
Fathy, Sherif Kassem (1991) Exploring parallelism with object oriented
database management system. Doctor of Philosophy (PhD) thesis, University
of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94340/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94340

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94340/
https://doi.org/10.22024/UniKent/01.02.94340
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

EXPLORING PARALLELISM WITH AN OBJECT ORIENTED
DATABASE MANAGEMENT SYSTEM

SHERIF KASSEM FATHY

A Thesis submitted for the Degree of
Doctor of Philosophy in Computer Science

University of Kent at Canterbury
England

March 1991

ÌH~'i 13

N3?f/S

£S

V;

A b s tra c t

The object oriented approach to database management systems aims to remove the

limitations of the current systems by providing enhanced semantic capabilities and

more flexible facilities, including the encapsulation of operations as well as data in

the specification of an object. Such systems are certainly more complex than existing

database management systems. Although, they are complex, the current object oriented

database management systems are built for Von-Neumann (purely sequential) machines.

Such implementation inevitably leads to major problems involving efficiency and

performance. So, new techniques for implementation need to be investigated.

One possible solution for the efficiency, and performance problems is to use

parallel processing techniques. Thus, the aim of this research is to propose aspects in

which parallel processing can be introduced within the scope of object oriented database

management systems and identify ways in which the performance can be improved. A

prototype of the main components of an object oriented database system called KBZ has

been implemented to test out some of the parallel processing aspects.

The thesis starts with an introduction and background to the research. It then

describes major parallel system architectures for an object oriented database management

system. Techniques such as distributing a large volume of data among various processors

(transputers), performing processing in the background of the system to reduce response

time, and performing input/output parallel processing are presented. The initial

prototype, PKBZ version-1, is then described; in particular, the logical and physical

representation of object classes, how they communicate through message sending, and the

different types of message supported. Two prototype versions exist. The initial prototype

was designed to investigate the parallel implementation and general functionality of

the system. The second version provides greater flexibility and incorporates enhanced

functionality to allow experimentation. The enhancements in the second version are also

discussed in the thesis, and the experimental results using different transputer

configurations are illustrated and analyzed.

l

Acknoniedgeients

At the completion of this work, I would like to express my deep gratitude to Dr.

Elizabeth Oxborrow. I feel most in debit to her constructive criticism, valuable

guidance, and patience during the research.

I would like to thank Mr. R. E. Jones for great help during the implementation

phase.

Thanks are due to all the staff of the Computing Laboratory, and especial thanks

to the people in Meiko Room at the University of Kent, exclusively Prof. Peter Welch,

Tony Curtis, Vedat Demiralp, and Godfrey Paul.

I am extremely grateful to my wife and to my children Samer and Nader, for their

support, encouragement, and patience.

I would like to express my extremely sincere gratitude to my parents for their

prayers, which have been the greatest benefit to me. Especial thanks to my brother

engineer Rabeh for his looking after my complex affairs during my research.

I would like to acknowledge the financial support provided by the Egyptian

government throughout my research.

Especial thank to all my colleagues in my college at Egypt.

11

TABLE OF CONTENTS
CHAPTER 1: Research Background :

1.1. Introduction 1
1.2. Introduction to Object Oriented Database Management

Systems .. 2
A. Data Modelling Constructs 2
B. Semantic Aspects 2
C. Data Integrity 3
D. Rules Storage Capabilities 3

1.2.1. New Non-traditional DBMSs 3
A. Adapted Relational Databases 4
B. Adapted Logic-based Databases 4
C. Object Oriented Databases 4

i. Non Object Oriented Languages 5
ii. Extended Object Oriented languages 5

1.3. The Potential of Object Oriented Approach 5
A. Object Concept and Encapsulation 6
B. Classes and Inheritance 8
C. Overloading, Overriding and Late Binding 9

1.4. THE KBZ Object Oriented Database System 10
1.4.1. Basic Objects 12
1.4.2. Structural Objects 12
1.4.3. Derived (Complex) Objects 17

A. Entity Aggregate 17
B. Subtypes .. 17

1.5. Introduction to Parallel Processing 19
1.5.1. Classification of Computer Systems 20

A. Single Instruction Single Data (SISD) 20
iii

B. Single Instruction Multiple Data (SIMD) 20
C. Multiple Instruction Single Data (MISD) 20
D. Multiple Instruction Multiple Data (MIMD) 21

1.6. Hardware Architecture of The Transputer 21
1.7. Occam and The Transputer 23
1.8. Research Objectives 25
1.9. Thesis Layout 26

CHAPTER 2 : The State of The Art In Related Research :
2.1. Introduction....................................... 28
2.2. Object Oriented Database Management System 28
2.2.1. EXODUS DBMS 28

A. An Overall EXODUS System Architecture 28
B. EXODUS Conclusion 31

2.2.2. Iris DBMS 31
A. Iris System Structure 31
B. Iris Conclusion 33

2.3. Object Oriented Systems with Parallel Features 33
2.3.1. PRESTO ... 33

A. Why C + + with PRESTO 34
B. PRESTO object model 34
C. PRESTO Thread Class 35
D. PRESTO System Architecture 35
E. PRESTO Conclusions 36

2.3.2. Rekursiv : An Object-Oriented CPU 38
A. Rekursiv Architecture 38
B. Rekursiv Operation 39
C. Rekursiv Microcode 42
D. Rekursiv Applications 42

IV

E. Rekursiv Conclusion 43
2.3.3. CHANCER .. 4 3

A. Chancer Message 43
B. Chancer Object 44
C. System Operation 46
D. Chancer Conclusion 46

2.4. Parallel Query Operation 47
A. General operation 47
B. Conclusion of Parallel Query Operation 49

2.5. General Conclusion 49

CHAPTER 3 : Parallel Processing Aspects In An Object Oriented
Database Management System ;

3.1. Introduction 51
3.2. General Description of the PKBZ Architecture 51

3.2.1. External Management System (EMS) 51
3.2.2. Object Management System (OMS) 53
3.2.3. Storage Management System (SMS) 54

3.3. Different Aspects of Parallelism in PKBZ 54
3.3.1. Parallel on Transputers 55

A. Homogenous Parallel System Architecture 56
* Simple Homogenous Parallel System Architecture 56
* Complex Homogenous Parallel System Architecture 59

- Static Group 59
- Dynamic Group 61

B. Hybrid Parallel System Architecture 61
3.3.2. Parallel on a Single Transputer 62
3.3.3. Parallel on The Instructions 66
3.3.4. Parallel Data Distribution 67

v

3.3.5. Parallel on Background 69
A. Complete/Incomplete Parallel Processing 70
B. Object Update Parallel Processing 71
C. File Simulation Processing 73

3.4. Memory Object Grouping in PKBZ 78
3.4.1. Type of Memory Object grouping 78

A. Inheritance Structure Grouping 78
B. Non-Inheritance Structure Grouping 79
C. Random Grouping 8 0
D. Sequential Grouping 80

3.4.2. Allocation of Memory Object 81
A. Demanded Object 81
B. Inherit Structure Object 81

3.4.3. Deallocation of Memory Object 82
3.5. Conclusion ... 82

CHAPTER 4: PKBZ Implementation : Object Class Representation
4.1. Introduction 85
4.2. Logical Representation of the Object Class 86
4.2.1. Memory Object Representation 88

A. Object Identification 88
B. Property Names and Types of The Object Class 89

B.l. Basic Object Property Names and Types 89
B.2. Structural Object Property Names and Types .. 89
B.3. Entity Aggregate Object Property Names

and Types 90
C. Inheritance Information 91
D. Constraints and Functional Properties 93

4.2.2. Memory Object Instances Representation 93

vi

A. Basic Memory Object Instances Representation 94
B. Structural Memory Object Instances Representation 94
C. Derived Memory Object Instances Representation ... 96
D. Page Object Instances Representation 98
E. Instance Description 100

4.2.3. Object Methods and Constraints Representation ... 102
4.3. System Object Classes 103

A. OBJECT-ID Object Class 103
B. OBJECT-NAME Object Class 103
C. OSCHEMA Object Class 105
D. HAS-ONAME Object Class 105
E. HAS-OSCHEMA Object Class 105

4.4. Physical Representation of the Object Class 106
4.4.1. Instances Memory Object Transformation 107
4.4.2. Schema Memory Object Transformation 110

4.5. Database Pile. Structure Ill
4.5.1. Schema System Group 112
4.5.2. Instances System Group 113
4.5.3. Database System Group 114

4.6. Conclusion .. 116

CHAPTER 5: PKBZ Implementation : Messages
5.1. Introduction .. 118
5.2. The PKBZ Version-1 General Block Diagram 118
5.2.1. Hardware Channel Functions 120

5.3. PKBZ Object Oriented Database Operation 122
5.4. PKBZ Object Oriented Database Messages 125

5.4.1. System Messages 125
A. Create Database Message 127

vii

B. Open Database Message 130
* File Simulation Process 133
* Analysis Order Process 135

C. Close Database Message 137
D. Create Object Class 138

5.4.2. Internal Messages 141
A. Open Object Message 141
B. Generate Surrogate Message 142
C. New Page Number Message 142
D. Update Object Message 142
E. Update Inherited By Message 143

5.4.3. Memory Object Message 143
A. Display Schema Description Message 143
B. Inherits Messages 144
C. Transaction Messages 144

C.l. Addition Messages 144
C.2. Retrieval Messages 145

* Check Instance Existence 145
* Get All Object Instances 146
* Get Specific Values 146

C.3. Updating Messages 146
C.4. Deletion Messages 147

5.4.4. Page Object Messages 147
A. Get Part Of Instance 148
B. Add Part Of Instance 148

5.5. Conclusion .. 148

Chapter 6: PKBZ Version-2 and Experimental Results
6.1. Introduction .. 150

viii

6.2. An Object Class Logical Representation (Memory Object)
Version-2 ... 151

6.3. Communication Channel Modifications 152
6.3.1. PKBZ vcrsion-2 General Block Diagram 152
6.3.2. Memory Object Communication Channels 154

6.4. Memory Object Instances 154
6.5. External Management System Batch Processing 155
6.6. PKBZ System Performance Evaluation 158

6.6.1. PKBZ Speed Up 161
6.7. Conclusion .. 162

Chapter 7: Conclusion and Future Researches
7.1. Introduction .. 165
7.2. Problem Areas With an OODBMS 165
7.2.1. Standard Definitions 165
7.2.2. Performance Problem 166
7.2.3. Secondary Storage Problems 166
7.2.4. Schema Evolution 166

7.3. Problem Areas With Parallel Processing 167
7.3.1. Deadlock Problem 167
7.3.2. Non-dctcrministic Behaviour 167
7.3.3. Static Language 168
7.3.4. Pattern Problem 168
7.3.5. Limited Number of Communication Channels 169
7.3.6. Imbalance Problem 170
7.3.7. Investment Limitation 170
7.3.8. Natural Human Limitation 170

7.4. Conclusion .. 171
7.5. Future Researches 174

IX

Reference 176

APPENDIX A: PKBZ Object Oriented Database Management System
Constants and Variables Description

A.l. Miscellaneous Variables Description and Values 183
A.2. Object Type Identifier Values 184
A.3. Instance Type Identifier Values 184
A. 4. Physical Instance Size According to Object

Type Instance 185

APPENDIX B : PKBZ Schema Data Structure
B. l. The Object Identification Data Structure 186
B.2. The Object Class Property name and Types

Data Structure 187
B.3. The Object Class Inheritance Information

Data Structure 188
B.4. The Object Class Constraints Data Structure 189
B.5. The Object Class Functional Properties Data Structure 190
B. 6. The Instances Description of Object Class

Data Structure 191

APPENDIX C: PKBZ Instance Data Structure
C. l. The Data Structure of The Entity Set Instances and

Attribute Set Instances of Integer Type 192
C.2. The Data Structure of Attribute Set Instances of

String Type 192
C.3. The Data Structure of The Structural Object Instances 193
C.4. The Data Structure of The Entity Aggregate Object

x

Instances ... 195
C . 5 . The Data Structure of The Page Object Instances 195
C.6. The Data Structure of The Page Data Region in

Page Object Instance 196

APPENDIX D: PKBZ Protocols Descriptions
D.l. Protocol REQUEST.ORDER Definition 197
D.2. Protocol INSTANCE Definition 199
D. 3 . Protocol OBJECT.SCHEMA Definition 200

APPENDIX E: PKBZ Message Function and The Data Structure
Descriptions
E.l. Common Variables Data Structure 201
E. 2 . REQUEST.ORDER Messages Data Structure 204
E. 3 . INSTANCE Messages Data Structure 207
E . 4 . OBJECT.SCHEMA Messages Data Structure 208

APPENDIX F: Database System Group Data Structure 209

APPENDIX G: External Management System Screens In PKBZ
G . 1. The Basic Screen 210
G . 2 . The Message Screen 211
G. 3 . The Creation Screen 212
G. 4 . Create Structural Object Screen 213

XI

CHAPTER 1

Research Background

1.1. Introduction :
Much recent research effort has been put into designing and building Object-

Oriented DataBase Management Systems (OODBMSs) which accommodate a wide range of

potential applications by supporting rich semantics and a high degree of flexibility

and extensibility. Such researches include the Iris system [Fishman 87][Fishrnan 89] at

Hewlett-Packard laboratories, ZEITGEIST [Ford 88] at Texas Instruments, ENCORE [Zdonik

86], EXODUS [Carey 86.a][Carey 87] at the University of Wisconsin, and other researches.

OODBMS is a complex system. Although, it is complex, the current OODBMSs are built for

Von-Neumann (purely sequential) machines. Such implementations inevitably lead to large

problems involving efficiency and cost performance.

On the other hand, parallel processing technology provides huge processing

capabilities that can be used in implementing an OODBMS. So, this research is being

carried out to develop a prototype KBZ OODBMS [Oxborrow 88.a] using parallel processing

technique. The developed prototype Parallel KBZ (PKBZ) is designed and implemented using

Occam [Jones 86][Carling 88] as the parallel programming language on a Meiko computing

surface * .

In this chapter, the research background will be introduced. An introduction to

object oriented database management systems (OODBMSs) will be described in subsection

1.2. The potential of the object oriented approach will be illustrated in subsection 1.3.

The KBZ OODBMS model will be described in subsection 1.4. Then, an introduction to

parallel processing will be discussed in subsections 1.5. The hardware architecture of

the transputer will be illustrated in subsection 1.6. The relation between Occam and

transputer will be described in subsection 1.7. The research objectives will be

1 Meiko and computing surface are trademarks of Meiko Scientific Computing,
and Occam is a trademark of the Inmos group of companies.

1

illustrated in subsection 1.8. Finally, the thesis layout will be described in subsection

1.9.

1.2. Introduction to Object Oriented Database Management Systems:

The requirements of most of the business applications can be satisfied quite well

by the current DataBase Management System (DBMSs). However, some scientific and

engineering applications, like Expert System, Computer Aided Design, Image Processing,

and Pattern recognition, demand extra requirements from the database systems. These

requirements are beyond the scope and the capabilities of the current DBMSs, even

Relational Systems, since these applications are quite different in their modelling, data

storage and retrieval. The features and the limitations of the current DBMSs can be

summarized in the following :

A, Data Modelling Constructs :

The native data types available on most current DBMSs are integer, floating

point, character, boolean, pointer ... etc. These data types may be sufficient for some

applications in commercial systems such as Banking. These native data types are

aggregated into tuples (in Relational DBMSs) [Date 83] or records (in the other DBMSs)

[Codasyl 81.a.][Codasyl 81.b.][IMS], The simple record structure underlying existing DBMSs

is too rigid for engineering applications, since a low level representation in the

engineering domain is unacceptable. It is essential to be able to work in terms of much

more complex structured data types, with the ability to treat complete data structures,

from simple matrices to complex layout diagrams, as a single entity.

B. Semantic Aspects :

In current DBMSs, the semantics of raw data are split between the database

description and the application programs. Hence, some semantics not only are hidden

in application programs, but also duplicated in different application programs to

enforce semantic aspects. This aspect is due to the fact that the current DBMSs do not

support the real system environments. Hence, it would be preferable to store the

2

semantics along with the data, thus making the data responsible for enforcing its

correct use.

C. Data Integrity :

The current DBMSs store database schema separate from the actual data. Such

separation is unnatural, since the data is meaningless without schema description. For

example, in the engineering design, some sort of version control is needed. That is

tracking changes of the data and schema with time, would be useful. This version

control is important in coordinating a multi stage design process as well as return

to a previous version. Such integration of data and schema is not provided in the

current DBMSs.

D. Rules Storage Capabilities :

Most current DBMSs can handle and enforce some validation checks or constraints

(i.e. values, ranges ... etc.). Such validation checks are stored in the schema. Artificial

intelligence applications, and expert systems, for example, need to store not only data

and validation checks, but also rules and constraints applied to the data. In real

applications the number of rules and constraints applied to the data cannot be stored

in the main memory, so a DBMS is needed. However, current DBMSs do not support general

rules storage.

1.2.1. New Non-traditional DBMSs:

A number of database research efforts are being directed to build new database

systems to accommodate a wide range of potential applications which are not supported

by the current traditional database systems. Although, the goals of these research

efforts are similar, and each uses some of the same mechanisms to provide extensibility,

the overall approach of each research is quite different. In general, the new systems

being designed and developed may be grouped into three main approaches :

a. Adapted Relational Database Systems

b. Adapted Logic-based Database Systems

3

c. Object Oriented Database Systems

A. Adapted Relational Database Systems :

This approach can be considered as object oriented front ends onto an underlying

relational database system. That is, the relational database system is extended to

provide new functionality. For example, STARBURST [Schwarz 86][Lindsay 87], and POSTGRES

[Stonebraker 86][Rowe 87] are complete database systems, each with a different well-

defined data model and query language. Each system aims to provide the capability for

users to add extensions such as new abstract data types and access methods within the

framework provided by their data model.

B. Adapted Logic-based Database Systems :

Some of the recent research has combined logic programming technology with

database technology to produce Expert or Logic Database Systems [Kerschberg 86]. Some

research effort has been based on Prolog and databases. For example, [Zaniolo 86.a] and

[Gray 85][Gray 88] have investigated the combination of Prolog with Codasyl network.

It has to be mentioned that the adapted logic-based approach is aimed at solving

the problem of large volumes of rules needed in Expert System environments [King 84],

while the other two approaches are mainly concerned with the need to support

semantically rich and complex data models.

C. Object Oriented Database Systems :

A lot of research is being carried out to implement Object Oriented Database

Management Systems. Some of these researches are just prototypes : Iris [Fishman

89][Fishman 87], Gemstone [Purdy 87], ZEITGEIST [Ford 88], 02 [Bancilhon 88], POSTGRES

[Stonebraker 86], ORION [Kim 89][Banerjee 87], ENCORE [Zdonik 85][Zdonik 86][Hornick 87],

DAMOKLES [Dittrich 89], EXODUS [Carey 85][Carey 86.b][Carey 87], 0Z+ [Weiser 89], and KBZ

[Oxborrow 88.a], But some researches have become commercial products : G-base [G-base 88],

VISION [Caruso 87], and Ontos [Andrews].

There are variations in these systems with regard to the basic object types

4

which are supported and the mechanisms provided for deriving objects based on other

objects, since as mentioned in [Atkinson 89] no standard terminology exists at present

and the overall approach of each research is quite different. Furthermore, each system

has different data model definition and each provides the end user with different

accessing methods. For example, 0Z+ [Weiser 89] is designed to support an object oriented

office information system programming environment, while ORTON [Kim 89] provides

various advanced functions required by applications from the CAD/CAM, and artificial

intelligence domains. The variations in some different OODBMSs are illustrated in

[Oxborrow 88.b], A survey of OODBMSs may be found in [Thearle 89].

The object methods (implementation of an object's behaviour) may be written in a

suitably extended standard programming language. The access to instance variables of

the object is usually performed via a method. These methods, of course, can be executed

in one of the several different languages.

In general, there are two approaches to designing and implementing the object

oriented database management systems :

i. Non Object Oriented Languages :
These object oriented systems are being designed or prototyped in high level

languages which are not object oriented languages. For example, 0Z+ [Weiser 89] is being

prototyped on a set of Sun-3/50 clients supported by a Sun-3/280 file server [Sun 86] and

it is written in C [Kernighan 88].

ii. Extended Object Oriented languages :

These object oriented systems are usually designed using object oriented

languages. For example, both EXODUS [Carey 87J and Ontos [Andrews] are based on C++

[Stroustrup 86][Dewhurst 89] object oriented language. While Gemstone [Purdy 87] is built

in Smalltalk [Goldberg 84] object oriented language.

1.3, The Potential of the Object Oriented Approach :

The object oriented paradigm represents one of the most successful paradigms in

5

many areas of computer science. Object oriented paradigms have been popularized mainly

through Smalltalk [Goldberg 83], building upon the concept of an "object class"

introduced in Simula [Birtwistle 73]. This is not surprising, since it is quite natural

to model real life entities as software objects.

The use of an object oriented paradigm in database management systems is aimed

towards getting rid of the previous problems of the current database systems. Thus, it

is better to discuss the main advantages of the object oriented database approach in

the context of the discussion in subsection 1.2, so the main features of OODBMS are

summarized in the following :

A. Object Concept and Encapsulation :

In the OODBMS, everything is viewed in terms of objects. An object can represent

anything from single number, e.g. 10, to a complex entity such as EMPLOYEE or VEHICLE.

Objects are entities that combine the properties of procedures and data, since they

perform computations and save local state.

Object schemata and object data are logically integrated together inside each

object. Such integration provides a high degree of "Data Integrity" which is not

supported by the current DBMS as described in subsection 1.2.

Objects communicate and perform all computation via "messages". The behaviour

of an object is captured in the messages to which an object responds. All of the action

in the object oriented approach comes from passing messages between objects. Message

sending is a form of indirect procedure call.

Messages, with any arguments that may be passed with the messages, constitute

the public interface of an object. An object reacts to a message by executing the

corresponding method. The principle of message sending is that calling programs should

not make assumptions about the implementation and internal representation of data

types that they use, so the underlying implementation can be changed without changing

the calling programs. That is, every object comes endowed with a set of operators which

are used to operate upon and change the state of the object. An object consists of an

6

interface part, which is public, and an implementation part, which is kept private.

Thus, this new database object concept overcomes the limitation described under

"Data Modelling Constructs" in subsection 1.2., since each object is viewed as a complete

entity in itself. Furthermore, by hiding the internal representation of the data, an

object can provide the complex data structures to be represented, with the ability to

treat complex data structures as a single entity in the sophisticated applications. This

facility gets rid of the rigidness of the simple record structure underlying existing

current DBMSs.

In addition, encapsulation is one of the major advantages in object oriented

database systems, since it packages data together with related methods used to access

or modify an object. Encapsulation has traditionally been important in computer science,

in general, for the simple reason that it is necessary to decompose large systems into

smaller encapsulated subsystems that can be more easily developed, maintained, and

ported. Moreover, encapsulation provides a way that the system can store the semantic

aspects along with data, thus making the data responsible for enforcing its correct use.

That is, the semantics of raw data are not split between the database description and

the application programs. Hence, the semantics are neither hidden in application

programs nor duplicated in different application programs. Thus, the encapsulation

concept gets rid of the limitation of "Semantic Aspects", described in subsection 1.2.,

of the current DBMSs.

The only way that an object is accessed by the outside world is by invoking one

of its methods to access the data encapsulated in the object. Hence, the internal data

structures and data inside an object are totally isolated. This provides system design

modularity; it ensures that the data structures are easily accessible to the methods

that use them, and provides a high degree of integrity for the data.

In OODBMS, rules can be stored in the form of methods. Such a facility provides

a tool to overcome the limitation aspect of "Rules Storage Capabilities", described in

subsection 1.2., of the current DBMSs. Moreover, methods can also be used to handle

constraints on the data values.

7

B. Classes and Inheritance :

Classes describe collections of objects, so similar objects are grouped together

into a class. Objects are organized into classes that contain the methods that the

objects use to respond to a message.

All objects belonging to the same class are described by the same instance

variables and the same methods. They all respond to the same messages. Thus, the class

defines the data type, and the operations are methods the class responds to. That is, a

class describes the form (instance variables) of its instances and the operations

(methods) applicable to its instances. In general, a class has only one type, but a type

may be associated with more than one class. A class contains the code and the data

structure needed by its instances. This allows the class to be responsible for creating

new objects and enables dynamic extensions to a running application program.

Inheritance is a relationship in object oriented systems which provides a way

of sharing behaviour between objects. Every inheritance relationship has parents and

children and properties which are inherited. The parents and children in an inheritance

relationship could be classes or instances and the properties could be methods, instance

variables, rules, constraints, values etc.

Classes are organized in a hierarchy or lattice, so that, they can inherit the

structures and methods of their superclasses. Moreover, the type of an object not only

may be based on other object types, but also may include new additional properties.

Hence, objects with complex structure can be constructed. That is, classes can be

organized into an implementational hierarchy so that objects in a lower class can

inherit not only the internal data structure, but also methods of its parent class. The

hierarchy can be either a tree structure, or multiple inheritance structure where a

class can be a subclass of two independent classes [Schaffert 86], It has to be mentioned

that not all OODBMSs support multiple inheritance structure. Inheritance can be strict,

that is a subclass can only add new methods to its parent's methods, or non-strict, when

a subclass can override the inheritance mechanism and redefine some or all of its

8

parents' methods. That is the main advantage of the inheritance, since it provides a

powerful code-sharing mechanism that can greatly reduce the effort required to create

new object classes instead of new code having to be written.

C. Overloading, Overriding and Late Binding:
Consider the case when an application program wishes to apply the same methods

to different objects with various types and the method is completely dependent upon the

object type. The application program must know in advance the object type and tailor

especial code according to this type. This implies that when a new complex object is

specified, a new code must be tailored to adapt the current situation. In OODBMSs, this

problem is solved by redefining the implementation of the operation for each of the

types according to the type. This results in a single method name denoting different

methods according to object type. That is, the system picks the appropriate

implementation during the run-time according to object type. This process is called

"overloading".

When a subclass can override the inheritance mechanism and redefine some or

all of its parents methods, this process is called "overriding".

The main advantages of these properties are that the application programmer

does not have to worry about the different system codes necessary to implement the

method. In addition, the programmer's code is simpler as there is no type checking to

perform the relevant system code. That is, there is no 'case' statement checking on types.

Thus, the programmer's code is more maintainable, since the same programmer's code will

continue to run without modification even when the same object changes its type.

In order to provide this new functionality, the type implementors still write

the same system code, but it is not the application program's responsibility. So, the

system cannot bind operation names to the method before the run time operation.

Therefore, operation names have to be resolved at run-time. This delayed mechanism is

called "late binding".

9

1.4. THE KBZ Object Oriented Database System :

As mentioned before, this research is being carried out to develop a prototype

parallel KBZ (PKBZ) OODBMS, so in this subsection an overview of the KBZ OODBMS together

with the examples will be discussed.

KBZ is an OODBMS which has been introduced by [Oxborrow 88.a], KBZ has been

influenced by system specification language Z which was introduced by Abrial and

developed at Oxford University [Hayes 87], Since KBZ is the kernel of this research, the

main features of the KBZ design will be illustrated in this subsection. The initial

version of KBZ was designed for a traditional database environment, in which it is

common for large numbers of instances belonging to the same class to exist. So, PKBZ is

also designed for this. The "AirLine Transportation", Fig.1.1. will be used as an

illustrative example.

Each object type is represented by a schema which defines the properties (both

data and functional) of objects of that type. An object schema is applied to both

instances of the object and instances of objects which inherit the schema.
oThe naming conventions in KBZ objects are summarized in the following :

1 . A schema name is written in uppercase. For example, CREW, PLAN are

schema names

ii . The set of instances of the object represented by a schema is referred

to by using the same schema name but with only the initial letter in

uppercase and other letters in lowercase. For example, if a schema name

CREW has been defined, the property name 'Crew' in some other schema

implies the declaration 'Crew : CREW' and instantiates to the set of all

instances belonging to CREW.

iii . A single instance of the object is referred to by using the same name

entirely in lowercase. For example, the property name 'crew' implies the

declaration 'crew : Crew ' and instantiates to a single instance of the

2 Refer to the AirLine Transportation Example Fig. 1.1.
10

STAFF AIRBUS

Fis.l.l. AirLine Transportation Example

11

Crew set.

iv . The data properties or variables declaration in the schema have to obey

the same rules. But, if a property name is not previously defined in any

schema, then its type has to be declared.

A KBZ system consists of a collection of system and user-defined objects. Objects

in KBZ systems are split into three different categories :

A. Basic objects

B. Structural objects

C. Derived (Complex) objects

1.4.1, Basic Objects :
The basic objects are categorised into :

- entity set

- attribute set

An entity set is declared simply by naming it. For example, CREW and PLAN are

entity sets. Elements of entity sets (instances) are represented internally by surrogates

as shown in Fig.1.2.

On the other hand, attribute sets require schemata to define them, since their

type and constraints (if any) must be declared. Fig.1.3. shows examples of attribute set

definitions. The data part defines a single attribute name and the type of the

attribute.

1.4.2. Structural Objects :
The structural object defines the relationships between two basic objects. For

example, all relationships in the "AirLine Transportation Example" can be represented

as shown in Fig.1.4.

It has to be mentioned that the relationships are defined in two directions in

order that both the degree of the relationship (one-to-one, one-to-many ... etc.) and the

existence characteristics (total, partial) are specified clearly and completely. The first

12

CREW

Fig.1.2. Entity Set Definitions
NAME

ADDRESS
address : String
length(address) <= 40

(Note: 'length' is a system function)

Fig.1.3. Attribute Set Definitions

13

RANK

rank : String

rank C {'pilot' , 'co-pilot',
'n a v i g a t o r ','s t a f f ' }

CAPACITY
capacity : Integer
capacity <= 1000

HOUR
hour : Integer
hour < = 100000

FLIGHTS
flight # : Integer
f lights <- 100000

TIME
time : Integer
time <= 2400

SOURCE-TOWN
source-town : String
length(source-town) <= 20

__

DESTINATION-TOWN
destination-town : String
length(destination-town) <= 20

__

Fig.1.3. Attribute Set Definitions (continued)

14

CRE W - N A M E

title : Crew--- > Name
: Name--- > I Crew}

CREW-RANK
ranked : Crew--- > Rank
rank-of : Rank — !-> {Crew}

LOCATED-AT
location : Crew-- > Address
occupied : Address -->{Crew}

EXPERIENCE
expertise :Crew--- > {Type}

Type --! -> {Crew}

BUS-TYPE
has-type: Plane--- > Type
type-of : Type--- > {Plane}

BUS-CAPACITY
: Plane--- > Capacity
Capacity---> f Plane}

BUS-AGE
: Plane > Hour
: Hour > {Plane}

FLIGHT
: Atrip--- >F1 ight#
:Flight#-->Atrip

FROM-TOWN
: Route--- > Source-town
: Source-town >{Route}

Fig.1.4. Structural Objects Representation

15

TO-TOWN
: Route--- > Destination-town
: Destination-town--- > {Route}

DEPARTURE-TIME
: Route > Time
: Time > {Route}

ARRIVAL-TIME
: Route-- > Time
: Time-- > {Route}

TRIP-SCHEDULE
: Atrip----> {Route }
¡Route--- > Atrip

TRIP-CREW
: Atrip--- >{Crew}
: Crew--- >{Atrip}

TRIP-BUS
: Atrip--- > Plane
: Plane--- MAtrip}

--- > ... Total Function
--!-> ... Partial Function
{ } ... Finite Set

Fig.1.4. Structural Objects Representation (continued)

16

relationship named is the primary relationship, while the second is the inverse. The

primary and/or inverse names in the data part of a relationship schema may be omitted.

For example, the inverse name in the CREW-NAME relationship is omitted. For more

discussion about structural objects refer to [Oxborrow 88.a].

1.4.3, Derived (Complex) Objects:

Derived objects are constructed by including basic objects or relationships inside

a new schema declaration to define a new class. Derived objects can also be based on

other derived objects. The class inherits all the properties (data and functional) of the

objects specified inside the schema. This provides support for rich semantics. A class

may or may not contain any constraints, functional properties or predicates. Derived

objects can be classified into :

A. Entity Aggregate :

Current DBMSs depend upon a simple record structure underlying the database.

This simple record structure can be implemented in KBZ. Using predefined relationships,

entity aggregates can be declared by listing the names of relevant relationships,

together with any rules associated with attributes in the relationships. For example,

Fig.1.5. illustrates entity aggregate representation. Constraints may be declared (if they

exist). However, in this example, no constraint exists. An entity aggregate instance in

KBZ can be mapped onto an n-tuple in a relational DBMS. Fig.1.6. describes the STAFF

representation in relational DBMS. However, it is clear that the STAFF entity aggregate

representation has more semantics than the STAFF relational representation.

The basic feature of entity aggregates is that the domain of all the

relationships in any entity aggregate schema is the same basic object. In Fig 1.5., the

domain of all the relationships of STAFF object is the entity set 'Crew'.

B. Subtypes :

The entity aggregate SCHEDULE in the example described in the Fig.1.5. illustrates

all the schedules in the airline database. The overall schedule in some situations is

17

STAFF

crew-name
crew-rank
experience
located-at

AIRBUS
bus-type
bus-capacity
bus-age

TRIP
f1ight

SCHEDULE
from-town
departure-time
to-town
arrival-time

Fig.1.5. Entity Aggregate Representation

STAFF(Crew, Name, Rank, Type, Address)
Fig.1.6.STAFF Relational Representation

ENGLAND-SCHEDULE
schedule
source-town C 'London','Gatwick'}

LONDON-SCHEDULE
schedule
source-town G 'London'}

Fig.1.7. Subtype Object
18

not important to each branch distributed all over the world, since each branch is

interested only in its own flights. That is, a category (or subtype) of the schedule is

needed only. For example, LONDON-SCHEDULE, and ENGLAND-SCHEDULE can be derived from

the SCHEDULE entity aggregate as shown in Fig 1.7. ^

The SCHEDULE entity aggregate represents "generalization", while "ENGLAND-

SCHEDULE" and "LONDON-SCHEDULE" subtype objects represent "categorization" or

"specialization". "Generalization" and "specialization" define "type hierarchies". A

subtype may simply inherit the properties of the parent in the hierarchy, or it may,

in addition, posses its own properties.

For other types of derived objects, refer to the original KBZ paper mentioned

above.

1,5, Introduction to Parallel Processing :

As mentioned before, this research is being carried out to develop a prototype

Parallel KBZ (PKBZ) OODBMS. In the previous subsection an overview of the KBZ OODBMS

was illustrated. In this subsection, a survey of the different parallel systems will be

described.

The large development of VLSI technology has enabled and encouraged the

widespread use of multiprocessor and multicomputer systems, so parallel computers become

more common, and "as common computers become more parallel, it is important that the

system designers and programmers cast off the shackles of sequential thought" [Hey 90],

On the other hand, most real-time system applications are inherently parallel in

nature. Programming such applications in purely sequential languages on the

uniprocessor machine has inevitably caused the applications to lack both the semantic

aspects of real life and the expressive power to deal with the problem domain. The

reasons for finding the parallel method of operation preferable to sequential mode are

3 In the example, one assumes that 'London' and 'Gatwick' arc
the only towns that have airports in England

19

quite apparent.

1.5.1. Classification of Computer Systems :
Computer systems may be classified into a number of collective groups. Each group

is determined by the type of processing which is required, together with the method by

which the processing elements communicate, and the use of memory. So, all computer

systems can be divided into the following categories [Flynn 86] :

A. Single Instruction Single Data (SISD) :

In this type, the computer executes instructions sequentially and may overlap

(pipeline) execution. In overlap, the conventional hardware is altered in order that two

or more major components may overlap operations. For example, the "Control Unit" may

fetch the next instruction while the "Arithmetical and Logical Unit" is executing the

current instruction. This is largely implemented using a system of pipelines and

buffers. The pipeline breaks a sequence into suboperations in order that each operation

is carried out simultaneously. The concept of a buffer enables decoupling to be achieved

by providing a place for information to be stored. This category describes most computer

systems available today.

B. Single Instruction Multiple Data ISIMD) :

These are known as vector or array processors, and are often microprocessor based

designs with multiple processing elements, a single Central Processing Unit and limited

memory. In SIMD, several processors execute the same instruction but on different data

originating from the memory associated with each processor. The DAP (Distributed Array

Processor) [Hockney 81] is an example of SIMD. It consists of an array of processing

elements working in parallel.

C. Multiple Instruction Single Data (MISD) :
Here, although there is only one data stream, different parts of different

instructions are being processed at the same time, this is the standard pipeline

20

processing found in machines such as the IBM 3083 and ICL 3900 series [Cook].

D. Multiple Instruction Multiple Data (MIMD) :

This implies that the distinct threads of control can be executing different

instructions and manipulating different data structures. This category covers most

multiprocessor and tightly coupled parallel processor computer systems. Tightly coupled

is the situation in which there is a great deal of processor interaction via shared

memory which may be logically addressed and directly accessed by all processors. A

network of transputers is an example of MIMD. But, each transputer has its own local

memory. That is, the memory is attached to each processor. The architecture of the

transputer will be discussed in the next subsection.

1.6. Hardware Architecture of The Transputer :

One development in the parallel processing area is provided by a new computer

architecture developed by Inmos Ltd as a microprocessor. This new processor is called

a transputer (TRANSistor cornPUTER). The first member of the Inmos transputer family, the

IMS T414, was first announced in 1983. A typical member of the transputer product family

is a single chip containing processor, memory, and communication links which provide

point to point connection between transputers. Fig.1.8. shows the transputer hardware

architecture. Communication .across the link takes place only once both ends are ready,

so that events are synchronised. The synchronisation of events was one of the major

problems in early attempts at parallel processing.

Current transputer products include the 16-bit IMS T212, the 32-bit IMS T414 and

the IMS T800. IMS T800 is a 32-bit transputer similar to the IMS T414, but with an

integral high speed floating point processor [Inmos 87][Inmos 88.a].

A transputer can be used in a single processor system or in networks to build

high performance concurrent systems, the system performance depending on the number

of transputers, the speed of inter-transputer communication and the floating point

performance of each transputer.

A network of transputers is easily constructed using point-to-point

21

vcc-
GND-

CapPlus "
CapMinus *

R es e t '
Analyse"

Errorln'
Error •

BootFromROM ■
Clockin'

P rocS p eed '
SelectO-2

ProcCIockOut-
notMemSO-4-

notMemWrBQ-3 -
notMemRd-
notMemRf-

MemWalt-
MemConflfl-

Mem Req'
MemGranted '

4 Kbytes
of

On-chip
RAM

External
Memory
Interface

LlnkSpecial
LinkOSpecial
Link123Special

LinklnO
LinkOutO

Llnklnl
LlnkOutl

Linkln2
LInkOut2

Llnkln3
LInkOut3

EventReq
^ EventAck

Mem AD2-31
M em notRfD I
MemnotWrDO

IMS T80Q Block Diagram

Fì k .1.8. Transputer Hardware Architecture

communication. That is, the transputers are hard-wired together in a physically rigid

structure. The processing elements are homogenous and require no control, each cell

performing one computation at each step of the process, with input and output being

overlapped with the computation so providing a high performance. The basic transputer

processor speed is in the region of 10 MIPs, but because transputers do not share the

same communication bus the overall processing power increases theoretically linearly

with the number of transputers added; an array of, say, 32 such transputers should

provide a speed in the region of 320 MIPs. In the case of conventional processors, the

overall processing power improvement starts to diminish with the involvement of around

six processors [Brookes 89].

The actual physical connections among the cells will depend upon the specific

problem for which the architecture is intended to be used. It has been found, as stated

in [Carling 88] that certain interconnection patterns are more efficient when applied

to the structure of a specific problem. Because the systolic architectures under

discussion are hard-wired, the actual configuration can be optimised for one particular

algorithm by selecting a specific connection pattern.

1.7. Occam and The Transputer :
Transputers can be programmed in many high level languages, and are designed

to ensure that compiled programs will be efficient. Where it is required to exploit

concurrency, but still to use standard languages, Occam [Jones 88][Brookes 89] can be used

as a harness to link modules written in the selected languages. For example, transputers

can be programmed in C, Fortran, Pascal, Modula 2 and Ada, all with programming

extensions allowing programmers to prepare code in explicitly declared segments for

concurrent execution.

Occam language design has been closely associated with the development of the

transputer. Although Occam is not an assembly language, the architecture of the

transputer so closely implements Occam's constructs, and Occam so completely provides

for control of the hardware, that no assembler is required or desired for virtually any

23

application.

To gain most benefit from the transputer architecture, the whole system can be

programmed in Occam. This provides all the advantages of high level language, a

maximum program efficiency and the ability to use the special features of the

transputer.

Occam is an abstract language that has the dual role of being an implementation

language and a design formalism. A system is designed in terms of an interconnected set

of blocks. Each block can be considered as independent process. Thus, each process can

be regarded as an independent unit of design. Processes are connected to form concurrent

systems. Each process can be regarded as a black box with internal state, which

communicates with other processes. Processes can be used to represent the behaviour of

many things, for example, a logic gate, a microprocessor, a machine tool or an office.

A process communicates with other processes along point-to-point channels. Its

internal design is hidden, and it is completely specified by the messages it sends and

receives. Communication between processes is synchronized, removing the need for any

separate synchronization mechanism. Internally, each process can be designed as a set

of communicating processes. The system design is therefore hierarchically structured.

At any level of design, the designer is concerned only with a small and manageable set

of processes. The Occam language is based on these concepts, and supports the transputer

architecture from the logical point of view.

The processes themselves are finite. Each process starts, performs a number of

actions and then terminates. An action may be a set of sequential processes performed

one after another, as in a conventional programming language, or a set of parallel

processes to be performed at the same time as one another. Since a process is itself

composed of processes, some of which may be executed in parallel, a process may contain

any amount of internal concurrency, and this may change with time as processes start

and terminate.

As a result, Occam can be used to program an individual transputer or to program

a network of transputers. When Occam is used to program an individual transputer, the

24

transputer shares its time between the concurrent processes and channel communication

is implemented by moving data within the memory. When Occam is used to program a

network of transputers, each transputer executes the process allocated to it.

Communication among Occam processes on different transputers is implemented directly

by transputer links. Thus, the same Occam program can be implemented on a variety of

transputer configurations, with one configuration optimized for cost, another for

performance, or another for an appropriate balance of cost and performance.

1.8. Research Objectives :

There are many researches which have designed different system applications

using parallel processing techniques. There are also many research efforts that design

and implement OODBMSs, but none of these OODBMSs, according to the author's knowledge,

is designed or implemented using parallel processing techniques. That is why this

research is being carried out.

Thus, the main research objective is to explore parallel processing in an object

oriented database management system. So, the main tasks of this research are involved

in :

A. Investigation of The Different Aspects of Parallelism :
As mentioned before, object oriented database management systems are intended to

meet the needs of new and emerging database applications. But, an OODBMS is a complex

system. Moreover, a number of hard problems remain to be solved. These include :

improving the overall performance of object oriented system. As the improvement and

widespread use of parallel computers become more common, it is important to design and

implement a complex system such as OODBMS using parallel processing. This is due to :

1. Most real systems are inherently parallel in nature. So, the implementation of

these systems in sequential manner must inevitably lack some of the semantic aspects

of the real problem.

2. Development of OODBMS is expected to solve both the efficiency and cost

performance problems which may be encountered in uniprocessor systems.

25

The main mechanism for parallel processing, in most of the current applications,

is to distribute the work load of the system across different processors simultaneously

to gain the high performance of the system. However, this is not the only mechanism for

parallel processing. In this research, other mechanisms for parallel processing with

regard to OODBMSs are introduced to increase the system performance.

B, Development of An Experimental Parallel OODBMS :
KBZ [Oxborrow 88.a] is taken into consideration as a specific example to build

an OODBMS prototype in this research. The development of the experimental KBZ OODBMS

is used as a test-bed for many of the aspects of parallelism which will be discussed.

Moreover, the system prototype is implemented to satisfy the "Parallel Processing

Transparency" concept. That is, the end user must be unaware of how his own message

would be executed in parallel in different processors.

It has to be mentioned that the prototype is implemented on the Transputer

Computing Surface at the University of Kent using Occam programming language. The

main reasons for using Occam are :

1. Occam model is simple to simulate the "real world" concept. The "real world" is

overflowing with concurrent objects and Occam has the capability to capture their

structures directly down to a fine level of granularity. It is simple to model an object's

behaviour, internal data structures and interactions with other objects from its own

point of view [Welch 88]. Moreover, Occam does provide support for sophisticated message

structures through its concept of PROTOCOL. Its model of message-passing parallel

processes forms the basis for more powerful and explicit abstractions of the "object"

concept in the object oriented paradigm.

2. Occam system language is a simple language founded upon a simple and secure

model of concurrency for transputers. Moreover, Occam has a small range of constructs.

1,9. Thesis Layout :

This thesis consists of seven chapters. In this chapter, the research background

26

has been introduced. It contains, the features and limitations of the current

traditional database management systems, the new features of non-traditional database

management systems, the potential of the object oriented approach, the potential of

parallel processing and the research objectives.

In chapter two, a survey of the state of the art in related researches is given.

In chapter three, one of the main objectives of this research is illustrated. This

chapter is concerned with the different aspects of parallelism which can be implemented

within the scope of the object oriented database management systems.

In chapters four and five, the second objective of this research is discussed;

that is, the development of an experimental KBZ OODBMS prototype on the transputer

Meiko Computing Surface.

In chapter six, both the enhancement of the prototype and the experimental

results are discussed.

In chapter seven, the conclusions and the future researches are described.

27

CHAPTER 2

The State of The Art In Related Research

2.1. Introduction :

In this chapter, the state of the art in related research will be discussed. Since,

this research relates to two major research areas, a small selected number of existing

systems which cover both the object oriented paradigm and parallel processing

techniques are investigated. Two sequential OODBMSs will be discussed: EXODUS [Carey

86.a], and IRIS [Fishman 87]. In addition, object oriented systems with parallel features

will be illustrated: PRESTO [Bershad 88], Rekursiv [Harland 88], and CHANCER [Chalmers 89],

Finally, an application of parallel query processing on a Meiko Computing surface will

be discussed [Kerridge 87],

2.2. Object Oriented Database Management Systems :

2.2.1. EXODUS DBMS:

EXODUS [Carey 86.a] is a DBMS that facilitates the fast development of high-

performance, application-specific database systems. EXODUS provides certain kernel

facilities, including a versatile storage manager and a type manager. EXODUS has been

designed at the University of Wisconsin.

A. An Overall EXODUS System Architecture :
EXODUS is designed to provide a toolbox that can be easily adapted to satisfy the

needs of new applications such as engineering design, image and voice data management

... etc. EXODUS supplies at its lowest level a layer of software termed the "Storage Object

Manager" which provides support for concurrent and recoverable operations on arbitrary

size storage objects.

EXODUS provides either a "generator" or a "library" to aid the user in generating

the appropriate software. EXODUS is expected to be used for a wide variety of

28

applications, each with a potentially different query language. As a result, it is not

possible for EXODUS to furnish a single generic query language, and it is accordingly

impossible for a single query optimizer to suffice for all applications. Instead, EXODUS

provides a generator for producing query optimizer for algebraic languages.

Fig.2.1. represents the structure of an application-specific database management

system implemented using EXODUS. The Storage Object Manager provides capabilities for

reading, writing, and updating "storage objects". The storage object is an untyped,

uninterpreted variable-length byte sequence of arbitrary size. The Storage Object

Manager is enhanced by providing buffer management, concurrency control, and recovery

mechanisms for operations on shared storage objects.

The Storage Object Manager contains the E programming language and compiler. E

extends C by adding the notion of persistent objects to the language's type definition.

Whenever persistent objects are referenced, the E translator is responsible for adding

the appropriate call to fix/unfix buffers, read/write the appropriate piece of the

underlying storage object, lock/unlock objects, ... etc. Thus, the user is freed from

having to worry about the internal structure of persistent objects. For buffering,

concurrency control and recovery, the E language includes statements for associating

locking, buffering, and recovery protocols with variables that reference persistent

objects. The objective of E is to simplify the development of internal systems software

for a DBMS.

A collection of access methods is layered above the Storage Object Manager. Access

methods provide associative access to files of storage objects. For access methods,

EXODUS provides a library of type-independent index structures including B+ trees and

linear hashing.

The "Operator Methods" layer contains a mix of user's code and EXODUS code. This

layer contains a collection of methods that can be combined with one another in order

to operate on storage objects.

The "Type Manager" provides schema support for a wide variety of application-

specific database systems. The data modelling facilities provided by the "Type Manager"

29

Query

Fig.2.1. The Structure of An Application-Specific DBMS Implemented Using EXDDUS

30

are basically those of a generalized class hierarchy with multiple inheritance.

To start an EXODUS operation, a query is sent to the "PARSER". The parser is

responsible for transforming the query from its initial form into an initial tree of

database operators. After parsing, the query is optimized, and then compiled into an

executable form. During the parsing and optimization phase, the "Type Manager" is

invoked to extract the necessary schema information.

B. EXODUS Conclusion :
EXODUS is an extensible database system which is intended to simplify the

development of high-performance, application-specific database systems.

EXODUS includes two components that require little or no change from application

to application - the Storage Object Manager and Type Manager. The Storage Object

Manager in EXODUS is a flexible storage manager that provides concurrent and

recoverable access to storage objects of arbitrary size. The Type Manager is a class-

based schema management subsystem. The base types can be extended by the user. In

addition, EXODUS provides libraries of database system components that are likely to

be widely applicable, including components for access methods, version management, and

simple operations. Furthermore, EXODUS provides the E database implementation language

which supports persistence and to a great extent shields the user from the recovery

protocols.

2.2.2. Iris DBMS :

The Iris [Fishman 87][Fishman 89] database management system is a research

prototype of an OODBMS being developed at Hewlett-Packard laboratories. Iris is intended

to meet the needs of new and emerging database applications such as office information

and knowledge-based systems, engineering test and measurement, and hardware and

software design.

A. Iris System Structure :
Fig.2.2. shows the layered architecture of Iris. The Object Manager implements the

31

Fig. 2.2. Iris DBMS Str u c t u r e

32

Iris data model which supports high-level structural abstractions such as

generalization/specialization, and aggregation. The query processor of Iris depends upon

an extended relational algebra format. So, the query is optimized and then interpreted

against the stored database.

The Iris Storage manager is a conventional relational storage subsystem. It

provides associative access and update capabilities to a single relation at a time and

includes transaction support.

Iris is accessible via interactive interfaces or through interface modules

embedded in programming languages, such C-Iris and Lisp-Iris in Fig.2.2.

There are two interactive interfaces, Object SQL (OSQL) which is an object-

oriented extension to SQL, and a Graphical Editor which allows the user to

interactively explore the Iris type structure as well as the inter object relationship

structures defined on a given Iris database.

B. Iris Conclusion :
Iris is an OODBMS prototype. It is implemented in C. The Storage Manager still

essentially needs modification, since it is implemented by a conventional relational

storage subsystem. Other object-oriented programming languages, including C++ are under

investigation for use in redesigning the Iris System.

2.3. Object Oriented Systems with Parallel Features :

2.3.1. PRESTO :

PRESTO [Bershad 88] is a programming system for writing object-oriented parallel

programs in a multiprocessor environment. PRESTO consists of an object-oriented

language C++ [Stroustrup 86], a library of basic tools constructed in this language, a

run-time system providing efficient support, and a programming methodology.

PRESTO is designed and implemented to build distributed object-oriented systems

in a multiprocessor environment. In distributed systems, an object-oriented programming

paradigm makes it easier to think about and to express concurrent algorithms. Each

33

object is responsible for maintaining its own internal consistency.

Moreover, PRESTO provides efficient concurrency and synchronization mechanisms.

PRESTO allows the programmer to use parallelism in the manner most natural to the

problem at hand.

A. Why C++ with PRESTO:
PRESTO is implemented in C++ because C++ supports the object-oriented paradigm.

PRESTO currently runs on the Sequent shared-memory multiprocessor on top of the Dynix

operating system. That is, PRESTO exists now on only one machine. But, it can be ported

to other multiprocessors, since it is written in a high level language.

Since PRESTO is written in C++, it is most naturally used with applications

written in that language. Although it is possible to use the system from other

languages, many of PRESTO'S concepts will be difficult and time-consuming to express.

So, users are encouraged either to write completely in C++, or to build application-

specific interfaces between languages.

B. PRESTO object model :
PRESTO provides the programmer with several classes useful for writing parallel

programs. A "class" in PRESTO is a user-defined data type allowing the programmer to

specify an object in terms of its data representation and operations. These classes, and

the environment in which they execute, help support two of the major goals of PRESTO:

efficient execution and comfortable abstractions for expressing concurrency.

In PRESTO, all objects execute in a single address space shared by all processors,

allowing for fast inter-object communication and synchronization through shared

storage. In a sequential object-oriented system, an object hides its data and its

implementation. In PRESTO, an object hides not only its data and its implementation, but

also its execution. That is, when a caller invokes an operation on an object, the caller

is unaware whether that operation executes sequentially or in parallel. The implementor

of an object determines the extent of parallelism that is appropriate to the object.

Dealing with concurrency in this manner simplifies the task of writing parallel

34

programs.

C. PRESTO Thread Class :

Thread objects (threads) are the building blocks of PRESTO parallel programs.

There are two essential operations that can be performed on a thread. A thread can be

"created", allowing the creator to specify the thread's qualities, such as its name and

maximum storage requirements. Once created, a thread can be started executing some

operation of some object, where in it executes in parallel with the starting thread.

"Start", in fact, is an operation defined for threads; parameters include the object, the

operation where the thread is to be started, and any parameters expected by that

operation.

The "user" of an object chooses between synchronous and asynchronous

invocations, and the "implementor" of an object chooses between sequential and parallel

execution.

An object cannot tell whether it is being invoked synchronously or

asynchronously, and the user of an object cannot tell whether an invocation is being

performed sequentially or in parallel.

Each thread has its own call-stack. Any objects declared on that call-stack are

visible only from within the thread to which the call-stack belongs. If data is to be

shared between threads, then it should be declared as such within the object's

definition.

D. PRESTO System Architecture :
PRESTO exists as a run-time library on a Sequent shared-memory multiprocessor.

The Sequent's operating system is Dynix which supports shared memory. Dynix provides

support for writing parallel programs, but this support is limited. Because the basic

synchronization mechanisms are cumbersome to use, a "parallel programming library" is

provided. This library restricts the "threadedness" of a parallel program to the number

of physical processors in the system.

The basic role of the PRESTO run-time system is to map users' threads onto

35

physical processors and to provide access to a global shared memory in which all objects

reside. PRESTO maps threads onto Dynix processes, relying on the Dynix kernel to

complete the mapping onto a physical processor.

The PRESTO system maintains a single scheduler object. The scheduler object keeps

track of all threads. Each processor in the system is represented by a processor object.

One scheduler thread runs within each processor object, and that thread's only activity

is to request threads from the scheduler object.

A thread may execute on different processors at different times. Migration occurs

only if a thread is blocked and then resumed at some later time when some other

processor is idle. Scheduler threads are an exception to this; they never migrate. A

scheduler thread runs only on processor for which it is scheduling. Fig. 2.3. shows how

the scheduler object, processor objects and physical CPUs are related. Because these

objects interact with one another only through their operations, each can be easily

replaced or modified without affecting the others. For example, the scheduler object

could be changed to maintain multiple priority queues for threads rather than a single

runnable queue. Since scheduler threads interact with the scheduler only through a

"GetAThreadO" operation, they would remain unaffected by the change.

The PRESTO scheduler eventually halts when there are no longer threads. At this

point, all existing synchronization objects are destroyed. If any one of them indicates

a waiting thread, the system declares deadlock and displays the state of all

interminably blocked threads.

E. PRESTO Conclusions :
PRESTO is a good system in which it joins the classical notions of concurrent

programming with the powerful concepts of object-oriented design. Objects can be made

completely responsible for their own execution, as well as modification and presentation.

PRESTO is the current system of choice for parallel programming at the

University of Washington. Certain applications have been built using PRESTO. For

example, a parallel solution package for queuing network performance models is built

36

FiK.2.3. Relation Among Scheduler Object, Processor Object and Physical CPU in PRESTO

37

using PRESTO.

However, as indicated before, the synchronization mechanisms among objects are

cumbersome and costly to use in a parallel program. Moreover, a great effort has to be

made in writing software to perform such synchronization. That is why, a system library

in Dynix provides support for writing parallel programs, but this support is limited

as indicated in (Bershad 88]. These synchronization mechanisms are solved in Occam

using a transputer system, since the messages among transputers are synchronized

naturally.

Moreover, in PRESTO, all objects execute in a single address space shared by all

processors. Such a single shared memory address space will lead to slow performance

among objects. That is because only a single address is performed at a time. However,

this problem can be easily solved using Occam on the transputer system, since each

transputer has its own local primary memory. So, more than one address space can be

accessed simultaneously.

2,3.2» Rekursiv : An Object-Oriented CPU:

In 1984, Linn Smart Computing announced the Rekursiv [Pountain 88J[Harland

86][Harland 87][Harland 88]. Rekursiv is an innovative new computer architecture

designed around principles of object-oriented programming. Rekursiv is designed as a

chip set with which to implement a persistent-store, object-oriented processor.

Persistence and object orientation are natural partners, because if a program is

a simulation built from objects, then these objects must be expected to live for as long

as their real world counterparts.

Rekursiv is designed to allow very high-level instructions. The very name

Rekursiv suggests that machine instructions can be made arbitrarily complex, including

recursive calls and even calls to other programs; for example, a tree-walking routine

can be microcoded as a single instruction.

A. Rekursiv Architecture :
Rekursiv is a singleboard rather than a single chip microprocessor. Rekursiv

38

achieves high performance by having multiple internal memory buses so that many

operations can occur in parallel.

Rekursiv is built from three custom gate arrays and several megabytes of fast

static RAM. Fig.2.4. shows a block diagram of the main functional units of Rekursiv,

where the three gate arrays are the blocks called "Objekt", "Numerik", and "Logik".

The SRAM holds the microcode and the pager tables used to keep track of objects;

it exists inside the processor. The SRAM is organized into six different functional

memory spaces, each with its own data and address buses. Since, there is also a dynamic

RAM (DRAM) interface for the main object store memory, the Rekursiv could be labelled

a seven-memory architecture.

The six blocks that are implemented in SRAM are the two stacks (control and

evaluation), "control store", and "control store map", the "pager tables", and the block

marked "NAM".

Most of Rekursiv's internal data paths are 40-bits wide, though the DRAM address

bus is only 24-bits wide. Objects are stored both in DRAM and on hard disk, in what

could be thought of as equivalent to the external memory of a conventional processor,

but since the microcode can access this memory, too, the distinction between inside and

outside is blurred.

B. Rekursiv Operation :
The main advantage of Rekursiv is that it combines the functions of a CPU,

memory manager, database manager, and operating system all in one. During the

execution, the Rekursiv creates objects, pages them back and forth between memory and

hard disk, and performs arithmetical and logical operations on the data in their fields.

An object, in Rekursiv, can be considered as just a chunk of memory divided into

fields that holds its data and represents the "instance variables", in Smalltalk

parlance.

Every» Rekursiv object is defined by a unique 40-bit number that is assigned to

it at its creation (from a counter called the allocator) and that remains with it for

39

Logik
sequencer

i
1 r l

i

' f

Control
stack

Evaluation
stack

r

MAM &
NAMARG

Numerik
arithm etic Unit

VTE
Object store Page' tables

VNB VSB VAB VRB

* 4
Objekt

Memory management unit

FiK.2.4. A Block Diagram of Rekursiv

40

its life. This number is the only way of referencing the object, because only the

processor knows its real address.

Objects are stored on the secondary storage with a prefixed header. This header

holds the object's number, size, and type. Type is stored in a 40-bit value that the

software must interpret in some meaningful way, since types are objects too. When an

object is transferred into memory, only the data fields are written into object store;

the header is stripped off and written to a slot in the pager table along with the new

address of the data in main memory. The pager table contains 65,536 (i.e. 64 K) slots that

it can address very quickly by hashing on the object number.

If the pager table slot for a requested object is occupied, then the object's

address is retrieved from the slot along with the offsets to index its fields, and the

requested operation is performed on its data. During this table look up, the hardware

also checks the type field, refuses to perform operations that are not allowed on the

type and performs range checks so that a field, that lies outside the object, may not be

indexed.

If the slot for the requested object is empty, that means it is not currently in

main memory and there is a page fault. The Rekursiv is stopped dead while a signal is

sent to an external disk processor to fetch the object into memory.

This disk processor has its own B-tree directory structure, which allows it to

find an object's image on disk through its number. When the object has been fetched to

memory and its header put in the pager table, the Rekursiv resumes processing as if

nothing had happened, without any need to restart the current instruction, as there

would be with a conventional processor. Page fault recovery occurs "below" the level of

instruction execution, rather than being an external operating-system task. It is this

property that enables Rekursiv's microcoded instructions to be of arbitrary complexity

and to include recursive calls that are forbidden to normal CPUs.

The programmer's view of Rekursiv is of a truly object-oriented processor in

which there is no concept of an address, only of object numbers, and where objects

persist until they are destroyed. Programs can be executed only by requesting an

41

operation on a numbered object.

C, Rekursiv Microcode :
Rekursiv has a writable instruction store, it will come out of the box absolutely

empty and is incapable of doing anything at all until the microcode for an instruction

set is loaded into the control store part of the SRAM.

A standard instruction set that supports "C", together with corresponding "C"

compiler, is supplied for writing application programs. Far more interesting, though, is

a second instruction set, a microcoded Smalltalk interpreter, that makes far better use

of the Rekursiv's unique features.

The microcode is stored in the "control store", an SRAM area with its own 16-

bit bus, where there is room for 16,384 control words of 128 bits each. Another separate

memory space, called the "control store map", holds a table of 2048 microcode start

addresses, and maps 10-bit op codes onto the microcode that implements them. This

function is equivalent to the instruction decoder of a conventional processor that

would normally be hardwired logic. The control store and map can be thought of as a

Smalltalk-style byte code interpreter implemented in hardware.

The op codes can be contained in objects and thus can be stored in the main

object store, from which they must be fetched as in a conventional processor.

The block called "NAM & NAMARG" in Fig.2.4. is the New language Abstract Memory

that stores up to 524,288 words of 10-bit op codes and their 30-bit arguments that form

abstract or high-level instructions. Since the NAM is inside the processor, it behaves

like a fast instruction cache.

Methods for user-defined classes would be contained in objects in the main

memory and would thus incur a memory fetch, though important code can be "frozen"

into "NAM".

D. Rekursiv Applications :
Linn plans to use the Rekursiv architecture in several products : an accelerator

board for existing engineering workstations like those from Sun, Apollo, or Micro VAX;

42

a networked Rekursiv-based workstation; and the full multistation control system for

flexible manufacturing that was the original goal of the Rekursiv project.

E. Rekursiv Conclusion :
The Rekursiv is an object-oriented database engine for creating and managing

persistent objects and, with strict type-checking, performing just about any operation

on them.

Rekursiv cannot process two or more objects in parallel, since all objects are

stored in the same main memory. But, as indicated before, Rekursiv achieves high

performance by having multiple internal memory buses so that many operations can occur

in parallel.

2.3.3. CHAUCER:

During the development of a ray tracer on a Meiko Computing Surface, problems

with poor flexibility of configuration and slow software development were encountered.

In order to overcome these difficulties, and in order to facilitate experimental

programming on the Meiko, the Chancer system [Chalmers 89] has been built so that it

can support an object-oriented style for Occam programming.

The aim of Chancer is to create a set of library modules that allow user code to

be quickly developed and integrated into programs, to support better debugging

facilities, and to allow program design to be based on a more flexible and dynamic model

of concurrency.

Chancer supports the development of programs made up of a number of concurrently

executing objects which communicate primarily by message passing. The system has been

a boon to ongoing experiments in image synthesis.

A. Chancer Message :
A simple message format is used by all objects in Chancer. Messages have a header

composed of five integers : "to", the id of the intended receiver, "sel", the method

selector which identifies the service requested of the receiver; "from", the id of the

43

sender; "replyDest", the id of the object to which replies should be sent; and "len", the

length of the tail array in bytes. The main use of the "replyDest" field is to nominate

replacement objects during a dialogue, so spreading the workload or referring work to

another object. This allows any subsequent response to be sent to the original sender

without retracing the path of referrals.

A "messenger" process on each processor acts as the local agent for a "mail

service". Application code resides in the processors which are connected to the

messenger, i.e. inside "objects". Each messenger has an array of "slots" for such

connections, and the array index combined with the processor number define the id of

each object. Inter-processor routing and local delivery are the responsibility of the

messenger. Objects take on the responsibility of conforming to the protocol for message

delivery and transmission. By using the message system one can design an object in a

manner independent of the locations of the objects it communicates with. One need not

modify communications code when program configuration changes.

B. Chancer Object :
A queue handler, Q, serves to buffer messages passing between the "object" and

the "messenger", as sketched in Fig.2.5. Objects can use selectivity of message acceptance

in order to ensure internal data consistency and correct behaviour transitions. The

queue handler will pass in messages which match specifications of both message sender

and message selector. The user can send messages to the queue handler of an object and

request that reports on the state of the queue handler be sent to the screen.

Objects can be constructed according to the format shown in Fig.2.6. The process

directly connected to the queue handler implements the most specialized member of the

classes which make up an object. Other classes higher in the superclass hierarchy are

nested inside that process. That is, Fig.2.6. shows the structure of an instance of class

"C" with superclass S. C communicates with the message queue handler via channels "toQ"

and "fromQ". The process N does the "normal" work for the class. Nesting of similarly

structured superclasses continues until the class Object, which has no superclass, is

m
/ Qbjéct

11 .
l a

l ie u e Handle
, A

r

t 1 1r
messenger.slotiih.; ^

Fig.2.5. Message Buffer Handler in CHANCER

toQ fromQ

Fig.2.6. CHANCER Object Operation

45

reached.

A message sent in from the queue handler is passed to the "message director",

mD, which performs the validation check. Messages output from N and S are taken out

of the object via the 2:1 multiplexer.

The nesting of classes means that a number of N processes execute concurrently.

An incoming message will be taken by the most specialized member of the classes in the

object whose "message director" mD deems the message to be acceptable. This "single

activation rule" ensures correct communication with the queue handler and allows a

subclass to override a method of a superclass in a manner which minimises code

interdependence.

C. System Operation :

An object called "monitor" reads lines of text from the input keyboard. Then,

monitor transforms this text into messages and passes on via the messenger. This

provides the user with access to all objects. The user now interacts with the system

directly, since what is typed is, conceptually speaking, sent straight into the system.

When a program starts up, objects can be booted in several ways. From the

keyboard the user can send messages to initiate activity. Alternatively, a list of

objects to boot up can be included in the start up sequence for the messenger on each

processor. A third method involves processes which can call one of the procedures which

implement objects.

D. Chancer Conclusion :
Chancer supports the development of programs made up of a number of concurrently

executing objects which communicate primarily by message passing. A global

communications schema based on message transmission supports this development. The

resulting programs are easily reconfigurable and code is straightforwardly reused and

expanded.

46

2.4. Parallel Query Operation :

[Kerridge 87] represents a database machine which is capable of supporting the

parallel operation of the relational operators. The database machine can support single

user and multiple user queries.

The basic structure of a database machine is shown in Fig.2.7. A user process is

executed in one of user processors U. The user processor U generates queries for the

database which are passed to a query decomposition processor Q. Then, the decomposed

query is passed to the data dictionary processor D. The query decomposition process

establishes which entities are required and the operations that have to be carried out

upon the entities.

The data dictionary determines which of the entity processors Ei is required and

the required relational operator(s). Then, the necessary processes can be loaded into one

or more of the operations processors Jk. Moreover, correct buffer processors B will be

set up too.

When the desired query needs part of the complete entity, the tuples of an entity

can be passed through a selection process which resides in the appropriate processor

S. The data dictionary processor D will communicate the details of the selection

constraint to the processor S.

A user may insert new data into the database. So, the user U may pass the data

via one of the Insertion processors I to the appropriate entities E. This insertion

mechanism is controlled by the link switch C004. Moreover, the link switch connects user

processes U to appropriate J processor that has been allocated to the user process by

the data dictionary processor D.

A. General operation :
The communications processors C have been included so that a number of such

entity/user groups rnay be connected together to form a larger database machine. The

processor C will enable the transfer of data between groups. Each group's data

dictionary has to have a sufficient details of entities located in other groups to

47

Fig.2.7. The Architecture of Parallel Query Database Machine

enable a request for remote data to be directed to the correct group.

The architecture of the database machine in Fig.2.7. shows a ring of processors

S, B, I, and C. Each of the processors which form the ring will run a high priority

process which undertakes the routing of information. Data is executed from the entities

as a stream of tuples. Thus, the stream of tuples can be passed round a segment of the

ring from the entity to the buffer processors. Therefore, a stream of a pipeline is

formed which once it has been filled will cause a continuous stream of data to appear

at the buffer process. Thus, the buffer process enables ring transmission fluctuations

to be smoothed so that the operations processors J are always busy.

The entity processors E comprise a disk subsystem together with an M212 disk

controller transputer. The M212 will also provide a small local cache for the disc and

the related selection processor S may also provide a larger cache. A particular entity

may be stored on a single disc subsystem or it may be partitioned across several such

processors E. Such a partitioned entity can then have each of its partitions processed

in parallel provided sufficient operations processors J are available.

B. Conclusion of Parallel Query Operation :

The architecture of parallel query operation enables the entities of a database

to be stored on separate processors and further the entities can be partitioned onto

several processors, thereby enabling parallel execution of the relational operators.

The architecture is reconfigurable in that a pool of processors is available to

undertake the relational operations and these can be dynamically allocated as user

queries are processed. Thus, a processor can undertake the operations; join, project and

selection as required.

2.5. General Conclusion :

Since this research relates to two major research areas: object oriented databases

and parallel processing techniques, it has only been possible to investigate a small

number of existing systems which cover these areas, but these have been selected to

illustrate the variety of research which is taking place.

49

Two sequential OODBMS have been discussed: EXODUS [Carey 86], and IRIS [Fishman

87] prototype DBMS. IRIS provides a number of different interfaces for users, including

object SQL (OSQL). EXODUS, on the other hand, is designed as an extensible system which

can be adapted to suit different applications.

Although the following systems: PRESTO [Bershad 88], Rekursiv [Harland 88], and

CHANCER [Chalmers 89] depend upon object oriented paradigm, each implements parallelism

in a different manner: PRESTO is designed for building distributed object oriented

systems in a multiprocessor environment. But, Rekursiv implements parallelism through

hardware, since it is a single board. On the other hand, the Chancer system implements

parallelism by supporting the development of programs made up of a number of

concurrently executing objects on a Meiko Computing Surface using Occam programming.

An application of parallel query processing on a Meiko Computing Surface

[Kerridge 87] is described too.

50

CHAPTER 3

Parallel Processing Aspects In An Object Oriented Database Management System

3.1. Introduction :

As mentioned before, the implementation of an OODBMS in purely sequential systems

inevitably leads to large problems involving efficiency. So, the aim of this chapter is

to explore the different aspects of parallel processing that can be implemented within

the scope of the OODBMS to gain high performance and efficiency.

In the following subsection, a general description of the PKBZ architecture will

be discussed. Then, the different aspects of parallel processing will be illustrated,

followed by the allocation and deallocation of the object classes in the main memory

storage.

3.2. General Description of the PKBZ Architecture ;

The PKBZ modules exist at three different levels. These levels are :

a. External Management System (EMS)

b. Object Management System (OMS)

c. Storage Management System (SMS)

Fig.3.1 shows the block diagram of PKBZ modules.

3.2. ¡.External Management System (EMS) :

The EMS acts as an interface between the end user and the OMS. The end user can

be any ordinary user like a cashier in a bank or an external system which is built on

top of the PKBZ. Moreover, EMS allows the end user to retrieve, update and add data in

a user friendly form. The EMS main functions are :

1. If the end user is not familiar with PKBZ messages (like a cashier at a bank),

then the EMS acts as Query processor that transfers the external user request into a

message which can be recognized by PKBZ. This transfer is performed through menu

51

User
Message/
Respond

User User User User
Message/
Respond

Fig.3.1 Generalised PKBZ Database System Architecture

52

driven screens. Each screen provides the end user with a set of tools to interpret his

or her request. Then, after the dialogue is finished, the EMS interprets the user request

into a message that can be understood by the PKBZ. The interpreted message consists

mainly of the following parameters :

a. The function or a method that the end user needs

b. The object class ̂in which the end user requests the message to be performed.

c. Some parameters (or null) that are required according to the message type.

2. If the external user is another system which is built at the top of the PKBZ,

then EMS can be regarded as a translator between the external user and the PKBZ.

That is, every request is transformed into a message that can be recognized by PKBZ.

Moreover, any further response from PKBZ is translated to the form that can be

understood by the end user. Then, the message is stacked until it will be processed.

3. After the message is stacked and the OMS is ready, the message is sent to the

OMS module for processing in the form of Object Request Function.

4. When the answer is received from OMS modules, the EMS will respond to the

related end user.

5. EMS keeps track of every message until it is processed, or an error message is

received.

3.2.2. Object Management System (OMS) :
o

The OMS controls the overall execution of Memory Objects in the PKBZ. This

will involve, for example, Memory Objects allocation in the main memory storage as well

as Memory Objects deallocation from the main memory. Such algorithms of allocation and

deallocation will be discussed later. Moreover, when a user message is received from the

EMS, the OMS directs the message to the corresponding Memory Object in the main memory.

1 The object class can be either a system object class, or a user defined object class.

2 The Memory Object is a unit of main memory storage in which an object class is stored.
The schema, instances and methods associated with an object class are all encapsulated
in a Memory Object.

53

Then, any further response from the Memory Object to the end user will be sent to the

EMS.

Memory Objects, during run time, are grouped together in the form of an Object

Group, since many applications require the ability to manipulate a set of object classes

as a single logical entity for purpose of efficient storage and retrieval (Lorie 83][Kim

87], The Memory Object grouping criteria will be discussed in detail later. On the other

hand, if any Memory Object communicates with any other Memory Object(s), such

communication will be controlled by OMS module.

3.2.3, Storage Management System (SMS) :

SMS can be regarded as a buffer between the logical representation of the data,

in the form of Memory Objects in the OMS module and the physical data representation

in Database secondary storage files. Moreover, SMS converts the physical data from the

secondary storage to the Memory Object representation and vice versa.

The File Simulation Process in the SMS is responsible for fast accessing,

retrieval, and updating data, since data is transferred from the secondary storage to

the main memory in SMS, in the form of Pages or Page Objects. The File Simulation

Process will be discussed in detailed later.

When OMS needs any data from the secondary storage, the OMS sends a system

message to the SMS module, then the File Simulation Process retrieves data either from

the main memory in SMS module, if it already exists, or from the secondary storage to

the SMS main memory, then to the OMS module, if it does not exist in the main storage

in SMS module.

The Stored Object consists of one or more Database files in the secondary storage

in which data is stored in the physical format.

3.3, Different Aspects of Parallelism in PKBZ:

In this section, the different aspects of parallelism in the PKBZ will be

discussed. The internal classifications of each aspect are illustrated too. Moreover, an

example with each aspect will depict the idea of parallelism and the classification.

54

The Different Aspects of Parallelism in PKBZ can be classified in general into

main five types. These types are :

a. Parallel on Transputers

b. Parallel on Single Transputer

c. Parallel on Instructions

d. Parallel on Data Distribution

e. Parallel on Background

The following subsections describe the differences among the various types. The

PKBZ architecture which is described in the previous subsection is used to demonstrate

the different aspects of parallelism. These aspects can be adapted, in general, to any

other OODBMS with different architecture as well as any software system, since most

current software systems are built in the modular form.

3.3.1. Parallel on Transputers :

The Parallel on Transputers depends upon the distribution of system architecture

upon various processors (transputers). For example, the architecture of PKBZ consists

mainly of three different modules : EMS module, OMS module, and SMS module. Each module

consists of sub-modules (processes). These processes can be grouped into different groups,

say GO , G1 , ... , Gn . Hence, one or more groups of processes is mapped onto a single

processor (transputer).

The Parallel on Transputers does not depend upon how these groups are executing

during the run time. But Parallel on Transputers depends upon the distribution of the

system architectiare.

The Parallel on Transputers type can be classified according to the system

architecture, grouping into :

a. Homogenous Parallel System Architecture

b. Hybrid Parallel System Architecture

The following subsections describe the difference between the two types of the

system architecture grouping.

55

A. Homogenous Parallel System Architecture

In Homogenous Parallel System Architecture, all processes in each group belong

to only one module of the three PKBZ modules. The Homogenous Parallel System

Architecture is classified according to the transputer allocation into :

* Simple Homogenous Parallel System Architecture

* Complex Homogenous Parallel System Architecture

The following subsections describe the two different allocation techniques.

* Simple Homogenous Parallel System Architecture:

In Simple Homogenous Parallel System Architecture, each PKBZ module forms a

single group. Then, each group is allocated to a single transputer. Fig.3.2 depicts the

idea. That is, all the processes of the EMS module, OMS module, and SMS module are

allocated to three transputers T1 , T2 , T3 respectively.

The Messages Module in the EMS analyses each user's message and then sends the

message to the OMS. The Messages Module consists internally of different sub-modules.

Such organisation of Messages Module depends upon the various message functions.

In the OMS, each Object Group contains a set of Memory Objects. The Memory Object

grouping depends upon different difficult criteria. Such grouping critera will be

discussed later.

Moreover, the data is stored in SMS into groups too. This grouping will be

described later. The SMS is linked to the Stored Objects in the secondary storage

database file.

The execution of any user's message will be performed as follows :

1. One or more Users (U) send the message to the EMS

2. The External Multiplexer passes the message to the Messages Module. The

External Multiplexer acts as a controller between the external users and the

other processes in the EMS.

 ̂The Transputer has only four external pair channels. But, in the figure, the number
of channels per transputer is greater than four since the diagram has been simplified

56

User User User User User

N.B. There is no 1-1 mapping between
blocks in different modules

F i g . 3.2 Simple H o m o g e n o us P a r a l l el S y ste m A r c h itect u r e

57

3. The Messages Module checks the syntax of each message and carries out the

necessary processes corresponding to each message. Then, the Messages Module

sends the message to the OMS.

4. The OMS analyses the message and translates the message into an Object Request

Function. Then, the Object Request Function is sent to the relevant Memory

Object in the Object Group.

5. The relevant Memory Object receives the Object Request Function and invokes

the corresponding method according to the function request.

6. If any Memory Object needs any data from another Memory Object, a request

message will be "mailed" through the Intermediate Multiplexer/Demultiplexer,

since Intermediate Multiplexer/Demultiplexer not only operates as a controller

of communication between the EMS and the OMS, but also among Memory Objects.

7. When a Memory Object completes the Object Request Function, the result will

be sent to the Intermediate Multiplexer/Demultiplexer and then to the Message

Module which responds to the end user.

8. If any Memory Object needs data from the Stored Data in the SMS, the Internal

Multiplexer/Demultiplexer acts as a manager between the Memory Objects and

the Stored Data in SMS.

9. The SMS stores and distributes the data among Stored Data processes.

The Simple Homogenous Parallel System Architecture has both an advantage and

a disadvantage.

* Advantage :
1. The Simple Homogenous Parallel System Architecture is a simple method of

exploring parallelism either with a PKBZ, or any other software system, since each

module of the PKBZ is mapped directly to a single transputer.

* Disadvantage :
1. Only three different processors (transputers) are used. However, the PKBZ can

58

be mapped onto more than three processors to gain high performance of the parallel

processing. The Complex Homogenous Parallel System Architecture depends upon this

concept.

* Complex Homogenous Parallel System Architecture :
In Complex Homogenous Parallel System Architecture, each Homogenous Parallel

System Architecture group is allocated to one or more transputers. Such distribution

is expected to be better than Simple Homogenous Parallel System Architecture, since the

processing of each module is distributed among different processors. It is clear that

there are many Complex Homogenous Parallel System Architecture distributions, since

there are many different object grouping combinations. Hence, Fig.3.3 illustrates one

of such distributions.

In Fig.3.3, the EMS module is allocated to a single transputer. But, the OMS module

is mapped onto more than one transputer, since the organization of the OMS depends

mainly upon the Object Group and each Object Group is processed in a single transputer.

Similarly, the SMS module is mapped onto more than one transputer too, the dispersion

of the SMS depends mainly upon Stored Data.

It is clear from the Simple Homogenous Parallel System Architecture diagram

(Fig.3.2) and Complex Homogenous Parallel System Architecture (Fig.3.3) that the main

difference between the two techniques is the number of transputers in each system.

But, the processes are similar. So, the user's message will be performed as described

before in Simple Homogenous Parallel System Architecture.

In Complex Homogenous Parallel System Architecture, the Object Group can be

either :

i. Static Group

or ii. Dynamic Group (Migrate Object)

* Static Group :
The system structure will be as illustrated in Complex Homogenous Parallel System

Architecture. But, once an Object Group is loaded in the system, the Object Group remains

59

User User User User U s e r

N.B. There is no 1-1 mapping between
blocks in different modules

F i g . 3 .3. Comp l e x H o m o g e n o u s P a r a l l e l S y s t e m A r c h i t e c ture

60

in the same memory location. That is, the Object Group is static in the main memory.

It is clear that this is a simple technique.

* Dynamic Group :
In Dynamic Group, the Object Group or a subset of Object Group can migrate from

one transputer to another transputer. This migration can be performed, for example, in

the following cases :

i. To balance the load across all transputers with regard to the number of

Memory Objects in each transputer.

ii. To balance the processing among the transputers, if one transputer is inactive

and another has a heavy processing load at the same time.

In order to implement Dynamic Group, an intelligent process has to monitor both

the processing and the Memory Object load across the transputers during the execution

time.

The Complex Homogenous Parallel System Architecture has both an advantage and

a disadvantage which can be summarized in the following :

* Advantage :
1. The processing is distributed among different transputers. Therefore, the

efficiency is expected to be better than Simple Homogenous Parallel System Architecture.

* Disadvantage :
1. In an implementation, an extra control has to be implemented to manage the flow

of the data between different transputers. These controls can be regarded as an overhead

upon the system implementation.

B. Hybrid Parallel System Architecture :

In Hybrid Parallel System Architecture, all the processes in each group do not

necessary belong to only one module of the three PKBZ modules. For example, some

61

processes in OMS module and another in SMS module can be mapped onto the same group.

It has to be noted that there must be some association between these processes,

otherwise such grouping will be nonsense.

For example, it is clear that Memory Objects are grouped in OMS module and each

Memory Object needs data from the corresponding stored data in SMS. Thus, in order to

reduce the communication time between any Object Group and the related Stored Data both

of them can be grouped into the same transputer. The Fig.3.4 ̂depicts the idea.

The execution of any user's message will be performed as follows :

Steps from 1:7 will be the same as in Simple Homogenous Parallel System

Architecture

8. If any Memory Object needs data from the corresponding Stored Data, it

communicates directly through software channels, since both Memory Object

and Stored Data are gathered in the same transputer.

9. The Stored Data communicates with the Stored Objects in the external database

file through Internal Multiplexer/Demultiplexer (Data Stored Control)

In Hybrid Parallel System Architecture, the Static Group and Dynamic Group

technique can be applied too. But, in Dynamic Group, both Object Group and Stored Data

are migrated together.

The main advantage of Hybrid Parallel System Architecture will be :

* Advantage :
1. The distribution of the processes is not limited to the number of the PKBZ

modules as in Simple Homogenous Parallel System Architecture. So, it is more flexible

than Simple Homogenous Parallel System Architecture.

3.3.2.Parallel on a Single Transputer:

In Parallel on Transputers, the parallelism depends upon mapping the system

^ See Footnote 3

62

User
Message/
Respond

User User
A

User User
Message/
Respond

External Multiplexer/Demultiplexer
(User Message Control)IMessage / Respond

Message • • • Message • « • Message
Module Module

_
Module

Messages Module
Transputer (T) EMS module

Object Request / Respond Function
'L_____________________

T
Intermediate Multiplexer/Demultiplexer

(Message/Objeet Control)________________________/ S 7

Obj. Req./ Response Obj. Req./ Response
\' >(' OMS

moduleObject
Group

Object
Group

• • « Object
Group

_yi ¿ Ì»
T Data « • • T Data ... T Data

'i J'

Stored
Data

... Stored
Data

• • • Stored
Data

- -J J 1 i
Data Data Data

JL \>
Internal Multipiexer/Demultiplexer

(Data Stored Control)
7V 7k »

SMS module
Data

' > Data
f

Data
!

DataBase
File

' Storcd~J Stored' ' . . . ‘e=Ktorcd
object Object Object
(SO) (SO) < SO)

Secondary
Storage

N.B. There is no 1-1 mapping between
blocks in different modules

Fig.3.4 Hybrid Parallel System Architecture

63

architecture onto different transputers, so the parallelism occurs when more than one

transputer are executed in parallel. However, there is another degree of parallel

processing within each transputer itself, since each transputer can carry out parallel

activities. For example, the transputer can execute normal instructions, input on four

links and output on another four links simultaneously [INMOS 84].

Furthermore, some processes of PKBZ are nearly independent of each other. So,there

are different processes that can be running in parallel within each transputer. These

processes communicate internally within a single transputer via software channels,

whereas the communication with the other transputers is performed through hardware

channels. The software channels are implemented by allocating bytes in the main memory

on each transputer, while the hardware channels are implemented by hard channels

between transputers. [Burns 88] describes the two different types of software and

hardware channels in details.

So, in Parallel on Single Transputer type some processes can input from either

software channels or hardware channels, while other processes can output to other

processes. Simultaneously, other processes can be running in parallel. The integration

of such processes, within a single transputer, gains a high performance.

This type of parallelism depends upon the hardware (transputer) as well as the

software (mapping the processes onto a single transputer). Fig.3.5 illustrates an example

of the Parallel on Single Transputer type in which each module communicates with a

different external user in parallel. So, each user can perform a different job at the

same time.

The following code in the Occam language [Jones 87] depicts this type of

parallelism ̂:

PAR — Parallel Processing follows
PAR i = 0 FOR 3 — Three Parallel EMS Process

EMS(screen[i], keyboard[i], ... , ...)
Mult.I)emu(... , ... , , ...)

All the processes are mapped onto a single transputer.

 ̂The indentation is more than two spaces to clarify the Occam code

64

User

Fig.3.5 Parallel on Single Transputer

User

65

3,3,3, Parallel on The Instructions

In this type of parallelism, the parallel processing depends upon the instructions.

In some situations, the processing within a single process may be completely

independent. So, it is better to perform such processing instructions in parallel. For

example, in "AirLine Transportation Example", CREW-NAME inherits CREW and NAME (which

are referred to as the "inherit" object classes of CREW-NAME), while CREW-NAME is

inherited by STAFF (which is referred to as the "inherited by" object class of CREW-

NAME). All object classes include references to both the "inherit" object classes and

the "inherited by" object classes. These "inherit" object classes data and "inherited by"

object classes data can be initialized in parallel before a new object class is created.

The two initializations are independent of each other. The following code in Occam

language depicts the Parallel on the Instructions type :

PAR — P a ra lle l Processing follows
PAR i = 0 FOR (SIZE in h e rit) — In it ia liz e in h e rit

in h e r it li] := 0
PAR j = 0 FOR (SIZF. inherited.by) — In it ia liz e inherited by

inheritcd.by[j] := 0

It is clear that both the arrays must be declared elsewhere in the process before

the initialization processing is carried out.

Furthermore, not only are both the "inherit" array and "inherited.by" array

initialized in parallel, but also each element in both arrays is initialized in parallel

too.

However, this type of parallelism is called Weak Parallel process, since the

related instructions are executed entirely within a single process within a single

transputer. Moreover this type of parallelism depends upon software. That is, this

feature depends upon how much parallelism the implemented language physically supports.

* Disadvantages :
1. This type of parallel processing depends mainly upon the implemented language.

2. The processing is carried out within a single transputer within a single

process.

66

3.3.4. Parallel Data Distribution

Parallel processing on the transputers not only provides huge processing power,

but also supplies the system with a large volume of main memory storage capabilities,

since each transputer main memory may be from 1MB to 4MB at present, using sixteen

transputers will provide a system with between 16MB and 64MB of main storage. Such a

high storage of main memory can be used to get a large volume of data in the main

memory storage as well as processing these data in parallel. Hence, this facility is used

to load a large number of Memory Objects in the main memory. Then, any further

operation can be performed directly in the main memory exploiting parallel processing

where possible. This type of parallel processing is called Parallel Data Distribution.

The following example illustrates Parallel Data Distribution. Let us suppose that

in "AirLine Transportation Example" the distribution of the structural objects related

to an entity aggregate object STAFF among transputers will be as shown in Fig.3.6 and

a new staff member has to be added in the database. When an "ADD.INSTANCE" message is

sent to the STAFF object with the new staff member data, the STAFF object will ask the

PKBZ to generate a new surrogate corresponding to the new staff, since the surrogate

is used as a link (key) among the related structural objects instances in STAFF object.

Then the following code can be used to add new instances to the related structural

objects :

PAR — P a ra lle l Processing follows
a ! ADD.INSTANCE ; EXPERIENCE ; surrogate ; type
SEQ

b ! ADDJNSTANCE ; CREW-NAME ; surrogate ; name
b ! ADD.INSTANCE ; LOCATED-AT ; surrogate ; address

c ! ADD.INSTANCE ; CREW-RANK ; surrogate ; rank
d ! MESSAGE

The instance data related to each Memory Object is sent in parallel through

hardware channels between transputers. The "ADD.INSTANCE" is a tag protocol to identify

the message, while the object name is the second parameter and the instance data is the

last two parameters. So, all instances are added in different Memory Objects

simultaneously, since all processes at that time are independent of each other. It has

67

s c r e e n

T r a n s p u t e r (T)

Fig.3.6 Distribution of the structural Objects
Related to STAFF Object among Transputers

68

to be mentioned that although the instances related to the CREW-NAME and LOCATED-

AT Memory Objects are sent in sequence, the addition instance process, in both Memory

Objects, is carried out in parallel using Parallel on a Single Transputer type as

described before, since both the processes are independent of each other.

It is clear that the variable MESSAGE must be defined as a string which carries

a response such as "A new staff instance is added". The MESSAGE can be sent to the

screen either in sequence to ensure that the adding processes have executed properly,

or in parallel as shown above. But, if MESSAGE is sent in parallel, a new type of

parallel processing called Parallel on Background type will be used. This type of

parallelism will be discussed in the next subsection.

* Advantages :

1. The full power of parallelism is achieved, since independent processes are

distributed among various transputers (processors).

2. In the some sequential machines, the DBMS swaps the data between the

secondary storage and the main storage memory, since the main memory cannot

accommodate such large volume of data (e.g. 64MB). Using Parallel Data Distribution, the

data swapping frequency is expected to be less than in these sequential processing.

3,3.5. Parallel on Background :

In any traditional sequential database system, the user's request is translated

into a sequence of procedures. Each procedure is performed one after the other. When all

procedures are completed successfully, the end user receives an acknowledgement. But if

any error occurs during the processing, an error status is sent to the end user. Since

a single processor performs all the tasks, the response time of any user's request is the

summation of all the times needed to perform each procedure. But in parallel processing

the response time can be improved not only by processing the user's request in different

processors simultaneously, as shown in Parallel Data Distribution, but also by executing

some processes in the background during the system life time. So, the average response

69

time of the user's request is expected to be less than in traditional sequential database

system.

In Parallel on Background, the external user is not aware of the processes that

are carried out in the background during the life time of the system execution. It has

to be noted that the parallel background processes must be selected carefully and must

be secure, otherwise the integrity of the database may be corrupted.

The following are the possible processing mechanisms for Parallel on Background:

a. Complete/Incomplete Parallel Processing

b. Object Update Parallel Processing

c. File Simulation Processing

The Complete/Incomplete Parallel Processing is performed in all PKBZ modules

whenever it is possible. On the other hand, the Object Update Parallel Processing is

carried out in the OMS module, while the File Simulation Processing is executed in the

SMS module. The following subsections explain the difference among these techniques.

A. Complete/Incomplete Parallel Processing:

Any user's message has two different views. These views are the user's view and

the system view. So, at a certain time during execution of a specific message, the

message is completely executed from the user's view point. However, from the system view,

it may be incomplete. To explain such a strange characteristic, let us consider that the

user's message requests to open a database. In order to open a database the message is

interpreted, in general, as the following internal procedures:

a. Check the message parameters

b. Check the database existence in the secondary storage

c. Read the system object ^ classes from the secondary storage

d. Create new Stored Data in SMS module to load system object classes data

e. Change the data from physical data format into a Memory Object format

f. Create new Memory Objects in OMS corresponding to the system object classes

^ System Object classes store information about each user's object class

70

g. Respond to the end user by message stating that the database is opened

In the traditional sequential database, the response time is the summation of all

the times taken to perform each one of the previous procedures. But in Parallel on

Background type, once the first two procedures are carried out and the database is

known to exist, the PKBZ could perform step "g" directly, and the end user is informed

that the message is complete, since it is complete from user's view. But from the system

view the message is not complete. So, the steps c, d, e, and f are carried out in the

system background. It is clear that the response time is reduced by using

Complete/Incomplete Parallel Processing.

* Advantage :
1. Reducing the average time taken to process a user's message

* Disadvantage :
1. In the unlikely event that an error occurs and the background processes are

not performed successfully, then the user will have received an incorrect message

B. Object Update Parallel Processing:

One mechanism for Parallel on Background is the distribution of the Object

Groups in the OMS module. As mentioned before, each Object Group consists of a

collection of Memory Objects. Once a Memory Object is opened, it is loaded into the main

memory. Then, all the processing is carried out in the main memory. It is clear that not

all Memory Objects are executing at the same time. This characteristic attracts a new

type of parallel background process. Hence, a new process called an Object Manager is

executed in the background during the system life. As shown in Fig.3.7, there is only

one Object Manager per Object Group, since the Object Manager checks periodically every

Memory Object in the Object Group. So, if the instances are updated or some of the

schema information is changed, these changes will be reflected to the SMS module and

in consequence to the Stored Objects in the secondary storage database file. Fig.3.7

71

EMS
Mod u l e

OMS M o d u l e

^ SMS
Mo d u l e

Fig.3.7 Object Update Parallel Processing
Block Diagram

72

illustrates Object Update Parallel Processing block diagram.

Generally speaking, out of all the Memory Objects brought into the memory, only

those that have been modified will be saved back to the secondary storage, unlike the

ZEITGEIST [Ford 88] OODBMS, where all Memory Objects brought into the memory are saved.

* Advantages :
1. Updating mechanism is carried out periodically. So, if there is more than one

updating process in a single Memory Object, these processes are executed in a single

step. Similarly in the ENCORE OODBMS [Homick 87], the updating process is performed as

a package to minimize the amount of network traffic and reduce the amount of

processing execution.

2. Idle, or virtually idle Memory Objects in the main memory are processed for

updating, while non-idle are left. So, all Memory Objects are executing in parallel from

the system view point. In the 0Z+ [Weiser 89] OODBMS, for example, the system gives each

Memory Object an activity rating which characterizes the idle or virtually idle Memory

Objects.

C, File Simulation Processing:

Since any database needs normally a large volume in the secondary storage,

accessing the secondary storage slows the database performance. This characteristic

can be improved by using File Simulation Processing. The database file in the secondary

storage is divided into pages. Each page consists of records. Thus, the File Simulation

Processing can be regarded as a process that is executed in parallel, in the system

background, in the SMS module. When a new page is read or written to the secondary

storage for the first time only, a new page is allocated in the main memory of SMS

module. Hence, any further reading or updating to the same page is processed from the

main memory. In consequence, the performance is expected to be improved. Fig.3.8 shows

the block diagram which illustrates the File Simulation Processing.

The File Simulation Processing is a way of illustrating parallel processing in

the system background, since any page can be read or updated in the SMS module, while

73

OMS
Module

Fig.3.8 File Simulation Processing (FSP)
in the SMS Module in the form of pages

74

another page is updated in the secondary storage. Moreover, File Simulation Processing

can be considered as parallel input/output, since more than one page can either be read

or written simultaneously in the SMS module.

Moreover, a process called a Page Manager is executing in parallel in SMS module.

Its main function is nearly equivalent to the process Object Manager in the OMS module.

But, the Page Manager monitors each page periodically and any update is reflected to

the secondary storage.

Hence, the SMS module keeps track of the following information for each page in

the main memory:

1. The number of used records on each page

2. The position inside the page to store new information

3. The location of the page in the secondary storage file

4. Some other information like a flag to indicate if the page is updated or

not and so on.

Besides the previous information, some functions have to be implemented to

perform the following operations within each page:

1. Read a record from a page

2. Write a new record to the page

3. Update existing record in the page

4. Delete a record or part of the record in the page

Moreover the following constraints must be fulfilled :

1. When adding a record, the number of records currently in the page must

be less than or equal to the maximum number of records within each

page

2. The size of each record must be less than or equal to the maximum size

of the record in the physical file.

It is clear from the previous information that the implementation of File

Simulation Processing will be a complicated process, since a huge amount of information

for all pages has to be stored, the functions required for each page must be implemented,

75

and the constraints of each page have to be fulfilled. In order to simplify the problem

of implementation, each page in the main memory storage will be regarded as a single

object class (i.e. Memory Object) called a Page Object. Within each Page Object, the

functions will be defined as system functions, the records will be implemented as

instances of the Page Object, the constraints will be applied to the instances and any

further information can be defined in the schema description within each Page Object.

Fig.3.9 shows the modified File Simulation Processing in the form of Page Object.

The aim of the previous modification of File Simulation Processing is to build

the SMS module in the form of Memory Objects too. So, both OMS module and SMS module

are in the form of Memory Objects. It should be noted that not all object oriented

systems are implemented in this way. For example, the current Storage Manager in Iris

[Fishman 87] is a conventional relational storage subsystem.

In File Simulation Processing, a process called Page Object Manager is executed

in parallel in the background of the system. Its function is similar to the process

Object Manager in the OMS module. That is, any update in a Page Object is monitored and

the updating will be reflected to the physical Database File in the external storage.

It is clear from the previous discussion and Fig.3.9 that the internal block

diagram of the Stored Data in SMS module will be the same as the internal block diagram

of the Object Group in OMS module and that is one reason for the modification of the

File Simulation Processing to be in the form of Page Objects so that both the Object

Group process and Stored Data process may be similar with some minor changes.

The File Simulation Processing illustrates the file storage as a parallel process

in Parallel on Background type. The Parallel on Background advantages are :

* Advantages :
1. The response time for an external user is reduced

2. The process that depends upon the mechanical motion (update secondary storage)

is performed in the background.

76

EM S
MODULE

\

Memory
Object
Distr­
ibution
in the
Object
Group

FSP
in the
form
of

Page
Object

DataBase
File

N.P. There is no 1-1 mapping between
blocks in different modules

Fig.3.9 File Simulation Processing (FSP)
in the form of Page Object

p P P
A • # • A A
G G G
E E E

Secondary
Storage

X.

Memory • • • Memory • • • Memory
Object Object Object
Object Group

Object Manager

OMS Module
f_ _ _ _ _ _ _ _ _ k

Page • • • Page • • • Page
Object Object Object
Stored Data in FSP

Page Object Manager

SMS Module
I
v

77

3.4. Memory Object Grouping in PKBZ :

As described in the previous subsections Memory Objects are grouped into Object

Groups in OMS module and Stored Data in the SMS module. In this subsection, the

following Memory Object criteria will be illustrated :

1. Type of Memory Object grouping

2. Allocation of Memory Object

3. Deallocation of Memory Object

The discussion of each criterion will be provided in the following subsections.

3.4.1. Type of Memory Object grouping :

Memory Objects are grouped in the main memory storage according to different

criteria. The different criteria for Memory Object grouping are :

a. Inheritance Structure Grouping

b. Non-Inheritance Structure Grouping

c. Random Grouping

d. Sequential Grouping

In all the previous groupings the load has to be balanced. That is, the number

of Memory Objects in each group should be nearly equal, if it is possible (balance

condition). The following subsections describe the different criteria.

A. Inheritance Structure Grouping :

Many applications require the ability to define and manipulate a set of Memory

Objects as a single logical entity for the purpose of efficient storage and retrieval

[Kim 89], [Lorie 83], [IEEE 851, [Kim 87]. [Hornick 87] explains how Memory Objects are

grouped in segments in ENCORE OODBMS.

So, in the Inheritance Structure Grouping, the Memory Object in the same

inheritance structure is grouped into the same object grouping.

For example in "AirLine Transportation Example", all object classes in the

inheritance path of the STAFF object are grouped in the same Object Group. Similarly,

78

all object classes in the inheritance path of AIRBUS, TRIP, and SCHEDULE objects are

grouped in different Object Groups. The common object classes such as CREW, PLANE,

ATRIP, ROUTE, and TYPE are grouped in one Object Group only.

* Advantage :
1. Memory Objects in the same inheritance path need normally to communicate with

each other. So, the communication is carried out through software channels, if it is

possible. That is, all the inheritance path objects are near to each other.

* Disadvantage :
1. The criteria depends upon the inheritance structure of the Memory Object, so

each Memory Object's inheritance has to be checked first before loading in the main

memory.

2. When the search for many instances in different Memory Objects is executed,

the processing will be performed in a single transputer only, since as described before

in Parallel System Architecture an Object Group is mapped onto a single transputer.

B, Non-Inheritance Structure Grouping :

In the Non-Inheritance Structure Grouping the Memory Objects in the object group

do not belong to the same inheritance structure, if it is possible. For example, let us

consider "AirLine Transportation Example", the Memory Objects in the inheritance

structure of STAFF object are distributed among the different Object Groups. Similarly

in the AIRBUS, TRIP, and SCHEDULE objects, the Memory Objects in their inheritance

structure are distributed in different Object Groups.

* Advantage :
1. In Complex Homogenous Parallel System Architecture and Hybrid Parallel System

Architecture, the object groups are distributed among different transputers. Then, the

processing is distributed too, when any process is performed within the same

inheritance structure.

79

* Disadvantage :
1. The criteria depends upon the inheritance structure of the Memory Object, so

each Memory Object inheritance has to be checked first before loading to the main

storage.

C. Random Grouping :

The distribution of Memory Objects is random. There is no constraint in the

distribution. The only constraint is the balance condition. This type of criterion suits

grouping of the Stored Data in File Simulation Processing, since there is no inheritance

structure between Page Objects.

* Advantage :
1. It is a simple criteria.

* Disadvantage :
1. Since, there is no criteria in Memory Object grouping, it may happen that some

Object Groups have heavy processing, while others are idle.

D, Sequential Grouping :

The Sequential Grouping is suitable only for grouping in Stored Data in File

Simulation Processing. In Sequential Grouping, the Page Objects which have pages in the

secondary storage in sequence are grouped together, if it is possible. That is, the first

n-pages in the secondary storage are mapped onto different Page Objects, and these Page

Objects are grouped together in the same group, and so on.

* Advantage :
1. It is a simple criteria

2. The updated Page Objects are reflected in the secondary storage in sequence.

Then, the head movement in the disk is expected to be optimum.

80

3,4,2, Allocation of Memory Object :

The allocation of Memory Object depends upon the following parameters:

a. The internal memory of each transputer

b. The number of transputers allocated to the OMS module

and the SMS module.

c. When Memory Objects are allocated in the main memory storage

The first parameter is defined by the system hardware. But the second parameter

is defined by the OODBMS designer. In the third parameter there are different

mechanisms for loading the Memory Objects in the system as follows :

a. Demanded Object

b. Inherit Structure Object

A, Demanded Object :

In Demanded Object, the Memory Object is allocated into the memory, when the user

or the system demands the corresponding object class. Then, the Memory Object is grouped

into the related group according to the criteria described in the previous subsection.

For example, in "AirLine Transportation Example", the STAFF object is allocated

only, if the user sends a message to the STAFF object.

* Advantage :

1. It is a simple technique.

2. Only demanded object classes are allocated.

B,Inherit Structure Object :

Normally, an object class is not executing alone. An object class interacts with

other object classes in the same inheritance structure. So, when an object class is

demanded, not only the demanded object class is allocated, but also the inherited object

classes are allocated too.

81

* Advantage :
1. When a user's message requests information from other object classes in the

same inheritance structure, the inherited object classes are already allocated, since all

inherited object classes are normally executing together.

* Disadvantage :
1. Some allocated Memory Objects may not be required during system execution.

2. The inheritance path must be checked when a new Memory Object is allocated

in the system.

3.4.3, Deallocation of Memory Object :

If the number of Memory Object required is greater than the maximum number of

the Memory Object in the system, some Memory Object will be deallocated and the

deallocated Memory Objects will be restored back into the secondary storage file. The

different criteria for choosing the required deallocated Memory Object has an analogy

with page deallocation in the operating system. So, the same technique in [Janson 85] can

be applicable too. For example, Last Recently Used (LRU), First In First Out (FIFO), and

so on. These criteria are beyond the scope of this research and can be investigated in

future research.

As an example, though, in the 0Z+ [Weiser 89] OODBMS, the system gives each Memory

Object an activity rating, which characterizes the frequency with which a Memory

Object is accessed. Memory Objects that are virtually inactive are deleted from the

memory after updating the corresponding data in the secondary storage.

3.5. Conclusion :

This chapter has explored the different aspects of parallelism that can be

implemented in PKBZ. Fig.3.10 summarizes the various aspects of parallelism in the graph

form.

82

G r o u p G r o u p

Static
G roup

Dynamic
G r o u p

DAP
PTR
PST
PIN
PDD
PBG
HOPSA
IIYPSA
SHOPSA
CHOPSA
CIPP
OUPP
FSP

D i f f e r e n t A s p e c t s of P a r a l l e l i s m
Parallel on T R a n s p u t e r s
Parallel on Single T r a n s p u t e r
Parallel on the I N s t r uctions
Parallel Data D i s t r i b u t i o n
Parallel on B a c k G r o u n d
H o m o g e n o u s Parallel Sy s t e m A r c h i t e c t u r e
IIYbrid Parallel S y s t e m A r c h i t e c t u r e
Simple H o m o g e n o u s Parallel Sy s t e m Arch.
Complex H o m o g e n o u s Parallel System Arch.
C o m p l c t e / I n c o m p l e t e Parallel P r ocessing
Ob j e c t Update Parallel Proce s s i n g
File S i m u l a t i o n Proc e s s i n g

F i g . 3.10 The D i f f e r e n t A s p e c t s of Parallel P r o c e s s i n g

As mentioned before, one of the research objectives is to build a parallel KBZ

OODBMS prototype using Meiko Computing surface. In the current prototype, as it will be

discussed in the next chapters, the Simple Homogenous Parallel System Architecture has

been chosen for implementation. Other aspects of parallelism are implemented too,

including Parallel Background. Also, the File System Simulation process has been

implemented to check the possibility of using parallel processing with filing system.

The File System Simulation process is implemented in the form of Page Objects. The

current prototype has been designed and tested in a single user environment. The

83

experimental results will be illustrated in chapter seven.

This chapter has also discussed the different types of Memory Objects allocation

and deallocation. The current prototype assumes that all Memory Objects are loaded in

the main memory using Demanded Object criteria. The prototype also groups all Memory

Objects in a single Object Group.

84

CHAPTER 4

PKBZ Implementation : Object Class Representation

4.1. Introduction :

In the previous chapter, the different aspects of parallel processing with a PKBZ

object oriented database management system are discussed. An example of each aspect is

described in detail. Moreover, the advantages and disadvantages of the different aspects

are illustrated too.

In the next three chapters, the design and implementation of the prototype PKBZ

will be discussed. It has to be mentioned that the design and implementation phases are

iterative processes. They are changed over time and according to the need. Accordingly,

there are two versions of PKBZ. The initial prototype, PKBZ version-1, concentrates on

the parallel implementation and is designed to investigate the functionality of the

system. The system has been enhanced in PKBZ version-2 so that some experimentation

can be carried out. In addition, some of the processes in version-1 have been modified

in version-2 as a result of a review of the design. Thus, PKBZ version-2 supports the

same functionality as version-1, but some processes are more sophisticated; in addition,

some new functions have been added.

In this chapter and chapter 5, the discussion of the object class representation

and functionality will be based on PKBZ version-1, while in chapter 6, the enhancements

and modifications in version-2 will be discussed, together with the experimentation and

results.

Moreover, the chapter will answer many questions which are relevant to any

object oriented database system design and implementation. These questions are:

1. How are the different types of the PKBZ object class logically represented ?

2. How are the object classes physically stored ?

3. What is the system data ?

4. How is the system data logically and physically represented ?

8 5

5. How are the database files structured into the secondary storage ?

L2, Logical Representation of the Object Class :

An object class, during the run time, is stored in a chunk of the main memory.

This main storage is called Memory Object as defined in the previous chapter. Although,

in the KBZ model, there are many object class types, in PKBZ version-1, all the different

object classes, including Page Object, are mapped into the same Memory Object structure

during the run time. The main reason is to simplify the design and the implementation

phases. However, the system is modified in PKBZ version-2, in which each object class

type is represented by a different Memory Object type.

A Memory Object is implemented in Occam as a single process. Inside this process,

both the object class schema and the object instances are represented in the form of

variables and arrays. The Memory Object data structure representation will be described

later. The Memory Object communicates with the external system through message sending.

The messages are sent to the Memory Object via channels. Fig.4.1. illustrates the Memory

Object block diagram.

i n .schema
V-

i n .instance Memory

reque s t . o r d e r Ob j e c t

a c c e p t .data

s t a t u s .order
------->------
d i s p l a y .data

Fiq.4.1. Memory Object Block Diagram

The Memory Object process can be represented as follows (the complete protocol

definitions are illustrated in appendix D.) :

PROC Memory .Object (CHAN OF OB JECT.SCH EM A
CHAN OF INSTANCE
CHAN OF REQUEST.ORDER
CHAN OF ANY
CHAN OF INT
CHAN OF ANY

in.schema ,
in .instance ,
request.order ,
accept.data ,
status.order ,
display .data)

86

Schema V ariab les Declaration
Instance Variab les Declaration
A u x ilia ry V ariab les Declaration
A u x ilia ry Process

}
... Accept Schema From Channel in.schema
... Accept Instances From Channel in .instance
... In it ia liz e and Prepare A u x ilia ry Variab les
continue := TRUE
WHILE continue

... Accept Memory Object Message and Invoke The Corresponding Method

A Memory Object is created empty. It has no information. Then, a corresponding

object class schema is sent through the "in.schema" channel, followed by the object

instances through the "in.instance" channel. Hence, the Memory Object is ready to

receive any further message through the "request.order" channel. The methods are stored

and described inside each Memory Object. If any message is received, then the

corresponding method is invoked inside each Memory Object. The status of the message

is sent externally through the "status.order" channel. A Memory Object accepts any other

information through the "accept.data" channel, while any data can be sent externally

through the "display.data" channel.

The following KBZ object classes, which are described in chapter 1, together with

the Page Object represented in KBZ notation will be used to illustrate the main data

structures in the Memory Object implementation process :

CREW PAGE-OBJECT
crew : Surrogate record : String

CREW-RANK STAFF
ranked : Crew --- > Rank
rank-of : Rank --!-> {Crew}

crew-name
ranking : Crew-rank
experience
located-at

The Memory Object representation can be classified into the following :

1. Memory Object schema representation

8 7

2. Memory Object instances representation

3. Object methods and constraints representation

4.2.1, Memory Object Schema Representation :

The structure of the Memory Object schema does not depend upon the object class

type. It contains the following data :

a. Object Identification (Type, Surrogate, Name)

b. Property names and types

c. Inheritance information

d. Constraints and functional properties

e. Instances description (Instances type, Total number, ... etc)

The instance description is used to describe information related to the object

instances. Such information will be described after the Memory Object instances

representation has been discussed (subsection E in 4.2.2.)

The schema data structure representation is chosen to be minimal and simple to

facilitate the design and the implementation procedures. The following schema variables

are used to store the data values of the corresponding object schemata, while the

complete description of the schema data structure is illustrated in appendix B :

A. Object Identification :
The following table illustrates an example of the complete object identification

values of the CREW-RANK, STAFF, and PAGE-OBJECT object classes (see appendix B.I.):

Object Class CREW-RANK STAFF PAGE-OBJECT
Component Name
object.type.id structura1.

type.int.
string

entity.
aggregate.
type

attribute.
type.string

object.id object
identifier of
CREW-RANK

object
identifier of
STAFF

Page Number
in secondary
storage

object.name CREW-RANK STAFF PAGE-OBJECT

88

Appendix A.2. shows the complete description values of all object class type

identifiers stored in "object.type.id". Each object class is identified uniquely by a

surrogate value. This surrogate is generated by the system (see subsection 4.3.). The

value of each surrogate is stored in the object identifier (i.e. "object.id").

B. Property Names and Types of The Object Class :

Although each object class type has a different data structure for the property

names and types, a single data structure (see appendix B.2.) is used to accommodate all

the object class types as shown below:

B.l. Basic Object Property Names and Types :

The following table illustrates the complete property names and types of the CREW

and the PAGE-OBJECT object classes :

Object Class CREW PAGE-OBJECT
Component Name
total.no.of.data.property 1 1

property.name[0] crew record
property.type[0]_____________ I_____________ Surrogate String

The property type for basic object can be either :

- "Surrogate" (For entity set)

- "Integer" (For an attribute set of integer instance type)

- "String" (For an attribute set of string instance type)

B.2. Structural Object Property Names and Types :

The following table illustrates the complete property names and types of the

CREW-RANK object class :

89

Object Class CREW-RANK Description
Component Name
total.no.of.data.property 3 Number of stored data

properties
property.name[0] ranked Primary relationship

name
property.name[1] rank-of Inverse relationship

name
property.type[0] Crew Domain of primary

relationship
property.type[1] Rank Range of the primary

relationship
property.type[2][0] Y (Yes) Primary relationship

is (one-to-one)
property.type[2][1] N (No) Primary relationship is

total function
property.type[2][2] N (No) Secondary relationship

is (one-to-many)
property.type[2][3] Y (Yes) Secondary relationship

_ _1 is partial function

Although the property names and the property types of the structural object are

completely different in structure, the table above shows how each relationship name

with the corresponding domain and range can be stored completely in the system.

It has to be mentioned that the "property.type[2]" is used to store both the degree

of relationship (one-to-one, one-to-many) and the existence characteristics (total,

partial) of both the primary and the inverse relationships. Moreover, neither the domain

nor the range of the inverse relationship are stored, since these are implicitly known

from the primary relationship.

B.3. Entity Aggregate Object Property Names and Types :

The following table illustrates the complete property names and types of the STAFF

object class :

90

Object Class S T A F F

Component Name V A L U E

tota1.no.of.data.property 4

property.name[0]
property.name[1]
property.name[2]
property.name[3]

crew-name
ranking
experience
located-at

property.type[0]
property.type[1]
property.type[2]
property.type[3]

Crew-rank

As shown in the previous table, if the property type is declared, both the

property name and the corresponding property type are stored in the same order (index)

in the related array. But, if the property type is omitted, the property name will be

stored only, since it implicitly indicates the property type.

As mentioned before, all the different object class types can be accommodated in

the same data structure. However, there is a possibility to have a different data

structure for each object type, but for simplicity, the system is implemented using a

single data structure.

C. Inheritance Information :

Appendix B.3. describes the object class inheritance information data structure.

The system is designed to allow a maximum fixed number of inherits and inherited by

object classes (see appendix A.I.), since Occam language does not allow a variable array

declaration. However, another data structure (e.g. linked list mechanism) can be

implemented to accommodate a variable number of the inheritance information. But, for

simplicity a maximum fixed number of array elements are used for the prototype

implementation.

During the system running, the elements of the integer arrays "inherits" and

"inherited.by" which are not used to reference an inheritance information are

9 1

initialized to zero values, while the corresponding elements of the string arrays

"inherits.name" and "inherited.by.name" are initialized to space.

For example, the following table illustrates the complete stored inherits

information of both CREW-RANK and STAFF object classes :

Object Class CREW-RANK STAFF
Component Name
inherits[0] CREW object identifier CREW-NAME

object identifier
inherits[1] RANK object identifier CREW-RANK

object identifier
inherits[2] EXPERIENCE

object identifier
inherits[3] LOCATED-AT

object identifier
inherits.name[0]
inherits.name[1]
inherits.name[2]
inherits.name[3]

CREW
RANK

CREW-NAME
CREW-RANK
EXPERIENCE
LOCATED-AT

On the other hand, the following table illustrates the complete inherited by

information of the CREW-RANK object class :

Object Class CREW-RANK
Component Name
inherited.by[0] STAFF object identifier
inherited.by.
name[0]

STAFF

It has to be mentioned that the CREW-RANK object class does not store the

inherited by object class information until STAFF object class is created. That is, when

the STAFF object class is created, the system adds the STAFF object class to the CREW-

RANK inherited by information.

STAFF has no inherited by information and therefore contains only the initialized

92

values.

D. Constraints and Functional properties :
The data structure of the constraints and functional properties have been

designed (see appendix B.4, and B.5), but the real implementation has not been considered

for the reasons described in subsection 4.2.3.

4.2.2. Memory Object Instances Representation :

It is difficult to have a single representation for all different object class

instances, although all the various object class types have the same logical schema

representation. So, each object type has its own object instance structure representation.

It has to be mentioned that the PKBZ version-1 prototype allows a fixed number

of object instances to be stored only; the current maximum value is the

"max.number.of.objects" (see appendix A.l). This variable is set to 50 per Memory Object

in PKBZ version-1. In the PKBZ version-1, the complete instances are stored in the

Memory Object during the system life. However, the PKBZ version-2 allows more instances

to be stored in which the instances are swapped between the Memory Object and the

corresponding secondary storage.

Instances are stored in Memory Object in the form of integer and string arrays.

For example, an entity set's instances are stored as an integer array. A structural

object's instances are stored in two different integer arrays if the range of the

primary relationship is an integer, or in an integer array and string array if the

range of the primary relationship is a string. The data structure of attribute set

instances is designed (see appendix C.I., and C.2.), but attribute set instances are not

stored independently; they are only stored in the corresponding structural objects in

the array representing the primary relationship range. But, there are two exception

cases :

i. Page Object instances : The instances of Page Object have to be stored.

ii. System Objects instances : The System Objects will be described in subsection

4.3.

9 3

The only derived object type currently implemented is the entity aggregate which

is stored as an integer array which contains the surrogate values of the entities on

which the entity aggregates are based. This is explained in more detail below, together

with the examples:

A, Basic Memory Object Instances Representation :

The CREW entity set shown below in its KBZ notation is used to store the unique

surrogate of each crew member in the AirLine Transportation Example.

C R E W

c r e w : S u r r o g a t e

The data structure of the basic Memory Object instances representation is

illustrated in appendix C.l. For example, the instances of crews are stored in the CREW

entity set as follows:

Object Class CREW
Component Name
id.instance[0] 12
id.instance[1] 13
id.instance[2]

• • •
14
• •

• • •
• • •

• •
• •

The instances values of the CREW or any other entity set are generated

sequentially by the system using the surrogate value in "instance.description[4]" (see

subsection E.).

B. Structural Memory Object Instance Representation :
As described before, the domain of the primary relationship in the structural

94

object is always an entity set, then the domain value can be represented by an array

of integers. Similarly, if the range is an integer too, another array of integer is used

to represent the range. But, if the range is a string, it is represented by an array of

string.

For example, let us consider the following KBZ object classes which are described

in chapter 1 :

BUS-TYPE

has-type: Plane--- > Type
type-of : Type --- >{Plane}

BUS-CAPACITY

: Plane----> Capacity
: Capacity-- MPlane}

BUS-AGE
: Plane-- > Hour
: Hour-- > {Plane}

The data structures of the Memory Object instance representations are illustrated

in appendix C.3. The following tables illustrate an example of the data storage values

in the different KBZ structural objects :

Variable Name id.instance[i]
(Corresponding
to domain PLANE)

name.instance[i]
(Corresponding
to range TYPE)i

0 11 Concorde
1 12 Boeing 747
2 15 Boeing 747
3 17 Tristar
4 25

• •
Concorde

• • •
• • •

• •
• • •
• • •

BUS-TYPE instances

95

Variable Name id.instance[i] n [i]
(Corresponding (Corresponding to the

i to domain PLANE) range CAPACITY)
0 11 400
1 12 350
2 15 300
3 17 450
4
•

25
• •

500
• • •

•
•

• •
• •

• • •
• • •

BUS-CAPACITY instances

Variable Name id.instance [i] n t i]
(Corresponding to (Corresponding to

i domain PLANE) range HOUR)
0 11 2080
1 12 1158
2 15 1500
3 17 2099
4
•

25
• •

1112
• • •

•
•

• • • • •

BUS-AGE instances

The data values are stored corresponding to the definition of the primary

relationship in the structural object. The same index [i] on both arrays (domain and

range) is used to link both the domain and the range together to form a single instance.

C, Derived Memory Object Instances Representation :

As mentioned before, the only derived object type currently implemented is the

entity aggregate. Since, the domain of all object classes which are defined inside the

schema declaration (i.e. the common domain of the inherit structural objects) of any

entity aggregate is the same entity set, then the common surrogate values are the only

instances which are stored inside the entity aggregate object class.

For example, let us consider the AIRBUS entity aggregate object in the AirLine

Transportation Example :

96

AIRBUS

bus-type
bus-capac ity
bus-age

The common domain of the above three structural objects is the PLANE entity set.

Then, the surrogate values of the common domain PLANE are the only instances which are

stored in the AIRBUS entity aggregate object as follows (see appendix C.4.) :

Object Class AIRBUS
Component Name
id.instance[0] 11
id.instance[1] 12
id . instance[2] 15
id.instance [3] 17
id.instance[4] 25

• • • • •

AIRBUS stored instances

The main advantages of storing the surrogate values only of the common domain

are :

1. The minimal storage of the entity aggregate is achieved in both the main

memory (i.e. Memory Object) and in the secondary storage.

2. Thus, the whole entity aggregate instances can be instantiated from the related

inherits objects, during the run time, in parallel using "Parallel Data

Distribution" or "Parallel on a Single Transputer" as described in chapter 3.

It has to be mentioned that PKBZ instantiates the entity aggregate instances

using "Parallel On Single Transputer". The instantiated instances will be as

shown in the following table :

9 7

Structural Obj. Domain
Value
(PLANE)

BUS-TYPE
(Primary
range)

BUS-CAP.
(Primary
range)

BUS-AGE
(Primary
range)Index [i]

0 11 Concorde 400 2080
1 12 Boeing 747 350 1158
2 15 Boeing 747 300 1500
3 17 Tristar 450 2099
4
•

25
• •

Concorde
• • •

500
• • •

1112
• • • •

•
•_______________

• •
• •

• • •
• • •

• • •
• • •

_
• • • •
• • • *

AIRBUS Instantiated Instances

D. Page Object Instance Representation :
Appendix C.5. describes the data structure of the Page Object instance. Each Page

Object is used to store the corresponding Memory Object Instances (MOD in the main

memory. So, the Memory Object Instances can be distributed in the Page Object as shown

in Fig.4.2 :

SIZE 55
IN 1 11 11 11

BYTE 0123...... 0... 45 67 01
SIZE 55
IN 1 11 11 11

BYTE 0123...... 0... 45 67 01

F i q . 4 .2. M e m o r y O b j e c t I n s t a n c e s D i s t r i b u t i o n In T h e P a g e O b j e c t

The Page Object Structure is chosen to reflect the secondary storage file

structure which is in terms of 'records'. Thus, each Page Object instance is a record, and

a Page Object consists of "n" records. Each record is a string. The size of each record

is set to "fileSys.maxDataByte" (FSMDB see appendix A.l) which is equal to the maximum

98

record length size available in the Occam language, and it is also equal to the record

width of the secondary storage file which contains the PKBZ database. The FSMDB is

chosen by Occam library to be 512 bytes. In the PKBZ system, the number of Page Object

instances per Page Object ("NO.REC.IN.PAGE" see appendix A.l.) is set to 5 (i.e. n = 5). This

value is chosen arbitrarily.

The first 16-bytes in record[0] are used to store information about the Page

Object instances. During the run time, these 16-bytes are transformed into a single 8-

element integer array, called "Page.Data.Region". The function of each element in this

array is described in appendix C.6.

The rest of the recordfO], and the other records in the Page Object instances are

used to store the corresponding instances of the related object class, as shown in

Fig.4.2.

The following table illustrates an example of the data values corresponding to

the "Page.Data.Region" in Fig.4.2. :

Component Name VALUE DESCRIPTION

Page.Data.RegiontO] 2 Number of stored records

Page.Data.Regiontl] 18 Number of stored MOI

Page.Data.Region[2] 16 Current Page Number

Page.Data.Region[3] 0 Previous Page Number

Page.Data.Region[4] to
Page.Data.Region[7]

zeros Reserved

.

It is assumed that this Page Object is corresponding to the physical page 16 in

the secondary storage ("Page.Data.Region[2]").

The Memory Object Instances are stored consecutively. Even, if the record does not

accommodate the complete instance, the rest of the instance string will be extended to

the next record (e.g. M0I[9], in Fig.4.2). By this mechanism, all records are used and no

wasted space exists at the boundary.

As described before, in PKBZ version-1, only one Page Object is allocated to each

99

Memory Object. The Page Object is sufficient enough to accommodate the

"max.number.of.objects" in the Memory Object. However, in PKBZ version-2, more than one

Page Object is used to accommodate the Memory Object Instances. If an instance does

not fit at the end of the page, then the whole instance value will be accommodated to

the next page. That is, it will not be partitioned between the two consecutive pages.

Then, the only gap that exists in the Page Object instance is at the end of last record.

E. Instance Description :

As mentioned before, the instance description forms part of the Memory Object

schema. It is used to describe information related to the object instances. The following

table illustrates the data structure and the corresponding values of the instances

description of CREW, BUS-TYPE, BUS-CAPACITY, and AIRBUS in the Memory Object (see

appendix B.6.):

O b j e c t
T y p e

E n t i t y
Se t

S t r u c t u r a l
O b j e c t

E n t i t y
A g g r e g a t e

O b j e c t C l a s s C R E W B U S - T Y P E B U S - C A P A C I T Y A I R B U S

i n s t a n c e .
d e s c r i p t i o n

0 0 0 0 0

1 Pi P2 p3 p4

2 p d r + b l * il p d r + b 2 * i2 p d r + b 3 * i3 p d r + b4* i4

3 il i2 i3 i4

1 s 0 0 0

5 0 0 0 0

6 0 0 0 0

7 int i n t .s t r i n g l 2 i n t .int int

The "instance.description[l|" indicates that the instances of the CREW, BUS-TYPE,

BUS-CAPACITY, and AIRBUS are stored in the database file pages pi, p2, p3, and p4

respectively (see subsection 4.5.).

1 0 0

The zero value in "instance.description[0]" describes that there is no previous

instance page in the secondary storage database file. In general, in PKBZ version-1 only

one instance page is allocated to each object class to simplify the implementation

process.

Moreover, the "instance.description[3]M keeps track of the number of Memory Object

Instances. It is assumed that the number of object instances currently stored in the

CREW, BUS-TYPE, BUS-CAPACITY, and AIRBUS are il, i2, i3, and i4 respectively. This number

is updated automatically, during the system execution, according to the message applied

to the corresponding Memory Object.

The "instance.description[4]" stores the current surrogate value. This value is

updated by the system only. It is set to "s" in the CREW entity set. But, it is clear

that it has no meaning in the BUS-TYPE, BUS-CAPACITY and ATRBUS, since no surrogate

is generated, then the corresponding value is set to zero.

The "instance.description[7]M represents the instance type. For example, the

instance type integer "int" is stored in both CREW and AIRBUS. While, in the BUS-TYPE,

"int.stringl2" describes the domain as an integer and the range as a string of length

(size) 12 bytes, in the BUS-CAPACITY, "int.int" illustrates that both the domain and the

range have type integer. The system assumes that "int" is corresponding to intlG in

Occam language which can be represented by two bytes. "int32" is not considered in the

prototype implementation.

The "instance.description[2]M points to the free location within the corresponding

Page Object (see Fig.4.2.). This location is calculated by the formula "pdr + b * i", where

"pdr" is the size in bytes of the "Page.Data.Region", "b" is the size in bytes of the

corresponding logical instance (see appendix A.4.), and "i" is the number of the current

stored Memory Object Instances in the corresponding Page Object.

Both the "instance.description[5]" and "instance.description[6]" are not currently

used. They are reserved for future system modifications.

It has to be mentioned that the object instances are stored in sequence. For

simplicity no index mechanism is performed in the current prototype. But, in future

1 0 1

implementations, an index mechanism could be carried out for fast retrieval. Such index

mechanism could be stored in the instance description.

4.2,3, Object Methods and Constraints Representation :

As described in Memory Object process, when the Memory Object receives both the

object schema and the related object instances, then Memory Object is ready to accept

any further message. When a message is received through the "request.order" channel

(Fig.4.1.), the corresponding method is invoked. The structure of such object methods will

be described as follows :

request.order ? CASE
messaged ; ... ; ...

SEQ
method.l

message.2 ; ... ; ...
SEQ

method.2

The CASE statement is used to select one method from the available different

methods. The "messaged", and "message.2" are the tag protocol of the message.

The complete PKBZ protocol definitions are given in appendix D. Further, the

Memory Object Messages data structures are illustrated in appendix E.

It has to be mentioned that the current PKBZ system implementation enables only

system methods. The user's methods are not implemented, since methods are corresponding

to instructions or procedures, as shown above, and there is no way to append user's

methods to the system methods after these procedures are compiled. So, a compiler or an

interpreter is needed to transform user's instructions into an executable form. So, the

data structure of the functional properties (appendix B.5.) is designed to allow further

modification in future. The end user can define his or her functional properties. Then,

the system can transform these functional properties into an executable form and store

this information inside a class object.

There is a possibility that the end user could design his or her functional

properties using the Occam code and compile it. Then, a set of compiler library

1 0 2

procedures called "Dynamic Code Loading" [INMOS 89] could read this section of compiled

code and execute it. Such modifications could be implemented in future research.

Similarly, constraints are not yet implemented, for the same reason. But, the data

structure of the constraints is designed (appendix B.4) for future modifications.

4.3. System Object Classes :

The system has to know the complete information about each user's object class.

Such information is called System Data. Since the user's data is stored in the form of

object classes, then it is best to store the system data in the form of object classes

too. Fig.4.3., and Fig.4.4. show the structure of the system object classes representation

in graph notation and KBZ notation respectively.

The functions of each system object class will be illustrated as follows:

A. OBJECT-ID Object Class :

The "OBJECT-ID" (Object IDentification) is an entity set. It is responsible for

generating a unique surrogate for each object class in the system, since each object

class is identified by a unique surrogate. Surrogates are generated in sequence. The

object instances of the "OBJECT-ID" entity set are all the object classes surrogates.

That is, when the "OBJECT-ID" entity set is initialized, it has only five surrogates from

zero to four corresponding to the five system object classes.

B. OBJECT-NAME Object Class :

The "OBJECT-NAME" is an attribute set. It stores all object classes names in the

system. The object class names are stored as object instances in this attribute set. That

is, when the "OBJECT-NAME" attribute set is initialized, it has only five names of the

system object classes : OBJECT-ID, OBJECT-NAME, OSCHEMA, HAS-ONAME, and HAS-OSCHEMA.

It has to be mentioned that although the attribute set instances are not stored

for the user's data, the system allows such storage for system data for purpose of

designing and debugging the system during the system implementation.

1 0 3

F i g . 4 .3. S y s t e m O b je c t C l a s s e s D e s c r i p t i o n

O B J E C T - I D O B J E C T - N A M E

o b j e c t - n a m e : S t r i n g

l e n g t h (o b j e c t - n a m e) <= 12

O S C H E M A

o s c h e m a : I n t e g e r

o b j e c t - i d : S u r r o g a t e

H A S - O N A M E

h a s - o n a m e : O b j e c t - i d --- > O b j e c t - n a m e
n a m e d : O b j e c t - n a m e --- > O b j c c t - i d

H A S - O S C H E M A

l o c a t i o n : O b j e c t - i d --- > O s c h e m a
l o c a t e d - a t : O s c h e m a --- > O b j e c t - i d

F i g .4 . 4 . S y s t e m O b j e c t C l a s s e s D e s c r i p t i o n in KB Z n o t a t i o n

1 0 4

C. OSCHEMA Object Class :

The schema of all object classes are stored separately in a special location in

the secondary storage database file (see subsection 4.5). This position of each object

class schema is stored in the "OSCHEMA" (Object SCHEMA) attribute set. When the

"OSCHEMA" is initialized, it has five integer numbers. Each one is corresponding to a

unique position of each system object class schema.

D. HAS-OHAME Object Class :

The "HAS-ONAME" (HAS Object NAME) is a structural object. When a new object class

is created, the "OBJECT-ID" entity set generates a new surrogate. This new surrogate

along with object class name is stored as a single object instance in the "HAS-ONAME"

structural object. So, when the "HAS-ONAME" structural object is initialized, it has five

object instances. Each object instance is corresponding to one of the system object

classes.

E. BAS-OSCHEMA Object Class :

The "HAS-OSCHEMA" (HAS Object SCHEMA) is a structural object. Its object instances

are the object class surrogates along with the position of each object class schema in

the secondary storage database file. The "HAS-OSCHEMA" structural object neither allows

two object class schemata to be stored in the same location nor permits two object

schemata to be overlapped. So, when the "HAS-OSCHEMA" structural object is initialized,

it contains five object instances. If a new object class is created, the surrogate will

be stored along with the new object schema position.

* Advantages :
1. The main advantage of representing system data in the form of KBZ object

classes is that the design and implementation procedures are expected to be easier,

since there is no need to design and implement two different structures one for the

system data and another one for the user's object classes.

1 0 5

2. Both system data and user's data are represented in the form of the object

classes so that any further modifications in the object class structure may be reflected

in both of them.

4,4, Physical Representation of the Object Class :

A Memory Object is represented by schema and object instances. So, the simple way

to store such representation into the secondary storage database file is to aggregate

all the corresponding variables into a single record. Then, this record is written into

the secondary storage database file. Unfortunately, such physical storage in the form

of record is not applicable in Occam, since Occam does not support the record definition

[INMOS 88.b.].

So, one possible way of overcoming such difficulties is to design a routine which

transfers the Memory Object structure into a single string. That is, Memory Object is

transformed into a logical record in the form of a single string. Then, this single

string is written into the database file.

One of the simplest methods of transformation is to transfer each integer

variable into an equivalent character string. Then, all strings are collected together

to form a single string. The Fig.4.5. shows the block diagram of such transformation.

String
Represents

Represents
Instances

F i g . 4 . 5 . M e m o r y O b j e c t T r a n s f o r m a t i o n P r o c e s s

The transformation mechanism is carried out in two phases. In the first phase,

the object instances are transformed. Then, in the second phase, the object schema is

transformed. The following subsections illustrate the transformation mechanism in

detail :

1 0 6

4.4.1. Instances Memory Object transformation :

The following code illustrates the instances conversion :

PROC Convert.update.objects.instances(... , ... , ...)
... Variable declaration
SEQ

... Accept instance type (i.e. instance.type) of the object class
— (i.e. instance.descriptionl7J variable (see subsection E. in 4.2.2.))
CASE instance.type

int — Integer instance
PAR

... Invoke "intermediate.create.int.instance" Process

... Accept number of records + Page
stringl2 — Stringl2 instance

PAR
... Invoke "intermediate.create.string.i instance" Process
... Accept number of records + Page

int.stringl2 — int + Stringl2 instance
PAR

... Invoke "intermediate.create^tructural.instance" Process

... Accept number of records + Page
int.int — int + int instance

PAR
... Invoke "intermediate.create.int^tructural.instance" Process
... Accept number of records + Page

There are four different transformation processes corresponding to the four

different instance types allowed in PKBZ system (see appendix C.). The description of

each process will be as follows :

A. intermediate.create.int.instance Process :

The following code illustrates the function of the process :

PROC intermcdiate.create.int.instancc(... , ... , , ...)
... Variables declaration
SEQ
in ? sizer^instance FROM 0 FOR size]
st := 16
SEQ i = 0 FOR size

SEQ
convert.int.string2(instanceii] , [rec FROM st FOR 2])
st := st + 2

convert.array.to.page(rec , page)
out ! INT((st - 1) / FSMDB) ; page

The first 16 bytes are left to store the "Page.Data.Region". Then, the integer

instance array is transformed into a single string array "rec". The "rec" array will be

1 0 7

as shown in Fig.4.6. :

P a g e D a t a R e g i o n i n s t a n c e [0] i n s t a n c e [1 J • • • • • •

Fig.4.6. Transformation of Integer instances into a single String

Then, the single array is transformed into a page format (i.e. two dimensional

array). The number of stored records per page is sent together with the page. This page

structure has the same structure as the Page Object instance.

B. intermediate.create.string.instance Process :

Although string instances in the attribute set are not stored, this process is

designed at the beginning of the system implementation for the system objects to

facilitate the design and the debugging phases.

The following code illustrates the process :

PROC intermediate.create.st ring.i nstancei • • •) y y • • •)

... Variab les declaration
SEQ

... Accept s tr in g instances and the size

... Store each instance in the corresponding position

... Convert the sing le array in to a page

... Send the number o f records used w ith the page

C. intermediate.create.structural.instance Process :

The following code illustrates the process :

PROC interm ediate.createj5tructural.i nstancei... , ... , , ...)
... V ariab les declaration
SEQ

... Accept in teger + s tr in g instances and the size

... Convert each in teger domain instance in to two bytes strin g

... Store each instance in the corresponding position

... Convert the s in g le array in to a page

... Send the number o f records used w ith the page

Each integer domain in the structural instance is converted into a string. Then,

the string domain is concatenated with the string range to form a single instance as

shown in Fig. 4.7. :

1 0 8

2 - B Y T E S 12 B Y T E S
^

D o m a i n i n t e g e r
in t h e s t r i n g f o r m

S t r i n g R a n g e

C o m p l e t e S i n g l e S t r u c t u r a l I n s t a n c e

Fig.4.7. Transformation of Structural instances in the form of
integer and string into a single String

D. intermediate.create.structural,int.instance Process :

The following code illustrates the process :

PROC intermediate.create.structural.int.instance(... , ,...)
... Variables declaration
SEQ

... Accept integer + integer instances and the size

... Convert each integer into two bytes string

... Store each instance in the corresponding position

... Convert the single array into a page

... Send the number of records used with the page

Each structural instance is converted into a single string. This single string

will be as shown in Fig.4.8. :

2 - B Y T E S 2 - B Y T E S
ye------------------------- < --------------------------

D o m a i n i n t e g e r
in t h e s t r i n g f o r m

R a n g e i n t e g e r
in t h e s t r i n g f o r m

C o m p l e t e S i n g l e S t r u c t u r a l I n s t a n c e

Fig.4.8. Transformation of Structural instances in the form of
domain integer and range integerinto a single String

After the instances are transformed into a page, each page of instances will be

sent to the corresponding Page Object in the SMS module. This mechanism is carried out

using Object Update Parallel Processing. Then, each Page Object is transformed into the

secondary storage using the File Simulation Processing.

1 0 9

4,4.2, Schema Memory Object Transformation

When transforming the Memory Object schema into its Page Object representation,

some schema data are suppressed. These suppressed data are :

1. Object name

2. Inherits object names

3. Inherited by object names

These suppressed data have reference identifiers. So, during the loading process

of any object class from the secondary storage to the main memory, the corresponding

identifers of the suppressed data are used as an index to get the suppressed data. By

this mechanism, the storage space is optimal. The following code illustrates how the

object schema is transformed into a single string :

PROC intermediate.create.object(• • • y • • • y y • • •)

... V ariab les declaration
SEQ

PAR
... Convert object.type.id in to s tr in g
.„ Convert object.id into strin g
... Convert property names and property types in to a s ing le strin g
... Convert in h e rit and inherited by id e n t ifie rs into a s ing le strin g
... Convert constraints and functional properties in to a s in g le strin g
... Convert instance description into a s ing le str in g

... Aggregate a l l the previous s tr in gs into a s in g le str in g

... Get the to ta l size o f the aggregated sing le strin g

... Convert the to ta l size in to a s tr in g too
— and p re fix i t at the beginning o f the aggregated strin g
... Send the s tr in g represents the object schema together w ith i t s length

As described above, each part of the schema is changed into a string, then each

string is aggregated together with its length to form a single string.

Thus, the Memory Object is transformed into two different strings which are

corresponding to the object schema and the object instances respectively. Such

transformation is suitable for the database file structure which will be discussed in

the next subsection. To transform the data from physical representation into a logical

representation, the reverse transformation is carried out.

However, if Occam supported the record format representation, neither the

1 1 0

transformation mechanism, nor the inverse operation would need to be carried out.

4.5. Database File Structure :

To simplify the design and the implementation phases, the database file is chosen

to be a single file. Its access mechanism is a random access mode [INMOS 88.b.]. It is

constructed of fixed length records. The fixed record length is set to

fileSys.max.DataBytes (FSMDB), as defined in Occam library (see appendix A.I.). A number

of records are grouped together to form a single page. This number is chosen to be an

arbitrary number, and it is set to "5", as defined before in Page Object. The page is the

unit of access (reading or writing) for the database file.

The database file is divided mainly into three groups. Each group stores special

information related to this group. Each group is allocated a number of pages. This

number is variable according to the function of the group. Fig.4.9. represents the

internal structure of the database file.

D a t a b a s e
S y s t e m
G r o u p

S c h e m a
S y s t e m
G r o u p

I n s t a n c e
S y s t e m
G r o u p

P a g e N u m b e r

0
1

n
n + 1
n + 2

n + m
n + m + 1
n + m + 2

F i g , 4 . 9. D a t a b a s e F i l e S t ru c t u re

1 1 1

The three groups are :

a. Database System Group

b. Schema System Group

c. Instances System Group

The following subsections describe each group in detail. But, the first group will

be described at the end, since its data depends upon the second and the third group.

4,5.1. Schema System Group :

The schema system group is the second part of the database file. It consists of

"m" pages. The function of this group is to accommodate the schema of all object classes

in the database. When a new object class is created or when any Memory Object is

transformed into physical representation, the string corresponding to the object schema

is collected from all object classes, then they are transformed into the form of records

with a fixed length size. Fig.4.10. describes the internal structure of the Schema System

Group :

S I Z E
IN

B Y T E

r e c o r d [0]

r e c o r d [1]

r e c o r d [2]

r e c o r d [n]

55
1 2 3 33

0 1 2 3 . . . 0 . . 0 . . 0 12. . • • • • • • •
11

........ 01

s c h e m a [0] j s c h e m a [1] J s c h e m a [2] J... J s c h e

m a [i] | s c h e m a [i +1] | • • • • • • • • •

. . . | s c h e m a [n] |Free L o c a t i o n ...

•

•

F i q . 4 .10. S c h e m a S y s t e m G r o u p

When the schema string does not fit into a single record, it is expanded into the

1 1 2

next record (e.g. schema[i]), and so on, until all strings are stored. Then, a fixed number

of records forms a single page. Hence, the whole page is stored into the schema system

group. The number of pages in the schema system group in both PKBZ versions is set to

one. However, "m" can be any other value in future.

The position of each schema object class within this page is stored in the "HAS-

OSCHEMA" structural object, as described before. Then, the system can know the exact

position of any object schema in the system. Once the position is known, the schema is

retrieved first, then the object instances page location can be known from the instances

description data.

4.5.2. Instances System Group :

The instances system group is the last group in the database file. It stores all

the object instances in the form of pages. Each page is used to store the instances of

a single object class. As mentioned before, the data structure of the page in the

Instance System Group has the same data structure as the instances in a Page Object.

That is because, instances in a Page Object fits into a single page in the database file.

If more than one page is needed for storage of any object class, the next page

number is stored in the previous page corresponding to this object class and so on. So,

a chain of pointers is used to link all the related pages together. That is, the instance

pages corresponding to a single object class need not be consecutive. Moreover, in PKBZ

version-2, the system allows the number of pages allocated to any object class to be

variable, since no one can know in advance the exact number of instances for each

object class. But, in PKBZ version-1, each object class allocates a single page in the

secondary storage database file.

There is a possibility that each object schema and the corresponding instances

could be stored together into a single page. But, when the number of object instances

increases and more than one page is needed to accommodate the object instances, the

structure of the other pages would be different from the first one, since only the first

page would accommodate the schema structure and there is only one schema structure

1 1 3

per object class. That is why the system separates object schema and its instances in

order to have homogenous object instances page structure. This homogeneity is reflected

in the design of the Page Memory in File Simulation Processing.

On the other hand, to minimize the mechanical head movement on the system disk

when a page instance is required to be read, the system reads the first record in the

page first (see Fig.4.2) \ then the system knows the number of records in this page

which is stored in the first record (i.e. Page.Data.RegionfO]). Although, the page is the

unit of reading or writing, the number of records stored prevents the unnecessary

reading of empty records, if any. That is, the unnecessary mechanical motion of the head

on the secondary storage disk. Moreover, the same mechanism is used during the writing

process.

4,5.]. Database System Group :

The database system group is used to store information about the database file

itself. Such information is important during the system life. The database system group

stores the total number of used pages, the position of used and unused pages in the

database file, the pages allocated to each group, ... etc.

Appendix F. shows the logical data structure of the information (i.e. sys.info

array) which are transformed into physical data in the form of a page and stored in the

Database System Group.

The following table illustrates an example of the "sys.info" array values :

C o m p o n e n t N a m e V A L U E

s y s .i n f o [0] 7

s y s .i n f o [1] 0
s y s .i n f o [2] 27

s y s .i n f o [3] 2
s y s .i n f o [4] 31

continue to next page

1 The database file page has the same structure as Page Object
Instances

1 1 4

C o m p o n e n t N a m e V A L U E

s y s .i n f o [5] 7

s y s .i n f o [6]
to

s y s .i n f o [12]

p a g e
n u m b e r s
u s e d

s y s . i n f o [1 3] to
s y s .i n f o [50]

z e r o s

The "sys.info[5]M stores the number of used pages in the Instances System Group.

For example, after the creation of the Database System Group page, the Schema System

Group page, and the five system object classes in the Instances System Group, this value

is 7. Then, the following 7 elements in the array (i.e. sys.info[6] to sys.info[12]), store the

actual page numbers used in each case.

The next available page in the Instance System Group is stored in sys.info[0].

This value is used by the system when a new page is required to be allocated. When

this page is used, the related values in the "sys.info" array are updated automatically

by the system to reflect the transaction.

The sys.info[3] indicates that only three records in the Schema System Group are

used (i.e. record[0], recordfl], and record[2]) (see Fig.4.10.), and sys.info[4] indicates the

position of the free location in the third record. This information is used to

accommodate any new schema when a new object class is created.

The sys.info[l] indicates that one record (i.e. record[0]) is used to store "sys.info"

array itself in the Database System Group, while sys.info[2] indicates that the available

free location in this record is location 27. That is, the current 13 elements are stored

in two bytes each. This information is necessary to know the "sys.info" array size

itself in the secondary storage. The rest of the "sys.info" (i.e. sys.info[13] to

sys.info[50]), which are not used, are initialized to zero during the system execution.

In general, this database file structure is not unique. There are many other

possible structures. For example, the system can store each of the three previous groups

1 1 5

into three separate files.

4.6, Conclusion :

By designing the Memory Object as described in subsection 4.2., the concept of

Object which is described in chapter 1 is satisfied quite well, since each Memory Object

is viewed as a complete entity in itself. Further, the internal representation of data

is completely hidden. Moreover, object class schema and object instances data are

logically integrated together inside each Memory Object. Such integration is not

supported by the currently available non object oriented databases.

In addition, data and related methods used to access or modify any Memory Object

are encapsulated together within the Memory Object. Such encapsulation provides a way

that the system can store the semantic aspects along with data.

By using message sending, the internal data structures and data inside the

Memory Object are totally isolated. Hence, Memory Object modification and enhancement

internally is relatively safe.

Although the structural object class has different property names and types

structure than basic object and entity aggregate object, a single data structure is

designed and implemented to be used for all different object classes.

The entity aggregate object instance structure corresponds to the tuple structure

in the relational database system. The tuple structure may change from one entity

aggregate to another, so it is not easy to get a standard structure. But, a standard data

structure is designed for all entity aggregate instances irrespective to their tuple

structure. Such a standard structure cannot be achieved in the relational database

system. But in FKBZ, only the surrogate values are stored, and the corresponding

instances data can be instantiated from the related structural object instances in

parallel.

The system data is designed and implemented in the form of objects as with user's

data to reflect any enhancement that may occur in the system and to minimize the

design and implementation.

116

The lack of record definition in the Occam language is overcome by designing a

conversion mechanism between the logical data representation and the physical data

representation, and vice versa.

The storage of the Memory Object data in the secondary storage is optimal, since

the data that have identifiers are suppressed before it is stored into the corresponding

secondary storage and it can be retrieved when it is needed.

The database file is designed to be homogenous in the data structure. This

homogenous nature is reflected in the Page Object. The database file is also designed

to be optimal, since no gap exists at each record in the database file, except at the

boundary of last record in each page.

The system stores the detailed structure of each page in the secondary storage

to prevent the unnecessary mechanical motion of the head on the secondary storage.

Although Database System Group stores complex information related to different

groups in the database file, the data structure is designed as a simple integer array.

1 1 7

CHAPTER 5

PKBZ Implementation : Messages

5.1, Introduction :

In this chapter, the distribution of the basic three modules of the PKBZ across

different transputers are illustrated. Moreover, the hardware channel functions will be

described.

Since the operation in the object oriented database management system is

performed via message sending, each available message in the system will be discussed

and how this message is executed in parallel in each module across the different

transputers.

5.2, The PKBZ Version-1 General Block Diagram :

In general, as described in chapter 3, there are three different parallel system

architectures. But, only one type of these architectures has to be chosen. During the

designing and the implementation phases, no one can know in advance the detailed

structure of each module, the internal processes (subroutines) which are required. So,

grouping processes together and mapping each group into a different transputer cannot

be achieved at the beginning of the design phase. Moreover, it is better to start with

a simple design. Then, the design can be adapted to be more sophisticated over time

according to the achievements. Thus, both the Complex Homogenous Parallel System

Architecture and the Hybrid Parallel System Architecture are not taken into

consideration, in this prototype, for the above reasons.

In this chapter, the discussion will be focused on the Simple Homogenous Parallel

System Architecture. That is, each module of the PKBZ OODBMS will be mapped into a

different transputer. Consequently, the system consists of only three transputers

according to the three basic modules (EMS module, OMS module, and SMS module

respectively). Fig.5.1. illustrates the actual distribution of the PKBZ version-1 modules,

1 1 8

and the wiring diagram among the transputers.

keyboard

T3

T2

Tl

F i g . 5.1. P KBZ V e r s i o n - 1 O O D B M S M o d u l e s D i s t r i b u t i o n

It has to be mentioned that each hardware channel has its own type protocol. This

type protocol depends upon the functions of each hardware channel in the system. The

distribution of the simple Homogenous Parallel System Architecture can be represented

as follows ̂ :

1 The indentation is more than two spaces to clarify the Occam
code

1 1 9

— Channel declaration
CHAN OF ANY keyboard, screen,, toHost, fromHost:
CHAN OF REQUEST.ORDER request.order , request :
CHAN OF INT status.order , status :
CHAN OF ANY display.data , accept.data :
CHAN OF REQUEST.ORDER toOMS , fromOMS :

Transputers Allocation
PLACED PAR

PROCESSOR 1 T8
PLACE request AT in.link.O:
PLACE status AT out.link.O:
PLACE screen AT in.link.l:
PLACE keyboard AT out.link.l:
PLACE fromHost AT in.link.2:
PLACE toHost AT out.link.2:
PLACE fromOMS AT in.link.3:
PLACE toOMS AT out.link.3:
SMSifromllost, tollost, keyboard, screen, request, status, fromOMS

PROCESSOR 2 T8
PLACE status AT in.link.O:
PI,ACE request AT out.link.O:
PLACE accept.data AT in.link.l:
PLACE display.data AT out.link.l:
PLACE request.order AT in.link.2:
PLACE status.order AT out.link.2:
PLACE toOMS AT in.link.3:
PLACE fromOMS AT out.link.3:

toOMS)

OMS(status , request , toOMS, fromOMS, request.order,
status.order , accept.data , display.data)

PROCESSOR 3 T8
7 ---------- “ 1---- ----------------- 7 ----------J.------- / * --------------- '

PLACE display.data AT in.link.O:
PLACE accept.data AT out.link.O:
PLACE keyboard AT in.link.l:
PLACE screen AT oxit.link.l:
PLACE status.order AT in.link.2:
PLACE request.order AT out.link.2:
EMS(screen , keyboard , request.order , d isplay.data , accept.data)

5.2.1, Hardware Channel Functions :

The communication among the transputers is performed through the hardware

channels. Each channel provides a single route for communication. The SMS module

transputer (Tl) is connected to the host computer through a channel pair "toHost" and

"fromHost". One is used to send data from the transputers to the host via the "toHost"

channel. The other is used to get data from the host via the "fromHost" channel. These

two channels have a type protocol "ANY". This type protocol is defined by the Occam

library. Both the "toHost" channel, and the "fromHost" channel are multiplexed and

demultiplexed using software multiplexer and demultiplexer inside SMS module. Fig.5.2.

120

shows the block diagram of this multiplexer and demultiplexer :
2

f rornFileSys
keyboard screen

1 t i
l V

Input / Output Multiplexer
and Demultiplexer

toHost fromHost

toFileSys

F i q . 5.2. Inp u t / O u t p u t M u l t i p l e x e r and D e m u l t i p l e x e r

As shown, the two channels "toHost" and "fromHost" are multiplexed and

demultiplexed into :

i. Two channels "toFileSys" and "fromFileSys". These two channels are the link

between the SMS module and the external filing system on the secondary storage

database file.

ii. The "screen" channel which is used to output data from the EMS module to the

external user via the "toHost" channel.

iii. The "keyboard" channel which inputs data from the external user to the EMS

module via the "fromHost" channel.

Once the end user sends a message to the EMS module through the "keyboard"

channel, the EMS module interprets the user's message. Then, a corresponding system

message will be "mailed" to the OMS module (T2) via the "request.order" channel. The

"request.order" channel has type "REQUEST.ORDER" (see appendix D.I.). This type protocol

is defined by the PKBZ system. It has different type protocols according to the system

messages available. It has to be mentioned that any name consisting of lowercase letters

combined sometimes with the capital letters represents a channel name, while capital

letters alone represents type protocol system definition.

2 This process is designed at the University of Kent to
facilitate the file handling

121

When the OMS module (T2) receives the message, the status of the message is

returned through the "status.order" channel to the EMS module (T3). Each status value

represents a special meaning according to the message.

The transfer of data between the EMS module and the OMS module is achieved via

the "display.data" channel and the "accept.data" channel.

The communication between the OMS model and SMS module is performed in similar

manner. The system message is sent through the "request" channel, then the status of

the message is returned via the "status" channel. The communication of the data between

the OMS module and the SMS module is performed through the "toOMS" channel and the

"fromOMS" channel. So, the "request" channel has the type protocol "REQUEST.ORDER", and

the "status" channel has the type protocol "INT". But, both the "toOMS" channel, and the

"fromOMS" have the type protocol "REQUEST.ORDER". This type protocol is defined by the

PKBZ system.

* Disadvantage :

1. The main disadvantage of this system architecture is that the filing system,

screen, and keyboard are distributed through the multiplexer and demultiplexer software

channels to the host computer. Such design may reduce the system performance. But, there

is no other way for communications between the transputers and the external user

except through the "toHost" and the "fromHost" channels.

5.3. PKBZ Object Oriented Database Operation :
When TKBZ starts execution, the three basic modules are executing in parallel.

Then, the operation in each of the three basic system modules can be illustrated as

follows :

i. The EMS module :
While implementing PKBZ, a deadlock situation arose. This occurred while an EMS

process was communicating to the screen channel, the keyboard tried to send

information, in parallel, to the EMS. In order to overcome such deadlock two new

122

processes were introduced. These processes are "scr" process, and "key" process as shown

in Fig.5.3. :

screen keyboard
a yf

scr
process

key
process

MyScreen 1 N____
/ MyKeyboard

EMS.main
EMS module

Fiq.5.3. Communication Among Processes to Avoid Deadlock

These processes can be considered as two buffers between the other processes in

the EMS module and both the screen and the keyboard. Then, the EMS main process can be

defined as follows :

PROC EMS(CHAN OF ANY screen, keyboard, ... , ..., ...)
CHAN OF ANY MyScreen , MyKeyboard :
PAR

EMS.main(CHAN OF ANY MyScreen , MyKeyboard , ... , , ...)
scrfecreen , MyScreen)
key(keyboard , MyKeyboard)

Then, the two processes "scr", and "key" can be defined as follows :

PROC scr(CHAN OF ANY screen , MyScreen)
WHILE TRUE

INT ch:
SEQ

MyScreen ? ch
screen ! ch

PROC key(CHAN OF ANY keyboard , MyKeyboard)
WHILE TRUE

INT ch:
SEQ

keyboard ? ch
MyKeyboard ! ch

By this mechanism, the two above processes are always ready. Then, the deadlock

vanishes. So, the EMS.main process can be described as follows :

1 2 3

)PROC EMS.main (... , ... ,
... V ariab les declaration
SEQ

continue := TRUE
WHILE continue

SEQ
... Display screen-1 (see appendix G.l).
... Accept user message
IF

... Create Database Message
... Perform Create Database Message procedure
---(see A in subsection 5.4.1.)

... Open Database Message
... Perform Open Database Message procedure
---(see B in subsection 5.4.1.)

... End session
... Perform Close Database Message procedure
---(see C in subsection 5.4.1.)

... TRUE
... Send error message to the end user

The EMS process accepts only the valid messages from the end user, and invokes

the corresponding procedure according to the user's message. The valid message is sent

in turn through the "request-order" channel to the OMS module. The complete processes

will be described in the next subsections.

ii. The OMS module :

When the system starts operation, the main process in the OMS module can be

described as follows :

PROC OMS(... , ... , , ...)
... V ariab les declaration
SEQ
continue := TRUE
WHILE continue

SEQ
request.order ? CASE

... Create Dbase
... Invoke Create.Dbase Process (see A in subsection 5.4.1.)

... Open Dbase
... Invoke Open.Dbase Process (see B in subsection 5.4.1.)

... END
... Invoke Close Process (see C in subsection 5.4.1.)

Similarly, the OMS module accepts the user's message from the EMS module, then

sends it in turn to the SMS module, and invokes the corresponding process.

1 2 4

It has to be mentioned that deadlock cannot occur in the channels between the

OMS module and the SMS module, since the system is designed not to send and receive

data at the same time. So, no buffer processes are created.

iii. The SMS module :

Similarly, when the system starts operation, the main process in the SMS module

can be described as follows :

PROC SMS(... , , , ...)
PAR

Input.Output.Multiplexer.Demultiplexer(... , ... , , ...)
main.SMS(... , ... , ...)

The "Input.Output.Multiplexer.Demultiplexer" process is described in details in

subsection 5.2.1. Then, the "main.SMS" process can be described as follows :

PROC main.SMS(... , ... , , ...)
... V ariab les declaration
SEQ
continue := TRUE
WHILE continue

SEQ
request ? CASE

... Create Dbase
... Invoke Create.Dbase Process (see A in subsection 5.4.1.)

... Open Dbase
... Invoke Open.Dbase Process (see B in subsection 5.4.1.)

... END
... Invoke Close Process (see C in subsection 5.4.1.)

5.4. PKBZ Object Oriented Database Messages :

Fig.5.4 shows the graphical representation of the PKBZ messages. System Messages

will be described in subsection 5.4.1 and Internal Messages will be illustrated in

subsection 5.4.2. Then, Memory Object Messages will be described in subsection 5.4.3.

Finally, Page Object Messages will be illustrated in subsection 5.4.4. Moreover, appendix

E. shows the main functions and the data structure of all messages in the PKBZ.

5.4.1. System Messages :

A system message is the message which does not address a specified object class.

But, in order to be objective, it is assumed that a virtual object class exists, named

1 2 5

FiK.5.4. Graphical Representation of The PKBZ Messages

1 2 6 -

the "KBZ.OBJECT". When a system message is sent, the system mails the message to the

"KBZ.OBJECT" which in turn processes the corresponding method. The system messages can

be classified as shown in Fig.5.4. into :

a. Create Database Message

b. Open Database Message

c. Close Database Message

d. Create Object Class Message

In the following subsections, each system message will be discussed in detail.

A, Create Database Message :
The database creation message is used to create a new PKBZ OODBMS. Each of the

three modules of the PKBZ OODBMS has task to perform this message as follows :

i. The EMS Module :
The following code summarized the process :

... Accept the database name to be created

... Send CREATE.DBASE message to the OMS module

... Accept the status of the create database in the "s ta t " v a ria b le
IF

stat <> 0 — Database is not created
... In terprets the status meaning to end user

TRUE — Database i s created
... Send a message to the end user that the database i s created

... D isplay screen (screen-1) (see Fig.G.l.)

If the status has non zero value, this means that an error is encountered during

the creation process. For example, an old PKBZ OODBMS with the same name already exists.

i i . The OMS module :

When the OMS receives the message, it invokes the "Create.Dbase" process. The

"Create.Dbase" process can be summarized as follows:

PROC Create.Dbase (... , ... , , ...)
... Variab les declaration
SEQ

... Send the create database message to the SMS module

... Accept the status o f the creation process

1 2 7

Send the status to the EMS module

iii. The SMS module :
The SMS module performs the main task of this message. The SMS module invokes

an internal process called "Create.Dbase" process. It has the same name as in the OMS

module.

The main basic function of the "Create.Dbase" process is to create the system

object classes (see subsection 4.3.) of the new database and to store them into the new

database file. The general block diagram of the "Create.Dbase" process is shown in

Fig.5.5.

F i q . 5 . 5 . C r e a t e . D b a se Process in The SMS M o d u l e

The Create.Dbase process can be described as follows :

PROC Create.Dbase (... , ... , , ...)
... V ariab les declaration
PAR

... Invoke Create.DbaseJSystem Process

... Invoke Create.Dbase.Schema Process

1 2 8

... Invoke Create.DbaseJnstance Process

... Invoke D atabaseJileJnterface Process
•

When the database file name is passed to the "Database.File.Interface" process,

then the process checks the existence of the database file in the system disk. If there

is no file of the same name, the process will send a zero status through the "status"

channel to inform the OMS module that the database is created, although nothing is

created yet. But, the system uses the Complete/Incomplete Parallel Processing technique

which is described in chapter 3.

The "Create.Dbase.System" process stores the initial values of the data

corresponding to the "Database System Group" of the database file (see Fig.4.9.). That is,

the "sys.info" values which are described in subsection 4.5.3. Such values are

transformed into a page format, as described before. Then, the corresponding page is

passed to the channel "out[0]".

At the same time, the "Create.Dbase.Schema" process is processing in parallel too.

The schema definition of all the five system object classes are stored in this process.

These definitions are transformed into a single page corresponding to the Schema System

Group of the database file. Then, this page is sent to the channel "out[ll".

Similarly, the "Create.Dbase.Instance" process stores the initial values of all

object instances corresponding to system object classes. Each class of object instances

is transformed into a single page. Then, each page is passed to the corresponding one

of the last five channels of the "out" channels. That is, out[2] to out[6J. These pages

correspond to the Instance System Group of the database file.

When a page is received, the "Database.File.Interface" process writes this page

into the corresponding page in the secondary storage database file through the

"toFileSys" channel. The status of writing is responded through the "fromFileSys"

channel.

It has to be mentioned that while the "Database.File.Interface" is checking the

database f i le existence in the secondary storage, the other blocks are processing in

p ara lle l too. Moreover, using the Complete/Incomplete P a ra lle l Processing technique, the

1 2 9

system objects are created in the background.

B. Open Database Message :
The main function of the "OPEN.DBASE" message is to load the system object

classes together with the necessary processes into the main memory. Then, when these

processes are loaded, the system is ready to accept any further messages. The operation

of this message in different modules can be described as follows :

i, The EMS module :
The main function of the open database message can be summarized as follows :

SEQ
... Accept the database name to be opened
... Send OPEN.DBASE message to the OMS module
... Accept the status of the open database in the "stat" variable
IF

stat <> 0 — Database is not opened
SEQ

... Interprets the status meaning to end user

... Display screen (screen-1) (see Fig.G.l.)
TRUE — Database is opened

SEQ
... Send a message to the end user that the database is opened
... Display screen (screen-2) (see Fig.G.2.)

ii. The OMS module :
When the "OPEN.DBASE" message is received, the "Open.Dbase" process is invoked.

The "Open.Dbase" can be summarized as follows :

PROC Open.Dbase (... , ... , , ...)
... Auxiliary Variables Declaration
SEQ

... Send the OPEN.DBASE message to the SMS module
— to open database file through "request" channel
... Accept the status of the open database from the SMS module
... Send the status of the opened database to the EMS module
IF

stat o 0 — Database is not opened
SKIP

TRUE— Database is opened
PAR — (See Fig.5.6. OMS module) Invokes the following processes

... Stop.Process

... SchemaJnstance.Distribution

... Object.Memory.Management

... Object.Manager

1 3 0

... A ll System Memory Objects

... Other Memory Objects are w a itin g to be created

If the database file exists, the OMS module will send a zero status to the EMS

module before the process is totally completed. Then, the rest of the process will be

completed in the system background.

When the database is opened, all the system object classes information are

buffered from the SMS module to the "Schema.Instance.Distribution" process via the

"toOMS" channel in sequence. Then, each system Memory Object process receives the

corresponding object schema and object instances via the "in.schema" and the

"in.instance" channels respectively (see Fig.4.1.).

When the "Schema.Instance.Distribution" process receives the schema and instance

information, it sends the following information to the "Object.Memory.Management"

process :

- Object identifier

- Object name

- Memory Object location in the system

Hence, the "Object.Memory.Management" process keeps track of the location of each

Memory Object. During the system operation, the system consults this process to get the

corresponding Memory Object position in the system. The "Object.Manager" process is

responsible for controlling the messages between the Memory Objects and the external

world. That is, when any further message is received, it is directed to the

"Object.Manager" process, then the "Object.Manager" process sends the message to the

corresponding Memory Object in the system.

After the database is opened, only five Memory Objects are invoked corresponding

to the system object classes. Any further Memory Object is created upon "Object.Manager"

process request. That is, the number of Memory Objects is variable. It depends upon the

number of object classes needed while the system is active. A similar dynamic process

will be described in the SMS module within the File Simulation process in the SMS

module.

1 3 1

uno t i u u u l u

Memory; :
ObjectO

■ Memory.
Objectl

Memory >
Object4

-request.order
--------->-----
status.order ------- e?----
accept.data

display.data
-Ç-keyboard

---- 4-

Stop
Process

Schema
Instance

Distribution

Object
Memory

Management

Object
Manager

Analysis
Order

toOMS
---- <—

Collect
Schema

Instance
c

Open atOl
System

Open
Dbase
Schema

all]

Open
' Dbase
Instance

2:6

Collector
link
--é—

fromOMS
request'

status

SMS
Manager

order ¡
---> -

respond

k e y b o a r d

--- ---------

screen

--- TX T i ------

Simulation

Page.Object
Memory

Management
Page

ObjectO

Page
Object
Manager

f.rOmF i. 1 e.Sys

Page
Objectl

V

Page
Object6

t o F i l e S ys

Input / O u t p u t M u l t i p l e x e r
and D einu 1 t i p 1 c*c r

t o H o s t
T
f r o m H o s t

Open Process Block Diagram
. in The QMS Module

Ooen Process Block Diagram
in The SMS Module

Fig-5.6. Block Diagram of the Open- Database Message in QMS and SMS modules

It has to be mentioned that the interconnection channels among processes in the

OMS module are not shown to simplify the diagram.

iii, The SMS module :

When the SMS module receives the "OPEN.DBASE" message, the corresponding

"Open.Dbase" process is invoked. The "Open.Dbase" process c.an be defined as follows :

PROC Open.l)base (• • • y y y • • •)

... Auxiliary Variables Declaration
PAR — Invoke the fo llow ing process (see Fig. 5.7.)

... FileJSiraulation Process

... Analysis.Order Process

F i q .5.7. O p e n P r o cess B l o c k D i a g r a m in The SMS M o d u l e

The "File.Simulation" process is used as a buffer between the filing system and

the rest of the processes in the SMS module. The order to the "File.Simulation" process

is sent through the "order" channel. Then, the status of the order is returned through

the "respond" channel. The "link" channel is used for data transfer between the

"File.Simulation" process and the "Analysis.Order" process.

* File Simulation Process :
The following code represents the main functions of the "File.Simulation" process:

PROC File-Simulation.Process (... , ... , , ...)
... A u x ilia ry V ariab les Declaration
SEQ

... Check the Database F ile

... Send the status to the Analysis.Order Process
CASE stat

0 — Database f i l e ex ists
PAR — Invokes the fo llow ing processes (see Fig.5.6.)

... Page.Object.Manager

1 3 3

... Page.Object.Memory.Management

... Page.Object processes are waiting to be created
---upon Page.Object.Manager request

ELSE
SKIP

If the database file exists, the "Page.Object.Manager" process starts execution,

and reads the following pages from the secondary storage database file (see Fig.4.9.):

a. Database System Group Page (i.e. Page zero)

b. Schema System Group Page (i.e. Page one)

c. Instance System Group Pages corresponding to the system

object classes instances (i.e. Pages two to six)

The main function of the File Simulation Process is that when a new page is read,

a new "Page.Object" process is created in the system, and the content of the page from

the secondary storage database file is buffered, into this "Page.Object" process in the

main memory. Then, any further retrieval or updating will be performed from the main

memory for fast action, as described in chapter 3.

Since, it cannot be known in advance how many pages are needed during the run

time, the number of "Page.Object" processes has to be a variable number declaration. But,

Occam does not allow a variable number declaration. In order to overcome this problem

and the same problem in the OMS module, a special mechanism is carried out. The

corresponding Occam code in the File Simulation process Fig.5.6. is as follows :

[max.number.page.object]CHAN OF BOOL new:
[max.number.page.objectjBOOL continue:
PAR

Page.Object.Manager(... , ... , new , ...)
PAR i = 0 FOR max.number.of.page.object

SEQ
new[i] ? continuefi] — Wait for signal
IF

continued] = TRUE — Create new Page Object
PAR

Object^lchema(... , ... , ...)
Page.Object(... , ... , ...)

TRUE — Page.Object will not be created
SKIP

Page.Object.Memory.Management(... , ... , ...)

The Occam code specifies that the following processes "Page.Object.Manager" is

1 3 4

processing in parallel with the "Page.Object.Memory.Management". But, the "Page.Object"

is not created until a signal from the "Page.Object.Manager" is sent to the "new[i]"

channel. If the "continue[i]" is true, a new "Page.Object" process will be created. By this

mechanism the system keeps track and generates only the "Page.Object" process according

to the system requirements. The "Object.Schema" process has the schema definition. This

definition is sent to the "Page.Object" via "in.schema" (see Fig.4.1.) channel to the

corresponding "Page.Object", when the "Page.Object" is created.

The "Page.Object.Memory.Management" process stores and keeps track of all pages

which are read from the secondary storage. During the system life, this process is

consulted to prevent a single page being read twice.

* Analysis Order Process :

The following code represents the main functions of the "Analysis.Order" process:

PROC Analysis.Order (... , ... , , ...)
... Auxiliary Variables Declaration
SEQ

... Accept the opened database file status from file simulation process

... Send the status to the OMS module
CASE stat

0 — Database file exists
SEQ

PAR
... Send an order to the File.Simulation.Frocess
--- to read the system objects
— Invokes the following processes (see Fig.5.6.)
... Collector
... Open.Dbase.Systern
... Open.Dbase.Schema
... Open.Dbase.Instance
... Collect.Schema.Instance

continue := TRUE
WHILE continue

... Accept Message from OMS Module and Invokes the Corresponding Method
ELSE — Database file is not opened

SKIP

It should be noted that in the Analysis.Order process, if the corresponding

database file exists, the zero status will be sent to the OMS module through the

"status" channel and the rest of the operation will be carried out using the

Complete/Incornplete Parallel Processing technique.

1 3 5

Each page read is buffered to the "Analysis.Order" process through the "link"

channel. Then, the "Analysis.Order" process transforms the pages from the physical data

representation into the logical object classes representation.

The "Collector" process acts as a buffer between the "link" channel and the other

processes in the "Analysis.Order". Moreover, it distributes each received page into the

corresponding process. For example, when the first page in the database file is sent to

the "Collector" process, it buffers the page to the "Open.Dbase.System" process. Since the

first page is corresponding to the Database System Group (see subsection 4.5.), then the

"Open.Dbase.System" process converts this page from the physical data representation to

the logical data representation in the form of a single integer array (see appendix F).

This integer array is consulted and updated during the system life.

When the second page (Schema System Group), in the secondary storage database

file, is sent to the "Collector" process, the "Collector" buffers the page to the

"Open.Dbase.Schema" process. This process transfers the physical system object classes

schemes (Fig.4.10.) to the logical representation. Then, each object schema is buffered to

the "Collect.Schema.Instance" process.

Similarly, the system object page instances (i.e. pages 2 to 6) are buffered in

sequence to the "Open.Dbase.Instance" process. This process transfers the physical system

object instances representation to the logical object instances representation. Then, the

instances of each object class are buffered to the "Collect.Schema.Instance" process.

When both object schema and object class instances are buffered to the

"Collect.Schema.Instance" process through the "c" and "d" channels respectively, then

this data is sent to the "Schema.Instance.Distribution" in OMS module via the "toOMS"

channel. In turn, all system object classes will be buffered into the corresponding

Memory Objects in the OMS module. Then, the "SMS.Manager" process is ready to accept any

further message.

It has to be mentioned that the communication channels among processes in the

SMS module have not been shown in order to simplify the diagram. Moreover, all the

previous processes in the Fig.5.6. are processing in parallel in both the OMS module, and

1 3 6

the SMS module when executing the open database message. Each process executes a

certain task concurrently. This with no doubt, reduces the response time. Moreover,

using the Complete/Incomplete Parallel Processing, the response to the "Open.Dbase"

message is reduced too. That is because while the screen-2 is displaying and the end

user is typing the next message, the system objects are opened in parallel.

C. Close Database Message :
The main function of the close database (END message) is to insure that all the

transactions which have occurred while the system has been active are updated into

the secondary storage database file. The updating transaction is carried out in two

stages. The first stage updates the relevant Page Object(s) in the SMS module according

to the transaction in the Memory Object(s) in the OMS module. Then, all Page Objects are

updated to the secondary storage database file. The complete procedures in each module

will be as follows :

i. The EMS module :
The main function of the EMS module can be summarized as follows :

SEQ
... Send END message to the OMS module
... Accept the status of the message
... Display the status to the end user

ii. The OMS module :

When the OMS module receives the END message, the "write.update.objects" process

is invoked. The process can be summarized as follows :

PROC write.update.objects(y ••• y • • • y • • •)
... Variables Declaration
SEQ

SEQ i = 0 FOR open.object.now
SEQ

... Send UPDATE.INSTANCE message to Memory.Object[i]
---(see D. in subsection 5.4.2.)
... Accept status from Memory.Object[i]
CASE stat

1 3 7

none — Not updated
SKIP

ELSE — Memory Object is update
SEQ

... Accept the instances

... Convert instances into page

... Send the page to the SMS module

... Accept the object schema

... Convert schema into string

... Send the string to the SMS module

... Send END message to Memory Object to stop processing
... Send END to the SMS module
... Accept the status from SMS module
... Send the status to the EMS module

It has to be mentioned that the previous code can be processed using

Cornplete/Incomplete Parallel Processing technique. But, in the unlikely event that an

error occurs, then the end user may receive an inappropriate message. So, this message

especially does not use the Complete/Incomplete Parallel Processing technique.

iii. The SMS module :

When the SMS module receives the END message, then the "write.update.Page.Object"

process is invoked. The process can be summarized as follows:

PROC write.update.Page.Object(... , ... , , ...)
... Variable Declaration
SEQ

... Check each updated Page Object

... Write the updated instances to the secondary storage

... Send END message to the Page Object to stop

... Send the status to the OMS module

Then, all the other processes stop executing.

D, Create Object Class :

Once the database is opened, the end user is able to create new object classes. The

current prototype allows the end user to create any KBZ object class of the following

types : Basic Object, Structural Object, and Entity Aggregate Object. The following

subsections describe the creation procedures :

1 3 8

i. The EMS module :

When the screen-2 (Fig.G.2.) is displayed and the end user chooses

"KBZ.CreateObject" message, then the "Create.Object" process is invoked. This process can

be described as follows :

PROC Create.Object(... , ... , , ...)
... Variable Declaration
SEQ

... Display Screen-3 (Fig.G.3.)

... Accept object class type
CASE object.type

entity.set
... Invoke Create.Entity.Set process

attribute.set
... Invoke Create.Attribute.Set process

structural.object
... Invoke Create.Structural.Object process

entity .agg reg ate
... Invoke Create.Entity.Aggregate.Object process

All the previous creation processes are implemented. As an example, the

"Create.Structural.Object" will be described only.

PROC Create.Structural.Object (... , ... , ... , ...)
... Variables Declaration
SEQ

... Display screen-4 (Fig.G.4.)

... Accept object name

... Accept property names and property types (see B.2. in subsection 4.2.1.)

... Send object name, and property types to the OMS module to perform
--- validation check
... Send a message to the OMS module to create new object class, if the checks
--- are valid
... Accept the status from OMS and display it to the end user

In general, some necessary validation checks are carried out during the data

entry. These checks are carried out by sending different messages to the OMS module.

For example :

a. Object class name has to be unique

b. If the object class is a basic object, then the object instance type will be

either integer or string.

c. If the object class is a structural object, then both the domain and the range

1 3 9

of the relationship must be previously defined. Moreover, the domain of the

primary relationship must be an entity set.

d. If the object class is an entity aggregate object, the inherits objects must be

structural objects.

The previous validations are essential for data consistency. So, the system

prevents the end user from entering any invalid data.

ii. The OMS module :

When the OMS module receives the create object message, then the "Create.Object"

process is invoked. This process can be described as follows :

PROC Create.Object(... , ... , , ...)
... Variable Declaration
SEQ

... Accept object schema

... Send a message to the "OBJECT-ID" entity object to generate new surrogate
---(i.e. object identifier of the new object class)
... Send a status to the EMS module that object is created
PAR

... Send a message to the SMS module to create new object class
SEQ

... Accept the position of the object schema in the Schema System Group
---page (see Fig.4.10.) from SMS module
... Accept the position of the corresponding page instance in the
--- Instance System Group from SMS module
... Accept the status of the creation from the SMS module
... Add the new object class information in all the System Object classes
---(see subsection 4.3.)

SEQ
... Create new Memory Object in the OMS module
... Send the object information to the corresponding Memory Object

SEQ
... Update the inherited by information in all inherit object classes by
---the new object class, if any (see subsection E. in 5.4.2.)

... Send object class information to the "Object.Memory.Management" process

... Send object class information to the "Schema.Instance.Distribution"
— process

Hi. The SMS module :

When the "SMS.Manager" process accepts the create object message, the following

code describes the process in "SMS.Manager" as follows :

1 4 0

PAR
SEQ

... Send the position o f the object schema in the Schema System Group page
----- to OMS module
... Send the next av a ila b le page in the Instance System Group
----- to the OMS module (i.e. sys.infofO], see subsection 4.5.3.)
... Send the status to the OMS

SEQ
... Transform the new object schema into s t r in g (see subsection 4.4.2.)
... Send the str in g to the Schema System Group

SEQ
... Send a message to the F ile Simulation process to create new Page Object
... Update System Inform ation "sys.in fo "
... Send a message to the F ile Simulation process to update Database System
-----Group (i.e. sys.in fo array)

As shown, the creation process is sophisticated process.

5.4.2, Internal Messages :

Internal messages are messages which are executed internally by the system only.

The internal messages can be classified as shown in Fig.5.4. into :

a. Open Object Message

b. Generate Surrogate Message

c. New Tage Number Message

d. Update Object Message

e. Update Inherited By Message

With the System Messages, the detail of the processes in each module were

illustrated, but in the following subsections, the function of the internal message will

be described only together with the parallelism aspects.

A. Open Object Message :

The main function of this message "OPEN.OBJECT" is to transform the physical

object representation from the database file into the logical object representation in

the form of a Memory Object. That is, to build the corresponding Memory Object in the

main memory. Once the Memory Object is in the memory, it will be ready to accept any

other object messages.

1 4 1

It has to be mentioned that the Complete/Incomplete Parallel Processing technique

is performed with this message, since the end user is informed that the corresponding

object class is loaded, while the SMS module transforms the physical object

representation into a logical representation. Moreover, a new Page Object is allocated

in the File Simulation process, and the OMS allocates a new Memory Object.

B. Generate Surrogate Message :

This message "GENERATE.SURROGATE" is accepted only by the entity set type. It is

issued by the system to generate a new surrogate when a new object instance is added.

The surrogates are generated sequentially starting from zero. The

"instance.descriptionl4]M (see E in subsection 4.2.2.) keeps tracks of the surrogate values

in the object class schema.

It has to be mentioned that the updating of the instance description to the

secondary storage is performed in the system background.

C. New Page Number Message :

This message "NEW.PAGE.NO" is used in PKBZ version-2. It generates a new page in

the secondary storage database file, when a new instance is added and the current page

is not able to accommodate the new instance.

The message is performed using Complete/Incomplete Parallel Processing, since a

new Page Object is allocated in the SMS in the system background, during execution of

the add instance process.

D. Update Object Message :

This message "UPDATE.INSTANCE" is used in both the OMS module and the SMS

module. In the OMS module, it reflects any transaction from the Memory Object to the

corresponding Page Object using Object Update Parallel Processing. In the SMS module, it

transfers the updated Page Object instances from the File Simulation Process to the

secondary storage database file. The message is carried out in the system background

while the system is being active.

1 4 2

E. Update Inherited By Message :

"UPDATE.INHERITED.BY.OBJECT" is an internal message. The system uses this message

when a new object class is created to update the corresponding inherited by information

by the related created object class, if any. This process is carried out as a part of the

Create Object Message in the OMS module. But, the corresponding method inside each

relevant Memory Object is invoked for updating inherited by object class information

inside this Memory Object.

5.4.3. Memory Object Message :

A Memory Object Message is a message which addresses a specific object class and

is available to the external user. Such message is directed to the corresponding Memory

Object in the OMS module by the Object Manager process (see Fig.5.6.). Then, the

corresponding method is invoked inside the Memory Object. The Memory Object message can

be classified, in general as shown in Fig.5.4. into :

a. Display Schema Description Message

b. Inherit Messages

c. Transaction Messages :

* Addition Messages

* Retrieval Messages

* Updating Messages

* Deletion Messages

The following subsections describe only the function of each message.

A. Display Schema Description Message :

The Display Schema Description message is sent to any object class to get the

following schema information :

1. Object name

2. Property names and types

3. Inherits object names (if any)

1 4 3

4. Inherited by object names (if any)

When the end user chooses "SchemaDesc" in screen-2 (Fig.G.2.), the system processes

internally the "OBJECT.NAME.SCHEMA.DESCRIPTION" message. Then, the previous information

are displayed on the screen. The EMS module displays the object schema according to the

object class type. For example, if the object class is a basic type, the property name

with property type will be displayed. But, if the object class is a structural object,

both the primary and the inverse relationships together with the domain and range are

displayed. Further, if the object class is an entity aggregate object, the corresponding

relationships names and their types are displayed. That is, the EMS module chooses

automatically the proper screen shape according to the object class type.

B. Inherits Messages :

The inherit object classes identifiers and the inherited by object classes

identifiers are stored together with any object class. The retrieval of this information

with the corresponding class names is performed within the Display Schema Description

message.

C, Transaction Messages :

These messages are corresponding to the traditional transactions in any database

system. They are used to add, retrieve, update, and delete instance(s) in any object class.

C.l. Addition Messages :

The addition messages are used to add a new object instance to the different

object class types. The addition messages can be classified into :

1. Add an instance to the basic object (Integer, String)

2. Add an instance to the structural object

3. Add an instance to the entity aggregate object

The function of the addition processes will be described as follows :

When the screen-2 (Fig.G.2.) is displayed, the end user specifies the object name

in which an instance has to be added and then specifies "Addlnstance" in the message

1 4 4

zone. So, the system allows the end user to add an instance in the corresponding object

class. This message is called "ADD.INSTANCE". The system is intelligent enough to provide

the end user with the corresponding suitable screen to add the new instance. The

following validations are carried out during adding processes :

a. An instance cannot be added to the entity set

b. Any object instance value must satisfy the object instance definition

in the schema according to the object type.

It has to be mentioned that the object instances are added in sequence in

chronological order. For simplicity, no indexed mechanism is carried out during the

addition process in the prototype. It is accepted that the search is slow with large

volumes of data. But, in future implementations, an index mechanism could be carried

out for fast retrieval.

The Memory Object uses the "overloading" mechanism to choose the appropriate

method according to the object type.

In the case of the entity aggregate object, the addition process is carried out

in parallel, since all instances are added in the corresponding inherit structural

objects simultaneously.

It has to be mentioned that the corresponding updating to the secondary storage

database file is performed in the system background using two techniques : Object

Update Parallel Processing and File Simulation Processing.

C.2. Retrieval Messages :

The main function of this message is to get the instance values in different

object types. There are various types of object retrieval messages. The following

subsections explain the difference.

* Check Instance Existence :
The function of this message "InstanceVal" (Fig.G.2.) is to check if a certain

value of instance already exists in the object instances or not. It is used only with

the basic object and the structural object. This message is called "GET.INSTANCE".

1 4 5

* Get All Object Instances :
The "GetlnsValue" (Fig.G.2.) provides a way to retrieve all object instances of any

object types. This message is processed internally by "OBJECT.NAME.INSTANCE" message.

The system is intelligent enough to provide the end user with the corresponding

suitable screen to display the instances according to the object type.

In the case of the entity aggregate object, the retrieval process is carried out

in parallel, since all instances are instantiated from the corresponding inherits

structural objects simultaneously.

* Get Specific Values :
This message function depends upon the object type. For example, in the structural

object, if the end user gives the domain of the primary relationship, the system

responds with the corresponding range value instance(s) according to the type of

relationship (one-to-one, one-to-many). This message is called "GetPriRange" (i.e. Get

Primary Range) (see screen-2 Fig.G.2.). It is processed internally by "GET.PRT.RANGES"

message. But, if the end user gives the range of the primary relationship, the system

will respond with the corresponding domain. This message is called "GetlnvRange" (i.e.

Get Inverse Range). It is processed internally by "GET.INV.RANGES" message. In addition,

in the entity aggregate object, if the end user gives one or more instance value(s) in

the range of a structural object related to the entity aggregate object, then the system

responds with one or more instances which satisfy the condition(s), if any. This message

is called "GetSpeValue" (i.e. Get Specific Value) (see screen-2 Fig.G.2.). It is processed

internally by "GET.SPE.VAI.UE" message.

It has to be mentioned that the entity aggregate object instances are

instantiated during the run time, in parallel, and the selection is carried out after

instantiation to satisfy the selection criteria.

C.3. Updating Messages :

"Updatelns" (Fig.G.2.) is used to update the object instance(s) in the different

146

object class types. It is processed internally by "UPDATE.INSTANCE. VALUE" message. The

updating messages can be classified into :

1. Update an instance in the structural object

2. Update an instance in the entity aggregate object

The function of the updating processes will be described only as follows :

When the screen-2 (Fig.G.2.) is displayed, the end user specifies the object name

in which an instance has to be updated. The system is intelligent enough to provide the

end user with the corresponding suitable screen to update the instance according to the

object type. Any updated instance value must satisfy the object instance definition in

the schema according to the object type.

Moreover, the Memory Object uses the "overloading" mechanism to choose the

appropriate method according to the object type.

It has to be mentioned that the corresponding updating mechanism to the

secondary storage database file is performed in the system background using two

techniques : Object Update Parallel Processing and File Simulation Processing.

C.4. Deletion Messages :

"Deletelns" (Fig.G.2.) is used to delete the object instance(s) in the different

object class types. It is processed internally by "DELETE.INSTANCE.VALUE" message. The

deletion messages are executed in entity set, structural object and entity aggregate

object. When the screen-2 (Fig.G.2.) is displayed, the end user specifies the object name

in which an instance has to be deleted and the system provides the end user with the

corresponding suitable screen to delete the instance according to the object type.

It has to be mentioned that the corresponding deletion mechanism to the

secondary storage database file is performed in the system background using two

techniques : Object Update Parallel Processing and File Simulation Processing.

5*4,4. Page Object Messages :

The system uses these messages to deal with the Page Objects in the SMS module.

The Page Object messages can be classified, in general as shown in Fig.5.4. into :

1 4 7

a. Get Part of Instance

b. Add Part of Instance

The following subsections describe each message :

A. Get Part Of Instance :

In the File Simulation Process, the Page Object stores the records in the form of

the instances. One record accommodates more than one Memory Object Instance. So, this

message "GET.PART.OF.INSTANCE" is used to get a portion of a record only. For example,

it is issued internally by the system to get the string corresponding to any object

schema from the related Page Object which stores the Schema System Group (see Fig.4.10).

B. Add Part Of Instance :

This message "ADD.PART.OF.INSTANCE" is used to add or update a part of instance

in the Page Object. For example, when a new Memory Object is created, the string

corresponding to the schema is sent to the relevant Page Object with this message to

be added. On the other hand, this message is used to update a part of instance in the

Page Object. For example, when an object schema is changed, this message is used to

perform the updating in the corresponding Page Object.

5.5. Conclusion :

The processes inside each of the three main modules (EMS, OMS, and SMS modules)

together with their functions are illustrated and how these processes communicate with

each other.

The system allows the end user to communicate with the object classes through

the message sending. The different types of messages and its corresponding method

implementations are discussed.

The system creates a variable number of both the Memory Objects and the Page

Objects according to the need. Although Occam does not allow a variable number

definition, a mechanism is discussed which overcomes such a limitation.

Since, in PKBZ version-1, only one Memory Object representation is implemented for

1 4 8

all different types of the object classes, then a single method name may denote different

method implementation according to the object class type. This mechanism is defined as

"overloading" process, as described in chapter 1. The PKBZ version-1 supports the

"overloading" mechanism by choosing the appropriate implementation according to the

object type automatically during the run time. The main advantage of this property is

that the end user is not aware of the different codes necessary to implement the method.

In general, the system is of a truly object oriented nature. Everything is in the

form of an object class. Processes are executed only by invoking a related message

inside the related object class. Moreover, object classes persist until they are destroyed.

It has to be mentioned that all the different aspects of parallel processing which

are discussed in the chapter 3 are implemented except Parallel Data Distribution.

Moreover, only one type of the three Parallel System Architecture is implemented, since

it is not possible to implement all the three types in a single prototype.

1 4 9

CHAPTER 6

PKBZ Version-2 and Experimental Results

6.1. Introduction :
In this chapter the description of the enhancements and modifications to PKBZ

version-1 will be described to get PKBZ version-2. The main enhancements and

modifications of version-2 are :

1. The number of instances per Memory Object is increased. Also, the object class

instances can be stored in more than one page in the secondary storage

database file.

2. The EMS module is changed to allow not only on-line processes, but also batch

processes.

These two enhancements are necessary in order to carry out experiments with large

volumes of data to measure the system performance.

3. The Memory Object data structure is changed so that each KBZ object class type

is mapped into a different Memory Object structure.

This modification is designed to reduce the size of each Memory Object by specializing

the Memory Objects.

4. The communication mechanism is changed to reduce the number of both the

hardware channels among transputers and the software channels inside each

transputer.

This modification is designed to reduce the unnecessary communication channels which

can be merged with other channels.

The two modifications are discussed first. Then, the enhancements are discussed,

and this is followed by a performance evaluation of the system on different numbers of

transputers.

1 5 0

6.2. An Object Class Logical Representation (Memory Object)

Version-2 :

As mentioned before, in PKBZ version-1, all the different object classes, including

Page Object, are mapped into the same Memory Object structure. But, in PKBZ version-

2, each KBZ object class type is mapped into a different Memory Object structure. So,

different Memory Object types are designed and implemented according to :

i. Object class type

ii. Object class instance type

Table 6.1. illustrates the different Memory Objects which are designed and

implemented in PKBZ version-2 :

No. Object
Name

Object
Class Type

Instance
Type

1 Entity
Object

Entity
Set

Integer

2 A t t r i b u t e .
O b j e c t .Int

A t t r i b u t e
Set

Integer

3 Att r i b u t e
O b j e c t .String

A t t r i b u t e
Set

String

4 Structural
O b j e c t .Int

Structural
Ob j e c t

Primary D o m a i n is Integer
Prim a r y R ange is Integer

5 Structural
O b j e c t .String

Structural
Obj e c t

Prim a r y d o m a i n is Integer
Prim a r y range is String

6 Entity
A g g r e g a t e . O b j e c t

Entity
A g g r e g a t e

Integer

7 Page.O b j e c t Page Ob j e c t Re c o r d

T a bic 6.1. D i f f e r e n t M e m o r y O b j e c t s in PKBZ v c r s i o n - 2

The schema structure of all the previous Memory Objects has the same data

structure. But, the instance data structure is different. It depends upon the instance

type. The main advantages of this splitting are :

1. The system becomes truly object oriented, since each object class type is mapped

1 5 1

into the corresponding Memory Object.

2. The overloading is not performed through the CASE statement as in

version-1, since each Memory Object stores the corresponding messages only.

3. Page Object is totally different in both message and instance data structure,

so it is better to keep it separate rather than integrate it with the other

objects.

4. Consequently, the size of Memory Object becomes smaller than in PKBZ

version-1.

But, the main disadvantage is :

1. The system becomes more complicated, since the system has to map each object

type to the corresponding Memory Object, during the running process. Thus, both

the object class and the type have to be checked before the mapping. But, in

version-1, such checks are not carried out.

6.3. Communication Channel Modifications :

In PKBZ version-2, both the hardware and the software channels are modified. The

hardware channels are modified by introducing a new PKBZ general block diagram. This

modification will be discussed in subsection 6.3.1. On the other hand, the software

channels are modified by changing the Memory Object communication mechanism. This

modification will be discussed in subsection 6.3.2.

6.3.1, PKBZ version-2 General Block Diagram :

During the implementation phase of version-1, we notice that although the order

is passed via "request.order" channel, and the data is sent through "accept.data" (see

Fig.5.1.) in parallel, both of them are executed in sequence. Then, it is better to merge

the two channels together. So, in version-2, the "accept.data" channel is merged with the

"request.order" channel.

Similarly, in version-1, the status of the operation is displayed through the

"status.order" channel, followed by any output data, if any, through the "display.data".

So, it is better to merge both of them too. Thus, the "status.order" channel is merged

1 5 2

with the "display.data" channel in version-2.

Fig.6.1. shows the complete PKBZ version-2 modules distribution and the

corresponding hardware channels.

keyboard

T3

T2

Tl

F i q .6.1. P KBZ V e r s i o n - 2 O O D B M S M o d u l e s D i s t r i b u t i o n

For the same reason, both the "toOMS" and the "status" channel are merged

together. Then, the "fromOMS" channel and the "request" channel form a single hardware

channel.

1 5 3

Further, all the system channels are modified to become channel protocols except

the channels which are dealing with the peripherals to allow the Occam compiler to

check the usage of channels.

The main advantages of the previous modifications are :

1. The unnecessary communication channels are merged with other channels.

2. The channel protocols are checked during the compilation phase to prevent the

unnecessary deadlock during the system execution.

6.3.2. Memory Object Communication Channels :
As illustrated in the previous subsection, the number of hardware channels is

reduced by merging some channels together. Since there is a correspondence between these

channels and the software channels of the Memory Object (see Fig.4.1., and Fig.5.1.), it may

be useful to reflect this change in these software channels too. So, the number of input

and output channels in the Memory Object is reduced by merging some channels together.

Fig.6.2. shows the general Memory Object block diagram in PKBZ version-2.

in.schema
in.instance Memory display.data

--------- --------
request.order Object--------- -------

F i g .6.2. PKBZ v e r s ion-2 M e m o r y O b j e c t B lock D i a g r a m

Further, all the Memory Object channels are modified to become channel protocols

to allow Occam compiler to check the usage of the channels.

The main disadvantage of this merge is that all processes inside the system have

to be changed to reflect these changes.

6.4. Memory Object Instances :
In the previous subsections, the major modifications in version-2 have been

1 5 4

discussed. Those changes were made to improve efficiency and do not affect the

functionality of the system. In this subsection, the first enhancement will be

illustrated; that is, increasing the number of instances allowed in each object class.

As mentioned before, in PKBZ version-1, the number of instances per Memory Object is set

to the "max.number.of.object". But, in PKBZ version-2, the number of instances can be

calculated by the formula :

Page Object size - Page Data Region size
No. of Instances = INT --

Object Instance Size

This number of instances is stored into the corresponding Memory Object in the

OMS module. So, when the number of instances exceeds this number, the instances are

transferred into the corresponding Page Object in the SMS module and a new Page Object

in the SMS module is allocated together with a new page in the secondary storage

database file, and so on. By this mechanism, the number of instances per object class

is increased.

6.5. External Management System Batch Processing :

In this subsection, the second enhancement will be described; that is,

incorporating batch processing facilities. New EMS modules are designed in version-2

to allow batch processing with the PKBZ system. The main reasons of such design and

implementation are :

1. To check the possibility of batch processing

2. To allow the performance evaluation measurements

The new batch modules are designed to implement the following functions :

1. Create different object classes

2. Add instances

A batch process was first implemented using the "ADD.INSTANCE" message (described

in chapter 5) which was used to add instances in an object class to allow performance

evaluation measurements. Unfortunately, the response time was high during the

experiment for the following reasons:

1 5 5

1. During adding each instance, the message checks the existence of the

corresponding object classes and gets the location of the corresponding Memory

Objects in the OMS module.

2. The updating mechanism using Object Update Parallel processing is carried out

periodically with each transaction.

A new batch process was then implemented using new adding messages called

"START.ADD", "ADD.INSTANCES", and "ADD.LAST" messages (see Appendix E.). These messages

are designed for entity aggregate object. The new batch process, including the

measurement of system performance, can be described as follows :

i. In EMS module :
PROC Add.Batch.Instance (... , ... , , ...)

... Variables Declaration
SEQ

... Accept entity aggregate object name

... Send message START.ADD to the OMS module

... Accept status from the OMS module

... Accept the number of instances to be added

... Start time
SEQ n = 0 FOR (number.of.instances - 1)

SEQ
... Generate instance for each structural object
... Convert structural instances into a single string
... Send ADD.INSTANCES message to the OMS module
... Get status from the OMS module
IF

(n \ 100) = 0 — Read Time every 100 instances
... Read time

TRUE
SKIP

... Generate last instance for each structural object

... Convert structural instances into a single string

... Send ADD.LAST message to the OMS

... Get status from the OMS module

... Read time

... Display all times corresponding to each 100 instances

The START.ADD message sends the entity aggregate object name with the related

structural object names. Then, ADD.INSTANCES sends object instances in the form of

strings in the same order as the names of the structural objects in the START.ADD

message. The ADD.LAST is used to indicate that this instance is the last instance in

this batch.

156

ii. In OMS module :

When the START.ADD message is received, the OMS module realizes that a batch

addition will be carried out. Then, the following code expresses the process :

... Variables Declaration
SEQ

... Check the entity aggregate object existence in the database

... Send the status to the EMS
IF

not.exists — entity aggregate object does not exists
SKIP

TRUE
SEQ

... Load the entity aggregate and
---the corresponding structural objects in the main memory
... Load the corresponding entity set in the main memory
loop := TRUE
WHILE loop

SEQ
... Generate surrogate from the entity set
request.order ? CASE

ADD.INSTANCES ; s
SEQ

PAR
... Add instances in parallel
---in all the corresponding structural object
... Add instance in entity set
... Add instance in entity aggregate object

... Send status to the EMS module

... Check all the related objects are full
IF

FULL
SEQ

... Assign new page to the Memory Object

... Transfer instances from Memory Object to
--- SMS module

TRUE
SKIP

ADD.LAST ; s
SEQ

— Same as ADDJNSTANCES
loop := FALSE

By using these messages, the system checks the existence of the corresponding

objects only once. Further, the system prevents the updating mechanism until the Memory

Object is full. So, the response time becomes better than using "ADD.INSTANCE" message.

The ADD.INSTANCES message uses the parallel background mechanism to reduce the

response time. That is because while the EMS module generates the structural instances,

the OMS module checks if the corresponding structural objects are full and generates

1 5 7

a new surrogate.

6,6, PKBZ System Performance Evaluation :
As described before, the system enhancements are necessary in order to carry out

experiments with large volumes of data to measure the system performance. In order to

measure the PKBZ system performance the following procedures are carried out :

1. The PKBZ system is distributed into all possible different transputer

configurations. That is, the necessary modifications of the system channels are carried

out to allow the same basic modules to be distributed in various configurations. Table

6.2. illustrates the different cases of distribution of the three basic modules across

the transputers.

T r a n s p u t e r N u m b e r
of

T r a n s p u t e r s
Tl T2 T3

C A S E

1 3 SMS O M S E M S

2 2 SMS O M S + E M S

3 2 SM S + E M S O M S

4 2 S M S + O M S EM S

5 1 S M S + O M S + E M S
_

T a b l e 6.2. D i s t r i b u t i o n of The P K BZ S y s t em M o d u l e s A c r o s s T r a n s p u t ers

2. The addition process is chosen as an experimental test to measure the PKBZ

system performance. That is because, in most database application systems, the addition

process has the largest response time.

3. The instances are added using the add batch messages (described in subsection

6.5.) to measure the number of instances during addition processing versus the time.

4. The STAFF entity aggregate and the related inherit objects are chosen as a

batch test for addition experiment.

5. The instances are generated internally in the EMS module as illustrated in

subsection 6.5. It has to be mentioned that in a true batch system, the data will be read

1 5 8

from a file in batch instead of being generated.

6. The experiments are carried out for all the five cases in Table 6.2.

Table 6.3. illustrates the interrelation between the number of instances during

addition versus the time in seconds (sec) for the five cases.

C A S E 1 2 3 4 5

I n s t a n c e s

100 0 . 2 6 2 0 . 2 6 7 0 . 4 2 6 1 . 3 8 2 1 . 3 7 4
200 0.9 7 3 1 . 0 6 3 1 . 3 7 7 3 . 5 5 2 3 . 7 4 0
300 1 . 7 9 3 1 . 8 8 8 2 . 4 0 8 6 . 0 6 5 6 . 2 7 0
400 3 . 0 9 5 3.2 1 1 3 . 9 3 6 9 . 2 3 9 9 . 4 7 5
500 4 . 4 7 2 4 . 5 9 3 5 . 5 4 0 1 2 . 5 1 1 1 2 . 5 7 7
600 6 . 3 7 0 6 . 4 8 9 7 . 6 2 3 1 6 . 4 1 4 1 6 . 4 7 8
700 8 . 3 0 4 8 . 4 2 8 9 . 7 8 0 2 0 . 2 9 9 2 0 . 3 5 7
800 1 0 . 7 3 7 1 0 . 9 2 9 1 2 . 4 5 1 24.868- 2 4 . 9 3 0
900 1 3 . 2 2 8 1 3 . 4 2 5 1 5 . 1 8 1 2 9 . 3 5 0 2 9 . 3 1 5

1000 1 6 . 2 6 5

1 6 . 4 5 2 1 8 . 3 9 0 3 4 . 6 8 2

3 4 . 4 8 9

Table 6.3. Relation Between Number of Instances Versus Time In Sec.
Fig.6.3. shows the graphical representation of table 6.3. In Fig.6.3, one can

conclude the following :

1. Distribution of the system on three transputers (i.e. case-1) is the best

distribution.

2. It is predicated that both the case-1 and case-2 are near to each other, since

after the EMS module sends the adding message to the O'MS module, the EMS

module is idle waiting the status. Thus, the processing load of the EMS module

is small.

3. Although the same system is distributed on two transputers in case-2,

case-3, and case-4, the figure shows that case-2 is the best, while case-4

slows the system performance. The slow performance in case-4 is due to an

imbalance problem, since :

a. Both the SMS module and the OMS module are obviously processing

heavily, but they are allocated to a single transputer.

1 5 9

Fig.6.3. Relation Between Number of Instances Versus Time In Second

1 6 0

b. The EMS module has a small load of processing, but it is allocated

into a single transputer.

4. In case-4, although the system is distributed on two transputers, the

performance on single transputer (case-5) is better than case-4. This poor

performance is due to the bad distribution of modules. Moreover, it

indicates that the communication time, in case-4, is greater than the

processing time of the EMS module. That is why the system in case-4 is slower

than the system in case-5.

5. From case-2 and case-3, one can conclude that the SMS module is processing more

heavily than the OMS module. That is because, by adding the EMS module to the

OMS module in case-2 the performance is better than adding the EMS module to

the SMS module in case-3.

6. Thus, the work load across the different modules is as follows :

- EMS module has the lowest process loading (From case-1 and case-2)

- SMS module has the highest process loading (From case-2 and case-3)

- OMS module has a smaller work load than SMS module

This result is expected, since the SMS module is dealing with the mechanical

motion of the head movement of the system disk.

It has to be mentioned that the repetition of the same experiment does not give

the same results. That is due to the mechanical motion of the hard disk head. So, the

previous tables are the average results of five consecutive measurements.

However, there is another parameter which is used to measure the performance

of any parallel system. This parameter will be illustrated in the next subsection.

6,6.1. PKBZ Speed Up :

The speed up parameter is defined for each number of processors "n" as the ratio

of the elapsed time when executing a program on a single processor (the single processor

execution time) to the execution time when "n" processors are available [Eager 89]. That

1 6 1

is, the speed up (Sn) is defined as :

Sn = T1 / Tn

Tn ... Execution time on "n" processors

In order to illustrate the speed up in performance from the previous experiment

both case-3 and case-4 are excluded, since case-2 is the best distribution using two

transputers. Table 6.4. illustrates the Speed Up versus the number of transputers after

adding 100, 300, 500, 700, and 1000 instances, while Fig.6.4. shows the graphic

representation of the Speed Up.

N u m b e r of
I n s t a n c e s

100 300 500 700 1000

N u m b e r of
T r a n s .

1 1 . 0 0 0 1.000 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0
9 5 . 1 4 6 3 . 3 2 1 2 . 7 3 8 2 . 4 1 5 2 . 0 9 6
3

L_

5 . 2 4 4

3 . 4 9 7 2 . 8 1 2

2 . 4 5 1 2 . 1 2 0

Table 6.4. Relation Between Speed Up Versus
The Number of Transputers

In Fig.6.4., one can conclude that :

1. The speed up is increased sharply by increasing the number of transputers from

one to two, while the speed up is increased slightly by increasing the number

of transputers from two to three.

2. The decrease in the speed up with respect to the number of instances is due

to the hardware communication process.

6.7. Conclusion :
The chapter illustrates the major enhancements in the PKBZ version-2 in which

the Memory Object is split into seven different types according to the object classes

and the instance types. Moreover, more than one page in the secondary storage database

file is allocated to each object class instances.

New EMS modules are designed and implemented to allow batch processes as well

1 6 2

Fig.6.4. Relation Detween Speed Up Versus The Number of Transputers

1 6 3

as on-line processes. The experimental results show that there is a significant

performance increase in the system using parallel processing, since the Speed Up is

increased 2.0 times the speed in a single transputer by distributing the system into

two transputers. However, the experiments show that not every distribution increases

the system performance. In some cases, the performance becomes poor due to the bad

distribution.

1 6 4

CHAPTER 7

Conclusions and Future Researches

7 . 1 . Introduction :
In the previous chapters the design and the implementation of different aspects

of parallelism within the scope of object oriented database management systems are

illustrated. In this chapter, the general problem areas in both object oriented database

management systems and the parallel processing will be described in subsections 7.2., and

7.3. respectively. Then, the conclusions will be illustrated in subsection 7.4., followed

by possible future researches in subsection 7.5.

7 . 2 . Problem Areas With an OODBMS :
Generally, the object oriented paradigm presents significant research challenges

and an assortment of technical problems. Some of these problems are mentioned in

[Oxborrow 89][Zaniolo 86.b], and [Tsichritzis 89], The problem areas are summarized in the

following :

7 . 2 . 1 . Standard Definitions :
Object oriented systems have inherited their concepts, methods and tools from

many other areas in computer science. That is, object oriented systems consist of the

repackaging and relabelling of a cross section of different aspects of computer science.

As a result, there are disagreements among researchers on basic definitions, for

example, "What is an object ?". Researchers coming from programming languages,

artificial intelligence, and databases, among other fields have conflicting ideas on

when an "object" can be called an object [Hailpem 86]. Therefore, some confusion arises

with an object oriented paradigm and this leads to the situation that some of the early

OODBMSs are not truly object oriented, but are more like enhancements to the current

database systems. However, loose definitions are inevitable during a dynamic period of

165

scientific discovery. These should become more stable with time.

1.2.2, Performance Problem :
When Codd's [Codd 70] original paper gave a clear specification of a relational

database system, there was some criticism that the relational approach would never be

commercially viable for performance reasons. But advances in hardware and software

technology have resulted in the development of a number of successful relational

systems [INGRES 87]. Since an OODBMS must satisfy two criteria : it should be a DBMS, and

it should be an object oriented system, the same doubt arises again. However, further

advances in hardware and software make it possible that some OODBMSs will become

really useful commercial products [Andrews][G-base 88],

7.2.3, Secondary Storage Problems :

Objects are built from simpler objects. The simplest objects are objects such as

integers, characters ... etc. Related objects are grouped together in a class in which

instances of the class are objects which may be complex in structure. Complexity in

object oriented structures presents some challenging storage problems [Zaniolo 86.b.].

7.2.4, Schema Evolution :
If the definition or implementation of an object class is changed, this will

affect inheriting subclasses, as well as the rules for resolving name clashes in

multiple inheritance systems. Supporting modification to class definitions is a

difficult problem, especially when the existing instances of the modified classes and

subclasses violate the new rules or constraints [Tsichritzis 89]. This problem is well

known as "schema evolution" in object oriented systems.

The previous problems are the major problems in OODBMSs. However, [Tsichritzis

89] discusses more sophisticated problems with OODBMSs. Such problems are out of the

scope of this research.

166

7,3. Problem Areas With Parallel Processing :

Although parallel processing increases the computer systems capabilities, there

are many problems. These problems can be summarized in the following :

7.3.1, Deadlock Problem :

One of the most common parallel programming errors is that of deadlock [Welch 89].

That is, one (or more) process is waiting on an input or output from another process.

Such an error may not be detected easily, so in constructing parallel programs for

multiprocessor hardware, there is therefore a need for deadlock-free methodologies

and/or powerful debugging tools. Unfortunately, there is no such powerful debugging tool

yet. The available "Debugger" on the Meiko Computer Surface is still limited. During the

implementation phase of this research, most of the deadlock errors could not be

discovered using "Debugger" only.

7.3.2. Non-deterministic Behaviour :

A novel aspect of parallel programming is the non-deterministic behaviour of

processes running on parallel hardware. A simple example will make the point. Consider

the four processes "A", "B", "C", and "D" indicated in Fig.7.1. The process running on

processor "A" performs some calculations on its local data and sends the result to

process "D". Similarly, other processes "B" and "C" perform some calculations on their

local data and send their results to process "D" too. The process in "D" is very simple:

the input received from "A", "B", and "C" are assigned to variables "a", "b", and "c",

respectively. Although the processes are all correct there is no way of knowing in

advance whether "a", "b", or "c" will be received first. Furthermore, even a repeat run

of the same programs with the same data in each processor is not guaranteed to produce

the same result. The possibility of such non-determinacy is an unavoidable feature of

parallel hardware and can be crucially important in certain applications. It is

therefore necessary to isolate such non-determinacy and, if ordering is important,

precautions must be taken.

167

F i g .7.1. N o n - d c t c r m i n i s t i c B e h a v i o u r

Moreover, the non-determinacy behaviour of parallel processing leads to

difficulties in detecting deadlock during the run time, since one cannot know where the

deadlock occurs.

7.3.3. Static Language :

Occam is a static language. That is, during the run time, the number of parallel

processes cannot be changed. The "PAR" replicator is checked during the compilation

phase and the compiler refuses the variable declarations. Such static behaviour leads

to difficulties in designing most real life system applications, since the system

designer cannot know in advance how many parallel processes are running during the

actual run. Such problems can be solved by defining the maximum possible number of

allowed parallel processes. However, such a solution results in an overhead during the

run time, unless all the parallel processes are executing during the real run.

7.3.4, Pattern Problem :

The transputer's hardwired interconnection must be defined before the run time.

However, in some situations, the interconnection depends upon the problem and data

which are used during the run time. Such interconnection is fixed and it may be

inadequate for some cases with certain data. The actual configuration can be optimized

for one particular algorithm by selecting a specific connection pattern. Thus, the same

Occam program can be implemented on a variety of transputer configurations, with one

168

configuration optimized for cost, another for performance, or another for an appropriate

balance of cost and performance.

7,3.5, Limited Number of Communication Channels :
Each transputer communicates with the other transputers through hardwired links

among transputers. Now, the maximum number of hardwired communication channels is

four channel pairs for both input and output. These four channels may be enough for

some applications. However, in other applications, with heavy processing load and high

communication traffic, four channels are not enough for each transputer to communicate

with the external world. This problem can be solved by using "Multiplexer" and

"Demultiplexer" processes to increase the number of communication channels by means

of software channels. For example, as shown in Fig.7.2., let us suppose that any process

of the processes Al, A2, ..., An may communicate with any process of processes Bl, B2, ...,

Bm and n , m > 4.

F i q . 7.2. L i m i t a t i o n o f C o m m u n i c a t i o n C h a n n e l s

Such communication cannot be achieved through hardware channels only. So, the

169

"Multiplexer" and "Demultiplexer" processes are introduced to allow communication to

take place. That is, "Multiplexer" and "Demultiplexer" communicate through a hardware

channel while the other processes communicate through software channels inside each

transputer. This solution adds extra processes to the system. Moreover, with heavy

processing load and high communication traffic, such a solution reduces the processing

power of system.

7.3.6. Imbalance Problem :

In a network of running transputers, there can be "load balancing" problems

associated with one or more processor being heavily used while another processor or

processors are idle for part of the time. This leads to an imbalance problem. Such a

problem is not solved easily. That is, the problem of dividing a program among several

processors is complex, and typically a situation exists where processors finish their

tasks at different times and may be left idle waiting for other processors to complete

their tasks. A problem of synchronisation can occur with a processor which is dedicated

to controlling the other processors and detecting when the other processors have

finished their tasks. A heuristic solution and well-designed system distribution may

solve the imbalance problem partially.

1,3,1, Investment Limitation :

Companies already have many hundreds of man-years invested in software

developed for sequential, uniprocessor computer systems. Present parallel computers and

their compilers cannot run such sequential software without significant modifications.

These modifications will require significant investment; hence, it will be some time

before they are carried out.

7.3.8. Natural Human Limitation :
As stated before, "as parallel computer systems become more popular, it is

important that the system designers and programmers cast off the shackles of sequential

thought" [Hey 90]. The human resists a new shape by nature. However, this resistance is

170

likely to be overcome in future, since parallel processing reflects the semantics of most

real life application systems.

1 A . Conclusion :
The thesis has investigated the different aspects and methodologies of

parallelism which can be implemented within the scope of the object oriented database

management systems. Both the potential of the object oriented approach and the parallel

processing were illustrated. The state of the art in related researches were surveyed.

A selected number of existing systems which cover both object oriented paradigm and/or

parallel processing techniques were investigated.

The main types of parallel aspect, the basic advantages and disadvantages of each

aspect together with examples have been illustrated. Descriptions of the different

parallel KBZ architectures have been presented.

The development of an experimental KBZ OODBMS prototype on the transputer Meiko

Computing Surface has been implemented to test out some of the parallel processing

aspects. Two prototype versions have been designed. The current prototypes have been

designed and tested in a single user environment. In the current prototypes, the Simple

Homogenous Parallel System Architecture has been chosen for implementation. Other

aspects of parallelism have been tested too, including Parallel Background. The File

Simulation processing has been implemented to check the feasibility of using parallel

background technique and to allow fast accessing and updating of data. The principal

benefit comes from the ability to perform multiple concurrent simulated disc

input/output, thus increasing the disc throughput, and hence improving overall system

performance. Further, the File Simulation processing has been implemented in the form

of Page Objects in which each transaction is performed via message sending. The current

prototypes assume that all Memory Objects are loaded in the main memory using Demanded

Object criteria. The other types of Memory Object allocation, deallocation, and grouping

have been investigated.

In the current PKBZ prototypes, the Memory Object has been designed in the form

171

of Occam process so that each Memory Object may be viewed as a complete entity in

itself. Both object class schema and the object instances data inside each Memory Object

are integrated. Such integration is not supported by the currently available non object

oriented databases. Furthermore, both the data and the related methods are encapsulated

together. Such encapsulation mechanism provides a way that the system can accumulate

the semantic aspects along with data. The Memory Object communicates with the external

world through message sending. Each available message is described in detail. The

"Parallel Processing Transparency" is satisfied, since the end user does not know how

the message is executed in parallel.

By using message sending, both the internal data structures and the data inside

the Memory Object are totally isolated. Hence, Memory Object modification and

enhancement internally is relatively safe. In addition, the internal representation of

data is completely hidden, since only the messages are utilised to access or modify any

Memory Object.

The system data has been designed and implemented in the form of objects as with

user's data to reflect any enhancement that may occur in the system and to minimize the

design and implementation.

In PKBZ version-1, only one Memory Object representation is used for all different

types of object class, and a single method name may denote different method

implementations according to the object class type. The PKBZ version-1 supports the

"overloading" mechanism by choosing the appropriate implementation according to the

object type automatically during the run time. The main advantage of this property is

that the end user is not aware of the different codes necessary to implement the method.

One of the main modifications in PKBZ version-2 is the Memory Object which is

split into different types according to the object classes and the instance types. The

prototype has been modified to allow more than one page in the secondary storage

database file to be allocated to each set of object class instances. Also, both the

software and hardware channels are reduced to minimize the traffic control among

processes.

172

A well defined data structure has been designed for all different object classes.

For example, although the structural object class has different property names and types

structure than other implemented object classes, a single data structure has been

adapted to all different object classes.

A standard data structure has been designed for all entity aggregate instances

irrespective of their related structural object classes. Such a standard structure

cannot be achieved in any non object oriented database management systems, including

relational system. The surrogate values are stored alone so that the corresponding

instances data can be instantiated from the related structural object instances in

parallel.

The data structure of the Memory Object in the secondary storage is optimal,

since the data that have identifiers are suppressed before it is stored into the

corresponding secondary storage and it can be fetched when it is needed. The lack of

record definition in the Occam language has been overcome by designing a conversion

mechanism between the logical data representation and the physical data representation,

and vice versa.

The data structure of the database file has been designed to be both homogeneous

and optimal. The homogenous nature is reflected in the Page Object which is used as

buffer for fast accessing using Object Update Parallel Processing and File Simulation

Processing. The database file serves three different groups. Although each group has

its own data structure, it is divided into pages. The page is the unit of accessing into

the secondary storage. The system stores the detailed structure of each page to prevent

the unnecessary mechanical motion of the head. Each page is divided into records and

no gap exists at each record in the database file, except at the boundary of the last

record in each page.

In version-2, the system modules have been designed and implemented to allow

batch processes as well as on-line processes. Results have been obtained which show

significant performance improvements when the system is run on small (two to three

processors) transputer networks instead of a single transputer, since the response time

173

is approximately half the time when using three transputers. Further, the Speed Up is

2.0 times the speed in a single transputer by distributing the system into two

transputers. However, the experiments show that not every distribution increases the

system performance. In some cases, the performance becomes poor due to the bad

distribution.

7,5, Future Researches :
There are some further developments in order to improve the system prototype.

The developments can be classified as follows :

A. Object Oriented Database Developments

B. Parallel Processing Developments

A, Object Oriented Database Developments :

The system may be modified to include, but not limited to the following :

1. Designing and implementing the other KBZ object classes

2. Introducing index mechanism with data

3. Including functional properties, and constraints

4. Supporting version control

5. Introducing a parallel query processing system

6. Resolving the schema evolution problems

7. Investigating the different allocation and deallocation Memory Object

mechanisms

8. Investigating the different types of Memory Object grouping

9. Providing security protection and access control

10. Designing crypt and decrypt mechanisms

11. Introducing data recovery

12. Providing multi-user environment

13. Investigating Multi-database accessing

174

B. Parallel Processing Developments :

The system may be modified to include, but not limited to the following :

1. Implementing the other types of Parallel on Transputers such as Complex

Homogenous Parallel System Architecture and Hybrid Parallel System

Architecture. Consequently, Parallel Data Distribution may be implemented.

The development and testing of the prototype PKBZ has confirmed both the

functionality and the feasibility of using transputer based parallel hardware for a KBZ

OODBMS. Moreover, this work has provided many interesting possibilities for future

research.

175

References

lAndrews], T. Andrews et al, "The 0B2 Object Database" (now known as Ontos;

earlier version known as Vbase), Ontologie Inc.

[Atkinson 89], M. P. Atkinson and et al, "The Object-Oriented Database System

manifesto", in Proc. DOODS 1989, Dec. 1989.

[Bancilhon 88], F. Bancilhon et al,"The design and implementation of 02, an

object oriented database system", Proceedings of the OODBS II

Workshop, Bad Munster, FRG, Sept. 1988.

[Banerjee 87], Jay Banerjee et al, "Data Model Issues for Object-Oriented

Applications", ACM Transactions on Office Information System,

Vol. 5, No. 1, Jan. 1987.

[Bershad 88], Brian N. Bershad et al, "PRESTO : A System for Object-Oriented

Parallel Programming", Tech. Rep. 87-09-01, Department of Computer

Science University of Washington, Sept. 1987, Revised Jan. 1988.

[Birtwistle 73], G. Birtwistle et al, "Simula Begin", Auerbach Press,

Philadelphia, 1973.

[Brookes 89], G. R. Brookes and A. J. Stewart, "Introduction to Occam 2 on

the Transputer", ISBN 0-333-45340-9, Macmillan Education Ltd,

Houndsmills, London, 1989.

iBurns 88], A. Burns, "Programming in Occam 2", Addison-Wesley, 1988.

[Carey 85], M. Carey and D. Dewitt, "Extensible Database Systems", Proceedings

of the Islamorada Workshop on Large Scale Knowledge Base and

Reasoning Systems, Feb. 1985.

[Carey 86.a], M. J. Carey and et al, "The Architecture of the EXODUS Extensible

DBMS", Proceeding of International Workshop on Object-Oriented

Database Systems, pp 52:65, 1986.

[Carey 86.b], M. Carey et al, "Object and file management in the EXODUS Extensible

Database System", Proceedings of the 12 th VLDB, p. 91:100, Aug. 1986.

176

[Carey 87], M. Carey and D, Dewitt, "An Overview of the EXODUS Project",

Database Engineering, Vol. 10, no.2, June 1987.

[Carling 88], A. Carling, "Parallel Processing- Occam and Transputer", Sigma Press,

England, 1988.

[Caruso 87], Caruso and Sciore, "The VISION Object-Oriented Database Management

System", Proceedings of the Workshop on Database Programming

Languages, Roscoff, France, Sep. 1987.

[Chalmers 89], Matthew Chalmers, "An Object-Oriented Style For The Computer

Surface", Processing of OUG-11 Occam User Group 11th Technical

Meeting, 25-26 Sep. 89, Edinburgh, Scotland, Pub. by Ios, Amsterdam,

1989.

[Codasyl 81.a], Codasyl, Codasyl Data Description Language Committee Journal of

Development 1981, Canadian Gov. Publishing Centre, 1981.

[Codasyl 81.b], Codasyl, Codasyl Cobol Committee Journal of Development 1891,

Canadian Gov. Publishing Centre, 1981.

[Codd 70], E. F. Codd, "A relational model for large shared data banks",

Communication of the ACM, Vol. 13, No. 6, p 377:387, June 1970.

[Cook], Henry Cook, "Applying Parallel Processing to Large Relational

Databases", The Teradata DBC/1012.

[Date 83], C. J. Date, "An Introduction to Database System", Volume II, Addison-

Wedley Publishing Company, 1983.

[Dewhurst 89], S. C. Dewhurst and K. T. Stark, "Programming in C++", Prentice

Hall Software Series, Englewood Cliffs, New Jersey 07632, 1989.

[Dittrich 89], K. Dittrich, "The DAMOKLES Database System for Design Applications:

Its Past, its Present, and its Future", in Proceedings 1989,

p. 151:171, April 1989.

[Eager 89], D. L. Eager and E. D. Lazowska, "Speed Up Versus Efficiency in

Parallel Systems", IEEE Trans. On Comp., p. 408 : 423, Vol. 38, No. 3,

March 1989.

177

[Fishman 87], D. H. Fishman et al, "Iris : An Object-Oriented Database Management

System", ACM Transactions on Office Information Systems, voi. 5, no.l,

pp. 48:69, January 87.

[Fishman 89], D. H. Fishman et al, "Overview of Iris DBMS" Object-Oriented

Concepts, Databases, and Applications, Addison-Wesley, pp. 219:250,

(edited by Won Kim 1989)

[Flynn 86], M. J. Flynn, "Parallel Architectures", System International, Nov. 1986.

[Ford 88], Steve Ford et al, "ZEITGEIST : Database Support for Object Oriented

Programming", Proceedings of the Second International Workshop on

Object-Oriented Database System, Sept. 27-30, 1988.

[G-Bass 88], "G-base version 3, Introductory guide", Graphael, 1988.

[Gray 85], P. Gray, "Efficient Prolog Access to Codasyl and FDM Databases", in

Proceedings of ACM SIGMOD 85, p. 437:443, 1985.

[Gray 88], P. Gray et al, "A Prolog Interface to a Functional Data Model

Database", in Proceedings of International Conference on Extending

Database Technology, March 1988.

[Goldberg 83], A. Goldberg and D. Robson, "Smalltalk-80: The Language and its

Implementation", Addison-Wesley, Reading, MA, 1983.

[Goldberg 84], A. Goldberg, "Smalltalk-80: The Interactive Programming

Environment", Addison-Wesley, 1984.

[Hailpern 86], B. Hailpern and V. Nguyen, "A Model For Object-Based

Inheritance". Proceeding Object Oriented Programming Workshop,

IBM and Brown University, York Town Heights, SIGPLAN Notices,

Oct. 1986.

[Harland 86], David M. Harland, "REKURSIV - An Architecture for Artificial

Intelligence", Proceedings "AI Europe", Wiesbaden, Sept. 1986 with

Gunn, Pringle & Beloff.

[Harland 87], David M. Harland, "OBJEKT - A persistent Object Store", ACM Sigplan,

Mid 1987.

178

[Harland 88], David M. Harland, "REKURSIV : Object-Oriented Computer

[Hayes

Architecture", Ellis Horwood Ltd, 1988.

87], I. Hayes, "Specification Case Studies", Prentice-Hall, 1987.

[Hey 90], Tony Hey, "Parallel Processing - A window onto a new world ? ", The

Computer Bulletin, Voi. 2, Part 2, 1990.

[Hockney 81], R. W. Hockney and C. R. Jesshope, "Parallel Computers", Adam Hilger

Ltd., U. K., Bristol, 1981.

[Homick 87], M. Hornick and S. Zdonik, "A Shared Memory System for an Object-

Oriented Database", ACM Transaction on Office Information Systems,

vol.5, no.l, p. 70:95, Jan. 1987.

[IEEE 85], Database Engineering, IEEE Computer Society, voi. 8, no. 4, December

1985 special issue on Object-Oriented Systems (edited by F.

Lochovsky)

[IMS], Information Management System / Virtual Storage General Information

Manual, IBM Form No. GH20-1260. IBM Corporation.

[INGRES 87], INGRES/VMS manuals, Relational Technology Inc. (RTI), 1987.

[INMOS 84], "OCCAM programming manual"; INMOS Limited England Cliffs;

London: Prentice-Hall, International, 1984.

[INMOS 87], "IMS T800 Architecture", Technical note 6, Inmos Bristol, March 1987.

[INMOS 88.a], "Transputer Reference Manual", Inmos document number : 72 TRN 006

04, Prentice Hall International (UK) Ltd, 1988.

[INMOS 88.b], System Software Reference Manual, Meiko, May 1988.

[INMOS 89], Occam Programming System Manual, Meiko, 1989.

[Janson 85], "Operating System Structure and Mechanisms", Academic Press Inc.

(LONDON) LTD., 1985

[Jones 87], G. Jones, "Programming in occam", Englewood Cliffs; London : Prentic-

Hall, 1987.

[Jones 88], G. Jones, M. Goldsmith, "Programming in occam 2", Prentic Hall

International (UK) Ltd, 1988.

179

[Kem ighan 88], B. W. Kem ighan and D. M. R itchie, "The C programming

Language", Prentic -H all, Englewood C liffs , NJ, 1978.

[Kerridge 87], Jon Kerridge, "A proposal fo r a Dynamically Reconfigurable Array

of Transputers to support database applications", OPPT,

7 th Occam User Group and Workshop on p ara lle l programming

of Transputer based machine, Sept. 14-16, 1987.

[Kerschberg 86], L. Kerschberg, Proceedings of F irst In ternational Workshop on

Expert Database Systems, 1986.

[Kim 87], Won Kim et al, "Operations and Implementation of Complex Objects",

Proceedings of the Data Engineering Conference, Los Angeles, CA,

1987.

[Kim 89], Won Kim et a l, "Features of the ORTON Object-Oriented Database

[King

System", Object-Oriented Concepts, Databases, and Applications,

Addison-Wesley, pp. 251:282, (edited by Won Kim 1989).

84], R. King, "A Database Management System Based on the Object

Oriented Model", Proc. Int. Workshop on Expert Database Systems,

p. 443:468, Oct. 1984.

[Lindsay 87], B. Lindsay et al, "A Data Management Extension Architecture",

Proceedings of the ACM-SIGMOD International Conference on

Management of Data, San Francisco, CA, 1987.

[Lorie 83], R. Lorie and W. Plouffe, "Complex Objects and Their Use in Design

Transactions", Databases fo r Engineering Applications, Database

Week (ACM), pp. 115:121, May 1983.

lOxborrow 88.a], E. A. Oxborrow, "KBZ an object-oriented approach to the

specification and management of knowledge bases", in Proceedings

of the Sixth B r it ish National Conference on Databases (BNCOD-

6), 1988.

lOxborrow 88.b], E. A. Oxborrow, "Object-Oriented Database Systems - What are they

and what i s th e ir future", in Database Technology, voi. 2, no. 1,

180

p. 31:39, 1988.

[Oxborrow 89], E. A. Oxborrow, "Databases and Database Systems", Chartwell-

Bratt, 2nd edition, 1989.

[Pountain 88], Dick Fountain, "Rekursiv : An Object-Oriented CPU", BYTE, pp 341:349,

Nov. 1988.

[Purdy 87], A. Purdy et al, "Integrating an Object Server with Other Worlds",

ACM Trans, on Office Information Systems, voi. 5, no. 1, Jan. 1987.

[Rowe 87], L. Rowe and M. Stonebraker, "The POSTORES Data Model",

Proceedings of the 13th International Conference on Very Large

Data Bases, Brighton, England, 1987.

[Schaffert 86], C. Schaffert et al, "An Introduction to Trellis/Owl". ACM SIGPLAN

Notices - Proceedings of OOPSLA'86, Voi. 21, No. 11, Nov. 1986.

[Schwarz 86], P. Schwarz et al, "Extensibility in the Starburst Database System",

Proceedings of the International Workshop on Object-Oriented

Database Systems, Pacific Grove, CA, September 1986.

[Stonebraker 86], M. Stonebraker and L. Rowe, "The design of POSTGRES",

Proceedings of the 1986 SIGMOD Conference, Washington, DC, May

1986.

[Stroustrup 86], B. Stroustrup, "The C++ Programming Language", Addison-Wesley,

March 1986.

[Sun 86], The Sun Workstation Architecture, Sun Microsystems Inc.,

Mountain View, CA, 1986.

[Thearle 89], R. Thearle, "Survey of Object-Oriented Databases", Zenith Technical

Report, University of Kent at Canterbury, 1989.

[Tsichritzis 89], D. C. Tsichritzis and 0. Nierstrasz, "Directions in Object

Oriented research", Object-Oriented Concepts Databases, and

Applications, Addison-Wesley, p 523:536, (edited by Won Kim 1989)

[Weiser 89], Steven P. Weiser et al, "0Z+ : An Object-Oriented Databases

System", Object-Oriented Concepts Databases, and Applications,

181

Addison-Wesley, pp 309:337, (edited by Won Kim 1989)

[Welch

[Welch

[Zaniolo

[Zaniolo

[Zdonik

[Zdonik

88], P. H. Welch, "An Occam Approach to Transputer Engineering",

Proceedings of the 3rd Conference on Hypercube Concurrent Computers

and Applications", Pasadena, California, U.S.A., 19-20 Jan., 1988.

89], P. H. Welch, "TRANSNET - A Transputer-Based Communications Service".

In 'Applying Transputer-Based Parallel Machines', Proceedings of the

10th Occam User Group Technical Meeting, Enschede, Netherlands;

pp. 198:212. Published by IOS, Netherlands (ISBN 90 5199 Oil 1).

April, 1989.

86.a], C. Zaniolo, "Prolog: A Database Query Language for All Seasons",

Proceedings of First International Workshop on Expert Database

Systems, 1986.

86.b], C. Zaniolo et al, "Object Oriented Database Systems and

Knowledge Systems", Proceeding of First International Workshop

on Expert Database System, p 49:65, 1986.

85] , S. Zdonik and P. Wegner, "A Database Approach to Languages,

Libraries and Environment", Brown University Technical Report No.

CS-85-10, May 1985.

86] , S. B. Zdonik and P. Wegner, "Language and methodology for object-

oriented database environments. In Proceeding of the Nineteenth

Annual Hawaii International Conference on System Sciences Honolulu,

Jan. 1986, pp 378-387.

182

APPENDIX (A)

PKBZ Object Oriented Database Management System

Constants and Variables Description

A.l. Miscellaneous Variables Description and Values :

The following table illustrates miscellaneous variables and the corresponding

values used in designing and implementing the PKBZ system :

Component Name Value
object.name.length 12
max.number.of.property 10
property.name.length object.name.length
property.type.length object.name.length
max.number.of.inherit 10
max.number.of.inherited.by 10
max.number.of.constraint 10
constraint.length 40
max.number.of.function 10
function.name.length 12
function.property.length 40
max.number.of.instance.
description 8

max.number.of.objects 50
file.name.length 11
fileSys.maxDataBytcs (1) 512
FSMDB fileSys.maxDataBytes
NO.REC.IN.PAGE 5
number.of.status

L
10

(1) FileSys.maxDatabytes (FSMDB) is a variable name defined by Occam file system

library [INMOS 88.b]. It defines the maximum record length which can be used with

the file (i.e. 512 Bytes/record).

183

A,2. Object Type Identifier Values :

The following table represents the corresponding values of each object type

identifier in the PKBZ system :

Component Name Value
entity.type 1
attribute.type.int 2
attribute.type.string 3
structural.type.int.int 4
structural.type.int.string 5
entity.aggregate.type 6

A,3. Instance Type Identifier Values :

The following table represents the corresponding values of each instance type

identifier in the PKBZ system :

Component Name Value
int 1
stringl2 2
int.stringl2 3
int.int 4
stringFSMDB 5
entity.aggregate 6

184

A.4. Physical Instance Size According to Object Type Instance :

The following table represents the physical instance size of each logical object

type instance in the PKBZ system :

Component Name Size in Bytes

int 2
stringi 2 12
int.stringl2 14
int.int 4
stringFSMDB 512 (1)
entity.aggregate 2

(1) See FSMDB appendix A.l.

185

APPÉÜDIX (8)

PKBZ Schema Data Structure

The following subsections illustrates the schema data structure in different

object classes. Appendix A.l. defines the size of the variable array.

B.l, The Object Identification Data Structure :

The data structure of object identification is defined as follows :

INT object.type.id:
INT object.id:
[object.name.lengthjBYTE object.name:

The following table provides a brief description of the components involved in

the object identifications :

Component Name Description
object.type.id The type of object class and the

corresponding instance type
object.id The unique object identifier of

object class
object.name

_
The object name of object class

186

B.2. The Object Class Property Names and Types Data Structure :

The data structure of the property names and types is defined as follows :

INT total.no.of.data.properties:
[max.number.of.property][property.name.length]BYTE property.name:
[max.number.of.property][property.type.length]BYTE property.type:

The following table provides a brief description of the components involved in

the property names and types :

Component Name Description
total.no.of.
data.properties

The number of defined data prope­
rties in the object class schema

property.name The property name defined in the
object class schema

property.type The corresponding property type
of the defined property name

187

B.J. The Object Class Inheritance Information Data Structure :

The data structure of the inheritance information is defined as follows :

[max.number.of.inherit]INT in herits :
[max.number.of. in h e rit][object.name.length]BYTE inherits.name:
[max.number.of.inherited.by]INT inherited.by:
[max.number.of.inherited.by][object.name.length]BYTE inherited.by.name:

The following table provides a brief description of the components involved in

the inheritance information :

Component Name Description
inherits The inherit object classes identifiers
inherits.name The inherit object classes names

corresponding to object identifiers
inherited.by The inherited by object classes

identifiers
inherited.by.
name

The inherited by object classes names
corresponding to object identifiers

188

B.4, The Object Class Constraints Data Structure :

The data structure of the object class constraints information is defined as

follows :

INT total.no.of.constraints:
[max.number.of.constraintJINT constraint.no:
[max.number.of.constraint][constraint.length]BYTE constraint:

The following table provides a brief description of the components involved in

the constraint information :

Component Name Description
total.no.of.
constraints

The number of defined constraints
lines in all defined constraints

constraint.no The number of lines in each
constraint

constraint The content of each constraint
line

189

B.5. The Object Class Function Properties Data Structure :

The data structure of the function properties information is defined as follows:

INT
[max.number.of.function]INT
[max.number.of.function][function.name.length]BYTE
[max.number.of.f unction)[function.property.length]BYTE

total.no.of.functions:
function.no:

func.name:
functions:

The following table provides a brief description of the components involved in

the function properties information :

Component Name Description
total.no.of.
functions

The number of defined function
lines in all defined functions

function.no The number of lines in each
function

function.name The function name defined by user
functions The content of each function

1 ine

190

B.6. The Instances Description of Object Class Data Structure :

The data structure of the instances description information is defined as follows:

[max.number.of.instance.description]INT instance.description:

The following table provides a brief description of each element in the instance

description :

Component Name Description
instance.description[0] Previous page number of object

instance on the database file
instance.description[1] Current page number of object

instance on the database file
instance.descriptionf 2] Free location index within the

current page number
instance.description[3] Total number of instances

instance.descriptiont 4] New surrogate value

instance.description[5] Reserved

instance.description[6] Reserved

instance.description[7] Instance type (sec appendix A.3)

191

APPENDIX (C)

PKBZ Instance Data Structure

C.L The Data Structure of The Entity Set Instances and Attribute
Set Instances of Integer Type :

The data structure of the instances information is defined as follows :

[max.number.of.object]INT id.instance:

The following table provides a brief description of the instance :

Component Name Description

i d .instance Each integer instance stored in
sequence in each element of array

C.2. The Data Structure of Attribute Set Instances of String Type:

The data structure of the instances information is defined as follows :

[max.number.of.objects][object.name.length]INT name.instance:

The following table provides a brief description of the instance :

Component Name Description

name.instance Each string instance stored in
sequence in each element of array

192

C.3. The Data Structure of The Structural Object Instances :

The data structure of the instances information, if the range is string, is

defined as follows :

[max.number.of .ob jects]TNT id .instance:
[max.number.of.objects]!object.name.length]INT name.instance:

The following table provides a brief description of the components involved in

each instance :

Component Name Description
id.instance Each domain instance stored in

sequence in each element of array
name.instance Each range instance stored in

sequence in each element of array

The same index in both array are used to link the domain and the range together

to form a single instance.

193

The data structure of the instances information, if the range is integer, is

defined as follows :

[max.number.of.objects]INT id.instance:
[max.number.of.objects]INT n:

The following table provides a brief description of the components involved in

each instance :

Component Name Description
id.instance Each domain instance stored in

sequence in each element of array
n Each range instance stored in

sequence in each element of array

The same index in both array is used to link the domain and the range together

to form a single instance.

194

C.4. The Data Structure of The Entity Aggregate Object Instances:

The data structure of the instances information is defined as follows :

[max.number.of.objects]INT id.instance:

The following table provides a brief description of the instance :

Component Name Description

i d .instance Common surrogate instance is stored
in sequence in each element of array

The value of the surrogate (common domain instance) is used to link all the

inherit structural objects. So, the instances of entity aggregate are instantiated during

the system life.

C,5. The Data Structure of The Page Object Instances:

The data structure of the instances information is defined as follows :

[NO.REC.IN.PAGE][FSMDB]BYTE record:

The following table provides a brief description of the instance :

Component Name Description

record Two dimension string array to store
page in the Page Object

195

C.6. The Data Structure of The Page Data Region in Page Object

Instances :

The data structure of the Page Data Region information is defined as follows:

[8]INT Page.Data.Region:

The following table provides a brief description of the function of each element

in the Page Data Region :

Component Name Description
Page.Data.Region[0] Number of stored records per page
Page.Data.Regiontl] Number of instances in this page
Page.Data.Region[2] Current page number
Page.Data.Region[3] Previous page number
Page.Data.Region[41 to
Page.Data.Region[7]

Reserved

196

APPENDIX (D)

P M Protocols Descriptions
The following protocols definitions are used in PKBZ Object Oriented Database

System :

D.l. Protocol REQUEST.ORDER Definition :

The data structure of the protocol REQUEST.ORDER description is defined as

follows :

PROTOCOL REQUEST.ORDER
CASE

— System Message Protocols
CREATE.DBASE ; [file.name.length]BYTE
OPEN.DBASE ; [file.name.lengthjBYTE
END
— Create Message Protocols
CREATE.OBJECT
CREATEJSCHEMA

— Object Id en tification
; INT ; INT
; [object.name.length]BYTE
— Property Names and Types
; INT
; [max.number.of.property][property.name.length]BYTE
; [max.number.of.property][property.type.length]BYTE
— Inherits Data
; [max.number.of.inherit]INT
; [max.number.of.inherit][object.name.length]BYTE
— Inherited By Data
; [max.number.of.inherited.by]INT
; [max.number.of.inherited.by][object.name.length]BYTE
— Constraints Data
; INT
; [max.number.of.constraint]INT
; [max.number.of.constraint][constraint.length]BYTE
— Functional Properties Data
; INT
; [max.number.of.function]INT
; [max.number.of.function][function.narne.length]BYTE
; [max.number.of.function][function.property.length]BYTE
— Instance Description Data
; [max.number.of.instance.description]INT

CREATE.INTERMEDIATE.INT ; INT:i]INT
CREATE.INTERMEDIATE.STRING ; INT

; [max.number.of.objects][object.name.length]BYTE
CREATE.INTERMEDIATE.INT.STRING ; INT

; [max.number.of.objects]INT

197

; [max.number.of.objects][object.name.length]BYTE
CREATE.INTERMEDI ATE.INT.INT ; INT

; [max.number.of.objects]INT
; [max.number.of.objects]INT

— Internal Message Protocols
OPEN.OBJECT ; [object.name.length]BYTE
GENERATE.SURROGATE ; [object.name.length]BYTE

; [number.of.status]INT
NEW.PAGE.NO ; INT
UPDATE.INSTANCE
UPDATE.INHERITED.BY.OBJECT ; [object.name.length]BYTE

; INT
; [object.name.length]BYTE

— Memory Object Message Protocols
OBJECT.NAMEJSCHEMA.DESCRIPTION ; [object.name.length]BYTE
— Transaction Message Protocols
ADD.INSTANCE ; [object.name.length]BYTE

; [number.of.status]INT
— R etrieva l Instances Protocols
GET.INSTANCE ; [object.name.length]BYTE

; [number.of.status]INT
OBJECT.NAME.INSTANCE ; [object.name.length]BYTE

; [number.of.statiis]INT
GET.PRI.RANGE.S ; [object.name.lengthjBYTE

; [number.of.status]INT
GET.INV.RANGES ; [object.name.length]BYTE

; [number.of.status]INT
GETJSPE.VALUE ; [object.name.length]BYTE

; [nomber.of.status]INT
; [max.number.of.inherit](object.name.length]BYTE
; [max.number.of.inherit][object.name.length]BYTE

UPDAT.INSTANCE.VALUE ; [object.name.length]BYTE
; [number.of.status]INT

DELETE.INSTANCE.VALUE ; [object.narne.length]BYTE
; [number.of.status]INT

— Instance Value Protocols
ID.INSTANCE ; INT
NAME.INSTANCE ; [object.name.length]BYTE
ID.NAME.INSTANCE ; INT

; [object.name.length]BYTE
ID.INT ; INT ; INT
— Page Object Message Protocols
GET.PART.OF.INSTANCE ; INT ; INT
ADD.PART.OF.INSTANCE ; INT ; INT ; INT:i]BYTE
— Add Batch Protocols
START.ADD

; [object.name.lengthjBYTE
; INT
; [max.number.of.inherit][object.name.length]BYTE

ADD.INSTANCFJS
; [max.number.of.inheritl[object.name.length]BYTE

ADD.LAST
; [max.number.of,inherit][object.nameJ engthjBYTE

The function of each protocol will be described in appendix E.2.

198

D.2, Protocol INSTANCE Definition

The data structure of the protocol INSTANCE description is defined as follows

PROTOCOL INSTANCE
CASE

— Integer Instances
int.instance ;INT:i]INT
— String Instances
string.instance ;
INTimax.number.of.objects][object.name.length]BYTE

— Integer + String Instances (Structural Object)
int.string.instance ;

INT^max.number.of.objects]INT;
INTimax.number.of.objects][object.name.length]BYTE

— Integer + Integer Instances (Structural Object)
int.int.instance ;INT;[max.number.of.objects]INT

imax.number.of.objects]INT
— Page Object Instances
string.FSMDB ; INT ; [NO.REC.IN.PAGE][FSMDB]BYTE

The function of each protocol will be described in appendix E.3.

199

D J . Protocol OBJECT.SCHEMA Definition :
The data structure of the protocol OBJECT.SCHEMA description is defined as

follows :

PROTOCOL OBJECT.SCHEMA
CASE

object.schema — tag protocol
— Object Id en tification
; INT ; INT
; [object.name.length]BYTE
— Property Names and Types
; INT
; [max.number.of.property][property.name.length]BYTE
; [max.number.of.property][property.type.length]BYTE
— Inherits Data
; [max.number.of.inherlt]INT
; [max.number.of.inherit][object.name.length]BYTE
— Inherited By Data
; [max.number.of.inherited.by]INT
; [max.number.of.inherited.by][object.nameJength]BYTE
— Constraints Data
; INT
; [max.number.of.constraint]INT
; [max.number.of.constraint][constraint.length]BYTE
— Functional Properties Data

INT
; [max.number.of.function]INT
; [max.number.of.function][function.name.length]BYTE
; [max.number.of.function][function.property.length]BYTE
— Instance Description Data
; [max.number.of.instance.description]INT

The function of each protocol will be described in appendix E.4.

200

APPENDIX (E)

PKBZ Message Function and The Data Structure Descriptions

The following subsections illustrate the message functions and the related data

structure which are used in the PKBZ system. The common variables data structure will

be described in subsection E.l. Then, the data structure of the REQUEST.ORDER messages,

INSTANCE messages and OBJECT.SCHEMA messages will be described in subsections E.2., E.3.,

E.4. respectively. Appendix A.l. defines the size of variable array.

E.L Common Variables Data Structure :

The data structure of the common variables which is used in the PKBZ messages

is defined as follows:

— Schema Variab les
INT
INT
[object.name.length]BYTE

INT total.no.of.data.properties:
[max.number.of.property][property.name.length]BYTE property.name:
[max.number.of.property][property.type.length]BYTE property.type:

[max.number.of.inherit]INT
[max.number.of.inherit]! object.name.length]BYTE
[max.number.of.inherited.by]INT
[max.number.of.inherited.by][object.name.length]BYTE

INT total.no.of.constraints:
[max.number.of.constraint]INT constraint.no:
[max.number.of.constraint][constraint.length]BYTE constraint:

INT total.no.of.functions:
[max.number.of.function]INT function.no:
[max.number.of.function][function.name.length]RYTE func.name:
[max.number.of.function][function.property.length]BYTE functions:

[max.number.of.instance.description]INT instance.description:
— Miscellaneous Variab les
[file.name.length]BYTE database.name:
INT no.of.instances:
[max.number.of.objects][object.name.length]BYTE string.instances:
[max.number.of.objects]INT int.instance, int.domain , int.range :
[max.number.of.objects][object.name.length]BYTE string.range:
[number.of.status]INT in t.status:
INT page.no:
[NO.REC.IN.PAGE][FSMDB]BYTE page:

in herits :
inherits.name:
inherited .by:

inherited.by.name:

object.type.id:
object.id:

object.name:

201

INT
[object.name.length]BYTE
[max.number.of.inherit][object.name.length]BYTE
INT id .instance , id.domain.instance ,
[object.name.length]BYTE
INT s ta rt ,
[NO.REC.IN.PAGE * FSMDB]BYTE
INT

inherited.by.id:
inherited.by.nam:
in h erits , values:

id.range.instance:
name.i nstance:

size , record.no:
s:

no.of.inherits:

The "Schema Variables" above have the same names and functions which are

described in appendix B. So, the following table will illustrate the function of the

"Miscellaneous Variables" only.

Component Name Description
database.name Database name
no.of.instances Number of instances in the message
string.instances Values of string instances
int.instance Values of integer instances
int.domain Values of integer domain instances
int.range Values of integer range instances
string.range Values of string range instances
int.status Integer statuses of object class
page.no Page Number Value
page Page Object instances
inherited.by.id Inherited by object class identifier
inherited.by.nam Inherited by object class name
inherits.values Data values of inherit objects
id.instance Single value of integer instance
id.domain.instance Single value of domain integer
id.range.instance Single value of range integer
name.instance Single value of string instance
start Index indicating the start position

continue to next page

202

Component Name Description

size Size of the array needed

record.no Record number in the Page Object

s Page Object instances in a single
array form

n o .o f .inherits Number of inherit object classes

203

E.2. REQUEST.ORDER Messages Data Structure :
The data structure of each message in the REQUEST.ORDER protocol is defined as

follows :

— System Message Protocols
CREATE.DBASE ; database.name
OPEN.DBASE ; database.name
END
— Create Message Protocols
CREATE.OBJECT
CREATE.SCHEMA

— Object Id en tifica tion
; object.type.id ; objected ; object.name
— Property Names and Types
; total.no.of.data.properties ; property.name
; property.type
— Inherits Data
; in h erits ; inherits.name
— Inherited By Data
; inherited.by ; inherited.by.name
— Constraints Data
; total.no.of.constraints ; constraint.no ; constraint
— Functional Properties Data
; total.no.of.functions ; function.no ; func.name ; functions
— Instance Description Data
; instance.description

CREATE.INTERMEDIATE.INT
; no.of.instances::[int.instance FROM 0 FOR

no.of.instances]
CREATE.INTERMEDIATEJSTRING ; no.of.instances

; string.instances
CREATE.INTERMEDIATE.INTJSTRING ; no.of.instances ; int.domain

; string.range
CREATE.INTERMEDIATE.INT.INT ; no.of.instances ; int.domain

; int.range
— Internal Message Protocols
OPEN.OBJECT ; object.name
GENERATEJSURROGATE ; object.name
NEW.PAGE.NO ; page.no
UPDATE.INSTANCE
UPDATE.INHERITED.BY.OBJECT ; object.name

; inherited.by.nam
— Memory Object Message Protocols
OBJECT.NAME.SCHEMA.DESCRIPTION ; object.name
— Transaction Message ProtocoLs
ADD.INSTANCE ; object.name
— R etrieva l Instances Protocols
GET.INSTANCE
OBJECT.NAME.INSTANCE
GET.PRT.RANGES
GET .INV.R ANGES
GET.SPE. VALUE

UPDATE JNSTANCE.VALUE
DELETE.INSTANCE.V ALUE

; object.name
; object.name

; object.name
; object.name
; object.name

; inherits.name
; object.name
; object.name

; in t.status

; inherited.by.id

; in t.status

; in ts ta tu s
; in t.status

; in t s ta tu s
; in t.status
; in t s ta tu s
; inherits.va lues

; in t.status
; in t.status

204

— Instance Value Protocols
ID.INSTANCE
NAMK.INSTANCE
ID.NAME.INSTANCE
ID.INT

; id .instance
; name.instance
; id .instance ; name.instance

; id.domain.instance
; id.range.instance

— Page Object Message Protocols
GET.PART.OF.INSTANCE ; s ta rt ; size
ADD.PART.OF.INSTANCE ; record.no ; s ta rt

; sizeris FROM 0 FOR size]
— Add Batch Protocols
START.ADD

; inherits.name
ADD.INSTANCES
ADD.LAST

; object.name ; no.of.inherits

; in herits.va lues
; inherits.va lues

The following table provides a brief description of the tag protocol and the

function of each message involved in the REQUEST.ORDER protocol:

Component Name Description

CREATE.DBASE Create the database

OPEN.DBASE Open the database

END Close the database

CREATE.OBJECT Create Object Class

CREATE.SCHEMA Create Object Schema

CREATE.INTERMEDIATE.
INT

Create new page for entity
object or attribute object with
integer instance

CREATE.INTERMEDIATE.
STRING

Create new page for attribute
object
(The instance has string instance)

CREATE.INTERMEDIATE.
INT.STRING

Create new page for structural
object
(The range has string instance)

CREATE.INTERMEDIATE.
INT.INT

Create new page for structural
object
(The range has integer instance)

OPEN.OBJECT Load the object class into the main
storage

GENERATE.SURROGATE Generate new surrogate

NEW.PAGE.NO Allocated a new page for Memory
Object

continue to next page

205

Component Name Description
UPDATE.INSTANCE Start updating Memory Object
UPDATE.INHERITED.
BY.OBJECT

Updated inherited by object data

OBJECT.NAME.SCHEMA.
DESCRIPTION

Get object schema description

ADD.INSTANCE Add the following instance in the
object class

GET.INSTANCE Check existence of the following
instance in the object class

OBJECT.NAME.INSTANCE Get all object class instances
GET.PRI.RANGES Get the ranges of all primary

relationships given the domain value
GET.INV.RANGES Get all the corresponding domains of

the primary relationships given the
range

GET.SPE.VALUE Get specific instance values
UPDATE.INSTANCE.VALUE Update the following instance
DELETE.INSTANCE.VALUE Delete the following instance
ID.INSTANCE Integer instance follows
NAME.INSTANCE String instance follows
ID.NAME.INSTANCE Integer and string instance follows
ID.INT Two integer instances follows
GET.PART.OF.INSTANCE Get part of the record
ADD.PART.OF.INSTANCE Add part to the record
START.ADD Start add batch process
ADD.INSTANCES Add the following instances
ADD.LAST Add the last instance in batch

206

E.J. INSTANCE Messages Data Structure :

The data structure of each message in the INSTANCE protocol is defined as follows:

int.instance

string.instance
int.string.instance

in t.i nt.instance

strin g J’SMDB

; no.of.instancesriint.instance FROM 0 FOR

; no.of.instances
; no.of.instances
; string.range
; no.of.instances
; int.range
; page.no

no.of .i nstances]
; string.instances
; int.domain

; int.domain

; page

The following table provides a brief description of the tag protocol and the

function of each message involved in INSTANCE protocol :

Component Name Description
int.instance Integer instance for entity

object or attribute object
string.instance String instance for attribute

object
int.string.instance Integer domain and string range

instances for structural object
int.int.instance Integer domain and integer range

instances for structural object
string.FSMDB Page Object instance values

207

E.4. OBJECT,SCHEMA Messages Data Structure :
The data structure of each message in the OBJECT.SCHEMA protocol is defined as

follows :

object.schema
— Object Id en tification
; object.type.id ; objected ; object.name
— Property Names and Types
; total.no.of.data.properties ; property.name
; property.type
— Inherits Data
; in h erits
— Inherited By Data

; inherits.name

; inherited.by
— Constraints Data

; inherited.by.name

; total.no.of.constraints ; constraint.no ; constraint
— Functional Properties Data
; total.no.of.functions ; function.no ; func.name ; functions
— Instance Description Data
; instance.description

The "object.schema" is used as a tag protocol to indicate that the object schema

data is following.

208

«NOIX (E)

Database System Group Data Structure

The data structure of the Database System Data Group is defined as follows :

VAL INT no.of.sys.inform IS 50:
[no.of.sys.inform]INT sys.info:

The following table provides a brief description of each element :

Component Name Description
sys.info[0] New available Page
sys.info[1] Number of records in the database

system page
sys.info[2] Index points to the free position in

the database system page
sys.info[3] Number of records in the database

schema page
sys.info[4] Index points to the free position in

the database schema page
sys.info[5] Number of used pages in the system
sys.info[6] First used page in the system
sys.info[7] Second used page in the system
sys.info[8] Third used page in the system

• • • • • •
• • • • • •
• • • • • •

209

APPENDIX (G)

External Management System Screens In PKBZ

. The Basic Screen :

The following screen (screen-1) illustrates the main screen in the system

210

G.2. The Message Screen :

The following screen (screen-2) illustrates the message screen in the system :

K B Z - OBJECT ORIENTED DATABASE SYSTEM

Available Message

ObjcctNamc.SchcmaDcsc ObjcctNamc.InstanccVal

ObjectName.Addlnstancc ObjcctNamc.GetlnsValue

ObjectNamc.GetPriRangc ObjcctNamc.AddlnvRangc

ObjectNamc.GctSpeValue ObjectNamc.Updatclns

ObjcctNamc.Dcletclns KB Z .CrcatcObjeet

KBZ.EndObjcctMcssage

Object Name : ^
____________________________Z____

Message :

Message zone --------- 7

F i g . G . 2 . Basic P K B Z M e ssage Sc r e e n (s c r c c n - 2)

211

GJ, The Creation Screen

The following screen (screen-3) illustrates the creation screen in the system

Fiq.G.3. The C r e a t i o n Sc r e e n (scrccn-3)

212

G.4. Create Structural Object Screen

The following screen (screen-4) illustrates create structural object screen in the

system :

Fig.G.4. The Create Structural Object
Screen (screen-4)

!

(TEMPLEMAN LIBRARY

213

