University of

"1l Kent Academic Repository

Fathy, Sherif Kassem (1991) Exploring parallelism with object oriented
database management system. Doctor of Philosophy (PhD) thesis, University
of Kent.

Downloaded from
https://kar.kent.ac.uk/94340/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94340

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open
Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)
licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line
with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%200pen%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94340/
https://doi.org/10.22024/UniKent/01.02.94340
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

EXPLORING PARALLELISM WITH AN OBJECT ORIENTED

DATABASE MANAGEMENT SYSTEM

SHERIF KASSEM FATHY

A Thesis submitted for the Degree of
Doctor of Philosophy in Computer Science
University of Kent at Canterbury

England

March 1991

Abstract

The object oriented approach to database management systems aims to remove the
limitations of the current systems by providing enhanced semantic capabilities and
more flexible facilities, including the encapsulation of operations as well as data in
the specification of an object. Such systems are certainly more complex than existing
database management systems. Although, they are complex, the current object oriented
database management systems are built for Von-Neumann (purely sequential) machines,
Such implementation inevitably leads to major problems involving efficiency and
performance. So, new techniques for implementation need to be investigated.

One possible solution for the efficiency, and performance problems is to use
parallel processing techniques. Thus, the aim of this research is to propose aspects in
which parallel processing can be introduced within the scope of object oriented database
management systems and identify ways in which the performance can be improved. A
prototype of the main components of an object oriented database system called KBZ has
been implemented to test out some of the parallel processing aspects.

The thesis starts with an introduction and background to the research. It then
describes major parallel system architectures for an object oriented database management
system. Techniques such as distributing a large volume of data among various processors
(transputers), performing processing in the background of the system to reduce response
time, and performing input/output parallel processing are presented. The dinitial
prototype, PKBZ version-1, is then described; in particular, the logical and physical
representation of object classes, how they communicate through message sending, and the
different types of message supported. Two prototype versions exist. The initial prototype
was designed to investigate the parallel implementation and general functionality of
the system. The second version provides greater flexibility and incorporates enhanced
functionality to allow experimentatioﬁq.r’The enhancements in the second version are also

discussed in the thesis, and the experimental results using different transputer

configurations are illustrated and analyzed.

fAcknowledgesents

At the completion of this work, I would like to express my deep gratitude to Dr.
Elizabeth Oxborrow. I feel most in debit to her constructive criticism, valuable
guidance, and patience during the research.

I would like to thank Mr. R. E. Jones for great help during the implementation
phase.

Thanks are due to all the staff of the Computing Laboratory, and especial thanks
to the people in Meiko Room at the University of Kent, exclusively Prof. Peter Welch,
Tony Curtis, Vedat Demiralp, and Godfrey Paul.

I am extremely grateful to my wife and to my children Samer and Nader, for their
support, encouragement, and patience,

I would like to express my extremely sincere gratitude to my parents for their
prayers, which have been the greatest benefit to me. Especial thanks to my brother
engineer Rabeh for his looking after my complex affairs during my research.

I would like to acknowledge the financial support provided by the Egyptian
government throughout my research.

Especial thank to all my colleagues in my college at Egypt.

ii

TABLE OF CONTENTS

CHAPTER 1: Research Background :

lole THEPOAUGELON 0 o555 606 & 56658 0588 00e o G405 o 8808 9 600 s 06«8

1.2. Introduction to Object Oriented Database Managcment

Systems ..eeeeceeccsccsscosonns
A. Data Modelling Constructs ..
B. Semantic AspectsS c.eceeeeoses
C. Data Intedqrity cceccecceecocss
D. Rules Storage Capabilities .

1.2.1. New Non-traditional DBMSs .

A. Adapted Relational Databases

B. Adapted Logic-based Databasecs

C. Object Oriented Databases

i. Non Object Oriented Languagcs

ii. Extended Object Oriented languages

1.3. The Potential of Object Oriented Approach

A. Object Concept and Encapsulation

B. Classes and ITNheritance «e.cecsescsosnsasansoseosss

C. Overloading, Overriding and Late Binding

1.4. THE KBZ Object Orientcd Databasc System

1.4.1. Basic Objects ccsiecssocesas
l.4.2. Structural Objects s.csosas
1.4.3. Derived (Complex) Objects .

A. Entity Aggregate .eececeesns

B. SUDLYPES s o oo aoms sl s e

1.5. Introduction to Parallel Processing

1.5.1. Classification of Computer Systems

A. Single Instruction Singlc Data

iii

(SISD)

10

12

12

17

17

17

19

20

B. Single Instruction Multiplc Data (SIMD) «...... .

C. Multiple Instruction Single Data (MISD) «ceeceecans

D. Multiple Instruction Multiple Data (MIMD) Wil @ w8
1.6. Hardware Architecture of The Transputercceceeees
1.7. Occam and The Transputer SNl et ete B IO An .
1.8. Research Objectives .eeeeeeess o6 Swils S e e ‘8 e e
1.9. Thesis Layout .cccecesoccoces ol 16 161 w3iey s B0 w1 B W R

CHAPTER 2 : The State of The Art In Related Research :

2.1 Introduction isweecssosssssevsosss o505 a0 W e o) 91 829:i0 (o) 3i's T
2.2. Object Oriented Database Management System @ Wi @ e
2.2.1. EXODUS DBMS O S .o .o . Gaw o yaE e .

A. An Overall EXODUS System Architecture¢cecceeees
B. EXODUS Conclusion cecececocces & ieiie @ o o s 8iwie e sie .
2:2,2., Iris DBMS sownsesss Oy o a0 W G e G 6wl eheis EE
A. Iris Systecm Structure R R T 56 s %8I8 18 .o
B. Iris ConcluSion ..ceeceecscccocsns TCIY N o
2.3. Objecct Oriented Systcms with Parallel Features
2.3.1+ PRESTO O T E r E T L T .
A. Why C++ with PRESTO .ccecveese e el e e e cw o ee e
B. PRESTO object model)16, ol w181 8 &8 S s ves @ w5
C. PRESTO Thread Class oo ce e ce v e co e
D. PRESTO System Architecture ...¢ccc.00. o« 9he e GedE VS
E. PRESTO Conclusions W6 e s el B 4 e ® 6 e e 8
2.3.2. Rekursiv An Object-Oriented CPU o maw
A. Rekursiv Architecture ...¢.ccc. b @ # & W S e s e
B. Rekursiv Operation ..ccceeecscccsosasocacs . v v ®

C. Rckursiv

Microcode

ooooooooooo

D. Rekursiv Applications

iv

20

20

21

21

23

25

26

28

28

28

31

31

31

33

33

33

34

34

35

35

36

38

38

39

42

42

E. Rekursiv Conclusionccoc.. SEE S s W e R e B W 43

23 «3s CHANCER s.wiew soms s T T A e B I Ao 43
A. Chancer MesSagecooeees B0 OB O 0B A Sl aeals 5 ss 43

B. Chancer Object TN LI L P 44

C. System Operation o u elie m sl wim w n e o w oiis v w siie i w4 46

D. Chancer Conclusioneoo.. R A v wae 46

2.4. Parallel Query Operation T I Ty 47
A. General operation o @ w siie s siie & a siere 8 sl w s 3 GO 47

B. Conclusion of Parallel Query Operation 49

2.5. General Conclusion o i & siwe w s e o wie o w siwie 88 00T 49

CHAPTER 3 : Parallel Processing Aspects In An Object Oriented

Database Management System :

Jal s INEFrodUETION & siew s ovie o ssim o o sim i o 6 s o o s o o e s e s e e e 51
3.2. General Description of the PKBZ Architecture 51
3.2.1. External Management System (EMS)iciveeeeeocnns 51
3.2.2. Object Management System (OMS) ...ceveveeeeocens . 53
3.2.3. Storage Management System (SMS) ...iiiieevencenscs 54

3.3. Different Aspects of Parallelism in PKBZccceees 54

3.3.1. Parallel on Transputers ...ccoceececscccccesns .m0 55
A. Homogenous Parallel System Architecture 56

* Simple Homogenous Parallel System Architecture 56

* Complex Homogenous Parallel System Architecture 59

— StAt1C GroOUP ceeesonsonsosmsssnscssnssasssssass 59

= DYNAMIC GYrOUD s v sies o ssim o ane s ensso N 61

B. Hybrid Parallel System Architecturecccc0c0 61
3.3.2. Parallel on a Single Transputercccceceeeoes 62
3.3.3. Parallel on The Instructionsccesceoecscnsens 66
3.3.4. Parallel Data Distribution o siieiie @ % e s w b 67

\'%

3.3.5. Parallel on Background ssesessses N G e
A. Complete/Incomplete Parallel Processingeeees.
B. Object Update Parallcl ProcesSSing ...eeceoesss i e
C. File Simulation Processing .eeeeeoeeeees “ie e weis el e

3.4. Mcmory Object Grouping in PKBZ ..cceeeecoccssosccsnnns

3.4.1. Type of Memory Object grouping ..eceeeeeeecaes bk
A. Inheritance Structure Grouping ccceccececcccesossos

B. Non-Inheritance Structure Grouping ...eoeeeeeees a v

C. Random GroupPiNg «sesssescsssessnsosssss R P

D. Sequential Grouping «...eeeeees ¥ 06 @6 e e e e e oo 8
3.4.2. Allocation of Menory Object aie el s 88
A. Demanded Object S IO Ol A A A olis) lotia ol foxtolia Lutioi/ae [a
B.Inherit Structure Object & 6 & s e el i e ol s e e o v @@
3.4.3. Deallocation of Memory Object cdesT T T HE Y Bea s
3.5. Conclusion eeeseocace §EResE Y e BeEE oo % wie e e e e

CHAPTER 4: PKBZ Implementation : Object Class Representation

4.1. Introduction oiis w0 ol u siveiinl & ajiarlis| s i% e w e . e e R @
4.2. Logical Representation of the Object Class ...coeoe..
4.2.1. Mcmory Object Represcntation e..coeeeeess olis iislierialai s
A. Object Identificationeeees ol Tl e\ etotlelle % et & & o s @

B. Property Names and Types of The Object Class

B.1l. Basic Object Property Names and Types «..... .

B.2. Structural Object Property Namcs and Typcs

B.3. Entity Aggregate Object Property Names

and TYPES ecssoewssss o w009, 01 e) o o wios s 4 s e s was
C. Inheritance Information o i W e o) oiolis W @ 4l R
D. Constraints and Functional Propertiesceoo.. o

4.2.2. Memory Object Instances Representation

vi

69

70

71

73

78

78

78

79

80

80

81

81

81

82

82

85
86
88
88
89
89

89

90

91

93

93

A. Basic Memory Object Instances Representation 94

B. Structural Mcmory Objcct Instanccs Rcprescntation 94
C. Derived Memory Object Instances Representation ... 96
D. Page Objcct Instanccs Representation ...ceeeeeeeas 98

B, Instancs Desoription ssssssssssnannsnrvassssssavss LOD
4.2.3. Objcct Mcthods and Constraints Rcpresentation ... 102
4.3, Bystem Object Clags8es ss.ssssvsosnnsasannrnsavssonnessse LO3
A, OBIJECT-ID Dbject Cla88 ssssssvissvsnssnssnnsssnnssw 103

B. OBJECT-NAME Object ClaSsS «eeessososasnoscssscsccesse 103

. OSCHEMA Object Clags ssssvsnsjsnssnissivsnssssnsenw LD

D. HAS-ONAME Object ClasSsS «scssovosnsonsssavesnnneesce 10D

E. HAS-OSCHEMA Object ClaSS .cceoseesssscscccccccssssess 105
4.4. Physical Representation of the Object Class .¢¢ceee... 106
4.4,1. Instancecs Memory Objcct Transformation ...eeeeeee. 107
4.4.2. Schema Memory Object Transformationeceeeeeeees 110
4.5, Database File Structure s.csssssssssvoessscsssssssenssns 111
4.5.1. Schema System Group sscssosssssssonussssnossnvnnas 112
4.5.2, Instances Systen Group ssssssssssesnsessrsasssssvss 113
4.5.3. Database System Group .sssssscssoosssssssssnassnsse 114

4.6 CONCLUSTON 5 5 5 w00 o 6iate o oo 5 Fialo o sieiin s o oee 5w o a6 sdes oo Lib

CHAPTER 5: PKBZ Implementation : Messages

Be.l. INtrodnetion ssssssyeaissssoransnsmuinsnsssnwnyswsrnnnss kB
5.2. The PKBZ Version-1 General Block Diagramceoeeee.. 118
5.2.1. Hardware Channel Functions .eccccececeecscscsossosscss 120
5.3. PKBZ Object Oriented Database Operationeeeeeee. 122
5.4. PKBZ Objcct Oriented Databasc McsSsages .eceeeeeesscses 125
5:4:1s Bystem MEeSSages ssessscrssssnssspannrsavesmnenenvese L23

B. Create Database Mess8age ssessssssssqisonsnsnsnumnsns L27

vii

B. Opén Database McsSsage «..ececesos SO0 O ois 3 as 4340

* File Simalation Process ssessssasssssssssnsnssoansss 133

* Analysis Order ProCCSS .eeesecssooocsss R PP [15

C. Close Database MeSSAge «.eeesvevoscosaossoscnons oss e s w3,

D. Crecatec Object Class .eceos. oTela el s Tetalist ettt T T LY v www 138
5.4.2. Internal MesSsSages «eceeeseeos oo 5w @) 4 ¥ e e e e e 141
A. Open Objcct Messagc «.... o (el elo/ke: fol el la e Felietlale ik A R .. 141

B. Generate Surrogate Message o 0,16 %) (& @) 8w [958 o w e in e eie AL

C. New Page Numbcr MeSSAgC «eeeeeeoeososns e et e la e R Pae o e To M 142

D. Update Object Message «....o. $% @ wes W a e S e @ e 142

E. Update Inherited By MCSSAQE «eeeeevsecsosooss cowvss 143
5.4.3. Memory Object MeSSAge .cceeeecsecsossetsscosssansonns . 143
A. Display Schcma Description MCSSAge eeeeeesooes v o s 143

B. Inherits Messages «.eeeees o siiee 0w 0G0 GO0 b eee. 144

C. Transaction MCSSAJCS «eeeeesosocossososssacsocsosos ... 144
C.1l. Addition MeSSAgesS eoeesoeososes S0 oL OIGIO GO Siels @ e 144

C.2. Rectricval McssSages ceeeesoss iiie @ W 6 ¥ SRS B seewes 145

* Check Instance Existence siisw w e e ORI M 145

* Get All Objecct Instances .eeeeeeeeses 56 60 W e W 8 6 . 146

* Get Specific Values o % a0 s wiiem ® eie e w e . 146

C.3. Updating MesSsagcsS eeeeoeoes P B S he e e .. 146

C.4. Deletion MeSSAgES «eeeecesoscons W e e ceeess 147
5.4.4. Page Objcct MCSSAQCS ceeeeesosscsns sltel [¢¢ 5 Fel o) fah ol S o e e 147
A. Get Part Of Instance ..ccscoccessssssssse St o Dol 148

B. Add Part Of Instancc .e..ee.. o ol (010159 o) @ 0 @ o w60 8] i e e @0 . 148
5.5y CORCLIUSION wosensasss SiateNellotle talle Nalla to'Fo R AID 39850) 15 e @ 148

Chapter 6: PKBZ Version-2 and Experimental Results

6.l INtroduction ssecosssvsses vess B g ik v edE eE i e ses o 190

viii

6.2. An Object Class Logical Representation (Memory Object)

6.3.

6.

6.3.2. Memory Object Communication Channels

6.4.

6.5.

6.6.

6.

6.7.

Version—2 «seseeee

Communication Channel Modifications ...c¢ceoceeen .
3.1. PKBZ vecrsion-2 General Block Diagram

Mcmory Object Instances

External Management System Batch Processing

PKBZ System Performance Evaluation0.0... .

6.1. PKBZ Speed Up

ConclusSion cecocoosovese

Chapter 7: Conclusion and Future Researches

7.1,

7.2. Problem Areas With an OODBMS ..icceevesoncoscncns
7.2.1. Standard Dcfinitions Pt o Vo 5 /58 816 o 7e W) 1e e
1+2:25% Performanpe Problem o% w8 e o v e viis #
7.2.3. Seccondary Storage Problecms ..¢.o00.. 5 & & ¥
7.2.4. Schema Evolutioncoe. ¢ S e @ e e s e wien s

7.3. Problem Arecas With Parallcl Procecssing «eeeeeees
7.3.1. Deadlock Problem <iwiie o s e o siin w nslie S e
7.3.2. Non-dcterministic Bchaviour «...eeo.. . & @i W
7.3.3. Static Language «.... o v e A e ol (s iatie el (o) oicorisl @ Sl
7.3.4. Pattern Problem .ccoeeeececiiecnns . w e o ol o
7.3.5. Limited Number of Communication Channels ...
7.3.6. Imbalance Problcm .ccccceeeeccss S R
7.3.7. Investment Limitation ...ccccceceens o e e B e
7.3.8. Natural Human Limitation & (310 9w inn % 7 wie) el 08

7.4. Conclusion .ceeeescecss TR o s alel e 6w Wi w356) (9110 000

7.5. Future Rescarches o 318186 wiie) e e ie, e e ie e, 9] 910 e Slene

Introduction «...

1%

oooooo

151
152
152
154
154
155
158
161

162

165
165
165
166
166
166
167
167
167
168
168
169
170
170
170

171

Reference e e, 176
APPENDIX A: PKBZ Object Oriented Database Management Systenm

Constants and Variables Description

A.l. Miscellaneous Variables Description and Values 183
A.2. Object Type Identifier Values ..ccceececesns Siate o115 @e e 81 18 184
A.3. Instance Type Identifier Valuescceeeeeen vemensans 184

A.4. Physical Instance Size According to Objcct

Type INStAnNCe ieceessecccssscscsccsocoocss P L e 185

APPENDIX B : PKBZ Schema Data Structure

B.1l. The Object Identification Data Structure «.¢eeseeeeece.. 186
B.2. The Objecct Class Property namc and Types

Data Structure svesevse e o 6 o et e 6l o v 3 6 6 & e W) e eeee. 187

B.3. The Object Class Inheritancc Information

Data Structure sssssawessmes ssove s ss s e R NP . 188
B.4. The Objecct Class Constraints Data Structurc v oo 189
B.5. The Object Class Functional Properties Data Structure 190
B.6. The Instances Description of Objcct Class

Data Structure 6 6 e ® w6 4 sifsis 8 seis B TR B0 W e w e IR

APPENDIX C: PKBZ Instance Data Structure

C.l. The Data Structure of The Entity Set Instances and
Attribute Sct Instances of Intecger Type «eeeee vomnsww LI2
C.2. The Data Structure of Attribute Set Instances of
String TYPE s sessans el s hallellel's NoltaltellalalollalleRotololre N uslkal [s] e ke o] ST et s oo 192
C.3. The Data Structure of The Structural Object Instances 193

C.4. The Data Structure of The Entity Aggrcgate Objcct

TNISTATICCS o e oo v e e onoensennaennsenssnnseensssnsennsonss 195
C.5. The Data Structure of The Page Object Instances 195
C.6. The Data Structure of The Pagec Data Rcgion in

Page Object INStance ceeecececesecsstsessssccnnsonssas 196

APPENDIX D: PKBZ Protocols Descriptions

D.1. Protocol REQUEST.ORDER Definition ...eeeeeeeccsosonsas 197
D.2. Protocol INSTANCE Definition «ccesoccocssoscevossceessa 199
D.3. Protocol OBJECT.SCHEMA Definition +eeeeesccesosccccscos 200

APPENDIX E: PKBZ Message Function and The Data Structure

Descriptions
E.l. Common Variables Data Structurc ...¢ceceeceeciocscncas 201
E.2. REQUEST.ORDER Messages Data Structure ...cceeeceeecens 204
E.3. INSTANCE Mcssages Data Structurc .eceeeeececcsosocsons 207
E.4. OBJECT.SCHEMA Messages Data Structurececiieveanns 208
APPENDIX F: Database System Group Data Structure 209

APPENDIX G: External Management System Screens In PKBZ

G.1l: The BaAaSiC SCIreéCN ceeccvoesssecsssnsnssssssossssssnsasssinn 210
G.2. The MeSSAgE SCIrEEN «¢eeeeeessossotsssssosssosssssonsassaes 211
G.3. The Creatloh SCICCII s eeesosesoessssesensssenesssesosss 212

G.4. Create Structural Object Screen ...cceceeececsccccocccas 21.3

X1

CHAPTER 1
Research Background

1.1, Introduction :

Much recent research effort has been put into designing and building Object-
Oriented DataBase Management Systems (OODBMSs) which accommodate a wide range of
potential applications by supporting rich semantics and a high degree of flexibility
and extensibility. Such researches include the Iris system [Fishman 87][Fishman 89] at
Hewlett-Packard laboratories, ZEITGEIST [Ford 88] at Texas Instruments, ENCORE [Zdonik
86], EXODUS [Carey 86.a][Carey 87] at the University of Wisconsin, and other researches,
OODBMS is a complex system. Although, it is complex, the current OODBMSs are built for
Von-Neumann (purely sequential) machines. Such implementations inevitably lead to large
problems involving efficiency and cost performance.

On the other hand, parallel processing technology provides huge processing
capabilities that can be used in implementing an OODBMS. So, this research is being
carried out to develop a prototype KBZ OODBMS [Oxborrow 88.a) using parallel processing
technique. The developed prototype Parallel KBZ (PKBZ) is designed and implemented using
Occan [Jones 86][Carling 88] as the parallel programming language on a Meiko computing
surface ! .

In this chapter, the research background will be introduced. An introduction to
object oriented database management systems (OODBMSs) will be described in subsection
1.2. The potential of the object oriented approach will be illustrated in subsection L3.
The KBZ OODBMS model will be described in subsection 1.4. Then, an intyroduction to
parallel processing will be discussed in subsections 1.5. The hardware architecture of
the transputer will be illustrated in subsection 1.6. The relation between Occam and

transputer will be described in subsection 17. The research objectives will be

. Meiko and computing surface are trademarks of Meiko Scientific Computing,
and Occam is a trademark of the Inmos group of companies.

1

illustrated in subsection 1.8. Finally, the thesis layout will be described in subsection

1.9,

1.2, Introduction to Object Oriented Database Management Systems:

The requirements of most of the business applications can be satisfied quite well
by the current DataBase Management System (DBMSs). However, some scientific and
engineering applications, like Expert System, Computer Aided Design, Image Processing,
and Pattern recognition, demand extra requirements from the database systems. These
requirements are beyond the scope and the capabilities of the current DBMSs, even
Relational Systems, since these applications are quite different in their modelling, data

storage and retrieval. The features and the limitations of the current DBMSs can be

summarized in the following :

A. Data Modelling Constructs :

The native data types available on most current DBMSs are integer, floating
point, character, boolean, pointer ... etc. These data types may be sufficient for some
applications in commerciai systems such as Banking., These native data types are
aggregated into tuples (in Relational DBMSs) [Date 83] or records (in the other DBMSs)
[Codasyl 8l.a.)[Codasyl 81.b.J[IMS]. The simple record structure underlying existing DBMSs
is too rigid for engineering applications, since a low level representation in the
engineering domain is unacceptable. It is essential to be able to work in terms of much
more complex structured data types, with the ability to treat complete data structures,

from simple matrices to complex layout diagrams, as a single entity.

B. Semantic Aspects :

In current DBMSs, the semantics of raw data are split between the database
description and the application programs. Hence, some semantics not only are hidden
in application programs, but also duplicated in different application programs to
enforce semantic aspects. This aspect is due to the fact that the current DBMSs do not

support the real system environments. Hence, it would be preferable to store the

semantics along with the data, thus making the data responsible for enforcing its

correct use,

C. Data Integrity :

The current DBMSs store database schema separate from the actual data. Such
separation is unnatural, since the data is meaningless without schema description. For
example, in the engineering design, some sort of version control is needed. That is
tracking changes of the data and schema with time, would be useful. This version
control is important in coordinating a multi stage design process as well as return
to a previous version. Such integration of data and schema is not provided in the

current DBMSs.

D. Rules Storage Capabilities :

Most current DBMSs can handle and enforce some validation checks or constraints
(i.e. values, ranges ... etc.). Such validation checks are stored in the schema. Artificial
intelligence applications, and expert systems, for example, need to store not only data
and validation checks, buf also rules and constraints applied to the data. In real
applications the number of rules and constraints applied to the data cannot be stored

in the main memory, so a DBMS is needed. However, current DBMSs do not support general

rules storage.

1.2.1, New Non-traditional DBMSs:

A number of database research efforts are being directed to build new database
systems to accommodate a wide range of potential applications which are not supported
by the current traditional database systems. Although, the goals of these research
efforts are similar, and each uses some of the same mechanisms to provide extensibility,
the overall approach of each research is quite different. In general, the new systems
being designed and developed may be grouped into three main approaches :

a. Adapted Relational Database Systems

b. Adapted Logic-based Database Systems

c. Object Oriented Database Systems

A, Adapted Relational Database Systems :

This approach can be considered as object oriented front ends onto an underlying
relational database system. That is, the relational database system 1is extended to
provide new functionality. For example, STARBURST [Schwarz 86)[Lindsay 87], and POSTGRES
[Stonebraker 86][Rowe 87] are complete database systems, each with a different well-
defined data model and query language. Each system aims to provide the capability for
users to add extensions such as new abstract data types and access methods within the

framework provided by their data model.

B. Adapted Logic-based Database Systems :

Some of the recent research has combined logic programming technology with
database technology to produce Expert or Logic Database Systems [Kerschberg 86]. Some
research effort has been based on Prolog and databases. For example, [Zaniolo 86.a] and
[Gray 85][Gray 88] have investigated the combination of Prolog with Codasyl network.

It has to be mentioﬁed that the adapted logic-based approach is aimed at solving
the problem of large volumes of rules needed in Expert System environments [King 84],
while the other two approaches are mainly concerned with the need to support

semantically rich and complex data models.

C. Object Oriented Database Systems :

A lot of research is being carried out to implement Object Oriented Database
Management Systems. Some of these researches are just prototypes : Iris [Fishman
89][Fishman 87], Gemstone [Purdy 87], ZEITGEIST [Ford 88], 02 [Bancilhon 88], POSTGRES
[Stonebraker 86], ORION [Kim 89][Banerjee 87], ENCORE [Zdonik 85)[Zdonik 86][Hornick 87],
DAMOKLES [Dittrich 89], EXODUS [Carey 85][Carey 86.b][Carey 87], 0Z+ [Weiser 89], and KBZ
[0xborrow 88.a). But some researches have become commercial products : G-base [G-bhase 88],
VISION [Caruso 87], and Ontos [Andrews].

There are variations in these systems with regard to the basic object types

which are supporﬁed and the mechanisms provided for deriving objects based on other
objects, since as mentioned in [Atkinson 89] no standard terminology exists at present
and the overall approach of each research is quite different. Furthermore, each system
has different data model definition and each provides the end user with different
accessing methods. For example, 0Z+ [Weiser 89] is designed to support an object oriented
office information system programming environment, while ORTON [Kim 89] provides
various advanced functions required by applications from the CAD/CAM, and artificial
intelligence domains. The variations in some different OODBMSs are illustrated in
[Oxborrow 88.b]. A survey of OODBMSs may be found in [Thearle 89].

The object methods (implementation of an object's behaviour) may be written in a
suitably extended standard programming language. The access to instance variables of
the object is usually performed via a method. These methods, of course, can be executed
in one of the several different languages.

In general, there are two approaches to designing and implementing the object

oriented database management systems :

1. Non Object Oriented Languages :

These object oriented systems are being designed or prototyped in high level
languages which are not object oriented languages. For example, 0Z+ [Weiser 89] is being
prototyped on a set of Sun-3/50 clients supported by a Sun-3/280 file server [Sun 86] and

it is written in C [Kernighan 88].

11, Extended Object Oriented lanquages :

These object oriented systems are usually designed using object oriented
languages. For example, both EXODUS [Carey 87] and Ontos [Andrews] are based on C++
[Stroustrup 86][Dewhurst 89] object oriented language. While Gemstone [Purdy 87] is built

in Smalltalk [Goldberg 84] object oriented language.

1.3, The Potential of the Object Oriented Approach :

The object oriented paradigm represents one of the most successful paradigms in

many areas of computer science. Object oriented paradigms have been popularized mainly
through Smalltalk [Goldberg 83], building upon the concept of an '"object class"
introduced in Simula [Birtwistle 73]). This is not surprising, since it is quite natural
to model real life entities as software objects.

The use of an object oriented paradigm in database management systems is aimed
towards getting rid of the previous problems of the current database systems. Thus, it
is better to discuss the main advantages of the object oriented database approach in
the context of the discussion in subsection 1.2, so the main features of OODBMS are

summarized in the following :

A. Object Concept and Encapsulation :

In the OODBMS, everything is viewed in terms of objects. An object can represent
anything from single number, e.g. 10, to a complex entity such as EMPLOYEE or VEHICLE.
Objects are entities that combine the properties of procedures and data, since they
perform computations and save local state.

Object schemata and object data are logically integrated together inside each
object. Such integration provides a high degree of ''Data Integrity" which is not
supported by the current DBMS as described in subsection 1.2,

Objects communicate and perform all computation via ''messages'. The behaviour
of an object is captured in the messages to which an object responds. All of the action
in the object oriented approach comes from passing messages between objects. Message
sending is a form of indirect procedure call.

Messages, with any arguments that may be passed with the messages, constitute
the public interface of an object. An object reacts to a message by executing the
corresponding method. The principle of message sending is that calling programs should
not make assumptions about the implementation and internal representation of data
types that they use, so the underlying implementation can be changed without changing
the calling programs. That is, every object comes endowed with a set of operators which

are used to operate upon and change the state of the object. An object consists of an

interface part, which is public, and an implementation part, which is kept private,

Thus, this new database object concept overcomes the limitation described under
"Data Modelling Constructs'" in subsection 1.2., since each object is viewed as a complete
entity in itself. Furthermore, by hiding the internal representation of the data, an
object can provide the complex data structures to be represented, with the ability to
treat complex data structures as a single entity in the sophisticated applications. This
facility gets rid of>the rigidness of the simple record structure underlying existing
current DBMSs.

In addition, encapsulation is one of the major advantages in object oriented
database systems, since it packages data together with related methods used to access
or modify an object. Encapsulation has traditionally been important in computer science,
in general, for the simple reason that it is necessary to decompose large systems into
smaller encapsulated subsystems that can be more easily developed, maintained, and
ported. Moreover, encapsulation provides a way that the system can store the semantic
aspects along with data, thus making the data responsible for enforcing its correct use,
That is, the semantics of raw data are not split between the database description and
the application programs[Hence, the semantics are neither hidden in application
programs nor duplicated in different application programs. Thus, the encapsulation
concept gets rid of the limitation of "Semantic Aspects', described in subsection 1.2.,
of the current DBMSs.

The only way that an object is accessed by the outside world is by invoking one
of its methods to access the data encapsulated in the object. Hence, the internal data
structures and data inside an object are totally isolated. This provides system design
modularity; it ensures that the data structures are easily accessible to the methods
that use them, and provides a high degree of integrity for the data.

In OODBMS, rules can be stored in the form of methods. Such a facility provides
a tool to overcome the limitation aspect of "Rules Storage Capabilities", described in
subsection 1.2., of the current DBMSs. Moreover, methods can also be used to handle

constraints on the data values.

B. Classes and Inheritance :

Classes describe collections of objects, so similar objects are grouped together
into a class. Objects are organized into classes that contain the methods that the
objects use to respond to a message.

All objects belonging to the same class are described by the same instance
variables and the same methods. They all respond to the same messages. Thus, the class
defines the data type, and the operations are methods the class responds to. That is, a
class describes the form (instance variables) of its instances and the operations
(methods) applicable to its instances. In general, a class has only one type, but a type
may be associated with more than one class. A class contains the code and the data
structure needed by its instances. This allows the class to be responsible for creating
new objects and enables dynamic extensions to a running application program,

Inheritance is a relationship in object oriented systems which provides a way
of sharing behaviour between objects, Every inheritance relationship has parents and
children and properties which are inherited. The parents and children in an inheritance
relationship could be classes or instances and the properties could be methods, instance
variables, rules, constraints, values etc.

Classes are organized in a hierarchy or lattice, so that, they can inherit the
structures and methods of their superclasses. Moreoveyr, the type of an object not only
may be based on other object types, but also may include new additional properties.
Hence, objects with complex structure can be constructed. That is, classes can be
organized into an implementational hierarchy so that objects in a lower class can
inherit not only the internal data structure, but also methods of its parent class. The
hierarchy can be either a tree structure, or multiple inheritance structure where a
class can be a subclass of two independent classes [Schaffert 86]. It has to be mentioned
that not all OODBMSs support multiple inheritance structure. Inheritance can be strict,
that is a subclass can only add new methods to its parent's methods, or non-strict, when

a subclass can override the inheritance mechanism and redefine some or all of its

parents' methods. _That is the main advantage of the inheritance, since it provides a
powerful code-sharing mechanism that can greatly reduce the effort required to create

new object classes instead of new code having to be written.

C. Overloading, Overriding and Late Binding:

Consider the case when an application program wishes to apply the same methods
to different objects with various types and the method is completely dependent upon the
object type. The application program must know in advance the object type and tailor
especial code according to this type. This implies that when a new complex object is
specified, a new code must be tailored to adapt the current situation. In OODBMSs, this
problem is solved by redefining the implementation of the operation for each of the
types according to the type. This results in a single method name denoting different
methods according to object type. That is, the system picks the appropriate
implementation during the run-time according to object type. This process is called
"overloading'.

When a subclass can override the inheritance mechanism and redefine some or
all of its parents methods, this process is called "overyiding'".

The main advantages of these properties are that the application programmer
does not have to worry about the different system codes necessary to implement the
method. In addition, the programmer's code is simpler as there is no type checking to
perform the relevant system code. That is, there is no 'case' statement checking on types,
Thus, the programmer's code is more maintainable, since the same programnmer's code will
continue to run without modification even when the same object changes its type.

In order to provide this new functionality, the type implementors still write
the same system code, but it is not the application program's responsibility. So, the
system cannot bind operation names to the method before the run time operation.
Therefore, operation names have to be resolved at run-time. This delayed mechanism is

called '"late binding'\.

1.4, THE KBZ Object Oriented Database System :

As mentioned before, this research is being carried out to develop a prototype
parallel KBZ (PKBZ) OODBMS, so in this subsection an overview of the KBZ OODBMS together
with the examples will be discussed.

KBZ is an OODBMS which has been introduced by [0xborrow 88.a]. KBZ has been
influenced by system specification language Z which was introduced by Abrial and
developed at Oxford University [Hayes 87]. Since KBZ is the kernel of this research, the
main features of the KBZ design will be illustrated in this subsection. The initial
version of KBZ was designed for a traditional database environment, in which it is
common for large numbers of instances belonging to the same class to exist. So, PKBZ is
also designed for this., The "AirLine Transportation', Fig.l.l. will be used as an
illustrative example.

Each object type is represented by a schema which defines the properties (both
data and functional) of objects of that type. An object schema is applied to bhoth
instances of the object anq instances of objects which inherit the schema.

The naming conventions in KBZ objects are summayized in the following 2 s
i . A schema name is written in uppercase. For example, CREW, PLAN are

schema names
ii . The set of instances of the object represented by a schema is referred

to by using the same schema name but with only the initial letter in

uppercase and other letters in lowercase. For example, if a schema name

CREW has been defined, the property name 'Crew' in some other schema

implies the declaration 'Crew : CREW' and instantiates to the set of all

instances belonging to CREW,
iii . A single instance of the object is referred to by using the same name
entirely in lowercase. For example, the property name 'crew' implies the

declaration 'crew : Crew ' and instantiates to a single instance of the

? Refer to the AirLine Transportation Example Fig. 1.1.

10

/ (Ranlk) (Name) \ / Capac1ty \
Y y \ ;
g
// N ence bus- bus-

/
crew- crew- expe 1
/ rank \\ngf Lg/// \ type capacity
N/A
) / N

t CREW

e

PLANE

/fR
bus-age
/

—

N N

trip-schedule

| |
/ ATRIP P \ ! —>3] ROUTE)
\

\)
| \)
flight to-town arrival-|time
| R ! /

\ Flight#f } b\ (besiination) Time /
() ~town ‘)

\ R

Fig.l.l. AirLine Transportation Example

11

Crew set.
iv . The data properties or variables declaration in the schema have to obey
the same rules, But, if a property name is not previously defined in any

schema, then its type has to be declared.

A KBZ system consists of a collection of system and user-defined objects. Objects
in KBZ systems are split into three different categories :

A, Basic objects

B. Structural objects

C. Derived (Complex) objects

1.4.1, Basic Objects :

The basic objects are categorised into :
- entity set
- attribute set
An entity set is declared simply by naming it. For example, CREW and PLAN are
entity sets. Elements of entity sets (instances) are represented internally by surrogates
as shown in Fig.l.2,
On the other hand, attribute sets require schemata to define them, since their
type and constraints (if any) must be declared. Fig.l.3. shows examples of attribute set
definitions. The data part defines a single attribute name and the type of the

attribute.

1.4.2, Structural Objects :

The structural object defines the relationships between two basic objects. For
example, all relationships in the "AirLine Transportation Example'" can be represented
as shown in Fig.l.4.

It has to be mentioned that the relationships are defined in two directions in
order that both the degree of the relationship (one-to-one, one-to-many ... etc.) and the
existence characteristics (total, partial) are specified clearly and completely. The first

12

CREW

crew ¢ Surrogate
PLANE

plane : Surrogate
ATRIP

atrip : Surrogate
ROUTE

route : Surrogate

Fig.l.2. Entity Set Definitions

NAME

name : String

length(name) <= 20

TYPE

type : String

length(type) <= 10

ADDRESS

[address : String

length(address) <= 40

(Note: 'length' is a system function)

Frig.1l.3. Attribute Set Decfinitions

13

RANK

rank : String

'navigator', 'staff'

rank € {'pilot' ,'co-pilot',

}

CAPACITY

capacity : Integer

capacity <= 1000

HOUR

hour : Integer

hour <= 100000

FLIGHT #

flight ¥ : Integer

flight:¥ <= 100000

TIME

time : Integer

time <= 2400

SOURCE-TOWN

source-town : String

length(source-town) <= 20

DESTINATION-TOWN

destination-town : String

length(destination-town) <=

20

Fig.1l.3. Attribute Set Definitions

(continued)

14

CREW-NAME

title Crew ----> Name
Name ----> {Crew!}

CREW-RANK

ranked Crew ----> Rank

rank-of Rank --1-> {Crew}

LOCATED-AT

location: Crew ---> Address

occupied: Address -->{Crew}!

EXPERIENCE

expertisc:Crew ----> {Type}
:Type --1-> {Crewtl

BUS-TYPE

has-type: Plane----> Type

type-of Type ---->{Planc}

BUS-CAPACITY

Plane----> Capacity
Capacity--->{Plane}

BUS-AGE
: Plane---> Hour
: Hour ---> {Planc}
FLIGHT
:Atrip---->Flight#
:Flight#-->Atrip
FROM-TOWN
Route----> Source-town
Source-town--->{Route}

F'ig.1l.4. Structural Objccts Rcprcscntation

15

Fig.1l.4.

TO-TOWN

: Route----> Destination-town
Destination-town----> {Routec}

DEPARTURE-TIME

Route---> Time
Time ---> {Routel

ARRIVAL-TIME

Route---> Time
Time ---> {Routel

TRIP-SCHEDULE

:Atrip---->{Route}
:Route----> Atrip
TRIP-CREW
4 : Atrip---->{Crew!}
Crew ---->{Atrip}
TRIP-BUS
: Atrip----> Plane
Plane---->{Atrip}!
=D §en Total Function
= Ve s Partial Function
{ } % Finite Set

Structural Objects Representation (continued)

16

relationship named is the primary relationship, while the second is the inverse. The
primary and/or inverse names in the data part of a relationship schema may be omitted.
For example, the inverse name in the CREW-NAME relationship is omitted. For more

discussion about structural objects refer to [Oxborrow 88.al.

1.4.3, Derived (Complex) Objects:

Derived objects are constructed by including basic objects or relationships inside
a new schema declaration to define a new class. Derived objects can also be based on
other derived objects. The class inherits all the properties (data and functional) of the
objects specified inside the schema. This provides support for rich semantics. A class
may or may not contain any constraints, functional properties or predicates. Derived

objects can be classified into :

A, Entity Aggregate :

Current DBMSs depend upon a simple record structure underlying the database.
This simple record structure can be implemented in KBZ. Using predefined relationships,
entity aggregates can be declared by listing the names of relevant relationships,
together with any rules associated with attributes in the relationships. For example,
Fig.l.5. illustrates entity aggregate representation. Constraints may be declared (if they
exist). However, in this example, no constraint exists. An entity aggregate instance in
KBZ can be mapped onto an n-tuple in a relational DBMS. Fig.l.6. describes the STAFF
representation in relational DBMS. However, it is clear that the STAFF entity aggregate
representation has more semantics than the STAFF relational representation.

The basic feature of entity aggregates is that the domain of all the
relationships in any entity aggregate schema is the same basic object. In Fig 1.5., the

domain of all the relationships of STAFF object is the entity set 'Crew'.

B. Subtypes :

The entity aggregate SCHEDULE in the example described in the Fig.l.5. illustrates

all the schedules in the airline database. The overall schedule in some situations is

17

STAFF

crew-name
crew-rank

experience
located-at

AIRBUS

bus-type
bus-capacity
bus-age

TRIP

flight J

SCHEDULE

from-town
departure-time
to-town
arrival-time

Fig.l1l.5. Entity Aggregate Representation

STAFF(Crew, Name, Rank, Type, Address)

Fig.l1l.6.STAFF Relational Representation

ENGLAND-SCHEDULE

schedule

source-town € {'London', 'Gatwick'}

LONDON-SCHEDULE

schedule

source-town € {'London'}

Fig.1l.7. Subtype Object

18

not important to each branch distributed all over the world, since each branch is
interested only in its own flights. That is, a category (or subtype) of the schedule is
needed only. For example, LONDON-SCHEDULE, and ENGLAND-SCHEDULE can be derived from
the SCHEDULE entity aggregate as shown in Fig l.7. 3

The SCHEDULE entity aggregate represents ''generalization", while "ENGLAND-
SCHEDULE" and '"LONDON-SCHEDULE'" subtype objects represent 'categorization" or
"'specialization'. "Generalization" and ''specialization" define ''type hierarchies". A
subtype may sinply inherit the properties of the parent in the hierarchy, or it may,

in addition, posses its own properties.

For other types of derived objects, refer to the original KBZ paper mentioned

above,

1.5, Introduction to Parallel Processing :

As mentioned before, this research is being carried out to develop a prototype
Parallel KBZ (PKBZ) OODBMS. In the previous subsection an overview of the KBZ OODBMS
was illustrated. In this subsection, a survey of the different parallel systems will be
described.

The large development of VLSI technology has enabled and encouraged the
widespread use of multiprocessor and multicomputer systems, so parallel computers become
more common, and ''as common computers become more parallel, it is important that the
system designers and programmers cast off the shackles of sequential thought' [Hey 90].

On the other hand, most real-time system applications are inherently parallel in
nature. Programming such applications in purely sequential languages on the
uniprocessor machine has inevitably caused the applications to lack both the semantic
aspects of real life and the expressive power to deal with the problem domain. The

reasons for finding the parallel method of operation preferable to sequential mode are

?® In the example, one assumcs that 'London' and 'Gatwick' arc

the only towns that have airports in England

19

quite apparent.

1.5.1, Classification of Computer Systems :

Computer systems may be classified into a number of collective groups. Each group
is determined by the type of processing which is required, together with the method by
which the processing elements communicate, and the use of memory. So, all computer

systems can be divided into the following categories [Flynn 86] :

A. Single Instruction Single Data (SISD) :

In this type, the computer executes instructions sequentially and may overlap
(pipeline) execution. In overlap, the conventional hardware is altered in order that two
or more major components may overlap operations. For example, the "Control Unit" may
fetch the next instruction while the "Arithmetical and Logical Unit" is executing the
current instruction. This is largely implemented using a system of pipelines and
buffers. The pipeline breaks a sequence into suboperations in order that each operation
is carried out simultaneously. The concept of a buffer enables decoupling to be achieved
by providing a place for information to be stored. This category describes most computer

systems available today.

B. Single Instruction Multiple Data (SIMD) :

These are known as vector or array processors, and are often microprocessor based
designs with multiple processing elements, a single Central Processing Unit and limited
memory. In SIMD, several processors execute the same instruction but on different data
originating from the memory associated with each processor. The DAP (Distributed Axray
Processor) [Hockney 81] is an example of SIMD. It consists of an array of processing

elements working in parallel.

C. Multiple Instruction Single Data (MISD) :

Here, although there is only one data stream, different parts of different

instructions are being processed at the same time, this is the standard pipeline

20

processing found in machines such as the IBM 3083 and ICL 3900 series [Cookl].

D. Multiple Instruction Multiple Data (MIMD) :

This implies that the distinct threads of control can be executing different
instructions and manipulating different data structures. This category covers most
multiprocessor and tightly coupled parallel processor computer systems. Tightly coupled
is the situation in which there is a great deal of processor interaction via shared
memory which may be logically addressed and directly accessed by all processors. A
network of transputers is an example of MIMD. But, each transputer has its own local
memory. That is, the memory is attached to each processor. The architecture of the

transputer will be discussed in the next subsection.

1.6, Hardware Architecture of The Transputer :

One development in the parallel processing area is provided by a new computer
architecture developed by Inmos Ltd as a microprocessor. This new processor is called
a transputer (TRANSistor comPUTER). The first member of the Inmos transputer family, the
IMS T4l4, was first announced in 1983. A typical member of the transputer product family
is a single chip containing processor, memory, and communication links which provide
point to point connection between transputers. Fig.l.8. shows the transputer hardware
architecture. Communication across the link takes place only once both ends are ready,
so that events are synchronised. The synchronisation of events was one of the major
problems in early attempts at parallel processing.

Current transputer products include the 16-bit IMS T212, the 32-bit IMS T414 and
the IMS T800. IMS T800 is a 32-bit transputer similar to the IMS T4l4, but with an
integral high speed floating point processor [Inmos 87][Inmos 88.al.

A transputer can be used in a single processor system or in networks to build
high performance concurrent systems, the system performance depending on the number
of transputers, the speed of inter-transputer communication and the floating point
performance of each transputer.

A network of transputers is easily constructed using point-to-point

2]

Floating Point Unit

vee —] jNE
GND —™ w
CapPlus —1 N 32 bit
CapMinus ™ 32 Processor
Reset—»
Analyse—® System
Errorin Services
Error <¢— : <4— LinkSpecial
Link s v
BootFromROM — Sardieas LinkOSpecial
Clockln— <4— Link123Special
PrOCSpeed 32 Link ~4— Link(n0
= o N 4__lntedace | (inkouto
';132 | Uk |<4— Linkia1
4 Kiwies : lnteface — LinkOut1
Kbyt N :
of ! " L 32 N ~ Link <4— LinkIn2
On-chip \4—9—-—1, N —4__Interface — LinkOut2
RAM 1 r
L : 22 Link <4— LinkIn3
ProcClockQut ¢— N4 [nterface — LinkOut3
notMemS0-4 «¢— N
notMemWrB0-3 <4— Extamal 22 | Event — Eventti e;?
notMemAd 4— = A RINaGc
notMemRf<4¢— 'memoq
MemWalt— EURCH MemAD2-31
MemContig—» " < 32 > MemnotR{D1
MemReq—P MemnotWrDO

MemGranted 4—

{MS T800 Block Diagram

Fig.l.8. Transputer Hardware Architecture

22

communication. That is, the transputers are hard-wired together in a physically rigid
structure. The pfocessing elements are homogenous and require no control, each cell
performing one computation at each step of the process, with input and output being
overlapped with the computation so providing a high performance. The basic transputer
processor speed is in the region of 10 MIPs, but because transputers do not share the
same communication bus the overall processing power increases theoretically linearly
with the number of transputers added; an array of, say, 32 such transputers should
provide a speed in the region of 320 MIPs. In the case of conventional processors, the
overall processing power improvement starts to diminish with the involvement of around
six processors [Brookes 89].

The actual physical connections among the cells will depend upon the specific
problem for which the architecture is intended to be used. It has been found, as stated
in [Carling 88] that certain interconnection patterns are more efficient when applied
to the structure of a specific problem. Because the systolic architectures under
discussion are hard-wired, the actual configuration can be optimised for one particular

algorithm by selecting a specific connection pattern,

1.7, Occam and The Transputer :

Transputers can be programmed in many high level languages, and are designed
to ensure that compiled programs will be efficient. Where it is required to exploit
concurrency, but still to use standard languages, Occam [Jones 88][Brookes 89] can be used
as a harness to link modules written in the selected languages. For example, transputers
can be programmed in C, Fortran, Pascal, Modula 2 and Ada, all with programming
extensions allowing programmers to prepare code in explicitly declared segments for
concurrent execution.

Occam language design has been closely associated with the development of the
transputer, Although Occam 1is not an assembly language, the architecture of the
transputer so closely implements Occam's constructs, and Occam so completely provides

for control of the hardware, that no assembler is required or desired for virtually any

23

application.

To gain most benefit from the transputer architecture, the whole system can be
programmed in Occam. This provides all the advantages of high level language, a
maximum program efficiency and the ability to use the special features of the
transputer,

Occam is an abstract language that has the dual role of being an implementation
language and a design formalism. A system is designed in terms of an interconnected set
of blocks. Each block can be considered as independent process. Thus, each process can
be regarded as an independent unit of design. Processes are connected to form concurrent
systems. Each process can be regarded as a black box with internal state, which
communicates with other processes. Processes can be used to represent the behaviour of
many things, for example, a logic gate, a microprocessor, a machine tool or an office.

A process communicates with other processes along point-to-point channels., Its
internal design is hidden, and it is completely specified by the messages it sends and
receives. Communication between processes is synchronized, removing the need for any
separate synchronization mechanism. Internally, each process can be designed as a set
of communicating processes. The system design is therefore hierarchically structured.
At any level of design, the designer is concerned only with a small and manageable set
of processes. The Occam language is based on these concepts, and supports the transputer
architecture from the logical point of view.

The processes themselves are finite, Each process starts, performs a number of
actions and then terminates. An action may be a set of sequential processes performed
one after another, as in a conventional programming language, or a set of parallel
processes to be performed at the same time as one another, Since a process is itself
composed of processes, some of which may be executed in parallel, a process may contain
any amount of internal concurrency, and this may change with time as processes start
and terminate,

As a result, Occam can be used to program an individual transputer or to program

a network of transputers. When Occam is used to program an individual transputer, the

24

transputer shares its time between the concurrent processes and channel communication
is implemented by moving data within the memory. When Occam is used to program a
network of transputers, each transputer executes the process allocated to it.
Communication among Occam processes on different transputers is implemented directly
by transputer links. Thus, the same Occam program can be implemented on a variety of
transputer configurations, with one configuration optimized for cost, another for

performance, or another for an appropriate balance of cost and performance,

1.8, Research Objectives :

There are many researches which have designed different system applications
using parallel processing techniques. There are also many research efforts that design
and implement OODBMSs, but none of these OODBMSs, according to the author's knowledge,
is designed or implemented using parallel processing techniques. That is why this
research is being carried out.

Thus, the main research objective is to explore parallel processing in an object
oriented database management system. So, the main tasks of this research are involved

in :

A. Investigation of The Different Aspects of Parallelism :

As mentioned before, object oriented database management systems are intended to
meet the needs of new and emerging database applications. But, an OODBMS is a complex
system. Moreover, a number of hard problems remain to be solved. These include :
improving the overall performance of object oriented system. As the improvement and
widespread use of parallel computers become more common, it is important to design and
implement a complex system such as OODBMS using parallel processing. This is due to :

1. Most real systems are inherently parallel in nature. So, the implementation of
these systems in sequential manner must inevitably lack some of the semantic aspects
of the real problem.

2. Development of OODBMS is expected to solve both the efficiency and cost

performance problems which may be encountered in uniprocessor systems.

25

The main mechanism for parallel processing, in most of the current applications,
is to distribute the work load of the system across different processors simultaneously
to gain the high performance of the system, However, this is not the only mechanism for
parallel processing. In this research, other mechanisms for parallel processing with

regard to OODBMSs are introduced to increase the system performance.

B. Development of An Experimental Parallel OODBMS :

KBZ [Oxborrow 88.a] is taken into consideration as a specific example to build
an OODBMS prototype in this research. The development of the experimental KBZ OODBMS
is used as a test-bed for many of the aspects of parallelism which will be discussed.

Moreover, the system prototype is implemented to satisfy the "Parallel Processing
Transparency' concept, That is, the end user must be unaware of how his own message

would be executed in parallel in different processors.

It has to be mentioned that the prototype is implemented on the Transputer
Computing Surface at the University of Kent using Occam programming language. The
main reasons for using Occam are :

1. Occam model is simple to simulate the '"real world" concept. The "real world" is
overflowing with concurrent objects and Occam has the capability to capture their
structures directly down to a fine level of granularity. It is simple to model an object's
behaviour, internal data structures and interactions with other objects from its own
point of view [Welch 88]. Moreover, Occam does provide support for sophisticated message
structures through its concept of PROTOCOL. Its model of message-passing parallel
processes forms the basis for more powerful and explicit abstractions of the "object"
concept in the object oriented paradigm.

2. Occam system language is a simple language founded upon a simple and secure

model of concurrency for transputers. Moreover, Occam has a small range of constructs.

1.9, Thesis Layout :

This thesis consists of seven chapters. In this chapter, the research background

26

has been introduced. It contains, the features and limitations of the current
traditional database management systems, the new features of non-traditional database
management systems, the potential of the object oriented approach, the potential of
parallel processing and the research objectives.

In chapter two, a survey of the state of the art in related researches is given.

In chapter three, one of the main objectives of this research is illustrated. This
chapter is concerned with the different aspects of parallelism which can be implemented
within the scope of the object oriented database management systems.

In chapters four and five, the second objective of this research is discussed;
that is, the development of an experimental KBZ OODBMS prototype on the transputer
Meiko Computing Surface.

In chapter six, both the enhancement of the prototype and the experimental

results are discussed.

In chapter seven, the conclusions and the future researches are described.

27

CHAPTER 7
The State of The Art In Related Research

2.1, Introduction :

In this chapter, the state of the art in related research will be discussed. Since,
this research relates to two major research areas, a small selected number of existing
systems which cover both the object oriented paradigm and parallel processing
techniques are investigated. Two sequential OODBMSs will be discussed: EXODUS [Carey
86.a], and IRIS (Fishman 87]. In addition, object oriented systems with parallel features
will be illustrated: PRESTO [Bershad 88], Rekursiv [Harland 88], and CHANCER [Chalners 89],
Finally, an application of parallel query processing on a Meiko Computing surface will

be discussed [Kerridge 87].

2.2, Object Oriented Database Management Systems :

2,2.1, EXODUS DBMS:

EXODUS [Carey 86.a] is a DBMS that facilitates the fast development of high-
performance, application-specific database systems. EXODUS provides certain Kkernel
facilities, including a versatile storage manager and a type manager. EXODUS has been

designed at the University of Wisconsin,

A. An Overall EXODUS System Architecture :

EXODUS is designed to provide a toolbox that can be easily adapted to satisfy the
needs of new applications such as engineering design, image and voice data management
... etc. EXODUS supplies at its lowest level a layer of software termed the '""Storage Object
Manager' which provides support for concurrent and recoverable operations on arbitrary
size storage objects,

EX0ODUS provides either a "generator" or a "library' to aid the user in generating

the appropriate software, EXODUS is expected to be used for a wide variety of

28

applications, each with a potentially different query language. As a result, it is not
possible for EXODUS to furnish a single generic query language, and it is accordingly
impossible for a single query optimizer to suffice for all applications. Instead, EXODUS
provides a generator for producing query optimizer for algebraic languages.

Fig.2.l. represents the structure of an application-specific database management
system implemented using EXODUS. The Storage Object Manager provides capabilities for
reading, writing, and updating ''storage objects'. The storage object is an untyped,
uninterpreted variable-length byte sequence of arbitrary size. The Storage Object
Manager is enhanced by providing buffer management, concurrency control, and recovery
mechanisms for operations on shared storage objects.

The Storage Object Manager contains the E programming language and compiler, E
extends C by adding the notion of persistent objects to the language's type definition.
Whenever persistent objects are referenced, the E translator is responsible for adding
the appropriate call to fix/unfix buffers, read/write the appropriate piece of the
underlying storage object, lock/unlock objects, ... etc. Thus, the user is freed from
having to worry about the internal structure of persistent objects. For buffering,
concurvrency control and recovery, the E language includes statements for associating
locking, buffering, and recovery protocols with variables that reference persistent
objects. The objective of E is to simplify the development of internal systems software
for a DBMS.

A collection of access methods is layered above the Storage Object Manager. Access
methods provide associative access to files of storage objects. For access methods,
EXODUS provides a library of type-independent index structures including B+ trees and
linear hashing.

The "Operator Methods' layer contains a mix of user's code and EXODUS code. This
layer contains a collection of methods that can be combined with one another in order
to operate on storage objects.

The "Type Manager' provides schema support for a wide variety of application-

specific database systems. The data modelling facilities provided by the "Type Manager"

29

Query

QUERY)

OPTIMIZER
AND

COMPILER

A

COMPILER
QUERY

PARSER

OPERATOR
METHODS

ACCESS
METHODS

TYPE
MANAGER

CONCURRENCY

RECOVERY
i

STORAGE
OBJECT
MANAGER

<

SCHEMA

DATABASE

Fig.2.1. The Structure of An Application-Specific DBMS Implemented Using EXODUS

30

are basically those of a generalized class hierarchy with multiple inheritance,

To start an EXODUS operation, a query is sent to the "PARSER'. The parser is
responsible for transforming the query from its initial form into an initial tree of
database operators. After parsing, the query is optimized, and then compiled into an
executable form. During the parsing and optimization phase, the '"Type Managey" is

invoked to extract the necessary schema information.

B. EXODUS Conclusion :

EXODUS is an extensible database system which is intended to simplify the
development of high-performance, application-specific database systems.

EXODUS includes two components that require little or no change from application
to application - the Storage Object Manager and Type Manager. The Storage Object
Manager in EXODUS is a flexible storage manager that provides concurrent and
recoverable access to storage objects of arbitrary size, The Type Manager is a class-
based schema management subsystem. The base types can be extended by the user. In
addition, EXODUS provides vlibraries of database system components that are likely to
be widely applicable, including components for access methods, version management, and
simple operations. Furthermore, EXODUS provides the E database implementation language
which supports persistence and to a great extent shields the user from the recovery

protocols.

2.,2.2, Iris DBMS :

The Iris [Fishman 87][Fishman 89] database management system 1is a yresearch
prototype of an OODBMS being developed at Hewlett-Packard laboratories, Iris is intended
to meet the needs of new and emerging database applications such as office information

and knowledge-based systems, engineering test and measurement, and hardware and

software design.

A, Iris System Structure :

Fig.2.2. shows the layered architecture of Iris. The Object Managey implements the

31

Object Graphical C Objects Lisp Objects

SQL Editor C-Iris Lisp-Iris

Object

Manager

A

Storage

Manager

Data
Base

Fig.2.2. Iris DBMS Structure

32

Iris data model which supports high-level structural abstractions such as
generalization/specialization, and aggregation. The query processor of Iris depends upon
an extended relational algebra format. So, the query is optimized and then interpreted
against the stored database.

The Iris Storage manager is a conventional relational storage subsystem. It
provides associative access and update capabilities to a single relation at a time and

includes transaction support.

Iris is accessible via dinteractive interfaces or through interface modules
embedded in programming languages, such C-Iris and Lisp-Iris in Fig.2.2.

There are two interactive interfaces, Object SQL (0SQL) which is an object-
oriented extension to SQL, and a Graphical Editor which allows the user to
interactively explore the Iris type structure as well as the inter object relationship

structures defined on a given Iris datahase.

B, Iris Conclusion !

Iris is an OODBMS prototype. It is implemented in C. The Storage Manager still
essentially needs modification, since it is implemented by a conventional relational
storage subsystem., Other object-oriented programming languages, including C++ are under

investigation for use in redesigning the Iris System.

2.3, Object Oriented Systems with Parallel Features :

2.3.1. PRESTO :

PRESTO [Bershad 88] is a programming system for writing object-oriented parallel
programs in a multiprocessor environment. PRESTO consists of an object-oriented
language C++ [Stroustrup 86], a library of basic tools constructed in this language, a
run-time system providing efficient support, and a programming methodology.

PRESTO 1is designed and implemented to build distributed object-oriented systems
in a multiprocessor environment. In distributed systems, an object-oriented programming

paradigm makes it easier to think about and to express concurrent algorithms. Each

33

object is responsible for maintaining its own internal consistency.
Moreovey, PRESTO provides efficient concurrency and synchronization mechanisms.
PRESTO allows the programmer to use parallelism in the manner most natural to the

problem at hand.

A, Why C++ with PRESTO:

PRESTO is implemented in C++ because C++ supports the object-oriented paradigm.
PRESTO currently runs on the Sequent shared-memory multiprocessor on top of the Dynix
operating system., That is, PRESTO exists now on only one machine, But, it can be ported
to other multiprocessors, since it is written in a high level language.

Since PRESTO is written in C++, it is most naturally used with applications
written in that language. Although it is possible to use the system from other
languages, many of PRESTO's concepts will be difficult and time-consuming to express.
So, users are encouraged either to write completely in C++, or to build application-

specific interfaces between languages.

B. PRESTO object model :

PRESTO provides the programmer with several classes useful for writing parallel
programs. A "class" in PRESTO is a user-defined data type allowing the programmer to
specify an object in terms of its data representation and operations. These classes, and
the envivonment in which they execute, help support two of the major goals of PRESTO:
efficient execution and comfortable abstractions for expressing concurrency.

In PRESTO, all objects execute in a single address space shared by all processors,
allowing for fast inter-object communication and synchronization through shared
storage. In a sequential object-oriented system, an object hides its data and its
implementation. In PRESTO, an object hides not only its data and its implementation, but
also its execution. That is, when a caller invokes an operation on an object, the caller
is unaware whether that operation executes sequentially or in parallel. The implementor
of an object determines the extent of parallelism that is appropriate to the object,
Dealing with concurrency in this manner simplifies the task of writing parallel

34

programs.

C, PRESTO Thread Class :

Thread objects (threads) are the building blocks of PRESTO parallel programs.
There are two essential operations that can be performed on a thread. A thread can be
"created', allowing the creator to specify the thread's qualities, such as its name and
maximum storage requirements. Once created, a thread can be started executing some
operation of some object, where in it executes in parallel with the starting thread.
"Start", in fact, is an operation defined for threads; parameters include the object, the
operation where the thread is to be started, and any parameters expected by that
operation.

The '"user" of an object chooses between synchronous and asynchronous
i