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ABSTRACT

The work reported in this thesis is an investigation in the
field of error-control coding. This subject is concerned with
increasing the reliability of digital data transmission through a
noisy medium, by coding the transmitted data. In this respect, an
extension and development of a method for finding optimum and near-
optimum codes, using N.m digital arrays known as anticodes, is
established and described.

The anticodes, which have opposite properties to their comple-
mentary related error-control codes, are disjoined from the original
maximal-length code, known as the parent anticode, to leave good
linear block codes. The mathematical analysis of the parent anticode
and as a result the mathematical analysis of its related anticodes
has given some useful insight into the construction of a large number
of optimum and near-optimum anticodes resulting respectively in a
large number of optimum and near-optimum codes. This work has been
devoted to the construction of anticodes fram unit basic (small
dimension) anticodes by means of various systematic construction and
refinement tec:hniqﬁes, which simplifies the construction of the
associated linear block codes over a wide range of parameters. An
extensive list of these anticodes and codes is given in the thesis.

The work also has been extended to the construction of anti-
codes in which the symbols have been chosen from the elements of the
finite field GF(q), and, in particular, a large nunioer of optimum and
near-optimum codes over GF(3) have been found. This generalises the

concept of anticodes into the subject of multilevel codes.
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CHAPTER I

INTRODUCTION

This thesis is concerned with the question of how to achieve
reliable communication of information over a relatively less reliable
comunication medium or channel. All communication channels are in
some sense unreliable; theory shows, however, that information may be
transmitted over an unreliable channel with a reliability which can be,
subject to certain constraints, as high as desired. One practical way
of achieving high reliability is to use an error-correcting code;
methods of synthesising and analysing optimum and good error-correcting
codes are the subject of the research which is described in this thesis.

The process of communication may be seen in the form of the
following generalised system. Information is generated at a source and
transmitted through a medium called the channel to a receiver which is
called the sink. In this process it is, in some measure, disturbed by
an unwanted phenomenon referred to as noise. The loss or misinterpre-
tation of some of the information due to the effect of this noise is
one of the major problems to be faced when transmitting information over
a channel, since all channels are, to a greater or lesser extent, noisy.

The average information per symbol at the output of the source
(source entropy) is denoted by £(x) and the source entropy rate
(Rosie, 1973), which is the rate of information flowing from the source
into the channel is denoted by é"(x). If the average information per
symbol at the sink due to both the information transmitted and the effect
of noise (sink entropy) is similarly denoted by €Yy) and the source
entropy rate denoted by €'(y), then it follows that the noiée entropy or
average information at the sink, when it is known that any message has

been transmitted, is given by:



€n) = E(y/x).

Laying the foundation of information theory, Shannon (1948)
considered these entropies and shoWed that, in any cammunication
system, the average information (entropy) flowing from source to

sink, denoted by I(x;y) and called the transformation, is:
I(x;y) = €(y) - &(n)
and similarly that the rate of receiving information is,
R=E"(y) -€'(n)
or alternatively R can be:
R=¢£"(x)-&(x/y)

where €(x/y) is the average information at source when it is known
that a message has been received.
The exchange of entropies can be shown pictorially (F. M. Reza,

1961) as in Figure (1-1):

€ (x/y)

I(x;y)

Figure (1-1) : The entropies exchange in a communication

system.
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Maximisation of R may be achieved by means of maximising, for
instance, the source entropy €(x), (Fano 1949, Huffman 1952), or by
matching the source and channel probabilities or probability distri-
butions (Reza, 1961). This maximum value of R is called the channel
capacity C, and it is the ultimate rate of transmission of information
over a channel with defined characteristics.

Furthermore, Shannon showed that for a signal limited to a mean
power S and a channel of WH, bandwidth with average noise power N, the

maximm rate of information transmission is:

C=Wigy(1+3) bits/s.

Shannon (1948), conceived the establishment of a 2WT dimensional
space to show how a set of M equiprobable signals of duration T trans-
mitted at a rate of 2WT samples (values) per second (Nyquist, 1924 and
1928) could be used as a source symbol set, and went on to show how
with appropriate detection (decoding) of the vectors (minimum distance)
that the maximum theoretical rate C is attainable with vanishingly
small error rate if T, and therefore M, is large enough.

Therefore if n-digit sequences of q symbols are used to transmit
N different messages on a noisey channel, the N messages are mapped
one-to-one into N different n-length sequences out of the qn possible
ones. Thus the images of the N messages form a subset of the qn,
n-digit sequences. If the mapping (encoding) is properly done, it
provides the possibility of correctly reselecting (decoding) the
original n-digit sequences, which have been transmitted and corrupted
by noise, and hence of determining the related message (information
digits). If the number N of messages is close to g, then difficulties
arise in the process of the message reconstruction, which results in

either a wrong message interpretation (decoding error), or in a very ‘
|
\
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camplex decoding process. Therefore the number of messages N is
normally rather smaller than qn; that is, in practice the redundancy
cannot usually be as small as that predicted by Shannon. The scheme
for mapping the N messages into n-digit sequences (or alternatively,
adding controlled redundancy) is called "coding'", and the set of

the images of the N messages is known as a ''code'". Shannon states
that for any channel with the maximum rate of information transmission
C there are codes with R < C and length n which, with maximum likeli-
hood decoding, have a vanishingly small probability of erroneous
decoding (Van Lint 1973, Galager 1968) Pe’ such that

P < e—nE(R)
e

E(R) is a function of crossover probability of the channel.

The inequality reveals that the probability of erroneous decoding
decreases rapidly with increasing n. The complexity of the decoder
increases rapidly with n, however, which is a big disadvantage for
practical systems. So, a coding system can be considered to be a good
code if it is both long and also can be encoded and decoded easily and
efficiently.

From the abové considerations a general simplified commnication

can be shown schematically as in Figure (1-2).



Source P Source Encoder | gy, | Channel Encoder

Channel

Channel Decoder Source Decoder —J— Sink

Figure (1-2) : A general simplified communication system.

The encoder is a system which improves the efficiency of the source
and/or its matching with the channel in both the information flow
(source encoding) and error correction (channel encoder) sense.
These encoding operations are usually performed separately, but in
certain cases may be cambined with advantage (Ancheta, 1976). The
decoder transforms the received noisy signal, by correcting (after
detecting) errors and restoring information compressed or modified by
the source encoder into a form acceptable to the sink.

The attempts so far which have been made to find a system (as
in Figure (1-2)) which achieves in practice a capacity equal to
Shannon's theoretical channel capacity, have led to the extensively
investigated branch of digital communications known as coding theory.
In spite of all these attempts, the problem of constructing codes
which attain a low probability of error at a rate close to the now
thirty years old Shannon capacity is still in general unsolved,

particularly in the cases of very noisy, or time-varying, channels.




In 1952, Gilbert found a lower bound on the ratio of the
minimum distance to the block length of the best code with a certain
rate. However, all the best known classes of best constructive long
codes are on or below this bound, with one exception, the Justesen
codes (Justesen, 1972), which are rather impractical to implement.

Thus the goal of coding research has been constructing codes which for
any arbitrary rate at least meet the Gilbert bound. One of the most
successful of all classes of codes came from the work of Elias (1954),
who introduced the concept of iteration by combining Hamming (1950)
codes. In 1966, Forney extended Elias' idea, introducing.concatenated
codes; and in 1972, Justesen developed the work done by Forney further
to produce the codes mentioned above. These codes all have small output
(decoded) probability of error for any arbitrary rate, or in other words
for any code rate the ratio of minimum distance to block length is over-
bounded away from zero.

However, many good, moderate length codes such as Reed-Muller
codes (1954), Bose-Chaudhuri-Horquenghem codes (1959-1960), quadratic
residue codes (Berlekamp 1968, Peterson & Weldon 1972) have also been
discovered. Asymptotically, though, these codes fall below the Gilbert
bound.

Thus several techniques and design methods for code construction
have been originated and developed, and have resulted in a number of
useful codes, which are considered to have good parameters, and
efficient practical decoding techniques. Following Shannon's footsteps,
a large number of researchers have produced an enormous amount of reports,
papers and text-books which describe the development of the science of
coding theory. A camprehensive coverage of algebraic codiﬁg theory is
given by Berlekamp (1968), Sloane & MacWilliams (1978) - this book

provides also an exhaustive bibliography of references in coding theory,
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Peterson & Weldon (1972), Van Lint (1971), Wiggert (1978), Massey (1963),
Forney (1966) and Gallager (1968).

The general subject of digital commnications is covered by
Lucky, Salz & Weldon (1968), Stiffler (1971), Wozencraft and Jacobs
(1965), Rosie (1973) and others; all these books contain sections on
coding theory.

From this brief review, it becomes apparent that coding theory is
concerned with methods of choosing long codes with practical encoding
methods and efficient decoding algorithms, though not necessarily
fulfilling Shannon's promised rate and output error probability (see
Section 3.1.3).

The main aim of coding theory is to try to approach Shannon's
limit on capacity and error-free decoding; the practical aim of research
in coding theory is to find codes with as high rate as possible for a
given length and error-correcting power. These codes are called optimum
codes, (see also Section 3.1.3). This can be achieved by fixing two code
parameters, e.g. the block length and the rate, and attempting to maximise
the third parameters, namely the error-correcting power. The ultimate
values of these parameters have been investigated and given by various
sources in the form of functional relationships, known as code bounds
(see Section 4.1 and 4.2). In finding codes with specified parameters,
our main concern in this thesis is to develop and extend one of the most '
fruitful techniques of constructing codes which have a set of good
parameters; such codes are called near optimum or optimum codes. These
techniques were first introduced by Farrell (1969) and are concerned with
the concept of the anti-code. An anti-code is a set of N m-digit g-ary
sequences, or words, which has opposite prbperties to an error-correcting
code. Many codes may be derived from a given anti-code; the columns of
code and anti-code books play an important part in the theory of these

techniques.



In this thesis, we assume that even if the source symbols are affected
by intersymbol influence, then the symbols delivered to the channel
encoder by the source encoder are equiprobable and independent.

The second chapter in this thesis presents some of the elementary
and simplified mathematical background related to error control coding
schemes. In Chapter III, the achievement of reliable transmission of
information over an unreliable channel is reviewed, and same related
concepts are discussed. Chapter IV contains the analysis and con-
struction techniques of some of the best known linear block codes and
gives a brief outline of the functional relationship between the
parameters of these codes. Through these functions (known as bounds)
the performance of the constructed codes can be verfied. In Chapter V,
the area of interest is narrowed to a detailed consideration of a family
of codes related to the development of the main subject of this thesis.
These codes, known as maximal length codes, are again refined to include
the codes derived from them, as suggested by Griesmer (1960) and Solomon
& Stiffler (1965). Furthermore, a new approach is given to the Griesmer
bound and the generalization of this bound by Solomon and Stiffler.

Following Chapter V, in Chapter VI the analysis and construction
of an infinite set of arrays complementary to error correcting codes,
known as anticodes, is described. Consideration is confined to the
class of linear binary anticodes. In Chapter VII, further properties of
linear binary anticodes, and same related bounds, are given. Moreover,
in this chapter, the linear binary construction results are presented.
In Chapter VIII, the development, construction, and same properties of
linear anticodes over GF(q), which is the generalization of the linear
binary anticode, are given. However, the emphasis has been given to

3-ary linear anticodes. This chapter also includes the 3-ary linear

binary construction results, and corresponding linear 3-ary codes. The
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final Chapter, IX, is devoted to the further discussion of the new
anticode construction methods, and possible use of related properties,
and gives several recommendations and possible topics for further
research based upon this work.

In addition, Appendix I gives a possible decoder and encoder
for the codes derived from parent anticodes. - Also, in Appendix II,
the approximate performance of the linear binary codes derived from
parent anticodes, with the corresponding computer program, are given.
Appendix III includes the computer program for the refinement of the

constructed anticodes.
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CHAPTER II

MATHEMATICAL BACKGROUND AND CONCEPTS

2.1 General

The concepts to be presented in this section are some of the
elementary and simplified properties of the algebraic systems and
mathematical references which are related to error control coding
schemes. The aim of this is to give same insight into the problems
involving error control coding, through a knowledge of the analogies
between error control codes and mathematical systems. The topics of
this chapter can be found described in greater depth in text books
such as Birkhoff & Burtee (1970), Fraleigh (1977), Burton (1967),

Barnes (1963) and others.

2.2 Sets

A set D is a collection of objects or entities called the
elements of the set. An empty set or null set is a set which has no
elements, and it is symbolized by ¢. A set T, each of whose elements
are in the set D, is a subset of set D. This is shown by T C D and
read T is contained in D.

If TcDand T#Dand T # ¢ then T is called a proper subset
of the set D; however, if T=D or T = ¢ then T is an improper subset
of the set D. To indicate that T is a proper subset of D we will use

the notation T C D.

2.3 Mapping

A correspondence o which associates each element of a set D
with a unique element of a set I is calledia mapping of D.into I.
This mapping of the set D into I is a subset of D X I such that no two

distinct pairs has the same first component. The notation




s

o: d——m—m1

is used to indicate the correspondence of the element i € I with the
element d € D due to mapping a. This may also be shown by do = i.

The element i is called the image of the element d under a. The set
D is called the domain and the set I is called the co-domain of the

mapping o. The mapping o is symbolically expressed by writing
ad: De——1

or

Da={i=da ieI,deD}

If every element of the set I is the image of at least one
element of D the correspondence is a mapping o of D onto I and the set
I is called the range of a. If distinct elements of D are associated
with distinct elements of I the mapping o is called a one-to-one
mapping into. A one-to-one mapping o of D onto I is called a one-to-
one correspondence between D and I, and it is symbolically expressed

by writing
0! De=——I,
Two mappings o and B,
o: D———I and B: I—R

can be combined to form a mapping of called the product mapping o and

B where
of : D——%R.

Thus if d € D and da = i the mapping aB associates the element d with

the element r € R where r = if. In other words we have that,

d(oB) =dou(B) =iB =1 .

The product mapping af is called identity mapping if the mapping aB




associates every element of D with itself, that is

a :D——I and B : I —D

and the product mapping

oB=J : D——D

and also

J : d——d for all d € D.
If the mapping o is a one-to-one mapping of D onto I where
of=dJ : D—D

then o is said to be the left inverse of B, and similarly B is said to

be the right inverse of o, so that
-1 -1

a =R or RB=a

2.4 Binary operation

A correspondence that associates each ordered pair (a,b) of the
set D x D with a uniquely determined element bf the set D is called a
binary operation *. In other words, a binary operation * is a
mapping of D into D, as
* :DXD——D
and for the sake of simplicity (a,b)* is written as a * b. A binary

operation * on a set D is called camutative whenever

and it is called associative whenever
a* (b*c)=(a*xb)*c

for all a, b, ¢ €D.
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2.5 Residue Classes

The relation "congruent modulo m'" which is symbolized by

(mod m) is defined on the elements of the set of all integers I by

11

a =b (md m) if and only if (a-b) is divisible by m, in other words

a and b have the same remainder when divided by the positive integer

This relation is an equivalence relation, so it partitions the
set of all integers I into m equivalence classes I/m, known as residue

classes mod-m, such that, if [r] is an equivalence class, then
[r] = {a' aecl, a:= r(modm)}

As an example consider the residue classes of the integers mod 3,

[0] = { 6, -3, 0, 3, 6, }
[1] = { -5, -2, 1, 4, 7, }
[2] = { 4, -1, 2, 5, 8, }

In the next section we will see that the set of all residue classes

mod-m of all integers,

o= { o], [1], ..., 1] }

form an algebraic system with respect to the binary operations + and .

defined as follows:

[2] + ] = [2+Db] and [a] . [b] = [a . D]
which is known as a ring.

As an example consider the set of all residue classes of integers

mod-3 (previous example); the operation tables are:




- 14 -

+ | o] [1] [2] [o] [11 [2]
[o] | [o] [11 [2] [o] (o] [o] [o]
[1] [1]1 [2] [o] [1] (o] [11 [2]
[2] (2] [o] [1] [2] [o] [2] [1]

2.6 Groups
An algebraic system is a set M = {a, b cesens }

with a number of operations and relations defined on it. A group G
is an algebraic system with one binary operation * , provided this
operation satisfies the following requirements:
(1) the associative law holds, namely
a*(b*c¢c)=(a*hb) *c;
(2) there exists an element U € G, called the identity
such that
a*U=U%*a-=a;
(3) for every a € G there exists an element a_le G
called the inverse of a, such that,
a*a_1=a—1*a=U.
If the group also saltisfies:
(4) the commtative law,
a*b=bx*a for all a, b €G,

then the group G is called an Abelian group.
As an example, considerthe set G of order n = 4:
G = {a, b, ¢, d}

This set forms a group with respect to the binary operation *

defined by Table (2:1).
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* a b c d
a a b c d
b b a d c
c c d a b
d d c b a
Table (2:1)

Fram Table (2:1) it is clear that G forms an Abelian group with
respect to *. The identity element is '"a', the inverse of every
element is itself, and the associative law holds. In addition,
due to the cammtative property of the elements, the group G is

an Abelian group.

2.6.1 Properties 0§ Groups

Consider the set D of order N = 4,
D= {000,011,101,110}

and the binary operation + which is a mod-2 component by camponent
(component-wise) addition over the components of the elements of D,

shown by Table (2:2):

* 00O 011 101 110
00O 00O Q11 101 110
011 01 31 000 1 1D 101
101 101 "110 00O 011
110 1160 101 011 00O

Table (2:2)
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Further consideration reveals that the set D with respect to the
Operation defined satisfies the properties of an Abelian group.

Now we establish a mapping o between set G and D such that

o0 : Ge——D
a<«—>=000
be—011
c—101

de—110

It is readily verified that the mapping o is a one-to-one correspondence
between the sets G and D, which preserves the operations of the groups

G and D, namely if

g1€ G<—->d1€D
gy € Ge—dy €D
then

g *B——d t 4

so we have that the set D (which is a linear binary block code) is a
group (group code) with respect to binary operation mod-2 addition.
Every one-to-one correspondence of a group G onto a group D
which preserves the operations and relations (if they exist) is called
an isomorphism. The groups G and D are said to be isomorphic. If the

mapping above is not one to one then it is called a homomorphism.

2.6.2. Subghoups
A non-enmpty subset H of a group G is called a subgroup of G if

H is a group with respect to the operation defined on G. The group G
and the set {U}, where U is the identity element of G, are subgroups
of G, and are called the trivial or improper subgroups of G; other

sub-groups are proper subgroups of G.
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2.6.3 Cyclic Group

A group G is a cyclic group if for every element b € G the

element b is in the form of

where a € G and m can be any integer. The element a is called the
generator of G. The set G consisting of the six, sixth roots of
unity,

G={mp%pqp{p?p6=ﬁ
form a multiplicative group, where p is the generator and p6 =1

is the identity element.

2.6.4 Peunutation (Permutation Group)

Consider the set consisting of the n! permutations of the n
symbols of the set s = {al, gy +ne- an} . The set of all permutations
of the elements of S in fact is n! different one-to-one mapping of the

set S on-to itself. Consider the following n-tuple:

where ik for K=1, 2, 3, ..., nare 1, 2, 3, ...., n and moreover
i‘k # im for K # m. This n-tuple or arrangement of elements of the

set S determines the following one-to-one correspondence:

of the set S onto itself. This oy is the ith permutation of the set S
where i = 1, 2, .... n! . We will usually denote oy by the n-tuple
determining it, i.e. (a, a. a. el A ) .

1 2 13 n

Consider the set,

Sn= {al, Ogy, weves Oy vene an!}
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consisting of all n! permutations of the set S. Let * be the product
of the one-to-one mapping of S onto S, then Sn with this binary
operation forms a group (non-Abelian) of order n!. The identity

element of the group, is aq where,

and the inverse of every element of Sn such as oy is an OLJ. where the
rows are interchanged.

As an example, let the set

S = {1, 2, 3, 4}

and let o and B be

1 2 3 4 1 2 3 4
o = ( and B = )
2 3 41 3 4 1 2
since interchange of the columns of B is immaterial then B can be
2 3 4 1
. )
4 1 2 3
In this form the first row of B is the second row of o, therefore

1 2 3 4 2 3 4 1 1 2 3 4
Y:a*B:( )*( )=< )
2 3 4 1 4 1 2 3 4 1 2 3

the identity element is

1 2 3 4
o= ( )
1 2 3 4

and the inverses o and B are:

2 3 4 1 4 1 2 3
oz_1=< >a.nd8_1=( )
1 2 3 4 1 2 3 4 .

written as:
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If a permutation changes only two elements of the set, the permutation
is called a transposition and it can be shown (Ayres, 1965) that any
permutation is a product of transpositions. Also, every group of
order* n is isomorphic to a permutation group of n symbols (MacCoy

1977, Ayres 1965).

2.6.5 Cosets (Invarniant Subgroups)

A subgroup H of a group G can partition the elements of the group
G (parent group) into mutually disjoint subsets, known as cosets. In
the subject of error correcting codes the set of cosets is called the
standard array.

Consider the subgroup H of the finite group G with binary
operation * , for which the subgroup H and an element a € G form a

subset Ha known as a right coset, where

Ha = {h*alhen}
Similarly the left coset aH is the set

all = {a*h|heH}.
The element a is called the coset leader or coset representative of aH.
It can be shown that the order of each subgroup of a finite group
divides the order of the parent group+, and furthermore if aH = Ha,

then H is called a normal or invariant subgroup of the parent group

(Burton 1967, Barens 1963).

The order of a group is the number of elements in the group.

+ This is Lagrange's theorem (Birkhoff & Burtee, 1970), the converse
of which is not true; namely, a group of order n need not have a

sub-group of order K when K divides n.




2.6.6 Quotient Group

The set of all distinct cosets of a finite Abelian group H with

respect to the operation '"o'" defined on the cosets as
(Ha) o () = {(bja) * (hyb)/by, by e H |

or (Ha) o (Hb) = H(a * b)
form a group called a quotient group which is symbolized by G/H and is
given by
G/H = {Ha, HO, vvevnn. }

2.6.7 Standand Aviay

The concept of group decomposition into cosets is useful in
error correcting codes when studying the decoding and structure of

linear codes (Slepian 1956, Peterson and Weldon 1972).

Consider the set V of all the binary n-tuple vectors; this set
forms an Abelian group of order 2" with respect to binary (mod-2)
addition operation + . The n-tuple consisting of only zeros is the
identity element of V. If v is a subgroup of order 2k of the group V,
then the number of distinct cosets is 2n/2k o B

In order to .form the standard array of V w.r.t. v, the elements
of v are placed in a row with the identity element (u), in the leftmost
position of this row. The second row is started with an element ey of
V which has not appeared in the first row. This element, in error
correcting terms, is usually chosen to be one of the most likely elements
of V to be received if the identity element is transmitted and errors
occur. In other words, this n-tuple is a low weight* error pattern ey

(see Peterson and Weldon 1972, Slepian 1956) and the rest of the second

row is formed by adding this element eq to each element of the first row.

The weight of an n-tuple is the number of non-zero digits it

contains; e.g. w(1101) = 3.
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The third and consecutive rows are formed in the same way as the
second row, see Table (2:3).

As an example, consider the standard array formed by decomposition

of the 6-tuple binary vectors into 8 cosets, as in Table (2:4). Since

n = 6 then |V| = 2% and lv] = 23, where |V| is the order of the group V.
(u) (v) (Va)  canmmenas (Vzk_1)
(el) (Vl + el) (V2 +* el) ....... (Vzk_l + el)
+ ¥ @g) samsaess + ey)
(ez) (Vl 92) (VZ 92) (V2k_1 P)
Conk ) 1S ) (2T o ) Ty T ey
Table (2:3)

000000 001011 010101 011110 100110 101101 110011 111000
000001 001010 010100 011111 100111 101100 110010 111001
000010 001001 010111 011100 100100 101111 111001 111010
000100 001111 010001 011010 100010 101001 110111 111100
001000 000101 011101 010110 101110 100101 111011 110000
010000 011011 000101 001110 110110 111101 100011 101000
100000 101011 110101 111110 000110 001101 010011 011000

001100 000111 011001 010010 101010 100001 111111 110100

Table (2:4)

2.7 Rings

A ring R is an algebraic system with two binary operations, namely
addition "+'" and multiplication '"o', provided these operations satisfy

the following requirements:
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(1) R is an Abelian group with respect to the
addition operation;
(2) the associative law of multiplication holds,
namely a o (b e c) =(aob)oc
for all a, b, c € R;
(3) the distributive law (relation between two
operations) holds, namely
ao(b+c)=aoecb+aoc
(b+c)oa=boa+coa.
If, in addition, the ring R satisfies
(4) the commutative law of multiplication, namely
aob=Dboa
for all a, b €R,
the ring is called a commutative ring.
As an example, consider the group G of Section 2.6 with the

binary operation " + " of Table (2:5) where

G={a, b, e, d}

This set forms a ring R with respect to the binary operation addition

+ and multiplication o defined by Table (2:6).

+ a b c d 0 a b c d
a a b ¢ d a a a a a
b b a d C b a b c d
c c d a b c a ¢ d b
d d ¢ b a d a d b ¢

Table (2:5) Table (2:6)




- 923 _

More consideration reveals that the existence of the symmetric
properties on both tables with respect to the main diagonals from upper
left to lower right, means the ring R is a commutative ring and there-

fore for every two elements x, y € R

X0y=yoX.

Furthermore, from the second row of the table of the multiplication, it

is clear that b is the multiplicative identity, called the unity element
of the ring. This ring is called "a ring with unity'. In addition, for
every two non-zero elements x, y € R, the multiplication table shows

X oy # 0. Such a ring is said to be a ring having no divisor of zero.

A comutative ring with unity which has no divisor of zero is called an

integral domain.

2.7.1 Subrings
A subset S of a ring R which is itself a ring is called a subring.

It is clear that S is a subgroup of the additive group R. The subring
{Z}, where Z is the zero element of the ring, and R, are the improper

subrings of R; the others are the proper subrings of R.

2.7.2 Ideals

An important class of subrings used in error-correcting codes,
which are similar to those of the invariant subgroups, are known as
ideals. A subring I of a ring R is called a left ideal of R if for every
element a= Rand b €I, aob €1I; and it is called a right ideal
whenever boa € 1 for every a € R and every b € I. If the ideal is both
a left and a right ideal, it is called a two-sided ideal or simply an
ideal. In addition to those properties, if. the elements of an ideal can
be generated by some fixed elements of the ideal, it is cailed a
principal ideal.

An ideal I of a ring R is an invariant subgroup of the additive
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group of ring R, so this subgroup can partition R into a set R/I of
distinct cosets, such that

R/I ={a+ i - aER}.

The elements of this set form a ring with respect to the following

well defined operation on the cosets,
(a+I)+(b+1I)=(a+b)
(a+I)o(b+I)=(aob)+1I,.

The ring of the elements of R/I is called the quotient ring, or, in

other words, the residue classes modulo the ideal (I).

2.7.3 Division Ring (Skew Field-Quasi Field), Field

If the set of the non-zero elements of a ring form a multi-
plicative group with respect to the binary multiplication operation, it
is called a division ring or skew field. A ring R is a field if the
set of non-zero elements in the R form an Abelian multiplicative group.
A subset of a field F which is itself a field is called a subfield.
The subfields {Z} = {O} and F are improper and the others are proper
subfields of the field F. A field with a finite number of elements q,
where q is a prime integer, or a power of a prime integer, is called a
Galois field of q elements, where q = pm with p a prime integer and m
any non-zero positive integer. The Galois field of q elements is
denoted as

GF(q) = GF(p™) .

2.8 Vector Spaces

A vector space V(F) over a field F (called the set of components)
is a set of elements called vectors, such that these elements form an
Abelian group with respect to the binary addition operation defined on

these elements and satisfies the requirements:
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(1) scalar multiplication:
for any pair a, b€ F and v & V(F) the product
a v € V(F) is defined for all a € F and v € V(F);
(2) distributive law:

a(u +v) =au + av

also (a + b)v = av + bv
for all a, be F and u, ve V(F);
(3) associative law:
(ab)v = a(bV)
for all a, b€ F and V&€ V(F) .
In addition, if I is the unity element of the field F then
Iv=v.
As an example consider the set of all different ordered n-tuples of
elements of the field F, with the addition of two n-tuples (V) and (U),

defined as below.

If
V) = (Vl’ Vosr Vgs weees Vo 15 Vn)
U = (uy, uy, ug, ..... w4, u)
where vy a.nduieF for all i =1, .... n, then
(V)+(U.)=(v1+u1, Vo t U, ..., ,Vn+un)

bearing in mind that whenever the field F is GF(p) the addition of
components is carried out (mod-p). Also if ¢ is any element of F then,

c(V) = (cvl, CVg, CVg, ... cvn)

is the scalar product of ¢ € F and (v) € V(F). Thus the set of all

n-tuples over a field F forms a vector space. The inner product of two
vectors (V) = (v1, Vs wenes vn) and (U) = (ul, Uy, «oves un) is defined
by,

(V).(U) = viuy + Volg + ... ¥ VU -
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Two vectors V and U are said to be orthogonal if the inner product of

u and v is equal to zero.

2.8.1 Subspace o4 a Vectorn Space

A non-empty subset of the elements of a vector space V over a
field F is called a subspace, provided that the subset is itself a
vector space over the field F. A set of vecfors {Vl’ Vo, Vgy +eee Vk}
is linearly dependent if and only if there are scalars Cys Cgy ~evv Cps
not all zero, such that

k

A set of vectors is linearly independent if it is not linearly dependent;
furthermore if any vector in a vector space is a linear combination of
the element of a set of k linearly independent vectors, the vector space
is the row space of the k linearly independent vectors; or in other
words the k vectors span the vector space and are called a basis of the
vector space, and the vector space is called a k-dimensional vector

space.

2.9 Matrices

A matrix of order m X n over a field F is a rectangular array of m
rows and n columns with as elements the ordered elements of the field F.
The transpose of any matrix [A] of order m X n is a matrix [B] of order
n X m such that the matrix [EJ can be obtained by interchanging rows and

colums of the matrix [AJ, and it is shown as

-]

The set of all linear combination of the rows of a kK X n matrix over a

field F is the row space of this matrix. If k rows are linearly
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independent the row space is a k-dimensional subspace of the n-
dimensional vector space, and it is said that the row rank of the matrix
is k. Similarly, the set of all linear cambinations of the colummns of a
matrix is the column space, and the dimension and column rank have the
same definition. The process of interchanging of any row, or multiplying
any row by an element of the field F, or addition of any multiple of one
row of a matrix over a field F, to another row, is called the elementary
row transformation (operation). The similarly defined operation on the
colums of a matrix is called the elementary column transformation. Two
matrices are row or column equivalent if one can be obtained from another
respectively by a sequence of row or colum linear transformations. Two
matrices are equivalent if one can be obtained from another by a sequence
of row and colum transformations.

Using elementary row operations, a matrix can be put in the simple
canonical form called standard echelon form which has the following
properties:

(1) any non-zero row has a ONE as the leading (leftmost) term;

(2) any column containing such a leading term has all other

elements equal to zero;

(3) the leading term of any row is to the right of the leading
term in every preceding row, and all zero element rows are
below the all non-zero rows.

The dimension of the row space of the rows of a matrix A in standard
echelon form is the same as the number of the non-zero rows of the matrix
[A].

‘A square matrix over a field F which has the unit element of the
field F in the main diagonal fram top left to the right botfom, and zeros
elsewhere is called the identity matrix [I] . A square matrix is said to

be non-singular if it is row equivalent to the identity matrix [I].
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Consider the identity matrix [I:] and a linear transformation being
carried out on its rows. Multiplying this matrix on the right with the
matrix [A—_l is the same as performing the linear transformation on the
rows of the matrix [A]. This transformation matrix is called an
elementary row transformation matrix [S], and is a non-singular matrix.
A similar definition applies for an elementary colum transformation
(permutation) matrix [T] (Peterson & Fontaine, 1959). The matrix I:T]
operates on the right of the matrix [A]. It can be shown (Ayres 1965),
that if two matrices [A] and [B] are equivalent, then there are non-
singular matrices (elementary row matrix [S], and elementary colum

matrix [T]) such that

[s].[a].[T]=[E]

2.10 Galois Field, Polynomial Residue Classes

The ring of residue classes mod-P of integers of Section 2.5 form
a finite field of order P if and only if P is a prime number. This field
is called the Galois field and is denoted by GF(P) (see Section 2.7.3).

Consider F[x], the set of all polynomials over the field GF(P) of
the residue classes of integers mod-P. Fl:x] forms a ring with respect to

the addition and multiplication defined below.
If a(x) = a  +ax + azx2 + ...
= 2
and B(x) = bO + blx + bzx + s
where a., b. € GF(P)
1 s 8

and  o(x), B(x) € F[x]

Then a(x) + B(x) =Z(a.i + bi)xi

i .
1 .
o(x) . B(x) =Z(Z a; + bi-—j>xl

i Jj=o

(the addition of ay, bi € GF(p) is performed mod-P).
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The ring of polynomials F[X] can be partitioned by any polynomial P(x)
of degree m into a commutative ring with unity, called the residue class
of polynomials modulo, the polynomial P(x), denoted by F[x]/P(x) such

that
F[x]/P(x) = {[ao tax+,,,, am__lxm—l]

a € GF(P)}

where

[ao tax ...t am_lxm_l] = [OL(X)] = ;Ot(x) + P(x) v(x)

¥(x) € P[] $ .

The addition and multiplication on the residue classes of polynomials ‘

is defined as

[a(x)] + [B(x)] = [a(x) + B(x)]

[a(x)] . [Bx)] =[a(x) . B(x)]
The addition operation over the coefficient ay and bi is carried out
mod-P, and the multiplication is carried out mod-P(x). Furthermore,
scalar multiplication of each element ay of GF(P) and elements
[a(x)] of F[x] /P(x) is as :

ai[a(x):[ = [ai a(x)]

The distribution property of multiplication is as:

Coce (Tocd v]) = [ [o0e)] + L] [oe]

The ring of polynomial residue classes mod-P forms an m-dimensional vector

space of GF(P), such that the basis residue classes are
[, 1, B4, ... 1, Y

and any vector or residue class of F[x]/P(x) can be formed by linear

combination of the basis residue classes, that is:

ao[1] + al[x] - az[xzj + ... + am_l[:xm_l:l =

m-1

[ao] # [:alx] e [azxzj + ... +|:am_1xm_1] =[a0 *agx + azx’- SV W

where a; € GF(P) .




- 30 -

If any of the residue classes [a;] or [xlj is regarded as

[ai] =ay and [xi] = xi

then the above equation can be written as a polynomial

m-1

ao+ax+ax2+....+a X

1 2 m-1
Thus every residue class forms an n-tuple,

3y, 89, g, -ee. , A4

Any ideal generated by a monic polynomial (polynomial which has the unity
element of GF(P) as the leading coefficient) g(x) in the ring of residue
classes of polynomials mod-P(x) is a subspace of the vector space Vm over
GF(P) such that g(x) divides p(x). If the degree of g(x) is c, then it
has been shown (Peterson & Weldon, 1972) that the ideal generated by g(x)
forms an (n, k) cyclic code of order Pm—c. Also p(x)/g(x) = h(x), where
the degree of h(x) is equal tom - ¢ = k. The polynomial h(X) generates
an ideal of order P™ K which is a cyclic group called the equivalent dual
code of the cyclic code (MacWilliam & Sloane, 1978) generated by g(x).

If P(x) is an irreducible polynomial over GF(P) then the set of residue
classes mod-P(x) forms the field GF(pm) of order q = pm. The multi-
plicative group of tilis field forms a cyclic group of order (g-1). The
element o € GF(q), all the powers of which give the non-zero element of
GF(q), is called a primitive element of the field, and

a, a®, o, ..... a ,ocq_1=1€GF(q).

The primitive element a is a root of the irreducible polynomial P(x)
which is called a primitive polynomial over GF(P). Furthermore the elements
of GF(q) are the roots of the polynomial Xq_:.L—l, thus x311 can be
factorized into the irreducible polynomials over GF({). |

An irreducible polynomial m(x) over the ground field F of an extension

field is called a minimum polynomial of any element B of the extension field
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if m(B) = O. It can be shown that all the roots of the minimum polynomial
of any element B have the same order (see Peterson & Weldon, 1972). The
polynomial xq_l—l can be factorized into minimum polynomials of the
elements of GF(q) = GF(pm) such that

1y - M)y
S

where s runs through all the coset representatives of the cyclotomic cosets

of integers mod pm—l shown as

C. = {s, Pbs, st, ,Pm_ls}

S

Furthermore, the roots of the polynomial xn—l, which are called the nth

roots of unity, lie in the field GF(qm) where m is the least integer whichn
divides qm—l . Since the generator polynomial of the ideal mod (xn—l)

divides the polynomial x°-1 such that,

(x"-1)/g(x) = h(x)
or

x'-1 = g(x) . h(x)

the n roots of the polynomial x°-1 which are the roots of the generator
polynomial g(x), in ‘error-correcting code terminology are called the
zeros of the code (McWilliams & Sloan, 1978) and the other roots which are
not zeros of g(x) are the zeros of h(x) and are called the non-zeros of

the code.
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CHAPTER III

FUNDAMENTALS OF ERROR CONTROL CODING

3.1 The Linear Block Code : Analysis and Construction

The reliable communication of information over an unreliable
channel is possible, by protection of the actual transmission messages
through giving up a portion of the transmission rate to the controlled
insertion of redundancy. The process of adding redundancy to the set
of messages {M } with a finite number of elements |M|, in fact is a
mapping o of the elements of {M} one-to-one into a set {C} with a
finite number of elements | C]|.

Now, a linear code of length n and dimension K is a sub-space
VK of a vector space of all n-tuples Vn over a finite field GF(q) of
|a| elements, where q is a power of a prime number. If the message
vectors are considered to be the set of the vertices of a K-dimensional
unit cube, the mapping o mapps the vertices of this cube into vertices
of an n-dimensional cube (see, e.g. Figure (3-1) and Figure (3-2)). The
function of the mappihg o must be such that it provides the maximum
separation between the images of the elements in {M}, which are the
code words of the code. This guarantees the protection needed against
the effects of channel disturbance. This mapping can be considered as
'a - linear transformation of the vector space VK into a vector space Vn
over the finite field of GF(q). If the linear transformation is non-
singular, then the K images of the basis vectors of VK are linearly
independent. Thus the rank of the linear transformation is equal to K,
so K images of the basis vectors of the vector space VK can span a row
sSpace VC which is the subspace of the vector space of all h—tupl%.

The linear transformation may be written as:
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,

E1,K ————»81,n
o S PN By g o0d &y o,
o 1 ES,K ES,n are the ith basis
S vectors ofVK and
L EK,k €:K,n ' Vn'

As an example consider V3 as the message vector space of all
3-tuple vectors, and the linear transformation of V3 into V4 (the image
space of the space of all 4-tuple vectors), both over GF(2). The

images of the basis of V3 can be as follows:

81,3= (100)=——(1001) = 61,4
o 62,3=(010)——>(0101)=€2,4
53’3= O0O01)—m »(0011)= &:3,4

Spanning both the domain (information vectors) and the range of

mapping results in:

(00 0) (00 00)

©01—1K 0011

©010)_2K 0101

©11) ©0110)
€3 K

(1 O O)rceitomeen{1 O 0 1)
(101)— 5 (1010)
{1 1 Q)1 10 O)

111)——(1111)

This linear transformation, which associates each K-component message
with an n-component vector or code word, is referred to as an (n,K)

code, and geometrically is depicted by Figure (3-2).

3.1.1 Generaton Matrnix o4 a Linear BLock Code

The linear transformation in 3.1 is non-singular, so then the




000 100
Figure (3-1) : A 3-dimensional cube

Ol110 1110

000l 1001

Figure (3-2) : A 4-dimensional cube
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K images of the K basis vectors of VK are linearly independent
(Slepian, 1956). The row space of these K linearly independent vectors
form the code book of a linear block code VC ( :{C}) which is a linear
subspace of the vector space of all n-tuples Vn' The K linearly
independent vectors are usually arranged in a K x n matrix [G] called
generator matrix of the code. The generator méttrix o{ a linear tode

of dimension K and length n can be shown as:

€1,n 1,1 812 813777 "8 pn1 84

€2.n 2,1 822 8237 "7 "8,31 Byg

6= Jesn|= 18,1 2 83--~-~"8n1 E3n
| “K,n | | 8k,1 Bk,2 Bk,37 7T "8 n1 %&n

The K rows of the matrix [G] can be any K linearly independent vectors
of VK and Vn. It is possible to choose or transform the matrix [G]
into a form such that the first K colums of the matrix [G] form an
identity matrix [IK] , where the linear combination of the rows of [IK-]
gives the set of all qK possible information messages. This is called

the standard echelon form, shown as:

1

1 o B1k¥1 B1 k2~ "7 " 81 g
1 o k+t1 B2 k+2 T 7 T T 82 p
\
\
[Ge_J = [.IK g] = O \\\
\\
' 1 %k+1 Bgke2 T T T T Bgon

The corresponding code generated by this matrix is called a systematic

code (Gallager 1968, Slepian 1956). These are
N=q

code words in the code book of a linear code. Assuming that they have

an equal a priori probability of being transmitted, then the actual
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average information transmitted (per block) is,

_ K
Ro = logzq

and the maximum possible information that could be transmitted without

redundancy (i.e. without coding) is:
_ n
Ry = logogq

The ratio of these two values of information (entropies) is called the

relative entropy or rate of the code (see Rosie 1973), which is therefore:

3.1.2 The Hamming Distance and the Corresponding Errorn Correction-
Defection AbLLy of Linearn BLock Codes.

One of the criterion used (not always) to define the capability
of a linear block code to correct or detect errors is the concept of
distance (Hamming, 1956), which provides the ability to decide to which
uncorrupted code word the corrupted one is related. The Hamming weight
W(§i), or simply the weight, of any of the qK distinct code words of a
linear block (n,K) code is the number of non-zero elements of the
code word. The Hamming distance, or simply distance, dij between any
two code words §i and §j is the weight of the vector W()‘(r) resulting

from digit-by-digit subtraction mod-q of §i and §j , shown as

dij = W(xr) = W(xieqxj)

In other words, dij is the number of places in which the code words §i
and ij differ.
Consequently, the minimum distance of an(n,K) code d is the

minimum value of all dij where i # j (Farrell, 1977 and 1969), denoted:
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d= min(dij) i+

However, for a linear code, the linear combination of any two code
words is another code word (Slepian, 1956), thus the minimum distance
of the code is the smallest non-zero weight of a code word in the code.
Furthermore, in the terms of a geometrical model, the smallest path
length (the number of edges) between all pairs of code words is the
minimum distance of the code.

If d is the minimum distance of a code, it has been shown that

the code is capable of correcting errors of weight
2|81

where the square bracket means the largest integer not more than (d-1)/2;

or the code is capable of detecting
D=d-1

errors. Also the code is able to correct up to C errors and detect up

to D errors such that
d=C+D+1

where D > C (Slepian, 1956).

Considering the geometrical model again (Section 3.1), the (n,K)
code is t-error-correcting if the code words of the code stand on the
vertices of the n-dimensional unit cube, separated by at least (2t + 1)
edges. In other words, the code can be 'packed'" in such a way that
every code word can be positioned at the centre of a sphere of radius t
where all the qK spheres are disjoint. As an example, consider the

(n, K, d) = (8, 2, 5) code. Each code word is at the centre of a sphere

[

of radius
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such that each sphere contains

t 2

| 1 +Z<‘i‘)=1 +Z(§)= 37

i=1 i=1

vertices of the 8-dimensional unit cube.

Figure (3-3) : Two code words of the (8, 2, 5) code.
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Any two or less errors on any code word do not remove the corrupted
code word out of the sphere to which it 'belongs', so it may be
recovered unambiguously.

If the code is just error correcting, then every error weight
>t = 2 removes the code word out of its sphere, and any attempt to
recover it results in post decoding error (Berlekamp, 1968). If the code
is an e—error detecting code, then every error weight D < d - 1 = 4 can-
not alter any code word into another, i.e. the corrupted words are all
non code words, so the errors can be detected. If the code is D = 3
error detecting and C = 1 error correcting, such that d=C +D + 1 =
1+ 3+ 1=25, then any single error can be corrected unambiguously, but
double errors and triple errors can only be detected. Any attempt to
correct a double error results in post decoding errors in this case, as
is also the case for the triple errors.

The Hamming distance criterion is not always the best one to use,
however. The Lee criterion (Lee distance) is more suitable in same cases
than Hamming distance (Berlekamp, 1968). The two criteria coincide in
the binary case (q = 2).

Furthermore, it can be shown (Slepian, 1956) that though codes with
the same (n,K) parameters may have different minimum distances, it does
not necessarily follow that the code with the larger minimum distance will
have superior performance. Most of the linear block codes with Hamming

distance d can correct not only the error patterns of weight

d-1
c<|7]

but also many error patterns of weight bigger than t (Turner-Olanyan,
1976). Even if an (n,K) linear block code‘only has d = 1, using the
weight distribution (Hobbs, 1965) it is shown in Appendix II that nearly
all of the single errors and a few of the bigger error patterns are

correctable. Thus, a better figure of merit for a linear block code,




considering different codes with the same block length and the same
nurber of information symbols, would be the correctability performance
of the code or in other words the probability of error after decoding
(post decoding error rate). The code which has the smallest of these
probabilities is called an optimum code (Fontaine & Peterson 1959,

Bose & Kubler, 1958) with respect to the others.

3.1.3 The Parnity Check Matrnix of a Linear BLock Code

The parity check matrix [H] of a linear block code generated by
the generator matrix [G] is the coefficient matrix of a system of n-K
linear homogeneous equations called the parity check equations of the
code (Van Lint 1970, Slepian 1960), such that the set of qK code words
generated by the matrix [G] are the set of solutions of the n-K

equations. The matrix [H] in standard echelon form is shown as:

F ==
Bl kvl B2 K+l T T T T T 8K,K+1 1
(0)
B1k+2 B gi2 T T T T " 8K K+2 1
T \
H =[g I 4= \
\
€1 ,n ®on T 77" 8n 1
b pau.

The above property and construction of the [H] matrix arises from the
rules governed by the n-K right-hand colums of the generator matrix

[G], and the way that the information digits of a message combine the
rows of [G] in standard echelon form (see Wiggert 1978, Lucky, and Salz

& Weldon 1968). Thus for any code work X € C the product

“n-K

Ay “[g'r] o] .

The result of this multiplication is an important property of linear

codes. That is, for every code work x & C, (C is the code book of the
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linear block code) of weight W(X), the linear conbination of those
colums of [H] corresponding respectively to the positions containing
non-zero elements in X results in an all-zero (n-K)-tuple vector.
Conversely, for every linear combination of W(x) colums of [H| matrix
which results in an all zero (n-K) tuple vector there is a code word
in C (Peterson & Weldon, 1972).

Since in a linear block code the minimum Hamming distance of
the code is the weight of the minimum weight non-zero code word (Lucky
and Salz & Weldon, 1968), then no linear combination of less than
d colums of the [H] matrix of a linear block code which results in an
all-zero (n-K) tuple vector; in other words, every d-1 or less columns
of the parity check matrix [H] of a linear block code are linearly
independent. Furthemmore, for a linear code which is capable of

correcting up to t errors it has been stated that
_lada1
2

2t +1

+
|

and

d

Then it can be said that a code is a t error correcting code if and
only if every 2t column of [H] is linearly independent (Sack, 1958).
As a conseguence of the above discussion, for any code word

xeC, X. [HT] =0 and for any n tuple y €C, which is not a code

- i
y. [B]=[0]=[s.
If y is a code word x corrupted by the n-tuple noise vector e, then

y=%x6_e
y Xq
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y . [HT_] =(§eq6). [HTj=§. E] 6 . [H]

a

Il

O e 5. l=5. [{] =[5

The (n-K) tuple vector [S] is called the syndrome related to the error
vector e. It is simply verified that, for a t-error-correcting linear
block code all the syndromes of the error vecfors of weight < t must be
unique; or in other words, every linear combination of t or less columns
of [H] must be a unique non-zero (n-K) tuple vector in the vector space
Vn—K (Hashim, 1974). Thus, in general, if oy be the number of unique
syndromes of the different error vectors of weight i, then the error
correctability of a linear block code over a binary symmetric channel

(Berlekamp, 1968) can be shown to be:

n n
_ i n-i n-K
PC—E a; P7(1 - P) (where,E a; <q )
i=o i=o

(Hobbs 1965, Fountain 1959) where PC and P are the probability of correct
recovery (decoding) of the corrupted code word by noise, and the channel
cross—over probability, respectively. The following diagram illustrates

the various source, channel and sink probabilities, in the case of a

binary symmetric channel (BSC).

P(x) (0 a-QAP) 0  P(y) =P+
3 P, (x).P
P
P, (%) (1) —= (1) P,(y) = Py(x).q +
q = (1-P)
Po(x) P
where q = P(y/x) = P(0O/O) = P(1/1)
P = P(y/x) = P(1/0) = P(0/1).
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The set of (n-K) linear independent rows of the parity check
matrix [HJ of a linear block code, which is orthogonal to every code
word of the code, spans a sub-space Vn—K of dimension (n-K) of the
vector space of all n-tuple vectors. This subspace forms an (n, n-K)
linear block code called the dual code of the original code. If in
the original code n = 2K the code and its dual code are identical and
the code is called a self-dual code.

3.1.4 The Modular Representation of a Linear Block Code, and
Equivalent Codes.

A linear block (n, K, d) code over GF(q) is the row space of the
K linear independent vectors (rows) of its generator matrix [G]. The
matrix [G] has n columns out of qK - 1 different types of non-zero
colums. If matrix [M] is the standard variable g-ary truth table, then
@/IT:[ has as its colums all qK - 1 possible types of column in increasing
number order from far left to the right.

If the i™® colum of [M'] be colum type i then a 1 x (qi-1)

matrix

]

N = I:nl, Ny, vy Ny, ceen Mg
q-1

ll

in which every element n, is the number of the column type i of the
matrix [G] is called the modular representation of the linear block code
generated by [G]. Any set of K linearly independent vectors of the sub-
space (code) generated by [G] spans the same code. Thus any elementary
row transformation on [G] , or multiplication on the left by an elementary
(non-singular) K x K matrix [R] results in a different generator matrix
but an equivalent (in Hamming distance sense) code (Fontaine 1959).

So,

[R] [6]

and G,]

(6]
(6]

R

An elementary column transformation on [G], or multiplying [G] on the
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right by an n X n permutation matrix [S], changes the code in a

trivial manner,

6] . [s] = [&]

and

R

4 = [6]

These two codes are called colum equivalent codes. Two codes are
called equivalent if the generator matrix of one can be obtained from

another by both column and rwo elementary transformation.

M. 6.6 - 6]

[6] =

14
=3
%

3.1.5 Coset Decomposition o a Linear Block Code

The equivalence relation ''has the same syndrome'' partitions
the set of qn vectors of the vector space Vn into the qn_K equivalence
classes known as cosets. The first coset is the linear block (n,K)
code itself, which is the subspace VK of the vector space Vn of all
n-tuple vectors (Slepian 1960, Lucky & Salz & Weldon, 1968). As
mentioned earlier (see Chapter II, Section 2.6.7) the coset leaders
are chosen to be the minimum weight (the most likely errors) vectors of
V-
Since there is a one-to-one relation (correspondence) between a
syndrome and a coset leader (McWilliams & Sloane 1977) such that,
[S]~—[e]
and also
5= B
then a complete list of the set of coset leaders and corresponding
syndromes leads to the systematic search decoding method for linear

block codes which is in fact a maximum liklihood decoding and is optimum.




- 45 -

Whenever qn—K has a reasonable value (< ~ 1000), this method (compute
the syndrome, consult the list for the error pattern, and subtract the
error pattern from the received n-tuple) is a practical decoding method.
For a t-error-correcting linear block (n, K, d) code, the

nurber of coset leaders of weight < t over a binary symmetric channel
is given by

T

()

:

i=o

and the number of coset leaders of weight > t is equal to

t

2()

i=o
Therefore the word error probability regardless of the number of errors

in the code words is lower bounded by:

t t

P >1- n Pi 1-p i]_ [Zn—K_ n ]Pt+1 1_p t+1
e’ [Z(l> () Z i a®

i=o i=o
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CHAPTER IV

BEST KNOWN LINEAR BLOCK OODES: OONSTRUCTION
TECHNIQUES, AND SOME RELATED OONCEPTS.

4.1 General

The search for efficient techniques for constructing codes
which with a rate equal to channel capacity have a vanishingly small
error probability with increasing block length, has not been fruit-
ful yet. The codes of Elias and similar followers, which have a
mathematical construction (algebraic codes) for a fixed rate,
provide a lower bounded value of distance to code length. They have
a vanishingly small error probability (Cooper 1977), but their rates
are far removed from the ideal channel capacity and also fram the
Varshamov-Gilbert bound. But good moderate length efficient codes
which have a mathematical structure and form the class of algebraic
codes have been constructed. These codes, due to their mathematical
properties, have encoding and decoding equipment of moderate
complexity.

In this section a brief review of the best known of these

linear block codes:'and some related concepts are given.

4.2 Minimum Distance Bounds for Linear Block Codes

In spite of the shortcomings of the Hamming distance criterion
(Section 3.1.3), the minimum Hamming distance of a linear block code
is an important parameter for evaluation of the performance of the
code. Thus it is clearly of interest to know the ultimate value of
the minimum distance for a certain block length and number of infor-
mation digits. These values have been given by various sources in the
form of a functional relationship between the code parameters n, k and
d. These relationships are in the form of bounds which relate any one

of the given parameters in terms of the remaining two.
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4.2.1 The Hamming Bound

The Hamming sphere-packing bound (Hamming 1950) is an upper
bound on the maximum number of code words N of an (n, d) code. The
code words of a t-error—correcting code can be packed in such a way

that every code word is positioned at the center of a sphere of

(%]

in an n-dimensional space. Since there are N distinct code words,

radius

then the N disjoint spheres contain:

t

n 1

N Z (1@ - 1)
i=o

vertices of the n-dimensional cube. The total number of vertices of

the n—dimenéional code is qn, so that,
t
i
A I ICER Ry (4-1)
i=o

For a linear binary block code q = 2 and N = 2k then,

t
oIl Z ) (4-2)
i=o

Taking the logarithm of both sides

t
k 1 n
Eoq -31%2[2 :](i)
i=o
The asymptotic form of this bound (Peterson & Weldon 1972, Appendix A,

see also the simple proof given by Park 1969), is

t

E-1 -8

n

where H(x) is the entropy function and th is the largest integer t for
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which the above inequality holds. The Hamming sphere-packing bound
has been refined by Wax (1959) and Johnson (1962). The Johnson
upper bound is tighter than the Wax upper bound except for some
values of the parameters of (n, d). Also, for some values of k and
d, the combined form of the bound with the Greismer bound gives a

stronger lower bound than the Greismer and Hamming bounds individually.

4.2.2 Pergect Codes

An (n, k, d) code is a perfect code if there is an integer t
such that the coset leaders of this code include all the coset leaders
of weight < t and none of the coset leaders of weight > t + 1. These
codes satisfy the Hamming sphere packing bound exactly, or in other
words, the (n, k, d = 2t + 1) perfect code can partition the qn vertices
of an n-dimensional unit cube perfectly into qk disjoint spheres of

radius t (Vasiliev 1962). Therefore, in a perfect code

t
NLY P@-Dt=a
i=o

and the word error probability of Section 3.1.6 becomes an equality, as

t
_ n, ~i n-i
Pe =1 - E (i) P (1 -P)
i=o

These optimum codes were first introduced by Hamming (1930) as the
linear binary single error correcting perfect codes (see Section 4.2.4).
Golay (1949 & 1954) discovered a linear binary triple-error-correcting
code and a linear double-error-correcting code over GF(3). This
introduced the possibility of generalizing the Hamming codes (see
Section 4.3.3). Vasiliev (1962) constructed the class of binary single
error correcting perfect codes which includes both linear and non-linear
codes. This was in contrast to the idea of the non-existence of more

perfect codes, conjectured by Shapiro & Slotnick (1959). The method of
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constructing linear and non-linear single error correcting binary
perfect codes by Vasiliev was generalized by Schonheim (1968) over
GF(pm) with p a prime integer.

Van Lint (1970), and Tietavainen (1973), in two camplementary
papers, proved that the known perfect codes are the only existent

perfect codes over GF(pm).

4.2.3 Repetition Codes

The class of repetition codes over GF(p) is a trivial example of

the 1/n rate perfect code, with parameters (n, 1, n) and with odd block

length. These codes can correct all the errors of weight t < Bl and

2
no errors of weight t > r_;_l The class of repetition codes have the

highest error correctability.

4.2.4 Hamming Codes

The Hamming codes were first introduced by Hamming (1950).

The linear binary Hamming codes over GF(2) have parameters

n=2m-1, K=n-m, d-=3,
where m is any integer > 2, which represents the number of parity checks
of the code.

The 2™ - 1 colums of the parity check matrix of the Hamming code
from the all o _ 1 distinct binary m-tuple vectors, each being a non-
zero binary number in the range 1 up to 2™ _ 1. Therefore no two
colums are the same, so the minimum distance of the code is d = 3.
There are 2 - 1 colums each of which is a distinct syndrome for a
distinct single error, so the code is perfect.

Hamming codes have the desirable property that

R = k/n—>=1 when n—x,
but on the other hand d/n—=0 with n—>==, therefore the error correcta-

bility of these codes is relatively poor. Golay (1949, 1958) was the
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first to generalize the Hamming codes over GF(p) and GF(pz) = GF(q),

with parameters,

[n=(qm—1>/(q—1),n—m,d=3].

In 1959 Cock generalized the Hamming codes over GF(q) (q is a power

of a prime number) with the same parameters
o .
[n=(q = 1)/{q = 1), 0 - m, d=3].

The code obtained by adding an overall parity check to the Hamming

binary single error correcting code has parameters (n = gt ,h-m, d=4),
and is called the extended single-error—-correcting, double-error-
detecting Hanming code. This code has been extensively used by Elias
(1954) to construct an infinite family of good codes (see Section 4.6.1).
Hamming codes are equivalent to the cyclic codes (Parang (1957),

Abramson (1959 & 1961), and others).. Hamming codes form a subclass of

primitive BCH codes; for the binary case, the parity check matrix is

H=[0L2m_2, ceee OL2, a, 1] ,

where o is a primitive element of GF(Zm ), (see also Peterson & Weldon

1972, p. 221).

4.2.5 Golay Codes

The only non-trivial binary linear perfect code other than the
Hanming single-error-correcting codes, has been found by Golay (1949).
This code has parameters (23, 12, 7), and since it is perfect, all the
23-tuple vectors of the 23-dimensional space can be packed by the code

words of this code into 212 sphere of radius 3 with no overlap, i.e.
12 23 23 23, | _ »23
2 [1 + ( 1 ) + ( 2 ) + ( 3 )] =2 “

The parity check matrix [H] of this code forms an 11 x23 matrix, there-

fore the
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3
E (213) linear combinations of the colums of the [H] matrix gives
i=o

the 211 distinct syndrames of all single, double, and triple errors, i.e.

3
2:23 _ o1l
i=o

The algebraic (cyclic) construction of this code is given as follows
(McEliece 1977):
The ideal generated either by the polynomial gl(x) or gz(x),

where

gl(x)=x11+x9+x7+x6+x5+x+1

gz(x)=x11+x10+x6+x5+x4+xz+1

in the ring of residue classes of polynomials modulo the polynomial
x23 - 1 is the cyclic form (see Section 4.5.1) of the (23, 12, 7) Golay
code. The roots of the generator polynomials gl(x) and g2(x) are the
roots of the code polynomials (words, see Section 2.10) and also the
roots of the polynomial x23— 1, i.e.

X202 1= (x - 1) gy(%) gy(x)

The 23 roots of x23

- 1, known as 23 roots of unity, lie in the elements
of the GF(211).

The code obtained by adding an overall parity check to the
(23, 12, 7) Golay code has parameters (24, 12, 8) and is the extended
Golay code (see also Leech 1967 & 1971 and Pless 1958). Golay also
found the (11, 6, 5) double-error-correcting ternary perfect code.

Furthermore, the generator matrix of the (23, 12, 7) Golay code

can be put (Leech 1964) into the matrix form:

—~

G- IEC

|
Golay : I_ - _I
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here C has the property that each row is a cyclic shift of the
previous row by one place. The matrix C is called a Circulant matrix
and the code generated by a generator matrix of this type is a
Circulant code. The work by Leech followed by that of Karlin (1969,
1970) and Pless (1969, 1972) resulted in a large number of binary

codes generated by circulants, including codes over GF(3).

4.2.6 Quasdi-perfect Codes

An (n, k, d) code is a quasi-perfect code. If there is an
integer t, such that the coset leaders of this code include all the
cosets of weight < t, some of weight t + 1 and none of weight > t + 1,
then the code is quasi-perfect. The inequality of Section 3.1.6,
which is the word error probability, is satisfied by quasi-perfect

codes. Therefore,

t t
B =1~ [ Z et - p)n"l] -{ [zn‘k . Z (ri‘)]p“lu - p)t+1}
i=o i=o

Considering the properties of the [H] matrix of a linear block code
Wagner (1966a, 1966b, 1967), obtained several quasi-perfect codes, also
the double-error-correcting B.C.H. codes have been shown to be quasi-
perfect (Gorenstein & Peterson & Zieler 1960, see also McWilliams &

Sloare1978, p. 279).

4.2.7 The PLotkin Bound

The Plotkin bound (Plotkin 1960) is an upper bound on the
maximum number of code words N of an (n, d) code. The derivation of
this bound is based upon the fact that the average weight,

n g~ i(q - 1)/ - 1)

of a code word of the code over GF(q) is at least equal to the minimum

distance d of the code, thus
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d < 0" (q - /(" - 1)
where qd > (q - 1)n.
For a linear (n, d) code over GF(q), N = qk therefore the above

inequality can be written as:

k

"N=q <aqd / aqd+n(l -q)

and for a binary code

K 2d

N = s B
N=2" < 5d - 2d > n .

Also for a non-linear (Plotkin 1960, see also Farrell 1969), code the

number of code words

) 2d
Neven = M € 33 — 7

_ n
Noag =2 - 1<y

where 2d > n
and m is an integer.
Furthermore, Elias (1955) extended the Plotkin bound (see Peterson and
Weldon, p.78), and showed that the nunber of parity checks required
for an (n, d) linear block code is given by
n-k> (@-1)/(-1) -1-1log d
where n > (qd - 1) / (q - 1)
and for a linear binary code
n-k2>2d-2 - logzd
where n > 2d.
The Plotkin bound is weaker than Hamming sphere-packing bound at higher

rates and tighter at lower rates (Berlekamp 1968).

4.2.8 The Eias Bound

The Elias upper bound (Elias 1960) is a tighter bound on the
maximum minimm distance of an (n, k) block code than Hamming bound and

Plotkin bound over the range of medium rate (Berlekamp 1968).
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The derivation of this bound is based upon both the Hamming
sphere-packing and the Plotkin average distance bounds, and is given
by

t N
d < 2t(1 - N)(N——l_) ’

where N is the smallest integer satisfying the inequality

E
n n
N>2k2(i)/2
i=o

and t is any integer such that,

t
22 < 3D .
i=o

This bound is uniformly tighter than Hamming and Plotkin bounds. The
difference is considerable in the region of medium rate, and at high
and low rates the difference becomes smaller. However, tighter upper
bounds have been derived by Levenstein (1975), and also by McEliece,

Rumsey and others (1976), and is given by

R<H [1/2 - v d/n(@ - d/n)],
where R is the raté of the code and H is the entropy function. This is
at present the best (closest to the best lower bound) upper bound.

The discussed upper bounds are not constructive bounds, and
therefore are not necessarily attainable over the whole range of code
parameters. In other words, an optimum code does not necessarily meet
that upper bound which is the least value of all upper bounds for the
given parameters (n, d). However, the lower bounds (see next Section)
are constructive bounds in the sense that it is possible to construct
a code that meets a lower bound (Pierce 1967).

The bounds reviewed above are plotted in Figure 4-1.
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4.2.9 The Varwshamov-Gilbesrt Bound

Applying a systematic procedure to the construction of a
linear block code, Varshamov (1957) and Sacks (1958) derived a lower
bound on the number of code words of an (n, d) code. This bound is
a refinement of a bound found by Gilbert(1952).

The derivation of this bound is based upon a property of the
colums of the parity check matrix [H] of a linear block (n, k, d)
code over GF(q), which is that no set of d - 1 or fewer colums of
the matrix [H] is linearly dependent. For a linear (n, k, d) block

code this is possible (see Peterson & Weldon, 1972) if

MDa-n+Ga-12+ .+ (Pa-132 3¢ -1

or
> -t
i=o

where qC - 1 is all possible non-zero c-tuple vectors included in the
colums of the parity check matrix E{] .

The asymptotic form of this bound is given (see Section 4.2.1)
by

1 < -H{

k
ot )

d-n
n
A possible improvement on the Varshamov lower bound has been proposed

by Hashim (1974).

Thus the Varshamov-Gilbert bound, which is a constructive bound
states:

For any fixed integer R where 1 > R > O there exists a binary
(n, k, d) code with R > k/n and d/n 3 H X(1 - R).
However, all the best constructive long codes are far from.this bound.

Therefore, the Varshamov-Gilbert bound leads to the definition:

"A family of codes over GF(q) is said to be good if it contains
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an infinite sequence of codes ¢1, ¢2, .... wWhere ¢i is an

(n

positive limit as i—® " |

i’ K, ?i) code over GF(q) and both Ri = ki/nivand di/ni has a

d/2n

Figure (4-1) : Bounds on minimum distance for the
best binary block codes

Plotkin's upper bound

Hamming's upper bound

Elias's upper bound

McEliece's et al upper bound

Varshamov-Gilbert's lower bound

Justesen's lower bound (see Section 4.6.3)

Plotkin's average distance bound

QEEEEEO
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4.3 Cyclic Codes

The most extensively studied class of linear block codes are
the cyclic codes.

Cyclic codes have considerable mathematical structure which
simplifies their implementation and analysis. However, this family
of linear block codes does not have a ratio of minimum distance to
block length bounded away from zero, i.e.

d/n—=0 as n—
Also, it has been shown by Berlekamp (1972) that for BCH codes, which
is one of the most important classes of linear cyclic codes

2nlogeR_1

d ~ —=
1oglon

which is a big disadvantage for these codes. But, still it is not
known whether all long cyclic codes are bad (see Berman (1967),
McEliece (1970), Chen (1969)).

Cyclic codes were first discovered by Prange (1957, 1958) and
investigated by Peterson & Brown (1961), and ILucky, Salz & Weldon

(1968), Berlekamp (1968), and others.

4.3.1 Cyclic Code Analysis and Construction

A linear subspace C of the n-tuple vector space Vn is called
a cyclic code if any cyclic shift of any code word is a code word.

The isomorphism property of the n-dimensional vector space
Vn over GF(q) and the ring of residue classes of polynomials modulo
x* — 1 (see Section 2.8) gives the possibility of the following
definition:

An (n, k, d) linear cyclic code C ié an ideal (principal ideal)
< g(x) > in the ring of residue classes of polynamials F[x]/p(x)
modulo the polynomial p(x) = x" - 1 over GF(q). Thus the ideal C

(cyclic code) is generated by the polynomial g(x) which is a monic
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polynomial of degree n - k = ¢ and divides p(x) = 2 = s . -
(x" - 1)/g(x) = h(x) ,

where n - ¢ = k is the degree of h(x).

n-1

. B 2 .
Therefore, if c(x) = 5 + ciX + CoX + cane TG X is a

n-1
code polynomial in the ideal < g(x) > , then for every polynomial
£(x) € F[X], the polynomial f(x) c(x) € < g(x) ><+—=C mod (x" - 1)

and also every x c(x) € < g(x) >+—C mod (xn - 1) is in C. Hence

if
c(x) =c_+cx+cC 2 +c xn—1 € < g(x) >
o 4 gt e T O g
4——»(00, Cys Cgs wveny cn_l)e C
then x ¢c(X) =c X + cC x2 + e 3 + + ¢ X =c + ¢ x +
o 1 oX - - - X T e
n-2
+ Cho X Ch1 Co» C1r wvee cn_ze @

which is a right cyclic shift of the coefficients of c(x) or a cyclic
shift of the related code word by one place.

Therefore the k = n - ¢ different polynomials g(x), xg(x),
ng(x), ceeey Xn—c—l g(x) are linearly independent, so the vectors
related to these polynorhials form the rows of the generator matrix [G]

of the cyclic code C=—< g(x) >, so if g(x) = g +gx .o tg, x©

g(x) gy B10---» & 5
x g(x) 8os B1r---.8¢
[G — - - —~——
n-c-1
X g(X) O goygl’-'-lgc
- - — -

Thus it is evident that a polynomial is a code polynomial if it is
divisible by g(x).

Since (¥ - 1) / g(x) = h(x) then

X~ 1=g(x) . h(x) =0mod x" - 1.




- 59 —

Therefore if c(x) is a code polynomial then
c(x) h(x) = £(x) g(x) h(x) =0  mod (x"-1) .

From this property, it is evident that the polynamial h(x) generates

an ideal which is the null space of the ideal generated by g(x). But,

the polynomial multiplication and inner product of the related vectors,

is different (if two polynomials a(x) and b(x) are orthogonal, i.e.

a(x) . b(x) =0 mod xn—l, then the related n-tuple vector a is

orthogonal to n-tuple vector b in reverse order (see also Section

2.10, Van Lint 1973 and Peterson & Weldon (1972)).

check matrix for the cyclic code generated by g(x) where

)

hx) = (- 1) / g0 = by K+

h(x)
xh(x)

0 hk)—"" h2’hl ,ho
hs = —» hy,hy b
e
O
By =» gy b,

. ¥ hlx + h is
o

Thus the parity

.

(Note: the coefficients g and hX are the unity element of GF(q)). The
generator polynomial g(x) of a linear cyclic code over GF(q) of length
n divides the polyﬁomial xn—l, therefore the n - k = ¢ roots of g(x)
lie among the n different roots of x"-1. These n roots are also the
elements of the extension field GF(qm) of the ground field GF(q). They
form a cyclic group of order n called the nth roots of unity. m is
called the multiplicative order of q and is the smallest integer such
that n divides qm — 1. Thus the polynomialsg(x) and x* - 1 are com-

pletely factorized over GF(qm), such that

n-1 '
B -1 =TT (x-od)=TTu®x
i=o cs

(see Section 2.10) where o is a primitive nth root of unity, and s runs
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through the set of cyclotomic coset representatives mod-n. Similarly,

g(x) can be factorized as

g(x) = l I(X—Oll) whereKC{l, 2 ....n—l}
iek
and o € GF(qm); this means that g(x) is the product of the minimum

polynomials of ot for all i € k .

4.3.2 Shontened Cyclic Codes

The factorization of x'-1 over GF(qm) into minimum polynomials
M(S)(x) does not always give many factors, thus not many generator
matrices can be formed. Therefore, for some values of (n, k) a
shortened version of an (n+i, k+i) linear cyclic code can be used to
obtain an (n, k) code. The first i colums and rows of the generator
matrix of the (n+i, k+i) code are deleted, which is the same as
detecting the first i colums of the [H] matrix of cyclic codes.

The shortened form of a cyclic code is not a cyclic code but
can be encoded and decoded as the original cyclic code (see Lucky &
Salz & Weldon). Also, it has the same minimum distance as the original
cyclic code (the same coset leaders).

The cyclic ¢odes which are ideals in the ring of polynomials
modulo a polynomial f(x) other than X - 1 are called Pseudo Cyclic
codes. Shortened cyclic codes are identical to the pseudo cyclic codes,
and also every pseudo cyclic code having minimum distance greater than
two is a shortened cyclic code (theorems 8.9 & 8.10 Peterson & Weldon
1972). Kasami (1969) has shown that arbitrarily long pseudo cyclic
codes exist which have parameters that meet the Varshamov-Gilbert bound.

Cyclic codes are invariant under the one place cyclic permu-
tation group (see Peterson & Weldon, Section 8.11). An

(n, k)= (mno, mko) linear code which is invariant under the n, places

cyclic permutation group is called a quasi cyclic code (Townsend &
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Weldon 1967); that is, the cyclic shift of every code word by n, places
is again another code word. The quasi cyclic linear (n, n/2) codes
found by Chen (1969%1have the maximum value of the minimum distance

for (n, n/2) linear codes. Quasi cyclic codes also have been studied
by Karlin (1969) and Hoffner & Redy (1970), Chen & Peterson & Weldon
(1969)6 The latter have shown the existence of long but not arbi-

trarily long quasi cyclic codes that meet the Varshamov-Gilbert bound.

4.3.3 Extended Cyclic Codes

A cyclic (n, k, d) code generated by the generator polynomial
g(x) which is not divisible by (x-1) can be extended by adding a new
row and colum to the [H] matrix. The generator and parity check

matrix of the extended cyclic code respectively are:-

I el
o= e || p- Mg

ext| aug :
a()

L— aug_ a . _

where g(x) and Gaug are the generator matrix of the original cyclic

©0---00

code when augmented (see Berlekamp 1970), B%»dl and [hexéj are

respectively the generator matrix and parity check matrix of the
extended cyclic code, and Haug is the parity check matrix of the
original code when augmented. The extended cyclic code has para-

meters (n+l, k, d+1).

4.4 BCH Codes

The most important class of cyclic codes, known as BCH codes,
was discovered independently by Bose8:RayFChawimri(IQGOa,1960b), and
Hoquenghem (1959). This class of codes has been studied extensively
because of their relatively simple and powerful decoding algorithm.

Berlekamp (1968) gives an excellent explanation of these codes. Also,
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these codes have been studied by Gorenstein, et al (1960)(Generali-
sation of BCH codes), Mann (1962), Goldman et al (1968), Kasami and
Tokura (1969), Chien (1972), Wolf (1969-70) and many other coding
theorists.

A cyclic code of length n over GF(q) generated by the monic
polynamial g(x), is a BCH code if for some integer b, g(x) is the
lowest degree polynomial such that

(b) (b+1) (b+d -2)
g(x) = Lem{M  (x), M (x), .....,M ° ()

Therefore g(x) has a string of dO - 1 consecutive powers of a as the
zeros, and Mi(x) are the minimum polynomials of the elements

ai c GF(qm). These zeros are also the zeros of the code, i.e. if
c(x) is a code word:

b b+l ptd -2
ca)=c@ )=....,c@ ° Y=o

Thus, the parity check matrix of the code can be formed as:

1 cxb OL2b ....... a(n—l )b
1 ocb+1 onz(bﬂ? ...... a(n ~1)btl
[1]:
b+d -2 2(b+d -2) (n-1)(b+d -2)
| o © o (.) ...... o ©

The minimum distance d of this code is bounded by
d > dO
(BCH bound, theorem 8, MacWilliams and Sloane 1977), where do is called
the designed distance of the code. Every element of the matrix [H| is
an m-tuple of GF(q), so there are m(d-1) rows in [H] and the dimension
of the code is such that k > n - m(dO -1). |
For the binary case, if b = 1 and n = g"=1 (primitive BCH code)

then:
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. s m 5
M (x) = Vi) = ... ul(@-1)1] (%),
(1) (3) (d,-1) }
thus g(x) =LemM ),M (x), ....,M (%)
and the check matrix [H| simplifies to:

—1 o Ot2 ....... onn_l

[ H ]._. 1 o3 & as(n—l)
d -1 2(d.-1) (d -1)(n-1)
L1 a© a ... a © _

since d_ = 2t+1, then [H] has mt rows and the dimension of the code
is k>n-mt.

It was suggested by Kasami & Lin & Peterson (1966) that the
minimum distance of a primitive BCH code was equal to the designed
distance of the code, but later, Kasami & Tokura (1969) showed the
existence of primitive BCH codes with d > dO (see also Berlekamp
1970). An extension of a BCH code can be formed (Wolf 1969) by
adding two columns to the |H| matrix of the BCH (n, k, d) to give a
new code of parameter (n' = n+2, k' = k+2, d' = d) and parity check

matrix

]

- QO ===-0 O

| oo

o

||
lgeco o -

4.5 Reed-Solamon Codes

Reed-Solomon codes are an important subclass of BCH codes
(Reed Solomon 1960, Gorenstein & Zierler 1961). These codes are
optimum in the sense that they have greater minimum distance in com-
parison with other linear codes having the same length and number of

information digits. These codes have also been used extensively to
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construct other powerful codes (Forney 1966, Justesen 1972).

A Reed-Solomon code is a BCH code over GF(q) of length n = q - 1;
the roots of the polynomial x"-1 are the elements of the GF(qm), where
m is the smallest integer which n divides qm—l, but n = q - 1, therefore
m = 1 and the minimum polynomial of each element ai is
M(i)(x) = (x - oni), (theorems 6.24 and 6.17 Peterson & Weldon; also
MacWilliams & Sloan, Chapter 10, 1978). Thus, the Reed-Solomon code of

designed distance d has generator polynomial

g(x) = (x - a)(x - az) cees (x - ad—l

)

o € GF(q).
The dimension of the code K = n-degree g(x) = n - (d-1), hence
d=n-k+ 1., Now, the minimum distance of a BCH (and hence RS) code
is at least equal to the designed distance (BCH bound). On the other
hand, the minimum distance of any (n, k) linear code is subject to the
relation d < n - k + 1, (see Van Lint 1973, p. 71). Therefore, the
minimum distance of a Reed-Solomon code is exactly

d=n-k+1,

which is the minimum distance of a maximum distance separable code,

and is therefore op'tjmum. Also, the weight distribution of these codes

is easily enumerated (see Peterson & Weldon 1972).

4.6 Iterated Codes and Concatenated Codes

Most known classes of linear codes reviewed so far do not have
a positive asymptotic error correctability. In other words, for a fixed
rate, the ratio of minimum distance to length of these codes is not
lower bounded away from zero, i.e.,
d/n —=0 if n— o ,
Long BCH codes are bounded by this property (theorem 13, Ch. 9,
MacWilliams & Sloane 1978). However, certain classes of linear codes

constructed from combinations of other linear codes have been shown to be
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powerful linear codes with a positive asymptotic correctability;
that is, these classes of codes, for a fixed rate, have a ratio of

-

minimum distance to length bounded away from zero.

4.6.1 TIternated Codes

In this case, the output of the binary information source is
arranged into a kzk1 rectangular array. The rows of this matrix are
encoded using a linear block (nl, kl’ dl) code, and the colums are

encoded using a linear block (nz, k2’ d2) code (Figure 4-2).

-~ 17 -
)
- Checks
k2 Information on
matrix
Trows
Y
]
Checks
n2—k2 Checks on columns on
checks

Figure (4-2) : General structure of
iterated codes

The iteration process produces an (n1n2, k1k2) linear code of
Hamming distance d1d2, (Elias 1954, see also Theorem 5.3 Peterson &
Weldon). The resultant (n1n2, klk - d1d2) code can be iterated with
another (n3, kg, d3) code to produce an (n, k, d) code with

parameters
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;
n:

k=k k k

1°"2 73
d=d; . d, . dg
R =k/n= Ky . k, . k3/ni - Dy . Dg

The iteration of Hamming codes in the same manner produces Elias

codes, (Elias 1954). In spite of decreasing fhe rate of the code by
increasing the number of iterations, the rate of infinitely long
Elias codes remains a positive value R > O, (see Peterson & Weldon
1972, p. 135) such that

R>1- (m+ 2)2%7!

provided 2m+1 .p<1 and m > 4, where m is the number of parity
checks in an extended Hamming code, and p is the BSC cross-over

probability.

4.6.2 Concatenated Codes

The construction of these codes was first introduced by
Forney (1966). They are defined as follows. The kz.k1 binary
information symbols from GF(2) are divided into k2 vectors of k1
symbols. Each of these k2 vectors is considered as a symbol in
GF(Zkl), and can be encoded by an outer encoder using an (N2, k2, d2)

Reed-Solomon code over GF(2 ~), where any code word can be written as:

K
5 C1 Cg +v--- °N -1 c; € GF(2 7) .

Each cy is a kl—tuple binary vector and is encoded by an inner encoder
into an (Nl’ kl’ dl) code over GF(2). The resultant code has para-
meters (N1N2, k1k2) and the minimum distance is d 2 d1d2'

A simplified block diagram of a concatenated scheme encoder and
decoder can be shown as Figure (4-3). Every uncorrected error pattern

at the output of the inner decoder will appear as a single error at the
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Outer Inner
Information - Encoder . Encoder
Source over over
GF(2) GF(zkl) GF (2)
q-ary
Channel
Outer
Inner Decoder Information
— T — e — .
Decoder over Sink
k
GF(2) GF(2 1) GF(2)

Figure (4-3) : Concatenated Coding Scheme

input of the outer decoder, since the outer decoder is a t—-error-
correcting Reed-Solomon code. Therefore all t-error patterns of

length not bigger than N] are correctable.

4.6.3 Justesen Codes

Justesen (1972) presented a constructive sequenée of codes,
based on the concatenation concept of Forney's codes. The inner code,
instead of being one code, is an enséﬁble of N2 different (Nl’ kl)
codes, such that each symbol of the outer code is encoded by a distinct
inner code. The N2 different inner codes are the randomly shifted
codes of Wonzencraft, described by Massey (1963); (see also Cooper III,
1978). For any rate O < R < 1, the ratio of distance to length of

Justesen codes is lower bounded as
-1
d/n> (1 -R/r)H (1 -1r) >0,

where r is maximm at 0.5 and the solution to the rate
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2 ~1
R=r7/[1+ log,(1 - H (1 - R))]

In other words the ratio of minimum distance to block length approaches
a non-zero limit as the block length of the code increases. This limit
is typically at R = 1/2 about 20 percent of the Varshamov Gilbert bound
on the ahcievable distance. A simple example of a (12, 4, 4) Justesen

code has been given in McWilliams & Sloane (1975, p.72).

4.7 Other Codes

There are many other important types of codes. The linear
Goppa codes (Goppa, 1970 & 1971)) in general are non cyclic, but they
include the class of primitive BCH codes. An important feature of
Goppa codes is the fact that some of these codes satisfy the Varshamov-
Gilbert bound on the ratio of minimum distance to block length. Also,
these codes can be decoded with reasonable complexity (see Berlekamp
1973).

Furthermore, the Srivastava codes (see Berlekamp 1968, and
Helgert 1967) and also the binary non-linear code of Nordstrom &
Robinson (1967), which in a shortened version gives the two non-linear
codes of Green (1966) and Nadler (1962), are optimum in the sense that
they contain twice as many code words as the best linear codes of the
same length and distance.

The array codes described by Smith (1978) and Farrell, et al
(1979) which are generalizations of simple two-dimensional parity
check codes to more than two dimensions, and to more complex parity
checking arrangement, have interesting properties enabling the
correction of the random and bursts of errors. These codes are
efficient and may be easily decoded.

Also, a survey of coding theory by Wolf (1973), the introduction

by Longo (1977) to algebraic coding theory, and the survey of con-
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structive coding theory by Sloane (1972) may be referred to.

Lastly, but not least, in spite of all the attempts made by
coding theorists, the problem of finding a family of codes which for
any rate O < R < 1 and block length n meets the Varshamov-Gilbert
bound is unsolved. There are some existing families of codes,
reviewed above, which are reasonably good for intermediate values of
length, and also, fortunately, there exist a few families which
though they do not meet the bound given by Gilbert, are asymptotically
good, i.e. they form an infinite class of codes with both k/n and d/n

bounded away from zero.
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CHAPTER V

SEQUENCE CODES AND A RELATED BOUND

5.1 Simplex Codes (Maximum Length Codes, Pseudo-Noise Sequences,
Uniform Codes)

The maximal-length codes or m—sequence codes are certain
sequences of length n = qk - 1, generated by ’1inea.r sequential 1
machines (feedback shift registers), whose feedback characteristic
polynomials p(x) over GF(q) are primitive (McWilliams & Sloane 1978).
To construct an m-sequence code of length n = qk - 1, the
primitive polynomial
p(x) = X + Cr1 K Cx o x,k_“2 o texte

where c; € GF(q)

is chosen as the feedback characteristic polynomial of the k-bit shift

register with scalar coefficient multipliers related to each c; € GF(q)

b

as shown in Figure (5 - 1).

1 | |

a. . a. . a. . - = a.
i+k-1 k-1 i+k-2 k-2 i+k-3 k-3 i -
X x X X X
Figure (5-1) : A general sequential machine
For an initial state (ao, Bys eeees A 9o _ak), this feedback shift

register generates an infinite sequence in the form

8, 8y, By, e By, eee. @

such that the elements inside a window of width n, =k digits slide
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along the sequence are governed by a recursion rule of the form:

8tk = 7 k-1 F4ak-1 T k-2 Biak-2 T - C1 2441 — 2400
where i =1, 2,

There are qk possible different states for a k-stage shift register,
therefore the output sequence has a maximum périodicity of p= qk -1
(the all zero state is excluded), and consequently there are qk -1
different m—-sequences, each starting from one of the qk - 1 distinct
states of the shift register. As an example, consider the primitive
feedback polynomial p(x) = x3 + x + 1 over GF(2) as realised in the
SR circuit in Figure (5 - 2). The output sequence of the 3-bit shift

register satisfies the recursion rule,
243 = 7 3441 T By T 834 * 3y (m0d-2)

If the initial state is (a,, a;, ao) = (1, o, o), the successive

states are,

1 0 O
O 1 O
1 0 1
1 1 O
1 1 1
o 1 1
0O O 1

The right hand column is the output m—-sequence related to the (1, O, O)
initial state with a period of 23 - 1 = 7; the others are the cyclic

shifts of this column.
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Figure (5-2) : Three stage maximum length sequence generator

The matrix [D] formed by this colum as the first row and all the
2k - 2 other cyclic shifts together with the all-zero word, form the
code book of a maximel length (2% - 1, k) code. Therefore the 25 — 1

non-zero words of this code have equal weight and the distance

between any two code words is a constant

= = O = O O

Ll

O - M= = O+~ O
O O H B B O +
H O O = KB = O
O+ O O +r H H
= O+ O O +» +H
H K O KR O O K

Ll

d= Zk—l. Thus the code is uniform with respect to its distance
properties (equidistant). If the code words are fixed on the vertices
of a unit n-dimensional cube, they form a regular simplex, so this
code also is called a simplex code. Since the minimum and average
distance of the m—sequence codes are egual, they meet the Plotkin bound
and are optimum (Farrell, 1969), also the two-level autocorrelation
function of the code words of these codes is an interesting and useful
property when detecting (correlating) the éode words when corrupted by
noise (Viterbi 1966).

The m—sequence codes can be defined in the term of the generator

polynomial g(x) = (xrl - 1)/p(x) where p(x) is the feedback
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characteristic polynamial of degree k over GF(q) and n = qk -1.

Alternatively, an m-sequence [qk—l, k, (g-1 )qk_l:] code is an ideal
cyclic code generated by the polynamial g(x) = (xn—l) /p(x), where
p(x) is a primitive polynamial of degree k and n = qk—l. Moreover
the dual of an m—sequence code is a Hamming single-error-correcting
(qk-l, n-k. 3) code (see Peterson & Weldon 1972). Therefore the
modular representation matrix of these codes is perfect, in other
words there is no zero element in the modular representation of the

codes, so the generator matrix of an m-sequence code has all columm

types.

5.2 The Griesmer Bound and M-Sequence Codes

The Griesmer bound (Griesmer 1960) is a lower bound on the

block length n of a linear binary block (k, d O) code, given by:

k-1
n zz [(do Y 1)/2ij|

i=o
The derivation of this bound is based upon the possibility of a linear
block (n, kK, do) being repeatedly partitioned into smaller dimension
linear block codes.

Consider the generator matrix [G] of a linear block (n, Kk, d)
code. Since at least one of the code words has weight do’ the
generator matrix [G] of this code, by premultiplying on the left with
a non singular matrix, can be put into such a form that this code word
is the k™ row of [G] . Postmultiplying the resulting [G] matrix on
the right by a suitable permutation matrix, the columns of [:G:l are
rearranged in such a way that the last dO _elements of the kth row are

all non-zero, as follows:
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G|-| Qo Q
]

—>
Qo I

&

o] | &

where Q_ and Q; are the row spaces of the [G ] and [G,] matrices.

Therefore the row space of the row vectors of the [Gl] matrix,
including the all ones k'® row, is the row Space of [G,] and its
logical complement Il’ On the other hand, the row space of the
B%J matrix including the kth all zero row is the row space of
B%J and its exact copy Q . Thus the row space of DG&] is an

(n - d, k-, d) linear binary block code. If X is a code word in
the B%)EGH] part and if the élenents positioned in Q have weight

c, then

but the related code word of X in the E%) Il] part has weight

dl +c 2 dO

or

d, + dO ~ez2d

m%oa

therefore 2d1 > d or d1

A\

Since d1 is an integer, thus

where [x] means the greatest integer less than or equal to x. The

considering that the minimum distance of an (n, 1) code is d = n;

|
|
Griesmer bound is obtained by repeated application of this result,
this process is schematically given by Figure (5-3):
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Figure (5-3) : Griesmer lower bound and a repeatedly partitioned

linear binary block code.

The Griesmer bound is tight when d is large with respect to k.
Therefore, the combination of the Griesmer bound in the region where
d > k (i.e. where the bound is tight) with the Hamming bound in the
region where k > d (the region where this bound is good) results over-
all in a better lower bound (Griesmer 1960).

Solaomon and Stiffler (1965) generalised the Griesmer bound over

an arbitrary finite field GF(q) to give

k-1

n > Z [(do + qi—l)/qi]
i=o
This states that the value of n for fixed values of k and d of a linear
block code over GF(q) is lower bounded by the above inequality. The
proof of this is parallel to the binary code, though when considering
the possibility éf a linear g-ary code being partitioned repeatedly into
smaller dimension linear g-ary code, the argument is slightly different

from the binary case. The generator matrix of a linear code over GF(q)




- 76 -

can be partitioned in a similar manner to that of the binary case,

and has the following form:

c-{ol-—o. ]

S e

Go [G1
[G]— [ 0 |ao

where o; € GF(q) and [oai] is a row vector of which all elements

are o . The [Go] matrix including the kth all (n—do) Zeros Iow
spans the row space of a linear (n - do, k-1, dl) code over GF(q)
and (q - 1) copies of it as it is shown in Figure (54). The row
space of the individual matrices %} is seen to be the vectors
formed by the addition of coy where zE GF(q)sto the vectors of the
row space of [Gi] thereby forming (g-1) translates. This can be
formed by writing the row space of [Gi] , consisting of qk—1 vectors,
the next qk~1 elements of total row space formed by adding 0y to those
above, and this process then repeated (g-1) times.

If X is a code vector with at least d; of its first n - dg
elements non-zero, and d2 of the last do element also non-zero, then

d; +dy 2 dO ‘

There are (g-1) Vec;tors, all of which begin with n - do all-zero

elements (see the left-most side of Figure (5-4); each vector is a

multiple of the other vector; i.e.:

1 X = (O, O, DY O’ xl, XZ, X3 .o Xdo)
a; x=(0,0, .... 0, X, UXy, ... alxdo)
O‘q—z x= (0, 0, ....0, ocq_2 Xis wees th_z xdo)

These are d2 non-zero elements in the previous d o elements of X; each
of these d2 elements agrees with one of the elements of each corres-

ponding colum of 1x, o

1 X, u.. 02 X, since each element of GF(q)
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Figure (5-4) : Generalised Griesmer bound by Solomon & Stiffler
and a repeatedly partitioned linear q-ary block coce.

occurs exactly once in each colum. Therefore the average agreements
per code word X is r

r 2> dy/(a-1).

If X is subtracted from any of the code words x, oy X, .. Ao X
there will be d1 non-zero elements in the first n - dO elements, and

dO — r non-zero elements in last do positions. Then:

d1+do—r > d

O
or
d 2 1 2> d/f(q-1)
we had d; +d, > d




therefore d1 > -75

by the repeated application of this result we obtain:

k-1

n > Z [(do P qi—l)/qi:|

i=o
This bound is achieved by the class of linear (n, k, d) codes

over GF(q) which have in general the following parameters:

Re
n = g (q"-1)/(g-1) - E B, (a X -1)/(q - 1)
i
2.-1
_ k-1 :E : i
i = BO q - Bl q
i
where Bi =(1, 2, ...., g-1) and Bo > max Bi and also

Codes with these parameters may be obtained by deleting
(puncturing) certain colums of one or more copies of a linear
[n = qk—l, k, d= qk_l(q—I)] maximal length code. The colums of a
linear maximal length code over GF(q) from a linear algebra (Ayres
1965, p. 219) generated by any k linearly independent columns (also
this linear algebra is a vector space with respect to the scalar
multiplication over GF(q). Therefore the colums of the maximal
length code can be paritioned into the (g-1) distinct cosets (classes)
such that if x is a column in a coset no scalar multiple of x is in
the same coset. Any coset contains (qk—l)/(q-l) colums and any row

has weight qk—l. If B < (g-1) cosets are deleted from the original
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maximal length code a linear

[n = (a-1-8)(q"1)/(a-1), k, d = (q-l—B)qk—l]

code over GF(q) will result. Alternatively, any sub-algebra (sub-
additive group, subspace) of dimension Qi of the k dimensional
algebra (vector space) can be partitioned into (g-1) cosets and B;

of these cosets in a similar way may be deleted, which results in

L. 2.-1
[n = 8@ D/ S 78i(a SD/(aD), K, d = 6@ D BiGa )]

i i
linear block code, where B; = (1, 2, .... g-1), and B, > max B;,
o<k, 1< sk, 00 *F L (LF ).
i 1 1 J
i
If Bo = (g-1) and Bi = (g-1), then a linear

k by k-1 =
q-1-» a1,k d=(g1)a" " -) g~ )| non-repeated
i i

E

column code over GF(q) results. For the same conditions, and where

q = 2, which is the binary case, the resulting code is a
L 2.-1
[(2k-1) BYCES N ]
i i

linear binary code. If 80 > (g-1) then a linear repeated column code
is obtained.
The condition :E:Qi < k provides a restriction on the resulting

code parameters n, d, such that for any set of Qi

n > ZK_1 and d > 2k_2—1.

Therefore these codes are of low rate. Baumert and McEliece (1973)
"~ have shown that this condition on a repeated column code being such

that
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Z li < r k, where r is the number of repetitions of

i
the maximal length code, is a very weak sufficient condition on the
dimension of the subspaces 21 . McEliece showed that even for some

value of Zli 2 r kK it is possible to find proper subspaces with
i

the property that these subspaces cover each colum at most r times.
However, the generator matrix of a linear maximal length code has all
possible colum types, therefore any linear block code is equivalent
to a punctured maximal length code. The following chapters describe
the development of a technique called the Anticode method which enables
good choices of the colums to be deleted from a maximal length code

for any m < qk—1~k :




- 81 -
CHAPTER VI

LINEAR ANTICODE ANALYSIS AND CONSTRUCTION

6.1 Linear Sequence Codes and the Deletion Concept

An (n, k, d) linear code over GF(q), containing qk code words
is a subspace Vc of dimension k of the vector space Vn of all n-tuple
vectors over GF(q) (see Section 3.1). Therefore a linear code can be
defined (identified) with any k linearly independent code words,
which form a k x n matrix known as the generator matrix [G] of the
code. The colums of [G] are a subset of the set of all k-tuple
vectors over GF(q). The generator matrix [G]ML of a linear maximal
length (qk—l, K, (q—l)qk_l) code over GF(q), consists of all distinct
non-zero k-tuple vectors arranged in some order; alternatively, the
colums of the matrix [G]ML and the rowspace (the code book of the
maximal length code) of this matrix form all distinct possible column
types of any linear code. Thus the n colums of the generator matrix
of any linear code is a subset of the columns of the generator matrix
of a linear maximal length code in some order, and so for any linear
(n, k, d) code over GF(q) there is a set of m complementary distinct
columms, such that the concatenation of these m with n colums of the
code results in columns which are the qk—l = distinct colums of a
maximal length code in some order. Alternatively, deleting any set
of (qk—k—l) > m > O columms, having a non-zero row of weight at most
¢ from a maximal length code called the parent maximal length code
results in a linear [qk—l—m, k, (q—l)qk_1 - §] non-repeated column
code. Griesmer (1960), using this idea, discovered four classes of

binary linear codes of dimension k and maximum distance

where
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h>0
1=-1,0,1, 2
2 <P <k-1

which have the minimum value of block length predicted by him as a
lower bound. Therefore these codes are optimum, and are also included
in the Solomon and Stiffler codes, as reviewed in Section 5.2.

However, the Solomon and Stiffler optimum codes, due to their
suggested construction, have a lower bounded block length and minimum
distance. For a fixed k the block length n and minimum distance d of
the Solomon and Stiffler linear block codes derived from the maximal
length codes are bounded by

n > qk_l— 1

d> ¢ %(g-1) - 1.

Therefore the block length n of these codes increases much faster
(exponentially) than k, so these codes turn out to be low rate codes,
in other words k/n—o0 when n— .

Farrell (1969) introduced an infinite class of subsets of the
column set of a maximal 1éngth code, which are known as anticodes, and
result in an infinite class of linear optimum or near optimum codes

with parameters

& Hal) zdx1

derived with the same deletion concept as Solomon and Stiffler. The
maximal length code from which the columms of an anticode are deleted
is called the parent anticode. Anticodes have been studied by Farrell
(1970) and also by Farrell and Farrag (1974) and Farrag (1976). The

latter, by an exhaustive computer search, synthesised all possible
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optimum anticodes for k € 6 and some anticodes of k = 7. However,
the computation time for this exhaustive search technique for k > 6

was rather excessive.

6.2 The Linear Binary Parent Anticodes

The generator matrix [G] pAC = [M] of a linear binary non-repeated
colum parent anticode has all the (2k—1) possible k—-tuple colum types,

in natural order of binary numbers, increasing from left to right, i.e.,

[G]pAC = [M] = [(1)2, (2)2, whie s (1)2, (zk_l)z]

where (i)2 is a colum of Kk binary digits which is the binary repre-

sentation of the number i. As an example, for k = 3, the matrix is:

[Glpac = M = [y, (2)y, (B)g, .... (T)2]

1010101
0110011
0001111

The row space of matrix [M] forms the code book of the linear binary

parent anticode.

6.2.1 The Iterative Property of the Parent Anticode

The parent anticode [C] can be formed by spanning the row space
of the matrix [M], by multiplying on the left with the matrix [MO]T,
where the matrix [MO]T is the transpose of the matrix [M] including the
all zero k-tuple row. The matrix [MO]T has all the 25 rows of the k
variable truth table (Figure (6-2)). Therefore the matrix
[c] = [MO]T[M] = [Cij] is the 25 linear combination of the rows of the
matrix [M] and is the code book of the parent anticode. As an example

consider the matrices [M:] and [MO]T for k = 4 which are shown below:




(1 0101010101010 1]

0110011001100 1
[M]=ooo1111oooo1111

| 0000000111111 1 1]

Figure (6-1) : Parent Anticode Generator Matrix

"0 0 0 O
1000 .
0100 ol (1)
1100
> <
0010
1 1
r 10| =
0110 o1 (2)
T11110
W
000 1
100 1
010 1
1101 .
O 0 1 1 o' (3)
101 1
011 1
111 1

Figure (6-2) : Partitioned Version of [M]T
o

Continuing the above example, the matrix [MO]T spans (linearly com-
bines) the row space of the matrix [:M] . In forming the product
]:MO_}T[:M] the first 22 = k rows of [MO]T, denoted by [M_] %‘1) in Figure
(6-2) are responsible for the linear combination of only the first two
rows of [M:[ shown in Figure (6-1), thus forming the first four rows of
the anticode book [C] in Figure (6-5). The next four rows of [MO]T,
denoted by [M ] %‘2) combine the third row of [M] with the previously

formed rows of [C]. In forming the second four rows of [C], those
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elements of the first four rows of [C] which correspond to zero
elements in the third row of [M] are copied into the next four rows
without change, but those elements that correspond to a one element
are inverted (logically complemented). The matrix [MO]T has as its
first three colums, the first three colums of the stacked [Mo]'fl)
and [Mo]rfz), the fourth colum being all ones. The last eight rows
of [C] are formed by copying those elements of the first eight rows
which correspond to zeros in the fourth row of [M], and inverting
those that correspond to ones.

Therefore, the columns of the parent anticode have the property
that, every Zi (i=1, 2, 3, ..., k) top elements of each columm can
be divided into two equal parts, each containing 2i"1 elements, for
which either the top and bottom halves are identical, or the bottom
half is the logical complement of the top half. As an example the
column of type eleven of the previous [C:] matrix is shown in Figure

(6-3).

Tzl | Y O} Q

-00==00—|O0—=0|0~=|=O0

Figure (6-3) : Column of Type Eleven in Q-I
Systematic Form.
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Since the matrix [__MO] is the same as the matrix [M], but includes

the all-zero k-tuple, therefore [MO_]T[:MO] is identical to [CO_J, the
parent anticode book including all zero 2k tuple as the first column.
Thus I:CJ is a symmetric matrix and the rows have the same property

as the columns.

This property is called the Q-I systematic property of the
parent antiéode (anticode). Due to this property the parent anti-
code [:C] can be partitioned into smaller dimension subspaces and
their logical complements as shown in Figure (6-5), where the
generator matrix of each subspace is the truncated elements of the

generator matrix [M] of the parent anticode, as in Figure (6-4).

T o0 1]o[T o 1]o[f 0 T]o[T o 1]
o1 1]/olo 1 1{o]o 1 1|lo]o 1 1
[M]= oo0o01]/1 1 1/0lo0o0[1]1 1 1
lo 0 ofoloooft1 1 1f1f1 1 1]

Figufe (6-4) : The Truncated Version of the Generator
Matrix of the Parent Anticode.

The row space of t‘he truncated elements then are spanned due to the
3-tuple zeros or ones positioned under these elements. For any zero
3-tuples the row space of the truncated elements are copied, and for
any one 3-tuples the row space of the truncated elements is inverted.
The resultant row space will be repeatedly stacked again due to the
rest of the 3-tuples.

The generator matrix [M] of the parent anticode [C] has one of
each of the 2k—1 different column types, hence the modular representa-

tion matrix E\I]PAC of order 1 x 21 is

Blpae = By figsoess nzk_lj =, 1,1, ...., 1, 1




0O 0 OpofJo0 O OpOJO O Ojojo o o
1 0 1p0]1 O 1J]0J1 O 1J0]1 O 1
0 1 13040 1 1}J0J0 1 1jJ0]J]0 1 1
1 1 ojJoj1 1 OJOJ1T 1 O]JO}1 1 O
0 o0 oj141 1 1010 O Of1j1 1 1
1 60 14140 1 OJO}1 O 1110 1 O
60 1 1141 0 OJO}JO 1 11111 0 O
1 1 Op1y0 O 1J0)J]1T 1 Oj1]J]0 O 1
0 0 opojo o o111 1 11111 1 1
1 0 14011 O 1110 1 O}J]1j0 1 O
0 1 100 1 11141 O O}j1}j1 0 O
11 ojJoO0]J]1 1 O}J]1J0 O 11110 O 1
o 0 oj141 1 1}J1f1 1 11 0}J0 O O
1 0 1410 1 O]j]1}J 0 1 OfjO11 O 1
0 1 14141 O O}J]1}J1 O OjO}JO0O 1 1
i 1 ©j110 O 1j11j]0 1 1j0]j1 1 ©O

Figure (6-5) : Partitioned Version of the PAC(15, 4, 8).

Alternatively, the parent anticode words may be regarded as the vertices
of a regular simplex. The parent anticode is a simplex code and shares
the properties inherent in this family of codes, thus the weight distri-

bution matrix [ﬁHPAC of the order oK x 1 is

v ] o ]
k-1

T 2|

T 1 I

= [C] [N = -

[W]ee = E0%e = [ | = [ e

! |

! 1
' k-1

w 2
B

and it is said to be a uniform code.
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If the rows of the generator matrix [M] are labelled as
815 895 +-v» By -+ By from the Q-1 property of the code book of the
parent anticode [C] and the way that [MO_JT combines the rows of the
matrix [M], it is evident that the NP parent anticode word results

from the NP

row of the matrix [:MO]T which is the k-digit binary
representation of integer (N-1 )2. Hence the Nth parent anticode word

can be identified in terms of the linear combination of the rows

81 8gs +++s Bys -vs By of the generator matrix ]__M] of the parent
anticode as:
k
r .
(N - 1), = E r, 21
i=1
4
k
[l xy = 2 : Ty 8
b i=1

where ry is either zeroar one, and the values of ry for which there
exists non-zero ry indicates the g5 that contributes to the Nth parent
anticode word. Also, the Nth parent anticode word is denoted by

[C] (v): As an example, consider the identification of the 14" parent

anticode word,

(N - 1)2 = (14 - 1)2

Il
2]
| nd
\V]
T
-

i=1
_ (e} 1 2 3
13 = r12 + r22 + r32 + r42
Therefore ry = 1, ry = o, rg = 1, ry = 1
and
k

[ (14y = Z rig) = T8y * Tg83 + Ty8,

i=

=gt g tey
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Hence the 14th parent anticode word is the linear combination of the
1st, 2nd and 4th rows of the generator matrix [M] of the parent

anticode.

6.3 Linear Binary Anticode Analysis

A linear binary anticode is a set of 2khhdigit sequences (words)
over the finite field GF(2). The m different columns of an anticode
is a subset of the (2k—1) distinct columns of the parent anticode.
Therefore the set of the Zk rows of the anticode (anticode book) are
the elements of a subspace of the m-tuple vector space over GF(2);
alternatively, they are the element of an abelian group.

Hence an anticode can be specified by its generator matrix [g]AC’
but an anticode may or may not have a repeated row which is inherent
in the Q-I property of the parent anticode, and also depends on the
parameters of the anticode. Therefore the generator matrix [G]AC of
an anticode, in contrast to a linear code, may have all-zero rows; in
other words, the generator matrix of an anticode in the canonical form
may have ki =0, 1, 2, ... all-zero element rows. The generator matrix

of an anticode in row canonical form denoted by [G]CAC is shown below.

[~ .
[G]AC * Gy = GEAC ]ko

The row rank ko of the generator matrix of an anticode is

ko <k = kO + ki’ therefore the row space of the generator matrix of an
anticode is an ''iterated subspace'' of the vector space Vm of all m-tuple
vectors. As an example, consider the anticode consisting of the 3
colums of the parent anticode of Section 6.2.1. of types{4, 10, 14} as

follows:




8

H = = = O O 0 0O = K= < M OO O O
O 0O H +H OO KK MK K M OOM®+KRRKR O O
HHOOOOHHOOHHHHOO

The generator matrix of this anticode is:

— -

0o 0 o

[G] _lo 1 1
AC 1 0 1

0 1 1

and the row canonical form of [G] AC is

1 0 1
Spac k=2
[G]= o 1 1
AC —
“lo o o 0
k, = 2
0O 0 O 0 1°

6.3.1 The Linear Binay Basic Anticodes

The first ko rows of the generator matrix [G] CAC of an anticode
in the row canonical form, which form the ko rows of the matrix [G]BAC’
are linearly independent, thus the row space of this matrix is a sub-

space of dimension k o of the vector space Vm of all m-tuple vectors.
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The anticode generated by [G]BAC has no repeated rows and is called

a basic anticode. Continuing the above example:

O 0 O
G] 1 0 1 basic ! © !
L lBac T & 1 i = anticode O 1 1
1 1 O

The original anticode generated by [G] ac 1S the iteration of the basic
anticode generated by E}JBAC’ N=2" times. In the above exanple
the 22 = 4 copies of the basic anticode have been iterated (inter-
leaved) to form the original anticode. The integer y = ki is called
the iteration degree, and it is said that the original anticode
(iterated anticode) has degree wi = 2 and that the basic anticode
has iteration degree of zero. The number of rows of [G] AC?

k = ko + ki = ko + ¢ is called the dimension of the anticode. A basic
anticode whose generator matrix has all the different k-tuple columm
types, is called a maximal length anticode or simply an m-sequence
anticode. It is evident that an m-sequence AC(m, k, &, ) has para-

meters

[m =%, k, 6=2K1 = o]

which are the parameters of those parent anticodes and maximal length
codes with the same parameters, therefore these anticodes cannot be
deleted from parent anticodes with the same parameters. However,
these may be used as the units of construction in order to construct
bigger dimension anticodes (see Section 6.4). In general any anticode
that is used to construct a bigger dimension anticode is called a
unit anticode, and it is prefixed by the related name when necessary,

such as, the unit basic anticode.
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6.3.2 The Maximum Hamming Distance o4 an Anticode

An anticode of dimension k and anticode length m contains
Zk anticode words. The maximum Hamming distance of an anticode,
denoted by §, is defined to be the maximum value of the Hamming

distance between all pairs of distinct anticode words, i.e.:

§ = max W(Xiezxj) for all i # j

where W(X) is the Hanmming weight of X. The rows of the anticode form
a linear iterated subspace, thus the linear combination of any two
anticode words is another one, so that:

S=mx W) i=1,2, .., oK

The integers m, k, 6, y, are called the anticode parameters denoted as
AC(m, k, 6, ¥); when ¥ = O, it is simplified as AC(m, k, 6). The m
colums of the AC(m, k, &, y) are deleted from the parent anticode

(251, k, 257 shown symbolically as:

m
n = 2k—1 n = 2k—1—m :
Parent Anticode —— Deletion
Code
a=251 a=25ls

The maximum distance ¢ and the word length m of AC(m, k, &, V),
determine the minimum distance d and the block length n of the

resulting (n, k, d) code, called the deletion code, and denoted by

Lo

Thus for given anticode parameters m, k, ¢, the maximum distance &

DC(n, k, d), where

2k

k-1 _ s

-m-1
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is required to be the smallest possible value, since this minimum
value of ¢ is related to a maximum value of minimum distance d in

the deletion code. An anticode which has the minimum possible value
of § for a given m, k, ¢, is called an optimum anticode; alternatively,
an anticode is optimum if the related deletion code is optimum.
However, the minimum Hamming distance d of an anticode is also an
inportant parameters, and is defined to be the minimum value of the

Hamming distance between all pairs of distinct anticode words, i.e.

d = min. W(xiSZXJ.) for all i # j
i,j=1,2, ..., 25
or simply,
d = min. W(§i) for all i =1, ,2k

6.3.3 The Modular Representation and Welght Distrnibution of an
Anticode.

Any AC(m, k,8,) can be specified by the generator matrix [G] AC

of the anticode; but also, given a possible permutation of its columms,

.5 Dy, ...nzk_

where n, is the number of column type i as defined in Section 6.2 and
oK1

m=_—>- n.
L

i=1

1

by the modular representation matrix H\I] AC = [:nl, o,

Since the columns of the AC(m, k, §) are deleted from the parent anti-
code, this is the same as deleting the columns of the generator matrix
AC(m, k, &) from the columns of the generator matrix of the present
anticode. Thus the modular representation of an anticode [N] AC is the
logical complement of the modular representation matrix [N]DC of the

deletion code DC(n, k, d), such that

N pe + Nipe = WNpye
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the generator matrix

1 0 1 O 1 0 1
6l,c = |0 o o — G = |1 1 1 1
O 1 1 O 0 1 1
Hence
My, = [t 0oo0o1 10 0]
Ny = [011001 1]
[_N]PAC=[1111111]

A list of the weights of the 2" anticode words of [Wﬂ;c = [, Wy,

Wiy ssey W 2k] can be obtained by post multiplication of the parent

anticode [C] by the matrix [N]XC’ as

o
.
- T )
(W] Ac = [c] [N] ac Vhere | w. = E ¢j5my < S
J=l
*
21
m = E n,
i
.
i=1

From the above eguations it is evident that for a given list of weights,

an anticode is optimum if the [N]ic has the maximum number of elements.

6.3.4 The Weight Enumeratorn Polynomial o4 an Anticode and the
Cornnesponding Deletion Code.

If the number of anticode words of weight i is denoted by Ai

then the polynomial

m m
Wpox) = E Aix:L where E Ai =
i=o i=o

is called the weight enumerator polynomial of the AC(m, k, &, V), (Ai

¥

is the number of elements of the weight distribution matrix [W] equal
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to i).
For any anticode word of weight i in the AC(m, k, &), there

k-1

is a code word of weight (2 - i) in the corresponding deletion

code. An AC(m, k, 6, ¥) has A_ = 2¥ = 21 anticode words of
weight zero. (Ao—l) = 2¢—1 of these anticode words are related
(are identified) with the Ao—l code words of fhe DC(n, k, &) that
have weight Zk—l, and the one remaining anticode word of weight
zero is related to the single all zero code word of the

DC(n, k, d). Therefore, the anticode weight enumerator polynomial

WAC(X) is related to the corresponding deletion code weight

enumerator polynomial Wc(x) by the polynomial:

m

k . ok-1

C _ 2°-1 i 2 - 1i

WAC(X,Y) =1+ (A-Dy + E AXy

i=o
m

K k-1

e (211)__1) y2 = E ; Aixlyzk i

i=o



= 396 —

Since the AC(m, k, 6, V) is the iteration of the basic

Ac(mo, kK, ¢ wo =0), N= 2‘P times, therefore the combined

o’ o’

weight enumerator polynomial is simplified into the polynomial

o _ \J
where Ai = Ai/2

As an example, consider the AC(9, 5, 6) and the
corresponding DC(22, 5, 10). The AC(9, 5, 6) has the generator

matrix

0 1 1 o 1 1 o 1 1
1 0 1 1 O 1 1 o0 1
[G]AC - O 001 1 1 0 0 O
. 1 1.1 O O O O O O
0 0O O O O O O o o
and the weight distribution
AO=2, A1=A2=O,A3=4, A4=6, A5=12, A6—8

The weight enumerator polynomial of the AC(9, 5, 6) is
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m
W(x) = E Aixl
AC
i=o
= 2+ 4x3 + 6x" + 12x° + 8x°
where
m
EE A, =25 =33,
i I
i=o

and the weight enumerator polynomial of the anticode and related

deletion code, when y = k.o =1, is as

m
-1 . okl
c _ (] 2 j k1 _ ]
Wyexy) =1+ (2°-1) y # E AXy
=1

1 + y15 e 4X3y13 + 6X‘+y12 + 12 X5y11 o 8X6y10 .
The weight distribution of the DC(22, 5, 10) is

By=1, B+ 85=0, 444=8, Ay =12, Ay, =6
| Ajg =4, Ay =h15=0, Ag=1

Ay 7 By =0.

The weight enumerator polynomial of the unit basic anticode and related

unit deletion code is,

- k -1

we (x,y) =1+ A X (2° -1
BAC Y i y

i=1

1+ 2x%° + 3x'y"* + 8x°y?

The relationship between the weight enumerator polynomials of both the
unit basic anticode and the anticode formed from it extends to the

respective deletion codes. We observe from this fact that the con-
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struction of large dimension codes from smaller ones is related to the
constructing of larger anticodes from the basic one (in general fram
smaller anticodes, see Section 6.4.6.1).In fact, we can go further and
say that the techniques that we might apply for the construction of
larger anticodes from the smaller one can be explicitly applied to the

construction of larger codes from these of smaller dimension.

6.3.4.1 Anticode Weight Attribute

The set of integers specifying the number of anticode words
with weight S and the specific distribution o of these anticode words
in the anticode, and B the number of consecutive rows of weight S, is
called the weight attribute of the AC(m, k, &, ¥). This composite
anticode parameter is denoted by W(S; a, B).

As an example consider the AC(3, 4, 2, 2):

H B OO0+ KH OOH KKK OOH+HHK OO
H R R R OO OO0 KR MK OOO O
O OH KH HKHKOOOORK KA OO

The number of words of weight S = O packed in B = 2 consecutive words

is started from a = 1 row, then

W(S; a, B) = W(O, 1, 2) = 4.
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The number of words of weight S = 2 packed in B = 2 consecutive

words is started from o = 3rd row, then
W(S; a, B) =W(2, 3, 2) =12 .

It is evident that W(S; a, B) = Ai in the weight enumerator polynomial
of the anticode.

The weight attribute of an anticode is also the indicator of
the weight density distribution of an anticode. Two anticodes have
opposite weight attribute, if the rows of the first anticode which
have biggest weight, coincide with rows of the second anticode which

have smallest weight.

6.4 Linear Binary Anticode Constructions

The concept of an anticode and some related definitions and
properties were introduced and discussed in the previous sections. The
iteration property of the parent anticode and the Q-I property of the
columns of the parent anticode is inherited by any anticode and by any
individual anticode columm. Therefore, in constructing any anticode the
only permissible columns are the columms which have the above properties.

From the iteration and Q-I properties, it is evident that, in

general, a unit anticode UAC(mO, k

o 60, 1})0) can be used to construct an

AC(m, k, ¢, ¢) with different parameters. The UAC(mO, ko, cSO, wo) can

be any anticode, even a single columm anticode UAC(1, ko > 1., 1. LPO).

6.4.1 The Mapped-Map Stacking

This anticode construction process is performed by adding to the
generator matrix [GIUAC’ UAC(mO, ko’ 50 ,xl/o), k1 = a rows of all zero
elements as the first a rows and k2 = b rows of all zero elements as
the last b rows. The resultant anticode has generator matrix [G] AC

given by
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R
(0]
[G] ac < (6] uac ks
0
I o ] Bk

The linear combination of any subset of the rows of the generator

matrix [G]UAC of the UAC(m_, k_, 8_, ¥ ) with any of the newly

o)
added rows does not introduce any new anticode word. Thus the
maximum distance of the resultant anticode will be the same as that

VY ). The resultant AC(m, k, &, LP)V has parameters

of UAC(mO, ko, 60, o

[m=mo,k=ko+a+b,6=60,1,U=w0+a+b]

The process of mapped map stacking is schematically shown as,

oy |

Q .
%

and formulated by

(M) £
UAC(mOJ kO’ 601 wo) e AC(m, k, 6, ‘P) .
As an example, consider the UAC(3, 2, 2). Since wo = 0, this unit

anticode is a basic anticode, with generator matrix,

1 0 1
[lpac = [o 1 1]

This generator matrix contains all 3-tuple colum types. Therefore
this basic anticode is also an m-sequence anticode.

If k1=a=1, and k2=b=1, then
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1
()]
BAC(3, 2, 2)——=—AC(3, 4, 2, 2)

and

- o) 1 O O O

1 0 1

[G]AC = Ceac| = |0 1 1
| O _ © 0 o |

the row space of this matrix forms the AC(3, 4, 2, 2):-

H = O O = +H OO0 H+H +H O O = = OO0
H =2 2 =2 O O O 0O B +H H H OO O O

the columns of AC(3, 4, 2, 2) consist of the colum types (2, 4, 6)
of the parent anticode PAC(15, 4, 8). If the AC(3, 4, 2, 2) is

deleted from PAC(15, 4, 8), the DC(12, 4, 6) results. This process

is formulated as

AC(3, 4, 2, 2) ~ DC(12, 4, 6)

The resultant DC(12, 4, 6) is an optimum code, as this code meets
the Griesmer bounds, and also has the same parameters as shown in the

table of Helgert & Stinaff (1973). The AC(3, 4, 2, 2) has the modular
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representation matrix
[N]AC= [O’ 1, O) 1: O, 1, O, e ey O]

and the modular representation matrix [N]DC of DC(12, 4, 6) is the

logical complement of [N] Ac» therefore

My=[01,0101,01, ...,1,1]
6.4.1.1 Special Cases
a=~o0
If,
b # o0

then the mapped-map stacking method is simply the (MM)g process,

which is a simple stack of the UAC(mo, ko’ cSO, wo), 2b times, and

(a)

is called the simple stack process. Continuing the previous example,

if a= o0, b= 2 then

()3
UAC(3, 2, 2) ——=» AC(3, 4, 2, 2)

This generator matrix consists of the columm types (1, 2, 3) of the

©O O O+
O O ~» O
O O +H K

parent anticode PAC(15, 4, 8), which are:




- 103 -

H OH O R OHKHOHKOHKRO®REROMHKHO
H H OO KHKHOOHKHEKEROOHKUMEKEOO
H H H O O M HOOMH®KMBRKROOHEKKHO

(b)

a#o
If,

b=o

then the mapped-map stacking is the (MM)g process. In performing

this process any row of the UAC(mO, k_, 60, wo) will be repeated

o
2% times. In other words, any row is mapped into 2% rows. This
process is called simple mapped stacking. Considering the
UAC(3, 2, 2)

if a =2, b=o0, then

o2

UAC(3, 2, 2) ——2+ AC(3, 4, 2, 2)

and

[G] ac ” [G](;AC )

QO B O ©
= O O O
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This generator matrix consists of the columm types (4, 8, 12) of

the PAC(15, 4, 8), which are

H H 2 B OO0 00O H+HHK HRKROOODO
H o = R = =2 00 0 00 0O 0 0

O O O 0O H H H H K K H B O O O O

6.4.2 The Mapped-Tnversion Stacked Anticode

This anticode construction process is performed by adding to
the generator matrix of the unit anticode k1 = a rows of all-zero
elements as the first a rows, and k2 = b rows of all-one elements

as the last b rows. The resultant anticode has the generator matrix

O
: k;=a
0]
[G} AC T [Slyac ko
!
i i ! ky = b

The linear combination of any subset of the rows of the matrix
EHUAC’ with any subset of the newly added first k1 = a rows does

not introduce any new anticode word. But the linear combination of
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any odd number of the newly added k2 = b last rows with any subset
of the rows of the [G] UAC gives a new anticode word. This new
anticode word is the logical complement of an anticode word
generated by [G]UAC. Since the UAC(m_, k_, 6_, ¥_) has an all-
zeros row, then in the process of forming = (MI )g it is inverted
into the all-ones row. Therefore, the maximum distance of the
resultant anticode is equal to the block length m - The resultant

anticode AC(m, k, §, y) has the parameters
[m=mo,k=ko+a+b, 6=mo,w=1,bo+a+b—1]

The process of mapped inversion stacking is schematically shown as

R
(MI)
Q| —4

and formulated by

(MI)p
UAC(mO, ko, 60, IJJO) ——— AC(m, k, &, V) .

As an example, consider the UAC(3, 2, 2) of the previous section.

If a=1, b=1, then

1
ish
UAC(3, 2, 2) —— 4+ AC(3, 4, 3, 1)
where
o) ] O 0 O
1 0 1
[ ]AC UAC R
i ' ) 1 1 1
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The row space of this matrix forms the AC(3, 4, 3, 1), which is:

0O O O
O O O
1 0 1
1 0 1
c 1 1
o 1 1
1 1 O
1 1 O
1 1 1
1 1 1
O 1 O
O 1 o0
1 0 O
1 O O
0O O 1
O 0 1 ‘

This anticode consists of the colum types (10, 12, 14) of parent
anticode PAC(15, 4, 8). The modular representation matrix of the

AC(3, 4, 3, 1) is

N e = LO, ..:.. ,0,1,0,1,0,1,0] .

6.4.2.1 Special Cases

a=o0
i s i
b #o

then the mapped-inversion stacking is the (MI)S process which is

(a)

performed on the UAC(mO, ko, 60, wo) by inverting and stacking this
b

anticode 2 times. This process is called the sequential inversion

stacking process. If a =0, b =1, it is called the simple inversion

stacking process, (MI)? .
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Considering the UAC(3, 2, 2), if a = o0, b = 2 then,

(MI)Z
TAC (3, 2, 2) —— 2 AC(3, 4, 3, 1)

B .
[S] vac

1
[G] ac T I - 2
I 1

0
d
1
1

HoH R

(Although the generator matrix BﬂA(:does not have an all-zero row,
the iteration degree of this anticode is one; i.e.; the generator
matrix in row canonical form has an all-zero row.) The generator
matrix [G] ac consists of the colum types (13, 14, 15) of the

PAC(15, 4, 8) which are

O O O
1 0 1
O 1 O
1 1 O
i 4 il 1
O 1 O
T 0 1
O O 1
1 1 1
O 1 O
1 0 1
0O O 1
O O O
1 0 1
o 1 1
1 1 0
(b)
{ a+to
If
b=o

then mapped inversion stacking is the (MI)g process,
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which is performed on the UAC(mO, k

" (SO, I,UO) by adding k1 =a

all-zero rows to the [G]UAC as the first k; = a rows, which is
identical to the simple mapped stacking (MM)? process of Section

6.4.1.1.a, so
U195}

(where the symbol = reads 'has the same construction').

6.4.3 The Inverted-Inversion Stack

This anticode construction process is performed by adding to
the generator matrix [G]UAC of the UAC(mO, k - 60, ll)o), k1 = a rows
of all-one elements as the first a rows and k2 = b rows of all-one
elements as the last b rows. The resultant anticode has the

generator matrix

_ | -
.I k1 = a
[G] ac < [Slyac ko

The linear combination of any subset of the rows of the matrix [G]UAC’
with any odd number of néwly added rows results in a new anticode word.
This new anticode word is the logical complement of an anticode word
generated by the matrix [G] uacs therefore the resulting anticode

generated by I:G] AC? contains the all-one row and has the parameters

[ =mo,k=ko+a+b,6=mo,¢=wo+a+b—1:l

The process of inverted-inversion stacking is schematically shown as

Q (102 Qr

Qq
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and formulated by

(1)
UAC(mO, ko, 60, wo) —— AC(m, k, 6, V).

Considering the UAC(3, 2, 2), if a =1, b = 1 then

an;
UAC(3, 2, 2) ———— AC(3, 4, 3, 1)

where

[GJ AC T [l uac =
I <

H R QO R

T
|
1
1

i © I~

The rowspace of this matrix forms the AC(3, 4, 3, 1), as

H O O R H OO HH O K HOO H M (@)
H O+ OO H+H O H O KO HKHHO H @
OHF—‘OHOOHHOOHOHHO

This anticode consists of the colum types (11, 13, 15) of the

PAC(15, 4, 8).
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6.4.3.1 Special Cases

(a)
a=o0
H{
b #o0

then inverted-inversion stacking is the (II)g process which is

identical to the sequential inversion process (MI)S. Therefore,

(Il)g = (Ml)g . Considering the UAC(3, 2, 2), if a = o0, b = 2, then

(1)
UAC(3, 2, 2) — 2+ AC(3, 4, 3, 1)
and
(1 o0 1]
[G] | S _ o 1 1
= I 1 1 1
i | ] (1 1 1 |

This anticode has the same parameters and the same generator matrix

as AC(3, 4, 3, 1) generated by the (Ml)g process.

(b)
a#o
If
gb =0
then inverted-inversion stacking is the (II)i process. This process
is performed on the UAC(nb, ko’ 60) by repeatedly inverting the rows
of this anticode 2% times, and is called interleaved inversion stacking.
Considering the UAC(3, 2, 2), if a =2, b = o, then

(ID)?
UAC(3, 2, 2) —— AC(3, 4, 3, 1)

[G] ac T I )

o

=1

&,

)

=

Q
O H H =
= O +H =
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this generator matrix consists of the colum types (7, 11, 15) of the

PAC(15, 4, 8), as follows:

O B - OO0 HrH H O+ O O+ O +H +» O
H OO HKOOUHKOHEKHREROOHRHDO
O H H O OO0+ - OO+ O+ == O

6.4.4 Invented-Map Stacking

This anticode construction process is performed by adding to
the generator matrix Eg]UAC’ k1 = a rows of all-ones as the first a
rows and k2 = b rows of all-zero elements as the last b rows.

The resultant anticode has the generator matrix

o
=
Il
I

[G]AC = IGlyac ks
O

The linear combination of any subset of newly added first k1 =a

rows with any subset of the rows of Bﬂ[mc results in a new anticode
word. Therefore the resultant anticode contains the all-one anti-

code word, and this anticode has parameters:
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[m=mo, =k0+a+b,6=mo,¢=wo+(a—1)+b:|

The process of inverted-map stacking is schematically shown as

Q
(m)? .
Q|—
and formulated by:
a
(M

UAC(m,, k_, 0 B,) —— &C(m, k, &, ).

O’

Considering the UAC(3, 2, 2), if a =1, b = 1 then,

1
(IM) 1
UAC(3, 2, 2) ———» AC(3, 4, 3, 1)
where
| 1 1 1
1 (0] 1
[ ]AC UAC 0 1 1
I 0) | | 0 0o o |

The row space of this matrix forms the AC(3, 4, 3, 1), as follows:

O~ H OO0 H H OO MK OOMH+HEHRO
O+ O+ H OH OOH O+ ORO
HOOHOHHOHOO)—*OH)—‘O
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This anticode consists of the colum types (3, 5, 7) of the PAC(15, 4, 8).

6.4.4.1 Special Cases

(a)

a=o0
If
b #o0

then inverted-map stacking is (IM)g, which has the same construction

as (Ml\/l)g, SO
o _ o
() = M)y
(b)
a#o
If
b=o

then (IM)g has the same construction as (II)g, and therefore,

(m2 = ang

The following table shows the different two sided-map-inversion processes

o

(M) (). ('\ﬂllw)z

(w): (';ﬂ')fs (s

m) (n) (:I:)it

(m) (IIII\III)Z (M)
()

6.4.5 Concatenation of the Elements of the Two Sided-Map-Inversion

The useful feature of the two sided-map-inversion process is the
information gained by the analysis of the generator matrix thus formed.
This information is in the form of the weight attribute of the anticodes,

and provides all the information necessary for the choice of the best
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element of the table, for concatenation with a given anticode. It
is in this sense that even non-optimum anticodes may be ''good" as

they can be used to construct larger anticodes.

6.4.5.1 Anticode Concatenation

An anticode with a specific weight attribute WAC(S ; o, B)
can be concatenated with a different anticode from the two sided-
map-inversion table with WAC(SO; OLO, BO). The second anticode is
chosen such that BO rows of minimum weight coincide with B rows of
maximum weight of the first anticode. As an example, consider the

AC(66, 7, 44). The weight attribute of the words of weight 44 is,
W(S; a, B) = W(44, 2, 3) =3 .

This means that the three consecutive rows starting from the o = 2 (2nd)
row has the maximum weight 44. The remaining words have weight < 36.
AC(15, 7, 8) can be obtained from BAC(15, 4, 8) by the process (MM)g,

3
s ()
BAC(15, 4, 8) =——— AC(15, 7, 8, 3)
From Section 6.4.1.1.b, the (MIVI)ZL process does not change the maximum
distance of the BAC(15, 4, 8) but it changes the iteration degree from
O to 3. This means that the weight attribute of the resultant
AC(15, 7, 8, 3) for all-zero rows, is W(O, 1, 8) = 8. Therefore,

concatenation of these two anticodes results in:
AC(66, 7, 44) + AC(15, 7, 8, 3) = AC(81, 7, 44)
and AC(81, 7, 44) ———DC(46, 7, 20) .
Although AC(66, 7, 44) is very far from optimality, the resultant
AC(81, 7, 4) gives the DC(46, 7, 20), which is very near to the best

code predicted by the table of optimum linear codes of Helgert &

Stinoff (1973), where the best linear code of n = 46, k = 7 has
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d=20 - 21. Thus it is evident as to how near optimality the
resultant AC(46, 7, 20) is.
A third anticode can be concatenated with the resultant

AC(81, 7, 44);e.g., the AC(1, 7, 1, 6) resulting from

(nn?
UAC(1, 1, 1) —— 24 AC(1, 7, 1, 6).

Therefore,

AC(81, 7, 44) + AC(1, 7, 1, 6) = AC(82, 7, 44)

—— DC(45, 7, 20)

The DC(45, 7, 20) is an optimum linear block code.

6.4.5.2 Simple Concatenation

Two or more elements of the two sided-map-inversion table
can be concatenated, to build a new anticode. A simple concatenation
is performed by the following process:

)] + (MO

UAC(m , k , &) » AC(2m_, k+1, 28)
(e} O 0) (@]

and

[G]Ac ) Blye | Blue

| o | 1 |

As an example, consider the UAC(82, 7, 44). Then

aang + (MD)
UAC(82, 7, 44) > AC(164, 8, 88)

— DC(90, 8, 40)

6.4.6 The Genernal Anticode Construction Technique

The iteration properties of the parent anticode, and the
Q-1 systematic form of the columns of the parent anticode, enable

the partitioning of the parent anticode, and also an anticode, by a
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given colum permutation, into smaller dimension anticodes. This
was discussed and shown by an example in Section 6.2.1. The

PAC(15, 4, 8), as shown in Figure (6-5), was bartitioned into smaller
dimension basic anticodes and their logical camplements. If every
basic anticode is symbolized by Q and every logical complement
symbolized by I, then Figure (6-5) can be put into the form of

Figure (6-6a) and equivalently into the form of Figure (6.6b).

Qjo|Qjo|Q|o|Q Q|Q|Q|oo0o0
Ql'|1|o|Q]! 1 1Q|l]101
I {

I I

Qo Q]! 1| QI|1|Oo11
Qi 0Q l Qt1tio
Figure (6-6a) : Compact Version of Figure (6-6b) : Equivalent Compact

the PAC(15, 4, 8) Form of the
PAC(15, 4, 8)

PO O

Each of the zeros and ones in Figure (6-6a) are respectively a four-
zeros element column, and a four-ones element colum. The set of the
zeros and ones are the AC(3, 4, 2, 2), put into AC(3, 2, 2) by the
reverse process of (MM)g. This is a one-to-one mapping of each of the
four zeros into one zero and each of the four ones into a single one.

Discardingﬂthis AC(3, 3, 2, 2), and mapping one-to—one every
Q onto a O and every I onto a 1, such that

@ § Qr——iell, T il

the set of images of Q's and I's, excluding the first all zero's

colum, in Figure (6-7b) form the linear binary AC(3, 2, 2).

QQ|Q|Q olo 0 0O

Ql1Q|! o1 O |
——

QQ|1]1 o|o0 1 |
Ql1]1Q oj/1 1 0
Figure (6-7a) : AC(3, 2, 2) in Figure (6-7b) : Resulting

Q-1 Systematic Binary

Form. AC(3, 2, 2)
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6.4.6.1 Iterative Image Stacking

In the previous section the parent anticode, of Figure (6-7),
by an iterative process of mappings, was transferred into the smaller
dimension anticode. This process was performed as outlined below:

(a) the parent anticode was partitioned into basic anti-
codes and their logical complements, with interleaved colums.

(b) the partitioned elements (basic anticodes and their
logical complements) of the parent anticode were mapped one-to-one
onto the set {‘Q,I.} of Figure (6-6a).

(c) the elements of the interleaved columms form the

2

AC(3, 4, 2, 2), by the reverse process (MM)O,

were mapped one-to-one
onto the elements of AC(3, 2, 2) of Figure (6-6b).

(d) the AC(3, 2, 2) was discarded. Figure (6-7a) was the
result.

(e) the elements of the set { Q,I } of Figure (6-7a) were
mapped one-to—one onto the set of { 0,1 } of Figure (6-7b).

(f) the all-zero column was discarded, and the AC(3, 2, 2)
was obtained.

Since every sub-process was performed by one-to-one mapping
onto, therefore the process of construction of an anticode from a
larger dimension anticode can be reversed. This anticode construction
method is called the iterative image stacking method. In general, the
process of the iterative image stacking can be summarised as follows:

(a-1) An optimum AC(m,, kd’

columm is added to this anticode to form the anticode

éd’ wd) is chosen. An all-zeros

(md+1, k This anticode is called the Domain anticode and

4 Sq Vo)
is denoted symbolically

+1, k

Dpclmg*ls kg» Og» ¥g) -

This is the inverse of the process (f).
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(b-1) The optimum AC(mr, k

- dr’ I,Ur) is chosen as the

image of each "O" element of the D, (m +1, kd’ q’ by)-

logical complement of the AC(mr, kr’ 6r, wr) is the image of every

The

elament '"1" in the DAC(l +m,, kd’ (Sd, lpd). The AC(mr, kr’

is called the First-map anticode and is symbolized as
Fpoles Ko O ¥ J——+0Q

The above mapping

o0 = 0=—Q, ] <-—>7]

results in an anticode with parameters;

(mi =(md+l)-mr

4 ki =kd+kr
(Si= (1+md) . (Sr
by =g UL

The resultant anticode is called the Image anticode and symbolized as

Ic(m,, k, 6, w.)<——>{Q, 1}

1? "1 *1

These processes are the inverses of the subprocesses e and b. The

whole process so far is formulated as:

AC( 1 + md d, d’ lpd) __{’_— C(m 5 61" wr) =

Iac(my» Ky» 05, ¥;)
This reads 'Domain anticode (1 + m,, kd’ (Sd, \bd), o-plus, first mapped
anticode, has the same construction as the Image anticode'.
The first row of IAC(mi’ ki’ cSi, wi) in Figure (6-7a) has
only Q elements, therefore the rows of I AC(mi’ ki, éi, lpi) corresponding
to these Q's have the biggest weight, Gi . But, the other rows, due to

Q and I combinations have

5i > max. weight >m, . S
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The smaller the § q’ which is the maximum distance of the domain
anticode, then the smaller max. weight for the Q and I combinations.
That is why the DAC(l + m,, kd’ Gd’ wd) is chosen to be optimum.
Also the number of Q's which are related to minimum distance d of
the domain anticode must not be less than a '"proper number' (see
the example given in this section).
(10{—1) The AC(mS, ks = ki’ GS, ws), is chosen in such a way
that the 2 ¥ first rows of this anticode consist of all-zero rows.

k ' k
These 2 T 211 zeros rows coincide with the 2 * first rows of the

image anticode which have the maximum weight Gi. This anticode is

called the second mapped anticode, and is symbolized by

SAC(ms 2 ks

b 6S, ws)’
and is obtained by performing the (MM)g process, on an anticode which is

called the second domain anticode and symbolized as

OL|=(NM)Z=kr
SDAC(mc’ kc’ Gc’ Lpc)’ — SAC(mc-: M- ks: kc+b’ 6s= 6(:’
\US = 1PC'*'kr)
The concatenation 0f the second mapped anticode and the image anti-

code gives the desired linear anticode.
The process (c-1) is the inverse process to that explained in
(c) and (d) and shown by figures (6-6b), (6-7b) and (6-5). The whole

set of processes (a-1), (b-1) and (c-1) can be formulated as:

o aja’
Dyc(ltmy, Ky, 8, U)—FFac(m, K, 8, ) Spc(my, kg 8, )

= AC(m, k; 6: ll’) _—>m(n: k) d) .

1
The symbol —OL]OL— reads o-plus-o prime.
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The resultant AC(m, k, §, V) has parameters as follows:

p
m =(md+1)mr + mS

k=kd+kr
4c‘i— S
=My - O
w=wd+wr

.

As an example, consider the construction of the AC(40, 6, 22),

from the optimum AC(10, 4, 6).

(a-1) The Domain anticode is formed as in Figure (6-8) by

adding an all-zero column to the AC(10, 4, 6), then:

D, (1 * 1y, ksy 85, ¥,) =D,a(1 + 10, 4, 6),

(Domain anticode has wd = 0).

O O O O O O O O o o O o o o O O
HHOORROOHKEKOOHEHTHO O
H O+ o+ oHr o+r o+ O+ O+ O
O+ H OO XK OOMHKKOOMHRMMDO
O 0O HKRERKHEHOOOOHHEKHRHHODO
O OH KB O OOHKOKRHORO
H O OKRrOKRHOKROOMHHO®R RO
O O H OOHKMEKEKOOH®RHKODO
C - O ¥ O O K H OO O R O
H OO+ H OOHrHr OoOHrH - OO H+r H+r O
O O O 0O H H H H H K - H O O O O

Figure (6-8) - Domain Anticode (1+10, 4, 6)
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(b-1) The optimum AC(3, 2, 2) is chosen as the first mapped

anticode. Thus,

11

Frolm., k., 8., V)

FAC(B, 2, 2).

Each of the zero and one elements of the DAC(1+10, 4, 6) are
respectively mapped one-to one onto the FAC(B, 2, 2) = Q, and the
logical complement of this anticode, I. The resultant image anti-

code is shown in Figure (6-9):

s, <22 Q Q Q Q@ @ @ @ Q@ Q
1816 Q Q I I I I Q I I Q
B, @ I @ @I @ I I q I Q
1816 Q I I Q I I Q I I Q Q
2, @ @@ QI I I @ @Q QI
1816 Q Q I I I Q Q Q I I I
1816 Q I Q@ I Q@ I Q@ I Q I I
¥, @ I I @ @ Qq I I I Q I
., @ @ Q@ @ @ @ @ I T I I
1816 Q Q@ I I Q@ I I I Q Q I
1816 Q I Q I I Q I Q I Q I
1816 Q I I Q@ 1I I Q@ Q Q@ I I
1816 Q Q Q@ Q I I I I I I Q
. 0@ Q@ I I I Q@ Q@I Q@ Q Q
., @ I @I @I @ Q I Q Q
20 @I I @ @@ I Q@ I @

Figure (6-9) : Image Anticode (33, 6, 22)
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Hence,
(04 =
DAC(1+md’ kd’ Gd’ wd)_*— FAC(mI" kr: (Sr: IPI.) =
IAC(ml’ ki) 61, wi) .

The image anticode has parameters

my =(rnd+])mr=11 . 3 =233
K =k +k =4+2=6

g 8, =(1+my) .6 =(1+10).2=22
Vi =gt ¥, =0

Thus
o -
Dyo(1 + 10, 4, 6)-—|——FAC(3, 2, 2) = 1,,(33, 6, 22)
The first row of IAC in Figure (6-9) is formed from 11 copies
of FAC(3, 2, 2), thus the first row of the IAC(BB, 6, 22) is the all-

zero row and the 2nd and 3rd and 4th row have weight 6§ = 22. The

remaining rows of the I AC have weight < 18 .

(c-1) The AC(7, 3, 4) is chosen as the second domain anticode,

hence
SDAC(mc:’ kc’ Gc’ wc) - SDAC(-V’ 8, 4)
The second mapped anticode is obtained as,

o '=(B);
Spac(7> 3, 4) ———— §,(7, 6, 4, 3)

The concatenation of this anticode and the image anticode results in
AC(40, 6, 22) as in Figure (6-10). Deleting the AC(40, 6, 22) from
PAC(63, 6, 32) results in an optimum DC(23, 6, 10). The whole process
can be formilated as:
o alja’ =
D,(1+10, 4, 6)+FAC(3, 2, 2) Syc(7, 6, 4, 3) = AC(40, 6, 22)

. o 9
——IC(23, 6, 10) , o' = (M) .
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Q Q Q Q Q Q Q Q Q Q0 0 0 O O 0 O
Q Q I I Q@ I I Q@ I 1 Qo o 1 1 o 1 1
Q I @ I I Q@ I I @ I Qo 1 o 1 1 o 1
Q I I @ I I Q@ I I Q QO 1 1 0 1 1 O
Q Q Q @ I I I @ @ Q I|1 1 1 1 O 0 O
Q @ I I I Q@ @ @ I I 1|1-1 o o0 O 1 1
Q I @ I @ I Q@ I Q@ I 1|1 o 1 0o 1 O 1
Q I I Q@ @ @ I I I Q I|1 o o 1 1 1 o
Q Q Q Q @ I I I 1]/]0O O O O O O O
Q Q I I Q@ I 1 1 I Q I|lo o 1 1 O 1 1
Q I Q@ I I Q@ I @ @ @ 1|lo 1 0 1 1 0 1
Q I I Q@ I I Q@ @ I I 1/0o 1 1 0 1 1 O
Q Q Q @ I I I I @ I Q|1 1 1 1 0 O O
Q @ I I I Q@ Q I I Q Q|1 1 o o O 1 1
Q I Q@ I @ I Q@ Q Q Q Q|1 o 1 o 1 0 1
Q I I Q Q I @ I I Q|1 o o 1 1 1 o0

Figure (6-10) : Compact Inversion of the AC(40, 6, 22). (Every zero
and one in Figure (6-7) is a four-zero column and
a four-one column)

The iterative image stacking process enables the use of data
already available; i.e., the use of already built anticodes to construct
larger anticodes. Hence, using this process, the explicit construction
of the anticodes with dimension > 7 is possible. This method can also

be extended to use the anticodes related to the known optimum codes,

from many sources.
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6.4.6.2 The Generator Matrix of the Iterated Images Stack Anticode

The stacking and Q-1 properties of the parent anticode were
discussed, and were illustrated in Figures (6-3) and (6-5), in
Section 2.1. These properties are inherited from the properties of the

generator matrix of the parent anticode. Thus

Considering these properties and the equation
k
_ :E : i-1
(N—l)2 = rs 2
i=1
of Section 6.2.1., the generator matrix [Q]AC of the iterated images
anticode is as follows:
The first row of the IAC(mi’ ki’ Gi’ wi) of Figure (6-9) is
the concatenation of the mtl copies of the Q = FAC(mr’ kr’ Gr, wr).
The rest are the elements of the first row, stacked due to the elements

of the N'! = (142%)™R (4

o, 1, ..., k-1) rows of the I, which are

AC

exactly the rows of the generator matrix of the DAC(1+md, kd’ 6d’ wd)

where each zero is a Q and each one is an I. Therefore, the first kr
rows of the generator matrix of the IAC are the rows of mtl concatenated

copies of the FAC(mr’ k Gr, wr). The rest are the rows of the

r’

generator matrix of DAC(1+HH’ kd,

mapped into the m = 3 zero row and each one element is mapped into

éd’ wd) where each zero element is

= 3 ones. The concatenation of the resultant generator matrix with

the generator matrix of the SAC(mc’ k

» dc’ wc) is the generator matrix

[G] ¢ of the AC(m, k, 6, ¥).
As an example, consider the generator matrix of the

AC(40, 6, 22) of the previous section.
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The component generator matrices are

0011011011 0]
[] J101]_, &[G} Joto11011010
Bes | 1 4 Q Do |OOOO0O11100071
0000000111 1|
and

00000 O O ]

000O0O0GOO

[G] _ 1010101

Sac 0110011

0001111

| 0000000

Therefore the generator matrix of AC(40, 6, 22) is,

G |GG 1G.|G.1G.IG.|G.IG.|G.|G_|[o000000]

al ~a|~a | Ya Y| Yo ¥a | ¥a[Pa| Ya| Ya|0000000

000|000| 1'11{111/000(111{111/000[111[111/000[1010101
[G]: 000|111/000| 111{111/000| 11111 [000|111{000[O1 1001 I
000|000/000|000| 1 1|1 11|111(000/000[000/ I 110001 111
000/000/000|000/000/000[000|000| 1 1 1]111]111]0000000

The generator matrix of DAC and SAC has no repeated columns. Thus the
resultant AC(m, k, &, ¥) has no repeated colums. This can be easily

verified for the above [@]AC.

6.4.7 The Cofumn Reginement Process

An AC(m, k, 6, ¥), constructed by the processes explained in previous
sections, if it does not meet the desired parameters; that is,does not have
parameters equal or nearly equal to those parameters defined by the

functional relationships between the anticode parameters known as bounds;
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it is either not constructable, or the columns of this anticode have
not been suitably chosen. To obtain an optimum or a near-optimum
anticode from this anticode, it can be refined (reconstructed) by
simultaneously extending and puncturing (or in the reverse order)
the colums of the constructed anticode. As an example, consider the
construction of AC(10, 4, 6), from the non-optimum constructed
AC(10, 4, 7).

The AC(10, 4, 7) has the weight distribution vector [}q and

construction as

I o

Ol0O O O 0

oOlo O 1 o

Q Q OlO0O O O 4
olo o 1 8]

110 1 O 5

Q I 1 O 1 1 6
110 1 O 5

1]l]o0 1 1 6

~[W|=

o1 1 1 AC 3

Q Q 0] 1 i | 0 6
; i1 1 1 7

011 1 O 7

111 o 1 6

111 0 O S

Q I 1|l1 o0 1 6
111 0 O 5 |

where Q = AC(3, 2, 2) and I is the logical complement of the
AC(3, 2, 2).

If the columns indicated by arrows are deleted, and the anticode
is simultaneously extended by the same number of ‘columns but different
and suitable columms, those of types { 13, 14, 15} , the optimum

AC(10, 4, 6) is resultant, as follows:
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1
J

©O O O O |OoO o o o
Bl R ) 0 o » O

1 AC | 3
1 6
Q| a | 1| 6
1 6
1 3
1 6
Q| I | Q | i
1 6

Arother example is the refinement of AC(144, 8, 77). The AC(144, 8, 77)
gives the DC(111, 8, 51). The values (50 - 54) are the values of the

lower and upper bound for the minimum distance d of the DC(111, 8, d).

The AC(144, 8, 77) can be extended as:
AC(144, 8, 77) + 3 colum types {158, 173, 179 } = AC(147, 8, 78).

The AC(147, 8, 78) can be punctured as
*
AC(147, 8, 78) L3 colum types {25, 70, 128}' = AC(144, 8, 76)

~ DC(111, 8, 52) .

Thus the minimum Hamming distance of the DC(111, 8, 51) has been
increased by one. The process of the refinement of a non-optimum
anticode by simultaneously extending and puncturing or vice versa, is

identical to the puncturing and extending of the related deletion code.

* The symbol 2 reads D-minus.
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6.4.8 The Explicit Derdvation of the Anticode Weight Distribution

The Q-1 property of each colum of an anticode, is used to
enumerate the weight distribution of an anticode, and thus of the
related code.

Each column of the generator matrix [ﬁ]AC can be spanned, by
using this property; i.e., fhe first two top elements of each column
in BﬂAC are spanned into a 4-tuple colum in the anticode. This
4-tuple colum is stacked with respect to the 3rd element of the
related colum in the Ei]AC' The resultant 8-tuple colurm again will
be stacked with respect to the 4th element of the related colum in
EﬂAC’ to give a 16-tuple colum in the anticode. This process of
stacking is continued to the last element in the related colum in
BﬂAC’ and the number of stackings will be k — 2. Therefore, instead
of spanning the row space of the EﬂAC’ by finding m.2k different
linear combination of the colums, which for a fairly big k needs a
large anount of computation time, it can be done simply by stacking
each colum as explained and find the weight shape of the colum in
the anticode weight distribution. For each colum there are (k - 2)
stackings, and a total of m(k - 2) stacking operations, which is a

big reduction in computation time.

6.4.9 The Anticode Complementary Computer Seaxnch

The anticode construction methods for obtaining deletion error
correcting codes, from the related parent anticode, were studied in
previous sections. It was shown that the anticode construction process
previously described has the advantage that the data already available
concerning the parameters, and construction of the anticodes and codes
can be used to construct many anticodes with large dimension. If the
constructed anticode is not optimum or near optimum, the anticode can

be refined by using simultaneous extension and puncturing processes,
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which results in an optimum or near optimum anticode. The process of
refinement of a non-optimum anticode can be performed in many different
ways, explained as follows:

(a) A non-optimum anticode might be optimized by deleting
unsuitable colums of this anticode to obtain an optimum or near-
optimum shorter anticode. We attempt to delete as few columms as
possible, but at the same time to reduce the maximum distance § of the
anticode as much as possible. This is equivalent to the addition of as
few colums as possible to a code, but at the same time to increase the
minimum distance d of the code as much as possible.

(b) A non-optimum anticode may be extended by adding suitable
colums. We attempt to add as many colums as possible, which increases
the maximum distance § of the anticode as little as possible. This is
equivalent to deleting as many columns as possible from the code, which
decreases the minimum Hamming distance d of the code as little as
possible. From Section 6.3.4.1, the suitable colums in both cases
(a) and (b) are the colums which have weight attribute opposite to the
anticode weight attribute.

(c) An optimum anticode constructed by the processes described
in the previous section, or other suitable anticodes, may be extended
or shortened, to obtain other optimum or near optimum anticodes with
different parameters.

It was possible to write a camputer programme in the Fortran IV
language, to implement on an ICL 2960 machine, in order to refine in
different ways, theAexisting anticodes constructed by the previous
methods, being either optimum or non—optimum. The programme is based
on the Q-I and stacking properties of the columns of the generator
matrix of the anticode and also the explicit derivation of the anticode

weight distribution. These provide a fast procedure for the choice of
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the most suitable colums of the parent anticode, excluding those of

the anticode being refined.
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CHAPTER VII

FURTHER PROPERTIES OF THE LINEAR BINARY ANTICODE AND
LINEAR BINARY ANTICODE CONSTRUCTION RESULTS

7.1 Anticodes and Codes-related Search Facilities

In the selection of an anticode, alternative anticodes may be
compared on the basis of various probabilistic measure of the
performance of the related codes. In the process of comparison,
knowledge of some common properties of the anticodes which are being
compared may be useful in narrowing the search for the best selection
of anticodes (codes) among the others. When comparing anticodes with
the same parameters m and k, the optimality of one with respect to the
others may be defined in terms of the performance of the related code,
as the one having the smallest average probability of error. In the
classification of anticodes the relation '"are combinatorially equiva-
lent'" partitions the set of anticodes (also the related codes) into
equivalence classes. Each equivalence class consists of the anti-
codes which are combinatorially equivalent, therefore the related
codes are in the same equivalence class and have the same performance
(for random errors). Hence only one anticode (code) in an equivalence
class is compared with each one selected from other equivalence classes.
Although the properties of anticodes are opposite to those of related
codes, any property of an anticode has a corresponding opposite property

in the related code, and vice versa.

7.1.2 Equivalent Anticodes and Related Equivalent Codes

An anticode is an iterated subspace of a vector space. There-
fore, it can be formed, spanning the rows of its generator matrix [G] AC?

K
by premltiplying with the 2" * k matrix [M]" of Section 6.2, i.e.

[MO]T . [Glc = ACm, K, 8, V).
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If [MO_]T is multiplied by a(k X k) non-singular matrix (elementary
colum transformation matrix, see Section 2.9 ), [S] , since the 2k

rows of [MOjT are different then the resultant matrix,

T
B] = ]
is the same as matrix [MO_JT, where the rows have been rearranged

(permuted). Thus

1" . ) = [ Dbl

In the case of linear codes the elementary row transformation matrix
[A] was called by Fontaine & Peterson (1966) A-permutation matrix.

The parent anticode [CO—_I , (without loss of generality the
parent anticode [C] excluding the all-zero row is being considered
in this section) is the row space of the generator matrix [M], spanned
by the matrix EVI]T

The effect of A-permutation on [MO—JT or, identically, on

[M:[T, has the same effect on the rows of [C_], i.e

B . k)= . 6. 0.

If both sides of this equation are multiplied on the left by the A-

permutation matrix [P] where [P] is chosen to be,

Bl . M7 =" . 0] aa [@=0F17"

then

..M. ET

|
et
=
P)
OL_J
M
e
—
Il

- [M]T (& . o?)
- & . (0" @)
-00" . ® (W [M])

Eij B FY M-
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Since [P] is a non-singular matrix, then [P]T = [P—l_"], and

e =) . ®l .
From this equation it is evident that row permutation on the parent
anticode, or alternatively, multiplying the matrix [Cé] on the left
by a permutation matrix [A], results in a related A-permutation [P]
on the columns of the parent anticode B%J, and vice versa.

In the study of equivalent anticode we consider two cases.

7.1.2.1 The Column Equivalent Anticodes

Consider the AC(m, k, §, ), rearranging the columns of
this anticode, or alternatively multiplying the generator matrix
EﬂA(:of this anticode on the right by a permutation matrix [T],
gives:

(&) por = [Glpc - [T
The matrix [G], . is the same as [G],., except that the colums have
been rearranged. Therefore the same colums will be generated by
[G] \op as well as by [G] \o- Hence identical colums will be deleted
from the parent anticode and the resulting codes are the same,
(opposite to definition for codes).

As an example, consider AC(3, 3, 2, 1) generated by

O
= O
-

EﬂAC =

@)
O

then

[MO]T . Gy = = AC(3, 3, 2, 1)

= O +H O +H O = O
H H O O = = O O
O » Br O O R +H O
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If the generator matrix [G] AC is multiplied by the permutation matrix

010
[Tl = |1 0
0O 0 1
Then,
1 0 1 010 01 1
Gy - @=]0 11 1 0 =11 6 1= [6],
O 0O 0O 0 1 O 0 O
Therefore
O 0O
g 1 1
1 0 1
T i 10
M1 . [d] = = AGL(3, 3, 2)
o) ACT 00 O C'1‘
0O 1 1
1 0 1
11 0

AC(3, 3, 2) and ACT(B, 3, 2) have the same columns, but in different

order and therefore have the same modular representation matrix [N]

aS,
M. = [1, 1,1, 0,0, 0, o]
N -
L1 [1, 1, 1, 0, O, o,o]

Thus the modular representation matrices of the related codes are

the same, 1i.e.

[N]DC [o, 0,0,1,1, 1, 1]

(] - [o, 0,0, 1, 1, 1,1]

DCT

Also, the weight distribution matrix [w] AC and [W:] Acs are the same,

[y = [o, 2,2, 20,2 2, 2]
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and
Mt =]o0,2 2 2 0 2 2 2
ACI‘ b b b ) b b b :
(Note: all-zero anticode words are included),
which are identified by

e = Wyep = QN

7.1.2.2 Row Equivalent Anticodes

Consider the AC(m, k, §, ¥), rearranging the rows of the
generator matrix of this anticode, or alternatively multiplying the
generator matrix [G] ac Of this anticode on the left by a non-singular

matrix [S], gives

[G:I ACS ~ [S:I . [G] AC

The anticode generated by [G] can be formed as

ACS
M. [Gyg= MT. 6. [dye

From Section 7.1.2,

MT . 5= @ . M
Therefore ‘_
M7 . [l = [ . M7 €,

vhere [A] is a (2k—1) X (2k -1) row permtation matrix. From this
equation it is evident that the rows of the anticode generated by
[G] ACS 2Tre the same as those of the anticode generated by [G} AC’
but with different order, thus with different columns. Therefore,
two different anticodes which result in two trivially different codes
(again, an opposite property).

From the above equation it is also evident that the weight

distribution vectors [W] AC and [W] ACS 2re related, as

[W] ACS [A] . [W] AC
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Therefore the two weight vectors are related by the matrix [A].

The modular representation matrix [N] Acs can be formed as

[N]XCS -+ . Wpcs = @™ . [ . W] pc =
R W= E I i

Thus the modular representation [N], . is the same as
[NJ AC? but with a related element permutation. As a simple example,

consider the AC(3, 3, 2, 1)of the previous section:

0O 0O

101

1 01 011
Glc=]0 10 AC(3, 3, 2,1)= 1 1 0
0O 0O 0O 0O

1 01

01 1

110

If the generator matrix [G] AC is multiplied by the non-singular

matrix [S], where

0o 1
[s=10 1 0
100 ,
then
0O 0 1 1 01 0O 00
[Glpyes = [B] - [Elc=]0 1 O o011~ ]o0o11
100 0 0O 101

The row space of the matrix [G:] ACS is formed as follows:
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0 00O
0 0O
011
[MO]T.[G]ACS = 0 1 1 = AG(S3, 3, 2)
101
101
110
110

The AC(3, 3, 2,1)and ACS(3,3,2, 1) are formed from different colums,
hence these two anticodes produce two different codes.

The generator matrices of the two anticodes AC(3, 3, 2, 1) and
ACS(S, 3, 2,1 are different, so the modular representation and weight
matrices are different but related by the A-permutation matrices.

Since

W-p' - Mt E,

and
K 1
[8] = 10
1 0 0

it is readily verfied that,

e © 0O OO0 = O
©C = O O O O O
O O O O O o+
o O W O 0O O O
O O 0 O r OO0
Ib—‘ Qo O 0 O OI

0)

)

0]
[Al=1]1
0]

(0]

_O

The weight matrix of the ACS(3,3, 2,1) can be formed as

T
W lpes = [A] - W] o then [W ]yg= [o, 0,2, 2,2, 2,2,2]
The modular representation matrix of the ACS(B, 2, 2) can be formed

as:
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Ny = B [N,

where

Pl M7= pMT M. %]

Since

EH=[E=M, tas [ =4,

(Note, for the sake of simplicity [S] has been chosen such that
571 = ).

Therefore

[ M, and

[o, 1,0,1,0, 1, o] .

[N] 3

NI s

Since the modular representation of the related code is the logical

complement of the [N], o then

[N]DCS = [1, 0,1, 0,1, 0, 1}

This means that a row operation on the generator matrix of an
anticode, or alternatively, multiplying the generator matrix of an
anticode on the left by a non-singular matrix, results in an identical
related permutation [A] on the weight distribution matrix of the anti-
code and related code. Also an identical related permutation [P]
results on the modular representation of the anticode and related code.
However, columm permutation of the generator matrix of an anticode
affects neither the weight distribution matrix, nor the modular
representation matrix. This leads to the conclusion that equivalent
anticodes and related equivalent codes share the same permutation
property when an elementary row operation is performed on the generator
matrix of the anticode. Also, if the modular representation and weight
distribution matrices of two anticodes, or the corresponding codes are
related by an A-permutation matrix they are in the same equivalence

class. An interesting result may be the use of this correspondence
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when considering the equivalence classes of a code. Since
Do + My = Dppc » thus the one will be considered which has the
smallest value of N OF My, where e and myc are block length of

the deletion code and related anticode.

7.1.3 Maximum Distance Bounds for Linear Anticodes

The maximum Hamming distance of a linear anticode is an
important parameter for evaluation of the performance of the related
code. Thus it is quite useful to know the ultimate value of the
maximum distance for a certain block length and the dimension of an
anticode. These values have been given in the form of a functional
relationship between the anticode parameters, m, k and §. These
relationships are in the form of bounds which relate any one of the
given parameters in terms of the remaining two.

Since the iteration degree Y of an anticode has no effect on
the maximum distance, the bounds are considered for anticodes having
Y = 0, alternatively anticodes of no repeated colums; thus k = ko.
A linear AC(m, k, 6, ¥ = O) is a linear subspace Vk of the vector
space V_ of all the m-tuple vectors over GF(q). Thus, if X be an
anticode word then the number of words in Vﬁ which are exactly at a
distance d fram x is the number of resulting vectors, when all the

vectors of weight d are added to vector X which is,
m d
(-1

The total number of words of Vm which are at distance § + i where

i=1,2, ..., m- & from x nust be
m §+1 m §+2
(g412(a - 1) + (g0l = 1) ¥ guue F
m

@ - D" = Z M@ - 1

i=0+1
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This is the number of vectors that are at the distance greater than §

fram x and they cannot be in Vi

Since there are |Vkl anticode words, then the total number of

= AC(m, k, §).

possible vectors of Vﬁ which are at distance greater than § and are

excluded from Vk = AC(m, k, §) are

m

|V, | D M-t

i=d+1

But, in general this number will be greater than all the absent
vectors in Vk.

For an anticode word X we may have excluded a vector §'E£Vh
because of a distance 6+i away from §} but for a different anticode
word 'E'E.Vk we could have excluded y on the basis of being 8+j away.
Thus, it reveals that the number of vectors of anticode AC(m, k, ¢)
and calculated number of vectors which are absent is greater or equal

to V , SO

| 1Z(>(q—1> v

i=6+1
and
m
1+ Z M- 1 5 Ll
: | Vk|
i=6+1
but
‘Vkl - qk afd Vﬁ - qm
m
Then qm—k -1 < Z (?)(q - 1)i

i=d+1
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Using the following inequality (Peterson & Weldon 1972, Appendix A,

Park 1969):

m

om n
DD w ™
i=m)\

where A >—é— and also p=1- X and m > 1. Then, for the binary

case we have

Ty « (m_“_(_ﬂ_).>_[m_(6+1)]. (ﬂ)—(éﬂ) _ mH(T)

m m

1f 2%K 55 1, taking the logarithm of both sides, we have

m=k < mﬂ(%)

or 0 < m-1|

k 6+1
1-g <EHGD

where H (6—;;1) is the entropy function of (§;—1) . This inequality

provides a lower bound on the ratio of min-maximum distance § over
the length m of any anticode.
This bound, with a different derivation procedurg, was also
found by Hashim (1974). Farrell (1969) has established a lower bound
/
on the min-maximum distance of an anticode, by taking into account the
fact that the min-maximum weight ¢ of any anticode AC(m, k, ¢) is

greater or equal to the average weight of the anticode words:

k-1
mac (@ -1)/-1 ¢ 8

This can be written as

k
m, q
S > (@ -1) e

q -1
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since qk/qk - 1 is always larger than and near to one, then
§ » Myg-1
g (@ )

and for the binary case q = 2, so

o
\%
| B

which is a Plotkin-like bound. These bounds are plotted in Figure

(7-1).

=l

o
)

0 0.1 0.2 0.3 0.40.5 0.6 0.70.8 0.9 1.0

8
m

J Bound of Section 7.1.3

C) Farrell, Plotkin-like Bound

Figure (7-1) : Anticode Bounds
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7.1.4 The Binary Anticode Comstruction Result

Using the methods described in the previous chapter, it was
possible to construct linear binary anticodes for 7 < k < 10. A
few small dimension anticodes (k < 7) have been chosen from the
previously found anticodes by Farrag (1976) aé the unit anticode
in the construction of bigger dimension anticodes; these are marked

by the symbol ' * ' whenever they are used.

Although it would have been possible to use anticodes
related to optimum codes from various other sources, in fact only
anticodes which have been built up from unit smaller dimension
anticodes have been used. Thus the unit optimum anticode con-
struction is important in the sense that it enables construction of

a large number of other optimum or new optimum codes.

The unit anticodes used as the basis for the construction of
the bigger dimension anticodes are given in this section, by the
set of colum types of their generator matrix. The anticodes
constructed with the previously explained processes are introduced
by means of the same formulation as in Sections 6.4.6. and 6.4.7.
The newly built deletion codes related to these anticodes are

symbolical as:-

AC(213,8,112) —— | DC(42,8,16)
(16-18)

The subscripts in the parenthesis (16-18) are the values of the lower

and upper bound for the minimum distance d of the DC(42,8,d), given by
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the table of Solomon & Stiffler (1973). However, the range of the
table is restricted to 1l {n <127 and 1 < k < n . Thus for n > 127
the subscripts have been evaluated from the Griesmer upper bound of
Section 5.2 on the minimum distance of a linear block code over GF(q)
by means of a simple computer programme. A single value subscript
means the constructed code has the same value as predicted by the bound,
whereas a double value (n > 127) subscript means that the right hand
value is the upper bounded value of minimum distance given by Griesmer
and the left hand value is the actual distance of the constructed code.
If the results of two different construction processes give the samé
anticode, the processes are shown to be the same by the symbol <——
The results of the linear binary anticode constructions for 7 < k <10

are given as follows:

The generator matrix of the AC*(21,5,12) consists of columm
types{ 1-2, 4-7, 9-12, 16-17, 19-23, 25-28 }and has min distance
d = 8.

The generator matrix of the AC(3,2,2) consists of column types
{1, 2, 3 }

The generator matrix of the AC(15,4,8) consists of column

typ%{ 1 - 15} . Therefore,

Q aja’ ”
D,(1+21,5,12) =|-F,.(3,2,2) 8,0(15,7,8,3) =

AC(81,7,44) —=[0C(46,7,0) oy 51y o1 = (a)?
O

AC(81,7,44) + colum types {17, 19, 34, 53, 64, 68} =

AC(87,7,47) ——>IDC(40,7,17)(16_18)

AC(81,7,44) + colum types {17, 19, 34, 53, 64}-5

AC(86,7,44) —»IDC(41,7,17)(16_18)
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AC(81,7,44) + colum types {19, 34, 53, 64} -

AC(85,7,46) —> [DC(42,7,18)
(17-19)

AC(81,7,44) + colum type {64} =

AC(82,7,44) —> fDC(45,7,20)(20)

% ;
The generator matrix of the AC (36,6,20) consists of colum
types {3, 5-7, 9-14, 17-22, 24-26, 28, 33-38, 40-42, 44, 48-50, 52,

56, 63 } , and min distance d = 16. Therefore,

* (MI)(]? X
AC (36,6,20) > IDC(36,7,16)—>- AC(91,7,48)

AC(91,7,48) + colum types {67, 81, 74, 71} =

AC(95,7,51) —> |DC(,32,7,13)(12_14)

The generator matrix of the AC*(48,6,26) consists of column
types {3—7, 9-13, 15-21, 24, 26, 29-31, 33-46, 48-49, 51-57, 59,
61—62}

The generator matrix of the AC(63,6,32) consists of column

types {1 - 63} . Therefore,

a ala’ _
DAC(1+48,64,26)——I— F\o(3,2,2) $)c(63,6,32) =

AC(210,8,110)—»IDC(45,8,18)(18_2O) o' = a2

AC(210,8,110) + column types {5, 33, 65} =

AC(213,8,112) —s- IDC(42:8:16)(16—18)

The generator matrix of the AC(45,6,24) consists of column
types {3, 5-7, 9-13, 15-21, 24, 26, 29-31, 33-46, 48, 51-52, 54-57,
59, 61—'62}

o ajla' _
DAC(1+45,6,24)—L FAC(3,2,2)—|-— SAC(63,8,32,2) =

AC(201,8,104)—>|DC(54,8,24)(24) o' = (MM)g
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o oo’ _
DAC(1+45,6,24)——{—FAC(3,2,2) SAC(48,8,26,2) =

AC(,186,8,98)—-»[DC(69,8,30)(30_32) a' = (MM)

o ajo’ _
D,(1+40,6,22)—} F)n(3,2,2) = 5,0(63,8,32,2) =
AC(186,8,98) —— DC(69,8,30)

Where the generator matrix of the AC(40,6,22) consists of
column types {1—8, 16-19, 21-24. 29-35, 37-40, 45-47, 49-51, 53-56,

61-62 }

Q oo _
D,(1+45,6,24) %} F,(3,2,2) 2% 5,0(45,8,24,2) =

AC(182,8,96) — 'DC(72,8,32)(32_33) a' = ()’

o ofa’ _
DAC(1+45,6,24)——+-FAC(3,2,2) SAC(41,8,23,2) =

ﬂ AC(179,8,95) —» IIIJ(76,8,33)(32_35)

AC(174,8,92) + column types {7, 8, 10, 33, 64 } = AC(179,8,95)

o ajo’ _
Dy(1+45,6,24)- 2L F, (3,2,2) 5,0(40,8,22,2) =

H AC(178,8,94) —>|D0(77,8,34)(33_36)

AC(174,8,92) + colum types {7, 8, 10, 33, 64} = AC(179,8,95)

AC(179,8,95) 2 colum type {126 } = AC(178,8,94).

AC(174,8,92) + column types {6, 9, 60 } AC(177,8,94)

——>|DC(78,8,34)(34_36)

o oo ok _
Dp(1+45,6,24) 2L F, (3,2,2) A& s%.(38,8,21,2) =

AC(176,8,93) —>|DC(79,8,35)(35_37) ! = (MM)CZ)

a ala! _
D,(1+45,6,24) 2} F, (3,2,2) H& 5,,(37,8,20,2) =

AC(175,8,92) _>|DC(80’8’36)(36—38) o' = (M)

o
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* o ajo' o* _
DAC(1+37,6,20)—+—FAC(3,2,2)—+—SAC(51,8,28,2) =

AC(165,8,88) ——IDC(90,8,40)(4O_43) @ =

D] + (MD)7
AC(82,7,44) ~AC(164,8,88)

AC(164,8,88) + colum type {128} = AC(165,8,88)

o aja' * _
D,(1+37,8,20) =} F,(3,2,2) ~}* 5,0(49,8,27,2) =

AC(163,8,87) — |DC(92,8,41)(4<>44) o

o, aja’ _
DAC(1+37,8,20)—-|—FaC(3,2,2)+ 5p0(48,8,26,2) =

AC(162,8,86) — IDC(93,8,42)(41_44) Q' =

Q. aja’ _
DAC(1+37,8,20)—+FAC(3,2,2)—|— 5,0(46,8,25,2) =

AC(160,8,85) —» |DC(95’6’43)(43-46) o

a ala’ _
DAC(1+37,6,20)—|—FAC(3,2,2) Spc(45,8,24,2) =

AC(159,8,84) — IDC(96,8,44)(44_46) o =

o alo’ _
DAC(1+37,6,20)—{—FAC(3,2,2) 5,0(37,8,20,2) =

AC(151,8,80) -—>|DC(104,8,48)(48_50) ol =

AC(147,8,78) + colum types {169, 198, 239} -

AC(150,8,79) —>|DC(105,8,49)(48_51)

AC(150,8,79) £ colum type {128} =

AC(149,8,78) _’IDC(-106’8’5O)(48 52)

The generator matrix of the AC(1+7,4,4,1) consists of colum
types {1 -7 } ;
The generator matrix of the AC(15,4,8) consists of column

types {1 - 15} . Therefore,

(MM)

(MM)

(MM)

onm)?

(M)
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o ala' _
DAC(1+7,4,4,1)——1— F\(15,4,8) Syc(15,8,8,4) =
AC(135,8,72) — DC(120,8,56)

AC(135,8,72) + colum types {129, 130, 132, 133, 135, 136, 140,

254, 255} = AC(144,8,77).

AC(144,8,77) + 3 colum types {158, 173, 179} = AC(147,8,78)

o oo’
DAC(1+37,6,20)—+FAC(3,2,2)+ SAC(33,8,19,2) AC(147,8,78)

AC(147,8,78) 2 colum type {128 } -

AC(146,8,77)—-—>IDC(109,8,51)(5O_53)

AC(147,8,78) colwm{types 25, 70, 128}5

AC(144,8,76)—>|D0(111,8,52)(50_54)

AC(135,8,72) + colum types {129, 30, 132, 136, 15} =

AC(140,8,75) -——->IDC(116,8,53)(52_55)

AC(140,8,75) 2 colum type {128} = AC(139,8,74)

— IDC(116,8,54)(53_56)

Qo ofa’ =
DAC(1+7,4,4,1)——|—FAC(15,4,8) Spc(15,4,8,4) =

A . .
AC(135,8,72)——-—IDC(120,8,56)(56_59) ol = ()]

o] ala’ -

DAC(1+3,3,2,1)——{—FAC(31,5,16) 8,c(7,8,4,5) =
_ . .
AC(131,8,68)——>|DC(124,8,60)(60_61) at = (>

o a |

D,o(1+31,6,16,1) 2} F, (3,2,2) & 5,.(31,8,16,2)
’ _ 2
AC(127,8,64) —>|DC(128,8,63)(63) ol = ()2

(M)J

AC(85,7,46) ———AC(85,8,46,1)

_>|DC(17O,8,82)(80_84)
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()]
AC(86,7,47) ——— AC(86,8,47,1)

———>|DC(169,8,81)(80_83)

(MM)7
AC(95,7,51) ———— AC(95,8,51,1)

_..IDC(,160,8,77)(76_79)

()7
ACCBT,7,47) ———— BC(B7,8.47,1)

——»IDC(168,8,81)(80_82)

* o oja’ =
DAC(1+108,7,56)—fFAC(3,2,2)—'— 8,o(127,9,64,2) =

AC(454,9,232)—"’IDC(57’9’24)(24—26)

o ala’ -
D,(1+45,6,24)-HF, (7,3,4) 5,,(63,9,32,3) =

AC(380,9,200) ——>|DC(126,9,56)(56_61)

* o ala’ _
DAC(1+85,7,44)—}FaC(3,2,2) 8,0(127,9,64,2) =

AC(376,9,196)—>|DC(135,9,60)(60 64)

* Q. alja! _
DAC(1+79,7,42)—+FAC(3,2,2) S(63,9,32,3) =

AC(303,9,158) "_’IDC(208’9’98)(98—102)

a!

11

* o o
D AC(1+75,7,40)—|- F,(3,2,2) 8,0(63,9,32,3)

AC(292,9,152)——-IDC(219,9,104)(104 108)

* Q alo’ _
DAC(1+71,7,38)—{-FAC(3,2,2)-—‘—— 5,0(63,9,32,3) =

AC(279,9,146) —>|D0(232,9,110)(110_114)

* o alo’ _
D, (1+67,7,36) 2} F, (3,2,2) + 5,0(63,9,32,3) =

AC(270,9,140) —» |DC(241,9,116)(116_120)
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o ajao' _
DAC(1+7,4,4)—|—FAC(31,5,16) 8pc(7,9,4,6) =

AC(263,9,136) —» IIIJ(248,9,120)(120_123) &

o oo’ _
DAC(1+3,3,2)-—|—FAC(63,6,32) Spc(7,9,4,4) =

AC(259,9,132) —» |DC(252’9,124)(124-125) *

Q alja!’ : =
D,o(1+3,3,2) 2} F, (56,6,30) 4 5,0(3,9,2,7) =

AC(227,9,120,1)-—IDC(284,9,136)(136_14O) &

(M)
D,(213,8,112) ———= AC(213,9,112,1)

e IDC(,298,9,144)(144_147)

o oo’ =
DAC(1+48,6,26)—|-FAC(3,3,2,1) SAC(63,9,32,3,1) =

AC(210,9,110) —>- IDC(301:9’146)(146—148)

o oot _
DAC(1+45,6,24)——l—FAC(B,B,Z,l) SAC(63,9,32,3) =

AC(201,9,104,1)->-|DC(31O,9,152)(152_153)

Q ajo' _
D,(1+45,6,24) = F,~(3,3,2,1) 4% 550(48,9,26,3) =

AC(186,9,98,1) —»—

DC(325,9,158) (158 160

a ala® -
DAC(1+45,6,24)—{—FAC(3,3,2,1) 5,0(45,9,24,3) =

AC(183,9,96,1) —>-|DC(328,9,160)(160_162)
o, ala’ _
D,(1+3,3,2) 2-F, (45,6,24) 5,0(3,9,2,7) =
AC(183,9,96,1)

Q o4 [okd _
DAC(1+45,6,24)—|- F,(3,3,2,1) 8,c(41,9,23,3) =

AC(179,9,95,1)—->-|DC(332

Q oo’ _
D,(1+45,6,24)2-F, (3,3,2,1) 5)0(40,9,22,3) =

AC(178,9,94,1) _"IDC(331’9’162)(162—164)

9,161) (161-164) ©

= (MM)J

= ()3

= (MM)l

3

= (o]
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o o [a’ _
DAC(1+45,6,24)—+FAC(3,3,2,1) SAC(38,9,21,3) =

AC(176,9,93,1) —»IDC(S 35,9,163) (163 166)

Q. ala' .
DAC(1+45,6,24)+FAC(3,3,2,1) 8,0(37,9,20,3) =

AC(175,9,92,1) —»IDC(336,9,164)(164_166)

(M) '
AC(166,8,88) ———— AC(166,9,88,1)

e m(345,9,168)(168—171)

Q oL fout _
DAC(1+40,6,22)—|—FAC(3,3,2,1) —— 8,0(40,9,22,3) =

AC(163,9,88,1) — [DC(348,9,168) 150 1709

o ala’' -
D,(1+3,3,2,1) 2} F,(40,6,22) -4 5,0(3,9,2,7) =

AC(163,9,88,1)

(MM)J
AC(162,8,86) ——— AC(162,9,86,1)

— |DC( 349, 9:170)(170—173)

(Mv)3
AC(160,8,85) ———— AC(160,9,85,1)

—— IDC(351,9,171)(171-174)

(M)7
AC(159,8,84) ——— AC(159,9,84,1)

S |Dc(352,9,172)(172-175)

o a [af
DAC(1+3,3,2,1)—+FAC(37,6,20) ‘{_SAC(3,9,2,7) =

AC(151,9,80,1) ->-|DC(360,9,176)(176_178) o = ()

Comn3
AC(151,8,80) ——— AC(151,9,80,1)

()7
AC(150,8,79) ——— AC(150,9,79,1)

— |DC(361,9,177) 177_179)
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o, ofo! _
DAC(1+108,7,76)—}—FAC(3,3,2,1) 8,c(127,10,64,3) =

AC(454,10,232,1)—DC(569,10,280) gy 95y @' = a3

[0} aoja! _
DAC(1+82,7,44)—|—FAC(3,8,2,1) 8,c(127,10,64,3) =

AC(376,10,196,1)—>| DC( 647,10,316)(316_320)

o, ala' : _
DAC(1+7,4,4,1)—+FAC(31,6,16) SAC(15,1O,8,6) =

AC(263,10,136,1)—|DC(760,10,376) 576 570,

o ala! _
DAC(1+79,7,42)——|—FAC(3,3,2,1) S,c(63,10,32,4) =

AC(303,10,158,1)—>|DC(720,10,354)

o alo’ -
DAC(1+71,7,38)—|— F,(3,3,2,1) 5,0(68,10,32,4) =

AC(279,10,146,1)— DC(744,10,366) 555 370

[0 alo! _
DAC(1+67,7,36)—}- FAC(3,3,2,1) —*— SAC(63,1O,32,4) =

AC(270,10,140,1 )—»l DC(753,10,372)  375_376)

Q oot _
DAC(1+3,2,3,1)—{—FAC(63,7,32)—{—SAC(7,10,4,7) =

AC(259,10,132,1)—|DC(764,10,380) 5351 g1

) alo! _
DAC(,1+31,6,16)—f—FAC(7,4,4,1) 4 5, (31,10,16,5) =

AC(255,10,128,1)—-|DC(768,10,384) ¢,

o] ¥ aja’ -
DAC(1+3,3,2,1)—+FAC(56,7,30) 5)c(3,10,2,8) =

AC(227,10,120,1)—|DC(796,10,392) 599 395

‘ ()
AC(213,8,112) ~AC(213,10,112,2)

__.IDC(810,10,400)(400_403)

a aja’ —
D,(1+48,6,26) 2} F,(3,4,2,2) 5,0(63,10,32,4) =

AC(210,10,110,2)—>|DC(813,10’402)(402—404)
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o ajo’ -
u»oﬁim“m.mb*w»oa.».mvmv 5,0(63,10,32,4) =

AC(201,10,104,2) lY_ooAmmNLo,»omonm.»oS

o ajo! =
o»oﬁim.m,mbl_é»oa.ﬁm,val 5,c(48,10,26,4) =

AC(186,10,98,2) —= _uoﬁmmﬁupﬁéﬁﬁ?ﬁmv

(M)J
AC(183,9,96) ~ AC(183,10,96,1)

S _uoﬁmpopo.ﬁmxﬁm,tmv

o ala! _
U>O:+¢m,m,mmv.I_..m‘boa,»,w,wv m»ogmho,m»v»v =

AC(182,10,96,2) —» _ooAmﬁLomeﬁmlﬁmv

o oo’ -
U%Gta“m.mbI_lﬁoa}m.mv S)c(41,10,23,4) =

AC(179,10,95,2) —»— _ooAm&Lo,ﬁd&:$8v

o aja’ -
u»oﬁﬁmbbban»oa.ﬁm,mv 8,c(40,10,22,4) =

AC(178,10,94,2) —s— _ooﬁmgho.ﬁm:ﬁml»mov

o oo’ _
U»Octavm.w»vlf m,boﬁw.»vm.mv mboﬁwmvuo,mff =

AC(176,10,98,2) —= [DC(847,10,419) 410 409,

o ala' -
u>o:$m,m,w$|+m>oa}m.5 8,0(37,10,20,4) =

AC(175,10,92,2) —= [DC(848,10,420) 4o, 490,

(M),
AC(166,8,88) ——————— AC(166,10,88,2)

S _ooamﬁpo,»m&&w?ﬁd

()
AC(162,8,86) ———— AC(162,10,86,2)

- _uoaﬁ ,10,426) (405 400)
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(M)
AC(135,8,72) — AC(135,10,72,2)

————»lDC(376:1O»184)(184—187)

(M3
AC(95,7,51) — = » AC(95,10,51,3)

= IDC(928,10,461)(461_463)

()3
AC(87,7,47) ———u— » AC(87,10,47,9)

— |DC(936,1O,465)(465_466)

(D3
AC(86,7,46) ————— AC(86,7,46,3)

__->|DC(937,10,466)(466_467)
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CHAPTER VIII

GENERALISATION OF THE LINEAR BINARY ANTICODES TO
MULTI-LEVEL (Q-ARY) ANTICODES

8.1 The g-ary Anticode Analysis and Construction

Construction methods and some related properties of linear binary
anticodes have been given in previous sections. The development of
construction methods and some properties of linear anticodes whose
elements are chosen fraom the general finite field GF(q), are studied
in the next sections. The development is parallel to that of the
linear binary anticode, and will therefore be somewhat condensed.

However, particular emphasis has been given to 3-ary linear anticodes.

8.1.1 Linean g-ary Parent Anticode Analysis

The linear g-ary parent anticode PAC[qk—l, k, (g-1) qk_1:| is
the subspace of the vector space of all n(= qk—l) —tuple vectors.
This is generated by the k . (qk—l) matrix of its linearly independent
generators. The generator matrix [Gq]PAC has all k-tuple vectors over
GF(q) as its colums. Thus any row and column of the linear parent
anticode contains the same number (qk/q = qk_l) of the non-zero symbols
of the GF(q). However, the number of zero symbols in each row is one
less than the number of the (gq-1) other symbols. Therefore the

generator matrix of the linear parent anticode can be partitioned as

follows:
[ . |0 0O 5 O o )
G |['|G || G | G
[G] _ a ol el q o q
PAC _
g o) a =1 ay qu _ 2
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where any ai & GF(q) stands for a row vector. in which all qk_1 elaments
are oy, and the zero element in the far left position stands for a
k-1

q - 1 all-zero element vector. Also, the element a

5 is the unity

element of GF(q). Every [Gg] forms the generator matrix of the

[n = qk"I - 1, k-1, tg1) qk_zj parent anticode. The generator matrix
[G(ol] can be further partitioned into the [qk_.z -1, k-2, (g-1) qk_3_]
parent anticodes.

The row space of the [Gg] matrices in the [Gq]PAC’ including the
adjacent all-zero colums (except for first [Gg] which does not include
the all-zeros column), are spanned with respect to all the o4 last row
segments, forming the row space of the [Gg] and (g-1) translates as is
shown in Figure (8-1). Therefore the colums of the g-ary parent anti-
code have the property that any qi, (i=1, 2, ..., k) top elements of
each colum can be divided into q equal parts, each part containing
qi_1 elements and formed by adding c oy to the first top qi_1 elanents
of the divided column, where c € GF(q) and OLJ. is the last element of
the related column in the [Gq'_[PAC of the divided column. This leads to
the same Q-I property of the linear binary parent anticode with only
slight differences. This property is denoted by Q—Iq.

This can be illustrated by an example, considering the parent
anticode of the parameters [:26, 3, 18] over GF(3). The elements of
GF(3) = {O, 1, OL} are generated by the primitive polynamial P(x) = x + 1,
where o is the primitive element, and also* a? = 1. However, GF(3) is
isomorphic to the field of integers { o, 1, 2} mod-3, thus operations

can be carried out over the field of integers mod-3.

* Note: The multiplication of the elements oy € GF(q),
i=1,2, ..., g-2 in Figure (8-1) is performed considering
S O for all o € GF(q).
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: General Partitioned Form of the

Figure (8-1)

g-ary Parent Anticode.
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The generator matrix [@é] = [@%ﬂ of a linear 3-ary parent

PAC
anticode has all (qk - 1) possible k-tuple vectors over GF(q) as its
colums. The colum i is the ternary representation of the number

i, where these numbers are ordered, increasing from left to right.

[MB] :[Gg] - [<1>3-(2>3, ....... , (a - 1>3] :

PAC

hence,

—l|l001112220j[00111222[0jl00111222

A 12012012|0[12012012lo[i201201 2
[ 3]mm
00000000111111111222222222

The row space of @%ﬂ, which is the 3-ary parent anticode, is formed

by multiplying on the left by the matrix [M%]T, where BM%]T is the
transpose of matrix ﬁ@ﬂ including an all-zeros element first row.

Therefore

MO . [ug] = PAC[ék—l =33 _1=26k=3, §=d= (g-1)gF ! = 1%].

The PAC(26, 3, 18) is shown in Figure (8-2).




N MO O O|lH KB H N NMDNMDO O Ol = H NDMNMDNMDO O O

O N H H O NMNDNMDHOIONMKH H O DNMDNDHKO|ION KR H O NMNDND KR O
N N H H H[RE R 2 O O O MDMNDDNINM NN R K R O O O

O M O N HIONMN H N H O R O NMIH O MO NMKDMNDEHE O

N O O H NN O (MO H HNMOORDMNDIORH MNMNMO R H MO

O N O IO NMNO KK NMOHHNMIH MO HDNMO HH M O
N NN O O O H H HIO O O H H H N NMDNH K KHRMNDDMNDDNDO OO

DN
\V]
-

N H ON KH O N KH O ONMHONMHOIdM B O MR O NMDH O
H N O H M O = N O N O R MNMO R DNDO(H MO R MO R N O
O +
@ O
= O

MMM HKFH R OO OINMNMDMNMDHERKKMKRBEROOOINM MNHK MO O O
H O M O N N Ol ONM O NMHDNDKH O O N O NMDKHE N = O
O MMM O H K NMOIOH NMDNDMOHKHDNOIOHRHDNMDDNMOHR KR NN O
= L N

N O O H N H N OIMO H O H NMKHDNMNOIMO B O R N R N O
D NN DM DNDNDDNIDNDNDME H H H H H H H =2 O O 00 O O 0O O o
H O M H O N KH O NMODNDMHEHODNDHKODNRKR|INMN B O NMHODNDKR O
O M O M O H NMIM O N O MO HI(H N O RDNDOR N O
H H = O O O NMDNMDNDO O O NMDNDDNDHH K KR[N NN HK R O O O
O N H M H O O NMINMEH O K ODNMONMHKIHONDODNDHHEDNDRE O
M O R H N OO HDNMIHDNMO O KR NMDNMOHHIOHEHNDMNDMO R MO
O O O B FH K M NMNNMINM MM O O O HMKMKK|H R K= NMDDNMDMDNDO OO
N H O O N K R O N O NMDNDHOONMRODNDRKEKHEHODNDIDNDR O
H N O N O B O NMO KN K DNMODNMDOH|IM O O FDNDRH N O
H R O HHE H DD NDNDDNDDNDDNDNNMO O O OO O O O O
O N HF ONM H O N MK ONMH O N ONINM H O NMDR O NR O
H O NN KH O O NHKINM B O ODNDHKHONMODNDMDHEHODNDDNDR O
O B DM H DN O N O HiH N O MO R O H NNIM O R O N RK N O

2021

Figure (8-2) : Partitioned Version of the PAC(26,3,18)

The truncated elements of the generator matrix [GB]PAC form

three copies of the generator matrix [:Gg] of the PAC(8, 2, 6).

PAC
Each of the [Gg] spans the row space of the PAC(8, 2, 6), forming
the three top copies of the PAC(8, 2, 6) in Figure (8-2); then any
of these PAC(8, 2, 6) is translated by repeated addition of its

respective row in the [GB—_IPAC.
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If every PAC(8. 2. 6), generated by [Gg] , i1s denoted by

AC
QO, then every translate is either a QO, Ql or Q2, where Ql and Q2
are respectively formed by adding a '"1" or a '"2'" to the elements of
QO, where the addition is performed mod-3; 1i.e. Q4 = Ql mod-3.
Therefore the PAC(26, 3, 18) can be put in the form of Figure (8-3a),
or equivalently in the form of Figure (8-3b), where each zero, one or
two in Figure (8-3a) and (8-3b) respectively represents a 9-tuple

all-zeros, -ones or —-twos columm.

Q0 ° Qo ° Q0 Qo Qo Qo ¢ o
Q|'| Q.|| Q. Q|Q|Q|"
Q Q| Q QlQlQ]|:?®:

0] 2 1

]

Figure (8-3a) - Truncated Figure (8.3b) - Equivalent
Form of the PAC(26,3,18). Translated Form of the
PAC(26,3,18).

The set of the zeros, ones and twos, form the AC(2, 3, 2, 2), which

2
in fact is the AC(2, 3, 2) %AC(Z, 3, 2, 2). Discarding this

anticode in Figure (8.3b), and mapping Qo’ Ql’ Q2 one-to-one on to

0, 1, and 2 respectively, i.e.

a Qa——-’o
Q——:

Q—°
2
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The set of images in Figure (8-4), excluding the first all-zeros

colum, forms the linear 3-ary PAC(2, 1, 2).

(:’O (:kD (:!) ° G |
(:)o (:!1 (:!2 —_— 0 1 2
C!(3 (:12 (:)1 0 2 1

Figure (8-4) : Set of Images and the Resulting
PAC(2,1,2)

8.1.2 Iterative Image Stacking Process for q-ary Anticode
Cons rwuection.

The process of obtaining an anticode of large dimension from an
anticode of smaller dimension is performed in a similar way to the
binary case as in Section 6.4.6.1. Since each subprocess is performed
by a "one-to-one mapping onto', thus the construction process can be
reversed. This reverse brocess of the g-ary anticode construction is
called iterative image stacking. In the iterative image stacking
process the same symbols and formulation are used, and the subprocesses
are parallel to those of the binary case, so it will only be explained
briefly, except for those aspects which are of particular importance
in the g-ary case. The construction of anticodes using this process
can be illustrated by the construction of the AC(48, 4, 33) fram
AC(4, 2, 3).

The domain anticode DAC(l +m, k, 6, y) is formed by adding an
all zero colum to the optimum AC(4, 2, 3) to get DAC(l +4, 2, 3).

The generator matrix of the DAC(l + 4, 2, 3) has the form:
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(0] 0] 1 2 1

[Gq]—_—
D |0 1 1 1 o

AC

The rowspace of this matrix is the DAC(l + 4, 2, 3) as shown in

Figure (8-5).

OO0 O 60 O 0 © O
N NN KRR R OO O
H O M O NMNKH N KK O
O H N NMOH K NMO
M H O N MO N O

Figure (8-5) : Domain Anticode (1 + 4, 2, 3)

The optimum AC(8, 2, 6) is chosen to be the first mapped

anticode, and then
-FAC(mr’kr’ Gr,wr) = FAC(S, 2, 6) .

A mapping o maps the elements {O, : 4 2} of the DAC(1+ 4, 2, 3)
one-to-one onto the set {QO, Ql’ Q2 } of the image anticode of

Figure (8-6), such that
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where QO = FAC(S, 2, 6) and Ql’ Q2 are formed by adding the element
one or two to the elements of Qo respectively; the addition is

performed mod-3; i.e. Q4 = Q1 .

24
27
24
27
24

27
24

27
24
27 0
24

2 Q, Q: Q Q, Q:

Figure (8-6) : Image Anticode (40,4,30)

S 3 Q,Q
i zz 0 WXy WXy KX, X,
&4 0 oQ1Q2 1
24
27 2 (:!1 2
Q,

b
—

o

OPPODO

-
N
-

O

N
N

POOOOEOP

o

POPLPLOLPLOLL
OO

0OO0PO

N

OOOPOO

Hence,

) o
Dyl + my, kyy 85, ¥g) T Fpclm, ko, 6, ¥)

= Ipclmy, Ky, 65, ¥5)

The image anticode has parameters
-
m; =(md+])mr =5 .8=40

k. =k, +k =2+2=4
1 r

d
(Si= (1 +md)6r= 9.6 =30

Vi =g * ¥ =0

4
Therefore:

1+423—u}"F 8, 2, 6) =1,.(40, 4, 30
DAC( ):) AC(:))—AC(); )-
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The first row of the image anticode of Figure (8-6) is formed
by all Qo elements, therefore the rows corresponding to these Qo's,
except the first all-zero element row , have the biggest weight
cSi =(1+m d)dr. Alternatively, the image anticode has the weight
attribute W(cSi, 2, 8) = 8. The rest of the rows, due to Qo’ Ql’ Qz

combinations have

6i}max. weight > m. . 34

Also, the minimum distance d of the domain anticode should be
considered when the 61 is calculated. The smaller d is, the larger
the number of Qo‘s in the image anticode, and therefore the larger
6. i8.
‘|

The AC(8, 2, 6) is chosen as the second domain anticode, and the
second mapped anticode is then obtained by the process

(a7

The SAC(S, 4, 6, 2) has the weight attribute W(O, 1,9 ) =9 which is
opposite to the attribute W( cSi, 2, 8) = 8 of the image anticode. The
concatenation of IAC(4O’ 4, 30), and SAC(S, 4, 6, 2) gives the optimum
AC(48, 4, 33), which is shown in Figure (7-7). Deleting the resultant
AC(48, 4, 33) from PAC(80, 4, 54) results in optimum DC(32, 4, 21).

The whole process can be formulated as:

o oo’ _
Byl + 4, 2, 3)—|—FAC(8, 2, 6)—‘— Syc(8, 4,62) = AC(48, 4, 33)

—— DC(32, 4, 21),,

The subscript 21 is the upper bound value of d for the linear block

code with n = 32, k = 4, by the Griesmer bound.
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Figure (8-7) : Compact Version of the AC(48,4,33)

(Note: Every zero, one and two in Figure (8-7) is a 9-zero,

-one, or —-two column.)

The generafor matrix of the anticode resulting fram the
iterative image stacking is formed exactly as in the way of the
binary case, but now using the G&Iq property of the g-ary parent
anticode (or anticodes). Therefore the generator matrix of the
AC(48, 4, 33) is obtained with the same procedure as in Section
6.4.6.2, as follows. The generator matrix of the domain anticode

and the first anticode have the form:

[G]—00121 &G—[G] 12012012
al !

001112 2 2
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The generator matrix of the second mapped anticode has the form:

ol

AC

o ~» O O
O v O O
= O O O
= = O O
= n O O
M O O O
N = O O
M N O O

Thus the generator matrix of the resultant AC(48, 4, 33) has the

form:

G G G G 0O 00O O0OOOGO OO
G Q| TQ. | @, Qo‘GQo 0 000O0OGO OO
[q]AC 0 0 1 2 1 1201201 2

| o 1 1 0 001112 2z2],

where the zeros, ones and twos in each column related to GQo are an
8-digit row of all zeros, ones and twos.

The iterative image stacking process reduces considerably
the effort needed to search for linear g-ary anticodes (codes), in
the sense that for any dimension k, a very small set of anticodes with
small dimension is needed to construct an infinitely large set of

anticodes. This process, however, can be extended using column

refinement methods for g-ary anticodes.

8.2 Explicit 3-ary Anticode Construction Results

In this section the results of the construction of 3-ary anti-
codes using only the iterative stacking method are given. Although a
carputer programme based on the Q—Iq property of the parent anticode
(or anticodes) could be used, to find infinite sets of 3-ary anticodes,
this list reveals the simplicity and effectiveness of the method, which

enables the construction of an anticode using a formula and some easy
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manipulation,

The results of the 3-ary anticode construction for some anti-
codes of 4 < k £ 6 are given as follows:

The generator matrix of the AC(22,3,16) consists of the column
types {1—18, 21, 24—26} , and dmin = 14,

The generator matrix of the AC(2,1,2) consists of the colum
types {1 - 2} .

The generator matrix of the AC(26,3,18), consists of the colum

types {1 - 26 } . Therefore,

o oo’ _
DAC(1+22,3,16)—l- FAC(2,1,2) -—l— SAC(26,4,18,1) =

AC(72,4,50)——~>-iDC(8,4,4)(4) o' = (an!

AC(72,4,30) plus any non-repeated column fram PAC(80,4,54),

results in the AC(73,4,51), therefore

AC(73,4,51) -—-|DC(7,4,3)(3)

0 oo’ _
DAC(1+22,3,16)—+FAC(2,1,2) SAC(22,4,16,1) =

, . "
AC(68,4,48) —— |DC(12,4,6)(6_7) o' = (an)!
The generator matrix of the AC(19,3,14) consists of the column
typ%{l - 19} , then

o oo’ _
D,(1+22,3,16) = Fyo(2,1,2) -—l— S,c(19,4,14,1) =

AC(65,4,46)—»—[DC(,15,4,8)(8_9) al = (MM)Cl)

AC(950,4,35) + any new colum from PAC(80,5,54) =

AC(51,4,36) —a— IDC(29,4,18)(18)

The generator matrix of the AC(13,3,9) consists of the column

types {1,3-5, 9—17} , and d ;= 9, therefore

o ala’
D,(1+413,3,9) 4 F,(2,1,2) Spc(22,4,16,1)

AC(50,4,35)_..|DC(30,4,19)(19) et = o)
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The AC(48,4,33) of the next construction, plus any column fram

PAC(80,4,54) gives

AC(49,4,34) ——[DC(31,4,20) o5

The generator matrix of the AC(4,2,3) consists of the columm
typ%{l, 3—5} , and mind =3 .

The generator matrix of the AC(8,2,6) consists of the columm
types {1 - 8}

Therefore:

o oo’ -
Dpc(1+4,2,3) ~F Fp(8,2,6) >~ 5,,(8,4,6,2) =

AC(48,4,33) —»—IDC(32,4,21)(21) al = (MM)g .

The generator matrix of the AC(7,2,6) consists of the column

types {1 - 7} ;  therefore

a aja’
Dyo(1+4,2,3)21 F, (8,2,6) H% 5,(7,4,6,2)

AC(47,4,33)-——>-|DC(33,4,21)(21) o' = (D2 .

The generator matrix of the AC(6,2,5) consists of the column
types {1 - 6}— then

0 alo’
DAC(1+4,2,3),~|~ F,(8,2,6) 8,c(6,4,5,2)

AC(46,4,32) —~>—|DC(34,4,22)(22) al = (MM)CZ)

The generator matrix of the AC(5,2,4) consists of the column

typ%{l,S - 6} , then

a alo’ _
DAC(1+4,2,3)—FFAC(8,2,6)—I— Sp0(5,4,4,2) =

2

AC(45,4,31) —»— lDC(35,4,23)(23) al = ()7
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The generator matrix of the AC(4,2,3) consists of the colum

types {1, 3—5} — then

a alo’ _
D,c(1+4,2,3) 2} F, (8,2,6) % 5,,(4,4,3,2) =

_ . 5
AC(44,4,30)——-—IDC(_36,4,24)(‘24) a' = (M)
o alo’ _
D,(1+13,2,9) = F,(2,1,2) Syc(18,4,9,1) =
AC(41,4,28). o' = (MM)
This anticode has min d = 27, so therefore
AC(41,4,28) = IDC(,41,4,27)(_27)
a |a' =
If, _{_ 5,c(14,4,10,1) = AC(42,4,29),
this anticode has min d = 27, so therefore
AC(42,4,29) = IDC(42,4,27)(27)
a |a' _
If, —‘—— Spc(15,4,11,1) = AC(43,4,30),
this anticode has d = 27, so therefore
AC(43,4,30) = IDC(43,4,27)(27)
AC(210,5,142) + any two new columns from PAC(80,4,54) =
AC(212,5,144) —»IDC(30,5,18)(18)
AC(210,5,142) + any new column from PAC(80,4,54) =
AC(211,5,143)—>|DC(31,5,19)(19)
' a alo! _
DAC(1+22,3,16)+FAC(8,2,6) 8,c(26,5,18) =
, - ,
AC(210,5,142)—.-IDC(32,5,20)(2O) al = (MM):

o oo’ —
DAC(1+22,3,16)4l— FAC(8,2,6) 4‘—- SAC(22,3,16) =

AC(206,5,140) = | DC(36,5,22)
(22-23)

o alo! —
Dyo(1+2,1,2)- 2 F,(50,4,35) 2% 5,(2,5,2,4) =

AC(152,5,105) - IDC(90’5’57)(57-59)



- 172 -

o ala’ _
DAC(1+2,1,2)—|—FAC(49,4,34) Spc(2,5,2,4) =

AC(149,5,102) —= IDC(93,5,60)(60_61)

o aja’ =
DAC(1+2,1,2)_Jr F,(48,4,33) 8,(2,5,2,4) =

AC(146,5,99) — IDC(96,5,63)(63)

AC(138,5,93) + any 3 new colums fram PAC(242,5,162) =

AC(141,5,96) —— IDC(101,5,66)(66)

11

AC(138,5,93) + any 2 new colums from PAC(242,5,162)

AC(140,5,95) —= lDC(102,5,67)(67)

AC(138,5,93) + any new column fram PAC(242,5,162)

AC(139,5,94) —— IDC(103,5,68)(68)

I

a ala’
D,(1+4,2,3) 2 F, (26,3,18) S S,c(8,5,6,3)

AC(138,5,93) —— |DC(104,5,69)(69) o' = (MM)g

AC(136,5,92) + any colum from PAC(242,5,162)

11

H AC(137,5,93) —— |DC(105,5,69)

o alo’
DAC(1+2,1,2)—1r F,(45,4,31) Spc(2,5,2,4)

AC(137,5,93) —*= DC(105,5,69) go

If ala’
+ SAC(6;5:5’3)

— |DC(1O6,5,7O)(7O) ot = (a3

AC(136,5,92)

If afo’
SAC(5,5,4,3)

AC(135,5,91)

— lDC(lOfi,S,71)(V71) ot = o3

o ala’
DAC(1+2,1,2)+FAC(44,4,30) 5,c(2,5,2,4)

AC(134,5,90) —— IDC(108,5,72)(72)
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If aja' §,,(4,2,3,3) = AC(134,5,90)

3
o

e DC(108,5,72)(72) a' = (MM)

o ajo’ -
Dyo(142,2,1) - F(43,4,30) A% 5,0(2,5,2,4) =

AC(131,5,90) —= [DC(111,5,72) (75 75,

o ala’ ' _
DAC(1+2,1,2)——ir FAC(42,4,29) SAC(2,5,2,4) =

AC(128,5,87) —»— |DC(114,5,75)(75)

AC(125,5,84) + any 2 new colum from PAC(242,5,162) =

AC(127,5,86) —— IDC(115,5,76)(76)

AC(125,5,84) + any new colum from PAC(242,5,162)

AC(126,5,85) — [DC(116,5,77)(77)

a alot o
DAC(1+2,1,2)——|— FAC(41,4,28) 4][— SAC(2,5,2,4)

AC(125,5,8,4) —— IDC(117,5,78)(78)

1

o a o’ _
Dy(1+13,3,9) 54 F,(8,2,6) S,0(26,5,18,2)
AC(138,5,93), a' = (m)g

The AC(138,5,93) has d_._ = 90, thus
min

AC(138,5,93) —» IDC(138,5,90)(90)

o oo —
Dpc(1+4,2,3)—HF, (13,3,9) =1 §,(8,5,6,3) =

AC(73)5,51) == |DC(169,5,111)(111)

()}

AC(72,4,50) ——2» AC(72,5,50,1)

—_— IDC(170,5,112)

1
(MM)l (112)

AC(50,4,35) ——2 » AC(50,5,35,1)

— IDC(192,5,127)(127)
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)’

AC(49,4,34) — % AC(49,5,34,1)

— lDC(j193,5,128)(128)

1
(M)
AC(48,4,33) —— 2 AC(48,5,33,1)

_— IDC(_194,5,129)(129)

(np)?
AC(47,4,33) ———— AC(47,5,33,1)

S IDC(195,5,129)(129)

1
(M1)-
AC(46,4,32) —— S~ AC(46,5,32,1)

S IDC(_196, 5,130) 1140,

1
(),
AC(45,4,31) ——» AC(45,5,31,1)

— IDC(197,5,131)(131)
1
on))
AC(44,4,30) —— O AC(44,5,30,1)

— |DC(198,5,132)(132)
o)}
AC(43,4,30) ———C— AC(43,5,30,1)

—n |DC(199,5,132)(132)

()
AC(42,4,29) ———— AC(42,5,29,1)

e IDC(zoo,4,133)(133)

o ala' _
D,(1+2,1,2) 2}-F, (138,5,98) el 5 (2,6,2,5) =

AC(416,6,279) —>= |DC(312,6,207)(207)

AC(408),6,273) + any 3 new columns fram PAC(728,6,486) =

AC(411,276) ——— IDC(317,6,210)(210)
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o ajo’ _
D,(142,1,2) *f F,(136,5,92) il Spc(2,6,2,5) =

AC(410,6,276) —— [DC(318,6,210) 516 911

AC(408,6,273) + any 2 new colums from Q,(728,6,486) =

AC(410,6,275) — [DC(318,6,211)(211)

AC(408,6,273) + any new colum from PAC(728,6,486) =

AC(409,6,274) ——s— IDC(319,6,212)(212)

o a o’ _
DAC(1+4,2,3)—L F,(80,4,54) 5)c(8.,6,6,4) =

AC(408,6,273) —— IDC(320,6,213)(213) al = (m)é
D,(1+2, s I S F,-(135,5,91) Clies 8,c(2,6,2,5) =
AC(407,6,276) —— IDC(321,6,213)(213)
AC(390,6,261) + any 3 new columns from PAC(728,6,486) =
AC(393,6,264) ———»—IDC(335,6,222)(222)
AC(390,6,261) + any 2 new colums fram PAC(728,6,486) =
AC(392,6,262) —— IDC(336,6,223)(223)
AC(390,6,261) + any new column from PAC(728,6,486) =
AC(391,6,262) —— IDC(337,6,224)(224)
DAC(1+13,3,4)£(- F,o(2,6,3,18) o 5,0(26,6,18,3) =
AC(390,6,261) —— [DC(338,6,225) 5o o = (M2

AC(386,6,259) + any two new columns fram PAC(728,6,486) =

AC(388,6,261) —= | DC(340,6,225) oo,

AC(386,6,259) + any new column from PAC(728,6,486) =

AC(387,6,260) —— DC(341,6,226)(226)
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i{rﬂ'sAC(zz,e,m,s) = AC(386,6,259)

—-—»—IDC(342,6,227)(227)

1
itisAC(zo,e,w,s) = AC(384),6,258)

._._[DC(344,6,228)(228)

2] 's, (19,6,14,3) = AC(383,6,257)

_._IDC(345,6,229)(229)

E‘_f.“'sAC(18,6,13,3) = AC(382,6,256)

— |DC(346,6,230)(230)

°‘—+ﬁ'sAC(17,6,12,3) = AC(381,6,255)

._..|DC(347,6,231)(231)

% O"SAC(16,6,12,3) = AC(380,6,255)

N IDC(348,6,231)(231)

o) o'
+ SAC(15,6,11,3) = AC(379,6,254)

— IDC(349,6,232)(232)

ala' -
—‘—SAC(14,6,10,3) = AC(378,6,253)

e |DC(350,6,233)(233)

al o' _
x| ¢'s, (13,6,9,3) = AC(377,6,252)

—-—-IDC(351,6,234)

o
1

(234)
(MM)

AC(212,5,143) — =~ AC(212,6,143,1)

— IDC(516,6,342)

o (342)
(MM){

AC(211,5,143) — = o AC(211,6,143,1)

—>—IDC(517,6,343)(343)

a'

a'

a!

al

E

E

C

B
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(M)
AC(210,5,142) — = » AC(210,6,142,1)

—— IDC('_518,6,344)(344)

()7
AC(141,5,96) > AC(141,6,96,1)

e IDC(_587,6,39O)(390)

(07 |
AC(138,5,93) — = —»— AC(138,6,93,1)

—>-|DC(590,6,393)(393)

()7
AC(137,5,93) ——= = AC(137,6,93,1)

—e |DC(591,6,293)(393)

()7
AC(136,5,92) ————»— AC(136,6,92,1)

e IDC(592,6,394)(394)

AC(134,6,90,1) + any new colum fram PAC(728,6,486) =

AC(135,6,91,1)  ———== [DC(593,6,395) 5001

(M)
AC(134,5,90) —————— AC(134,6,90,1)

— IDC(594,6,396)(396)

()7
AC(125,5,84) ———————»~ AC(125,6,84,1)

— |DC(603,6,4O2)(402)

The 3-ary anticodes, constructed by the iterative stacking process
have produced linear 3-ary block codes. These codes meet the Griesmer
bound exactly, thus they are optimum codes. However, the resultant codes
have n < qk“1 - 1 (except for those r%ulting from the (MM)ta)' process

only). Therefore, for the same k, the 3-ary codes resulting from the
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iterated anticode stacking process have higher rates than the

construction method suggested by Griesmer which have n > qk_1 -1,

This is due to the restriction imposed as Zki <k, (see

Section 5.2) by Griesmer. *
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CHAPTER IX

DISCUSSION AND CONCLUSION

The main objective of the research described in this thesis was
the extension and development of the anticode method for the con-
struction of linear block error-control codes, as a means of increasing
the security of the transmitted data in a comunication system.

In Chapters III and IV, the development necessarily involved the
review ahd analysis of the mathematical and practical construction of
some of the best known coding techniques, which in turn involved a
brief review of the related mathematical background and concepts of
error-control coding. The anticodes originate fram parent anticodes.
Because of the equivalent relationship between the parent anticode and
maximal length code, the Griesmer bound and the Solomon and Stiffler
generalization of this bound by means of a simpler approach, were
reviewed.

Since anticodes originate fram parent anticodes, the mathematical
analysis of the parent anticodes was established. Fram this, the
properties of the Q-1 systematic form of anticodes, and the partitioning
of the generator maitrix of the parent anticode and hence the generator
matrix of any anticode into the smaller generator matrices (sub-
sections), was introduced. Furthermore, these two properties lead to
the additional properties:

(a) the explicit derivation of the anticode weight distribution

from the Q-1 property; and

(b) predetermination of the weight attribute of any column or

columns related to the row space of the subsections of the
generator matrix of the anticode in the code book.

Considering these properties, various anticode constructions fram

smaller dimension unit basic anticodes resulted. Using these methods,
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a large number of optimum and near-optimum anticode, and as a result,
a large number of optimum and near-optimum codes, were constructed.

Once an optimum unit basic anticode was constructed, it could
be used as the basis of construction (damain anticode) in the iterated
image stacking process, and other various construction processes, to
obtain larger dimension anticodes. Thus the construction of optimum
long unit basic anticodes was important as pai't of the process of
obtaining short optimum linear codes of high efficiency. On the other
hand, short unit basic anticodes soon lead to short, low efficiency
anticodes. If the iterative image stacking process of anticode con-
struction resulted in a non-optimum anticode, the resulting anticode -
could be used as a basis for various camplementary camputer searches
for the construction of the optimum or near optimum anticodes
(refinement process). However, if the anticode was optimum, the same
computer methods could be used to obtain longer or shorter optimum
anticodes.

The linear codes derived fram anticodes, constructed by the
various processes, for a fixed dimension k and minimum distance d have
block length

ng gt -1,
except for those anticodes constructed by the processes of mapped-map
stacking. However, the linear codes suggested by Solamon and Stiffler
for the same parameters k and d have bounded block length

n > qk_l - 1.

Therefore the anticode construction methods described here result in
higher rate codes. This difference arises fram the weak sufficient
condition imposed on the suggested construction method. The Solamon
and Stiffler algorithm consists of the deletion of the subgroups
(subspace) of the additive group (vector space) of the colums of a

maximal length sequence code. TFor a (nO = qk—l, k, d = (g-1) qk_l)
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maximal length code, the number of deletion columns are:

2i
m=§:q -1
i

where E li <k (1)
a _

BoF L (@)

The maximum value of m is achieved if 7, =k - 1 and Z, = 1. This
means that the constructed, punctured set have been formed by the
first Zl = k - 1 information colum of the maximal length code,

namely Il’ I2, — Ik—l and all linear combination of these colums,
plus the colum 12 = 1, namely, the last information colum. As an
example, if k = 7, the maximum value of m is achieved when I,=k1=6

and 22 =1, thus

k-1

m=(21T 1)+ @l -1)=63+1=64

n=no—m=127—64=63

which is the block length of the shortest possible code. On the
contrary, construction by means of the simple stack of BAC(63,6,32)

gives

(OB0)]
BAC(63,6,32) ———— BAC(63,7,32,1)
The colums of this anticode are exactly the same as the above
63 colums of the Solomon & Stiffler construction formed from linear

combinations of information colums I I

10 19 .- 16' For the Solomon

& Stiffler construction, from the conditions
Z L. <k
i
i

L. # L.
1 J

it was possible to add only one columm to these 63 columms to construct
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a set of punctured colums of length m= 63 + 1 = 64. However, with
the anticode construction methods described, it is possible to add 48
columns, by concatenating the simple inverted form of the AC(48,6,26)

to the AC(63,7,32,1) to get AC(111,7,58), as follows:

(1)
AC(48,6,26) ——2» AC(48,7,48)

AC(63,6,32) + AC(48,7,48) = AC(111,7,58)

Deleting this anticode from the PAC(127,7,64) gives DC(16,7,6) which
is an optimum linear code and has exactly the same parameter as that
in the table of Stinaff and Helgert. This counter example shows how
weak the conditions imposed by Solomon & Stiffler are, which makes
the codes obey the conditions

k/n 0]

when

[ee]

n

which are not imposed on codes derived fram anticodes as long as the
optimum long unit basic fanticode can be constructed.

The concept of binary anticodes in Chapter VIII is extended to

the construction of anticodes whose elaments are chosen fram the finite

field GF(q). The same methods of construction as in the binary case
are applicable also for g-ary anticodes, with operations defined over
the elements of GF(q). The anticode construction method over GF(q) was
applied to construct 3-ary anticodes, and a large number of optimum and
a few near-optimum anticodes, and as a result, a large number of linear
3-ary codes, were found. However, a camplementary camputer study could
be done to extend the results as easily as in the binary case. The

optimality and long block length of the unit basic anticodes are also
as important in the construction of anticodes/codes over GF(q) as in

the binary case.
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Recommendations for Further Research

From the above discussion, a number of possibilities for further

development and extension of the anticode concepts arise as follows:

(a) the QI systematic property of a colum and a group of
colums provide a predetermination of the weight attribute of the
colum or a set of colums of the parent anticode, and any related
anticode. As an example, if a colum of the generator matrix of an
anticode starts with two zero's, then the 4 elements of this column
in the parent anticode or anticode fram the (2i + 1)th element are

solely determined by the ith element of the generator matrix, e.g. if

ith = 5th element in the generatoi' matrix is a zero, the 4 elements
starting from the (2° + 1)th = 33rd element are zero's in the parent
th th

anticode or code; if the i 57" element in the generator matrix is
a one, the 4 elements starting from the (25 + 1)th = 33rd elements are
ones. This also applies for a group of colums. Thus, using this
concept as a basis, a computer search program may be speeded up
considerably. Instead of dealing with individual elements, the group

(subsections) of the generator matrix may be processed in one step.

(b) the iterative image stacking process of anticode construction
may be directly applied to linear optimum block codes of smaller
dimension to construct optimum or near optimum larger dimension linear
block codes. Intuitively, in constructing optimum anticodes from
optimum small dimension anticodes over GF(3), the resulting anticodes
turned out to have the maximum minimum distance for their parameters.

Thus the resulting anticode turned out to be an optimum code.

(c) The same anticode construction processes may be used also
in conjunction with some of the already existing optimum anticodes

related to existing optimum block codes fram other sources; that is,
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found from known isolated optimum or near-optimum codes.

(d) a complementary computer search parallel to that of (a)
and Section 6.4.8 may be used also for anticodes over GF(3) to extend
the results of the anticodes over GF(q). Also, it would be interesting
to apply the anticode construction methods to the anticode over the

elements of the finite fields of GF(4) and GF(5), and so on.
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Appendix I

Encoder and decoder for the codes derived fram
parent anticodes

The equivalence of the maximal length shift register code
book [D] of Section 5.1 and the parent anticode [:C] can be used to
encode and decode codes derived from the pareht anticode, taking
advantage of the maximal length linear feedback shift register code
(M-sequence code) properties.

The code book [D] of an (n_, k_, d.), M-sequence code forms
an Abelian group (subspace of the vector space of all no—tupleﬁ),
thus it can be generated by any ko linearly independent vectors (rows)
in [D]. Following the example of Section 5.1, the code book [D] of
the 3-bit shift register of Figure (I-a) generated by the primitive

feedback polynomial p(x) = x’+x+1 is:

|D]-

H R 2 O R O O
O +H B O W O
O O +H KB +H O K
H O O K KB H O
O O O +H KB H
H O R O O + K
H H O B O O +

The generator matrix of [i)] can be formed from the first ko = 3 rows

of [D] as
O 0 1 o0 1 1 1
[G] = O 1 0 1 1 1 o0
1 0 1 1 1 0O O

The row space of the generator matrix [G] which is the matrix [D] is

formed as [L:l . [G] = @], so then




where [L] is a (Zk - 1) XK matrix.
Multiplying the matrix [L] on the left by a non-singular row

permutation matrix [A] such that,

A . ="

0]
0
0
0
0
1
0

'oco 0o o oo o r'
O OO0 0O K+~ O
HHOHOOHI
H H H O R O O

O O O = O O O
O O OO0 = 0O ©
H O O 0O C © O
o O~ O O O O

O H H H O RO
H H O O R KR O

L
I
L

I o r 0 = O RI!

Ll =2

The matrix [M]T is identical to that of Section 6.2.1 and is the
kO variable truth table, excluding the all zero row, and can be

generated by a ko—bit binary counter, as in Figure (I-b). Thus,

A .0.d=-M . = [o,] = O]
Alternatively [Dp] is the same as the M-seq. code book [D], only the
rows have been permuted with respect to [A]. However, E)p] has been
spanned by [A] [L] = [M]T, therefore the colums of [_T)p] = [D] are in
Q-I systematic form, thus any ko dimension anticode can be deleted from

[Dp] . This means that the equivalence can be used to encode and decode
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i

Column 1 Column 2

Column 3

Figure (I-b) :[Ni] matrix generator

: M-sequence and

Bﬂ matrix generator

the codes derived from anticodes, deleting the anticode column positions

from the m—sequences generated by a ko—bit feedback shift register. The

encoding and decoding procedure is the same as the encoder-decoder

suggested by Solomon and Stiffler (1964), shown in Figure (I-2), and

Figure (I-3).

Data bits
Generator

M-sequence
Generator

Anticode Column
Location Identifier

1 |

Figure (I-2)

Deletor - Compressor

Solomon and Stiffler Type Encoder

0o/P




Anticode Column
Location Identifier

/

M-sequence
Generator

1

Expander Correlator

Y

Decision
Device

Figure (I-3) : Solomon & Stiffler Type Decoder

However, from the similarity between the parent anticode [C] and the

Walsh-Hadamard matrix, it might be possible to take advantage of the
latter's fast transform algorithm to decode the derived code from the

parent anticode in.a simpler way.
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Appendix II

Approximate performance of the linear binary codes derived
fram parent anticodes.

The performance of a linear binary DC(n, k, d), over a binary
symmetric channel, can be approximated by using the minimum distance
of the code.

However, in general this is very approximate (Slepian 1956). A
better approximation can be achieved by the use of the weight distri-
bution of the linear block code (Cohen et al. 1976, Huntoon &
Michelson 1977). Using the explicit derivation of the anticode-
related code weight distribution, the decoded block error probabilit&
(regardless of the post decoder errors) of same linear binary block
codes have been examined. The procedure uses the weight distribution
of the code to approximate the number Oy of the error patterns of
weight i which are correctable by the code. Having o, the probability
of incorrect decoding

n
P 1_2 o, p (1-p)"*
i=0
can be evaluated, where p is the crossover probability of the channel.
The o; can be approximated framn the code weight distribution from

the equation,

% = Qi B1
given by Hobbs (1965), where
By o= 0y e B
i~ i/ T IT(e-1)!

Aj being the number of code words of weight j. Then

A.
= e J
Q; = T5(1 - p(3/3))
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where the conditional probability is
J

P(3/1) =’18—{[Z e(i, 3, r)] +1eq, g, %)} ,
1

r=j/2+1

and c(i, j, r) = (g)(?:g)
The entires oy and Bi in the following tables are the number of
correctable error patterns Oy out of the Bi possible error pattern
of weight i. These have been camputed by a simple computer program,
given in this appendix; on an ICL-2960 machine.

DC(9,5,3) has weight polynamial,

3 S 6 7 8

AZ) =1 + 625 +10z% + 822 + 428 + 227 + 7

i 0O t=1 2 3 4 5 6 7 8 9

Bs |1 9 3 - - - - - - -

. l1 9 11 - - - - - -
1

DC(9,5,1) has weight polynomial,

AZ) =1+ 2 + 142% + 147° + 28 + 2°

DC(23,6,10) has weight polynamial,

AZ) = 1 + 31210 + 19712 + 5714 + g71®
i o 1 2 3 t=4 t+1=5 6
B, |1 23 253 1771 8855 33649 100947
a; | 1 23 283 1771 8855 29954 52178
i 7 8 9 10 11 ..., 23
By 245157 490314 817190 = A -
o 28787 2429 12 - = =
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DC(23,6,7) has weight polynomial,

Az) =1 + 27 + 15210 + 15211 + 15212 + 15213 5 717 4 222
ilo 1 2 =3 t+1=4 5 6
. |1 23 253 171 sess 33649 100047
o, | 1 23 253 1771 8837 31521 67341
i 7 8 9 10 11 ..... 23
B; | 245157  4g0314 817190 - 5 maans .
o, | s7es 10303 189 B - -
DC(48,7,22) has weight polynomial,
AZ) = 1 + 487°% + 307°* + 48270 + 7%8,
il o 1 2 3 4 5
s, 1 48 1128 17206 104580 1712304
off 1 48 1128 17206 194580 1712304
i 6 7 8 9
B,| 12271512 73620072 377348004 167710664
o,| 12271512 73620072 377348994 167710664
i =10 t+1=11 12
p,| 6540715896 22505200368 69668534468
o;| 6510715806 22578276200 69158585434
13 14
192928249296 482306232400
185443773610 413871745605
15 16
1093260079344 2254848913647
682089472348 662685956238
17 18
4244421484512 7309837001104
265369038250 23703131413
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i 19 20
g, | 11541847896480 16735679449896
o 366942233 347078
i 21 22 48
B, | 22314230266528 S esemwrs =
oy 11 2 SR = P -
DC(48,7,16) has weight polynomial
AZ) = 1 + 328 + 120724 + 3732 4 748
i o 1 2 3 4 5
B, | 1 48 1128 17206 194580 1712304
o | 1 48 1128 17206 194580 1712304
i 6 t=7 t+1=8
B, | 12271512 73629072 377348994
o, | 12271512 73629072 377342559
i t+1=9 10 11
B, | 167710664 6540715896 22595200368
o, | 167688028 6537150048 22557347904
i 12 13
B, | 69668534468 192928249296
o; | 60214893604 187068034527
i 14 15
482320623240 1093260079344
425215758392 723133164517
16 17
2234848013647 4244421484512
734829498817 312343262689




i 18 19
Bi 7309837001104 11541847896480
Oy 33989748302 517825302
i 20 21
Bi 16735679449896 22314239266528
Oy 560079 21
i 22 48
Bi T e e e e
o, ™ gewmee =
1

The block error probability of the above linear block codes has
been computed, using the entries of the tables, and is plotted in
Figure (II-1). In addition, the approximate block error probability
of DC(9,5,3) has been compared with the computed block error probability

based on the minimum distance consideration, given by:

[(d-1)/2]
— n, i =,
PRR(min.dist.) = 1 - Z () p (1-p)”

i=o

The results of the two computations are parallel straight lines for
p < 10_1 separated by about one tenth of an order of magnitude in
error rate. The conclusion is that the difference between the two
is almost entirely due to the error pattern of weight (t+1) which
is not taken into account in the approximation of the minimum distance
calculation.

Although DC(9,5,1) has minimum distance d = 1, the difference
between the theoretical result and the combuted one for p < 3 x 10—2

is very small. In spite of the difference between the Hamming distance

of DC(23,6,10) and DC(23,6,7), the performance of the two codes has
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Figure (II-1) : Decoded Block Error Probability
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only a small difference. The conclusion to be drawn fram this is that
although the total number of correctable error patterns

n

E Qs
1

i=o

by DC(23,6,7) for all entires of the related table except for i = 4

is greater than those by DC(23,6,10); the slightly poorer performance

of DC(23,6,7) is due to the difference in the number of more likely
correctable errors of weight i = 4 in DC(23,6,10). Interestingly, this
is the only case for which the oy of DC(23,6,10) is bigger than the
oy of DC(23,6,7). Thus this makes the curve for DC(23,6,7), in spite.
of having a smaller Hamming distance, almost parallel to that for
DC(23,6,10) over the range of error rate of interest. To obtain block
error probabilities (bit-error probabilities) Olanigan and Turner (1976)
enployed cambined systematic search and min.-distance decoding (Hybrid
decoding), for several linear binary codes. The above results are
similar to those results. However, the camputation time for Hybrid
decoding for fairly big k is rather excessive.

The computer program for calculation of the entires for the table

is given below.

DIMENSION PJ(23,23),JAW(23),Q(23),A(23),B(23),PC(23),TSUM(24)

DIMENSION PE(24),TSUM2(24)

INTEGER N

DATA N/23/

READ (7,110)(JAW(IC),IC=1,N)
110 FORMAT(1614/714)

READ (7,100)(PE(I),I=1,24)
100 FORMAT (3F20.10)

DO 2 J=1,N

IF (JAW(J).FQ.0) GO TO 22

IF (J.FQ.N) GO TO 111

JR=(J+1)/2

IF (JR.EQ.0) JR=1

DO 4 I=1,N

IF (I.LT.JR) GO TO 222

SUM Q=0.0

DO 6 JK=JR,J

IF (JK.GT.I) GO TO 33

A1=FACT(J) / (FACT(JK)*FACT(J-JK))



12

28
10

160

150
16

120

41

31
24
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B1=FACT(N-J) /(FACT(I~JK )*FACT(N-J-I+JK)
C1=FACT(N) /(FACT(I )*FACT(N-I))
W=(A1*B1)/C1

IF(JK.NE.JR) GO TO 90

W=W/2.0

SUM Q= SUM Q+W

CONTINUE

PJ(J,1)=SIM Q
IF(PJ(J,I).GT.1)PJ(J,I)=1.0

GO TO 4
PJ(J,1)=0.0
CONTINUE

GO TO 2

DO 8 IN=1,N
PJ(J,IN)=0.0
GO TO 2
IN=N/2

DO 14 I1J=1,IN
PJ(J,1J)=0.0
KN=(N/2)+1

DO 18 IK=KN,N
PJ(J,IK)=1.0
CONTINUE

DO 10 I-1,N
AD=0.0

DO 12 J=1,N

IF(JAW(J) .FQ.0)G0 TO 12
IF(PJ(J,I).FQ.1.0) GO TO 28
AC=FLOAT(JAW(J) )*ALOG10(1.0-PJ(J,I))
AD=AD+AC

CONTINUE

Q(I)=10.0%*AD

GO TO 10

Q(1)=0.0

CONTINUE

DO 16 I=1,N
B(1)=FACT(N)/(FACT(I)*FACT(N-I))
WRITE(2,160)I ,b(I)

FORMAT( 1HO, 2HB( ,12,2H)=,E26.16)
A(T)=B(I)XQ(I)

IF (A(I).LT.1.0)A(I)=0.0
WRITE(2,150)I,a(I)
FORMAT(1HO, 2HA( ,12 ,2H)=,E26.16
CONTINUE

DO 3 IR=1,24
WRITE(2,120)IR,PE(IR)
FORMAT(1HO,10HCH. PROB.(,12,2H)=,E16.8)
DO 24 JP=1,N

PK=A(JP)

IF(PK)41,41,5
AA1=ATOG10(PK)+FLOAT(JP)*ALOGIO(PE(IR))
1+FLOAT(N-JP)*ALOG10(1 .0-PE(IR))
ASUMJ=AA1+10.0
IF(ASUMJ)41,31,31

PC(JP)=0.0

GO TO 24

PC(JP)=10%*AA1

CONTINUE

TSUM(IR)=0.0



26

130

170
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DO 26 MM = 1,N

TSUM( IR)-TSUM( IR)+PC(MM)

WRITE(2,130)IR, TSUM(IR)

FORMAT( 1HO , 23HCORRECT DECODING PROB. (,12,2H)=,E16.8)
TS=FLOAT(N)*ALOG10(1 .0-PE(IR))

TIS=TS+10.0

IF(TTS)9,7,7

ST=10.0%*TS

TSUM( IR)=ST+TSUM(IR)

TSUM2(IR)=1.0-TSUM(IR)

WRITE(2,170)IR,TSUM2(IR)

FORMAT(1HO, 18HBLOCK ERROR PROB.(,12,2H)=,E16.8)
CONTINUE

STOP

END |

FUNCTION FACT(N)
FACT=1.0

DO 1 I=1,N

IX=I
FACT=FACT*IX
RETURN

END
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Appendix III

Anticode refinement computer program

This computer program was developed to perform the refinement

of the anticodes constructed by the processes explained in

Chapter VI. The anticode being refined is the AC(210,8,10) which

is constructed as:

DAC(1+48,6,26) - F,~(3,2,2) gja 8,(63,8,32,2)

= AC(210,8,10) .

Applying this program, the AC(213,8,11) results. The computer

program is as follows below:

100
101
102
103
104

225

DIMENSION GDAC(6,49), GIM(8,210),GSAC(6,63),IM(256,210) ,WT(256
DIMENSION FAC(4,3),W(256),GDL(8,45),CHAR(45) ,DL(256,45) ,WSA(256)
DIMENSION GFAC(2,3),WDL(256)

INTEGER GDAC,GIM,GSAC,IM,FAC,W,Q,P,GDL,CHAR, DL, WSA,WT, DEL
INTEGER GFAC,WDL

DATA W,11,12,13,14,J1,J2,J3,J4/256%0,6,8,256,4,49,210,45,63/
DATA 16,WDL/148,256*0/
LSUM(Q, P )=Q+P-2*Q*P
READ(7,100) ((GFAC(1,J),J=1,3),
READ(7,101)((GDAC(I,J),3=1,J1)
READ(7,102) ((GSAC(I,J),J=1,J4)
READ(7,103) ((GDL(I,J),J=1,J3),
READ(7,104)( (FAC(I,J),J=1,3),I=1
FORMAT(611)

FORMAT(8011)

FORMAT(8011)

FORMAT(80I1)

FORMAT(1211)
WRITE(2,225)(GDL(I,J),J=1,J3),1=1,12)
FORMAT(8(3X,45I1/))

K=0

Do 2 I=1,J1

DO 2 J=1,3

K=K+1

GIM(1,K)=GFAC(1,J)

GIM(2,K)=GFAC(2,J)

DO 4 I=1,6

JK=0

IK=1+2

DO 4 J=1,J1



1l

10

12

16

18

201

26

15
26
22

28

210

32
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IF(GDAC(I,J).FQ.1)GO TO 11
DO 6 JJ=1,3
JK=JK+1
GIM(IK,JK)=0
GO TO 4
DO 8 JJ=1,3
JK=JK+1
GIM(IK,JK)=1
CONTINUE
DO 10 I=1,2
DO 10 JS=16,J2
GIM(I,JS?=0
DO 12 1=3,8
IK=1-2
DO 12 JS=I6,J2
JK=JS-147
GIM(I,JS)=GSAC(IK,JK)
K=0
DO 16 Js=1,J1
DO 16 J=1,3
K=K+1
DO 16 I=1,4
IM(I,K)=FAC(I,J)
DO 18 1=1,4
DO 18 JS=16,J2
IM(I,JS)=0
WRITE(2,200)( (GIM(I,J),J=1,110),1I=1,8)
FORMAT(8(3X,110I1/))
WRITE(2,201)((GIM(I,J),J=111,210),1=1,8)
FORMAT(8(3X,100I1/))
DO 20 J=1,J2
DO 22 I=3,I2
K=(2%*%(I-1))+1

=2%XT
IF(GIM(I,J).BQ.1)G0 TO 15
10
DO 24 II=K,KK
I-1+1
IM(II,J)=IM(L,J)
GO TO 22
10
DO 26 II=K,KK
I-L+1
IM(II,J)=LSUM(IM(L,J),1)
CONTINUE
DO 28 TJ=1,I3
W(IJ)=W(IJ)+IM(1J,J)
CONTINUE
WRITE(2,210)(W(I),I=1,I3)
FORMAT(16(1618/))
DO 32 J=1,J3
DL(1,J)=0
DL(2,J)=GDL(1,J)
DL(3,J)=GDL(2,J)
DGL(4,J)=LSUM(GDL(1,J),GDL(2,J))
DO 138 J=1,J3
DO 38 I=3,12
K=(2%*%(I-1))+1




19

42

72

138

235

44
52
46

48
49

220
240

25
215

KK=2%*]
IF(GDL(I,J).HQ.1)G0 TO 19
1=0

DO 40 II=K,KK

L=L+1

DL(II,J)=DL(L,J)

@ TO 38

1L=0

DO 42 II=K KK

L=L+1
DL(II,J)=LSUM(DL(L,J),1)
CONTINUE

DO 72 N=1,13
WDL(N)=WDL(N)+DL3N, J)
CONTINUE
WRITE(2, 235) (WDL(N),N=1,13)
FORMAT(16(16I8/))
DEC=112

IC=J3

CHAR(1)=1

CHAR(2)=1

CHAR(3)=1

DO 44 I=4,J3

CHAR(I)=0

DO 46 I-1,I3

WSA(I)=0

DO 49 J=1,J3

IF(CHAR(J) .EQ.0)GO TO 49
DO 48 I=1,I3
WSA(I)=WSA(I)+DL(I,J)
WT(I)=WSA(I)+W(I)
IF(WI(I).GT.DEL)GO TO 7
CONTINUE

CONTINUE

G0 TO 50

CALL NEXOOM((HAR,IC,IFIN)
IF(IFIN.EQ.1)GO TO 25

GO TO 52
WRITE(2,220)(CHAR(I),I=1,J3)

FORMAT( 3X,32HOPTIMAZATION BY COLUMN ADJACENCY, /,3X,45I1)

WRITE(2,240)(WT(I),I=1,13)

FORMAT( 3X, 23HNEW OODE W-DISTRIBUTION, /,(16(1618/)))

GO TO 56
WRITE(2,215) (CHAR(I),I=1,J3)

FORMAT(3X,15HNO CONSTRUCTION, /,45I1)

STOP
END

SUBROUTINE NEXCOM(CHAR,IC,IFIN)

INTEGER CHAR(IC),P,P1
IFIN=O

DO 1 N=1,10

IF(CHAR(N) .EQ.1)GO TO 2
CONTINUE

P=0

N1=N+1

IF(N1.GT.I0)GO TO 4



DO 3 M=N1,IC
IF(CHAR(M) .NE.1)GO TO 4
P=p+1

IF(P+N,HQ.10)G0 TO 7
N1=N1+P

QIAR(N1)=1

N1=N+P+1

P1=P+1

DO 5 M=1,P1

N2=N1-M

CHAR(N2)=0
IF(P.BQ.O)RETURN

DO 6 M=1,P

CHAR(M)=1

RETURN

IFIN=1

RETURN
END
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