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ABSTRACT

In the study of wildlife populations, demographic data have traditionally been analysed 

independently for different species, even within communities. With environmental 

conditions changing rapidly, there is a need to move beyond single-species models and 

consider how communities respond to environmental drivers. This thesis proposes a 

modelling framework to study multi-species synchrony in demographic parameters, 

using random effects to partition year-to-year variation into synchronous and asyn­

chronous components. The approach also allows us to quantify the contribution of en­

vironmental covariates as synchronising/desynchronising agents.

We apply the framework to long-term data from a breeding community of seabirds at 

the Isle of May, Scotland, studying synchrony in adult survival and parameters related 

to breeding success. We then combine demographic data with population counts and 

propose the first multi-species integrated population model (IPM), which estimates 

simultaneously the abundance of puffins, guillemots and razorbills and the demo­

graphic parameters that drive their fluctuations, while estimating synchrony in adult 

survival and productivity.

Most analyses are carried out within the Bayesian framework. Results indicate that for 

these three auk species the same climatic covariates act simultaneously as synchronis­

ing and desynchronising agents of a mostly synchronous adult survival, based on re­

sighting data of ringed birds. They also reveal varying degrees of productivity syn­

chrony in a set of five species, with the synchronous terms, a potential community- 

based indicator of local marine ecosystem health, indicating a decline in productivity 

during the study period.
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The thesis also investigates options to optimise the monitoring of guillemot juveniles 

at the Isle of May. Using the historic data set, we show that ringing effort is adequate 

but that resighting effort could be substantially reduced while still being able to detect 

the dramatic variations in first-year survival and ecological relationships with individ­

ual-level covariates investigated. We finally explore the limitations of an IPM to com­

pensate for the lack of direct juvenile data in the case of stopping the ringing of guil­

lemot chicks.

Both synchrony models and the multi-species IPM are readily applicable to any spe­

cies assemblage in any ecosystem, provided long-term data are available. They repre­

sent new steps towards more integrative approaches to modelling demographical pa­

rameters. The study of synchrony may facilitate the generation of further hypotheses 

about similarities and differences in species’ ecology.
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1 INTRODUCTION

The study of wildlife populations is of interest for several scientific and applied disci­

plines. The understanding of how populations change as well as the underlying demo­

graphic parameters that drive such fluctuations is first of all relevant in many areas 

within ecology, including evolutionary, population and community ecology (Begon, 

Townsend & Harper 2006). From the applied point of view, it is paramount for the 

correct management of populations (Williams, Nichols & Conroy 2002), for both har­

vested species (including fishery stocks) and species of conservation concern: it is by 

affecting demographic rates like survival and productivity that one can attempt to con­

trol population growth in order to, for instance, increase abundance of threatened spe­

cies, reduce abundance of invasive species or manage harvested populations at a sus­

tainable level (Caswell 2001, p.591). The need for this understanding is even more 

pressing as the growing human population continues increasing the strain on natural 

resources including harvested species, and we face an unprecedented biodiversity cri­

sis, with species extinction rates estimated to be at least similar to those of previous 

mass extinctions (Bamosky et al. 2011). This situation is likely to be further aggravat­

ed by the impending global climate change (Thomas et al. 2004). Addressing this bio­

diversity crisis and reducing the rate of species extinctions have been recognized as 

international priorities (Millennium Ecosystem Assessment 2005).

Within the aforementioned disciplines, it is often of interest to monitor changes in the 

abundance of populations, which provides a feedback between implementation and 

management that is essential for decision-making (Possingham et al. 2001).
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To understand population dynamics folly, it is also relevant to investigate how the dif­

ferent demographic processes like survival, migration and reproductive success, relate 

to changes in abundance, taking into account the specific ecology of a species of inter­

est. Some species may act as indicators, with monitored changes in abundance or de­

mographic rates providing early warnings of changing conditions in ecosystems that 

are difficult to study directly (Einoder 2009). Finally, the scientific and applied interest 

often lies in understanding what intrinsic or extrinsic factors drive the variations in the 

different demographic parameters.

To address these various issues, data collected in the field are analysed using statistical 

models matched to the type of data and the particular application or question to an­

swer. It is within this context that this thesis is developed.

1.1 Thesis motivation: the multi-species perspective

The motivating example for this thesis is a long-term data set collected from an inten­

sively-monitored seabird colony at the Isle of May, off the southeast coast of Scotland. 

This rich data set contains information about different aspects of demography for sev­

eral species of seabirds that share physical space and resources during the breeding 

season. It also contains island-wide counts of the breeding populations, some of which 

have suffered drastic changes over the last 30 years.

The monitoring of demographic parameters in wildlife populations is nowadays gener­

ating a wealth of valuable information for ecology and conservation and recent dec­

ades have seen a corresponding proliferation of statistical models, as we will see in 

section 1.4. However the potential to integrate different types of data has not been fol­

ly exploited, with the majority of these models targeted at analysing single demo­

graphic parameters for individual species (Lebreton et at. 1992; Williams, Nichols & 

Conroy 2002), although approaches such as integrated population modelling (Besbeas, 

Freeman & Morgan 2005), which we will see later, jointly estimate several parameters 

in a single-species analysis. Data from several species have recently been combined in 

models to study population trends (Sauer & Fink 2002) or species richness 

(multispecies occupancy models, Russell et at. 2009) but demographic modelling has 

conventionally been carried out on a single-species basis with comparisons between
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different species being made a posteriori (e.g. Sandvik & Erikstad 2008; Cury et al. 

2011). This is largely the case for the Isle of May monitoring program. During the 

several decades of data collection at the Isle of May, many scientific studies have been 

published on different aspects of the species’ ecology (numerous references to such 

studies appear throughout the thesis), but most analyses have been carried out inde­

pendently for different species (with the exception of Frederiksen, Mavor & Wanless 

2007), and integrated population modelling has only been done for one of the species 

(Reynolds et al. 2009).

However, with environmental conditions changing rapidly, there is a need to move on 

from the ‘single-species vacuum’ (Sabo 2008; McCarthy 2011) and develop multi­

species approaches that provide insights into how communities respond to environ­

mental drivers. Species exist within the context of communities and ecosystems, and 

when populations of different species are sympatric they are exposed to biotic interac­

tions and the same abiotic environment (Bcgon, Townsend & Harper 2006). Some 

species may react in a similar way to their common environment, showing synchrony 

in population trends or in the temporal variation of certain demographic parameters 

such as survival. The underlying cause of synchrony between species is usually not 

evident, with hypotheses suggesting shared stochastic effects, such as weather 

(Hawkins & Holyoak 1998) and the response to common predators (Raimondo et al. 

2004). The study of a species in a community in isolation may lead to only a partial 

understanding of their ecology (McCarthy 2011).

Synchrony between sympatric populations of different species has received less atten­

tion compared to synchrony between allopatric populations of a single species 

(Raimondo et al. 2004). The relatively few multi-species examples to date typically 

address synchrony in abundance through the study of time-series of population size 

(Ranta, Lindstrom & Linden 1995; Swanson & Johnson 1999; Raimondo et al. 2004; 

Mutshinda, O'Hara & Woiwod 2011) or are sometimes dedicated to understanding 

mechanistic predator-prey interactions (New 2009). In general, investigating the 

mechanisms underlying population change is a difficult task when studying time series 

of abundance alone, and the incorporation of demographic parameters such as surviv­
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al, reproductive success and dispersal probabilities is often key in understanding such 

mechanisms (Loison et al. 2002).

The motivation for this thesis is to study the demography and population variations in 

a breeding community that consists of several species of seabirds, looking at multi­

species synchrony in different demographic aspects and investigating when possible 

the role that climate-related parameters can play as synchronising and desynchronising 

agents. The ideas of multi-species synchrony and joint modelling of several species arc 

therefore recurrent throughout the thesis, and culminate in a multi-species integrated 

population model, where all the available data are combined in a single model. Alt­

hough all modelling revolves around the Isle of May seabird data set, we note from the 

start of the thesis that the framework and ideas discussed are equally valid for other 

species assemblages, although small adaptations of the models may obviously be re­

quired in some cases depending on the species’ characteristics.

In the remainder of this chapter, we provide background on several topics relevant to 

the thesis. The following section introduces in more detail the Isle of May and the sea­

bird species considered. We then give a general overview of environmental influences 

on seabird demography, existing statistical models to study animal populations and 

demography, and the Bayesian framework, the predominant form of inference in this 

thesis.

1.2 The Isle o f May seabird colony

1.2.1 The seabird breeding community at the Isle o f May

The Isle of May (Figure 1-1) is a small island located off the south-east coast of Scot­

land, in the outer Firth of Forth (56°11TSI, 2°34'W). It is an important breeding site for 

grey seals and several species of seabirds, as well as stop-over for passerines during 

migration. The island is owned by Scottish Natural Heritage (SNH) and managed as a 

National Nature Reserve.
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Figure 1-1 Aerial view of the Isle of May, looking north, showing the high cliffs in 
the western side, the lower-laying eastern shore and the grassy top of the island. Pho­
to PA Macdonald/ SNH.

Eleven species of seabirds regularly breed at the Isle of May. This thesis concentrates 

on five of them (Figure 1-2), including some of the most numerous. The species con­

sidered are

(i) three closely-related auk species (Family Alcidae): the Atlantic puffin Fra- 

tercula arctica (L.), the common guillemot Uria aalge (Pontoppidan) and 

the razorbill Alca torda L.;

(ii) a gull (family Laridae), the black-legged kittiwake Rissa tridactyla (L.), in 

many ecological aspects more similar to the three auks above than to its 

larger Larus relatives;

(iii) the European shag Phalacrocorax aristotelis (L.), a species of cormorant 

(family Phalacrocoracidae).

For simplicity, in the rest of the thesis we refer to these species as puffin, guillemot, 

razorbill, kittiwake and shag respectively. These species are selected for analysis be­

cause in each case long-term data sets are available for different demographic aspects, 

and because they share many traits of their life history and ecology.
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Figure 1-2 Pictures of puffin (a), guillemot (b), razorbill (c), kittiwake (d) and shag (e) 
at the Isle of May. Note the visible rings in the kittiwake and shag.
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Other seabird species that breed at the Isle of May include common and arctic terns 

(,Sterna hirundo and S. paradisaea; family Stemidae), northern fulmars Fulmarus gla- 

cialis (family Procellariidae), and three species of large gulls (family Laridae), herring 

gull Larus argentatus, lesser black-backed gull L. fuscus and great black-backed gull 

L. marinus. The latter three regularly predate on chicks of the other species; the last 

also kills adult and immature auks and kittiwakes.

Like many other seabirds, the five focal species have life-history traits characteristic of 

K-selectcd species (MacArthur & Wilson 1966): they are long-lived, with high adult 

survival, delayed recruitment, low productivity and typically invest great effort and 

time in the care of their young (Gaston & Jones 1998; Harris, Wanless & Rothery 

2000; Parsons et al. 2008; Harris & Wanless 2011). They also show high colony fi­

delity once recruited into a breeding population but, although philopatry is high, some 

young reared on the island emigrate to breed elsewhere.

The five species also share a common prey base during the breeding season, which 

around the Isle of May consists mainly of small, lipid-rich, shoaling fish such as the 

lesser sandeel Ammodytes marinus and sprat Sprattus sprattus (Frederiksen et al. 

2006; Daunt et al. 2008). The three closely related auk species in particular have 

broadly similar life histories and feeding ecologies (Gaston & Jones 1998). They all 

lay a single egg, are wing-propelled pursuit divers that feed on fish during the breeding 

season and transport food back to the chick in the bill. In contrast, kittiwakes and shags 

have multiple egg clutches, and also have different foraging strategies, with kittiwakes 

being surface-feeders while shags dive to the sea bottom propelled by their feet; both 

species feed their young by regurgitation (Frederiksen et al. 2006; Parsons et al. 2008). 

One aspect that sets the guillemot apart from the other two auk species is that only a 

single prey item is brought back per foraging trip. Razorbills and puffins bring back 

both single fish and multi-prey loads, with the puffin able to carry more than 50 items 

at a time (Harris & Wanless 2011).

Regarding the selection of breeding sites, there are marked differences among species. 

Puffins are the only species of the set that breeds in burrows, excavated in the grassy 

slopes on the top of the island (Harris & Wanless 2011). The other species are associ­
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ated with the cliffs and rocky areas. However, while kittiwakes and shags build nests, 

guillemots and razorbills lay their egg directly on the ledge (Gaston & Jones 1998). 

There are also differences in breeding strategies such that guillemot and razorbill 

chicks only spend about three weeks at the colony, completing their development at 

sea (Harris, Webb & Tasker 1991), whereas the other species feed their chicks for 

much longer and the young are independent by the time that they leave the colony.

Outside the breeding season the species disperse to the open sea away from the breed­

ing colonies, except for shags that remain largely coastal with some birds remaining 

close to the Isle of May (Daunt et al. 2006). Kittiwakes have the widest dispersal 

range, reaching as far as the Canadian arctic (Bogdanova et al. 2011). Regarding the 

adult auks, although traditionally thought to have largely overlapping overwintering 

distributions (Wemham et al. 2002), recent work with geolocation loggers at the Isle 

of May suggests a larger separation outside the breeding season, with puffins predom­

inantly in the north-western North Sea (with some individuals making excursions into 

the Atlantic) and guillemots and razorbills showing a more southerly distribution, 

spending time in the southern North Sea, sometimes moving into the English Channel 

(M. P. Harris, personal communication).

Table 1-1 compares the five focal species, highlighting the similarities and differences 

between them.

1.2.2 Data collection at the Isle o f May

The Isle of May is one of the four ‘Key Site’ seabird colonies in UK’s Seabird Moni­

toring Programme (together with Fair Isle in Shetland, Canna in north-west Scotland 

and Skomer in Wales), where detailed monitoring of abundance, breeding success and 

adult survival is carried out (Mavor et al. 2008). Fieldwork on the Isle of May is car­

ried out by researchers from the Centre for Ecology & Hydrology (CEH) although 

most population counts are made by SNH staff.

Seabirds possess some characteristics that facilitate the monitoring of their abundance 

and demography. Although most species disperse over large areas during the winter, 

the majority are colonial during the breeding season so that the adult population is
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concentrated in a few well-known locations. They are then available for census, ring­

ing and monitoring of breeding success and other aspects of their life history. Seabirds 

being long-lived species, the effort invested in marking (e.g. ringing) can provide in­

formation on individuals for many years, compared to most short-lived passerines.

Table 1-1 Comparison of some of the traits that characterise the five seabird species 
analysed in this thesis. ‘Prey load’ refers to the amount of fish that each individual 
can bring to the chicks in their bill.

Atlantic
puffin

Common
guillemot Razorbill

Black-legged 
kittiwake

European shag

Family Alcidae (auks) Laridae (gulls) Phalacrocoracidae
(cormorants)

Breeding sites burrows cliff ledges

Nest burrow no yes

Clutch size 1 egg up to 3 eggs up to 4 eggs

Fishing style pursuit-diver surface-feeder bottom-diver

Underwater
propulsion

wing-propelled — foot-propelled

Prey load
multiple- 

prey loader
(bill)

obligate 
single-prey 
loader (bill)

facultative 
multiple- 

prey loader 
(bill)

multiple prey (in stomach)

Winter
dispersal

wide distribution very wide 
distribution

mostly coastal

At the Isle of May, breeding adults of unknown age of all five focal species have been 

ringed, providing rich data sets of resightings that span over 20 years. Individuals of 

some of the species have also been ringed as chicks, especially a large number of guil­

lemots; in this thesis we model their live-resightings and ring-recoveries. Breeding 

success has also been monitored at some plots within the island, as a representative 

sample of the complete population. A more detailed account of the data sets is given 

when these are used in the thesis.
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Abundance is monitored by counting the number of nests or breeding pairs, which is 

easier than attempting to count all individuals (Einoder 2009). Complete colony counts 

are carried out annually except for puffins (approximately every five years, within the 

time period modelled in this thesis). Puffin burrows are difficult to count, given the 

possibility of double entrances and the confusion with rabbit burrows; the protocol fol­

lowed is described in Harris & Wanless (2011).

As already mentioned, many studies have been carried out at the Isle of May on differ­

ent aspects of these species’ ecology. Despite this wealth of information, to date data 

integration for different aspects of demography has only been performed for the com­

mon guillemot (Reynolds et al. 2009); in this thesis, we construct integrated popula­

tion models for the first time for puffins and razorbills, as well as for the three auk 

species simultaneously (Chapter 5) which to our knowledge constitutes the first multi­

species IPM of any kind.

1.3 Environmental influences on seabird demography

1.3.1 Climatic and oceanographic influences

Environmental covariates are known to influence demographic parameters in many 

species and have been shown in some cases to be responsible for inter-specific syn­

chrony (Hawkins & Holyoak 1998). For North Atlantic seabirds, studies of survival 

often include covariates related to two oceanographic factors, the North Atlantic Oscil­

lation (NAO) and the temperature at the sea surface (SST):

(i) The winter NAO index is a much-used indicator of climatic conditions 

over north-western Europe and has been shown to explain ecological pro­

cesses (Stenseth et al. 2003), including survival of puffins, guillemots and 

razorbills (Harris et al. 2005; Sandvik et al. 2005; Grosbois et at. 2009). 

For this study, we used the Hurrell station-based extended winter (Decem­

ber to March) NAO index1 (‘wNAO’).

wNAO values obtained at http://www.cgd.ucar.edu/cas/jhurrell/indices.html

http://www.cgd.ucar.edu/cas/jhurrell/indices.html
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(ii) Several different indices based on SST averaged over different areas and 

seasons have been used in relation to the species considered here (Harris et 

al. 1997; Harris et al. 2005; Sandvik et al. 2005; Grosbois et al. 2009). For 

this study, monthly SST values were averaged for an area of 10 cells 

around the Isle of May, on a grid of l°xl°. We used the average over Janu­

ary to May which corresponds to the spawning season and larval period of 

the sandeel, following Harris et al. (2005).

Some impacts of climate are direct (e.g. winter wrecks due to adverse weather, 

Frederiksen et al. 2008a), but for most species at the Isle of May the relationship ap­

pears to be indirect, probably operating through the food chain and thus affecting the 

distribution, phenology and abundance of prey species, particularly sandeel (Amott & 

Ruxton 2002; Frederiksen et al. 2006). Such indirect effects often exhibit time-lags 

(Harris et al. 2005; Sandvik et al. 2005). To allow for potential indirect effects on de­

mographic parameters, in the different analyses we also considered time-lagged ver­

sions of wNAO and SST, denoted by a subscript indicating the number of lag years 

(e.g., ‘wNAOi’ indicates a l-year lag; subscript 0 therefore indicates the direct effect 

of the covariate).

1.3.2 Fisheries

Seabirds and humans sometimes compete for the same resources and negative (and 

also positive) effects of fisheries on some seabird species have been documented 

(Newton 1998). The Isle of May seabird species that we consider in this thesis depend 

in large part on sandeels during the breeding season. Sandeels are used to produce 

fishmeal and a commercial sandeel fishery started to operate after 1990 in the Wee 

Bankie area, an important feeding ground for the Isle of May seabird community. 

Frederiksen et al. (2004) showed that the presence of the fishery had a negative impact 

on kittiwake breeding success at the Isle of May, although the exact link remains un­

clear and may include changes in behaviour of sandeels. No clear impact on productiv­

ity of the other species has been detected (Frederiksen et al. 2008b), perhaps because, 

unlike kittiwakes, the auks and shags are able to reach prey deeper in the water col-

2 SST values from http://iridl.ldeo.columbia.edU/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/.monthly/.sst.

http://iridl.ldeo.columbia.edU/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/.monthly/.sst
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umn: kittiwakes are thought to be more sensitive to variations in prey abundance than 

the other four species considered (Furness & Tasker 2000). The commercial fishery 

was closed in 2000 by the European Commission to avoid stock depletion and poten­

tial effects on marine top predators (Frederiksen et al. 2008b) and remains closed up to 

present (2012). As in previous studies, we used the presence of the sandeel fishery as 

an explanatory binary variable for productivity in our analysis.

1.3.3 Intrinsic effects: density-dependence

Both climate and fisheries are extrinsic effects, but intrinsic effects like density- 

dependence may exist, for example through competition for high quality breeding sites 

and/or food (not only intra-specifically but also between species with similar traits). 

For instance, some studies provide indication that density may affect different aspects 

of the guillemot life-history, e.g. recruitment at the Isle of May (Crespin et al. 2006) or 

the timing of egg-laying in Skomer Island, southwest Wales (Votier et al. 2009).

However, since a preliminary analysis conducted on productivity (the most likely can­

didate to exhibit density dependence among the demographic parameters for which we 

have data) did not show a clear indication of such effect, we do not model density- 

dependence. In Chapter 7 we discuss a possible extension of the multi-species inte­

grated population model (proposed in Chapter 6) that provides a potential approach to 

modelling multi-species density-dependence in a statistically sound way.

1.4 Animal demography and population models

The development of statistical models to study animal abundance and demography has 

a long history that parallels the progress in general statistical methodology, and leads 

to the current variety and complexity of methods. We concentrate in this section on the 

different types of data (and related statistical models) that are used in this thesis. Re­

cent technological advances have made possible the collection of many other data 

types (e.g. radio-tracking devices, geo-locators and bio-loggers to monitor physiology 

and behaviour; Ropert-Coudert & Wilson 2005), some of which have been used for 

the Isle of May studies (e.g. Bogdanova et al. 2011) but are not analysed here.
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Unlike in many human demography studies, wild species are often notoriously diffi­

cult to find, follow and count. Imperfect detection is a recurrent concept in statistical 

models developed to study wildlife populations and demography, for example ‘detec­

tion probability’ in site-occupancy models (MacKenzie et al. 2006) based on un­

marked individuals, ‘recapture’ and ‘dead-recovery’ probabilities for marked individu­

als, or ‘observation error’ in state-space models.

1.4.1 Marking animals to study survival

The identification of individuals within a population provides the possibility to study 

demographic parameters such as survival or emigration/immigration. The identifica­

tion is commonly based on marks that distinguish individuals. These can be artificial 

marks fitted to the animals (e.g. ear-tags) or natural marks (e.g. the stripe pattern of 

tigers). In the case of birds, the most common type of mark used is rings (or ‘bands’), 

either using unique colour combinations in several rings or by engraved individual al­

phanumeric codes; both types are used at the Isle of May. Early work with marked an­

imals was oriented towards the estimation of abundance (Lincoln 1930, which actually 

did not require individual identification) but many models have been developed since 

then to study survival and related demographic parameters, relaxing the initial assump­

tion of population closure. In such open-population mark-recapture (‘MR’) studies (al­

so termed ‘capture-mark-recapture’, CMR), cohorts of individuals are marked and re­

leased at each time unit (e.g. year). Their fate is monitored over time, with attempts 

made to recapture or resight them at regular intervals; some individuals, although pre­

sent, may be missed at some of these occasions. The data therefore consist of the iden­

tity of the individuals known to be alive and present at the study site at each recapture 

occasion. The classic Cormack-Jolly-Seber model (Cormack 1964; Jolly 1965; Seber 

1965) estimates year-dependent survival and recapture probabilities. Many variations 

have been developed (e.g, age-specific parameters or the use of covariates), together 

with related methodological advances (e.g. goodness-of-fit tests); see reviews in Le- 

breton el al. (1992) and Williams, Nichols & Conroy (2002) for a more detailed ac­

count. As long as all data are collected at the study site, mortality and permanent emi­

gration are confounded and the estimated survival actually represents ‘apparent sur­

vival’. Several important extensions (e.g., robust design or multi-state MR models)
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have been developed, and are reviewed for example in Williams, Nichols & Conroy 

(2002), Roylc & Dorazio (2008), King et al. (2009) and Kery & Schaub (2012).

One particular type of model variation is relevant for the Isle of May data: in some 

cases, marks may be recovered when individuals die, creating a ‘ mark-recapture - 

recovery’ (MRR) data set that contains both live recaptures and recoveries of marks 

from dead animals. MRR models include a ‘recovery probability’ to account for the 

fact that not all marks are recovered. The so-called dead-recoveries were initially 

modelled separately (details of history in Catchpole et al. 1998) until Burnham (1993) 

introduced a model which combined them with live recaptures. This scheme was 

based on cohorts and thus did not allow e.g. for age-specific effects to be modelled. 

Catchpole et al. (1998) approached the combined modelling of live recaptures and 

ring-recoveries from the recapture histories, presenting a more general framework that 

had full flexibility in cohort and age structures. They describe a cohort-based model 

using sufficient statistics consisting of four matrices; the equivalent age-based model 

was presented in a Bayesian framework shortly afterwards (King & Brooks 2002). 

Catchpole et al. (1998) did not separate survival from permanent emigration; King & 

Brooks (2003) expanded the approach for the more general multi-site (or multi-state) 

case, introducing sufficient statistics now consisting of three matrices, for time-and- 

cohort as well as age-and-cohort models. A further case, with time-and-age structure, 

was described recently (McCrea 2012). Under the assumption of permanent emigra­

tion, multi-state models allow defining an ‘outside the study’ state so that fidelity can 

be estimated if ring-recovery data is collected from that state.

In the analyses of the Isle of May data, we use both the Cormack-Jolly-Seber MR 

model and the McCrea (2012) multi-state MRR model; a more detailed account of 

these models will be given in the respective sections (2.3.1 and 5.4.2).

1.4.2 Productivity

Productivity (also termed breeding success or reproductive success), another important 

demographic parameter, is generally defined as the number of offspring produced by a 

female per breeding attempt. Early work on nest success (Mayfield 1961) based on 

detailed frequent nest observations was directed at accounting for the fact that moni­
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tored nests are typically found after incubation has started and that the date of nest 

failure cannot usually be determined exactly; models for this type of detailed data have 

been refined since then (Heisey & Nordheim 1995).

In the case of the Isle of May, this sort of bias is not an issue as the fate of the moni­

tored clutches is known from laying until fledging. However, clutch and brood data for 

shag and kittiwake are limited to particular seasons when more intensive studies have 

been carried out, so the analysis of overall productivity in Chapter 3 uses total counts 

of chicks that fledge. Such data are available for all species and years analysed in the 

thesis, for a number of monitored nests which constitute a small percentage of the total 

breeding populations. Wc also use a more detailed data set that includes the total num­

ber of eggs laid, for guillemots and razorbills. Finally, kittiwake and shag clutch sizes 

have been recorded in some years and we look at changes in their distribution over 

time.

1.4.3 Abundance and integrated population models

At the Isle of May, abundance data consist of island-wide counts of breeding pairs. As 

population counts are not usually without some degree of error, they are often mod­

elled using a state-space approach (Buckland et al. 2004; King et al. 2009, p.307) that 

separates the system process (the true underlying abundance) from the observation 

process (our imperfect counts, conditional on the true state). Population models can be 

directly defined as a function of growth rates and fitted to count data. A more insight­

ful way to project year-to-year changes in abundance is to relate these to the demo­

graphic processes and age-structure of the population, acknowledging that the fluctua­

tion of population abundance over time is ultimately controlled by mortality, birth and 

migration, so that, in an open population, abundance at time t + 1 (Nt+1) can be relat­

ed to abundance at time t through the number of deaths D, births B, emigrated E and 

immigrated I individuals at that time

Nt+i -  Nt + Bt -  Dt + It -  Et .
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Such a population model can be represented by a matrix that relates the population 

abundance for the different age-classes from one time step to the next one (e.g. a 

Leslie matrix, Caswell 2001) and the appropriate stochastic structure.

When abundance of a population is modelled over time for a given species as a func­

tion of such demographic processes, demographic parameters such as survival, 

productivity and migration rates appear in the population model. The values for these 

parameters may be obtained in an ad hoc manner from the literature or previous anal­

yses. But if data are also collected to study specific demographic parameters (e.g. 

mark-recapture data for survival), the likelihood functions for the respective models 

share parameters with the likelihood of the population model. This is the basic idea 

behind ‘integrated population modelling’ (IPM), a concept that has been developed in 

the last decade (Besbeas et al. 2002) and which consists of the joint modelling of 

abundance and demographic parameters. In an IPM, the likelihoods of the different 

data sets and the population model are multiplied to form a joint likelihood. That is, 

the demographic parameters have to explain their specific data sets (e.g. adult survival 

and the MR data) but also the abundance variations observed in the population, to­

gether with the rest of the demographic parameters (e.g. breeding success). We note 

that when the likelihood for the IPM is constructed as the product of the likelihoods of 

the different data sets, we are implicitly assuming independence between the data sets; 

the impact of violating this assumption depends on the relative amounts of information 

contained in the different components of the model (Besbeas, Borysiewicz & Morgan 

2009; Abadi et al. 2010a; Cave, King & Freeman 2010).

As stated above, an IPM has to reconcile the estimates of demographic parameters 

with the population counts, obtained with observation error. If, as expected, the differ­

ent sources of data do not contain contradicting information, this joint modelling may 

provide a more precise estimation of the shared demographic parameters. This point is 

one of the main motivations of the IPM approach, the other one being that in some 

cases, depending on model structure and data availability, parameters can be estimated 

that could not be obtained from independent analyses of the different data sets 

(Besbeas et al. 2002).



1. Introduction 17

IPMs have been analysed in both the frequentist (Besbeas et al. 2002; McCrea et al. 

2010) and the Bayesian (Brooks, King & Morgan 2004; King et al. 2008; Abadi et al. 

2010b) frameworks. Since the publication of the first IPM, such models have grown in 

complexity, incorporating different data types, and have been applied in ecological and 

conservation studies; Schaub & Abadi (2011) provide a comprehensive review of the 

published literature and discussion about future research directions.

1.5 The Bayesian framework

Most of the analyses conducted in this thesis use the Bayesian framework for infer­

ence. The next sections provide background and explain the reasons why this choice 

was made.

1.5.1 The Bayesian andfrequentist approaches

Bayesian statistics are based on Bayes’ Theorem (Bayes 1763) which states that, given 

an observed data set d  and a statistical model P r(d |0 ) that describes the probability of 

d  as a function of a series of model parameters 0, we have

7T(0|d) =
Pr(d |0 ) 7r(0) 

Pr(d)
( 1 . 1 )

The prior distribution 7r(0) represents our prior belief about the parameters. This be­

lief is updated with the new data d to form the joint posterior distribution 7r(0|d), the 

probability of the model parameters conditional on the observed data. In Bayesian sta­

tistics the P r(d |0 ) term is often called the ‘likelihood’ by analogy with the likelihood 

lunction L(0|d) from which inference is carried out in the frequentist framework; alt­

hough mathematically equivalent, their interpretations are different. The normalising 

constant Pr(d) in (1.1) is often omitted as it does not involve the model parameters; 

the posterior is then proportional to P r(d |0 ) 7r(0).

The construction of the joint posterior distribution (up to proportionality) is mathemat­

ically trivial, but direct inference about the marginal posterior distributions 7r(0i|d) of
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each of the parameters of interest 0, is most often not possible as the other parameters 

must be integrated out, which is in general a mathematically intractable problem; this 

was the historical reason for the dominance of frequentist statistics over much of the 

XXth century (King et al. 2009).

The breakthrough arrived with the invention of Markov chain Monte Carlo (MCMC) 

(Metropolis et al. 1953). The increasing availability of computational power was then 

coupled with the development of several seminal MCMC methods (especially the Me- 

tropolis-Hastings algorithm (Hastings 1970) and Gibbs sampling (Geman & Geman 

1984)), but it was only after Gelfand & Smith (1990) that the existence and utility of 

MCMC was recognised by the wider Bayesian community. Details of the methods can 

be found in general references like Gelman et al. (2004), King et al. (2009) or Brooks 

etal. (2011).

The Markov chains in the MCMC simulate samples that are representative of the joint 

posterior distribution. Inference can be carried out by calculating summary statistics 

for any model parameter of interest from a sufficiently large number of samples from 

the MCMC chains so that the marginal posterior distribution is properly characterised. 

Usually point estimates are obtained using the mean or median of the samples, with 

‘Credible Intervals’ (the Bayesian equivalent to Confidence Intervals, although with 

different interpretation) being derived as measures of uncertainty around the point es­

timates. From the different alternatives available, we use medians and symmetric 95% 

Credible Intervals (defined as limited by quantiles 2.5% and 97.5%; King et al. 2009, 

p.86) when reporting our results.

It is important to ensure that the Markov chains have converged to the stationary dis­

tribution before using the MCMC samples to characterize the posterior. In practice this 

is achieved by discarding samples from the initial part of the chains, the so-called 

‘bum-in’ (King et al. 2009, p. 102). In order to establish the length of the bum-in peri­

od, trace plots of the MCMC samples can be explored visually, comparing several rep­

lications initialised at different over-dispersed starting values. A more robust approach 

uses the Brooks-Gelman-Rubin diagnostic (Brooks & Gelman 1998), which is based 

on an analysis of variance to detect differences between replications with different



1. Introduction 19

starting values; several implementations have been proposed, as well as other conver­

gence diagnostic tools (King et al. 2009, pp. 125-128).

The Bayesian framework provides some clear advantages. Unlike in frcquentist infer­

ence, model parameters have distributions, which often provide a more natural inter­

pretation in terms of probabilities. The propagation of uncertainty to derived parame­

ters is straightforward and does not rest on asymptotic assumptions as in the fre- 

quentist approach (Kery 2010). It is also an intuitive framework for hierarchical mod­

els (including state-space models) to be developed. Finally, the Bayesian approach is 

more flexible for handling missing data and random effects than the frequentist 

framework (Barry et al. 2003): in MCMC sampling, missing and random terms are 

seen as auxiliary variables which are simply updated with the rest of the MCMC 

chains of the model parameters (King 2012).

These advantages do not come without a cost. MCMC methods are computationally 

intensive and often require long analyses to ensure convergence of the chains and a 

proper exploration of the parameter space. Prior specification can also be tedious, even 

when vague priors are desired. Convergence of the MCMC chains has to be assessed 

formally. Also, model selection is not as well developed and tested as in the frequentist 

approach: although different methods exist in the literature (e.g. DIC, Bayes Factors or 

reversible jump MCMC; see King et al. 2009 for details), they may not be robust for 

all models (particularly hierarchical models with random effects) and are often sensi­

tive to the choice of priors. Equally, although some approaches exist (e.g. Bayesian p- 

values; see section 2.3.8), goodness-of-fit methodology is still in development.

1.5.2 Bayesian inference in ecology

Bayesian statistics are progressively seeing a more widespread use in ecology, as re­

flected in the increasing number of publications that use this framework for inference 

as well as a recent series of general manuals specific to its application in this field (e.g. 

McCarthy 2007; King et al. 2009; Kery 2010; Kery & Schaub 2012). Such broader 

acceptance has been at least partly motivated by the interest in hierarchical models, 

which separate the sampling process from the ecological process of interest, and the 

use of random effects in ecology (McCarthy 2011). In contrast, the possibility of in­
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corporating prior knowledge in the form of priors is rarely used, although there are of 

course many exceptions (see e.g. Peron, Nicolai & Koons 2012 for a recent example in 

an integrated population model). In our analyses, we use uninformative/vague priors, 

letting the inference be strongly based on the data through the likelihood.

The fact that most models in this thesis have random effects is one of the main reasons 

why we have chosen to do Bayesian inference in most cases. The second main reason 

is related to the use of integrated population models. In the originally proposed fre- 

quentist form, the construction of the likelihood for the population model is based on a 

Kalman filter (Kalman 1960), which requires certain assumptions of linearity and 

normality in the system and observation processes (King et al. 2009, p.312). Although 

multivariate normal approximations have been proposed when the sample sizes are 

large (Besbeas, Lebreton & Morgan 2003), one of the advantages of the Bayesian ap­

proach is that the population model is fitted without the need of a Kalman filter, relax­

ing the aforementioned assumptions. It is then also straightforward to obtain confi­

dence intervals for the abundance of the different age classes (Brooks, King & Morgan 

2004).

We started using program WinBUGS (Spiegelhalter et al. 2003), for the analyses in 

Chapter 2, but then switched to program JAGS v2.2.0 (Plummer 2003) for the model­

ling in the later chapters. Although both programs are largely based on the same 

MCMC methods and can run the same code with (in most cases) minimal or no 

changes, we found that in our application JAGS was substantially faster than Win­

BUGS, at least when analysing large models like the IPMs, for which there is an ap­

preciable amount of data (an example is given in section 5.4.3). We acknowledge that 

programming the MCMC algorithms as bespoke code (e.g. in M a t l a b  or C) may pro­

vide faster processing, but we believe that programs like WinBUGS and JAGS pro­

vide an excellent flexible platform for testing different variations in model structure.

Finally, we note that some of the analyses in Chapter 6 (sections 6.1 and 6.2) with 

MRR data were performed in the maximum-likelihood framework using program 

MARK (White & Burnham 1999). The main reason for this choice was the higher 

speed to fit a large number of model variations (for a standard model structure, availa­
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ble in MARK) and the possibility to do model selection based on Akaike Information 

Criterion.

1.6 Thesis structure

This thesis consists of five core chapters, apart from this introductory Chapter 1 and 

the concluding Chapter 7.

Chapter 2 discusses the different uses of the concept of synchrony in ecology and the 

modelling approaches associated with its study (section 2.1). We then describe a 

framework for the estimation of multi-species synchrony in demographic parameters 

(section 2.2) and we apply it to the study of synchrony in the year-to-year variations in 

adult survival in the three auk species that breed at the Isle of May (section 2.3), based 

on mark-recapture data.

In Chapter 3 we turn to another important demographic parameter: productivity. We 

start by quantifying synchrony in overall productivity for the set of five seabird species 

at the Isle of May (section 3.1), based on annual counts of the total number of chicks 

that fledge from a number of monitored breeding pairs. In the modelling of such data, 

we deal with the added complication that some of these species lay multiple-egg 

clutches. We demonstrate then how the framework is equally valid for studying com­

ponents of productivity when more detailed data are collected (section 3.2), using both 

simulations and data from guillemots and razorbills. In the last section (3.3), we model 

the distribution of clutch sizes over time for kittiwakes and shags, the two species that 

lay more than one egg. Clutch sizes are typically underdispersed compared to a Pois­

son distribution, and we quantify synchrony in the degree of underdispersion exhibited 

by these two species at the Isle of May.

In both Chapters 2 and 3 we look at the role that environmental covariates play in gen­

erating synchrony and asynchrony in different aspects of the demography of the spe­

cies considered.
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Chapter 4 explores in more detail the properties and performance of the multi-species 

synchrony framework, under different scenarios that may typically be encountered in 

ecological studies (section 4.1). The aim is to clarify the concept of multi-species syn­

chrony as defined in this thesis, and offer guidance for its use. Several extensions are 

also proposed (section 4.2) to address different questions or to apply the framework 

beyond the multi-species situation.

Chapters 2 and 3 apply the multi-species synchrony framework to a single demograph­

ic parameter. In Chapter 5 we integrate in a single model data not only for several spe­

cies but also for several demographic parameters, together with population counts. We 

start by describing the structure of independent integrated population models for each 

of the three auk species at the Isle of May (sections 5.2, 5.3 and 5.4). The three species 

are then modelled jointly (section 5.5), estimating multi-species synchrony in adult 

survival and overall productivity, in addition to population abundance and demograph­

ic parameters, in what to our knowledge constitutes the first ‘multi-species integrated 

population model’.

Chapter 6 departs from the multi-species theme that underlies the majority of the the­

sis, to consider an important issue of study design, with the aim of optimising the use 

of resources to monitor the guillemot population breeding at the Isle of May, which 

involves a substantial time investment to ring birds and resight ringed individuals. Af­

ter analysing the mark-resight-recovery data set collected from guillemots ringed as 

chicks and investigating the effect of two individual-level covariates in first-year sur­

vival (section 6.1), we explore the effect of reducing fieldwork effort (either ringing or 

resighting) on our ability to detect variations in first-year survival and make ecological 

inferences about this parameter with respect to the aforementioned covariates (section 

6.2). Finally we investigate in section 6.3 the effect of stopping completely the mark­

ing of guillemot chicks. In this context, we test the ability of a guillemot integrated 

population model to compensate for the lack of direct immature-related data, and the 

impact that the lack of such data would have on the estimation of abundance and adult- 

related demographic rates.
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All chapters conclude with a Discussion section, and we end the thesis with a general 

discussion and overview of future research in Chapter 7.

The analysis in Chapter 2 has been published in Methods in Ecology and Evolution 

(Lahoz-Monfort et al. 2011) and we recorded a short video at the Isle of May (Figure 

1-3), which is available at the journal’s website3. Part of the productivity synchrony 

analyses (sections 3.1 and 3.2) has been accepted for publication in Ecology (Lahoz- 

Monfort et al. in press). Two manuscripts are under preparation based on chapters 5 

and 6.

Figure 1-3 Stills from the video produced for Methods in Ecology and Evolution. 
Clockwise from top-left: the author at the Isle of May; combination of colours in 
three rings about to be fitted to an adult puffin; a slide explaining the use of random 
effects in the synchrony models; a group of adult guillemots on low-laying ledges.

3 http://www.methodsinecologyandevolution.org/view/0/VideoPodcastArchive.html

http://www.methodsinecologyandevolution.org/view/0/VideoPodcastArchive.html


2 MULTI-SPECIES SYNCHRONY IN ADULT

SURVIVAL

2.1 The concept o f synchrony in ecology

2.1.1 A wide range o f meanings

The term ‘synchrony’ has been applied in a wide variety of contexts in ecology. 

Broadly speaking, it conveys the idea that ‘a set of parameters vary over time in a sim­

ilar way’ (Vik et al. 2004). This is obviously a rather vague concept, as ‘in a similar 

way’ may encompass different aspects, and it can be applied to very different types of 

parameters.

In the context of the study of wildlife populations, most studies of synchrony in the 

value of a parameter refer to spatial synchrony of population abundance (or growth 

rates) at different locations (also termed spatial autocorrelation; Koenig 1999), where 

data consist of time series of abundance, usually for a single species (e.g. Buonaccorsi 

et al. 2001) although sometimes several sympatric species are considered (e.g. Ranta, 

Lindstrom & Linden 1995; Raimondo et al. 2004). Often the interest is in quantifying 

the spatial structure of synchrony, looking at how it varies with the distance between 

populations (Bjomstad, Ims & Lambin 1999). Fewer studies are dedicated to the study 

of synchrony in demographic parameters (e.g. Tavecchia et al. 2008).

Synchrony can be considered in other aspects of models. Without being exhaustive, 

we mention here two important possibilities found in the literature. Firstly, synchrony 

can be defined by the simultaneous occurrence of particular features of a parameter,
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such as peaks or troughs. This would happen for example when abundance fluctua­

tions only match for particularly good (peaks of abundance) or bad years (troughs), 

which may happen in highly non-lincar systems (Cattadori, Haydon & Hudson 2005). 

Synchrony may also refer to the timing of cyclic oscillations, indicating that the cycles 

tend to oscillate over time simultaneously, i.e. with the same pace of rising and falling. 

This ‘cyclic’ or ‘phase’ synchrony is often measured in terms of the parameter values, 

as in the coupled oscillations of prey-predator density (e.g., the classic case of 

snowshoe hare and Canadian lynx; Elton & Nicholson 1942), with new statistical 

methods developed recently for analysing such cases (e.g., Cazelles & Stone 2003). 

‘Phase synchrony’ can also be defined purely in the timing of events, without consid­

eration of amplitudes (e.g., degree of overlap of a part of the ovarian cycle of 

individual females in Tobler, Pledger & Linklater 2010), or even in the phase state in 

irregularly fluctuating parameters (e.g., state of the parameter trajectory: either 

‘increase’, ‘decrease’, ’peak’ or ‘trough’; Haydon et al. 2003). The quantification of 

‘phase synchrony’ and non-linear synchrony induced by extreme years requires specif­

ic statistical techniques and will not be discussed further in this thesis. We concentrate 

in the next section on the case of synchrony in the temporal variation of a parameter 

value, which is the closest to the cases discussed in this thesis.

2.1.2 The study o f synchrony in variations over time

Although synchrony is an interesting issue in ecology, limited attention has been dedi­

cated to the development of statistical techniques for quantifying it. Buonaccorsi et al. 

(2001) summarise a range of options available in the context of spatial synchrony of 

population density over time, for one species. For comparing two time series, these 

include

(i) Correlation among series values, which is often calculated from data or 

point estimates (e.g., population densities, Buonaccorsi et al. 2001), alt­

hough process correlation can also be modelled (Reynolds et al. 2011). 

Pairwise cross-correlation, which can cope with time-lags between time se­

ries, has been used to explore synchrony between populations (Ranta, 

Lindstrom & Linden 1995);
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(ii) Correlation in residuals (e.g. after fitting an autoregressive model). This 

option has also been applied after ‘detrending’ (accounting for a linear 

trend) or removing periodic oscillations;

(iii) Measures based on changes, with several possibilities for quantifying how 

the series move in the same direction (‘up’ and ‘down’). These link also 

with ‘phase synchrony’, where more sophisticated modelling has been pro­

posed (e.g., using a Markov model to characterise moves between phase 

states of the system; Haydon et al. 2003);

(iv) Coincidence of peaks in the time series.

Different measures of synchrony applied to the same data set will give numerically 

different results that may even be conflicting (Buonaccorsi et al. 2001) as they may 

have different interpretations. With regard to measuring synchrony in more than two 

series, the typical way to proceed has been to average the corresponding values of the 

chosen pairwise measure of synchrony.

Increasingly sophisticated statistical models to study ‘synchrony’ have been published 

in recent years, using random effects to obtain a model-based estimation of covari­

ances. In the multi-species context, Mutshinda, O'Hara & Woiwod (2011) study abun­

dance in a community of moths, using fixed effects for modelling inter-specific densi­

ty-dependence and species-specific random effects with cross-species covariances for 

the unmodelled stochasticity. Related to this concept but in a rather different context, 

Cam et al. (2002) and Wintrebert et al. (2005) use individual-level random effects 

(‘frailty’) to estimate covariance between two demographic parameters (adult survival 

and breeding propensity) at the individual level; we will return to the issue of multi­

parameter synchrony in section 4.2.6. Although none of the studies mentioned in this 

paragraph present their models in terms of ‘synchrony’ explicitly, we note that pair­

wise covariances can be seen as a form of ‘synchrony’ (Buonaccorsi et al. 2001). We 

nevertheless emphasize that in all these cases the study of ‘synchrony’ has been lim­

ited to pairwise relationships, compared to the approach used in this thesis and pre­

sented in next section, where the concept of ‘synchrony’ is based on a comparison 

with the common signal to all species in the community. Both approaches represent
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different ways of addressing the issue of ‘synchrony’ and provide different insights 

which may be useful depending on the particular aspect of interest in a study.

We propose a statistical framework for studying synchrony in the year-to-year varia­

tions of a demographic parameter at a multi-species level, through the use of random 

effects. Between-year variance in the demographic parameter is divided into a ‘syn­

chronous’ component, that represents the common response of all species considered, 

and ‘asynchronous’ components, specific to each species. We also estimate the contri­

bution of environmental covariates to each of these components. We note that the 

framework can be readily applied to more than two species, which sets it apart from 

other multi-species classic methods of synchrony that rely on pairwise species compar­

isons. The framework is based on that presented by Grosbois et al. (2009) for studying 

synchrony in adult survival for a single species at a multi-population scale. The multi­

species framework is conceptually different from the multi-population model in its 

interpretation (in the later, synchronous and asynchronous components may be related 

to factors acting at large- and local geographical scales respectively). Furthermore, we 

relax the variance structure in the model to accommodate differences among species.

2.2.1 Synchrony model and derived parameters

Given a demographic parameter 6s(t) (e.g. adult survival or productivity) for species 

s and year t, we define a structure with two levels of normally-distributed annual ran­

dom effects: a year effect 5(f), common to all species considered, and ‘species- 

specific’ effects es( t) that represent an interaction between species and year. The ran­

dom terms are conveniently defined on a transformed domain which, in the common 

case of demographic parameters that are probabilities, can be a logit link function

2.2 Multi-species synchrony framework

(2.1)
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Other demographic parameters may require different link functions (e.g. log for ‘mean 

number of fledged chicks per nest’ in section 3.1.2). The fi0s terms are species-specific 

intercepts on the logistic scale that account for possible differences in the baseline val­

ue of 9 for the different species. The random terms are assumed independent of each 

other and of the other random effects. All are normally-distributed with zero mean

Sit) ~ N(0, aj),  es(t) ~ N(0, as2). (2.2)

This structure of random effects allows us to partition the overall variance of each spe­

cies into a component that is common to all the species in the set analysed (‘common’ 

or ‘synchronous’) and components that are specific to each species (‘species-specific’ 

or ‘asynchronous’). In the proposed model, the parts of the likelihood that relate to 

each species share the common random terms S(t). The model is fitted to the multi­

species data and the random effect variances rr| and a 2 are estimated, together with 

the other model parameters. An index of synchrony Is G [0,1] can then be defined for 

each species s in the set based on the estimated variances (as done in Grosbois et al. 

2009 in a single-species multi-population framework)

Is
°8

o l  + a f
(2.3)

These indices represent the synchrony of species s with the rest of the species, that is, 

the proportion of the year-to-year variation in 6S that is synchronous to all species in 

the set. When is large compared to a 2, then Is is large and the between-year varia­

tion for that species is then mostly synchronous with the other species.

Covariates can be introduced for each species 5 on the logistic regression of the pa­

rameter of interest 9 , resulting in a mixed-effect model

logit(0s(t)) = Pos + fs(cs l (t), . . . ,c sn(t)) + S(t) +  es(t). (2.4)
The species-specific function fs{.) specifies the relationship with the covariates {csi}. 

It can for example be a linear regression (as used in this thesis) or a nonparametric re­

lationship (e.g. splines, Gimenez et al. 2006). When covariates have explanatory pow-
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er for a species s, we expect a reduction in either or both variances (a$ and cxs2), de­

pending whether the covariatc explains part of the variation of the common or/and 

species-specific terms. We define as ‘total variances’ (¿rj (tot) and <rs2(tot)) those es­

timated from the model without covariates, and ‘residual variances’ (¿¿(res) and 

er2(res)) those estimated from the model with covariates. A new set of indices of syn­

chrony can be defined as in (2.3) based on the residual variances from the model with 

covariates, which now represent the proportion of the synchronous/asynchronous vari­

ation in 6 not accounted for by the covariates that is common/specific to each species 

in the set. Finally, in order to evaluate the effect of the environmental covariates in 

generating synchrony and asynchrony in 0, we use the residual and total variances es­

timated independently from models with and without the covariates respectively, fol­

lowing the method in Loison et al. (2002) and Grosbois et al. (2009)

QgOes)
tfj(to t)'

%2(re s )
¿s2 (tot) '

(2.5)

These coefficients represent the contribution of the environmental covariates to the 

inter-specific synchronous S(t)  and asynchronous £s(t) components respectively, that 

is, to synchronising and desynchronising the year-to-year variations in parameter 0 in 

the set of species.

2.2.2 Synchrony aspects not considered by the framework

It is worth clarifying what the definition of synchrony implied in this framework does 

not mean. First of all, synchrony is defined in terms of the year-to-year variation so 

that even in a highly synchronous set of species, the demographic parameter of interest 

(on the probability scale) would not necessarily be the same for all species over time, 

as these may have different baselines (intercepts /?0s). We note also that, since the ran­

dom terms are defined on the logistic scale, the actual magnitude of the year-to-year 

variations may appear quite different once they are transformed to the probability 

scale, for species with different intercepts /?0s. In relation to this, we note that 0S, the 

average value of the parameter 8S (on the probability scale) is in general not equal to

the inverse logit of /?0s, '•e- ëP0s = ( l  + e P°s) , given the nature of the logit link



2. Multi-species synchrony in adult survival 30

function: although random terms have mean zero on the logit scale, they may translate 

to probabilities asymmetrically distributed around 6S except with /?0s close to zero.

The concept of synchrony that we consider is not specifically designed to respond to 

periodic oscillations, as the use of random effects implies that the model sees the order 

of the years as arbitrary. Actually, an analysis would give the same synchrony results 

if years were reordered in any random way, as long as the order is kept the same for all 

species (Figure 2-1, a & b). Alternative methods based on the concept of ‘phase syn­

chrony’ are better designed to deal with oscillations. Time-lags in species’ responses 

(e.g. prey-predator coupled systems) will also cause the synchrony framework to fail 

to identify a strong common signal among species (Figure 2-lc), in the same sense as 

we would not find high correlation between the time series. Again, other techniques 

(‘phase synchrony’ methods or cross-correlograms) may be better suited to deal with 

such situations.

Another case worth discussing is that created by species that show negative correlation 

in the values of their parameters (there will be an illustration of such a case in Chapter 

4, Figure 4-10). Such a relationship cannot be easily decomposed into common and 

species-specific terms and therefore the model will estimate a low common variance 

and low synchrony. We note also that synchrony takes into account actual values, and 

the model will not simply see a strong synchrony in two species with highly correlated 

values but very different magnitudes (Figure 2-Id). In that example, the species with 

low variance may be seen as highly synchronous (its variations can be explained as 

common with the other species), while the species with high variance will have a low 

index of synchrony, given that most of their variation is not seen as common with the 

other species. In these last examples, the synchrony framework we use does not define 

all the species as ‘synchronous’ given that, despite being obviously affected by a 

common effect, strictly speaking they do not react in the same direction or with similar 

strength (magnitude). If a study is concerned with a concept of synchrony that consid­

ers such effects as synchronous, then estimating correlations may provide a better ap­

proach. This could be achieved for example by specifying a model with only species- 

specific random terms distributed as multivariate normal, and estimating the covari­

ances. We note nevertheless that covariances and correlations are defined pairwise,
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while the method we use quantifies synchrony in the complete set of species, which is 

a different concept (although sometimes related, as we will see in section 4.1.6). We 

note finally that pairwise correlations do not allow the quantification of the effect of 

covariates in generating synchrony and asynchrony.

Figure 2-1 Illustrative examples (not based on real data) of variations over time of a 
demographic parameter for two species: the same amount of synchrony would be es­
timated in (a), with two in-phase oscillating species, as in (b) where the years have 
been reordered (equally for both species); (c): same as (a) but with a time-lag of 7 
years in one of the species; (d) high correlation but very different variances.

2.3 Multi-species synchrony in adult survival

We demonstrate the framework described above to explore multi-species synchrony 

with an application to adult survival, using 25 years of mark-resight data for the three 

auk species at the Isle of May, the Atlantic puffin, the common guillemot and the ra­

zorbill. These three auk species have broadly similar life histories and ecology (Gaston 

& Jones 1998) and birds from breeding populations on the Isle of May show at least 

partially overlapping winter distributions (Wemham et al. 2002): they are thus likely 

to be exposed to similar environmental stochasticity. Consequently we would expect 

some degree of synchrony in their response in terms of the temporal variation of de­
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mographic parameters. Adult survival probabilities for Isle of May puffins, guillemots 

and razorbills have previously been analysed separately (Harris et al. 1997; Harris, 

Wanless & Rothery 2000; Crespin et al. 2006), but to date no attempt has been made 

to integrate survival data for these species, and in particular, to look for synchronising 

and desynchronising agents.

2.3.1 The Cormack-Jolly-Seber model

Our multi-species adult survival synchrony models are based on the standard open- 

population mark-recapture (‘MR’) models for estimating apparent survival and recap­

ture probabilities (reviewed in Lebreton et al. 1992). In the case of the seabirds at the 

Isle of May, recaptures are actually resightings so we will refer to ‘resight probability’. 

As the birds are ringed as breeding adults, age is unknown and cannot be modelled. 

We therefore use the Cormack-Jolly-Seber model (Williams, Nichols & Conroy 2002, 

p.419), which has year-dependent survival and resight probabilities, defined as

(i) apparent adult survival probability 0 ( t) : the probability that a bird alive at 

the resight occasion of year t survives until the resight occasion of year 

t + 1;

(ii) resight probability p(t): the probability that a bird that is alive in year t is 

resighted during resighting occasion t. We note that often p (t) is defined 

with respect to year t = 2 ,...,T , instead of resighting occasion t = 

1 , . . T — 1. We prefer the index starting at 1 as it offers a more natural 

coding for indexing the vector of year-resight probabilities.

We denote this model as {0(t)p  (t)} or ‘CJS’. In the case of ringed seabirds at the Isle 

of May, the ‘resight occasions’ refer to searches carried out throughout the colony dur­

ing the breeding season. A number of birds /?, are marked (ringed) and released over a 

series of years and attempts are made to resight them in successive years. An individu­

al recapture history is constructed with the information collected for all birds, where 

‘0’s denote that an animal was not seen and ‘ 1 ’s otherwise. Such individual histories 

can be modelled directly, either by constructing a likelihood for the sequence of 0’s 

and l ’s for each bird (King et al. 2009, p.25) or alternatively as a state-space model,
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where a series of latent variables model the state (alive or dead) of each animal at each 

recapture occasion (King et al. 2009, p.339).

When no age-dependence or individual effects are to be modelled, it is common to 

summarise the detection histories in so-called ‘m-arrays’ (Figure 2-2). The m-array 

value rriij represents the number of birds released in year i that were seen alive for the 

first time at resight occasion j. It is quite possible that some of the RL birds released in 

year i are never resighted during the whole period of the study; these can be calculated 

as m i T = Rt — XI l f  m ik = Rt — r¿. Such birds may, or may not, be still alive.

Released 1

Resight occasion j  

2 3 7 - 1

Not

resighted

-  1 «i ”4,2 "*i,3 mi,r-i m l,TG
•i 2 Ri 0 m2,2 m2,3 . . . m 2 ,T - l m 2,T
o
o 3 «3 0 0 m 3,3 . . . m 3 , T - l m 3,TC/2
0>

t - 1 Rt- i 0 0 0 m T_1 y

Figure 2-2 Mark-recapture history summarised as an m-array, with 7 — 1 release oc­
casions and 7 — 1 resight occasions. The my represent the number of birds released 
in year i that are resighted alive for the first time in resight occasion j.

The cell probability qtj, that is, the probability of a bird released in year i being seen 

alive for the first time at resight occasion j ,  is

l i j - n\  k=i
[0(/c){ 1 -  p(fc)}] J  0O')p O'). j  < T

T - 1

q í J  = i  -  ^  qa-
i=i

(2.6)

In practice, to avoid the product of small numbers giving problems in the implementa­

tion, equation (2.6) for j  < T  can be written as
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qi,j = exp [log(</>(/c){l ~ p(A:)})] I (p(j)p(j), j  < T-
(2.7)

Each row of the m-array is independently distributed as multinomial, with Rt released 

birds distributed in T possible outcomes (including rt birds never resighted), according 

to cell probabilities c/i ;

For 7 — 1 release years and 7 — 1 resighting occasions, and omitting the combinatori­

al terms that do not include the parameters, the product-multinomial likelihood of the 

complete data set (m-array m ) can be written as a function of parameters </> = 

(0 (t): t = 1,.... 7 — 1} and p  = (p(t): t = 1,..., 7 — 1} as

The Cormack-Jolly-Seber model makes a series of assumptions (Williams, Nichols & 

Conroy 2002):

(i) for a given resight occasion j ,  all individuals in the population have the 

same probabilities cf)(j) and p(y);

(ii) The marks (rings in our case) are neither lost nor overlooked, and are rec­

orded correctly;

(iii) The resight occasions are instantaneous (or very short periods). When cap­

tures happen, birds are released immediately;

(iv) Emigration from the sampled area is permanent;

(v) The fate of each bird with respect of resighting and survival is independent 

of that of any other bird.

T - l  T

L(m\<t>,p) oc (2.9)
i = 1 j = i
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We assume that (ii) is true for the auks ringed at the Isle of May, and that resightings 

happen in a relatively short period of time of negligible mortality (iii), although obvi­

ously not instantaneously. The data set consists of resightings so that birds are not cap­

tured after the first (marking) occasion. Permanent emigration (iv) is confounded with 

true mortality in the CJS model, as in both cases individuals cease to be available for 

future resightings. Survival is therefore often termed ‘apparent survival’. For the Isle 

of May auk species, established breeding adults have high colony fidelity so that ap­

parent survival will be close to true survival. Finally, we will test the homogeneity as­

sumed in (i) in section 2.3.4.

2.3.2 Multi-species adult survival synchrony model

Likelihood functions can be constructed individually for each of the species involved 

in the model according to (2.9). Then common and species-specific year random ef­

fects can be added in the logistic regressions of adult survival for all species 5 = 

1 in a set and years t = 1 , . . . ,T — 1, using a logit link function as described in 

section 2.2 (where in this case 6 — 0 )

logit(0s(t)) = Pos + Si t )  + e s {t). (2.10)

The 8 terms correspond to the amount of between-year variation that is synchronous to 

all species considered, while the e s  terms characterise the asynchronous (species- 

specific) components. We extend the approach of Grosbois et al. (2009) so that the 

‘year x species’ random terms can have different variances for the different species 

(i.e. o j  are species-specific) and so the year-to-year variance in adult survival can be 

partitioned differently for different species.

Once the model parameters have been estimated, species-specific indices of synchrony 

in adult survival Is can be calculated based on the variances of the random terms, as 

described by equation (2.3) in section 2.2.1. These indices represent the proportion of 

year-to-year variance for each species that is accounted for by the common random 

effect 8( t ) .
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2.3.3 Mark-resight data o f adult auks

Between 1984 and 2007, 543 puffins, 831 guillemots and 153 razorbills were marked 

using a combination of three colour-rings that unequivocally identifies each marked 

individual. These were adults breeding in areas located in front of permanent hides. 

Resightings of these birds took place each year up to 2008. Individuals of all three 

species rarely breed more than a few metres from where they are marked (M. P. Har­

ris, personal observation), so resighting effort was mainly focussed on these areas alt­

hough regular searches were also made in all nearby areas. We assume that adults re­

main identifiable through their life.

2.3.4 Heterogeneity in resight probability

Before fitting the data in combination, we assess the goodness of fit (GOF) of the gen­

eral fully time-dependent Cormack-Jolly-Seber (CJS) model (</>(t)p(t)} with program 

RELEASE (Burnham et al. 1987), for each species individually. In this model, both 

survival and resight probabilities are allowed to vary from year to year. The GOF is 

very similar for all species studied: the general CJS model fits the data poorly, due 

mostly to the 2.C component (guillemot: j 2 = 173.49, d f  = 22; puffin: j 2 = 129.9, 

d f  = 22; razorbill: y 2 = 55.35, d f  — 17; all p-values < 0.001), which indicates 

heterogeneity in resight probability in the form of 'trap dependence’, i.e. birds have 

different probability of being resighted depending on whether they were seen the pre­

vious season. This effect has been previously reported for puffins at the Isle of May 

(Harris et al. 2005). Component 3.SR fits well for all three species (p-values > 0.9), 

showing no evidence of individual heterogeneity in adult survival, as noted in previous 

analyses of these species from the Isle of May (Harris, Wanless & Rothery 2000; 

Harris et al. 2005; Grosbois et al. 2009).

The trap-dependence in resight probability (Pradel 1993), detected for the three spe­

cies, is taken into account in the synchrony models by adding a 1-year trap- 

dependence structure in the following way: for each species s, the resight probability 

for individual i in year t, ps(i, t), depends through a logit link on a year-specific re­

sight probability Ps(t) and an additive term as that is only included if the individual 

was resighted in the previous occasion
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logit(ps( i ,0 )  = log = + a sr s(h 0 . (2.11)

where the indicator function 7s(i, t) takes value 1 if bird i was resighted in year t — 1, 

and 0 otherwise, and can be seen as an individual covariate for each capture occasion.

The resight probability in year t would be ps(t) = ( l  + g-PsCO-Os) ¡f the individu­

al was resighted in year t — 1 and ps(t) = ( l  + e~V s if it was not. The species- 

specific terms a s represent the amount of 1-year trap-dependence for each species 

studied. The multinomial likelihood in (2.9) has to be modified accordingly. Omitting 

the species subscript for simplicity, and denoting resight probability in ith recapture 

occasion as p(i) when the bird has not been seen the previous year, and p(i) other­

wise, the probabilities for the cells in the diagonal of the m-array will be (p t = 

0 (O p(i), t = 1,..., T — 1, as they represent birds known to have been seen the previ­

ous year. For cells above the diagonal the multinomial cell probabilities in (2.6) are 

now calculated as

7 - 1

Qi,j = 0 (O {i -  p (0 )  Y \  -  p m ]  0 0 X 0 -  j  < T
k=i+1

(2 . 12)

T - 1

7 = 1

All CJS MR models considered in the following sections have fully time-dependent 

resight probability with 1-year trap-dependence (heterogeneity) and these are denoted 

‘p ( t + /i) \

2.3.5 Environmental covariates for survival

We investigate the contribution of two environmental covariates in generating syn­

chrony and asynchrony in adult survival: winter NAO index (wNAO) and a local 

measure of sea surface temperature (SST). These indices are described in section 1.3. 

Following Sandvik et al. (2005) and Harris et al. (2005), we use both wNAO without 

time lag (‘wNAOo’X that reflects the direct effect of weather harshness on survival,
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and wNAO with a 1-year time lag (‘wNAOi’), that reflects the indirect effect of cli­

mate, possibly through the food chain. Equally, we include SST with no time lag 

(‘SST0’) and with 1-year time lag (‘SSTj’), that is, the average over January to May of 

the previous year (Harris et al. 2005).

2.3.6 Bayesian analysis

All models in this chapter are programmed in WinBUGS (Spiegelhalter et al. 2003). 

We first analyse the multi-species synchrony model without covariates, which we de­

note {(p(ß + S + e)p(f + h)} to indicate the dependence of (p on species-specific in­

tercepts (/?), common (5) and species-specific (£s) year random terms. We calculate 

indices of synchrony Is based on the estimated variances of the random effects. Figure 

2-3 displays a DAG with the relationship between all variables included in this model.

We then fit a model that includes the covariates described in section 2.3.5, looking at 

multi-species synchrony on the residual variation in adult survival. For simplicity, we 

use the same covariates for all three species, but this is in general not a restriction and 

species-specific covariates could be considered. The vector cov — {c1( c2, c3, c4) = 

{wNAO0, wNAOj , SST0, SSfy} in the models hereafter refers to the four covariates to­

gether, and we denote the resulting synchrony model as {(p(cov + Ö + e )p (t + /i)}. 

All covariate time series (1984-2008) are standardised prior to inclusion in the models 

by subtracting the mean of the series and dividing by its standard deviation. We verify 

first that the covariates do not have high correlation. For adult survival, we consider a 

logit link function and a linear regression, with the aforementioned set of four stand­

ardised covariates Cj and corresponding species-specific regression coefficients ßjs:

Using the estimates of residual and total variances of the random effects (from models 

with and without the covariates), we calculate the Cs and Cs coefficients as described 

in (2.5) which measure the contribution of the environmental covariates to the inter­

specific synchronous 8 and asynchronous £s components of the between-year vari­

ances, respectively.

4

(2.13)
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Figure 2-3 Directed Acyclic Graph (DAG) for the Isle of May 3-species adult surviv­
al synchrony analysis without covariates, model {(p (ß  +  S + s)p(t + h)}, where s is 
species and t  is years. Prior parameters have been omitted for clarity. Squares=data; 
circles=parameters to be estimated, of which grey circles=random effects; solid ar- 
rows=stochastic relationships; dotted arrows=deterministic relationships.

We note that, in their single-species multi-population model, Grosbois e t  al. (2009) 

use a single common covariate that takes different values for each colony, while in this 

study each common covariate has the same value for all the species considered (as the 

geographical location is the same), but each species might have a different combina­

tion of covariates.

For both analyses, the MCMC chains are run for 150000 iterations after a bum-in of 

100000 samples, storing the samples of one iteration out of three to avoid memory 

problems. Convergence is assessed with the Brooks-Gelman-Rubin statistic (Brooks & 

Gelman 1998), after starting three chains with dispersed initial values for all variables. 

The statistic suggests that convergence had been achieved after the 100000 samples of 

the bum-in. We use low information priors for all variables, to reflect the lack of prior 

knowledge
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(i) flat uniform priors for the regression coefficients /3is ~  U(—5,5) and trap- 

dependence coefficients as ~ U(—5,5);

(ii) vague normal priors for the year-spccific component of resight probabili­

ties p*s( t) ~ N(0,104);

(iii) flat uniform priors for the standard deviations of the Ô and £s random 

terms: a ~ U(0,3).

We conduct a prior sensitivity study for the random-effect variances by specifying 

conventionally-used vague inverse-gamma priors as an alternative to uniform priors, 

for the model without covariates. We also check marginal posterior distributions for 

the parameters with uniform priors to verify that the interval is not too restrictive.

2.3.7 Results

For the model that includes all the covariates, (cp(cov + Ô 4- e)p(t + h)}, estimated 

survival probabilities (Figure 2-4) differ substantially for the three species, although 

most values remain relatively high, as is typical for long-lived seabirds. Note that the 

size of the 95% credible intervals reflects the amount of data available for each spe­

cies, being widest for razorbill (153 birds) and very narrow for guillemots (831 birds). 

Survival is relatively stable over the years for guillemots, shows wider variation for 

razorbills, with pronounced peaks in a few particular years, while estimates for puffins 

arc intermediate. The estimated trap-dependence coefficients as arc all positive for the 

three species (Table 2-1) and therefore the probability of seeing a bird is higher if it is 

seen the previous year; this is usually termed ‘trap-happiness’. Using the estimates of 

as and p*s we derive the resight probabilities for the three species (Figure 2-5), for the 

case when a bird was seen the year before (p), and for when it was not (p). The ‘trap- 

happiness’ is evident in these estimates. Note that resight probability is one for the 

three species in the last year. When the study is repeated excluding 2008, this effect 

appears again associated with the last year, in this case 2007. This suggests that the 

survival estimates for the last year should be discarded, as they are biased low due to 

the boundary estimate in recapture probability. We note that the Cormack-Jolly-Seber 

model is parameter-redundant, even when trap-dependence in resight probability is
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included (Choquet & Cole 2012); the addition of random effects might make the mod­

el weakly identifiable.

b) 1.0

0.9

Guillemot
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year

Figure 2-4 Estimated apparent adult survival (medians and 95% CIs) from model 
{<p (c o v  + 5 + r)p (t + h)} for a) puffin, b) guillemot and c) razorbill. The dotted lines 
represent survival estimates from the fully time-dependent model {0(t)p(t + h)} ob­
tained with WinBUGS for each species separately, indicating a slight effect of 
shrinkage due to the random effects (more discussion in section 5.5.6).
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In the case of razorbill, four other years have resight probabilities estimated to be one. 

The number of marked razorbills is substantially lower than for the two other species, 

and these estimates reflect years for which all birds known to be alive the previous 

year were either seen or never seen again.

- h ( N < N C N < N < N ( N < N < N < N

Figure 2-5 Estimated resight probabilities (median and 95% Cl) for a) puffin, b) guil­
lemot and c) razorbill at the Isle of May, according to model {(p (c o v  + 5 + s ) p ( t  + 
h)}. Solid lines represent the values when the animal has been seen (captured or re­
sighted) the year before; the opposite case is shown with dashed lines.
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Most of the point estimates for the regression coefficients are below zero (Table 2-1), 

denoting a negative relationship between adult survival and the corresponding covari­

ate. Note that most of the 95% credible intervals span both sides of zero. In the par­

ticular case of 1-year time-lagged SST for razorbill, the regression coefficient (/?4) is 

very close to zero, indicating a lack of strong influence of that covariate on razorbill 

survival. The fact that some of the regression coefficients corresponding to the time- 

lagged versions of wNAO and SST are far from zero suggests that they also have an 

indirect effect on adult survival, acting possibly through the food chain (Harris et al. 

2005; Sandvik et al. 2005).

Table 2-1 Median (and 95% CIs) of the marginal posterior distribution of the regres­
sion and 1-year trap-dependence coefficients of model [cpÇcov + ô + s)p(t + h)}. 
For the covariates, regression coefficients whose 95% Cl excludes zero (or includes 
it very close to the interval limit) are marked in bold.

puffin guillemot razorbill
/?0 (intercept) 2.51 (2.22, 2.81) 2.68 (2.39, 2.97) 2.36 (2.02, 2.76)
A(wNAO0) -0.14 (-0.47, 0.18) 0.15 (-0.16, 0.45) 0.27 (-0.13,0.67)
/?2 (wNAOi) -0.19 (-0.56, 0.18) 0.08 (-0.27, 0.43) -0.43 (-0.91, 0.03)

&(SST0) -0.47 (-0.93, 0.02) -0.11 (-0.55,0.31) -0.46 (-1.06, 0.11)
M s s t j -0.31 (-0.75,0.11) -0.40 (-0.81, -0.01) -0.04 (-0.58, 0.48)

a 1.86(1.54,2.18) 2.94 (2.54, 3.35) 1.81 (1.22,2.41)

The inter-specific synchrony indices Is, calculated from the estimates of the full model 

{(p(cov + S + e)p (t + h)} and the model without covariates (0(/? + 8 + s)p( t  + 

h)} are shown in Tables 2-2 and 2-3. For the full model the residual variances of the 

species-specific random terms <fs2(res) are all substantially lower than that of the 

common random term dg (res') which is also noticeable when looking at the estimates 

of the random terms for each year of the study (Figure 2-6). Is values are consequently 

high, which suggests that most of the variation unexplained by the environmental co­

variates is synchronous to the three species.
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Table 2-2 Estimates (median and 95% Cl) of the random effects synchronous and 
asynchronous total variances and derived synchrony indices Is for each species, for 
model (0(/? +  S +  e)p(t + h )} .  Subscript ‘P’ refers to puffins, ‘G ’ to guillemots 
and ‘R’ to razorbills. 95% Credible Intervals are shown in brackets. Based on the 
MCMC samples, the probabilities of (72 <  are 0.78, 0.86 and 0.74 respectively.

Total variances Indices of synchrony

Species-specific 
asynchronous 

variance component

ajito t) = 0.191 (0.017,0.628) 

a%(tot) =  0.137 (0.008,0.487) 

<7j(tot) = 0.202 (0.005,0.849)

IP =  0.667 (0.173,0.965) 

IG =  0.735 (0.245,0.982) 

1R =  0.665 (0.117,0.987)

Inter-specific 
synchronous variance 

component
dj(tot) =  0.386 (0.066,0.885)

Table 2-3 Estimates (median and 95% Cl) of the random effects synchronous and 
asynchronous residual variances and derived synchrony indices Is for each species, 
for model {(p(cov 4- S 4- e)p(t + h)). Subscript ‘P’ refers to puffins, ‘G ’ to guillemots 
and ‘R’ to razorbills. 95% Credible Intervals are shown in brackets. Based on the 
MCMC samples, the probabilities of <X2 < d§ are 0.95, 0.90 and 0.82 respectively.

Residual variances Indices of synchrony

Species-specific 
asynchronous 

variance component

dp (res) = 0.036 (0.000,0.346) 

S q (res) = 0.079 (0.001,0.377) 

(res) =  0.082 (0.001,0.660)

IP =  0.894 (0.304,0.999) 

IG =  0.787 (0.350,0.996) 

Ip =  0.785 (0.205,0.998)

Inter-specific 
synchronous variance 

component
crj (res) =  0.288 (0.091,0.711)

In model (0(/? +  8  +  +  h.)}, all crs2 (tot) and cr|(tot) total variances increase

compared to the model with covariates, to accommodate the extra variation created by 

the lack of covariates. The species-specific variances increase more, in proportion, and 

therefore the indices of synchrony decrease to below 80%. The fraction of the syn­

chronous variance accounted for by the set of covariates is C5 =  0.256, that is, about a 

quarter of the variation that is synchronous to the three auk species is explained by
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components of the climate related to wNAO and SST. Climate is acting to some extent 

as a synchronising agent in the survival of puffins, guillemots and razorbills but there 

is still about 75% of synchronous variation that is not explained by these covariates. 

The environmental covariates are also responsible for a large part of the asynchronous 

variation, as shown by the values of the Cs coefficients. For puffins and razorbills, the 

values are very high (CP = 0.810 and CR = 0.595 respectively), implying that most 

of the between-year variation asynchronous to the other auk species is related to these 

climatic covariates. For guillemots on the other hand, less than half of the asynchro­

nous variation in adult survival is explained by these covariates (CG — 0.425). Thus it 

appears that the same climatic factors can act simultaneously as synchronising and 

desynchronising agents for adult survival of these species at the Isle of May. There is 

some indication that both wNAO and SST can act indirectly on survival (Harris et al. 

2005). It is therefore possible that the oceanographic effects reflected in wNAO and 

SST can act through different indirect causation paths, some of them affecting the 

three species in synchrony, some others affecting them differently or only affecting 

some of the species.

NO 0 0 ON o ,—1<N « O  NO r- 0 0 ON O (N rn NO
0 0 0 0 0 0 0 0 0 0 oc ON ON ON ON O n ON O n ON ON ON o o O o o o o
ON ON ON ON ON ON ON ON ON ON O n ON O n ON ON ON o o O o o o o

year
<N<N<N(N(N<N<N

Figure 2-6 Value of the random effect terms (on the logistic scale) estimated for each 
year by the model {(p (c o v  +  6 +  e ) p { t  + h)}, showing the common year random 
terms S ( t ) and the species-specific random terms £s(t) for each species.

Regarding prior sensitivity in the model without covariates {</>(/? + S + s)p (t  + h)}, 

the use of inverse-gamma priors for the random- effect variances appears to be slightly 

more informative than specifying uniforms U(0,3) for their standard deviation, and the 

posterior distributions are sensitive to the choice of the gamma distribution parameters,
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as has been noted in previous studies (Gelman 2006; Royle 2008) including for guil­

lemot MR data from the Isle of May (Reynolds et al. 2009). The effect is particularly 

noticeable for razorbills, the species with least data. These results support the selection 

of uniform priors for these parameters. The Appendix shows a number of comparisons 

of priors and marginal posteriors. We also test low-information normal priors for the 

regression intercepts /?s and the trap-dependence parameters a s instead of the uniform 

priors used in the analyses, but these parameters appear robust to such changes.

2.3.8 Goodness-of-fit

To check the goodness-of-fit for the model (0(/? + 8 + s)p (t -I- h)}, we conduct pos­

terior predictive checks, calculating Bayesian p-values (Gelman et al. 2004, p. 162; 

King et al. 2009, p. 138). These are based on the comparison of a statistic calculated 

for both the observed m-array O  (the data) and a simulated m-array 5, generated using 

the parameter values obtained at each iteration of the MCMC chains. For an observed 

m-array O (with cell values 0 (/ = m tj ) and a set of estimated parameters 6 , the basic 

algorithm is as follows

(i) Calculate the expected number of birds EJj in each cell {i,j} of the m- 

array, according to the parameter values 0n from the n th MCMC iteration;

(ii) Simulate an m-array Sn according to parameter values dn, with the simu­

lated number of birds in each cell {i,j} denoted S{j;

(iii) Calculate the ‘observed discrepancy’ between observed data and expected 

values Dg^Oij, £)”•), for each iteration n of the MCMC chain;

(iv) Calculate the ‘simulated discrepancy’ between simulated data and expected

values , £"•);

(v) Repeat for all MCMC iterations n;

(vi) Compute the Bayesian p-value as the proportion of MCMC iterations 

where 0 ^ (0 ^ ,  £)") < D "(5” , F,"). Extreme values (close to 0 or 1) are

indicative of lack of fit.
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We use the Freeman-Tukey test statistic as a measure of discrepancy (see an example 

in the mark-recapture context in Brooks, Catchpole & Morgan 2000)

where Xjj represents either the observed ( 0 Lj )  or the simulated (5,") data. Note that the 

Freeman-Tukey statistics Fq and F” can be conveniently calculated within WinBUGS 

for each iteration of the MCMC. The Bayesian p-values obtained for the fit to each 

species’ MR data set (Figure 2-7) do not show strong evidence of lack of fit for any of 

the three auk species: 0.851, 0.855 and 0.767 for puffin, guillemot and razorbill re­

spectively.

Figure 2-7 Scatterplot for the Freeman-Tukey statistic of the observed data versus 
that of the simulated data, for the 3-auk adult survival synchrony model without co- 
variates {0(/? + S + e)p(t -I- F)}. For clarity, only the 5000 first samples are shown of 
an analysis with 150000 MCMC iterations (with burn-in of 100000). The correspond­
ing Bayesian p-values for each data set are 0.851, 0.855 and 0.767 for puffin, guil­
lemot and razorbill respectively.

2.3.9 Simulation study

We use simulations to study the performance of the proposed method in fitting a set of 

data derived from known parameters, as a way of checking parameter identifiability 

(Gimenez et al. 2004). We select the full model structure {cp(cov + S + £)p(t + h)} 

from the previous section and choose parameter values based on the best model ob­

tained in the Isle of May auk study as well as the same number of animals as in the 

real data set, in order to stay within ecological realism. Mark-resight data are generated 

20 times, given that the processing time required for the MCMC sampling is prohibi-
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tivc for a much larger simulation study. The random effects terms are generated inde­

pendently in each data set, but using the same variances; intercepts and resight proba­

bilities are kept constant. The model {cp(cov + 5-1- e)p (t + h)} is fitted to the 20 data 

sets using WinBUGS (50000 MCMC iterations after a bum-in of 100000).

Table 2-4 Results of the simulation study with model {cp(cov + S 4- s ) p ( t  + h)) for 
the following variables: trap-dependence coefficient as; logistic regression coeffi­
cients /?js ; variances of the random effects a 2. Obtained from 20 simulations. Sub­
scripts P, G and R denote puffin, guillemot and razorbill respectively. Bias is com­
puted as the average of the absolute value of the difference between the point esti­
mate (median) and the true value.

True value Mean of 
medians

SE of 
medians

Bias Bias (%)

dp
aG
aR

1.9
2.9
1 .8

1.95
2.99
1.72

0.23
0.23
0.26

0.051
0.094

-0.077

2.7%
3.3%

-4.3%
Pop 2.50 2.60 0.14 0.098 3.9%
Pog 2.70 2.74 0.15 0.043 1 .6 %
PoR 2.40 2.52 0.14 0.123 5.1%

p 1P — wNAO0 -0 . 1 0 -0.09 0.16 0.006 -5.7%
Pig ~ wNAO0 0 . 1 0 0 . 1 2 0.15 0.017 16.7%
Pir ~  wNAO0 0.30 0.32 0 . 2 1 0.025 8 .2 %
p 2 P — wNAOx -0 . 2 0 -0.19 0.23 0.007 -3.6%
Pig -  wNAOi 0 . 1 0 0 . 1 0 0 . 2 2 0 . 0 0 1 1 .2 %
P2 R ~  wNAOx -0.40 -0.36 0.26 0.036 -9.1%

Pip -  SST0 -0.50 -0.55 0.28 -0.049 9.8%
Psg -  SST0 -0 . 1 0 -0.08 0 . 2 1 0 . 0 2 2 -2 1 .8 %
P3 R ~  SST0 -0.40 -0.36 0.29 0.036 -8.9%
Pap ~  SSTX -0.30 -0.30 0 . 2 0 0 . 0 0 0 0 .1%
Pag ~  SSTi -0.40 -0.43 0.19 -0.031 7.8%
Par ~ SSTX 0.04 -0.03 0.27 -0.067 -167.8%

0.300 0.338 0.13 0.038 1 2 .8 %
a j 0.040 0.070 0.07 0.030 76.0%

0.080 0.094 0.06 0.014 17.6%
Or 0.080 0.149 0 . 1 2 0.069 8 6 .0 %
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The simulation results (Table 2-4) indicate that bias is generally small for the regres­

sion and trap-dependence coefficients. Three parameters have larger bias (/?iG,/?3G and 

particularly /?4R) but note these are associated with parameters that are close to zero. 

Bias in survival estimates is in almost all cases below 3% and is again in general larg­

est for razorbills (smallest data set) and smallest for guillemots (largest data set). Apart 

from these, the largest bias values appear with the estimation of the random effects 

variances. In relation to the species-specific random terms, it is worth noting that as 

expected the largest bias is associated with the species with least data (razorbill, 153 

marked individuals) while the smallest corresponds to guillemots (with 831 birds). 

These differences disappear when the simulations are repeated with 831 individuals 

for each of the species.

2.4 Discussion

Although recent decades have seen much development of statistical methods to esti­

mate demographic parameters such as reproduction, and survival and migration proba­

bilities, the focus is usually on the estimation of these parameters for individual spe­

cies. This is despite the fact that several species may live in close proximity, some­

times competing for the same resources. There is therefore a great need for new meth­

ods that enable a better integration of demographic data, e.g. the study of synchrony 

between sympatric species, which are subject to common environmental stochasticity 

and potentially similar biotic interactions. The growing interest in multi-species as­

pects is visible both in ecological theory (McCarthy 2011; Mutshinda, O'Hara & 

Woiwod 2011) and application (Frederiksen, Mavor & Wanless 2007).

In this chapter, we present a framework for quantifying the degree of multi-species 

synchrony in a demographic parameter, adapting the model used for a multi­

population study by Grosbois et al. (2009) to the multi-species situation. We demon­

strate it with a study of synchrony in adult survival between three auk species that 

breed at the Isle of May but, as we will see in the next chapter, the framework is readi­

ly adapted to other parameters such as productivity. We also calculate the contribution 

of environmental covariates as synchronising and desynchronising agents. Although
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this method does not directly shed light into the typically complex mechanisms that 

underlie the observed synchronisation or desynchronisation between different species, 

it can be used to provide insight into community dynamics and to point out further av­

enues of investigation in terms of environmental covariates.

The survival estimates obtained in our study with the model with environmental co­

variates {<p(cov + <5 + f )p ( t  + h)} are consistent with previous analyses of the three 

species individually (Harris, Wanless & Rothery 2000; Harris et al. 2005). However 

estimates of a species’ survival from a more integrated study have the potential for 

borrowing strength from the rest of the ensemble, with the consequent gain in preci­

sion. Some of the estimated regression coefficients are consistent with the existence of 

indirect environmental effects, possibly through the food web, as noted in Sandvik et 

al. (2005): regression coefficients are negative for SST with no delay and others with 

1-year lag are away from zero. Some of the estimated regression coefficients are low 

and have 95% CIs that included zero, possibly pointing to the lack of a strong influ­

ence of the corresponding environmental covariates on that particular species’ surviv­

al. We do not attempt a systematic covariate selection process prior to the modelling as 

the primary aim at this stage is to develop the statistical model for studying multi­

species synchrony and demonstrate the potential of this framework. There is a signifi­

cant proportion of variance not explained by our set of covariates, which indicates that 

there is scope for further investigation. This may include the existing environmental 

covariates with longer time lags (Harris et al. 2005) or averaged over different periods 

of the year or broader areas in which auks overwinter (Sandvik et al. 2005). Biotic co­

variates, like prey stock estimates (Harris et al. 1997), could also be considered, as 

well as non-linear or non-parametric relationships with the covariates (Gimenez et al. 

2006). Our study lays the methodological groundwork for this.

Improved understanding of how the environment synchronises and desynchronises 

demographic parameters can be of great value in generating ecological hypotheses, 

especially when coupled with biological knowledge of these species. Links between 

demography and environmental conditions are complex, with variables acting simulta­

neously as synchronising and desynchronising agents. In the case of the auks consid­

ered here, it is likely that to understand the processes involved, more information will
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have to be incorporated. The results of synchrony could for example be related to simi­

larities in wintering grounds, as new research clarifies the picture of where these birds 

spend the winter months (Harris et al. 2009; Fauchald et al. 2011). Models like the one 

presented by Grosbois et al. (2009) for multi-populations and its adaptation for multi­

species introduced in this chapter represent new steps towards more integrative ap­

proaches to study demographic parameters. Methods to study multi-species relations 

are urgently needed given the changing environmental conditions and may play an im­

portant role in increasing our understanding of how climate change may affect com­

munities’ composition, as sympatric species react in similar or different ways to 

changes in their environment.



3 MULTI-SPECIES SYNCHRONY IN 

PRODUCTIVITY

In this chapter we adapt the multi-species synchrony framework to another important 

demographic parameter: productivity. Productivity (or breeding success), commonly 

defined as the average number of offspring produced per breeding attempt, is an inte­

grated measure made up of sequential events, ranging from an individual’s decision 

to breed through to the offspring becoming independent of parental care. For birds, 

these components may include clutch size, hatchability and chick survival (Rockwell 

etal. 1993).

We start by looking at multi-species synchrony in overall productivity, using long­

term breeding success data for five seabird species at the Isle of May. We also ex­

plore the contribution of large-scale and local environmental covariates to synchro­

nising and desynchronising productivity in this community. We discuss how the 

common terms obtained from the multi-species synchrony productivity analysis can 

potentially be used as a community-based integrative indicator of the local environ­

mental conditions. We then demonstrate how synchrony can be studied in different 

components of productivity, using more detailed data collected for two of the species 

as well as simulations. The last section looks at a different type of data, still related to 

breeding success: the distribution of clutch sizes. Given that this distribution is typi­

cally underdispersed compared to a Poisson or binomial distribution, we model un­

derdispersion in clutch sizes and explore synchrony in both the mean clutch size and 

the amount of underdispersion between kittiwakes and shags, for which clutch sizes 

in a subset of the monitored nests have been recorded for a number of years.
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3.1 Multi-species synchrony in overall productivity

In this section we look at overall productivity, which encompasses the complete 

breeding process, from laying eggs to fledging of chicks, hi the following sections, s 

denotes the species and t the year.

3.1.1 Overall productivity as a probability: binomial model

Given that clutch sizes are bound by a species-specific maximum value, we propose 

modelling the number of chicks fledged from Ks(t) monitored pairs of species s that 

attempt breeding in year t, as a binomial variable:

Fs(t) ~ Bin(ATs(t)cs,p s(t)). (3.1)

Here cs is the species-specific maximum clutch size. According to this formulation, 

‘overall productivity’ p is a measure of breeding success that represents the probabil­

ity of each potential egg in a clutch (out of the maximum possible cs) becoming a 

fledged chick. This model is suitable when only the number of fledglings is recorded, 

a situation that frequently occurs in seabird monitoring programs where determining 

clutch size is often difficult and time consuming (later we address the case where the 

number of eggs is also recorded). The model assumes that the fate of each potential 

egg is an independent Bernoulli trial and as a consequence is equally applicable to 

obligate single-egg breeders as well as to species with variable clutch size (cs = 1  

and cs > 1 respectively). We also assume that clutch fate is monitored from laying 

until fledging, avoiding potential biases that require special care (Mayfield 1961; 

Heisey & Nordheim 1995).

3.1.2 Overall productivity synchrony model

In order to study synchrony in productivity in a set of species for which the total 

number of fledglings from a number of monitored pairs has been recorded, we adapt 

the structure of common and species-specific year random terms described in section 

2.2.1 for multi-species synchrony in survival. Applying the binomial model in (3.1) 

to each species, year random terms can be incorporated into productivity on the logit 

scale (as in this model p is defined as a probability)
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logit (ps(t)) = p0s + S(t)  + es(t), (3.2)

where P0s are species-specific intercepts, 8(t)  are random year terms common to all 

species and £s(t) species-specific random year terms. All random terms are assumed 

to be independent and normally distributed, with no correlation between terms

S(t)~ N  (O, of (to t)), £s (t)~Al(0,crs2 (tot)).

Both <rf and the a} are ‘total variances’ (‘to t’), that is, together they have to explain 

all the year-to-year variation as the model does not have covariates. represents the 

synchronous variation, while the species-specific crs2 represent the asynchronous var­

iations. Thanks to this structure of random year effects, the year-to-year variation in 

productivity is effectively partitioned for each species into common (synchronous) 

and species-specific (asynchronous) terms. Synchrony indices Is, representing the 

amount of synchrony in the year-to-year variations in productivity on the logit scale, 

can be defined following (2.3)

<?Ktot)
0)5 (tot) + by2 (tot)'

This quantity effectively represents the proportion of the year-to-year variation in 

productivity that is common to the other species in the set under consideration.

Now, we can introduce J  covariates Cj(t) in the logistic regression in (3.2) to esti­

mate the contribution of the environment

J

logit(ps ( t) )  = Pos +  PjsCjit)} + 5{t) + £s(t)> (3.3)
;'=1

where the Pjs are the corresponding regression coefficients. The estimated variances 

of the new 5 and £s terms, the residual variances â$(res) and <r2 (res), will be 

smaller than the total variances estimated previously from the model without covari­

ates, dg (tot) and crs2 (tot). By comparing these, a set of common (C5) and species- 

specific (Cs) coefficients can be calculated, as done in (2.5) for adult survival



3. Multi-species synchrony in productivity 55

which measure respectively the contribution of the set of covariates to synchronising 

and desynchronising the year-to-year variations in productivity.

A commonly used alternative definition of overall productivity is the mean number 

of fledglings per pair, particularly for species that can lay more than one egg. Such a 

variable As(t) can be derived from the binomial model as As(t) = csps(t). For spe­

cies that lay only one egg, A = p: the mean number of fledglings per pair is equal to 

the probability of fledging one chick. Note that A can take values greater than 1 but is 

of course bounded by cs. If the interest lies in studying synchrony directly in A, an 

appropriate link-function would be a type of generalised logistic function, which 

maps the regression with values (—oo, oo) to As e [0, cs]

Since (3.5) is the same as (3.3), we conclude that synchrony in the probability of 

‘each potential egg being laid and surviving until fledging’, is mathematically equiva­

lent to that of the ‘mean number of fledglings’, and thus no specific modelling is re­

quired to estimate the latter.

Productivity defined as the mean number of fledglings per breeding pair is sometimes 

modelled with a Poisson distribution. We will look at this option in section 3.1.8.

3.1.3 The Isle o f May productivity data set

By substituting A = csps we obtain

We fit the models of overall productivity synchrony described above to data for five 

of the commonest members of the seabird community on the Isle of May: the three 

auks (puffin, guillemot and razorbill), the kittiwake and the shag. During the breeding
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season these species share a common prey base which around the Isle of May con­

sists mainly of lesser sandeels Ammodytes marinus and sprat Sprattus sprattus 

(Frederiksen et al. 2006). We note that similarities in productivity have been reported 

for these species at broader geographical scales: all five species considered in this 

study appear in the same cluster (together with Northern fulmar Fulmarus glacialis) 

after principal component analysis of the productivity time-series of 15 seabird spe­

cies from several colonies around Scotland (Parsons et al. 2008).

Data on breeding success were collected for these species at the Isle of May between 

1986 and 2009. Ks( t) pairs that attempted breeding were monitored during the sea­

son to ensure that the fate of offspring was known until fledging, enabling the total 

number of fledglings Fs(t) to be recorded. Details of standardized methods can be 

found in Walsh et al. (1995). The number of breeding pairs monitored varied from 

year to year, with the following minima/mean/maxima: puffins 35/122/147; guille­

mots 731/842/1014; razorbills 84/140/194; kittiwakes 423/775/1327; shags 

42/131/288. Clutch sizes tend to be small in seabirds. The three auks are obligate sin­

gle-egg breeders. For these species, only pairs that laid were monitored and thus K 

equals the number of eggs E. Clutch sizes for kittiwakes and shags are variable, but 

on the Isle of May typical maxima are cK = 3 and cs = 4 eggs respectively. Howev­

er, as in many monitoring programs, it is not possible to record the actual numbers of 

eggs laid by these two species at all the monitored sites and only the total number of 

fledglings was recorded.

3.1.4 Bayesian analysis

We first analyse the 24 years of data for the five species using the binomial model 

with synchrony defined for productivity p and no covariates. Analyses arc conducted 

within the Bayesian framework in program JAGS v2.2.0 (Plummer 2003). We assess 

convergence of the MCMC chains with the Gelman-Rubin diagnostic R (Gelman & 

Rubin 1992) calculated in the R package CODA (Plummer et al. 2006) with three 

chains for all variables started at different values, which suggests that a bum-in peri­

od of 100000 samples ensures convergence (R < 1.02 for all parameters). In this 

(and subsequent analyses in this chapter) 500000 MCMC samples are drawn from the 

posterior distribution of all parameters after a conservative bum-in of 500000. As in
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Chapter 2, we define uninformative priors in the form of uniform distributions for all 

parameters and hyperparameters (standard deviations) to reflect our lack of strong 

prior beliefs about the demographic parameters to be estimated (logistic regression 

intercepts: /?os ~ U(—5,5); U(0,3) for SDs of all random terms). The limits of these 

uniform distributions are selected after a shorter trial analysis to ensure they are wide 

enough to include all probable values of the corresponding MCMC chains. Figure 

3-1 shows a generic Directed Acyclic Graph that represents the relationship of the 

parameters and hyperparameters in a productivity synchrony analysis for 5 species 

and T years. For our analysis of the Isle of May, 5 = 5 and T = 24.

Figure 3-1 Directed Acyclic Graph (DAG) for a productivity synchrony analysis 
with 5 species and T years. Priors have been omitted for clarity. Squares=data; cir- 
cles=parameters to be estimated, of which grey circles=random terms; solid ar- 
rows=stochastic relationships; dotted arrows=deterministic relationships.
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3.1.5 Estimates o f overall productivity

Figure 3-2 shows productivity estimates (median of the marginal posterior distribu­

tions with 95% Cl) for each year for the five species. The baseline productivities 

ps = ilogit(/?s) on the linear scale (with 95% Cl) are: 0.706 (0.648, 0.760) for puf­

fins; 0.728 (0.673, 0.777) for guillemots; 0.661 (0.622, 0.700) for razorbills; 0.139 

(0.090, 0.202) for kittiwakes; and 0.220 (0.157, 0.297) for shags.

Thus, in terms of productivity quantified as a probability (ps), kittiwakes and shags 

do poorly compared to the auks (Figure 3-3). However, this reflects also the fact that 

species that lay multi-egg clutches typically produce fewer eggs than what they are 

physiologically capable of (maximum clutch size cs) and thus productivity may ap­

pear low even if all eggs laid survived until fledging.

The more commonly reported measure of productivity, the number of fledglings per 

breeding attempt As(t), can be easily derived as csps( t) (Figure 3-4). The mean 

number of fledglings per pair fluctuates around similar values for all five species 

(< 1 ) but with both kittiwakes and shags displaying a much wider variation than the 

auks.

The estimated random effects variances and synchrony indices (Table 3-1) indicate 

that productivity is appreciably synchronised for razorbills (87% of the year-to-year 

variation is synchronous with the other four species) but less so for puffins (30%) and 

guillemots (29%); kittiwakes and shags show even lower values (9% and 12%). Note 

that synchrony for each species is related to the year-to-year variations over the mean 

value and therefore the lower synchrony values for kittiwakes and shags are not 

mathematically related to their lower average productivity (the intercept in the lo­

gistic regression).
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0.0

Common guillemot

 ̂ Razorbill

0.40.2
0.0 -1--- 1--- T---1--- t--- T-------- T---T---T--- T--- T---T---T---T--- j--- T---T--- T---T---T---T---1 I--- 1

 ̂  ̂ Black-legged kittiwake
0.8

0.6

0.6

Figure 3-2 Estimates of yearly productivity p  (defined as the probability of each po­
tential egg in a clutch ending up as a fledged chick) with 95% Cl for puffin, guil­
lemot, razorbill, kittiwake and shag. Note the smaller CIs for species with most 
monitored nests: kittiwake, guillemot and shag.
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1.0
- Atlantic puffin 
-Common guillemot

Figure 3-3 Point estimates (medians of marginal posterior distributions) of yearly 
productivity for puffins, guillemots, razorbills, kittiwakes and shags, with productiv­
ity defined as the probability of each potential egg in a clutch ending up as a fledged 
chick, ps (t). CIs have been omitted for clarity.

Figure 3-4 Point estimates (medians of marginal posterior distributions) of annual 
productivity for puffins, guillemots, razorbills, kittiwakes and shags, with productiv­
ity defined as the mean number of fledglings per breeding pair, d s ( t ) .  CIs have 
been omitted for clarity.
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Razorbill productivity shows relatively less year-to-year variation, which is mostly 

explained as common variance and leads to its high synchrony index, as discussed in 

section 2.2.2. The opposite occurs for kittiwakes and shags where most year-to-year 

variation is species-specific. Puffins and guillemots show intermediate results.

It is important to realize that synchrony is inherently related to the set of species used. 

For example, if analysis is conducted for a subset of puffins, kittiwakes and shags, 

estimated synchrony differs (IPUF = 41%, IKIT = 21%, ISHA = 25%).

Table 3-1 Estimates (median and 95% Cl) of the random effects synchronous and 
asynchronous total variances and derived synchrony indices Is for each species 
(based on the MCMC samples). Species numbers refer to Atlantic puffin (1), com­
mon guillemot (2), razorbill (3), black-legged kittiwake (4) and European shag (5).

Variances Index of synchrony

i f  (to t) = 0.272 (0.114,0.623) lx = 0.295 (0.097,0.636)

i f  (to t) = 0.277 (0.139,0.581) 12 = 0.292 (0.102,0.594)

Asynchronous i f  ( to t) = 0.018 (0.000,0.125) I3 = 0.870 (0.448,1.000)

i f  (to t) = 1.127 (0.627,2.240) u  = 0-092 (0.030,0.234)

i f  (to t) = 0.833 (0.456,1.686) I5 = 0.120 (0.044,0.276)

Synchronous i f  (to t) = 0.115 (0.046,0.278)

3.1.6 The common trend

Figure 3-5 displays the estimated synchronous and asynchronous random terms. The 

common terms 5(t) show a decline over the study period. The behaviour of the spe­

cies-specific terms depends on the species. These have small values for razorbills 

(giving a small asynchronous variance, as discussed above) and have the most varia­

tion in shags and kittiwakes (largest asynchronous variances).

To support our theoretical results in section 3.1.2 that synchrony estimated directly in 

the derived parameter X (3.4) is equivalent to that estimated in p, we repeat the analy­

sis of the five species with synchrony defined directly in X (fledglings per pair). As
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expected, the estimates of synchrony obtained are identical (to the second decimal 

place) to the ones for synchrony defined in p.

2.0

Figure 3-5 Common (synchronous) random terms 8 ( t ) (top panel, with 95% Cl) 
and species-specific (asynchronous) random terms £s(t) (bottom panel) estimated 
in the analysis of the model of productivity p  without covariates. Random terms are 
shown and estimated on the logistic scale.

The common terms represent the part of the yearly variation that is synchronous to all 

the species in the set, that is, the common signal in the overall productivities of the 

community. This can be viewed as an integrative summary that could potentially be 

used as a multi-species indicator. We compare these terms with another ‘seabird in­

dex’ proposed by Frederiksen, Mavor & Wanless (2007) based on Principal Compo­

nent Analysis (Jolliffe 1986). While the latter includes productivity estimates from 

the same five species at the Isle of May, two additional variables (mass of near­
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fledged puffin and guillemot chicks) are also incorporated and their analysis covers a 

shorter time period compared to our study. We therefore apply the Frederiksen, Ma­

yor & Wanless (2007) approach to our data, using only the productivity estimates for 

the 5 species, and look at the first principal component (PCI). We fit a linear trend to 

both indices:

(i) ‘Synchrony index’: 5(f) — 0.388 — 0.031t

(ii) Frederiksen, Mavor & Wanless (2007) ‘seabird index’: PCI =  2.299 — 

0.184C

Note that the scale of 5(t) and PCI (and therefore the slopes reported above) are not 

necessarily comparable, but in any case the coefficient of determination is R2 — 

0.619 and 0.622 respectively (p < 0.001), that is, both indices show a statistically 

significant decline over the study period. Figure 3-6 compares the estimated terms.

Alternatively to fitting a linear trend to the point estimates of the common terms 

S(t), the common trend can be estimated explicitly, and synchrony can be defined 

based on the ‘residual common terms’ S '(t)

logit(ps(t)) = <J3qs + a t  ) + S' ( 0  + es(t),

where the random terms are <5'(t)—7V(0, cr|/), £s(t)~fV(0, a 2), Vt, Vs. Here i  is 

the standardised year (z-score), a is the common slope, and /?( are the new intercepts 

(which have the intercept of the common decline confounded with the species- 

specific intercepts P'0s from the original binomial model). New synchrony indices can 

be defined taking into account the ‘residual variance’ crjv after the slope has been es­

timated. When we fit this model to the 5-species productivity data, we obtain an es­

timated slope a = —0.303 [—0.425, —0.197] and smaller indices of synchrony from 

the residual common terms (/] = 0.077, p  — 0.084, /3 = 0.618, = 0.017,

l's = 0 .0 2 2 ), indicating that this trend accounts for an important part of the common 

variation.
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3.0

0.7

Figure 3-6 Comparison of the first principal component from PCA of the 5-species 
productivity' estimates time series (top panel; obtained applying the methods in 
Frederiksen, Mavor & Wanless 2007) and the common random terms <5(t) esti­
mated in the analysis of the model without covariates (with 95% Cl; central panel). 
The linear regressions with time fitted to both indices are also shown. The bottom 
panel shows a scatterplot of both variables. Note that the random terms are shown 
and estimated on the logistic scale. The common terms of the synchrony model has 
the advantage of providing a measure of uncertainty around the estimates, while the 
PCA is based on point estimates.
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3.1.7 Environmental contributions to synchrony

In order to study the contribution of environmental factors to synchronising and 

desynchronising the year-to-year variations in overall productivity p of our set of 

species, we fit the binomial model including covariates in the logistic regression. We 

investigate the effect of winter NAO index (wNAO) and the sea surface temperature 

(SST) around the Isle of May; these data sets are described in section 1.3.1. 

As in Chapter 2, we include time-lagged versions (1 and 2 years, denoted by sub­

scripts in our covariates) to allow for potential indirect effects acting through the food 

chain (Frederiksen et al. 2006; Sandvik & Erikstad 2008). We also consider the pres­

ence of a commercial sandeel fishery that operated close to the Isle of May between 

1990 and 1998 since it has been shown to influence breeding success of kittiwakes in 

this region (Frederiksen et al. 2004).

To avoid spurious effects by introducing covariates with little predictive power, a 

preliminary analysis is conducted with all covariates included for the five species and 

the covariates that have little support are subsequently removed from the analysis. As 

an ad hoc rule, we considered a covariate to have Tittle support’ if the probability in 

the part of the marginal posterior distribution of the regression coefficient that crosses 

over zero is greater than 1/3 (i.e. Pr(/?;s < 0) > 1 /3  if median pJS > 0, or 

Pr(/?7S > 0) > 1 /3  if {ijS < 0). hr the final analysis with covariates, the estimated 

regression coefficients whose 95% CIs do not include 0 (or is close to the limit) are

(i) for puffins: NAO,: 0.180 (-0.057, 0.420); SST,: -0.566 (-0.849, -0.290);

(ii) for guillemots: SST2 : -0.297 (-0.583, -0.019);

(iii) for razorbills: NAO0: 0.129 (0.004, 0.256); NAO,: 0.173 (0.025, 0.325);

(iv) for kittiwakes: NACE: 0.372 (-0.012, 0.764); SST,: -0.464 (-0.826, - 

0.069); ‘fishery’: -1.880 (-2.654,-1.101);

(v) for shags: no significant covariates.

Figures 3-7 and 3-8 plot the estimated effect of these covariates.
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wNAOx
i i i i i i

SSTX
Figure 3-7 Effect of winter NAO and February-March SST on productivity of the 
different species, with covariates considered in isolation (all other covariates being 
zero, which represents an average value given that covariates have been standard­
ised). The number after NAO and SST refers to the time-lag in years.
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Figure 3-8 Effect of the presence (covariate = 1) of a local sandeel fishery on kitti- 
wake productivity (all other covariates being zero), with 95% CL

Although different species appear affected by different aspects of the climatic varia­

bles, the direction of the responses is consistent, with the contribution of NAO al­

ways positive and SST always negative. The presence of the local sandeel fishery is 

only significant for kittiwake productivity, as previously noted by Frederiksen, Ma- 

vor & Wanless (2007) for a shorter time series.
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In terms of their contribution to synchrony (Table 3-2), the analysis shows evidence 

of climatic covariates explaining a large part (64%) of the common signal (although 

this variance was originally small). The contribution to desynchronising productivity 

varies from species to species, from 18% for razorbills to 55% for kittiwakes (the on­

ly species clearly affected by the sandeel fishery), and is very small for shags, con­

sistent with the lack of significant covariates (C5  is not exactly 0 as, although non­

significant, covariates are still included for shag productivity so that the model can 

estimate some spurious degree of contribution of these covariates).

Table 3-2 Estimates (median and 95% Cl) of the random effects synchronous and 
asynchronous residual variances and the derived contribution of covariates to syn-
chronising (C$) and desynchronising (Cs) productivity7 (calculated using the point 
estimates of the residual variances in this table and total variances from Table 3-1). 
Species numbers refer to Adantic puffin (1), common guillemot (2), razorbill (3), 
black-legged kittiwake (4) and European shag (5).

Variances Contribution of covariates

o f  (res) = 0.159 (0.057,0.401) Ci = 0.413

if ( re s )  = 0.213 (0.096,0.509) C2 = 0.232

Asynchronous if ( re s )  — 0.014(0.000,0.104) C3 = 0.183

<74 (res) =  0.506 (0.261,1.105) C4  =  0.551

i f  (res) =  0.762 (0.379,1.730) C5 =  0.085

Synchronous i f  (res) =  0.041 (0.005,0.125) Cs =  0.643

3.1.8 Poisson distribution as an alternative to the proposed binomial

A commonly used distribution for modelling breeding success when clutch sizes are 

larger than one is the Poisson distribution. If the number of fledglings from pair i is 

Fsl(t) ~ Pois(As(t)), with X  the mean number of chicks of species s fledging per 

breeding pair in year t, the total number of fledglings from Ks(t)  monitored pairs is 

also Poisson

Fs(t) ~ Pois(Ks(t)Xs(t)). (4.6)
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Importantly, this approach makes an implicit approximation: if maximum clutch size 

cs is modelled explicitly, the number of fledglings per pair is actually a truncated 

Poisson

with maximum value cs. When we sum over all Ks(t) monitored pairs to obtain the 

total number of fledglings of species s in year t, we have

This distribution is not the same as that in (4.6), even for large values of Ks(t), alt­

hough it will be similar when the amount of truncation is small. Using (4.6) instead 

of (4.7) is a very convenient approximation as it simplifies model fitting in general, 

and specifically in programs like WinBUGS or JAGS where a sum of truncated Pois­

son distributions would be more complicated to code and time-consuming to analyse 

compared to the standard Poisson distribution.

Multispecies synchrony in A' can be studied in the approximated Poisson model (4.6) 

using random terms in a similar way to A in the binomial model, except that here the 

link function would be a generalised logistic function, to take into account the maxi­

mum value cs

defining the synchronous and asynchronous random terms and deriving indices of 

synchrony as in section 3.1.2. For demonstration purposes, we analyse productivity 

for kittiwakes and shags using this approximated Poisson model. The point estimates 

(Figure 3-9) are practically identical to those obtained from the binomial model 

(Figure 3-4), as are the indices of synchrony (IKIT = 27.0% vs. 28.7%, ISHA = 

50.7% vs. 51.4%, for Poisson and binomial respectively).

Fi(t) ~ TPois(T;(t)),

Ks(t)

(4.7)
£ = 1
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Figure 3-9 Kittiwake (white dots) and shag (black dots) productivity estimates and 
95% credible intervals, with productivity A!s defined as average number of fledg­
lings per breeding pair in the Poisson model. Note how A's are far from their upper 
limit (maximum clutch sizes C4=3 and C5=4). Compare to Figure 3-4, where As are 
derived from the binomial model.

3.2 Multi-species synchrony in components o f productivity

3.2.1 Compartmental model

The models and results presented in section 3.1 are based on data restricted to the 

number of chicks fledging from the monitored breeding sites. However, in some cas­

es information about intermediate stages of breeding may be available and thus mul­

ti-species synchrony can be estimated for components of productivity. There is a tra­

dition of modelling “nest survival” based on the successive stages, including when 

not all nests are observed from nest construction through to fledging (Mayfield 1961; 

Heisey & Nordheim 1995).

The compartment model in Rockwell et at. (1993) can be adapted for our case study 

of the seabirds at the Isle of May. If we define fledglings as chicks that survive to 

leave the breeding site, synchrony can be estimated for any transition probability in 

the model, including egg survival, hatchability and chick survival (or compounds of 

these) depending on data availability on the different state variables (number of eggs 

laid, eggs at hatching, chicks hatched and fledglings, respectively).
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Pr(laying an egg) Egg survival Hatchability Chick survival

S # eggs \ # eggs at \ # hatched S # fledglings1 pair s laid s hatching s
chicks

Overall productivity ps(t)

Figure 3-10 Block diagram of the different stages in the reproductive process, from 
the breeding pair to the number of fledglings, adapted from Rockwell et al.{1993) 
for the Isle of May seabird community7. Overall productivity p encompasses all 
these stages. The greyed blocks represent the data in the overall productivity analy­
sis (number of breeding pairs and number of fledglings).

3.2.2 Components ofproductivity for guillemots and razorbills

We illustrate the study of synchrony in components of productivity using a model to 

quantify synchrony for two particular components, defined for each species s and 

year t (Figure 3-11):

(i) hatchability hs(t), the probability of a chick hatching from a laid egg 

(note that this definition is different from that in Figure 3-10);

(ii) chick survival f s( t), the probability of a hatched chick surviving until 

fledging.

Hatchability hs(t) Chick survival fs(t)

Figure 3-11 Block diagram of the different data sets (greyed blocks) and probabili­
ties estimated (red arrows) in the study of synchrony in components of productivity 
for guillemots and razorbills at the Isle of May.

This partition of productivity is used for example in Tavecchia et al. (2008). The 

model can be modified easily for other stages of productivity. We apply the model to 

guillemots and razorbills at the Isle of May (1986-2009), for which we have appro­
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priate data: eggs laid Es( t), hatched chicks Hs( t) and fledglings Fs( t). The number 

of laid eggs monitored varied from year to year, with minima/mean/maxima of 

731/842/1014 for guillemots and 81/140/194 for razorbills. The total number of 

hatched and fledged chicks can be modelled as binomial variables

Hs(t) ~ Bin(Es(t) ,h s (t)),

Fs (t) ~ Bin(Hs(t) ,fs(t)).

To estimate synchrony for both h and f ,  we again use logistic regressions with com­

mon (Sh and Sf) and species-specific (£hs and £ys) year random terms

logit (/ls ( 0 )  = 0HS + sh(t) + £/is(0.

logit ( /s (0 )  = P f s  + 5/ ( 0  + £/s(0.

where fihs and fifS are species-specific intercepts for h and / ,  and the year random 

terms are assumed independent and identically distributed as: (t) ~ N(0, cr|h), 

Sf(t )  ~  N(0, <Jsf \  £ns(t) -  N(0, cr̂ s) and e/ s (t) ~  N(0,a /s). We define synchrony 

indices for h and /  based on the estimated variances of the random terms

Ifis
o.Sh

'S h ?hs
and hs

if 2
a S f

O.Sf 7f s

The contribution of environmental covariates can be quantified by comparing these 

variances to the residual variances obtained from a model that includes covariates, as 

explained for overall productivity in section 3.1.2.

In the analysis we use uninformative uniform priors U(—5,5) for the regression inter­

cepts (3hs and /?̂ s, and U(0,3) for SD of the random terms (crSh,aSf, ahs and oys). 

The Gelman-Rubin diagnostic suggests that a bum-in period of 250000 samples is 

sufficient to ensure convergence (R < 1 . 0 1  for all parameters).
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The results show that the variations in h are much more similar in the two species 

than those in /  (Figure 3-12). Particularly notable is 2006-2007, when guillemot 

chick survival declines dramatically, while for razorbill it is only slightly lower than 

average. A comparison of this figure to Figure 3-2 indicates that the differences in 

overall productivity p are driven by chick survival, with hatchability playing a minor 

role.

1.0

0.8

0.6

0.4

0.2

0 . 0

—•— Common guillemot 

—o — Razorbill

NO oo ON o r—1<Nm to NO r- OOON o ,_ <Nco to NO r- OOON
0 0 0 0 oo oo ON ON ON ON ON ON ON ON ON ON o o O o O o o o o o
ON ON ON ON ON ON ON ON ON ON ON ON ON ON o o o o o o o o o o’— 1 ’— 1 ’— 1 <N<N(N(N <N(N<Nc\| (N

0 . 0
NO 0 0 ON o ( N t o NO r - 0 0 ON o —H 0 4 r o t }- t o NO r - OO ON
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*— 1 •— 1 -— 1 •— 1 ’— 1 '— i — < 1 <N ( N ( N < N ( N < N f N ( N i N CN

Figure 3-12 Estimates of the components of productivity (hatchability h and chick 
survival / )  for common guillemots (black dots) and razorbills (white dots).

The estimated synchrony indices (median and limits of the 95% Cl)

(i) lh= 0.612 (0.132, 0.984) and If = 0.509 (0.213, 0.817) for guillemots,

(ii) lh= 0.874 (0.280, 1.000) and 1f = 0.888 (0.410, 1.000) for razorbills,
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indicate that a large part of the razorbill year-to-year variation in both hatchability 

and chick survival is shared with guillemots, while for guillemots a larger part of the 

variation is species-specific; note nevertheless the large CIs. These results suggest 

that under the conditions that have operated over the last 24 years, the chick stage has 

been more sensitive than the egg stage to environmental variations (probably some 

aspect of food availability), with guillemots less well buffered than razorbills, result­

ing in the latter displaying larger variation, particularly at the chick stage.

Interestingly, we find statistically significant declines over time in the common terms 

of both hatchability and chick survival, stronger in f  than in h (Figure 3-13).

1.0

0.5

0 . 0

-0.5

- 1.0
-1.5

- 2.0
( N CO in NO r - OO ON o r—< N «n NO r - OO ON o ,—, < N e n in
0 0 oo 0 0 0 0 0 0 0 0 0 0 0 0 ON ON ON ON ON ON ON ON ON ON o o O o o o
ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON o o o o o o

*— 1 1 1 1 1 •—< •— 1 '1 '1 *— <1 < N < N C N <N ( N ( N

Figure 3-13 Common (5 , red line) and species-specific (£s, black solid line for guil­
lemot and dashed line for razorbill) random terms estimated for hatchability h (top 
panel) and chick survival f  (bottom panel). A linear temporal trend is fitted to the 
common terms (R 2 = 0.296 and 0.688 for h  and /  respectively, with p-values 0.006 
and <0.001).
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An interesting effect can be noticed when comparing the estimates of h  and /  ob­

tained from independent species-specific and multi-species synchrony models 

(Figure 3-14). Despite the overall similarity, there is a slight smoothing of the series 

in the synchrony models, particularly for razorbills. This results from the property of 

shrinkage due to the random effects used in the synchrony model (Gelman et al. 

2004) which pulls the species that contributes the least data (razorbills here, with al­

most a factor of 10 smaller data set than guillemots) towards the species ‘mean’. Note 

that in our model this does not mean they tend towards each other (as species-specific 

intercepts may be different), but rather that the year-to-year variations tend to become 

similar. As in general razorbills show more variability (except for the 2004-2007 dip 

in guillemot / )  and contribute less data, in practice this translates into razorbill varia­

tions being smoothed slightly, as observed in the figure.

1.0

0.5
0 0 O S o f-H ( N i n s O r - 0 0 O s o — < N m i n S O r - 0 0 O s
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Figure 3-14 Comparison of the point estimates (median of marginal posterior dis­
tributions) of hatchability h  and chick survival /  from a model with random effects 
to estimate synchrony (black solid and dashed lines for guillemots ‘G ’ and razorbills 
‘R’ respectively), and model without random effects (green and purple lines for 
guillemots ‘G ’ and razorbills ‘R’ respectively).
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To study the contribution of environmental covariates to synchrony and asynchrony 

in h and / ,  we repeat the analysis, now incorporating the same environmental covari­

ates used for the 5-species overall productivity analysis: wNAO and SST (including 1 

and 2 year time-lags), and the presence of the sandeel fishery. We find no significant 

covariates for hatchability h (i.e. zero not included in their 95% Cl). For chick sur­

vival / ,  wNAOo is significant for razorbill (/?/(Wamo) = 0.302 (0.062, 0.577)) and 

SST2 for guillemot (/?/(sst2 ) = —0.413 (—0.824, —0.011)). These covariates coin­

cide with the ones found significant for these species for overall productivity p, in­

cluding their sign.

The comparison of the total variances of the random terms obtained from the model 

without covariates to the residual variances from the model with environmental co­

variates, indicates that these make a large contribution to synchrony in chick survival 

f  (Cfs — 0.855), a medium contribution to asynchrony in razorbills {CfR = 0.435) 

and a low contribution to asynchrony in guillemots (CfM = 0.095; possibly because 

none of the covariates properly explains the drop in 2006-07). We do not assess the 

contribution to synchronising hatchability, given the lack of significant covariates. 

Overall, the relationship of overall productivity with these covariates appears to be 

driven primarily by chick survival.

3.2.3 Simulation study

We use simulations to verify that the framework proposed for studying synchrony in 

components of productivity is able to recover the parameters of interest (Gimenez et 

al. 2004). We simulate and analyse data for two different components of productivity 

(Figure 3-15):

(i) probability of laying an egg y  (out of the maximum clutch size possible),

(ii) combined hatching-fledging success (p (probability of an egg surviving 

until fledging, a combination of hatchability h and chick survival /) .
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Pr(laying an egg) ys ( t )  Combined hatching-fledging success 0 s(t )

Figure 3-15 Block diagram of the different data sets (greyed blocks) and probabili­
ties estimated (red arrows) in the study of synchrony in components of productivity 
for simulated data.

These productivity components are a partition of the overall productivity p defined in 

section 3.1, i.e. ps(t) — ys( t)0 s (O- Apart from knowing the number of monitored 

breeding pairs Ks(t)  and the total number of fledglings Fs (t), the extra information 

required for this model is the total number of eggs Es( t) laid at the monitored nests.

Using the probabilities defined above and given species-specific maximum clutch 

sizes cs, we model both the number of eggs and fledglings as binomial variables:

£s( 0  ~ Bin(cs/fs(t),ys(t)),

Fs(t) ~ Bin(£s(t),0s(O)-

To estimate synchronies, we express the probabilities as logistic regressions with 

common and species-specific year random terms

logit(y5 (t)) = PYs + <Sy(t) + £ys (0 ,

logit (0s(O ) = P eps + 8 #  ( 0  + fy s(0 .

and define species-specific synchrony indices for y and 0  as a function of the esti­

mated random effects variances

lys
J5y

’SY + OyS
and /0S = °8<p

7U  + 8$s
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We simulate a data set consisting of 25 years monitoring of three sympatric species in 

a hypothetical breeding community, with maximum clutch sizes of 3, 4 and 5 eggs 

respectively. Data consist of the numbers of eggs Es(t)  and numbers of chicks 

fledged Fs(t) from Ks(t) = 1000 nests monitored per year. We choose synchronous 

and asynchronous variances to create low synchrony in y  but high synchrony in 0  

(Table 3-3), representing an ecologically realistic scenario where species adjust 

clutch size according to overwintering conditions that differ between species, but 

have a synchronised success in fledging chicks given a dependency on common re­

sources.

Table 3-3 Values of the parameters (intercepts and variances of the random terms 
for both y  and 0) used to simulate a data set of numbers of eggs and fledged 
chicks, and resulting indices of synchrony.

Species 1 Species 2 Species 3 common

Intercept fiys 0.1 0.2 0.12 NA

Variance ays 0.4 0.3 0.5 0.05

Index Iys 0.111 0.143 0.091 NA

Intercept /?0S 1.6 1.1 1.2 NA

Variance 0.2 0.25 0.1 0.8

Index 0.800 0.762 0.888 NA

The simulated data set can be seen in Table 3-4. For the analysis in JAGS, a conver­

gence assessment using the Gelman-Rubin statistic suggests that the bum-in period of 

500000 samples is sufficient to ensure convergence (R < 1.03 for all parameters). 

We obtain very precise estimates of the components of productivity ys(t) and 0 s(t), 

with the absolute value of the error below 0.04, which is expected given the large 

amount of data. The model is also able to separate the random terms of these two 

components: 95% Cl of all intercepts, random effects variances and synchrony indi­

ces include the true value (Figure 3-16).
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Figure 3-16 True (solid circles) and estimated (open circles) values and 95% Cl for: 
regression intercepts (ft), synchrony indices (ls ) and random effect variances for 
the three species and parameters: probability of laying an egg (y) and hatching- 
fledging success ((f)).

We conclude the simulation study with a test regarding the identifiability of the pa­

rameters of interest when the total number of eggs is not recorded (akin to our Isle of 

May 5-species breeding success data set). As expected, the model is not able to esti­

mate the missing data (a hidden parameter in this model) or the components of 

productivity, obviously rendering the study of synchrony impossible. The parameters 

y  and ft are confounded: the model cannot distinguish whether an increase in fledg­

lings is due to a larger clutch, a better fledging success or a combination of both. For 

each year and each species, only the product ys(t) fts(t) is estimable.

3.3 Multi-species synchrony in clutch size underdispersion

We have so far considered breeding success data consisting of total counts of differ­

ent (at least two) stages of productivity. In some cases of intensive monitoring, more 

detailed data may be collected on breeding success of particular species. In this sec­

tion we deal with the particular case where the number of eggs laid by each moni­

tored pair is recorded, which contributes information about the distribution of clutch 

sizes for each year. The study of clutch size in birds has a long history in ecological 

and evolutionary biology (Moreau 1944). The relationship of clutch size to a species’
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traits, environment and ecology is still a source of investigations (Jetz, Sekercioglu & 

Boehning-Gaese 2008). Less attention has been paid to intraspecific variation in 

clutch size. In general, there is little variability in the size of clutches for a given spe­

cies, so that it appears underdispersed compared to e.g. a Poisson distribution (Ridout 

& Besbeas 2004). In more extreme cases, some bird species lay a fixed number of 

eggs (for instance obligate single-egg breeders, like the auks in our study), or may lay 

k or k + 1 eggs for some appropriate integer k  (Heyde & Schuh 1978). We consider 

here an underdispersed distribution to model clutch size, and explain how to quantify 

multi-species synchrony in both the mean clutch size and the amount of underdisper­

sion, when clutch size data are collected for several sympatric species.

Table 3-4 Simulated data set of eggs laid (E ) and fledglings (F), for species 1, 2 and 
3 species and 25 years, with K = 1000 monitored nests per species per year.

Eggs Fledglings
year El E2 E3 FI F2 F3

1 2129 1812 1632 1556 1089 1009
2 2181 2642 1906 1438 1129 965
3 1115 1087 2387 754 645 1521
4 1855 1780 2707 1114 894 2008
5 1268 2305 2599 848 1615 1557
6 1737 2683 3465 1557 2096 2764
7 1003 1690 2822 526 893 1345
8 1128 2411 2939 1013 2 0 0 0 2274
9 1785 2797 4414 1587 2135 2996
1 0 737 3212 2654 622 2701 2266
11 1962 1323 2856 1834 1113 2594
1 2 2184 2817 3968 1855 2386 3299
13 1315 2659 2672 993 1724 1712
14 2199 2730 2772 2 0 2 2 2493 2563
15 913 3097 1829 234 1632 573
16 1499 2196 1598 621 1037 588
17 1446 1366 2725 1292 1237 1859
18 1950 2 1 2 1 3601 1918 1999 3473
19 1935 1943 4520 1272 1358 3475
2 0 1461 3420 2525 1180 2729 2038
2 1 1680 2 0 1 0 3016 1597 1802 2812
2 2 1298 2300 2236 925 1828 1279
23 1993 2287 1262 1724 1984 989
24 2256 2973 2733 1944 2261 2336
25 2135 1859 1354 1953 1575 1207
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3.3.1 Exponentially weighted Poisson model (EWP)

Ridout & Besbeas (2004) propose a 3-parameter exponentially weighted Poisson dis­

tribution (EWP3) which they fit to clutch-size data. According to this model, letting A 

be the average clutch size, the probability of clutch size k in a nest taking value x  is

e~AAx wx
Pr(/c = x) = ---- -—  — , x > 0, A > 0

x! W

where wx is an exponential weight function of two underdispersion parameters /?x 

and /?2

e Pl(-A x  ̂ i f  x < A 
e -p2(x-A) i f  x  > A

and the normalizing factor is

(3.8)

W  =
T -
X = 0

-aAxwx

x!
(3.9)

The resulting distribution is underdispersed compared to the Poisson if /?1( /?2 > 0. 

The model can be simplified by setting f31 = (32, which gives a 2-parameter exponen­

tially weighted Poisson distribution (EWP2). In that case, the exponential weight 

function can be written using the absolute value of (A — x),

wx = e~p^~xl (3.10)

This expression does not incorporate a condition and is therefore easier to implement 

in programs like WinBUGS/JAGS than (3.8).

Clutch sizes in a data set may have minimum value different from zero (e.g. when 

only pairs that laid at least one egg are monitored), and they will typically have a 

maximum value (maximum clutch size), characteristic of the species. In such cases, 

the normalizing factor W  can be modified to take this into account, giving a truncated 

EWP (TEWP) distribution, although the truncation may have a relatively small effect
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under strong underdispersion. Given minimum and maximum clutch sizes a and b, 

the normalizing factor (3.9) becomes

3.3.2 Synchrony in mean dutch size and underdispersion

The distribution of clutch sizes may vary from year to year according to intrinsic or 

extrinsic conditions. When clutch size data are available for a series of years and for a 

set of species (as we will see in the next section, this is the case at the Isle of May for 

kittiwakes and shags) synchrony in the year-to-year variations can be studied for both 

mean clutch size A and amount of underdispersion /?. Assuming for simplicity that 

Pi = Pz, f°r each species s and year t, clutch size of nest i will be distributed

Mean and underdispersion can then be modelled with common and species-specific 

random effects terms, in the same way as for other demographic parameters, using 

appropriate link functions fxs (x) and fpsix)

where all random terms 8¿it), 8p it) , £xs( 0  and £/?s ( 0  are assumed independent and 

identically distributed for all s and t with normal distributions. Multi-species syn­

chrony coefficients can be defined for each species, separately for each parameter 

(here A and /?), using the estimated variances of the corresponding random terms

b
e ÀAxwx

kt t t )~TEWP2(As(t),/3s(t)).

f  As (^s(O ) — «As + 8x(t) + £as(0 ,

fpsiPsit)) -  aps + Sp(t) -I- £psit),
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3.3.3 Data set

For the Isle of May seabird community, detailed clutch size data (counts of moni­

tored nests with different clutch sizes) have been collected for shags (years 1997- 

2011, except 2000, 2003 and 2004) and kittiwakcs (years 1992-2011) in a subset of 

the monitored nests. In order to study synchrony between the two species, only the 

years in common between both data sets ( 1 2  in total) are retained for this analysis: 

1997-1999, 2001-2002, 2005-2011 (Table 3-5). As mentioned in section 2.2.2, the 

fact that these years are not consecutive is not an issue because we define synchrony 

on the variation over the species’ baseline, not with respect to the previous year’s 

value.

Table 3-5 Data of kittiwake and shag clutch sizes for the different years at the Isle 
of May, including the total number of nests monitored.

Kittiwakes___________  _____________ Shags
Year 0 1 2 3 4 #nests 1 2 3 4 5 #nests
1997 2 16 91 25 0 134 2 11 110 12 1 136
1998 51 55 169 5 0 280 0 33 151 13 0 197
1999 2 0 23 0 0 25 0 11 38 2 0 51
2001 0 11 57 6 0 74 0 21 159 8 0 188
2002 15 27 167 27 0 236 0 17 164 10 0 191
2005 21 59 287 1 0 368 8 31 68 0 0 107
2006 39 86 227 1 0 353 5 40 164 6 1 216
2007 23 40 236 21 0 320 10 49 170 10 0 239
2008 27 50 302 5 0 384 4 17 107 1 0 129
2009 21 81 198 3 0 303 1 10 137 3 0 151
2010 28 35 288 157 1 509 0 31 195 38 2 266
2011 16 37 203 84 0 340 6 28 219 26 1 280

There is only one kittiwake nest (out of 3326, 0.03%) with four eggs, and five shag 

nests (out of 2151, 0.23%) with five eggs, so we did not model these uncommon cat­

egories. Note also that we do not have data for shag nests with no eggs. This is due to 

historical reasons of how the monitoring of that species is conducted, but in any case 

clutch sizes of zero eggs are rare in shags (F. Daunt, personal communication). 

Therefore, kittiwake clutch sizes are modelled from zero to three eggs, and shag 

clutch sizes from one to four eggs. The distribution of clutch sizes shows evidence of
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underdispersion compared to a Poisson or binomial distributions for both species 

(Figure 3-17).

clutch size (eggs) clutch size (eggs)

Figure 3-17 Clutch size distribution for different years, for kittiwakes and shags at 
the Isle of May. Colours denote different years.

As a quantitative example, we fit the kittiwake clutch size data of year 2011 to a bi­

nomial, truncated Poisson, truncated Poisson and TEWP2 distributions (Figure 3-18).

Figure 3-18 Probabilities of each clutch size for kittiwakes in year 2011, based on 
the estimates obtained from analysing the number of nests of each clutch size with 
a) TEWP2 distribution (red), b) a binomial distribution with n=3 trials (green), c) a 
truncated Poisson distribution (solid blue) and d) a Poisson distribution (dotted 
blue). The observed proportions (number of nests of each clutch size divided by 
the total number of nests) are shown in black. Note that the Poisson distribution 
has mass outside the range of clutch sizes considered, so that the sum of the prob­
abilities in the 0-3 range is only 0.85. Estimates under the different models obtained 
in JAGS using 20000 MCMC iterations after a burn-in of 10000.
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We choose to model ^  = /?2, and consequently use (3.10), for implementation sim­

plicity. The underdispersion and the better fit of the TEWP2 distribution can be clear­

ly observed when the probabilities of the different clutch sizes under the different 

models are compared to the observed frequencies.

3.3.4 Implementation issues

The TEWP2 distribution is not one of the standard distributions found in software 

programs WinBUGS or JAGS, so it has to be coded manually. This is done using the 

so-called ‘zeros’ trick (Spiegelhalter et al. 2003) to specify the contribution of each 

sample in the data to the likelihood. Let L, be the term that each observation x, con­

tributes to the likelihood. We use a new variable y  with all observations = 0. We 

declare y L ~ Pois(0;), where cpi = — log(Lj) + C, and C is a constant defined to en­

sure that all 4>i terms are positive. As the value of y  is always zero, the contribution 

of each ‘Poisson-distributed’ observation y t to the likelihood in the WinBUGS pro­

gram will be: e -<̂  = e log(.LO-c = p . that is, proportional to the likelihood of the 

original data x t. This is a ‘trick’ in the sense that it uses a distribution that exists in 

WinBUGS/JAGS to create a tailored likelihood expression, instead of for creating a 

real Poisson model. The method can be applied to each sample in the data set (one by 

one iteratively), or lumped series of data samples, if their combined contribution to 

the likelihood is more convenient to write. As an example, we show here the Win­

BUGS/JAGS code for the ‘zeros trick’ for a data set consisting of n samples, each 

contributing a factor lx [ i ] to the log likelihood:

c <-- 1000 # c o n s t a n t  f o r  t h e  z e r o s  t r i c k

for (i in 1:N) {
# log-- l i k e l i h o o d  c o n t r i b u t i o n  o f  d a ta  sample i

LL[i] <~ LX[i]
# ' z e r o s t r i c k '
zeros i]<-0
phiti] <- -LL[i]+C
zeros i] ~ dpois(phi[i])

}
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The contribution to the likelihood of each observation x t from a TEWP2 distribution, 

truncated between values a and b (a < x j < b), is

e~AAXi g-/J|A-Xil ^Xi e -p\A-Xi\
Xi\ e -W e -PIA-/I ~ "̂7 ' AV'e-̂ IA-Jl '

¿;=a 7 ?------  2,7=«---- J,----

In terms of log-likelihood

e xAXi wXj
L(Xi\A,P) =

l(X i\A ,p) = x t log(A) -  lo g ( X j ! )  -  p\A -  x t \ -  log
T ~

The WinBUGS/JAGS function logfact(x) can be used to implement lo g ( X j ! )  effi­

ciently. For our data sets, the previous expression becomes

(i) for shags (1 < x t < 4):

Ls (Xi\A,^) = Xi log(A) -  log(X[!) - p \ A - x t \

-  log f i e + - e - ^ " 2l + — e ~ P \^ \  + —  e - ^ ~ A ,  
\  2 6 24 J

(ii) for kittiwakes (0 < x t <  3):

£ K(xi\A,p) = Xi log(A) -  lo g ( X j ! )  -  p \ A - x t

log + y  e -/»IA-2 l + i  e - m - ^

where we drop species and year subscripts for simplicity, i.e. A = As(t), /? = /?s(t).

These expressions could be used for the ‘zeros’ trick if using each nest count one by 

one. For improved efficiency, we model the summaries (counts of number of nests of 

each clutch size) so that if n cs ( t) is the number of nests of species 5  with clutch size c 

in year /, the full log-likelihood of the complete data set Hs(t) for each species 5  and 

year t can be written as
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(i) for shags (1 < x t < 4):

-£s(^s(0 |As (t), /?s(t))

= nKO{log(As (t))  -  /?s (t)|As (t) -  1| -  Zs ( t)}

+ n|(t){21og(As (t)) -  log(2) — -  2| -  Zs (t)}

+ n|(t){31og(As (t)) -  log(6) -  /?s (t)|As (t) -  3| -  Z5(t)}

+ n|(t){41og(As (C)) -  log(24) -  ft( t) |A s (t) -  4| -  Z5(t)},

where

Zs {t) = log jAs ( t) e _/?s(t)l'ls(t)~11 + e -fc(f>ITsT)-2 |

A5( t)3 fe(t)|A5(t)-3| + M ^ e -fo(t)|As(t) -4 |l.
6 + 24 j '

(ii) for kittiwakes (0 < < 3):

&K ( 0 1 A/f ( t) , ($K (t))

= flK{t)XK(t) — ZK(t)}

+ ni(t){log(A/f(C)) -  ^(O lAjfCt) -  1| -  Z^(t)}

+ n|(t){21og(AJf(t)) -  log(2) -  pK(t)\XK(t) -  2| -  Z^(t)} 

+ n£(t){31og(A*(t)) -  log(6) -  pK(t)\XK(t) -  3| -  ZK(t)},

where

ZK{t) = log |e  PkW -̂kW + XK(t)e  ftdfllA/Kt) i|

+ j g f t j _ e - fa (t ) |A ir( t ) - 2| + ^ ( 0 3 g - f a (t)|A/f(t)-3 |

The choice of link functions for the regression of X and /? with the random terms de­

pends on the range of values we expect possible for these parameters. The mean 

clutch size X lies within the range of possible clutch sizes, and we expect /? > 0 

(which represents underdispersion; negative values would mean overdispersion). We 

do not expect values of /? > 6 , which represents extreme underdispersion (almost all 

nests having the same number of eggs). Accordingly, we select link functions so that



3. Multi-species synchrony in productivity 87

As(t)e[0,4] and /?s(t)e [0,6], We use the ‘generalised logit’, so that if a variable 6 

can take values between a and b

=  X  -> 0 a + bex 
l  +  ex '

When applied to the case of kittiwakes and shags, the regressions with common and 

species-specific random terms are, for species s and year t

log (
' & (t)  \ — G/?s + 8p(t) + Spsit),
v6  -  /?s( t) /

log 1f As(t) ^
= aAs + <5a( 0  + O.S (0»U - A sct))

where aps and a^s are species-specific intercepts and

Sx( t ) ~ N ( 0 , a i x),

£/?s(0 ~ N(0, ajs), £Xs(t) ~ N (0, ols).

3.3.5 Results

The analysis of the shag and kittiwake clutch size data is carried out in JAGS v2.2.0 

(Plummer 2003) using the model described above, setting uninformative uniform 

priors to the random-effect standard deviations and intercepts. We run the MCMC 

chains for 1 million iterations (keeping 1 out of 1 0  samples to reduce memory re­

quirements) after a discarded bum-in of 1 million iterations. The JAGS analysis takes 

about 1.5 hours on a 3.4 GHz desktop. Convergence is assessed using the Gelman- 

Rubin statistic (Gelman & Rubin 1992) using the R package CODA (Plummer el al. 

2006) based on 2 overdispersed chains for all variables. No evidence of lack of con­

vergence is observed after 1 million iterations (all R < 1.01 for all estimated parame­

ters).
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Figure 3-19 shows the estimates (with 95% Cl) of mean clutch size A and underdis­

persion parameter /? for shags and kittiwakes for the different years. The estimates of 

A are much more precise than those of /?.
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Figure 3-19 Estimates (with 95% Cl) of mean clutch size A (top panel) and under­
dispersion parameter /? (bottom panel) for shags (black dots) and kittiwakes (white 
dots) for the different years. Note the different scales and that not all estimated 
years are consecutive.
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The estimated variances are shown in Table 3-6, together with the corresponding 

multi-species indices of synchrony in both A and /?. The year-to-year variation in 

shag mean clutch size is mostly common (/As = 0.860) with that of kittiwakes, while 

kittiwakes have slightly higher species-specific variation (IAK = 0.642). The values 

are slightly lower for underdispersion, which is mostly synchronous for shags 

0Ips — 0.728), but less so for kittiwakes (IpK = 0.418). Note nevertheless that the 

estimates are very imprecise, which could be related to the fact that we only model 1 2  

years, compared for instance to the 24 years in the studies of synchrony in productivi­

ty (section 3.1) and the 25 years in the case of adult survival (Chapter 2). With fewer 

years to estimate the variance of the random terms, the estimation of synchrony indi­

ces becomes less precise.

Table 3-6 Estimated variances and indices of synchrony for mean clutch size A and 
underdispersion parameter /? (with 95% Cl) for shags (‘S’) and kittiwakes (‘K).

Parameter Variance of random terms Species-spccific index of synchrony

als = 0.006 (0.000,0.048) IXs = 0.860 (0.219,1.000)
A

diK = 0.019 (0.001,0.079) lkK = 0.642 (0.130,0.989) 

ct| a = 0.034 (0.007,0.112)

d js = 0.023 (0.000,0.205) lps = 0.728 (0.011,0.999)

a jK = 0.080 (0.001, 0.370) IpK = 0.418 (0.005, 0.992)

= 0.057 (0.001,0.266)

We conduct an exploratory investigation of the relationship of each estimated varia­

ble with environmental covariates, using correlation of the point estimates (medians) 

obtained in the previous analysis. Note that the uncertainty of the estimates is not tak­

en into account in this simple exploration and that some of the estimates have rela­

tively wide credible intervals, particularly those of the underdispersion parameters.
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In accordance with the substantial amount of common variance, there is a significant 

amount of interspecies correlation in both /? and A, which is positive for both varia­

bles (Figure 3-20, top panels). By contrast, there is no clear statistical evidence of 

intraspecific correlation between ¡3 and A in either species, although higher values of 

A are in general related to low values of /?, that is, more spread in clutch sizes.

uGZL

1.8 2.0 2.2 2.4 2.6 2.8 3.0
Ps

Figure 3-20 Scatterplots of different combinations of mean clutch size A and un­
derdispersion parameter /? for shags (left panel) and kittiwakes (right panel). Pear­
son’s correlation coefficient r  and associated p-value (2-tailed), as well as the linear 
regression line and regression coefficient R 2 are also shown for each panel.
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Interestingly, no statistical evidence of correlation is apparent between the estimates 

of mean clutch size and overall productivity (Figure 3-21) for either species; some 

statistical evidence indicates nevertheless some degree of correlation with the under­

dispersion parameter /?.
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Figure 3-21 Scatterplots of overall productivity p  (estimated in section 3.1.5) with 
respect to either mean clutch size A (top panels) or underdispersion parameter [3 
(bottom panels), for shags (left panels) and kittiwakes (right panels). Pearson’s cor­
relation coefficient r  and associated p-value (2-tailed), as well as the linear regres­
sion line and regression coefficient R 2 are also shown for each panel.

We also calculate the correlation between mean clutch size and underdispersion with 

the environmental variables used in the study of overall productivity synchrony: win­

ter NAO (wNAO) and February to March Sea Surface Temperature (SST), including 

1 and 2 year time lags (see section 3.1.7 for details about these covariates). Correla­

tion is only significant (a = 0.05) for four combinations, with |r | > 0.65 (Figure 

3-22).
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Figure 3-22 Scatterplots of either mean clutch size A or underdispersion parameter 
/? with the environmental covariates for which the regression is significant at the 
a  =  0.05 level. Pearson’s correlation coefficient r  and associated p-value (2-tailed), 
the linear regression line and coefficient R 2 are also shown for each panel. Years 
2010 and 2011 are not included in this plot as we did not have the corresponding 
values of wNAO and SST.

These correlations indicate that:

(i) Colder sea surface temperatures around the Isle of May in the winter of 

the year before breeding (SSTj) are associated with a larger mean clutch 

size in shags.

(ii) Higher winter NAO values (representing mild and wet winters) one year 

before breeding, appear to increase underdispersion in shag clutch sizes 

(i.e. the number of eggs in most nests is close to the mean).

(iii) Colder sea surface temperatures around the Isle of May in the winter pre­

vious to breeding (SST0) appear to increase underdispersion in both shag 

and kittiwake clutch sizes.



3. Multi-species synchrony in productivity? 93

We note that none of these covariates appears significant in explaining overall 

productivity in the respective species.

3.4 Discussion

In this chapter we adapt the synchrony framework presented in Chapter 2 to the study 

of multi-species synchrony in different aspects of breeding success, including overall 

productivity, its components and clutch size underdispersion. Unlike survival which, 

being a probability, is naturally bounded between zero and one, productivity is com­

monly defined as the average number of offspring produced by a breeding female and 

thus can exceed one. A novel feature of the approach proposed is that, using a bino­

mial distribution and the maximum clutch size, it can accommodate inter-specific 

clutch size variation so that the models are valid even if the community under study 

is a mix of species that lay both single- and multiple-egg clutches. The models pro­

posed for overall productivity and its components do not require nest-by-nest counts 

but only total counts of fledglings (and potentially other intermediate state variables 

like eggs) produced by a number of monitored breeding pairs of several species for a 

series of common years. The method is widely applicable, and we demonstrate it in a 

case study typical of many seabird monitoring programs (Walsh et al. 1995; Dragoo, 

Byrd & Ironsa 2006). Other long-term detailed data sets like the British Trust for Or­

nithology’s Nest Record Scheme (Crick, Baillie & Leech 2003) would allow estima­

tion of synchrony at different stages of the breeding process.

3.4.1 Productivity and its components

In our case study the five species that comprise the seabird community share a com­

mon long-term productivity decline. Superimposed on this trend is year-to-year varia­

tion that tends to be only weakly synchronised among the species, although some 

good (e.g. 1992 &2000) and poor (e.g. 1993 &2004) breeding seasons are shared by 

all five species. Extreme non-linear cases of only exceptionally bad or good seasons 

inducing synchrony may require different model structures (Cattadori, Haydon & 

Hudson 2005). Food supply is an important extrinsic factor affecting seabird breed­
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ing success (Frederiksen, Mavor & Wanless 2007), often acting via thresholds in 

prey availability (Cury et al. 2011). Given that productivity of our species is thought 

to differ in sensitivity to variation in prey abundance, in particular sandeels (with 

kittiwakes considered the most sensitive and shags the least; Furness & Tasker 2000), 

varying responses with different thresholds are plausible. In addition, the species with 

multiple egg clutches show greater capacity for year-to-year variation, with recurrent 

seasons of low productivity. There are also marked differences in breeding strategies 

(e.g. guillemot and razorbill chicks only spend three weeks at the colony and leave 

when unable to fly, completing their development at sea, while in the other three spe­

cies chicks fledge when only slightly below adult size). In terms of climatic influ­

ences, despite consistency among the species in the sign of the responses to winter 

NAO and local SST, these do not have great explanatory power for overall productiv­

ity. These covariates are likely to reflect climatically induced changes in food availa­

bility. Ideally abundances of key forage fish in the North Sea food web, e.g. sandeels 

or sprats, would be incorporated to the study. However, the fact that different time- 

lags appear important for different species highlights the need for empirical studies to 

identify the mechanisms involved, including differences in species and/or age classes 

of prey taken (Frederiksen et al. 2006) or differences in feeding area or foraging 

depth. Moreover, some potentially extreme short-lived climatic effects such as 

storms, not reflected in these covariates, may affect the species in contrasting ways 

(e.g. heavy rain will flood puffin burrows while gales are more likely to impact on 

cliff-nesting species), which will further contribute to asynchrony. The marked dif­

ferences existing in wintering areas (with kittiwakes showing the greatest dispersal 

range and shags the least, Wemham et al. 2002) could also desynchronise productivi­

ty, with the species potentially starting the breeding season in different body condi­

tion due to carry-over effects (Harrison et al. 2011). In addition to environmental and 

trophic covariates, intrinsic covariates such as density may also affect productivity 

via competition for high quality breeding sites and/or food.

The study and modelling of productivity components is an area of interest in ecology 

(Martin, Hannon & Rockwell 1989; Tavecchia et al. 2008) and conservation 

(Rockwell & Barrowclough 1995), and asynchronous allocations of reproductive ef­

fort in response to environmental change have been recorded even in closely related
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sympatric species (Sandercock, Lank & Cooke 1999; Wilson & Martin 2010). Our 

study of productivity components highlights that observed changes in overall produc­

tivity can be driven by particular stages of breeding. This approach can help identify 

which stage is the main driver and focus on key environmental or intrinsic mecha­

nisms.

3.4.2 The common terms as indicator

The interest in indicators for monitoring and assessment of marine ecosystem health 

is widespread. Given their position as top predators in the marine food web, seabirds 

have been used as indicators to assess fish stocks, study climatic fluctuations and de­

tect ecosystem change (Piatt, Sydeman & Wiese 2007; Parsons el al. 2008; Einoder 

2009). Breeding success is a widely used metric since it is likely to be linked to prey 

availability and thus reflect changes at lower trophic levels and in abiotic conditions 

(Frederiksen, Mavor & Wanless 2007; Cook et al. 2011).

The common terms of overall productivity may convey information about variations 

in the marine environment around the Isle of May that affect the breeding success of 

the five species synchronously. The long-term decline found probably reflects a gen­

eral deterioration in conditions in the North Sea with consequent effects for success­

ful breeding. The validity of this result is reinforced by the fact that, despite im­

portant methodological differences, it coincides broadly with the decline seen in the 

‘seabird index’ proposed by Frederiksen, Mavor & Wanless (2007) based on Princi­

pal Component Analysis (PCA) of the productivities of the same five species (Figure 

3-6). Being model-based (versus the a posteriori approach of PCA on the estimates), 

our method has the advantage of obtaining measures of uncertainty and permits the 

explicit estimation of the species-specific asynchronous components, that is, the dif­

fering response of each species with respect to the set. It also provides a way of gen­

erating potential multi-species based indices, although more careful examination of 

their properties would be required on a case by case basis before their application in 

management (Einoder 2009).

Parsons et al. (2008) divide seabird-based indicators into three types according to the 

target aspect to be monitored: species status, local marine ecosystem health, or food



3. Multi-species synchrony in productivity1 96

availability as a proxy for the impact of ecosystem pressures. Abundance is recom­

mended as an indicator of seabird species status, but does not necessarily reflect im­

mediately marked changes in the availability of food. Therefore productivity will 

generally be a better variable as indicator of both food availability and local marine 

ecosystem health, while still being relatively easy to monitor. All the species we con­

sidered feed exclusively at sea and, on the Isle of May, are not subject to predation by 

terrestrial mammals. They are thus suitable as indicators of marine health since the 

influence of confounding factors is unlikely to be large. The common signal in over­

all productivity synchrony is therefore a strong candidate for an integrated response 

indicative of this avian predator community. For indicators of food availability as 

proxy for the impact of ecosystem pressures, Parsons et al. (2008) recommend tar­

geted single-species indicators (e.g. kittiwake breeding success as indicator of the 

impact of an industrial fishery in the North Sea; Frederiksen et al. 2004), arguing that 

their response may be more specific, unless the species in a set respond similarly to 

the same pressures. In this context, it may be worth investigating the use of the com­

mon signal, although we note again the different sensitivity of the species to prey 

availability (Furness & Tasker 2000).

3.4.3 Clutch size underdispersion

In this chapter we have also considered synchrony in clutch size underdispersion for 

shags and kittiwakes at the Isle of May. Data on individual clutch size are recorded 

less commonly and to our knowledge, underdispersion in this state variable has rarely 

been investigated. Our analyses indicated that overall most of the year-to-year varia­

tion in both mean clutch size and underdispersion is largely synchronous between 

shags and kittiwakes (synchrony indices ranging from 42% to 8 6 %), although the 

time-series available was shorter than for other productivity analyses and thus did not 

allow the estimation of precise indices.

Some interesting relationships also emerge from exploratory comparisons of each 

species’ mean clutch size A, underdispersion (3, overall productivity (p, related to the 

average number of chicks fledged per breeding pair) and the environmental covari­

ates considered. First of all, there was no clear relationship between mean clutch size 

and underdispersion (Figure 3-20, lower panels). The analysis suggests that good
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years in terms of average number of eggs per nest would be associated with greater 

spread (lower /?). Note also the lack of significant correlation between mean clutch 

size A and overall productivity p (Figure 3-21, top panels), which indicates that, for 

these species, years of higher average number of eggs are not necessarily associated 

with years with higher average number of fledglings per nest. Given data on all stag­

es of the breeding process, further analyses could explore at which stage the relation­

ship between greater investment in egg production and higher overall breeding suc­

cess breaks down. Surprisingly, there is some evidence of correlation between overall 

productivity and the underdispersion parameter (Figure 3-21, bottom panels), alt­

hough note that the estimates of /? have relatively wide credible intervals. For in­

stance, kittiwake productivity was practically zero in 1998, which is the year with the 

lowest recorded ¡3 corresponding to a wide spread of clutch sizes (and in this case 

mean clutch size was low). Also, their relatively high productivity in 2005 corre­

sponded to the highest (3 recorded, i.e. clutch sizes closer to the mean. Years 2010 

and 2 0 1 1  are somehow unusual in that they combine the highest values recorded for 

A with the lowest values for /?. The lack of clear patterns suggests that in this system 

environmental conditions may change through the season in complex ways that vary 

between years.

A negative correlation between mean clutch size A and sea surface temperature in 

winter of the previous year (SSTj) is consistent with an indirect relationship operat­

ing via prey that are one year old, most likely sandeels of that age group, which are 

important prey for shags throughout the year, as well as for kittiwakes in the early 

part of the season (Lewis et al. 2001; Frederiksen et al. 2006). It is more difficult to 

find intuitive ecological explanations for the relationship found between the envi­

ronmental covariates and underdispersion (/?). The analysis suggests that, for both 

species, a larger spread in the distribution of clutch sizes (lower (3) is related both to 

poorer overall productivity (higher p) as well as higher SSTo; at least for the kitti­

wake, this is consistent with previous studies (Frederiksen et al. 2004 found a 

negative relationship between breeding success and SSTo in that species). On the oth­

er hand, we do not have a clear explanation for the correlation between high under­

dispersion and high wNAOj. It appears that certain conditions have an equalizing 

effect on clutch size distribution while others increase the variation. A fuller under­
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standing of these issues may require incorporating appropriate trophic covariates e.g. 

measures of sandeel abundance and/or the proportion of sandeels in the diet, in order 

to look for stronger more direct relationships.

Of course one should be aware of the danger of over-interpreting the patterns found, 

given the relatively small number of years in the study. Also, parameter uncertainty is 

not accounted for in this simple exploration. As an example, we calculate posterior 

correlation for the pairs ()3K — (3S) and (AK — A5), by obtaining a correlation coeffi­

cient for each MCMC iteration. The resulting distributions have the following medi­

ans (and 25th and 75th percentiles): rpK~ps = 0.58 (0.03,0.95) and rAK_AS = 

0.75 (0.54, 0.89). Although these values are in line with the correlation coefficients 

found from the point estimates (see top panels in Figure 3-20) it is clear that, when 

uncertainty is taken into account (using the full posterior distributions of the parame­

ters), there is much less evidence for correlation between (3K and fis . A strong posi­

tive correlation between XK and still appears supported by these results.

3.4.4 Conclusions

The framework presented here to quantify multi-species synchrony in productivity is 

extremely flexible and, as we have demonstrated, can readily be adapted for different 

components of productivity and for clutch size underdispersion, as long as suitable 

data are available. Furthermore, the framework can also be adapted to single-species 

multi-population cases, i.e. synchrony in productivity of geographically separated 

populations (as Grosbois et al. 2009 do for adult survival) and also to different age 

classes, based on age-specific data (Rockwell et al. 1993). The binomial form also 

makes it possible to consider multi-parameter synchrony for a single species, e.g. be­

tween productivity and other demographic parameters like survival (as we discuss in 

section 4.2.6), or between different components of productivity (e.g. between hatcha- 

bility and chick survival). Although the terminology in this chapter refers to avian 

breeding (e.g. ‘clutch’, ‘fledgling’), the methods are equally valid for non-avian 

communities. The study of productivity synchrony may help elucidate ecological hy­

potheses and such models can be important tools in understanding the response of 

species communities in the face of environmental change. Finally, the study of syn­

chrony and its potential role in the development of multi-species environmental indi­
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cators highlights the relevance of long-term monitoring programs from which long 

time series of demographic parameters such as productivity can be estimated.

The logical extension to this approach is to consider synchrony in several demo­

graphic parameters by analysing them simultaneously and incorporating time-series 

of abundance, in an integrated population modelling framework (Besbeas, Freeman 

& Morgan 2005). The joint likelihood of such analysis would extend over demo­

graphic parameters and different species, an analysis that to our knowledge has so far 

not been attempted. This will be the subject of the Chapter 5.



4 SYNCHRONY: PROPERTIES, 

PERFORMANCE AND EXTENSIONS

This chapter focuses on the concept of multi-species synchrony as defined in this the­

sis, with the aim of clarifying its meaning and offering guidance on when and how to 

use it. We investigate the properties and performance of multi-species synchrony un­

der different scenarios that may typically be encountered in ecological studies (e.g. 

how many years or how many species). Several extensions are also discussed. The 

various simulation studies in this chapter use productivity as the demographic param­

eter of interest for illustration purposes, but we note that results are general and 

equally applicable when using the framework for other demographic parameters.

4.1 Model performance and properties

We have already shown using simulations that the modelling framework of this thesis 

is able to recover the parameters used to simulate synchronous data (section 2.3.9 for 

survival and 3.2.3 for productivity). In this section, we investigate further the perfor­

mance and properties of the synchrony framework with respect to several practical 

aspects that may occur in ecological studies. We do this by performing a series of 

simulation studies, based on the following general setup:

(i) A set of S species that have a single-egg clutch (like the auks in the Isle 

of May study).

(ii) Estimation of ‘overall productivity’ p for a series of T years, based on the 

number of monitored eggs E and the number of fledglings F produced,
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using a binomial model as explained in section 3.1.1 so that, for species s 

and year t,

Fs(t) ~  Bin(Es (t), ps (t))-

(iii) Estimation of multi-species indices of synchrony (Is) in overall productiv­

ity p, based on the estimated variances of synchronous (5(t)) and asyn­

chronous (£s(0 )  year random terms, as explained in section 3.1.2

l°g it(Ps(0) = Ps + 5(t) + £s (t)

This setup is chosen because the binomial model for estimating productivity is simple 

and, given enough monitored eggs (which is not a problem in simulations), the esti­

mates of productivity are very precise, allowing us to concentrate on the study of the 

properties of synchrony itself.

Data are simulated with E — 2000 eggs per year for all species, from which the 

number of fledglings F is obtained following (ii), using values of productivity that 

have been calculated based on values of synchrony, variances and intercepts that de­

pend on the particular simulation study to be carried out. This procedure of data sim­

ulation and analysis is repeated a number of times, and bias and root mean square 

error (RMSE) calculated using the known true values of the species-specific inter­

cepts /?s, synchronous (a§) and asynchronous (of) variances and derived indices of 

synchrony 7S, and the median of the marginal posterior distributions as point esti­

mates. All data analyses in this section are performed in WinBUGS, run from 

M A T L A B  (with 50000 MCMC iterations after 50000 bum-in, unless otherwise speci­

fied).

4.1.1 Number o f years

Since the quantification of synchrony is based on the estimation of the variances of 

random effects, we can expect that short time series will produce rather imprecise
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estimates of synchrony indices. We test this by simulating and analysing productivity 

data sets for S = 3 species and an increasing number of study years T G 

{5,10,25, 50,100}. Bias and RMSE are calculated over 100 simulations per value of 

T, with the following parameters: intercepts = [1,1.5,2.5], crg = 1, er2 = 

[0.5,0.4,0.4] (consequently, Is = [0.67,0.71,0.71]). Figure 4-1 shows a typical set 

of values for p produced with these parameter values and T = 40.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
year

Figure 4-1 Example of overall productivity' p values produced for 3 species (1: blue; 
2: red; 3: green) and T=40 years with the following parameter values: intercepts 
Ps — [1,1.5, 2.5], cxj =  1, cr2 =  [0.5,0.4, 0.4] (and consequendy, Is =  
[0.67,0.71,0.71]).

The simulation results (Figure 4-2) show how all estimates become more precise as 

the number of years increases, with a steeper reduction of RMSE for up to approxi­

mately T = 25 years. At least for three species and this combination of intercepts and 

variances, estimates of synchrony with T < 10 years appear positively biased and 

rather imprecise.

We would expect variance to decrease with a factor 1/T  as the number of years in 

the study T increases. We verify that this is the case in our simulation study: we cal­

culate the variance we would expect for T = [10, 25,50,100] by scaling the vari­

ance obtained for T = 5. The resulting values are similar to the variance of the point 

estimates over the 100 simulations (Figure 4-3).
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study length T (years) study length T (years)

study length T (years) study length T (years)

study length T (years) study length T (years)

Figure 4-2 Bias (left panels) and RMSE (right panels) of the indices of synchrony 
(/s), common (ffg; denoted ‘var(5)’) and species-specific (tJs2; denoted ‘var(s)’) vari­
ances, and regression intercepts (/?s), calculated for 100 simulations and study 
length values T ranging from 5 to 100 years.
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0 25 50 75 100
study length T (years)

Figure 4-3 Estimated variances over 100 simulations of the median of marginal 
posterior distributions (solid lines), compared to the expected variance according to 
a scaling by 1/T  of the value estimated for T=5 (dashed lines). Parameters: indices 
of synchrony (Is ), regression intercepts (J3S), species-specific (<72) and common 
(erj) variances.
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4.1.2 Number o f species

In order to explore whether there is an effect of having more or fewer species in the 

set, we simulate productivity data sets with an increasing number of species (from 2  

to 9), for T = 5 and 7 = 20 years (50 simulations for each combination). All species 

shared the same variances and intercepts: (ls = 1.5, erf = 1, erf = 0.4 (so that syn­

chrony is Is = 0.71 for all species).

Figure 4-4 shows that bias and RMSE (averaged over all species in each set) do not 

change significantly when more species are added to the set, for either 5 or 20 years. 

The expected effect of having a longer time series is also visible.

mean I 
mean var(s) 
var(8 ) 
mean p

—♦—mean I
—♦—mean var(s) 
—• —var(8 ) 
—♦—mean p

Figure 4-4 Bias (top panel) and RMSE (bottom panel) of indices of synchrony (/), 
regression intercepts (/?), species-specific (of) and common (of) variances, for 
7 = 5 (dashed lines) and 7 = 20 (solid lines). Except for of, the values represent 
averages over the 5 species.
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These species are synchronous by design (as these are simulated data sets), so adding 

more species, if anything, could help improve the estimation of the common terms, 

but should in any case not harm the estimation of synchrony. This is different from 

analysing synchrony for a larger set of real species, which in general will not be syn­

chronous by design. In such a situation, the more species that are added, the larger the 

chances of including a species that is less synchronous with the rest. If such a species 

is added, the amount of common variation in the set would decrease, resulting in 

smaller indices of synchrony for the species already present in the set (but not neces­

sarily for the new species added, as discussed in section 2 .2 .2 ).

4.1.3 Robustness to different intercepts

When the baseline value of the parameter under study (here productivity) is very di f- 

ferent for different species, the same magnitude of variation on the logistic scale will 

translate into different magnitudes on the probability scale (see an example in Figure 

4-5). As synchrony is calculated on the logistic scale but the data relate more directly 

to overall productivity p, which is defined on the probability scale, we test here 

whether the estimation of synchrony becomes more difficult when the species in a set 

have very different intercepts.

We simulate data for S — 5 species and T = 20 years, with — 1, crs2 = 0.4 (thus 

again synchrony Is = 0.71 for all species). The intercept (3S is 1 for all species except 

for species 1, for which we vary it from 1 (same value as the others) to -1.5. A typical 

data set for (31 = —1.5, the most extreme case considered, is shown in Figure 4-5.

We then analyse these data sets with the synchrony model. The procedure is repeated 

for 50 simulations for each value of f>̂ . The results (bias and RMSE; Figure 4-6) 

show no effect of one species having a different intercept from the others, indicating 

that the estimation of synchrony is robust to such differences.
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year

Figure 4-5 Example of overall productivity p values produced for 5 species and 
T = 20 years with the following parameter values: intercepts
Ps  =  [—1 . 3 , 1 , 1 , 1 , 1 ] ,  <Jg =  1, crs2 =  [0.4, 0.4, 0.4,0.4,0.4] (and consequently, 
Is =  [0.71,0.71,0.71,0.71,0.71]). The black line represents species 1.

4.1.4 A species ’ variance limiting the amount o f common variation

We note in section 2.2 that the concept of synchrony as defined here encompasses the 

magnitude of the variations. We could expect that the amount of synchronous varia­

tion in a set of species would be limited if one or several of the species considered 

have little year-to-year variation in the parameter for which we want to estimate syn­

chrony. We conduct a simulation study to verify whether a species of low overall var­

iance can limit the amount of synchrony in the set.

Using variances <t|  = 0.6 and crs2 = 0.2, we simulate common and species-specific 

random terms for S — 3 species and T = 30 years. These variances would imply a 

priori a synchrony index of 0.75. For all species except the first one, we derived 

productivity values and simulate productivity data based on these year random terms. 

Then for species 1 we calculate the productivity values P i(t) with a dampening of 

the ‘common terms’, based on the following equation:

logit(p1 (t)) = p i+Vk ■ 6( t )  + 0.5 ■

where k is a scaling factor that we vary from 1 (no scaling) to 0 . 2  (strong scaling).
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- 0.10
1 0.5 0 -0.5 -1 -1.5

intercept of species 1
0 . 1 0  — var(8 ) -» -var(l)

— var(2) —• — var(3)
0.05 — var(4) -«-var(5)

intercept of species 1

0.0
1 0.5 0 -0.5 -1 -1.5

intercept of species 1

intercept of species 1

Figure 4-6 Bias (left panels) and RMSE (right panels) of the indices of synchrony 
(Is ), common (p§)  and species-specific (cr,?) variances, and regression intercepts 
(J3S), calculated for 50 simulations, 5 species and T  =  20 years, and the intercept of 
species 1 (fli) ranging from 1 (equal to the other species) to -1.5.

Such data sets emulate scenarios in which one of the species in the set has some de­

gree of synchrony with the other species (ensured by design via the presence of the 

S ( t )  random terms) but lower overall variation (which we control with the scaling
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factor k). We also apply a constant scaling of 0.5 to the species-specific terms E1 (t), 

so that species 1 has little year-to-year variation in p overall. Figure 4-7 displays a 

typical example of productivity values generated for k = 0 .2 , the most extreme case 

considered.

year

Figure 4-7 Example of overall productivity p  values produced for 3 species and 
T =  20 years with the following parameter values: intercepts /3S =  1.5, d j  =  0.6, 
ds2 = [0.1,0.4, 0.4], and applying a scaling factor k — 0 . 2  to the common terms of 
species 1 (whose resulting productivity is represented by the black line).

When k = 1 (no scaling of the common terms for species 1), the indices of syn­

chrony would be 0.92 for species 1 (due to the 0.5 scaling applied to e t ) and 0.75 for 

the rest of the species. We would expect the synchrony indices to decrease with the 

amount of scaling k, as the new common signal is in principle limited by the scaling 

applied to the common terms in species 1 .

For each value of k, we analyse 50 simulated data sets using the synchrony model 

structure. Figure 4-8 shows the resulting mean and variance of the point estimates 

(the median of the marginal posterior distributions) calculated over the 50 simula­

tions. As expected, the estimated synchronous variance d j decreases as the amplitude 

of the common terms of species 1 is dampened (scenarios with lower k). Conse­

quently, in species 2 and 3 the asynchronous variances (df and d f ) are boosted, as 

their species-specific random terms absorb the diminishing variation that was previ­

ously common. The species that limits the common variation (species 1) retains a 

high and slowly increasing index of synchrony Ix while both I2 and /3 decrease. The 

estimation of the intercepts /?s remains largely unaffected.
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Figure 4-8 Mean (left panels) and corresponding variance (right panels) of the point 
estimates (median of the marginal posterior distributions) of 50 simulated data sets, 
for the indices of synchrony (/s), common (a j) and species-specific (er^) variances, 
and regression intercepts (J3S). The variance reduction coefficient k  for species 1 
varies from 1 (no reduction) to 0.2 (very little common variation). Study period 
length is T  =  30 years.



4. Synchrony: properties, performance and extensions 111

4.1.5 A test for spurious synchrony

We have shown that the synchrony framework is capable of estimating synchrony 

when it is present. This section explores the opposite situation: we investigate the ro­

bustness of the model to spurious estimation of synchrony when there is none by de­

sign. We would expect that in analyses of short time series, where the estimation of 

the random effects variances is challenging, the model may estimate some degree of 

synchrony even when in reality no mechanisms synchronise the species. This aspect 

is relevant to ensure that when the model is applied to a real data set, we can be con­

fident that, when some level of synchrony is estimated, such an effect really exists.

We simulate productivity data for a varying number of species (from S = 2 to 5) and 

years (from T = 5 to 25). In all cases, the data sets are completely asynchronous 

(crj = 0, of ~ 0.4), that is, their productivities are independent as there are no 

common random terms. The indices of synchrony should be zero for all species. For 

each combination of 5 and T, 50 data sets are created and analysed with the syn­

chrony model, allowing the model to estimate spurious synchrony. The mean and 

variance of the point estimates (median of marginal posterior distributions) are calcu­

lated for each combination (5, T).

The results (Figure 4-9) show that for short time series, the model estimates a sub­

stantial amount of spurious synchrony (25-35%) with a large variance, which corre­

sponds to a non-zero estimate of the synchronous variance dg. Adding species to the 

set does reduce the amount of spurious synchrony, and the difference is particularly 

noticeable when we move from only two to more than two species. The amount of 

spurious synchrony reduces substantially as the number of years increases.
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Figure 4-9 Mean (left panels) and corresponding variance (right panels) of the point 
estimates (median of the marginal posterior distributions) of 50 simulated data sets, 
for the parameters of interest (indices of synchrony (7S), common (cr§) and species- 
specific (dj ) variances, and regression intercepts (/?s)), a varying number of species 
and years. The values shown for Is , CTj and /3S are the means or variances averaged 
over all species considered in that particular combination.
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These results indicate that it is preferable to work with longer time series, particularly 

when few species are studied. A general recommendation (at least for these values) 

would be to analyse at least 2 0  years if there are only two species in the set, or at least 

10 years if there are more than two species. We note that this is largely fulfilled in 

our analyses of synchrony for the Isle of May seabird community: 5 = 3 species and 

7 = 23 years for adult survival (section 2.3); 5 = 5 and 7 = 24 for overall produc­

tivity (section 3.1) and components of productivity (section 3.2). The analysis of syn­

chrony in clutch size underdispersion parameters (section 3.3) has only 5 = 2 and 

7 = 12, but note the estimated synchrony indices are large (>0.4) in all cases, alt­

hough rather imprecise. These results are also relevant to single-species multi-colony 

analyses; we note that in Grosbois et al. (2009), multi-population synchrony is esti­

mated for 5 = 4 populations and 7 = 11 years.

One important aspect to note is that the model estimates the amount of ‘synchrony’ 

there is in the system independently of whether that synchrony has a ‘mechanistic’ or 

‘stochastic’ origin; the former corresponds to species that respond similarly and thus 

have ag =£ 0 , the latter is created by chance from independently varying species.

With our simulations, we estimate the level of synchrony for a given configuration 

that may correspond to the purely stochastic part (as we know by design that the time 

series are created independently); this is the level of synchrony which is therefore not 

interesting for ecological inference. Our interest lies in synchrony that has been gen­

erated mechanistically (i.e. the species are responding synchronously to some aspect 

of their biotic or abiotic environment). As expected, the stochastic element of syn­

chrony is reduced as the time series analysed become longer and also as more species 

are included in the set.

This type of simulation can form the basis for a test of the level of ‘stochastic’ or spu­

rious synchrony that the model may estimate for the amount of data and parameter 

values of a real data set. Such a test can be performed after analysing the real data set 

to determine whether the estimated synchrony indices differ from that expected under 

the null hypothesis of lack of synchrony, an important aspect of the study of syn­

chrony (Buonaccorsi et al. 2001).
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We explain here the approach in more detail using as an example the 5-species 

productivity data set of the Isle of May (analysed in section 3.1):

(i) We first analyse the real data set with a model that does not include com­

mon terms, so that logit(ps(t)) = /?s + £s(t)- Such a model estimates the 

species-specific variances <rs2 assuming that all the variation in each spe­

cies is asynchronous. It also estimates the species-specific intercepts.

(ii) The posterior medians of these parameters arc then used to simulate 

matched data sets with S = 5 species and T = 24 years, which have a 

level of asynchronous year-to-year variation equivalent to that of the real 

species in the Isle of May data set.

(iii) We analyse the simulated data sets (in which we know by design that 

there is no synchrony) with the synchrony model and calculate the mean 

and variance of the point estimates (medians of marginal posterior distri­

butions) of the indices of synchrony Is over 100 simulations (using Win- 

BUGS with 100000 MCMC samples after 100000 samples bum-in).

(iv) Finally, these means are compared (Table 4-1) to the estimates of syn­

chrony obtained from the synchrony analysis of the Isle of May produc­

tivity data set (Table 3-1).

(v) Despite the inherent imprecision of the estimates of the indices of syn­

chrony, their 95% Cl clearly do not include the values obtained from the 

simulation of asynchronous data sets, which would represent the spurious 

level of synchrony estimated from a system with 5 = 5 species, T — 24 

years and the amount of year-to-year variation that characterises the real 

data set. We can therefore conclude that the Isle of May estimates of 

productivity synchrony do not represent stochastically-generated syn­

chrony, but are an expression of a synchronous response of the species to 

variations in their environment.
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Table 4-1 Mean and variance of the point estimates of the indices of synchrony Is 
obtained for each species from 100 data sets with completely asynchronous 
productivity (‘Simulation study’), and the estimates (median and 95% Cl) obtained 
from the analysis of the real Isle of May data set.

Simulation study Isle of May estimates
mean variance median [95% Cl]

h 0.028 0.0005 0.295 [0.097, 0.636]

h 0.029 0.0005 0.292 [0.102, 0.594]

h 0.169 0 . 0 2 0 0 0.870 [0.448,1.000]

u 0 . 0 1 1 0 . 0 0 0 1 0.092 [0.030, 0.234]

h 0.019 0 . 0 0 0 2 0.120 [0.044, 0.276]

4.1.6 Covariance and common terms

The common random terms in the synchrony model and the existence of covariance 

between species are related concepts. Completely uncorrelated (i.e. independent) re­

sponses have by definition no common component, and we already mentioned (sec­

tion 2 .2 .2 ) that negatively-correlated variations are not seen as ‘common’ in our syn­

chrony models, so some degree of positive correlation is therefore required for a set 

of species to be synchronous in a demographic parameter.

We present first two simple cases of overall positive correlation and negative correla­

tion. Let us define xs(t) as the overall year-to-year variation on the logit scale for a 

demographic parameter (such as productivity), for species s and year t :

logit(ps(t)) = po s + xs(t),

where we let in general the x 5 (t) terms be distributed as a multivariate normal 

x (t) ~ MVN(0, I) , with variance-covariance matrix

°12 ° l  S

I  = °12 <%22 °2S

-a l  S °2S ■ °xS-

Here a^s is the variance of xs and asr the covariance between species s and r. In 

practice, instead of covariance, we may specify pairwise correlations between species
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s and r  as rsr = <Jsr/(<7xscrxr). When all rsr = 0, the species are independent. Figure

4-10 shows two examples of overall year-to-year variation xs(t) generated using a 

multivariate normal distribution with means 0, variances cr| = 0.4 for all species and 

strong covariances between all pairwise combinations of species, either positive (0.3; 

top panel, three species) or negative (—0.3; bottom panel, two species). In these sim­

ple cases, a visual inspection suggests that the xs(t) terms appear rather ‘synchro­

nous’ in the case of positive covariance (that is, a large part of their year-to-year vari­

ation could be explained by ‘synchronous terms’ 8), but that this is not so in the case 

of negative correlation. Indeed, when we generate a productivity data set based on 

these random terms and analyse it with the multi-species synchrony model, we obtain 

high indices of synchrony in the first case (Is = [0.91,0.76, 0.80]) but not in the se­

cond one (very low estimate of the common variance: <rj =  0.009).

1.5

-1.5 years2.0
1.5
1.0

>

£ -1.0
o

-1.5
- 2.0 years

Figure 4-10 Examples of overall variation xs(t) generated with pairwise covariance 
between species. Top panel: three species with positive pairwise covariance 0.3; 
bottom panel: two species with negative covariance —0.3. T  = 30 years.
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We explore now in more detail how positive covariance in a set of species can be in­

terpreted as synchrony when using the multi-species synchrony model. Let us assume 

a set of S = 3 species with correlation in their year-to-year variation so that r1 2  = 

0.8, r1 3  = 0.7, r 2 3  = 0.9, and ofs = 0.8, Vs. We randomly generate the values of 

xs(t) from a multivariate normal distribution with these parameters for T = 200 

years, using function mvnrnd in M a t l a b . The corresponding values of productivity p 

are calculated using intercepts /?0s = [—0 .2 , 2 , 1 ], as

Ps(0  = {l + exp(-/?0s -  *s(t))} X-

A data set of breeding success is generated randomly from these values of productivi­

ty, consisting of the number of chicks Fs{t) that fledge from 2000 eggs per species 

per year. We estimate synchrony using the multi-species synchrony model,

logit(ps(t)) = p0s + S(t) + £s(t),

5 (t)~  N(0, a |) ,  es(t) ~ N(0,of),

Figure 4-11 (top panels) shows the marginal posterior distributions of the estimated 

common (of) and species-specific (of) variances and related indices of synchrony Is. 

The common variation created by the high positive correlation between the species is 

absorbed by the common S terms (of = 0.91), and the species with highest com­

bined correlation with the two others (species 2 ) ends up with practically no species- 

specific variation (of = 0.02). Slightly higher variances are estimated for the two 

other species (0.35 and 0.15 respectively).
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(c)

0.0 0.5 1.0

(b)

Figure 4-11 Kernel density estimates (calculated with MATLAB function ksdensity) of 
the marginal posterior distributions of variances (a & c) and indices of synchrony (b 
& d), obtained with the usual synchrony model (a & b) or when allowing the model 
to estimate both common terms and correlation between species-specific terms us­
ing a multivariate normal distribution (c & d). Green = species 1, blue = species 2, 
red = species 3, black = common terms <5. Data generated with cr* = [0.8,0.8, 0.8] 
(marked by a vertical dotted line) and correlations: r12 = 0.8, r13 = 0.7, r23 = 0.9.

In Chapter 3 (see Figure 3-6) we note that the estimated common terms S from the 

productivity synchrony analysis show correlation with the ‘seabird index’ calculated 

following the method in Frederiksen, Mavor & Wanless (2007), based on Principal 

Component Analysis (Jolliffe 1986) performed directly on productivity on the proba­

bility scale. Here we perform PCA on x s, the overall year-to-year variations on the 

logit scale (after standardising each of these by subtracting the mean and dividing by 

the SD). The calculation is based on the known values of x s, from which the data set 

was simulated. A scatterplot of the first principal component ‘PCI’ versus the esti­

mated common terms 6 (Figure 4-12) suggests that, despite the differences in ampli­

tudes, the concept of ‘common variation’ comes close to that of explaining as much 

as possible of the variation in the data set.
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PCI (from standardized xs(t))

Figure 4-12 Scatterplot of the estimated common terms S(t) and the first principal 
component obtained from applying PCA to the (known) overall year-to-year 
variation Xs(t) of the set of species (after standardising).

In some studies, one may want to estimate the variance-covariance matrix of the 

overall variation xs(t), as an alternative to the synchrony model:

logit (ps ( t) )  =  p 0 s + xs (t),

* ( t)  ~  MVN(0,Z), with Z = r 1 2 ° x l ° x 2

-r 1 3 ° x l a x3

r12°Xl(Jx2

° 2X2
r 2 3 (Tx 2 ° x 3

r 1 3 a x l a x3  

r 2 3 ° x 2 a x3 ■

Fitting this model to the simulated productivity data set, we can estimate pairwise 

correlations for all combinations of species but, as we note in section 2 .2 .2 , such a 

model does not involve synchrony with respect to the complete set of species. We fit 

this model in WinBUGS using the multivariate normal distribution dmnorm, pa- 

rameterised with the vector of means (mu[ ], zero in our case) and the precision ma­

trix, ft = Z-1. We specify the prior of 11 as a Wishart distribution: 

ft ~ W ishartd(fi, v0), where the scale matrix R ( d x d  symmetric non-singular ma­

trix; here d = S, the number of species) represents our prior belief regarding the pre­

cision of Z, and v0  are the degrees of freedom of the distribution (Spiegelhalter et al.
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1996). We choose v0  = 5 = 3 to specify an uninformative prior (McCarthy 2007, 

p.275) and a diagonal matrix of ones for R. The analysis (involving 100000 MCMC 

samples after a bum-in of 1 0 0 0 0 0 ) is able to estimate the correlation structure well, 

with medians (and 95% CIs): f1 2  = 0.79 (0.73,0.83), f1 3  = 0.70 (0.62, 0.76), 

f 2 3  = 0.91 (0.88,0.93).

One may ask what happens if we attempt to fit a model that estimates simultaneously 

common terms Ô and a covariance structure in the residual (species-specific) terms 

es. Such a model would have

lo g it(p s ( t ) )  = Pos + S(t) + £s ( t) ,  

m ~  N(0, cr52),

£(c) ~  MVN(0,I),  Z =
o f r 120 i 0 2 r 13a ,a '3

r12°l° 2 a 2 r23a2o3
X \ 3 ° l ° 3  r 2 3 (J2 (J3 ° 3

The results (Figure 4-11, bottom panels) show that the model finds two possible ex­

planations for the evident common signal: it is either created by common terms S(t) 

(higher cr|, lower crs2  and rsr), or high positive covariance (low of and high rsr). This 

is evident in the bimodal nature of the marginal posteriors or in the joint posterior of 

e.g. 0 5  and the correlation coefficients (Figure 4-13 shows an example with r12). 

Common terms and positive covariance offer alternative explanations for the same 

data, and are thus in a way confounded. In this case, posterior summaries such as the 

mean or median may not be very informative, given the bimodality.
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4.2 Extensions o f the synchrony modelling framework

In the following sections we propose several possible extensions of the multi-species 

synchrony modelling framework, and suggest potential applications of the framework 

beyond the multi-species case. Again, we use overall productivity p as an example, 

but the ideas are generally applicable to any demographic parameter of interest.

4.2.1 Detrended synchrony

In all models considered so far, synchrony is defined for the year-to-year variations 

over a specics-specific constant value, the intercept of the logistic regression. This 

concept can be expanded to defining synchrony on the year-to-year variations over a 

linear trend with time on the logit scale, with Y (t) = standardised years (subtracting 

the mean and dividing the difference by the standard deviation), so that

logit (ps (t)) = (a s + (isY(t)} + S(t) + £s(t). (4.1)
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This detrended synchrony model is conceptually different from the estimation of the 

common trend proposed in section 3.1.6: in (4.1) each species has its own linear rela­

tionship with time (intercept and slope), while in the ‘common trend mode' the slope 

parameter is common to all species, as its estimation is the focus of the analysis.

We simulate 50 data sets for three species and an increasing number of years (from 5 

to 25), with regression parameters as — [1,1.5, 2.5], /?s = [—1,—0.8,—1.5], and 

the same variances for all species: crj = 1, cr| = 0.4 (and thus Is = 0.71). Figure 

4-14 plots an example data set generated with such values.

year year

Figure 4-14 Example of 3-species data set (T =  15 years) with linear trends (on the 
logit scale) and synchrony. Left panel: values of logit(p) and linear trends. Right 
panel: productivity p on the probability scale. Linear trend parameters: a s =  
[1,1.5,2.5],/?s = [—1, —0.8, —1.5]; random effects variances: Gg — 1, oy2 = 0.4.

The results of the simulations (Figure 4-15) show that the model is able to estimate 

all parameters, including the regression coefficients and the indices of synchrony, 

with the expected effect of longer time series giving a smaller bias and RMSE.
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study length T (years) study length T (years)

study length T (years) study length T (years)

Figure 4-15 Bias (left panels) and RMSE (right panels) of the indices of synchrony 
(7S), common (erj, denoted ‘var(5)’) and species-specific { a } ,  denoted <var(s)’) vari­
ances, and regression intercepts ([as) and slopes Q9S) for the detrended synchrony 
model (50 simulations, 3 species, study length T  =  {5,15,25} years.
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The choice of modelling synchrony in the variation over a constant value or over a 

trend in time is a subjective one that depends on the interest of the study. We also 

note that more complex relationships with time can alternatively be modelled instead 

of a linear trend on the logistic scale.

4.2.2 Autocorrelation in the random terms

When a strong temporal autocorrelation is anticipated in the random variation (as in 

e.g. Ripa & Lundbcrg 1996), it can be accounted for using a multivariate normal dis­

tribution to model the common and/or species-specific random terms, with the covar­

iance structure representing correlation between successive years. We describe here 

as an example the model for an AR1 structure (1-year autocorrelation) in the com­

mon random terms 5(t) of overall productivity p, but the approach can easily be ex­

tended to other random terms as well as to longer time-dependence. For each species 

s and year t, the binomial model and logistic regression with random terms is as pre­

viously defined for independent terms

Fs(t)~  Bin (Es( t), ps(t))< 

logit(psCO) = P s + S { t )  + £s ( 0 -

In this example, we assume the species-specific random terms to be independent

£s(0~/V(0,<rs2).

The main difference arises for the common terms, which are now defined as a multi­

variate normal (MVN) distribution

(5(1), 5 (2)..... S(T)} ~ MVN(0,£),

0 ... 0 0 '

° t dl ... 0 0
0 ° t °5 ... 0 0

0 0 0 ... ffj
. 0 0 0 ... a t s l-
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Here <r| represents the variance of the common terms when the autocorrelation has 

been taken into account, and at is the covariance between the common terms in con­

secutive years, 8 (t) and 8 (t + 1), V£. The indices of synchrony can now be defined 

using the variance of the common terms as

4.2.3 Scaled common terms

An interesting variation on the multi-species synchrony framework presented in pre­

vious chapters is to let the common random terms have different variance for each 

species, unlike in the models shown so far where the 8{t) terms were exactly the 

same in all species, in order to achieve this, we define ‘species-specific common ran­

dom terms’ 8s(t) = aSs8(t), where <S(t)~N(0,l) are common to all species, and 

a$s is the species-specific ‘variance of the common terms’. For instance for produc­

tivity p, with species s and year t

logit(ps(t)) = p0s + 8s(t) + £s(t) = Pos + <Jss8(t) + £s(t), (4.2)

where the asynchronous terms are defined as previously, £s(t)~N (0, crs2). The indi­

ces of synchrony will now be

Is =
° l s

’Ss + Cfr

Such a model could find a set of species synchronous even when one species in the 

set has much lower overall year-to-year variation, unlike when the common random 

terms are ‘common’ to all species in the strict sense (as discussed in section 2.2.2).

An alternative formulation of the model is based directly on the total variance of each 

species ( )  and the indices of synchrony

logit(ps(t)) =  P 0 g  +  vSyJTs8(t) + vsJ l  -  /s£s(t),
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with 5 (t),£ s (t)~N (0 ,l). This equation is mathematically equivalent to (4.2) and 

was suggested by Grosbois et al. (2009) for the multi-population situation. We note 

that this model has more parameters to estimate than the synchrony model used in 

this thesis, for the same amount of data.

4.2.4 Adding a further level o f random effects

In cases where species within the set can be classified into groups on the basis of 

shared ecological traits that might be reflected in the demographic parameter of inter­

est, a further level of random effects could be added to the synchrony model. One 

way of looking at this ‘group-level effect’ is to think that the species-specific random 

terms of the species within the group are positively correlated with a stronger correla­

tion than with species outside the group. The group-level random terms will absorb 

the variation that is common within that group of species but not to the rest of the set. 

That is, we effectively partition the overall variation into a hierarchy of levels: 

‘community’ effect (with variance erf; for all species in the set), a ‘group’ effect 

(with variance erf; only for the species that belong to the group) and ‘species- 

specific’ effect (with variance erf for each species s). The group may be defined for 

example by a feeding guild, with more closely related variations in productivity, or 

by the species overwintering in similar geographical areas (and therefore sharing sim­

ilar variations in mortality).

As an illustration, if we have a community with five species, and species 1, 2 and 3 

can be classed as belonging to a common group (e.g. a feeding guild), we can add 

guild-specific random terms 7 1 2 3 (f), only shared between the species that belong to 

the group, so that productivity can be modelled as

logit(ps( 0 )
fis + <5(0 + 7 1 2 3 (f) + £s(f). s e {1,2,3} 

f i s  + £(f) + £s(f), s £ {4,5}

where 7 i 2 3 (f)~A/(0 , o f )■ The indices of synchrony have to be defined taking into 

account the estimated variance erf, so that for species within the group, the total vari­

ance is the sum of community, guild-level and species-specific variances, but only 

community and species-specific variances are summed for species outside the group:
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s e {1,2,3}

S e {4,5}

4.2.5 Multi-species multi-population synchrony

Few studies address simultaneously spatial and species synchrony (but see Swanson 

& Johnson 1999). Such a situation could be tackled with a multi-species multi­

population framework, combining the multi-population model proposed by Grosbois 

et al. (2009) with the multi-species model presented in this thesis:

Productivity psp(t) for species s in site (or ‘population’) p and year t would be relat­

ed to a species-and-site-specific baseline /?sp and random effects which would in­

clude overall common terms S, terms specific to species (As) and sites (yp), and final­

ly a residual that represent species-and-site-specific terms (£sp). As in previous mod­

els, we assume all random terms to be independent, normally-distributed with zero 

mean and variances given by

logit (psp(t)) -  Psp + S (t) + As(t) + yp(t) + £Sp(t). (4.3)

<S(t)~N(0,oJ),Vt

As(t)~N(0, ers2), Vs, t

7P(O~N(0,fT2),V p,t

fsp(t)~N(0,crs2p),V s,p ,t

A series of indices of synchrony can be defined for each species s and site p, based 

on the estimated variances of the random terms
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Such indices represent the percentage of the total year-to-year variation in productivi­

ty of the species s at site p that is common to all sites and species.

Alternatively, one could define the indices with respect to the variation in productivi­

ty that is specific to that species s at that site p

=  i aS + + Off)
(sp) (flj + + o f)  + d}v

Note that multi-species-only and multi-population-only synchrony indices could also 

be derived, conditional on a given site p or species s respectively, and are akin to 

those presented in this thesis and in Grosbois et al. (2009)

l s( . P)  =
0 1  + ap]

0« + <5p) + (<?s2 +  & sp )

Ip(s) =
0 |  + dg )+ à's ) + (<t 2 + a i p )  '

With more parameters to be estimated compared to the multi-species or multi-colony 

cases, we can expect the requirements in terms of amount of data needed to be able to 

estimate them to increase.

4.2.6 Multi-parameter synchrony

Estimating the relationship between demographic parameters is of interest in evolu­

tionary ecology and may have implications for conservation management (Wintrebert 

et al. 2005). Positive correlation has been found e.g. between breeding probability 

and adult survival in the kittiwake (Cam et al. 2002). The multi-species synchrony 

framework can be extended to estimate synchrony in the year-to-year variations of a 

set of demographic parameters, for a single species. For instance, with the data sets 

available for the Isle of May guillemots, one could look at synchrony between adult 

survival (sa) and productivity (p). As we will see in Chapter 5, data are also available 

to estimate guillemot first-year survival (sx), and this third parameter could be in­

cluded in the set. In this case, for each demographic parameter 6 = (sa, s1( p] and
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year t ,  we would define common (8 ) and parameter-specific (£e) random terms in 

the three parameters as follows

logit(s1(t)) = psl + 8 ( t )  + esl (t),

logit(sfl( t) )  =  Psa + 5 (t)  +  £s a ( t ) ,

logit (p (0 )  = Pp + 5(t) + £ p ( t ) ,

where 5 (t) ~ N(0,<t| )  and £ g ( t )  ~ N (0,<Jq \  \ / t , \ / 6 ,  are independent random 

terms. As defined for multi-species synchrony, the estimated variances of the random 

terms can be used to calculate indices of synchrony that represent, for each parameter 

9, the fraction of the year-to-year variation (on the logit scale) that is common to all 

parameters in the set

In —
Or + o ,

2 ■

In this multi-parameter synchrony model, each demographic parameter can be esti­

mated from an independent data set, with common terms 8(t)  bringing the different 

likelihood components into a single model. A more robust estimation may be ob­

tained thanks to the integration of demography and population counts with the use of 

an integrated population model (IPM; introduced in section 5.4).

As an alternative, when it is ecologically reasonable to expect the variations in the 

different demographic parameters to be of different magnitude, it is worth consider­

ing the model with scaled common terms described in section 4.2.3.

4.2.7 Beyond demographic rates: synchrony in site-occupancy

The application of random effects to study multi-species synchrony could be ex­

plored for other types of parameters beyond demographic rates. One such example is 

provided by occupancy models (MacKenzie et al. 2006) where detection/non- 

detection data of an unmarked species collected over repeated visits to a series of 

sites are used to estimate the proportion of sampled sites where the species is present,
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taking into account imperfect detection of the species. With constant occupancy ip 

and detection probability p, the hierarchical formulation of the basic occupancy mod­

el (Royle & Dorazio 2008) consists of a state variable z t (the true state of site t: oc­

cupied or not) and an observation process that models the actual detcction/non- 

detection (coded as 1 or 0) in replicate survey k at site i, hik :

Zi ~ B ernoulli^), 

hi k ~ Bernoulli(pZi).

Covariates can be introduced in both xp and p through a logit link function.

Occupancy probably fluctuates over time, possibly around a mean value. If we have 

detection/non-detection data for several species at several sites over a number of 

years T, and we can assume that the year-to-year variation in site occupancy xp corre­

sponds to a normally-distributed variation around a mean value on the logit scale, we 

could model its fluctuations using random terms, as shown in previous chapters for 

demographic parameters. For species s and year t, occupancy could be modelled as:

logitOP s ( t ) )  = ps + S ( t )  + £s ( t ) ,  (4.4)

where /?s are species-specific baseline values (occupancy may be different for differ­

ent species), around which the year-to-year variation is partitioned between common 

(5) and species-specific (£s) year random terms. Year-specific covariates could also 

be included in the equation above. Also, it is often the case that occupancy varies de­

pending on spatial covariates, characteristics of the sampled sites that influence the 

probability of the species occupying the site. This dependency could be introduced 

using site-specific covariates. Overall, a general model that includes residual syn­

chrony could be, for species s, year t and site t:

7 K
logit(ips ( t ,  0 )  =  Pos + 2 > sc,(0} + ^ { ^ 4 ( 0 }  + S ( t )  + £s(t). (4.5)

7 = 1  k = l
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In this case, 4>s(t, i) (the probability of site t being occupied by species s in year t) 

depends on a set of J site-specific covariates Cj, a set of K year-specific covariates c'k 

and two random terms. The variance of the common terms 8{t) represents the varia­

tion of occupancy over time that is synchronous to all species considered, while the 

variances of the species-specific terms es(f) correspond to the asynchronous compo­

nents. The derivation of indices of synchrony and the contribution of the year- 

specific covariates in synchronising and desynchronising occupancy over time is then 

straightforward. We note that in (4.5), the random terms represent residual variation 

after the spatial variation and part of the temporal variation have been accounted for 

by the spatial and temporal covariates; the derived indices therefore represent syn­

chrony in such residual terms.

Finally, we note that multispecies occupancy models have already been proposed to 

study communities (e.g. Russell et al. 2009) although not specifically targeted to in­

vestigate synchrony in occupancy.

4.3 Discussion

This chapter presents the first exploration of the performance and properties of the 

concept of synchrony defined with respect to the common variation, as used in this 

thesis for multi-species and multi-parameter analyses, and in Grosbois et al. (2009) 

for single-species multi-population analyses.

We use simulated data to verify that bias in the estimation of synchrony reduces as 

the number of years of the study increases, noting e.g. that for three species the esti­

mation of synchrony based on fewer than about 10 years appear positively biased and 

rather imprecise. We highlight again the fact that these synchrony models take into 

account the magnitude of the variations, and that a species with small variance may 

limit the amount of common variation. Also, as expected, the estimation of the spe­

cies-specific baselines (the intercepts in the logistic regressions) appears more robust 

than that of variances. Although specific recommendations should be based on tar­

geted simulations constructed for the system of interest, it is clear that to estimate
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random effect variances, and therefore synchrony, long (> 10 years) time series of 

demographic data have to be collected, especially when the set consist of few species. 

This point highlights the importance of long-term monitoring programs like that at 

the Isle of May.

For a given configuration (number of species, number of years, variances), we pro­

pose a Monte Carlo test to determine the level of spurious synchrony that may be es­

timated stochastically from independent species: estimates of synchrony that are 

above that level are indicative of a synchronous response of the species to variations 

in their environment. In the case of the Isle of May 5-species productivity analysis, 

we show that all estimated synchrony indices are above the spurious levels obtained 

from simulation of independent data sets, suggesting that such indices do not repre­

sent stochastically-generated synchrony.

We also demonstrate that there is a relationship between the existence of the common 

random terms (necessary for synchrony) and correlation of the year-to-year variations 

in the demographic parameter of interest. As common terms and covariance are relat­

ed, we caution against estimating a full covariance structure and the common terms 

simultaneously, as the resulting model could be overparameterised. We recall here 

that negative correlation is not estimated as synchrony in this modelling framework. 

We show that the variance-covariance structure of the overall variation can be esti­

mated with a valid model, but that such a model does not shed light into synchrony as 

defined in this thesis (i.e. with respect to the common variation in the community un­

der study). We end the section noting an interesting relationship with the first princi­

pal component of PCA.

In the second part of the chapter, we propose several model extensions that may be of 

interest in different circumstances, from detrended synchrony to the addition of in­

termediate grouping levels in the random effects to reflect e.g. feeding guilds. Some 

indications are also given regarding how the synchrony modelling framework could 

be extended beyond the multi-species demography scenario. We nevertheless caution 

that the properties of these models should be studied more carefully before they are 

applied in practice.



5 BRINGING IT ALL TOGETHER: 

INTEGRATED POPULATION MODELLING 

OF THE ISLE OF MAY SEABIRD 

COMMUNITY

The modelling so far has concentrated on multi-species synchrony of one single de­

mographic aspect at a time, either adult survival (Chapter 2) or breeding-success relat­

ed parameters (Chapter 3). In this chapter we proceed to integrate data not only for 

several species but also for several demographic parameters together with population 

counts, into a single ‘integrated population model’ (1PM) that jointly models abun­

dance and the demographic parameters that drive its fluctuations, in a single likeli­

hood. The concept and context of integrated population models (IPM) have been in­

troduced in Chapter 1. Here we start by describing the structure of independent inte­

grated population models for each of the three auk species at the Isle of May: the At­

lantic puffin, the common guillemot and the razorbill. These three species are then 

modelled jointly, estimating multi-species synchrony in adult survival and overall 

productivity, in what to our knowledge constitutes the first ‘multi-species’ integrated 

population model (msIPM).
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5.1 Single-species Integrated Population Models (ssIPM)

Three sources of data are available for puffins, guillemots and razorbills at the Isle of 

May. Two of these have already been mentioned in previous chapters: mark-resight 

data of individuals marked as breeding adults of unknown age (Chapter 2) and total 

counts of fledged chicks out of a number of monitored nests (Chapter 3). A third type 

consists of colony counts of breeding pairs, conducted annually for guillemots and ra­

zorbills and less frequently for puffins, hi the particular case of guillemots, two extra 

data sets are also available: mark-resight-recovery data from individuals ringed as 

chicks and proportions of breeding pairs that skipped breeding in different years. Alt­

hough some of these data sets exist for different time periods for the 3 species consid­

ered, we restrict the modelling to the common years (1984-2009), so that when the 

multi-species IPM is constmcted using random terms for estimating synchrony in adult 

survival and in productivity, such terms can be defined across species. We denote the 

T = 26 years of data by t  = 1, The individual data sets and corresponding ‘sin­

gle-species’ IPMs (ssIPM) models are described in more detail in the next sections.

In all three ssIPMs, a state-space model (Buckland et al. 2004; King et at. 2009, p.307) 

is used to model population counts, which consists of two linked models: a system 

process and an observation process. First of all, a system process model describes the 

true population abundance N { t  + 1) for the different age classes at year t  + 1, as a 

function of the previous year’s abundance, incorporating the values of relevant demo­

graphic parameters. We will describe the structure of the population model for each 

species in a compact way using a Leslie matrix (Caswell 2001). The degree of com­

plexity (and realism) of the ssIPM for each species obviously depends on the data sets 

available and the ecology of the species.

The general structure of the population models for the three auks is described in Figure

5-1. The abundance of breeding adults Na actually refers to that of breeding females, 

which is equivalent to the number of breeding pairs as the three species considered are 

monogamous (Gaston & Jones 1998). A number N a ( t )  of breeding females in year t 

will produce a single egg. Each egg has a probability p (t) (overall productivity in year 

t) of hatching and the chick surviving until fledging. A factor 0.5 is included to take
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into account that on average only half of the chicks will be females (balanced sex ratio 

at fledging). The number of female fledglings in year t will therefore be

G(t) ~ BinQVa(t) ,p ( t) /2 ) .

surviving 9  S

population 
counts x

Figure 5-1 Generic structure of the integrated population model for an auk species at 
the Isle of May. Shaded boxes represent the abundance of the different age-classes 
(1st year to (d-l)th year, and ‘adult’). Dashed lines represent the observation process. 
Age of first breeding: d. Other model parameters are described in the text.

Only a fraction of these fledglings will survive their first winter, so that the number of 

‘age 1 ’ females at time t + lwill be:

(Vi(t +  1) ~  B in((7(t),s1(t)) ,

where .sy (t) is the survival probability over the first year of life. The number of imma­

ture females of increasing age can be modelled in the same way using binomial distri­

butions with the corresponding age-specific survival probabilities. Although age at 

first breeding will vary between individuals of the same species, we model recruitment 

using the median value of age at first breeding, denoted ds for species s. Pre-breeders 

IVd_1(t) represent the number of females in the year before first breeding. A non- 

negligible fraction of the puffins and guillemots bom at the Isle of May permanently 

emigrate and recruit to other colonies (Harris, Halley & Wanless 1996; Harris & 

Wanless 2011). Although pre-breeder emigration has not been studied in Isle of May
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razorbills, we assume that a substantial minority of Isle of May immature razorbills 

recruit to other colonies, based on results from Skokholm (Lloyd 1974). We define 

fidelity F (1- probability of permanent emigration) as the probability of an individual 

female recmiting into the Isle of May breeding population, which we assume constant 

for simplicity. We also assume that survival over the winter immediately before re­

cmiting is equal to that of adult birds, sa, so that the number of new recruits R (t) in 

the female adult population in year t will be

In practice, we do not have enough data directly related to immature razorbills and 

puffins that would allow us to separate pre-breeder emigration from mortality, or to 

estimate age-dependent survival probabilities, so for these species we use a ‘combined 

survival’ parameter <pc which includes survival since fledging to the year before re­

cruitment, as well as fidelity. Note that since permanent emigration and mortality are 

in this case confounded, we sould rather talk about ‘apparent survival’ (which we de­

note by letter 0) than ‘true survival’ s; we follow this common naming convention 

(White & Burnham 1999) throughout this chapter. With this simplification, the num­

ber of new recruits for razorbills and puffins can be modelled as

From the already existing female adult population at time t  — 1, individuals will sur­

vive to year t  with probability sa: S ( t )  ~  Bin(iVa (t — l ) , s a(t — 1)). The total num­

ber of adult breeding females at year t  will therefore be the sum of the surviving adults 

and the new female recruits, that is, N a ( t )  = 5(t) + R ( t ) .  Established breeding adults 

of the three species rarely move to other colonies (Gaston & Jones 1998) so we as­

sume adult emigration is very low and therefore set adult fidelity Fa = 1 in the IPMs. 

Although a minority of birds bom in other colonies is expected to immigrate and re­

cruit into the Isle of May population (razorbills in Skokholm, Lloyd 1974; Halley & 

Harris 1993; Harris & Wanless 2011), our models assume that there is no immigration 

as we do not have data to estimate it.

^ ( 0  ~ Bin(iVd_1(t — 1), Fsa (t — 1)).
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Figure 5-2 shows the parameters involved in a generic population model for a species 

with an age of first breeding of d = 5, with a clarification on how we define year indi­

ces for adult survival s, population abundance N a and productivity p, as well as age.

emigration

Figure 5-2 Diagram of the different parameters involved in the population model of 
a species with age of first breeding of d  = 5 (e.g. razorbills). The year mark indicates 
the start of the calendar year and we assume that the breeding season happens 
roughly in the middle of the year. Age is defined for the interval between breeding 
seasons.

An observation model relates an imperfect observation of abundance to the true state 

of the system: the abundance of female breeders Na(t). The imperfect observation 

consists of population counts x(t) of adult breeding pairs over the whole Isle of May 

between t = 1 and t = T. Island-wide counts have been carried out annually for guil­

lemots and razorbills and less frequently for puffins. We model these counts with a 

normally distributed observation error with variance <7*:

x ( t )  ~  N ( N a ( t ) , a £ ) ,  t  E { d  +  1,

We only model counts starting in year d + 1: as only the adult age class is counted in 

the Isle of May monitoring, there is no direct source of information about the abun­

dance of the younger age classes for the first d years modelled and thus the counts for 

the first d years cannot be related to Na abundance modelled as a function of parame­

ters and immature abundance. We use the counts for the first d years to initialise the 

population model for that period t  E {1,..., d } ,  by setting informative normal priors 

for the adult population, assuming the same variance as for the observation error:

Wa(0  ~ N(x(t),a*2), t  E { 1 ,..., d } .
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In practice, the value obtained from the normal distribution is rounded to the nearest 

integer. We note that alternative initialisation methods have been proposed for the 

Kalman filter in the frequentist approach (Besbcas, Borysiewicz & Morgan 2009; 

Besbeas & Morgan 2012a) although their application in the Bayesian approach has not 

been investigated.

The following sections describe the specific data sets and ssIPMs for razorbills, puf­

fins and guillemots, with a more detailed account of the parameters involved and their 

relationship through the integrated population model. We note that in the ssIPMs, the 

random effects used in the estimation of synchrony are not present. They will be added 

to the model when jointly modelling the three auk species (section 5.5). In the follow­

ing sections, we use parameter subscripts (or superscripts in likelihood functions) for 

simplicity to identify the species, with razorbills denoted by ‘R ', puffins by ‘P ’ and 

guillemots by LG\

5.2 Razorbill IPM

5.2.1 Adult mark-resight data set

Between 1984 and 2009, 163 razorbills were marked as breeding adults at the Isle of 

May. A total of 3620 live resightings were collected from 1985 to 2009, and the MR 

data summarised as an m-array mR. We model this data set according to the standard 

open-population Cormack-Jolly-Seber (CSJ) model as explained in section 2.3.3, as­

suming no adult emigration (so that estimated parameters are true survival: (f>a = sa) 

and fully year-dependent survival probabilities, saR = {saR(t): t = 1,..., T — 1). 

Adults are marked using a combination of colours in three colour-rings and a uniquely 

numbered metal ring, and we assume that adults remain identifiable through their life 

(M. P. Harris, personal communication). Resight probability is also year-dependent 

and includes trap-dependence so that, for each individual, its value depends on the 

year (with a year-dependent variable p*R = {p*R(t): t = 1, ...,T  — 1}) and on whether 

the individual was resighted or not the year before (with a constant aR; see section
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2.3.4). Full details of the MR model and the expression of the likelihood 

^MRG4 )(7nRl5afi- P*r> a t?) can be found in sections 2.3.1 and 2.3.4.

5.2.2 Breeding success data set

As described in section 3.1.2, breeding success data consist of a series of yearly counts 

of razorbill chicks CR{t) that fledge from a number of monitored adult pairs ER(t)  that 

make a breeding attempt. ER(t) ranged from 73 to 194 depending on the year, with a 

mean of 135 pairs. As razorbills lay a single egg, data can be modelled as a binomial 

variable CR(t) ~ Bin(£'R(t) ,p i?(t)), where pR(t)  is the overall productivity of razor­

bills in year t. We represent the data using vectors CR =  (CR(t): t E (1, ...,T)} and 

E r = {ER(t): t E (1, ...,7’)}, and the full data set as PR — {CR,ER}. Letting pR = 

{pR ( t ) : t E (1,..., T)) be the set of overall productivity parameters, the likelihood cor­

responding to the binomial model for the razorbill breeding success data set is

T

LRbs(Pf \Pr) (5-'>

5.2.2 Breeding population counts data set

We model the time-series of counts of adult female razorbill breeding pairs Na(t) us­

ing a state-space model. There are not enough data from ringed razorbill chicks to at­

tempt modelling the resighting and ring-recoveries for these individuals at the Isle of 

May. As a consequence of the lack of direct data on immature survival, the IPM as­

sumes a constant ‘combined immature survival’ (pcR which combines survival from 

fledging to the year before first breeding, as well as pre-breeder fidelity (and thus rep­

resents apparent survival). We use an age of first breeding dR — 5 years, the median 

value (n = 20) obtained from razorbills at Skokholm Island in Wales (Lloyd & 

Perrins 1977). Due to lack of detailed data on razorbills skipping breeding in a particu­

lar year, the model assumes that all breeding birds breed every year. The resulting ma­

trix population model and Leslie matrix M f for the razorbill system process model

are:
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where <ficR = (0*R) 4 F;? and the rjxR represent additive binomial error terms that ac­

count for the fact that the model is stochastic. The number of new razorbill recruits 

R r = t  = 6, surviving adult females SR = {SR(t): t = 6 ,...,T } and

total adult breeding female razorbills NaR = {NaR(t)\ t  = 6,..., T} can be modelled as

Rr (0  ~  Bin (/VaR(t -  5) ,p R(t -  5)^4>cRsaR(t -  l ) j ,

S R ( t )  ~ Bin(NaR(t -  1 ) ,s aR(t -  1)),

N a R ( t )  = R R ( t )  +  S R ( t ) .

Letting pR(t — 5) P (pcR = r R(t — 5) for notational simplicity, the ‘likelihood’ of the 

system process model can be written as

RN ( R r > S r  1PcR> S aR> P r )

=n  [ (" fw 5)) (T»(t - 5)s»«(t - i))"a<t)

■ {Sa»(t -  l ) ) S" (th l  -  SaR( t  -  1 .
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Note that is not a true likelihood strictly speaking (it does not involve the observed 

data) but rather a description of the unobserved underlying population changes; it can 

also be thought as a prior of the true population abundance (King et al. 2009, p.313).

Given the razorbill population counts xR = {xR(t): t = 6 ,... ,T}, the likelihood of the 

observation process can be written as

Lqbs(x r \NaR> ° xr) -n[t = 6 L ’x R \[2n
exp

~ Nqft(Q} 2 

2 0 x R

Finally, the likelihood of the razorbill state-space population model (LR0P) is the prod­

uct of the likelihood of the observation model (Lobs) ar*d the system process model

(Lrn):

LpoP (x r \Pr> S r’ (PcRi âR> PR’ &xR)

=  Lqbs(.x r \Rr’Sr’ ° x r )  x Ln (Rr,Sr \(PcRi s a R , pR).

5.2.4 Joint likelihood: razorbill ssIPM

Assuming independence between the different data sets involved, the joint likelihood 

of the razorbill ssIPM model over the parameters and unobserved population abun­

dance can be found by multiplying the likelihoods of the different components of the 

model:

L RP M  CX R> m R> P R  I P r i  S R > 4>cR ' S a R '  P*R> a R> P r )

= L R 0 P ( x R \ R R , S R , ( p c R , s a R , p R,OxR) x LRMR^ ( m R\saR,p*R, aR)

x  L ^ s ^ P r \ P r ) -

Table 5-1 (in page 162) shows the parameters that are shared between different ssIPM 

components.
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5.3 Atlantic puffin IPM

5.3.1 Adult mark-resight data set

A total of 578 puffins were ringed as breeding adults at the Isle of May between 1984 

and 2008, with 3620 live resightings obtained from 1985 to 2009 summarised in the 

form of a summary m-array m P. We model this MR data set using the standard open- 

population Cormack-Jolly-Seber (CSJ) model as explained in section 2.3.3, assuming 

no adult emigration and fully year-dependent survival probabilities s aP = 

{saP(t):t = 1 — 1}. Resight probability is also year-dependent and includes

trap-dependence; the related parameters involved in the likelihood are the year- 

dependent p*P — {pp(t):t = 1 1} and a trap-dependence constant aP. Full

details of the MR model and the expression of the likelihood LpMR̂ ( m P\saP,p*P, aP) 
can be found in sections 2.3.1 and 2.3.4.

5.3.2 Breeding success data set

In the case of puffins, the number of monitored breeding pairs ranged from 32 to 196, 

with a mean of 159 pairs (only 1984 and 1985 had fewer than 100 burrows moni­

tored). We model puffin breeding success data with the same binomial model structure 

as described for razorbills in section 5.2.2:

T

LPs s ( P p \ P p) =  J 1  ( c 'w V ' - ® " ' ' “ 11 “

where p P = {pP(t)\ t G ( 1 ,..., T)} is the set of puffin overall productivity parameters 

and Pp = {Cp,E p} represents the full breeding success data set, with CP — 

(Cp(t): t G (1, ...,7’)} being the number of fledglings and EP = {EP( t) : t  E 

( 1 ,..., 7)} the number of monitored pairs.

5.3.3 Breeding population counts data set

As for razorbills, we do not incorporate into the puffin ssIPM any data directly related 

to immature survival (e.g. data from puffins marked as chicks). Consequently, we as­

sume an apparent ‘combined immature survival’ <ficP which incorporates the survival 

probabilities of all stages between fledging to recruiting into the Isle of May popula­
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tion. The model also assumes that adult breeding females breed every year as we do 

not have data to model individuals skipping breeding. We use dP = 7 as age of first 

breeding (obtained from n = 108 chicks at the Isle of May; M. P. Harris, personal 

communication). In the case of puffins, population counts are only available for seven 

years within the study period. Years 1984 and 1989 are used to create the priors for 

initialising the population model (missing years between 1984 and 1990 are interpolat­

ed linearly). Only the counts of years 1992, 1998, 2003, 2008 and 2009 fall within the 

period in which the population model is already initialised. The model is fitted only to 

the observations of these years, but is able to obtain marginal posterior distributions 

for the true adult population for all years.

The system process model is described with the following equation and Leslie matrix 

M ( :

Aff

/N lp\
Nz p )

/N lp\
N2P)

/Vip \
[ R2P )

N3 p N3 p V3P
n 4P = Aif ■ n 4P + V4P )
Nsp Nsp Rsp

t o t+ 1 t o t
H
maP' t

(  0 0 0 0 0 0
Pp (0  .* 

2

0cP 0 0 0 0 0 0

0 0 cP 0 0 0 0 0

0 0 0CP 0 0 0 0

0 0 0 0 cP 0 0 0

0 0 0 0 0cP 0 0

\  0 0 0 0 0 Fpsa.p(.t) 5ap(t)

\

/

where (pcP = (0 *P) 6 FP and the rjxP are additive binomial error terms that account for 

the model stochasticity. According to this model, the number of new puffin recruits 

RP = {RP( t) \ t  = 8 ,...,T}, surviving adult females SP = {SP(t): t = 8,... ,T} and 

total adult breeding female puffins NaP = {NaP(t): t = 8 ,..., T} can be modelled as

RP (t ) ~ Bin I NaP (t -  7), pP (t -  7) -  (pcPsaP (t -  1) ),
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SP(t) ~ Bin(NaP(t -  1),saP(t -  1)),

NaP(t) = R P(t) + SP(t).

\
Letting pP(t — 7) - 0 cP = r  P(t — 7), the likelihood of the system process model is

L n  ( R p >  S p  14>cP’ S aP> Pp)

t = 8  L V 7
■ {1 -  T p i t -  7)saP(t -  l)}Wap(t-7)-Rp(t) 

NaP( t - i y
Sp it)

{5aP( t - l ) } ^ W { l - S aP( i - l ) } Ŵ (t- l ) - 5 P(t)
Given the puffin population counts x P = {xP(t): t G 9 t], available in years 0t = 

(9,15,20,25,26}, the likelihood of the observation process can be written as

LPobs(Xp \N aP’GxP exp -
{xp(t) -  Nap(t)}‘ 

2  ° I p

We obtain the likelihood of the state-space population model (LP0P) as the product of 

the likelihood of the observation (LP0BS) and system (LPN) process models:

Lp
P O P (x P\Rp, S P, (pcP, saP, p P, &xp)

— Lp0Bs (x p \Rp,S p, ^ p) x L,H(RP,Sp\(f)cp ,sap, p P).

5.3.4 Joint likelihood: puffin ssIPM

Assuming independence between the data sets, the joint likelihood of the IPM model 

can be found by multiplying the likelihoods of the different components of the model:

L Pi p m (x p> t r i p i  P p \ R p ,  S p >  (pcP'  s aP< P p > a p> P p )=  LPp 0 p(.x p \ R p , S p , ( p c P , S a P >  Pp>&xp) X ^PMR{A)^m p\SaP>PP’ ap)

x LPbs(R p \Pp)■
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Table 5-1 (in page 162) shows the parameters that are shared between different ssIPM 

components.

5.4 Common guillemot IPM

The common guillemot ssIPM is substantially different from those of puffin and ra­

zorbill as more data sets are available: data on birds skipping breeding in a particular 

year, and mark-resight-recovery data from guillemots ringed as chicks, which contrib­

utes valuable information regarding immature survival and emigration.

5.4.1 Adult mark-resight data set

A total of 837 guillemots were ringed as breeding adults at the Isle of May between 

1984 and 2008, and live resightings collected between 1985 and 2009 were summa­

rised as an m-array m G. We model this data set with the standard open-population 

Cormack-Jolly-Seber (CSJ) model, as described in section 2.3.3. We assume no adult 

emigration and fully year-dependent survival s aG = {saG( t) : t  = 1 1}. Re­

sight probability depends on the year and on whether the individual was resighted the 

season before (controlled by parameters p*G = = 1  1 } and aG re­

spectively). Sections 2.3.1 and 2.3.4 provide more details of the model as well as the 

expression of the corresponding likelihood LGM R^ ( m G\s aG ,p*G, aG).

5.4.2 Chick mark-resight-recovery data set

A total of 6569 common guillemot chicks were ringed at the colony on the Isle of May 

between 1984 and 2009 (annual totals ringed ranged from 113 to 325, with mean 253). 

Each chick was given a unique colour ring on one leg (inscribed with an individual 

code) and a numbered metal ring on the other. Two areas were used: a 400-m length of 

cliff (‘area A’) and a nearby skerry (‘area B’) of lesser visibility; chicks were only 

ringed in the latter area up until 1997 (1356 chicks in total). Full details about the field 

methods are given in Harris, Frederiksen & Wanless (2007). From 1985 to 2010, regu­

lar searches were made during the breeding season for ringed birds that had returned to 

the Isle of May. This resulted in 11388 individual resightings (excluding the initial
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capture) which translated into 4738 detections in the mark-rcsight history (as the raw 

resightings include individuals seen more than once in a breeding season). An addi­

tional 248 ring recoveries from dead guillemots found on the Isle of May and else­

where were collected up to 2009. All resightings occurred at the Isle of May, but with 

the inclusion of data on rings recovered outside the breeding colony the model is able 

to estimate true survival and fidelity separately, as opposed to apparent survival (the 

combined effect of both) in mark-recapture studies (Burnham 1993).

We start by describing the likelihood corresponding to the guillemot chick mark- 

resight-recovery data (‘MRR(C)’) with a generic age and year-dependence structure, 

based on a computationally-efficient multi-state approach that uses sufficient statistic 

matrices (McCrea 2012). For this we define two mutually-exclusive states, which al­

low the modelling of emigration:

(i) State 1 (‘Isle of May’): the individual has not permanently emigrated and 

recruited to another population outside the Isle of May;

(ii) State 0 (‘Emigrated’): the individual has taken the decision of permanently 

emigrating and recruiting into another breeding colony. Such birds do not 

contribute to population abundance at the Isle of May. The state is unob­

served although rings can still be recovered from dead birds in this state.

We note that state 1 obviously does not imply that the bird lives permanently at the 

Isle of May (none of the auks do) but that it visits the Isle of May during the breeding 

season (either as an immature that has not recruited yet or as a breeding adult that has 

recruited into the Isle of May breeding population). Supposing that resightings happen 

for guillemots aged a — 1, ...,A  during years t = 1 (with no recoveries after 

t = T), we can define the following model parameters: (i)

(i) 0 a,t(r ) : probability that a bird in state r  = {0 ,1 } aged a at year t survives

until age a -I- 1. In our system, we assume survival probability is the same 

for birds that recruit into the Isle of May and elsewhere, so that (pa,t( 1) = 

0a,t(O) — (pa.ti
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(ii) i/>a t (r, s ) : probability that a bird in state r  = {0 ,1 } aged a in year t, moves 

to state s — {0,1} by age a + 1, given that it is alive at this age. Fidelity is 

x/ja t( l , l )  = Fat and permanent emigration is xpa¿(1,0) = 1 — Fa t . The 

transition from state 0  to 1 is by definition impossible, so ipa t (0 ,l)  = 0 ,

(iii) pa t (r): probability that a bird alive in state r  = {0 ,1 } aged a at year t is 

resighted at this age. As birds that emigrate permanently cannot be resight­

ed, pa,t(0) = 0. We denote resightings at the Isle of May as pa t ( 1) =

Pa,t ;

(iv) Aajt(r): ‘reporting’ or ‘recovery’ probability, i.e. probability that a bird in 

state r  = {0 ,1 } aged a at year t that dies before age a + 1  is recovered 

dead and its numbered metal ring reported (before age a + 1). We assume 

it is equal for birds in both states: Aa t ( 1) = Aa t (0) = Aa t .

We define the following set of probabilities, and derive their values for our particular 

case of states 1 and 0, from the expressions in McCrea (2012):

(i) Qa,b,t^r ’ s ) : probability that a bird migrates from state r  = {0 ,1 } aged a at 

year t, to state s = {0 ,1 } at age b -1 - 1  and is unobserved between these ag­

es:

i / v ( 0 ,0 ) = 1 ;

Qa,b,t( 1-0)

((Pa.ti1
Wa.tiO

M - F a .t ) ,
, t{(l — Fa,t)(3a+l,b,t+l(0.0) +  Fa,t( 1 — Pa + l,t+l)Q<a+l,b,t+l

a -  b 
( 1 ,0 )}, a < b

a = b
Qa,b,t( 1-1) = $ a,tFa,t[ 1 Pa+l,t+l)C?a+l,6 ,t+l (1 ,1 ), a < b

Qa,b,t( 0,1) = 0.
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(ii) 0 a b t (r, s'): probability that a bird in state r  = {0 ,1 } aged a at year t, re­

mains unobserved until it is resighted at age b + 1  in state s = {0 ,1 }:

— C?a,fo,t(l>l)Pi>+l,t+£>-a+l

Oa,b,t(l,0) = OaAt( 0 ,1 ) = OaAt(0 ,0 ) = 0 .

(iii) Dab t (r): probability that a bird is recovered dead between ages b and 

b + 1 , given that it was last observed alive in state r = {0 ,1 } aged a at 

time t:

Da,b A  1)

_  i ( l  — a — b
“ 1(1 ~<Pb ,t+ b -a )̂ 6,t+6-a{C?a,b-l,t(l'0) + (l ,t+ b -a )<?a,b-l,t(U)}, a < h

/?a,b,t(0 ) = 0 .

(iv) Xa,tXr ) : probability that a bird alive in state r  = {0 ,1 } at age a at year t is 
not seen again alive or dead during the rest of study:

cl, t = T
Xa’t{0) = 1(1 -  Afl<t) ( l  -  0 a,t) + cpa,tXa+i,t+i(0), t < T

Xa, t(l)

_  l( l  -  ¿a,t)( 1 -  <Pa,t) + 0a,t{(l “  fa.OXa+l.t+l(0) +  fa ,t ( l  ~  Pa+1 ,t+l)Xa+l,t+l (i)}, 

The MRR data set can be summarized using a set of sufficient statistics as follows:

(i) na b t(r, s): number of birds observed in state r  = {0 ,1 } at age a in year t 

and next seen alive in state s = {0 ,1 } aged 6  + 1 ;

(ii) da b t (r): number of birds recovered dead at age b that were last observed 

alive in state r  = {0 ,1 } aged a in year t;

t = T 
t < T
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(iii) va t (r): number of birds seen alive (including initial release) for the last 

time in state r  = {0 ,1 } aged a in year t, and not recovered dead at a later 

encounter occasion.

Given that no guillemots are ever captured or resighted in state 0, only the following 

terms are non-zero: nab t ( 1 ,1 ), da b t{ 1 ) and va t (l) .

Based on the three sufficient statistics matrices n, d and v, and the parameters and 

probabilities defined above, we can proceed to write the full age- and year-dependent 

likelihood of the guillemot mark-resight-recovery data set. Taking into account re­

strictions in the relationships of the indices,

L(n, d,v\(f), xp,p,A)

A - 1 A- 1 ('T - l + a - b )=n n n x
a=1 b=a t=a 

A T - 1

a=1 t=a (5.2)

Note that also the terms x a,t (0), Qa,b,t(0,0), Qa,b,t(l'0) and must be cal­

culated as they are indirectly involved in the expressions above.

The generic fully age- and time-dependent likelihood (5.2) may be simplified for our 

particular data set, considering that some ages will have very similar parameter values 

(e.g. adult survival, irrespective of actual age), that parameters with small variations 

over time will be modelled more parsimoniously with constant parameters, and that in 

some cases we might not have enough data to estimate fully year-dependent parame­

ters. The age- and year-dependency model structure we use for the guillemot chick 

data is similar to that in Harris, Frederiksen & Wanless (2007) and Reynolds et al. 

(2009), with a few differences supported by preliminary investigations of model struc­

ture carried out in the frequentist framework using program MARK (White & 

Burnham 1999) with the ‘combined live-dead encounter’ model (Burnham 1993); 

more details are given in section 6.1.2. The guillemot MRR(C) model has the follow­

ing structure:
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(i) Year-dependent first-year survival s ^ t ) ,  but constant survival for birds in 

their 2nd and 3rd-to-5th years of life (s2 and s 3 5  respectively, with s 3 5  = 

s 3 = s 4  — ss)- Adult survival (for birds aged 5 years or more) is also fully 

year-dependent: sa (t);

(ii) Year-dependent resight probabilities, separately for three age classes 

(p2 ( t) ,p 3 (t) and P4 5 (t) for 2, 3 and ‘4-to-5’ year old birds), and then for 

adults (pa (t), for a > 5 years). We fix px = 0 as young guillemots do not 

return to their natal colony in their first year of life. Note that parameters 

SjXt) and s2( .) are nevertheless not confounded (see Example 6  in Cole & 

McCrea 2012). All resight probabilities are estimated independently for 

each ringing area (A or B, indicated by superscripts), as guillemots tend to 

come back to the general area where they were bom and resight probabili­

ties are known to be different for these two ringing areas (Harris, 

Frederiksen & Wanless 2007);

(iii) We let the model estimate fidelity in the two years before recruitment (F5 

and F6 respectively, for age classes ‘5’, ‘6 ’ years of life). Fidelity is fixed 

to one for younger birds = 1 ), as a preliminary exploration of the da­

ta set revealed boundary estimates of one for these parameters and that re­

cruitment at that early age is uncommon. We also assume that fidelity is 

one for adults (Fa — 1 );

(iv) When immature guillemots start recruiting into the breeding population, 

the numbered colour-rings used for their individual identification during 

resightings start wearing and may eventually be lost. Also, a bird may re­

cruit to a part of the colony that is not visible during resighting searches. 

These two processes (colour-ring loss/wear and recruitment into an area of 

low visibility) are in principle confounded with emigration, as for monitor­

ing purposes, individuals become unobservable alive (i.e. no resighting 

possible) but the metal rings may still be recovered once the bird dies. 

Reynolds et al. (2009) noted that these two processes can be separated 

from ‘true’ fidelity with the help of an IPM, as they impact very differently
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on population counts (more on this in section 5.4.6). In our model, we de­

fine xp as the probability that an adult guillemot (marked with a colour-ring 

as chick) retains a readable ring, and recruits (or continues breeding) at a 

visible location. As we assume ‘true’ fidelity is 1 for adults, and that ip on­

ly applies to birds that have started breeding (and are therefore adults), in 

the likelihood (5.2) we can model the ‘retention of colour rings and re­

cruitment to a visible location’ using the ‘fidelity’ parameter xpa t ( l , l )  = 

Fa>e,t = i/> for a > 6 ;

(v) A general trend of decreasing reporting probabilities has been noticed in 

several species ringed in the UK (Robinson, Grantham & Clark 2009), so 

we fit a linear trend with time (on the logit scale) in r ( t)  = Aa t , common 

to all ages: log it(r(t)) = a0 + a1 t , where r  denotes the standardised 

years (from 1 to T — 1).

For notational simplicity, we define for area A: p 2  = = 3 p 3  =

{ p i( t) : t  = 4, ...,7}, P 4 5  = {P4 s( 0 '-t = 5, p i  = {p£ (t): t = 7, and

equivalently for guillemots ringed in area B: p f  = (p f (t): t = 3,... ,17}, p f  = 

{ p f( t) :t  = 4,...,18), p f 5 = {p4 5 ( t ) : t  = 5,...,20), pBa = {p£(t):C = 7 We 

denote also the complete set of resight-probability parameters for the data set collected 

from guillemots ringed as chicks as pcG = {pi,pi,pis,pi,P2 >P3 >P4 5>P%}, fidelity 

parameters FG = {F5,F6}, immature survival siG = {sx, s 2 , s 35).

Given their different resight probabilities, we can treat data from areas A and B as two 

distinct data sets, {nA,dA,vA} and {nB, dB, vB], and apply likelihood (5.2) to both 

areas, obtaining LA and LGB respectively. The overall likelihood of the complete 

MRR(C) data set can be constructed by multiplying both:

l m r r {c ) ( n c< dG, vG |s iG, saG, pcG, a0,a lt FG, xp)

= Lga(nAl dA, vA\slG, saGl pA, a 0, a v  Fc, xp) 

x LGB(nB, dB, vB |s iC, saG, pB, a0, a lt FG, xp).
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5.4.3 Efficient implementation o f the MRR likelihood

The likelihood in (5.2) can be implemented in WinBUGS/JAGS using the ‘zero-trick’ 

(as explained in section 3.3.4). An alternative approach is based on the realization that 

the likelihood (5.2) is product-multinomial (McCrea 2012). This fact eases the imple­

mentation in WinBUGS/JAGS in practice, as the more efficient in-built dmulti multi­

nomial distribution can be used instead of a bespoke likelihood description through the 

‘zero-trick’. For releases of guillemots aged a in year t in state 1 (Isle of May; no re­

leases in state 0 ), the multinomial cell probabilities are:

{Pa,a,tO-> 1)» — > 0 a,i4,t(l»l)* Da,a,t(X)i ■■■> ̂a,A,tî )’Xa,tî )}>

with corresponding observed cell numbers:

A preliminary analysis in WinBUGS indicated that the product-multinomial approach 

was about 2.6 times faster than the more inefficient direct likelihood construction. The 

analysis in JAGS gave a further speed improvement of x7.9 compared to using Win­

BUGS, for this particular model structure.

5.4.4 Breeding success data set

The number of monitored guillemot pairs ranged from 656 to 1014, with a mean of 

828 pairs, a substantially larger value than for razorbills and puffins. We model guil­

lemot breeding success data as a binomial distribution as described for razorbills in 

section 5.2.2:

CG{t) ~  Bin(Ec (t) ,p c (t)), t = 1, ...,T.

The corresponding likelihood is

T

4 5 ( P d p O  =  n ( c ° ® ) p C( t)Cc<t)i l - P < ; ( ') ) I<:(' )- Ccm.



5. Integrated population modelling o f the Isle o f  May seabird community 153

where p G = {pG( t) : t  G ( 1 , ,  7")} is the set of guillemot overall productivity parame­

ters and PG = {Cg,E g} represents the full breeding success data set, with CG = 

{CG(t): t G ( 1 , 7 ) }  being the number of guillemot fledglings and EG — 

{EG(t): t G (1, ...,7)} the number of monitored pairs.

5.4.5 Data on non-breeders

Every year, a small proportion of guillemot pairs (typically below 10%) do not attempt 

breeding during the breeding season. Data have been collected at the Isle of May about 

non-breeding by counting the number of pairs %bG (t) that do not skip breeding at any 

particular year t ,  out of a number of monitored pairs f m G ( t ) ,  which ranged between 

155 and 389 (mean=310 pairs/year). Given this data set %G = {<fbG(t), ¿¡mG(t): t  = 

1  the non-breeding process can be modelled with a binomial distribution,

i bG( t) ~ B in ( imG(t),B G(t)), where BG(t) is the probability of a guillemot pair 

breeding in year t  (and therefore 1 — B G( t ) is the probability that a pair skips the 

breeding process). Given the set of breeding probabilities B G = (fiG(t): t  — 1, ...,7), 

the likelihood for this ‘non-breeding’ model is

T

LGnb^ g\Bg) = P| ( ^ GG( t ) )  -  £ G( t ) } ^ m - % cM

5.4.6 Breeding population counts data set

We model yearly counts of guillemot breeding females using a population model 

which assumes that guillemots start breeding at age d G = 6  (median value from ob­

servations at the Isle of May (Harris, Halley & Swann 1994), n = 42). In the case of 

guillemots, we have direct information regarding immature survival (MRR(C) data 

set) so we incorporate the immature survival and fidelity structure defined in section 

5.4.2 into the population model. The system process model that relates the true popula­

tion abundance to the demographic rates through a Leslie matrix Aif can be written as
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R2G
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4̂G
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+ Rsg
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t o t+ i t o

1 %c i 
'V ac '

(  0
0 0 0 0 BG(t)
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2

S2 0 0 0 0 0
0 s 35 0 0 0 0
0 0 s 35 0 0 0
0 0 0 S35^5 0 0

/Vo 0 0 0 SacCO^76 5a c ( f )

where r]xG are additive binomial error terms to account for the model stochasticity. As 

we noted in section 5.4.2, the usually confounded effects of birds emigrating and be­

coming unidentifiable/unobservable at the colony (mainly due to loss and wear of col­

our-rings and recruitment to a location within the colony that is not visible to an ob­

server), can be separated in this model. Note that parameter ip (‘retention of colour­

ring and recruitment to a visible location’) does not appear in the Leslie matrix M f as, 

although the mentioned processes prevent further resightings, these individuals still 

contribute to population abundance and growth at the Isle of May, unlike in the case of 

true emigration for pre-breeders (Figure 5-3). Note also that, independently of perma­

nent emigration and/or ‘ring loss’, all individuals are available for dead-recovery, 

which is based on finding the metal ring which we assume is never lost nor becomes 

unreadable even if the colour-rings used for live resightings have been lost.

According to this model, the number of new guillemot recruits R G = {Rc ( t) : t  = 

7 ,...,T }, surviving adult females S G — {SG(t): t = 7 ,...,T } and total adult breeding 

female guillemots N aC = {NaC ( t ) : t = 7,..., T} can be modelled as

Rc (t) ~ Bin ^NaC(t -  6 ), BG(t -  6)pG{t - 6 ) ^ s 1(t -  6 )s 2 sf 5 F5 F6 saC(t -  1)^,

SG(t) ~ Bin(AaG( t -  l ) , s aG(t -  1)),

NacCO = ^ gOO + S G(t).
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(i) stays
a n

survives
( S a ) /

emigrates
(1 - F )

d ie s^
( 1  -  sa)

- available for resighting
- contributes to Na

- not available for resighting
- does not contribute to Na

- available for resighting
- contributes to Na

- not available for resighting 
(1 —ip) - contributes to Na

(1  -  S a )

Figure 5-3 Diagram of the steps involved during recruitment (i) and ‘retention of 
colour-ring and recruitment to a visible location’ (ii), denoted here as ‘keeps ring’ for 
simplicity. The former process may happen in the two years before recruitment (with 
probabilities F5 and F6 respectively), the latter after recruitment. ‘Emigration’ refers 
to permanent emigration, i.e. recruitment into a different population. Despite super­
ficial similarity between processes (i) and (ii), a critical difference is that individuals 
that suffer ‘ring loss’ still contribute to adult population abundance and future 
growth at the Isle of May, while individuals that permanently emigrate do not.

Letting BG(t -  6 )pG(t -  6 ) ^ s x(t -  6 )s 2 sf 5 F5 F6  = r G(t -  6 ), the likelihood of the 

system process model is

LGn (Rg,S g\s g,F c, saG,p G)

= 0 K 6)) - — “
• (1 -  Tc (t -  6)sac(t -  l)}»«e(7-«)-»c(0

■ f e a t t  -  i)}s«(0 {i -  sa i (t -  n y w .- D - s c m  .

Given the guillemot population counts x G — (xG(t): t = 7 ,...,T }, the likelihood of 

the observation process can be written as

^0Bs(xG\NaG,a^G) CllaxGy/2n
exp -

[xG{t) -  NaG(t)}‘
2 axG
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The likelihood of the state-space population model (LGP0P) can be constructed as the 

product of the likelihood of the observation (LG0BS) and the system (LGN) process mod­

els:

LGpop (,x g  l^c- 5 G , s g , Fg, s aG, pG, O x G )

= LGoBsixG\RG,S G,a 2xG) x LGN(RG,S G\sG,F G,s aG,p G),

with immature survival parameters s G = {s1( s 2 ,s 35) and pre-breeder fidelity parame­

ters Fg = {F5, f6).

5.4.7 Joint likelihood: guillemot ssIPM

The joint likelihood of the guillemot IPM model is constructed by multiplying the like­

lihoods of the different components of the model, assuming independence between the 

data sets

L GP m ( X G> m G< n G> d-Gi V g > P g . S g \ N G . s a G ’ P g > ° xG’ V  G> a G> S G ’ P g > a 0> a l> R  G> *P’ R  g )

= LGp0p(xG\RG,S G,s G,F G,s aG, p g, o2g) x LGMR(Â (m G\saG,p*G, aG)

X LGMRR(c){n G'dG,vG\siGlSaG,PCG.ao.ai,FG,*p) X LGBS(PG\pG)

x L gn b ( ( ; g \ B g ) .

Table 5-1 (in page 162) shows the parameters that are shared between different IPM 

components. Note that we use different adult resight probabilities for guillemots 

marked as chicks (p G) than for birds marked as adults (pG, derived from p*G and a G), 

as high resight probabilities are expected for the latter, given a higher resight effort and 

that they are highly likely to return to the same breeding spot where they were ringed. 

On the contrary, adult survival s aG is a common parameter for the adult MR likelihood 

LgMR(A) and the chick MRR likelihood LGMRR(Cy

5.5 Multi-species Integrated Population Model (msIPM)

5.5.1 Bringing all the information together

The single-species integrated models (ssIPMs) in the previous sections bring together 

data sets and model components that relate to each species independently. We now
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model jointly the ssIPMs for the three auks in a single multi-species integrated model 

(mslPM). Here the effect of the community is modelled as shared year random terms, 

estimated independently in adult survival and in overall productivity. The general idea 

and random effects structure is as described in sections 2.3.2 and 3.1.2 respectively. In 

summary, we add year random effects on the logistic scale that are either common to 

all species (5 ^ (t) ,Sp(t)) or species-specific (£^s(t),£ps(t), for species s), with sub­

scripts ‘0 ’ and ‘p ’ denoting adult survival and overall productivity

logit(ps(c)) = P p s  + Sp{t) + Epsit), t E  T } ,  s  6 {1,2,3}, 

logit(sas(t)) = P<t>s + 8 < p ( t )  +  £0S(t). t  G -  1}, s G {1,2,3}.

The random effects are considered independent (across years and species) and normal­

ly distributed as follows

O,ffJ0 ), t G { 1 , , . , 'T -  1},

£ * s(0  ~  N ( 0 , a ^ s),  t  E  T -  1}, s  G {1,2,3},

8p(t) ~  N(0,<jgp), f G { l , . . , n

£ps(0 ~ N ( 0 , a l p s) , t e { l , . . f7’} sG {1,2,3}.

From a hierarchical point of view, the new parameters to estimate are the random ef­

fects terms and their variances, and the logistic regression intercepts; overall produc­

tivity and adult survival are now derived parameters. For the three auk species, the 

likelihoods corresponding to the adult MR and breeding success data sets, as well as 

the population model, now depend on the random effects parameters 

Sp, Eps, a lp, alps, <V £<t>s, ale/,, a ^ s and intercepts (3ps and /?^s. For instance, for ra­

zorbill breeding success data we have

R I fip> ^ p R '  ° 8 P ’ ^ s p R ’ P p s )  ~  f r \ ^  P ’ ^ p R >  f i p s ) f s p  (^p \ ^ S p ) f s p  i ^ p R

where / ( . )  denotes pdf or pmf (for continuous or discrete data respectively). Defining 

in the same way the pdfs for the adult survival random terms, fs<p[&<t>\al$) and 

fe<t>{.£4>R\aE<t>R)i the part of the mslPM likelihood that corresponds to the complete ra­
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zorbill data set is a joint distribution over the model parameters, the random terms and 

the unobserved population abundance

f l P M  ( x R i  f f l -R i  P R  I^R> S r , (pcR> ^(¡>> £ <ps> ^8 < p ’ ^ e c p s ’ f t(ps> V R> ^ R >  ^  p> £ p R ’ ^ S p ’ ^ e p R >  f t p s )  

~  f p O P  (A ft |R r > ^ r , ( p c R ’ & <p> £ <psi f t c p s ,  & p ,  £ p R ,  f t p s ,  @x r )

X / mR(A) i.m R \&<p> £<ps> ftcpS’ P*R> a R ) f B s { ^ R  I ̂ p< £ pR> Pps)

X fs4>{8 <p\(T^)f£%{e^ r |a ^ R) f Sp(s p Iasp)feRp (£ pRWepFi)-

We can write the likelihood components for the puffin and guillemot data sets in the 

same way. Denoting for each species s its complete data set as hs and all species- 

specific parameters and auxiliary variables as 6S (including species-specific random 

terms and variances), the msIPM joint likelihood can be written as a function of each 

species’ IPM distribution conditional on the random terms, and the pdf of the random 

terms

(hR, hP, hG |dR, 6p, 0G, 8$, crj^, Sp, Ogp) — fipM [hR \0R, 8$, Sp)

x f,PPM{hp\0P, Sq, Sp) x f,GPM{hG¡0G, Sq, Sp)

x (S#Io j j k p { S p \ojp ).

Note that the pdfs of the common random terms fsepiP^Wscp) an^ fspi^pW sp) 011 

appear once in the msIPM likelihood. The indices of synchrony for each species s, 

which are derived parameters, are obtained from the MCMC chains of the random ef­

fects variances as

I(ps
TS(p

J8<p +  <7, and /, JSp
ps

£<pS ’Sp -l- /j2
'  u £pS

Figures 5-4 and 5-5 show a DAG for the guillemot and razorbill/puffin components of 

the msIPM. Table 5-1 (in page 162) lists the estimated parameters for the three auk 

species, specifying in which likelihood components they appear. Note how species- 

specific parameters are shared between sub-models within each species’ population 

model, while ‘community-level’ synchrony parameters (the common random terms 

and their variances) are also shared across species, rendering the model multi-species.
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5.5.2 Bayesian analysis o f the mslPM

To carry out Bayesian inference, the joint posterior density is constructed as the prod­

uct of the likelihood and the prior density for the parameters involved in the model

t t m s l P M  R> & P> & G’ ^ ( p ’ & 8<p’ ^ P ’ ° S p  I h p ,  h G)

^  L m s i P M ( h R , h P , h G \ 0 R , 6 P , d G , S q , ( 7 $ ^ ,  Sp, G $ p )  

x n (d R, dp, d G, 6$, Sp, &sp)-

In the Bayesian framework, random effects and the unobserved population abundances 

are treated as auxiliary variables whose MCMC chains are updated at each step. The 

MCMC algorithm samples from the joint posterior distribution, averaging out the aux­

iliary variables and obtaining samples from the marginal posterior distributions for all 

parameters of interest. In line with analyses in previous chapters, we specify priors to 

be as uninformative as possible:

(i) Flat proper priors U(0,1) for probability parameters: combined immature 

survival <pCs for all three species; for guillemots, also fidelity F5, F6, ‘ring 

retention’ ip, probability of breeding B. resight probabilities for birds 

ringed as chicks p A, p B, and immature survival s 1( s2, s35.

(ii) Flat proper priors U(—5,5) for: the intercepts of the logistic regressions of 

adult survival ((fps) and overall productivity (/?ps); resight probability trap- 

dependence coefficients as; intercept a 0 and slope a1 of the linear tem­

poral trend in guillemot ring-recovery probability.

(iii) Normally-distributed low-information priors /V(0,104) for the year- 

specific component of resight probabilities for birds ringed as adults p*s.

(iv) Flat proper priors U(0,3) for the standard deviations of the common and 

species-specific random terms for <fi and p : aS(p, agp, cr£0 S, oeps.

(v) Flat proper priors for the standard deviations axs of the observation errors 

for all species: 11(0,15000) for puffins, U(0,5000) for the other species.



Figure 5-4 DAG of the guillemot IPM part. Variables are described in the text. Blue colour denotes parameters that are common with the other species. 
Variables in red are related to the calculation of synchrony indices. Double arrows indicate stochastic relationships with time-lags. Square=data set; solid 
line: stochastic relation. Dashed line: deterministic relation. Species subscripts have been omitted for clarity. CNo
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Figure 5-5 DAG of the razorbill and puffin IPM parts. Variables are described in the text. Blue colour denotes parameters that are common with the other 
species. Variables in red are related to the calculation of synchrony indices. Double arrows indicate stochastic relationships with time-lags. Square=data set; 
solid line: stochastic relation. Dashed line: deterministic relation. Species subscripts have been omitted for clarity.
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Table 5-1 List of parameters involved in the msIPM, specifying in which model 
component for which species they appear. Column names refer to likelihood com­
ponents names described in the ssIPM sections. ‘R’, ‘P’ and ‘G ’ refer to razorbills, 
puffins and guillemots respectively. Year-specific parameters shown in bold. Syn­
chrony-related parameters shown in blue; parameters related to all species in red.
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For uniform priors, the limits of the interval are selected based on preliminary analyses 

and we also check after analysis that the marginal posteriors are not limited by the pri­

ors. Gelman (2006) recommends the use of uniform priors for the standard deviation 

of normal distributions as a better alternative to inverse gamma priors on variances 

which appear rather informative, especially for small variances. This recommendation 

is echoed also in the context of mark-recapture (Royle 2008) and we also found this 

effect in our analysis of synchrony in adult survival (section 2.3.7). We therefore adopt 

uniform priors for the standard deviations of random terms and observation error.

The analysis of the msIPM is conducted with program JAGS v2.2.0 (Plummer 2003). 

We assess the convergence of the MCMC chains with the R Gelman-Rubin diagnostic 

(Gelman & Rubin 1992) calculated in the R package CODA (Plummer et al. 2006) for 

all variables from two chains started at different values. The statistic shows no evi­

dence of lack of convergence after one million MCMC iterations (R < 1.03, for most 

parameters < 1.02; the only R > 1.05 is found for for the last year (2009), which 

is estimated very imprecisely even in a MR-only analysis, and which has little impact 

on the population model).

5.5.3 Results o f the multi-species 1PM

The analysis consists of one million MCMC samples after a bum-in of one million 

samples. The samples are thinned to l/40th to reduce memory requirements and avoid 

a large CODA file. In total, marginal posterior distributions are obtained using MCMC 

for 1031 model parameters. Of these, 390 are derived parameters (obtained determinis­

tically from other parameters). Only six of the derived parameters (the indices of syn­

chrony) could have been obtained a posteriori after the analysis, as they are not used in 

the likelihoods. For all marginal posteriors, we obtain the median and 95% Cl. Figure 

5-6 shows the estimated true adult female population abundance for the period 1984 to 

2009 for the three auk species, comparing the estimated values to the population 

counts carried out at the Isle of May.



Br
ee

di
ng

 fe
m

al
e 

po
pu

la
tio

n 
Br

ee
di

ng
 fe

m
al

e 
po

pu
la

tio
n 

Br
ee

di
ng

 fe
m

ale
 p

op
ul

at
io

n
5. Integrated population modelling o f the Isle o f  May seabird community 164

m ^ r > o ^ o r ' 0 0 o s o ^ f N m ^ t i o ^ D r - ' O O O s O ^ - H ( N c n ' s r i o ^ o i ^ - o o o N  
O O O O O O O O O O O O O O O N O N O N O s O O N O S O s O s O s O O O O O O O O O O  
O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O b  O s  O b  o o o o o o o o o o— — — — — — — — — — — — CN)r4CNi(Nr4C\iCNiCNiCNi(N

4000

m ^ f n ^ o r - o c o b o  — r 4 m ^ t f r ) b O t ^ o o o b O  — ( N r ^ ^ t f r i b o r ^ - o o o b  
O O O O O O O O O O O O O O O b O b O b O b O b O b O b O b O b O b O O O O O © 0 © © 0  
O b O b O b O b O b O b O b O b O b O b O b O b O b O b O b O b O b O O O O O O O O O O  ~ ' ~ ~ i '~~i ,~~l w~i ””H ~1 ~1 — — — — (N(N(N(N(Nr4(N(N(N(N

Figure 5-6 Estimates (median and 95% Cl; black lines and circles) of the true 
breeding female population for puffins, guillemots and razorbills, obtained from the 
msIPM (solid circles). The population counts (red squares) are shown for 
comparison. Note that the scale is different for each species. The vertical line marks 
the end of the initialization period for each species’ model component.
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Puffins show the greatest change during this period, when population increased strong­

ly from around 11390 in 1984 to 70540 in 2006. The latter number represents the 

highest puffin abundance at the Isle of May ever recorded, and the peak of a long peri­

od of increase since the 1950’s when only a few pairs nested (Harris 1977). The esti­

mates then show an unprecedented population crash to 44710 pairs two years after the 

peak (37% decline). Note that estimates arc in line with the population counts: despite 

the counts only being available for five years after 1990, the IPM model is able to fit 

well the initial steady increase and then the population crash after 2007, estimating the 

peak of the population as taking place in 2006, despite the absence of a population 

count that year. The estimated observation error SD is axP = 5551 (Table 5-2).

Adult guillemot abundance shows less variation than that of puffins although the pat­

tern is similar: abundance increases steadily for most of the period (from about 13000 

to 18450 in 2004), then suffers a substantial decline in the last years of the study (to 

14850 pairs in 2008; 19% decline). The estimates fit the counts reasonably well, alt­

hough there is some discrepancy in 1991-93. We note that, despite having a more flex­

ible model structure than the IPM parts related to puffins and razorbills, we still make 

some assumptions such as constant survival for immatures after their first year of life. 

The observation error SD is axG = 1503 pairs (Table 5-2).

The number of razorbills at the Isle of May is substantially smaller than those of guil­

lemots and puffins. The pattern seen for the other two auks of a steady increase 

(roughly from 1500 to 3045 breeding pairs in 2006) followed by a population drop at 

the end of the period (down to 2377 pairs in 2008; 22% decline) is also present. The 

razorbill population appears to have suffered a drop also in 2003. The estimates fit the 

general trend in the population counts well, but note that these show greater annual 

variation. The model appears to have a slightly rigid structure, probably related to the 

fact that we impose a constant combined immature survival (f)cR due to the lack of di­

rect information on immature survival. Attempts to fit more flexible models (e.g. al­

lowing year-specific values of combined immature survival 0 cR(t)) result in an over­

fit to the counts and very imprecise estimates of (pcR. The model is nevertheless useful 

as it captures the general population trend, in agreement with the variations of demo­

graphic parameters. The estimated observation error SD is dxR = 358 (Table 5-2).
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Table 5-2 Estimates (median and 95% Cl in brackets) of the msIPM constant pa­
rameters for puffins, guillemots and razorbills.

Puffin Guillemot Razorbill

<?xs 5551 (2501, 11920) 1503 (1055,2284) 358 (237, 550)

Trap-dependence a s 1.928(1.633,2.227) 3.240 (2.840,3.618) 1.826(1.234,2.428)

Intercept /?0 S 2.436 (2.119,2.823) 2.789 (2.548,3.056) 2.319(1.976,2.721)

a £<t>s 0.625 (0.391,0.970) 0.261 (0.019, 0.597) 0.519(0.101,0.961)

&8cp 0.493 (0.272, 0.748)

l(ps 0.383 (0.108,0.697) 0.787 (0.270, 0.999) 0.477(0.122,0.968)

Intercept ¡3ps 0.890 (0.627, 1.159) 1.002 (0.751, 1.250) 0.689(0.518,0.870)

°EpS 0.498 (0.300, 0.762) 0.491 (0.344, 0.702) 0.109 (0.006, 0.337)

°8p 0.357 (0.237, 0.540)

Ips 0.340(0.127, 0.690) 0.344(0.138, 0.651) 0.913 (0.545, 1.000)

« 0 NA -3.084 (-3.225, -2.949) NA

« 1 NA -0.687 (-0.837, -0.540) NA

Looking at the demographic parameters that underlie these population fluctuations for 

the three auk species, we first note that the estimates of adult survival and productivity 

(Figure 5-7) are similar to those obtained in analyses of each demographic parameter 

separately (Chapters 3 and 4 respectively); we therefore do not comment further on 

these results here but will do a formal comparison in section 5.5.4.

The estimated variances of the common and species-specific random terms of adult 

survival indicate that, for this set of species, the largest proportion of common year-to- 

year variation is found in guillemots = 0.79 versus I^p = 0.38 and l^R = 0.48; 

Table 5-2); these results are in line with those obtained in Chapter 3 (which did not 

include 2008 survival). In the case of overall productivity, most of the razorbill varia­

tion is estimated to be common while the proportion is much lower for the two other 

species (IpR = 0.91 versus IpP = 0.34 and IpG = 0.34; Table 5-2).
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Figure 5-7 Estimates (median and 95% Cl) of adult survival Sa s ( t )  and overall 
productivity p s ( t ) for puffins, guillemots and razorbills.
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The combined survival probability (with 95% CIs) over the pre-breeding period is 

0.761 (0.621, 0.905) for puffins and 0.501 (0.402, 0.614) for razorbills. These values 

are not directly comparable across species, as they represent combined survival over a 

different number of years. Taking the (ds — l ) th root of these values, we obtain 0.955 

and 0.841 respectively, which indicates a rather higher average (over age and years) 

survival for puffin immatures compared to razorbill immatures (but note that survival 

still has fidelity confounded).

For guillemots, the existence of the MRR dataset collected from birds marked as 

chicks provides a wealth of direct information on guillemot immature survival. The 

estimates of first-year survival for guillemots at the Isle of May show a very high year- 

to-year variability, with annual values ranging from 0.9 to almost 0, and an average 

value (geometric mean) of 0.338. A steady decline is clear from the late 1990s, reach­

ing extremely low levels in 2004-2008 (Figure 5-8; note that the value of 2009 is esti­

mated very imprecisely). Our results are comparable to those obtained in two previous 

analyses that included MRR data from guillemots ringed as chicks at the Isle of May, 

conducted up to years 2002 (Harris, Frederiksen & Wanless 2007) and 2005 

(Reynolds et al. 2009), which did not include the population decline of the last years. 

Large variations in first-year survival are not uncommon in seabirds (e.g. in European 

shags at the Isle of May, as shown by Frederiksen et al. 2008a). The extremely low 

values in consecutive years are nevertheless worrying, and since guillemots do not re­

cruit into the breeding population until they are around 6  years old, this feature is just 

starting to affect the Isle of May guillemot breeding population.

The survival estimates (and 95% Cl) for the other age classes show an increasing pro­

gression towards the typically high values of adult survival (geometric mean for 

saG(t): 0.936), with s2 = 0.763 (0.717,0.809) over the 2nd winter and s35 = 

0.898 (0.876,0.920) for older immatures. We note also that the decline in first-year 

survival in 2004-2008 coincides with a substantial drop in productivity, and that guil­

lemot adult survival also suffered a reduction in 2006-2007 (Figure 5-7); such declines 

are also visible in the puffin estimates of adult survival and productivity.
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Figure 5-8 Estimates of demographic parameters for guillemots: (i) immature surviv­
al, with first-year survival s 1 (t ) (black line, with 95% Cl; estimate for 2009 very im­
precise and not shown), and s 2 (red line), s35(green line) and adult survival Sac( t )  
(blue line), shown for reference without Cl; (ii) probability that an adult pair at­
tempts breeding in a particular year, B ( t ) (with 95% Cl; note the different scale); (iii) 
trend in ring-recovery probability f  (t) over the study period (limits of the 95% Cl 
shown as dashed lines).
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Estimated resight probabilities for guillemots ringed as chicks are shown in Figure 5-9, 

separately for 2, 3 and 4-5 year old, and for adults. Note that resight probability for 

adults that have been ringed as chicks is substantially lower than that of guillemots 

ringed as breeding adults (see Figure 2-5 in Chapter 2). For guillemots ringed in both 

areas A and B, all age classes follow a similar pattern of increasing resight probabili­

ties peaking at around 1991, followed by a sustained decline for ages 2, 3 and 4-5, 

more pronounced for younger birds (note that the imprecise estimates at the end of the 

series for P3 an^ Pis are related to the few marked chicks that survived their first 

winter in the 2006 and 2007 cohorts). The 1985-1990 increase reflects a gradual in­

crease in field effort (Harris, Frederiksen & Wanless 2007) but effort has since re­

mained relatively constant so the subsequent declines in age-specific resight probabili­

ties appear genuine. The observed declines in age-specific resight probabilities after 

1991 may reflect a long-term behavioural change in immature guillemots. Within a 

year, resight probabilities tend to increase with age until adulthood, reflecting that as 

individuals age they are more likely to return to the colony during the breeding season 

and spend progressively longer there (Halley, Harris & Wanless 1995). However, im- 

matures appear to have delayed their return to the colony until they are older as shown 

by a reducing resight probability for age 2  (strong decrease), that is carried over to re­

sight probability for age 3 (medium decrease). Second-year birds have rarely been 

seen at the Isle of May in recent years (unpublished data). The decline is less evident 

in older immatures (age 4-5), which all return to the Isle of May within that age span. 

The fact that resighting probabilities increased until 1990 due to increased survey ef­

fort could mask an earlier decline. Moreover, the trend is not specifically associated 

with the last years of low survival and productivity at the Isle of May, and may have 

been happening for over 20 years. We currently have no clear hypothesis about the 

cause of this apparent change in prospecting behaviour, and we are not aware of such 

an effect having been observed in other colonies.

The probability of a ring being recovered and reported away from the Isle of May is 

estimated with a linear trend on the logit scale (Figure 5-8) which shows a significant 

decline: the estimated slope is a1 = —0.687 (—0.837,-0.540). This trend concurs 

with that found for birds ringed in the UK from different bird species, including com­

mon guillemots (Robinson, Grantham & Clark 2009).
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Figure 5-9 Resight probabilities for guillemots ringed as chicks in areas A (left pan­
els) and area B (right panels). From top to bottom: estimated resight probabilities for 
guillemots in their 2nd (p2), 3rd (p3), 4th or 5th (p45) year of life, and adults (pa). Note 
that chicks were ringed in area B only until 1997.
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We estimate that less than 20% of immature guillemots from the Isle of May perma­

nently emigrate to other colonies before recruitment: Fs = 0.865 (0.820,0.912) and 

Fe = 0.834 (0.786,0.884). For guillemots ringed as chicks, once recruited into the 

Isle of May breeding population, the probability of staying identifiable (i.e. keeping 

the ring and in a readable condition) and breeding at a visible location is estimated as 

xp = 0.850 (0.832,0.868). This means that these guillemots become non- 

identifiable/non-resightable while still contributing to the Isle of May breeding popula­

tion at a rate of about 15% per year.

The model is able to separate the contribution to the total breeding population of sur­

viving adults Ss(t) and immatures ffs(t) that recruit to the Isle of May breeding colo­

ny, without counts of hatched chicks or immatures (Figure 5-10). Again, this is possi­

ble thanks to the species-specific IPM structures imbedded in the model. The crash in 

the puffin adult population after 2006 appears to be caused mainly by a reduction in 

adult survival, as RP remains largely unaffected with an almost continuous growth 

(Figure 5-11); note that the new recruits in 2009 are offspring of the adult females of 

dP — 1 years before, when the population was still in full growth. According to the 

model estimates, one would expect to sec an increase in new recruits in the coming 

years, followed by a drastic reduction in 2015 onwards; the reduction could be even 

more severe if puffin chicks bom in 2006-2007 have also suffered a reduction in e.g. 

their first-year survival (as we will see later, very high mortality is estimated in guil­

lemot chicks in 2005-2008; Figure 5-8).

In guillemots, the population decline starting in 2004 results from the combined effect 

of a reduction in surviving adults and new recruits (Figure 5-10). As for puffins, the 

very low productivity in 2006-2007 should result in a lower number of guillemots re­

cruiting a few years later (around 2012-2013). Note the irregularity in RG{t), largely 

driven by the large variations in first-year survival (Figure 5-8).

In the case of razorbill, the coincidence of the dips in both SR and Rr for 1996, 2003 

and 2008 is mediated by corresponding dips in adult survival that affect both adults 

and pre-breeders in the year before recruitment.
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Figure 5-10 Estimates (median and 95% Cl) of number of new recruits /?s (t)  and 
surviving breeders Ss ( t) , for puffins, guillemots and razorbills. Note that these 
numbers represent a breakdown of the adult breeding population /Vas(t)  =  Rs ( t )  + 
Ss (t) , which is shown with a red line (and in Figure 5-6). The estimates of fts ( t)  and 
Ss( t)  start at t  =  d s (first year after the population model initialization period). The 
scale has been modified compared to Figure 5-6 to maximise the detail in Rs ( t ) .
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Figure 5-11 Number of immature puffins, guillemots and razorbills that recruit to 
the Isle of May breeding population in year t (fine detail of the Rs(t) plots in Figure 
5-10).

5.5.4 Comparison to non-synchrony and non-IPM models

In order to compare with the results from the msIPM, we run the single-species IPMs 

for the three auk species (without the synchrony structure, as described in sections 5.1- 

5.4) as well as analysing the different data sets (breeding success, adult MR, guillemot 

chick MRR) without the IPM structure, both with and without synchrony estimation 

(i.e. in single-species and multi-species frameworks). The case with no data integration 

and single-species (i.e. no synchrony) corresponds to a completely independent set of 

analyses which can be considered as the reference case. Table 5-3 details the different 

parameters included in these four sets of models.
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Table 5-3 List of analyses ran based on the same data sets from puffins, guillemots 
and razorbills, detailing whether they are integrated population models and/or multi­
species (estimating synchrony in adult survival and productivity), as well as some of 
the estimated parameters. The symbols at the left are used when displaying model es­
timates in this section. The ‘Independent’ model (single-species non-IPM) effectively 
corresponds to analysing each data set independently for all species.

IPM Synchrony
(multi-sp.) sa(t) '<t> p(0 ip

N, S, R,
Si,F

Multi-species IPM y y y y y
Single-species IPM y y y y
Single-parameter synchrony y y y y y
Independent (reference) y y

We conduct all analyses with program JAGS v2.2.0 (Plummer 2003), setting priors for 

the parameters of the different models as outlined for the msIPM (section 5.5.2) when 

applicable (for models without synchrony estimation, we use flat priors U(0,1) for 

adult survival and overall productivity). For all models, we obtain 1 million MCMC 

samples for each model parameter after a bum-in period of 1 million iterations (as all 

the models are simpler than the msIPM), except for the guillemot MRR(C)-only anal­

ysis (500000 MCMC iterations after discarding 200000 iterations). Convergence is 

assessed with the R Gelman-Rubin diagnostic calculated from two chains started from 

different values, which indicates that the bum-in of 1 million samples is sufficient. The 

comparison of the results is shown in several figures: adult survival sa (Figure 5-12), 

overall productivity p (Figure 5-13), guillemot first-year survival % (Figure 5-14), in­

dices of synchrony in adult survival and productivity (Figure 5-15) and abundance 

(Figure 5-17). The figures show species and models as appropriate for each parameter 

compared. The results are discussed in the next two sections.
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Figure 5-12 Comparison of adult survival for puffin, guillemot and razorbill estimat­
ed from models ‘msIPM’ (solid black circles), ‘ssIPM’ (open black circles), ‘non- 
IPM+synchrony’ (green squares) and ‘non-IPM, no synchrony’ (independent analy­
sis; solid red diamonds for estimates from the adult MR data and for guillemots, also 
open red diamonds for estimates from the chick MRR data). Vertical bars indicate 
symmetric 95% credible internals. Note the y-axis starting at 0.5.
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Figure 5-13 Comparison of overall productivity for puffin, guillemot and razorbill es­
timated from models ‘msIPM’ (solid black circles), ‘ssIPM’ (open black circles), ‘non- 
IPM+synchrony’ (green squares) and ‘non-IPM, no synchrony’ (independent analy­
sis; red diamonds). Vertical bars indicate symmetric 95% credible intervals.
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Figure 5-14 Comparison of guillemot first-year survival estimated from models 
‘msIPM’ (solid black circles), ‘ssIPM’ (open black circles) and ‘non-IPM, no­
synchrony’ (independent analysis o f the MRR(C) data; open red diamonds). Vertical 
bars indicate symmetric 95% credible intervals.
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Figure 5-15 Comparison o f the estimated indices of synchrony for overall productiv­
ity (7pS) and adult survival (/<̂ ,s) for puffin (‘P’), guillemot (‘G ’) and razorbill (‘R’) ob­
tained from models ‘msIPM’ (black circles) and ‘non-IPM+synchrony’ (green 
squares). Vertical bars indicate symmetric 95% credible intervals.

5.5.5 1PM: the effect o f combining demographic data sets

We start by comparing the results of IPM and non-IPM analyses, that is, the effect of 

combining demographic data sets and population counts for a species on that species’ 

estimates. For puffin adult survival (Figure 5-12) a slight effect is visible only in 2006- 

2008, with IPM-based models estimating lower survival than their respective non-IPM 

counterparts, although the CIs largely overlap. This effect may be caused by the need
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to accommodate the decreasing population in 2008-09. Guillemot adult survival dis­

plays a larger effect of demographic data integration: despite the generally small 95% 

CIs and coincidence in most of the series, the IPM-based estimates for 2006-2008 are 

notably higher than those from non-IPM analyses. This effect may be at least partially 

caused by the different values of saG estimated from the guillemots ringed as chicks 

(open diamonds in Figure 5-12), which may influence the IPM-based estimate in the 

period where the adult MR data set is the sparsest. The saG estimates from the 

MRR(C) data set are rather imprecise given that relatively few guillemot chicks sur­

vive until adulthood and thus such a data set contains less information about the sur­

vival of adults. For razorbills, saR is substantially lower when comparing the IPM 

models to their non-IPM counterparts in two particular years (2001 and 2002), possi­

bly driven by the need to explain the population decline in 2002 and 2003 (although 

we note the generally larger degree of uncertainty in saR). The generalised variance 

(Figure 5-16) indicates that overall the data integration increased precision in sa only 

slightly; we note nevertheless that this is not a general result and greater increases in 

precision would be expected for other data sets if demographic data are fewer. The in­

dices of synchrony in adult survival change slightly when using the IPM (Figure 5-15), 

with a small decrease for puffins and razorbills and increase for guillemots, possibly 

caused by the slight changes in guillemot adult survival at the end of the period that 

reduce the estimate of the common variance of the set.
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Figure 5-16 Logarithm of the generalised variance (determinant of the variance- 
covariance matrix) of adult survival and overall productivity estimates for puffins, 
guillemots and razorbills obtained from models ‘msIPM’, ‘ssIPM’, multi-species non- 
IPM (‘Sync.’) and single-species non-IPM (‘no Sync.’). For both IPM guillemot mod­
els (ms and ss), only adult survival estimates for the first 25 years are used to allow 
comparison with non-IPM models and with the other 2 species.
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No substantial effect of IPM integration can be found by simple inspection in the over­

all productivity estimates (Figure 5-13): the estimation of this demographic parameter 

is strongly driven by the data and is not influenced by other aspects of demography 

through data integration in an IPM. The generalised variance confirms the lack of a 

clear effect (Figure 5-16). Consequently, the indices of synchrony in productivity re­

main unaffected (Figure 5-15). Similarly, the estimates of first-year survival are not 

affected by having an IPM structure (Figure 5-14).

5.5.6 Multi-species: synchrony and shrinkage o f the estimates

The estimation of synchrony in adult survival and productivity uses random effects, 

which are known to produce an effect of ‘shrinkage towards the mean’ (Schaub & 

Kery 2012). There is no apparent shrinkage of the guillemot adult survival estimates 

(Figure 5-12). This is not unexpected as it is the species that contributes most infor­

mation (mark-resight data): 1.5 times more ringed guillemots than puffins, and over 5 

times more than razorbills. The effect is visible in puffins (particularly in years 1986, 

1989 and 2008), and is prevalent in razorbills, the species with least information (c.g. 

in 1989 and 1995, but visible in many others).

The guillemot breeding success data set contains over 5 times more monitored pairs 

than in the case of razorbills and puffins so, as in adult survival, guillemot productivity 

estimates do not show shrinkage (Figure 5-13). A slight shrinkage of the estimates ex­

ists for the other two species, particularly associated with the years that deviate most 

from the mean (e.g. 1984 and 1987 for puffins, and 1984 and 1992 for razorbills).

The generalised variance plots (Figure 5-16) indicate that, except for guillemot 

productivity, there is an overall increase in precision in the models with synchrony, 

irrespective of being IPM-based or not, for adult survival and, to a lesser extent, for 

productivity. As noted in the previous section, the estimation of guillemot first-year 

survival is not affected by effects acting in other demographic parameters, including 

those induced by the estimation of synchrony (Figure 5-14).
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Figure 5-17 Comparison of female population abundance for puffin, guillemot and 
razorbill estimated from the multi-species IPM (‘msIPM’; solid black circles) and sin­
gle-species IPMs (‘ssIPM’; open black circles). Vertical bars indicate symmetric 95% 
credible intervals. Note that the scale is different for each species. The vertical line 
marks the end of the initialization period for each species’ model component.
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Shrinkage in the estimation of demographic parameters does not appear to have a 

strong effect on the estimation of adult population abundance (Figure 5-17). As 

‘shrunk’ estimates tend to affect the years with most extreme values (the ones further 

away from the species mean, mostly dictated by guillemots which display low varia­

tion in saG and pG until 2004), the population trajectory estimated from the msIPM is 

slightly more ‘averaged’ than that from the ssIPMs. This effect is most visible in the 

case of razorbills (e.g. years 1995 and 2003).

5.6 Discussion

Combining information from demography and abundance in so-called integrated 

population modelling is a relatively recent but promising development in the area of 

statistical modelling of wildlife populations. In this chapter we describe how popula­

tion models can be constructed independently for each of the three auk species that 

breed at the Isle of May (Atlantic puffin, common guillemot and razorbill) by combin­

ing the different demographic data sets available with island-wide population counts. 

We then move a step further by integrating data also across species in what is to our 

knowledge the first multi-species integrated population model, which allows the sim­

ultaneous estimation of synchrony in two demographic parameters, adult survival and 

productivity.

The period under study has seen dramatic changes in the population of auks at the Isle 

of May, as well as strong fluctuations in the underlying demographic parameters, 

whose relation to abundance is modelled explicitly through the IPM. In the mid-2000s, 

razorbills and guillemots had practically doubled their early 1980s population, while 

puffins had seen a 7-fold increase. Such increases were followed by a population crash 

in 2007 and 2008, especially notable in the case of puffins, with 2009 indicating a re­

covery for the three species. Interestingly, our estimates indicate that, for both adult 

survival and overall productivity, the part of the year-to-year variation that is common 

to all three auk species represents only a medium-to-low part of their overall fluctua­

tions, as reflected by their respective indices of synchrony. The population decline at 

the end of the study period seems to coincide with high adult mortality in 2006 and
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2007, particularly for puffins and razorbills, which is unusual for long-lived seabirds. 

Although also guillemot adult survival is estimated low for these years in the analysis 

of Chapter 2 (section 2.3.7), the inclusion of one more year of data and the combined 

analysis with MRR data from guillemots ringed as chicks shows a milder reduction in 

survival, although still unusual for a species that shows a rather constant adult survival 

overall. The low values of productivity synchrony in puffins and guillemots are related 

to their variable annual values that contrast with the rather constant (but slightly de­

clining) razorbill productivity. It is notable that both puffins and guillemots had very 

poor breeding seasons around year 2007 (with probabilities of chicks fledging close to 

0.3), while razorbill productivity was not affected; in any case, all three auk species 

share a long-term decline in productivity.

One of the advantages of data integration reported in the literature is that it can pro­

duce more precise estimators (Besbeas et al. 2002). We compare the results of the 

IPM-based models to the analyses of the same demographic data sets without the pop­

ulation counts (non-IPM models). We find only a slight increase in precision (particu­

larly for razorbills, the species with least data), which indicates that the estimation of 

the demographic parameters is in our case dominated by their own rich data sets; this 

may not be the case for other data sets. Also, productivity estimates tend to remain ra­

ther unaffected by IPM modelling; a similar situation has been reported from simula­

tion studies (Abadi et al. 2010a). The estimates of adult survival from the integrated 

model are nevertheless more precise than those obtained from the resightings and ring- 

recoveries of guillemots ringed as chicks. The second commonly-mentioned advantage 

of data integration is that, depending on data availability and model structure, it can 

sometimes permit the estimation of parameters which cannot be estimated from inde­

pendent analyses of the different data sets involved (Besbeas et al. 2002). In the case 

of the Isle of May auk community, using an IPM (either single- or multi-species) allow 

the estimation of combined juvenile survival for razorbills and puffins, two species for 

which we do not have any source of direct information on the fate of individual juve­

nile birds. Finally, IPMs are also used to improve the estimation of abundance, com­

pared to the naive counts that include observation error.
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We also compare the estimates from multi-species models (with random effects for the 

estimation of synchrony, either IPM or non-IPM) with those obtain from the corre­

sponding single-species models (without the random effect structure). Interestingly, 

the inclusion of a common year random effect induces a slight effect of shrinkage to­

wards the community mean in the estimation of adult survival (and to a lesser extent, 

in productivity), with associated increases in precision. As expected, the effect is 

stronger for razorbills, which is the species that contributes the least data.

Although the msIPM is obviously a complex model, the number of estimated parame­

ters (641 non-derived parameters in total) does not appear so large when one takes into 

account that three species are modelled together (giving 121, 342 and 125 parameters 

for puffins, guillemots and razorbills, plus 53 shared parameters) and that, as is often 

the case in demographic models, some of the parameters are time-dependent for a pe­

riod of 26 years. The amount of data used in the model is correspondingly very large 

(e.g. a total of 17303 ‘l ’s in the MR detection histories corresponding to resightings 

for the three species combined), as it is the combination of 8 data sets in total, and rep­

resents an important investment in field effort for data collection at the Isle of May 

over this period of time. We note that there is no inherent problem in extending the 

msIPM to include the other two focal species, kittiwakes and shags, although the 

Bayesian inference would take a considerable length of computing time and potential­

ly memory issues given the resulting extremely large number of parameters.

There is currently no defined and tested framework for the assessment of goodness-of- 

fit (GOF) of integrated population models (Schaub & Abadi 2011). We assess the fit 

of the different components of the IPM to their respective data sets separately, which 

may actually be more informative about the origin of a potential lack of fit in the over­

all model. For the mark-resight data set collected from birds ringed as breeding adults, 

a study of model fit for each data set independently with the CJS model indicates some 

degree of trap-dependence in resight probabilities, and the model structure is subse­

quently modified to account for it (section 2.3.4). We calculate Bayesian p-values for 

the adult MR data sets (for the period 1984-2009) with the resulting adult survival 

synchrony model, which does not indicate lack of fit (puffin: 0.90, guillemot: 0.79, 

razorbill: 0.74; calculated with the Freeman-Tukey statistic as explained in section
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2.3.8). The productivity model consists of independent binomial trials for each year, 

whose mean is estimated from a single data point per year; such a saturated model has 

perfect fit. The same is true of the guillemot probability of breeding in a particular 

year. The more complex age- and year-dependent structure of the guillemot chick 

MRR model is scrutinised in a frequentist framework in program MARK, estimating 

only a slight level of overdispersion (c=1.185; details in section 6.1.4 in the next chap­

ter). Finally, a visual inspection of the population estimates indicates that the estimates 

are in line with the population counts, so that at least a systematic lack of fit appears 

unlikely.

Integrated population models provide a way of separating the true population abun­

dance and the observation error. Using counts with observation error instead of true 

population may dilute the relationship of abundance to other processes that may be the 

focus of a study (e.g. density-dependence, Freckleton et al. 2006). IPMs also allow the 

estimation of abundance in years when counts are not available. In our analysis for in­

stance, we were able to estimate the year of the puffin abundance peak (2006) and the 

estimated maximum population (70540 breeding pairs), which is two years away from 

the closest puffin census, which took place in 2008. While population models can be 

populated with independent estimates for the different demographic parameters, their 

joint estimation within an IPM ensures that the demography of the population ‘agrees’ 

with an (imperfect) observation of the variation of population abundance in the form 

of censuses in at least some of the years.

Integrated population modelling makes explicit the relationship between changes in 

demographic rates and their impact on population fluctuations, and may bring insights 

into drastic population changes. Our extension of the IPM idea to encompass sympat- 

ric populations of several species allows at the same time the estimation of multi­

species synchrony in a robust framework, and opens the door to further methodologi­

cal developments such as multi-species density-dependence.



6 LIMITATIONS OF AN IPM TO

COMPENSATE FOR REDUCED FIELD 

EFFORT IN A MONITORING PROGRAM

Long-term population monitoring is critical for many ecological studies and conserva­

tion, but often represents a significant investment in skilled staff time. This is particu­

larly true for intensively monitored populations, in which several aspects of a species’ 

demography may be studied alongside population abundance. It is therefore important 

to optimise the use of monitoring resources as monitoring programs increasingly come 

under pressure to reduce field effort given budgetary constraints. However, it is essen­

tial that this reduction does not negatively affect the ability of such programs to 

achieve their targets, which includes collecting enough data to detect relevant trends or 

ecological effects. In the particular case of seabirds, multi-decadal monitoring of 

breeding colonies exist in the UK (Mavor et al. 2008) and elsewhere, e.g. in the Pacif­

ic Ocean (Ainley, Sydeman & Norton 1995), Southern Ocean (Weimerskirch et al. 

2003), Barents Sea (Sandvik et al. 2005), Western Atlantic (Montevecchi 2007), and 

Indian Ocean (Barbraud et al. 2011). This reflects the fact that seabirds have long been 

recognised as useful monitors of the status of their marine environment, as we have 

discussed in previous chapters.

With UK government funding for National Capability projects such as the Isle of May 

long-term-studies (1MLOTS) being reduced, organisations such as the Centre for 

Ecology & Hydrology are carrying out major reviews of their monitoring activities to
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see whether cost-savings can be made, with reductions in staff time being of particular 

interest. Ideally, savings should be made without compromising the quality of the data 

collected. Analyses of existing long-term data can be used to explore potential options 

for carrying out field projects (e.g. Sims et al. 2006; Chambert et al. 2012). The moni­

toring of the population of guillemots on the Isle of May involves annual assessments 

of (a) the total breeding population, (b) breeding success, (c) survival of breeding 

adults and (d) the survival of chicks after they leave the colony. The last is particularly 

important since the chick departs when only a quarter grown and is then fed for many 

weeks by the male parent while it completes its growth (Harris, Webb & Tasker 1991). 

However, estimating the survival of chicks is extremely time-consuming in terms of 

fieldwork. Not only must a sample of chicks be individually colour-marked each year, 

and this takes about 20 man-days, but the cliffs and sea-rocks must also be regularly 

searched for these birds as they return to the colony over many years. During the study 

reported on here, an average of 58 daily searches, each lasting 2-3 hours, were made to 

resight these colour-ringed birds each year. This is demanding work that must be made 

by an experienced observer familiar with the behaviour of guillemots and where in the 

colony these birds are likely to be seen. The question arises as to whether all this effort 

is required or whether input can be reduced while still producing the required results. 

Although the effectiveness of some of the aspects of the monitoring at the Isle of May 

has been studied (e.g. survey design to detect a trend in abundance, Sims et al. 2006), 

no such evaluation has been conducted to date for the MRR sampling methods. In this 

chapter we address an important aspect of study design, with the aim of optimising the 

use of resources to monitor the common guillemot at the island. As mentioned above, 

this work currently involves a major investment of time by (i) a team of ringers to 

maintain a marked population and (ii) a skilled observer to record ringed individuals 

returning to the colony.

We start by analysing the full chick MRR data set (section 6.1). We have already seen 

from our previous analysis of the chick MRR data set (section 5.5.3) that first-year 

survival of common guillemots has been very low during the last years of the time pe­

riod analysed. This was accompanied by unusually poor breeding success (section 

3.1.5) and chicks fledging in poorer body condition compared to the long term average 

(unpublished data). Here we explore juvenile survival further by investigating the ef-
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feet of two individual-level covariates on survival of the first year of life: the hatching 

date and body condition at the time of ringing (Harris, Frederiksen & Wanless 2007).

Then, in the context of optimising the use of monitoring resources at the Isle of May, 

we assess whether the dramatic variations in first-year survival and the ecological rela­

tionships with individual-level covariates could have been detected had field effort 

been reduced (section 6.2). We do so by following two different resource-saving strat­

egies: (i) reducing the amount of time spent looking for ringed immatures; (ii) reduc­

ing the number of chicks ringed each year. We construct and analyse scenarios of in­

creasingly reduced effort, using a random resampling of the mark-resight-recovery 

data already collected. For the case of reduced resighting effort, we also consider a 

non-random reduction, concentrating resighting effort to June and early July when 

most immature age-classes are visiting the colony (Halley, Harris & Wanless 1995). 

We derive recommendations regarding changes in field protocols by comparing the 

analyses of these scenarios.

Finally, we investigate a more extreme scenario of stopping altogether the ringing of 

guillemot chicks (section 6.3). This option saves the most resources but as a conse­

quence we cannot count on immature resightings and ring-recoveries, that is, there is 

no direct source of information on immature survival. We therefore explore whether in 

that situation an integrated population model that incorporates data on adult survival 

and productivity together with population counts at the Isle of May, is able to recover 

guillemot first-year survival from the adult-related data sets only. This strategy of 

combining data sets that share demographic parameters has been shown to allow the 

estimation of demographic rates for which no direct data were available (Besbeas et al. 

2002; Schaub et al. 2007; Tavecchia et al. 2009). Conversely, we explore whether the 

omission of data on juvenile survival degrades the estimation of adult survival and 

population abundance.

We consider finally a further hypothetical scenario, in which guillemot breeding suc­

cess data were not collected at the Isle of May. We study the impact of including the 

guillemot chick MRR data in an IPM in its ability to estimate productivity from the
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rest of the data sets. Figure 6-1 summarises the different analyses carried out in this 

chapter.

a) Can we still detect time 
variation in sx and detect 
ecological relationships of 
s 1 with individual-level 
covariates when...

Figure 6-1 Diagram of the steps followed in the analyses carried out to investigate 
reducing fieldwork effort.

6.1 Analysis o f the fu ll MRR data set

The guillemot chick mark-resight-recovery data set is described in detail in section 

5.4.2, although for this study we also include data from chicks marked in 1983, which 

is omitted from the multi-species IPM analysis so that the data sets for all species start 

in the same year. More details about the field methods are given in section 5.4.2 and in 

Harris, Frederiksen & Wanless (2007). Ln brief, a total of 6665 guillemot chicks were
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ringed at the Isle of May between 1983 and 2009 (annual totals ringed: between 96 

and 325), with each chick given a unique colour ring on one leg and a numbered metal 

ring on the other. We recall that two areas were used in the study: ‘area A’ (a 400-m 

length of cliff) and ‘area B’ (a nearby skerry, of lesser visibility, where ringing only 

occurred until 1997). From 1984 to 2010, regular searches for ringed birds that had 

returned to the Isle of May produced 11152 individual resightings (excluding the ini­

tial capture) which translated into 4021 detections in the mark-resight history. The 

mark-resight-recovery data set also includes 242 ring recoveries from dead guillemots 

found on the Isle of May and elsewhere.

6.1.1 Individual-level covariates

At ringing guillemot chicks were weighed (±1 g) using a spring balance and the length 

of the bent wing was measured (±lmm). We derive two individual-level covariates 

from these measures (see Harris, Halley & Wanless 1992 for details):

(i) Relative hatch date (RHD): calculated as the chick hatch date (HD = ring­

ing date -  estimated age at ringing) minus the annual mean hatch date of all 

chicks ringed that year. Age at ringing (AR) is estimated for chick i from 

its wing length as:

Aft; (days) = 0.373 I4^(mm) -  5.8.

Therefore for chick i: RHDt = (/; - / )  -  0.373(14^ -  W),

where /, is the ringing date in June and the bars represent the average over 

the chicks in the same cohort.

(ii) Body condition index (BCI), the raw residual (observed mass -  expected 

mass):

BCh = Mt -  (fi0 +

where chick mass is modelled as a linear function of -1, with the regres­

sion conducted separately for each year.



6. Optimising field effort: the limits o f  an IPM 191

RHD is significantly correlated with age at ringing (p = —0.761, p < 0.001) but 

there is no statistical evidence of correlation with BCI.

6.1.2 MRR model

We analyse the guillemot chick mark-resight-recovery data set in the frequentist 

framework with program MARK (White & Burnham 1999), using the ‘combined live- 

dead encounter’ model (Burnham 1993) which handles live resightings and dead- 

recoveries simultaneously. MARK uses the Seber parameterization (Seber 1970) in­

stead of the original one in Burnham (1993): the estimated parameters are thus true 

survival s, fidelity F, resight probability p and recovery probability r; the inclusion of 

rings recovered outside the Isle of May enables to estimate 5 and F.

Following the approach used in a previous analysis of juvenile survival at the Isle of 

May for a shorter time period (Harris, Frederiksen & Wanless 2007), we restrict the 

analysis to the first 9 years of life for each cohort; after that age most guillemots have 

started breeding. Resightings and recoveries for individuals older than 8 years are thus 

discarded and the corresponding ‘adult’ survival, resight and recovery probabilities 

consequently forced to zero in MARK when analysing the data set.

We use as a reference (i.e. without covariates) the model structure defined in section 

5.4.2, adapted to the fact that the ‘adult’ class is not modelled. The model structure is 

as follows

(i) Year-dependent first-year survival s ^ t ) ,  but constant survival separately 

for older age classes (s2, s3, s4 and s5_9);

(ii) Year-dependent resight probabilities, separately for 3 age classes: 

p2( t) ,p 3(t) and p4_s (t). Note p4 = 0 as young guillemots do not return 

to their natal colony in the first year of life. All resight probabilities were 

estimated independently for ringing areas A and B;

(iii) Constant fidelity for each of the classes ‘5’ and ‘6’ (F5, F6), and F4_4 = 1;
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(iv) The probability of ‘retaining a readable ring and continuing to breed at vis­

ible location’ (‘ring retention’ for short, denoted xp) is defined for ‘7-9’ 

years of life;

(v) Ring reporting probability r( t) : linear trend with time on the logit scale, 

common to all ages;

(vi) All parameters related to adult individuals (over 8 years old) are set to zero 

in the analysis.

This model structure is also similar to that used by Harris, Frederiksen & Wanless 

(2007) for data collected up to 2002, but has a time trend in recovery probability that 

gives added flexibility. For an analysis of the full time period, our reference model 

shows an improvement of 120 QAICc units compared to their model structure.

The reference model is then used to test for relationships of first-year survival with the 

individual-level covariates, relative hatch date (RHD) and the body condition index 

(BCI). We carry out model selection based on the QAICc, comparing the reference 

model (no covariates, only cohort) to models with additive (including quadratic) and 

interaction relationships between cohort and the two covariates, considered inde­

pendently. The covariates are introduced in first-year survival as a regression in the 

logistic scale.

6.1.3 Results fo r the reference model

The juvenile-related results from the reference model are very similar to those ob­

tained from the msIPM in section 5.5.3, where data from adult guillemots is also in­

cluded. We only repeat here the highlights (see Figure 6-2) and do not show detailed 

results for the sake of brevity. First-year survival displays a large amount of year-to- 

year survival, declining to extremely low levels in the last five years of the study. Re­

sight probabilities (areas A and B) show the same patterns described in section 5.5.3, 

where a possible interpretation is given based on a long-term behavioural change in 

immature guillemots. A significant decline is estimated in ring-recovery probability, 

with an estimated slope (and 95% confidence intervals) of -0.603 (-0.764, -0.442), 

similar to the msIPM result. The estimates of fidelity are 0.835 (0.769, 0.884) for age
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5, 0.756 (0.693, 0.809) for age 6. ‘Ring retention’ tp is 0.778 (0.717, 0.828), for older 

guillemots (ages 7-9).
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Figure 6-2 Top panel: estimated first-year survival (median and 95% Cl) for cohorts 
ringed 1983-2008. The point estimate for 2007 is zero and the variance cannot be es­
timated. The 2009 estimate (not shown) is very imprecise. Bottom panel: estimated 
resighting probabilities (median; Cl not shown for clarity) of immatures aged 2 
(black line), 3 (dashed line) and 4-8 (grey line) years, ringed in area A. Several years 
that are estimated as 0 for 2 year old resight probability represent boundary esti­
mates. The 2009 estimate for age 3 is also boundary estimate (1), probably due to the 
smaller amount of resightings at the end of the period.
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6.1.4 Individual-level covariates for first-year survival

Using the median-c procedure in MARK, we estimate a slight overdispersion in the 

reference model (estimated c= l. 1850, SE: 0.0107). The top ranking model does not 

have a full interaction structure but an additive one (Tabic 6-1).

Table 6-1 Model selection for individual covariates (with C=1.1850). The reference 
model with year-dependent first-year survival is denoted S j(t)  in the table (high­
lighted in bold), where t represents cohort. “+ ’ signs represent additive effect of the 
individual covariate while signs represent full interaction terms between cohort 
and the covariate. ‘RHD’=Relative Hatch Date, ‘BCF=Body Condition Index. Co­
variates are introduced through a logit-link function.

Model QAICc AQAICc Weight Parameters -21og(L)

sl(t+RHD) 18263.58 0 0.56 161 21254.9

sl(t+RHD+RHD2) 18265.25 1.67 0.24 162 21254.4

sl(t) 18267.31 3.73 0.09 160 21261.8

sl(t+BCI) 18267.81 4.24 0.07 161 21259.9

sl(t+BCI+BCI2) 18269.14 5.57 0.03 162 21259.0

sl(t*RHD) 18281.37 17.79 0.00 187 21212.3

sl(t*BCI) 18300.22 36.65 0.00 187 21234.6

Models with full interaction, particularly with RHD, decrease the deviance but are pe­

nalised by the extra number of parameters. There is no evidence that body condition 

(BCI) affects first-year survival, with both additive and interaction models ranking 

low, and 95% confidence intervals of the estimated slopes always including zero. 

However, relative hatch date does appear to explain individual variations in first-year 

survival. The estimated slope of the relationship with RHD in the top ranking model is 

negative and its 95% Cl does not include zero: -0.029 (-0.053, -0.005). Thus, early 

hatched chicks have higher chances of survival compared to late chicks. Figure 6-3 

shows some example plots of the actual relationship for selected years of high and low 

average first-year survival.
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RHD

Figure 6-3 Examples of the relationship between first-year survival and relative hatch 
date (RHD) in the top ranking ‘cohort + RHD’ additive model, for a) some years of 
very low average survival; b) some years of high average survival. For each curve, on­
ly the range of RHD values that appear in ringed chicks in that particular year is plot­
ted.

Although penalised by the larger number of parameters, estimates from the model with 

the full interaction ‘t*RHD’ would be selected over the ‘t+RHD’ model in a likelihood 

ratio test Cf26,o.os=38.89). It is interesting to look at the estimated slope and intercept 

for this RHD interaction model (Figure 6-4). In many years, the estimated slope of the 

RHD covariate is close to zero and has 95% confidence intervals that include it, so 

there is no clear evidence of a year-specific relationship with relative hatch date. How­

ever, in some other years the estimated slope is far from zero and confidence intervals 

do not include it (or only marginally).

Figure 6-5 shows the estimated relationship of first-year survival with RHD for some 

selected years. During the years of lower first-year survival, e.g. from 2004 to 2008, 

both intercept and slope are negative. The effect of hatching early is pronounced, ex­

cept in 2006 and 2007 when survival is practically zero irrespective of hatch date. In 

2005 for example, with average chick survival of 0.044, only the very early chicks 

have a chance of over 20% of surviving their first winter according to this model. The 

intercept is positive in the years when survival is highest, and the resulting relationship 

indicates in most cases that survival is high except for the very latest hatching chicks.
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Figure 6-4 Year-specific estimates of slope and intercept of the relationship between 
first-year survival and relative hatch date (RHD) for the period 1983-2008, with 95% 
confidence limits. In all cases when the estimated slope is positive, its value is close 
to zero and its 95% Cl includes zero so we cannot exclude the possibility of no real 
relationship.
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Figure 6-5 Examples of the relationship between first-year survival and relative hatch 
date (RHD) in the ‘cohort x RHD’ full interaction model, for a) some years of very 
low average survival; b) some years of high average survival. For each curve, only the 
range of RHD values that appear in ringed chicks in that particular year is plotted.

6.2 Reduced survey effort

6.2.1 Optimising monitoring resources

The relevance of study design in ecological studies is widely recognised, as well as the 

fact that in practice it is an often disregarded aspect (Yoccoz, Nichols & Boulinier 

2001). Survey design rules have been developed for different wildlife monitoring 

frameworks (e.g. distance sampling, Buckland et at. 2001; site occupancy, Mackenzie 

& Royle 2005). In the context of the study of marked individuals, design considera­

tions may include accounting for a range of issues (e.g. band loss and temporal 

emigration; see e.g. Williams, Nichols & Conroy 2002, pp. 490-492; or Lindberg 

2012) that can cause bias and/or affect precision of the estimates. In this section we 

concentrate on one particular aspect: the amount of survey effort required to meet the 

objectives of a monitoring program, specifically the implications of varying ringing 

and resighting effort. Sample size rules have been developed for the estimation of 

abundance in closed population CMR (Otis et at. 1978) as well as for survival in open
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population band recovery models (Youngs & Robson 1975; Wilson, Nichols & Hines 

1989). Burnham et al. (1987) provide considerations of the power of hypothesis tests 

(control-experiment) in the context of survival experiments using CMR methodology, 

in setups with marks that identify either group (treatment or control) or individual 

within group. However, general sample-size recommendations are typically based on 

rather simplistic model structures. For more complex and targeted structures, two radi­

cally different general approaches have been suggested for sample size determination: 

(i) computer-intensive Monte Carlo simulations, where many data sets are generated 

and analysed, and (ii) a method based on a single data set of expected values 

(Burnham et al. 1987) that is valid under large sample approximations. Of these two 

approaches, the use of simulations appears to be more widespread. For example, Con­

verse et al. (2009) used simulations to compare two variations of robust design survey 

(Kendall et al. 2009), looking at the optimal allocation of survey effort; and Chambert 

et al. (2012) used simulations in a Cormack-Jolly-Seber model to explore optimal 

scheduling of surveys to maximize resight probability and minimize individual detec­

tion heterogeneity. A recent example of the method based on expected values is Devi- 

neau, Choquet & Lebreton (2006).

6.2.2 Reducing resighting effort

To investigate the effect of reducing resighting effort on the ecological inferences that 

could be made from the data, we use the 27 years (1984-2010) of resighting data to 

construct plausible scenarios of changes in field protocols. Searches for ringed birds 

were made regularly from mid-April to mid-July and the number of days per year 

when searches were made varied from 8 to 109 (mean: 58 days). Based on this infor­

mation we create four new mark-resight-recovery data sets to investigate outcomes if 

survey effort had been less over the study period:

(i) Resightings restricted to those made from 1st of June onwards (data set 

‘DJune’), when most immature age-classes are visiting the colony (Halley, 

Harris & Wanless 1995);

(ii) Resightings drawn from 50% (‘D50%’), 25% (‘D25%’) and 10% 

(‘D10%’) of the calendar days each season selected at random.
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Of the original 11152 raw resight records collected during these years, the reduced da­

ta sets have 6095, 5585, 2809 and 1054 records respectively, corresponding to an ap­

proximate reduction of field effort of 50%, 50%, 75% and 90%. Because birds are of­

ten resighted more than once in a season, the actual number of resightings in the MR 

detection history reduce from 4021 to 2796, 2695, 1669 and 811 respectively. These 

corresponded to effective reductions in resight information of 30%, 33%, 58% and 

80% respectively. As expected, for any given reduction in resighting, field effort trans­

lates into a smaller reduction of resight information in the history to be analysed, since 

each detection in the history corresponds to the overall effort of resighting a bird over 

the whole season. As the ring recovery data come from members of the public and are 

independent of field effort at the Isle of May, these are left unchanged in all analyses.

The four reduced data sets are then analysed using the reference model (where first- 

year survival is fully time dependent) and also with the model with relative hatch date 

as additive covariate (‘t+RHD’), which is the top ranking model of the full data set 

analysis (Table 6-1). We compare first-year survival estimates with the ones obtained 

from the analysis of the full data set. To verify whether we could still detect the effect 

of an individual covariate when field effort is reduced, we compare the most parsimo­

nious model with individual covariate with the reference model.

6.2.3 Reducing ringing effort

A similar approach is used to explore two further simulated scenarios, representing in 

this case a reduction in ringing effort while maintaining the resighting effort and the 

ring recoveries at the real level. In these reduced data sets we retain 50% or 25% of the 

ringed chicks, randomly chosen (data sets ‘Ring50%’ and ‘Ring25%’ respectively). 

The corresponding number of resightings in the MR detection history is reduced from 

4021 to 1961 and 1000 respectively (51% and 75% data reduction). The number of 

recoveries associated with the reduced number of guillemot chicks declines from 242 

to 122 and 72 respectively (50% and 70% data reduction). The reduced-ringing effort 

data sets arc also analysed with both the reference model and the model with additive 

RHD effect, as described in the previous section.
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6.2.4 Impact o f reduced survey effort

We start by reporting the comparative results for the reference models with no covari­

ates in first-year survival. The estimates of s1 ( t) appear robust to the decrease in re­

sighting field effort, and the consequent reduction in the amount of resighting data 

(Figure 6-6). The general pattern is reflected even in the D10% data set where a model 

with constant first-year survival has much poorer fit (91 QAICc units) than having 

year-variation, probably driven by the extreme variation in first-year survival.

Figure 6-6 First-year survival probability estimated from the different data sets with 
increasingly sparse resightings. ‘Full’: complete data set; ‘DJune’: only resightings 
June onwards; ‘D50% /25% /10% ’: keeping only the resightings of 50% /25% /10% 
of the calendar dates; ‘Ring50%/25%’: using only 50%/25% of the ringed chicks.

Despite the relative robustness of the estimate of s1(t), the associated uncertainty in­

creases with data sparseness, as can be seen in the increasingly wide confidence inter­

vals and SDs, as well as the larger number of boundary estimates (Figure 6-7). As an 

overall measure of precision, we calculated the generalised variance (the determinant 

of the estimated variance-covariance matrix) for the regression coefficients corre­

sponding to the estimates of s1(t) of each data set (excluding years with parameters 

estimated at the boundary). Its value increases steadily from 5 • 10-25 to 6 ■ 10~16 as 

the data sets became sparser (Figure 6-8).
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Figure 6-7 Magnitude o f the (a) negative and (b) positive 95% confidence intervals, 
and (c) SD for the estimates of first-year survival. Values of zero or one (represent­
ing cases where the model could not calculate them) are not displayed. ‘Full’: com ­
plete data set; ‘D June’: only resightings June onwards; ‘D 5 0 % /2 5 % /1 0 % ’: 
keeping only the resightings o f  50% /25% /10%  o f  the calendar dates; 
‘R ing50% /25% ’: using only 50% /25%  o f  the ringed chicks.
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Reductions in the number of ringed chicks have a much greater effect; even a 50% de­

crease in ringing effort brings more boundary estimates in the estimation of first-year 

survival (Figure 6-6) as well as a noticeable decrease in precision (Figure 6-7, Figure

6- 8).
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Figure 6-8 Logarithm of generalised variance (determinant of the Variance- 
Covariance matrix) for the regression coefficients of Sjft), computed for data sets 
Full, DJune, D50%, D25%, D10%, Ring50% and Ring25%. Parameters estimated at 
the boundaries are eliminated from the computation.

The estimates of survival for the 2nd, 3rd, 4th and 5-9th years of life have an increasing 

uncertainty and bias as the amount of resighting or ringing effort decreases (Figure 

6-9). Reducing resighting effort appeared to bias these estimates negatively but the 

effect is less clear for the scenarios of reduced ringing effort.
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Figure 6-9 Survival probabilities for the 2nd, 3rd, 4th and 5-9th years o f life, estimated 
from the different data sets with increasingly sparse resightings or with fewer ringed 
chicks. For each parameter, from left to right: ‘Full’: complete data set (red dots); 
‘DJune’: only resightings June onwards; ‘D50%/25% /10%’: keeping only the re­
sightings of 50%/25%/10% of the calendar dates; ‘Ring50%/25%’: using only 
50%/25% of the ringed chicks (white dots).

One obvious and direct consequence of reducing resighting effort is that the probabil­

ity of resighting a marked individual is reduced as less time is spent searching for birds 

This effect is apparent in all age classes (Figure 6-10 and Figure 6-11 for chicks ringed 

in areas A and B respectively). In contrast, when ringing effort is reduced we would 

expect resight probabilities to be unaffected as long as resighting effort remains at the 

same level. The estimates from data sets ‘Ring50%’ and ‘Ring25%’ support this ex­

pectation (Figure 6-12). A reduction in precision of the resight probability estimates is 

nevertheless likely to follow the lower number of ringed birds.
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Figure 6-10 Resight probability for guillemots ringed in area A for different levels of 
resighting effort reduction. Confidence intervals are not shown for the sake of clari-
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Figure 6-11 Resight probability for guillemots ringed in area B for different levels of 
resighting effort reduction. Confidence intervals are not shown for the sake of clari­
ty-



Re
sig

ht
 p

ro
ba

bi
lit

y 
p4

_8 
Re

sig
ht

 p
ro

ba
bi

lit
y 

p3
 

Re
sig

ht
 p

ro
ba

bi
lit

y 
p2

6. Optimising field effort: the limits o f  an IPM 206

1.0

0.8

0.6

0.40.2
0.0 —i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i

' ^•<OVOI^' 0000^(NrO' i>O^Or ' OOOSO^' (NrO' ^- lO^OI^-0000
O O O O O O O O O O O O O O s Os O S O N O n CTn OS CT n On O O O O O O O O O O - '
O N O n Q 8 G 8 ^ C n Q n ^ O n O N G s On On On O N O n O O O O O O O O O O O

Figure 6-12 Resight probability for guillemots ringed in area A as the amount of ring­
ing effort is reduced. Confidence intervals are not shown for the sake of clarity. Note 
that, unlike in the case of resighting effort reduction, resight probability stays at simi­
lar levels.
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The uncertainty in the estimates of fidelity F and ‘ring retention’ ip (Figure 6-13) in­

creases both as resight data become sparser and as ringing effort is reduced, particular­

ly for the ‘D10%’ and ‘R25%’ data sets.
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Figure 6-13 Estimated fidelity F (age 5 and 6) and ‘ring retention’ 1p  (age 7-9). For 
each parameter, from left to right: ‘Full’: complete data set; ‘DJune’: only resightings 
June onwards; ‘D50% /25% /10% ’: keeping only the resightings of 50%/25%/10% 
of the calendar dates; ‘Ring50%/25%’: using only 50%/25% of the ringed chicks.

The estimates of recovery probability should be relatively unaffected by a reduction in 

resighting effort, but be less precise when fewer chicks are ringed. In accord with this, 

the precision of the estimated slopes and intercepts of the regression of recovery prob­

ability (Figure 6-14) change little as less time is spent resighting immatures, although 

there is some indication of a slight negative bias being introduced in the estimation of 

the intercept. The estimates for reduced ringing effort scenarios show not only increas­

ing confidence intervals but also positive bias, both in intercept and slope, which trans­

lates into a less precise and flatter variation over time (Figure 6-15).
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Figure 6-14 Estimated intercept (J30) and slope (ft) of the logistic regression of re­
covery probability with time. For each parameter, from left to right: ‘Full’: complete 
data set; ‘DJune’: only resightings June onwards; ‘D50% /25% /10% ’: keeping only 
the resightings of 50%/25%/10% of the calendar dates; ‘Ring50%/25%’: using only 
50%/25% of the ringed chicks.
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Figure 6-15 Estimated ring recovery probabilities for models ‘Full’ (black line) and 
‘R25%’ (red line). Dotted lines represent the limits of the 95% confidence intervals.
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For the models with RHD as individual covariate for first-year survival, the inference 

is relatively robust to some reduction in effort (Figure 6-16). Compared to the analysis 

of the full data set, the estimate of the additive regression coefficient ((3RHd ) i s  very 

similar when 50% of the days are removed, and only slightly different when the reduc­

tion of resighting effort is 75%. When resight data are retained for only 10% of days, 

the uncertainty increases to the point that the effect of RHD is no longer statistically 

significant (a=0.05). The decrease in QAICc when including RHD as an additive co­

variate in first-year survival goes from 3.73 in the full data set, to 4.13, 3.42 and 4.03 

respectively for the data sets DJune, D50% and D25%. For the D10% data set, QAICc 

increases by 0.95 units when the covariate is introduced, which is consistent with the 

fact that the estimated 95% confidence interval of its corresponding regression coeffi­

cient includes zero. Thus if resighting effort had been reduced by 90% we would not 

have been able to detect a statistically significant effect of RHD on first-year survival.

When the reduction is in ringing effort, the decrease in QAICc is 0.86 and 1.20 units 

for data sets Ring50% and Ring25% respectively; the difference is small and the 95% 

Cl of the RHD regression coefficient includes zero in its right tail: we might have not 

been able to detect a significant effect of RHD had the ringing effort been halved.

0.02
0.00

- 0.02
g  -0.042 -0.06

-0.08
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Full DJune D50% D25% D10% Ring50% Ring25%

Figure 6-16 Estimated regression coefficient for RHD, with 95% Cl. ‘Full’: complete 
data set; ‘DJune’: only resightings June onwards; ‘D50% /25% /10% ’: keeping only 
the resightings of 50%/25%/10% of the calendar dates; ‘Ring50%/25%’: using only 
50%/25% of the ringed chicks.
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6.3 Stopping fieldwork on immature guillemots

6.3.1 Integrated population models

To explore the consequences of stopping ringing guillemot chicks and thus being una­

ble to estimate immature survival directly, we develop several variations of the guil­

lemot integrated population model in section 5.4, which uses the breeding adult mark- 

resight data set together with annual counts of the number of breeding pairs and data 

on annual breeding success. In this scenario no information is collected for individual 

chicks, so we cannot study the effect of individual covariates on first-year survival. 

Rather we compare the estimates of annual first-year survival probabilities obtained 

from the IPM that included the guillemot chick MRR data set (model TPM1’, with a 

structure for the MRR part equivalent to our initial reference model in MARK) with 

those inferred using an IPM without the chick MRR data set (model TPM2’). We note 

that whenever the MRR data set is omitted from the population model, we estimate 

apparent survival (denoted with letter ‘0 ’) instead of true survival ‘s ’.

We further investigate the potential gain in estimating adult-related parameters (sur­

vival, productivity and population abundance) by incorporating direct information on 

juvenile and immature survival into an IPM, as the integration of independent data sets 

may bring higher estimate precision than their independent analysis (Besbeas, 

Lebreton & Morgan 2003). Thus, we compare adult-related estimates from IPM mod­

els with and without the guillemot chick MRR data set, that is, models ‘IPM l’ and 

TPM3’ respectively, where the latter has constant combined juvenile survival 0 1+(. )■

Finally, in a hypothetical scenario where no direct data on breeding success of guille­

mots were collected at the Isle of May, we explore whether our ability to recover in­

formation on productivity p (t) using an IPM improves when the guillemot chick 

MRR data set is incorporated. For this we compare the estimates of productivity ob­

tained when breeding success data are available (IPMl) as a reference, to models in 

which such data are not incorporated, and either include (IPM4) or omit (IPM5) chick 

MRR data. In these cases, productivity becomes a hidden parameter and its estimation 

rests upon its effect on population abundance, as described by the Leslie matrix.
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In total, five IPM models arc fitted to various components of the data set (summarized 

in Table 6-2). All of them include population counts and adult mark-resight data sets. 

Productivity is estimated as time-dependent p (t)  in all cases, including when no direct 

productivity data are modelled (IPM4 & IPM5). The comparisons carried out are 

summarised in Figure 6-17.

Table 6-2 Integrated population models fitted for investigating the effect of not ring­
ing guillemot chicks. Different data sets are included (K) or excluded (x) from the 
models. ‘MRR(C)’: chick mark-resight-recovery data; ‘prod(A)’: adult productivity da­
ta. The last column shows the hidden parameters for which there is no direct infor­
mation; these are estimated from the rest of the data sets through the population 
model. time-dependent first-year survival; (p2+ C ): constant immature surviv­
al (age > 2); (p 1+(.): constant immature survival (all ages), equal to (p1 • </>2+.

Model MRR(C) prod(A) Hidden parameters

IPM1 (reference) S A -

IPM2 X y 0 l(O .0 2  + C)
IPM3 X S 01 + C )
IPM4 ✓ X P(t),01+C )
IPM5 X X p ( t ) ,0 i+(.)

The full chick MRR data set is used, including resightings and recoveries for birds 

older than 8 years. The structure of its related likelihood component (modelled using a 

multi-state likelihood approach, see section 5.4.2) is based on the reference model 

used above in MARK, except that adult parameters are not forced to zero and adult 

survival sa( t) (defined for breeders, i.e. age > 5) is a common parameter with the 

adult MR likelihood component.

We briefly recall here that in the population model, the quantity monitored is the fe­

male guillemot adult breeding population, and that we assume an age at first breeding 

of 6 years, negligible adult emigration and a balanced sex ratio at birth. The model in­

cludes ‘retention of colour rings and recruitment to a visible location’ ip for the older 

age class (details in section 5.4).



6. Optimising field effort: the limits of an IPM 212

A) Can IPM recover first-year survival?

1PM2
(0l(O02+O)

IPM1
(reference)

estimate
<M0

estimate
Si(t)

compare

B) Are adult-related parameters estimated less accurately?

IPM3
(01+ 0 )

1PM1
(reference)

estimate
sa(t),p(t)

estimate
sa(t),p(0 D

compare

C) If productivity was not monitored, would its estimation become more difficult?

IPM5

1PM6 MRR S P H

estimate
p(0

estimate
p(0 D

compare

Figure 6-17 IPM comparisons carried out to evaluate the impact of not ringing guil­
lemot chicks.

For models that include chick MRR data (IPMl & IPM4), we use s ^ t )  and age- 

dependent true survival for 2nd to 5th year of life. In models without chick MRR data, 

fidelity is confounded so we actually estimate apparent survival 0  instead of true sur­

vival s. Model IPM2 has 0 1(t) but a combined immature survival and fidelity for the 

remaining age classes

02+ (■ ) — S2S3S4S5^5^6-

The structure is simplified further in models 1PM3 and IPM5, with an overall com­

bined juvenile survival

01 + (- ) — s1s2s354s5^5^6-
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In models without breeding success data (IPM4 and IPM5), productivity p (t)  is esti­

mated from the rest of the data sets through the population model.

As in section 5.4, the fitting of the IPMs is carried out in a Bayesian framework with 

program JAGS v2.2.0 (Plummer 2003). In all Bayesian analyses, 400000 MCMC iter­

ations are discarded as bum-in to ensure convergence of the chains, with a further 

400000 iterations kept for analysis. Uninformative priors are used for all parameters, 

reflecting a lack of prior knowledge.

6.3.2 Impact o f  not ringing chicks

When we attempt the estimation of fully time-dependent first-year survival 0 1 (t) with 

an integrated population model without data on juveniles (IPM2), the model is not able 

to recover this demographic parameter properly (Figure 6-18): credible intervals are 

very wide and the point estimates are not close to the ones estimated when chick MRR 

data are included in the model (IPM 1). This inability does not affect the estimation of 

other parameters, which are largely driven by their respective data sets (see Figure 

6-19 for an example with productivity). Also, the estimation of cp ft)  cannot be at­

tempted for the last 6 years of the period, as the corresponding immatures will not 

have recruited into the breeding population and thus there is no information in the 

adult-related data sets that can inform this parameter.

m T 3 NO r - oo ON o ,— i CM c n m NO r - 0 0 ON o ,— i < N m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ON ON ON ON ON ON ON ON ON ON o o O o
ON ON ON ON O n ON ON ON ON ON ON ON ON ON ON ON ON o o o oT-_l 1 1 1 '1 —-< CM CM CM CM

Cohort
Figure 6-18 Comparison of the estimates of first-year survival obtained with model 
IPM2 without chick MRR data (black dots and line, with 95% Cl) and the reference 
model with chick MRR data (IPM1; red dots).
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0.9
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Year

Figure 6-19 Comparison of the estimates of productivity (and 95% Cl) obtained with 
models IPM1 (with chick MRR data) and IPM2 (without chick MRR data; with
<Pi (0).

We then explore what impact removing chick MRR data set from an integrated popu­

lation model that does not attempt to estimate time-dependent first-year survival 

(1PM3) had on the estimation of other parameters. Figure 6-20 shows that in the case 

of adult survival the effect is rather small for most of the years (but note the last five 

years), indicating that the estimation of sa(t) is strongly driven by the adult MR data 

set. Again, the estimates of productivity appear not to be affected by the lack of imma­

ture data (Figure 6-21).

A scatterplot of the SD of the estimates for the different years from both models 

(Figure 6-22) confirms the visual impression that removing the MRR data set from the 

integrated population model does not affect the estimation of productivity. A slight 

decrease in precision in adult survival estimates appears to follow the removal of the 

MRR data set, except for the years of larger differences in the point estimate (2006 and 

2007). Overall, the log of generalised variance increased from -225.9 to -224.4.
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Figure 6-20 Comparison of the estimates of adult survival (with 95% Cl) obtained 
with models IPM1 (with chick MRR data; white circles) and IPM3 (no chick MRR 
data and constant combined juvenile survival <pi+C ); black dots).
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Figure 6-21 Comparison of the estimates of productivity (with 95% Cl) obtained 
with models IPM1 (with chick MRR data) and IPM3 (without chick MRR data; with 
constant combined juvenile survival <fii+C ))•
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IPM1 (with chick MRR data) 1PM1 (with chick MRR data)

Figure 6-22 Scatterplot of the SD of the estimates of adult survival (left) and produc­
tivity (right) for the different years, for models IPM1 vs. IPM3. The grey line shows 
the 1:1 case. White circles: adult survival estimates for years 2006, 2007 and 2008.

Finally, we attempt the estimation of productivity when no direct data on breeding 

success is incorporated into the integrated model (Figure 6-23). When such estimation 

is carried out without chick MRR data (IPM5; assuming a constant combined juvenile 

survival), the estimates are completely unreasonable i.e. no significant correlation with 

accurate estimates from model IPM1 (r=0.14, p-value=0.54). If direct information on 

juvenile survival is added into the model (IPM4), the integrated population model is 

able to estimate productivity with some success (correlation with estimates from 

1PM1: 0.75, p-value=0.0001). These estimates are nevertheless very imprecise, with 

95% Cl spanning in all years over 50% of the probability values.

So far we have looked at the consequences of including or omitting the chick MRR 

data set on demographic parameters. Considering now the effect of the different data 

sets and structures on the estimation of population abundance (Figure 6-24), it is clear 

that the models described above in which it is not possible to estimate a fully time- 

dependent hidden parameter (first-year survival 0 ! (t) in IPM2 and productivity p ( t) 

in IPM5) are associated with overfitting in the estimation of the female breeding popu­

lation. The model structure has too much flexibility and the values of the hidden pa­

rameters are estimated so that the population estimation can match the observed counts 

closely; the estimated variance of the observation error is consequently small (dN = 

606 and 533 respectively). It is interesting to note that model IPM4, despite a very im-
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precise estimation of productivity, follows the population estimates of IPM 1 closely; 

the imprecision is reflected in the observation error, which is slightly larger for the 

former (aN — 1636) than for the latter (<rw = 1480). This effect, linked to the esti­

mation of fully time-dependent hidden parameters, has been observed in a previous 

IPM study (Tavecchia et al. 2009).

b) 1.0 

0.8 

I  0.6
O
■§ 0.4
S-i

CL 0.2
0.0

m x j- NO r ^ 0 0 ON o ,—1 ( N c n NO r - 0 0 ON o ,—i < N
0 0 oc 0 0 oc 0 0 0 0 oc ON ON ON ON ON ON ON ON ON ON o o O o
ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON o o o o
’—1 ’—1 ■' ’—1 1 1 i <1 < N < N ( N <N

Figure 6-23 In black, estimates of productivity (with 95% Cl) obtained from inte­
grated population models with no breeding success data, including (IPM4, panel a) 
or omitting (IPM5, panel b) chick MRR data. The accurate estimates from a model 
with breeding success data (IPM1) are shown (white circles) for reference.
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Figure 6-24 Estimated guillemot female breeding population according to different 
integrated population models. Panel a) compares the outcome o f models IPM1 (with 
chick MRR data; red dashed line) and IPM2 (no chick MRR data and (f)1 ( t)  estimat­
ed from the rest of the data sets; solid black line). Panel b) compares two models 
with no breeding success data, in which productivity has to be estimated from the 
rest of the data sets: IPM4 (with chick MRR data; blue dashed line) and IPM5 (no 
chick MRR data; green solid line). In both panels, the white squares represent the 
value of the annual island counts (observed population).
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6.4 Discussion

In this chapter we study common guillemot juvenile survival for chicks ringed at the 

Isle of May between 1983 and 2009, a period that includes years of extremely low 

survival. We evaluate the effectiveness of the current level of field effort invested in 

both ringing chicks and resighting immatures, by constructing plausible scenarios of 

changes in field protocols. This method helps us identifying potential field effort re­

ductions that would still allow us to make ecological inferences, in this case to esti­

mate the relationship of first-year survival with an individual-level covariate. We also 

assess the impact that stopping ringing chicks would have on our ability to study the 

demographic rates of the Isle of May guillemot population, including the estimation of 

year-specific probabilities of survival over their first winter. We explore several sce­

narios using an integrated population model, which combines the various data sets col­

lected from breeding adult guillemots.

6.4.1 Guillemot juvenile sun’ival

Our study extends a previous analysis with individual covariates conducted up to year 

2001 (Harris, Frederiksen & Wanless 2007). The extended period includes a series of 

consecutive years of extremely low first-year survival, notably 2004-2008. At the in­

dividual level, the relative hatch date is an important factor affecting first-year surviv­

al, with chicks hatching early in the season having higher chances of surviving than 

later ones (also observed in shags; Daunt et al. 1999). In contrast, the body condition 

index, a measure of actual weight relative to the weight expected for a given chick 

wing size, is non-significant. This result agrees with previous studies at the Isle of May 

(Harris, Frederiksen & Wanless 2007) and in other regions (e.g. Hedgren 1981) and is 

probably due to fledged chicks being fed for several weeks at sea during which time 

they quadruple their weight, thus chick weight in the colony may not be strongly asso­

ciated with condition when the chick becomes independent (Harris, Webb & Tasker 

1991). Weight at time of fledging (which usually coincides with chicks becoming in­

dependent) has a positive influence on first-year survival in some seabird species, e.g. 

Manx shearwater Puffmus puffmus (Perrins, Harris & Britton 1973), but such an effect 

has not been demonstrated in razorbills (Lloyd 1979), which have a breeding strategy 

similar to that of guillemots. It is nevertheless interesting that AQAICc of the model
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with BCI is much smaller when the complete time period is analysed (4.24 in our 

study compared to 8.43 in Harris, Fredcriksen & Wanless 2007), suggesting that body 

condition at fledging may have some effect on survival over the first winter, in years 

of extremely poor overall first-year survival.

In contrast to the results in Harris, Frederiksen & Wanless (2007), in our analysis the 

top ranking model has an additive effect of RHD and cohort, instead of a full interac­

tion. Again this may be a consequence of the extended period consisting mainly of 

years of very low average first-year survival, for which an additive effect of RHD is a 

good approximation (except for 2005, s1 is either practically linear with RHD or very 

close to zero for all values of RHD). In any case, the interaction model brings evidence 

that the effect of hatching at an early date becomes critical in some years of low chick 

survival like 2004 and 2005, when only very early hatching chicks have a survival 

probability over 0.20. This effect is less relevant in years of high average survival, 

when sx is very high for most chicks, dropping only to mid-low values for chicks 

hatching in the last quarter of the dates.

6.4.2 Reducing field  effort

The estimates of first-year survival are robust with respect to decreasing the current 

level of resighting field effort, with the quality of the estimation starting to fail at a 

90% effort reduction. This shows that in our particular case a substantial part of the 

current resighting effort may go into redundant resightings. However, a second more 

general factor may also contribute to this robustness in that, for each marked bird, a 

resighting in a particular year is not directly relevant to the estimation of first-year sur­

vival if the animal is seen in later years. The critical piece of information, i.e. that the 

individual survived its first winter, is still contained in the history even if the bird is 

missed in some of the years. This is less true when estimating survival for older age 

classes, for which a) there is less information as fewer immatures survive to that age, 

and b) a resighting in later years is less likely to be followed by other resightings in 

following years and thus becomes more valuable as a source of information. This sug­

gests that inference for early year parameters would require less resighting effort.



6. Optimising field effort: the limits o f  an IPM 221

Removing ringed chicks from the data set has a more direct impact on the number of 

resightings and therefore the estimates of first-year survival are less robust to a de­

crease in ringing effort. Noticeable reductions in precision are associated with 50% 

reductions in the number of chicks ringed. We conclude that, for the common guil­

lemot population at the Isle of May, the current amount of ringing is adequate but the 

resighting effort could be significantly reduced while still maintaining the capacity of 

monitoring first-year survival and detecting the effect of hatch date on this demograph­

ic parameter.

A further design aspect that we have not considered here is whether concentrating the 

resight effort of immatures in a particular period of the breeding season would opti­

mise the use of field resources. Chambert et al. (2012) used simulations based on esti­

mated values to show that, for adult kittiwakes at a colony in Norway, it was more ef­

ficient to spend resighting effort early in the breeding season when resight probability 

was highest, based on the behaviour ecology of the species that creates patterns of var­

iation of resight probability along the season. It would be potentially useful to consider 

such type of study for the guillemots at the Isle of May, although we note that one 

would also need to take into account the timing requirements of other monitoring ac­

tivities happening at the Isle of May during the same period.

To our knowledge, our study represents the first use of artificially simplifying existing 

real data sets to explore the effect of field effort in capture-mark-recapture studies. As 

mentioned in the introduction of this chapter, Monte Carlo simulations matched to es­

timated parameters have been used to explore design issues in the context of capture- 

mark-recapture studies. While we acknowledge the rigour and utility of that computer­

intensive approach, an advantage of our method is that it is fairly simple and less time- 

consuming. Also the reduction of the data sets is carried out at the level of daily indi­

vidual resighting occasions rather than directly from the capture histories, which repre­

sent summaries. Monte Carlo simulations would typically consist in generating data 

using the parameter values estimated by the model. This would not be enough to mim­

ic our scenarios, and the generation of individual resightings on a day-by-day basis 

would have to be implemented. However, some degree of replication could be never­

theless obtained by randomly sampling the historic data set repeatedly.
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Post-study evaluation is no substitute for study design carried out before starting a 

monitoring program, but it can help streamline an existing program when data have 

already been collected for several years, as it allows us to explore specific relation­

ships (e.g. the effect of early hatching) that could otherwise not have been predicted 

(and therefore simulated) before the monitoring commenced.

6.4.3 Integrated population models

In section 6.3 we analyse the impact of stopping completely the substantial investment 

in field effort needed to collect mark-resight-recovery data by marking guillemot 

chicks. This is especially relevant when breeding success is low and few immatures 

are available for resighting unless a considerable effort is put into marking large num­

bers of chicks. To do this, we simulate the case where all ringing of guillemot chicks 

would stop and we would not have data directly informative about immature survival. 

We experiment with artificial, but biologically plausible, scenarios using integrated 

population models, exploring their capabilities and limits to deal with the mentioned 

lack of data.

Our IPM model had limited capacity to recover year-specific first-year survival alt­

hough the joint modelling of the adult-related data sets allowed the estimation of a 

constant probability that combined survival from chick until recruiting age. This is of 

relatively limited value if the primary interest of a monitoring program lies in first-year 

survival. It is also clear that we cannot carry out ecological inference regarding indi­

vidual-level covariates without marked chicks, as no direct information on the fate of 

individual juveniles is available. An IPM could potentially be considered for investi­

gating cohort-level covariates, a case not addressed in this study. Also, site fidelity 

cannot be studied if ring-recovery data are not included, as fidelity becomes confound­

ed with mortality.

When the primary interest is in monitoring adult-related demographic parameters like 

survival and productivity, or abundance of the breeding population, an IPM appears 

quite robust to the absence of the chick MRR data set. Productivity estimates were 

practically identical in both models (with and without such data) with no detectable 

loss in precision. Omitting the MRR data set reduced slightly the precision of the adult
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survival estimates, with very similar estimated values except for the last 3 years (pos­

sibly due to the increasing sparseness of the adult MR data set). Finally, the IPM 

framework allowed the exploration of a further hypothetical change in the monitoring 

scheme: in an artificial scenario of breeding success not being monitored, the inclusion 

of the chick MRR data set was essential in order to obtain productivity estimates, albe­

it imprecise ones.

As a summary, we would like to highlight that the decision to stop fieldwork on guil­

lemot chicks ultimately depends on the specific objectives of monitoring this species; 

and in particular, the importance given to estimating year-dependent first-year survival 

and to carrying out ecological inference regarding this demographic parameter.

Integrated population models can be very useful tools in ecological (McCrea et al. 

2010) and conservation (Schaub et al. 2007) studies as they can bring improved preci­

sion and the possibility to estimate hidden parameters for which no direct data are 

available. Furthermore, they allow the evaluation of alternative monitoring scenarios 

for intensively monitored populations where individual-level data are collected on dif­

ferent aspects of demography and abundance. As we have shown, this can be done by 

artificially removing data sets from the analysis, exploring the impact in our ability to 

study and monitor a population. Such exploration can be important in monitoring pro­

grams for planning or revising the collection of field data related to particular aspects 

of demography, like survival or productivity, especially when such individual-based 

data are difficult or expensive to gather. This type of IPM-based exploration is still 

uncommon. A notable exception is that of Tavecchia et al. (2009) that attempt the es­

timation of various demographic parameters and the prediction of abundance for one 

year, after artificially removing the corresponding individual-based data sets. They 

specifically test the estimation of productivity, which they obtain with better precision 

than in our case, although their model includes counts not only of adults but also of 

immatures, bringing a more direct source of information on productivity.

Our analysis of guillemot juvenile survival highlights the existence of some dramatic 

changes in recent years that are of conservation importance. However, research pro­

grammes are coming under increasing pressure to make the collection of field data
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more streamlined and cost effective. Therefore it is important to consider whether any 

part of fieldwork can potentially be scaled down or even stopped, without losing the 

ability of the monitoring program to track important demographic changes and identify 

key individual covariates that indicate which birds arc more likely to recruit subse­

quently into the population. We provide an example of how this exploration can be 

carried out in the context of mark-recapture-recovery studies, using an existing data set 

to construct artificial scenarios of reduced field effort, and exploring the benefits of 

data integration through integrated population models.



7 DISCUSSION AND FURTHER WORK

Synchrony and asynchrony are important concepts in ecology, both theoretical (e.g. 

Moran effect in spatial synchrony, Hudson & Cattadori 1999) and applied (e.g. effect 

on extinction risk, Heino et al. 1997). They are also relevant in understanding commu­

nity structure (Mutshinda, O'Hara & Woiwod 2011) and its response to environmental 

changes, providing clues to guide further investigation (McCarthy 2011). Analytical 

techniques to test for effects or examine the importance of environmental covariates 

are therefore of great interest. In this thesis we have applied a novel multi-species syn­

chrony framework to study the degree of common year-to-year variation in adult sur­

vival as well as in overall productivity, in a community of seabirds breeding together 

at the Isle of May. We have done so independently for each demographic parameter, 

and then within the context of a multi-species integrated population model, in which 

the changes in abundance and demographic parameters are estimated simultaneously, 

for a time span of over two decades that include important changes in the Isle of May 

marine environment.

7.1 Modelling synchrony and abundance in a community

The multi-species synchrony modelling framework is very adaptable and we have 

demonstrated its use in demographic parameters as different as adult survival and the 

amount of clutch size underdispersion. We have also discussed several model exten­
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sions as well as its possible application in conceptually very different contexts, from 

the single-species multi-population case proposed by Grosbois el al. (2009) to its use 

in the site-occupancy framework (MacKenzie et al. 2006); in the context of the study 

of seabird populations in the Northeast Atlantic, a logical extension would be to devel­

op a multi-species multi-colony model (section 4.2.5) to study synchrony in the same 

species assemblage across the region.

We have also explored the properties of the framework and explained its interpreta­

tion: for each species in a set, we quantify the proportion of the total year-to-year vari­

ation in a parameter of interest that is shared with all the other species in a set. The 

method therefore looks at an aspect of synchrony that is different from the more tradi­

tional pairwise comparison of species; it is also more comprehensive: each species’ 

synchrony index is related to all species in the set under study. We see this framework 

as another tool in the ecological statistics toolbox, which we hope ecologists will find 

useful to deal with some questions.

Using simulations, we show that the estimation of synchrony improves as more years 

are added to the data set, with short studies (< 10 years) having the risk of producing 

biased and imprecise estimators of synchrony, particularly if the set under study con­

sists only of two or three species. The need for long time series highlights the rele­

vance of long-term intensive monitoring programs when aspects of synchrony are of 

interest. Simulations can also be used to assess the level of synchrony that may be es­

timated by chance from species with completely independent year-to-year variations. 

The values obtained provide a benchmark to which the estimates of synchrony from a 

real data set can be compared. We demonstrate this method with the Isle of May 

productivity analysis, in which we obtain synchrony estimates well above the expected 

spurious level for all the species considered. This finding not only gives us more con­

fidence in the results we present from the empirical studies but is also highly relevant 

in supporting the continuation of long-term ecological studies and the effort invested 

on the different species.

A central aim of this project was to extend the concept of the single species integrated 

model (ssIPM) to the multi-species scale (msIPM). This approach was developed us­
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ing a large combined data set of three auk species of the Isle of May seabird communi­

ty and integrating several data sets per species within a single multi-species integrated 

population model. Such an analysis allows the estimation of demographic parameters, 

related synchrony indices and population abundance in a robust way. A key assump­

tion in integrated population modelling is that of the independence between census and 

demographic data sets, whose likelihoods are multiplied to form the joint likelihood of 

the IPM model (Besbeas, Borysiewicz & Morgan 2009). Often this assumption will 

not be strictly met in the case of the Isle of May seabird data where some of the data 

sets are obtained from the same colony areas and therefore include information from 

different life history aspects of the same individuals, which are also counted in the 

census. For example, adult survival and productivity of guillemots are monitored in the 

same study plots. In practice, population counts can be considered independent of the 

other data sets because the total number of individuals counted in the whole island is 

much larger than the sample of monitored birds. The impact of the lack of independ­

ence of data sets in integrated population modelling has yet to be thoroughly studied 

but it is reasonable to expect that it will strongly depend on the nature of the dependent 

data sets and the degree of overlap in the number of individuals that are shared be­

tween them. Simulations are the obvious framework for studying this issue, although 

the number of possible combinations is large and obtaining general results may be 

challenging. Besbeas, Borysiewicz & Morgan (2009) found bias when ring-recovery 

data were integrated with strongly dependent counts in a simulation study. Other pa­

pers report no significant effect of the lack of independence, based on either empirical 

data (Cave, King & Freeman 2010) or simulations (Abadi et al. 2010a); this may be 

caused by one of the data sets contributing most of the information for the parameter 

under study so that the degree of dependence with other data sets may not have a big 

impact in practice. Non-independence in IPM remains an active area of statistical re­

search. Extending the IPM framework to encompass several species may create a new 

form of dependence between data sets, in this case across species.

We did not carry out model selection formally on the integrated population models, 

but did it locally when needed for particular data sets (e.g. the guillemot chick MRR, 

section 5.4.2). During model exploration, attempts were made to fit the puffin, razor­

bill and guillemot data sets to more flexible IPM structures (e.g. fully time-dependent
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juvenile survival when no data were available to provide information directly about 

that parameter; section 6.3.2) but the resulting inaccurate demographic estimates indi­

cated that such parameters were not identifiable; this was further confirmed by the true 

population estimates often displaying a clear overfit to the census values, as the model 

structure was too flexible for the amount of data available. We note that methods to 

assess formally parameter redundancy for IPMs have only been developed very recent­

ly (Cole & McCrea 2012); such methods could be applied in Chapter 6 when studying 

the impact of stopping the ringing of guillemot chicks. We also assessed goodness-of- 

fit for the different data sets independently. Clear methods and guidelines for checking 

the overall fit of IPMs are still lacking (Schaub & Abadi 2011), but the verification for 

each separate data set may provide more informative detail about the origin of a poten­

tial lack of fit in the overall integrated model.

Having several species in the same IPM allows another interesting development, 

which does not rely on a structure of synchrony: one or more demographic parameters 

could be regressed on the adult population abundance, in order to estimate whether 

they exhibit density-dependence (Begon, Townsend & Harper 2006, p. 134). In IPM 

the novelty is in letting each parameter depend not only on its own species’ abun­

dance, but also on that of other sympatric species that may be competing for shared 

resources (e.g. food or nesting sites). Multi-species synchrony as defined in this thesis 

may reflect the fact that species respond similarly or differently to variations in some 

aspect of their common environment; in contrast, this ‘density-dependence msIPM’ is 

multi-species because it takes inter-specific competition into account as a structural 

relationship. The fact that the model is an 1PM is important as it allows the estimation 

of relationships with estimated true populations instead of counts, which are imperfect 

observations, and the Bayesian framework is ideal for inference in this case. We de­

scribe here as an illustration how this idea could be applied to productivity in the Isle 

of May seabird community. The overall model structure would be as defined for the 

razorbill, puffin and guillemot ssIPMs in sections 5.2, 5.3 and 5.4 respectively (i.e. 

with no random effects in productivity for estimating synchrony). We then introduce 

in the logistic regression of the parameter of interest the numbers of adults N a of all 

the species in the set, which are themselves parameters within the IPM. For productivi­

ty p we could have, for each species s and year t,
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logit(ps ( 0 )  =  Pos  +  ^  P i s N i i t )  +  £s (t),1=1
where p0s are species-specific intercepts (baseline productivity), fils represents the ef­

fect of abundance of species i on the productivity of species s, and £s(t) are inde­

pendent, identically distributed normal error terms (with £s(t) ~ /V(0, crs2), and vari­

ances to be estimated). iV((t) are the adult true population abundances, standardised 

for each species. The regression coefficients pis would estimate either intra-specific 

(i = 5) or inter-specific (i A s) density-dependence. This fully parameterised model 

can account for all possible combinations of effects, including species being affected 

only by intra-specific competition or by the combined abundance of some or all spe­

cies (with the relevant p is in each case being estimated close to zero). Although in a 

preliminary analysis of the Isle of May data set we found no strong evidence for such 

density-dependence in productivity, applying the approach to other species assemblag­

es where density dependence may be operating would be highly informative. Also, the 

density-dependence structure described above (linear on the logit scale) is rather sim­

ple and it may be worth exploring alternative more complex structures (e.g. population 

thresholds; Besbeas & Morgan 2012b) as well as dependence acting with time delay 

(Begon, Townsend & Harper 2006, p.424). Density-dependence has been included in 

single-species IPMs (Besbeas, Borysiewicz & Morgan 2009; Peron, Nicolai & Koons 

2012) but to our knowledge a multi-species density-dependence IPM would be a novel 

development.

By their nature, IPMs tend to contain many model parameters, and that number obvi­

ously increases when several species are modelled simultaneously, as we have seen in 

our multi-species IPM. This is not necessarily a problem in terms of parameter identi- 

fiability, as the greater number of parameters is accompanied by a larger amount of 

data. However, there is an obvious impact, at least in the Bayesian framework, in 

terms of computing time, and to a lesser extent also in computer memory require­

ments. The continued increase in computer processing power will partially compensate 

for this. Alternatively, it will be worth considering that, when a data set contributes the 

most information regarding a particular set of parameters, it can be analysed inde­

pendently and one can then incorporate the parameter estimates using a multivariate
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normal approximation in the IPM (Besbcas, Lebreton & Morgan 2003), therefore re­

ducing model complexity and the required amount of processing time.

7.2 The Isle o f May seabird community

In our analysis of the Isle of May seabird community, we found medium-high syn­

chrony in adult survival among the three auk species. However, synchrony in overall 

productivity for the set of five species was much more variable although there was a 

clear a common signal indicating a significant decline in productivity between 1986 

and 2009. For the two species for which wc have more detailed data, the environmen­

tal contribution to overall productivity synchrony is driven principally by effects oper­

ating at the chick stage rather than during incubation. The results for the full Isle of 

May data set suggest that the seabird species show complex and varied responses to 

the shared environmental conditions, with no single climatic or oceanographic covari­

ate considered emerging as a clear overall explanatory variable controlling all aspects 

of these species’ demography. The contrasting results in terms of synchrony in adult 

survival and productivity are most probably related to the fact that the factors affecting 

them operate at different times of the year and in different geographical locations. 

Thus adult mortality occurs mainly during the winter when the species disperse into 

the North Sea, and in some cases the Atlantic, while productivity is likely to reflect 

conditions during the spring and summer in the vicinity of the colony. Both the envi­

ronmental covariates considered here (wNAO and SST) are often selected with time 

lags suggesting that their effects on survival and productivity are operating indirectly 

through some aspect of the food chain. In the context of the Isle of May seabird com­

munity, climate-mediated effects on the sandeel population, an important prey species 

for all the seabird species included in our data set, is a likely candidate. The presence 

of a commercial sandeel fishery appeared significant only for kittiwake productivity 

(as noted in previous studies, with a shorter time series; Frederiksen et al. 2008b), the 

species that is assumed to be most sensitive to changes in prey abundance. Neverthe­

less, in both adult survival and productivity, a large part of the common and species- 

specific variances is not explained by our set of covariates, which indicates that there 

is scope for further investigation about the aspects of these species’ environment that 

contribute to synchronising and desynchronising these demographic parameters. The
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most promising avenue is to consider more direct measures of prey availability such as 

estimates of prey biomass or, specifically for productivity, the quality and composition 

of the diet fed to the chicks.

Exploring covariates that may be able to explain part of the year-to-year variations 

(and therefore synchrony and asynchrony) in some demographic parameters of interest 

is a first step. The next stage would be to relate the synchrony indices and the degree 

to which synchrony and asynchrony are explained by environmental covariates (the C5 

and Cs coefficients) to different characteristics of the species considered. Puffins, guil­

lemots, razorbills, kittiwakes and shags all share life history characteristics typical of 

seabirds such as high adult survival, deferred maturity and small clutch sizes, and rely 

on a common food source to feed their chicks when breeding at the Isle of May. How­

ever, some other traits are shared only among some of the species, in a complex over­

all combination (Table 1-1), and it is possible that these similarities and differences 

create the varied spectrum of responses to environmental variation. New research into 

the ecology of these species may bring insight into more subtle differences (e.g. 

different use of the water column by guillemots and razorbills when foraging; Thaxtcr 

el al. 2010). How to relate synchrony parameters to aspects of the species’ ecology is 

not a trivial question and the development and testing of sound methods to do this 

could be an area of future work.

Perhaps the clearest example is the potential for a relationship between synchrony in 

adult survival and the overlap of wintering areas, given that most adult mortality hap­

pens during the winter months. Reynolds et al. (2011) adopted a similar approach for a 

single-species multi-population case study with guillemots, based on pairwise compar­

isons. Extending the approach to the set of species considered in our study is hindered 

because we still know relatively little about their distribution outside the breeding sea­

son when many of the species, e.g. kittiwake and puffin, disperse widely. Ring- 

recoveries can be used to infer the likely levels of overlap in winter distributions 

(Figure 7-1). However, such data have many sources of bias for example they indicate 

where birds have died not where they have survived, recoveries are more likely after 

periods of onshore wind and on coastlines with sandy beaches frequently visited by 

humans. Winter surveys at sea can provide less biased information (Fauchald et al.
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2011) but in this case the origin and status of the individuals recorded is unknown and 

such surveys are costly to carry out at the scale needed to reflect wintering distribu­

tions of most Atlantic species. With the increasing use of geolocation loggers, small 

devices attached to leg rings that record the geographical position of the animal (Harris 

et al. 2009; Bogdanova et al. 2011), more direct information can be obtained and a 

clearer picture is starting to emerge, which is in some cases changing the traditional 

views. More individuals will be fitted with such devices at the Isle of May in the com­

ing years, which will hopefully shed light on where the species spend winter, and help 

relate winter distribution to environmental covariates in these areas.

Figure 7-1 Location of ring-recoveries and derived kernel density contours (75%) for 
puffins (blue), guillemots (green) and razorbills (red) ringed at the Isle of May and 
recovered as adults during the non-breeding season (September to April) within the 
period 1980-2009. Data processed in ArcGIS9.3.

The population of seabirds breeding around the British Isles is of international rele­

vance and the species considered in this thesis are still very abundant (the guillemot is 

the most common seabird in the area with over 1.5 million individuals; Mavor et al. 

2008). A comparison of counts conducted in Britain and Ireland in the 1970s, late 

1980s and late 1990s/early 2000s shows that the populations of the three auks in­

creased over this period, but that of shags and kittiwakes decreased markedly, particu­

larly since the 1985-88 census (Mitchell et al. 2006). In the North Sea, conditions were
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favourable for seabirds during the 1970s, but the 1980s saw reductions in numbers 

and/or productivity of some species (Harris 1994). The counts at the Isle of May indi­

cate that since the mid-2000s the breeding population of puffins, guillemots and razor­

bills have declined, as reflected in our population models. Sea-surface temperature has 

been increasing in the North Sea since the 1980s, which triggered an abrupt ecosystem 

shift in the early 1990s (Beaugrand et al. 2008), a rapid change in plankton community 

composition resulting in poorer sandeel recruitment (van Deurs et al. 2009). Sandeel 

body length-at-age has also declined markedly during the last 30 years in the Wee 

Bankie/Firth of Forth population (Wanless et al. 2004). These large-scale changes 

have impacted seabirds at the Isle of May, with a series of years of very low breeding 

success for some species (Centre for Ecology & Hydrology 2010) and a general de­

clining trend, as indicated also by the common signal in our analysis of productivity. 

The overall response of a species to changes in climate is likely to be complex, and it 

is difficult in general to predict which populations of which species will be ‘winners’ 

or ‘losers’ under changing environmental conditions (Hamer 2010). Nevertheless, giv­

en that current climatic scenarios all predict further increases in sea surface tempera­

ture in the North Sea (Frcderiksen et al. 2006), a negative impact of future climate 

change could be anticipated in the sandeel-dependent seabird community at the Isle of 

May, with coming decades likely to witness large-scale changes in the breeding and 

wintering distributions of these species.

Long-term monitoring schemes are essential ecosystem sentinels and provide the nec­

essary time-frame for an improved understanding of the relationships between demog­

raphy, population and environment at a multi-decadal scale. IMLOTS (Centre for 

Ecology & Hydrology 2010), the seabird monitoring programme established in 1973 

at the Isle of May, is an excellent example of the value of such schemes. Over several 

decades, it has provided what probably constitutes the most comprehensive colony- 

based data set on seabird ecology in Europe, with many studies (including this thesis) 

conducted on ecological aspects but also on statistical developments, and results even 

influencing policy (Frederiksen et al. 2008b). The increased availability of new moni­

toring devices such as geolocation loggers, coupled with statistical modelling devel­

opments will likely provide exciting new opportunities to improve further our under­

standing of the seabird communities in general and the Isle of May in particular.
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APPENDIX: PRIOR SENSITIVITY FOR THE 

VARIANCE OF RANDOM EFFECTS

We carry out a prior sensitivity study for the variances of the random effects in the 

multi-species adult survival synchrony model. We use the model {<p(ß + S + s)p(t  + 

a)} without covariates, where all the year-to-year variation in adult survival has to be 

absorbed by the random effects, and the Is can be interpreted as the overall synchrony. 

See details of the model in section 2.3.6.

In our synchrony analyses, we specified uniform priors on the standard deviations 

(‘priors 1 ’). We test alternative priors directly for the variances, in the form of inverse 

gamma distributions. As WinBUGS specifics a normal distribution through its preci­

sion instead of variance, in practice we have to specify a gamma distribution for the 

precision r  = a*2 ■ We try two different values of the gamma distribution parameters. 

In total, the following sets of priors are explored

(i) Priors 1: cr — U(0,3)

(ii) Priors 2: t = cr-2 ~ T(0.001,0.001)

(iii) Priors 3: r  = cr-2 ~ T(0.1,0.1)

The following figures compares the prior (light grey) and marginal posterior (dark 

grey) when using the different sets of priors, for the standard deviations of the com­

mon and species-specific terms, for puffins, guillemots and razorbills.
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Standard deviation of the common random terms 6:
o6-up.3) Tj~np.ooifl.ooi) tj-np.ip.i)

Standard deviation of the puffin-specific random terms £P :
op~ U(0,3) tp -  rp.ool ,0.001) Tp~rp.i.o.i)

Standard deviation of the guillemot-specific random terms eG \
oG -  up,3) T0 ~rp.ooi,o.ooi) xG -r p .i,o  i)

Standard deviation of the razorbill specific random terms £R :
aR -  up,3) ^ -r p .0 0 1 .0.001) ^ - r p  1,0.1)
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For a better appreciation of the effect of changing the prior, the following figure shows 

kernel density estimates (calculated in Matlab) for the marginal posterior distributions 

of the standard deviations of the common terms (&$) and species-specific terms 

(o>, aG, aR for puffins, guillemots and razorbills respectively). The results of using 

priors 1, 2 and 3 are represented by solid, dashed and dotted lines respectively.

For puffins and guillemots (the species with very rich data sets) and the common ran­

dom effects 5, specifying more informative gamma priors does not have a strong ef­

fect. On the other hand, for razorbills (with less ringed birds and resightings), the use 

of inverse gamma priors appears to have a noticeable effect. We therefore opted for 

using uniform priors on the standard deviation of the random terms.


