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ABSTRACT

This thesis is concerned with variable redundancy(VR)

error control coding. VR coding is proposed as one method

of providing efficient adaptive error control for time-

varying digital data transmission links. The VR technique

involves using a set of short, easy to implement, block codes;

rather than the one code of a fixed redundancy system which

is usually inefficient, and complex to decode. With a
data-rate

VR system, efficient^low-power codes are used when

channel conditions are good, and very high-power inefficient

codes are used when the channel is noisy. The decoder decides

which code is required to cope with current conditions, and

communicates this decision to the encoder by means of a

feedback link. This thesis presents a theoretical and

practical investigation of the VR technique, and aims to

show that when compared with a fixed redundancy system one
average

or more of the advantages of increased\data throughput, 

decreased maximum probability of erroneous decoding, and 

decreased complexity can be realised. This is confirmed 

by the practical results presented in the thesis, which 

were obtained from field trials of an experimental VR system 

operating over the HE’ radio channel, and from computer 

simulations. One consequence of the research has beai the 

inception of a study of codes with disjoint code books and mutual 

Hamming distance (initially considered for combatting feedback 

errors), and this topic is introduced in the thesis.
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CHAPTER 1 

Introduction

This thesis is concerned with variable redundancy (VR) 
error control coding, for use on noisy data transmission 
links. VR codin-g is proposed as one method by which error 
detecting and/or correcting (EDC) codes may be used to provide 
automatically adaptive error control fox a time-varying 
channel (Farrell 1969).

The results presented in this thesis aim to show 
that by using VR coding, reliable and efficient data transmission 
can be achieved with s-imple EDC codes; and that when compared 
to a fixed redundancy (FR) coding system operating on a 
time-varying channel , the advantages of increased overall 
throughput, or decreased complexity, or both, can be 
realised.

The genesis of the study of coding theory is contained 
in Shannon's fundamental theorem (Shannon 1948). This 
theorem states that every noisy channel has a definite 
channel capacity (C), and that provided information Is 
transmitted through the channel at a rate less than C, there 
always exists some coding scheme which will give as near: 
error-free performance as is desired. More specifically, 
for any rate R<C , and any code length (n), there exists 
a code for which the probability of erroneous decoding (P )
is given by

P < e e —
-nE(R) 1.1

where E(R) is specified by the channel transition probabilities.
*here, and subsequently, average throughput is implied.
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Shannon's theorem gives no indication of how to construct 

these good, long, codes; and it has been the ever-increasing 

need for extremely reliable data communication that has 

provided the incentive for coding theory to find the good 

coding schemes promised by Shannon.

In order to detect and/or correct transmission errors, 

redundant digits are added to the message data in a controlled, 

hopefully efficient, way. The rules for doing this, and 

for detecting and locating the errors in the received sequence, 

are given by the particular code. Equation 1.1 shows that 

for a code to be effective n must be large, and finding 

codes that are both efficient and long is theoretically 

difficult. More seriously, large n implies long decoding 

delays and complex decoding procedures, which may render 

impractical a theoretically good coding scheme.

The fundamental problem facing coding theory is 

therefore one of finding long, powerful and efficient codes 

that can be easily implemented.

The probability of erroneous decoding for a particular 

code, depends on the channel error statistics, and if 

these are fixed it may be possible to design an optimum 

code for the channel. For many practical digital data 

transmission links, however, the error statistics vary 

considerably with time. Consequently, for the system to 

be reliable, the coding scheme used must be powerful enough 

to cope with the worst channel error conditions. Since 

powerful codes are invariably inefficient or complex or both, 

throughput efficiency and Pg are unnecessarily low, and/or
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the complexity is high, when the system is operating 

under average or low channel error conditions.

Variable redundancy coding offers one possible solution 

to this problem by using a set of codes of varying 

redundancy, and hence EDC power, instead of just one powerful 

code. The set of codes is chosen to span the range of channel 

error conditions expected, and the system automatically 

uses the most suitable code at any particular instant. In 

this way, the EDC power of the system is varied in sympathy 

with the channel noise conditions, in order to match the 

EDC power required by the channel at any particular instant.

A VR system therefore has the effect of increasing throughput 

and maintaining relatively constant under varying channel 

conditions. The penalty paid for this is a variable rate 

of data extraction from the source.

Compared to an FR system, the demands on the codes 

used by a VR system are not so stringent; only the codes 

for low or average error rates need be efficient (although 

all should be optimum and easy to implement) because the 

system will operate in this condition for most of the time. 

Short, known, codes with low complexity can therefore be used.

The receiving terminal of the system must be capable 

of extracting channel statistics from the incoming transmission 

and using them to form a decision, based on a suitable 

criterion, as to which code in the set is most appropriate 

to the current channel conditions. This decision must be 

reliably passed to the encoder via a feedback link so that the 

appropriate code can be selected. In a simplex (one-way)
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transmission system the penalty of having to have this 

feedback link is offset because a retransmission method 

of error correction can be used, thereby decreasing decoder 

complexity even further. In addition, the feedback 

bandwidth (or time for duplex) can be much smaller 

than that of the forward channel.

During the course of the research an experiroental VR 

system was built. This was operated over a forward HF 

channel, and used a G.P.O. line feedback link. Results 

from this system together with results obtained from 

computer simulations of other VR systems, are presented in 

this thesis; and aim to show that simple and efficient 

adaptive data transmission can be realised by using the VR 

technique. The problem of feedback errors, encountered 

on the experimental system, has led to the study of codes 

with disjoint code books and mutual Hamming distance 

(Goodman 1974). This study is introduced in this thesis 

together with theoretical work on the generation of 

sets of such codes.

The thesis develops in the following way. Firstly 

chapter 2 outlines methods of providing error control 

for different types of channel by using EDC codes, and 

introduces the elementary properties of codes and channels. 

Chapter 3 develops the mathematical theory of block codes, 

and outlines the limitations, structure, implementation, and 

general properties of codes, giving particular attention 

to the important class of cyclic codes. This chapter is 

essentially a review of coding theory required for a full
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understanding of subsequent chapters, and as such may be 

omitted by the suitably informed reader. The concept of 

adaptive communication, together with the problems of 

implementing such systems are outlined in chapter 4. Also 

considered there are the characteristics of time-varying 

channels (with which the adaptive system must cope) 

particularly the HF channel. Chapter 5 presents an 

investigation of the VR approach to adaptive coding, and 

both theoretical and practical aspects.of the performance and 

implementation of VR systems are considered there.

Also introduced in chapter 5 is the topic of codes with 

disjoint code books, and this is further developed in 

appendix A. Chapter 6 describes the design and operation 

of the experimental system, and gives details of the 

system's field trials. Chapter 7 presents and discusses 

results on the behaviour of the HF link, the performance 

of the experimental VR system, and the performance of 

other computer-simulated VR systems. Finally, in chapter 

8, the thesis is summarised and conclusions on the work 

are drawn, together with suggestions for further research.
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Error Control by means of Coding

This chapter outlines the basic methods of providing 

error control for noisy data communication links by 

using EDC coding. The types of code available for error 

control (EC) are classified, and some of the elementary 

properties and limitations of codes are introduced. 

Attention in this and subsequent chapters is, however, 

restricted to binary codes used over binary channels, and 

in particular to binary linear block codes. The basic 

types of channel, their properties, and their effects 

on decoding are next considered; and finally the 

fundamental coding problem is outlined.

2.1 The data oommuni oat-ion system

A basic data communication (or storage and retrieval) 

system is shown in figure 2.1.

Figure 2.1

The Basic System

CHAPTER 2

display display binary error channel decoder
« decoder control decoder <■(signal selection) (demodulation)
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The first element of the system is an information 

source, which may be a person or a machine, that 

outputs source messages which may be continuous waveforms 

or discrete symbols. The source encoder takes the 

source information and performs a one-to-one translation 

from the source language to .binary, thereby producing 

a serial sequence of binary digits which is the binary 

message presented to the error control coder. In order 

for the transmission to be efficient it is generally 

assumed that the message presented to the EC coder is not 

in itself redundant and hence in possession of some 

inherent EDC power. This is obviously not true for 

information sources which operate in languages such as 

English; and so it is assumed that as well as being a 

transducer, the source encoder may perform some symbol 

encoding (Huffman 1952) in order to produce binary data 

with minimum redundancy. The error control coder takes 

the data sequence and, according to the coding rules, 

transforms this on a one-to-one basis into another, longer, 

binary sequence that is the code sequence. The code 

sequence is used by the modulator to produce a unique 

signal suitable for transmission over the channel. Signals 

pass through the channel and are perturbed by noise to 

varying degrees. The receiver then selects the required 

signal and the demodulator makes a decision as to which code 

sequence corresponds to which received signal. The output 

of the channel decoder is a received binary sequence that 

may contain errors and hence may or may not exactly match 

the transmitted code sequence. The error control decoder, 

on the basis of the received sequence, the EDC capability
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of the coding rules, the modulation used, and the channel 

characteristics, does two things. Firstly, an attempt is 

made to detect and/or correct errors in the received 

sequence, in order to produce an estimate of the trans

mitted code sequence. Secondly, if the code is non-linear 

or non-systematic (section 2.3), the code word is transformed 

to produce an estimate of the original binary data sequence. 

If the channel is very noisy the estimate and the original 

may differ considerably, thereby giving unreliable 

communication. Finally, the data sequence is delivered 

to the user and can be displayed in any convenient form.

Also shown in the diagram are possible feedback paths 

whereby control information may be passed from the receiving 

side to the transmitting side in order to help the 

modulator and EC coder form more reliable estimates, 

and/or vary transmission to cope with a time varying channel.

If attention is to be restricted to error control only, 

the system of figure 2.1 can be reduced to that shown in 

figure 2.2.

Figure 2.2

The Restricted System
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In this case the encoder - decoder pair are the 

error control subsystems with binary inputs and outputs. 

Binary message sequences are coded using an EDC code and 

the binary code sequence is passed through the channel where 

it may be corrupted by noise. The decoder then attempts to 

produce a reliable estimate of the original message sequence 

from the corrupted code sequence and may use a feedback 

link to facilitate this by means of coder control. The 

design of the encoder - decoder pair must ensure firstly 

that data throughput is as fast as possible, and 

secondly that the decoded message is as accurate a replica 

of the original message as possible.

The channel now includes the modulator and demodulator 

(modems),and can therefore be modelled by a binary process. 

As the code used is chosen to cope with the type of error 

patterns produced by the channel, it is advantageous to 

have full channel error statistics, and to be able to model 

the channel in some mathematical way. Any model, however, 

should ideally include not only the effect of errors due 

to the characteristics of the physical channel, but also 

the effect of the modulation used, which may give rise to 

particular types of errors.

2.2 Methods of error control

An EDC code can be used to provide error control 

in any one of three main modes: error detection (ED);

error detection with correction by automatic repeat request

(ED-ARQ); and forward error correction (FEC).
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Error detection involves using the code redundancy 

to check whether or not a received sequence is a eode 
sequence. If not, then errors are known to lie somewhere 

in the sequence; but cannot be located and corrected.

The decoder in an ED system therefore delivers an erroneous 

sequence to the data sink together with a flag symbol to 

indicate that the sequence contains errors. If correction 

of the detected errors is required then a retransmission 

system with a feedback link is needed, so that the 

decoder can instruct the coder to repeat the erroneous 

sequence as many times as is needed for the sequence to 

be correctly received. This system is known as 

automatic repeat request (ARQ).

ARQ can be implemented in two main ways. Firstly, 

with recursive ARQ, the correct reception of each code 

sequence is acknowledged before another sequence is 

transmitted. This reduces the data throughput rate, due 

to the bandwidth of the return channel which may be muck 

lower than the forward channel, delaying the acknowledgment 

signal. Secondly, with non-recursive ARQ, forward trans

mission takes place continuously and is only interrupted 

for retransmission. Interruption, due to the return 

delay, therefore takes place several sequences after the 

detected error; and so although transmission is faster 

for non-recursive ARQ, more complex buffering is required 

than in the recursive case. Both types of ARQ system 

accept data at a variable rate, dependent on channel 

conditions, and if it is required to extract data from the
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source at a constant rate, then buffering is required.

This leads to the possibility of buffer overflow, with 

consequent complete data loss, if channel conditions 

are bad enough to affect many adjacent sequences.

Error control can also be used to correct errors 

in a sequence by using an EDC code in the forward error 

correction (FEC) mode. Data extraction and throughput 

takes place at a constant rate and the coding rules are 

used to detect, locate, and hence correct errors.

Hybrid error control methods are possible by combining 

two or more of the above methods. For example, a code 

can be used to COWe ct up to a certain number of errors 

in a sequence, and then to detect if a greater number 

occur. These detected but non-correctable sequences 

may then the corrected by ARQ, if a retransmission 

system is available.

The choice of an error control method for a particular 

application depends on a number of factors. Firstly, 

codes used for forward error correction are more redundant 

than error detecting codes and data throughput is consequently 

less. The channel conditions also affect the choice of 

method: for example, a channel with a mainly random error 

distribution which does not vary greatly with time may be 

an ideal case for FEC; whilst a channel with varying impulse 

or burst type noise may dictate an adaptive method incorporating 

ARQ. If operation at a constant source data extraction rate 

is required then ARQ and similar rate-adaptive methods are
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ruled out unless sufficient buffer storage is available 

to cope with the worst channel error conditions. FEC 

and ARQ systems are more complex than detection systems; 

and this complexity may not be justified if the data 

has inherent redundancy which can be utilised by the 

user to correct errors intuitively, for example in the 

transmission of English text. If a return link is not 

avai1 able' then decoder controlled adaptive systems are 

ruled out. Data that is reproducable or storable on a 

temporary basis would indicate an ED of ARQ system whilst 

non--reproducable data would demand an FEC system, for 

example, prime data stored on magnetic tape or disc 

for later replay.

The choice of an error control method therefore depends 

on the individual communication system requirements, and 

the engineering problem involves a compromise between 

the user's data reproduction reliability demands, the system 

cost in of terms of data throughput and equipment complexity, 

and the restrictions imposed by an already existing 

communication system that may have to be modified to 

incorporate error control.

2.3 Codes for evvov control

In order to code for error control, redundant digits 

are added to the source data in a controlled way, so as 

to form checks on the data. This results in a code with 

a fixed EDC power. The redundancy is used by the decoder 

to detect and/or correct errors in the received code

sequence.
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Although codes have been devised on an heuristic 

basis, it is very desirable for codes to have high mathe

matical structure. This structure enables classes of 

codes rather than individual codes to be devised and also 

simplifies implementation. In this thesis the emphasis 

is on codes with an algebraic structure, but codes with 

other structures such as finite geometries are briefly 

considered. Most of the codes devised so far are linear 

codes, and attention is here restricted to the more 

practical subclass, the binary linear codes.

In general a binary linear (no, ko) code is one in 

which the coder accepts a string of k 0 information digits 

from the source, calculates a set of no>ko modulo - 2 

sums on various information digits, and

delivers the no digit code sequence to the channel. Th.e 

ratio ko/no is called the code rate (R), and for efficient 

coding we require codes with as large a rate as possible 

for a given EDC power. This usually implies that no must 

be long with high implementation complexity.

It is possible to divide the binary linear subclass 

into two fundamentally different types of codes: block 

codes, and tree codes. In a block code information digits 

are split into k digit sections, or blocks, and these 

are processed independently to produce an n digit code 

word. The code word passes through the channel and is 

decoded independently of any other blocks. A systematic 

block code (as implied in this thesis) is one in which 

the first k digits of the code word are the same as the
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k information digits. As every binary linear block 

code is equivalent to some systematic code, it is therefore 

usual to use mainly systematic block codes in order to 

realise the advantage of reduced coder - decoder (codec) 

complexity. Coding with a systematic block code 

therefore involves taking n-k modulo-2 sums on the 

information digits and serially adding these n-k parity 

checks to the k digit information block, to produce the 

n digit code word.

The second major class of codes are tree codes, and 

these have as a more useful subclass the convolutional 

or recurrent codes. Tree codes, unlike block codes, do 

not operate on information sequences independently.

Instead, information is processed continuously, each 

information sequence being associated with a longer 

(possibly semi-infinite) code sequence. A binary convolutional 

code encoder operates by firstly splitting the information 

sequence into ko digit blocks, where k 0 is usually small.

Parity checks are then calculated by taking mod-2 sums not 

only on the present ko information block, but also on many 

previous blocks. These checks, together with the ko information 

digits form a basic no digit section of the code sequence.

For encoding and decoding to be practical the number of 

basic blocks (m) over which the code calculates checks must 

be restricted; and the number (mno) of digits which the 

decoder has to handle is called the constraint length (n) 

of the code. Convolutional codes originated with Elias (1954) 

and Wozencraft (1957); and the most important decoding
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procedures are described by Massey (1963), Wozencraft (1957) 

and Viterbi (1967). Although, as yet, convolutional codes 

are not as thoroughly investigated as block codes , they 

do have similar, and in some cases superior, error control 

capabilities. Shannon's fundamental

theorem holds for both types of code. Convolutional codes 

are not considered further in this thesis.

The first block codes were devised by Hamming (1950) , 

and Golay (1949) , and since then many new classes of 

code have been devised. Binary linear block codes have 

reasonably high mathematical structure in that the 2 code 

vectors (n-tuples) have the properties of a group under 

mod-2 addition, and are vectors chosen from the vector 

space of all binary n-tuples. By imposing further structure 

in an attempt to generate powerful easily implemented codes, 

many subclasses of linear block codes have been devised, 

and attention will now be restricted to these codes.

Figure 2.3 outlines the relationships between the main 

classes of block code. Individual codes, however, may 

belong to more than one subclass.

The study of cyclic codes started with Prange (1957, 

1959), and reference to figure 2.3 shows that these 

codes form by far the largest collection of practical 

codes, including the powerful random error correcting 

BCH codes and the powerful burst correcting Reed-Solomon 

codes. Much work has gone into the generation of codes 

that are either genuine subclasses of cyclic codes, or 

strongly related to cyclic codes, in an attempt to realise
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the advantages of easy implementation inherent in this 

large class of codes. Most of the codes in the above 

diagram are dealt with in chapter 3, and appropriate 

references appear there. Information on codes that appear 

in the diagram but which are not dealt with further may be 

found, with references, in Peterson (1972 ) , Lin (1970) , 

and Franco (1965).

2.4. Hamming distance

The concept of Hamming distance (Hamming 1950) is 

essential in discussing the EDC power of a code as it has the 

properties of a metric. The weight of a binary code word 

with block length n is defined as the number of l's it contains 

and the Hamming distance between two n-tuples is the number 

of positions in which their elements differ, that is, the 

weight of their mod-2 sum. Thus the Hamming distance 

between two n-tuples is a measure of their separation in the 

n-dimensional vector space of all n-tuples. When considering 

a linear block code the code vectors may not all be at 

equal Hamming distance from each other. In this case the 

minimum Hamming distance that occurs in the collection of 

code n-tuples determines the EDC power of the code, and is 

called the code distance (d). The minimum distance of the 

code is therefore equal to the minimum number of errors per 

block that will change one code word into another, thereby 

producing a situation that overloads the code and is neither 

detectable nor correctable.

If a code is used for error detection, then a detectable 

error pattern is one that does not change a code word into 

another valid code word; and therefore to guarantee the
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detection of all patterns of d-1 or fewer errors in the 

block, an (n,k) code must have a minimum distance of at 

least d. The number of detectable error patterns (n^) 

guaranteed by this lower bound is therefore

n
"d i «<,_!> ( 11 )a-2 1 <i' 2 . 1

Many linear bloqk codes, however, have an error detecting 

power much greater than that guaranteed by the bound, due 

to the group property of such codes. For these group 

codes the digit by digit mod-2 sum of any two code words ■ 

generates another valid code word and therefore the only 

error patterns that can change one code word into another, 

the undetectable patterns, are patterns identical to the 

code words. The true number of detectable error 'patterns 

is therefore given by:

n td = 2n - 2̂ - , 2.2

and in general, nt(j >> nd •

The error correcting power of a code can also be 

related to distance by considering the requirement that all 

patterns of t or fewer errors must be corrected. One 

method of correction is to look for the code word that is 

the shortest distance away from the received word. Taking 

the worst case, a received n-tuple may be t units away 

from the transmitted code word, and in order to correct 

this we must require that the n-tuple is at least t+1 units 

of distance away from any other code word. Therefore, to 

guarantee the correction of all patterns of t or fewer errors 

a code must have distance 2t+l. Furthermore, considering 

that an error must be detected in order to be corrected, the 

simultaneous correction of all patterns of t or fewer errors
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and detection of all patterns of 1 >, t errors requires a 

distance of t+Z+1.

In order to increase the EDC power of a code the 

distance must increase. This means that either the 

number of code words must decrease while n is held 

constant, or that n must increase while k is held constant.

In both cases this implies that further redundancy is 

added, thereby reducing the data throughput rate. If 

n is increased with the rate held constant then distance 

also increases and, unfortunately, so does codec complexity.

The structure of linear block codes enables the distance 

of such a code to be easily found because, due to the 

group property, the minimum distance of the code equals 

the weight of the minimum weight non-zero code word. 

Therefore, to find the distance of an arbitrary code, the 

code words are generated to find the minimum weight code 

word. This procedure can also be used to generate codes 

on a trial and error basis using a computer. For large 

n, however, this is impractical and accounts for the need 

to utilise further mathematical structure, in order to 

generate classes of codes for which the minimum distance 

can be explicitly stated.

2. 5 Decoding block codes, and the effect of the channel

Decoding involves associating a received n-tuple (r) 

with a transmitted code word (c); and

this decision must

take into account the effects of the particular channel.
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The probability of erroneous decoding then depends on the 

code used, the channel error characteristics, and the 

decoding strategy employed. If all code words are equi- 

probable then the best decoding scheme is known as 

maximum likelihood decoding. To implement this scheme after 

receiving a vector r, the decoder computes the conditional 

probability P(r/c), which depends on the channel transition 

probabilities, for all the 2^ code words. The code word 

ct is identified as the one transmitted if PCr/c-^) is 

largest. There are two major disadvantages to this scheme 

when taken at face value; firstly, 2^ computations are 

involved and this can render the scheme impracticable 

for long codes; secondly, precise knowledge of the channel 

is implied at all times, and this is difficult to achieve 

on real channels.

To assess the probability of erroneous decoding it 

is therefore essential to model the channel, including 

modems, in some reasonably simple way, in order to see 

if maximum likelihood or some other near-optimum decoding 

scheme can be implemented in a practical way, that is, 

one not involving the direct computation of probabilities.

Channels may be roughly split into two types : 

memoryless channels, where errors occur independently at 

random; and channels with memory, where errors occur 

in bursts separated by relatively error free intervals.

All real channels are a mixture of the two; but if a 

channel is predominantly of one type, a code designed 

specifically to cope with either burst or random errors

can be chosen.
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2.5.1 Memory less channels

Memoryless channels are generally modelled by the 

binary symmetric channel (BSC), or the binary erasure 

channel (BEC), or both (BSEC). These channels are 

shown in Figure 2.4.

Figure 2. 4

Memoryle ss Channe1s

(i) The BSC

The BSC is characterised by a single parameter p, 

the probability of a bit error; and the performance of 

a code used on this channel can be assessed by comparing 

the probability P(m,n) of m errors in a block of n digits, 

with the EDC power of the code. P(m,n) is given by the 

binomial distribution:

P(m,n) = (^)pmqn~m , 2.3

whicla shows that equal weight error patterns are équi

probable; and that one error is more probable than two 

errors, and so on.

It can be shown (Gallager 1968) that maximum likelihood 

decoding for the BSC is equivalent to choosing a code
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vector c that is the shortest Hamming distance away from 

the received vector r. If the received vector is equi

distant from two valid code words, then detection has 

occurred but the code is overloaded as far as correction 

is concerned, as it cannot uniquely decode the received 

ve ctor.

Choosing the 'nearest' vector is equivalent to finding 

the minimum weight error pattern (e) that v/ill change 

the received vector into a valid code word. That is, the 

minimum weight solution (e) to the equation

c = r©e , 2.4

where © signifies modulo-2 addition. The distance 

properties of a linear code guarantee at most one solution 

having (d-l)/2 or fewer l's, and so provided the number 

of errors per block does not exceed (d-l)/2, equation 2.4 

can be solved uniquely for e and hence c. The complexity 

of such a solution is still, however, exponentially 

dependent on code length.

The term Algebraic Decoding refers to a class of 

decoding algorithms designed to systematically determine 

the minimum weight. solution to equation 2.4 by exploiting the 

algebraic structure of the code; and are generally only 

guaranteed to work when there exists a solution of weight 

(d-l)/2 or less. These algorithms are designed to have a 

complexity that is not exponentially dependent on code 

length (as opposed to basic maximum likelihood decoding), 

and some of the correcting power of the code, as guaranteed 

by the minimum distance, may be sacrificed to achieve 

this .
* as s umi ng p < 2 .



(ii) The BEC and BSEC

The erasure channel was introduced by Elias (1954), 

and corresponds to the case where the demodulator, lumped 

into the channel as in Figure 2.2, outputs an erasure 

symbol instead of an 0 or 1 in doubtful cases. This 

erasure symbol therefore corresponds to an error whose 

position is known; but whose magnitude is not. For the 

BEC a code with distance e+1 can correct all combinations 

of e or fewer erasures; and for the more practical BSEC 

model the simultaneous correction of t errors and e erasures 

requires a minimum distance of at least 2t+e+l. Due to 

the random nature of the BSEC, maximum likelihood decoding 

is again optimum, and general decoding for the erasure 

channel has been studied by Epstein (1958). By exploiting 

code structure, algebraic decoding algorithms that correct 

errors and erasures can be evolved, with only a slight 

increase in complexity over the pure BSC case (Gallager 1968, 

Pe te rs on 19 72 ).

2.5.2 Channels with memory

In general, real channels (such as HF and telephone) 
have memory, and are prone to bursts of errors, that is, 
a pattern of error digits starting and ending with an 
error. These channels can be characterised by their bit 
error rate and their p(m,n) distribution in the same way 
as the BSC; but the shape of the P(m,n) distribution is 
generally very different from that of the BSC. Further 
distributions such as the distribution of error-free 
intervals, and the distribution of burst lengths, are then



needed to fully characterise these channels.

A model of the burst channel originally proposed by 

Gilbert (1960) considers the channel to be composed of a 

small number of BSC's, with the state of the model, that 

is, the BSC in use at any particular time, being controlled 

by a Markov process. As the probability of remaining in 

a given state is greater than the probability of leaving 

and also because one state is usually chosen to have a bit 

error rate of 0.5, errors tend to occur in bursts. Generally 

two or three states are sufficient to define a model 

whose P(m,n) or error free interval distribution is similar 

to that of a real channel. A three state Gilbert model, 

with transition and bit error probabilities, for a typical 

telephone channel is shown in Figure 2.5.

Exact expressions for the P(m,n) and error-free 

interval distributions are given by Elliott (1963) using 

the two state Gilbert model, and therefore the performance 

of a code when used on this channel can be explicitly 

calculated. A modified Gilbert model that gives an 

excellent match to telephone data is given in Elliott (1965) .

Figure 2.5

A Gilbert Model
-3
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A partitioned Markov chain model proposed by 

Fritchman (1967) contains only one error state and no 

transitions between error free states, and is shown to be 

uniquely determined by the error free interval distribution. 

This model is therefore easier to fit to real channel 

statistics than a generalised Gilbert model, and Tsai (1969) 

shows a good fit can be obtained using error statistics 

from an HF channel.

Burst error correcting codes are generally designed 

to correct any burst of length b in a block of n, and so 

emphasis is on the length of the error pattern rather than 

the weight. Algebraic decoding methods that guarantee to 

correct bursts of up to a certain length also exist, and 

if it can be assumed that for the particular.channel a 

burst of length b is less probable than one of length b-1, 

these decoding schemes are maximum likelihood and hence 

optimum.

Most real channels corrupt signals with both Gaussian 

and impulse noise, and are also time varying. Therefore, 

ideally, to cope with this situation a code capable of 

correcting both random and burst errors, as well as 

adapting to changing channel conditions, is required. Also 

real channels may insert or delete bits from the code 

sequence giving rise to timing errors which, hopefully, 

the decoder should be able to correct. Under these 

comprehensive error conditions it is difficult, if not 

impossible, to explicitly postulate an optimum decoding 

strategy. Good algebraic decoding methods can, however, 

be formulated, given that comprehensive channel models are
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available; but in general, system performance over real 

channels must be assessed by comprehensive simulation or 

field trials.

2.5.3 Probabilistic decoding

A fundamentally different approach to algebraic 

decoding, is that of probabilistic decoding (e.g, sequential 

or soft decision decoding) . Probabilistic decoding attempts 

to reduce the decoding effort by utilising the probabilistic 

nature of noise to replace one difficult decision (as to 

which code word was sent) with a number of simpler ones.

Thus a tentative decision as to which code word was received 

is made, and on the basis of more incoming sections of the 

code sequence, the estimate is gradually iterated toward 

a hopefully correct decision. The amount of decoding 

effort is therefore dependent on the channel error conditions 

and may exceed the time available before a new word must 

be decoded.

Although sequential decoding techniques have been applied 

to the decoding of block codes (Gallager 1963, Massey 1963, 

Forney 1966, Fano 1963), they are most effective for 

decoding convolutional codes (Massey 1963, Wozencraft 1957, 

and 1961, Viterbi 1967), and will not be considered further. 

Soft decision techniques can be used with both Hock and 

non-block codes, and are capable of greatly improving overall 

system performance (Weldon 1971).

2.6 The coding problem

For codes to be powerful they must be long; but it is 

difficult to "randomly" generate good, long, codes even with



computer aid. This means that mathematical structure is 
required to generate classes of codes with guaranteed 
minimum distances. If codes are long it also becomes 
impossible to store all code words at the encoder ,and 
decoder, and structure must be further exploited to achieve 
practical implementation. In order to correct errors it 
is desirable to achieve an optimum decoding scheme, but 
this depends on the channel statistics which may vary if the 
channel varies. The coding problem is therefore essentially 
threefold: finding powerful codes with the highest possible 
rate that can cope with errors that are likely to arise 
on the particular channel; devising efficient encoding schemes 
based on a code's inherent mathematical structure; and finding 
practical methods of decoding that are optimum for the 
particular channels in use.

The engineering problem of setting up an error control 
system is essentially one of compromise and trade-off.
An optimum solution to a particular problem cannot be 
found analytically; rather, out of many possible systems, 
a decision is formed. This decision must take account 
of: powerful coding, data throughput, final undetected or 
uncorrected error rate, equipment complexity, channel error 
statistics, channel availability, decoding delays, and, by
no means least, user requirements.
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CHAPTER 3

Linear Block Codes - Theory, Implementation and Capabilities

This chapter describes the properties of various 

classes of linear binary block codes, giving particular 

emphasis to the properties and implementation of the most 

important class, the cyclic codes. Due to the structure of 

linear codes this description is essentially mathematical 

and a knowledge of modern algebra is assumed.

The chapter is essentially a review of the relevant 

coding theory required for a full understanding of chapter 

5, and as such may be omitted at a first reading by the 

suitably informed reader.

3.1 Linear binary block codes

The set of all n-tuples with binary elements, that is, 

elements from the Galois field of two elements, GF(2), form
■u

an n-dimensional vector space. A subset containing 2.' of
*

these vectors is an (n ,k) linear block code iff they form 

a k-dimensional subspace of the vector space of all n-tuples. 

The code may therefore be described by any set of k linearly 

independent vectors which span the code space. The vectors 

in the code form a group under mod-2 addition: hence the 

sum of any two code vectors is itself a code vector, and 

the minimum distance of the code equals the minimum weight 

code vector. The set of all n-tuples orthogonal to a 

subspace Vj of dimension k, forms a n-k dimenional subspace 

V 2 , which is called the null space of Vj. Therefore, if

*if and only if



a vector is orthogonal to every code vector, it is in the 

null space of the code, and it is possible to describe a 

linear code in terms of the null space of some vector 

space .

3.1.1. Generator matrix description of Linear block codes

Any set of k linearly independent vectors which span 

a k-dimensional vector space is called a basts of the 

space, and any set of k basis vectors for a linear block 

code can be considered as rows of a matrix G, called a 

generator matrix of the code. The row space of G is the 

(n ,k) linear code, and each of the 2^ distinct linear combinations 

of rows gives one of the 2^ distinct code vectors. The 

matrix description is therefore much more compact than 

a list of code vectors, and code words (u) can be 

considered to be generated by the matrix multiplication: 

u=dG, where d is the k digit message block.

There are as many generator matrices for a given code 

as there are sets of basis vectors. These matrices all 

generate the same row space, are called row equivalent, and 

can be obtained, one from the other, by a succession of 

elementary row operations. All generator matrices for a 

particular code, however, are row- equivalent to only one 

matrix in canonical echelon form, and this matrix is 

therefore a unique description of the code. Every linear 

code is therefore described by one, and only one, generator

matrix in canonical echelon form.
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Two codes may differ only in the arrangement of their 

symbols within the code words. These codes will therefore 

have different code words and different canonical generator 

matrices, but will have identical weight structure's and 

equal minimum distance. These codes are called equivalent, 

and their performance on a channel with random errors will 

be identical. It is important to note, however, that because 

the code words have different binary patterns, their 

burst correcting ability may not be the same.

If we consider a generator matrix G, then every 

permutation of columns results in the generator matrix 

of an equivalent code. Matrices that are obtained from 

one another by a combination of elementary row operations 

and column permutations are called cornbinatoriatly equivalent, 

and it is therefore possible to express all the generator 

matrices of all equivalent codes with just one combinatorially 

equivalent matrix in a standard form, called reduced 
echelon form. This form is shown in equation 3.1 below 

and has the leading l's of each row arranged into a k x k 

identity matrix.

G

10 ...O pii 
01...0 p 2 1

Pi /n-k 
P2/n-k

00 1 Pki Pvk 'n -k

3.1

The code generated by this matrix is called a Systematic 
code because the first k digits of each code word are 

identical to the k message digits; the encoding operation, 

u=dG, is therefore greatly simplified. Each of the last

(n-k) digits is a linear combination of the k message digits



and those digits are called the redundant, or parity check
digits. The matrix P therefore represents the parity check 

equations, the value of the ith parity check digit in a 

code word being given by the mod-2 sum of message symbols 

whose positions correspond to l's in the ith column of P. 

The code words .from a systematic code can therefore be 

considered as a block comprising of two sections: a k digit 

message section, followed by an (n-k) digit parity check 

section as shown in figure 3.1 below.-

Because every generator matrix is combinatorially 
equivalent to some matrix in reduced echelon form, every 
linear code is equivalent to a systematic code. It is 
therefore possible to restrict the consideration of random 
error-correcting codes to systematic codes only, without 
loss of generality.

3.1.2 Parity check matrix description of linear block codes

An alternative matrix description of a linear code can 
be formed by considering the parity check matrix (H) of the 
code. A linear code V, generated by G, has a null space 
V' of dimension (n-k), and this null space can be considered 
to be generated by a matrix H that uses basis vectors 
for V' as rows. The code V is therefore the null space of V 1

Figure 3.1

A Systematic Code Word

mess age p ari ty
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and a vector u is a code word iff, 
u HT = O 3 . 2

The (n-k) rows of H are essentially (n-k) independent 
equations which an n-tuple must satisfy in order to be 
a code word. These equations are called generalised parity 
checks because, in the binary case, they check certain 
digits in'the code word for even parity.

If h^j is an element of H, and if u = ( u i , U 2 , ... un ) ,

then equation 3.2 implies that u is a vector in the code 

generated by G iff, for each i (row):

E u j h i j = 0 3.3
j

Also, as equation 3.2 holds for every code vector, it must 

hold for the k basis vectors of G, and therefore

where
GHT :

[°]
3.4

denotes the k by (n-k) all-zero matrix.

For a systematic code with a generator matrix of the 

form of equation 3.1, the parity check matrix is given by

" [pTl"-x] 3.5

and therefore
HT =

■n-k
3.6

Equation 3.3 then implies that, for each parity digit, 

the mod-2 sum of that digit and the message digits checked 

by it, as given by the appropriate column of P, must be

zero.
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If denoto

equation 3.3 gives

denotes the ith column vector of H, then

3 . 7
i = 1 ' J

and this is a linear dependence relation showing that 

v/ columns of H add to zero, where w is the number of 

non-zero components of u. If u is considered to be the 

minimum weight code vector, then the code that is the null 

space of H has minimum distance at least w , iff no combination 

of (w-1) or fewer colums of H add to zero, This indicates 

an heuristic method of constructing a code of weight 

w by progressively choosing columns of H such that no 

combination of (w-1) columns are linearly dependent.

The row space (V1) of H, which is the null space of 

V, is also a subspace of the space of all n-tuples and is 

hence also a linear code. The code formed by taking rows 

of H as a basis is called the dual code of G, and every 

(n,k) linear code has an (n,n-k) dual code, and vice versa.

3.1.3 The syndrome

Consider a received vector r consisting of a code 

vector u that has been corrupted by an error vector e ,that 

is ,

r = u © e 3.8

The function of the decoder is to recover u from r.

Because r is not a code word,

s riIT £ 0 3.9

where the (n-k) digit vector s is called the syndrome of r.
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Substituting equation 3.8 into equation 3.9 gives

s = ( u © e ) H T

= eHT 3.10

because the syndrome of a code word (uIIT ) is zero. The 

syndrome of a received n-tuple therefore only depends 

on the error vector corrupting the code word, and not on 

the actual code word sent. For a systematic code the 

syndrome may be found by recalculating the parity digits, 

by what is effectively encoding the message section of 

the received word, and then adding these recalculated checks 

to the received checks.

When using a linear code for error detection it is 

only necessary to test for a non-zero syndrome; for 

error correction, the value of the syndrome can be used 

to identify a particular error pattern, which can then be 

added to the received code word, thereby correcting it.

3.1.4 Coset decomposition and the standard array

Given a group G with elements (gj) and a subgroup (H) 

of G, with elements (hj), it is possible to express all the 

elements of G in an array called the coset decomposition 

of the group. The first row in the array is the subgroup, 

with the identity element (hi) at the left. The first 

element in the second row is any element not in the first 

row, and the remaining elements in the row are obtained by 

multiplying each subgroup element by this left-most element. 

Further rows are formed in a similar manner, always placing 

a previously unused group element in the first column, until 

all the group elements appear in the array. The set of elements
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in a row of the array is called a coset, and the element 

in the first column of a row is the coset leader of that 

row.

The code words (u) of a linear code form a group 

(under mod-2 addition) which is a subgroup of the group 

of all n-tuples. This group may therefore be decomposed 

into cosets starting with the code subgroup, and the 

array so formed is called the standard array (Slepian 

1956). By choosing the 2n~k coset leaders to be error 

patterns (e), it is then possible to use the array as a 

decoding table. A standard array for an (n,k) code is 

shown in figure 3.2.

Figure 3.2 
The Standard Array

U  X = 0 u 2 u 3 ... u k 2 K
e 2 e 2  + U 2 e 2 + u 3 • • • e 2 + u k 2• • • •
• • • •
• . • .
e 2(n-k) e 2(n-k)+u2 e 2(n-k)+ u  3 • ' • e 2( n - k f  2 k

Every group element appears once and once only in the 

array and there are therefore exactly 2n~^ rows, or 

cosets, in the array.

The standard array when used as a decoding table 

gives correct decoding iff the error pattern caused by the 

channel is a coset leader. The 2n~k coset leaders are 

called correctable error patterns, and for these patterns the 

required code vector heads the column in which the received 

vector lies. If the error pattern is not a coset leader,

incorrect decoding results. Therefore, in order to minimise
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the probability of erroneous decoding, the coset leaders 

are chosen to be the error patterns which are most likely 

to occur on the particular channel in use. For the BSC, 

increasingly weighty error patterns are decreasinyly 

probable, and so coset leaders for this channel should 

be chosen to haye minimum weight from amongst the remaining 

vectors (assuming p<|)#

From figure 3.2 it can be seen that each row consists 

of code words plus a specific error vector, therefore all 

the 2^ n-tuples of a coset have the same syndrome, and 

the syndromes for each coset are different. This means 

that there is a one-to-one correspondence between a 

correctable error pattern (a coset leader) and a syndrome. 

It is therefore possible to have a decoding table that 

does not involve storing the entire standard array. This 

is called Zook-up decoding and is accomplished as follows,

(i) calculate the syndrome s = rHT of r.

(ii) locate the coset leader ef whose syndrome is 

s, this is assumed to be the error pattern.

(iii) add the coset leader and received vector to give 

the transmitted code vector u = {u + ej_)+ej.

This scheme, although simpler than using the whole array, 

still means that 2n“-̂ coset leaders and syndromes have to 

be stored, which may be impractical for large n-k. 

Alternatively, the decoder may store only the coset 

leaders, and calculate the corresponding syndromes each 

time a match with the received syndrome is required. The 

storage required is halved, but the computation can be

prohibitive.
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Generally, in an (n,k) code with minimum distance 
(2t+.l) it is possible to construct a standard array such 
that all error patterns of weight t or less, and possibly 
some of weight t+1, can be used as coset leaders. 'If 
no patterns of weight t+1 are possible, the code is called 
a p e r f e c t  code.

For h perfect code each coset leader can be chosen 
to be the minimum weight word in the coset; if some patterns 
of weight t+1 are correctable, then these cosets do not 
have a unique minimum weight word. A decoding algorithm 
that is maximum likelihood for the BSC is then:

(i) attempt to correct all patterns of weight t
(ii) only detect patterns of weight t+1.

Decoding by using the standard array has a 
complexity that is exponentially dependent on length, and 
to reduce this rate of complexity increase usually implies 
that the code has to have more restrictive properties than 
just linearity.

3.1.5 Step-by-step decoding

This decoding algorithm assumes that, for any received 
n-tuple (v) , the weight of the coset leader w c (v) in which 
the n-tuple is located, can be easily determined. It is 
also assumed that the coset leaders (correctable error 
patterns) are chosen in groups of increasing weight. The 
most obvious way to determine w (v) is to have available a 
table of syndromes and coset leader weights. If however, 
wc (v) can be computed from the syndrome in some simple 
manner, the decoding effort need not increase exponentially
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with n .

The step-by-step decoding algorithm is then as follows.
(i) calculate wc (v) .

(ii) invert the first digit of v to form a new vect.or v ’

(iii) calculate w (v')
(iv) if wc (v ' )<wc (v) , the first digit was in error 

and has been corrected. If wQ (v ')>wc (v ) , the first digit 
was correct and must be inverted back to its original 
value.

(v) repeat steps (iii) and (iv) for the other 
digit positions until w c (v')=0, that is, v' is a code 
word.

The decoding effort in this procedure is < n times 
the effort involved in calculating w c (v), and if the 
wc (v) computation is not exponentially dependent on n, 
then neither is the total decoding effort.

Step-by-step decoding always results in a code word 
that is the shortest distance away from the received 
n-tuple, and is therefore maximum-likelihood for the 
BSC .

3.1.6 Conclusions

This section has outlined methods by which any linear 
binary block code can be described. Also indicated were 
general methods of encoding, finding minimum distance, and 
decoding. It is important to note several points about
these operations.
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(i) Encoding does not require the storage of all the 

2^ code words. Instead the kx (n-k) P matrix is 

stored, and code words can be generated as they 

are needed.

(ii) The minimum distance of the code can be determined 

by finding the minimum weight code word, an 

operation requiring 2k steps.

(iii) A general decoding method involves the use of 

the standard array, but the disadvantage of 

this method is that complexity grows exponentially 

with block length. Step by step decoding is 

useful for a restricted sub class of linear codes, 

and has a complexity that is linearly dependent 

on block length.

As far as general code construction is concerned, this 

section has implied two possible methods.

(i) A code can be heuristically constructed by

generating all possible P matrices for a given 

n and k. The minimum distance of the resulting 

(n,k) code is then determined by testing each 

code word for minimum weight.

(ii) A code with a guaranteed minimum distance of 

at least w can be generated by systematically 

choosing columns of the H matrix, such that no 

combination of (w-1) columns or less is linearly 

dependent.

The points raised above on implementation and 

construction, indicate that these general methods quickly become
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impractical as n increases. The following sections of this 
chapter describe restricted classes of codes that can be 
constructed, even for large n, by the utilisation of further 
mathematical structure. This structure is then exploited 
to ensure that the codes are efficient, have an explicitly 
guaranteed minimum:distance, and can be implemented 
(particularly decoded) in a practical way.

3.2 Capabilities and limitations of linear codes

In order to design new good codes and comparatively 
assess their error control performance, it is necessary 
to have a knowledge of the ultimate theoretical capabilities 
of codes, as well as a knowledge of what is achievable 
from known codes. Given this information it is then 
theoretically possible to say for each (n,k) which codes 
are 'best' and which codes fall significantly short of 
theoretical expectations.

To calculate the values of these capabilities exactly 
is difficult, if not impossible. Instead, upper and lower 
bounds have been derived in order to restrict these 
capabilities to a range of values. Bounds generally fall 
into two main classes: bounds on minimum distance, and 
bounds on error control performance. Performance bounds 
are generally more complex than distance bounds as they 
depend on the type of errors introduced by the channel.

This section looks at bounds on minimum distance, 
performance over the BSC, and burst error control
capability .
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3.2.1 Minimum distance hounds

The parameter of interest here is d^AX(n /k )/ that 

is, the maximum minimum distance attainable with a linear 

(n,k) code. Despite a great deal of research, dM^x(n,k) 

is only known exactly for k<_5 , all n and k for which 

^MAX (n > k ) <_3 and a few other isolated values. There is no 

theoretical approach to a general solution, and computing 

d(n,k) for all (n,k) codes is impractical if n is at all 

large. Upper and lower bounds have, however, been derived 

and can be evaluated in two ways. Firstly, the bounds can 

be calculated for exact values of n and k. This involves 

a large amount of computation but is necessary for small 

n. Secondly, these bounds usually approach a simple 

asymptotic form for large n, the value of which can be 

easily calculated. Bounds for exact values of n up to 

127 have been calculated by Helgert and Stinaff (1973) ; 

for larger n the asymptotic bounds are fairly sharp, and 

attention will now be restricted to these.

Upper bounds are the most interesting as they indicate 

what is theoretically achievable; lower bounds merely 

state what is possible. Most bounds are based on the sphere 

packing argument proposed by Hamming (Hamming 1950, Johnson 

1971, Gilbert 1952, Wax 1959) the 'average distance1 

approach of Plotkin (Plotkin 1960, Griesmer 1960) or a 

combination of these (Wyner 1965) . Lower bounds on 

distance are provided by a number of well known codes, such

as the Hamming and BCH codes.
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The Plotkin (1960) upper bound is a relatively 

crude bound on d that relies on the fact that the minimum 

weight code word in a linear code is at most equal to the 

average word weight. The asymptotic form for large n is:

1 - k > 2d 3.11
n n

The Hamming (1950) upper bound on d is derived by 

noting that if a code is to correct all combinations of 

t or fewer errors, then all errors of weight t or less 

must be coset leaders. Therefore the number of error
n —  ^patterns must be no greater than the number of cosets (2 ).

For large n, the asymptotic form is:

1-k > H d_3.12
n ' 4 n ;

where II (x) = -xlogx- (1-x) 1 og (1-x) .

The Elias upper bound employs concepts that are 

used in both the Plotkin and Hamming bounds, and for 

large n is tighter than either (Peterson 1972).

Other upper bounds on d, which are tighter in certain 

cases than the above three bounds, have also been derived 

(Johnson 1962, 1963, Wax 1959). These bounds are generally 

more complex for small n than the Hamming or Plotkin bounds, 

and for large n none improve on the asymptotic Elias bound.

Upper bounds indicate that it is impossible to construct 

codes with a given n and k that have greater distance than 

that given by the bounds. It is therefore important to know 

what distance is achievable. Specific answers to this 

problem are provided by the multitude of known codes; a
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general solution is given by the Varsharmov-GiIbert-Sacks 

(VGS) lower bound on d. This bound is a refinement of 

Gilbert's (1952) bound and was found independently by 

Varsharmov (1957) and Sacks (1958).

The VGS bound employs the fact that, in an (n,k) 

linear code with distance d, no combination of d-1 or 

fewer columns of the parity check matrix (H) are linearly 

dependent. The asymptotic form of the bound is

H cL >_ 1 -k 
n n

The four asymptotic bounds mentioned so far are 

plotted in figure 3.3 below.

Figure 3.3

Asymptotic Pist an c e Boun ds

3.13

shown

a: Hamming 
b: Plotkin 
c: Elias 
d: VGS

The bounds of figure 3.3 indicate the theoretical 

limits on minimum distance possible with an (n,k) code. 

Known codes, however, fall significantly short of these 

limits when n is large. For small n the Hamming codes,
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and the equivalent highest rate BCH and Reed-Muller 

codes, meet the Hamming bound. The lowest rate Reed-Muller 

and BCH codes meet the Plotkin bound. These codes therefore 

have maximum minimum distance. For large n , however, 

their rates all approach 0 or 1. In the middle rate range, 

with the rate fixed, both BCH and majority-logic codes have 

the ratio d/n tending to zero when n tends to infinity.

The BCH codes, however, still lie approximately on the VGS 

bound for n=1023. In fact there is no known coding system 

for which it has been proved that d/n remains non-zero as 

n tends to infinity with the rate fixed, although the VGS 

bound shows that such codes exist. It would be of great 

theoretical interest to find codes that achieve what the 

bounds say is possible, although their practical use would 

depend on ease of implementation.

3.2.2 Performance hounds for random error correction on the 
BSC

The performance of a code when used over a particular 

channel can be measured in various ways. In order to 

simplify matters, it is usual to assume that the channel 

can be modelled by the BSC, and that 'performance' can 

be measured by , the probability of erroneously 

decoding a block. A code can then be called optimum for 

the BSC if its value of Pe is as small as for any other 

code with the same n and k. This section gives an explicit 

expression for Pe which is applicable to any code, and 

then goes on to consider some upper and lower bounds on Pe >
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For the BSC, equal weight error patterns are

equiprobable, and the channel is described by the

binomial distribution P(m,n), the probability of m errors

occurring in a block of length n. The probability of a

decoding error is then given by, 
n

Pe = Z am .P(m,n) 3.14
m=0

where affl is the probability of erroneously decoding an 

error pattern of weight m , using the particular code.

The parameter am is purely a function of the code and the 

decoding algorithm used, and, for certain cases, there 

may not exist an analytic method for its determination.

For example a perfect code being maximum-likelihood 

decoded would have am=0 for m<t, and am=l for m>t. A 

quas i-pe r f e ct code, however, would have am<_l for m = t+l , 

and these affl may not be easily determinable. Equation 

3.14 therefore gives rise to an upper bound on PQ . 

n
Pe £ E P (m ,n) 3.15

i = t+l

In some cases, particularly when n is large and soft decision 

decoding is employed, am may be very much less than 1 for 

m slightly greater than t, and equation 3.15 may only provide 

a crude upper bound on Pe - For the BSC, P(m,n) is the 

binomial distribution and Pe in equation 3.15 is simply 

the tail of this distribution. Application of Sterling's 

approximation to equation 3.15 shows that if the ratio 

t/n is kept fixed, then Pe decreases exponentially with 

increasing n. This behaviour is exhibited in BCH codes 

provided n is not too large, thereby indicating that

very low probability of error is possible on truly memoryless
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channels whilst using known codes. Equation 3.15 can 

also be combined with the VGS lower bound to provide an 

upper bound on Pe which is reasonably good for low rates. 

Much better bounds have however been derived, and the two 

most important of these are the sphere-packing bound and 

the random coding bound. These are described in Peterson 

(1972) and Gallager (1968), and even tighter bounds are 

given in Elias (1955, 1956), Fano (1961), Shannon (1957), 

and Shannon, Gallager and Berlekamp (1967).

Bounds on Pe again indicate that known codes fall 

short of theoretical expectation when n is at all large. 

Shannon's fundamental theorem proves that for any rate less 

than channel capacity, codes exist that will give an 

arbitrarily small probability of error. However, only two 

non-random coding schemes, Elias's error free coding and 

Forney's concatenated codes, are known to have a probability 

of error that approaches zero while maintaining a non

zero rate as n increases. The bounds indicate that good 

codes can be found by choosing a modest number at random 

and keeping the best, and that in order to approach channel 

capacity a code must correct most error patterns of 

weight slightly greater than (d~l)/2, although it is only 

possible to correct all patterns of weight up to (d-l)/2.

3.2.3 Performance of error detecting codes on the BSC

For error control systems that are wholly or partially 

error detecting, there are three probabilities of interest. 

These are: Pe , the probability of erroneous decoding;



Pd , the probability of detecting an error; and Pc , the 

probability of correct decoding. These probabilities 

are related by the expression,

Pc + Pd + Pe = 1 3.16

If limitedt-error correction is employed then Pc is the 

probability of getting t or fewer errors. If no error 

correction is employed, however, Pc is the probability that 

the error pattern is the all zero n-tuple and is given by, 

Pc = P (o ,n) 3.17

The probability of erroneous decoding, on the other hand, 

is the probability that the error pattern is one of the 

2^-1 non-zero code words. If the weight distribution of 

the code is W(m), and assuming that equal weight error 

patterns are equiprobable on the BSC, then, 

n , .~ W (m ) „ , „Pp> = £ --- P(m,n) 3.18
m=d ( )m

where W(m) is the number of code words with weight m. 

Considerable effort has been directed towards finding 

the exact weight structure of various codes (Berlekamp 

1968) , but often this is impossible and in such cases an 

approximation to W(m) is useful. Many random error 

correcting codes, such as the BCH codes, have been found to 

have a weight distribution that approximates to the 

distribution of binomial coefficients (Peterson 1967).

That is,
(n )W (m) m
2n-k

- 47 -

3.19
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so that equation 3.18 then reduces to 

1 nPe £ --- r  2 P (m#n) 3.2 0
2 m=d

This result is easy to evaluate and gives a reasonable
approximation to PQ even when the weight structure of a
particular code .is substantially different from the

*binomial. Using this result together with equations 3.16 

and 3.17 gives an expression for the probability of detecting 

an error:

n n
pd %  ̂ P (m ,n ) -__1_ £ P(m,n) 3.21

m=l 2n_k m=d

where the second term is often considerably smaller than 

the first and can therefore be ignored.

By comparing equations 3.14, 3.15 and 3.20, it can

be seen that because am is never as small as l/2n~k , 

considerably lower error rates can be obtained by using 

error detection rather than FEC. In addition, this 

advantage is still realised if a small amount of error 

correction is introduced (Berlekamp 1968).

3.2.4 Burst error control capabilities of aodes

This section considers, firstly,bounds on the burst 
detecting/correcting power of a code, and secondly, means 
of assessing the performance of a linear code when used 
over a burst noise channel.

A burst of length 1 is defined as a pattern of digits, 

the first and last of which are non-zero. A code with burst 

error detecting and/or correcting power b, is then defined 

* (Lucky 1968)



as a code which is capable of detecting and/or correcting 

all bursts of length b or less.

It is possible to explicitly state burst detecting 

capability by noting that if no code word is a burst of 

length 1 or less, then no burst of length 1 can change a code 

word into another code word. In order to have no code 

word that'is a burst of length 1 or less the code must have 

1 parity check digits, and the burst detecting capability (b1) 

of the code is then,

b ’ = n-k 3.22

An upper bound on the burst correcting ability (b) 

of a code is due to Reiger (1960) and states that

In addition, if a code is to correct all bursts of length 

b or less and simultaneously detect all bursts of length 

1 >_ b or less, the code must have at least b + 1 parity 

checks

Another upper bound on b can be found by considering 

that each correctable burst must have a unique syndrome.

The number of syndromes is 2n_k, which must at least equal 

the number of burst patterns of length b or less. This 

give s :

n-k > b-1 + log n 3.24

If end-around bursts are discounted a similar result 

to that of equation 3.24, due to Fire (1959) gives:

n-k >_ b-1 + log(n-bt2) 3.25
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A lower bound on b that is analagous to the VGS 

bound was found by Compopiano, and is described in 

Peterson (1972). This bound states that it is possible 

to construct an (n,k) code that is b<n/2 burst-correcting, if 

n-k<_2b + log(n-2b) 3.2 6

For large n, equation 3.26 states that all values of 

b<(n~k)/2 are attainable, while equation 3.23 states that 

no higher values can be attained. Therefore when n is large, 

a practically attainable maximum for burst-correcting 

power is (n~k)/2.

In order to assess the performance of a burst-correcting

code, it is necessary to have a knowledge of the burst

error statistics of the channel. These may be obtained

from measurements taken on a real channel, or by considering

any of the burst channel models mentioned in section 2.5.

It is usual to make the simplifying assumption that equal

length bursts are equiprobable so that the channel can be

characterised by its P(l,n) distribution, that is, the

probability of a burst of length 1 in a block of length n.

The probability of erroneous decoding is then given by 
n

Pe = £ a1P(l,n) 3.27
1 =  0

where aq is the probability of erroneously decoding a 

burst of length 1. The decoding algorithm determines the 

values of aq, and the exact values of aq , for b<l<n-k, have 

to be found by analysis of specific systems. General bounds 

have, however, been derived by Gallager (Lucky 1968), and 

are tight for large (n-k) . If bursts of length not greater 

than b are the only ones corrected, then aq=l for
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n
Pe = £ P (1,n) 3.28

l=b + l

which can be evaluated from either models or real 

measurements.

3.3 Some specific block aodes

This section briefly mentions several important 
classes of block codes. Some of. these codes are equivalent 
to cyclic codes and can therefore be easily implemented.

(i) Hamming codes -- these are a class of single-error- 

correcting (SEC) codes that are perfect for all 

n=2n_^-l, quasi-perfect for all n, and are therefore 

optimum for the BSC. In Hamming's original arrangement 

the codes were non-systematic in order to make the syndrome 

equal the binary position of the error, and therefore 

simplify decoding. A quasi-perfect distance 4 Hamming 

code can be formed by adding a single overall parity 

check to the distance 3 code. The weight structures 

of these codes are known (MacWilliams 1963 , Peterson 1972) 

and their performance can therefore be calculated (section 

3.2).

(ii) The Golay (23,12) code - this is a perfect triple

error-correcting code (Golay 1949) and is equivalent 

to a cyclic code. A (24,12) distance 8 code can 

be formed, and weight structures are again known.

The Golay, Hamming, and trivial n=2m+l repeated-bit 

codes are the only known perfect binary codes, and 

it seems likely that there are no others (Lloyd 1957) .
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(iii) Reed-Muller (RM) codes - the Reed (1954)-Muller (1954) 

codes were first discovered by Mitani (1951) , and 

are a subclass of Euclidian geometry codes, and are 

in fact equivalent to cyclic codes with an overall 

parity check added. The codes can be easily decoded 

by-ike 'majority testing' procedure of Reed ; the 

forerunner of majority-logic decoding.

(iv) Product (Iterative) codes - In this method two or 

more codes are combined (iterated) to form a more 

powerful code that has both random and burst-correcting 

power. Taking row and column parity checks on an 

array of data is an example, and the method generalises 

to 3 and higher dimensional arrays. Elias' 'error-free' 

coding scheme uses the Hamming distance 4 code of 

length 2m . This code is successively iterated with 

itself thereby doubling the length of the product 

code at each iteration. Probability of error (on the 

BSC) tends to zero whilst the rate tends to a non-zero 

limit (error free coding), as the iterations increase. 

Unfortunately the ratio of distance to length tends to 

zero, thereby falling short of what the VGS bound 

indicates is possible. Decoding product codes by using 

decoders for the individual codes is dealt v/it’n by 

Reddy and Robinson (1970); but in some cases product 

codes are equivalent to cyclic codes (Burton and 

Weldon 1965) , thereby easing the implementation 

problem. Distance and performance bounds are given

in Peterson (1972) .



(v) Low-density codes -- these codes were originally

defined by Gallager (1963), and have a low density 

of ones in the parity check matrix. Decoding can be 

done by a straight majority procedure, by a variable 

threshold majority procedure, or by a more complex 

algorithm that utilises the demodulator's a posteriori 
probabilities (Gallager 1963) .

(vi) Concatenated codes - this system of coding was proposed 

by Fornay (1966) and consists of combining two codes 

in tandem to form a more powerful code in a way that 

resembles product coding. An 'inner' (n ,k) binary code 

.is conceitonated with an 'outer' (N,K) code (usually 

a Reed-Solomon code using symbols, or bytes , from 

GF(2^)), to form an (Nn,Kk) concatonated binary code.

3.4 Cyclic codes

Cyclic codes are a subclass of linear codes that 

possess considerable mathematical structure, and due to 

this structure it is possible to find efficient decoding 

algorithms for these codes. In addition, encoding and syndrome 

calculation are easily achieved by using linear feedback 

shift registers, making these codes ideal for error 

detection systems. Cyclic codes were first studied by 

Prange (1957) and have received considerable attention since 

then, particularly in finding sub-classes of cyclic codes 

that are easily decodable.

This section presents the general properties of cyclic 
codes, including implementation, before specific sub

classes of these codes are considered later on in this chapter.
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3.4.1 Polynomial description of cyclic codes

A cyclic (n,k) code is a cyclic subspace of the 

vector space of all n-tuples with the property that every 

cyclic shift of every code vector is another vector in the 

code space. That is, if an n-tuple

u = (un-l'un-2/ ••• u0)
is a code-vector, then the n-tuple

u — (ui_i ,uj_-2 , ... u0 ,un _1 , ... U i+1 , u± ) ,

obtained by shifting u cyclicly i placés to the right, 

is also a code vector.

There is a one-to-one correspondence between n-tuples 

and elements in the algebra (An ) of polynomials modulo 

Xn~l over a finite field F. These elements are vesidue 
classes of polynomials, and every residue class equals a 

polynomial of degree less than n in S , where S denotes the 

residue class that contains the polynomial X. It is convenient 

to represent the residue class that contains X as x, and 

in this case every n-tuple corresponds to a polynomial of 

degree less than n in x, whose coefficients are elements of 

a finite field F.

The elements of the algebra An can therefore be 

interchangeably denoted by the n-tuple

u “  ̂un-1'un - 2 ' uo} '
or by the polynomial

u(x) = un_]_xn_l+un -2 Xn"2+ ... +UjX + u0 , 

whose coefficients are binary digits if the algebra A 

is over GF(2). The sum of two n-tuples corresponds to
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the sum of two polynomials, and multiplication by a field 

element carries over similarly. As far ¿is orthogonality 

is concerned, however, n-tuples and polynomials differ.

For two n-tuples to be orthogonal, the inner product of

the vectors they represent must be zero. For two polynomials

b(x) and d(x) tq be orthogonal, however, implies b(x)d(x)=0.

By considering such a multiplication it can be seen that 

orthogonality of polynomials implies that the vector 

corresponding to b(x) is orthogonal to the vector corresponding 

to d(x) with the order of components reversed, and to every 

cyclic shift of this vector. Bearing these points in mind, 

the.terms code vector, code word and code polynomial can 

be used interchangeably.

It is now possible to arrive at a definition of a cyclic

code: a binary cyclic code is a cyclic subspace made up

of elements from A , and is in fact an ideal in the algebra

A of polynomials modulo xn -l over GF(2). The structure of

ideals in A states that each distinct ideal of dimension k, n
is generated by a distinct divisior of xn-l. This divisior 

has degree (n-k) and is called the generator g(x) of the 

ideal. Therefore, every cyclic (n,k) code is completely 

specified by a monic polynomial of degree (n-k) that divides 

xn-l; called the generator polynomial g(x) of the code, and 

every distinct divisior of xn-l generates a distinct 

(n,k) code. Alternatively the code (C) can be completely 

specified by saying that it is in the null space of the ideal 

generated by h (x) = (x™ -1) / g (x) . The polynomial h(x) is 

called the parity check polynomial of c ,  and because it divides
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(xn-l) can be used to generate a code which is equivalent 
to the dual code of C. Every element in the ideal is a 

multiple of g(x) , and, conversely, an element is in the ideal 

iff it is divisible by g(x). The ideal contains 2k elements, 

and is spanned by any k linearly independent elements. A 

binary cyclic code is therefore spanned by any set of 

k linearly independent vectors, all of which are multiples 

of g(x), and these vectors can be used as basis vectors 

of the cyclic subspace, and arranged into a generator matrix 

whose row space is the cyclic code. In particular, the 

code is spanned by the vectors corresponding to g(x), 

xg (x) , x zg (x) , ... xk:~-'-g (x) , that is , g (x) together with

every left cyclic shift of g(x), up to the (k-l)th shift.

The Euclidean division algorithm for polynomials states 

that for every pair of polynomials s(x) and d(x), there is 

a unique pair of polynomials, q(x), the quotient, and 

r(x) , the remainder, such that

s (x) = d (x) q (x) +r (x) 3.29

where the degree of r(x) is less than the degree of d (x) .

If f (x) is a code polynomial, and g(x) is the generator 

polynomial of the code, then

f(x)=d(x)g(x)+r(x) 3.30

and the remainder r(x) is identically equal to zero because 

f(x) is a multiple of g(x). If f(x) is not a code polynomial 

then r(x) is non-zero and has degree less than d(x). Thus 

in order to test whether or not a polynomial f(x) is a code 

polynomial, it is only necessary to divide f(x) by g(x) 

and test for a non-zero remainder. This division can be 

accomplished using linear feedback shift registers and is
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linear codes: that a vector (v) is a code vector iff 
TvH =0, which is a matrix multiplication.

3.4.2 Description of cyclic codes in ter ¡ns of generator 
polynomial roots

It is possible to specify a cyclic codé in terms of 

the roots of the generator g (x) of the ideal. The coefficients 

for a binary generator polynomial are in the ground field, 
that is GF(2), while the roots are in an extension field 
of the ground field. Firstly, consider the result 

obtained by assuming a first degree divisior (x-a) of g (x).

The Euclidean division algorithm (equation 3.29) then 

gives,

g(x) = (x~a)q(x)+r 3.31

where r must be a ground field element because it must have 

degree less than the divisior, that is, it must have degree 

zero. Then if g(a)=0, that is, a is a root of g (x), r=0 

and (x-a) is a factor of g (x). Therefore each distinct 

root of g(x) gives rise to a distinct first degree factor 

and g(x) can be completely specified by its first degree 

roots. Since the degree of g(x) must equal the sum of the 

degrees of its factors, the degree of g (x) is at least as 

great as the number of roots of g(x), and is equal to the 

number of roots if there are no repeated roots.

The polynomial x -1, with n odd, can also be factorised 

into n distinct linear factors, the n roots of unity:

(x-a i ) (x-a2 ) ... (x-a^)

- 57 -
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and because every generator divides x'n-l the roots of the 

generator are a subset of these roots. If a is a. primitive 
nth root of unity then a is a solution of xn-l, that is, 

an=1. It is possible to express these n roots as powers 

of a, and the multiplicative group of these roots is cyclic, 

that is ,

a 1 , a2 n-1 n o
. a ,a = 1-a 3. 33 

nwhere n is the smallest power such that Ci =1 , and is called 

the order of the group.

It is also possible to factorise xn-l into a set of 

irreducible polynomials each of which has m unique roots 

where m is the degree of the irreducible factor. Any 

generator polynomial is a product of these irreducible 

factors and the roots of the generator are the roots of all 

its constituent irreducible factors. Any generator polynomial 

is therefore specified by a list of roots that are roots 

of unity, and these roots are the roots of one or more of 

the irreducible factors of xn-l.

The roots of x -1 are elements in the extension field

GF(2‘) where m<n, and, if n=2m -l, then the polynomial
(2m-1) m mx ’ -1 has as roots all the (2 -1) roots of GF(2 ).

If n £ 2^-1 then the roots of xn-l are a (cyclic) subset

of the elements of GF(2U ). It is therefore important

to investigate GF(2m ).

Formally, GF(2m ) is the field of polynomials over

GF(2) modulo an irreducible polynomial of degree m. The
melements of G F (2 ) can be formed by taking all the powers
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of the primitive element a modulo any irreducible polynomial 

p(x) of degree m. If the primitive element is also a root 

of p(x) then p(x) is called a -primitive polynomial, and 

for every m there is at least one primitive polynomial.

For example, the Galois field of 24 elements, GF (2 )

may be formed as the field of polynomials over GF(2) 

modulo x^+x+l. If the element a is a root of x 4 +x+1 then 

ah=a+1. The element a is also a primitve element and its 

powers generate all the elements of GF(2I+). Table 3.1 

below shows the representation of GF(2,+ ) modulo x 4+x + l.

Table S.1 
GF (2 * )

a 0 = 1 = 0 0 0 1

a 1 = a = 0 0 1 0

a 2 = a 2 = 0 1 0 0

a 3 = a 3 = 1 0 0 0

a1* = a + 1 = 0 0 1 1

a 5 = a 2 + a = 0 1 1 0

a s = a 3 + a 2 = 1 1 0 0

a 7 = a 3 + a + 1 = 1 0 1 1

a 8 = a 2 + 1 = 0 1 0 1

a 9 = a 3 + a = 1 0 1 0

a 10 = a 2 + a + 1 = 0 1 1 1

a 11 = a 3 + a 2 + a = 1 1 1 0

a 12 = a 3 + a 2 + a + 1 = 11 11

a 13 = a 3 + a 2 + 1 = 1101

a 1 “ = a 3 + 1 = 10 01

a 15 _ + 1 a Q
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It can be shown., by forming a table similar to table

3.1, that a , a and a are also primitive elements of

GF (2 4 ) and that their powers generate all the elements

of G F (2 4 ) . This is because a is a root of x''+x + l, and
m

in general if b is a root of p (x) then so is bj, ' .

V 3 2Consider x +x +x +x+l which is also irreducible over 

GF(2) and' let b be a root of this. Therefore, bh-b3 +b2 +£> + 1 

and table 3.2 shows the field of polynomials modulo
h. Q oX + X  + X  + X + 1 .

Table 3.2 

GF (2)

b° = b° = 0001

b l = b 1 = 0010

b2 = bz = OlOO
CO = b 3 = 1000

b4 = b 3 + b2 + b + 1 = 1111

b 5 = b° = 0001

Therefore b is not a primitve element of GF(24) and 

x 4+x3+x2+x+l is not a primitive polynomial. The roots of 

x 4+x3+x2+x+l are therefore a subset of the elements of GF(24) 

and form a cyclic group of order 5, that is they are the 

roots of x -1.

Returning to the representation of G F (2m ) in table

3.1, consider an element b ̂ ; then the smallest degree

monic polynomial m (x) with coefficients in the ground

field GF(2) such that m . (£>.) =0 is called the minimuml r
polynomial of and is irreducible over GF(2). It is 

possible to express any polynomial in the ground field,
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and in particular to express xU -l and g(x), as the product 

of one or more minimum polynomials; or by a list of the 

roots of these polynomials. The generator polynomial is 

completely specified by a list of the powers of a, the 

primitive element of GF(2mj , which correspond to roots 

of its constituent minimum polynomials. In addition, 

f(x) is a code polynomial iff f(x) is divisible by mi(x),

m 2 (x) , . . . , m (x) .r

3.4.3 Matrix description of cyclic codes

In section 3.4.1. the generator matrix resulting from 

the basis vectors chosen gives rise to a non-svstematic 

code. It is, however, possible to put this matrix in 

reduced echelon form by using row combinations only, and 

the resulting systematic code is the same code as before, 

not just an equivalent code. The basis vectors can be formed 

successively from the generator polynomial as follows.

The kth row of the matrix is the generator polynomial.

The (k-1)th row is formed by shifting g(x) one place left 

and adding g(x) to this if the kth element in the row is 

one. This process is repeated until all k rows are formed, 

and ensures that a k-by-k identity sub-matrix appears on the 

left of the G matrix.

3.4.4 Some binary cyclic codes

(i) Codes that have g(x)=(x-l) have minimum distance 2 and 

are single-parity-check codes. The dual code of this has 

g (x) = (xR-1)/ (x-1) , consists of an information digit repeated 

(n-1) times, and has distance n. Generator polynomials
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ra mwhich divide x -1, where m<n , have x -1 as a v/eight two code

vector, and hence the code has distance two. If n is even,
2then (x -1) is a repeated factor and therefore cyclic 

codes of even length have distance 2.

The binary (2m-l,2m-m-l) Hamming codes of section

3.3 are equivalent to cyclic codes, and the generator 

polynomial of these codes is primitive. Therefore every 

primitive polynomial generates an (n,k) Hamming code.

A cyclic code with distance 4 can be generated by the 

polynomial (X+l)p(x) where p (x) is primitive, and this is 

the single-error-correcting, double-error-detecting 

Hamming code of length 2m .

(ii) A maximum-length-sequence code is one in which all the 

non-zero code words are all n shifts of a generator 

polynomial that is identical to a Pseudo-Noise (PN) sequence. 

These codes exist for all values of (n ,k )-(2™-1,m) , and

the parity check polynomial of such a code is primitive. The

code is therefore the dual of the cyclic Hamming code

mentioned above. The generator polynomial being a PN

sequence, has 2M  ̂ ones and 2™ "*"-1 zeros, and the distance
m-1of the code is therefore 2

(iii) Quadratic residue codes were first considered by 

Prange (1958) and give rise to a class of cyclic codes of 

length n, where n is a prime number of the form p=8m±l.
P *In this case x -1 factors into (x-1)fi(x)fz (x), where

the roots of fi(x) are quadratic residues of p and the roots

of f2 (x) are nonresidues. The codes generated by f\ (x) ,
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(x-1) f x (x) , f 2 (x) , and (x-1)f 2 (x) are then,quadratic 

residue codes. Peterson 1972 gives a list of some (n,(n+l)/2) 

quadratic residue codes for which d is known exactly (e.g. 

the Golay code), and Berlekamp (1968) give some additional 

codes for which only an upper bound on d is known.

(iv) The product of two cyclic codes can give rise to a 

cyclic product code (Burton and Weldon 1965) if the 

length m  , n2 of the constituent codes are relatively prime.

The generator polynomial of the product code g(x) can be 

chascterised in terms of the roots («2 1 ,0:2 ) of the

generators of the constituent codes gx (x) and g 2 (x) (Lin 1970).

(v) Peterson (1972) gives a list of binary cyclic codes of 

odd length less than 65, in which n, k, d, and exponents of 

the roots of the generator polynomial are tabulated.

3.4.5 Implementation ̂ and polynomial arithmetic circuits

Cyclic codes are implemented with feedback shift registers 

made up of mod-2 adders (exclusive-OR gates) and bistables. 

These circuits are used to perform multiplication and division 

of polynomials in GF(2), and these operations are briefly 

described in this section.

Multiplication of two polynomials fx(x) and f 2 (x) 

basically involves repeated addition of shifted versions 

of f 1 (x). The number of additions corresponds to the number 

of non-zero coefficients of f2 (x), and the number of 

shifts required for each term in the addition is given by

the powers of x in f 2 (x). Figure 3.4 below shows a circuit 

for multiplying g(x) by f(x).
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Figure 3.4

P olynoaia1 Multiplication Circuit

whe re :

r^ denotes a bistable (flip/flop) , that is synchronously- 

clocked

ffi denotes mod-2 addition (exclusive-OR gate)

f. denotes connection if f.=l, and no connection if f .=0;X X X
where f . is the coefficient of x1 in f (x) .

The circuit processes bits from left to right (high order 

bits first) and produces an output bit (of f 3 (x)) at every 

shift. A total of n+p shifts are required: where n is the degree 

of g(x), and p is the degree of f(x).

Division of polynomials takes the form f (x)/g (x) =f 3 (x)+r (x) , 

and corresponds to repeated subtraction of g (x) from the 

dividend. Such a division circuit is shown in figure 3.5 

be 1ow.

Figure 3.5

Polynomial Division Circuit
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The register is initially cleared and £ (x) is shifted in.

After p shifts the entire quotient, f3(x), has appeared 

at the output, and the remainder, r(x), is in the register.

Multiplication and division may be simultaneously 

accomplished in one circuit by suitably combining the 

circuits of figures 3.4 and 3.5.

The circuits so far described have a serious disadvantage 

as far as implementation by using modern integrated circuits 

is concerned. The disadvantage is that exclusive-OR gates 

are in series with the shift register stages; whilst integrated 

circuit shift registers, in order to achieve high packing 

density, do not generally have the facility to break links 

between successive stages. Rather, it is only possible to 

tap the output of each stage. A multiplication circuit 

that multiplies g(x) by the fixed polynomial f(x) in n+p 

shifts, and overcomes this problem is shown by figure 3.6 

be 1ow.

Figure 3.6

Alternative Multiplication Circuit

whe re denotes a multi-input exclusive-OR gate.
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Division circuits of this type (only one multi-input 

gate) are also possible: a circuit of the figure 3.5 type 

is first designed; and then a linear transformation process 

(Peterson 1972) is applied to convert the circuit into the 

figure 3.6 type.

3.4.6 Encoding cyclic codes

Given a k digit message sequence of the form m(x) =
k-1 k-2  ̂ .m x +m ox + ••• +m r the encoding operation involves:

n -k(i) pre--multiplying m(x) by x . This shifts the message

sequence n~k places towards the high order end of the

word, as required for a systematic code.
n. ~~ k(ii) dividing x m(x) by the generator polynomial g(x), 

in order to calculate the parity digits.

(iii) adding the remainder (the parity digits) of operation (ii) 

to the results of (i).

The circuits that perform this are based on those of section 

3.4.5, and can either have n-k or k stages; the shortest 

usually being chosen.

An (n-k) stage encoder for a cyclic (n,k) code is 

shown in figure 3.7 below, and is based on the division 

circuit of figure 3.5.

Figure 3.7 
n -k Stage Encoder



In this case the feedback connections are determined by

the coefficients of g(x), and the position of the input
n -kis such that m(x) is multiplied by x prior to division 

by g(x). The circuit operates as follows.

(i) With the gate turned on, the k message digits of m(x)

are shifted into the register and simultaneously into the

channel via the switch in position m. Because of the
n-k , ,input, position, x m(x) is actually being loaded into the 

register.

(ii) After k shifts the division is complete and the

n-k digits in the register are the remainder of the division, 

and hence the parity check digits.

(iii) The feedback is disconnected by turning off the 

gate, the switch is moved to position p, and the parity 

digits are shifted out to the channel in (n-k) shifts.

The complete operation takes n shifts to produce a code 

word and therefore encoding successive code words can take 

place serially and without interruption. It must be 

noticed however that data is extracted from the source on 

a start stop basis; if this is not possible as in the case 

of a source producing information continuously, an input 

buffer is required. If (n-k) is large, but still much smaller 

than k, it may be necessary to transform this circuit into 

one that has uninterrupted register stages and a single 

multi-input exclusive^-OR gate.

A k-stage encoder can be evolved based on computations

involving h(x), the parity check polynomial, rather than g(x).
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A recurrence relation involving coefficients (h. ) of 

h(x), and bit positions in the code word (u.), is given 

by:
k-1

u . = E h . u _n ~ k - j . l n -l-] 3.34
i = 0

(Peterson 1972 ) , and is in fact a rule for calculating the

n-k parity checks (u to u , ) from the k information1 n-k
digits, and the previously calculated checks. Figure 

3.8 below shows a k-stage encoder based on equation 3.34

Figure 3.8 
k-Stage Encoder

The encoder operates as follows:

(i) Initially gate 1 is on and gate 2 is off. The k

information digits are loaded into the register and 

simultaneously sent to the channel in k shifts.

(ii) Gate 1 is turned off, gate 2 is turned on and the 

first parity check appears at p.

(iii) The register is shifted once and the first parity check 

is shifted into the channel and also into the leftmost 

register stage. The second parity digit is then formed

and appears at p.
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(iv) The operation continues in a similar manner, and encoding 

is completed in a total of n shifts.

The encoding circuits described above are simple, and 

therefore account for the attractiveness of binary cyclic 

code s .

3.4.7 Syndrome calculation and error deteet-ion

The syndrome s(x) of a cyclic code is the remainder 

resulting from dividing a received vector r(x) by the 

generator polynomial g(x), that is,

r (x) =p (x) g (x)+s (x) 3.3 5

The syndrome can be obtained by recalculating the parity 

checks using the message section of the received vector, and 

adding the recalculated checks to the received checks.

This can be accomplished by using the encoding circuits 

of section 3.4.6. Figure 3.9 below shows a syndrome 

calculation circuit based on the k-stage encoder described 

earlier.

Figure 3. 9 
Syn drome Calculator
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The circuit operates as follows:

(i) Initially gate 1 is on, gates 2,3,4 are off, and the

received message digits are shifted into the register,

(ii) After k shifts the first parity digit is ready and 

gates 2,3,4 are turned on, gate 1 is turned off.

(iii) This causes the calculated checks to be added to the 

received checks and the syndrome is read out in 

(n-k ) shi f ts .

A circuit based on the (n-k) stage encoder is shown 

in figure 3.10 below and is generally called a syndrome 

generator.

Figure 3.10 
Syndrome Generator

This circuit operates as follows:.

(i) Initially, the register is cleared, gate 1 is on and 

gate 2 is off.

(ii) After k shifts the register stages contain the syndrome, 

which can be output serially, if desired, by tiirning

gate 1 off, gate 2 on and shifting (n-k) times.
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In addition to being uniquely dependent on the added 

error polynomial e(x), the syndrome of a cyclic code has a 

further interesting property. That is, the syndrome of an 

i place cyclic shift of a given n-tuple is simply an i 

place cyclic shift of the syndrome in its syndrome generator, 

with feedback operating.

In order to detect errors it is only necessary to 

test for a non-zero syndrome and use this, to set a bistable 

indicating a word in error. Because of this ease of 

syndrome calculation cyclic codes are ideally suited to 

error detection. A cyclic code with distance d will 

detect all combinations of d-1 or fewer errors, as will 

any linear code, but due to the cyclic property it is 

also possible to place the following bounds on the burst 

detecting ability of these codes.

(i) Because every code vector is a multiple of g (x) ,

which is a burst of n-k+1 digits, an (n,k) cyclic

code can detect all bursts of length n-k or less.

(ii) A fraction of bursts of length b>n--k can also be detected.

If b=n-k+l then the burst has the same length as the

generator, and is undetectable if it has the same

pattern as the generator or a cyclic shift, of the

generator. Remembering that there are n starting
npositions for a burst and there are 2 burst

patterns of length n-k+1, the fraction of undetected
n-k-1 _2~ (n-k-1)bursts is n / n (2
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(iii) If b>n~k+l then a burst pattern is undetectable if

it has g(x) as a factor, that is, e (x)=g(x)q(x) . As

g(x) has degree n-k, and the burst e(x) has degree

b-1 , q(x) has degree b-l-(n-k) , and there are

2 polynomials of this degree. There are

2°  ̂ bursts of length b and the proportion of undetected

bursts of length b>n-k+l is therefore 2^  ̂ ^
2b-2 = 2~ (n-k) ^

The results of (i) to (iii) above indicate that the probability

of erroneous decoding for a cyclic error detecting code

is determined by the number of parity check digits, in

particular, the probability of undetected error i soc2 ^

regardless of how long the code is or how noisy the channel

is. If (n-k)=30 parity checks are used the probability
-9of undetected error is approximately 10 which should be 

sufficient for most applications.

3.4.8 Error correction

The decoding process consists of three basic steps.

(i) calculate the syndrome of the received n-tuple

(ii) determine the coset leader (correctable error pattern) 

that corresponds to the syndrome

(iii) add the received n-tuple to the coset leader, thereby 

correcting the errors.

It has been shown that steps (i) and (iii) are easy for 

cyclic codes; step (ii) is generally much more complex. A 

general decoder for cyclic codes was first described by 

Meggitt (1960, 1961) and is suitable for decoding burst
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correcting and short random error correcting codes. A 

Meggitt decoder is schematically shown in figure 3.11 

below and consists of three major parts.

(i) a syndrome generator of the type described in section

3.4.7

(ii) an error pattern detector which is a combinational 

logic circuit

(iii) an n bit buffer register

Figure 3.11 .

Meggitt Decoder

The Meggitt decoder uses the principle that: because of 

the cyclic property of the syndrome, mentioned in section 

3.4.7, the determination of the error pattern from the 

syndrome is considerably simplified. This simplification 

means that it is possible to have only one syndrome-error 

pattern correspondence for a particular pattern and every 

cyclic shift of that pattern, rather than n such correspondences. 

The Meggitt decoder operates as follows:



(i) It is assumed that the most likely error patterns

are chosen as coset leaders, and every cyclic shift 

of a coset leader is also a coset leader. The pattern 

obtained by changing a single one to a zero is called a 

descendant of an n-tuple, and the decoder assumes 

that every -descendant of a coset leader is also a 

coset leader. The combinational logic circuit is 

designed to output a 1 if there is an error in the 

highest order bit of a pattern, that is, the bit about 

to be read out of the buffer.

(ii) After n shifts the complete word is in the buffer and the 

syndrome is in the generator. The combinational logic 

circuit outputs a 1 if the bit about to be read out 

is in e rror.

(iii) On the next shift the first bit is corrected if it is 

in error. The syndrome generator contains the 

syndrome of the shifted word, because of the cyclic 

property, and the effect of the error (if present) 

is also removed from the syndrome by feeding back the 

detector output.

(iv) Operation continues in a similar manner until the

entire word is shifted out of the buffer. The errors 

will have been corrected if they correspond to a 

pattern built into the detector, and the syndrome generator 

will contain all zeros. If the syndrome generator 

contents are non-zero at the end of the process, an

- 74 -

uncorrectable error pattern has been detected.
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A total of 2n shifts are required to decode each word 

and therefore the decoder cannot operate at 'line speed', 

rather alternate words are decoded. This can be overcome 

by either: providing duplicate decoders; or, shifting 

the received word into the buffer at line speed and then 

performing the n shifts required to read out the word in 

one digit'time.

The Meggitt decoder can in principle be used to 

decode any cyclic code; whether or not the decoder is 

practical for a particular code, however, generally depends 

on the complexity of the combinational logic circuit 

required. The Hamming codes for example can be decoded 

very easily with a Meggitt decoder because the detector 

circuit is simply an (n~k) input AND gate; The BCH codes 

on the other hand require a very complex detector circuit.

3.4.9 Error trapping decoding

Error trapping decoding (Rudolph and Mitchell 1964) is 

a variation of Meggitt decoding that relies on it being 

possible to confine the errors in a v/ord to n~k consecutive 

positions. The method is therefore most suitable for single 

error-correcting and burst correcting codes. Several 

modifications of the method have been proposed by Kasami 

(1964) and MacWilliams (1964) in an effort to extend its 

application to multiple error correcting codes; in general 

however the method sacrifices much correcting ability if 

applied to long and high rate codes with large distance.
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It can be seen that if t errors are confined to the 

n-k parity positions, then the error pattern equals the 

syndrome, and the message section of the word does not 

require correction. Error trapping uses the fact that if 

the errors are confined to any n-k consecutive positions, 

including the end around case, then by cycl-icly shifting 

the received vector, the errors can be confined (or trapped) 

in the n-k parity check positions of the shifted vector, 

and therefore corrected. An error trapping decoder is 

shown in figure 3.12 below.

Figure 3.12

Error-Trapping Decoder

The decoder operates as follows:

(i) Initially gate 1 is on, gates 2 and 3 are off. After
t

n shifts the received word is in the buffer and the 

syndrome is in the generator.

(ii) The weight of the syndrome is tested by the (n-k) input
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(iii )

(i va)

(ivb)

(v)

(vi)

threshold gate. If t or fewer inputs are 1 the 

output is 1, otherwise it is zero.

If the syndrome weight is t or less the errors are 

in the parity section and the information digits are 

correct, and can be shifted out of the buffer. If the 

weight of the syndrome is greater than t, the generator 

is shifted once.

If the weight of the new syndrome is t or less the

errors are in the end around positions xU  ̂, ... , 
n — — 2

x , ... , x i , X [ , and the left most digit of the

syndrome matches the error in the right most postion 

of the buffer. The syndrome is therefore shifted to 

the right, with gate 2 off, in order to place the
^  _ "ĵ

error corresponding to x at the right of the 

generator; this digit then corrects the first message 

digit as it comes out of the buffer.

If the weight of the new syndrome is greater than t, 

the generator is again shifted.

Step (ivb) repeats until the weight goes down to t 

or less, and then the generator is shifted to match 

the right most positions in the buffer, thereby 

correcting the errors as the message digits emerge.

If the weight of the syndrome does not go down to t 

or less in (n-k) shifts, gate 3 is turned on and the 

information digits are read out one at a time while the 

generator is cycled with gate 1 on. As soon as the 

weight of the generator contents goes down to t or 

less, the syndrome in the generator exactly matches the
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the errors in the next (n-k) digits to come out of the 

buffer. These errors are then corrected as digits 

emerge from the buffer.

(vii) If the weight of the generator contents never goes down 

to t or less by the time the k message digits have 

been read out of the buffer, the error pattern is either 

uncorreotable or not confined to (n-k) consecutive 

positions.

Error trapping decoding is advantageous in that the 

complexity of the pattern detector is reduced. In particular 

for a b-burst correcting code, the pattern detector is an 

(n-k-b+1)-input AND gate. Decoders for the Hamming codes 

are simple; but generalisations to multiple error correcting 

codes have to make use of the proposed modifications, 

with a consequent increase in complexity.

3.4.10 Shortened cyclic codes

Given an (n,k) cyclic code, it is always possible to 

form an (n-i,k-i) code by making all the i leading message 

digits zero and omitting them from the code word. Such a 

code has minimum distance at least equal to that of the 

original code and has the advantage that although the code 

is not cyclic, encoding and decoding can be implemented 

by using cyclic code circuits. Shortened cyclic codes are 

in fact the same as pseudo-cyclic codes, that is, they are 

ideals in the algebra of polynomials modulo f(x), where 

f (x) is some polynomial other than x11-!.
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3.5 Bp se-Chaudhuri-Hoaquenghem (BCE) codes

BCH cyclic codes were discovered by Hocquenghem 

(1959) and independently by Bose and Chaudhuri (1960) , and, 

as a class are the most powerful random-error-correcting codes 

known. The first efficient decoding algorithm for binary 

BCH codes was devised by Peterson (1960) and has since 

been refined by Gorenstein and Zierler (1960) , Chien (1964) , 

Forney (1965), and Massey (1965, 1969).

3.5.1 The BCH bound

The BCH lower bound on distance applies to all cyclic

codes; and the BCH codes are a class of codes whose generator

polynomials are chosen in such a way as to maximise the

distance guaranteed by the bound. The BCH bound states that
0 0given a generator polynomial with roots a 1 , a 2 , . . .  ,

en-k
a , the distance of the code is greater than the largest

number of consecutive integers modulo n in the set (ej,

e 2 , ... , e ). The bound is proved in Peterson (1972)n k

and for BCH codes is particularly tight.

3.5.2 Description of BCH codes

Consider an element a in GF (2m ) . Then for any specified 

mo and do, a BCH code with distance at least do is generated 

by the smallest degree polynomial (least parity checks) 

g(x) that has a 0 , a 0 , . . .  , a 0 o as roots. The length

of the codes is the least common multiple (LCM) of the orders 

of the roots, and do is called the designed distance. The
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most important sub-class of BCH codes are obtained by letting 

a be a primitive element of GF(2‘a) , mo=l, and d 0=2to+l.

These codes are called narrow-sense BCH codes and f(x) is then 

a code vector iff

a , az, a3, ... , azt 0 3 . 3 6

are roots of g(x'). This is equivalent to saying that g(x) 

is the least common multiple of the minimum polynomials 

of the roots, that is,

g (x)=LCM [». (x) ,m2 (x) , ... , m 2t(x)
From section 3.4.2 it can be seen, however, that every 

even power of a has the same minimum function as some 

previous odd power of a. For example a1, a2, ah, a8all 

have mi(x) as their minimum polynomial; a 3, a& have m 3 (x), 

and so on. An equivalent statement to equation 3.37 is

'] 3.37

therefore that g(x) is given by:

g (x) =LCMjjni (x) ,m3 (x) ,m5 (x) , ... , mzt^-lix)^ 3.38

and since the degree of each minimum polynomial is m or 

less, the degree of g(x) is at most mt . The codes can 

therefore be defined by saying that for any positive 

integers m and to<n/2, there exists a narrow sense BCH code 

of length n = 2 m-l whi ch corrects all combinations of to or 

fewer errors and has at most mto parity checks.

The actual value of (n-k) can be determined by 

an algebraic procedure due to Berlekamp (1967) and for 

small to, (n-k) is generally exactly equal to m t . Peterson 

(1972) shows that for many of the codes the designed 

distance equals the actual distance and in addition tabulates 

all narrow sense (primitive) BCH codes of length up to 1023.
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The codes of length 15 or less are perfect and therefore

optimum for the BSC. All the double-error-correcting

codes of length up to 1023 are quasi-perfect and hence also

optimum. If the rate k/n is kept constant while n is

increased, the lower bound on t/n approaches zero. The

BCH codes are therefore very weak for large n but do, however,

still lie approximately on the VGS bound for n=1023.

3.5.3 Decoding BCH codes

Encoding BCH codes is done by using the cyclic code 

circuits of section 3.4.6. A decoding algorithm for 

multiple error-correcting BCH codes that is more efficient 

than Meggitt decoding was originated by Peterson (1960) and 

will now be briefly described.

Consider a transmitted vector u(x) that is corrupted 

by noise e (x) to form a received vector r(x) , that is,

r(x)=u(x)+e(x) 3.39

If a1 is substituted into r(x) then u(«L)=0 because u(x) 

is a code word and the result is

si=r(a1)=e(a1) 3.40
, i.n-1 i n-2 , i. _ . ,s , — e .. {cl ) +e „(a:) + ... +ei (it ) +ej 3.41l n -1 n - 2

The s. are called partial syndromes and the complete 

syndrome for a BCH code is defined as a set of partial 

syndrome s ,

s-si,S2, ... , S2^ 3.42

one for each root of the generator polynomial. The partial 

syndrome ŝ  is in fact the remainder after dividing r(x) 

by m.(x), the minimum polynomial of a. , and therefore amounts1 i
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to a parity check calculation. If e (x) .is an error pattern 

with v errors then

e(x)=xD1+X32+ ... +xDv 3.43

where x^ 1 is the lowest order error. And from equations

3.41 and 3.42

s p a ^ + a ^ f  ... + 0?^

S 2=(aj1)2+(aj 2)2+ ... + (a^ v)2

s 2 t = f c ? 1 ) 2 t + ( a j 2 ) 2 t + . . .  +f a?v ) 2 t 3.44

Any error correction algorithm is thus.a method of

J v1 1 *1 osolving equations (3.44) for a , a a' The powers

31/ j 2 / ••• / j then give the locations of errors in e (x)

as in equation 3.43.

Algorithms for determining the error location numbers 

= for 1 <i<v) are dealt with extensively in the

literature (Peterson 1972, Lin 1970, Berlekamp 1968, Massey 

1969, Chien 1964) and will not be dealt with further. 

Implementation of these decoding algorithms can be achieved 

by using digital hardware, by programming a general-purpose 

computer (software implementation), or by a hybrid combination 

of the two. In addition the correction of erasures and errors 

can be achieved with little extra complexity (Peterson 1972) -

3.5.4 Non-binary BCH codes and ReecL-Solomon codes

gNon-binary BCH codes of length n=q -1. where q is 

a power of a prime, are called q-ary codes and have code 

symbols from a q symbol alphabet. Reed-Solomon (1960) codes 

are a subclass of these codes and have s=l. A t-error- 

correcting Reed-Solomon code has 2t parity symbols and a
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minimum distance of (2t+l), these codes are therefore maximum 

distance separable and hence their weight structures 

are known exactly (Peterson 1972). If q=2m then each q-ary 

symbol can be expressed as an m-tuple over GF(2) and a 

t-error-correcting (n,n-2t) Reed-Solomon code over G F (2m ) 

can be regarded -as a (mn ,m (n-21) ) code over GF(2) capable 

of correcting any error pattern whose non-zero digits are 

confined to t m-symbol blocks. Some of the most powerful 

burst-and-random correcting codes can be constructed using 

this technique.

Decoding a Reed-Solomon code is effected in a similar 

way to a binary BCH code, that is, by determining error 

location numbers, but in addition an error value number 

corresponding to each error location must also be 

calculated (Zierler 1969).

3.6 Majority logic decoding for cyclic codes

Majority logic decoding is a decoding method that is 

suitable for certain classes of block code and most codes 

in this class have been found to be cyclic. Although these 

codes are generally not as powerful as BCH codes their ease 

of decoding makes them attractive. The first majority 

logic procedure was that of Reed's, for decoding Muller's 

codes (section 3.3), Massey (1963) has unified many majority 

logic decoding algorithms.

3.6.1 One-step majority logic decoding

Each digit in the syndrome of a received vector r (x) 

can be considered as a parity check sum of various digits in
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the error vector e(x) that was added to the transmitted

word. The positions covered by the ith sum correspond to
Tthe non-zero positions in the ith column of H . Majority 

logic decoding is based on the concept of forming check 

sums that are orthogonal on a set of positions. One-step 

majority logic decoding restricts this to the formation 

of check gums that are orthogonal on one position in the 

error vector.

A set of check sums , ... , A_, are said to be

orthogonal on a particular bit position if:

(i) that bit is involved in every sum

(ii) no other bit is involved in more than one sum.

For example the set of sums:

A ! = e  6 + 6 3  +eo

&z— es +e 2 +e 0 3.45

A 3 = eif +ei+eg

are orthogonal on the error position e 0. An error correction 

procedure based on the majority value of these sums then 

becomes possible. Suppose firstly that it is possible to 

form j check sums orthogonal on a particular position, say 

e g , and assume that the error vector contains j/2 or fewer 

errors. Then if e Q=0 the j/2 errors distribute amongst 

at the most j/2 check sums. Therefore in the worst case when 

j/2 errors affect j/2 sums, half the sums are zero and half 

are one. If, however, e0=l, the (j/2)-l other errors can 

distribute amongst at most (j/2)—1 sums, and therefore more 

than half the sums equal 1. The value of the error digit eg
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is therefore 1 if a clear majority of the sums orthogonal 

on eo are 1. If it is possible to form j check sums 

orthogonal on e o , then because of the cyclic symmetry 

of cyclic codes it is possible to form j check sums orthogonal 

on any digit in the word by cyclicly shifting the error vector. 

In addition, orthogonal check sums provide a lower bound on 

minimum distance which states that if j=d-l check sums 

orthogonal on any digit in a cyclic code can be formed, then 

the code has minimum distance d and is-called completely 

orthogonisable in one step. For a completely one-step 

orthogonisable code j/2 equals the error correcting ability 

(d-l)/2 of the code. If j/2 is much less than the error 

correcting ability of the code then the use of one-step 

decoding will sacrifice much of the power of the code. An 

upper bound on the number of errors that can be corrected by 

one-step majority logic decoding (Peterson 1972) is given 

by

11 < n-1___
2 ~( d '-1) 3.46

where d' is tie distance of the dual code of the (n,k) code 

being considered. Equation 3.46 severely restricts the 

usefulness of one-step majority logic decoding for many 

classes of code. The only known BCH code that is completely 

orthogonisable in one step is the (15,7) code and therefore 

using this technique to decode BCH codes usually sacrifices 

much of their power. Two small classes of codes that are 

completely orthogonisable in one step are the maximum-length- 

sequence codes mentioned in section 3.4 and the difference-set

codes discovered by Weldon (1966) .
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There are two main types of majority logic decoder, 

(Massey 1963) , based on the two main ways of encoding 

cyclic codes. A Type I decoder is based on the (n-k) 

stage syndrome generator circuit and is shown in figure 3.13 

below.

Figure 3.13 

Type I Decoder

The decoder operates as follows:

(i) The syndrome is calculated as usual

(ii) The j check sums orthogonal on the first digit Ce )n -1
are formed by taking linear combinations of syndrome 

digits that give the required sums of error digits.

(iii) If the output of the majority gate is 1 the first

digit is erroneous and is corrected as it is read out 

of the buffer. The syndrome generator is shifted 

simultaneously and the new syndrome corresponds to the 

shifted received vector. The previously calculated error
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digit is then fed back to alter the syndrome so that 

it corresponds to the altered shifted received vector.

(See section 3.6.4.)

(iv) Subsequent digits are similarly decoded in a total of 

n shifts and decoding is correct if fewer than j/2 

errors occurred in the received vector.

3.6.2 L~step majov'ity logic decoding * 1

The concept of one-step majority logic decoding can

be generalised to L-step decoding in which a set of check

sums are orthogonal on a set (E) of error digits rather

than just one error digit. In a similar manner to one-step

decoding, the sum of digits in E, that is, (e. +e . + ... + e . )l - l i1 * e
can be correctly determined from the j check sums provided 

j/2 or fewer errors occur in the received word. This sura 

can be considered as an additional check sum and used in the 

next level of decoding. The results of the j original set 

of sums are used to estimate the value of a second set 

E' which contains fewer error digits than E, and j sums or 

more are required to do this. The process of estimating 

sums from sums of a larger size is known as ovhogonat'izat'ion 
and continues until a set of j or more sums orthogonal on a 

single error digit is obtained. The value of this error 

digit can then be estimated by using a single majority gate and 

because of the cylic symmetry of the code, so can every 

other error digit. A code is called L-step decodable if 

L steps of orthogonalization are required before a decoding 

decision on a particular error digit can be made, and a
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code is completely L-step orthogonisable if j=d-l. The 

decoder based on this process uses majority gates to estimate 

sums at each orthogonalisation, and therefore L levels 

of majority gates are required. An L-step type I majority 

logic decoder is shown in figure 3.14 below.

Figure 3.14

L-Step Type I Majority Logic Decoder

Such a decoder requires L levels of majority gates and in 

general the ith level requires (j)L 1 gates. The complexity 

of the gating is therefore an exponential function of L and 

if L is large the decoder may be impractical.

L-step decoding is most efficient when used with a 

completely L-step orthogonalisable code, and is roughly 

twice as powerful as one step decoding (equation 3.46).

3.6.3 Majority logic decodable codes

Massey (1963) has shown that the (2'1,2m-m-l) Hamming 

codes are completely orthogonalisable in m-1 steps.

The BCH (15,7) and (31,16) are 2 and 3 step orthogonalisable 

respectively and so is the subclass of (2m -l,m+l) codes which
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steps for m>2. Other classes of completely orthogonalisable

codes are based on the study of finite geometries and were

first studied by Rudolph (1967). The construction and

rules for orthogonalisation are too involved to be dealt

with here, but are extensively dealt with in the literature.

(Goethals 1968, Kasami 1968, Peterson 1972, Weldon 1968.)

The two main classes of these codes are projective geometry

codes and Euclidean geometry codes, a particular code being
s sdenoted either PG(m,2 ) or EG(m,2 ). The class of projective

geometry codes contains a subclass of codes which itself 

contains the subclass of difference-set cyclic codes 

mentioned in section 3.6.1. Also contained in this class 

are maximum-length-sequence codes, and the equivalents of the 

even-distance duals of Reed-Muller codes with one digit 

omitted. Euclidean geometry codes with s=l are equivalent to 

the odd-distance Reed-Muller codes with one digit omitted. 

Lists of some completely orthogonalisable codes are given 

in Peterson (1972) , Lin (1970) and Lucky (1968) .

For moderate n, geometry codes compete with BCE codes 

because of their ease of implementation, for large n, 

however, the number of majority gates required is 

excessive.

3.6.4 Modifications to the basic pro cedure

The decoding procedures for BCH codes are bounded- 

distance procedures, that is, no patterns of weight greater 

than t are corrected. Majority logic decoding, however, 

is capable of decoding many patterns of weight greater than t.

m-2
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Two main modifications have been proposed in order to

extend the usefulness of the procedure :

(i) the use of feedback. If t + 1 errors occur and one of

them is in the first digit then it is possible for this 

error to be corrected. In the case of one step decoding 

this implies that one of the check sums orthogonal on 

the first bit contains two additional errors. The 

effect of this error can be removed leaving t errors 

which can be corrected. The effect of this error on 

the syndrome is also removed via the dashed lines in 

figures 3.13 and 3.14.

(ii) Variable threshold decoding (Townsend 1967). This

modification to one-step decoding involves replacing 

the majority gate by a threshold gate that outputs a 

1 if T or more of its input are 1. Decoding commences 

with the threshold set at its highest value, d-1, and the 

decoder attempts to correct each digit of the received 

word. If this decoding is unsuccessful the threshold is 

lowered by one and another attempt is made. When a 

correction is made the syndrome is modified and the 

threshold is increased by one. Decoding continues in 

this manner until the threshold reaches (d+l)/2, when 

decoding stops. Many error patterns of weight greater 

than (d-l)/2 which are uncorrectable with basic one-step 

decoding can be corrected with this modification. The 

penalty paid, however, is a considerable increase in

decoding time.
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3.7 Burst-error control codes

The coding techniques described in previous sections have 

been biased toward the correction of random errors; most 

real channels, however, exhibit burst-error behaviour and 

codes with burst-correcting ability are in practice 

required. Codes for burst-error-correction have been 

constructed both analytically and by trial and error, and 

a simple decoding method has been devised. The design of 

a practical and efficient burst-error-correcting system 

is therefore much easier than the design of a random-error- 

correction system. The Reiger bound (equation 3.23) gives 

a measure of the efficiency (z) of an (n,k) code with 

burst-correcting ability b, that is,

z = 2b  3.47
n-k

Codes which meet' the Reiger bound have an efficiency of 1 

and are optimum.

3.7.1 Fire codes

The first cyclic burst-correcting code was found by 

Abramson (1959); and Fire (1959) generalised this work 

to produce the first class of analytically constructed 

cyclic codes designed to correct single bursts.

A b-burst correcting Fire code is generated by:

g(x)=p(x) (x2k-1-l) 3.48

where p(x) is an irreducible polynomial of degree c>b, and 

2b-l is not divisible by e, the exponent of p(x). The 

length is n=e(2b-l), and the resulting (n,n-2b-c+l) code 

has burst correcting ability b. The efficiency of a Fire
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code is

z — 2b 3.4 9
c+2b-l

and if b=c then

z= 2c 3.50
3c-l

Equation 3.50 shows that Fire codes are not very efficient, 

and in particular for large c, z is approximately 2/3.

3 . 7 . 2  I n t e r l e a v i n g

Given an (n,k) code, it is possible to form a longer 

code with a large amount of burst correcting ability by inter

leaving digits of the original code. This can be accomplished 

as follows. Firstly, i code words are stacked vertically 

to form an i by n array. The array is then transmitted column 

by column, that is, the first digits of each code word 

are transmitted consecutively, followed by all the second 

digits and so on. At the receiver the array is reformed 

and the rows, which are code words in the original code, 

can then be decoded. It can be seen that a burst of i errors 

will affect no more than one digit in each original code 

word. Therefore in general, if the original code corrects 

all combinations of t or fewer errors, the code formed by 

interleaving to degree i will correct any combination of 

t bursts or less of length i or less. Similarly if the 

original code corrects a single burst of length b or less 

the interleaved code corrects any single burst of length 

bi or less.

If the original (n,k) code meets the Reiger bound then

the interleaved code also has maximum possible burst correcting
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of almost any length with optimum burst correcting 

ability. In addition, interleaving reduces the problem of 

finding long efficient burst correcting codes to one 

of finding short good codes, a considerably easier task.

Important simplifications occur when the original 

code is cyclic. In this case the interleaved code is 

also cyclic and if the generator polynomial of the original 

code is g(x) the generator of the interleaved code is g(x^). 

Similarly, interleaving a shortened (n,k) cyclic code produces 

a shortened (ni,ki) cyclic code, and a considerable number of 

good codes can be formed by this technique.

Finally, because none of the random-correcting 

ability of the original code is destroyed by the inter

leaving process, it is possible to derive powerful, long, 

burst-and-random correcting codes by interleaving short, 
powerful, random-correcting codes.

3. 7. 3 Phased-burst-err or-correating codes

Consider an (n,k) code whose length n is a multiple of 

an integer m, say n=rm. A code word therefore consists of 

r sub-blocks of length m. A burst of length b 1=im is called 

a "phased burst if the errors are confined to i consecutive 

blocks. A code that can correct all phased-error-bursts confined 

to i or fewer sub-blocks is called an im-phased-burst-error- 

correcting (PBEC) code. A burst of length (i-l)m + l affects 

no more than i sub-blocks and therefore an im PBEC code can 

be used as a (i-l)m+l single-burst-error-correcting code.
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Burton (1969) discovered a class of PBEC codes that 

are superior to Fire codes in most cases. An (em,(e-2)m) 

Burton code is generated by:

g (x)= p (x) (xm+l) 3.51

where p (x) is an irreducible polynomial of degree m and. 

exponent e. The' code can correct all bursts of length 

m or less, which are confined to the positions x ̂ ° , x ^  , ...
xjb+b-1^ fQr 0<j<e_1>

The Burton codes can be sub-block interleaved to form 

a class of code that is asymptotically optimal with 

increasing interleaving degree.

3.7.4 Computer generated codes

Lists of computer generated burst correcting cyclic 

codes appear in Lucky (1968) , Kasami and Mabola (1964) , 

Zetterburg (1962) and Peterson (1972). These codes are useful 

because it is possible to construct a wide range of codes 

by either interleaving or shortening these published 

code s .

3.7.5 Decoding single-burst-error-eorrecting codes

Decoding for these codes can be accomplished by using 

the error trapping method. Figure 3.15 below shows such 

a decoder. If the errors are confined to b positions then 

it is possible to confine them to the b high order positions 

of the syndrome. The low order n-k-b positions then all 

contain zeroes and this condition is detected by the OR gate.
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Figure 3.15

Burst Correcting Decoder

By suitable gating and shifting (as in section 3.4.9) the 

errors can then be lined up to correct digits as they come 

out of the buffer register. If the n-k-b left most stages 

of the syndrome generator never contain zeroes by the time 

the k information digits have been read out of the 

buffer, then a burst of length longer than b or an 

uncorrectable burst has occurred.

The above method of decoding only corrects bursts of

length b or less, of which there are n2b 1. If n is at
n -kall large this will be but a small fraction of the 2 

correctable patterns (coset leaders). It is however possible, 

with a slight complexity increase, to correct all correctable 

bursts of n-k or less by using a modification due to 

Gallager (1968).

3.7.6 Burst-and-Random error correcting codes

Of the codes so far considered; product, interleaved,

and concatonated codes have both burst and random-correcting
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capability. For a code to be t random-correcting and b burst- 

correcting the. cosets containing patterns of weight t, or 

less must be disjoint from those containing the burst 

patterns. Several codes have this property and of these the 

binary codes derived from q-ary Reed-Solomon codes are the 

most powerful.

A Reed-Solomon code with symbols from G F (2™) has 

p aramete rs

n = m (2 m-1) .

n-k = 2 mt

and is capable of correcting any error pattern that affects 

t or fewer m-bit bytes. This t-byte correcting code is 

therefore an example of a multiple-phased-burst correcting 

code. The .random-correcting capability of these codes is 

t, and the single burst correcting ability is m(t-l)+l. 

Reed-Solomon codes can also correct multiple bursts, and 

in general a t-byte correcting code is capable of correcting 

any combination of

i = t 
1+b+m-2 

m

bursts of length b.

Computer generated burst-and-random codes have been 

described by Hsu (1968), and seem to show that good random 

error correcting codes should be able to correct fairly 

long bursts.

Interleaving the codes mentioned in this section can 

again be used to extend the useful range of burst-and-random 

correcting codes, as well as providing multiple burst-correcting

abili ty.
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CHAPTER 4

Adaptive Communications and Time Varying Channels

This chapter introduces the concept of an adaptive 

communication system in a mainly qualitative way. Initially, 

the term adaptive is broadly used to mean the variation 
of some system parameter in an attempt to 'adapt' the 

system to currently prevailing conditions, so that a certain 

degree of 'reliable' communication is maintained as these 

conditions change. More specifically, we consider the 

adaption of a data transmission system to match changing 
channel conditions, in order to achieve lower average sink 

error rates with higher average data throughput than that 

obtainable with a fixed system.

The choice of a suitable parameter to vary is a system 

design choice and in this chapter the variation of 

several individual system parameters is considered. The 

following chapters, however , direct attention towards adaptive 

error control coding, and in particular to variable 

redundancy coding.

In order to vary a system parameter in sympathy with 

changing channel conditions, some controlling device is 

necessary. This device must firstly assess the state of 
the channel, and secondly, make a decision based on some 

criterion (or Algorithm) as to how the chosen system 

parameter must be varied in order to counteract the 

effects of the original channel change. Various methods of 

performing this function are considered, together with the
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problem of communicating the decision (or control signal) 

to the parameter which is to be varied.

Adaptive systems result from attempts to cope with 

the non-stationary nature of real channels, and therefore 

the choice of a particular channel-adaptive system is 

influenced by the way in which these channels vary. For 

this reason, and in order to more fully appreciate the effects 

with which an adaptive system has to cope, several time- 

varying fading channels are described.' Particular attention 

is given to the HF radio channel, which was the channel 

used for field tests of the experimental variable 

redundancy system.

4.1 Adaptive data transmission

A general adaptive data transmission system is 

shown in figure 4.1 below.

Figure 4.1

The General Adaptive System
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The model of figure 4.1 is very general as it 

includes modulation, demodulation, and error control under 

the terms encode and decode. The source, channel, encoder, 

and decoder can be considered as parameters of the system 

and therefore available for adaptive control. The chann'el 

is assumed to be controlled by nature, and therefore 

unalterable, but the choice of channel is available for 

adaptive control (e.g. diversity systems).

The control of the adaptive process can be considered 

in three parts. Firstly, information about the state of the 

system must be extracted. This involves the measurement 

of some statistic which is considered to give a reliable 

estimate of system performance, and usually occurs at the 

receiving end of the system. Secondly, this information 

is presented to the parameter control function which makes 

a decision, based on some criterion, as to whether or 

not the required degree of reliable communication is being 

achieved. If conditions are not satisfactory some system 

parameter is varied, again according to some algorithm, 

in order to achieve 'rel.Table1 communication. Thirdly, the 

parameter control function generates control signals which 

must be communicated to the selected parameter, and if this 

involves transmission between opposite ends of the system, 

it is important that these control signals are communicated 

re li cibly.

The design of an adaptive system therefore involves 

consideration of the following problems: the choice of

one or more parameters to vary, the formulation and measurement 

of a 'system-state' statistic, the formulation of a
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parameter control algorithm, the reliable communication 

of control signals, and the effect of control errors on 

the operation of the system.

A further major point to consider is the speed with 

which 'conditions' change. It is desirable that such 

conditions should change relatively slowly compared to the 

time taken for the system to adapt to these changes, if any 

meaningful improvement is to be gained from the adaptive 

te chnique.

In response to the question "to what should the 

system adapt?", it is possible, whilst still considering 

general principles, to split adaptive systems into two 

main types. These types arise from the two different user 

requirements that the system should adapt to: (i) the 

source data, and (ii) the channel. These will be called data- 

adaptive and channel-adaptive systems respectively.

4.1.1 Pata~adaptive systems

In this method the user states that some parts of 

the source data have a greater importance (priority) than 

other parts, and must consequently be guaranteed a higher 

probability of correct reception. For example, in the 

transmission of monetary data, high order decimal digits 

should have a higher probability of correct reception than 

lower order digits.

The 'system state' information extraction process in 

this case simply involves examining sections of data to

see what priority is required, and then the appropriate system
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parameter is varied on a one-to-one basis. The decision 

to vary the system parameter is therefore non-statistical 

(deterministic), and the control process is located at the 

transmitter. If the decoder meeds to know how the parameter 

has been varied in order to decode correctly, control 

information (suitably protected against errors) can be 

prefixed to the relevant message section and transmitted 

through the main forward channel. Data-adaptive systems 

will not be considered further in this chapter.

4.1.2 Channel-adaptive systems

This type of adaptive communication system arises in 

an attempt to cope with the time-varying nature of real 

channels. The user requirement here is that transmission 

should be as efficient as possible whilst simultaneously 

being as reliable as possible for any particular channel 

condition, and adapt to remain so as channel conditions 

change. This requirement effectively means that the average 
probability of erroneous data being delivered to the sink 

is restricted to a range of values smaller than the range 

resulting from a fixed system, for a given range of channel 

conditions. The variations in sink error rate, which reflect 

channel variations, are therefore smoothed out, whilst 

data throughput is kept as fast as possible, concurrent with 

keeping the sink error rate below some maximum value.

The channel information extraction process is now 

of building up an accurate statistical picture of the s 

of the channel upon which parameter variation decisions 

can be based. Implicit in this

o n o * ;

t a t e

statement, however, is that



102

the channel must have some degree of 'memory' in order that

future state of the channel. In particular, the information 

gathering time must be significantly shorter than the 

channel variation (memory) time if a meaningful statistical 

picture is to be built up.

If the channel is not predictable with time then the 

channel state must be assessed by real-time operations on 

received signals. This means that the' adaptive control 

processes are located at the receiver, whereas control 

signals must usually be passed to transmitter parameters.

In the case of a one-way system, this requires that 

control signals are passed from receiver to transmitter 

via a feedback link; or in the case of a full duplex 

link, control signals are multiplexed with the main forward 

data stream . The amount of control signalling required 

affects the efficiency of the system and is dependent on the 

speed with which channel conditions vary relative to the main 

forward data throughput rate. If the channel is varying 

rapidly a large amount of control signalling is required, 

and this implies a feedback bandwidth comparable to the main 

channel in the one-way case, or inefficient data-to-control 

channel usage in the duplex case. The situation is further 

aggrevated by the requirement for reliable control signalling, 

which in turn implies control signals must be transmitted 

in a redundant form requiring even more bandwidth or time.

It can therefore be seen that the design of a channel-

past can be assumed to predict the short-term

adaptive system is strongly dependent on the characteristics
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of the channel in use and in particular, for the system to 

be efficient and reliable, the channel must vary slowly 

compared to the total system adaption time.

4.2 Parameter Variation

This section briefly outlines various methods of 

adapting a data transmission system by the variation of 

one or more system parameters. Some of the parameters which 

can be varied are presented below, without reference to the 

rest of the system. It must be noted, hov/ever , that the 

choice of a particular channe1-adaptive system involves 

an engineering compromise between all parts of the system.

The model of figure 4.1 can be refined so that the 

error control system is separated from the modulation- 

demodulation process. This gives rise to two broad sections 

of parameters that can be varied: parameters in the error 

control system, and parameters in the modem section 

(including the channel). It is also possible to vary parameters 

from both of these sections and for both sections to 

contribute to the channel statistics gathering operation.

Some penalty must usually be paid in order to achieve 

an adaptive system, regardless of which parameters are 

varied. These penalties (or trade-offs) indicate two basic 

types of adaptive system: those that vary parameters which 

effectively result in varying data throughput rate (rate- 

adaptive) - these pay the penalty of requiring buffers or a 

start-stop source; and systems that do not vary the throughput 

rate but pay the penalty of requiring high equipment 

complexity with possible channel and modem duplication.
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The main system parameters which can be varied 

are now considered below.

(i) power and gain variation - with this method the 

transmitter power and the receiver gain is increased 

if the received signal is weak. The variation of transmitter 

power raises practical difficulties if large powers are 

involved and is only useful if it is not possible to transmit 

at maximum power all the time. Variable transmitter power 

would be useful in cutting down the high powers needed by 

tropospheric scatter links, thereby increasing system life 

and reducing potential interference to other users; as 

well as reducing the average transmitter power required 

for.space vehicles where power is at a premium (Lieberman 

1963). An additional point in the case of space transmissions 

is that the feedback link can be made relatively noise-free 

by the use of the high powers which are available at the 

ground station. In the case of a Rayleigh channel (section 

4.4.2) , Hayes (1963) has shown that variable power is 

remarkably effective in combatting the effects of fading. 

Finally, variable power can be considered as a non rate- 

adaptive method of increasing the amount of signal energy 

per bit, and requires control of the modem processes rather 

than the error control system.

Variation of receiver gain is the oldest method of 

coping with a time-varying channel, and any practical 

receiving system would already include some form of

automatic gain control.
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(ii) adaptive equalisation - an equaliser is basically 

a filter, located at the receiving end of the system, and 

designed to compensate for the time and frequency distortions 

introduced by the channel. Equalisation was traditionally 

introduced on voice telephone lines in order to flatten 

the amplitude characteristic and linearise the phase.

Time spread in the channel gives rise to intersymbol 

influence, and much work has gone into providing adaptive 

equalisers for land lines so that once a data circuit is 

established, the equaliser automatically provides the 'best' 

overall characteristic for data transmission. Lucky (1968) 

describes the principles of baseband equalisation, and 

O'Neill (1966) has investigated the equalisation of 

quadrature carrier systems. The equalisation of a channel 

such as the HF radio channel, which has both time and 

frequency spread, has been investigated by Di Toro (1968).

Di Toro describes a serial data transmission system called 

ADAPTICOM which periodically, and in real time, rejuvenates 

the time-spread correction networks, and is capable of 

coping with a time-frequency spread product of up to 1/200, 

provided the signal to noise ratio (SNR) is at least 

25 db. This spread product is of the order met with in HF 

transmission below the MUF (see section 4.5), indicating 

that ADAPTICOM can achieve significant improvements on 

these circuits, provided the SNR remains high.

Under conditions of high SNR, equalisation can 

significantly reduce the effects of time and frequency 

distortion caused by the channel, and can therefore provide
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a 'best' possible circuit. Equalisation cannot, however, 

cope with errors caused by noise, interference and wide 

variations in SNR. Under these conditions even an 

optimally-equalised 'best' circuit will be subject to 

time varying errors.

(iii) channel choice variation - the parameter under 

control here is the utilisation of a number of different 

channels with uncorrelated ndse characteristics, and 

includes diversity techniques. Two types of operation 

are possible, one involving feedback and one not. In the 

first case the receiver periodically monitors conditions 

on all available channels and chooses the best one at 

any particular time. The system therefore 'hops' from 

channel to channel and control information may have to 

pass from receiver to transmitter. Alternatively, several 

channels are used simultaneously and the receiver reconstructs 

the message after combining all the received signals according 

to some linear or statistical weighting (diversity 

reception). Diversity techniques have traditionally been 

used to improve fading radio circuits, and rely on the 

principle that if all the channels are fading independently 

it is unlikely that the diversity branches will all 

simultaneously receive a poor signal. There are three main 

ways of achieving diversity signals: aerial diversity, 

frequency diversity, and time diversity. Aerial diversity, 

as used with radio systems, involves the use of a number of 

aerials that are either spaced apart, have a different angle 

of arrival, have different polarizations, or all three.
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Frequency diversity involves the use of several bandwidth 

slots for the same message. Time diversity involves the 

repetition of messages, spaced for enough in time to escape 

the effects of channel memory, and is closely related to 

multipath diversity as used in the Rake technique (section 4.5.4) 

Diversity techniques can reduce the probability of error on 

time-varying channels by orders of magnitudes, but as the 

number of-diversity branches increase, the improvement is on a 

diminishing returns basis. Aerial and time diversity techniques 

are appropriate for a single fixed-bandwidth slot, although 

aerial diversity is only applicable to radio systems. Aerial 

diversity is, however, complex due to the physical separations 

involved, whilst time diversity requires both transmitter and 

receiver storage, and is wasteful of forward channel time. 

Diversity techniques, including optimal adaptive signal combining, 

are dealt with in Stein (1966) .

(iv) variations of baud rate - this method of adaption, in 

common with method (i), is an alternative way of varying 

the signal energy per bit arriving at the receiver. Signal 

elements are made long during poor channel conditions and 

short during good conditions. The method is rate-adaptive 

and can be considered as one form of variable redundancy 

coding, where the codes in use are variable-length 

repeated-bit codes. In common with variable redundancy 

coding, the method does not involve the variation of 

the modem-channel arrangement, and is attractive when 

presented with an unalterable existing data transmission, 

system which has to be regarded as a 'black-box' v/ith 

digital input and output. The variation of baud rate on a
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continuous basis is impractical because of synchronisation 

problems, and any practical system would use a number of discrete 

rates suitably related to one synchronising frequency. Bello 

and Cowan (1962) have analysed the performance of on/o'ff 

transmission, which may be considered as an extreme case 

of two-rate transmission, and Cavers (1972) has analysed 

continuous and discrete variable-rate transmission for 

Rayleigh fading channels. Cavers considers a system 

whereby the time-varying gain and phase of the channel 

are tracked and used as the reference with which to control 

the rate via a noiseless feedback channel. In addition,

Cavers shows that ideal variable-rate control can almost 

eliminate the effects of flat Rayleigh fading, and that 

when constraints on feedback delay, and bandwidth, and 

number of allowable rates are introduced, significant 

reductions in transmitter power (of the order of 14db for 

full duplex) can still be obtained. A disadvantage of 

variable-rate control is the variable bandwidth used; but 

Cavers shows that even when bandwidth expansion is constrained, 

significant reductions in power are obtained when compared 

with the equivalent maximal-ratio predetection combining 

diversity system. Srinivasan and Brewster (1974) have 

expanded Cavers' work to include both rate and power control, 

and show that the performance of such a system more closely 

approaches that of a system operating in a non-fading channel.

(v) automatic repeat request (ARQ) - this is a rate-adaptive 

method in which error control coding is required in order 

to detect erroneous blocks prior to requesting a repeat.
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ARQ has been recommeded by the CCITT for HF duplex 

transmission, and several practical HF links have been 

successfully operated using constant-ratio codes with a 

four character repetition cycle, although efficiency may 

be very low during high noise periods due to continued 

repeat cycles. .A feedback link is required for ARQ and 

serious mis-operation can result if this channel is noisy.

(vi) code variation - this method has been called variable 

redundancy coding, because the power (and hence the 

redundancy) of the error control coding scheme is varied 

according to the channel conditions. The method is rate- 

adaptive and can be used on any digital data transmisaon 

system without varying the particular modem-channel 

system provided. Variable redundancy coding is more fully 

dealt with in the following chapters.

(vii) other methods - these include changing the type of 

error-control, i.e. decoding or interleaving to suit the 

channel, and are generally not rate-adaptive.

4.3 Extraction of channel statistics

The state of any practical channel is subject to both 

long term and short term variations. It is usually possible 

to predict long-term variations with some degree of 

accuracy, by the use of established forecasting measures 

which are based on the past long-term behaviour of the 

channel. The knowledge of long-term variations gives some 

indication of the overall conditions v/ith which the adaptive

system must cope. As the time scale of channel variations
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becomes shorter, however, and in particular when variations 

are of the order of the system baud rate, continuous 

monitoring of some system variable is necessary, in order 

to predict short-term channel variations. The choice of 

which parameter should be measured in order to reliably ' 

reflect short-term channel conditions depends on both 

the practical transmission system and the physical channel 

in use. If it is possible to have an explicit mathematical 

model of the channel, it may be possible to form a one-to-one 

relationship between channel model parameters and receiver 

parameters which can be measured. This then makes it 

theoretically possible to have an exact description of 

the channel at any particular time. If no explicit channel 

model is possible, an heuristic approach to the problem 

of which receiver parameter (or combination of parameters) 

to measure in order to reliably approximate the channel 

state, must be taken.

The real-time measurement of parameters that are 

assumed to predict the short-term behaviour of the channel 

must usually be done at the receiver, and depends on which 

parts of the system are available for measurement. Two 

rough divisions may be made. Firstly, if the system is 

considered as a 'digital black box', then measurements 

must be taken on the digital output of the receiving 

modem, or on the error control decoder. If, on the other 

hand, the receiving system can be split into the receiver- 

demodulator-decoder sub-systems, measurements can be taken 

on both the outputs and internal behaviour of these sub

systems. It is therefore possible to consider measurements
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taken before, during, and after demodulation.

The simplest measurement to make before demodulation, 

that is, on received signals, is the amount of power 

received in the bandwidth slot being used. The disadvantage 

here is that signal-plus-noise is being measured, and if 

the noise component is high (for example from interference), 

the estimate of channel gain derived from this measurement 

will be inaccurate. The sending of one or more pilot tones 

in an attempt to assess channel gain and phase variation 

is another commonly used method, as is the sending of known 

sounding signals. More complex decision-directed statistical 

analyses of received signals are also possible, but will 

not be dealt with here (Stein 1966, Wainstein 1962).

The demodulation process can be considered to be the 

conversion of received signals into a binary digit train.

If the 'difficulty' of this conversion process can be monitored, 

this information can be used as an estimate of the channel 

state. More specifically, soft decision decoding methods 

(chase 1972) in which the error control decoder uses 

information supplied by the demodulator on the probability 

of a given bit having been correctly demodulated, can also 

be used to indicate the state of the channel.

Finally, only the digital demodulator output may 

be available and any channel state information must be 

extracted from this Unary output. The variable 

redundancy coding schemes presented in the next chapter 

assume this condition. Two basic methods are possible.

Firstly, a known sounding binary sequence can be time
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multiplexed with the main data sequence, and channel statis

tics are calculated by operations on this sequence.

Although the available data throughput is reduced by this 

technique, it is possible to use the known sequence to 

also transmit synchronising information. If channel 

variations are fast, however, the sequence must be 

transmitted frequently, and this entails considerable 

waste of forward channel time. Alternatively, sounding 

sequences may be multiplexed with, or superimposed upon 

the data in some other fashion to provide continuous channel 

assessment. The second method possible is to measure 

quantities relevant to the error control system such as 

bit error rate, block error rate, burst length, etc.

The advantage of this method is that the only redundancy 

required is that used for error control, and in addition 

some channel information can be obtained after decoding each 

block.

4.4 Time-varying channels

Most physical channels are subject to varying degrees 

of time-dependent behaviour and therefore require some form 

of adaptive system if transmission is to be optimised. 

Man-made channels, on the other hand, are essentially 

steady state processes which, once optimised do not vary 

greatly with time, and do not require a continuously adaptive 

system.

The performance of digital transmission links is often 

analysed by assuming steady received signals contaminated
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by additive stationary Gaussian noise. Unfortunately, most 

real channels dependent on natural media are prone to 

noise that may not be additive, stationary or Gaussian, 

and it then becomes very difficult to formulate theoretical 

models for these channels. Under these conditions the 

receiver experiences s-ignal fading conditions and it is 

these fading effects that are combatted by the adaptive 

system. A non--adaptive system, on the other hand, is 

normally designed with sufficient margins to cover any 

such variations. The time scale of channel variations 

may range from those smaller than the shortest transmission 

pulse length, which are not inherently of interest as they 

are usually experienced by the receiver in some averaged 

form, to long term variations of the order of hours or 

years. It is with variations in between these two extremes 

that an adaptive system must cope.

In order to appreciate the fading conditions met 

with in practical transmission systems, this section gives 

a qualitative characterisation of fading channels as a 

preliminary to the discussion of the HF channel given 

in se ction 4.5.

4.4.1 Fading rad,io channels

Historically, radio communication has been dominated 

by the HF band (3 to 30 MHz) in which communication is 

achieved by ionospheric reflection, and indeed this medium 

remains one of the worst as far as interference and severe 

fading is concerned. The need for further bandwidth has 

extended the radio communication spectrum into the VHF,
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UHF, and microwave bands in which the majority of operation is 

on a line-of-sight basis, with long distance communication 

being achieved by using a chain of point-to-point links 

between repeater stations. Some satellite relay links are 

prone to severe fading conditions. Studies of the use of 

millimeter and smaller wavelengths on active satellite links 

indicate severe fading due to rainfall absorption (Intelsat/

IEE conference 1969). The use of the moon as a passive 

reflector gives rise to severe selective fading (Ingalls 

1961, Anderson 1961) , whilst the orbital dipole belt experiment 

(West Ford experiment 1964) involves fading more severe 

than that encountered in HF skywave propagation. The 

majority of line-of-sight systems, including most satellite 

relay links, are however basically steady state systems and 

are not prone to severe fading.

Transhorizon propagation at frequencies above which 

ionospheric reflection fails, (approximately 30 MHz) is 

possible by using scattering modes. These modes use high 

power transmitters and give rise to weak but persistent 

fading fields. Transhorizon propagation at UHF and above 

by tropospheric scatter enables reliable communication out 

to distances of several hundred miles beyond the radio 

horizon, and ionospheric scatter of VHF frequencies can 

extend this range. Ionospheric scatter is, however, only 

efficient in the 35 to 50 MHz band and this, together with 

the high power required, has precluded any large scale use 

of this mode.

Some of the ionisation at ionospheric altitudes is due 

to meteor trails which last for fractions of seconds and
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can act as wideband reflectors suitable for moderate power 

communication. Such trails are present for as much as 

ten per cent of the time and have led to the 'meteor-burst' 

mode of digital communication. In this mode, transmitter and 

receiver continually search for the existance of a suitable 

trail, and when one is found a 'burst' of data is sent for 

as long as possible.

The médium and low frequency bands are generally used 

for broadcast and radio-navigation purposes rather than 

communications, and are not considered further here.

4.4.2 Multipath and fading

The use of natural media for radio communication implies 

a dependence on the random variations inherent in natural 

processes. The two main variations experienced by natural 

channels are relatively long term variations in attenuation, 

and short-term variations in electrical path length. More 

unfortunately, several different paths may exist simultaneously 

when only one is required (multipath) giving rise to what may 

be generally called destructive interference fading. These 

short-term fading effects, due to both attenuation and 

interference variation, are the effects with which an adaptive 

system must cope.

Multipath propagation gives rise to signals that arrive 

at the receiver displaced sequentially in time after having 

been transmitted simultaneously. The observable effects 

of such path length variations depend on the magnitude of 

the time-differentials between the various paths.
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The effect of path changes with time differentials 

smaller than the reciprocal bandwidth, and in particular 

of the order of the carrier wavelength, gives rise to 

sequentially displaced sine waves at the receiver which 

sees only the result of their superposition. The several 

different signals therefore interfere constructively or 

destructively depending on the relative phase shifts intro

duced by the several different paths. If the path lengths 

then change continuously and randomly, so do the relative 

phases, and the envelope of a received unmodulated carrier, 

will be observed to be governed by a Rayleigh distribution.

The effect of these rapid variations in path length therefore 

gives rise to the type of interference fading called Rayleigh 

fading, and experimental observations confirm that many 

natural channels experience fading that can be described 

by the Rayleigh model, or by modifications of the model.

The effect of a fading medium on a band of frequencies, 

rather than a single tone, is important because fading can 

be frequency selective. If a band of frequencies fades 

uniformly, then this condition is known as flat fading.

More usually, however, two spaced frequencies will fade in 

a highly uncorrelated manner, thereby giving rise to time- 

varying relative distortion within the spectrum of the 

modulated signal. This condition is known as frequency 

selective fading.

In many situations a natural medium is characterised, for 

at least part of the time, by having one strong path as 

well as several additional weak paths. The received signal



117

can then be considered to comprise a steady (specular) 

signal plus a Rayleigh fading signal. This condition is 

called Rice fading.

Multipath signals with time differentials longer 

than the reciprocal bandwidth are observable as 'echoes' 

in pulsed systems and generally have the effect of 

producing- time delayed or 'smeared' versions of the digital 

data which interfere causing errors. Particularly 

severe multipath can occur if two equal strength paths 

exist, with time differentials of the order of the reciprocal 

bandwidth. The baud rate of serial data transmission systems 

is therefore fundamentally limited by the multipath structure 

of the medium, and is generally chosen so that individual 

bit widths do not vary more than ±25% due to the varying 

multipath interference experienced on the particular channel 

in use. The resolution of multipath structure is a feature 

of several anti-multipath systems and requires high 

bandwidth (narrow pulses) if fine detail is to be 

observed (Stein 1966).

A crude measure of the rapidity of fading due to the 

superposition of all channel fading effects is the fading 

rate. This is usually defined for a single unmodulated 

frequency as the average rate of excursions of the received 

envelope level downwards across its median level. A fading 

bandwidth can then be defined as the average bandwidth occupied 

by the time varying channel gain function. It is important 

to note that fading rate is most meaningful under flat 

fading conditions, as equal-power antiphase selective fading
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of components in a bandpass signal can give the illusion 

of a 'steacV signal as far as average levels are concerned.

4.5 High-frequency ionospheric skywave communication

This section considers several aspects of HF radio 

communication. Firstly, the characteristics of the ionospheric 

layers are considered together with the basic limitations 

they place on HF propagation and data transmission. Secondly, 

sounding systems are considered, and finally 

several modulation methods, used on the HF band, are 

described.

4.5.1 Ionospheric layers and propagation

Four significant ionospheric layers have been 

identified, the D, E, Fj, and F2~layers. Propagation 

conditions depend on the heights and electron densities 

of these layers which vary according to solar radiation 

conditions. HF communication is therefore subject to 

strong diurnal and seasonal variations, as well as more 

'drastic' effects such as magnetic storms and sudden 

ionospheric disturbances (SIDs) which are related to solar 

flares and sunspot activity. In addition, man-made 

interference from atmospheric nuclear tests can create 

large scale disruptions in ionospheric communications.

The D-layer at about 70-100 km altitude, is 

the lowest layer, and acts mainly as an absorbing layer 

due to the high molecular density at this altitude.

Absorption is greatest at local noon when ionisation is 

greatest and propagation blackouts due to solar activity
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are usually related to intense ionisation of the D-layer.

The higher the frequency of radiation the lower the 

D-layer absorption is, and it is therefore possible to 

calculate the absorption loss over a particular HF circuit 

for several different frequencies. In particular, a lowest 

usable frequency (LUF) which guarantees a minimum received 

signal-to-noise ratio may be calculated, and methods of performing: 

these calculations are given in the appropriate CCIR and CCITT 

documents.

The other ionospheric layers act predominantly as 

reflectors. Radiation incident on these layers is reflected 

(or more correctly, gradually refracted) down to earth at 

a distant point, thereby enabling long distance transhorizon 

point-to-point communications. For a wave launched vertically 

at a point in the reflecting layer to be completely refracted 

back to earth, its frequency must be less than the critical 

frequency of the layer which is dependent on the prevailing 

electron density. Similarly, an obliquely incident ray 

must not exceed a certain maximum frequency for refraction 

back to earth, as refractive index is inversely proportional 

to frequency. Thus for any two stations it is possible to 

define a maximum usable frequency (MUF), above which the 

transmitted ray will not be bent sufficiently, and will 

therefore miss (or skip) the receiver which is then said 

to be in a skip zone. Operation at, or just below, the 

MUF is desirable for two reasons. Firstly, absorption 

decreases with increasing frequency, and secondly multipath 

is reduced due to many paths skipping the receiver. Several 

international organisations issue monthly median MUF prediction
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charts in order to enable operators to optimise their 

HF circuits. In general, however, it is customary to 

adopt an optimum working frequency (OWF) that ensures that 

the operating frequency is below the actual MUF for 90% 

of the time (Greenburg 1962) . The spectrum of available 

frequencies (those between LUF and MUF) is an important 

limitation imposed by the ionosphere, and this range is 

greatest during sunspot maximum, as is the accuracy of 

frequency prediction. Unfortunately, however, SIDs are also 

at their worst during sunspot maximum.

The lowest reflecting region is the E-region (100-150 km) 

which is capable of providing only short distance 

communication because of its height and its low critical 

frequency (4 MHz maximum). The F-region at 160-450 km exists 

as two separate layers (Fj and Fz) in daytime, and exhibits 

higher critical frequencies which enable much longer distance 

commun ication.

The propagation of waves at the MUF occurs in the 

'single-hop' mode, but at lower frequencies several paths 

are possible including 'multiple-hop' propagation in which 

the wave repeatedly bounces between earth and reflecting layer, 

and/or between E and F-layers, thus enabling very long 

distance propagation.

Multihop propagation via several paths, and single 

hop propagation well below the MUF, accounts for the 

severe multipath effects observed on HF circuits where 

path-time differences of 0.5-5ms are experienced. This 

seriously limits the baud rate of serial data transmission
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systems, so that pulse lengths commonly in use are in the lO 

to 20ms range, and generally not shorter than 3ms. The 

use of antimultipath measures such as operation at the 

MUF, path discrimination with vertically steerable'aerials, 

and 'Rake' may reduce this minimum to 0.5-lms, but there 

still remains a fundamental limitation because of the 0.1ms 

order of multipath due to the roughness of the ionospheric 

1 aye rs .

The earth's magnetic field also affects ionospheric 

propagation by giving rise to 'polarisation fading' and 

wave splitting which contributes to the multipath nature of 

the medium.

4.5.2 Ionospheric sounding

The state of the ionosphere may be probed by the use 

of sounding systems.

Vertical sounders transmit short pulses of 30 to 

100 yS duration at 30-120 pulses per second whilst sweeping 

the operating frequency across the HF band. By this method 

a dynamic plot of frequency versus propagation delay is 

produced, which can be used to show the number of existing 

layers, their height, and their critical frequencies. A 

large number of vertical sounders distributed around the 

earth could then give useful up-to-date information to operators 

attempting to set up or optimise a particular circuit.

Vertical sounding in itself, however, corresponds to 

sounding a zero-range path.
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Oblique incidence sounding between separated stations 

using swept-frequency modes is generally impractical due to 

synchronisation problems, and therefore operation usually 

occurs on spot frequencies. Oblique soundings can' be used 

to analyse both the fading and multipath characteristics' 

of the medium.

A third method of ionospheric probing involves the 

reception of sounding signals that are back-scattered by 

the earth. A receiver in the vicinity’ of the transmitter 

can then analyse pulse travel times and deduce which areas 

of the earth can be reached by waves of the given frequency. 

This information can then be used to immediately set rap 

a working HF circuit.

4.5.3 Fading characterist-ias

Oblique sounding has been used to determine the short

term fading characteristics of single path HF circuits.

These soundings reveal that over periods of about five 

minutes envelope distributions obey a Rayleigh or a 

Rayleigh plus specular law. In addition these types of fading 

are generally observed with nonstationary intensity o.r 

nonstationary specular to Rayleigh component over such 

periods. For longer periods of 15 to 60 minutes, over 

which the ionosphere is generally highly nonstationary, 

fading appears to obey a log-normal law with fading rates 

of the order of 0.1 per second for single-path flat-fading 

transmission.

Interference fading of HF links is generally frequency 

selective, and selective effects set in at frequency spacings
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well below 1 kHz with the result that frequencies within 

a nominal 3 kHz bandwidth can behave in a highly uncorrelated 

manner. Fading rates under these conditions are then 

generally higher, of the order of 1 to 10 per second.

Long term fading is related to solar effects and 

ranges from the diurnal variation of ionisation due to 

illumination, up to the eleven year sunspot cycle.

4.5.4 Modulation systems for HF data transmission

In order to cope with the irregularities and limitations 

of the HF medium, several complex modulation methods have 

been proposed. These methods, however, can be split into 

two main types, methods that occupy a nominal 3 kHz 

bandwidth, and wideband antimultipath methods. Given a 

3 kHz bandwidth, signals can either be transmitted in a 

single high-rate serial form that occupies the whole 

bandwidth, or as a number of parallel low rate signals, 

each occupying a sub-channel in the 3 kHz slot. Regardless 

of whether the system is serial full-band or multichannel 

narrowband, the main modulation methods are phase modulation, 

frequency modulation, or modulated continuous wave (tone 

transmission), and it is possible to consider single channel 

(or sub-channel) modulation without loss of generality.

On-off keying (00K) of the carrier is rarely used because 

of its susceptibility to selective fading and interference.

In general, signal detection can be coherent (carrier 

or sub-carrier phase available at the receiver) or non-coherent

(envelope detection). It is well known that coherent systems
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have a lower probability of error for a given signal to 

noise ratio, due to out of phase noise rejection, but this 

assumes a noise-free phase reference at the receiver.

Under conditions which tend to destroy the coherence of received 

signals, such as rapid selective fading, it is possible, 

in practice, for a non-coherent system to outperform a 

coherent one.

(i) Frequency shift keying (FSK)

FSK signals can be generated by allowing a binary 

pulse train to frequency modulate a carrier or sub-carrier.

This gives continuous-phase FSK. If the pulse train has 

sharp transitions, however, this effectively results in 

the transmission of two distinct carrier frequencies (or tones), 

one for 'O' and one for '1' . This FSK signal can therefore 

be generated by selectively gating one of a pair of independent 

tone oscillators, and this generally gives rise to 

discontinuous-phase at the transitions. For reasonable 

separation of the two frequencies, it becomes advantageous 

to demodulate the received FSK signal not by the use of a 

conventional FM discriminator, but by the use of a pair 

of filters, one centred on each tone frequency. This is supporte 

by statistical decision th e o ry wh ich indicates that the
in (raussta.M \e

optimum detector for an FSK signal^involves a pair of 

cross-corre 1 ators , v/hich for certain signals can be 

replaced by a pair of realisable matched filters.

Under high SNR conditions, noncoherent FSK achieves 

the same error rate as ideal optimised-threshold noncoherent 

00K, for the same average power. 00K, however, requires 

the detection threshold to be optimised at each SNR whereas
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FSK does not, thereby making FSK much superior under 
fading conditions.

Coherent (synchronous) detection of FSK requires 

that reference signals of both tone frequencies, including 

accurate phase, are available at the receiver. Coherent 

detection has the effect of rejecting the portion of noise 

that is in phase quadrature with the desired signal, thereby 

achieving the theoretical supremacy over non-coherent 

systems. Performance is equal to that- of optimal-threshold 

coherent 00K with the same average power, and 3 db worse 

than ideal phase shift keying (PSK). Coherent FSK out

performs non-coherent FSK, but this supremacy is vanishingly 

small at high SNR. Coherent FSK is not generally used because 

of the double reference required, and also because if a coherent 

system is to be used, PSK is better.

An important problem in FSK systems is the choice of 

an optimum tone spacing. The assumption of no 'crosstalk' 

in FSK systems implies orthogonal waveforms, which in turn 

requires that the two tone frequencies are multiples of l/T, 

the pulse modulation rate. If a condition of 'zero start- 

phase' can be assumed, the minimum tone spacing for othogonality 

is 0.5/T. By increasing the tone spacing, however, the 

waveforms can be made partially 'antiparallel', and it can 

be shown (Stein 1966) that the 'best' spacing for tone 

discrimination is 0.7/T.

(ii) Phase shift keying (PSK)

Simple binary PSK encodes information in the atgebraio 
sign of the carrier, that is, two phase states separated by
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180 degrees. More complex 'carrier' waveforms such as PM 

sequences can be used, to facilitate synchronisation or 

multipath resolution. Coherent detection of PSK involves 

a synchronous detector which requires an error-free 

reference waveform, accurate in both frequency and 

phase. Ideal PSK also requires long-term stability of 

this reference signal, and any phase error in the reference 

reduces the theoretical 3 db performance advantage over 

coherent FSK. An alternative method that does not require this 

long-term stability and gives a 3 db advantage over a non

coherent FSK, is differential phase shift keying (DPSK).

With this method, information is differentially encoded 

as the phase change between successive waveforms. Coherent 

detection is then possible by using the 'previous' 

waveform as a reference for the 'current' waveform. Coherency 

is now only required over a period of 2T seconds, but 

performance is inferior to ideal PSK because the reference 

is contaminated by noise to the same extent as tke 

information waveform. In addition, a high probability of 

double adjacent errors exists due to the fact that a single 

DPSK waveform is involved in two successive binary 

decisions.

(iii) FSK and PSK in non-Gaussian noise conditions

The analysis of single-channel PSK and FSK systems 

under conditions of slow non-selective Rayleigh fading again 

shows an exact 3 db advantage for ideal PSK over coherent 

FSK, and for DPSK over non-coherent FSK, at all mean SNRs.

For large SNRs all these systems have linearly decreasing 

error probabilities with increasing SNR, as opposed to the
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exponential decrease in steady noise situations. Therefore 

higher SNRs are required in the fading case than in the non

fading case in order to achieve the same error probabilities. 

The magnitude of these system margins is approximately 10 db 

for error rates in the 10~2 to 10~3 range, with an additional 

10 db for every factor of ten further decrease in allowed 

error rate.

Bello and Nellin (1963) have done considerable 

analysis on FSK and PSK systems under conditions of fast 

flat fading and slow selective fading, including allowing for 

the use of diversity. These results indicate that non

coherent FSK is less sensitve to these extreme variations 

than DPSK, and that phase-continuous FSK is better than 

discontinuous FSK. The superior performance of non-coherent 

FSK under these extreme coherence-destroying conditions is 

because orthogonality is based on energy concentration 

around each tone frequency, whereas DPSK requires phase 

coherence over two pulse lengths for the preservation, of 

symbol orthogonality.

(iv) Multichannel systems

Multichannel 3 kHz data transmission systems utilising 

low-rate parallel transmission haye been constructed with 

most modulation methods.

Amplitude modulation with differential-coherent detection 

has been employed on the two-tone predicted wave system 

(Doelz 1954) and the multi-tone Piccolo system (Robin 1963) .

Narrowband FSK with frequency shifts of the order of
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80 Hz on each subcarrier, with tone interleaving to combat 

selective fading, has also been used, as has wideband FSK with 

shifts of 850 Hz.

Phase modulation has been used on many systems including 

Kineplex (Hosier and Clabaugh 1958) which has orthogonally 

spaced subcarriers that are 4-phase differentially keyed, to 

provide a total rate of 3000 bits per second when all subchannels 

are keyed at 75 bauds.

Variable rate adaptive transmission may be provided by 
duplicating information on several subcarriers, and this 
is the principle used in the manually adaptive "Katheryn" 
system (Zimmerman 1967 , Kirch 1969) . The choice and 
performance of a particular multichannel system is strongly 
dependent on the channel conditions under which the system 
must operate. This makes the theoretical comparison of 
multichannel systems for HF operation very difficult, rather, 
one is left to compare the results of field tests of various 
equipments. Bello (1969) reviews various multichannel 
systems for tropospheric scatter transmission.

(v) Wideband systems

Wideband transmission originated with the 'Rake' 

system (Price and Green 1958). The original Rake system 

used orthogonal PN sequences 1023 bits long, repeating after 

8.5ms, to represent the binary digits. At the receiver the 

delayed versions of the PN sequences, due to multipath, are 

brought into alignment and added, thereby giving the



impression of a single strong path. The system operates 

best under heavy multipath conditions, but is wasteful of 

bandwidth, as the bauds are 10ms long for the 10 kHz

- 129 -

bandwidth used.



130

CHAPTER 5

Variable Redundancy Coding

This chapter describes the variable redundancy (VRj 

coding technique of.adaptive error control for time-varying 

channels, and assesses the theoretical performance 

advantages of VR coding, as '/ell as examining the practical 

problems involved in the design of VR systems. A general 

view of VR coding is therefore presented in this chapter, 

as a preliminary to the investigations of the next two. chapters, 

which are concerned with specific VR systems.

The VR technique is first outlined, and this is 

followed by a general analysis of the advantages of 

the technique when used on time varying channels. The 

basic VR system is next described, together with its operation 

under different error control modes, and the problem areas 

in the design of such a system are defined. The choice 

of suitable sets of codes for use in VR systems is 

then considered, and each type of fundamentally different 

code set is analysed with respect to performance, implementation, 

and relative advantage. Section 5.7 describes methods of 

extracting channel information from the incoming digit 

stream, as well as the formulation of criteria for initiating 

code changes. Finally, feedback code-control signalling and the 

effect of feedback errors are considered, showing how code 

sets with mutual distance (Appendix A) can be advantageous

for VR systems with noisy feedback links.
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5•  ̂ basic VR technique

Variable redundancy coding for a data transmission 

system involves the use of a set of codes as opposed to the 

single code of a fixed redundancy (FR) system. Each code 

in the set has a different redundancy, and hence EDC power, 

and can therefore cope with a different level of channel 

noise before exceeding some specified (fixed) probability 

of erroneous decoding (F̂) . This set of codes is used by 

the VR system to provide a variable amount of EDC power that 

automatically adapts to changing channel conditions, so 

as to 'match' the code in use at any particular instant to 

the amount of coding power required by the channel. Therefore: 

when the channel is in a highly noisy state, high-power, low- 

rate codes are used; whilst under low noise conditions, high- 

rate (efficient) low-power codes are selected. The VR 

system and the channel are considered to be 'matched' if no 

higher-rate code can be used without exceeding a certain 

specified maximum probability of erroneous decoding.

If it can be assumed that the VR system is capable of 

accurately assessing the channel so as to use the correct 

code for the prevailing conditions, and in addition, if the 

channel changes relatively slowly compared to the time 

taken to assess the channel and physically effect a code 

change, it is theoretically possible for a VR system to realise 

two important advantages over an FR system: increased 

information throughput and decreased probability of

erroneous decoding.
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Firstly, an FR system must employ a code which is 
capable of coping with the worst possible channel conditions, 
that is, given some maximum value of channel noise, and the 
proportion of time that this maximum is exceeded, a high 
redundancy code must be employed if the user is to be 
guaranteed that Pe remains below some desired maximum 
(P max) for a large proportion of the time. Reducing the 
code power on the fixed system therefore increases the 
proportion of time Pe max is exceeded and vice-versa. Under 
conditions of low channel noise, therefore, the FR system is 
unnecessarily inefficient because it is providing an 
unnecessarily low value of P£ (the user's guarantee is 
fixed by the high noise channel conditions). A VR system 
operating under low noise conditions, however, sacrifices 
the low value of P and uses a higher rate code with a 
PQ comparable to the high-noise Pe , thereby realising the 
advantage of increased data throughput, whilst still 
maintaining the user guarantee that Pp is below Pe max.

Secondly, given that a VR system can achieve higher 
average throughput than an FR system, all of this advantage 
could be 'traded-off1 by employing very highly redundant codes 
during periods of very high channel noise. This would 
increase the user guarantee whilst maintaining the same 
average throughput.

From the preceeding arguments it can therefore be seen 
that, ideally, a VR system can simultaneously realise the’ 
advantages (over an FR system) of increased overall data 
throughput with increased user guarantees. In addition,
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P , which varies widely with channel conditions on an

FR system, thereby making the overall average transmission

P (P a somewhat meaningless statistic, tends to remain

relatively constant on a VR system; and because the range

of P variations is greatly reduced, P . becomes much

more meaningful to the user. Indeed, if an infinite number

of codes were employed the VR user could then be guaranteed

that P^ remains constant over all channel conditions, up to

a certain maximum, instead of being guaranteed that P^ remains

less than P and (depending on the number of codes)
G Til 3.X

does not vary much about Pe AV

5.2 Performance analysis of the VR technique

In this section the VR technique is applied to a 

time varying channel, and its performance is analysed, in 

order to obtain some quantitative measure of the improvement 

in throughput and error- rate guarantees that that can be 

obtained by using VR coding. The analysis is intended to 

be as general as possible and does not, therefore, refer to 

specific codes or specific VR systems. The technique is 

applied subject to certain idealisations about the VR system; 

that is, noiseless feedback, accurate channel knowledge, 

slowly varying channel, and so on, and although in practice 

these assumptions may be very far from the truth, it is 

useful to have a rough idea of VR capability, before 

presenting specific results in later chapters.

In order to calculate the performance of an FR or VR 

system it is necessary to have a model of the time varying

channel being considered- For simplicity, it will therefore
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be assumed that the 'short term' behaviour of the channel 

is modelled by a BSC (section 2.5) with average bit error 

rate (BER) p, and that the 'long term' behaviour is obtained 

by making p vary with time, according to some rule or 

distribution.

The next stage in the analysis would be to choose a 

set of codes and obtain BSC performance figures for 

each of these codes. In order to continue in general 

terms, however, specific codes are not considered; iretead, 

BSC performance versus rate figures can be calculated from 

the bounds described in section 3.2. In addition, the 

decoding scheme will be assumed to be of the 'bounded 

distance' type, regardless of the type of error control 

being provided.

5.2.1 Error correct-ion

For error correction on the BSC with bounded distance 

decoding, that is,the correction of t or fewer errors only, 

the probability of erroneously decoding a block (Pe) is 

given b y ;

Equation 5.1 represents the 'tail' of a binomial 

distribution, which can be estimated by using the 

formulae given in Appendix A of Peterson (1972) to give:

n
Pe Z

i = t + l
5.1

„ . . - An -]Jn An tinP < A p M p e — 5.2

where A=(t+l)/n, and p=l-A.
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In order to retain generality it is necessary to remove the 

dépendance on n exhibited by equation 5.2. This can be done 

by evaluating the asymptotic result obtained by letting 

n 00. It is then convenient to work in terms of E: the

reliability or error exponent ; where,

E = - lira log P„ ^ n en -> o °

5.3

(Reliability may be thought of as the exponent with which 

Pe may be made to vanish with increasing n.) For large 

n equation 5.2 and 5.3 give,

, ,. - An -un An unlog (A y P q ) = E (A ,p) 5.4

where

E(A,p) = H (p ) + (A-p)H' (p)-H(A) 5.5

and H'(x) is the first derivative of the entropy function: 

H(x)=-x log x - (1-x) log (1-x). If t and n are both >>1

then A=t/n, and the bounded distance asymptotic lower bound 

on reliability (E ) is:

EfiD >_ E (t/n ,p) . 5.6

In order to plot reliability versus rate we require 

values of t/n for given rates; these can be obtained by 

using the minimum distance bounds of section 3.2. Using 

the asymptotic VGS lower bound on d (equation 3.13) gives 

values of ^/n versus rate which are guaranteed achievable 

and, although reasonably pessimistic for short codes, are 

met in practice by random error correcting codes of moderate 

length (n<1000, e.g. BCH codes, section 3.5). For large

n the VGS bound gives :

1 - k < H (-) , t/ri— — n n 5 . 7
n

so that the asymptotic lower bound on reliability for
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bounded distance decoding becomes.

Ebd > E (d/2n , p) . 5.8

Equations 5.7 and 5.8 can now be used to plot rate 

versus reliability for several different BER's, as shown in 

figure 5.1, and it is these curves that are used for an initial 

comparison of VR and FR systems.

Figure 5.1

Reliability (E ) versus Rate (R),

R
As a first approximation it is convenient to 

make two simplifying assumptions. Firstly, the channel 

BER is assumed to take a finite number of discrete values, 

each of which is in effect for an equal proportion of the 

total transmission time, and secondly, the codes used by the 

VR and FR systems exactly meet the bound so that the
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rate versus reliability curve for each state is a curve siniilar 

to those of figure 5.1.

The following example shows how the VR and FR systems may

be compared. Consider a four state channel with p values

of 10 J, 10 4 , 10 0 and 10 2. The user requires that the

reliability is >0.1 under all conditions. An FR system

must therefore have a reliability of 0.1 under the worst
2conditions (p=10 ) and from figure 5.1 the fastest rate

that can be used whilst still satisfying these requirements

is Rf = 0.44. We now assume a VR system that adjusts the code

rate so that for each equal duration channel state (value

of p) the reliability is maintained at 0.1, and the user is

therefore still guaranteed an average reliability of >0.1.

For the same values of p the corresponding code rates are:

0.85, 0.79, 0.685, 0.44, giving an average rate of Ry=0.69,

which leads to an improvement factor (R /R ) of 1.57 over theV F
fixed redundancy case. Consider now a similar four-code VR 

system that maintains an average reliability of >0.2 instead 

of 0.1. In this case the corresponding rates are: 0.75, 0.675, 

0.55 and 0.295, giving an average rate of 0.57. Therefore, 

compared to the FR system, this VR system has achieved an 

increase in both throughput and reliability.

Table 5.1 below presents similar VR and FR comparisons 

for different reliabilities, channel error rate range,

and number of codes.
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Table 5.1 
VR Performance

Result
Number

Re 1i ability 
>

Channel error 
rate range

FR
system
rate
(R )F

N o . of 
codes 
in VR 
system

VR
system
rate
(R )V

Improvement
factor
Rw/RV F

1 10" 2 .10- 1 to 5 xio- 5 0.15 8 0.72 4.8
2 4 0.68 4.5
3 2 0.51 3 . 4

4 IO“ 1 10“ 1 to 5 xio~ 5 0.02 8 0.52 26
5 4 0.49 24
6 2 0 .35 18

7 10-2 to 5 x 10 “ 5 0. 44 8 0.71 1.6
8 4 0.69 1.6
9 2 0.62 1.4

10 io-1 to 5 x 10 - '4 0.02 8 0.44 2 2
11 4 0.39 19
12 2 0.29 15

13 IO"2 to 5 xlo- 5 0.44 8 0.68 1.55
14 4 0.65 1.47
15 2 0.58 1. 32

16 0.2 i o - 2 t o 5X10-6 0.30 8 0.59 2.0
17 4 0.57 1.9
18 2 0.49 1.6

19 0 . 5 i o - 2 t o 5 x i o  ~ 6 0.08 8 0.37 4.6
20 4 0.35 4 . 4
2 1 2 0.27 3.4
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By inspecting table 5.1 it is possible to draw the 

following conclusions about VR performance behaviour.

(i) For a given 'worst error rate' VR improvement increases 

only slightly with increasing range of error rate. (Results 

10 and 4, 13 and 7). That is, very low noise periods do 

not significantly affect VR performance if high error 

rates also occur.

(ii) For a given range of error rate the improvement 

increases substantially with increasing 'worst error rate'. 

(Results 7 and 4, 13 and 10). Thus, high noise periods have 

a major affect on VR performance.

(iii) As the required reliability increases, so does the 

improvement. (Results 1 and 4; 7, 16 and 19)

(iv) Improvement increases with the number of codes 

but on a rapidly diminishing returns basis. For example, 

the 2 code VR rates in table 5.1 are about 70% of the 

8 code rates. Increasing the number of codes beyond 8 

would not provide enough rate increase to justify the 

rapid increase in complexity, and in fact most of the 

8 code rate results of table 5.1 are the same (to two 

decimal places) as the results for an infinite number of 

slots and codes.

In general it is therefore possible to say that a VR 

system, whilst using only a few codes, is capable of 

significantly increasing throughput when compared to an FR 

system, and that the system's relative performance is 

best under conditions of high required reliability and

high worst-noise.
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We now consider a modified channel model which 

provides a better approximation to real channels in that 

the channel slots can be of unequal duration. This has 

a large effect on VR performance, and may make VR improvement 

minimal if, say, the worst BER's are in operation for 

most of the time. The distribution of short term BER 

versus time for different channels has been investigated 

and reported in a number of papers. This distribution often 

turns out to be log-normal about the long term mean 

(Stein 1966, Balkovic 1971) with a wide range of standard 

deviations (s.d.) if a very large number of runs axe 

considered. If the distribution within any one 'transmission 

time' is plotted however, this may be highly non-log-normal, 

particularly for the HF channel. It is therefore important 

to bear in mind that, in the following analysis, VR performance 

attributed to a particular channel is based on long-term 

BER distributions.

Figure 5.2 is from Brayer (1971) and shows BER distributions 

for the H F , Tropospheric scatter, and Intelsat II channels.

Figure 5.2 
BER Distributions

0
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Of the three curves the Intelsat channel is the only one that 

cannot be reasonably well approximated by a log-normal 

distribution. The HF and Tropo channels exhibit strong 

log-normal behaviour with long term means of 10"3 and 

5 X 1 0 ~ 5 , and standard deviations (s.d.) of 1 and 0 . 7  respe'cti ve ly.

An 8 state 'channel model based on the curves of figure 

5.2 can be constructed, and table 5.2 shows the proportion

of time spent in e ach state .

State 1

Table 5.2 
2 3

P 2 x10~ 2 10~2 5 x i o _  3

(HF . 16 . 08 .11
Propor
tion of

(
(TROPO 0 0 . 03

time (
(INTELSAT .01 . 02 . 02

The performance of VR and 

these channels is calculated a 

several results.

4 5 6 7 8

2 x i o ~  3 1 0 "  3 5 x i o  " 2 x i o  ~ ^ 1 0 "  "

. 10 . 0 9 . 13 . 13 . 2

. 0 4 , 05 . 1 . 13 . 6 5

. 0 1 . 0 1 . 03 . 0 3 . 87

FR systems when used on 

before and table 5.3 presents

Table 5.3

Re liability 
>

Ch anne1
FR
system
rate
r f

No. of 
codes 
in VR 
system

VR
system
rate
Rv

Improvement 
factor 
R /RV f

i—1o HF . 3 8 0.62 2.07
4 0.59 1.97
2 0.51 1.71

0.2 .18 8 0.49 2.74
4 0.46 2.57
2 0.38 2.13

0. 1 TROPO .55 8 0.76 1 . 39
4 0.74 2.56
2 0.68 1.23
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Table 5.3 oontd.

Re’li ability 
>

Ch annel

FR
system
rate
r f

No . of
codes 
in VR 
system

VR
system
rate
Rv

Improvement
factor
V e f .

O . 1 INTELSAT . 3 8 0.77 2.56
4 0.7 4 2.47
2 0.51 .1.71

The following points arise from considering table

5.3 and also comparing it with table 5.1.

(i) Compared with table 5.1 there are no large 

improvement figures, because the worst value of p is lower 

in this case.

(ii) The largest improvements occur in the Intelsat 

case, because of the high proportion of time spent in 

state 8, and because state 1 conditions still have to be 

coped with.

(iii) The lowest improvements occur in the Tropo case 

because states 1 and 2 never occur, so that the FR system 

rates are correspondingly higher.

In order to have a still more realistic assessment 

of VR performance it is necessary to change and standardise 

the analysis in the following ways.

(i) The channel is the BSC with the value of p governed 

by a continuous log-normal distribution about the long term 

mean, instead of the discrete p variation so far used.

(ii) The VR system uses eight or less codes of differing 

rates all of which meet the bound of equation 5.8. Given

a certain level of reliability, the system automatically 

selects the highest rate code which still equals or exceeds
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this level. The proportion of time for which a particular 

code is in use is calculated by measuring the proportion 

of time between the p values at which the code switches 

in and out.

(iii) Because all values of p are possible with a 

continuous distribution there is a certain probability, with 

the highest power code in use, of exceeding any specified 

level of reliability. The guarantee to the \iser must therefore 

take the more realistic form of being greater than or equal 

to some reliability level for a certain proportion of the 

time .

Figure 5.3 shows 8 codes that meet the bound of 

equation 5.8, and plots reliability versus p for each.

Figure 5,3

FEC Code Performance assuming the VGS Bound
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VR performance can then be calculated as in the following 

example.

(i) Assume a required reliability level of 0.1, and 

a long term mean BER of 10~3 with the short term mean (p) 

distributed about this value log-normally with s.d.=l.

(ii) The proportion of time that p is to the right of 

point A (the intersection of most powerful code and E-level) 

determines the reliability guarantee. This value (from 

tables of the normal distribution) is 0.041, and the 

system therefore guarantees that E>0.1 for 95.9% of the 

t i me .

(iii) The proportion of time each code is in operation is 

then determined from tables. For instance, the 0.1 rate 

code is in use for the amount of time for which p is 

between A and B; at B the 0.2 rate code switches in and is 

in use between B and C ; and so on.

(iv) The long term VR system rate is then calculated 

by summing the proportional rate contributions from each 

code .

(v) The equivalent FR system, that is, the one that 

provides the same guarantee would use the 0.1 rate code all 

the time. An FR system could use one of the other codes 

but would provide a weaker guarantee, for example, the 0.2 

rate code, used all the time, would guarantee the 0.1 

E-level for only 94% of the time.

Figures 5.4, 5.5 and 5.6 present the results of several 

such performance calculations. Each graph shows:

(i) VR system rate (R ) versus long term BER (P ) .V Jj



145
Figure 5.4----ìc-----  - -1 .

VR Performance for Different Numbers of Codes



Figure S.5
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VR Performance for Different Standard Deviations

*3 *7
R V

0 6
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Figure 5.6

1
VR Performance for Different E Levels
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(ii) The proportion of time for which the guaranteed

E-level is exceeded (x) versus P (left hand curves).
JLj

(iii) The range (Z) of VR system rate (lines at top);

the lov/est is 0.1 corresponding to the FR system

with the same guarantee, and the highest is equal

to the highest rate VR code.

(iv) The equivalent FR system rate, which is 0.1 for

all values of P .Li

We note the following points about these graphs.

(i) Figure 5.4. No matter how many codes (numbers beside

curves) are used in the VR system the guarantee curve is the

same. This is because they all use the same lowest-rate

code (.1). The difference between 4-code (rates .1, .3, .5,

.7) and 8~code performance is less than that between 2-code

(rates .1, .5) and 4-code, particularly at low values of

P ; at high values of P the low rate codes are in use

most of the time and the difference is small. The higher

the number of codes the lower P must be for R to reach
Li V

its maximum value.

(ii) Figure 5.5. In this case varying the s.d. (numbers

beside curves) varies the guarantee substantially but does not

affect the performance curves so much. The more peaked the

distribution about P (s.dv=.5) the more rapidly high

guarantee levels are reached. We also note that the

curves cross over at about P =5><10~3, so that the lowestJj

s.d.performs worst below this value, and best above. All 

the curves perform approximately the same at the crossover 

point. This effect is due to the spacing of the code curves 

shown in figure 5.3,and the crossover point corresponds to
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the value of p for which the two highest rate and the two 

lowest rate codes are in use for an equal amount of time 

(giving R =0.4) . Below (worse P ) this point the low s.d. 

values tail away rapidly so that the high rate cod'es are 

used for a small proportion of the time while the 

high s.d. values still use these codes for a significant 

proportion of the time. The contrary argument applies above 

the crossover point.

(iii) Figure 5.6 shows that varying the E-level has a 

significant effect on the performance curves whilst the 

guarantee curves do not vary greatly. The lowest E-levels 

are the quickest to reach maximum R with decreasing P , and 

also perform best, whilst suffering only slightly degraded 

guarantees.

These performance curves show that, for error 

correction considerable improvements in throughput are 

theoretically achievable by using VR coding on log-normal 

BSC channels that have long term error rates similar to 

those found on real channels. In addition, these improvements 

are achieved whilst retaining the same guarantee as the 

equivalent FR system, and the absolute value of the guarantee 

can easily be increased by using a more powerful 'highest 

power' code. An important practical point that arises is 

that these improvements can be achieved by using only a 

few, and certainly no more than 8, codes in the VR system, 

thereby relieving the implementation problem.
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5.2.2 Error detection

The probability of erroneous decoding for error 

detection on the BSC is given by equation 3.20. This can 

be expressed in terms of reliability, and in a manner entirely 

analagous to the error correction case, VR-ED performance 

can be computed and plotted. The performance graphs are not 

reproduced here but are similar to the error correction 

case, and show that approximately the same VR performance 

(rates and guarantees) is obtained for E-levels which, in 

the case of ED, are about an order of magnitude greater.

5.2.3 Burst error correction

It is first necessary to consider what is meant by a burst 

VR system. A loose definition would be to assume that the 

system automatically adjusts the code redundancy to cope 

with the prevailing 'burstyness1 of the channel. Increased 

'burstyness' is most often taken to mean increased length 

of burst, and the VR system would therefore vary the burst 

correcting power to suit the prevailing length of burst.

Unfortunately, the burst distributions of most real 

channels, and particularly the HF channel, do not have a 

simple dependence on bit error rate, and are extasmely variable 

as to how 'burst-like' or 'random-like 1 particular runs are. 

This rules out a meaningful general analysis of the type 

carried out for error correction.

Assuming that the VR system adjusts redundancy to cope 

with different burst lengths it is possible to obtain a
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crude measure of VR performance. Figure 5.7 shows data 

taken from Brayer and Cardinale (1967) for the burst and 

gap distributions of several runs over the HF channel.

Figure 5.7
----- si________________,___

HF Error Statistics

(a)

f= cumulative relative 
frequency

g= gap length
h- hurst lengthj density >

( h )

Runs 2,3 and 4 are classified as 'burst-like1 , whilst 

run 1 is 'random-like'. This is decided by measuring the 

disparity between the gap distribution of the run and the 

gap distribution of a BSC with an equal error rate (.Figure 5.7(a)

To calculate performance the following assumptions 

are made.

(i) The VR system uses 4 codes with burst correcting 

powers b=10, 20, 50 and 100 bits.

(ii) The codes have length n = 400 and meet the Rciger 

bound, that is b=(n-k)/2, and therefore have rates R=0.95, 

0 . 9,0.75,0.5.

(iii) The burst length on the channel changes slowly, and 

the system knows which burst length prevails and can 

therefore select the correct code at any particular time.
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Table 5.4 below shows the proportion of time each 

code is in operation and the resulting VR rate.

Table 5.4

Run % of 
N o . bursts

FR Proportion of time VR Improvement 
rate codes in use rate factor (,F)

corrected (R ) .5 .75 .9 .95 (R )j? V

1 100 0.5 .01 .14 .65 . 20 0.89 1.77
2 98 0.5 .03' .15 .18 .62 0.88 1.76
3 95 0.5 .07 .18 .25 .55 0.92 1.84
4 99 0.5 .04 .05 .05 . 85 0.91 1.82

These results stow that througlput Improvements axe

possible; but the shakiness of assumption (ili). renders

dubious any further analysis along these lines. Rather,

the results indicate that the more 'burst -like' a particular

run is the more the VR system should tend to a 2-code system

that detects only 'good' and'bad' conditions, and then uses 

the appropriate 'low' or 'high' redundancy code.

Rather than continue with any general analysis, therefore, 

specific VR results under burst conditions are presented 

later •

5.5 The basic VR system and modes of operation

In this section the basic VR system is described, together 

with the ways of operating such a system under various error 

control modes. The problems that arise in the design of a 

VR system are brought out, so that they can be considered 

in later sections.

A basic simplex (one-way) VR system is shown in
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figure 5.8 below.

Figure 5.8 

A Simplex VR System

In the diagram, all modems are lumped into the 

'channels' and the adaptive process is solely concerned 

with the coding scheme. In addition, a start-stop (off-line) 

data source is assumed, and the data transmission system in 

use may be synchronous or asynchronous.

The system operates as follows. Initially, after 

system start-up procedures, the code in use should be the 

highest redundancy one, for safety. The prevailing channel 

conditions, or the suitability of the present code to the 

prevailing channel conditions is then continuously monitored 

by operations on the decoder, and received and decoded bit 

streams only. If the present code does not match 

these conditions, according to some predetermined criterion, 

the code selection control initiates a request for a code 

change which passes to the coder via the feedback link. The
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system continues automatically selecting the (hopefully) 

most suitable code for the prevailing conditions.

The basic VR system of figure 5.8 can be considered 

to operate under any of the three main modes of error 

control, ED, ARQ or FEC, to provide three main modes of 

adaptive error control: VR-ED, VR-ARQ and VR-FEC.

(i) VR-ED uses error detection codes thereby 

considerably simplifying decoder equipment. In addition, 

the feedback link only conveys code control signals and 

can therefore have a smaller bandwidth than the forward 

channe1.

(ii.) VR-ARQ uses the feedback link to request repeats 

of erroneous blocks as well as to convey code control 

signals. This would seem to require significantly more 

feedback bandwidth (or time for duplex) than FR-ARQ, but 

it may be possible to reduce this requirement by combining 

RQ and code control signals. For example, if recursive 

ARQ is used (section 2.2), an acknowledgement of 'incorrect' 

(i.e. repeat) may also be used to mean 'increase redundancy' 

to the code control equipment. Although decoder complexity 

is low for VR-ARQ, as detection codes only are used, the 

overall system complexity may be high, because of both 

code changes and repeats occuring simultaneously, particularly 

in the areas of timing and data bufferage.

(iii) VR-FEC control uses forward error correcting codes 

with consequent high decoder complexity, but the feedback, 

bandwidth requirement is again low as only code control signals 

are conveyed. An extension of this mode would be to have
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VR-FEC with no feedback link. This would be possible 

(and desirable for military systems) if the coder could 

have available reasonably accurate and speedily updated 

channel information (e.g. from its own soundings). The 

coder would then be in control of code selection and 

the receiver would have to decide from the incoming bit 

stream which code was in use.

(iv) Hybrid VR systems are also possible. In this case 

operation would be mainly VR-FEC. with overload error 

detection. Detectable but uncorrectable errors could then 

be corrected by ARQ if required, and the number of times 

the overload redundancy was used could give an indication of 

the degree of 'match' between code and channel.

The design of a particular VR system is influenced at 

every stage by the mode of error control that must be 

provided, and by the type of forward channel in use. The 

general areas to be considered in the design of any VR system 

can, however, be considered separately, and are as follows:

(i) Choice of a set of codes. The problem under 

consideration here is, given a particular channel and mode 

of error control, what is the best set of codes for the 

situation. This choice must be taken on grounds of not 

only efficiency and power br;t also on ease of implementation, 

particularly in the VR-FEC mode.

(ii) Channel information extraction. For a VR system 

to operate correctly, a reliable picture of the short-term 

state of the channel must be extracted by measuring one 

or more quantities. What these quantities are and how reliable
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the resulting picture is have a large influence on the 

overall reliability of the system.

(iii) Code selection control. Given a picture of the 

channel state, to a certain reliability, part of the design 

of the VR system must be to establish criteria upon which 

the code change command can be based. Different criteria 

may produce different overall system efficiencies, and the 

establishment of these criteria must be considered in 

conjunction with (ii) above.

(iv) Feedback signalling. The choice of a particular 

method of feedback signalling must be considered from opposing 

points of view: the signalling should be fast enough not 

to hold up forward channel code changes; and also slow enough 

(or redundant enough) to be transmitted reliably. The effect 

of feedback errors on a VR system is to reduce the overall 

system reliability, and different code selection command 

structures can cause different amounts of misoperation if 

commands are received in error.

The remainder of this chapter considers possible 

solutions to points (i)-(iv) above in more detail, so that 

the reasons for choosing the particular VR experimental 

system (and simulations) described later, can be more 

fully appreciated.

5.4 Code sets for VR systems

This section examines the possible ways in which a 

set of codes of varying rate and redundancy can be chosen.

The performances of different code sets, and the VR systems
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that use these sets, are determined in a manner similar 

to section 5.2, and compared without reference to their 

ease of implementation. The values of n, k, and d used in 

the subsequent analyses are from Helgert and Stinaff (1973) 

unless otherwise stated, and where the best distance for an 

(n,k) code is not known the lower bound is taken.

5.4.1 General considerations

It is possible to make several generalisations about 

how the choice of codes for VR is constrained by the VR 

technique.

Firstly, and possibly most important of all, the codes 

should be relatively simple to implement. This may rule 

out the use of an unrelated collection of codes because of 

the undesirable duplication of encoders and decoders. Rather 

the set of codes should be related and possibly all belong 

to one class, so that implementation would require only 

one basic encoding or decoding circuit. A particular code 

in the set would then be encoded or decoded by only slight 

modifications to the basic circuit. In the case of VR-FEC, 

decoder complexity may override all other considerations.

Secondly, the block length should not be long (say n<50) 

for the following reasons:

(i) Short codes are easier to implement.

(ii) Channel conditions must not change appreciably 

over several blocks.

(iii) Channel information is available after each block

decoding, and should be updated as fast as possible
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(iv) The delay in changing to another code in the set 

should be as small as possible, so that waiting 

for long blocks to finish is not necessary.

(v) Optimum short codes, both burst and random, are 

easier to find.

(vi) If interleaved codes are used in order to improve 

the burst capability of the system, the effective 

block length is increased; therefore requiring a 

short original code.

(vii) ARQ is inefficient if long blocks are used.

The maximum size of n is therefore taken as 127 in subsequent 

examples.

Finally, the set of codes should be as efficient as 

possible, particularly the high rate codes, and have a 

wide range of minimum distance.

Types of code set can be split into two main classes: 

those with variable block length (variable n ) ; and those 

with constant block length. Inaddition, code sets with 

variable block length can be further sub-divided into sets 

with k constant, d constant or (n-k) constant.

Before examining the theoretical capabilities of these 

sets it is necessary to point out that variable block length 

sets have several important system disadvantages.

Firstly, any VR system with variable n codes will 

experience block synchronisation difficulties. This is 

further aggrevated by the (perhaps high) possibility of feedback 

link errors causing the encoder and decoder to operate with
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different codes, and hence different block lengths.

Detecting and rectifying such a situation would certainly 

require further complexity and/or redundancy, and may not 

be fe as ible.

Secondly, if channel information is updated after every 

block decoding, the time taken to assess the performance of 

the code in use is variable, as is the delay before changing 

to a new code.

Finally, the range of block size, and hence EDC power, 

is limited by the requirement for relatively short blocks.

5.4.2 Constant k code sets

A set of variable n, constant k codes is characterised 

by having the shortest codes as the least powerful (highest 

rate). Because the longest codes are the most powerful, 

decoding complexity would be high for FEC. The range of 

EDC power is limited by the requirement for short blocks 

at the high power end, and by the value of k at the 

low power end.

Table 5.5 shows the extreme end codes of several 

constant k code sets, and gives values of rate (k/n) , 

relative random EDC power (d/n) and range of rate and d/n.

An examination of table 5.5 verifies that the widest 

ranges of both d/n and k/n occur when k is in the region of 

lO to 20. If k is low, eg. 4, it is possible to have very 

high power codes (thereby ensuring high guarantees) but at 

the expense of having poor efficiencies for die highest rate 

codes. If k is large, on the other hand, high-efficiency
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Table 5.5 
Constant k Codes

n k d d/n k/n range

5 4 2 . 4 . 8 d/n:0.13
127 4 67 . 53 . 031 k/n :0.7 7

12 11 2 . 17 . 92 d/n :0.2 7
12 7 11 56 . 44 . 08 7 k/n:0.83

16 15 2 . 13 . 94 d/n : 0. 3
127 •15 55 . 43 . 12 k/n :0.8 2

32 31 2 . 06 3 . 97 d/n:0.19
127 31 32 .25 .24 k/n:0.73

high -rate codes are possible but the highest power code s

are restri cted by the limitation n<127.

(a) e rr or correction : figure 5.9 plots P versus p e
for four of the k=l1 codes. Also shown are the curves for

two k = 3 1 code s (curves 5 and 6) which have approximately

the s ame rate s as codes 1 and 3 respectively . Figure 5.9

shows that, for high efficiency codes of the s arne rate ,

the longer codes of the k=31 set perform better at 

low BER, and worst at moderately high BER, than the k=ll 

codes (1 and 5). For low efficiency codes, however, the 

longer codes out-perform the shorter ones until very high 

p values are reached (3 and 6). The use of code sets with 

high k would therefore be advantageous for VR systems if 

it were not for the fact that the highest power codes are 

then severely limited by the n<127 requirement, so that 

guarantees are worse for high k sets than low k sets. 

Assuming that in a VR system the performance fall-off of 

the high rate codes at high BER is not important because

these codes are not used at high BER, the best method of
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Figure 5.9
-1 0 0
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choosing a constant 3c code set for FEC would seem to be 

to choose the highest value of k for which some specified 

guarantee (performance of the highest power code) is still 

s atisfied.

The performance of a VR system that uses the four k=ll 

codes of figure 5.9 on a BSC with log-normal p distribution 

can be calculated by the same method used in section 5.2, and 

is shown in figure 5.10 below.

Figure 5.10 shows VR system rate (R ) versus 

long term BER (P ) for different levels of maximum desired
J - j

probability of block error (P^) (numbers beside curves).

Also shown is the proportion of time that the level is

exceeded (x), and VR rate range (Z). The results show 

that significant improvements in throughput are achievable
_ qfrom around P =10 (the equivalent FR system rate is 0.087)L

and that the guarantee does not vary greatly with P^ level 

for P^ levels of interest. Comparison with figure 5.6 shows 

that guarantees are similar, and that the Pe=10-3 curve 

corresponds to the E=10"2 curve. Given a code set with 

higher k one would expect better VR performance but with 

reduced guarantees (increased x).

(b) error detection: when used for ED, constant k 

codes can have a much higher rate than when used for FEC, 

whilst still achieving the same levels and guarantees.

In particular, the 'most powerful' code in the VR set (which 

is also the equivalent FR system code) can have a much higher 

rate than in the FEC case, thereby reducing the range of R ,
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Figure 5 . 10_
Constant k=ll 4-code VR-FEC Performance
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and the relative improvement of VR over FR at any particular

P vaLue. VR-ED is therefore characterised by high rates 
L»

and guarantees, with low VR/FR improvement.

(c) burst error correction: burst performance is 

difficult to assess analytically, and is not very meaningful 

because of the variables involved in choosing a burst channel 

model. Performance will therefore not be considered here. 

Rather, we consider the code sets from the point of view 

of burst correcting ab'il'L'by (b), and the proportion of 

correctable burst patterns (N^) .

For constant k codes the most powerful are also the 

longest, this goes against 'common sense' in that if a channel 

becomes very 'bursty' the most effective way to deal with 

it is to shorten the block length. In addition, good 

optimum short burst codes are known , and optimum long 

codes can be constructed from these by interleaving.

Table 5.6 below compares the proportion of correctable 
b ^

patterns:N = (n+ Z (n-i + l)21 ')/2n 5.9
C i = 2

for several code sets. The value of b, if not exactly 

known, is taken as the mean of b' and b": where b'<_(n-k)/2 

is the Reiger upper bound on b, and b">_(3d-8)/4 is a lower 

bound on b for cyclic codes given by Peterson (1972).

Table 5.6 verifies that the most powerful codes have a very 

poor burst performance, particularly for large k. In general 

we may therefore conclude that constant k codes would exhibit

poor performance if used on real channels.
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Table 5.6

Cons tan t k Burst Capability

n k k/n b Proportion

15 11 . 73 1 4.6x10"

31 11 . 36 9 2 . 9x10~ 6

63 11 CO 22 9.7xlO-12

37 • 31 CO 1 2 . 7xl0_1 0

42 31 . 74 4 7 . 3x10“ 1 1

56 31 .55 9 • 1 . 7x10_I 3

7 4 LO 1 5 . 5xlo-2

20 4 . 2 7 9 . 2x lo~!>

Code sets with d, t ' j or b constant

These code sets are characterised by having powerful 

short codes and weak but efficient long codes. The 

advantages of this scheme over the constant k scheme 

are that short powerful codes are easy to find, and that 

the amount of decoding effort increase only slowly with n 

(because n-k increases slowly with n ) . The problem of finding 

long efficient codes for the scheme can be circumvented 

if the maximum code length is again restricted. In addition, 

for a burst VR system, it makes good sense to have the 

shortest codes as the most powerful. Table 5.7 below shows 

several constant d code sets.

Table 5.7 shows that the range of d/n values are much 

larger than those of table 5.5 and that they decrease with 

increasing k/n range. Also, the powerful k=l codes can be
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Table 5.7 
Constant d Codes

n k d d/n k/n range

3 1 3 1 . 33
15 11 3 . 2 .73 d/n -.0.98

127 120 3 . 024 . 95 k/n : 0.6 2

5 1 5 1 . 2
31 21 5 . 16 .68 d/n: 0.96

12 7 Ì13 5 .039 . 89 k /n: 0.69

7 1 7 1 . 14
63 46 7 . 11 . 73 d/n : O .94
127 109 7 . 05 6 . 86 k / n : 0.7 2

used for any scheme, enabling correction of approximately 

n/2 errors in a short block, instead of n/4 errors in a long 

block, as with the constant k schemes.

(a) error correction: figure 5.11 shows code performance 

for several constant t FEC codes, and illustrates the following 

points.

(i) High t codes outperform equal rate lower t codes 

except at high BER (curves 2 and 5).

(ii) The convergence of the curves at low BER means 
that, for a VR system operating at a particular Pp level, 
the codes are all used up over a small range of p. This 
range diminishes with decreasing p and P , thereby bringing 
high efficiency codes into operation more quickly.

(iii) The most powerful codes (k=l) do not give good 

guarantees if t is low (curves 5 and 1). Improving the 

guarantee by increasing t (curve 7) decreases the 

efficiency of the maximum efficiency code because of 

n<_127, and also increases the decoding complexity.
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Figure 5.11
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It can be concluded that constant t codes on a VR 

system can only be effective if t is large, in order to 

provide good guarantees ; and if the block length of the 

least powerful code is considerably larger than 127, in 

order to provide high efficiency.

Figure 5.12 plots the performance of a VR system 

using, the four t=3 codes of figure 5.11 on a BSC with log

normal p distribution, for different P levels (numberse
beside curves).

A comparison of figures 5.10 and 5.12 shows:

(i) The proportion of time that P levels aree
exceeded (x) is much greater in the constant t case (i.e . 

lower guarantees), and the spread of these curves is 

gre ater.

(ii) VR rates are much higher in the constant t case.

These constant t schemes will therefore provide

higher rates but at lower guarantees, or higher rates with

the same guarantees but at lower P^ values. They can

therefore only be considered to outperform constant k codes

at low P values, e

(b) error detection: Figure 5.13 below plots ED code

performance versus p for several constant d codes. Again

it can be seen that the curves bunch together and do not

provide a wide variation of P versus p.e

The performance of a VR-ED system will therefore 

be similar to that of the FEC system,with low guarantees,
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Constant t=3 4-code VR-FEC Performance
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and high VR rates at low BER. A further consequence of the 

bunching of the curves is that there is very little 

difference between two-code VR and VR using a greater 

number of codes.

(c) burst .error correction: for burst-VR it is 

appropriate to consider the system as using constant b 

(rather than d) codes. The code set would now be operating 

appropriately (compared to constant k) in that the shortest 

codes are the least efficient and have to cope with the worst 

burst conditions. Table 5.8 below lists some burst correcting 

codes (Lin 1970).

Table 5.8

Constant b Code Sets
n k k/n b Nc
7 3 . 43 2 0.102

15 10 . 667 2 8.8 5 x 10 -
31 25 . 81 2 2.84x10“ 8
63 56 O')CO 2 1.36X10“ 17

15 9 • 6 3 1.6 8 x 1 o “ 3
27 20 .74 3 7.67X10“7
63 55 CO 3 2.68X10“ 17

121 112 . 93 3 1 . 8  xio"3 4

19 11 . 58 4 2.58X10"1*
38 29 . 76 4 1.0 4 x l o “ 9
85 75 . 88 4 1.7 lx 10“23

164 133 .93 4 5.54X10“4 7

Table 5.8 indi cate s that low b sets would perform best

under the worst burst conditions (because of the relatively

shorter block length) and that the high b sets would be most

efficient when condi tions are good.
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5.4.4 Code sets with (n-k) constant

These code sets are similar to the sets of the last 

section in that the most powerful codes are the shortest.

The efficiency of the mos t efficient code for a given value

of n-k is limited by t>l and n<12 7 , as shown in table

5.9 below.

Table 5. 9

Con stan t n-k Codes

n k n-k t d d/n k/n range

12 1 11 5 12 1 . 083 d/n : 0.9
40 29 11 1 4 . 1 . 73 k/n:0.65

22 1 21 10 22 1 .046 d/n : 0.92
85 64 2 1 3 7 . 082 . 75 k/n -.0.1

36 1 35 17 35 1 .028 d/n :0.91
127 92 35 5 11 . 086 . 72 k/n : 0.6 9

It is again possible t o use (n ,1) codes, and because

values of n can be larger in this case without restricting

the range of rates available , guarantees can be higher

than in the constant d or t cases.

(a) error correction: when compared with constant t sets, 
code performance curves in this case do not converge as much. 
This gives rise to similar VR-FEC performance but with higher 
guarantees and lower VR rates.

(b) error detection: code performance curves again do
not converge as much, and occupy a wider range of than
in the constant d case. VR-ED performance for a givetn
guarantee is generally superior in this case, in terms of
P levels and rates, e
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(c) burst error correction: for codes that meet the 

Reiger bound, constant n-k implies constant b; however, 

for a practical set of codes, b decreases as n increases

with n- k constant, implying slightly inferior burst capabili

in this case .

5.4,5 Constant n code sets

Constant n codes are advantageous for reasons of

timing and ARQ simpli city, and were used in the experimental

system. Table 5.10 below lists several constant n codes.

Table 5.10

Cons tant n Codes

n k d d/n k/n range

15 14 2 . 13 .93 d/n:0.87
15 5 7 . 47 . 33 k/n: 0.86
15 1 15 1 .067

21 20 2 . 095 .95 d/n:0.91
2 1 11 6 .29 .52 k/n: 0.9
2 1 1 21 1 . 048

63 62 2 . 032 .98 d/n:0.97
63 46 8 . 127 .73 k/n: 0.96
63 1 63 1 . 016

Table 5.10 shows that the constant n code sets 

cover a wide range of both k/n and d/n without being 

limited by n<127.

(a) error correction: figure 5.14 plots the BSC 

performance of several constant n FEC codes. It can be seen 

that equal-rate higher n codes outperform lower n codes 

except at high BER (curves 4, 6 and 8, and 1, 5 and 7).

High guarantees can be provided by using high n (curve 9)
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Constant n FEC Code Performance
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which also means that higher performance codes can be 

used at the high rate end of the set (c.f curves 1 and 7}.

Block length should therefore be as high as possible, whilst 

bearing in mind other system requirements; but would not need 

to be greater than 100 in order to provide much better 

guarantees than -the other VR schemes considered.

Figure 5.15 plots VR performance for 4-code and 2-code 

(one curve only) VR using n=15. levels are shown beside

the curves. In comparison with the other code sets considered, 

constant n can be seen to provide lower VR rates with higher 
guarantees. This is as expected because of the high 

guarantees provided by the k=l codes, and the efficiency 

limit of the (15,11) code. Higher n would certainly provide 

even better guarantees and VR rates.

Figure 5.16 shows 2-code VR for n = l5 and n=63 , when

approximately equal rate codes are used (figure 5.14,

codes 1 and 4, and codes 7 and 8). Guarantees are approximately

the same (crossover of curves 4 and 8, figure 5.14) for these

two sets when P =10 , and the n=63 case is worse above thise
level and better below. Curves 3 and 4 show the performance 

of this scheme at the P^=10~6 level, showing the rate 

advantage of high n. At the P^^IO-3 level the rate advantage 

is smaller and the n=15 code provides better guarantees 

(curves 1 and 2). The use of the (63,1) code provides 

very high guarantees (curve 5), and if used with the 

(63,46) code (or one of even higher efficiency) would enable 

higher VR rates to be achieved (at higher P levels) than

that obtainable with previous VR sets.
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Figure 5.15
Constant n=15 VR-FEC Performance
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Fiouve 5.16
.— ,— u—    .  

Constant n VR-FEC Performance
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(b) error detect ion : ED code pe r forman ce: is again

similar to FEC, except that highe r P levels e can be attained

and VR-ED performance again improves with increasing n.

(c) burst error corre ction: table 5.11 lists the

burst capability of several constant n codes.

Table 5.11

n k k/n b N c
15 1 .067 7 1.95 xlo~2
15 5 . 33 5 5.83x10"3
15 7 . 47 3 1.68xlO"3
15 11 .73 1 4.6x10“^

31 2 . 06 5 13 7.25X10"5
31 11 . 36 9 1.49 xio"6
31 2 1 .68 4 1.0 8 x 1 0 “7

63 4 25 .06 4 2.7X10"10
63 46 6 . 7 3 2.05 xlo~16

Comparing thé values of N c in table 5.11 with those of 

previous code sets it can be seen that the range is small 

because n does not vary. The range widens when high n 

sets are taken. Because the k = l codes meet the Reiger 

bound and because the high efficiency codes need not have 

long blocks, it is to be expected that constant n codes 

give good burst VR performance. Under very bad conditions, 

however, codes with constant b or n-k may prove superior 

because of their ability to have very short blocks at the 

most powerful end of the scale.

Finally it can be seen that if n is high (desirable for 

random error control) the burst performance of the set will 

suffer, and this limits the choice of n in practice.
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5.4.6 Conclusions

On the basis of the performance calculations and system 

considerations so far presented, it was decided to choose 

constant n codes for further investigation. Some of the main 

considerations in this choice are as follows.

(i) Constant k codes have long blocks for the most

powerful code and these perform badly when error 

rates are high thereby giving low guarantees.

(ii) Burst capability is poor on the most powerful 

constant k codes.

(iii) For a given n that must not be exceeded, a constant 

n system will provide better guarantees than a 

constant d, or constant n-k system.

(iv) Given a k=l code which defines the guarantee for

both a constant n and a constant d or (n-k) system, 

the constant n VR rate will be inferior because 

of the inferior performance of its high efficiency 

codes at low BER. However, the longer codes at the 

high efficiency end of a constant d, b or n-k 

system make these sets more susceptable to burst 

errors than the equivalent equal rate constant n 

codes .

The performance of code sets with n,k and d all variable 

can be inferred from the performance curves so far presented; 

but will not be considered further. This is because although 

such a scheme may be theoretically attractive because of 

flexibility in being able to choose short powerful codes, and 

long efficient codes, there are the practical considerations
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of implementing unrelated codes to be taken into account.
The practical difficulties, however, may be small if the 

code set contains only a few codes (say 3 or less).

5.5 Implement at-ion

This section considers encoding/decoding implementation 

for the VR schemes described in section 5.4. The criterion 

of simplicity dictates that attention should be mainly 

restricted to the implementation of sets of cyclic codes.

In addition, important coding refinements such as interleaving, 
soft-decision decoding, burst/random mode decoding; although 
applicable to any VR system, will not be dealt with here.

5.5.1 Constant k and constant n-k codes

Sets of these codes can be easily encoded by using only 

one (constant) k~stage or (n-k)-stage circuit of the form 

of figure 3.8 and 3.7 respectively. The only operations that 

must be modified by the code control circuitry in order 
to generate an individual code , are the number of 

shifts, and the feedback connections. The additional 

circuitry required to encode the whole set rather than just 

one code, is therefore small.

Syndrome calculation can also be simply accomplished by 

the use of the syndrome calculator circuit of figure 3.9 (for 

constant k ) , or the syndrome generator circuit of figure 3.10 

(for constant n-k). Error detection is therefore quite 

easy to implement.

Error correction, on the other hand, is much more 

complex. Systematic search decoding can be used if k or
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n-k are not too large (say <16) and would involve storage

(or generation) and comparison of either the 2 code
n -]£words (constant k) , or the 2 syndromes (constant n-k).

By utilising the cyclic property of the syndrome (section 

3.4.7) it should be possible to use greatly increased k or 

(n-k). The disadvantage of this method is that a virtually 

different decoder is being set up for each code.

Meggitt decoding (figure 3.11) requires a variable 

n-stage buffer, and an (n-k)-stage syndrome generator, which 

for constant k, is variable. Complexity and feasibility depends 

on the combinatorial pattern detector network, and this would 

be large for constant k. Minimisation could be used to 

ensure that the detector for VR was less complex than the 

sum of the complexities of each individual code's detector, 

but the circuit would still be much more complex than that 

required to implement the most complex code in the set.

Error trapping decoding (section 3.4.8) is easier to 

implement in the constant (n-k) case than in the constant k 

case (because of the constant (n-k)-stage syndrome generator); 

but much more of the power of the high rate codes is lost 

because of the limitation that only t'<t<l/R errors can be 

corrected by this method.

The choice of a set of suitable BCH codes is severely 

restricted for both constant k and constant n-k. Decoding 

requires computations in GF (2m ) , and therefore each BCII code 

requires a virtually different decoder to be set up.

A similar problem of choice exists for majority logic
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decodable codes (section 3.6). For example, if k = ll we 

find the (15,11) and (1023,11) EG codes, the (21,11) PG code, 

and the (2047,11) maximum-length-sequence code. Implementation 

is simpler in the constant n-k case, but is complex in both 

cases because of different numbers of orthogonalisation 

steps, which requires setting up virtually different majority 

gate networks for each code in the set.

Burst decoding is easily accomplished by using a 

decoder of the form of figure 3.15, which for constant n-k 

has a constant number of stages. It is also possible to choose 

a set of optimum or nearly optimum burst codes for 

n-k constant (but not for k constant); but this involves 

spanning a large range of n.

Constant n-k VR is therefore generally easier to 

implement than constant k VR, particularly in the burst case, 

but the implementation of a set of high-power random-error- 

correcting codes is complex in both cases.

5.5.2 Constant d3 t or b

For a set of constant d codes, n-k increases only 

slowly with increasing n. Encoding is therefore best done 

by an n-k stage circuit of the form of figure 3.7. Code 

control complexity is somewhat increased because each code will 

require a different input/output point in the register, 

as well as different g(x)'s and numbers of shifts.

VR-FEC is simple if t=l (the Hamming codes can all be 

easily error-trapping decoded with one basic circuit) and

becomes more complex as t increases.
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Meggitt decoding is feasible if t=2 or 3 and n is reasonably 

short; but the complexity of the pattern detector rapidly 

becomes impractical for n>50, even given that some minimisation 

is possible.

Systematic search decoding is limited by the largest 

value of n-k in the set which in turn limits its application 

to cases With t=2 or 3.

BCH hardware decoding is somewhat more feasible than 

in the previous cases because although the feedback shift 

registers (FSRs) used in the decoding process have variable 

length (m) and variable feedback connections, the multiplicity 

of these FSRs (t) is fixed. Software implementation is 

again complex because of different GF(2m) arithmetics. In 

general, constant t BCH VR codes sets are easy to find and 

feasible, but complexity is considerably more than that 

required for the most powerful code.

Majority logic decoding for constant t codes is best 

implemented by a type I decoder but the choice of a suitable 

code set is restricted by the majority circuits needed.

Each code in a set would require a different number of 

majority gates, have a different number of orthogonalisation 

steps (L), and a varying set of check sums (approximately 

jL of them), which would check different syndrome bits. 

Construction of the decoder control circuitry is, however, 

considerably simplified by noting that each gate requires 

exactly j inputs, because each code corrects up to j/2 errors.

A suitable set of EG codes is available for j=6 (t-3)
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and is shown in table 5.12 below. These codes are the 

Reed-Muller eqivalents with one digit omitted.

Table 5.12 
Constant t=3 Codes

n k t Type s teps CL) Majority
gates

7 1 3 EG (3,2) 1 1
15 5 3 EG (4,2) 2 7
31 16 3 EG (5 ,2 ) 3 43
63 42 3 EG (6,2 ) 4 ■ 259

127 99 3 EG (7 ,2) 5 1555

Sets of constant b burst-correcting -codes c an be chosen

from available Reiger--efficient codes and simply decodéd by

error trapping. Such a decoder requires a variable (n-k) -

stage syndrome generator, a variable length n-bit buffer, and

a variable (n-k -b)-input OR-gate. Table 5.13 below shows

such a set for b=4.

Table 5.13 
Constant b=4 Codes

n k n-k n-k -4 g lx) (Octal) Reiger
efficiency

19 11 8 4 1151 1.0
38 29 9 5 2151 0.89
85 75 10 6 2651 O. 8

164 153 11 7 6255 0.73
511 499 12 8 10451 0.67

102 3 1010 13 9 22365 0.62

Cons tan t power code sets can be considered to be

be tte r than the previous cases when providing a set of multiple

error-correcting codes, particularly with respect to the 

range of codes available with this restriction; but again

complexity tends to be much more than that required for a 

single code.
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5.5.3 Constant n

A set of constant n cyclic codes can be encoded in 

n shifts by using either the (n-k)-stage or the k-stag.e 

circuits previously mentioned. If k varies widely (say 

from 1 to n-1), approximately n stages must be provided 

in both cases, and any advantage of one circuit over the 

other would depend on the individual codes used.

Syndrome calculation can also be done with either 

circuit. The k-stage circuit would be advantageous for 

ED-ARQ because any non-zero syndrome is serially detected 

as quickly as possible. If a stored syndrome is required 

the full n shifts must be done and the (n-k)-stage circuit 

is to be preferred.

Meggitt decoding requires a variable (n-k)-stage 

syndrome generator, and a constant n bit buffer. Because n 

is constant the error patterns that have to be dealt with 

by each code are the same, even though each cede corrects 

a different number of patterns (eg. all single errors, 

all single plus all doubles, etc.). This fact enables 

the combinational error pattern detector to be considerably 

simplified with the result that the complexity of this 

circuit for VR decoding is not very much greater than 

the complexity required for the most powerful code. For 

example, consider the (n, k, t) code set: (15, 11, 1);

(15, 7, 2); (15, 5, 3). For a single error there is now 

only one pattern with an error in the highest position (xU ^) . 

The syndromes of all three codes when presented with this

error are the same:n-k-1 zeroes and a '1' in the lowest order
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position (x°). A single AND gate will detect this, and

must have a number of inputs determined by the largest

n-k, that is, 10. If the unused high order stages of the

variable syndrome generator are automatically held at

'O' for the lower power codes, no extra code control circuitry

is needed and this one gate will correct a single error

in any of the three codes.

In this case the complexity required to decode a single 

error in any code is equal to the complexity required for 

the most powerful code to decode a single error. For 

multiple errors this is generally not true; the increase 

in complexity (over the most powerful code) is, however, 

small as we require only the extra ' code iri use ' inputs from 

the code controller, whilst having the list of syndromes 

from all codes makes minimisation even more effective. Meggitt 

decoding is therefore clearly feasible for VR if it is 

feasible to Meggitt decode the most powerful code in the set.

Systematic search decoding can be done by either successive 

generation of code words, or error patterns. If the range 

of k/n and t is large ( 0->l , and l̂ -n/2 respectively) the 

maximum value of n is limited by currently avaittile logic 

to about 15 for either method. This can be approximately 

doubled if two decoders operate; one using code word generation 

decoding on the low rate codes, and the other using error 

pattern generation on the high rate codes.

Error trapping decoding for constant n code sets is 

inefficient unless n is short because much of the power 

of the medium to high power codes is wasted. For an error
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trapping decoder to correct t' errors: t'<l/R; because 

every error pattern of t' or fewer errors must contain k 

successive zeroes. Therefore we see that although the 

(15,11,1) and (15,7,2) codes can be properly decoded, the 

(15,5,3) code has t=l/R and there is one error pattern 

of three errors which does not have k successive zeroes, 

and can not be decoded. In this case it is possible to correct 

this pattern with a little extra equipment. As n increases 

the additional equipment (or time) required to correct these 

'extra' errors (over and above the guaranteed t') increases 

rapidly, with the result that error-trapping for even the 

n=31 primitive BCH codes is not really feasible.

The scope of error trapping can be extended by using 

permutation decoding (MacWilliams 1964). This uses code 

preserving permutations (other than the purely cyclic one) 

in order to trap the errors. Unfortunately, for a VR system, 

different codes would probably require different permutations 

thereby unacceptably increasing the complexity of the 

decoder. One method of permutation decoding that would be 

suitable for VR is that of randomly choosing a permutation, 

and then attempting to error trap decode. Omura (1969) has 

shown that a small number of selections will yield a high 

probability of correct decoding. If t=(d-l)/2 or fewer errors 

are to be corrected then

N' >

t
£

1 =  1 
t 
£

i — 1

(n )1

(n'k )

a.n- , 1 . t  ̂ .(--- ) for n large ,
1-R

5.10

permutations are required. Table 5.14 below shows that the
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n=31 codes could be feasibly decoded by this method,

Table 5.14

Permutati on s Required to Decode the 

n=31 BCE Codes

n k t t 1 N

31 2 6- 1 1
31 21 2 1 5
31 16 3 1 9
31 11 5 2 10
31 6 7 5 5

The value of N increases rapidly with increasing t (and

n) but even so, for the n=63 BCH codes the maximum number 

of permutations required is only 69 (for the (63,36,5) code).

In general it is possible to conclude that error 

trapping decoding, or modifications thereof, or hybrid 

techniques involving error trapping and some other decoding 

method, can be effectively and efficiently used to decode 

short ('VSO) constant n VR codes, for a wide range of multiple 

errors.

For n<127, sets of constant n BCH codes provide a wide range 

of powerful random error correcting codes. In addition, it 

is certainly feasible to implement these codes in a VR system 

if it is feasible to implement the most powerful code 

in the set. This is because each code in the set works in 

the same G F ( 2  ) arithmetic, and this means that equipment 

duplication is avoided.

We now consider the three steps in decoding a binary 

BCH code in more detail. These steps are:
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Step____U) Calculate the t partial syndromes (sj , s 3, ...

s2^) from the received vector r(x).

Step (ii) Determine the error location polynomial a (x) 

from (si, S 3 , ... s ) in t steps using the iterative

procedure due to Berlecamp (1968).

Step (iii) Determine the error location numbers (which are 

roots of CT (x) , and are equal to a'1 for an error in the 

(n-i)th position), and correct the received vector by 

software or by Chien's procedure (1964).

Step i . The can be computed by hardware FSRs. Each requires

an m-stage register and the whole operation can be performed 

in n shifts as r (x) is read in. The simplification in tie 

case of VR occurs because each code in a set of primitive 

constant n BCE codes has a generator made up of various 

minimum polynomials from just one set. That is, the 

minimum polynomials of a~ , where a is a primitive element 

in GF(2 ) , and 0<_i<n-1. This means that the t registers 

used to calculate the partial syndromes for the most 

powerful code contain the t-1 registers that can calculate 

the partial syndromes for the next most powerful code, and 

so on, so that no extra registers (over that required by the 

most powerful code) are needed to decode all lower power 

codes. Code control circuitry therefore leaves all these 

registers running and merely selects the approriate partial 

syndromes after n shifts.

Software implementation of this step is simplified 

because of constant GF(2"n) working. Addition is exclusive-OR 

addition of bytes which is available in most computers and
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therefore requires one instruction execution; multiplication 

can be programmed by using shift and add instructions , 

and would require roughly 2m executions; division can be done 

by multiplication. The process requires a total of 

(n-l)t additions and nt multiplications, that is, (2nm+n-l)t 

instruction executions. In this case code control computes 

the required number of partial syndromes, the most powerful 

code taking the longest time to compute.

Step ii. Each of the t stages in the iterative algorithm 

requires less than 2t additions and 2t multiplications, giving 

a maximum total of roughly 2t2 additions and 2t2 multiplications. 

In software this amounts to 2tz (l+2m) instruction executions. 

Hardware implementation requires the same amount of 

computation, but as arithmetic is G F (2™), one such unit can 

decode all the codes in the VR set. The speed of a hardware 

implementation would depend on how much parallel working 

could be performed. In the most extreme case t GF (2m ) 

arithmetic units could be used, would be expensive, but would 

operate very fast. R o u ^ y  4t m-stage registers would have 

to be dedicated to this step, but would only require 2mt clock 

cycles.

Step iii. Software implementation of this step requires 

n(t-l) multiplications and nt additions, that is, nt(2m+l) 

executions. Chien's procedure in hardware uses t of the 

step ii registers; t G F (2m ) multipliers, which are m-stage 

FSRs; and in addition a combinational detection circuit 

which requires m t-input exclus.ive~OR gates, an in-input OR

gate, and an inverter.
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From the above considerations it can be seen that the 

amount of equipment and/or maximum decoding time for the 

VR code set is determined by the most powerful code. If 

steps i and iii are hardware implemented they can be 

performed during line input and message output, thereby 

contributing negligably to the total processing time. Total 

software decoding time is then only step ii time, which 

represents an increase in operating speed of one to two 

orders of magnitude over a full software implementation.

With a lys computer instruction time, achievable bit rates 

would be approximately 75,000 bits/sec for the (15,5) triple 

error correcting code, and 5000 bits/sec for the (127,15) 

27-error-correcting code.

In conclusion it can be said that a VR system using 

constant n BCH codes offers two major advantages. Firstly, 

a suitable range of short codes is easy to find, and 

secondly, one decoder, equal in complexity to the most 

powerful code's decoder, will decode all codes in the set 

with only slight modification.

Majority logic decoding for constant n VR sets is 

advantageous because there are a reasonable number of 

codes to choose from, and a type II decoder would require 

a constant number of stages. The main disadvantage is 

again the complexity and variability of the majority-gate 

network from code to code. Table 5.15 below lists

several sets of suitable short codes.
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Constant n Majority Logic Codes

T a b l e  5 . 15

Code (n ,k ,t) Type Orthogonalisation 
Steps (L)

Gate s Inputs

15,11,1 EG (4,2) 3 7 . 2
15,7,2 EG (2 , 2 ) 1 1 4
15,5,3 E G (4,2) 2 7 6
15,1,7 EG ( 4,2 ) 1 1 15

31,26,1 E G (5,2) 4 15 2
31,16,3 EG (5 ,2) 3 43 6
31,6,7 EG (5 ,2) 2 15 14
31,1,15 EG (5 ,2 ) 1 1 31

63,37,4 EG (2 ,2 3 ) 1 1 8
63,13,10 EG (3,2 2 ) 1 1 20
63,6,15 P G (5,2) 1 1 30
63,1,31 EG (6,2 ) 1 1 61

■ It can be seen from table 5.15 that, in general

a VR code set would require a different number of gates , with

differing numbers of inputs, to be set up in configurations 

that were different for each code in the set. In addition, 

the exclusive-OR gates feeding these gates would have 

different numbers of inputs, and would sum different bit 

positions in the word. This would be feasible if the maximum 

number of gates required was not too large, but code control 

circuitry would rapidly become cumbersome with increasing n 

and L . One possible solution to this problem would be to 

choose a set of one-step codes so that only one vaiable-input 

majority gate would be required. The disadvantage of this 

method is the restricted choice of one-step codes for a given 

constant n.

Majority logic decoding for constant n VR code sets is 

therefore certainly feasible, and its scope can be greatly 

extended by combining with another decoding method. For
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example, majority logic decoding and error-trapping would 

form a powerful hybrid VR decoding scheme.

Good burst performance is to be expected from constant 

n code sets by interleaving BCH or Reed-Solomon codes.

In addition, interleaving is much simpler to implement than 

in the variable n case.

Finally, it can be concluded that constant n VR code 

sets are very attractive because: there is a wide choice of 

codes (even when restricted to one class); BCH codes are 

easily decoded; hybrid methods are easy to set up; and timing 

is simpler than for variable n methods.

5.6 Other VR methods

A VR code set can be constructed so that n,k and 

t are all variable. If decoding Is not to be too difficult 

then the codes must be chosen so that a simple hybrid 

scheme, consisting of perhaps two or three methods, can 

decode all the codes. One way of doing this, and as an 

alternative to choosing relatively unrelated codes is to 

construct VR sets from product codes, or concatenated 

codes (section 3.3).

One method of using product codes to form a variable 

n, k, t set is to successively iterate a single code, as in 

Elias' error free coding. If the code used is simple to decode 

then so is the ith iteration of the code. Product block 

length, and therefore decoding delay, increase rapidly, however, 

thereby severely limiting the number of iterations.
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VR sets with powerful random and burst correcting

ability can be formed by concatenating various cyclic

codes. If the outer code is chosen as a Reed-Solomon
m(N,K) code with symbols from GF(2 ), it is best to keep 

„ mN = 2 -1 constant for ease of decoding. The inner code must 

then have k=m constant but its block length (n) can be 

made to vary; if a variable Nn scheme is allowed. With 

Nn constant the VR system adjusts the number of n bit 'bytes' 

that the outer code can cope with, while keeping the power 

of the inner code constant. With Nn variable the inner code 

is also varied, and this may be used to offset some of the 

load on the outer code. This scheme also raises the 

possibility of changing the coding to suit the 'burstyness' 

or 'randomness' of the channel. Under bursty conditions 

power should be directed to the outer code, whilst under 

random conditions the inner code should be more powerful.

VR code sets can also be constructed with unrelated 

codes, and under certain circumstances a separate (different) 

decoder for each code may be the most feasible solution.

5.7 Channel statistics3 code change ovitevia, and feedback 

signalling

In this section the problems of determining the state 

(error statistics) of the channel, and establishing the criteria 

for making code changes are considered. Feedback signalling 

schemes are also outlined and code sets with disjoint code

books are introduced.
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5.7.1 Extraction of channel statistics

The 'state' of the channel can be monitored in the 

various ways previously outlined. In this section the 

methods considered do not involve the multiplexing of known 

sounding sequences in with the main bit stream. If such 

sequences can be used, it is.possible to achieve a clearer 

picture, of' the channel particularly as regards the 'burstyness' 

or 'randomness' of the channel.

With these restrictions the obvious measurement to 

make is one of block error rate. The first scheme 

considered is therefore a constant n VR system operating on 

a slowly varying BSC, and measuring block error rate in 

order to obtain an indication of bit error rate. We also 

assume that by using sufficient interleaving such a scheme 

will be valid on a moderately bursty channel.

The criterion for changing a code will then be to 
€$tci*iv£eiL

examine the^prevailing block error rate, and compare this 

to thresholds determined from the code in use and the Pe
required. If the comparison indicates that the block error 

rate is not within these thresholds, the code is changed so 

that the redundancy is either increased or decreased.

The threshold points, that is, the points at which

each code is about to exceed the required maximum P , can

be determined from the performance curves of the codes in the

VR set (P versus p). Table 5.16 below shows the threshold e
points for a system using n=15 codes and operating to keep

P <10~6. Also shown is the probability of undetected error e~
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at each threshold point, assuming the lower redundancy 

code is in use at that point.

Threshold 
poin t

1

2

3

4

Table 5.16

Code in use Bit Error Block Error Undetected Block
between
points

rate p rat° »BLK Error Rate
PUNDET

0 0 0
(15,11,1)

io_,+ 1 . 5 xlo"3 3.24x10"14
(15,7,2)

1.26X10"3 1.87x10“2 1.04x10-17
(15,5,3)

5.Oixio"3 7.2 6 xlo"2 2.39x10" 1 9
(15,2,4)

1.32X10-2 0.181 1 .33 xio"2 2
(15,1,7)

1 1

The VR system will therefore keep P^<10"G by using the

appropriate code between the appropriate threshold points,

assuming p is accurately known.BLK

The correct operation of the VR system depends, to

a certain extent, on the accuracy of the p determinationBLK
and this raises two questions:

(i) what is the best way of sampling the block error

rate, and how many blocks must be observed in order to

determine p to a certain degree of confidence?BLK
(ii) what is the effect of undetected block errors on 

the determination?

Considering question (ii) first, it can be seen from

table 5.16 that for each threshold point, the undetected

error rate is many orders of magnitude lower than the block

error rate that is being determined. It can therefore be

concluded that undetected errors will not effect the „BLK
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determination, provided the correct code is in use for the 

prevailing BLK. It is, however, the prevailing value 

of p that is being determined, and it is therefore quite 

possible that the wrong code is in operation. There is a 

wide margin of error, however, which can beshown as follows. 

From table 5.16 'it can be seen that the lowest value of 

r= >̂UNDST/,pBJK occurs at threshold 1, and has a value of 

2.16X10-11. If it is now assumed that the system is operating 

incorrectly in that progressively weaker codes are being 

used instead of the required code, table 5.17 below gives 

the corresponding.values of r.

Table 5.17

Values of r for Incorrect Operation

Number of codes 
lower than required

Lowest r=
P /p*UNDET *BLK

0 (correct)
1 
2 
3

2 . 1 6 X 1 0 “ 11 
5 . 3 5  x i o _ a  
1 . 5 2 x l 0 “ 7 
5 . 5 2 x 1 0 “ 7

From table 5.17 it can be seen that even though a much 

weaker code than required may be in use while p is being

determined, the undetected error rate is still negligible 

in comparison to p , and will not significantly affect 

the determination.

Question (i) is a statistical question and involves 

notions of sampling inspection schemes. The remainder of 

this section considers the measurement of block error rate 

by sampling; the derivation of code change criteria based

on the sampling scheme used is considered in the next section.
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Block error rate p is a binomially distributedB LK
variable with mean p = l-q# and standard deviation (s . d . ) =/p<q//n , 

.where n is the number of blocks over which the observation 

(or sample) is taken. As n-̂ °° the s.d. of the distribution 

tends to zero and the error rate observed in the sample" 

tends to the true mean of the distribution. If n is small 

then the error rate sample may differ significantly from 

the true mean.

We first consider a single sample- of block error 

rate. This can be taken in two ways.

(i) Fix the number of blocks in the sample tn), and 

count the block errors that occur.

(ii) Fix the number of block errors (x) and count blocks 

until that number of erroneous blocks occur.

In method (i) the sample size is fixed and in (ii) it 

is variable. Method (ii) is preferable for several reasons: 

firstly, with method (i), n must be large if low error 

rates are to be determined, and this means that delay is. 

large all the time; secondly, with method (ii) the number 

of blocks counted depends on the prevailing error rate and 

is low at high error rates (therefore short delay) and long 

at low error rates; thirdly, the s.d. is unnecessarily low 

at high error rates with method (i), whilst with method 

(ii) the s.d. tends to be a fixed proportion of the mean. 

This can be shown as follows: if x errors occur, the expected 

sample size n--x/pf. The expected s.d. is therefore = /pPq'/ x , 

and as p'~>0 the s.d.->-pV/x . This means that regardless of the 

actual mean block error rate only the minimum number of
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blocks necessary to give a certain s.d. are counted, 

which in turn means that the sampling delay is always 

as short as possible,

It is important to investigate the accuracy of

the p determination when a single sample is taken.B i-iK

Defining m=x/n as the sample mean, that is, errors divided 

by total blocks, the probability (P) of a sample mean 

deviating from the actual mean (p7) by more than £ is given 

by the weak law of large numbers:

P (1 m-p'| >e) < “ 2 5 . 1.1

where p^qVn is the variance of the error rate. This result 

is easy to evaluate but is a very weak bound on P. A much 

more powerful, though less easy to evaluate, bound is the 

Chernoff bound (Wozencraft and Jacobs 1965):

-nX , P (m_>d) ; l>kf>p' 
— P (m<_cfj ; CKd^p'

where X=-ln ( (|>) (|:~/) 1 d)

5.12

and d is a threshold value of the block error rate

The Chernoff bound can be used to calculate the 

probability that, given a certain observed sample mean (m) 

which lies within two threshold points, the actual block 

error rate lies outside these two points, thereby indicating 

that a different code should be in operation. If m lies 

roughly midway between two threshold points then it can be 

seen that there is a high probability (how high depends on 

the sample size) that the correct code is in operation. As 

m nears a threshold point the probability that the actual

block error rate is past that threshold increases. A single
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sample therefore suffers from the disadvantage that there 
is a high p rob ability of initiating an incorrect code change 
if the actual error rate is near a threshold. Increasing 
the size of the sample serves to narrow this band 'of 
uncertainty about a threshold point, but means that for most 
of the time the sample size (and hence code change delay) 
is unnecessarily large. A much better solution is to 
accept a wide band of uncertainty about a threshold point, 
and change to a multiple sampling scheme, as described later.

In order to indicate sample sizes (n) for the VR system 

so far considered, table 5.18 shows results obtained by the 

Chernoff bound to calculate the worst case number of blocks 

in a single sample that will provide a certain confidence that 

the actual error rate is greater than a certain threshold 

point; given that the observed value of m is less than or 

equal to the next lowest threshold point. That is, the 

worst case confidence that the code in use is not >2 

codes too v/eak. Table 5.18 shows that high confidence can 

be obtained from reasonably small sample sizes. Also shown is 

the expected average confidence when method (ii) sampling is 

used, that is, when the sample size is variable. Two values 

are shown corresponding to stopping the block counter after 

7 errors, and after 10 errors.

Because table 5.18 considers error rate values exactly one 

threshold apart, the figures also give a rough indication 

of the average confidence (method (ii)) that: when a mid-- 

threshold m value is observed, the actual error rate is not
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Table 5.18

Required Sample Sizes

>_ the next highest mi d-thre sho Id value.

The Chernoff bound can also be used to calculate 

similar confidence values when bands of uncertainty are 

introduced around the threshold points. The size of a 

single sample rises rapidly,however, as the band narrows. 

For example, consider figure 5.17.

Figure 5.17 
Band of Uncertainty

threshold 3
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We require to determine the number of blocks in the 

single sample necessary to give a confidence of >80%, that 

when an observed sample m has value <b , the actual error 

rate (p̂  is <p at threshold 4. Application of the 

Chernoff bound when 'b is such that the interval from b 

to threshold 4 i.s k of the inter-threshold interval 3 to 4, 

gives n>_3629; corresponding to about a minute delay at 

1000 bits/sec.

A simple code change scheme based on the result of a 
single sample can therefore be built up in this way using 
samples as large as the rest of the system allows. The VR 
system would then use the criterion that if the error rate 
sample indicates that the threshold has been passed, the 
code is changed. This may or may not be a correct decision 
depending on the prevailing confidence. Low values of 
confidence are still of value, however, because the VR 
system can be made to operate so that there is a bias 
towards choosing too high a redundancy rather than too low 
a redundancy.

A single sample yields a value of m, that is, the mean
of a sample. If N such samples are taken a distribution
of sample means may be plotted. This distribution tends to
a normal distribution regardless of the original block
error rate distribution. The mean of this distribution of
sample means is the mean of the original distribution,
that is, the required average block error rate, and the s.d
is given b y :

a
/n -i

5 . 13
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where 0 is the s.d. of the samples, 

sampling this gives

am
/= P /  Z ...x(M-l)

With method (ii)

5.14

The VR scheme can therefore base its estimate of block 

error rate on the mean of sample means rather than on the 

mean of a single sample. Table 5.19 below shows the number 

of samples (N) required to give a certain confidence that 

the mean of sample means is with ±yp' of the true mean.

Table 5,19

Required Number of Samples (N)

± y Con f .i den ce X N (

. l 80 7 25
90 7 40
99 7 96

. 05 80 7 95
90 7 156
9 9 7 3 80

5.7.2 Code change eriter-io, based on sampling inspection schemes

The simplest code control scheme consists of inspecting 
one sample and instructing the coder to use the code 
corresponding to the estimated error rate. This generally 
requires a large number of blocks in the sample, with a 
large decision delay.

An alternative method of code control is to base the code 
change criterion on the result of a sampling inspection 
scheme. The simplest inspection scheme, called single sampling, 
would involve taking N estimates (samples) of the error rate.
A decision is then made whether to increase, decrease or hold
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redundancy. Such a scheme could operate in the following 

way :

(i) If more than h the samples are above the upper 

threshold point, change to the next most powerful code.

(ii) If more than /$ of the samples are below the lower 

threshold change to the next lowest powerful code.

(iii) Otherwise stay with the present code.

This scheme has a bias towards not reducing redundancy. Many 

such schemes can be implemented and their operating 

characteristics can be determined by simulation rather than 

lengthy calculation. The common factor in all these schemes 

is that there is a constant N sample delay before a decision 

can-be taken, although if sampling method (ii) is used the 

decision time is not constant, but is shorter at high error 

rate s.

An extension of single sampling is double sampling.

With this method a first sample is not necessarily decisive 

but may lead to the taking of a second sample which, in 

conjunction with the first, is then to be decisive. The 

advantage of double sampling (over single sampling with 

double the sample size) is that the first sample offers 

the opportuity of taking a quick decision if it is reasonably 

certain that thresholds have been exceeded, while the second 

sample enables accuracy to be increased if the decision is 

not so clear exit.

A logical extension of double sampling is that of 

sequential sampling in which a decision is made after 

each sample either to (i) increase redundancy, or 

(ii) decrease redundancy, or (iii) hold the present redundancy
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but carry on sampling. This method is specially advantageous 

because: (i) gross changes in error rate are quickly 

detected, (ii) the past history of the sample values 

contributes to every decision, (iii) the difficult near

threshold decisions are automatically allotted more time, 

and can therefore be determined with greater accuracy than a 

non-sequential method.

The method can be implemented with a reversable 

counter, and is shown diagramatically in figure 5.18 below.

Figure 5.18 
Sequential Sampling 

c

0 + T

Two counts or thresholds are defined, zero and T. The 

pointer initially starts midway between these two and 

then moves according to the following rules:

(i) if the sample is below the lower threshold move 

the pointer x places to the left

(ii) if the sample is above the upper threshold move the 

pointer y places to the right

(iii) if the sample is within the current threshold points 

move the pointer 1 place towards the centre, or stay 

at the centre if currently at the centre.

Sampling continues, using the present code, until 

either the zero or T threshold is crossed, and redundancy 

is then decreased or increased respectively. The values of 

x, y and T fix the characteristics of the scheme about which 

the following points can be noted:
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(i) If x and y are equal there is no inherent bias 

to moving up or down.

(ii) The value of y (relative to T) determines the length 

of time taken to change up when confronted with a gross and 

sudden upward change in error rate.

(iii) The value of y relative to 1 (and T) determines 

the amount of time taken to change up (and the decision 

accuracy), when the error rate is near the threshold. For 

example, if the error rate is at the upper threshold we may 

expect half the samples to be above the threshold and half 

to be within the current threshold points. If y=l the pointer 

will remain relatively stationary but if y=2 there v/ill 

be a steady drift towards T. Therefore, as y increases, the 

rate of drift towards T increases, and the equilibrium 

point moves progressively towards T/2. This means that the 

larger y is the quicker a code change decision is taken, 

once the equilibrium point is passed.

(iv) Similar arguments apply to the value of x.

Sequential sampling therefore offers a versatile 

method of making code change decisions for a VR system in 

a way that adapts to the difficulty of the decision.

5.7.3 Other code change schemes * (i)

Two other basic types of code scheme can be considered;

(i) schemes that attempt to monitor the operation of the 

code itself (eg. at the decoder), and (ii) schemes 

that make simple but quick assumptions (i.e. not calculated) 

about the behaviour of the channel. The channel itself is
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assumed to have some degree of memory for both types of 

scheme to operate successfully.

One method of monitoring the progress of the code is 

to try to decide if the code is 'overloaded' or 'underloaded' 

with errors. An overload can be considered to be detected 

in several ways. For example:

(i) ■ If a detectable'but uncorrectable error occurs in

a bounded distance decoding scheme.

(ii) If an error pattern of t+1 is observed when a 

t-error correcting quasi-perfect code is being fully decoded.

(iii) If the code is correcting up to its full capability 

(i.e. t errors) for a disproportionate amount of time. The 

appropriate action to take on detecting an overload is then 

to increase redundancy. Underload detection is more difficult 

to detect. Rather, what is detected is the absence of overload 

over a suitable period of time after which redundancy is 

reduced. If conditions have not changed for the better an 

overload should quickly occur, indicating that the 

attempted reduction of redundancy was not justified, and that 

the higher redundancy code was more suitable.

Another possible method of monitoring code progress is 

to assess decoding ’difficulty1. If the decoder is having 

great difficulty in decoding, the redundancy is in ereased where as 

redundancy is reduced if decoding is too easy. Such a procedure 

can be applied to a system using variable threshold majority 

logic decoding. In this case the number of attempts at 

decoding with different thresholds, or the total decoding 

time, can be taken as an indication of decoding difficulty and 

used to initiate code changes. Randomised permutation decoding



208

also offers a way of monitoring decoder difficulty by noting 

the number of permutations required to decode a particular 

code, and comparing this to the expected number for the 

codes correcting capability. If these numbers are 

disproportionate a code change can be initiated.

When the channel behaves in a predominantly bursty 

way it becomes possible to use simpler, but cruder, code 

change criterion. In the simplest case the channel can be 

considered as a two state Markov process , and the VR 

system would correspondingly use two codes only, one for the 

'good' (low error rate) state and one for the ‘bad1 state.

The system would operate with the low redundancy code curing 

the good state , and then change to the high redundancy code 

on detection of an erroneous block on the assumption that 

either more errors will follow or a 'bad' state is about to 

begin. Redundancy would then be tentatively reduced after 

a number of error free blocks had elapsed. Such a system 

can be extended to three code operation so that a middle 

redundancy code can be tried before committing the system to 

a very inefficient code. In this case the three codes could 

correspond to error-free, low error density, and high error 

density states. Extension to more than three codes is not 

justified because it is not really valid to attempt to even 

more finely divide channel states in this way. Even a three 

code system, however, would be expected to increase throughput 

efficiency.

Other code change schemes can be designed by considering 

particular decoding methods, and in particular the scope of such
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schemes can be greatly increased if demodulation information 

is available. In general the operational characteristics 

of a code change scheme are not easily calculated, but 

can be determined by simulation

5.7.4 Feedback signalling and errors

There are basically two different types of signalling 

schemes that can be used on a VR system regardless of 

whether feedback is via a dedicated feedback link or via’ 

a multiplexed return bit stream. In scheme (i) the 

only signals are 'up', 1 down1 and 'stay' . In scheme Cii)

the code required is signalled by name.

Considering scheme (i) first it can be seen that regardless 

of the number of codes in use (m), only 3 signals are 

required, and if the feedback channel is a dedicated analogue 

channel this can be achieved with two waveforms Cor 1 bit) 

for up and down and no signal for stay. If the return channel 

is a multiplexed bit stream then two bits are required, but 

economies may be affected by utilising, say, three orientations 

of an existing synchronising sequence. This scheme uses 

the minimum amount of signalling, but it does assume that 

the coder and decoder are operating in the same code, and 

it does mean that codes can only be changed one at a time 

in sequence.

Scheme (ii) on the other hand, requires an analogue 

waveform or log2m bits. Given that m need not be more 

than 8 it can be seen that 3 bits are required for this scheme 

as opposed to two bits for scheme (i). In addition, it
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would be difficult to find an existing sequence in the 
return bit stream that could represent 8 different waveforms, 
without having to introduce extra dedicated feedback signalling 
bits. The scheme can, however, choose any code in any 
sequence.

The bandwidth required and the delay introduced by the 
schemes must be considered in relation to whether operation 
is full duplex, or simplex with dedicated feedback.

With dedicated fe 
between the schemes: s 
time, and the feedback 
signals only are sent, 
different and depends 
acceptable. For examp 
are required, and it i 
coded for protection, 
in xn forward bit peri 
delay) giving a return 
forward bandwidth.

edback there is not much difference 

ignals can be transmitted at any 

link is used only rarely if 'change' 

The bandwidth required is not greatly 

on the number of blocks delay that is 

le, if a maximum of 3 signal bits 

s assumed that this is (7,3) error 

then 7 bits must be return transmitted 

ods (where x is the number of blocks 

bandwidth of roughly 7/xn of the

With full duplex control, feedback information can be 
transmitted via dedicated feedback bits, or via timing 
sequence alteration if possible. .The amount of delay 
depends on how frequently these dedicated bits or sequences 
are inserted into the main bit stream. The shortest delay 
(and largest forward time wastage) occurs when feedback 
bits are included in every block. Scheme (i) is certainly 
advantageous in this case as it uses the minimum number of

bits, and in fact can also provide an ARQ request with the
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one remaining combination of the two bits. Error control 
is provided by the forward coding scheme in use.

The effect of feedback errors on the VR system depends 
on which signalling scheme is in operation. Such errors can 
be reduced by adequate coding, at the price of increasing 
bandwidth, delay or the proportion of signalling bits to 
total bits. If scheme (ii) is in operation and an error 
causes the coder-decoder to become mismatched, then the 
next set of feedback information, should direct the coder 
back to the correct code. With scheme (i) however the next 
feedback signal will not necessarily rectify the error. For 
both sctemes there is a period during which mismatch occurs 
and if this is not detectable then erroneous data is delivered 
to the sink. This problem has led to the investigation of 
codes with disjoint code books and mutual Hamming distance . 
(Chapter 8; Appendix A) .

The use of codes with disjoint code books for VR means that 
the decoder can detect when a mismatch occurs, because even 
if a reasonable number of forward channel errors are 
occuring the block error rate will rise dramatically Cwith 
no forward channel errors( consecutive block errors would 
occur) . With scheme (.ii) this means that incoming blocks 
are net undetectably erroneous but can be stored and later 
decoded in the code that the decoder believes the coder was 
using. With scheme (i)the decoder detects the mismatch 
situation, and as well as storing incoming words for .'Later 
decoding, sends 'change up' redundancy signals until the 
coder and decoder reach the highest redundancy code, when they 
are in code match again.
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CHAPTER 6

Experimental Work on Variable Redundancy Coding

This chapter describes experimental work on VR 
coding; which may be split into two parts:

(i) the designing, building and operation of an 
experimental automatic VR system;

(ii) . computer analysis of the forward HF channel and 
the experimental system, and computer simulation 
of various other VR systems.-

The initial considerations that lead to the proposition 
of the particular experimental system are first outlined, 
so that the way in which the design and testing of the system 
developed can be appreciated. The modems and feedback link 
are next described and this is followed by a description 
of the organisation of the field tests together with 
the equipment used on each test. The experimental VR system 
is then outlined. Finally, the analysis and simulation work 
performed on the computer is described.

In the descriptions of the hardware that follow, it 
is not intended to explain the design and construction of 
the circuits in great detail; rather the circuits will be 
described at block diagram level wherever possible, and it 
is to be assumed that modern integrated circuits, both 
analogue and digital, were used to full advantage.

6.1 Initial considerations

This section outlines the initial decisions taken 

as to the development of the experimental work, and the
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construction of the experimental VR system, and can be 

considered as the original specification for the research.

6.1.1 The Forward Channel

This was chosen to be a nominal 3kHz simplex HF channel 

operating between West Wellow (Hants) and Canterbury (Kent), 

a distance of 124 miles (200 km), with the transmitter at 

West Wellow and the receiver at Canterbury. The type of 

propagation aimed for was preferably single hop via the 

Fr-layer with no interfering E-layer reflection. At this 

range E-layer reflection ceases at approximately /2fc, and 

taking an absolute maximum E-layer critical frequency of 

fc =4MHz , this indicates that frequencies above about 

5MHz should be used. Frequency predictions for the path 

indicated that optimum working frequencies (OWFs) would be 

in the region of 6 to 8MHz over the period August '70 to 

May '71 for single hop F2 daytime propagation. Seven spot 

frequencies in the range 3.860MHz to 8.994MHz were available 

for use during the field trials, and after initial propagation 

tests the operating frequency was fixed at 7.375MHz.

6.1.2 Modulation and bit rate

A simple modem arrangement capable of cheap and quick 

construction was required. For this reason sub-channel 

systems with parallel low speed bit streams were rejected, 

and single channel high-speed FSK with a nominal ±425Hz frequency 

deviation was chosen.

The choice of single channel working dictates that the 

bit rate must be reasonably high to be comparable to practical
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systems, so this was chosen to be 1000 bits/sec. This bit 

rate is readily achievable for ranges of 1000-4000 km, 

but is certainly fast for a 200 km range, and implies 

severe multipath distortion. It was therefore decided that 

the bit rate should.be variable, with the coder controlled 

bya master clock at the receiver, in case a bit rate 

reduction was absolutely unavoidable. Such a reduction 

was not, however, expected for the following reasons:

(i) The operating frequency was expected to be close 

to the MUF for most of the time, thereby reducing multipath.

(ii) A reasonably 'bad' channel was required, to 

severely test the coding system.

(iii) Conditions on HF are so variable that if multipath 

is making a test run meaningless, one need only wait for 

a reasonably short time before the multipath structure 

changes for the better.

6.1.3 Feedback signalling

An ideally error-free feedback link was required for 

the experiment and for this reason a Post Office private 

leased line was chosen. Feedback signalling was chosen to 

be two audio tones, one to indicate 'up' and one to indicate 

'down'- changes in redundancy, which could be transmitted 

at any time. The absence of a control tone was to be 

taken as a 'stay' signal. In addition, it was hoped to 

bit-synchronise the Tx and Rx stations by sending a constant 

1kHz tone via the line. This later proved to be impossible 

because the P.O. SSB circuits involved in the line (including 

the London-Southampton microwave link) do not have locked 

carriers. A slightly drifting frequency displacement occurred
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when this method was tried, resulting in a sync slip every 

15 minutes which corresponds to an oscillator accuracy 

of ^ 1 part in 106.

6.1.4 Synchronisation

Bit synchronisation was eventually achieved by using 

AIRMEC receivers locked to the 200kHz Droitwich transmissions, 

in conjuration with phase locked loop (PLL) control. Frame 

synchronisation and start-up procedures were to be manual 

for simplicity, and controllable from the receiving station.

6.1.5 System and field trial organisation

The main criterion here was that the transmitting 

station should be robust (for safe transportation to and 

from Canterbury) reliable, and capable of operating 

unattended for several weeks. All adjustments, after an 

initial set-up, were therefore required to be controllable 

from Canterbury via the feedback wire. This was achieved; 

apart from the variable bit rate requirement.

Four field trials were planned for the period August 

1970 to May 1971, during which the channel analysis 

recordings and the experimental system were to develop, 

culminating in fully automatic VR tests.

6.1.6 Error control and coding

It was decided to use up to eight length 15 binary 

cyclic codes for the VR code set, with provision for varying 

the number of codes in use by receiver ope.rations via the 

feedback link. The error control method and therefore the
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decoding procedure were deliberately left unspecified 

in the initial stages, with the aim of making as much 

use of the computer as possible, thereby minimising hardware 

requirements and realising a very flexible system. It was 

therefore decided to have the system operating in the VR-ED 

mode and to on-line record both decoder operations and the 

incoming bit stream, so that offline ARQ and FEC decoding 

could be performed by computer and analysed at leisure.

All three types of error control could therefore be analysed 

without complex hardwire requirements at the decoder.

6.1.7 Code change criterion

In order to achieve the decoding flexibility mentioned 

above it is necessary to have a code change scheme that 

is not particular to one error control method. For this 

and other reasons the block error rate sequential sampling 

scheme was chosen, and it was decided to simulate other 

schemes if needed. It was also decided that the system 

should operate on reasonably low confidence levels in order 

to minimise change delay.

6.1.8 Recording

It was decided that recordings of incoming bit streams 

and decoder operations should be capable of being both: 

recorded on-line onto computer magnetic tape; or recorded 

on standard V  magnetic tape for later off-line transcription 

onto computer magnetic tape. Provision was also made for bit 

and block error counting, and pen recording of received 

signal strength (S-level recording).
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6.2 The experimental system

The .initial requirements outlined in section 6.1 

were nearly all met satisfactorily. The equipment used 

in the four tests was gradually built up until the 

full VR system was operational for the fourth test, and 

it is appropriate at this point to give the final system 

diagram before describing the sub-units in more detail.

This is shown in figure 6.1.

6.3 HF and modem equipment

6.3.1 Aerials

Several types of aerial, including verticals and dipoles, 

were tested during the field trials, and the final outcome 

was that halfwave dipoles were used at both stations. The

transmitter aerial employed a balanced feeder, and was
\

supported above relatively open ground by 75' high masts.

The receiving aerial was supported by 20' high masts on 

the roof of the Electronics Laboratories at the University 

of Kent, and the feeder contained a balun to match into 

the 75 ohm unbalanced receiver input.

6.3.2 Power amplifiers

The site transmitter at the West Wellow station was 

initially used, and is a Redifon cabinet-mounted valve 

transmitter capable of about 100 watts output. A much more 

compact and portable 150 watt valve transmitter was built 

by D. E. Pantony at Canterbury, and was used for the later 

trials. The approximate radiated power used throughout the

trials was 75 watts.
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The Experimental System

F i g u r e  6 . 1

Transmitter

Re ce.Ire g
manual _ y  
frame 
control

RX
aerial

HR radio 
receiver

FSK 
demod.

V

bit
retiming/
sampling

VR
decoder

RF
1 e ve 1

computer
'LDP-516

error
counting

tape 
—drive/ 
replay

pen P.0. line code code
recorder y-i~-line — transmitter íchangeunit

— in-->-
use

,  Ttape
recorder

/ manual
redundancy-^'
change



2 19

6.3.3 FSK modulator and power amp driver

This equipment occupied one level of a 19" rack 

and was designed to produce a continous-phase FSK signal 

capable of driving the main power amplifier from a TTL 

logic digital input signal. The units in this rack are 

shown in Figure 6.2 below.

Figure 6.2

Modulator/Driver Unit

modulator/oseillators

The function and operation of the units are as 

follows.

The pulse shaper is a low pass filter/amplifier whose 

input can be switched to accept a constant 'O', a constant 

'1', or a TTL data input signal. This serves to remove 

the sharp TTL pulse transitions and thereby band-limit 

the input to the modulator.

The band limited signal passes to any one of three 

modulator/osoillators enabling operation at carrier 

frequencies of 6.900MHz, 7.375MHz and 8.998MHz. Each unit
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is basically an FET crystal oscillator whose frequency 

can be 'pulled' by applying the data signal to a varactor 

diode in the frequency-defining circuit. The resulting 

FSK signal has an 850Hz shift, and the 'O' and '1' frequencies 

are fc~450Hz and f^+lSOHz respectively.

This low power FSK signal is then amplified in two stages 

as shown in figure 6.2 to give an 80 volt (maximum) signal 

capable of providing 5 watts of drive for the power 

amplifiers.

6.3.4 The receiver

The receiver used was a Racal RA 1217 solid state HF 

communications receiver, which features high stability 

and a wide range of controls. Aerial input is 75 ohms 

unbalanced, and the output taken was the final 100kHz 

I.F. capable of providing lmW into 75 ohms.

The AGO line from the receiver drives the internal 

'S' meter and was used to drive a pen recorder so as to 

produce a permanent record of the input R.F. level.

Each roll lasted approximately 52 hours and the paper speed 

was V' per minute enabling fading effect to be resolved to 

about 5 seconds.

6.3.5 FSK demodulation

The demodulation of the FSK signal can be done by 

two filters, one for the '1' frequency, and one for the 

'O' frequency. The choice of a final I.F. at which to 

filter these signals out is governed by two opposing

factors :
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(i) If the I.F. is high (100kHz) the filters must 

have very high Q in order to discriminate a shift of 

850Hz with low crosstalk.

(ii) If the I.F. is low (10kHz) the choice of bit 

rate (500Hz squarewave) means that the filter must respond 

to a possible minimum of 20 cycles; a very fast response 

is therefore required in this case.

Initial experiments with h.i.gh~Q active filters proved 

unsatisfactory because a compromise betweenthe above two 

factors could not be achieved.

The final circuit was designed around the FX-101 Z~trip 

MOS integrated circuit. This I.C. is a frequency sensitive 

switch capable of very accurate (and high Q) . switching at 

externally set threshold points. The device uses a form 

of digital frequency discrimination which samples the periods 

of input signal waveforms and compares them with predetermined 

reference values on a statistical basis. This technique 

allows the input frequency to be resolved to a high degree 

of accuracy within a very short period of time (typically 

9 signal cycles), and also renders the device relatively 

immune to false switching by noise and input amplitude 

variation. The effect of noise is to increase the number 

of cycles needed for the sample.

The final demodulator empbyed three FX 101 ' s ; two 

as band filters tuned to the 'O' and '1' frequencies, and 

one as an above/below threshold switch, set to the centre 

(I.F.) frequency. A majority decision was then taken on 

these outputs to provide the final output. The frequency
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points which were chosen after considering the FX 101 performance 

limits and the previously mentioned factors; were nominally 

as shown in figure 6.3 below, and were also manually 

adj ustable.

Figure 6.3

Frequency Thresholds

24.575kHz
, I ,I— 250Hz-— ]

25kHz 25.425kHzI
[— 250Hz---j

below,

The demodulator system diagram is shown i.n figure 6.4

Figure 6.4 
The Demodulator

The 100kHz receiver I.F. was first mixed down to 

provide a 25kHz centre frequency which was then passed to 

the frequency selective switches. The switch outputs are 

then low pass filtered to remove spurious switch transients 

of duration much less than 1ms (the bit period). The summing
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amplifier then produces a composite waveform from the three 

outputs that is later threshold detected to provide the 

majority decision. This waveform is further low pass 

filtered to remove short switch transients resulting 

from the summation of three waveforms with small relative 

phase differences.

The output of the summer is therefore a smoothed 

digital signal of amplitude 0, 1, 2 or 3 units, depending 

on which switches are 'on1 and thereby' contributing 1 unit. 

This is later threshold detected at lh units (section 6.5) 

with the result that the following modified majority decision 

scheme is automatically implemented;

(i) If the two band filters agree on a particular 

digit (they should not) the output is taken as the threshold 
FX-101 output.

(ii) If the two band filters disagree (that is, one has 

an inband signal, the other has not), and the threshold filter 

agreeds with the inband filter, their output is taken as 

the true output.

(iii) If the two band filters disagree and the threshold 

filter disagrees with the inband filter, the inband filter 

indication is assumed the more important and overrides the 

threshold filter to provide the output.

The jitter on the composite waveform under usable 

signal strength conditions was observed to be a maximum 

of 0.12ms per edge, corresponding to a variation of 3 cycles 

in the number of input cycles required by the FX-101 to 

make a decision. Stability with regard to temperature and
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supply variations was excellent and the circuit required 

little retuning after initial setting-up.

6 . 4 Feedback signalling

Feedback signalling was conducted via the P.0, line 

and consisted of tone bursts of different frequencies, one 

for 'UP', and one for 'DOWN' redundancy changes. These 

bursts were initiated at the receiver,either manually or 

by the code control unit. A third tone of different 

frequency was manually operated to control either 3-code 

or 8-code VR operation.

The system diagram is shown in figure 6.5 below.

The timing sequence of the code change operation which 

operates with a 1 block delay is shown in figure 6.6 below.

The availability of the dedicated feedback link made 

the use of the relatively simple line transmitter circuit 

of figure 6.5 possible because only one tone at a time 

need be transmitted. The signal circuit used, however, 

also mixed a 1kHz continuous synchronisation tone with 

the output, and provided a spare tone for possible ARQ.

The choice of frequencies for these tones reflects the

need to avoid feLse triggering due to intermodulation products

At the line receiver FX--101 microcircuits were again 

used to recognise the tone frequencies. the 'UP' and 

'DOWN' switches were set for a bandwidth of approximately 

40Hz , and operated in the latch-reset mode. In this mode 

the switch latches to 'ON' when an inband frequency is
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Figure 6■6 
Feedback Timing
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detected and must be externally reset. Figure 6.5 (Tx) 

shows the latched outputs which are then used to direct a 

trigger pulse to the up or down line of the reversible code 

control counter, via the three— input AND gates shown. If 

both circuits are latched, an error condition exists and the 

NAND gate disables the AND gates, thereby stopping any code 

change. The circuits are reset on the fall of fourth bit 

of each word and are then ready for further signals. The 

timing diagram (figure 6.6) shows that there is a margin 

of about 4ms for any additional delay, and that delay 

variations of this amount will not affect the correct 

operation of the circuit. The third FX-101 shown operates 

in the auto-reset inband mode (as used in the FSK demodulator) 

the output of which is filtered to remove short transients, 

and used to toggle the 3-code/8-code bistable.
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The feedback signalling system operated satisfactorily 

with one block delay operation, but was subject to 

relatively infrequent incorrect code changing due to 

both the non - re cogni t i on of transmitted tones, and' the 

recognition of spurious signals when no tones were sent.'

6.5 Synchronisation and, digit sampling/retiming

Digit timing at both the transmitter and receiver was 

derived from two Airmec Type 311 frequency standards. These 

units contain very high stability crystal oscillators that 

are oven controlled and can be locked to the 200kHz Droitwich 

transmissions. The transmitter timing equipment is shown 

in fi gure 6.7.

Figure 6.7 
Transmitter Timing
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The frame counter is clocked at every digit so that 
each bit position in the word has a unique state allocated 
to it. These states can be detected with AND gates, thereby 
detecting position in the frame, and used to provide 
control pulses at appropriate points in the frame.

At the receiver the Airmec standard is used in 
conjunction with a phase lock loop (PLL) which tracks 
slow drifts in the phasing of the clock relative to the 
incoming bit stream. The receiver timing equipment is 
shown in figure 6.8 below.

Figure 6.8

Receiver Timing Equipment
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The setting-up and operation of the equipment is as 

follows. The threshold detector output is disconnected 

and viewed on an oscilloscope together with the clock 

waveform. The negative edge of the clock (sampling point) 

is then visually aligned with the centre of each detected 

digit by using the manual delay control on the first monostable. 

This monostable is used to trigger the voltage controlled 

monostable which is then in its rest state with zero 

average error signal and hms delay. Under normal operating 

conditions the threshold detector output is connected.

If the relative position of the sample point and the average 

position of bit centres then changes, the exclusive-OR 

gate and filtering system produces a positive or negative 

error signal which is used to counteract the original phase 

change, up to a maximum of i^ms.

A four bit frame counter is also included in the 

equipment, for keeping track of position in the frame. The 

output of one particular bit of this counter is a 15 bit PN 

sequence which is displayed on an oscilloscope together 

with the retimed and sampled bit stream. If a knowi code 

word is then transmitted a visual comparison indicates 

whether or not the receiver is correctly framed. In order 

to initially set up (or recover) correct framing a manual 

control is used to 'slip' the framing by one bit each time 

a button is pushed, until the observed waveforms coincide.

6.6 The VR encod.ev 3 and transmitter oode control

In order to simplify both framing and the subsequent 

analysis of the bit stream for off-line decoding, it was
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decided that the VR encoder should be a simulating encoder. 

That is, for each code only one code word in the code is 

used, and continuous ope ration in a particular code is 

characterised by repeated transmission of the corresponding 

code word. The choice of code words was influenced by 

the following factors.

(i) Each code should have a different word, for ease of 

'code in use' recognition.

(ii) Each word should have a roughly equal number of 

ones and zeros, in order to have the same kind of resistance 

to frequency selective fading as a random-data code word 

stream would have.

(iii) Each word should not be cyclic in less than 

15 shifts, in order to easily recognise misframing.

Conditions (ii) and (iii) cannot be met for the 

(15,1) and the (15,2) codes so that when these codes were 

in operation each used two code words transmitted alternately. 

Table 5.1 below lists the transmitted code words.

Table 6.1

Transmitted Code Words

Code Control 
Coun te r 3 code VR 8 code VR No of 1 1s Word

111 (15,1) (15,1) 0 and 15 OOOOOOOO0000000
and

111111111111111
110 (15.2) 10 and 10 011011011011011

and
110110110110110

3/8=1, 101 (15,4) 8 111101011001000
3/8=0, 101 (15,5) 7 000010100110111

100 (15,5) 5 000001001110011
Oil (15,7) 9 011110010110101
010 (15,10) 8 111101000011100
001 (15,11) (15,11) 7 111010100001001
000 (15,14) 8 111001010010110
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The code word generator and code control equipment 

is shown in figure 6.9 below.

Figure 6.9 
Code Word Generator

The code word generator is based on a combinational 

pattern selecting network. The frame counter indicates the 

current bit in the word, and the pattern selector chooses 

the value of that bit according to its other inputs. These 

inputs come from the code control counters, the 3-code/8-code 

selector bistable, and a bistable that generates the alternate

all-zero and all-one words required for controlling the
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(15,1) and the (15,2) codes. This bistable is reset at 
every code change to ensure that when these codes are 
selected the first word is always the same.

The code control counters are reversible three-bit 

counters with limit stops at each end. That is, when the 

state corresponding to the most powerful code is in operation 

a further'"UP" trigger will not change state. The converse 

procedure works for the least powerful code. When 8-code 

VR is selected the inputs from the 3-code counter are ignored, 

and the 8-code counter operates in straight binary with 111 

for the most powerful code and 000 for the least powerful.

If the (15,1) code is in operation the pattern output is 

simply the output of bistable A. When the (15,2) code is 

required the output code word is either of the two set 

patterns, depending on the value of bistable A's output.

When 3-code VR is selected a similar procedure operates, 

with the code control counting sequence: 001, 101, and 111.

The pattern selector output is clocked into the output 
bistable B, with a slightly delayed clock. This ensures 
that the code change operation, which is triggered during 
the last bit of the word and after this delayed clock, 
will not cause out-of-sequence level changes at the final 
output due to the combinational network changing.

Because the codes chosen do not have disjoint code 

books it is possible for the transmitter and receiver to 

operate with different codes, whilst still displaying a 

zero syndrome. Table 6.2 indicates which transmitted words

are code words in more than orb code. Coder-decoder mismatch
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Table 6.2

Code Words and Corresponding Codes

Transmitted Word in Code

k = 1 2 4 5 6 7 10 11 14
11
1 /

2 /

4 / Also a Code

5 / / / Word in this

6 / / / Code

7 / / / / / /

10 / / / /

11 / / / / / / / /

14 / / / / /

can occur because of a feedback signalling error, and although 

undetectable unless disjoint code books are used, can easily 

be detected with the experimental system because the use 

of single different words for each code enables the incoming 

word and the receiver code to be visually compared.

6.7 The VR decoder and receiver code control

The decoder is basically a (variable) k-stage syndrome 

calculation circuit of the figure 3.9 type, and is shown 

in figure 6.10 below.

The output of this circuit is again delay clocked into 

a bistable to isolate the syndrome from changes in the combin

ational networks. The error detection bistable is set during

the last bit of the word at the latest (or not at all) and its
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Figure 6,10 The VR Decoder
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output is fed to the error counting unit. It is reset by 

a monostable pulse during the first bit of the next frame.

Gates 1 to 4 are enabled in the correct sequence by a 

combinational circuit which produces k zeroes followed by 

(n-k) ones for every frame. The various combinational 

circuits are changed during the last bit and just before 

the start of a new frame. The code selection is governed 

by the code control counters which are either operated 

manually or automatically from the code change unit.

The length 15 PN sequence generated from the frame 

counter is displayed on an oscilloscope together with the 

retimed bit stream in order to check framing. The output 

on the code selector lines is displayed on illuminated bulbs 

and compared with the retimed bit stream to check for 

coder-decoder mismatch.

6.8 Code change unit

A single sampling code change philosophy was adopted 

initially and it was hoped to extend this to a sequential 

sampling scheme. This extension could not be achieved in the 

field trial time available and therefore single sampling 

only was tried.

The block error rate sample was obtained by running 

a 'total number of blocks' counter and a 'blocks in 

error' counter. The total blocks counter was stopped 

after the error counter indicated seven errors, and the ■ 

resulting total count was compared to a set of threshold 

values which were pre-set by manual patching. If the lower
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or higher threshold for the present code was exceeded a 

'DOWN' or 'UP' signal was initiated.

The code change unit system diagram, together with 

its control flow diagram is shown in figure 6.11.

The threshold points were calculated from the performance 

curves for the length 15 codes (chapter 5), and consisted of 

seven 10 bit numbers for 8-code VR, and two 10 bit numbers 

for 3-code VR. If seven errors are counted the largest number 

of total blocks that must be counted, for Pp values similar 

to those of chapter 5, is considerably in excess of 1000.

It was therefore decided to implement the largest threshold 

(the point at which the change to the lowest redundancy code 

occurs) by stopping the block counter at 1000 and examining 

the error counter for one or no errors. This enabled a 

large saving in register and comparator stages to be made 

whilst maintaining a flexibility in threshold choice 

for both 8-code and 3-code VR.

The unit also ensures that there is a one block delay 

between a 'change' initiation and actually changing the 

decoder circuits.

6.9 Recordings and off-line decoding

Results were collected b y :simple error counts, PN sequence 

recordings, and automatic VR operation recordings. The 

equipment used was a Honeywell DDP-516 computer, a National 

2-track tape recorder, two Racal 1 M bit counters, and 

suitable signal processing circuits for all of these.
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Figure 6.11 
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6.9.1 Error counting

For these experiments either the PN sequence used 

for the (15,4) code or a 0,1 square wave was continuously 

transmitted and ejeLusive-OR compared with replica sequences 

at the receiver. The clock line was used to increment a 

total bits counter and aLso to sample the mod-2 sum at the 

output of'the exclusive-OR, so that errors (ONES) allowed 

the clock to increment the error counter. The operation was 

manually stopped and started,

6.9.2 Direct computer recordings

PN sequence recordings were required for channel analysis 

and simulation of other VR systems. Depending on the 

availability of the computer the incoming PN sequence bit 

stream was fed on-line to the computer and recorded. The 

DDP-516 input interface was capable of inputting a 16 bit 

word at a rate of 5000 words per second with the program 

used. For these recordings, however, only one bit per word 

was used so that the bit stream was input serially in real 

time, with the decoder clock providing the required strobe 

pulses. The bit stream was then recorded serially on to 

magnetic tape as 15 bit words, and these tapes were later 

processed (by exclusive-OR comparison with a replica PN 

sequence) to provide compact paper tape and magnetic tape 

error sequence recordings.

6.9.3 Tape recordings

The majority of recordings were made directly onto 

h" magnetic tape using the National tape recorder, and later
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transferred to the computer. A drive and replay unit was 

constructed that converted the TTL logic bit streams into 

a series of positive and negative pulses suitable for tape 

recording at 7 inches per second. On replay these' pulses 

were detected and processed back into TTL level bit streams 

suitable for computer input. The errors introduced by this 

processing were found to be negligible. Two independent bit 

streams plus individual clocks (if required) could be recorded 

by this method.

PN sequence recordings were taken using one track for 

the incoming sequence and the other for the clock. These 

were later input to the computer and processed as in section 

6.9.2.

VR recordings used one track for the incoming bit 

stream and clock, and the other for the 'code in use' signal. 

This signal was in fact the decoder framing sequence and con

sisted of k zeroes followed by (n-k) ones. On replay the 

clock was extracted and used as the input strobe for the 

computer. The VR bit stream occupied one bit per computer 

input word, and the framing signal occupied one other. These 

were later processed and recorded as a 15 bit incoming word 

followed by a 15 bit syndrome plus a 4-bit 'code in use' tag.

6.9.4 Off-line deeoding

The experimental system basically operates in the 

VR-ED mode; by suitable programming, however, this can be 

easily extended to VR-ARQ and VR-FEC once the syndrome 

and 'code in use' signals are available to the computer.
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In the case of VR-ARQ the computer inspects the 
syndromes and simulates an ARQ if a syndrome is non-zero.
The 'information digits delivered to sink1 counter is not 
incremented and the next word is dumped to allow for 
feedback delay. The code word after this is then assumed to 
contain the repeated information digits. The ARQ cycle then 
continues in the normal manner and is independent of the VR 
system. Because known words are being transmitted, each 
all-zero syndrome can be checked against its corresponding 
incoming word, thereby enabling decoding errors, and 
'erroneous information digits delivered to the sink* to 
be counted.

For off-line FEC decoding with 3-code VR, each code 

was simulation-decoded in a different manner for ease of 

implementation. The (15,1) code was majority decoded.

The (15,5) code was decoded by comparing the received word with 

an internally stored table of the 32 code words and choosing 

the nearest. The (15,11) code was decoded by comparing the 

syndrome to an internal list of the 15 single-error syndromes, 

and inverting the corresponding bit. In each case the 

(supposedly) corrected word can be compared to the known 

transmitted word to count erroneous decodings and sink digits.

6.10 Field trials

Four field trials were undertaken during the period 

August, 1970 to May, 1971. The equipment used was developed 

over this period and table 6.3 below summarises equipment

used and results taken for each test.
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Table 6.3

Field Trial Programme

Trial No. 1 2 3 4
Date s 3.8.70- 

7.8.70
31.8.70- 
3.9.70

15.1.71-
1.2.71

15.3.71
10.5.71

Modulation ' 00K FSK FSK FSK
Feedback link - - •/ /
En code r - - / /
De coder - - - /
Pen recordings - / • / /
Error counts - / / -
PN seq. recording - - / /
Automatic VR - - - /

Comments: Trial 1:- Initial setting up and observation of
pulsed carrier at various frequencies.

Trial 2:- FSK tested on square wave modulation.

Trial 3:- Manual code change tested.

Trial 4:- Propagation very variable over test
periods, several complete HF blackouts. 
Full system operating.

6.11 Computer analysis and simulation

The error sequence runs obtained from the PN sequence 

recordings were analysed to provide channel statistics. Some 

of these statistics were used as parameters with which several 

random channels and burst channels were modelled. These 

channels were then processed to provide further error 

sequence runs.

The real and modelled error sequence runs were 

then used in the simulation of several fixed and VR coding 

schemes, so that the performance of these schemes over real



and simulated channels could be assessed.

The automati c VR recordings were separately processed 

to provide performance results for the experimental

- 242 -

system.
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Results and Discussion

This chapter presents and discusses the results 

of field trials and computations on VR coding systems.

The experimental results collected are outlined first and 

their development noted. Observed propagation conditions 

are then described, and this is followed by quantitative 

results that characterise the channel. The performance of 

various fixed and VR coding systems on the observed and 

simulated channels is given next. Finally, the performance 

of the experimental VR system is presented, together with 

those of other simulated schemes for comparison.

For the sake of clarity in the following tables, 

numbers containing powers of ten will be presented as 

mantissa, sign of the exponent, exponent. For example:

3.23 x 10 ~ 3 is shown as 3.23-3.

7.1 Experiment at results and their development

The basic results collected during the field trial 

periods were as follows

(i) Photographs of OOK soundings to show multipath 

effects (Test 1, qualitative).

(ii) Tape recordings of receiver BFO output to show 

frequency selective fading effects on incoming 

FSK (Test 2, qualitative).

(iii) Pen roll recordings of received power (Tests 

2 , 3 and 4) .

(iv) Error rate counts (Tests 2 and 3).

CHAPTER 7
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(v) PN sequence recordings (Tests 2, 3 and 4).

(vi) Automatic VR system recordings (Test 4).

The quantitative results were then developed in the 

following way.

(i) Error counts only give a rough idea of channel 

conditions, but were correlated with received power and 

fading rate results, obtained from the pen roll recordings.

(ii) The PN sequence recordings were processed to 

provide channel statistics. Twenty-one runs (each lasting 

about three quarters of an hour) were recorded, and 11 of 

these were selected for detailed analysis. The channel 

statistics so obtained were used to model three random and 

eleven burst-error channels. The 11 observed runs and 

14 modelled runs were then used as digital channels in the 

simulation of both fixed and VR coding schemes.

(iii) The performance of the experimental VR system 

(operating in VR-ED) was obtained for 19 runs, and VR-ARQ, 

and VR-FEC results were computed by means of

off-line decoding. The 19 runs were then used as digital 

channels in the simulation of several fixed and VR coding 

schemes, whose performance is then compared to that of the 

experimental system.

7.2 Propagation conditions

The choice of 7.375 MHz for the carrier frequency turned 

out to be a good one given that the tests spanned 9 months 

during which the MUF varied from about 7 to 10 MHz. The LUF

did not affect the trials.
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Night reception (7 pm to 2 am) at this frequency was 

normally impossible due to broadcast interference and low 

MUF. During the early hours of the morning (2-7 am), the 

MUF limited propagation. The signal usually appeared from 

out of the noise at about 9 am, and daytime reception was 

generally adequate (received signal strength ~ 0.15]JV/m).

Flat and selective fading was continually present to varying 

degrees, with occasional interference from ground-to-air 

and teleprinter traffic. The usable signal time (bit 

probability of error <10~1) averaged out at about 30% of the 

24 hours during the trials. Several complete propagation 

blackouts occurred during test 4, and could have been 

connected with large sunspots that were observed at the time.

Multipath effects were observed when transmitting 

00K at 1:10 mark/space and 1000. bauds. Strong echoes were 

observed at about 1 ms delay, with weaker echoes at up 

to 5 ms. Fading of the main pulse and echoes varied, but was 

often periodic with periods of between 0.5 and 5.0 s. The 

main pulse and strong echoes were generally observed to fade 

in an uncorrelated manner.

Frequency selective fading with the tones fading 

independently, and in antiphase, was observed. In the latter 

case, exact antiphase fading produced a steady trace on 

the pen recorder (steady average received power) which 

lasted for up to 10 minutes before getting out of phase and 

producing normal periodic fades on the recorder. Periods 

of about 0.5 to 60 s were observed for antiphase fading.
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7.3 Error rate counts

Fifty-three runs of FSK reversals transmission were 

observed. The lowest error rate (apart from two error-free 

tests) is 6.7 x 10~5, and the highest (excluding runs with 

error rates >10_1) is 2.33 x 10~2. The average error rate 

over all usudiLe -runs is approximately 1 x 10~3.

Table 7.1 shows bit error rates for 16 of these runs, 

together with power and fading data obtained from simultaneous 

pen recordings.

Table 7.1

Bit Error Rates (Reversals Transmission)

Run Duration Bit error Average Receiver FADING RATE
No. (mins) rate power (db above across across lOdb

lyV) average down from
(/min.) average (/min)(e)

1 a 37 1.66-3 27 0.46 0.2
2b 33 6.70-6 3.1 0.06 0
3b 31 2.20-5 31 0.03 0
4c 30 1.10-3 30 0.26 0.17
5 39 9.70-3 43 0.3 0
6 10 1.40-4 33 0.2 O
7 10 2.33-2 33 0.2 0
8 10 9.00-4 26 0.6 0.3
9 11 4.90-3 2 6 5.2 1.5

lOd 11 8.00-3 2 7 11.8 2 . 45
lid 10 1.10-2 29 4.7 3.1
12 12 1.52-3 26 3.58 1.16
13 12 6.80-6 32 0.46 0.17
14 10 1.80-4 32 0.1 0.1
15 11 2.10-3 28 2.0 0.27
16 11 5.40-3 28 5.8 2.6

a - flat fading d -  selective fading
b - steady received power e - gives an indication: of very
c  - some voice interference deep fading
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The correlations between received signal power and 

error rate, and fading rate are poor; even though the runs 

selected were chosen to be relatively free of interference, 

so that propagation effects were the main cause of errors.

The error counts reveal that error rates vary rapidly 

and are generally greater under selective fading conditions 

than under flat fading conditions, and that interference 

can have a worse effect than deep fading.

7.4 Channel statistics from PN sequence recordings

The PN sequence recordings were analysed to provide 

both channel statistics and digital channels for simulation. 

Twenty-one 45-minute runs, with error rates as low as lO"5, 

and as high as 0.5 were recorded. The former are of little 

use in assessing code performance, and the latter make the 

received data meaningless; these extreme runs were therefore 

rejected. In addition, runs with very bad sync slip (quite 

common because of the high baud rate used and the multipath 

experienced) were also rejected. The eleven runs selected 

for further analysis (nos. 17-27) correspond to conditions 

of slight to moderate multipath (with no strong first echo) , 

and are in the middle of the error rate range of all runs.

The error statistics of these channels were also used 

to model three random (BSC), and eleven burst (two-state 

Gilbert) channels. These channels are designated runs 

28r-30r, and 31b-41b respectively.
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7.4.1 Bit and block error rates

Table 7.2 shows bit and block error rates for the 

selected runs, in order of increasing block error rate.

Table 7. 2

Error Rates for Selected Runs

Run Bit error rate Block error rate (n=15)

17 6.23-3
18 8.02-3
19 1.93-2
20 1.01-2
21 1.66-2
22 2.15-2
2 3 1.87-2
24 3.47-2
25 3.62-2
26 5.63-2
27 5.33-2

3.48-2 
3.68-2 
5.99-2 
6.90-2 
7.72-2 
0 .101 
0 . 1 0 2  

0.118 
0. 162 
0.172 
0.281

The details for the selected tests are: 

lowest BER = 6.23-3 (1 in 161), run 17

Average BER = 2.56-2 (1 in 39) 

highest BER = 5.62-2 (1 in 18), run 26.

The generally high bit error rates observed show that 

the high baud rate used is very susceptable to intersymboli
interference caused by multipath.

Table 7.3 shows bit and block error rates for the 

computer generated channels, in order of increasing bit

e rror rates.
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Table 7.3

Error Rates for the Model Ch arme 1 s

Run Bit error rate Block error rate

2 8 r 1.56-2 0.210
2 9 r 3.12-2 0.379
30r 6.24-2 0.619
31b 1.15-3 1.07-2
32b ■ 8.80-3 3.56-2
3 3b 9.31-3 8.91-2
34b 1.22-2 5.99-2
35b 1.23-2 0.103
36b 3.01-2 0.111
3 7b 3.16-2 0.129
38b 3.50-2 0.119
39b 6.84-2 2.51-2
40b 7.24-2 0.341
41b 9.87-2 0.28

The burst channels with an unusually low block error

rate (39b, 34b) for the given value of bit error rate,

are very 'bursty' channels in which the errors are very

bunched and therefore only affect a relatively few blocks.

7.4. 2 The distribution of consecutive errors

Figure 7.1 shows consecutive error distributions for

s onie of the real and simulated runs . Figure 7.1 shows that

the channels have a burst nature, because the probability 

of consecutive ones is much greater than that of a BSC with 

an equivalent error rate. Run 20 behaves most like a BSC 

and all other runs have ordinates above those for this run, 

showing that they are more 'bursty'. Run 17 displays 

about average burstyness whilst runs 19, 24 and 27 are very

bursty.
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F i g u r e  7. 1

Percentage of errors in a
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Figure 7.1 also shows that the proportion of values 

for consecutive runs of length 2, 3 and 4 are relatively

higher than those for m=5 to 10; this is due to the effect 

of multipath on the PN sequence. Multipath causes' delayed 

digit trains to be summed thereby producing error sequences 

that are replicas of the PN sequence, and each replica contains 

2 bursts of length 1, 1 of length 2, and 1 of length 4. The 

values for these lengths are therefore inflated, and the runs 

most affected by multipath have a large ordinate difference 

between m=4 and m=5 (runs 18, 19, 22, 26).

7.4.3 Gap distributions

The error-free gap distributions shown in figure 7.2 

further reveals the burst nature of the channel. In 

comparison to the equivalent BSC curve, it can be seen that 

the runs have more frequent long gaps and less frequent 

short ones, This flattening of the gap curve is a characteristic 

of burst channels. The crossover point of the BSC curve 

and the pooled results curve (A) occurs at 200 bits.

This indicates that the runs are characterised by having short 

periods (<200) of high error density, separated by relatively 

frequent long (>200) error-free lengths.

7.4.4 P(mjn) distributions

Several P(m,n) distributions are shown in figure 

7.3. The curves show that, over the given range of block 

length, probabilities do not change as much as in the 

BSC case. This is again due to the burst nature of the

ch anne1 .
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Figure 7.3

Probability of m Errors in a Block of Length n .
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7.4.5 Block error rates

Block error rate versus block length curves are shown 

in figure 7.4. The BSC curves have a greater slope than 

any of the runs, showing that error rate increases rapidly 

with block length. The test runs, on the other hand are 

bursty, so that error rate is high at low block length, and 

therefore•increases only slowly with increasing block length.

7.5 Performance of simulated' coding systems

The 11 observed runs and 14 modelled runs were used 

as digital channels in the simulation of various fixed and 

VR systems. The performance of these systems when operating 

in various error control modes is presented in this section.

7.5.1 Error detection using fixed redundancy codes

Table 7.4 gives computed sink block error rates for 

the nine n=15 cyclic codes (efficiency E) when these codes 

are simulation-used over the observed runs. The results 

indicate:

(i) performance is best under random channel conditions 

(run 20) .

(ii) good performance is possible under moderate burst 

conditions (runs 17, 23).

(iii) performance is worst under heavy burst and multipath 

conditions (runs 19, 25).

In general the cyclic codes used are very susceptible to 

the sync-slip and multipath errors experienced during the 

field trials. Table 7.4 also shows the average improvement
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F i g u r e  7 . 4

Block Error Rates cn
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Fixed Redundancy Error Dete ction

Ta b be  7 . 4

Run (15,14) (15,11) (15,10) (15,7) (15,6) (15,5) (15,4) (15,2) (15,1)
17 1.6-2 5.8-4 2.1-4 5.4-5 5.4-6 4.8-5 0 0 0
18 1.6-2 3.5-3 3.4-3 3.2-3 3.2-3 3-. 2-3 3.2-3 0 0
19 4.0-2 9.5-3 9.5-3 9.1-3 9.1-3 9.1-3 9.1-3 0 0
20 2.5-2 3.4-4 2,2-4 0 0 0 0 0 0
21 3.5-2 2.6-3 • 2.1-3 1.7-3 1.6-3 1.6-3 1.6-3 0 0
22 4.9-2 4.0-3 3.7-3 3.6-4 3.5-4 3.6-4 3.5-4 0 0
23 4.0-2 3.4-3 2.4-3 7.4-5 1.7-5 5'. 7-5 1.1-5 0 0
24 5.7-2 2.9-2 2.2-2 2.1-2 1.5-2 2.1-2 1.5-2 0 0
25 7.5-2 2.2-2 2.1-2 4.2-3 4.2-3 4.2-3 4.1-3 0 0
26 9.8-2 5.0-2 4.9-2 4.5-2 4.5-2 4.5-2 4.5-2 0 . 0
27 1.0-1 1.1-2 3.4-3 3.6-3 1.7-4 3.3-3 1.0-4 0 0
F 2.2 8.9 11 14 15 14 16 00 00
E(%) 93 73 67 47 40 33 27 13 6.7

Interleaving degree 2

17 1.4-2 8.0-4 3.5-4 0 0 0 0 0 0
19 1.9-2 7.2-4 5.2-4 1.1-5 0 0 0 0 0
20 2.5-2 1.0-3 2.1-4 5.8-6 0 0 0 0 0
22 3.7-2 1.2-3 7.1-4 4.1-4 4.1-4 0 0 0 O
26 5.6-2 4.4-3 2.3-3 4.3-5 2.1-5 1.0-5 0 0 0
27 1.0-1 7.4-3 3.4-3 2.6-4 7.5-5 4.0-5 1.0-5 0 0

Interleaving degree 3

17 1.1-3 5.8-4 3.0-4 5.4-6 5.4-6 0 0 0 0
22 3.6-2 1.7-3 8.0-4 9.7-5 0 9.2-5 0 0 0
26 9.1-2 2.8-3 1.3-3 5.8-5 1.6-5 5.3-6 0 0 0
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(over uncoded transmission) in block error rate (F) given 

by these codes over all 11 runs. That is, F=average sink 

block error rate/average block error rate.

Also shown in table 7.4 is the effect of interleaving to 

degrees 2 and 3. A general improvement in the case of the 

burst runs is noted; but not in the case of the random-like 

run 20. Interleaving to higher degrees (up to 10) did not 

give correspondingly better results, because of multipath 

affecting many successive blocks, and the nature of the 

transmitted sequence.

7.5.2 Error detection using 2-code VR

The VR scheme used consists of changing to a more 

powerful code when an erroneous block is detected, and 

back to the less powerful (but more efficient) code when 

a block is error free. A one block feedback delay is affected 

before making the change.

Table 7.5 shows sink block error rates (U) and 

efficiencies (E) for the two code sets used. A substantial 

improvement in both efficiency and sink error rate, over the 

fixed code case (table 7.4) is noted. This is particularly 

so for the high error rate cases. The effect that VR has 

of reducing the range over which U varies, for given bit 

error rate variations (chapter 5) , can also be seen.

A comparison simulation using the 3-out-of 7 ARQ code 

was tried, and this achieved an average block improvement 

of 20 over all 11 runs, but at the low average efficiency of

43%.
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Performance of 2-code VR-ED

T a b l e  7 . 5

Run (15,14) (15,1) (15,11)(15 ,1)

U E (%) U E ( %
17 4.0-3 91 1.6 - 5 71
18 3.8-4 90 0 71
19 4.0-3 88 1.6-5 69
20 1.7-3 87 1.7-5 69
21 2.6-3 8 7 1.2-5 68
22 6.1-3 85 2 . 7-5 67
23 4.4-3 85 2.8-5 67
24 5.3-3 83 1.6-3 66
25 2.2-3 79 1. 1-5 62
26 6.3-3 79 1.2-4 62
2 7 2.0-2 69 5.5-4 54

Average of the Above

5.3-3 84 2.2-4 66
(F=21) (F=5 06)

2 8r 1.5-2(14) 70 1.2-4(1718) 55
36b 3.0-3(37) 81 1.1-4 (971) 63
39b 7.2-3 (3.5) 91 4.9-4 (51) 71

In terle aving degree 2

17 6.3-3 91
22 8.4-3 85
26 1 . 1-2 80

Ave rage of the Ab o ve

8.6-3 86
(F = 2 0)
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Also shown in table 7.5 are sink block error rates 

with improvement factors (breicketed) for one random, and 

two burst channel models. For the burst channels, improvement 

is best for the very bursty run 36b, performance on the 

random channel improves when the (15,11) code is used; but 

at the expense of greatly reduced efficiency.

Interleaving is not generally useful because this 

type of VR scheme relies on channel memory for correct 

operation.

7.5.3 Error correction by ED-ARQ with fixed and variah 'le 
redundancy

In this case the scheme consists of requesting a repeat 
(and increasing redundancy for VR-ARQ) every time an erroneous 
block is detected. Redundancy is reduced on reception of 
a correct block. A four-block ARQ and code change delay was 
assumed, during which no repeat or code change signals are 
generate d .

Table 7.6 shows sink bit error rate(S) and sink 

throughput efficiency (E) for various code combinations 

when used on runs 17, 22 and 26. In almost every case, 

the use of variable redundancy improves the sink bit error 

rate substantially at the expense of only a few percent 

drop in efficiency.

The codes marked (*) were calculated assuming a one 
block ARQ/code change delay. This has the effect of increasing 
efficiency and sink error rate slightly, indicating that
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Performance with ARQ

3des Run 17 Runn 22 Run 26
S E (%) S E (%) S E(%)

L5,14) 1.9-3 90 9.0-3 85 3.4-2 81
1.5,14) (15,11) 5.2-4 89 1.2-3 83 2.7-2 79
L5,14)(15,1) 4.6-4 89 5.1-4 80 6.0-4 ' 73
L5,14)(15,11)(15,1) 4.4-4 89 4.8-4 80 6.2-4 73
code 4.1-4 88 3.4-4 79 5.8-4 72
L5,11) 7.9-5 70 6.7-4 64 2.6-2 62
1.5,11) (15,10) 1.8-5 70 5.7-4 64 2.6-2 62
L5,11)(15,1) 0 69 0 63 1.2-6 57
15,10) 2.0-5 64 5.0-4 59 2.9-2 57
1-5,7) 8.8-6 45 1.1-4 41 2.7-2 40

L5,14)(15,1) * 5.9-5 70 7.7-4 82 8.2-4 76
L5,11)(15,1) * 0 70 1.7-6 64 1.2-6 59
code * 4.9-4 89 5.3-4 81 6.4-4 74

Average over all Average over all Average over all
sdes 11 runs (17-27) random models(28r-30r) burst models(31b-411

S F E(%) S F E (%) S F E (%)
15,14) 9.8-3(2.6) 83 2.1-2 (1.7) 30 8.8-3 (3.3) 71
1.5,14) (15,11) 4.6-3(5.5) 81 2.5-3 (15) 21 3.9-3 (7.5) 66
-5,14) (15,7) 3.9-3(6.6) 80 2.0-3(18) 15 3.6-3 (8.1) 62
15,14) (15,1) 5.1-4 (71) 79 6.7-3(5.5) 7 5.2-3(5.6) 55
.5,14) (15,11) (15,1) 2.8-4(91) 79 1.1-3 (35) 7 3.5-3(8.3) 59
code 5.0-4 (51) 78 1.8-5(2068) 3 2.0-3(15) 58
-5,11) 4.4-3(5.8) 64 1.1-3 (35) 19 6.8-4 (43) 53
.5,11)(15,10) 4.0-3(6.4) 64 2.4-4(150) 18 5.9-4(49) 52
.5,11) (15,1) 3.9-6(6591) 62 2.7-4(136) 5 2.6-4(110) 42
-5,10) 4.1-3 (6.2) 58 2.0-4(180) 18 3.0-4(96) 49
-5,7) 3.7-3(7) 41 2.8-6(13118) 12 2.6-5(1119) 34
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channel 'memory' is generally greater than one block.

Also shown in table 7.6 are sink error rates, and 

sink bit improvement factors(F), averaged over all runs in each 

of the three types of channel (real runs, random models, 

and burst models). In the case of the real runs (17-27) 

the use of VR is clearly advantageous, and this is also 

true to a lesser extent for the burst model channels. VR (with 

this scheme) is not useful on the random channels, as 

expected.

7.5,4 Forward error correction with fixed and variable 
redundancy

In this case the VR-FEC scheme again consists of 

increasing redundancy on detection of an erroneous block.

A three block feedback signalling delay is assumed. A 

'down redundancy' signal is sent on reception of a correct 

block, but the encoder only acts on reception of two 

consecutive 'down' signals, in order to slightly favour 

the use of high redundancy codes.

Table 7.7 shows sink bit error rates(S) and 

efficiencies(E) for various code sets on channels 17, 22 and 

26. Variable redundancy can be seen to improve the sink 

error rates and efficiencies in most cases.

Simulations with different feedback delays, and 'down' 

delays, were also run. In general these indicate that 

increased 'down' delay slightly decreases both error rate 

and efficiency, whilst increased feedback delay increases 

sink error rate but does not really affect efficiency.
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Table 7.7

Performance with FEC

Cades Run 17 Run 22 Run 26

S E (%) S E (%) S E (%)

(15,H) 7.1-3 73 2.5-2 73 5.9-2 73
(15,7) 6.2-3 47 1.5-2 47 5.7-2 47
(15,1) 6.4-4 . 6.7 5.7-4 6.7 5.1-2 6.7
(15,11) (15,7) 4.3-3 72 1. 1-2 70 4.8-2 70
(15,11) (15,5) '3.2-3 72 5 . 1-3 69 3.9-2 68
(15,11) (15,1) 6.6-4 71 1.5-3 66 8.5-3 61
(15,7) (15,5) 4.6-3 46 6.1-3 45 4.5-2 46
(15,5)(15,1) 6.5-4' 32 3.0-4 30 1.3-2 28
4 code 6.9-4 71 1.5-3 66 9.1-3 61

Codes Average over all 
11 runs (17-27)

Average over all 
random models 
(2 8r-30r)

Average over all 
burst models 
(31b-41b)

S F E ( % ) S F E ( % ) S F E ( % )

(15,11) 2.6-2 1.02 73 2.4-2 1.5 73 3.1-2 1.03 73
(15,7) 2.0-2 1.3 47 6.7-3 5.5 47 2.8-2 1.1 47
(15,1) 7.0-3 3.7 6.7 0 6.7 1.2-2 2.7 6.7
(15,11) (15 ,7) 1.5-2 1.7 70 1.2-2 2.9 57 2.8-2 1.1 68
(15,11) (15,5) 1.2-2 2.1 69 1.0-2 3.6 49 2.5-2 1.3 66
(15,11) (15,1) 2.1-3 12 65 1.7-2 2.1 32 2.1-2 1.5 61
(15,7) (15,5) 1.5-2 1.8 45 2.9-3 13 39 2.5-2 1.3 44
(15,5) (15,1) 2.3-3 11 30 7.8-4 47 17 1.7-2 1.9 28
4 code 2 . 1-3 12 6 5 3.0-3 12 29 2.2-2 1.4 62
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Table 7.7 also shows average results for the three 

types of channel. In general VR performance is superior, 

but improvement factors (F) are low due to the high error 

rates prevailing, and the poor performance of cyclic codes 

when operating in the FEC mode over bursty channel's. This 

is particularly shown in the burst model case, and is due 

to the fact that burst densities for these channels are in 

the region of 0.3 - 0.5, which is high compared to the 

real channels.

7.6 Performance of the automatic VR system

This section first presents results for the 8 code 

VR system which was operated in the ED mode. A total 

of 19 runs were recorded, and these are designated runs 

(42-60). Performance results for VR-ARQ, and VR-FEC 

(obtained by off-line decoding each of the recorded 

runs) are also shown.

The 19 recorded runs were processed to provide a set 

of digital channels, which were then used in the simulation 

of various fixed and VR systems. The results of these 

simulations are presented for comparison with the 

experimental system.

7.6.1 Error detection

The results obtained from the automatic 8 code VR 

system are shown in table 7.8, together with results for three 

simulated fixed redundancy systems for comparison. Sink 

block error rates (U), efficiencies (E), and block 

improvement factors (F) are shown. The performance of the 

automatic VR system is not quite as good as might have been
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performance of the Experimental System, with some Simulated
Fixed Redundancy Results

T a b l e  7 . 8

Run Bit
Error
Rate

Block 
Error 
Rate 
n = 15

Experimental
System

(15,14) 
E = 9 3 %

U

(15,11)
E = 7 3 %

U

(15,7) 
E = 47 %

UU E (%)

42 7.2-4 2 .3-3 8.5-4 40(88) 6.9-4 1.9-3 1.8-3
43 2.5-4 .3.2-3 1.2-4 76(86) 2.8-4 0 0
44 5.9-4 4.4-3 3.6-4 90 1 . 7 - 3 1.6-4 1.3-5
45 8.7-4 9.2-3 1.3-3 70(85) 1.8-3 5.3-4 0
46 1.3-3 1.1-2 5.9-5 76 3.3-3 1.8-4 0
47 1.8-3 1.4-2 2.2-3 91 7.8-3 3.8-3 3.7-4
4 8 3.9-3 2.4-2 0 36(83) 1.1-2 8.0-4 8.8-5
49 5 . 1-3 2.8-2 1.6-3 37(64) 7.1-3 5.9-3 3.1-3
50 4.6-3 2.8-2 3.4-3 34(72) 1.6-2 0 0
51 4.2-3' 4.3-2 0 33 (66) 9.9-3 0 0
52 3.1-3 4.6-2 0 34 (91) 1.0-3 0 0
53 1.1-2 5.3-2 1.2-3 3 7 (67) 2.1-2 2.5-3 9.2-4
54 8.4-3 5.7-2 3.0-3 26(71) 1.9-2 3.6-3 1.4-3
55 1.2-2 6.8-2 5.0-3 46(53) 2.3-2 6.9-3 4.3-3
56 7.8-3 7.0-2 1.7-3 49(72) 1.2-2 6.9-3 0
57 1.7-2 1.2-1 2.4-2 85 3.9-2 1.9-3 4.8-4
58 3.1-2 1.5-1 1.5-2 40(67) 6.0-2 1.2-2 7.6-3
59 3.0-2 2.6-J. 3.3-2 84 8.1-2 3.9-3 0
6 0 6.6-2 4.9-1 1.3-1 81 1.9-1 1.9-2 7.1-3

Average of the above :

1.1-2 7.8-2 1.2-2 56(78) 2.4-2 3.7-3 1.4-3
F = 6.7 3.3 21 55

Average results for 2 co de VR-ED:

Code U F E (%)

(15,14) (15,11) 1. 2-2 6.4 92
(15,14) (15,7) 1 .1-2 7.5 90
(15,14) (15,1) 9 .3-3 8.4 87
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expected. This can be partially attributed to the 

following :

(i) Sink block error rate is increased because of 

encoder-decoder mismatch. This was quite frequent and 

undoubtedly had a large effect on sink error rate. All 19 

runs have some mismatch, and many other runs had to be 

discarded because of 'oscillation' between two mismatched 

states. The mismatch situation quite often righted itself 

quickly; but the use of codes with disjoint code books 

would have improved matters considerably.

(ii) Efficiencies were decreased because of a fault 

in the code change unit. This meant that if no error 

occurred it took 1000 blocks to change, 'down' to a more 

efficient code. The fault was not detected until after 

the tests, but its effect was removed by offline processing. 

The effect of this fault varies from run to run, depending on 

the error statistics; and adjusted efficiencies are shown 

(bracketed) in table 7.8 for those runs most affected.

The adjustment gives a 20% increase in average efficiency over 

all .19 runs, and shows that the experimental VR system 

performed reasonably well.

(iii) The code change criterion is not particularly 

suitable for the burst conditions prevailing.

The simulated ED performance of the (15,14), (15,11),

and (15,7) fixed redundancy codes are also shown in table 7.8, 

and are generally better than the VR-ED system.
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A comparison simulation using the 3-out-of 7 ARQ 

code gave a sink block improvement factor of 10, at an 

efficiency of 43%, when averaged over all 19 runs.

Finally, table 7.8 shows the performance of 2-code 

VR-*ED, using the same simulation with the same code 

change criterion, as that used in section 7.5.2. This 

system out-performs the fixed redundancy simulations; 

but when comparing the results to those of the auto-VR 

experimental system, it must be remembered that noiseless 

feedback is assumed.

7.6.2 Error correction by ED-ARQ

Table 7.9 shows the performance of the experimental 

system in the VR-ARQ mode; the efficiencies quoted have 

been adjusted to cancel out the effect of the 1000 block 

delay. The system performs reasonably well when compared 

with the fixed redundancy simulations also shown in table 

7.9.

Table 7.10 shows ARQ performance averaged over all 

19 runs for several fixed and VR schemes, as well as for th.e 

experimental system. The advantage of the VR schemes (which 

are the same as those of section 7.5.3) is clear; but the 

performance of the experimental system is poor in comparison. 

However, noiseless feedback in the simulations must be considered

when comparing practical and simulated results.
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ED-ARQ Performance

T a b l e  7 . 9

Experimental
VR system (15 ,14) (15 ,11) (15 ,7)

S E (%) S E ( % ) s E (%) S E (%)

.7-4 87 ■ 3.0-4 93 6.7-4 73 2.6-4 47

.3-6 86 1.7-5 92 0 73 0 46

. 4-5 89 1.6-4 93 8.6-6 73 0 46

. 3-4 84 1.7-4 92 3.8-5 7 2 0 46

. 1-6 74 2.3-4 92 2.9-5. 72 0 4 6'

.9-4 87 1.3-4 92 4.6-4 72 8.6-5 46
0 79 1.6-3 90 1.4-4 70 5 . 3-5 44
. 1-4 61 8.9-4 89 1. 1-3 70 6.5-4 45

1CO 69 9.3-4 90 0 68 0 43
0 60 5.7-4 86 0 67 0 43
0 83 1.2-4 88 0 69 0 44
.6-4 59 2.2-3 87 5.7-4 67 1.4-4 43
.9-4 64 1.6-3 84 717-4 66 2.8-4 42
.0-3 46 2.9-3 84 1.4-3 66 6.0-4 421CM 63 7 . 1-4 83 4.8-4 65 0 41
. 2-3 68 3.4-3 77 1.1-4 59 O 37
.3-3 48 9.8-3 78 3 . 3-3 59 2.5-3 37
.0-3 46 6.8-3 61 1.7-4 45 0 2 9
.0-2 24 2.4-2 44 3.4-3 26 2.1-3 16
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Table 7.10

ED-ARQ Performance Averaged over Runs (42-60)

Code s S

\

F E (%)
(15,14) 3.0-3 3 . 7 84

(15,14) (15,1) 6.4-4 17 79

(15,14) (15,11) (15,1) 7.1-4 16 80

(15,14) (15,7) (15,1) 6.9-4 16 79

8 code 6.4-4 17 79

(15,11) 6.6-4 17 70

(15,11) (15,7) 4.2-4 2 6 64

(15,11) (15,1) 1.9-4 58 62

(15,7) 3.5-4 31 41

(15,5) 1.1-4 100 29

Experimental system 4.2-3 2.6 67
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7.6.3 Forward error correction

Table 7.11 gives the results obtained from off-line 

decoding the experimental system in the 3-code FEC mode.

Again, the efficiencies have been adjusted.

The results here are much better than previously shown 

results, when compared to the simulated fixed redundancy 

schemes. Possible reasons for this are that: 3-code VR is 

better than 8-code VR under the type of conditions experienced 

the higher redundancy (15,11) code is a better choice of 

'least powerful1 code than the (15,14) code; the code 

change criterion used operates more accurately with 3-code 

VR.

Table 7.12 shows averaged results for several simulated 

schemes (section 7.5.4) and the experimental system.

In this case the advantage of VR is again shown, and the 

experimental system also compares favourably to the simulated 

results.

7. 7 Comments on the results

The propagation results are as expected. They correspond 

well with the available predicitions, and confirm the 

work of other investigators (Betts 1967). The results 

emphasise that in order to avoid multipath effects, operation 

as close to the MUF is desirable, particularly at high 

baud rates.

The channel statistics measurements confirm the severity 

of propagation and interference effects; the error rate is 

generally high, and varies rapidly. Fast selective fading,
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FEC Performance

T a b l e  7. 11

Experimental
Run System (15,11) (15,7) E = 4 7 % (15,1) E-_ . —------

S E (%) E = 7 3 % S S S

42 3.2-4 •67 7.3-4 3.3-4 0
43 6.5-5 71 7.5-5 3.4-5 0
44 1.1-4 73 5.2-4 2.7-4 4.0-5
45 3.4-4 70 3.6-4 1.8-4 0
46 1.7-4 59 1.1-3 5.3-4 0
47 4.1-4 ' 72 8.0-4 3.2-4 2.6-4
48 2.3-4 66 4.3-3 3.6-3 8.8-5
49 1.3-3 48 4.1-3 2.6-3 1.7-3
50 1.3-3 53 5.1-3 3.1-3 0
51 6.0-4 52 2.9-3 1.4-3 0
52 4.6-5 72 9.4-5 0 0
53 8.1-4 58 1.1-2 9.0-3 1.9-3
54 1.6-3 54 7.6-3 5.1-3 5.4-4
55 4.5-3 42 1.0-2 6.3-3 2.3-3
56 1.7-3 55 4.7-3 1.8-3 0
57 4.6-3 71 1.2-2 8.6-3 7.7-3
58 6.4-3 5 1 2.9-2 2.3-2 8.5-3
59 1.8-2 68 2.5-2 1.2-2 8. 4-4
60 2.2-2 67 4.5-2 2.6-2 5.7-3
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Table 7.12

FEC Performance Averaged over all 19 Runs (42-60)

Codes S F E (%)

(15,11) 8,7-3 1.3 7 3

(15,11) (15,1) 2.2-3 5.0 67

(15 , 11) (15,7) (15,1) 2.0-3 5.5 67

(15,7) 5.5-3 2.0 47

(15,7) (15,5) (15,1) 1.2-3 9.2 43

(15,5) 4.0-3 2.8 33

(15,5) (15,1) 1.0-3 11 31

(15 , 1) 1.6-3 6.9 7

Experimental system 3.4-3 3.2 62
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the high baud rate used, multipath, and synchronisation 

drift all contributed to make the forward link generally 

very bursty.

The simulation results show that error rate is improved 

by fixed redundancy coding; but that efficiency is poor 

for the more powerful codes (particularly for FEC). 

Simulations of variable redundancy schemes show a disti.net 

improvement in efficiency, with no loss of error control. 

Interleaving offers some degree of improvement, but is 

only worthwhile for small degrees of interleave.

The improvement due to the use of VR is generally 

confirmed by the results for the experimental system. The

re sil ts WOU:ld have been even bet ter if:

(i) codes wi th some burst control abi lity had be en us

(ii) codes 1ess sensitive to synchroni sation si ip

fend dri ft) had been use d .

(ii i) the ser ious effect of feedback er rors had be en

re duce d by using: codes with disj oint code book s ;

and fee dback error contro1.

The simulate d res ults also indicate th at simple 2 or

3 -code VR systerns , with simple code change cri teri a , of fe r

adv antage s of re alis at ion and performance, as compar ed wi th

the mo re sophi s ti c ated system, under the he avy burst

con di tions experi enced . Labora tory tests of the experime n t

sys tern us ing nois eless fee db ack , and slowly varying wh i te

noise on the forward path, confirmed that these are the 

conditions under which maximum performance is obtained.
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Summary, Conclusions 
and Suggestions for Further Research

8.1 Summary

In this thesis, a theoretical and practical investigation 

of the variable redundancy coding technique has been presented. 

Chapter 1 introduced the technique, and outlined the reasons 

for thinking that VR systems could prove superior to 

fixed redundancy systems, in terms of performance and 

implementation.

This was followed in chapters 2 and 3 by a review 

of fixed redundancy error control systems, and a review 

of coding theory and implementation. This was included in 

order to make the thesis as self-contained as possible, and 

may be omitted by the informed reader. The review was also 

intended, however, to bring out the problems involved in 

finding and implementing (particularly decoding) long 

pwerful codes. Such codes are needed if efficient fixed 

redundancy transmission over practical channels (which 

tend to be non-random and time-varying) is to be possible.

An alternative to having impossibly complex or 

highly inefficient fixed redundancy systems is to use an 

adaptive system. Chapter 4 looked at adaptive systems 

generally, of which VR coding was only one part, and was 

intended to classify different possible adaptive systems', 

and discuss the problems and advantages that might occur

CHAPTER 8

by the i r use.
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Chapter 5 was solely concerned with VR coding and a 

broad view of the theoretical and practical aspects of 

the technique were presented there. The theoretical 

advantages to be gained by the use of VR coding on' time- 

varying channels was confirmed, and the practical advantages 

of using constant n code sets, and codes with disjoint code 

books were brought out.

The experimental VR system was then described in 

chapter 6, together with the reasons for the particular 

sub-system design choices that were made. These choices 

reflected the investigations of chapter 5. Finally, 

in chapter 7, results obtained from the experimental system, 

and simulated systems, were presented. These results, 

in general, confirmed the performance advantages of VR 

coding that were postulated in chapter 1.

8.2 Conclusions

It is possible to draw the following conclusions from 
the re se arch :

(i) There is a performance and implementation advantage 

to be gained by the use of a VR system which uses 

short block codes. This was shown theoretically 

for the time-varying BSC in chapter 5, and by 

experimentation and simulation for the burst 

channels of chapter 7.

(ii) The performance and implementation advantage of 
VR is greatest for FEC error control, because 
this is when an FR system is most inefficient and/or

complex.
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(iii) The performance advantage to be gained depends to 

a great extent on the code change criterion, 

and its accurate operation, which in turn must 

be based on the error characteristics of’ the channel. 

The relatively poor performance of the experimental 

system may be partially attributed to this: the

code change criterion assumed a relatively slowly 

varying, mainly random channel, but was presented 

with a fast changing bursty one (the HF channel).

(iv) Simple code change criteria such as those used in

the simulations of chapter 7 are very effective for 

burst channels; but a complex channel such as the 

HF channel would probably benefit from a code change 

criterion based on both random and burst high-order 

statistics, possibly with soft decision information.

(v) The number of codes needed in the code set is not 

excessive, and indeed little advantage is gained 

by using more than 4 codes, regardless of whether 

the channel is bursty or random.

(vi) Because of the low number of codes needed, the 

choice of a suitable set of codes need not be 

unduly restrictive. If synchronisation problems 

could be overcome, so that the constant n restriction 

could be removed, considerable optimisation of a 

VR system could probably be achieved, particularly 

by providing both burst and random error control.

(vii) Data transmission at 1000 bauds (serial) on the

HF channel is not reliable without antimultipath



measures, or complex sounding systems which 
would aim to keep the carrier frequency just below 
the MUF. Rather, parallel low-baud sub-channel 
transmission seems the only reliable method for 
narrow-band high speed HF data transmission at 
present. .

(viii) The problem of buffering the variable rate data
input does not seem too severe for VR over the HF 
channel, given modern disc and tape storage facilities 
whose performance compares favourably with possible 
HF baud rates. For faster systems a many-user 
multiplex system, with users assigned different 
degrees of error control, depending on the volume 
and priority of the traffic, as well as channel 
conditions, might go some way to solving the problem.

(ix) The effect of feedback errors on a VR system can be 
greatly reduced, thereby improving reliability and 
performance, by the use of codes with disjoint 
code books.

8.3 Suggestions for further research

Several questions and research topics have arisen as 
a result of the research. These may be divided into three 
main areas: development of the binary VR system, other VR 
and FR systems, and codes with disjoint code books.

8.3.1 Development of the system

The VR technique could be applied to a duplex HF data 

transmission system with low baud rate parallel channels.
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Questions and problems that arise are:

(i) the provision of burst and random error correcting 
code s

(ii ) development of the code change criterion' to include 
classification of the channel as 'bursty' or 
'random-like' so that the requisite burst or random 
power is used.

( iii ) The utilisation of soft-decision methods in 
oder to help in (ii) above, and to combat the 
effects of selective fading on sub-channels in 
close (frequency) proximity.

(iv) the use of FEC with ARQ for uncorrectable errors.

8.3.2 Other VR and FR systems

When thinking of VR and FR systems generally, the
fo1lowing points arise.

(i) convolutional codes for VR systems

(ii) automatically adaptive decoders that can decode in 
a 'random-like' or a 'burst-like' way depending on 
the assessed state of the channel.

(iii) codes that are comma-free, in order to ease the 
sync problem for variable n code sets.

(iv) a generalised code change criterion, that itself 
adapts to prevailing channel conditions.

(V) non-binary VR codes, for multi sub-channel systems.
(Vi) non-linear VR codes for easier construction of 

disjoint code sets.
(vii) can the feedback link be eliminated for VR coding 

over the HF channel, by the use of sophisticated
transmitter sounding (eg backscatter sounding).
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(viii)

( ix)

(x) 

( xi )

( xii )

(xiii)

VR systems that adapt to the type of errors, 

as well as to the number of errors, 

the design of a single decoder that can decode 

all codes in the VR set, and basically exchanges 

decoding delay for code power (eg permutation 

decoding).

VR with a variable number of codes, dependent on 

channel conditions.

can cybernetic learning techniques be applied to FR 

or VR coding in order to provide non-bounded- 

distance decoding schemes in which the decoder 

adaptively learns the 'best' decoding scheme in 

order to increase the probability of correct 

decoding for current conditions.

the application of pattern prediction techniques 

to the code change and channel assessment problems, 

adaptive soft-decision decoding, in which demodulation 

information from past decodings, as well as the 

current decoding, is used to adapt the decoding 

algorithm (particularly for multi sub-channel 

systems).

8.3.3 Codes with disjoint code books and mutual Hamming distance

Although this topic arose as a means of combatting 

feedback errors on the experimental system, disjoint codes 

are of interest in their own right.

Investigation of these codes has begun (Goodman, 1974) 

and a reprint of this paper is given in Appendix A.
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Further questions that arise are:-

(i) can the common code generator matrix be easily

partitioned to give two useful disjoint codes, in 

the non-cyclic case?

(ii) can bounds on mutual distance be found?

(iii) can disjoint codes be used to produce new good 

code s ?

(iv) would non-linear codes facilitate finding disjoint 

code sets?

(v) the eipplication of disjoint code sets to 'no

feedback 1 V R .
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APPENDIX A

BINARY C O D E S  WITH DISJOINT C O D E B O O K S  
A N D  M U T U A L H A M M I N G  DISTA NCE

In d exin g  term : Error-correction  codes

Eq ual- len g th  l inear  b inary  block e r ro r -c o n tro l  codes with 
dis jo int co d e b o o k s  and mutual H a m m in g  distance are 
considered. A m ethod o f  co n stru c t in g  pairs o f  these dis jo int 
codes  fro m  known csc l ic  co des, and determ inin g their mutual 
d is tance , is described. S o m e  sets o f  le n g th -15 cycl ic codes 
are  tabulated.

The author is concerned with the construction of sets of 
equal-length linear binary block error-control codes with 
disjoint codebooks for use in several coding schemes.1 In 
addition, for any pair of disjoint codes, it is required to find 
the minimum distance that separates the words of one code 
from the words of the other. This distance is called the 
minimum mutual Hamming distance d,„ of the disjoint code 
pair. This letter establishes the conditions which a pair of 
codes must fulfil if they are to have disjoint codebooks, and 
gives a general method for calculating d,„. In particular, a 
practical method of testing pairs of known cyclic codes for 
disjoint codebooks, and determining their mutual distance, 
is described.

An («, k,  d) binary linear block code has length it, a code
book of 2k codewords (including the all-zero w'ord) and 
minimum distance d equal to the weight of the minimum- 
weight nonzero codeword. The code is completely specified by 
a k  x n generator matrix G whose rows are linearly independent 
basis vectors that span the codespace. Each of the 2k distinct 
linear combinations of rows of G generates a distinct code
word.

Consider tw'o codes C\ and C2 with parameters (n, ky, dy) 
and (//, k 2, d2) and generator matrices Gy and C2. For 
Ci and C2 to have disjoint codebooks, apart from the all
zero word, no codeword in C, must equal a codeword in 
C2. That is, no linear combination of rows of G, equals a 
linear combination of row's of G2, and therefore the rows of 
G'i and G2 must be mutually linearly independent. A matrix 
Gc that has as rows all the basis vectors of Ci, all the basis 
vectors of C2 and no others, must therefore have k y + k 2 
linearly independent rows if Ct and C2 are to be disjoint, 
and can therefore be considered as the generator matrix of 
an (/;, k , -\-k2, dc) code, which will be called the common 
code Cc. A necessary condition for the rows of Gc to be 
linearly independent, and hence for Cy and C2 to be disjoint, 
is

n ^  ky +  k 2 ..................................... ...... . . . (1)

Given that eqn. 1 is satisfied and that the rows of Gc are 
linearly independent, it can be shown that the minimum 
distance ac of the common code equals the minimum mutual 
distance dm of the code pair. The sum of any Ci word ity with 
any C2 word n2 equals a third word ul2, and the weight of 
this ‘mutual’ w'ord equals the mutual distance between iiy and 
h2. The minimum mutual distance between the codes then

equals cither the minimum-weight nonzero Cy word, the 
minimum-weight nonzero C2 w ord, or the minimum-weight 
mutual word, whichever is smaller. The common code 
contains all these words, plus the all-zero word, and no other. 
The minimum distance of the common code therefore equals 
the minimum mutual distance, which can never exceed d , or 
d2, w hichever is smaller. A necessary and sufficient condition 
for disjoint codebooks is therefore that the common code 
should have a distance >  1.

To test two codes for disjoint codebooks, the individual 
codes are tested for mutually linearly independent basis 
vectors, and d,„ is determined by finding the distance of the 
common code. These procedures are, however, impracticably 
lengthy, even with computer aid, if ky and k 2 are large. 
The converse procedure, that of partitioning a known 
common code-generator matrix to yield two useful disjoint 
codes is attractive, and is at present under investigation. The 
problems involved in testing for disjoint codes and deter
mining dm are simplified if Cj and C2 are nontrivial 
(k y , k 2 A 0, A n) cyclic codes. Jn this case, we consider the 
generator polynomials gy(x) and g 2(x) of Ct and C2, with 
degrees n — k,  and n — k 2, respectively. A generator poly
nomial can be characterised by a list of the exponents of its 
roots, or written as a polynomial whose irreducible factors are 
minimum functions of its constituent roots.2 The 2k codewords 
in a cyclic code consist of all multiples «(.v) =  m (x)g(x), 
where m(x) is a message polynomial of degree ^  k — 1. For 
Cy and C2 to have disjoint codebooks, a word iiy in Cj must 
not be exactly divisible by g 2(x). That is,

my(x) gy(x) ^
gi(x)

must have a nonzero remainder. Eqn. 2 therefore requires 
that the degree of niy(x) is less than the degree o fg2 (.v) giving

n — k 2 > ky - 1 and n >  k y + k 2 — \ . . (3)
as a necessary condition for disjoint codebooks.

Because the factors of gi(.v) and g 2(.v) are factors of 
.y" + 1 , gy(.x) and g 2(x) may have common factors that will 
cancel in eqn. 2. A further necessary condition is then that, 
after cancellation of common factors, the denominator of 
eqn. 2 must still have a higher degree than my(x). The largest 
denominator after cancellation occurs when g 2(x) contains 
all the factors of a"  + 1  that do not appear ingi(.v). The 
degree of the resultant denominator is then at least ky, 
which is the minimum degree required for the denominator 
to have degree greater than ky — l,  the degree of nty(x). The

conditions required for two cyclic codes to have disjoint code 
books are therefore (a) ky, k 2 A 0. A «, (b) n >  ky +  k 2—\, 
and (c)gy (.v) andg2(.v) between them contain all the irreducible 
factors of .\ "+1.

The generator of the common code, gc(x), must divide 
gy(x), g 2(x) and all mutual words only, and is therefore the 
greatest common divisor of gi(.v) and g 2(x). The common
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code is also cyclic, so that its distance, and hence the mutual 
distance of the disjoint code pair, is easily determined if the 
code is tabulated.2 If the distance of the common code is 
not known exactly, a lower bound on mutual distance can be 
obtained by the Bose-Chaudhuri-Hocquenghem (BCH) 
bound for cyclic codes.2 The converse procedure, that of 
constructing a disjoint code pair, is also considerably 
simplified: a common code is first selected, defining dm, 
and factors are added to^yfiv) and g2{,v), subject to conditions 
(a) to (c), to produce the required codes. Similarly, a code 
disjoint to an existing code can be easily constructed. Sets 
of more than two. disjoint codes can also be formed by 
repeated construction of disjoint pairs. These procedures for 
the testing and construction of disjoint cyclic code pairs are 
practical, and also suitable for computer implementation.

Example: It is required to test the (15, 6, 6) code and the 
(15, 4, 8) code for disjoint codebooks. The exponents of the 
roots of the generator polynomial are tabulated2 as (0, 1, 7) 
and (0, I, 3, 5), respectively. Condition (a) is satisfied; 
condition lb) is satisfied: 15 > 6 +  4 —1; and condition (c) is 
satisfied because all the roots of.v15 +  1 are contained in g t(x) 
and g2)x). The codebooks are therefore disjoint. The roots 
(0, 1) are common and cancel, leaving (3, 5) as the roots of the 
denominator. The minimum functions of 3 and 5 have 
degrees 4 and 2, respectively, giving a denominator of degree 6, 
which is greater than 5, the degree of m fx ) .  The roots of 
gc{.v) are (0,1), and the common code is therefore the (15,10,4) 
code, giving d,„ =  4. Table 1 gives some of the !ength-J5 
disjoint code pairs with mutual Hamming distances.

r . M. F. Go o d m a n  5th August 1974

School o f  Electronic Engineering 
Kingston Polytechnic
Penrhyn Road, Kingston upon Thames, Surrey, England 
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