically connected vertices may belong to the same strong component.

From the definition of a maximal strong component this gives us:

12

C orollary 1 Cyclically connected vertices must belong to the same maximal strong

component.

We say that there is an edge from strong component A to strong component B if there

is an edge from a vertex of A to a vertex of B. We can then define a path between

strong components in a similar fashion as for vertices. We then get the following

results:

T heorem 2 Vertices o f cyclically connected strong components may belong to the

same strong component.

C orollary 2 Vertices o f cyclically connected strong components must belong to the

same maximal strong component.

The above results also provide the following:

C orollary 3 A non-empty graph must have at least one maximal strong component.

This means that we can at least be sure that there is a maximal strong component

to be found. The following theorem allows us to decide when we have discovered a

maximal strong component and allows us to sub-divide the problem of finding further

maximal strong components:

T heorem 3 I f we can partition the vertices o f the graph into two sets A and B such

that there exist no edges from A to B then:

13

1. The set o f maximal strong components o f the graph is independent o f the pres

ence or absence o f edges from B to A.

2. No strong component can contain vertices from both A and B .

Thus, as soon as we find a strong component with no outgoing edges we can use

Theorem 3 to conclude that it must be a maximal strong component. We can then

use the following result to find further maximal strong components:

T heorem 4 A strong component all o f whose outgoing edges are into maximal strong

components is itself a maximal strong component.

To find the maximal strong components of the graph we must start by building

up strong components. Whenever we find cyclically connected strong components we

can coalesce them to produce a larger strong component by Theorem 2. When we

find a strong component with no outgoing edges we have found our first maximal

strong component by Theorem 3. When we find further strong components with

outgoing edges only to already discovered maximal strong components then we have

found further maximal strong components by Theorem 4.

The obvious way to build up the strong components is by considering the edges of

the graph in turn. Our goal is to obtain a partition of the vertices into the maximal

strong components of the graph. If we can define a partition of the vertices relative

to the edges so far considered such that it forms the maximal strong components of

14

CHAPTER 2. SPECIFICATION AND VERIFICATION 15

the graph defined by those edges then by monotonically increasing the set of edges

considered we will attain this goal. We therefore partition the edges into two sets:

• Let Ei be the set of edges considered so far. Initially we will have E\ = 0 and

finally we should have E\ = E.

• Let E2 be the set of edges yet to be considered. Initially we will have E? = E

and finally we should have E2 = 0.

Having partitioned the edges in this fashion we can partition the vertices similarly:

• Let Vi be the set of vertices not involved in any of the edges of E\. We will

initially have Vi = V and finally we should have Vi = 02. These vertices will

form singleton maximal strong components relative to the set of edges E i .

• Let V3 be the set of vertices belonging to the maximal strong components of

the graph found so far. These will also be maximal strong components relative

to the set of edges E\.

• Let V2 be the set of vertices belonging to strong components of the graph not

yet known to be maximal strong components of the graph. These strong compo

nents will, however, be maximal strong components relative to the set of edges

Ei.

2We allow a vertex known to have no outgoing or incoming edges to be moved from Vi as we can
regard all the edges involving it to already be elements of E\.

In order to employ Theorem 2 to coalesce strong components we need only look at

edges that may produce cycles among these strong components. We therefore need

only consider edges from vertices in V2- In order to make this choice more orderly we

impose strict limitations on the paths between the strong components formed by the

vertices of V?. We require that these strong components form a chain with exactly

one path from the start to the end of the chain. We can then restrict our attention

to edges from the last strong component in the chain. We have three possible cases:

• If we find an edge to a vertex in V3 we can ignore it by Theorem 4.

• If we find an edge to a vertex in V2 then this indicates a cycle of strong com

ponents and we can coalesce the strong components of the chain that form this

cycle. Due to the strict condition we have imposed on the strong components

this cycle must comprise some tail section of the chain of strong components.

• If we find an edge to a vertex in Vi then we can add this vertex as a singleton

strong component at the end of the chain.

When we find that there are no more edges from the end strong component of the

chain this means we have found a maximal strong component of the graph and we

can move the strong component to V3 by Theorem 3 or Theorem 4.

This description of the desired algorithm wTill serve as our design specification. The

Miranda implementation that resulted from this specification is shown in Figure 1.

16

msc v e r t ice s edges
= msc’ [] [] v e r t ice s

where
msc' argl [] []

= argl
msc' argl [] (v :arg3)

= msc’ argl [([v] , e f v)] arg3
msc' argl ((v l , []) : arg2) arg3

= msc’ (v l :a r g l) arg2 arg3
msc’ argl ((v l , (e v l ,e v 2) :e l) :a r g 2) arg3

= msc’ argl (([e v 2] , e f ev2) : (v l , e l) : arg2)
(arg3 — [ev 2])

, member arg3 ev2
= msc’ argl ((v l , e l) : arg2) arg3

, member.of jnember argl ev2
= msc’ argl (coa le sce ev2 ((v l , e l) : arg2) ([] , []))

arg3
, otherwise

e f = associated-value [] edges

coa lesce v ((v l , e l) : a r g 2) (v l ’ . e l ')
= (v l+ + v l’ ,e l+ + e l ’) :a r g 2

, member v l v
= coa lesce v arg2 (v l+ + v l ’ ,e l+ + e l ')

, otherwise
coa lesce v [] (v l ’ , e l ’)

= [(v l ' , e l ’)]

Figure 1: Maximal Strong Components

17

The function msc takes two arguments, the first of which is simply a list of the vertices

of the graph. The second argument is an association list which gives the list of edges

from each each vertex of the graph. The subsidiary function e f is defined by the

application of a standard association list lookup function to this second argument.

Thus the the function e f returns a list of all the edges from a vertex. The function

b s c is defined in terms of the subsidiary function msc’ which is a straightforward

recursive function defined by cases. We shall refer to the formal arguments of msc’

as Argl, Arg2 and ArgS and the arguments to the recursive calls of msc’ as A rgl’,

Arg2 ’ and Arg2\ We first describe how these arguments relate to the sets of edges

and vertices employed in the specification and introduce some useful abbreviations.

These abbreviations will be used in the description of the verification proof.

• The third argument, ArgS, is simply a list of the vertices not involved in any of

the edges so far considered. Thus ArgS corresponds directly to the set of vertices

Vi. We thus introduce the following schematic Miranda definition which will be

used in the proof:

v l = Arg3

All the edges from vertices in this list have yet to be considered.

• The first argument, Argl, is a list of the maximal strong components of the

graph discovered so far, each of which is represented by a list of its vertices. We

18

introduce the following schematic Miranda definition:

v3 = [x I y<-Argl ;x<-y]

All the edges from vertices in this list of lists have been considered.

• The second argument, A rg2, is more complex but is essentially a list of the strong

components so far built that are not known to be maximal strong components

of the graph. Each of these strong components has paired with it a list of all the

edges from vertices in that strong component that have yet to be considered.

We introduce the following schematic Miranda definition:

v2 = [x | (y ,z)< -A r^ ;x < -y]

The list of edges so far considered is implicit in these three arguments. It consists of

all the edges from vertices in the first and second arguments less those edges present

in the second argument. We will use the following schematic Miranda definition in

the proof:

e l = [e Ix < -v 3 ;e< -e f x] ++
[e|x< -v2 ;e< -ef x] —
[e| (y ,z)< -A rg2 ;e< -z]

These arguments also define a partition of the vertices of the graph which we will

show represents the maximal strong components relative to the set of edges so far

considered. We introduce the following schematic Miranda definition of this partition:

19

p = Argl ++
[xI (x,y)<-i4ry£3 ++
[[x] \x<-Arg3\

The verification proof is an inductive argument over the cases of the function

msc’ . The invariant to be established is that the current partition of the vertices,

represented by p, defines the maximal strong components relative to the set edges so

far considered, represented by e l, at all applications of m sc'. To aid in the proof of

this invariant the following properties will also be shown to be invariant:

1. There are no edges in e l involving vertices from v l.

2. There are no edges in e l from vertices in v3 to vertices in v2.

3. The edges associated with each strong component in Arg2 are from vertices in

that strong component.

4. There is a single path along the chain of strong components in Arg2.

5. Argl contains only maximal strong components of the graph.

2.2.1 Base Case

The base case is the initial application of the function m sc':

msc' [] [] v e r t ice s

20

If we assume that we have available a range of theorems concerning lists and list

comprehension then we can prove the following equalities concerning the arguments:

v l = v e r t ice s
v2 = [x | (y ,z)< - [] ;x<-y]

* []
v3 = [x I y<— [] ;x<-y]

= []
e l = [e| x< -[] ; e< -e f x] ++

[e I x<- [] ; e< -e f x] —
[e | (y ,z)< - [] ;e < -z]

= []
p - [] ++

[x I (x ,y)< - [] ++
[[x]Ix < -v e rt ice s]

= [[x]Ix < -v e r t ic e s]

Thus we have considered no edges and as we would expect all the vertices produce

singleton maximal strong components. The invariant properties 1-5 are trivially true

as we have considered no edges and we have an empty chain of strong components.

2.2.2 Induction Step

The induction step consists of assuming that the invariant conditions are true for the

formal arguments in the definition of msc' and then proving that they still hold for

the arguments to the recursive calls. The first clause of the definition provides the

result of the function and is dealt with later. We must consider the second, third and

fourth clauses of the definition.

21

• The second clause of the function defines how we start building a strong compo

nent if there are none in the chain already. We simply pick an arbitrary vertex,

in this case the head of the list, and make it a singleton strong component.

msc' argl [] (v :arg3)
= msc’ argl [([v] , e f v)] arg3

This new7 strong component has a list of all the edges from it associated with it

by the function e f . This function returns a list of all the edges from a vertex,

it is defined by a standard function over association lists. We can prove the

following equalities concerning the arguments:

v l = v:arg3
v2 = []
v3 = [x|y<-argl;x< -y]
e l = [e|x<-v3 ;e< -ef x] ++

[e|x<- [] ;e < -e f x] —
[e | (y ,z)< - [] ;e < -z]

= [e|x< -v3 ;e< -ef x]
p = argl ++

[x | (x ,y)< - []] ++
[[x]I x < -v : arg3]

= argl ++
CCv]] ++
[[x]Ix< -a rg3]

If we name the corresponding values for the recursive call of msc' as v l ' , v2'

etc. then w7e can prove the following equalities concerning these arguments:

22

vl' = arg3
v2' = [xl(y,z)<-[([v],ef v)];x<-y]

= [v]
v3' = [x|y<-argl;x<-y]

= v3
el* = [e|x<-v3;e<-ef x] ++

[eIx<-[v];e<-ef x] —
[e|(y,z)<-[([v],ef v)];e<-z]

= [e|x<-v3;e<-ef x]
p ’ = argl ++

[xI(x,y)<-[([v],ef v)]] ++
[[x]Ix<-arg3]

= argl ++
[v] ++
[[x]|x<-arg3]

So we have not considered any more edges and as we would expect the partition

of the vertices remains unchanged. Each of the invariant properties 1-5 is again

trivially true.

• The third clause of the function defines what we must do when we have consid

ered all the edges from the vertices of the strong component at the end of the

chain in Arg2.

msc' argl ((vl,[]):arg2) arg3
= msc' (vl:argl) arg2 arg3

Having considered all the edges from the vertices of the strong component v l,

as shown by the fact that the associated list of edges is empty, we can conclude

it is a maximal strong component. This follows from the invariant properties

23

1-5 as we know that there can be no edges from v l into v l or back to any other

strong component in v2. Thus it either has no outgoing edges in which case we

can use Theorem 3, or all its outgoing edges tire into v3, in which case we can

use Theorem 4. As above we can prove that we have not added to list of edges

considered or changed the partition of the vertices, so p ' must still represent

the maximal strong components relative to e l ' . All the invariant conditions

1-5 can again be shown to be true.

• The third clause of the function defines what happens when we consider a new

edge.

msc' argl ((v l , (e v l ,e v 2) :e l) :a r g 2) arg3

This clause has three guarded right hand side expressions, selected by which of

the three sets of vertices contains the vertex ev2. We can prove the following

equalities concerning the arguments:

vl = arg3
v2 = [x|(y,z)<-(vl,(evl,ev2):el):arg2;x<-y]

* vl ++ [x|(y,z)<-arg2;x<-y]
v3 = [x|y<-argl;x<-y]
el = [e|x<-v3;e<-ef x] ++

[e|x<-v2;e<-ef x] —
[e|(y,z)<-(vl,(evl,ev2):el):arg2;e<-z]

= [e|x<-v3;e<-ef x] ++
[e|x<-v2;e<-ef x] —
([(e v l ,e v 2)] ++ e l ++ [e I (y ,z)< -a r g 2 ; e < -z])

24

p = argl ++
[x | (x ,y)< - (v l , (e v l ,e v 2) :e l) :a r g 2] ++
[[x]Ix< -arg3]

■ argl ++
v l ++ [x| (x ,y)< -arg2] ++
[[x]Ix< -arg3]

We shall now deal with each of the three right hand sides in turn.

- The first case defines what we do if the new edge connects to a vertex not

involved in any of the edges so far considered.

= msc' argl (([ev2],ef ev2):(vl,el):arg2)
(arg3 — [ev2])

, member arg3 ev2

The guard will only be true if ev2 is in the set v l. In this case we add ev2

as a singleton strong component at the end of the chain and remove it from

the third argument. We can prove the following inequalities concerning the

arguments to the recursive cal of msc’ :

v l ’ = arg3 — [ev2]
= vl — [ev2]

v2 ’ = [x | (y ,x)< - ([e v 2] ,e f e v 2) : (v l ,e l) :a r g 2 ;x < -y]
= [ev2] ++ v l ++ [x| (y ,x)< -arg2 ;x< -y]
* [ev2] ++ v2

v 3 ’ * [x|y<-argl;x<-y]
* v3

e l ’ * [e|x<-v3;e<-ef x] ++
[e|x<-[ev2] ++ v2;e<-ef x] —
[e|(y,z)<-([ev2],ef ev2):(vl,el):arg2;e<-z]

* [e|x<-v3;e<-ef x] ++

25

[e|x<-[ev2];e<-ef x] ++
[e|x<-v2;e<-ef x] —
(ef ev2 ++ el ++ [e|(y,z)<-arg2;e<-z]

= [e|x<-v3;e<-ef x] ++
[eIx<-v2;e<-ef x] —
(e l ++ [e l (y ,z)< -a r g 2 ;e < -z])

p ' * argl ++
[x|(x,y)<-([ev2],ef ev2):(vl.el):arg2] ++
C[x]Ix<-arg3 — [ev2]]

= argl ++
[ev2] ++ vl ++ [x|(x,y)<-arg2] ++
[[x]|x<-arg3] — [ev2]

= argl ++
vl ++ [x|(x,y)<-arg2] ++
[[x]Ix<-arg3]

From these we can see that we have the following relationship between the

sets of considered edges and the partitions of the vertices:

e l ' = e l ++ [(e v l ,e v 2)]
P' * P

So we have considered one more edge but have not changed the partition.

From the invariant conditions we know that there are no edges from v l '

in e l and hence none in e l ' . We can therefore appeal to Theorem 3 to

conclude that the maximal strong components of the graph relative to e l '

are independent of the newly considered edge. We can also prove that the

invariant conditions still hold.

— The second case defines what we do if the new edge connects to one of the

already found maximal strong components of the graph.

26

= msc' argl ((v l ,e l) :a r g 2) arg3
, member.of .member argl ev2

The guard will only be true if ev2 is in the set v3. In this case we can

ignore the new edge in view of Theorem 4. We can prove the following

equalities concerning the recursive call of m sc':

vl’ = arg3
= v l

v2' = [x|(x,y)<-(vl,el):arg2]
= v2

v3’ = [xIy<-argl;x<-y]
= v3

el’ = [e|x<-v3;e<-ef x] ++
[e|x<-v2;e<-ef x] --
[e | (y,z)<-(vl,el):arg2;e<-z]

= [eIx<-v3;e<-ef x] ++
[e|x<-v2;e<-ef x] —
(el ++ [eI(y,z)<-arg2;e<-z]

p’ = argl ++
[x|(x,y)<-(vl,el):arg2] ++
[[x]|x<-arg3]= =argl ++
vl ++ [x|(x,y)<-arg2] ++
C[x]|x<-arg3]

From these we can again see that we have the following relationship be

tween the sets of considered edges and the partitions of the vertices:

e l ' = e l ++ [(e v l ,e v 2)]
P ’ * P

So we have considered one more edge but have not changed the partition.

As the considered edge is into v3 ' and from the invariant conditions 1-5

27

we know there are no edges in e l from v3 and hence none in e l ' from v3 ',

we can appeal to Theorem 4 to show that the partition is independent of

this edge. We can also prove that the invariant conditions 1-5 still hold.

— The third case defines what we do if the new edge creates a cycle of strong

components.

= u se ' argl (coa lesce ev2 ((v l , e l) : arg2) ([] , []))
arg3

, otherwise

We will only reach this case if ev2 is in the set v2. The new edge is therefore

from the end strong component in the chain to some strong component

before it in the chain. As the invariant conditions 1-5 tell us there is a path

along the chain, we must have cyclically connected strong components at

the end of the chain, and by Theorem 2 we can coalesce them. At this point

the proof becomes far more complex due to the presence of the coa lesce

function which performs this action. We must prove that this function

does not alter the set v2 and that the new strong component produced is

produced from a valid appeal to Theorem 2. We must also show that p '

is still a partition of the vertices and that e l ' is increased by only the one

new edge. It is easy to prove the invariant conditions if one has proved the

above.

28

2.2.3 Result Case

The first clause of the function defines the result returned by the function. This result

should be the maximal strong components of the graph.

msc' argl [] []
= argl

We can prove the following equalities concerning the arguments:

v 1 = []
v2 = []
v3 = [xI(y,z)<-argl;x<-y]
el = [e Ix<-v3;e<-ef x] ++

[e|x<-[];e<-ef x] —
[e I(y,z)<-[];e<-z]

= [e Ix<-v3;e<-ef x]
p = argl ++

[x I (x,y) <- []] ++
[[x]|x<-[]]

= argl

By our inductive hypothesis p is a partition of the vertices into the maximal strong

components of the graph relative to the edges considered. As argl is therefore a

partition of the vertices of the graph, e l must contain all the edges in the graph and

thus argl contains the maximal strong components of the graph. We are therefore

returning the desired result.

29

2.2.4 Conclusion

There axe a number of points to be made about this example. Firstly, even though

it is a small program of only twenty four lines and we allowed ourselves to assume

some non-trivial theorems, we still could not produce a complete description of the

proof at the level of abstraction chosen. Secondly, the structure of the proof in the

example is in fact a long way from being a formal proof. We chose to ignore the fact

that lists with the same elements in different orders are not equal. We also avoided

entirely any discussion of the termination of the function, which in this case does not

appear to be an easy thing to prove.

It is therefore clear that without some automated theorem proving support it is

not realistic to expect to be able to verify small functional programs, let alone the

large systems we shall implement. My personal experience of using the LCF [GMW79]

system is that proving results about even quite small functions is not easy. This was

partly due to some bugs in the implementation I was using but mostly due to the

large number of cases that had to be proved. I found I relied almost entirely on

the powerful rewriting facilities of LCF. This meant that when they failed to rewrite

things as I hoped I was left with little idea of how to proceed. It is to be hoped that

theorem provers tailored to the requirements of functional programming languages

will provide more powerful tools supporting reasoning at a higher level.

30

2.3 Inform al Approach

Our approach is to require the existence of a mathematical presentation of the spec

ification of the algorithm to be implemented. We shall then attempt to write our

functional programs in such a fashion as to make them amenable to the form of

informal reasoning we were forced to resort to in the proof in §2.2.2.

We choose the implementation of the constructive reals [BB85] as the example

to demonstrate this approach. As the mathematical specification of the constructive

reals already exists we can avoid any criticisms that we have tailored it to make

the transformation to Miranda easy. This example also allows us to demonstrate the

power of the algebraic and abstract types and the use of potentially infinite structures.

In this implementation we concentrate on fidelity to the specification rather than the

efficiency of the implementation.

In constructive mathematics, existence proofs require the presentation of a method

for producing the required value. These proofs can thus serve as the basis of an

implementation as we can use Miranda to implement the constructions in the proofs.

The real numbers are implemented as an abstract type with the signature containing

various functions over real numbers. The underlying implementation type is a simple

algebraic type which would not, by itself, provide the type security required. The

implementation of constructive reals is based on a type secure implementation of

arbitrary precision rationals which in turn is based on a type secure implementation

31

CHAPTER 2. SPECIFICATION AND VERIFICATION 32

of arbitrary size integers. The abstract type implementation of integers utilises the

fact that Miranda will perform integer arithmetic for arbitrarily large integers. The

underlying implementation type is the Miranda numeric type. The implementation

equations simply ensure that only integer numeric values may be used to create values

of the abstract integer type and otherwise apply the appropriate Miranda numeric

operators. The abstract type implementation of rationals represents them as pairs

of integers. The implementation equations simply ensure that common factors are

removed when rationals are created. To aid the clarity of exposition we shall not

provide definitions of all the subsidiary functions employed but simply describe their

function.

We take our definitions and theorems from the start of chapter two of [BB85]. We

start by defining real numbers in terms of the rationals Z [BB85, page 18]:

D efinition 1 A sequence (xn) of rational numbers is regular if

\xm — x n| < m -1 -f n_1 (m ,n G Z)

A real number is a regular sequence o f rational numbers. The set o f real numbers is

denoted by 1R.

This definition is encoded in Miranda by both the definition of the following alge

braic implementation type3 for the abstract type and the conditions imposed by the

3In practise we add an extra constructor RQ q for representing rationals directly and add clauses
to all the implementation equations to cope with this form of real number efficiently.

functions provided in the signature for creating real numbers.

r == r '
r ’ : := R [q]

The type q is the abstract type which is a Miranda implementation of arbitrary

precision rationals. This abstract type is itself defined in terms of an abstract type

z of arbitrary sized integers. Before we can define any implementation equations we

must define some of the subsidiary functions they require [BB85, page 19]:

Definition 2 The rational number xn is called the nth rational approximation to the

real number x = (xn).

Corresponding to this definition we have the following Miranda subsidiary function:

nthapprox : : q -> [q] -> q

This function simply takes the nth element of the list of rationals representing the

real number. The following definition will be required later [BBS5, page 19]:

D efin ition 3 We associate with each real number x = (x n) an integer K , such that:

|xn| < K x (n 6 Z)

This is done by letting Kx be the least integer which is greater than |zi| + 2. We call

Kx the canonical bound for x.

33

This in turn gives rise to the following subsidiary function definition which uses the

function qs to return the sum of two rationals and functions qent and qabs for

extracting the integer part and absolute value of a rational and q_3 which is the

rational representation of the integer three:

bound (R (q l :q l)) = qent (qs (qabs q l) q_3)

The following definition [BB85, page 19] gives the sum, product and maximum

of two real numbers and also the negation of a real number. The real number corre

sponding to a rational is defined to be the regular sequence of rationals obtained by

repeating that rational.

D efinition 4 Let x = (r „) and y = (yn) be real numbers with respective canonical

bounds K x and K y. Write

k = max {I\x, Ky}

Let a be any rational number. We define

1. X + y = (x 2 n + J/2n) n = l

2. xy = (x 2 Jtn t/2 fcn)^°=1

3. m ax{x ,y) = (m f l j { jn,t /„ })“=1

4■ ~ X = (-^ n)“ ,

34

5. a* = (q , Of, a , ...)

It can be shown [BB85, page 20] that these do indeed define real numbers. These

definitions employ the notation x*n to refer to the sequence of knth rational approx

imations to x for n = l , . . . , o o and constant k. We therefore have the following

subsidiary function which simply extracts this sequence of rational approximations:

offset : : q -> [q] -> [q]

This filters the sequence of rationals representing a real number with a state repre

senting the index in the sequence and a predicate which selects every kth element.

We can now describe the implementations corresponding to some of these defini

tions. The implementation of the real number product employs the the higher order

function map2 for mapping a binary function over two lists. It also uses the functions

qp and maxq which calculate the product and maximum of two rational numbers.

rp (R qll) (R ql2)
= R (map2 qp (offset i qll) (offset i ql2)
where
kl * bound (R qll)
k2 = bound (R ql2)
k = maxq kl k2
i = qp q_2 k

This function can clearly be seen to correspond to definition 2 above. The sum,

maximum and negation can be implemented by similarly simple functions. This final

function can be used to create a real number from a rational number:

35

mqr q R ql
where
ql * q : ql

This function satisfies the condition that the sequence of rationals representing a real

number should be regular.

We now define two inequality relations on real numbers [BB85, page 21]:

Definition 5 A real number x = (i „) is positive, or x £ 1R+, if

x n > n-1

for some n in Z+ . A real number is nonnegative, or x € IR0+, if

xn > —n_1 (n € Z+)

The first part of the definition gives rise to the following function: This uses the

functions qgr, which compares two rational numbers, and q i which calculates the

inverse of a rational number.

rgrO (R ql)
* rggrO’ q.l ql
where
rgrO' i (q:ql)

* True, qgr q (qi i)
* rgrO’ (qs i q_l) ql , otherwise

This function searches down the real number representation looking to satisfy the

condition. This function will only ever return True as an answer and otherwise will

fail to terminate.

36

The final function we implement is the real inverse. This function is interesting as

we use the witness of the proof of the existence of an inverse to construct the inverse

[BB85, pages 24-25]:

P roposition 1 Let x be a nonzero real number, so that |x| € IR+. There exists a

positive integer N with |:rm| > TV-1 form > N. Define

yn = (xats)- 1 (n < N) and yn = (xnNi)~l (n > N)

Then

= (y„)~,

is a real number which is positive if x is positive, and negative if x is negative; also

x x - 1 = 1*.

We shall merely give those portions of the proof that are used as the basis of our

implementation. Given that we can find the number N then we get the following

implementation of real number inverses:

ri (R ql)
= R (find.yql q_l)
where
n = findN q_l ql
n2 = qp n n
yn_ls_N * qi (nthapprox (qp n2 n) ql)
find_yql i

= yql.gen q_l (offset n2 ql)
, qeq in n

* yn-ls-N : find.yql (qs q_l i)

37

, otherwise
yql_gen i Cq:ql)

* map qi (q:ql)
, qeq i n

* yql_gen (qs q_l i) ql
, otherwise

We use the function f indN to calculate the number N, this is done in the sub-definition

of n. Given the value of N we can then calculate the value of x^3, this is done in

the sub-definition of yn_ls_N. This value is then used by the function f ind_yql to

construct the initial segment of the sequence of rationals representing the inverse,

that is for n < N. The function yql.gen is then used to throw away the first N

elements of the argument rational sequence and to construct the tail of the inverse’s

rational sequence from the remainder.

We now discuss the construction of the number N. Our assumption gives us that

|r| € IR+ so we employ the following lemma and its proof [BBS5, page 21]:

Lem m a 1 A real number x = (x„) is positive if and only if there exists a positive

integer N such that

x m > TV-1 (m > N)

By the assumption and Definition 5 we have | > i_1 for some i € Z+. We choose

N € Z+ with 2jV- 1 < |x,| — i~l . This leads us to define the following functions:

findN n (qn:ql)
= findN (qs q_l n) ql

38

, qle qn.abs in
* findN' (qs q_l n) qn_in ql

, otherwise
where
qn.abs = qabs qn
in * qi n
qn_in = qd qn_abs in

findN' n' qn.in (qn':ql)
= n' , qge qn.in (qs in' in')
= findN' (qs q.l n') qn.in ql

, otherwise
where
in' = qi n'

Thus the first function, findN, calculates the i and |r,| — i~l and the second function,

findN', calculates N.

The implementation of the constructive reals described in this section shows the

style of mathematical specification we shall adopt. The credibility of the implemen

tation will depend crucially on the clarity of expression of mathematical concepts

in terms of constructions in the programming language. This example also provides

a good example of the separation of concerns that is provided by the abstract type

mechanism of Miranda, in that we can consider the correctness of the implementation

of the rationals separately.

In the remainder of this thesis we will precede all implementations by a specifica

tion in this style.

39

Chapter 3

Type Checking “Miranda” 1

While the type system of “Miranda” provides security combined with power it can

sometimes cause problems. The polymorphic nature of the type system means that

the type deduced for a variable is constrained by all the occurrences of that variable. If

a definition fails to type check, or is assigned an unexpected type, it can be extremely

difficult to locate the source of the problem. Our first example implementation is an

attempt to tackle this problem.

We implement a system that not only type checks a “Miranda” script but also

annotates all the expressions, and sub-expressions, in the script with their deduced

types. It then allows the user to interactively examine these deduced types. It is

M iranda is a Trademark of Research Software Ltd.
In this chapter we shall use a language resembling Miranda as our example language, and will refer
to it as “Miranda” . However, this chapter should not be taken as defining in any way the language
Miranda, for such a definition one should see the documents from Research Software Ltd.

40

hoped that examination of the types of sub-expressions in a badly typed script will

aid in the location of the source of type errors. We also intend that the system

serve a tutorial function in explaining the type checking of Miranda scripts through

examination of well typed scripts.

We present a formal account of the details of the type discipline and type checking

of “Miranda” . If we were simply interested in presenting the typing rules of Miranda

we would first describe a translation from the full “Miranda” syntax to an extended

A-Calculus [JonS7] and then describe its typing as an inference system [Dam85]. We,

however, require that the presentation serve as an aid to the user of the system in

understanding the type checking process and locating type errors. As the interactive

examination of the deduced types in a script must be performed over the syntactic

structures understood by the user the type checking must be described in terms of

these same syntactic structures. Because the type checking is sequential and the

particular sequence in wrhich occurrences of a variable affect its deduced type'can

be very important we also choose to make this sequencing explicit. We therefor

adopt the same style employed by Milner, extended to cope with the richer syntax

of “Miranda” . The major extension is that needed to cope with mutually recursive

groups of definitions. We choose not to employ a higher order function to describe the

type checking of sequences of sub-expressions in order that the presentation remain

useful to the novice “Miranda” user. The higher order function wre would have to use

41

otherwise would be something like:

type_seq * foldl type_item (id_subst, [])

type_item item (subst, itemJList)
= (substitem' : map (instantiate subst’) item_list)
where
(substitem ’) * type.check item
subst'' = compose subst' subst

This would also not correctly mimic the behaviour of Miranda in that the type error

messages produced would not be the same as those produced by Miranda2.

We first describe the type discipline which “Miranda” enforces and explain al

gebraic and abstract type definitions. We then present an abstract syntax for “Mi

randa” which will be the basis for the later definitions. Given this abstract syntax we

define the concept of well typing in terms of type conditions on these prefixed-sub

expressions. We then present the well typing algorithm A4. We finally describe some

details of the implementation of the system.

3.1 T yp e Discipline

“Miranda” is a higher order polymorphic language which is strongly typed. “Mi

randa” has a compile time type checker that can deduce the types with no need for

user provided type descriptions.

2It was also necessary, due to inefficiencies in the Miranda implementation, to determine when
one could avoid applying the resulting substitutions.

42

CHAPTER 3. TYPE CHECKING “MIRANDA” 43

“Miranda’s” type discipline enforces certain conditions on a script. Many of these

are fairly straightforward, such as requiring the arguments of numeric operators such

as addition, + to be of numerical type. The interesting conditions axe those that

allow and constrain the polymorphism in a script.

The idea of definitions with polymorphic type is central to “Miranda’s” type

system. It seems natural that operators like = be able to be applied to arguments of

various types, and this consideration follows through to definitions of other operators3.

For example we certainly expect to be able to write both the following list expres

sions:

1 : [2 ,3 ,4]
' A ' : [' B ' , ' C ' , ' D ']

Here : (infix CONS) can be seen to be taking two different types:

num -> [num] -> [num]
char -> [char] -> [char]

However, we do not want to able to write things like:

1: ['A O

What we need is for : to have a type that allows it to take the two first types but

disallows the third expression. This is the polymorphic type;

3The polymorphism of = is ad hoc rather than parametric but the point holds.

* -> [*] -> [*]

where * is a “Miranda” type variable. This is a polymorphic type because it contains

type variables. The first two types are instances of this polymorphic type. In the first

* becomes num and in the second it becomes char. The details of “Miranda’s” type

discipline concern the creation and particular application of such polymorphic types.

As can be seen from the above, ‘ : ’ can take any instances of its polymorphic type

within the script. “Miranda’s” top level definitions of functions and patterns behave

in a similar way. Thus if we have a definition of a list reversing function:

reverse (x:l) = reverse 1 ++ [x]
reverse [] = []

then reverse has the polymorphic type [*] -> [*] and can take any instances of

this type at its occurrences in the script. Thus in the expressions:

reverse [1,2,3]
reverse ['A',’B’,'C']

the function reverse takes the following types:

[num] -> [num]
[char] -> [char]

Notice that the first use of the reverse function is not taken as meaning that reverse

must be of type:

44

[mun] -> [num]

Thus we have the following:

C ondition 1 Variables declared by top level definitions can take any instance o f their

polymorphic type, as deduced from their definition, at their occurrences in the rest of

the script.

The ability to have mutually recursive definitions adds a complication to this general

case. This is because the mutual recursion may result in the types of the variables

being defined being mutually dependent, for example:

f x y z = (l , y , z) : g x y z

g x y z * (x . ’ a ’ .z) : f x y z

Here the type of the result of each function depends of the type of the result of

the other function. If the types of two, or more, definitions are mutually dependent

then they must be type checked together. The types for the variables being defined

being deduced from their occurrences in all the definitions. There is no simple way

to determine wrhen two definitions are type dependent so we simply assume they are

if they are mutually recursive. The following condition must be imposed:

C ondition 2 All those variables defined in a group o f mutually recursive definitions

must take the same type at all their occurrences within the group.

45

This approach, which assumes we know the calling graph of the script, differs from

that proposed by Mycroft [Myc84]. Thus the functions f and g will both have the

type:

mim -> char -> * -> [(num ,char,*)]

Variables defined in a mutually recursive group of definitions can still take instances of

their types, as deduced from their definitions, at their occurrences outside the group.

The user may provide type descriptions for top level definitions but these are

unnecessary as the types can be deduced4. If present, the declared type must be

an instance of the deduced type, and will serve only to restrict the types of those

variables being defined. For instance if we had the following:

reverse2 :: [bool] -> [bool]

reverse2 (x:l) = reverse2 1 ++ [x]
reverse2 [] = []

Then reverse2 would only be allowed to appear at type:

[bool] -> [bool]

in the rest of the script. This gives us the following condition:

C ondition 3 The user type description for a definition must be an instance of the

type deduced from the definition.

4In fact certain recursive definitions, where the variable being defined occurs at multiple types in
the definition, will only type check if a type description is provided.

46

There axe also restrictions on the types taken by those variables being declared on

the left and right hand sides of a definition, and the types of the formal parameters

in a function definition.

The motivation for these restrictions can be seen if we consider the following illegal

function definition (remember that all the elements of a list must be of the same type).

list_pair a = ([a,1],[a,'A'])

Such a definition will be excluded bjr the following condition:

C ondition 4 All variables appearing in the formal parameter patterns of a definition

must take the same type at all their occurrences on the right hand side of the definition.

The consequence of this is that when an argument is of polymorphic type its occur

rences in the right-hand-side of the definition are not as “fully” polymorphic as one

might expect. Consider the following definition:

pair_list_fun r a b = (r a,r b)

One might expect,

pair_list_fun reverse

to be a function which reverses two lists of arbitrary type but this is not the case. This

is because the formal parameter r must take the same type at both its occurrences

on the right hand side and thus the other formal parameters a and b must be of the

same type. Thus pair_list_fun has the type:

47

(* -> **) - > * - > * -> (** ,**)

So the application of pair_list_fun to reverse has type:

[*] -> [*] -> ([*] . [*])

The function pair_reverse as defined by:

pair_reverse a b = (reverse a,reverse b)

would have the more general type:

[*3 -> [**] -> ([*] , [* *])

This is because reverse, being defined at the top level, can take different instances

of its defined type at its two occurrences on the right hand side of this definition.

It is not always convenient to define functions at the top level, and we would like

to be able to achieve this level of polymorphism with local definitions. For example,

we would like the following function to reverse two lists of arbitrary type:

pair_rev a b = (rev a,rev b)
where
rev (x:l) = rev 1 ++ [x]
rev [] = []

This can clearly be achieved if we type check the locally defined reverse function, rev,

and then allow it to take any instance of its type, as deduced from its definition, at

its occurrences in the right hand side expression. This is, however, not the correct

condition to impose. Consider the following function definition:

48

tester a * (test l.test 'A')
where
test x = a <= i

The formal parameter a can clearly be of any type, and thus we would deduce the

type of the local function test to be:

* -> bool

If we then let it take arbitrary instances of this type in the right hand side expression

it occurs at these two types:

num -> bool
char -> bool

But this analysis cannot be correct as it implies that we able to perform both these

inequalities:

a <= 1
a <= 'A'

and this cannot be the case. The essential point to notice is that in the first case

the the type of rev can be deduced without reference to the types of the parameters

of the pair_rev function, whereas in the second case the type of test depends on

the type of the parameter a of the tester function. These considerations lead to the

following condition on local definitions:

49

C ondition 5 Variables declared by local definitions can, at their occurrences in the

right hand side expressions, take any instance o f their polymorphic type, as deduced

from their definition, as long as this instance does not involve type variables associated

with the formal parameters o f any enclosing definition.

The other variable-declaring expressions in a “Miranda” script are the generators

in a ZF expression. We have a similar condition here to that for the variables in

formal parameter patterns:

C ondition 6 All the variables declared by generators in ZF expressions must take

the same type at all their occurrences in the ZF expression.

“Miranda” has three kinds of user defined types; synonym types, algebraic types and

abstract types. Type synonyms can be regarded simply as transparent rewrite rules

and are of little interest here.

An algebraic type definition introduces a new type and certain constructors asso

ciated with it. The constructors associated with an algebraic type can take arbitrary

instances of their defined types at their occurrences in the script. An example is this

useful type:

value * Value * I None

where we have the two constructors of the following types:

Value :: * -> value *
None :: value *

50

Algebraic type definitions may also have associated laws5. The only condition imposed

here is that the left and right hand sides of the law be the same type as the associated

algebraic type.

Abstract type definitions are more interesting. Consider the following definition.

abstype stack *
with empty : stack *

pop : stack * -> (*,stack *)
push : * -> stack * -> stack *

stack * == [*]

empty = []
pop 1 = (hd l,tl 1)
push x 1 = x:l

Here we have an abstract type definition of a type which we hope captures something

about stacks.

We have introduced a new type stack * which has the three associated functions

empty, pop and push with the types shown in the signature. These functions can take

arbitrary instances, at their occurrences in the script, of their types as defined in the

signature.

We then have the definition giving the implementation type that will correspond

to stack *.

This is followed by the implementation equations for the three associated func

tions.

5This feature has been removed in version 2.0 of Miranda.

51

The type discipline we describe here is more general than that described by Turner

[Tur85] and implemented in version 0.378 of Miranda6.

The implementation equations are defined on the implementation type. Thus the

implementation equations above give rise to the following types:

empty : : [*]
pop : : [*] -> (* , [*])
push : : * -> [*] -> [*]

In the rest of the script we want to be able to write both the following, so that we

can have stacks of various types:

push 1 empty
push ’ A’ empty

Thus we have the following:

Condition 7 Variables defined in an abstract type definition can take arbitrary in

stances o f their polymorphic type, as given in the abstract type definition, at their

occurrences in the rest o f the script.

The following is an illegal expression that we do not wish to allow:

push 1 empty = [1]

6Versions 0.978 and later of Miranda now implement a type discipline corresponding to that
described here

52

We must have that the types stack * and [*] are not equal and will not unify. This

gives the following condition:

C ondition 8 The correspondence between the abstract type and the implementation

type is hidden in the rest o f the script.

In the implementation equations we obviously want to know about the correspondence

between the abstract type and its implementation type and would like to be able to

use functions defined on either interchangeably. We therefore have the following

condition:

Condition 9 The correspondence between the abstract type and its implementation

type is available throughout the implementation equations7.

In version 0.378 of Miranda this is not the case: the type correspondence is only

known for those variables defined in the signature of the abstract type definition8.

Finally we must check that the types given in the abstract type definition are

instances of those deduced by the typing of the implementation equations.

C ondition 10 The types given in the signature of an abstract type definition must

be instances o f the type deduced from the implementation equations.

7It is important to note that this does not include any subsidiary definitions used by the imple
mentation equations.

8In Miranda version 1.998 there are still restrictions on the implementation type synonyms and
the implementation equations.

53

3.2 A bstract Syntax

The abstract syntax given in Table 1 includes all the major features of “Miranda” ;

it excludes some uninteresting cases which axe merely syntactic sugar. Each of the

productions captures some essential feature of “Miranda” .

In this abstract syntax we only represent the most complex forms that a “Mi

randa” script can take. We do this as we believe that the details of the prefixed-sub-

expressions etc. in the simpler cases would only complicate the presentation without

adding anything, and that these cases can easily be derived from those given.

This presentation of an abstract syntax for “Miranda” retains certain features that

make the definition of the well typing algorithm more complex than it might otherwise

be. This is because in this form it is easier to derive a type checking function from

the well typing algorithm.

In the following we shall refer to expressions; these will be all those forms given

by any of the productions in Table 1. We shall also refer to simple expressions: these

will be all those forms given by the productions for e given in Table 1. We will also

refer to patterns: these are restricted forms of expressions containing only lists, tuples

and constructor application.

We now explain the various productions of the abstract syntax given in Table 1.

i) A “Miranda” script, regarded as a set of declarations which is partitioned into

mutually recursive groups. Each declaration in a “Miranda” script may depend

54

script => md\ • • • mdn i)
md d\ T\ • • • dn Tn ii)
d => C\ • • • cn iii)

pat = rhs iv)
| pat = > rhs v)

c g pat: • • • patn = rhs Vi)
rhs =$■ rhsl where md vii)
rhsl =► 9el • • • Pen viii)
ge => e,</rd ix)
e => x op y x)

| mop x xi)
| xa -!---a :n xii)
| (X !,. . . ,X „) xiii)

xiv)
1 \x,y..z\ XV)
1 [c | 9i;---;9n] xvi)

var xvii)
\ sir xviii)
| chr xix)

nvm XX)
g => e xxi)

pat <— x xxii)
| p a t< -x ,y xxiii)

Table 1: “Miranda” Abstract Syntax

55

on various other declarations in the script in such a way as to produce a group of

mutually recursive declarations. These mutually recursive groups are topologi

cally sorted by their calling graph dependencies, each mutually recursive group

possibly being dependent on the previous groups but not being dependent on

the later groups after the sorting.

These declarations include the implementing definitions for abstract type def

initions and the laws for algebraic type definitions. The laws do not declare

any variables, except locally, so they will all appear at the end of the list of

declarations due to the topological sorting.

The effect of the type information from the abstract and algebraic type defini

tions is not present in this abstract syntax and will be explained later.

ii) A group of one or more mutually recursive declarations. The r, axe the user

provided types for these declarations. In general these need not be present and

“Miranda” will deduce the types for the user. However, as the presence of user

assigned types is the more complex case in terms of type checking, we only

present that case. Note that when declarations appear as subsidiary definitions

the user cannot provide type definitions and there will then be no r,.

Laws get the type from their associated algebraic type declaration. The imple

mentation equations for an abstract type get their type from the signature of

the abstract type declaration.

56

iii) A function definition can be defined by multiple clauses using pattern matching

on the arguments: there may be only one clause.

iv) A pattern definition can have only one clause.

v) A law defines a rewrite rule for an algebraic type.

vi) One clause of a multiple clause function definition of the function g.

vii) The right hand side of a definition may have subsidiary definitions introduced

by a where clause. All the definitions in a where clause are regarded as being

mutually recursive regardless of whether they actually are or not. Notice that

the subsidiary definitions in md will not have associated user defined types.

viii) The right hand side expression may in general be a sequence of guarded simple

expressions. In the concrete syntax each of these would be preceded by an =

symbol.

ix) A guarded expression is a simple expression followed by a guard. A guard is

also a simple expression.

x) We have a variety of infix operators for defining simple expressions. The x and

y are simple expressions.

xi) There are also some monadic operators. The a; is a simple expression.

57

xii) Function, or constructor, application is indicated by juxtaposition. The x and

the Xi are simple expressions.

xiii) A tuple of n elements. The Xj are simple expressions.

xiv) A list of n elements. The x,- axe simple expressions.

xv) A dot-dot expression: it has some simpler forms which we can ignore. The x, y

and z are simple expressions.

xvi) A ZF-list: the q, are qualifiers which govern the values taken by the simple

expression e. The generators in the q, provide an extended environment for e

while the filters restrict the values e can take.

xvii) Variables.

xviii) Strings.

xix) Characters.

xx) Numbers.

xxi) A qualifier may be a boolean simple expression which acts as a filter on the

values produced by generators to its left.

xxii) The simple expression x should be a list from which the pattern will take suc

cessive values.

58

xxiii) In this form of the generator the pattern first takes the value of the simple

expression x and then the successive values of the simple expression y which

may be defined in terms of the previous value of the pattern.

The syntax shown does not explicitly cover all forms of a “Miranda” script. However

all the missing forms are simplifications of those shown, for instance right hand sides

without subsidiary definitions.

3.3 Variable Bindings and Scopes

We shall need the concept of prefixed-sub-expressions when defining what it means for

a script to be well typed. The prefixed-sub-expressions can be regarded as capturing

the binding and scopes of variables in a “Miranda” script.

We need to keep track of the variables currently bound and in scope for any part

of a “Miranda” script. A variable environment P is a sequence of variable binding

components of the following forms:

let v

mutual v

function-formal v

lambda v

where-mutual v

pattern-formal v

generator-formal v

pattern v

where v

law-formal v

fix v

law u

generator v

59

The major distinction is between the first form and all the others, as will be explained

later. The variety of the latter forms is just to keep track of the different binding

cases, even though they will all have the same effect in the well typing algorithm.

The binding occurrence of a variable v is its right-most occurrence in the sequence

of components. Thus there will be at most one binding occurrence for a variable in a

variable environment.

We shall use the S)rmbol o to indicate the extension of a variable environment by

a new binding component, as in P o let v.

We now define a prefixed-expression to be a pairing of a variable environment P

with an expression e where all the free variables of e are bound in P. We shall write

this pairing as P \ e.

All such prefixed-expressions have prefixed-sub-expressions. These are usually just

pairings of the variable environment P with the sub-expressions of the expression e.

For those expressions that declare variables, however, we shall have to extend the

variable environment for some of the sub-expressions.

3 .4 Types

We now give the syntax for types that we shall be using and relate this to the concrete

syntax of “Miranda” . We then define various terms which will be used later.

The following is the syntax of types.

60

• We have two basic types: num and char for numbers and characters.

(The type bool is defined as an algebraic type in the standard library)

• We have type variables. We shall take a, ¡3 ... as ranging over type variables.

These correspond to *, ** etc. in a “Miranda” script.

• We have function-types. If p and a are types then p —* a is a type.

• We have tuple-types. If p i , . . . ,pn are types then (pi , . . . ,p„) is a type.

• We have list-types. If p is a type then [p] is a type.

• We have user defined types. If p i , . . . , p„ are types and t is a type-nam<. of arity

n then t p\ • • • pn is a type.

Type-names are defined by algebraic or abstract type declarations, type syn

onym declarations are not regarded as declaring type names.

We shall take p, a . . . as ranging over types.

We now introduce various terms which •will be used later.

A type variable substitution is a map from type variables to types, which we can

represent as

[r j r n/ a n]

for types and distinct type variables O i , . . . , o n; it maps a; to r, for i —

1 , . . . , n and leaves all other type variables unchanged. We can extend a type variable

61

substitution in a natural way to types by applying it to the type variables occurring

in the type.

A type substitution [7̂ / a i , . . . , r „ /o „] involves a type variable 0 if 0 = a, for

some i or if 0 occurs in some 77. We shall use / to represent the empty substitution.

We shall say that a type p is an instance of a type a if there is a type substitution

S such that p = S<7, we shall write this as p -< a.

From Robinson[Rob65] we have the following result about the existence of a uni

fication algorithm which can be applied to types.

There is an algorithm U, taking a pair of types and either failing, or

yielding a type substitution, such that for any pair of types a and r:

(A) If U(cr, t) succeeds yielding U, then U unifies a and r, that is Ua =

Ut .

(B) If R unifies a and r, then ¿/(cr, t) succeeds yielding a U such that for

some substitution S, R = SU.

Moreover, U involves only type variables in a and r.

Thus U finds the most general type which is an instance of both a and r.

We shall call this, following Hindley [Hin69], the highest common instance

of a and r.

62

As an example of the use of unification of types we have the following:

w(A - [A] - [Ali ft - ft - ft) = [A/A, [AJ/A, [Al/Al

We also will need to solve the simpler problem of finding a substitution S such that

p = So for types p and o with p -< a. We shall call this algorithm T and we will have

J(p,cr) = S.

We shall use the notation x to indicate that the object x is typed. This will mean

different things for different objects, but its meaning will be obvious from the context

in which it is used.

For an expression this will mean that we have associated a type with the expression

and also associated types with all its sub-expressions.

A typing of a prefixed-expression P \ e is an assignment of a type to each compo

nent of P and all sub-expressions of e; we shall indicate this by P \ e. P can now be

regarded as a type environment for e.

For a binding occurrence let v : o in a type environment P the type variables

occurring in a are called generic type variables if they only occur in enclosing binding

components of the let form. Those type variables in a that occur in enclosing non-let

components are non-generic type variables as are all the type variables occurring in

the types in any non-let component. As we shall see later, these generic type variables

capture the polymorphism in a “Miranda” script as only they may be substituted for.

63

Given a type environment P , a generic instance of a type a is an instance of a

where all the non-generic type variables are left unchanged. We shall write p -*< cr to

indicate that p is a generic instance of a.

We shall call P | e standard if and only if for every typed prefixed-sub-expression

P' | e', with the natural induced typing, for any binding component let x : a in P'

the generic type variables in a occur nowhere else in P' \ e1. The typed prefixed-

sub-expressions of P | e are simply the sub-expressions of e paired with a suitably

extended variable environment. The types assigned to the additional variables in this

environment are induced by the types given to these variables in e.

3.5 W ell Typing

We now define what we mean when we say a script has a well typing. This is done

in terms of certain type conditions on the prefixed-sub-expressions.

A typed prefixed-expression, P | ë, is well-typed if:

A) It is standard.

B) For every bound occurrence x : a in ë, the binding occurrence of x in P is either

let x : p, where a -<<: p, or some other component like lambda x : p where

a = p.

64

CHAPTER 3. TYPE CHECKING “MIRANDA” 65

C) Certain conditions on the typing of the prefixed-sub-expressions under the in

duced typing are met by all the sub-expressions of e.

The full set of these conditions for all the productions is given in [Lon87b]. We now

present a selection of the interesting cases. We will use parentheses (• • •) to make

clear which parts of an expression the types apply to. The context will allow us to

distinguish this use of (and) from their use in tuples.

i) P | mdi • • • mdn

No conditions.

ii) P | dx : pi ti ■ ■ ■ dn : pn t„

We require that the user given type definitions r, be the same as the types pi,

pi = ^ for i = 1 , . . . , n.

iii) P \ c l : ai - ■ -c^ : an

We require that all the clauses of a function definition have the same type,

ai = G\ for i = 2, • • •, n.

vi) P | (g : crj JdR : px ■ • ■ pal~ : pn = e : <r2) : r

We first require that the type assigned to the function being declared, <7, be the

same as that assigned to the entire expression, r = o\. We also require that the

types assigned to the formal parameter patterns pati and the right hand side

expression e correspond to the type of g, 0\ = p\ —» • • • —+ pn —> <7 2 .

vii) P | (rhsl: cr where md) : p

The type of a right hand side with subsidiary definitions should be the type of

the expression list, a = p.

viii) ~P | {Je{ : <7i • • • ge^ : an) : p

We require that all the guarded expressions have the same type, cq = cq for

i = 2, . . . ,n, and that the type of the list of guarded expressions also be this

same type, p = cq.

ix) P | (e : cr, grd: p) : r

The guard must be of boolean type, p = bool, and the type of a guarded

expression should be the type of the expression, r = cr.

xii) P \ (x : a x j : pi • • : pn) : t

We require that the types of the arguments and of the entire expression corre

spond to the type of the function being applied, a — p\ —► ■ ■ ■ —* pn t .

xiii) P | (xT : an) : p

The type of the tuple should be the tuple-type of the types of its elements,

P — (<^1) • • • i ^ n) -

xvii) P | v a f: a

If var is bound in P by let var : p then we require that a be a generic instance of

p, a -*< p. If var is bound by any other form of component, such as lam bda var :

66

p, we then require that its type be that of its binding occurrence in P, p = a.

3.6 W ell Typing Algorithm M

We present a recursive algorithm M which finds a well typing for a “Miranda” script if

it has one. If the script does not have a well typing, one of the attempted unifications

will fail.

3.6.1 The Basic Algorithm

At all times we have a type environment P. Given this type environment and an

expression / , we return the typed expression / and also the type variable substitution

produced by the well typing of / . The initial type environment includes all the

“Miranda” operators, all those variables declared by the standard library and also

all the constructors declared by algebraic type definitions in the standard library, and

the script.

The final type deduced for an expression is affected by the entire script. The

algorithm is, however, sequential and the preceding and succeeding portions of of the

script affect the deduced type in different ways, see Figure 2. The type checking of

an expression produces two things: the first is a modified tjrpe environment and the

second is a substitution. The type environment is modified by the constraints on

the types of the variables in it imposed by their occurrences in the expression. The

67

Figure 2: Sequential Nature of M.

substitution is produced by the unifications of the types of the occurrences of variables

in the expression with their previous occurrences. The modified type environment

affects the type checking of the succeeding portion of the script while the substitution

is applied to the preceding, already type checked, portion of the script, thus changing

its deduced types.

We proceed through the script in a sequential fashion; at each declaration of a

variable we add it to the type environment with the most general possible type.

Then as we come across occurrences of the variable in the script these will impose

restrictions on the type of the variable.

We make sure we get the most general type by unifying the already deduced

type for the variable, to be found in the type environment, with that of its current

68

In the following we shall refer to modified type environments, which are produced

by applying type substitutions to a type environment, and to extended type environ

ments, which are produced by adding new binding components to a type environment

and possibly applying type substitutions.

The full description of the well typing algorithm is given in [Lon87b]; here we shall

only present a selection of the more interesting cases.

The algorithm is defined recursively by cases on the expression / . That is,

M (P , f) = (T ,J)

where T and / are computed as follows:

i) / = md\ ■ • • mdn

This set of groups of mutually recursive definitions is topologically sorted so for

i = l , . . . , n no variables declared in md, depend on any variables declared in

mdj, j > i. Also, as all the variables declared by md, take generic instances

of their types when occurring in mdj, the type substitutions produced by the

typing of mdj cannot affect the typing of md,. We type each of the md, in

sequence and build up the type environment as we go. We first define P0 = P,

then for i = 1 , . . . , n:

Let v\ ,...,v 'ki be the variables declared by md,. We then have the

occurrence in the script.

69

extended type environment P-,

P[= P,_i o mutual uj : /?} o • • • o mutual : /3'k)

where /?},.. ., /?£ are new type variables. We can now type the group

of mutually recursive definitions md,.

(Ri, mdi) = M {P -, md,)

This set of definitions then provides the extended type environment

Pi for the rest of the script. That is, for mdj, j > i:

P, = P,_i o let uj : R,f3\ o • • • o let v'ki : R,(3'kt

We finally get:

T = I

f = md\ • ■ • mdn

ii) / = dj rj • • • dn rn

We type each of the d̂ in sequence, applying the type variable substitutions

produced for each d, to the type environment P. All the variables declared by

the d, will be bound in P by mutual components. We first define P0 = P, then

for i = 1 , . . . , n:

We type the definition d,:

70

The user defined type r,- should be an instance of the deduced type

Pi-

Si = l(p„Ti)

We then apply the type substitutions produced to get the modified

type environment:

Pi = S,R,Pi- 1

We finally get:

T = SnRn ■ ■ ■ SiRi

J = (S nRn---S2R2S1T1) - . - (S M

iii) / = Cl • • • Cn

We type each of the c, in sequence applying the type variable substitutions

produced for each c, to the type environment P. We also check that the types

of all the clauses unify. We first type the clause C\:

(i? ,,c7 : pi) = M (P tci)

We define U\\

Ui = I

71

and we apply the type substitution produced to get the modified type environ

ment P\\

P'1 = RlP

Then for i = 2 , . . . ,n:

We type the clause ct.

(/? , ,c 7 : pi) = M (P i-u C i)

Then we check that the type of this clause unifies with that of the

previous clause:

Ui = U(RiUi-ipj-\,pi)

We then apply the type substitutions produced to get the modified

type environment:

Pi = UiR.PT-7

We also check that the type assigned to the function g , defined by the c,, is

consistent with any conditions imposed on the type of g by its prior occurrence

in the set of mutually recursive definitions containing this function definition.

Let mutual g : o or where-mutual g : a be the binding occurrence of g in P.

Then the type we have deduced for g should unify with this type a:

U = U(o,UnPn)

72

We finally get:

T = UUnRn--- R\

/ = (UUnRn ■ • • fl2c7) • • • (UUnCZ) = Uo

vi) / = g patx • • • patn = rhs

Let tq, . . . ,Vk be the free variables in the formal parameter patterns patt. We

then have the extended type environment P0:

P0 = P o function-form al v\ : (3\ o • • • o function-form al Vk : fik

where ySj,. . . , 0k are new type variables. We first type the pat{ in sequence in

the type environment P0? applying the type variable substitutions produced by

the typing of each poit to P0. That is, for i = 1 , . . . , n:

We type the pattern pat^

{Ri,paTi : pi) = M (Pi-\,pati)

and then apply the type variable substitution produced to get the

modified type environment:

Pi = RiPi-1

Having typed the formal parameter patterns, and thus having deduced types

for the variables declared by them, we now have the extended type environment

73

P'. This has two possible forms, depending on whether g is free in rhs. We first

have a new type variable /?. Then, if g appears free in rhs:

P' = P o fix g : /? o
lambda : Rn • • • Rif3\ o • • • o lambda Vk : Rn • • • RiPk

Otherwise, we have:

T' = P o
lambda vj :/?„••• R\(3\ o • • • o lambda u* : Rn • • ■ R\ftk

We now type the right hand side expression in this extended type environment:

(5, rhs : a) = M (P ', rhs)

We now check that the type deduced for the occurrences, if any, of g in rhs

unifies with the type given to g by this definition. Note that if g is not free in

rhs then the type substitution S will not involve /3.

U = U(SRn -- -R 2p, ----------- >SPn^ a ,S P)

We finally get:

T = US

7 = (USg) (USR„ • • • RTpaQ • • • {V S ^ Q = (U7hs) : US(3

74

vii) / = rhsl where md

Let Dj,. . . , Vk be the variables declared by md. We then have the extended type

environment P

P' = P o where-mutual vi \ ß\o ■ ■ • o where-mutual Vk : ßk

where ß \ ,..., ßk are new type variables. We now type the subsidiary definitions

in this extended type environment:

(R , md) = A i(P ', md)

Having typed the subsidiary definitions, and thus having deduced types for the

variables declared by them, we now have the extended type environment P ":

P" = RP o where : Rß\ o • • • o where t : Rßk

We now type the right hand side list of expressions in this extended type envi

ronment:

{S,Th^l: p) = M (P ” i rhsl)

We finally get:

T = SR

f = rhsl where Smd : p

75

We type each of the guarded expressions ge{ in sequence applying the type

variable substitutions produced for each ge{ to the type environment P. We

also check that the types of all the guarded expressions unify.

We first type the guarded expression gej :

(Ri,W7 : Pi) = M{P,gel)

We define U\.

Ui = I

and we apply the type substitution produced to get the modified type environ

ment Pi:

7 \ = R iP

Then for * = 2 , . . . ,n:

We type the guarded expression get:

(R,,W , ■ Pi) = M (P i-i,g e {)

We then check that the type of this guarded expression unifies with

that of the previous guarded expression:

Ui = U(RiUi-ip,-U pi)

viii) f = ge1--- gen

76

We then apply the type substitutions produced to get the modified

type environment:

Pi = UiRiPi-i

We finally get:

T = UnRn ■■■ Ri

7 = (UnRn ■ ■ ■ U2R2'gel) ■ • • (UngK) ■ Unpn

) f = c, grd

We first type the guard:

(R,grd : p) = M { P , grd)

We then check that its type unifies with the boolean type:

U = U(p, bool)

We then type the expression.

(S,e:a) = M(URP,e)

We finally get:

We type the expression x and the expressions ar, in sequence applying the type

substitutions produced to the type environment P :

(R ,x : p) = M (P , x)

We define the modified type environment P0:

Po = RP

Then for i = 1 , . . . , n:

We type the expression a*,:

(7 ? ,,x 7 : pi) =

We apply the type substitution produced to get the modified type

environment:

p = RtT ~ ;

The type of the expression x should correspond to the types of the expressions

it is being applied to:

U = U(Rn • • • Rip, R„ • • • R2P1 Pn P)

where ¡3 is a new type variable. We finally get:

xii) / = X X\ • • • x n

78

T = U R„ • • • R\ R

J = { U R n - - - R 1x) (URn“ ‘ R2X1) • • • (Ux^) : U /?

xiii) / = (xj , - . . , x n)

We type each of the expressions Xi in sequence applying the type substitutions

produced to the type environment P:

We define:

Po = P

Then for i = 1 , . . . , n:

We tjrpe the expression x,:

(/?i, x 1 . pi) = , xt)

We then apply the type substitution produced to get the modified

type environment:

Pi = R ,PiZ

The type of the tuple is then the tuple-type of the types of its components. We

finally get:

T == Rn • • • R i

f — {Rn ' ■ ‘ Rl^l 1 • • • 1 3"n) • {Rn " ' ' R^Pl > • • ■ » Pn)

79

There are two separate cases: If var is bound by let var: a in P , then:

Let r be a generic instance of a , that is t -K cr. We get:

T = I

f = var : r

If var is bound by something else, like lam bda var : a ,

We get:

T = I

f = var : a

3.6.2 Type Synonyms and Abstract Types

The algorithm M does not mention the type information presented in the script by

the abstract and type synonym definitions.

As noted previously we can simply regard the type synonym definitions as rewrite

rules for the types. We add an initial step to the unification algorithm to do this

rewriting. Suppose we have the following two type synonym definitions:

listl * *= [*]
list2 * ■= [*]

Then if we are required to unify these two types:

xvii) / = var

80

listl num
list2 num

we first apply the type synonyms as rewrite rules to get the two types:

[num]
[num]

which we then attempt to unify.

Abstract type definitions do not initially appear to fit easily into the framework

provided by algorithm M . However, when we add the above idea for dealing with

type synonyms, we can achieve an elegant solution.

We can associate with each implementation equation the type definitions and the

correspondence between the abstract type and its implementation type. We now

simply extend algorithm M. to take an extra argument, a list of type rewrite rules.

Initially this will consist only of the type synonym definitions, but when we are typing

an implementation equation we add the type correspondence for the abstract type to

the list of type rewrite rules.

When typing the script, variables defined in an abstract type definition are treated

in the same manner as top level definitions. That is they take arbitrary instances of

their defined polymorphic types. The type correspondence between the abstract type

and its implementation type is hidden in the rest of the script as it is not present

in the list of type rewrite rules. When typing the implementation equations the

correspondence is in the list of rewrite rules so it is available as we require.

81

3.6.3 Type Definitions

The well typing algorithm as described simply takes the user-provided type definitions

as extra type constraints on the top-level definitions. We can, however, use the type

definitions to produce better type error messages and also to increase the efficiency

of the well typing algorithm.

If we assume that the user-provided type definition represents the type the user

expects a top-level definition to take then we can use this information to simplify

the well typing task. Recall that we must apply the well typing algorithm to each

mutually recursive group of definitions unifying all occurrences of the variables defined

by all the definitions. This is because we take mutually recursive definitions to be

mutually type dependent. If, however, a definition has a user-provided type definition

then no other definition need be dependent on its well typing having been found as it

can use the user-provided type. In this manner we can reduce the size of the groups of

mutually type dependent definitions and hence the complexities of type unifications

involved.

We obtain better type error messages as each occurrence of a variable with a

user-provided type definition need merely be an instance of this type and hence error

messages related to the user-provided type are given. Without this addition to the

algorithm the type deduced for a variable from its occurrences before its definition

can be very different from that intended, giving rise to very obscure type errors.

82

3.6.4 Example

We now present an example of the application of this algorithm to a simple definition.

reverse (x:l) * reverse 1 ++ [x]
reverse [] = []

We shall assume that the initial type environment P0 is the minimal one required to

type this function definition.

P0 = let : Qi —» [qi] —> [qi] o let ++ [o2] —» [02] —» [<>2] 0 let [] [q3]

Notice that we shall use underlining to distinguish types from the surrounding “Mi

randa'” text; we shall also add parentheses as required to avoid confusion as to which

part of a “Miranda” expression a type refers to. We will also leave out the : preceding

types as this would be confused with the : “Miranda” operator. We shall also leave

out the overlining of the typed expressions to keep the presentation simple. We shall

refer to the current arguments of the recursive call of Ai we are dealing with as P

and / .

We initially have P = Po, while / is the definition of reverse above. We proceed

through the script, typing the mutually recursive groups of definitions. In this case

we only have one such group containing a single definition. Thus we extend the type

environment P by adding a binding component for reverse which is the only variable

declared by this mutually recursive group. Thus, as P = P0 we have the following

83

extended type environment.

P0 o mutual reverse

Then we proceed to type the definition in this extended type environment. This is

a multiple clause definition so we will have to type both clauses and then check that

their types unify.

i) For the first clause of the definition we then have:

P = P0 o mutual reverse (3±

f = reverse (x:l) = reverse 1 ++ [x]

Now we must first type the formal parameter pattern and then the right hand

side expression.

(a) For the formal parameter pattern we extend P by the variables in the

formal parameter pattern. So we have:

P = PQ o mutual reverse o function-formal xfto
function-formal 1 fa

/ = (x : 1)

This is an application of : to the arguments x and 1 . We must first type

these two arguments.

i. For the first argument we have:

84

P = P0 o let reverse ft o function-formal x f t o
function-formal 1 ft

f = *

As x is bound by a function-formal component in the type environ

ment we take its type from the type environment, that is ft . There

are no type substitutions produced and we have:

7 = x ft

ii. For the second argument we have:

P = P0 o let reverse ft_ o function-formal x ft o
function-formal 1 ft

f = 1

As 1 is bound by a function-formal component in the type environ

ment we take its type from the type environment, that is ft . There

are no type substitutions produced and we have:

7 = 1 f t

Now we need the type of the : operator. As it is bound by a let component

in the type environment we must take a generic instance of its type in the

type environment.

ft —> [ft] —> [ft]

85

We now require that the type of : unify with the types of its arguments x

and 1. We have the following application of the unification algorithm.

U(p, |ft] [ft), f t f t -> ft) = | A /f t , [W ft ,| f t] / f t]

Notice that we shall choose our unifiers carefully to make the presentation

as clear as possible.

Thus we have:

T = [& /& IA 1 /& I& 1 /& J

Now applying this substitution to the types we have already deduced for

the sub-expressions of (x : l) we get:

7 = (x 0± : 04 -» [0a] -> [&] 1 [&]) [04]

(b) For the right hand side expression of the first clause we have the following

extended type environment. This is obtained by applying the type sub

stitution produced by the typing of the formal parameter pattern to the

types initially assigned to the variables appearing in the formed parameter

pattern, x and 1.

As the function reverse being defined occurs in the right hand side ex

pression it must also be added to the extended type environment.

P = P0 o mutual reverse 0\ o

fix reverse 0 e o lam bda x 04 o lam bda 1 [0 4]

f = reverse 1 ++ [x]

86

This is an application of the ++ operator to the two arguments reverse 1

and [x]. So we must first type these two argument expressions.

i. For the first argument we have:
P = PQ o mutual reverse (3\ o

fix reverse fie 0
lambda i f t o
lambda 1 [p 4]

f = reverse 1

This is an application of reverse to 1. We must first type these two

expressions.

A. For the first argument we have:
P = / o o mutual reverse o

fix reverse /?6 o
lambda x fi4 o

lambda 1 [fi4]

/ = reverse

As reverse is bound by a fix component in the type environment

we take its type from the type environment, that is There are

no type substitutions produced and we have:

/ = reverse ¡3$

B. For the second argument we have:
P = Pq o mutual reverse /?i o

fix reverse Pe 0
lambda x fi4 o

lambda 1 [P4]

87

As 1 is bound by a lambda component in the type environment

we take its type from the type environment, that is [fa]. There

are no type substitutions produced and we have:

/ = ! lAJ

We must now unify the type deduced for reverse with that of its

argument 1. We have the following unification:

6, [fa] —» fa) = [[fa] fa!fa]

Thus we have:

t = m - » f t /ft]

Now applying this substitution to the types we have already deduced

for the sub-expressions of reverse 1 we get:

J = (reverse [fa] -» f a 1 [0 4]) f a

ii. For the second argument we have:

P = P q o mutual reverse fa 0

fix reverse [fa] —> f a o
lambda x f a 0

lambda 1 [fa]

f = Cx]

Notice that we have imposed restrictions on the type of reverse in

the type environment from its occurrence in the first argument.

As x is bound by a lambda component in the type environment we

take its type from the type environment, that is fa. There are no type

88

7 = Cl ft] |AJ

Now we need the type of the ++ operator. As it is bound by a let component

in the type environment we must take a generic instance of its type in the

type environment.

[ffs] —» [0s\ —» [0&]

We now must unify the type of the operator ++ with the types deduced for

its two operands reverse 1 and [] . We have the following application of

the unification algorithm.

U([/?s] —* [0&\ —> |/3g]̂ 07 [@4] A>)
= [0±/08,[04]/ §Z'[0A/0̂

Thus we have:

substitutions produced and we have:

t = m -> m / f a h / h M / b M / M

Now applying this substitution to the types we have already deduced for

the sub-expressions of reverse 1 ++ [x] we get:

7 = ((reverse [/?4] —> [0 4] 1 [/?4]) [0 4\

++ 0a \ [04
[x &] [&]) JA

We must now check that the type deduced for reverse from the deduced types

of its formal parameter pattern and its right hand side expression corresponds

89

with the type deduced for its use on the right hand side.

By applying the substitution T produced by the typing of the right hand side

expression to the type initially assigned to reverse in its fix component in the

type environment we get:

[P a\ [&]

Applying the substitution T to the already typed formal parameter pattern has

no effect, so it has type:

IM

As does the right hand side expression. Thus we have the following unification:

M([&] -+ [&h [&] —> \Pa\)

Which succeeds with the empty substitution.

Thus we have:

t = m - » [&]/& ,& /& , t w f t . i w & i

And we also have:

7 = reverse [/?4] —> [0 4\ (x §4 : & —> [&] -» [&] 1 [§ a\) [A]

((reverse [fi4] -» [/?4] 1 [0 4]) [/34]

+ + [Pa\ — * [04] — > [&]

[x £,] {&]) {&]

90

ii) For the second clause of the definition we then have:

P = Pqo mutual reverse 0±

/ = reverse [] * []

Now we must first type the formal parameter pattern and then the right hand

side expression.

(a) For the formal parameter pattern we extend P by the variables in the

formal parameter pattern. In this case there are none so we have:

P = P q o mutual reverse 0\

We need the type of [] . As it is bound by a let component in the type

environment we must take a generic instance of its type in the type envi

ronment:

[fro]

There are no type substitutions produced and we have:

7 = n I M

(b) For the right hand side expression of the second clause we have the fol

lowing extended type environment, in this case it is simple as there are no

variables in the formal parameter pattern.

91

As the function reverse being defined does not occur in the right hand

side expression it needn’t be added to the extended type environment.

P = P 0 o mutual reverse /?i

We also have:

/ = n

We need the type of []. As it is bound by a let component in the type

environment we must take a generic instance of its type in the type envi

ronment:

I M

There are no type substitutions produced and we have:

7 = a [ft.]

Now we have the following unification to determine the type to be deduced for

this clause.

[A i L A 2) = [[A o] W n] /0n]

Thus we have:

T = [[fto] —> [A i]/ A 2]

92

And we also have:

/ = reverse [ftp] —> [/?n] □ [fto] = □ [fti]

We must now check that the types deduced for the two clauses unify. We have the

following unification.

¿f([ft] [ft], [ftp] —♦ [ft ij) = [ft /fto> ft/ftiJ

Applying this substitution to the first clause has no affect but for the second clause

we now have:

/ = reverse [fa] -» [fa] [] [fa] = [] [̂ 4]

We have thus deduced the type of the definition of the reverse function as being:

[ft] - » m

We must now check that this corresponds with the type deduced for reverse by its

occurrence elsewhere in this group of mutually recursive definitions. To do this we

must be able to unify this deduced type with that associated with reverse by its

mutual component in P. We have the following successful unification.

W , [ftl - Iftl) = Hftl -> Iftl/A)

We have now finished typing the definition of reverse. We now have the following

extended type environment for typing the rest of the script.

Po o let reverse [fa) ̂ [ft]

93

Figure 3: The Typechecker

All occurrences of reverse in the rest of the script will take generic instances of this

type.

3 .7 Im plem entation

The well typing algorithm M was used as the basis for the implementation of a type

checker and interactive type examiner for “Miranda” written in Miranda. The overall

structure of the work leading to this implementation and its dependencies is shown

in Figure 3. The boxed entries in the figure represent differing sections of the actual

94

implementation in Miranda while the other entries represent the theoretical work on

which the implementation is based. The details of the use of the system are presented

in Appendix B.

As we wished to produce a complete system which would demonstrate the im

plementation of the type checking algorithm we needed a “Miranda” parser and an

interactive user interface. Neither of these components was our main concern and so,

beyond their existence, we did not devote a great deal of attention to them.

3.7.1 Parser

It can be seen that the first piece of work on which everything else depended was

the derivation of a syntax for “Miranda” . This was used as the basis of the abstract

syntax and hence the derivation of the well typing algorithm M . The “Miranda”

syntax was also used, as described in [Lon87a], to produce a parser for “Miranda” .

We make no claims for this method of generating parsers compared to others, eg.

Fairbairn’s [Fai87]. We simply use it as it produces reasonably efficient parsers for

a wdde range of grammars. The syntax of “Miranda” that was used is shown in

Appendix A.

This parser has four major components which we discuss in turn:

i) The process by which the action tables axe derived from the grammar is de

scribed fully in [LonS7a] and will not be discussed here. We merely note that

95

this method of writing parsers allows easy construction of parsers for languages

having complex syntaxes. It is worth noting that the hundreds of functions that

define the action tables axe mutually recursive and hence would have to all be

type checked together if we did not provide type definitions for them. Adding

type definitions produces a significant increase in speed of compilation.

ii) The lexical analyser is a relatively easy function to write in a straightforward

manner. As in most programs of this sort, the lexical analyser is the real

bottleneck in the parser, and unfortunately, when trying to parse “Miranda”

(which has fifty lexical tokens) the lexical analyser written in Miranda is bound

to be rather slow. This is because it must proceed by pattern matching on the

head of the input when scanning for tokens. It is not so slow, however, as to

be prohibitive and fairly large source scripts can still be parsed in a reasonable

time.

iii) The reduce functions are the tree building functions associated with each pro

duction in the grammar. The sophisticated type system of Miranda makes

writing functions for building parse trees a great deal easier than it is in other

languages. The algebraic type mechanism allows one to define constructors

corresponding to all the differing forms of parse tree that occur and to keep

them distinct. It also proved to be very useful to hide the algebraic type imple

menting the parse trees inside an abstract type. This is because, while we do

96

lose straightforward pattern matching9, during the development of large pro

grams the definitions of algebraic types will usually be modified and this would

otherwise involve rewriting all the code that uses the old definitions of the con

structors. If, however, we use an abstract type, all the existing code can be used

unmodified. In particular, one can add an extra field to each of the existing

constructors without having to change anything but the algebraic type defini

tion and the functions defined in the abstract type. This problem is solved in a

more general way by Wadler’s views [Wad85].

iv) The general grammar independent parser uses the action tables, the lexical

analyser and the reduce functions to build parse trees by parsing the input.

The details of its operation are given in [Lon87a].

Because the syntax is, in fact,context sensitive, it was necessary to implement a fairly

complex set of syntax checks to avoid passing rubbish on to the type checker. These

syntax checks could have been handled in a sophisticated fashion [Joh87] but we

simply used another pass over the parse tree.

9By building a tag field, defined by another algebraic type, into the parse trees we can recover
pattern matching.

97

typecheck’ (ST_identifier name)
variablejenv constructorjenv context type.var rewrites s
[] [] □

* (s',identity-substitution,type.varl)
where
(variable-type ,type_varl)

* f ind_variable_binding variable.env type.var name
s’ = set .expression-type variable-type s

Figure 4: Type Check Identifier

3.7.2 Type Checker

The implementation of the type checking function is derived directly from the well

typing algorithm given in [Lon87b]. Thus the typechecking function is called with

three arguments: a type environment, a list of synonym rewrite rules and an expres

sion. It returns the type checked expression and the substitution produced while type

checking the expression. There are, in fact, a few more arguments to the function,

but these axe present in order that a great deal of useful information may be provided

for each occurrence of a type error. This information includes not only a detailed

description of the type error found but also a description of its location in the source

script. Two cases of the type checking function axe shown in Figure 4 and Figure 5.

In the actual Miranda source there is almost one line of comment for each line of code

but these have been omitted here.

When a type error is discovered the information is displayed immediately but it is

also stored as an annotation on the parse tree so that the interactive type examination

98

typecheck’ (STjnonadic op)
variablejenv constructorjenv context type_var rewrites s
[] [] []

= (s ’, subst ,type_var3)
where
(op.type,type_varl) * f ind_pref ix-binding type.var op
[si] = substructures_of s
(si' ,sl_subst,type_var2)

* typecheck variable.env constructor.env
context type.varl rewrites si
[] [] [] ’

sl_type = expression_type_of si'
type_var3 = new_type_variable type_var2
result = unify.types rewrites op.type etype
etype = make-Type_f unction [sl_type,type_var3]
op_unify_DK = unify_succeeds result
unif y_subst

= unify_subst'
, op_unify_0K

= identity-substitution
, otherwise

Unifies unify_subst’ = result
si'' = instantiatejstructure unify_subst si'
s ’ -type

= instantiate unify_subst type_var3
, op_unify_0K

= TypeJ!rror
(("Type Error in prefix expression, "
pp-lines line lineO ++
"A n " :
message-list ++
"\n" :
pp.context context .Type-Empty) :
f ai lure-mess age_l ist

)
, otherwise

where
(message-list,line,lineO) = pp.structureHines s

s’ = set.expression.type s’-type
(set-substructures [si’’] s)

subst = compose_substitutions_list [unif y_subst, sl-subst]
99

Figure 5: Type Check Unary Operator Expression

program can provide the same information. As many type errors as possible are found

by simply regarding an expression that failed to type check as if its type were fully

polymorphic. Its type will therefore unify with any other type and this prevents a

cascade of type errors. The unification function used by the type checker is defined

in a script parametrized by the type of the expressions being unified. This means it

can be reused very easily in other programs by simply giving it different parameters.

This approach also means one can consider the correctness of the implementation of

the unification function independent of any details of the structure of types as used

by the type checker.

3.7.3 Interactive User Interface

A type error occurs when the preceding occurrences of some variable have led us to

deduce that its type is some instance of a type p and the current occurrence leads

us to deduced that it is some instance of a type a where these two types cannot be

unified. Now it is often the case that the occurrence which causes this failure may not

correspond to the real error in the script. It is for this reason that it is not enough

merely to report such errors: we must also be able to examine the type successfully

deduced for each of the sub-expressions of the script. It is not possible to produce a

listing of a script annotated with the types deduced for each sub-expression, as can

be seen by looking at the example in §3.6.4. In this simple example we use type

100

CHAPTER 3. TYPE CHECKING “MIRANDA” 101

annotations on the sub-expressions, and it can be seen that even here they become

somewhat confusing. The use of an interactive program to navigate around the type

checked script, allowing investigation of the well typed sub-expressions as well as

those that caused type errors, provides a solution to the problem. I also believe that

examination of well typed scripts may well lead one to a better understanding of the

type discipline of the language and hence speed the location of the true causes of type

errors.

The user interface was simply required to demonstrate the the use of the imple

mentation of the type checking algorithm. We therefore made no attempt to specify

it [Chi85, AleSS] or to produce anything more sophisticated than a command driven

interface. It was implemented as a number of tail recursive functions which maintain

a stack of the previous positions as one navigates around the script.

The use of the interactive type examination program is best explained by the

tutorial in Appendix B.8.

3.8 Conclusion

This example implementation highlighted a number of issues in the development

of a complete system in a functional language. The first of these was that while

pattern matching over algebraic types is very powerful during development it can be

a hindrance. The second was that certain parts of the implementation, while not

fTEMPLEMAN
! LIBRARY
W ^

CHAPTER 3. TYPE CHECKING “MIRANDA” 102

our primary concern in this implementation, appear to benefit fax less than others

from the expressive power of a functional language. The two components in this

implementation where this was particular apparent were the lexical analyser and

the user interface. The lexical analyser is simply a 50 case definition using pattern

matching to separate the cases. This is no more elegant than an imperative case

statement and far less efficient10. The user interface is essentially an imperative,

state based function. It consumes some input, modifies the state, generates some

output and then starts again. A technique for writing user interfaces that greatly

simplifies the task was developed after the implementation of this system [Lon89].

10Assuming sequential pattern matching.

Chapter 4

Implementing Logics

In this chapter we examine the use of Miranda as an implementation language for

logics. It is interesting to contrast Miranda with existing languages already used for

this purpose such as LISP [BM75] and ML [GMW79].

The major advantage offered by Miranda over LISP is its sophisticated type system

and in particular the abstract type mechanism. In LISP one must convince oneself

that the entire implementation of the system is correct whereas with Miranda, and

ML, one can restrict ones attention to a relatively small section of the implementation.

This can be done if we implement the structures we intend to correspond to terms,

formulae and theorems by an abstract type. The type security will then guarantee

that the only way to construct an expression of type theorem is by the application

of the functions defined in the abstract type that return objects of this type. Thus

103

we can ignore the rest of the implementation and need only convince ourselves of the

correctness of the implementation of the abstract type.

The advantages of Miranda over a language like ML are less striking but, I believe,

still important. The first is the general point that using functional languages is better

than using imperative languages, and ML retains certain imperative features. The

fact that any attempts at verification of implementations will be easier, if not easy,

in a functional language becomes even more important when we are implementing

logics. There seems little point in using a theorem prover to prove required results

when the verification of its implementation is harder than it need be. The second is

that lazy evaluation allows one to express various search functions that return lists

of alternatives in a very concise manner, while not having to be concerned about the

inefficiency of calculating all such alternatives when only one is needed.

It must be said that the proponents of ML would claim that assignment and

exception handling are needed if one is to implement usable systems. The first is

useful in that one can work at the ML top-level and use assignment to record partial

results. It is, however, not difficult to implement a user interface that provides all the

facilities required for handling and accessing partial results. The exception handling is

used in order to allow flexible input and also in the implementation of complex tactics.

I believe that an approach like that described in [Lon89] allows one to both write

flexible input functions and also to write complex tactics using exceptions to invoke

104

alternatives on failure. Other approaches to writing user interfaces in functional

languages might also be used [0 ’D85, Dwe89, FL89, Koo87].

The remainder of this chapter is taken up with two different examples of imple

menting logic in Miranda which are contrasted with the approach used in the Edin

burgh LF [HHP87]. These can also be seen as covering a range of abstraction in the

specification of the logic. In the first implementation we take a standard presentation

of the logic and in the second the implementation already existed and the specifica

tion we use was developed afterwards. The definition of a logic in LF can be seen as

using a more abstract and more powerful specification language than the standard

presentation. These examples demonstrate that a functional implementation can be

easily related to the specification of the logic. The second example demonstrates the

power of even simple rewriting rules in an otherwise somewhat limited logic.

4.1 Intuitionistic Logic

We describe an implementation of the first order intuitionistic logic as described by

Prawitz [Pra73]. The logic is presented as a natural deduction system in the style

due to Gentzen. In this approach we consider the deductive inferences involving a

logical constant as giving us the meaning of that constant. We further reduce all these

inferences to atomic inference steps each of which involves only one logical constant.

There are two kinds of atomic inference step; those that allow the introduction of

105

a logical constant and those that eliminate a logical constant. In the first case the

outermost symbol of the conclusion will be the constant introduced while in the second

the outermost symbol of one of the premisses will be the constant eliminated.

We regard the object of interest as being the proof rather than simply the resulting

theorem. A proof will start from certain assumptions and produce some conclusion,

with the possibility that some of the inference steps in the proof may discharge some

of these assumptions. We can represent proofs as derivations presented in the form

of trees. The leaves of the tree are the assumptions, discharged and undischarged,

and the root of the tree is the conclusion of the proof. The internal nodes of the

tree represent the individual inference steps which derive sub-conclusions from the

conclusions of the sub-trees above. We say that the conclusion of a proof depends on

those assumptions of the proof that have not been discharged.

We now describe the atomic inference rules in a schematic form, using a notation

essentially the same as that used by Prawitz. The formulae standing above the line

represent the conclusions of derivations and the formula below the line the conclusion

of the derivation built with the inference rule. We let the symbols A, B and C range

over formulae, the symbols x and y over variables and the symbol t over terms. We

use the notation A[t/x] to indicate the formula obtained by substituting the term

t for the free occurrences of the variable x in the formula A. Multiple occurrences

of the same formula, A say, are to be understood as referring to alpha-equivalent

106

formulae. We further use the notation {,4} standing above a premiss to indicate that

assumptions of this form are discharged from the proof of this premiss by the inference

rule. We also assume that the language contains a constant A for falsehood. We label

the inference rules by the logical constant they involve followed by / for introduction

rules and by E for elimination rules.

A /) A B
A A B

A E)

V7)

ME)

A A B A A B
A B

A B
AM B AM B

M) { b)
AM B c c

C

= * /) M)
B

A=> B

=>■ E) A =$■ B A
B

107

V /) A
Vx.A[x/y]

Provided either x is not free in A[x/y] or y is not free in the assumptions that

the conclusion A depends on and either x is not free in A or x is not free in

these assumptions.

V £) Vrr.A
A[t/x]

31) A[t/x]
3x.A

3E) { A[x/y]}
3y . A B

B

Provided x is not free in B and is also not free in the assumptions that the

conclusion B depends on (except those of the form A[x/y] discharged by-this

inference rule).

A) A
A

We require that the formula A be an atomic formula different from A. If we

allowed A to be a compound formula, or A, it would invalidate the principle

that the meaning of the logical constants is given by the inference rules that

introduce and eliminate them.

108

If we assume that ~ A is taken as shorthand for A A then we have the following

two special cases of =» I and E :

~ /) {A }
A

~ A

~ E) A ~ A
A

We now describes various aspects of the implementation of this logic.

4.1.1 Parser

As already mentioned we have implemented the types of terms and formulas by an

abstract type. This abstract type defines the type of the predicates that take terms

and produce formulae as well as the types of terms and formulae. Each logical constant

has three functions associated with it. For example for conjunction, A, we have:

is.and :: formula -> bool
mk_and :: formula -> formula -> formula
brk_and :: formula -> (formula,formula)

These functions allow us to check the form of formulae, build formulae from other

formulae and take formulae apart. We have a similar set of functions for the atomic

formulae produced by the application of a predicate to some terms:

109

is_relation :: formula -> bool
ink-relation : : predicate -> [term] -> formula
brk_relation :: formula-» (predicate,[term])

We finally have functions for distinguishing the various forms of term: constants,

numbers, variables and applications.

The parser, again written using the technique described in [Lon87a], uses these

functions to build expressions of type term or formula.

We also use a matching function derived during the work on type checking to

provide tests for alpha equivalence of formulae and the derivation of substitution

instances of formulae.

4.1.2 Derivations

We now describe the abstract type implementation of derivations and the inference

rules that build them. As already stated we are interested in proofs, not simply

theorems, and thus we at all times manipulate complete derivations and not merely

the theorems they prove. The abstract type definition is given in Figure 6 and it can be

seen that there are only sixteen functions that return objects of type d erivation and

hence only sixteen functions that need be examined in order to ensure the correctness

of any system built using these functions. We also have functions for extracting the

conclusion of a derivation and the assumptions that this conclusion depends on. The

implementation type for derivations is of course an algebraic type:

110

abstype derivation
with

assume :: formula -> derivation
for_all_I, for_all_E,
there_exists_I, there_exists_E,
implies_I, implies_E,
or.11, or_rI, or_E,
and_I, and_lE, and_rE,
not_I, not_E,
falsity

:: [derivation] -> formula -> derivation
conclusion :: derivation -> formula
assumptions :: derivation -> [formula]
pp.tree :: derivation -> [sys_message]

Figure 6: Derivations

derivation == derivation'
derivation' ::= Assume formula bool I

Infer inference [derivation'] formula

where in feren ce is an enumerated algebraic type with one constructor for each of the

fifteen inference rules. Thus a derivation is either an assumption or a valid application

of one of the fifteen inference rules to some list of derivations resulting in the given

conclusion. We now describe the implementations of some of these inference rules.

Each inference rule is given a list of derivations and the proposed conclusion and if

the conclusion can validly be deduced from the derivations by that inference rule then

the appropriate derivation is built.

• The assume function takes an arbitrary formula and assumes it:

111

assume f ■ Assume f False

• The and_I function takes two arguments: a list of two derivations and a formula

which should be the conjunction of the the conclusions of these derivations.

and_I [d l,d r] f
= error "and_I: Not conjunction\n"

, ' is_and f
= error "and_I: Not alpha-equivalent\n"

, " alpha-equivalent 1 c l \ /
" alpha-equivalent r cr

= In fer And_I [d l,d r] f
, otherwise

where
c l = conclusion d l
cr = conclusion dr
(l , r) = brk.and f

Notice that we use the functions for testing and breaking apart a conjunction

as well as the function that tests for alpha equivalence.

• There are two forms of the and_E inference rule, and_lE and and_rE. The first

extracts the left conjunct of the conclusion of the argument derivation and the

second the right conjunct. We present the implementation of the first of these:

and_lE [d] f
= error ''and-lE: Not conjunction\n"

, ~ is.and c
= error "and_lE: Not alpha-equivalent\n"

, " alpha-equivalent 1 f
■ In fer And_lE [d] f

112

, otherwise
where
c * conclusion d
(l,r) = brk_and c

We again use the functions for testing and breaking apart formulae and for

checking alpha equivalence.

• The im plies_I inference rule discharges an assumption from the resulting deriva

tion. The function that is used to do this is defined as follows:

discharge formula-list (Infer inference derivation-list formula)
= Infer inference

(map (discharge formulaJList) derivation-list)
formula

discharge formula-list (Assume formula False)
= Assume formula

(or (map (alpha-equivalent formula) formula-list))
discharge formulaJ.ist derivation

= derivation

This function takes a list of formulae and a derivation and discharges from the

derivation any assumption that is alpha-equivalent to any of the formulae in

the list. Using this function it is then easy to implement the im plies_I rule:

implies_I [d] f
* error "impliesJ: Not implication\n"

, ~ is_implies f
* error "implies_I: Not alpha-equivalent\n"

, “ alpha-equivalent r c
* Infer Implies-I [d'] f

113

, otherwise
where
c * conclusion d
(l,r) * brk_implies f
d' = discharge [l] d

• The f or_all_E inference rule must check that the proposed conclusion is in fact

an instance, of a particular form, of the conclusion of the argument derivation.

In order to do this it uses a function called s in g le -su b stitu tion which is

defined by use of the formulae matching function already mentioned. This

function takes two formulae and checks that the first is obtained from the second

by a singleton substitution [t/x]. If the two formula are alpha-equivalent then

the variable argument, y say, is used to form the identity substitution [y/y]. If

the formulae do not match or are matched by a non-singleton substitution this

function will return None.

This inference rule can validly be applied if the proposed conclusion is a singleton-

substitution instance of the body of the universal quantification which is the

conclusion of the argument derivation. We also require that the variable being

substituted for be the variable bound by the universal quantifier.

for_all_E [d] f
= error "for_all_E: Not universal\n"

, " is_forall c
= error "for.all_E: No match\n"

, ' match_0K

114

= Infer For_all_E [d] f
, otherwise

where
c * conclusion d
(var,c’) * brk_forall c
result « single-substitution var f c’
oatchJOK * result "= None k var’ = var
Value (exp,var’) = result

• The for_all_I inference rule uses matching and also checks the conditions im

posed on the free variables of the assumptions of the argument derivation. We

again use the single-substitution function and now also use a function that

returns a list of all the free variables in a formula.

for_all_I [d] f
= error "for_all_I: Not universal quant ification\n"

, “ is-forall f
= error "f or_all_I: No match\n"

, “ match-DK
= error "for_all_I: Free variables problem\n"

, “ free_variables_DK
= Infer For_all_I [d] f

, otherwise
where
c = conclusion d
(var,c’) = brk.forall f
result * single-substitution var c' c
match-DK ■ result ~= None k exp = var
Value (exp,var’) * result
free_variables.DK

* " member (free.variables c’) var \/
(~ member assumptions_free_variables var’ &
(" member (free_variables c) var \/
" member assumptions.^ ree.variables var))

assumptions_f ree.variables
* concat (map free.variables (assumptions d))

115

While the free variable condition does look a little complex it is really quite

straightforward.

• The there_exists_E inference rule takes a list of two derivations and a formula.

It uses a locally defined function dischargeable to find those assumptions of

the second derivation that may be discharged. This function again use the

function for alpha equivalence and the function that returns the free variables

of a formula and also uses the discharge function. Notice that this function

also uses the higher order functions map and filter.

there.exists_E [dmaj.dmin] f
= Inference-Error ["there_exists_E: Not existential\n"]

, ~ is.exists cmaj
= Inference-Error ["there_exists_E : Not alpha-equivalent\n"]

, ~ alpha-equivalent cmin f
= Derivation (Infer There_exists_E [dmaj.dmin'] f)

, otherwise
where
cmaj = conclusion dmaj
cmin = conclusion dmin
(var,cmaj') * brk.exists cmaj
dmin_assumptions ■ assumptions dmin
dinin' * discharge (filter dischargeable dmin_assumptions)

dmin
dischargeable fm

* match.DK 4 free_variables_DK
where
result * single-substitution var fm cmaj'
match_DK ■ result ~= None 4 var'' = var 4

is.variable exp
Value (exp,var'') = result
free_variables-OK

* " member (free.variables cmin) exp 4

116

~ member (concat (map f ind_free_variables
dmin_assumptions)) exp

find_free_variabl.es f'
= [] , alpha-equivalent f f’
* free.variables f’ , otherwise

These examples demonstrate the clear relationship between the specifications of the

inference rules of the logic and their corresponding implementations. This is due to

the clarity of expression that is obtained by the use of abstract types and higher order

functions. This relationship makes it far easier to convince oneself of the correctness

of the implementation.

While the implementation described is secure and can be used it has one major

flaw in the way it handles errors. Calling the error function when a derivation cannot

be built does preserve the security of the type of derivations but makes it difficult to

build a system using these functions. What we require is some non-error return that

indicates that a derivation was not in fact produced. It is possible to elaborate the

underlying implementation type to include an error indication and add functions to

check whether we have an error and extract its description. A far better solution is to

let all the derivation building functions return a value of an algebraic type something

like1:

deriv_result ::= Good derivation | Bad [char]

^ h e implementation does in fact use this approach, it is omitted here for ease of presentation.

117

This ensures that any value of type derivation is always a derivation.

The final function defined in the abstract type, pp_tree, provides centred tree

structured presentations of the derivations. These presentations show not only the

inference rules but also the conclusions of all the intermediate derivations. This

function is implemented as a particular application of a more general tree pretty

printing function. This more general function takes an object of the algebraic type

pretty_printing_tree and, by folding pretty-printing functions over it, pretty prints

it.

node_name == [char]
object == [char]

pretty-printing-tree
: := Pretty_printing-Node node_name object [pretty-printing_tree] |

Pretty_printing-Leaf node_name object

Thus we need merely turn a d erivation tree into a pretty_printing_tree to obtain

a pretty-printer for derivations. This can easily be done by mapping functions to

extract the conclusions and inference rule names over the derivation tree. This pretty

printer is not a generic or language independent pretty printer as described elsewhere

[Jok89, Opp80, RubS3] and assumes we can display arbitrarily wide output.

Given this abstract type we can define various derived inference rules in terms of

the basic inference rules. The first set of such functions are simpler versions of the

basic inference rules where we need only provide the minimum amount of information

118

to the function. A good example is the simpler version of the => 1 rule which only

takes the formula being discharged and not the entire resulting conclusion.

im plies 1 d
* im plies_I [d] (mk_implies 1 (con clu sion d))

Given this derived inference rule we can now define a rule that discharges all the

assumptions that the conclusion of a derivation depends on.

d isch _a ll d
= f o ld l (converse im plies_I') d (assumptions d)

Th function converse simply reverses the order of the arguments supplied to im plies_I ’ .

converse f a b = f b a

This derived rule simply extracts the assumptions on which the conclusion depends

and then discharges them in sequence using the im plies_I' derived rule. Schemati

cally we might represent this derived rule as follows:

{A 1- . .A n}
__________ B__________
An =>• • • • =► A\ =>• B

where the A i , . . . ,A n are the assumptions that the conclusion B depends on.

We can also use the im plies_I ’ derived inference rule to write another more com

plex, recursive, derived inference rule. This rule also uses the derived rules and_lE'

and and_rE' which are related to and_lE and and_rE as im plies_I' is related to

im p lies .!.

119

implies-I' ' f d
= implies_I’ f d , ' is_and f
= impliesJ' f d2 , otherwise
where
(fl.fr) = brk.and f
d' = assume' f
dl * impliesJT'' fl (implies_I'' fr d)
d2 = implies_E' (implies-E' dl (aud_lE' d’)) (and_rE' d')

Given a formula which is an arbitrary nesting of conjunctions this discharges all the

conjuncts in the formula from a derivation, producing a derivation whose conclusion

is an implication with the formula as antecedent. This is achieved by recursive calls

of the function on the two conjuncts in the formula. In this way we can define

increasingly complex derived inference rules without having to check the validity of

any of them because at worst they will merely fail to produce a result rather than

produce an incorrect result.

At present this system lacks one feature that would be essential if we intended

to use it in any serious way: it should include some form of type checking. . The

obvious thing to do is to only allow constants that have been introduced by some

sort of declaration like that used for Miranda algebraic types, and to then use a form

of the Milner type checking algorithm. As this implementation was only intended as

a study of the implementation of a standard logic to serve as a contrast to the ‘B ’

logic described in §4.3 we did not take the work further in this direction. A more

detailed description of a proposed type checking discipline for proofs implemented in

this fashion is presented in Appendix C.

120

Given this implementation of the secure type of derivations we could implement a

number of different theorem provers on top of it. The simplest would be a bottom-up

system that only allowed us to apply the inference rules to previously built derivations.

A more complex system would require the implementation of a top-down tactics

based system in the style of LCF where the inference rules would be applied by the

validation functions. As in LCF it would probably be necessary to provide some

composite tactics for performing multiple inferences. In particular, tactics that allow

composite inferences like rewriting greatly simply the production of proofs.

A small interactive subgoaling function was written which allows one to elaborate

a derivation in a top-down fashion. The interactive user-interface to this subgoaling

function was written using interactions in the style described in [Lon89]. Starting from

a goal one can generate a set of subgoals by invoking a tactic. For this small subgoaling

function we only provided tactics corresponding to the basic inference rules. In this

way one can build up a partial proof tree where the leaves are unproved goals. One

may navigate about this partial proof tree, allowing one to prove these goals in any

order. As one completes the proofs of the subgoals of a goal, the associated inference

rule is used to produce a derivation with the desired conclusion.

121

4.2 Defining Logics in L F 2

The Logical Framework is intended to allow the definition of a wide class of logics.

The LF is based on a version of type theory related to the early work of Martin-Lof,

that is, a typed lambda calculus with dependent types. The syntax, inference rules

and proofs of a logic are all defined in terms of this type theory. The lambda calculus

structure of the logic provides for binding operators, variable substitution, variable

capture and alpha-equivalence in the syntax of the logic. It also allows for schematic

abstraction and instantiation in the inference rules of the logic. The treatment of

inference rules and proofs is based on an extended notion of judgements. The details

of these ideas will be presented as required.

The type theory has three basic classes of entity: objects, types and families of

types, and kinds. Objects will have types, types will have kinds and kinds will also

have kinds. If we let c range over constants, x and y over variables, M and N over

objects and A and B over types then we have the following forms of object.

c | x | A x : A.M | M N

That is we have constants, variables, typed lambda abstractions and applications.

We also have the following forms of families of types:

c | IIx,a .B | Ax : A.B | A M

2We will not provide a detailed description of the Edinburgh Logic Framework here as this is
provided in a number of Edinburgh LFCS reports [HHP87].

122

Thus we have constants, dependent types, lambda abstracted types and types ob

tained by specialising a dependent type with an object. If we now let K range over

kinds we have the following forms of kinds:

Type | Ut:A.K

The types will all be of kind Type while the second form allows functions which return

types. Any function definable in the system will have a type as its domain but may

have either a type or a kind as its range.

Given these three classes we can now define signatures and contexts. A signature

provides the bindings for the constant objects, types and kinds. If we let E range

over signatures we have the following forms of signature:

() | E,c:A | E,c: I<

A signature can either be empty or can be built by extending a signature with either

a constant object or a constant type or kind. Contexts introduce variables in a similar

way, though variables only range over objects and therefore only ever have types. If

we let T range over contexts we have the following forms of context:

() I r,x:A

The LF has a set of inference rules with which one can deduce if a term is well-typed.

A term is well typed, in some signature and context, if it can be shown it has either

a type or a kind or that it is a kind.

123

4.2.1 Intuitionistic Logic

We shall examine how the first order intuitionistic logic implemented in §4.1 is defined

in the LF. We start with the syntax of the logic and then follow this with a description

of how proofs and inference rules are defined in the LF along with some examples.

Syntax

A logic is defined in the LF by first defining a signature declaring the constants

required by the syntax. Starting with the empty signature we extend it with two

constants to represent the syntactic categories for terms and formulae. The terms

are the objects over which we may quantify and the formulae stand for propositions.

These constants, r and <f>, are types and therefore have kind Type:

(), r : Type, (j) : Type

We can now further extend the signature with constants representing the formula

building operations of the syntax. If we use the notation A —* B to represent the

type Uz:a .B when x does not occur free in B then the declarations for conjunction,

disjunction and implication all take the following form:

A :</>—► <f> —► (f>

Thus these constants represent functions that take two formulae and return a formula.

The negation, <f> —► <f>, and falsity, A : <f>, formulae are declared in a similar fashion.

124

When it comes the the universal and existential quantifications, V and 3, we must

model the fact that they are variable binders. This is done by declaring constants

representing higher order functions as follows:

V : (r ► (f>) ► <t>

All of this corresponds closely to the definitions of the abstract types of term and

formula and their associated functions in §4.1.1.

Proofs and Inference Rules

A logical system can be seen as a system for establishing proofs of assertions of

certain forms by means of basic or derived rules. It is these assertions of the logic

that are modelled by judgements. Judgements are defined as dependent types over

the expressions they make assertions about. The basic assertions are represented

by basic dependent judgements while the inference rules, derived rules and proofs

are represented by higher order judgement types. Elements of a judgement type are

used to represent the evidence for that judgement. Thus the basic assertions and

inference rules of a logic are obtained by extending the signature with constants of

the appropriate judgement types. In order to prove a derived rule one must present an

element of the appropriate higher order judgement type. These elements are obtained

by combining the constants with lambda abstractions and applications. The lambda

abstractions of the LF are used to capture both the schematic nature of inference

125

rules and the parametrized forms of inference rules. The schematic instantiation of

inference rules is captured by lambda application while beta reduction captures all

forms of substitution.

In our example logic the only judgement is the assertion that we have proved some

formula to be a theorem, this might be written h <f>. We must therefore extend the

signature with a further constant which will correspond to this judgement:

Proved : <f> —» Type

Thus presenting an object of type Proved <f> is the proof of h <f>. We can now define

the inference rules of the logic as higher order judgements. We have two particular

forms of higher order judgement that are used when defining inference rules.

1. The hypothetical judgement is represented by a function from proofs of judge

ments to proofs of judgements, Proved <j>\ —> Proved fa. This asserts that

the judgement Proved fa is a logical consequence of the judgement Proved fa

according to the rules of the logic.

2. The schematic judgement is represented by a function from objects x of some

type A to proofs of judgements, TIx:a-Proved <f>. This asserts that the judgement

Proved <f> is evident for any object x of type A.

These two forms of judgement are used when defining the inference rules of a logic to

model the discharge of assumptions and the free variable conditions associated with

126

some inference rules. The latter form is also used to model the schematic nature of

inference rules and thus all inference rules will be modelled by schematic judgements.

Those inference rule which discharge assumptions will therefore be both schematic

and hypothetical.

The following examples demonstrate the use of these two forms of judgement for

our example logic. A constant of the types described below is added to the signature

and in this way defines the basic inference rules of the logic.

A7) This introduction rule is both schematic, in that it applies for any conjunction

of formulae, and hypothetical, in that the proof of the conjunction depends on

the proofs of the conjuncts.

IIa,̂ .Proved a —► Proved b —► Proved a A b

The correspondence between this judgement type and the inference rule it rep

resents is clear.

f\E) These elimination rules are also both hypothetical and schematic, we only show

one of the rules.

Ila,b:4>-Proved a A 6 —» Proved a

=>• I) This inference rule is both hypothetical and schematic but is also higher order.

It used a hypothetical judgement as an argument to represent the discharge of

127

an assumption. This can be read as saying that, given a function from proofs

of a to proofs of b we can obtain a proof of a =>• b.

Ha,b.<t>-(Proved a —► Proved b) —♦ Proved a =>• b

The correspondence between this judgement and the inference rule it represents

is still quite clear.

=> E) The elimination rule for implication is represented by a simple hypothetical and

schematic judgement type.

UaM .Proved a => b —> Proved a —> Proved b

VE) The representation of the inference rules for the quantifiers are more complex

as we use function types to represent expressions which may have free variables.

Thus the LF variable $ declared by $: r —> <f> represents a formula which

may have a free variable. If we then have a LF variable 7r declared by 7r : r,

that is it is a term, then the expression $ tt, which has type <f>, represents the

formula obtained by substituting the term n for the free variable in the formula

$. Recalling the declaration of the constant V it is clear that the expression

V $ represents the formula obtained by universally quantifying over the free

variable of f>. Given all of this we can now define the constant corresponding

to this inference rule.

T:T. Proved V $ —» Proved $ n

128

Careful consideration of the above will convince one it does represent the in

ference rule but I believe the Miranda implementation in §4.1 is more easily

understood.

37) The representation of this introduction rule is similar to that of the WE) rule

and uses the same variable names as that rule.

n<j>:r_^ .n K,T.Proved $ 7r —► Proved 3 $

V7) The representation of this introduction involves an added complexity as we must

find a way to represent the condition that the variable to be quantified over not

appear in the assumptions. Given $: r —► d> consider the following judgement

type:

HK.T. Proved $ 7r

This states that the judgement Proved $ n is evident for any term 7r. Thus this

judgement cannot in any way be dependent on the free variable of the formula

$ and we can therefore quantify over it:

n <t;r_^ .(n , ;r.Proved $ 7r) —► Proved V $

The free variable condition is essentially a requirement on the generality of the

proof, and this is represented by a function that takes a schematic judgement

129

as argument. Again, it is possible to convince oneself of this representation but

I believe the Miranda implementation in §4.1 is clearer.

3E) This final inference rule discharges an assumption and also enforces a free vari

able condition. The discharge of an assumption can again be modelled by having

a hypothetical judgement as the argument. The free variables condition is more

complex: it requires that free variables in the assumption being discharged not

occur in any of the other assumptions or in the conclusion to be inferred. The

higher order judgement type required to represent this inference rule is:

Proved 3 4> —» (IIn:T.Proved $ 7r —■> Proved \t) —> Proved

The judgement type of the second argument states that for any term n it is

evident that the proof of 4/ is a logical consequence of the proof of 4> 7r. Thus

this proof cannot depend on the free variable of the formula $: this captures

the first part of the free variables condition. The second part of the condition

is derived from the variable scoping rules of LF and the fact that ^ is defined

before 7r and hence cannot refer to it.

The LF is a very powerful abstraction in that it allows us to specify a large range

of logics in the same framework. This can clarify the similarities and differences be

tween these various logics. It also means that an implementation of the LF then gives

130

you implementations of all these logics. The extremely abstract nature of the speci

fications does, however, mean that they can be quite hard to relate to the standard

presentation of a logic.

4 .3 A M iranda Im plem entation of Paul G ardiner’s

Logic of ‘B ’

4.3.1 Introduction

The aim of the ‘B’ system, written by J.R. Abrial, and the logic presented by Paul

Gardiner is to facilitate the use of a natural deduction style in theorem proving.

Gentzen’s natural deduction analysis of proof theory [Pra73] is described in §4.1. We

describe an implementation, in Miranda, of the core of a theorem prover based on

this logic.

The essence of this approach is the analysis into atomic inferences, so that it may

be claimed [Pra73] that the essential logical content of intuitive logical operations can

be understood as being composed of the atomic inferences isolated by Gentzen. It is

for this reason that the term natural deduction is seen as appropriate. The system

can also be seen as natural in the more superficial sense of corresponding well with

informal practices.

The ‘B ’ system aims to provide a framework for reasoning in a natural deduction

131

style where the set of inferences rules is defined by the user. The logic presented by

Paul Gaxdiner provides a formalism in which inference rules can be presented and

applied in a secure maimer. The essence of the system is thus the presentation, by

the user, of inference rules. We must, therefore, consider what forms inference rules

can take.

Inference rules are, in general, presented in a schematic form and any particular

application of a rule in fact invokes some instance of the schematic form. For instance

the standard conjunction-introduction rule is presented as:

A B
A LB

Where A and B stand for arbitrary formulae. It means that given proofs of formulae

A and B we can derive a proof of the formula ALB. Given a proof of True and the

following instance of the above rule:

True True
True L True

we can derive a proof of True L True. Thus we need to be able to present inference

rules in a schematic form and then apply particular instances of them.

Certain of the inference rules may discharge some of the assumptions of the sub-

proofs and we must be able to accept this form of inference rule. An example is the

standard rule for the introduction of an implication:

132

CHAPTER 4. IMPLEMENTING LOGICS 133

B
A=> B

This means that given a proof of a formula B based on some assumption A we can

deduce a proof of A => B that does not depend on the assumption A.

As a further complexity we must be able to cope with side conditions. These side

conditions are usually stated alongside the inference rule. These conditions must be

met by the antecedents, and possibly the consequent, of the proposed application of

the inference rule in order for it to be a valid use of the rule. An example is the

standard rule for the introduction of a universal quantifier:

M a)
\fxA(x) Where a is not free in the assumptions A(a) depends on.

Here, the side condition means that the variable we wish to quantify over must not be

free in the assumptions of the proof of the premiss A(a). We must be able to encode

these side conditions into our statement of an inference rule, and manipulate them

along with the inference rule.

These considerations lead to the adoption of the deductive system and the meta

language described below.

This presentation evolved from Paul Gardiners draft papers from May and August

of 1987 entitled “The Logic of ‘B ’ ” . My approach follows more closely that of the

earlier paper, though I modify the logic slightly. The major modification I introduce

is to add antecedents constraining the forms of object language expressions where

these are appropriate though I also restate some of the axioms for clarity.

We present a meta-language which is powerful enough to express the side condi

tions associated with inference rules along with the inference rules themselves. This

meta-language has embedded in it an object language in which the inference rules

themselves are expressed. We then describe a deductive system for manipulating

statements in this meta-language.

4.3.2 Object and Meta Language

We first present the object language in which the inference rules are to be expressed.

It is designed to favour inference rules such as those of the predicate calculus. This

object language contains function, logical and quantifier symbols; we assume nothing

about the members of these symbol classes except that they are distinct. We now

describe these symbol classes and give the the particular symbols we will use as

representatives of these classes:

Constants The object language constants will be represented by the single constant

“ 0” .

Variables The object language variables will be represented by the variables “a”

and “6” .

134

Function symbols The function symbols may be of any arity; we shall represent

them all by the binary infix function symbol “+ ” .

Predicate symbols The predicate symbols may be of any arity; we shall represent

them all by the binary infix predicate symbol “= ” .

Logical symbols The logic symbols may be of any arity; we shall represent them

all by the binary infix logic symbol u&” .

Quantifier symbols The quantifier symbols of the object language will be repre

sented by the symbol “V” .

We only need take a representative for each of these symbol classes, as the axioms

for any symbol apply to all symbols of that class.

The meta-language resembles the atomic formulae fragment of the predicate calcu

lus. We choose our predicate symbols to facilitate reasoning about an object language

intended to express predicate calculus style inference rules and also the side conditions

of such inference rules. The meta-language has the following symbol classes:

Constants The object language constants and variables are embedded in the meta

language under their own names. Thus “0” , “a” and “f>” are all meta-constants.

Variables The meta-variables may denote arbitrary expressions in the object lan

guage. We shall use upper case characters to represent meta-variables.

135

Function symbols The object language function, predicate, logical and quantifier

symbols are embedded in the meta-language as meta-function symbols. Thus

and “V” are all meta-function symbols. We also have the meta

function symbol which denotes safe substitution.

Thus [<f> := rf’]0 denotes the expression obtained by the safe substitution of the

term denoted by tp for the variable denoted by tf> in the expression denoted

by 0. Safe substitution means we don’t allow the substitution of a term for

a free variable in an expression unless the free variables of the term will also

be free variables of the resulting expression. Thus tve can only replace free

variables with expressions that will then be free sub-expressions in the resulting

expression.

Predicate symbols We have six meta-predicates:

• Formula <f>

<f> denotes a formula3.

• Term (f>

<f> denotes a term.

• Vax <f>

4> denotes a variable.

3Gardiner uses the confusing name “pred” for this meta-predicate

136

• 4> W>

4> denotes a variable which is not free in the expression denoted by rp.

• (p —— rp

<p and V’ denote equivalent expressions.

• rpu ...,rp n b <p

The formulae denoted by V’i, • • •, rp„ entail the formula denoted by <p.

As seen above we shall use Greek letters <p, rp,. . . to represent arbitrary meta-language

expressions, unless otherwise stated.

4.3.3 Sequents

Sequents in the meta-language make statements about meta-language formulae, which

can only be formed by the six meta-predicates. We will write sequents as:

4>\

<t>n
rp

where <pi,...,<P„ and rp are meta-language formulae.

The side conditions of an inference rule will be stated in terms of the meta

predicates Formula, Term, Var, \ and = = and the meta-function-symbol : = . The

inference rules themselves will be expressed in terms of the meta-predicate K

137

A sequent is valid if every assignment of object language expressions, embedded

as terms in the meta-language, to meta-variables that makes the antecedents true

also makes the consequent true.

We can derive new sequents as follows4.

1. We can always deduce as a consequent any of the antecedents.

4>\

<f>n
4>i Where 1 < i < n.

2. We can take a sequent and replace its meta-variables with arbitrary meta-

expressions. Thus we can take an instance of the statement of an inference rule

as required. Thus given:

4>\

4*n
V>

and given a substitution p of meta-language expressions for met a-variables we

can derive:

4This section of Paul Gardiner’s logic is still not completed and this version may not be powerful
enough.

138

p(<f> l)

p{<f>n)
P W

3. We can derive a new valid sequent if we can start with the list of its antecedents

and expand this list of meta-formulae until the consequent is obtained. The list

of meta-formulae can be extended by adding to it the consequent of any sequent

whose antecedents are already present in the list. This method is justified by

the use of the cut rule for sequents. This states that given:

4>x
4>\ :

<j>n ±
V> and 6

we can derive:

4>i

<t>n
e

4.3.4 Axioms

We now present the axioms of the logic for ‘B\ In Gardiner’s draft papers there are

no antecedents involving the meta-predicates Var, Term and Formula in the axioms

139

except those concerning the three meta-predicates themselves. This omission makes

things very unsafe as we can form things such as (A h B) + {C L D), Wa.a or even

V(y4 -fi B). 100. I have added the missing antecedents to the following presentation of

the axioms.

These axioms define the meanings of the six meta-predicates and the single ad

ditional meta-function-symbol. These meta-predicates are chosen in order that the

common form of side-condition invoked for an inference rule in the predicate calculus

can be written in the meta-language and therefore be built into the inference rule

represented by the sequent. Most such side-conditions involve the non-freeness of

variables in certain expressions.

Object language syntax classes

1.1) Var a Var b

1.2) Term 0

Var X
1.3) Term X

Term X
Term V

1.4) Term X -f Y

140

1.5)

Term X
Term Y

Formula X = Y

1 .6)

Formula X
Formula Y

Formula X&:Y

Var X
Formula Y

1.7) Formula VA'. Y

Equivalence

2.1) A = = A

A = = B
2.2) B = = A

A = = B
B = = C

2.3) A = = C

Term A Term B
Term C Term D
A = = B C = = D

2.4) j4 -j- C — = B -{■ D

141

Term A Term B
Term C Term D
A = = B C —= D

2.5) A = C = = B = D

Formula A Formula B
Formula C Formula D

A = = B C = = D
2.6) A tC = = B t D

Var A Var B
Formula C Formula D

A —— B C = = D
2.7) WA.C = = VB.D

Non-Freeness

3.1) a\b b\a

Var V
3.2) V \ 0

3.3)

Var A Var B
A = = B C = = D

A \ C
B \ D

142

3.4)

Var X
Term S Term T
X \ S X \ T

X \ S + T

3.5)

Var V
Term S Term T
X \ S X \ T

X \ S = T

Var X
Formula P Formula Q

X \ P X \ Q
3.6) X \ P kQ

Var X
Var Y

Formula P Var X
X \ P Formula P

3.7) X \ Y i'.P X \ VX.P

Entailment

Formula G\

Formula Gn
Formula X

4.1)

Formula H\ II
.

II

Formula Hn Gn = = Hn
Formula Y X = = Y

Gu . . . ,G n \-X

143

Formula H\

Formula H„
4.2) Hu . . . ,H n P Hi Where 1 < i < n.

Formula H\ • • • Formula H„
Formula G\ • • • Formula Gm

Formula X
H u .. .,H n \-Gi

H u-- ■ , Hn I- Gm
G i,... . ,G m \-X

4.3) Hu . . . ,H n \-X

Safe Substitution

Var V! Term Ti Vi \ E

Var Vn Term T„ Vn \E
5.1) [V! := T i,. . . , Vn := T n} E = = E

Var V\ Term T\

Var V„ Term T„
5.2) [V, := T i ,. . . ,V n := Tn]V, = = T, Where 1 < i < n.

Var Vi Var Ui Term T\ Term S\ II
.

II CÓ II
.

II

Var Vn Var Un Term Tn Term 5„
E = = F

..
II II Tn = = S,

5.3) [V, := Tu . . . , V„ := Tn]£ = = [{/, := 5 i , . . . , t/„ := S„]F

144

Vax Vj Term T \

Vax V n Term T n
Term A Term B

5.4)

II
II

. . ,V „ := F n](>l + J?) = =

.., v; := Tn]A + [Vi : = T U .. , V . : := Tn]F

Var Vi Term T\

Var Vn
Term A

Term T„
Term B

5.5)
[V ,
[Vi := r „ . .

. . , V n : = T n)(A

..,V „ := Tn]A =
= B) = =

= [V, : = r „ . . . ,K := F n]F

Var Vi Term 7i

Var V„
Formula A

Term F„
Formula B

[V 1 : = T u . . . , V n : = T n) (A k B) = =
5.6) [V, := T x V n := T n] A L [V 1 := 7|,...,V„ := F„]F

Var y Formula F
Var V! Term 7\ V \ V, V \ 7i

____________ Var Vn Term Tn Y \V „ Y \ T n____________
5.7) [V, := T u . . . , V„ := T„]VK.F = = VK[VX := 7\,. . . , V„ := T„]F

145

4.3.5 Additional Rules

The additional rules formalise certain parts of the object language which we assume

we will always need. These rules presume we have the predicate symbol “= ” , the

logical operator symbols and and the quantifier symbol “V” and give special

meaning to these symbols.

The first four of these rules are built into the ‘B ’ system as the Conjunction,

Deduction, Generalisation and Equality rules.

In a natural deduction system the inference rules tend to come in pairs. One

rule in a pair will serve to introduce a symbol and the other to eliminate it. In

the ‘B ’ system, and in Gardiner’s logic, this pattern is not followed, and for some

symbols we only have one of the expected pair of inference rules. Rule 6.1) is the

(^-introduction rule but we don’t include the corresponding elimination rule. Rules

6.2) and 6.5) are the ^-introduction and ^-elimination rules. Rules 6.3) and 6.6)

are the V-introduction and V-elimination rules. Rule 6.7) is important as it is the one

used to justify the rewriting of terms by equality rules5.

Gardiner’s draft paper does use the three object language syntax meta-predicates

in antecedents, but not in a complete fashion. As with the axioms I present the rules

with such antecedents added as necessary to prevent unsound inferences.

5This may alter in future versions

146

Formula A
Formula B

6.1) A ,B h A & B

Formula H\

Formula Hn
Formula P
Formula Q

Hu . . . ,H n,P\~Q
6.2) Hu . . . ,H n \- P => Q

Var X Formula P
Formula Hi X \ Hi

Formula Hn X \ Hn
H Hn \- P

6.3) Hu . . . ,H n h V.Y.P

Term T
6.4) h T = T

Formula P
Formula Q

6.5) P ,P =ï Q\~ Q

Var X
Formula P

Term T
6.6) VX.P h [X := T]P

147

Var V\ Term T\ Term S\

Var V„ Term T„ Term Sn
Formula P

T, = 5 , , . . . ,T n = 5n,[Vi := T n]P\~
6.7) [Vt := S ',,. . . , K. := S'«]/»

4.3.6 Derived Rules

The ‘B ’ logic, with the additional rules described in §4.3.5, can be used to justify some

powerful derived rules. The derived rules are important as they provide powerful

methods of proof, but they are not as straightforward as might be hoped. The major

problem is that the presence of met a-variables complicates the use of these rules in a

non-trivial fashion.

Rewriting

As already mentioned, we can use rule 6.7) to justify term rewriting. In general an

equality rewrite rule will be of the form:

0\

________ °n_________
T i , . . . , Tm h <i> =

If, under the current hypotheses, we can use this sequent to prove b <f> = ip then we

can use the equality (f> = t/> for rewriting using rule 6.7). In order to prove h <f> = ip we

148

must derive proofs of the meta-formula antecedents and also the antecedents of the

entailment. The former are dealt with by our rules for deriving new sequents while

the latter axe dealt with by rules 4.1) to 4.3).

Suppose we have an expression £ containing a free sub-expression6 cp' which is

an instance of <j>. Then we can rewrite £ by replacing the sub-expression <f>' by the

corresponding instance of xp.

Suppose that the matching substitution of <f>' and <p is p. Then <f>' is p((p), and

using our second rule for deriving sequents, page 138, we can derive a new sequent,

and hence a proof of h p(<f>) = p(xp). Thus we have a proof of h <p' = xp' where xp' is

P (V ’)-

We now construct a new expression from £, identical to £ except that where the

sub-expression <p> appeared in £ we now have an object language variable, 2 say. We

choose 2 such that it occurs nowhere in £. We will write this constructed expression

as £(z/cp'). We then have this instance of rule 6.7):

Var 2 Term <p' Term xp'
Formula £(z/<p')

<P' = V1' , [2 : = <t>']({z/<t>') H [2 : = ^ ^ (2 / ^)

The meta-level antecedents should, a priori, be easy to prove as they only involve

simple meta-predicates. The first hypothesis of the entailment is the equality we are

6A sub-expression is said to be free in an expression if its free variables, at their occurrences in the
sub-expression, are free in the expression. This means that these free variables of the sub-expression
are not bound by any enclosing quantification in the expression.

149

assuming we have proved. The intention is that for the second hypothesis we should

have [z := <̂ ']£(2/ ft) = = £. We should also have [2 := xp'](,(z/ <f>') = = where

is some formula which we wish to prove. Thus given a proof of £ we can use this

sequent to prove £' which is obtained by rewriting the sub-expression <p> to ip'.

In order to succeed we must be able to prove that these two equivalences hold.

We do this by use of the safe substitution axioms 5.1) to 5.7). Various problems can

arise in attempting these proofs: we will consider the proof of the first equivalence,

as the same problems occur with both.

• If there is a meta-variable X in £(z \ <p') then we will, after repeated use of

rules 5.4) to 5.7), be left with either rule 5.1) or 5.2) to apply. Rule 5.2) is not

appropriate so the only rule we can use to prove the equivalence is 5.1). We

will therefore have the following instance of this rule:

Var z Term <f>' z \ X

[z := #]X = = X

Thus we must assume z \ X in order to prove the equivalence. A similar as

sumption will be generated for each meta-variable occurring in £(z \ 4>'). These

assumptions will have to appear in the proof constructed using this rewrite rule

and hence in any sequent derived from it. For any use of such a derived sequent

we could of course redo the proof of the sequent using a different object variable

so there is a sense in which these conditions axe unnecessary. However, if we

150

are to stick to the strict interpretation of the axioms we cannot remove these

conditions7.

• If there is a quantification WX.Y in £(z \ <£'), where z occurs in Y, then we will

eventually attempt to use the following instance of axiom 5.7):

Var ,Y Formula Y

Var z Term <f>' X \ z X \ <p'

[z := <f>']VX.Y = = VA:.[z := <p']Y

Most of the antecedents of this sequent can be proved easily, but we are left with

X \ z and X \ 4>'. The first of these will have to assumed unless X is actually an

object variable, in which case we could use axiom 3.1). The second can only be

proved if we add assumptions of the form A'\>1 for each meta-variable occurring

in (j)'.

Thus the use of this derived rewriting rule may generate many non-freeness an

tecedents. The basic problem is that the presence of met a-variables means we cannot

actually decide whether or not <f>', or rp' at the same position, is a free sub-expressions

of £. The best we can do is derive sufficient conditions for this to be true. These

conditions must then appear as assumptions in the final proof.

The ‘B ’ system itself makes no distinction between object language terms and

formulae. Thus it can use its equality rewriting rules to rewrite formulae as well as

7Paul Gardiner has recently reformulated the rewriting axioms to remove these conditions.

151

terms8. This cannot be justified by Gardiner’s logic for ‘B ’ . If a form of type checking

were added to the ‘B ’ system then it would be necessary to add extra rules concerning

equivalence in order to get rewriting rules for formulae.

“Jokerisation”

In the ‘B ’ system, all the rules input by the user axe processed after parsing to turn

free object variables into meta-variables. Thereafter, the entire system only sees meta

variables. The process of going from the user’s rule to the meta-variable form involves

the addition of certain extra meta-predicate antecedents, which are all non-freeness

conditions.

A similar, but more limited, effect can be achieved by application of the axioms

and rules 6.3) and 6.6). This form of “jokerisation” is not that implemented by the

‘B ’ system as it is impossible to affect the antecedents of the rule by this method.

The solution now chosen by Paul Gardiner is to consider only a limited form of

“jokerisation” . His solution is to only apply the process to rules containing no meta

variables and with no antecedents, otherwise if the user wants a schematic rule then

they should use met a-variables explicitly.

The non-freeness antecedents arise because the only way to replace object variables

is to use axioms and rules concerning safe substitution, which involves non-freeness

8In the LCF system the rewriting rules for formulae are justified by equivalence between formulae,
not by equality.

152

conditions.

The basic idea is to generalise over all the free object variables using rule 6.3),

then specialise them all to meta-variables by use of rule 6.6). As can be seen from rule

6.3), we can only generalise over object variables that are not free in the antecedents

of the hypothesis.

Thus, for instance, the meta-formula b a = b is generalised to h Va.V6.cz = b.

From this, using rule 6.6), we get [a := A]V6.a = b. This reveals the first restrictions

we must impose. In order to push the substitution inside the quantification, we must

have b \ a and b \ A. The first of these is trivial, but the second must be included as

an antecedent of the rule we are deriving.

Assuming we have this antecedent we can proceed until we get V6.A = b. We then

specialise again to get [6 := B](A — b) which gives [6 := B)A = B. This reveals the

second restriction we must impose, that is b\ A. This must also be present as an

antecedent of the rule we are deriving. This restriction is the reason why we choose to

ignore rules already containing meta-variables as we would have to generate similar

antecedents for them all.

The form of jokerisation provided by the derived rule is much more limited than

that employed by the ‘B ’ system, and it would seem to be of little practical use.

153

4.3.7 Relationship to ‘B ’

We now examine the relationship between the Gardiner’s logic for ‘B ’ and the ‘B ’

system.

Sets of rules

Some of the axioms involve constructs of the form H\, . . . , Hn where we mean this to

refer to some number n of hypotheses. These axioms are intended to represent the set

of all axioms for any n. This occurs most often in rules referring to the antecedents

in entailment. There is a problem associated with rules of this kind: how is a user to

enter them?

The problem is not insoluble but it leads to a very complex syntax for the case

of entailment if a general solution is sought. We can avoid the problem, if we build

in all the rules of this form. For the axioms there is no problem as the functions

implementing the rules can simply be defined to take lists of arguments. But for user

defined rules the problem is serious and this is one reason why rules 6.2) and 6.3) are

added as additional rules.

In the ‘B ’ system one cannot refer to the hypotheses of an entailment9 in user

provided rules. Thus the only rules that can do so are the rules built into the system.

As we are assuming we have the seven additional rules we can take the same approach

9In a more recent version of ‘B ’ there is a somewhat limited ability to refer to the hypotheses in
entailment, but it doesn’t solve all the problems

154

and not allow the user access to the hypotheses of an entailment.

There is a further point about those rules defined over all members of a particular

class of symbol. In the logic we took representatives of the symbol classes in specifying

the axioms. If we have a lexical means of deciding the class of a symbol then we can

generate the appropriate axioms for it automatically.

Object language syntax classes

As already noted, the ‘B ’ system does not perform any sort of syntax check on object

language expressions. In the Gardiner logic for ‘B ’ some checks are enforced by the

use of the meta-predicates Var, Term and Formula in the antecedents of the additional

rules. Notably, in rules 6.4) and 6.6) we have the antecedent Term T.

In the ‘B ’ system, meaningless expressions can be input and can then be passed

around by the proof system for quite a while before they cause the proof to fail. A

notable such case is that involving expressions of the form a \ X , where there is no

axiom that can help prove this if it is produced as a goal. The ‘B ’ system regards

all non-freeness meta-formulae concerning meta-variables as true! The ability of the

‘B ’ system to accept such meaningless input as V(A + i?).0 is, in my view, one of

the major problems with the system. This lack of concern about the type of object

languages expressions causes serious problems when one uses the rewriting rules.

In Gardiner’s presentation of the additional rules, and my extension of it, the sym

bol “= ” is an object language predicate. Thus its operands must be object language

155

terms. Similarly the left operand of the meta-function symbol is expected to be

an object language variable, and its right an object language term. These restrictions

are not enforced by the ‘B ’ system. This is because the ‘B ’ system fails to make the

important distinction between object language terms and formulae.

User input

In the ‘B ’ system there is no distinction between the sequent’s antecedents and the

hypotheses of the entailment in the consequent. This causes rules like 6.3), which gen

erate non-freeness conditions on the hypotheses, to generate non-freeness conditions

on the antecedents of the sequent. It can therefore generate sub-goals like x \ (a \ B)

which don’t mean anything. We will allow the user to enter sequents as a list of

meta-formulae for the antecedents and a single formulae for the consequent. These

meta-formula can of course be applications of the entailment meta-predicate.

4.3.8 The Implementation

We now describe the Miranda implementation of the core of a theorem prover based

on the logic described in §4.3.2 to §4.3.5.

User Input

We again used the method of generating parsers in Miranda described in [Lon87a]

to derive the parser for meta-formulae, formulae and terms. The grammar used

156

allows the parsing of expressions of all such forms. The grammar does not refer to

any particular symbols for any of the symbol classes, because the allowed symbols

are selected by the user. The grammar mentions ten different classes of symbol:

quantifiers, logical infix, logical prefix, predicate infix, predicate prefix, function infix,

function prefix, meta-variables, variables and constants. We enforce certain syntactic

restrictions on the symbols of these different classes.

We distinguish four types of symbols: quantifiers and infix symbols, prefix symbols

and variables, meta-variables and finally constants. The parser is given information

about the allowed symbols for each of the first seven symbol classes. Thus a symbol

that is syntactically of the first type above should appear either in the list of allowed

quantifier symbols or in one of the three lists of allowed infix symbols. If it does not

it is an unknown symbol and the parse will fail. If a symbol is syntactically of the

second type, but does not appear in one of the three lists of prefix symbols, then it

is assumed to be a variable. Anything obeying the appropriate syntactic conditions

will be taken as a meta-variable or constant, except for the three meta-predicates

Formula, Term and Var which would otherwise be taken as met a-variables.

This first phase of the parse does not take into account the relative precedences

of the different symbols, except for that between different classes of symbol. We

therefore have a second stage which involves reparsing those portions of the parse

tree involving symbols that may be affected. These are the logical and function infix

157

symbols: the predicate infix operators need no relative precedence as it makes no

sense to associate them.

Thus the complete parsing function takes lists of the allowed symbols for seven

of the symbol classes and precedence information for two of the symbol classes. The

parser returns a parse tree of type structure which encompasses all the desired forms

of expression. Various functions are provided to test whether what the parser has

returned is of the form desired. For instance the function maybe_meta_formula tests

whether the parsed structure is a meta-formula. These functions are all prefixed

by maybe as the presence of meta-variables means that the best they can do is give

a negative result or a qualified positive result. Thus A&zB would be accepted as a

formula even though in a context where we had Term A this would not be true.

A sequent will be input as simply a list of meta-formulae for the antecedents and

a single meta-formula for the consequent.

Sequents

The sequents, which represent the inference rules, are implemented as data structures.

This is different from the approach used in systems such as LCF and in §4.1, where

the inference rules are implemented as functions. A sequent can simply be regarded

as a pairing of a list of meta-formulae, that represent the antecedents, and a single

meta-formula, that represents the consequent. However, this is not quite versatile

enough. This is because any sequent-creating functions will always face the possibility

158

of failing through inappropriate application. Thus, unless we simply want to call

Miranda’s error function and terminate execution, we need a better answer. The

obvious one is to use a simple algebraic type which has only two constructors. One

constructor will pair the antecedents and the consequent needed for a sequent and the

other will allow the construction of an error representation of the correct type. We

choose an error representation consisting of a list of strings and a list of structures;

the intention is that interleaving the strings with the pretty-printed structures will

result in an appropriate error message. This is a very simple form of formatted string

output. We will call these error representations bad sequents.

The only drawback associated with using an algebraic type to represent sequents

is that any applications of the constructors would produce values of the sequent type.

We would like to ensure more security than this, therefore the sequent type is actually

an abstract type whose implementation type is the algebraic type just described.

We then include in the signature of the abstract type all the basic sequent creation

and manipulation functions we will need. An abbreviated form of the abstract type

definition is given in Figure 7. We will discuss each of these functions in details.

create_sequent This is the function used to create user defined sequents. In order

to create a sequent, we need the list of antecedents and the consequent. We also

need a name for the sequent, so that it can be referred to by the user. The only

condition we need impose is that the structures provided as antecedents and

159

abstype sequent with
create_sequent ::

[char] -> [structure] -> structure -> sequent
instance ::

substitution structure -> sequent -> sequent
consequent :: sequent -> structure
antecedents :: sequent -> [structure]
sequent-name :: sequent -> [char]
bad-sequent :: [[char]] -> [structure] -> sequent
sequentJDK :: sequent -> bool
pp_sequent ::

(structure -> [sys.message]) -> sequent ->
[sys-message]

axiom.l.l : : structure -> sequent

axiom_5_7 : : structure -> sequent
rule.l :: structure -> sequent

rule_7 : : structure -> sequent

sequent == sequent'

sequent' : Sequent [char] [structure] structure I
Bad-sequent [[char]] [structure]

Figure 7: Sequents

160

consequent be meta-formulae. If this is not the case a bad sequent is created.

instance In order to take instances of sequents we need a representation for substi

tutions and a function for applying them. These axe provided by my library

script of unification and matching functions developed for my work on type

checking [Lon87b]. We can simply apply the substitution to the antecedents

and consequent of the sequent to get the required instance.

consequent We will often w’ish to examine the consequent of a sequent. For instance,

for checking the suitability of a sequent when attempting a proof through a sub-

goaling technique.

antecedents We will similarly often wish to examine the antecedents of a sequent.

sequent_name The sequent name is needed in order that the user may refer to the

sequent, for example, when selecting the next rule to apply in a proof.

bad_sequent When the conditions associated with a sequent creation function are

not satisfied, we do not want to have to call Miranda’s error function. Instead

we allow the construction of a representation of the error. This representation

consists of a list of strings and a list of structures which can be formatted in a

simple fashion.

sequent_OK We need to be able to check whether we have a sequent or the repre

sentation of some error.

161

pp-jsequent We include a simple pretty-printer for sequents. It must be given the

current pretty-printer for structures which will depend on the symbols currently

allowed and their precedences. This will also print the error message represented

by a bad sequent.

axiomJL . . . The axioms of the system present an interesting problem. This is be

cause the statements of the axioms are doubly schematic in that each axiom

stands for an entire set of axioms, one for each symbol in the symbol class the

axiom applies to. Thus, at first glance, it seems they should be represented

as functions from symbols to sequents. This turns out to be rather complex,

and, as in any use of these axioms we will know the desired consequent, we in

fact implement them as functions that take the desired consequent and return

a sequent. They therefore not only select the version of axiom appropriate for

the symbol in the consequent, but also take the appropriate instance of the

schematic form of the axiom.

There is a further consideration for four of the axioms, 2.3), 3.3), 4.1) and

4.3). These are the four axioms that do not obey the sub-expression rule in

that there are meta-variables in their antecedents that do not occur in their

consequent. These axioms must therefore be given more information before they

can construct a sequent. These axioms are therefore implemented by functions

of a slightly more complex type:

162

structure -> structure -> sequent

Applying any of these axiom functions to expressions to which they do not apply

results in the construction of a bad sequent. As an example of the ease with

which the axioms can be implemented the following shows the implementation

of axiom 3.3). The type structure of meta-language expressions is a simple

algebraic type with constructors corresponding to each form of expression.

axiomJ3_3 (ST_non_free s2 s4) (ST_non_free si s3)
= Sequent "Axiom 3.3)" [ST.Var si,

ST.Var s2,
ST.equivalent si s2,
ST_equivalent s3 s4,
ST_non_free si s3]
(ST_non_free s2 s4)

axiom-3_3 si s2
= Bad_sequent ["Axiom 3.3) not applicable to ",

" and\n","\n"]
[sl,s2]

The ease with which the implementation can be compared with the specification

is clear.

ruleJL . . . The additional rules of the system are implemented in the same manner

as the axioms.

The implementations of the axioms and rules in Miranda are sufficiently concise that

it is easy to confirm their correctness.

163

Proofs

Proofs are represented by trees in much the same way as derivations were in §4.1.

The leaves of the tree are the assumed meta-formulae and the root of the tree is

the conclusion of the proof. Each node of the tree is a meta-formula derived by the

application of a sequent to the sub-proofs above that node. The name of the sequent

that was applied is attached to each node.

We again use an abstract type whose implementation type is an algebraic type.

The algebraic type now has three constructors as we must distinguish assumptions and

proofs resulting from the application of an inference rule as well as coping with errors.

We shall call these error representations bad proofs. We include in the signature of the

abstype all the basic proof creation and manipulation functions we will need (there

are only three functions that can create proofs). The definition of the abstract type

for proofs is given is Figure 8; we now discuss some details of these functions.

assume The simplest form of proof is the assumption of a meta-formula. If the

structure is not a meta-formula we construct a bad proof.

apply_sequent We first check that the sequent is not bad and that none of the sub

proofs are bad proofs. Then, if the antecedents of the sequent are present among

the conclusions of the sub-proofs, we can derive a proof of the consequent of the

sequent. This form of sequent application is justified by our rules for deriving

new sequents. This proof step is tagged with the name of the sequent being

164

abstype proof with
assume : : structure -> proof
apply_sequent : : sequent -> [proof] -> proof
extract-sequent : : proof -> sequent
conclusion : : proof -> structure
hypotheses : : proof -> [structure]
bad-proof : : sequent -> [structure] -> proof
proof_DK : : proof -> bool
pp_proof : : (structure -> [sys_message]) -> proof ->

[sysjnessage]
show-proof :: (structure -> [sys_message]) -> proof ->

[sys_message]

proof == proof'

proof' ::= Proof [char] [proof'] structure I
Assume structure I
Bad_proof sequent [structure]

Figure 8: Proofs

165

used.

extract .sequent The rules for deriving new sequents also justify this function.

Given a proof, we can extract the hypotheses and the conclusion and construct

a sequent from them. The hypotheses will form the antecedents of the sequent

and the conclusion the consequent.

conclusion We will wrish to extract the conclusion of a proof.

hypotheses We also wish to extract the assumptions upon which the proof is based.

It should be noted that assumptions cannot be discharged at this level: this is

only done at the entailment (h) level of proofs.

b a d .p ro o f When the application of a proof creating function fails we will wish to

construct some representation of the error. The main failure will be that of

applying a sequent to an inappropriate set of sub-proofs. We therefore record

the sequent and the conclusions of the sub-proofs as our error representation.

This turns out to be enough to cope with all possible errors as we can encode

any form of message as a bad sequent in this representation.

proof.OK We will need to check that a proof is not an error representation.

show.proof We can show proofs in a more or less readable form: this will also show

the error message from a bad proof.

166

pp.proof This is a more sophisticated form of presentation of a proof. This function

is again obtained by mapping proof trees into objects from the algebraic type

pretty-printing-tree as described in §4.1.2. It presents the proof as a cen

tered tree, where the conclusion of a proof step is centered under the sub-proofs.

Unfortunately, due the nature of proofs in this system most proofs are too wide

for usual display media.

Here again the conciseness of the Miranda code means that correctness of the imple

mentations of the above functions is readily apparent.

Useful Functions *

As well as the basic structure of sequents and proofs described above a variety of

useful functions were implemented. Some of these would be essential if some form of

theorem prover was to be implemented on top of this core system. We will discuss

these functions in order of increasing complexity.

• There are two functions, variables_in and meta_variables_in, which return

lists all the object-variables or meta-variables appearing anywhere in an expres

sion.

• The functions variant and meta_variant return a variant of a variable or meta

variable. These functions take a variable and a list of variables, or meta-variable

and list of met a-variables, and return a variant not present in the list.

167

• We have four functions, maybe jneta_f ormula, maybe Jo rmula, maybe_Term and

maybe.Var, which test the form of an expression. As has already been mentioned

they can only return a negative or qualified positive result due to the presence

of met a-variables. They are defined recursively on the structure of expressions

and make optimistic assumptions about any meta-variables encountered.

• maybe_nonjfree : : structure -> structure ->
value [structure]

The first argument is a variable or meta-variable and the second an expression.

This function attempts to find out if the variable, or meta-variable, is non-free

in the expression. The presence of meta-variables again means that we can only

give a negative or qualified positive result. If the variable is definitely free in the

expression it will return None and otherwise it will return a list of non-freeness

conditions on the meta-variables appearing in the expression that would have to

be satisfied for the variable, or meta-variable, to be non-free in the expression.

• create_sequent' :: [structure] -> structure -> sequent

This function is actually defined in the signature of the abstract type of sequents.

It creates a sequent from a list of antecedents and a consequent, but first uses

the form of the antecedents and consequent to generate extra antecedents. In

many cases the context of a meta-variable in these expressions will be enough to

decide whether it should satisfy one of the three meta-predicates; Formula, Term

168

and Vax. We use the following constraints, and the fact that any expression

satisfying Var will also satisfy Term, when deriving these extra antecedents.

— In the expression X \ A we can expect X to satisfy Var.

— In the expression A = = B we can expect both A and B to satisfy Term

or to both satisfy Formula.

— In the expression H \ , H n h A we can expect all the H\, . . . , Hn and A

to satisfy Formula.

— In the expression 'iX.A we can expect X to satisfy Var and A to satisfy

Formula.

— In the expression A LB we can expect both A and B to satisfy Formula.

— In the expression A = B we can expect both A and B to satisfy Term.

— In the expression A + B we can expect both A and B to satisfy Term.

— In the expression [Vi := 7 i , . . . ,V n := Tn] we can expect Vi, . . . ,Vi, to

satisfy Var and T\, . . . , T„ to satisfy Term.

Of course these conditions derive must be consistent and also be consistent with

any of the given antecedents involving Formula, Term or Var. If the derived

conditions are not consistent then we simply form a sequent from what we were

given.

169

This function makes the entry of sequents much easier because it is extremely

tedious entering conditions for all the met a-variables used in the statement of

a sequent.

• rewrites :: structure -> structure -> structure ->
structure ->
([structure],
[(structure,substitution structure,[structure])])

This function is used to generate all the possible rewrites of an expression for a

given equality. This function is best explained by reference to §4.3.6. The first

argument is the object variable 2, the second argument is the left hand side of

the equality, <f>, and the third argument is the right hand side of the equality,

ip. The fourth argument is the expression £.

The function searches, breadth first, for all the sub-expressions <j>' of £ that are

instances of <p. Let us suppose that the matching substitution of <j> and <f>' is

p and that p{ip) is ip'. Then if cp' is a free sub-expression of £ and ip' at the

same position in £ would be a free sub-expression of £, we can construct an

ordered triple as follows. The first component is the structure £(z/<p') obtained

by replacing <p' by z in £, the second is the matching substitution p, and the

third is the list of non-freeness conditions that are required for <p' and ip' to be

free sub-expressions of £.

170

rewrites var 1 r s
* (conditions.concat (rewrites' s i r var []))
where
conditions * map f (meta_variables_in s)
f mv = ST_non_free var mv

rewrites' (ST_meta_variable name) 1 r var bound
= [rewrite (ST_meta_variable name) 1 r var bound]

rewrites' (ST.quantifier name si s2) 1 r var bound
= rewrite (ST_quantifier name si s2) 1 r var bound:
join-subtrees

(generate_subtrees var (Op_quan name) [si]
[s2] 1 r (sl:bound))

, maybe.Var si
= [rewrite (ST_quantifier name si s2) 1 r var bound]

, otherwise
rewrites' s i r var bound

= rewrite s i r var bound:
join-subtrees

(generate_subtrees var (get_operator s) []
(get_operands s) 1 r bound)

rewrite s i r var bound
= [] , match-succeeds result conditions.value = None
= [(var,subst,conditions)] , otherwise
where
result * match s 1
Matches subst « result
r' « instantiate subst r
conditions-value

* foldr combine-conditions (Value []) (qmap f bound)
Value conditions ■ conditions.value
f v = combine-conditions (maybe_non-free v s) (maybe_non_f ree v r

Figure 9: Rewrites

171

generate_subtrees var op head (x :ta il) 1 r bound
* map (map f) sub_structure_rewrites :

generate_subtrees var op (head ++ [x]) ta il 1 r bound
where
sub_structure_rewrites * rewrites’ x 1 r var bound
f (s.subst,conditions)

= (reconstructjexpression op (head ++ s : t a i l) ,
subst, conditions)

generate_subtrees var op head [] 1 r bound = []

join-subtrees = foldr (map2p id id (++)) []

Figure 10: Subtrees

The second element of the pair returned by the function is the list of all these

tuples found by searching £, while the first is the list of non-freeness conditions

required for the variable z.

Using this function one could write the portion of a sub-goal package that

presents to the user all the possible rewrites of a goal. Its implementation is

shown in Figure 9 and Figure 10. The result of the rewrites function is a

pairing of a list of non-freeness conditions and a list of possible rewrites. The

subsidiary function rewrites ’ returns a list of list of rewrites, each list contains

all the rewrites for a given depth in the expression. To do this its needs to take

the expression apart, search the sub-expressions for rewrites and rebuild the

expression with each of the sub-expression rewrites. To do this we use the

functions generate_subtrees and join_subtrees. The latter is defined in

terms of a binary map function that applies default functions when its argument

172

lists are of different lengths.

• matchjLxiom :: (structure -> sequent) ->
(sequent,[structure])

This function can be used to match all but four of the axioms against a goal. In

general when a sequent is matched against a goal we get not only the appropriate

instance of the sequent but also a list of the meta-variables appearing in the

antecedents that we may wish to instantiate. These meta-variables only occur

in sequents that break the sub-expression condition. Thus for all the axioms

this function applies to the second element of the result tuple will be an empty

list.

• We also require separate functions for matching the four axioms match_axiom_2_3,

match_axiomJ3_3, match_axiom_4_l and match_axiom_4_3, as they break the

sub-expression condition so that we must choose meta-variables to appear in

the antecedents. These meta-variables will be the ones that we may wish to

instantiate. For the first two axioms the functions need only choose a single

meta-variable that does not occur in the desired consequent. The function for

axiom 4.1) must choose more than one meta-variable but the number required

is defined by the form of the desired consequent. Axiom 4.3) presents a bigger

problem as even the number of met a-variables needed for the antecedents is

unknown and so we must be given this information as an extra argument to the

173

function.

• match_rule :: structure -> (sequent,[structure])

This is identical to the function for axioms as all the rules obey the sub

expression condition.

• matchjsequents :: [sequent] -> structure ->
[(sequent,[structure])]

match-sequent :: structure -> sequent ->
(sequent,[structure])

These functions are more interesting than those above as they perform sequent

matching for the user defined sequents. The first is defined in the obvious way

in terms of the second. A sequent matches a desired consequent if the desired

consequent is an instance of the consequent of the sequent. If it is, then we

return the appropriate instance of the sequent. We find the meta-variables

occurring in the antecedents of this resulting sequent that do not appear in

the consequent, these are the meta-variables we may wish to instantiate. If

the sequent does not match we return a bad sequent, all such bad sequents are

removed from the list of results of the first function.

• We have four functions corresponding to four of the additional rules, 6.1), 6.4),

6.5) and 6.6), which match against a goal at the entailment level using an

instance of axiom 4.3). This form of sequent matching is necessary as these

174

additional rules are stated as sequents where the number of hypotheses in the

entailment in the consequent of the sequent is given explicitly. Thus any use of

these rules must be done in association with axiom 4.3).

We proceed els follows. Given a desired consequent which involves entailment,

we then look at the conclusion of the entailment, call this ft. We then look

for a rule whose consequent is an entailment with conclusion an expression <j>

where (f>' is an instance of <f>. Next, we apply the matching substitution to get

an instance of the rule. We then create an instance of axiom 4.3) where the

consequent is the desired consequent and the last antecedent is the consequent

of the instance of the rule. The other antecedents are constructed accordingly.

As an example we will use rule 6.1). Suppose the desired consequent is of the

form:

F i , . . . , Ffc b D LE

for some entailment with k hypotheses whose conclusion is a conjunction. We

get, as the third element of the results tuple, this instance of rule 6.1):

Formula D
Formula E

D,E\- D k E

We then get, as the first element of the results tuple, the following instance of

axiom 4.3):

175

Formula F\. . . Formula Fk
Formula D Formula E

Formula D k E
Fu . . . , F k \~D
Fu.. . ,Fk\-E
D,E\- D k E

F\, . . . , Fk (- D k E

The second element of the results tuple is the list of meta-variables we may wish

to instantiate, which in this case is empty.

Now we can see that the above instance of axiom 4.3) does indeed match the

desired consequent and so can be used to generate some sub-goals, but notice

also that this instance has been chosen such that the last of the antecedents

will be matched by the instance of rule 6.1) given above.

Only rule 6.5) produces a meta-variable that may be matched, as in all the

other cases each of the meta-variables appears on the right of the entailment in

the consequent.

• match_entailment_sequents :: [sequent] -> structure ->
[(sequent,[structure].sequent)]

match_entailment_sequent :: sequent -> structure ->
(sequent,[structure].sequent)

These two function perform a similar matching at the entailment level for user

defined sequents.

176

4.3.9 Sub-goaling

We now discuss some of the issues and problems that arise when the implementation

of a sub-goal package for this logic is considered.

The major issue is the need to automate the proof of sub-goals concerning the sim

ple meta-predicates Formula. Term, Var, \ and = = . This is because proofs involving

the axioms for these meta-predicates are essentially trivial and are not what the user

should spend time proving. However they are not as easy to automate as might be

supposed, because it is difficult to ensure the termination of a function designed to

automatically proof such goals.

There are no problems concerning axioms 1.1) to 1.7) as they all obey the the

sub-expression property and also always produce simpler sub-goals. Thus we can

automate the proof of goals involving Formula, Term and Var.

The axioms 2.1) to 2.7) for equivalence cause greater problems. The last four

axioms, 2.4) to 2.7), cause no problems as they all obey the sub-expression condition

and also produce simple sub-goals. Axiom 2.1) is also not a problem as it either

succeeds or fails, but a simple attempt to automate 2.2) could easily lead to non

termination as the sub-goal is no simpler than the consequent. The transitivity axiom,

2.3), causes more problems because it does not obey the sub-expression condition and

there is no obvious wray to automatically instantiate the meta-variable B.

I think these problems can be solved but the resulting implementation would be

177

very slow. The idea is to use axioms 2.2) and 2.3) in a forward direction to derive

proofs of all possible equivalences from the current hypotheses. This can be done,

but not very quickly. We can then extract the sequents from these proofs and add

them to the list of axiom sequents we can use while attempting to find a proof. In

this rather expensive fashion we can avoid the problem of non-termination.

The axioms for non-freeness axe very similar in that axioms 3.1), 3.2) and axioms

3.4) to 3.7) cause no problems and can be automated easily. The problem here

is axiom 3.3) which does not obey the sub-expression condition. Thus we have a

problem in instantiating the meta-variables A and C. Given the above solution to

the problem for the equivalence axioms we can simply try all possible instantiations

for which we know the equivalence sub-goals will succeed. This again could be a

very expensive process. We must also be wary of non-termination if we simply keep

attempting the same goal: this could be solved by keeping track of the goals already

tried in order to avoid such a non-terminating cycle.

A final problem occurs with safe substitution: pushing a substitution down an

expression is exceedingly tedious and of little interest to the user. If all the needed

non-freeness conditions are present in the hypotheses then the application of the

substitution will succeed with no problems.

The following is a simple presentation of a method by which a substitution might

be applied to an expression. It results in a proof of an equivalence between the

178

application of the substitution to the original expression and the final expression

obtained by applying the substitution.

The process depends on the form of the expression which selects the appropriate

safe substitution axiom to be used. Suppose we are starting with S A where S is the

substitution and A the original expression. If axiom 5.1) is applicable we can then

use it to prove:

S A = = A

If axiom 5.2) applies the we can use it to get a proof of the following:

S A = = T

Where T is the appropriate term from the substitution S. If one of axioms 5.4) to

5.7) apply then we use it. As an example we will assume A takes the form L + R and

use 5.4). We then get a proof of the following:

S A = = S L + S R

We now recurse on S L and S R and will get proofs of:

S L = = L ' and S R = = R!

We can then use axiom 2.4) to prove:

S L + S R = = L ' + R!

179

And finally using axiom 2.3) we can prove:

S A = = L ' + R

If none of these axioms apply then if A is the application of a substitution then we

can apply this process first and rewrite A to A' and then use axiom 2.3) to get the

expression S A' as a goal. If A is not an application of a substitution we can use

axiom 2.1) to get a proof of 5 A = = S A.

There axe two problems with this simple scheme. The first is that it is not obvious

how to decide if axiom 5.1) is in fact applicable. The second is that we have made no

use of axiom 5.3) and this axiom will be needed. The problem is again the fact that

this axiom does not satisfy the sub-expression condition and problems arise when

trying to instantiate the meta-variables in the antecedents.

4 .4 Conclusion

I believe there are two major issues involved in implementing logics:

• The clarity of expression of the target logic in the implementation.

• The security of the implementation and the ease with which one can convince

oneself that one cannot prove untruths.

The first section, §4.1, demonstrated the clarity of expression possible in a functional

language like Miranda. This section presumes we start with a specification of a

180

logic and wish to implement it in a way that allows us to convince others of its

correctness. The strong type system and the abstract and algebraic types provide a

powerful mechanism for implementing logics in a secure manner while maintaining

the readability of the implementation. This approach not only reduces the extent

of the code whose correctness must be argued but also makes this argument much

easier.

In the second section, §4.2, we investigated the approach used by the Edinburgh

Logic Framework. The theoretical foundations of this approach are, of course, far

deeper than the implementation approach of §4.1. However, while its abstract nature

does allow one to encompass more than one logic it representation can be hard to

relate to the standard presentation. One is also left with the problem of tuning parsers

and pretty printers for the LF for each logic represented. In the first approach one

can tailor parsing and unparsing functions to suit the logic in question. For these

reasons I prefer the approach of §4.1 to that used in the LF.

The logic presented by Paul Gardiner is still under development and all the fol

lowing remarks must be seen in this light.

The ‘B ’ system attempts to be a logic-independent system without a secure theo

retical framework. I believe that the LF approach provides a far better basis for such

a system.

181

The approach described in §4.3 has one major advantage: it gives a formalism

for describing inference rules as sequents which naturally leads to an implementation

of inference rules as data structures. This allows inference rules to be used as easily

in the process of backward proof as forward proof. This is a distinct advantage

over systems such as LCF where the set of inference rules is closed because they are

implemented as functions, and where a completely different set of functions, called

tactics, must be used during backwards proof.

The logic also isolates certain important issues that arise when attempting to

implement a logic-independent system. The major issue is that of the representation

of meta-variables and object variables and associated with this the problem of non-

freeness side conditions. The logic gives a simple way of describing a usefully large

range of inference rules.

The disadvantages seem to arise from the fact that any implementation would

have to hide all the proof steps at the meta-level as only the proof steps at the object,

entailment, level axe of interest. It may be that this hiding is in fact not possible, as

in the generation of extra antecedents from the derived rewriting rule.

182

Chapter 5

MOOSE1

5.1 Introduction

The debugging of imperative languages, and some “functional’’ languages, has long

been aided by the availability of interactive debugging facilities. These may vary

from simply tracing the execution of the program to halting the execution to exam

ine various interesting values and even changing these values before continuing the

execution. The essential facility provided is to allow the examination of the values

bound to identifiers at various stages of the execution.

For most imperative languages this is a reasonable approach as the concept of

1 “Miranda” Operationally Oriented Symbolic Evaluator.
Miranda is a Trademark of Research Software Ltd.
In this chapter we shall use a language resembling Miranda as our example language, and will refer
to it as “Miranda” . However, this chapter should not be taken as defining in any way the language
Miranda, for such a definition one should see the documents from Research Software Ltd.

183

a “stage of the execution” is fairly clear, or can be made so through an abstract

machine model. In general this is a achieved by a pairing of the current values

assigned to variables in the state with the current position in the source code. This

information may however be quite difficult to interpret. Firstly the entire state is

open to modification and thus may need examination and secondly the language may

allow unstructured jumps or even coroutining which obscure the relationship to the

source code.

For applicative languages the situation initially seems simpler as we need not

concern ourselves with examination of the state but merely with the values of the

arguments of functions as they are applied and the only control structure is function

application. This will be true for strict functional languages such as, if we ignore

its assignment statement, ML [GMW79]. But for lazy functional languages such as

Miranda the situation is much more complex.

The initial problem is that of displaying incompletely evaluated expressions when

they occur as the arguments of a function application. A more serious problem arises

from the various implementation techniques employed to ensure maximum sharing of

computation. These involve compiling the source into some form of graph, usually of

combinator applications, and it is this graph which is then executed. At any stage

in the execution all we have is the graph which may be far removed from the initial

source program. A description of the complex transformations needed to construct

184

such a graph is provided by Simon Peyton Jones [Jon87].

Richard Kieburtz, in his proposal for an interactive debugger for ML [Kie85],

claims that an operational view of the evaluation of an applicative expression is not

useful. Instead he proposes a system for testing functions on various “selected values”

which are obtained using the exception mechanism of ML. We do not feel that this

provides enough insight into the possible cause of a run-time error and, further, that

an operational presentation could be useful.

In their debugging tool Toyn and Runciman [TR85] provide the user with a snap

shot of the execution at the point of failure. They however use the underlying eval

uation mechanism of the existing implementation annotated with references to the

source program. This does allow them to provide a snapshot that relates at least in

part to the source program. However, the form of the snapshots provided is somewhat

cryptic and does not seem to provide much information about the context in which

the error occurred. A more serious problem arises with their snapshot tool for lazy

languages. There is a certain class of definitions, which they refer to as pathological

cases, for which their debugger will attempt a non-terminating computation. This

is because they must partially reduce the combinator graph in order to collect the

annotations to provide the appropriate reference to the source program. A similar

problem would arise with the Kieburtz approach if applied to lazy ML as the user

must provide display functions for the selected values and these wfill be forced to

185

evaluate their arguments in order to display them.

Both these problems are due to the fact that these debuggers take the imple

mentation as given, only modifying it slightly, and thus have no ability to deal with

partially evaluated expressions. We believe that we can present the lazy evaluation

strategy of “Miranda” in an operational fashion in terms of the source script2 and

then provide a more useful trace of the computation in terms of this operational

model. We believe that an implementation based on the source program, though it

will lose some efficiency, must provide a better description of the error than one based

on combinator graphs. We further believe that a, user specified, trace provides the

context lacking in a snapshot or an examination of selected values.

The major problem with this approach, is that the implementation used may fail to

correctly model the details of the standard implementation. This is particularly true

for a language like Miranda where the details of the lazy evaluation of expressions

are expressed by subtle interactions of the combinators [Tur79]. There are indeed

some subtle details of the sharing of computation as described here for “Miranda”

that differ from the evaluation strategy of Miranda. We feel that these differences,

explained in §5.6, are sufficiently minor as to not invalidate this approach.

Our basic idea is that when a computation fails its is within some particular func

tion definition and that what we really need is a trace of the details of the computation

2It is this close relationship to the source script which explains our description of this approach
as a symbolic evaluator.

186

CHAPTER 5. MOOSE 187

as driven by selected “suspect” functions. A function drives the computation in two

ways, firstly by forcing evaluation of its arguments through pattern matching and

secondly by the application of functions in its defining right hand side expression.

We believe that tracing both these forms of evaluation whilst hiding the internal de

tails of the application of non-suspect functions may provide a useful insight into the

cause of errors.

The basis of the evaluation algorithm for an applicative language is the process

of applying a function to some arguments. This involves simply substituting the

values of these arguments for the free occurrences of the functions formal parameter

variables in its defining right hand side expression. The fact that the functions use

lazy pattern matching to select between their different clauses and that sharing of

computation occurs adds some details that will be explained in §5.4 and §5.6.

5.2 Expressions

There are only four basic sorts of expressions that will be encountered when evaluating

an expression.

• A delayed application of some expression to some sequence of expressions. If

there are sufficient arguments then we will be able to evaluate the application,

otherwise no further evaluation will be possible. All applications are initially

delayed and are only evaluated when necessary.

CHAPTER 5. MOOSE 188

• An expression representing some functional object, that is something that can

be applied to some arguments, there are four such expressions.

1) A variable which is the name of some function defined either in the stan

dard library or in the script.

2) One of the built-in prefix or infix operator symbols. The infix notation for

some of the built-in operators is regarded as merely a syntactic convenience

expressing the operator’s application to its two operands.

3) A constructor defined by an algebraic type definition in the script or the

standard library.

4) A partial application of a function, built-in operator or constructor.

• The structure that results from the application of some constructor to some

sequence of arguments, we shall call this a construct. Except when an ex

pression evaluates to a function application with insufficient arguments it will

always evaluate to some construct. Given the following delayed application of

a constructor of arity n to n arguments:

Con Xi • • • x„

we will write the construct that results from the application of the constructor,

assuming it is non-strict, as:

Con Xi ■ • ■ x„

Unless the strictness notation is employed all constructors defined in the script

will be non-strict and hence the resulting constructs may have partially evalu

ated sub-expressions.

These constructors may be nullary and we can then regard them as representing

constants. We can regard the built-in types char and num as being hidden al

gebraic types whose nullary constructors are referred to by a particular syntactic

shorthand. Thus each character and number can be thought of as representing

some nullary constructor of the appropriate type, and will therefore be regarded

as a construct.

There are also non-nullary constructors represented by the list and tuple nota

tions. We could regard the list notation:

as representing the delayed nested application of n infix CONS constructors,

where we use : for CONS and [] for the empty list.

X\ : • • • : xn : []

This expression would then require evaluation of each infix application of CONS

before the required list construct can be obtained. However, as the infix CONS

constructor is non-strict in both its arguments we choose instead to regard this

189

as representing the construct that would result from evaluating such a nested

application. Similarly we could regard the tuple notation:

(z i , . . . , ®„)

as representing the delayed application of a tuple forming constructor, Tuple

say, of the correct type:

Tuple X\ • • • xn

We also choose to regard this as the construct that would result from evaluating

such an application, as tupling is also non-strict in all its arguments.

As a final point, strings are simply regarded as lists of characters.

• A variable representing some expression. These variables are bound to expres

sions either by pattern and function definitions or by appearing in the formal

parameter patterns of a function definition where the pattern matching invoked

by function application binds them to some expression.

5.3 Environm ents

As we wish to provide a useful tool for understanding the run-time behaviour of

“Miranda” we choose to describe the evaluation in terms of expression rewriting

190

described at the level of “Miranda” itself. We can thus relate any particular stage of

the evaluation to some part of the script.

The basic evaluation strategy is to repeatedly evaluate the applications present

in the initial expression, this may involve invoking some of the functions defined

in the script. The variables in the initial expression are provided with values by

an environment defined by the script. The application of a function will rewrite

to the right hand side expression of the function definition. Such an expression

may contain identifiers whose values will be provided by the bindings defined for the

formal parameter pattern variables, by pattern matching, and by any sub-definitions

in a “where” clause.

We will actually maintain a list of environments each of which will correspond to

a particular variable binding expression in the script. Each environment will have

three components:

1. A unique environment identifier by which the appropriate variables in the ex

pression can be associated with the environment.

2. A list of variable bindings, each variable binding will associate an expression

with a variable. We shall write such bindings as:

var i—► exp

It will, in fact, be necessary to allow more than one expression to be bound to

191

a variable at once as will be explained in §5.5.2. In this case we will represent

a multiple-valued binding as:

var h-> expl , . . . , expn

This form of binding will be treated as the simple binding,

var t—► expl

everywhere except §5.5.2.

3. A list of definitions. There are two types of definition in a script; conformal, or

pattern, definitions and function definitions. Both forms of definition will, as

needed, be used to produce variable bindings.

Thus the initial environment will have an environment identifier, idO say, an initially

empty list of variable bindings and a definitions list containing all the top level def

initions in the script. As the evaluation proceeds these definitions will be used to

provide variable bindings as required and these will be added to the bindings list for

this initial environment.

All the variables in the current expression being evaluated will have some envi

ronment identifier associated with them. For instance, all the variables in the initial,

user provided, expression will have idO associated with them.

The above form of environment might be implemented by the following algebraic

type definition:

192

CHAPTER 5. MOOSE 193

environment Environment identifier
[(variable, [expression])]
[definition]

5.4 Rew riting

We regard expression evaluation as a process of rewriting. This rewriting is done in

an environment as described in §5.3. As we intend to produce a tool that enables

novice users of “Miranda” to debug their programs we require that the description

of the evaluation algorithm serve as a tutorial for these novice users. Thus rather

than describing the process of selecting the next redex and then its reduction we

choose to use a simple recursive description. This presentation should allow the user

to track the evaluation of an expression far more easily. This is because the “To

evaluate X we must first evaluate Y and Z ” style of description is closer to the user’s

model of the evaluation. The basic recursive rewrite function is 1Z and we have two

subsidiary iterative rewrite functions. The function 1ZC is used in certain cases where

we know, due to the type correctness of the script, that the expression must rewrite

to a construct. It uses 1Z to rewrite an expression until a construct is obtained. The

complete evaluation of an expression involves applying 1Z repeatedly, and recursively,

as long as it is possible to do so. This is the definition of the function 1Z*. Each

of these functions takes an expression and the current environment list and returns

the rewritten expression and a new, updated, environment list. It is necessary to

CHAPTER 5. MOOSE 194

return an updated environment list as we may rewrite to an expression containing

variables for which we previously had no environment. This occurs when we rewrite

a function application to the appropriate right hand side expression. There are also

two subsidiary functions, bindings and conformality, which are used when dealing

with pattern and function definitions.

If an expression exp is rewritten to exp' in environment p returning the new envi

ronment list p' we will write this as:

exp o p <— TZlexpjp

We will often refer to a rewrite as resulting in an expression or construct without men

tioning the environment list that also results when we are not particularly concerned

with the details of the new environment list.

5.4.1 n

This is the basic recursive rewrite, we will describe it by cases. We will not present

all the cases of the algorithm but a selection that displays the variety of recursive

evaluations that are required.

1) U fx op y\p

The infix application of a built-in operator. The expressions x and y may be

further evaluated depending on the particular operator. As we can regard each

operator as belonging to a group of operators whose rewrites are similar we only

CHAPTER 5. MOOSE 195

give the details for one example operator from each such group. Only those op

erators which examine the detailed structure of constructs involve complicated

rewrites. These are the equalities and the three list operators. The prefix opera

tors ~ and — can be included in the groups for logical and arithmetic operators

respectively. We must include a final case for the prefix operator # which, being

a list operator, is more complex.

(a) x : y

This is not a construct but the application of the infix CONS operator :

to the arguments x and y . We need not evaluate either x or y and can

rewrite this to the following list construct:

x : y o p

The infix function composition operator is rewritten similarly.

(b) x + y

This is the application of the infix sum operator. We must evaluate both

x and y to constructs before we can apply the + operator. Therefore we

get:

x' o p' <— RC\x\p

y '0 p "+ — K C M p'

We can now calculate the sum of x' and y' as being constructs they must

be numbers. If we call this sum n we have rewritten to:

n o p "

The other infix arithmetic operators are rewritten similarly.

(c) x k y

This is an application of the infix logical conjunction operator. This op

erator only evaluates its arguments x and y as required. We first evaluate

the expression x to a construct:

x' o p' <— /RC\x\p

If we have x' = False then there is no point evaluating y and we can

rewrite to:

False o p

Otherwise we must rewrite y to a construct and the result we want will

thus be the result of the following rewrite:

■ R C W

The infix logical disjunction is rewritten similarly.

(d) x = y

This is the application of the infix equality operator. We expect the ar

guments to be constructs, if they are not then this error terminates the

196

CHAPTER 5. MOOSE 197

execution. We must first evaluate both arguments to get constructs before

we can do the comparison. Therefore we get:

x' o p' <— 71C|xJ/5

y ' o p " <— R C { y \ p '

Assuming we have x' = Con a\ - ■ ■ an and y' = C on ' b\- • - bm then we can

compare the two constructors.

If we have Con = C on ' then we must evaluate the following equalities, in

sequence, to check that the sub-expressions are equal.

U o px <— U \ a i = &i|p"

tn ^ Pn ̂ 7?.|on = bm^pn_ j

If for some t, we have i, = False then we get:

False o p,

Otherwise we get:

True o p n

If we don’t have Con = C on ' then we get:

False o p "

Given the implied ordering on constructors, produced from the algebraic

type specification, and using lexicographic ordering of the sub-expressions

the inequalities can be rewritten in a similar fashion.

(e) x\y

This is the application of the infix list subscripting operator. We must first

evaluate the subscript:

y'op' *— nciyjp

We must also evaluate the list to get a construct:

x o p" <— 7^C|xJp'

If we have x' = [] then this is an error and the execution terminates,

otherwise we must have x' = a : b. If we have y' = 0 then we get:

a o p

Otherwise we must evaluate more of the list, if we let y" be the num

ber obtained by decrementing y' then we want the result of the following

rewrite:

mb'-yV

(f) x + + y

This is the application of the infix list concatenation operator. We rewrite

the first argument to get a construct:

x o p *— TZClxlp

198

If we have x' = [] then we get:

y o p

Otherwise we must have x' = a : b and we get:

a : (b + + y) o p'

(g) a:----y

This is the application of the infix list difference operator3. We must

evaluate the first argument to a construct:

x o p <— TlC^lp

If we have x' = [] then we get:

i W '

Otherwise we must have x' = a : b and we must check whether or not a is

a member of y. To do this we assume the existence of a list membership

operator:

t o p " <— 71C{a e yjp'

If we have t = True then we get the result of the following rewrite:

R l b - - (y -----[a])J /

3The evaluation described here is not the one used in Miranda.

199

Otherwise we get:

a : (&-----(y ----- [a]))0 /

(h) # x

We must first evaluate the expression x to get a construct:

x' o p' *— TZClx}p

If we have x' = [] then we get:

Oop'

Otherwise we must have x' = a : b and we keep rewriting b until we get

a completed list construct. Suppose this repeated rewriting of the tail of

the list results in the following construct:

«i :•••: an : [\ o p"

we have therefore rewritten to:

n o p"

2. [x ,y .. z) Jp

This is a representation of a numeric list generating function. We must first

evaluate x and y in order to calculate the difference between elements of the

list:

200

x' o p' <— 71C\x\p

y ' o p " <■— TlClylp'

We caxi now calculate the difference, d say, and its sign tells us in which sense

to test against the bound z. We must first evaluate z:

z' op'" <— 'RC\z\p"

If d is negative we test if x' is less than z' otherwise we test if x' is greater than

z'. If the test fails then we rewrite to:

[] OP'"

Otherwise we rewrite to:

A op'"

where x" is the sum of x' and d and y" is the sum of y' and d.

3. H\var\p

This variable, rar, will have an environment identifier associated with it, id say,

and we can use this to select the appropriate environment from the environments

list p. If var is defined by a function definition then we cannot rewrite this

expression. If it is defined by a pattern definition there are two possibilities.

201

• H the variable var currently has no binding in its environment we can use

its pattern definition to provide one.

If the definition for var is:

pat — exp

then we first associate the environment identifier id with all the free vari

ables in exp that have no associated environment identifier. These will be

those identifiers bound in the definition by appearing in the pattern. This

produces a new version of exp which we shall call exp'.

We next use the function bindings to create a list of variable bindings,

one for each variable occurring in the pattern.

new-bindings <— bindings (pat, exp’)

We then extend the environment id by adding this bindings list to the

already existing bindings list, this gives us a new list of environments p'.

We must next check that the expression exp' does indeed evaluate to a

structure whose shape corresponds to that of the pattern pat. This is

called a conformality check, it may involve evaluating the expression exp1

and so may alter the environment.

p" <— conformality(pat, exp',p')

202

This conformality check may fail due to a conformality error and if this

happens then the evaluation terminates with this error. If it succeeds we

will have produced a variable binding for var in environment id. If this

binding is:

var i—► x

Then we have rewritten to:

x o p"

• If we already have the variable binding:

var y

then we can rewrite to:

y o p

4. ft|[ua b c ” lp 7^1‘c ’Jp ft |1 2 3]p

These are all completely evaluated constructs and cannot be further evaluated.

5. % {x X\ - 'Xn\p

We first evaluate the expression x as much as possible:

x o p <— TV\x\p

The type correctness of the script means that x cannot be a construct. Thus by

examining the definition of TV it can be seen that x' must be either a function

203

CHAPTER 5. MOOSE 204

name or a partial application with insufficient arguments. Thus in general we

will have a left nested application such as:

(•••((/ * !• • • <) n2 X
m
ïlm

Where / is either a function name, constructor or built-in operator. This left

nesting is irrelevant to the essential evaluation of the expression so we can regard

this more simply as an expression of the form:

/ y\ • • • y*

where yi is x] and yk is arJJ1 . There are thus three cases to consider.

(a) / is a constructor, Con say. If there are enough y, to provide all the fields

of the constructor then, due to the type correctness of the script, all of

them must be required and we rewrite to the following construct:

Con y[---y 'k o p"

Where y ■ is simply y, unless field i of the constructor Con is strict. If field

i is strict then y' is the result of completely evaluating the expression y,.

If none of the y, needs further evaluation then p" is simply p', otherwise it

is the modified environment produced by these further rewrites.

If there are not enough arguments then we simply get:

Con yi • • • yk o p'

(b) / is a function name. If the first clause of the definition of / is:

/ p a t j • • • patj = rhs

Then we will only require j of the k available arguments. We must pattern

match the y, against the pat, to check that this clause of the function

definition is applicable. We first create a variable bindings list:

new-bindings <— bindings(paf,, t/i) © • • • 0 bindings(pat-,yj)

We can now create a new environment for the formal parameter variables.

It will have a new environment identifier, new-id say, its variable bindings

list will be new-bindings and its definitions list will be empty. We add this

new environment to the environment list p to get the new environment list

We can now perform a conformality check of the y, against the pat{.

p" <- conform ality(pa/j, yi , . . . , patj, yj, p')

We can regard this conformality checking of multiple pattern/expression

pairs as a conformality check of the tuple of patterns against the tuple of

expressions:

conformality((pati,..., pa)̂, (t/i,..., J/y), p ')

This works because of the lazy product matching employed on tuples, see

§5.5. These conformality checks may fail in which case we cannot use this

205

clause of the function definition and try again with the next clause. If this

is the last clause of the function definition then this is an error and the

evaluation terminates.

If the conformality check succeeds then we next make a new version of rhs

by associating the environment identifier of / with all the free variables

in rhs that have no associated environment identifier. Those variables

occurring in the formal parameter patterns are regarded as bound whilst

doing this.

We next associate new-id with all the occurrences in rhs of the variables

bound by the formal parameter patterns. We can call this new version of

the right hand side of this clause of the function definition rhs.

This new right hand side will need evaluation if it has sub-definitions, for

which we must add an environment to the environments list, or guards that

must be evaluated to select the appropriate right hand side expression. If

the right hand side is simply an expression this extra evaluation need not

be done and we get:

rhs' 2/j+i •■■yk op"

Otherwise we want the result of the following rewrite:

rhs" o p " <— TZlrhs'jp"

206

and the entire application is rewritten to:

rhs" yj+1 ■••yk o p"

If there are not enough arguments then we simply get:

/ V\ • • • Vk

(c) The built-in operators are dealt with in the same way as function defini

tions.

6. TZlerpI where mdjp

Here we make a new environment from the sub-definitions. It has a new environ

ment identifier, new-id say, its variable bindings list is empty and its definitions

list is the sub-definitions md. We add this new environment to p to get a new

environments list p'. We can now rewrite the guarded expression list in this

new environment:

Tllerpljp'

7. A sequence of m guarded right hand side expressions:

Pi ,

eXPm i W m

207

CHAPTER 5. MOOSE 208

We evaluate the first guard:

grd[o p\ <— 7ICfgrd^p

If we have grd[= True then we rewrite to the guarded expression:

exp1 o p\

If instead we have grd\ = False then we go on to evaluate the second guard in

environment p\. We continue until we find a guard that evaluates to True, if

none of them does then this is an error and the evaluation terminates.

5.4.2 n c

This is a multiple step rewrite, it rewrites an expression repeatedly until a construct

is obtained. As this function is only applied where we know, due to the type correct

ness of the script, that the result must be a construct it can safely repeat the basic

recursive rewrite until it gets a construct. Notice that the resulting construct may

have incompletely evaluated sub-expressions.

TiCfexplp

We rewrite the expression once:

exp' o p <— TZfexpjp

If we have exp' = Con x\ • • • xn for some constructor Con then we have

succeeded in rewriting to a construct and have rewritten to:

Con x\ • • • xn o p'

Otherwise we must continue with the evaluation of exp' which should

result in a construct:

'RC\exp'\p

5.4.3 n *

This is a multiple step rewrite, it rewrites an expression completely if possible.

TV {exp\p

We first attempt to rewrite the expression once:

exp' o p <— ,R\exp\p

If we failed to rewrite the expression at all then we get:

exp o p

Otherwise we must look at the structure of exp'. If exp' is not a con

struct then we must continue rewriting, we want the result of the following

rewrite:

TV\exp'\p'

209

CHAPTER 5. MOOSE 210

Otherwise we have exp1 = Con X\ • • • x„ and we must completely evaluate

the sub-expressions:

x\ op x *— TV\x\\p'

X n ® Pn * R- 1 -̂nJPn

We then finally get:

Con x[• • • x'n o pn

5.5 Pattern M atching

“Miranda” performs pattern matching on two occasions. The first is when providing

variable bindings from a pattern definition and the second is when selecting the appro

priate clause of a multiple clause function definition. “Miranda” implements a form

of lazy pattern matching [JonS7, pages 51-81]. Lazy pattern matching essentially

involves noting that expressions of a product type can only evaluate to constructs

formed by that type’s single constructor. It is therefore not necessary to evaluate

such an expression to ensure it is of the correct shape as, due to the type correctness

of the script, it must be. This is because product types, with non nullary construc

tors, correspond to the direct product domain construction. Patterns formed only of

product type constructors and unrepeated variables cannot fail to be matched by an

expression of the correct type and are thus called irrefutable patterns. Product types

whose single constructor is nullaxy axe not regarded as irrefutable patterns as we wish

to distinguish these constant values from the bottom element of their type.

Pattern matching proceeds in two stages; in the first bindings are provided for the

variables in the pattern and in the second the shape of the expression is compared

against the pattern.

5.5.1 Variable Bindings

We now describe how we construct a variable bindings list as part of the pattern

matching process. We are given a pattern, which may contain variables, and an

expression.

bindings(paf, e x p)

We bind each variable to the, delayed, application of a sequence of selector functions

to the expression. When these selector functions are applied they will extract the

desired sub-expression from the expression, evaluating the expression just sufficiently

to do so. These selectors will only be applied if the value of the variable is required,

if it never is required then the selectors will not be applied and the expression will

not suffer unnecessary evaluation.

We now describe how these variable bindings axe constructed. We have three cases

to consider depending on the form of the pattern.

211

1. If the pattern is a variable, var say, then we form the singleton variable bindings

list:

[rar*-* exp]

Variables are a special case of irrefutable patterns.

2. If the pattern is an irrefutable pattern then it must be a construct of the form:

{pat-l , . . . ,p a tk)

where the pat, are irrefutable patterns with no variables in common. We can

simply calculate the variable bindings list for each of the pat¡ and then concate

nate these lists as there cannot be multiple bindings for any variable.

bindings(pa/j, selector* exp) -H---- ++
bindings(pa/fc,selector^ exp)

The selector functions are defined such that selector^ extracts the ith field from a

j-field product type constructor. These selector functions will not need to check

the shape of their argument w’hen they are applied as the type correctness of

the script ensures that it must evaluate to something of the correct shape.

3. If the pattern is a refutable pattern then it can involve constructors other than

product type constructors and may involve repeated variables.

Con pat1 • • • patk

212

We again calculate the bindings lists for each of the pat{ but this time we

must take into account the repeated variables. This is done by the special list

concatenation operator ® which constructs a multiple binding for each repeated

variable.

bindings(patj,selector-Coni exp) ® • • • ®
bindings(pa#fc, selector-Con* exp)

The selector functions are defined such that -when selector-Con; is applied it

will test its argument to check it is a construct formed by the application of the

constructor Con. If the argument is not of the correct shape this indicates that

the pattern matching has failed. If it succeeds it will return sub-expression i of

the construct.

As already mentioned the operator ® takes care of repeated variables, if it is

given two variable bindings lists that both contain bindings for a variable var.

var i-> expx, . . . , expj

var i—► expk, . . . , expn

then it coalesces these into a single binding for var.

var i-» ea-pj, . . . , exp' expk, . . . expn

213

5.5.2 Conformality Checking

When we attempt a conformality check we may have to evaluate an expression to

check that its shape matches a pattern. While performing a conformality check we

keep track of the variables we have seen in the pattern, this is so that we can deal

correctly with repeated variables in the pattern. We will require that all occurrences

of a variable in a pattern be bound to the same expression. We are given the pattern,

the expression and the environment list in which to evaluate the expression.

conformality(pa<, exp, p)

There are only two cases to check:

1. If the pattern is a variable or irrefutable pattern then the expression must evalu

ate to a structure of the correct shape and we need not evaluate the expression.

However we must check that the variable, or variables for a pattern, have not

already been seen. If any variable in this pattern has been seen then it is a

repeated variable and we check that the expressions associated with it at its

multiple occurrences are equal. For such a repeated variable var we will find

that it has a multiple binding:

var h-► expx, exp2, . . . , expn

214

The value expx is that associated with all previous occurrences of var in the

entire pattern being checked, exp2 is the value associated with the, single, oc

currence of var in pat. Thus we must test the following equality:

b o p ' <— TZ{exp1 = exp2]p

If we have b = False then the conformality check has failed. Otherwise we

have b = True and the conformality check has succeeded. We now update the

environment p' by replacing the binding for var with the binding:

var i—► erp'2, ■ ■ • 1 exPn

where exp2 is the evaluated form of exp2 produced by the evaluation of the

equality. We can then return this updated environment list. As can be seen

this multiple binding is one shorter than the original, thus when we have checked

the entire pattern all the variables will have a single binding.

2. If the pattern is refutable then it will take the form:

Con pat1 • • • patk

We must first evaluate the expression to get a construct:

Con' expl ■ • ■ expj o p' <— VJ2\exp\p

215

If we don’t have Con = Con' the conformality check has failed. Otherwise we

must check the pat{ against the exp{, if the constructors are the same we must

have j = k:

p\ «— conformality(pat^, exp ,̂ p')

p'k <— conformality(pait, expk, p'k_i)

If all of these conformality checks succeed then we can return the environment

P'k-

5.6 Sharing Com putation

The above description defines a lazy evaluation strategy in the simple sense that

nothing is evaluated unless it is needed. However there are other ways of avoiding

evaluation which derive from avoiding duplicated evaluations. A full discussion of the

various ways in which computation can be shared in the implementation of functional

languages is presented by Arvind, Kathail and Pingali [AKP85]. There are three basic

cases where sharing is possible and we discuss these in order of increasing complexity.

1. One basic form of sharing is to avoid unnecessary copying of expressions. The

simplest form of this sharing is that occasioned by multiple occurrences of a for

mal parameter variable in a right hand side expression. Consider the following

216

simple function definition:

/ x = x * x

Now if we attempt to evaluate / (2 + 3) we don’t want this to result in the

evaluation of (2 + 3) * (2 + 3) when it is clear that (2 + 3) need only be evaluated

once. The basic idea is to make both occurrences of x in the expression x * x

refer to the same expression so that when the first i is evaluated the second x

also enjoys the fruits of this evaluation.

The simplest way to do this would be to elaborate the form of expressions

slightly by allowing variables to be annotated as “evaluated” . Then any eval

uation of a sub-expression once referenced by a variable would still effect the

binding for that variable through the continuing presence of the annotated vari

able. This approach will work but has the disadvantage that long strings of

annotated variables might arise and they will maintain unnecessary references

to unneeded environments.

The neater solution is to use pointers, this will also be of use for the second and

third forms of sharing. The use of pointers allows us to very simply make both

occurrences of x refer to the same expression. This is done by binding x not to

the expression (2 + 3) but instead to a pointer to the expression (2 + 3). Thus

whenever a binding is added to the environment it will always bind the variable

217

to a pointer. Any evaluation of the pointed-to expression is then apparent to all

things pointing to it. This use of a pointers also allows the bindings produced

by the function bindings to all refer to the same argument expression rather

than multiple copies.

2. The second way of introducing sharing is to note that, for any function definition

with constant terms in its right hand side expression, it is not necessary to

evaluate these expressions at each application, as their value wrill always be

the same. Generalising this idea we arrive at the concept of the maximal free

sub-expression [AKP85, page 25]. A free sub-expression of the right hand side

expression of a function definition is one containing no free occurrences of the

formal parameter pattern variables. A maximal free sub-expression is one that

is not a sub-expression of any other free sub-expression. These maximal free

sub-expressions will always evaluate to the same value regardless of the value

of the arguments for any particular application of the function. They therefore

need only be evaluated once; we can again use pointers to achieve this effect.

Suppose we have the following function definition:

/ x = x * x + 2 * y

where y is defined elsewhere. Instead of adding this definition to the definitions

list of an environment in the environments list we add a modified version. This

218

modified version is obtained by replacing the sub-expression 2 * y with a pointer

to this sub-expression. Thus when we copy the right hand side during applica

tions of this function we will copy this pointer and no matter how many times

the function is applied the sub-expression 2 * y will only be evaluated once.

Thus in general all the maximal free sub-expressions in the right hand side of a

definition are replaced with pointers to those sub-expressions.

3. The third form of sharing arises from the fact that all functions are curried

and that partial application is allowed. Suppose we have the following function

definition:

/ x y = x * x + y

Now consider the following definition:

z = g 2 -fi g 3 where g = / 7

The right hand side expression of the definition of z will be evaluated in an

environment containing the following binding:

9 ^ f 7

Thus the right hand side expression will evaluate to the following expression:

(/ 7)2 + (f 7) 3

219

Where both sub-expressions (/ 7) axe in fact the same, pointed-to, expression.

However, this sub-expression cannot be evaluated because it is a partially ap

plied function needing one more argument. Thus the first operand of + must

be evaluated as a left nested application giving rise to:

7 * 7 + 2

And its second operand, having gained nothing from the evaluation of the first,

gives rise to:

7 * 7 + 3

As can be seen, we are evaluating the sub-expression 7 * 7 twice; we would like

to avoid this.

The solution is to extend the concept of maximal free sub-expressions to cope

with the partial application of functions. The first thing to note is that, when

we evaluate the first operand of + we will first attempt to evaluate the sub

expression (/ 7) before we evaluate the entire left nested application. This

evaluation will not be possible due to the lack of a second argument. We can

notice this and proceed to ensure that the double occurrence of this particular

partial application of / will not result in the double evaluation of 7 * 7. Given

that we know the first argument for / then it is clear that any sub-expressions

of the expression defining / involving only x and constants will evaluate to the

220

CHAPTER 5. MOOSE 221

same value at all applications of this partial application, regardless of the value

of the second argument. We therefore associate a further modified version of the

definition of / with the partial application bound to g. This modified version

of / has the sub-expression x * x replaced by a pointer to this sub-expression.

Now when the left nested applications in the operands of + are evaluated it

is this definition that is used and so the copying of the right hand sides of

this definition will not produce two copies of the sub-expression x * x but two

pointers to this single sub-expression. Now the evaluation of the first operand

will evaluate this pointed to sub-expression to the value 49 which will then be

available for the evaluation of the second operand.

Thus we can, in general, notice a partial application and associate with it a

further modified version of the function definition. This modified definition is

obtained by replacing maximal free sub-expressions with pointers as in case 2)

but we now regard those formal parameter variables associated with the avail

able arguments in the partial application as constants when determining the

maximal free sub-expressions.

This is where this implementation differs from that of Miranda. This is because

in Miranda patterns are compiled into nested lambda abstractions with more

opportunities for partial applications, and hence sharing, than we can achieve.

In particular, if a function has a multiple clause definition then we cannot invoke

this procedure as we cannot tell which clause will be matched at any eventual

application.

5 .7 Im plem entation

The evaluation algorithm presented above was used as the basis for the implementa

tion of an interactive symbolic evaluator for “Miranda” written in Miranda.

Given a source script we can evaluate expressions that involve definitions from

that script and the standard library. The symbolic evaluator requires the source

script to be type checked and thus requires that the typecheck program of §3.7 be

run on the source script first. We are therefore reusing both the “Miranda” parser

and type checker from this earlier piece of work. The interactive user interface to

this program is again written using interactions as described in [Lon89]. We use

a modified form of interactions which provides a form of exception handling. This

is required to cope with errors during the evaluation of expressions or premature

termination by the user. As with the type checker the user interface was not our

main area of concern. Indeed, as will be explained, we spent even less effort on it

in this case as it soon became clear that there are certain intractable problems in

tracing lazy evaluations. The implementation of the evaluation algorithm itself also

uses interactions to enable it to cope with the various exceptional conditions which

may arise. A couple of cases which give a flavour of this implementation are given in

222

eval’ (ST_Identifier "True") expr
■ push (nev_structure (ST.construct "True") [])

$then
change^state set_rw

eval’ (ST_expression "ft") expr
= push expr

$then
eval_const argl

$then
test (state-condition is-False)

(popn 2 build-result)
(pop (const identity)

$then
eval.const arg2

$then
popn 2 build_result

)
$then

change_state set_rw
where
[argl,arg2] * substructures_of expr
build .result [expr,arg] * push arg

Figure 11: Evaluation

223

Figure 11. As can be seen they correspond fairly closely to the specification of the

evaluation algorithm. Unfortunately the implementation of the tracing and breaking

of applications means that its implementation is far from clear.

The evaluator takes the type checked version of a Miranda script and then allows

the user to enter expressions to be evaluated in the context provided by that script.

Thus the top-level user interface is very like that of Miranda itself. During the evalu

ation of the input the user is presented with a trace of the progress of the evaluation.

This trace shows the evaluation of all the applications of operators and functions and

their operands in the input expression. The evaluation resulting from the applications

of the functions is only shown if that function is being traced, otherwise we merely

see the result of the application. We may also choose to break on the application of

certain functions, this allows us to examine the arguments to the function and also

to change the functions being traced or that we wish to break on.

The basic problem we encountered is that of describing the current context in the

evaluation and relating the current expression to that context. The description of the

function R is misleading in that it seems to imply that the evaluation of an expression

can easily be related to that of its parent expression. This is not true because most

of the evaluation is driven by the pattern matching and these evaluations are hidden

inside the definition of the function conformality. Thus the definition of a function

which is returned from its application may be passed around through a great many

224

functions completely unevaluated. When some pattern matching eventually forces its

evaluation it is almost impossible to relate it to the function definition or application

that produced it. This also means that there is no obvious way of measuring the

“depth” of the evaluation and thus no way to use indentation to present it in a more

readable form. Even worse, because we don’t substitute expressions for variables until

we require their value we can build up complex unevaluated expressions with multiple

occurrences of variables of the same name but from different contexts. As these

contexts must include not only the function definition but its particular application

there is no simple way to annotate the variables. Because the user interface we

implemented is so crude it does not serve as a convincing demonstration of these

points, being independently incomprehensible.

A further problem with this implementation is more mundane. Because we built

the system on top of the type checker the internal representation of a source script is

far larger than is needed for the symbolic evaluation. This combined with the large

amount of structure copying implied by our model of environments means that only

small, relatively uninteresting, scripts can be evaluated.

5.8 Conclusion

While an operational source level description of “Miranda” can be produced and

used as the basis of an implementation in a fairly straightforward way the inherent

225

complexity of the evaluations makes it impossible to trace them. While it is true that

little time was spent on the user interface and it might be argued that with more a

effort a useable tool could be produced I do not think this is the case. I believe that

the problems of describing the current state of the evaluation and of relating partially

evaluated expressions back to the script are insurmountable.

This example does show that the interactions of [Lon89] can be used in any context

where exceptional conditions must be handled, not simply in user interfaces.

226

Appendix A

“Miranda” Syntax

The following is the full source of the YACC script used to generate the “Miranda”

parser of Chapter 3. The details of this procedure are given in [Lon87a].

/* The syntax of Miranda as input to Yacc.

This grammar is a restricted version of the full Miranda grammar.
We don't allow user defined infix functions or constructors.

* /

/* The lexical tokens
*/

227

/* Operator precedence.
*/

/* The start non-terminal.
*/

script
: decl_sO

decl
: tform TK_synonym TK_of f side_begin type TK_offside.end
I tform TK_comprises TK.of f side_begin constructs TK.off side_end
/* We will actually require that all the laws associated with an

algebraic type follow immediately after the declaration of
the type.

*/
I law
I TK_abstype tform_list TK.with TK_offsideJbegin signature TK_offside_en<
I def
I spec
I libdir
>

def
: lhs TK_equal rhs
9

/ * We require the lhs for a law to be a pattern.
* /
law

: lhs TK_law lawrhs

228

signature
: spec spec_sO

/* In the first of these two we require the left hand side to be a list
of identifiers.

* /
spec

: tform_list TK_of_type TK.offsideJbegin type TK_offside_end
I tform_list TK_of_type TK_of f sideJbegin TK_type TK_offside_end

constructs
: construct TK.alternative constructs
I construct

construct
: TK_Identifier field_sO

field
: typel
I typel TK.exclamation
9

type
: typeO
I typeO TK_right_arrow type
9

typeO
: TK_identifier typel_sO
I type2
9

typel
: TK_identifier

229

I type2

type2
: TK_type_variable
I TK_left-bracket TK_rightJbracket
I TK_left_bracket typeJList TK_rightJbracket
I TK_1 eft_square_bracket TK_right.square-bracket
I TK_left_square-bracket type_list TK_right_squareJbracket

tf orm
: TK.identifier type_variable_sO

lhs
: lhsO TK.cons lhs
I lhsO TK.plus TK-number
I lhsO
I

/* If the lhs is a sequence of lhsl then we require all but the first
to be patterns, if this is under a or "+" then they
must all be patterns.
If the tails sequence of lhsl’s is non-empty then the first must
be either be an identifier or a constructor, or be a sequence of lhsl
that satisfies this condition.
If we have an identifier then this must be a function definition,
otherwise it is a pattern definition.

* /
lhsO

: lhsl lhsl_sO
J

lhsl
: TK_identifier
I TK_Identifier
I literal
I TKJLeft.bracket TK_right_bracket
I TK_left-bracket lhs_list TK_right-bracket

230

TK_left_square-bracket TK_right.square-bracket
TK_left_square_bracket lhs_list TK_right_square_bracket

rhs
TK.off sideJbegin exp TK.off side_end
TK_offside_begin exp TK.where def def_sO TK.off side.end
TK.off side_begin exp TK.comma exp TK.offside.end
TK.off side_begin exp TK.comma TK_othervise TK.off side.end
TK.off sideJbegin exp TK.comma exp TK.off side.end TK.equal rhs
TK.off sideJbegin exp TK.comma exp TK.where def def_sO TK.off side.end
TK.offsideJbegin exp TK.comma TK.otherwise
TK.where def def_sO TK.off side.end

lawrhs
TK.offsideJbegin exp TK.offside_end
TK.offside_begin exp TK.where def def_sO TK.offside_end
TK.offside_begin exp TK.comma exp TK.offside_end
TK.off sideJbegin exp TK.comma TK.otherwise TK_of f side_end
TK.offside_begin exp TK.comma exp TK.offside_end TK_law lawrhs
TK.offside.begin exp TK.comma exp TK.where def def_sO TK.offside.end
TK.offsideJbegin exp TK.comma TK_otherwise
TK.where def def_sO TK.offside_end

exp
expO
operator

expO
expO TK.cons expO
expO TK_append expO
expO TK_difference expO
expO TK.or expO
expO TK_and expO
TK_not expO Xprec PREFIX_not
expO TK-greater expO
expO TK^reaterjor.equal expO

231

expO TK_equal expO
expO TK_not_equal expO
expO TK_less expO
expO TK_less_or_equal expO
expO TK_plus expO
expO TK_minus expO
TKjninus expO Xprec PREFIXjninus
expO TKjnultiply expO
expO TK_divide expO
expO TK.div expO
expO TK-inod expO
expO TK.power expO
expO TK.compose expO
TK_length expO '/.prec PREFIX .length
expO TK.exclamation expO
application

application
: simple simple_sO

simple
: TK.identifier
I TK_Identifier
I literal
I TK_show
I TK_left_bracket TK_right .bracket
I TK_left_bracket exp_list TK_right_bracket
I TK_left_square_bracket TK_right.square-bracket
I TKJLeft_squareJbracket exp TK_right_square_bracket
I TK_left_square_bracket exp TKjdot-dot exp.opt
TK_right _square_bracket

I TK_left_square_bracket exp TK_comma exp TK_dot_dot exp.opt
TK_right square Jbracket

I TK_left_square_bracket exp TK_comma exp TK_right_square_bracket
I TK_left-square-bracket exp TK_comma exp TK_comma exp_list
TK_right-square-bracket

I TK_1 eft .square-bracket exp TK_alternative qualifier-list
TK_right_square_bracket

232

I TK_1 eft .square-bracket exp TK_diagonalise qualifier_list
TK -right _square_bracket

qualifier
: exp
/♦In these next three cases the expressions to the left
of the arrow must in fact be a patterns.

*/
I exp TK_comma exp_list TK_left_arrow exp
I exp TK_left_arrov exp
I exp TK_left_arrov exp TK_comma exp TK_dot_dot

literal
TK-number
TK.string
TK_character

operator
prefix
infix

infix
TK_cons
TK_append
TK.difference
TK.or
TK_and
TK_greater
TK.greaterjor_equal
TK.equal
TK-not .equal
TK_less_or_equal
TKJLess
TK_plus
TK_multiply
TK-divide

233

I TK_div
I TK_mod
I TK_power
I TK.compose
I TK.exclamation

prefix
: TKjninus
I TK_not
I TKJLength

I * Sequence (*) , optional (?) and list productions
*/

typel_sO
: /* empty * /

I typel typel_sO

decl^O
: / * empty */
I decl decl_sO

tf ormJ.ist
: tform
I tform TK.comma tformJ.ist

spec^sO
: /* empty * /

I spec spec_sO

typeJ.ist
: type
I type TK.comma type-list

234

lhs-list
: lhs
I lhs TK.comma lhsJList

lhsl_sO
: / * empty */
I lhsl lhsl_sO

f ield_sO
: /* empty */
I field field_sO

type_variable_sO
: /* empty */
I TK_type_variable type_variable_sO

def _s0
: / * empty */
I def def_sO

simple_sO
: /* empty */
I simple simple_sO

expJIist
: exp
I exp TK_comma exp_list

exp_opt
: /* empty */
I exp

235

qual if ierJList
: qualifier
I qualifier TK_semi_colon qualifier JL ist

/* New stuff to cope with library directives.
* /

libdir
: TK_include TK.offside_begin environment TK_offside.end
I TK_export TK.offside_begin part_sO TK_offside.end
I TK_free TK_left_squiggly_bracket signature TK_rightjsquigglyJbracket

environment
: fileid binder_opt alias_sO

binder
: TK-left-squiggly-bracket binding binding-sO TK_right_squiggly.bracket

binding
: TK_identifier TK.equal TK_offside_begin exp TK.offside_end
I tform TK_synonym TK_offsideJbegin type TK.offside.end

part
: TK.identifier
I fileid
I TK.plus

fileid
: TK_string
I TK_libpath

alias

236

: TK_identifier TKjdivide TK.identifier
I TK_Identifier TKjdivide TK_Identifier
I TK_minus TK_identifier

binder_opt
: /* empty */
I binder

binding_sO
: /* empty */
I binding binding-sO

part_sO
: /* empty */
I part part_sO

alias_sO
: /* empty */
I alias aliasjsO

237

Appendix B

Type Checking

B .l Using the Typecheck Program

How to run the typecheck and in tera ct programs described in Chapter 3. There

are two shell scripts in my area that run the system.

• The typecheck program.

"mil/typecheck file

Should attempt to type check the Miranda file named. This program produces

a large output file, in the directory of the source file, for use by the next interact

program.

• The interact program.

238

“mil/interact file

Allows you to interactively examine the type checked version of Miranda file.

This program looks for a file produced by the typecheck program.

B .2 Using the Interact Program

B .3 Introduction

The interact program of Chapter 3 is an interactive type browser for “Miranda” 1

scripts. It should be used in conjunction with the typecheck program.

When one runs the interact program on a “Miranda” script it looks for the type

checked version of that script that would be be produced by the typecheck program.

If this file does not exist, either in the same directory as the source script or in the

current directory, then the program cannot proceed. If the file does exist then we

can use the script browsing facilities of the interact program to examine the types

deduced for all the expressions in the script. This includes all the sub-expressions

and not simply the top-level definitions.

The script browser views any script as a tree of expressions about which one

M iranda is a Trademark of Research Software Ltd.
In this document we shall use a language resembling Miranda as our example language, and will
refer to it as “Miranda” . However, this document should not be taken as defining in any way the
language Miranda, for such a definition one should see the documents from Research Software Ltd.

239

may navigate. A script is itself regarded as a single expression where the top-level

definitions and specifications in the script form its list of sub-expressions. This tree

of expressions view of a script differs from the syntactic structure of scripts and is

therefore explained in detail in section §B.4. As one moves around the script one may

examine various properties of the current expression. The most interesting property

of an expression is the type deduced for it by the typecheck program. If the current

expression failed to type check the details of the type error can be displayed and by

examining its sub-expressions one may attempt to diagnose the cause of the type

error.

Sections §B.5, §B.6 and §B.7 explain the commands provided by the interact

program.

B .4 The Tree Structure o f a Script

The following describes the sub-expression structure of a script. We describe this in a

top-down manner starting with the script itself. For each form of expression we also

detail which of the commands that change the current expression will be appropriate.

The script A script is simply a list of things. The following things may occur at the

top-level of a script.

• A library directive; '/.export, '/.include or '/.free

240

• A top-level function or pattern definition.

• A synonym, algebraic or abstract type definition.

• A type specification for variables or placeholder types.

de/j • • • defN

The only things that have sub-expressions you can examine are multiple clause

function definitions, single clause function definitions and pattern definitions.

If the script contains N things then the following commands are appropriate:

1, . . . , N, Find, Down = 1

A multiple clause function definition This is simply a list of the individual clauses

of the definition.

clausei • • • clausen

If there are N clauses then the following commands are appropriate:

1, . . . , Ar, Down = 1

If this is not a single sub-definition or the only thing in the script then these

commands are also appropriate:

Next, Previous, Find

241

/ pat! • • • patj = rhs

The following commands are appropriate:

Left, Right, Down = Right

If this is not a single sub-definition or the only thing in the script then these

commands are also appropriate:

Next, Previous, Find

A pattern definition This has two sub-expressions, the left hand side pattern and

the defining right hand side.

pat = rhs

The following commands axe appropriate:

Left, Right, Down = Right

Next, Previous, Find

A single clause function definition This has two sub-expressions, the left hand

side formal parameter patterns and the defining right hand side.

If this is not a single sub-definition or the only thing in the script then these

commands are also appropriate:

242

/ patx • • • patj = rhs

The following commands are appropriate:

Left, Right, Next, Previous, Down = Right

The left hand side of a definition The left hand side of a single clause function

definition, pattern definition or of one clause of a multiple clause function def

inition is simply an exp. The commands are those appropriate for such an

expression. (Note: The left hand sides of definitions are treated as applica

tions)

The right hand side of a definition This can be one of three things.

• A right hand side with sub-definitions introduced by a “where” clause.

• A list of alternate right hand side expressions.

• A single right hand side expression.

The commands are those appropriate to whichever of these is found on the right

hand side.

One clause of a function definition This has two sub-expressions, the left hand

side formal parameter patterns and the defining right hand side.

243

rhs-exp where defs

The first may be either a list of alternate right hand side expressions or a single

right hand side expression. The second may be either a list of sub-definitions

or a single sub-definition. The following commands are appropriate:

Left, Right, Down = Left

A list of alternate right hand side expressions This is simply a list of the al

ternate single right hand side expressions.

A “where” clause This has two sub-expressions, the defining right hand side ex

pressions and the sub-definitions introduced by the “where” clause.

a l t i • • • a l t s

If there are N alternate expressions then the following commands are appropri

ate:

1, . . . , N, Down = 1

A single right hand side expression This is either a right hand side expression

with a guard or simply an exp. The commands are those appropriate for

whichever of these is found.

244

* / i • • • defN

If there are N sub-definitions then the following commands axe appropriate:

1, . . . , TV, Down = 1

A single sub-definition This is either a multiple clause function definition, a single

clause function definition or a pattern definition. The commands are those

appropriate for whichever of these is found.

A right hand side expression with a guard This has two sub-expressions, the

guarded expression and the guard.

exp , grd

The following commands are appropriate:

Left, Right, Down = Left

exp: An application An application is essentially a list of sub-expressions.

expi exp2 • • • expN

The first is the expression being applied the second the first argument of the

application and so on. If there are N sub-expressions, that is N — 1 arguments,

then the following commands axe appropriate:

A list of sub-definitions This is simply a list of the sub-definitions.

245

1, . . . , TV, Down = 1

If the expression above is a list of sub-expressions, including this expression,

then these commands will also be appropriate:

Next, Previous

exp: An infix operator expression This has two sub-expressions, the left and right

operands.

exp-left op exp-right

The following commands are appropriate:

Left, Right, Down = Left

If the expression above is a list of sub-expressions, including this expression,

then these commands will also be appropriate:

Next, Previous

exp: A prefix operator expression This has a single sub-expression.

op exp

Down

The following command is appropriate:

246

Next, Previous

exp: A tuple A tuple may be empty in which case it will have no sub-expressions.

Otherwise it will have TV elements.

If the expression above is a list of sub-expressions, including this expression,

then these commands will also be appropriate:

{exply. ..,expN)

If it is not empty and has N elements then the following commands will be

appropriate:

1, . . . , N, Down = 1

If the expression above is a list of sub-expressions, including this expression,

then these commands will also be appropriate:

Next, Previous

exp: A list A list may be empty in which case it will have no sub-expressions. Oth

erwise it will have N elements.

[exp1,.. . ,e x p N]

If it is not empty and has N elements then the following commands will be

appropriate:

247

1, . . . , N, Down = 1

If the expression above is a list of sub-expressions, including this expression,

then these commands will also be appropriate:

Next, Previous

exp: A numeric list expression This is a list of sub-expressions, it may have one,

two or three sub-expressions. If there is only one sub-expression it will be the

initial expression.

[exp.]

The following commands are appropriate:

1, Down = 1

If there are two sub-expressions they are either the initial and secondary ex

pressions or the initial and limit expressions.

[ezp, exp'..]

[exp., exp"]

1, 2, Down = 1

In these cases the following commands are appropriate:

248

The final possibility is that there axe three sub-expressions. These being the

initial, secondary and limit expressions.

[exp, exp'..exp”]

In this case the following commands axe appropriate:

1, 2, 3, Down = 1

In all three cases if the expression above is a list of sub-expressions, including

this expression, then these commands will also be appropriate:

Next, Previous

exp The following expressions all have no sub-expressions.

An identifier

A constructor

A number

A string

A character

An operator

The keyword show

The keyword otherwise

249

Next, Previous

If the expression above is a list of sub-expressions, including this expression,

then these commands will be appropriate:

B .5 Input

The interact program is an interactive program that keeps prompting the user for

commands to be executed. Each input line can contain any number of commands

separated by commas. Each command is made up of a sequence of words separated

by white space. The syntax of commands is given in sections §B.6 and §B.7. If an

inappropriate command is found in a list of commands then all remaining commands

from that input line are discarded.

B .6 C om m and Syntax

We present the syntax of the available commands, the command names can always

be abbreviated to the shortest non-ambiguous prefix. We also allow a range of names

for each command. The case of letters in command names is irrelevant except for the

Quit command which must start with a capital. We shall present all commands with

an initial upper case character.

The following twelve commands are general and can be used wherever you are

250

in the script. They display either general information or information specific to the

current expression.

Quit We quit the program.

Help A short help message is given.

Alternate names: ?

Explain A long help message explaining the various commands is given.

Inform ation A description of where we are in the script is provided. This contains

a detailed description of the current expression followed by its type if it has

one and then details of the enclosing sub-definitions and definition if there are

any. If pretty printing is switched on then the current expression will be pretty

printed. If commands listing is switched on then the appropriate commands

will be listed.

If a command takes you to a new expression then this information is automat

ically displayed for the new expression.

Alternate names: Where, C

Variables The bound and free variables of this expression are shown. Most expres

sions in a script will only have free variables.

Type-errors Any type errors that arose whilst type checking this expression and its

sub-expressions are displayed.

251

Show context? The current expression is pretty printed. The default is to simply

show the current expression. However, if a context is given then the current

expression is high-lighted within the pretty printing of the expression designated

by that context.

Show On context? Pretty printing is switched on for the Information command.

If a context is given then it is the high-lighted form of pretty printing that is

used.

Show Off The pretty printing for the Information command is switched off.

Commands The list of appropriate commands for the current expression is dis

played.

Commands On The listing of appropriate commands is switched on for the Infor

mation command.

Commands Off The listing of appropriate commands for the Information com

mand is switched off.

The next nine commands are used to move around the script. They will not all be

appropriate for all the expressions in the script. The Commands command will

tell you which are appropriate for the current expression. The basic commands take

you to some sub-expression of the current expression. As you descend to a sub

expression the current expression is remembered and that sub-expression becomes

252

the new current expression. This trace of your path down through the script allows

you to back-track up out of an expression.

Up context? We can back-track up out of the expression we are in. The simplest ver

sion of this command, that with no context, simply takes you to the expression

immediately enclosing the current expression. If a context is given then we go

up to the enclosing expression designated by that context.

Alternate names: *

Dow n num? This command will take you the sub-expression which is the “most

interesting” . Which of the sub-expressions is regarded as the most interesting

depends on the particular form of the current expression. When there are other

commands that may take you to a sub-expression then this command will be

equivalent to one of these other commands. The details of the action of this

command are explained in §B.4. If a number is present then that many Down

commands are attempted.

Alternate names: !

Left num? If the current expression has essentially two sub-expressions this com

mand will take you to the first of them. If a number is present then that many

Left commands are attempted.

Alternate names: <

253

R ight num? If the current expression has essentially two sub-expressions this com

mand will take you to the second of them. If a number is present then that

many Right commands are attempted.

Alternate names: >

num If the current expression has a list of sub-expressions this selects one of them as

the new expression. A list of sub-expressions is always numbered from one.

N ext num? If the current expression is an element of a list of expressions then this

command takes you to the numth following expression in that list. If the number

is absent it defaults to one. The new expression replaces the current expression.

Alternate names: +

Previous num ? If the current expression is in a list of expressions then this command

takes you to the numth preceding expression in that list. If the number is absent

it defaults to one. The new expression replaces the current expression.

Alternate names: -

Find name? If the current expression has a list of sub-expressions that bind identi

fiers, constructors or type names then this command takes you to the first of

these sub-expressions that binds the name given. The only such expressions are

the script itself and a list of sub-definitions in a “where” clause. This command

will find the first binding occurrence of a name whose prefix is name. If a name

254

is not given then the last name searched for is used.

Furthermore, if the current expression is an element of such a list of binding

expressions then this command will find the next binding occurrence of the name

given in that list of binding expressions. In this latter case the new expression

replaces the current expression.

Alternate names: /

Again Repeats the last command that changed the current expression.

Alternate names: &

B .7 C ontext Syntax

Each expression in a script can be regarded as existing inside some larger enclosing

expressions which provide a context for the expression. The Show and Up commands

allow one to use a context to refer to an expression enclosing the current expression.

A context is alway taken relative to the current expression and thus may sometimes

fail to designate any enclosing expression.

Expression This refers to the largest enclosing expression corresponding to the Mi

randa syntactic class exp.

Alternative This refers to the enclosing alternative right hand side expression.

255

Clause This refers to the enclosing clause of a function definition or the enclosing

pattern definition.

Definition n u m ? If the number is absent it defaults to one and this refers to the

definition or sub-definition enclosing the current expression. If the number is

bigger than one then this refers to the definition or sub-definition that many

definitions or sub-definitions above the current expression. If there are not that

many then this refers to the enclosing top-level definition.

Script This refers to the top-level expression in the script which is the script itself.

n u m The expression n u m expressions above this one. This command uses the trace

of the route by which we reached the current expression.

B .8 Tutorial Session

The following is a tutorial example of the use of the interact program of Chapter 3.

V. interact tutorial
Interacting with tutorial.m
Please wait for type checked file to be loaded ...

I f t h e t y p e c h e c k e d v e r s i o n o f t h e s c r i p t h a s a l r e a d y b e e n c o m p i l e d t h e n t h e s e t w o lines

w o n ’t a p p e a r .

compiling '/.STATEy,tutorial .m
checking types in y,STATE'/,tutorial .m

256

If you have recently invoked the interact program on this source script then these two

lines won’t appear.

compiling /tmp/include.state.m
checking types in /tmp/include.state.m

Having loaded the type checked version o f the source script we can now browse through

it. We first get a description o f the script.

Miranda Interactive Type Investigator
The script, containing 2 things.

We do a Show command to see what the source script looks like.

Commands : Show
Doing: Show.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
reverseO (x:l)

= reverseO 1 ++ [x]

reverseO []
= □

(testi,test2)
■ (valuel,value2)
where
valuel = reverseO [1,2,3]
value2 = reverseO "ABC"

We find out which commands are appropriate for the current expression.

257

Commands: Commands
The following commands are appropriate:
Help,Down,1,2,Find

We go to the first sub-expression in the script.

Commands : 1
Doing: 1.

We are given a description o f the new current expression. Notice that the deduced

type for the reverseO function is polymorphic as we would expect.

The 1st thing in the script.
A 2 clause function definition of reverseO.
This expression has the following type:
: : [*] -> [*]

We switch on the listing o f appropriate commands.

Commands: Commands On
Commands now On.
The following commands are appropriate:
Help,Down,1,2,Next,Find

We go to the first clause o f the function definition. Notice that the appropriate com

mands are listed.

Commands : 1
Doing: 1.
The 1st clause of a function definition.
A single clause of a multiple clause function definition of reverseO.
This expression has the following type:
: : [*] -> [*]
The following commands are appropriate:
Help,Down,Left.Right.Next

258

We show the current expression.

Commands : Show
Doing: Show.
vvvvvvvvvwvvvwvwvwvwvvvwvwvwvv
reverseO (x:l)

= reverseO 1 ++ [x]

We go to the right hand side o f this clause.

Commands: Right
Doing: Right.
The defining right hand side of a function definition.
A single right hand side expression.
Infix operator expression for "++".
It occurs at the following type:
[*] -> [*] -> [*]
This expression has the following type:
: : [*]
In definition of :
reverseO (x:l)
The following commands are appropriate:
Help.Down,Left.Right

We go to the left operand of the operator.

Commands : Left
Doing: Left.
The left operand of an infix application of "++".
An application with 1 argument.
This expression has the following type:
: : [*]
In definition of :
reverseO (x:l)
The following commends are appropriate:
Help,Down,1,2

259

We switch on showing.

Commands : Show On
Showing now On.
Doing: Show.
vvvvvvvvvwvwwvwvwvwwvwvwvwvv

reverseO 1

We ask for the information about the current expression, this will now include pretty

printing o f the current expression.

Commands: Information
The left operand of an infix application of "++".
An application with 1 argument.
This expression has the following type:
: : [*]
In definition of:
reverseO (x:l)
Doing: Show.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

reverseO 1

The following commands are appropriate:
Help,Down,1,2

We go to the first argument o f the application.

Commands: 2
Doing: 2.
The 1st argument of an application.
The identifier: 1
This expression has the following type:
: : [*]
In definition of:

260

reverseO (x:l)
Doing: Show.
vvvvvvvvvwvwwvvvvvvvwwvwvwvvvw

1

The following commands are appropriate:
Help,Previous

We go up to the largest enclosing expression.

Commands: Up Expression
Doing: Up Expression.
The defining right hand side of a function definition.
A single right hand side expression.
Infix operator expression for "++".
It occurs at the following type:
[*] -> [*] -> [*]
This expression has the following type:
: : [*]
In definition of:
reverseO (x:l)
Doing: Show.
vvvvvvvvvvvvvvvvvwvvvvwvvvvvvvvvvvvv

= reverseO 1 ++ [x]

The following commands are appropriate:
Help,Down,Left.Right

We pretty print the current expression high-lighted within the enclosing definition.

Commands: Show Definition
Doing: Show Definition,
vvvvvvvvvvvvvvwvwvvvvvvwvvvvvvvvvvv
reverseO (x:l)
Q<S<SS<D0<D0Q

* reverseO 1 ++ [x]
®®®®®®®®®®®®®®®®®®®®®®®®®®®

261

reverseO []
= []

We switch showing off.

Commands: Show Off
Showing now Off .

We go up to the top-level o f the script.

Commands: Up Script
Doing : Up Script.
The script, containing 2 things.
The following commands are appropriate
Help,Down,1 ,2 ,Find

We go to the second definition in the script.

Commands: 2
Doing: 2.
The 2nd thing in the script.
A pattern definition.
It declares the following identifiers:
te sti, test2
This expression has the following type
: : ([num], [char])
The following commands are appropriate
Help,Down,Left,Right,Previous,F ind

We go to its defining right hand side.

262

Commands : Right
Doing: Right.
The defining right hand side of a pattern definition.
A right hand side with sub-definitions introduced by a "where" clause.
This expression has the following type:
: : ([num], [char])
In definition of:
(te s ti,test2)
The following commands are appropriate:
Help,Down,Left,Right

We wish to look at the sub-definitions.

Commands: Right
Doing: Right.
A lis t of 2 sub-definitions.
In definition of:
(te s ti,test2)
The following commands are appropriate:
Help,Down,1 ,2 .Find

We go to the first sub-definition.

Commands: 1
Doing: 1.
The 1st sub-definition.
A pattern definition.
It declares the following identifiers:
valuel
This expression has the following type:
: : [num]
In definition of:
(te s ti ,test2)
The following commands are appropriate:
Help,Down,Left.Right.Next .Find

We switch on showing.

263

Commands: Show On
Showing now On.
Doing: Show.
vvvvvvvvvvvvvvwvvvvwvwwvvvvwvwvv

valuel = reverseO [1,2,3]

We go to the defining right hand side.

Commands: Right
Doing: Right.
The defining right hand side of a pattern definition.
A single right hand side expression.
An application with 1 argument.
This expression has the following type:
:: [num]
In sub-definition of:

valuel
In definition o f :
(testl,test2)
Doing: Show.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

* reverseO [1,2,3]

The following commands are appropriate:
Help,Down,1,2

We go to the function being applied. Notice that at this application the function

reverseO takes an instance o f its deduced type.

Commands: 1
Doing: 1.
An expression that is applied to 1 argument.
The identifier: reverseO
This expression has the following type:
: : [num] -> [num]

264

In sub-definition of:
valuel

In definition of:
(testl,test2)
Doing: Show.
vvvvvvvvv wvwwvwvwvwwvvvvwvww

reverseO

The following commands are appropriate:
Help.Next

We go up to the enclosing definition.

Commands: Up Definition
Doing: Up Definition.
The 1st sub-definition.
A pattern definition.
It declares the following identifiers:
valuel
This expression has the following type:
: : [num]
In definition o f :
(testl,test2)
Doing: Show.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

valuel = reverseO [1,2,3]

The following commands are appropriate:
Help,Down,Left.Right.Next,Find

We go the next sub-definition.

Commands: Next
Doing: Next.
The 2nd sub-definition.
A pattern definition.
It declares the following identifiers:

265

value2
This expression has the following type:
: : [char]
In definition of:
(testl,test2)
Doing: Show.
vvvvvvvvvvvvwvvvwvvvvvvwvwvvvvwvv

value2 = reverseO "ABC"

The following commands are appropriate:
Help,Down,Left.Right.Previous,Find

We now do two commands on one line to get to the second application of the reverseO

function. Notice again that at this application the function reverseO takes an instance

of its deduced type.

Commands: Right,1
Doing: Right.
The defining right hand side of a pattern definition.
A single right hand side expression.
An application with 1 argument.
This expression has the following type:
: : [char]
In sub-definition of:

value2
In definition o f :
(testl,test2)
Doing: Show.
vvvvvvvvvvvvwwvvvvwvwvvvwvwvvvvv

■ reverseO "ABC"

The following commands are appropriate:
Help,Down,1,2
Doing: 1.
An expression that is applied to 1 argument.
The identifier: reverseO
This expression has the following type:

266

: : [char] -> [char]
In sub-definition of:

value2
In definition of :
(te s ti ,test2)
Doing: Show.
vvvvvvvvvwvvvvvvwvwvwwvvvvwvwvv

reverseO

The following commands are appropriate:
Help,Next

We quit the interact program.

Commands : Quit
Quitting.

267

Appendix C

Type Checking Proofs

We describe the approach to type checking proofs mentioned in Chapter 4. I first

describe the tjrpe system used by LCF and why I think certain of the decisions were

made. I then present a simpler approach.

C .l L C F

LCF uses a rather strange form of type checking. The basic decision which seems to

have forced the other choices made in the LCF system, is to not allow anonymous

type variables.

The type checker needs to generate anonymous type variables when type checking

and has to make up its own names for these type variables. The LCF system insists

that the user supply explicit names for these internally generated type variables.

268

The user does this by adding type annotations to the expressions they input into

the system in such a way as to allow the system to associate explicit type variable

names with the internally generated type variables. Exactly what type annotations

are needed for an expression can be quite hard to decide and the temptation is to

initially supply none and add them, in a fairly arbitrary fashion, only if the system

complains.

This need to constantly supply type annotations is very irritating so the system

includes the concept of “sticky” types. This means that the system remembers the

type of the last use of an identifier and failing any explicit type information in the

expression will use this type. We therefore have a fairly complex type environment in

which expressions are type checked and this can cause unexpected problems. Appar

ently in the Edinburgh LCF system these “sticky” types can cause the type checking

to fail, a problem which is remedied in Larry Paulson’s Cambridge LCF system.

A final decision which adds to the confusion is to let all the free variables in a

proof take different types at their different occurrences1. Thus unless you know their

types you cannot tell whether two occurrences of a free variable name are in fact the

same variable. This decision is useful from a practical point of view as it means you

can put expressions together without having to worry about the types of their free

variables being consistent.

^et bindings.

269

All the above provides a very complex and I believe confusing type system. The

only case where you seem to need access to explicit names for internally generated

type variables is in rule which allows instantiation of the types of a theorem.

C .2 A Sim pler Approach

C.2.1 Type Checking

I propose to use the full power of the Milner type checking algorithm. The user need

provide no type information at all, the system will deduce the most general type

for any expression and hence for any proof. This means we won’t know which type

variable names will be used for the internally generated type variables by the type

checking, but then we don’t need to.

When constructing a new proof we must now consider the free variables of the

sub-proofs. I propose that the free variables of a proof take the same type at all

their occurrences in the proof2. This is to avoid the confusion about whether or not

occurrences of a variable name refer to the same variable. This now demands that

the the type checker do more work and also that you have to be a bit careful about

your use of variable names but neither of these is a problem.

The type checker must now check that a variable appearing free in the sub-proofs

2lam bda bindings

270

has types, in these sub-proofs, that can be unified. If these types don’t unify the

construction of the new proof will fail. The user should not find this clash of free

variables a problem as a simple renaming of the offending variable in some of the

sub-proofs will remove the problem3.

There is one final point to notice, if there are free variables occurring in the sub

proofs, but not in the assumptions or conclusions of the sub-proofs, then if there

was a type clash on these free variables the construction of the new proof would

fail. If however we took the theorem form of the sub-proofs, where we only have the

assumptions and conclusions, then the construction of the new proof would succeed.

A more subtle problem can also arise where the proofs constructed from proofs and

theorems both succeed but that based on proofs has a conclusion of more restricted

type. This may be an argument for always dealing with entire proofs.

This is all you need to do and it provides a clear simple type discipline.

C.2.2 Display

As a practical matter I believe there is a way of presenting the type information in a

proof without displaying the type of everything. We can annotate the variables and

constants with types as follows.

1. All bound variables are annotated with their types at their binding occurrence.

3We will of course have to check for capture of the new variable and if it already occurs free in a
sub-proof that its type and that of the variable being replaced can be unified

271

2. All the free variables in the assumptions are annotated with their types at all

their occurrences in the assumptions, in the rest of the proof they have no type

annotations.

3. All free variables in the proof not occurring free in the assumptions are anno

tated with their types at all their occurrences in the proof.

4. Constants can be annotated with their types at all their occurrences in the

proof, or be completely without type annotations. I believe we can take the

second course as the type environment along with the generic type that the

user must have provided for the constant should be enough.

272

Bibliography

[AJ89] L. Augustsson and T Johnsson.

[AKP85]

The Chalmers lazy-ML compiler.

The Computer Journal, 32(2):127—141, 1989.

Arvind, Vinod Kathail, and Keshav Pingali.

Sharing of computation in functional language implementations.

In Lennart Augustsson, John Hughes, Thomas Johnsson, and Kent Karls-

son, editors, Proceedings o f the Workshop on Implementation o f Func

tional Languages, pages 15-58. Programming Methodology Group,

February 1985.

[Ale88] Heather Alexander.

Comments on “Formal specification of user interfaces: A comparison and

evaluation of four axiomatic approaches” .

IEEE Transactions on Software Engineering, 14(4):438-439, April 1988.

[BB85] Erret Bishop and Douglas Bridges.

273

[BD77]

[BGSO]

[BH87]

[BirSO]

[Bir84a]

Constructive Analysis.

Springer-Verlag, 1985.

R.M. Burstall and John Darlington.

A transformation system for developing recursive programs.

Journal o f the ACM, 24(l):44-67, January 1977.

R.M. Burstall and J.A. Goguen.

The semantics of Clear, a specification language.

In Proceedings 1979 Copenhagen Winter School on Abstract Software Spec

ification, February 1980.

R. S. Bird and John Hughes.

The alpha-beta algorithm: An exercise in program transformation.

Information Processing Letters, 24:53-57, January 1987.

R.S. Bird.

Tabulation techniques for recursive programs.

ACM Computing Surveys, 12(4):403-417, December 1980.

R.S. Bird.

The promotion and accumulation strategies in transformational program

ming.

ACM Transactions on Programming Languages and Systems, 6(4):487-

504, October 1984.

274

[Bir84b] R.S. Bird.

Using circular programs to eliminate data traversal.

Acta Informatica, 21:239-250, 1984.

[Bir85] R.S. Bird.

Addendum : The promotion and accumulation strategies in transforma

tional programming.

ACM Transactions on Programming Languages and Systems, 6(3):490-

492, July 1985.

[Bir89] R. S. Bird.

Algebraic identities for program calculation.

The Computer Journal, 32(2):122—126, 1989.

[BM75] R.S. Boyer and J.S. Moore.

Proving theorems about LISP functions.

Journal o f the ACM, 22(1):129—144, January 1975.

[Boe89] Hans-J. Boehm.

Type inference in the presence of type abstraction.

ACM SIGPLAN Notices, 24(7):192-206, July 1989.

[Chi85] Uli H. Chi.

Formal specification of user interfaces: A comparison and evaluation of

four axiomatic approaches.

275

[CW85]

[Dam85]

[Dij76]

[dVSS]

[Dwe89]

[Fai82]

IEEE Transactions on Software Engineering, 11 (8):671—685, August 1985.

Luca Cardelli and Peter Wegner.

On understanding types, data abstraction, and polymorphism.

ACM Computing Surveys, 17(4):471—522, December 1985.

Luis Manuel Martins Damas.

Type assignment in programming languages.

Thesis CST-33-85, University of Edinburgh, April 1985.

E. Wr. Dijkstra.

A Discipline o f Programming.

Prentice-Hall, 1976.

Fer-Jan de Vries.

A functional program for the fast Fourier transform.

ACM SIGPLAN Notices, 23(1) :67—74, January 1988.

Andrew Dwelly.

Functions and dynamic user interfaces.

In Fourth International Conference on Functional Programming Languages

and Computer Architecture, pages 371-381, September 1989.

Jon Fairbairn.

Ponder and its type system.

276

[Fai87]

[FL89]

[Fle90]

[GMW79]

[HHP87]

Jon Fairbairn.

Making form follow function: An exercise in functional programming style.

Software — Practice and Experience, 17(6):379—386, June 1987.

R. Frost and J Launchbury.

Constructing natural language interpreters in a lazy functional language.

The Computer Journal, 32(2): 108—121, 1989.

A. C. Fleck.

A case study comparison of four declarative programming languages.

Software — Practice and Experience, 20(1):49—65, January 1990.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth.

Edinburgh LCF: A Mechanised Logic o f Computation, volume 78 of LNCS.

Springer Verlag, 1979.

R. Harper, F. Honsell, and G. Plotkin.

A framework for defining logics.

In Proceedings o f the Second Symposium on Logic in Computer Science,

Computer Laboratory Technical Report 31, University of Cambridge,

November 1982.

1987.

[Hil89] Stephen A. Hill.

Functional Programming Techniques.

277

PhD thesis, University of Kent at Canterbury, 1989.

[Hin69]

[HSW85]

[Hud89]

[HugS9]

[Joh85]

R. Hindley.

The principal type scheme of an object in combinatory logic.

Transactions o f the American Mathematical Society, 146:29-60, 1969.

David M. Harland, Maxtyn W. Szyplewski, and John B. Wainwright.

An alternative view of polymorphism.

ACM SIGPLAN Notices, 20(10):23—35, October 1985.

Paul Hudak.

Conception, evolution and application of functional programming lan

guages.

ACM Computing Surveys, 21 (3):359—411, September 1989.

J. Hughes.

Why functional programming matters.

The Computer Journal, 32(2):98—107, 1989.

Thomas Johnsson.

Lambda lifting: Transforming programs to recursive equations.

In Lennart Augustsson, John Hughes, Thomas Johnsson, and Kent Karls-

son, editors, Proceedings o f the Workshop on Implementation o f Func

tional Languages, pages 165-180. Programming Methodology Group,

February 1985.

278

[Joh87]

[Jok89]

[Jon85]

[Jon86a]

[Jon86b]

[Jon87]

Attribute grammars as a functional programming paradigm.

In Gilles Kahn, editor, Functional Programming Languages and Computer

Architecture: LNCS 274, pages 154-173. Springer Verlag, 1987.

Matti O. Jokinen.

A language-independent prettyprinter.

Software — Practice and Experience, 19(9):839—856, September 1989.

Simon L. Peyton Jones.

Yacc in Sasl — an exercise in functional programming.

Software — Practice and Experience, 15(8):807—820, 1985.

C. B. Jones.

Systematic Software Development Using VDM.

Prentice-Hall, 19S6.

Richard Jones.

Flex — an experience of miranda.

UKC Computing Laboratory Report 38, University of Kent at Canterbury,

June 1986.

Simon L. Peyton Jones.

The Implementation o f Functional Programming Languages.

International Series in Computer Science. Prentice-Hall, 1987.

Thomas Johnsson.

279

[Kie85] Richard B. Kieburtz.

[Koo87]

[Lon 8 7a]

[Lon87b]

[Lon89]

A proposal for interactive debugging of ML programs.

In Lennart Augustsson, John Hughes, Thomas Johnsson, and Kent Karls-

son, editors, Proceedings o f the Workshop on Implementation o f Func

tional Languages, pages 151-155. Programming Methodology Group,

February 1985.

Pieter W. M. Koopman.

Interactive programs in a functional language: A functional implementa

tion of an editor.

Software — Practice and Experience, 17(9):609—622, September 1987.

M. Longley.

Generating parsers in Miranda.

UKC Computing Laboratory Report 49, University of Kent at Canterbury,

November 1987.

M. Longley.

Type checking “Miranda” .

UKC Computing Laboratory Report 44, University of Kent at Canterbury,

April 1987.

M. Longley.

Continuations —► Continuations = Interactions.

280

[MG90]

[Mor88]

[Myc84]

[NRRS6]

[0 ’D85]

UKC Computing Laboratory Report 59, University of Kent at Canterbury,

March 1989.

Carroll Morgan and P. H. B. Gardiner.

Data refinement by calculation.

Acta Informatica, 27:481-503, 1990.

Carroll Morgan.

The specification statement.

ACM Transactions on Programming Languages and Systems, 10(3):403—

419, July 19S8.

Alan Mycroft.

Polymorphic type schemes and recursive definitions.

In International Symposium on Programming: LNCS 167, pages 217-228.

Springer Verlag, 1984.

Klaus Nokel, Robert Rehbold, and Michael M. Richter.

Remarks on SASL and the verification of functional programmaing lan

guages.

In Computation Theory and Logic: LNCS 270, pages 265-276. Springer

Verlag, 1986.

John T. O ’Donnell.

Dialogues: A basis for constructing programming environments.

281

[OG89]

[OppSO]

[Pra73]

[Rob65]

[Rub83]

ACM SIGPLAN Notices, 20(7):19-27, July 1985.

Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues in

Programming Environments.

James William O’Toole Jr. and David K. Gifford.

Type reconstruction with first-class polymorphic values.

ACM SIGPLAN Notices, 24(7):207-217, July 19S9.

Derek C. Oppen.

Prettyprinting.

ACM Transactions on Programming Languages and Systems, 2(4):465—

483, October 19S0.

Dag Prawitz.

Ideas and results in proof theory.

In Jens E. Fenstad, editor, Proceedings o f the Second Scandinavian Logic

Symposium, pages 235-307. North Holland, 1973.

J. A. Robinson.

A machine-oriented logic based on the resolution principle.

Journal o f the ACM, 12(1):23—41, 1965.

Lisa F. Rubin.

Syntax-directed pretty printing — a first step towards a syntax-directed

editor.

282

IEEE Transactions on Software Engineering, 9(2): 119—127, March 1983.

[Spi85] John Michael Spivey.

Understanding Z : A Specification Language and Its Formal Semantics.

PhD thesis, Wolfson College Oxford, 1985.

[TDR87] Ian Toyn, Alan Dix, and Colin Runciman.

Performance polymorphism.

In Gilles Kahn, editor, Functional Programming Languages and Computer

Architecture: LNCS 2 7 pages 325-346. Springer Verlag, 19S7.

[TR85] Ian Toyn and Colin Runciman.

Adapting combinator and SECD machines to display snapshots of func

tional computations.

Computer Science Report 79, University of York, 19S5.

[Tur79] D.A. Turner.

A new implementation technique for applicative languages.

Software — Practice and Experience, 9(1):31—49, January 1979.

[Tur81] D.A. Turner.

Recursion equations as a programming language.

In J. Darlington, P. Henderson, and D.A. Turner, editors, Functional

Programming and its Applications, pages 1-28. Cambridge University

Press, 19S1-

283

[Tur85] D.A. Turner.

Miranda — a non-strict functional language with polymorphic types.

In Jouannand, editor, Functional Programming Languages and Computer

Architecture: LNCS 201, pages 1-16. Springer Verlag, September 1985.

[Wad85] Philip Wadler.

Views: A way for elegant definitions and efficient representations to coex

ist.

In Lennart Augustsson, John Hughes, Thomas Johnsson, and Kent Karls-

son, editors, Proceedings o f the Workshop on Implementation of Func

tional Languages, pages 247-258. Programming Methodology Group,

February 1985.

[WF89] S. C. Wray and J. Fairbairn.

Non-strict languages — programming and implementation.

The Computer Journal, 32(2): 142—151, 19S9.

284

