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PREFACE

The following work is concerned mainly with 
questions associated with the interpolation of a regular 
function in terms of its values at a set of discrete points

If the set contains only one limit point we may
transform so that this becomes the point at infinity and 
the domain of regularity of the function is either the 
finite part of the plane or contains a sector. This is the 
situation dealt with in Chapters H  and IV. Some new 
results on constructing an integral function of zero order 
from its values at an infinite sequence are obtained. These 
results are rather unwieldly for general use but are 
suitable for discussing problems connected with that of 
Iyer:

* What suitable conditions can we impose on a set 
in order to ensure that

JUvw iwo Qpq Mlf, 0  _ !\V \ i'feOl
>o&' o t-e ^\^|e

for all integral functions (-(£) of growth less than type T 
order ^ ?'*

This question was raised as a result of work by 
Whittaker, Polya, Pfluger, and Iyer himself, on the 
representation of integral functions in terms of their



values at the lattice points m + in (m, n = 0,±1,±2, , )0 
The results of Chapter IV are obtained by combining the 
approabh of Pfluger, which depended on certain periodic 
properties of the Weierstrass cr-function, and that of Iyer, 
which only appealed to known facts about the size of \<rU>\ 
and V » io the lattice point situation. Indeed the 
interpolation techniques of Iyer are used throughout this 
thesis. We follow Pfluger, however, in seeking appropriate 
geometric distribution conditions on the set b2*'! » as 
opposed to assumptions concerning the behaviour of the 
canonical product of the .

In Chapter II, following the work of Maitland and
Noble, we invert the interpolation technique of Chapter IE
to give both new and improved results concerning the

* * \sregions where an integral function is large. As corollaries 
we deduce certain growth properties of loo .

Finally, in Chapter V, we discuss the situation where 
has more than one limit point at which the interpolating 

function is not necessarily regular. We may take the region 
of regularity to be the unit disc, in which case every 
point of the boundary may be a singularity, or a subset of 
the unit disc such that boundary singularities of the 
function only occur on that part of the boundary common 
with |g| =• I »

11

The results of Chapter IV have already appeared in



print [58], the method of proof differing in detail in 
order to suit the more isolated situation.

Eliot College,
University of Kent at Canterbury. 
June, 1967.
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NOTATION

We shall assume many of the conventions of notation 
of the theory of functions of a complex variable and here 
clarify only some cases where confusion may arise.

By the letter K we shall denote a numerical constant 
independent of the main variables, ... ) denotes a
constant depending only on the variables listed in the 
parentheses. In both cases, the value of K is not 
necessarily the same at each appearance in an argument. 
Specific constants within a section are indicated by 
subscripts and absolute constants by other capital letters, 
usually A and B.

We shall often write

where ranges over some countable set. This is to be 
interpreted as

obtained is independent of the enumeration chosen.

Unless the context clearly indicates otherwise, the 
canonical product, without further qualification, of a set

!xv\\ -A/Ûn —5 00 ip3>A
for some enumeration of the set. Obviously the value

with exponent of convergence
00

means



y
where £ (u^) is the Weierstrass primary factor of genus ij> .

We denote non-increasing by \ and non-decreasing by 
 ̂ . The interior domain of a Jordan curve P is denoted
by DcO ) .
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CHAPTER I

INTRODUCTION

1.1, Generalities. The aspect of interpolation 
theory with which we are concerned here is that of 
interpolating a regular function in terms of its values at 
an infinite set of discrete points and, in particular, the 
growth properties which follow from the representation 
adopted.

One method of partially solving the problem, in the 
case where the set of points consists of the non-negative 
integers, is provide by the Gregory-Newton series (see, 
for example, Whittaker [56]).

'Any integral function fte) of exponential type less 
than has a convergent representation

This has as an almost immediate corollary the theorem of 
Pólya-Hardy,

"An integral function of exponential type less than 
2. taking integral values at the non-negative integers

is a polynomial.

Many other series of a similar nature can be formed,

(1.1.1)

where A. Pt?) = fep\)~ P(s) A " f e )  = A (A**' Pte)) •

each depending on the set of points in question ( see [2]
and [56] for examples). We describe below a method of
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approach which deals succesfully with a wide range of sets
of points.

1.2. Cardinal series. The general method depends on 
constructing an integral function F(z) taking prescribed 
values lo)ni at a set of points (z*( , having no finite 
limit point. We can always form an integral function 
which has simple zeros at the Zn and, given such a 
function and the sequence , we can determine a
sequence of integers such that

V  1 ^
- 1 'J'fen'l Z,'^ < °o . ( 1 . 2 . 1 )

The series
____ R s o ( 1 . 2 . 2 )

will be called a cardinal series associated with the 
sequences and { .  Since the series, with i t a k e n
inside the summation sign, is uniformly convergent in any 
bounded region of the complex plane, it follows that VCz) 
is an integral function with the property that

F(z^ - COv, . (1.2.3)

The growth properties of such functions have been studied 
by Mursi and Winn [28] and Macintyre and Wilson [25].

If the uoA are the functional values at 2^ of some 
integral function P(z) , then
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FIX) - H & Z  (1-2-4

is an integral function which coincides with P(£) at the 
sequence of points and we are immediately faced with 
the problem of under what, if any, conditions on the (Ha] 
and the function f&) is it possible to identify the 
function with an associated cardinal series?

One method of answering this question is to restrict 
the classes of integral functions and point sets in such a 
manner that, for some fixed integer y , there exists a 
sequence of curves with vaP iHl —> qo as £—><£, and
such that

ftc) ic -> 0  as (1.2.5)
s V O I S - * )

The calculus of residues then gives that
j>

PCs) 0 , (1.2.6)
7 '(¿y) •

and thus

(1.2.7)

with the series bracketed suitably. If equation (1.2.1) is 
satisfied with Vv, = , it follows that the series in
(1.2.7) converges absolutely and the remark about suitable 
bracketing becomes superfluous. In all applications of 
this method made in this thesis the pairs of class of

l
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admissible functions and the set of points are chosen
so that we can satisfy conditions (1.2.1) and (1.2.5) with 
v taken to be zero.

1.3. Early results. Certain sets of points have 
suitable associated functions r̂(a) with well defined 
properties; with the set of all integers we can take i£(z) 
to be Sinfts and with the set of all lattice points m-t-*• <\ 
(m,A = 0,- \ ) we can use o-(z) , the Weierstrass
O'-function. In the cases mentioned,many of the results 
take a very elegant form and we give here a few examples.

THEOREM 1. Suppose that Pte) is an integral function 
of exponential type less than tr and that, for all integer 
rx , P(rO is bounded; then 00

f /-,% _ jfWllTZ V  (‘(a)

Since the series involved is not always absolutely 
convergent this is not strictly a cardinal series as 
previously defined. In fact the representation of the 
theorem depends on the Abel summability of the series of
(1.3.1) when the condition on P(z) at the integers is 
relaxed to

>̂'wv \ M   ̂ I (1.3.2)

(MacIntyre [24]).

A simple corollary to Theorem 1 is the following
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result, originally due to Carlson [3].

THEOREM 2. Suppose that P(e) is an integral function
satisfying

^ M e bl , with , (1.3.3)

and f (n) - 0 for all integer *1 , then P(e) is identically
zero.

THEOREM 3. (Cartwright [6], Macintyre [24]). Suppose 
that f(s) is an integral function satisfying (1.3.3) and

1 PU) 1 ( A, (1.3.4)
then for real X

l P O O |  £  K ( k )  A .  ( 1. 3. 5)

In addition, if P (E ) tends to zero as 2 tends to infinity 
by positive integer values then P(2) tends to zero as £ 
tends to infinity by continuous positive values.

We also have the result of Polya ([41], p.606 ) that 
for functions satisfying (1.3.3) the growth along the real 
axis is determined by its growth at the integers, in the 
sense that

r ^  P(0| - ~  ^I P(v,)K 1.3.6)
and, for a smaller class of functions, the following.

THEOREM 4. (Tschakalov [48]). Suppose that P(2) is 
an integral function of growth at most minimal type of 
order I with P(v\) bounded, then P(z?) is constant.
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The first results for the lattice points were those 

of J.M. Whittaker [54] who proved the following represent
ation theorem.

THEOREM 5. (l) If P(?> is an integral function for
which

then

livn (AVI'- —3> 00 .1 v IT

r-L?) ■= P (.vn -v C n )

O k,a)

(1.3.7)

(1.3.8)

the series being bracketed suitably.
(2) If

IO -k X  loct ) C . i ff —* 00 J  J * (1.3.9)

then (1.3.8) holds, the series being absolutely convergent 
(in fact (wuivŝ) -v m  jj) Pfluger [35] and Iyer
[13] both proved, independently and using different methods, 
Theorem 6.

THEOREM 6. If Pas') is an integral function for which

-VaP -- (W <! - rv (1.3.10)
oo r - J  '

and 1 £Cv m CvO)\ i K  , (1.3.11)

then P-C?) is necessarily constant.

This extended a result obtained by both Whittaker 
[54,55] and P6lya [42] which, instead of (1.3.10),required,
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5-vm A. W  (V\(r P) ^ 0 .r— >00' 0 7 (1.3.12)

1.4. Generalisations. A large amount of work has 
been done on generalising the interpolation results 
concerned with the behaviour of integral functions at the 
integers. This will not concern us here and we give only- 
some references. Bernstein [1], Levinson [22], Macintyre 
[24] and, more recently, Rahman [43].

Theorem 6 is best possible in the sense that the 
value ^tr cannot be allowed in (1.3.10), as the example 
of the <r-function itself shows. The result has however 
been generalised in several ways; the lattice points being 
replaced by more general sets and the boundedness condition 
by one of restricted rate of growth.

Iyer’s method of proving Theorem 6, unlike that of 
Pfluger, made no appeal to the periodic properties of o-fe) 
but merely to known facts concerning \ 0~(z1 and .
Developing this method [15, 16] he showed that the behaviour 
at the lattice points of a function satisfying (1.3.10) is 
typical of that of the function as a whole in the sense 
that

He then generalised the problem to that of determining a 
set with the property that
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Uw\ log N\Qp _ 1 '¡'A*. JliK? -k \ FfeM (1.4.2)
r—=> 00 >-' p-C >oo w  \ 2  ̂ ̂

for all functions of growth less than type T order p ;
jrsuch a set he described as being effective for p and

gave some properties which it must posses in our next 
theorem.

THEOREM 7. If“ is effective for p ,'t then:
(i) the exponent of convergence of cannot be

less than p ;
(ii) if the exponent of convergence is p , then any

integral function with zeros at the must be of growth
at least type T of order p unless it is identically zero;

(iii) the set of amplitudes of 2^ is everywhere dense
in [ 0 , 2nv ].

He also gave sufficient conditions that a set be
effective but these depend on the canonical product of the 
Zn , not on their geometrical distribution directly.

THEOREM 8. The set will be effective for (0 ,'t
provided there exists an integral function with simple 
zeros at 2 and an Vv>p such that both

IsV T (1.4.3)
,v“>60

«
and k  ------ > T  (1.4.4)

as 2 — oo outside the set of discs
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-Zv,\ 4 \zj (1.4.5)

Pfluger approached the problem from a different 
direction. He developed a study of the Lindeldf k(G') 
function and the extent to which it is typical of the 
growth of canonical products of sets of zeros measurable 
in a certain sense with respect to a proximate order (DO) 
[37, 38]. He was concerned with sets which satisfy,
for each pair 04, ,

the proximate order function p(y~) being continuous for

where Y\(f 5©v 1@2.) denotes the number of .?n in the region
0 £ \z\ ^ r- f <:

and l\)(j0) is a non-decreasing function which satisfies
N(0 + 2t) -NCGÌ -  K >0  ; (1.4.7)

0 < r £ oD , having left- and right-hand derivatives which
coincide in intervals and satisfying

po') - p > 0
co v  ^ (1.4.8)

(For any integral function (-0?) of finite positive order q 
such a can be determined to ensure that

» iAJ
is positive and finite.) Such a set is said to be
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measurable with respect to with measure function
N($) . His principle result' of this kind is

THEOREM 9» Suppose that is an integral function
of non-integral order o whose set of zeros { is

PtOmeasurable with respect to F with measure function
Nie'i , then for any Qj

' cm
kl^ = i'wv r'^r) HwlPWrt = — (c<?soiO-̂) x 4 10\

0 5iVv ,Te 6=o

as F —¿> through a set of unit density.

Using this, and similar results, and a modification 
of Iyer’s method, Pfluger was able to establish very 
general representation theorems. He found it necessary to 
distinguish between cases of integral and non-integral 
order, for example

THEOREM 10. Suppose that the set {2̂  is measurable
pwith respect to f , with p not an integer, with 

measure function N(.0) and suppose, in addition, that the
discs

if (1.4.11)

are all disjoint, for some fixed positive & . Let f|(e)

integral function such that

H(y) -
r<i

■?w * If

IT \ CoS
Siv\ J0

(1.4.12)



then
11

P &*)
(2 - H O (1.4.13)

He also gave [39» 40]
THEOREM 11. Suppose that is measurable with

respect to with measure function (^¡2n) 6» that is

A ( 2 A , ^ )  _ 4 2  ( A - © 1) * (1.4.14)<■-*<» r* irT V
and that the discs

* S ie
are disjoint. If (D is an integer, suppose, in addition, 
that

î U/- > ^  as h— =» <*> . (1.4.15)
Then any integral function of growth less than type T 
order p which is bounded at the H* is a constant.

The proof of this is based on the representation 
result of the preceeding theorem and a similar result for 
the case of integer q , with (̂2) then defined to be 
the product of with the canonical product of
the 2:a . These results include earlier generalisations 
of Maitland [26] and Levin [21],

We shall describe a set satisfying the conditions of 
Theorem 11 as belonging to P(d,t)

Noble [31] considered sets {£*] satisfying conditions
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which can be regarded as being complementary to those of 
Pfluger. He requires that they have a uniform angular 
distribution, in the sense that

^  <?> , cpz) as r — >oo , (1.4.16)
<Pz-<pt

for all 0, < , Cp , 4 , but considerably relaxes the
condition that the set must have a density with respect to
-,p1 in every sector. For integer p , the condition of 

(1.4.15) is retained. He obtained a very general represent
ation lemma and using the basic argument of Iyer, which he 
was able to do under conditions far less severe than those, 
of Theorem 8, obtained further results concerning the 
growth of integral functions. We now give a special case 
of one of these.

THEOREM 12. ([31], Theorem 2, Corollary 3). A set 
belonging to P(p/v) is effective for p ,'V , in the sense
of Iyer.

The methods used by these authors have also been 
applied to the related problem of inferring properties of 
a function regular in a sector from its properties on 
certain sets of points in the sector. Noble [32] obtained, 
several results which generalise earlier ones of Whittaker 
[54, 55] and Pfluger [36] for lattice points and of 
Maitland [26] and Cartwright [5] for more general sets. We 
give as an example a special case of one of his results.
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THEOREM 13. ([32], Theorem A with à = D , Q = I ).

Suppose that P(s) is regular in the sector
and satisfies:

(i) S.va\ iv\(‘ 0 / 
i" ~b oo ^ r ? m d

e)|( 1.4.17)

( ii) W ì x f  U P H - ) I  ( A r  i (1.4.18)

and (iii)
\ ¿ol i \ P(2*)\ 4 x 4 r , 

rts*\ç
(1.4.19)

where [zn\ is a set of ; then
l.\wv Sm.0 Iôq IWĈ ûÎ 1P-] / .
t — > oo ^ r-e " J (1.4.20)

Furthermore, a function ('(?) satisfying (1.4.17) which 
is hounded on the boundary of the sector and at those 
lying in the sector is bounded throughout the sector.

This is similar to a result of Iyer [15] concerning 
sets satisfying the conditions of Theorem 8 and a further 
restriction on the manner in which the set of discs of
(1.4.5) intersects the boundary of the sector.

Many of the results obtained, including that given 
above, require very heavy conditions on the function on 
the boundary of the sector; making, in some circumstances, 
a knowledge of the behaviour of the function at the set of 
points superfluous. An interesting result which does not 
have this drawback is the following theorem due, in a 
slightly weaker form, to Miss Cartwright.
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THEOREM 14. (Cartwright [7], Iyer [15]). Suppose that
is regular in the region S ù J ) , defined b y

2 \ < d ,  |S\ , and satisfies:

(i) i. i WV. Ùa P 
t  ÛÛ %

M ( ^ . , P )
< Ì *  * ( 1 . 4 . 2 1 )

(ii) Wv
r —  ̂¿XJ

JP \ P ( r - e - ' (i)
r-1

( 1 . 4 . 2 2 )

and if suppose, in addition, that Y 4 gTV .

and (iii) 1 f(.w\-t (vO\ £ (1.4.23)

for all lattice points m-M-A in ; then as ^ > oo
\ P^e'e)\ - 0(\) t (1.4.24)

uniformly for \0\i ̂ 4°^ ? where Q-|) ■> .
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CHAPTER IE

INTEGRAL FUNCTIONS AND FUNCTIONS REGULAR IN A SECTOR

2,1, Introduction and statement of results. In this 
chapter we shall he concerned, with interpolation sets (z^ 
having a high degree of uniformity. They are uniform in 
the sense that, for positive orders, they are measurable 
with respect to a proximate order ç>tO and have uniform 
angular distribution, as do those of Noble. They also 
satisfy a condition that the number of points in any 
region is 1just right'.

The conditions for such a set are rather unwieldly in 
any application but, fortunately, we can describe a set in 
terms of a natural covering property which has a subset 
satisfying all these restrictions to the necessary degree 
of accuracy, without any loss of sharpness in the results 
obtained. It is this simple description of the interpolation 
set and the fact that the theorems cover cases of zero 
order and: give sharper growth theorems for the range of 
conditions considered that provide the motivation for this 
chapter.

Our main result is:

THEOREM 15. Suppose <p(t) to be a twice differentiable 
function which is such that

I* »iri /N^  (p(r)
°U

oo (2.1.1 )
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as —5> co , with y CO i  —s> ^  0 . Suppose, also, that the
union of the discs

l'2 -2j 4 A u ? n |
t - ¿ aJOsj)

(2.1.2)

covers the complex plane. If P(?) is an integral function
satisfying

L'w\ IA f M  (V\K y 4 v (2.1.3)A —>00 ' J  f-lO A 2 $73

and I'VA $U.̂> ¿ < 4-cr 
Ax373>

(2.1.4)

then r os'
loci fACr P) < x  • (2.1.5)

Furthermore, if \FteVlM ¿ A  the conclusion becomes
that is identically constant.

The above results continue to hold if in the growth 
conditions, that is (2.1.4) or (-(¿a) bounded, is
replaced by a set satisfying

\ 2  *  ~  \
\ -  5  3)(\a

( 2 .1 .6 )

and such that, for some fixed positive § , the discs

2 c (2.1.7)
are all disjoint.

The separation condition of (2.1.7) is unnecessarily severe 
and could certainly be weakened; the form given, however, 
seems the most natural. The following theorem, a consequence 
of Theorem 16, gives a more accesible result.
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THEOREM 16. Suppose that and y(*0 1“-̂> oo ,

If Pc?) is an integral function satisfying
I v vw \V p ¿Hr)r —■> oo .<M i'ACri ’0 (_vco" < A TV

A2 3 V3

and 1 (-(̂ 0 \ ' A ,

( 2 . 1 . 8 )

(2.1.9)

\-4̂ C»?kI)
where the union of the discs

U  -*J £ A \HvJ
covers the complex plane, then Pc?) is identically a 
constant.

Further, if VC*-) also satisfies

2'0)'T !©<jr - o(l>(rV) as r -i> o2 (2.1.10)

or the weaker condition
l\w\. \'v\P -̂L\r-\C'~) — ̂ (r) _ oCi1C»v)) as f -5> ûO ( 2 .1 .11 )

then

V̂W Axxf d.03 M Q t P) ~ iv vLK)f Mfeol ,( 2.1 .12;)
r -i>O0 rVCO

provided the right-hand side is less than W A ^ v/S

The proof of Theorem 15 requires only minor 
modifications to show that Theorem 16 is still valid if we 
only require that

^O) — ç ( 0 4 ç> ? où ) and f U f  ï)ït) — => 0
W )

as r —5> oo . We also note that Theorems 15 and 16 are 
sharp in the sense that the constant Ji\i)Az3j$ cannot he
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increased.

To establish Theorem 16 as a corollary to Theorem 15 
it is only necessary to note that must be continuous
and that v(0

VĈ+5)'1
Xv) VLf)

yLr-}

(2.1.13)
____ $ u(Oz- ]■

if ̂  i v J *
and hence
v l «\\ -2iU.y) r f (r+sV2XvH£\
S'-*“® 1) l »»ohsV1 xXO I - ^ ( |

I “  >*r) I  V ^ ) W  J
__  . f-1% V" i i'wv £i\j) 2?(yĤ - ytr'lj

J  0 j - V  & j

4 _£_ ' + T i ^ r ] .(2.1.14)

A similar process for f-
r ,. t

x,)/vCr> shows that

i’«  " i,ii » ^ o0)) ^  ’ (2“1 -«)

which is sufficient, with Theorem 15, for the first part 
of the theorem. If VOv) satisfies (2.1.11) then we obtain

Urn » a P* S. J <t+S) vlrt
8 -■> d 8 X. x>(y=\-§) ■ xX o

----) \ +- ( \ - 2- j ihWv 1 iVva l~ x>m<>) - w A
d(-0 [_  ̂ »ir-'iiy-J J oi->0 J

* (2.1.16)

iXy*) /Treating t~ /VLr) similarly leads to the reverse inequality 
to (2.1.16) and hence

(fit) =. {l+o(l)j —  f (2.1.17)

which is sufficient to complete the proof of the theorem



There is also a result, corresponding to Theorem 13, 
for functions regular in a sector.
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THEOREM 17. Suppose that Pi?) is regular in a 
sector and satisfies

vn. i y\ < A« , (2 .1.18)r oo °  <pCO

Xv w\ \ "*)| .< 'i  t  ^ , (2 .1.19)r --i>oo ( f CO Aa5 A

and !qi\ 1 x. <: - , (2 .1.20)s 6 ? S J i

where the discs -

V ~ 1.3>(v£v0)
\ 5T -2 £ Avswl (2.1.21)'

cover S i ° i and: (T / c l ( r r with V(^ i, - e *
then

1 v v*V\.
 ̂—>oo W  MO'NoL M  

<PLV
. (2 .1.22)

Furthermore, :if both (̂t̂ ±Vo1) and [ are bounded
then isi bounded. in S U ) l )  .

2.2. Special products. We shall establish these 
results by using cardinal series interpolation techniques 
and we begin by constructing a suitable function î(?) . The 
construction of the function and the proof of its 
properties are based on a simpler product form which we 
describe in this section.
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Consider a function W >  l — s* 0 as  ̂ co which is 

such that VilO ~ A  f- lV  ̂ with VOO-t—2>(D . We first note that 
r- a- Q.wrW) is increasing for t-? 4Kp{ihvA./e<j. For if 

> d: ' then

+ WlVV) - r4v ChrA. c*4
and this is greater than r̂ v'XrcA. ̂ s i n c e

A (i^+awVr'^) - \ 4 A(\- X)r~*¿Ct
is positive for all f- if )i il and for all r greater 
than ^H^(^^(2n/LU-0jjfor X>1 . The result follows from
the inequality

_L 2ttACX-0  ̂ -̂ jucp ~  >̂4 ^xtA-A = ^irA . >>i A J 1 X J " e -
We now choose f\ > -Cjv^nA/ej large enough to ensure

that

( 2 . 2 . 1 )

and define a sequence {rp̂  by the recurrence relation

<> + ' ~ rp = T̂rfpVvtVj) , (2.2.2)
ip — i>oo . We set

, c , J+D/WCr,)] 1
|XC«,A,^) = |Hs) - ]f [ l -  j .(2.2.3)

p- \ i -<
When 2>(v) is defined clearly by the context we may 
abbreviate - A . to iz) » Also, we denote by
n^O) the number of not exceeding f ancb by v\(A) the
number of zeros of U(z) in \z) 4 f" .We write



(All?)
- \<-'>

I _ N\-vD|Wrfl

9 = ̂0+-'
X H

21
I ̂  vi+O/kir,¡8)

' -  ( i f)  j x

, (2.2.4)

= \  \  \  •
Since Vk) is non-increasing, it follows that if t"? t'

then

\ i  U P
W - )

r < / rr/^>> " (
/ si»&'■')r ( u ^ V j  .(2.2.5)

Also

WOk) < A ■V
At... «/ u ^ )  - J .  f ) \  ( 2 . 2u6)

lu f c r k r p j K(.rv) l  U (y^J

It follows from (2.2.5) that

1 £ < |l+ \ -V O U ^ O  , (2.2.7)
W M  '

and therefore we have

{ \ + 0(.Wp)l 4  f • (2.2.8)
"  V ,  H t f  t

Since, in the manner of (2.1.15),
At

J ' t

we have

U  0 (M/n*(,V;) -

^ kv o(Q 
Wwi2,

(2.2.9)

1 At
^  Av

r 0 At
} Wltft

(2.2.10)

and therefore



22

Ur)
"v M  n r-A- il ° M 1

* ^  ^ w  ^  w c ^

" il+-°i'%^i
it

Vvlvf t

(2.2.11) 

(2.2.12)

since the right-hand side is unbounded. Now

^ " r'l ' ^  ^  -  = ) *3t ^  ’t-.o
= J . (2.2.13)

and therefore

1«)|1U -- iv +ot0]^
r -t

c lu

\ t Jv wtuf u. clt

■[ \ + o [\ )\
IwiS'f \(sf

(2.2.14)

(2.2.15)

If } r then
1 U X WlO ^ )wwt> °  n'f

rf -r 
Vvt̂ K?

(2.2.16)

and, since
1

V +2 *  + ^  v 2<t W )  r
and

V v i  -  (a * h  {  \ -V 5ir k ( V + 0  | *  {  V  -V Sir K c v )  < V } (  \ -v ¿TV V\Cr^+,) j  

2 {^ + ( W  " r ̂ _\-V 2n VL'r)|X ,
we have

1 A*H-2 ~~ f~ r- W (y-̂) r
7. *2-V kir^) r-̂v2 t(v+1') <>+x " r**+2 { l+fcrWOr'jJ

which, for , is at least . Now
hio ̂  T is an decreasing function of t for t^r and
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therefore

V ' A  4 a _ t
for p > aVH'2 , and hence

/ f \
( ~ f J

N\-vfWKC^3 , -f— G< £ e < \ . (2.2.17)

It follows that we can expand

lo3 1 1 *  i%)
06 /? \S(14D/K̂ il)
J2\ 5 Vf- 2  i l l ' "  '..r (2.2.18)

to give

1 M

\  _  i  s  \ ' + V - \ / V v t ^ 3 j  1
<

! j  1l  v ^ J  1 1 \

) j ^ x v tX M w fi
a-* U J  ,(2.2.19)

uniformly for j> > n*(/3 CL 

Now

d f ,MA  U )
'/VM

and therefore

V
j M .y) , . l̂v.w->

0» . V
z  $r tp= n"*+2

■v- W ^ Y (( V / o ,fr
2tt ) w o t

i-

oo

- S  ■A- -V
0-/t)'Mrt ̂i -

U  r and ^U) :

d t , (2.2.21)

and, since (r/t) 4 Wt) for r and Vtfc) is decreasing,
this is at most

_ i I / l
K r ' / W  ^  =

I - 4 v ^ )  Wit) » ( 2.2 .22)

provided that r- is large enough to ensure that [lw) ~ {nr) 
is positive. We have therefore shown that

| < K
h  H  l ' - ( i )y^y\*+2. \ (2.2.23)
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uniformly for all k

The zeros of are the points

^  (A. = rf ^ P i  | tD/klOl (2.2.24)

( p - '• ! ^0,1
discs

l £ -

where & ( ^ A  )
p 4 n*(r) ,

r,j Vft'l k(v$ |

* S' » (2.2.25)
-s a fixed positive number, then for

i-vO/Ktefl
> 1 ____ !> . }/ 04>ait i + <T r> kta\ e i

A. J

^  l l -  1
O i y i h r  \ r k ~ x - i |

> K ,  > 0  ,

(2.2.26)

and therefore

M
^y-vOJVb^ 2  Y - z  0 (2.2.27)

We can make a similar estimate for the term

- J
All of these terms have modulus at most 2 and there are 
V\*(r) -f I of them and therefore

)

yv
i

VI < K l _ J i _  ,<_KV - j K W ^ _ o / - L  
\ k(.t)t Kin "iimxtn ^̂ M*v» (2 .2 .2 9)

Since
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it follows from (2.2.13-15), (2.2.23) and the above that,
for z outside

(B&) = U  ^  , (2:.2.30)<-P><̂>

^\(y02)\ - 1 v oO)
2.TT

d>A
t J ktuor ̂< \

f -1

dt

We now write
» *1

'V/U)n ( ? , A - W N;A(h) - J  (2l2,33)

and note that we have also shown that

^ l £ N A G0l « [ ■£ (2.2.34)

as ? -¿> ot> , uniformly in W

(2.2.31)

i -V o(0 f ' f rl h /o o t o sa ^ K r l l l  (2.2.32)

2.4. Definition and properties of î(jg) We next 
consider a set feV'vl = which satisfies,
for some fixed positive constants D , S’ ;

l ^ - ^ l  (P\Sn l , (2.3.1)
and is such that the discs

1 2 ~ iT^l * S \ ^ \  (2.3.2)

are disjoint. We denote the union of the discs of (2.3.2) 
by ( Agj and assume that $ ( )  is chosen small
enough to ensure that the discs of (2.2.25) are also 
disjoint.
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We define

-A.) { || . (2.3.3)

Now, if OJp is a primitive p-tW root of unity and \̂ >S 
then

I  (< ? )’  -  » 4  f e f
\ 1 - (.¿J»)= — '  ---=  o > (2.3.4)iOf

and hence, in view of (2.2.1), we have for g outside ( Bg) ,
* rDjWil . 2 rtie] . vc U<a t,i

4 ^  £  j [ f  ) - £ i ( |   ̂ l , ( 2 . 3 . 5 )
' Ll'c (_ £  ri‘-> W  W i J* ' 2

o
with the convention that ^  = 0 .To estimate part of 
this product we shall use the following simple result.

LEMMA 2.3.1. Suppose that x and Lj are such that
\x\ 4 /\ < l , \u\ 4 A <1 (2.3.6)

then
fe k

lec fa-*)«*? If, ? * sj[ 1 ^ K0,)\V ^ M w , a ) . ( 2 . 3 . 7 )

give

4P €xf i g i 3 5?
Proof. In view of the inequalities of (2.3.6), we can 

expand the logarithm terms as power series in X  and ij to

1 ■= \

and, since both the series are absolutely convergent, this 
is equal to

An

k .  { X A i i d i h l ]  =  \ 1  - b s - s4 , ^ i

OO

1 J L  3- - * s) \ = 1 V * > ^ L  f  < -if



\ —  X

which is (2.3.8) with kCX) - 7 ^  .

The contents of this lemma only represent in a 
convenient form a technique often used in the estimation 
of products.

For all sufficiently large we have
< 1' 2i - 0 i

and if, in addition, £ 5. then 4 ^
Lemma 2.3.1, when applied to terms satisfying these 
conditions, gives

tie]
»0, ( l u i ; W i â l M l î 4

Fa?l

<
n i )  i * e » i  i i , i

P'V (2.3.9)

and therefore 
\ Cl/Klr̂l

Ù, '3lEU/a,v [|rt)J
I i >+Cip]£ K  U  » (2.3.10)> I

which gives

I £  W & M ) |  < ^ - ( 2 . 3 . 1 1 )
' U / ^  ,F4?]) I cf?>  i
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Now

1 ■+■ 0( Vitrei) dV (2.

and hence
\r-C'He'j

r " ^  K  \ w a  ’

< K f . (2 .elt

v  ~ 
Since, for some fixed positive 6 ,
for all sufficiently large r , this is equal to

_oo- \

which can he seen to he less than
_____K _ ____^0+^1

Hence, we have shown that

I Ci3 ^ ̂  i Cj.c3) 
\2,l<y\?2v~ E (2 /¿?̂ ) del )

x
wet)

( 2 .

For with >̂2. we use

f  H I V  - l 1 H f J
? . _ jg. s-'

<? K

and therefore
D/kO] r tiel

‘V
2_ LieA

< K U ^ O *

0/kO3 r tie! ,, ,s C*0 , s") i I . i
2  ! | H y - 2 r ( U j l  < M i l

4 V

tie!

,U0
»( 2.

3.12)

3.13)

\-V 6

3.14)

3.15)

3.16)

(2.3.17)
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It follows that
y  < K 1- t w r «  <2 ,  , o

’ (2-3-18 )

and, since we can always find a number A such that

0 > -X > ^ -\ (2.3.19)

for all sufficiently large t , we have
a<-

^ ^ V j\_ \  ̂ ^  ^ *“ ’ (2.3.20)

This gives

K rc k i  r  ^ v< K rtip] -v 4 ,
WL+Y

( 2 . 3 .21)

since (5^1 , and: therefore we have, for all  ̂ ,

U j  T i K f -  f  ~ 2 ,  £(■§• ) Si  4 J<_T'X . ( 2 . 3 . 2 2 )J 1 v^iar r A *>• s u tv ( uu*kfctf

We are left to estimate the product of the factors
I - ?/£
' 2 ̂

for which . Now

(2.3.23)

^ __^^ty) 4: K r~
(■ £p/<v ' 1

(2.3.24)

We consider first those terms for which satisfies
_L

I ?f><v ~ 2 I ^  f
It follows from the simple inequality

tvfr*) = klO*'3

(2.3.25)

(2.3.26)
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that if l7EM }irl,s then Y\l\^) / <  k ^ V  b , and:f»V ̂ ' OiiCXA IU'Kî
therefore

I > - -g/r^ 
i t ~ «? / ?p.<y

Hence, for sufficiently large t ,

\ r 0( U V ' b) • (2.3.27)

loc IT S > - 1 < K k(0^t (2.3.28)

2*
<: K  lvTv'T !i \ — ¿ L _  £ K  tear  . ( 2 . 3 . 2 9 )v'lfe

VXFor 121̂ 1 4t we have

£ LSL. - < Y< ^ KW(\8H l), (2.3.30)
( - V ' ^ %  I \ - r-'̂  x ^

and:- therefore
o  ̂  I 2 (-W-
i'c

< K (2.3.31)

This gives

l < \< Y\xiy{i)

and this is easily seen to be less than

(2.3.32)

VC U  ̂
kSvl!

and hence

\
^ r ~ ^ lvW3 W(r-') (2.3.33)

h m ^ s
* of— ! (2.3.34)

We have now only to consider those terms for which



Up,% ~ *\ < W(r^r .
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(2.3.35)
We now write

I- *JS£iiy ^;<y ~ ̂  )

!< A  Ktr^ r
Therefore

C e ^ , 1  ̂ \ ( A W k  
Ch?,̂  -   ̂ )^v  I S' Kir) r

d
3

f-V

(2.3.36)

and, provided s lies outside the discs of (Ag) and (%) , 
we have

S W A (2.3.37)

< K •q w ^  • (2-3-38)

We now show that the number of satisfying (2.3.35)

K
does not exceed

k(.A (2.3.39)
It is easy to see that if satisfies (2.3.35) then it 
also satisfies both

l ~ |  ̂ 5w\ (W)L) < ¿TfW)' (2.3.40)

and I \ ^ \  ~ $ V l w A f  . (2.3.41)

It follows from (2.2.5) that if fpl't—M  then K(^)/W)'_> \ 
and therefore the number of satisfying these conditions
for fixed p does not exceed V.I W ) k . Also, if p0< p ̂  p, , 
then

l> - fp., « Ul^,) tp., > %T WU>,) fpc , (2.3.42)
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and therefore

> . (2.3.43)

Hence the number of satisfying (2.3.40-41) is less than

l< 2W)*r .. QJ<. . (2.3.44)nj
k(r+rkti'̂  WCO

This, together with (2.3.38), shows that

II i . | < J 1  W - n  . ( 2 . 3 . 4 5 )
J ' U^~Sl < UCr̂ r- l I - ) W )  °  ^

If we now combine the results contained in (2.3.14), 
(2.3.22), (2.3.29), (2.3.34) and (2.3.45), we have, for 2 

outside (Ag) and (̂ >6) ,

{«,
J  |UC3)

< kio -  o(— — l( 2 .3 . 4 6 )
KlA W s l W W /W f  M O

and hence, in view of. (2.1.14) and (2.2.32),
C“ t

M  hU)| = [ ±  { <k rlt. (2.3.47)
0  L t J(

for the same set of ^ . The same result holds for ^
outside the discs of i/Û ) and . Now if a disc of(fiig')
intersects, any disc of (Ai§) then the corresponding disc 
of vAfc) contains the disc of (J^s) in its interior, for 
all sufficiently large . This can easily be seen, for
if ^'4^* and rTi+SW(^>r(>-SUf')) then

and therefore
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r-'1 K(f"l
r' M O

as r or r tends to infinity. We can therefore apply 
the minimum and maximum modulus principles to those discs

v 4° >
- \ -— At ̂  &tA(g)c J U 1 - WUO K'~W\) > u-

4 Y\ W(v-) lx A'i'-tv-W A
| \ — Vvl̂ l ;K(rM xM

v <4. - /

I i . \ Au.
lrO~ Wto) 1 ut -^

K .̂ocy r r of ' 1 ( 2 .V̂L̂Kk') /

this gives

^  1

for 5 outside (Aj).

A ± -? 1 0  ( ±  ( ___^
2tr.A_ J, t ^ u.v -  iAtO

(2.3.49)

We now use the separation condition of (2.3.2) to 
obtain a lower bound for the modulus of W^S^) . If we 
write, temporarily,

3°^ ^  2>,v *  ̂ ?

then j(?) is an integral function and,in particular, is 
regular and non-zero in

i ? - s k , \  < X  w u s ^ i ) M >  .

An application of the minimum modulus principle gives

û ^ 2-' ~ »
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and this is easily seen to he at least

r r ̂l-Vo(\) \ \ \ <W
aTr.K3" \X\-i> ilX)

(2.3.50)

since
imr ~ JL Uo. J_ - o ( \ ) .'■J OXr1) o  W3 v »Qr~) Kly.") /

We note here that the function (¡Pit-) of Theorem 15 and

S - \ — ^ —  cl t

differ by at most a constant and may,for our purposes, be 
regarded as being equal. We now collect the results of this 
section in the form of a theorem.

THEOREM 18. With satisfying (2.3.1) and
(2.3.2) and Wl?) as defined by (2.3.3) we can, for any
positive £ , determine an r0(0 such that:

(i) <p(l*0 (2.3.51)

for \? i > re •
*

(Ü) >  ¿ A * cp(isi) (2.3.52)

for \Z and 2 outside (Ag) ;

(iii) f O ^ O  (2-3.53)

for

2.4. Interpolation results for the sets ■{.SiMtV. We
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are now in a position to prove our basic interpolation 
theorem, stated in terms of . With the notaition of
the preceeding sections,we have

THEOREM 19. Suppose that Pte) is an integral function 
which satisfies

livrv \y\[- I04 rW.V.'f" > P) / ' - T r~>oo O  (p^ (2.4.1)

and Uvw  ̂ / x  4. T ;
"f’U W )

(2.4.2)

then -Uw\ loci (VUf,i) 4 X . (2.4.3)

Furthermore, if

\ P  ̂ A , (2.4.4)

then rl'2) is a constant.

Proof. The principle of the proof is that of Iyer
«1-1rH1_J We first show that

PlZ') * 0(JS) i(4 d L  _ , 
1 w  i 1̂ )

(2.4.5)

the series being uniformly convergent in any compact set
of ? not containing a point . We can choose, for
alii sufficiently small € , a sequence {rn\ > 00 such
that

i'uc> U<\ iVU ^ „  £*) / r - U  . (2.4.6)
* ^ <pcrj

We can then choose a closed contour 'A lying in ^



and containing \ i rA - U O  in its interior domain \)̂ 0^ , 
such that does not intersect any disc of(Ag) and
has length not exceeding IT  . To see this, we can
take as that part of the circle \?\- r^- which
does not lie in any disc of and complete the curve
hy including the smaller section of the circumference of 
any disc of CA$) which this circle intersects.
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Now consider

. (2.4.7)a  f ci:?) jl? = Ux> >■
**' p* <?-* > i<?) f w

On ^ we have

^ , (2.4.8)

and, for sufficiently large ^ , both

<p(V MOr„)| > cp(.̂)\(2.4.9)

and I C  -2 \ 2 (V-e)<Xv . (2.4.10)

It follows that

[ _ jj£l_ Jig 1 < --s2l * (2.4.11)
\  iCOtC-?) \ 1 A

--> 0 as TV — * ,

and therefore

k g
K(&') Dicru) C?-^)

Also, with 2 outside (Ag-) ,
(2.4.12)
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i l c j
<■* '$*,)

< \<(i) .(2.4.13)
‘ H ' g g k x j ^ f k y ^

< U O  ^  ( x - 7  t
^ISw,))

and, provided 6 ^Oi-X), we have, in view of (2.1.14) and 
( 2.3.48 ), that

_________  1 <' KCO ^v>{-£ 9^Vi. (2.4.14)
f W  11 (?‘

It follows that

£
CP>V

06
B S 4

(e-fn) fftk,)
< W fQ \g ~ 6<fW A t T ( 2 . 4 . 1 5 )

\  H l v f t

and, since

(p(0 J. \ ĈA. r <- t
[ i  ( V  <**■ = < % f -  (2.4.16)

we have that the right-hand side of (2.4.15) is at most
Qo

K(0 J  ̂ K,Ce) . (2.4.1 7 )

We have therefore shown that
y  _ J L ^ k L _

is uniformly absolutely convergent for ^ outside (A§) and 
it follows from (2.4.12) that

fe) - __ pQTv>,J . (2.4.5)

It follows immediately from this that
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H(z)
liz)

= z SVv" W (2.4.18)

and similarly with replaced by any polynomial, in
particular

■ Sin.xCz) Cc.g~> = 2
t*V

If we choose X so that

(2.4.19)

\
Txiïr 3- X < (2.4.20)

it follows from (2.2.34) that the series in (2.4.19) is 
absolutely convergent, uniformly for all N and 2 outside 
(/\§) . Also, "tends to |Â (X) as , uniformly
on any comapct set of 2 , and therefore

£(g) - 2  a P (.£?»<,) • (2.4.21)

This is a departure from Iyer’s method, which depends on 
the dominated absolute convergence of the power series for 
the function used instead of and an inversion in the
order of summation. It, follows that,if the regions ( % > ) .  
containing the zeros of |Axl?') , and are excluded, then

4 ’ ( 2 -4 -22)

s *  < * ? { { £ & -  .

and using the maximum modulus principle that

U f e > \  i  K  i ( i ^ " i Ì À l U f ) (F 0 a ì j , ( 2 . 4 . 2 3 )
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f o r  a l l  Z. .Hence

^  U M K f t  4 _ L -  _ 1  +  3^ ,  ( 2 . 4 . 2 4 )r —>qd °tptO 2\cĴ

f o r  e v e ry  ¿>0 and X such t h a t  i«7^ '  ^  *  » and
th e r e fo r e

l c wv sa\ ôci Nl(r' (0  ̂ x • 
r  —s>co ^  <jP(^

( 2 . 4 . 3 )

To com plete the  p r o o f o f  Theorem 19 we n o te  t h a t  i f  
th e n

v ŷa. K\(< ^  — X'vw. Xo>n 1 C t t J t  -  0 .  <2 - 4 . 2 5 )
r_s® f ^  fOS^i)

and i t  fo llo w s  t h a t

ivV Si.  ̂ W  M (r> -  |\] X v  W  WMfrjC) -  0 ,  ( 2 . 4 . 2 6 )
r -¿>00 r <̂p(.r)

and hence we h a v e , f o r  a l l  IV ,

= » ( « ) ■ £  —-̂  ------  .  ( 2 . 4 . 2 7 )
1 <MP

T h e r e fo r e , f o r  £ o u ts id e  (k%),

I Pt e) ' N ‘  l ^ l | > ^ w k ^ K ' ^ AN’ ( 2 - 4- 28)

and hence

\ Pte'A £ A . ( 2 . 4 . 2 9 )

i s  bounded and th e r e fo r e  

6 I . ( 2 . 4 . 3 0 )

F o r  any bounded s e t o f  2 ,  |)(?)

JL v . ^ 3  { \ L



It follows that

\ CU'A ^ f\ . (2.4.31)

for 2? outside ; an application of the maximum modulus
principle shows that the same result is true for all z , 
hence the conclusion of the theorem that Pfe) is bounded 
and therefore constant.

We also have a result for the case of functions 
regular in a sector.

THEOREM 20. Suppose that fo) is regular in a sector

40

and satisfies:

U ) J-\'wx t wC- ^  y ' •
^  (fi*-) < Znjf

(2.4.32)

(ii) A©<\ \P(/-e~ A<)\  ̂ — L 
r oo yir) "

5 (2.4.33)

and (iii) IvV X<j)ci 1 i x <; __L 
s^iA^iiSu,o ^ac,,^ '

5 (2.4.34)

then Ivwv -2ua.̂> ©̂0, X . 
r ~̂oij (p('f')

• (2.4.35)

If (2.4..33) and (2.4.34) are replaced by

W  s \ Ps>l ¿ A3 £ o(S'û )l
(2.4.36)

where (̂£(¡¿,1)'') is the boundary of , and

U t ^ ) l  < $ <-■* . (2.4.37)

\ PCS'! I i i,then (2.4.38)



for all b. in SU-,1) .
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Proof. We may suppose, without loss of generality, 
that no disc of (&§) intersects . For we can
certainly choose a set of which agrees with any
such given set in £(of,0  and has this property,where

i is defined; by

[\?-£Wfc\Cl j . (2.4.39)£* = U

Also, we can, for some positive £ ¿¿(i/T 
sequence { \ such that

-leg \ _ 4-t
n °

choose a

(2.4.40)

We can then define a sequence of curves as in the
proof of Theorem 19 and define a system of curves by

Cv- (3 . (2.4.41)
Finally, we can choose a real number \ such that

s b i*  >  d ?  +  s^ 1] H t ’ ( 2 - 4- 42)
and then define the function ^(?) as in (2.3.3)
such that fyfe) has no zeros in . We then consider,
for C in dd!) “ ,

„-L f l?A(r) ?  _ & ^ & X . ( 2 . 4 . 4 3 )
\  U^XS'-s) ?Ate> <*-£,)*«*>

It is easy to show that the left-hand side of this isi

bounded and also that the series is uniformly absolutely
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convergent for z outside (Aij(K)). We therefore have

\Pfe)\  4 \< I - 2 ^  • (2.4.44)
1

for ^ outside (Aa§(A3) ancb, if we restrict 2 to be
outside as well, we have(a^ aV)

4 ~ 42^ (p(\?0 j . (2 .4 .45 )

Applying the maximum modulus principle to the excluded 
discs, we obtain

<fuo 

\Sl ir
for all 6>0 with

|Pfe)\ 4 to) (2-4-46)

X satisfying (2.4.42), and hence
Aj\p J 

r~>oo ' ^ (2-4-47>
T zC J

To complete the proof of Theorem 20 we use a Phragmeu 
Lindelbf argument to show that the behaviour of f(g) in
% a 3U) is as indicated by
of this region we have , from

!\V\. iot.
(120

and hence that

SS> ) iffi
«6 b(%„£a,0)

Also, on <“w. ,

the theorem. On the boundary 
the above and (2.4.33), that

{ fupix, (2.4.48)

< K (0 .  (2.4.49)

^ 1  £ k(0. (2.4.50)
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Now fte)/ 'jA.te) i s regular in each of the regions

¿ is  n  S U A )

and uniformly bounded on their boundaries. It follows that 
(“C?)/ ̂ (¿) is bounded in and therefore we
have

4 KC6) . (2.4.51)

In particular, it follows, that (■(?) is of finite order 
(4 (J ) in this region. Also, fe) Y[\te)/fh(£) is regular 
in S j ) and; on ^(4* a $ M ) )  satisfies

^ , (2.4.52)

and, since all sufficiently large parts of S±s pi £6^) can 
be contained in a sector of opening less than , it 
follows by a standard argument (see e.g. [47], p. 177) 
that P(?) is bounded in £±g , and
therefore

iw SVp JtftU | P(g)| < Sup
°<pteo

(2.4.53)
îs f\£hl\X)

For the case where lPCXj>^)UE and I N U  for 
£ ̂ ( S u.d ) , the above argument will yield

7- ^ —  -bjgate) ( _ J ^ £  .(2.4.54) 
fa 4 ^  *rT^

This will give, for 2 in SU,D-STg- ,

\ £ ^\AN^^i^Wr'W= Sup 1 A> (2.4.55)
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The argument used above will then extend this to all £ in 
Aoi, 0  and then, since \(A)\ is bounded in &f!) and at 
most A  on , it follows that

\ Pc«'>\ 4  A  (2.4.38)

for all £ in su, l ) .

2.5. Connection between the sets andV^Aj. In
order to establish Theorems 15 and 17 it is now sufficient
to prove

THEOREM 21. 
the discs

A set which is such that the union of

IZ-Svs! 4 A  \?n\
\-

covers the complex plane has a subset which can be 
represented as (A^Ov)\ , provided that

2nA?
/ _ A n

A*S J3 (2.5.1)

This follows since, given the result of this theorem, we 
can choose a A  satisfying (2.5.1 ) such that 'MkA  is 
greater than each of

j l wA  A  ftMr, n  , 1 'ivw &u.C> and, in the case

of Theorem 17, »w\r and i\V sxr -2>oi> ° cp(f~) <- ~̂cx>
and then use the results of Theorems 19 and 20.

Proof of Theorem 21. With A  satisfying (2.5.1) we 
can form a sequence AjA» by using (2.2.2),and the

KjPifAA],
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corresponding set {? ; \. We then divide the part
of the complex plane lying outside the disc into
quadrilaterals , defined by

r*A  ̂ < %\\)A, — 2jlA___  ̂ < x^ \£  <i 2w(UQ (2.5.2)
i^D/AUQ] 0 l+D/AMr^

( k=A,A+') .,.. ; - jO /A ), for some fixed
positive integer A  . The number of in for
fixed p is at most

I -V | 1 EWUlW)<$~\ ) ^ l + A C\ -V , (2.5.3)
1 + C 4 WW(rteA)

= A ^ \ +  0UM)jr ns k—> °o .
The number of 2p,<̂ in is therefore

A2- ( l 4- 0(l/A^ , as k w
Now the union of the discs

. A . , I - £ » ( A 8 h O
\ £ A  \ H * \  ( 2 . 5 . 4 )

covers the complex, plane and therefore

U  j (2.5.5)

will cover , the region lying inside Qk,Jl with
boundary at a constant distance A ̂ +04 from that
of Q^,t , provided that k is sufficiently large. For the 
distance f\a 1 is the most a disc of (2.5.4)
with centre in a neighbouring quadrilateral can overlap

. We now use the following easily verifiable result.

LEMMA 2.5.1. If we denote by Q the curvelinear
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quadrilateral

y. $ m  $ v , 6 i 4 0-v<4 (^<jw),
then there is a rectangle R lying inside Q with sides 
of length

(. j«X. V- c\aa. — & -&Î.C. and C t x> ~ &) Cc&jol - C^Và)

(these quantities being assumed positive), such that the 
distance from R to the complement of Q is at least S' .

This result shows that contains a rectangle
R^X with sides of length

f * \\2 À  w >a u - o ^+c'Mw^ajj
~ 2-  ̂ A •[ 1 + 0 (lM ) , as V. oo (2.5.6)

and
{ r*f) + ^  ^)- A  r^+OA ' -V 0 ( — --- \ L

H  V UO/Aklrj]) J

“ 00M)} • (2.5.7)

Kershner [18] obtained several results concerning the 
covering of a set by a system of discs. They effectively 
say that the most efficient covering of this sort is that 
obtained by a system of discs with centres at the centres 
of a hexagonal lattice with side equal to the radius of 
the discs. The following result is the one most suitable
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for our applications.

LEMMA 2.5.2. ([18], Lemma 5). The minimum number of 
discs of radius d necessary to cover a rectangle of area 
D is at least 0.(0- 6^)/ĉ S/3.

It follows from this that the number of discs of
radius A 1 ** necessary to cover is at least

( i ^  o { i , ( 2 .5 .8 )

and this exceeds + OI'M)), for sufficiently large A , 
provided that (2.5.1 ) is satisfied.

If we assume (2.5.1) we can choose A»>A such that

_i- < -4-tv ., ,
ZvK: A

and we can choose a subset of the set which is
such that the discs

(2.5.9)
are disjoint, for all sufficiently large | , and also
such that the union of the discs

\-{
1? \ * A\ \Z*'\ (2.5.10)

covers the complex plane. Since the diameter of (py^ is at, 
most K(A) ^ ̂  it follows that we can have a (1 :1 )
correspondence between some subset of and the
set ̂ (p,o] such that

\ ~ € ?jCv| 4 K  \€^\ (2.5.11)
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This completes the proof of Theorem 21.

It is easy to show that the constant of
Theorem 21 cannot be increased; a similar argument in 
reverse will shew

THEOREM 22. Every set (A , can be put in a 
(1 :1 ) correspondence with a set | , such that

' Zt*,- W  4 K (2.5.12)
and the union of the discs

' 5 - S ^ \  4 A U J
I-

(2.5.13)

covers the complex plane, provided that

— . >  —  A t .
2rrAr

It follows,as a corollary to Theorem 22, that 
Theorem 19 is contained in Theorem 15.

(2.5.14)



49
CHAPTER m

THE LARGE REGIONS OF INTEGRAL FUNCTIONS

3.1. Introduction. We shalli be mainly concerned with 
the following problem. Suppose that fe) is an integral 
function of mean type 'T of order ; what can be said 
about the distribution of regions where  ̂ is
near to T ? Similar problems in which 1P(h)| is compared 
with the maximum modulus or the Nevanlinna characteristic 
have been discussed by Whittaker [54,55] and Macintyre [57]. 
Whittaker’s principle result is as follows.

THEOREM 23. There is an absolute constant H , not 
less than lfc/72̂ , with the following property. If Pfe) is
an integral function of order ^ 4X satisfying the condition

” o ( ^  , (3.1.1)

where '3lf)P') is the number of zeros of P(2) in teUr , and 
W (  ̂H ), •£ (4 Q ) and are given positive constants,
the values of ^ for which the inequalities

U j IPg o I > W ioj N\L\s\,£)> (3.i.2)
are satisfied throughout the disc

U  -£\ ¿ A  (3.1.3)

form a set of upper density greater than or equal to
(u-UVO-C).

For functions of any finite positive order he gave
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THEOREM 24. Let Kg') be an integral function of order 

, and let V be a given positive number less than l-^Q • 
Then there is a positive constant W. and a sequence 
such that \ Svv 1 ""*> and 1

M O & 0

in the circle

(3.1.4)

" S  \ * l&l . (3.1.5)
Maitland [27], by inverting her earlier interpolation 

results of [26], was able to improve on this last result, 
and the improvement of it which results on specialising 
MacIntyre’s results to concern only integral functions.
She proved the following.

THEOREM 25. Suppose 
of mean type ^ of order

4 (4.V4,number less than Q ViTt / ’
with such that

that is an integral function 
(3 and that d is a positive 

then there exists a sequence

l  ̂ C(s)\ T ( 3. 1 . 6)

as 2 oo inside the discs

\ ? ~ l < (3.1.7)

Noble [34], using his more general interpolation 
results of [31], was able to give a lower bound to the 
upper density of the set of ^ for which there exists a
£(r~) with \g(+-)\= such that
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^ \ P O O | >  jiT5 (^¿T ) (3.1.8)
throughout the disc

i S  ~ _£V )\ * , (3.1.9)

where d is again restricted to he less than

3.2. Statement of results. By developing the fairly 
exact interpolation theory of Chapter H  to cover more 
general cases and by being more sophisticated in our 
choice of discs involved, we are able to improve the above 
results to give a best-possible value for the size of the 
discs and, for these larger discs, to give improved and 
much simpler estimates for the size of the set of moduli 
of the centres of the discs. Our first result is stated in 
terms which olearly demonstrate its connection with the 
results of the preceeding chapter.

THEOREM 26. Suppose that (pCrf is such that

oO, (3.2.1)

with . Then if Pfe) is an integral function which
satisfies

W  - 4t (3.2.2)
r - i >  oo ° c p t r )

there exists a sequence with ICJ -±qo such that

(3.2.3)
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throughout the discs

. . . | '*
\ * ~ l * ^ \C1 , (3.2.4)

for every and X <• l

The case considered by Maitland and by Noble results 
on setting

_All - (f~ T and VCr) 5 P >  0 , (3.2.5)
A ^ A  1 v

for then (p(f) - ~~ and ^Ajl becomes ^ ^ac"t we
have

THEOREM 27. Let t-Cs) be an integral function of mean 
type ̂  of order  ̂. Then,as H tends to infinity in a set
of discs

< \S\ (3.2.6)

\H)  ̂ iô  !(-(?')J tends to the limit ^ t ( 0 $ ^ ^  ).
Furthermore, the set of the moduli of the admissible 

£  has maximal density at least \— (3

The existence of such a set of £ follows, as 
indicated above, from the preceeding theorem; the estimate 
of its size is an almost immediate corollary to our next 
result.

THEOREM 28. Let f(€) be an integral function of mean 
type 3" of order (P . Denote by the set of r for
which
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izr? Ao^\PU7\ »  jJL't (3.2.7)

throughout the disc

'« ~£\ < $ ^ ( ^ 5 ) 'iSl' "e , (3.2.8)

for some £ withl£\=r, ( 04- \ ,04 (? <: l ). Then
has maximal density at least

' " f  (3.2.9)
and upper density at least equal to

> T = $ t \  » if £ 4 \ , (3.2.10)

and for  ̂>, \ . (3.2.11)

We note, as a corollary, that the upper density is,
in particular, at least

~  IvxC { (3.2.12)
for (>> \ .

The size of the discs in the case considered by Noble 
and Maitland corresponds, in the notation used here, to
the range

0 < p < V z . (3.2.13)

The estimates given by Noble for the lower bound to the 
upper density of are stated in terms of the function

^(e) = ^ \ *r' S* ̂  !Ê C0,\)
(3.2.14)
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if the upper density is denoted hy 0 and X is defined
“by

\ - '¿$'1 \ ± W  r i l \~ Z ^ \  . (3.2.15)M 4 ( \ + x y -  -- W \ -  i t 1 ) ,
\/i 2 ^ v/S /

then
.(3.2.16)

If p > l there is the more accesible result

"6 ¿ w  (3.2.17)

If we let ^=0 in Theorem 28 we obtain results 
concerning the size of the set of r for which f'C iĉ  MO^P^ 
is near to T \ we state these as corollaries.

COROLLARY 1. If (-(.?) is an integral function of 
finite type "r of order  ̂ , then

i"? lo^ M(vy£) — > T  (3.2.18)

as r~-i>oO through a set of maximal density unity.

COROLLARY 2. With Pfe) as for Corollary 1, the set of 
T~ for which

^  ( C U } U ( ) ( 3.2.19)

has upper density at least 
_V_jx

we

if (3.2.20)

1 " ( a - V )and » for 0 ̂  \ . (3.2.21)
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Since to any function Wr) convex with respect to 

Wyr can he made correspond an integral function
with

!©< m Cr; o') ^  , (3.2.22)

for large f~ (Valiron [51], Glunie [8]), these corollaries 
are really concerned with the functions ip(v') of a real 
variable» It seems probable that- they could be proved
directly»

Results, of a similar nature to Theorems 27 and 28, 
corresponding to the more general growth allowed in 
Theorem 26 are also available but we restrict ourselves to 
the cases given in order to simplify the statements.

3.3» Proof of Theorem 26. The proof follows readily 
from the construction used in the proof of Theorem 21 of 
section 2.5. For any , A^ such that OC A  , we
can choose a A. such that

U n ^ \ y 4^ . (3.3.1)
AHji A\ 3/3

We consider the intersection of a quadrilateral j-A-pV)
with a hexagonal lattice of side

A* ■ (3.3.2)
and take as the members of a set £ associated (1:1)
with the 2 ^  contained in a subset of the centres
of the hexagons lying completely within . This is
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possible provided that A 

Now the discs

is sufficiently large.

Z A^J3» \Ç^\ (3.3.3)
are disjoint, since they lie completely within different 
hexagons of the lattice, and if is any point of
this disc then

i J3 (Az-iO
i-H'Cii)

(3.3.4)

for f  0>$).

If we assume the theorem is false for ot = £ d j l  , we 
can take, for all sufficiently large ||? |̂ , to be
a point such that

^ ̂ r/3 ’ (3.3.5)
with X<l , and, since _A. is chosen so that \ [ is
greater than , it follows from Theorem 19 that

faV W  Q  < \ A tt , (3.3.6)
r ->c* °  f O') "

which contradicts (3.2.2). Since Ai is any number less 
than A it follows that the result holds for any cl less 
than 2. ^  vS -

3.4. Proof of Theorem 28. The proof is based on an 
interpolation result similar in spirit to that of Theorem 
19« It differs from Theorem 19 in that not all the 
are available, only those associated with the having



modulus ly belonging to some subset of the l^\ . The 
principle is contained in our next theorem.
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THEOREM 29. Suppose to be a subset of the set
3 , defined by (2.2.2), which is such that

Ow. \a(- A (a) y 0 j
f  ao A (v)

(3.4.1)
Nwhere ft(̂) is the number of 2 ^  in \̂ \ 4 r and is the 

number of ^  in '?Ur . Then, with satisfying
(2.3.1) and (2.3.2) and *j(£) defined by

f *>=  n  i (3.4.2)
‘v "0 J

we have
l3 i ^ |  - ^ \-V ol\)̂

.V5\
v\ i'O

t cl kr (3.4.3)

outside the discs

'* - w  i ^ (3.4.4)

and

(3.4.5)

Proof of Theorem 29. This is an immediate corollary 
of the work pontained in sections 2.2 and 2.3. Condition 
(3.4.1) ensures that

(  se.lt, which is equal to 1 / 1Jô t 3 1
is large enough to assymptotically dominate the terms which
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measure the deviation of

‘*5 { J

from

A , since the estimates obtained for such

deviation when all the are included are not increased 
by going over to a subset.

Suppose now that

^  VV Cr-̂  ̂ A\'v«a »W O' VI {.(A
v VU'O r->ao wtO

- Ô > 0  , (3.4.6)

then Theorem 29 shows that:

 ̂ I'toll)] Cp(l2\) ; (3.4.7)

o{.\)\ 2 ^Az 9 ^ ^ *  (3.4.8)

for ¿2 outside the discs of (3.4.4); and
e* [WCÜ)] —  ̂ (3.4.9)

Using these results we are able to prove

THEOREM 30. Suppose that is as described above,
with

\ ^  ~ ŶL'T') ^ \lW ivc \ y\br) - G  > 0 . (3.4.6)
r —a 00 vi bN) Vs —s> 00 n (ĵ-)

If te) is an integral function satisfying

JaV  iwf- loo H(r, 0  < _0_ ( 3.4.10)
v -> 00 ZwJ\?

and l\Nwv. -&û > i « < _e , ( 3 .4 .1 1 )



then 1avn\ 
r —>00 Jcpir)

i X  * y  — Q 
2ttA l (3.4.12)
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Proof. The inequalities of (3.4.8) and (3.4.9) are 
sufficient, with the argument of the proof of Theorem 19 
as far as the consequence of equation (2.4.17), to show 
that

CtO - Ola) ¿L / v • (3.4.13)

Using a similar argument to that contained between 
equations (2.4.18) and (2.4.24), with \ chosen so that

\

2^ -V X
2 ^

(3.4.14)

we obtain that

jg.3 £ Jt. _ J. +$6(3.4.15)
r (̂pC*-) 2nJ^ 2*)?

which is sufficient to give the result of the theorem.

Having set up the necessary interpolation theory, we 
now turn to the problem of selecting suitable sets 
The argument depends on the following proposition.

LEMMA 3.4.1. If £  is a set of f" such that

l  £  A trM% r ly, ■> c > 0 ,  (3.4.16)
W ) A  ~

then we can describe a set of discs,each of radius
A  r , -1 y( ")

VIA *UuOA kA *A, lying in the interior of Qk,{.(AjA,^, at
a distance at least £ ( A » ~ B1rrom each other,with 
centres 2^ having modulus belonging to £  and such that
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(3.4.17)

Proof. We consider first all intervals of length 
more than ^ (dv-Zi) which lie in the complement
of <S . There is no loss of generality in supposing, for 
notational convenience, that they are open; let them be

( C U , \ 0 , ...... b nk) * (3.4.18)

with ^   ̂  ̂ 6 <u+1>4 *
We now translate the set of points of which

have modulus lying in [bn̂  ,%^\^\ a distance (^„-<^0  

in a direction negative to that of the radius vector of 
the centre of 0 *,$. , where 2 ^  is the angle subtended by 

a_t ihe origin. Next we translate the union of this 
translated set with the set of points of which

i

have modulus lying in the interval distance
iy>Y\ \ , <X̂  \\̂ olk ±n the same direction as before. We repeat 
this process for all the intervals of (3.4.18), taken in 
reverse order. Let the set which this process produces be

Q rt-X r\ *■?*" _ i
^  ; then W v̂ jl contains the curvelinear

quadrilateral determined by

r*A * * (jhOA Up-iX^ , (3.4.19)

and - (p^i\ i , (3.4.20)

where is the amplitude of the centre of . Now
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Z  (\oŸ - a f } $ t ' - k )  Î V o r  ( 3.4.21)

and it follows that
2* * -x

f̂tvOA ~ ̂  (bp~Aj>) £fcUç 2 i~k_A + + " ̂ MA )[ /' ^

~ rbA * (3.4.22)

and therefore contains the quadrilateral determined
by (3.4.20) and

X  * '*'* (W*-\}(3.4.23)
That these equations do determine a real quadrilateral,for 
all sufficiently large k , is ensured by (J.4.16) and

=i*. -V = ^ c (iTD/AKCr^)' '

^ K ( A — -> 0

as k —> 00 .

It is now easy to show that this quadrilateral 
contains a rectangle with sides

£<*rt ’ SU & 0 (3.4.26)

as k ~2> , and

 ̂ U a * _ Ufv) “ ^Kvivnsa ~ ~~ U.A

r 0 \ * ( W a - r ^ , .  (3.4.27)

- Xv?. CU A Uf^') ( W O  ( x ^ *

(3.4.24)

(3.4.25)

(3.4.28)
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as k —s> °o . Next consider the intersection of this ,

¿A,rectangle with a hexagonal lattice of side 
and denote by the set of centres of those hexagons
which lie completely within the rectangle.The number 
of 2 ,̂ is easily shown to satisfy

> X* U ^ A ^  _ \< A  A . (3.4.29)
A,

Now consider the component sets of returned to their
original positions with each Zp kept fixed relative to 
the component containing it. If a is contained in more 
than one component it is kept fixed relative to only one 
of them. Let the new positions of the be denoted by
Zp . Any Zp must lie within a distance 
of a point 2*3 (possibly 2.̂ itself) which has modulus 
lying in B . The distance apart of two discs having 
centres at and z"^ ( ̂  ) with radius A ^
is at least This completes the proof
of Lemma 3.4.1.

If we now choose A  so that

JL* > A t  ,
air7

we obtain, for all sufficiently large ^ 
satisfying (3.4.16),

with

(3.4.30)

N ta. ( F>\ ) . (3.4.31)

Hence we can choose Xl ̂  points that is all
points of (2p^(A) lying on some subset = of
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^■£1= , in Q\l,1 with

N \  - K ^ { \  v » (3.4.32)

where \V^U\ , such that they are in a (1 :1 ) correspondence
with a subset of the centres of the discs constructed as 
in Lemma 3.4.1.

Now suppose that the set cT of r has linear density 
Q .If Xvt.4 c < & then we remove from £  all those points 
which lie in the interval to form a set with
upper density at most Q and lower density at least .
For <E\ we have

\ O') V 10 r\
X vt ^ ^  or A k '  U . (3.4.33)

\ ̂When A fe><- the conditions of the lemma apply and, for 
each and each ^ , we can choose the points

as described above, the subsequence \fy'\ being 
the same for all Q k,1 with fixed V . When = 0 we 
choose no points.

We now determine the behaviour of hCv) for the set of 
points so constructed in the case V W  - > 0 . Suppose that
Vt(v-3 ig the characteristic function of the set <£>\ ; 
that is \ for r £ <ft, "(¡S’) = 0 for f / 5  • It is easy to
show, using the arguments of Chapter IE, that

A t  • ( 3 - 4 - 3 4 )

where . Now
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t
(3.4.35)

a n d ,  s i n c e

ô > IvVW  JL I X (t )  ctt > tWvVl- A f ^Cv)c\V ^  Ô ' C,
v-'_>so r  -h r-s>d> ^

i t  f o l l o w s  t h a t  t h e  l e f t - h a n d  s i d e  o f  ( 3 . 4 . 3 5 )  i s

a s s y m p t o t i c a l l y  a t  l e a s t

- 6 u>-0
e (3.4.36)

f o r  P >/ \ ,  a n d

+ ( Q - c X w ^  ̂  \ - O
ç “e 1 ô ]

for ^¿\ , and assymptotically at most

(3.4.37)

G K  - (Q ( ^ 5  U  (3.4.38)
* ' Q 1  6 1

for  ̂̂  \ , and

G ^  -v ©C\-f)K - ©£^ (3.4.39)
^ C ,

for ^ \  . Therefore, in either case, it follows that

® K i ) ( ' * ¥ ) >  h s: ?  ^>)-(3.4.4o )

We are now in a position to prove the first 
proposition of Theorem 28. For if (£ lies in the 
complement of cT(K\^ » then i n  each of the discs of

A „Af-irAiLemma 3.4.1, with \ , there is a point where

\ Z ^ - W  \ £&')] i ^7, (3.4.41)
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and we have shown that we can take a subset of these 
points as the set associated with the
considered above. If we suppose that

W f  W  , (3.4.42)
 ̂ oo re CLxs£P£

we can choose cA large enough and c small enough to
ensure that

^ 7 7 ^  < 4 a 4 1 -  ¿ ) ( ' -  CT ) ’ ( 3 - 4 - 43)

and it then follows, from Theorem 30, that

► * v 4 J ( l h M ^ A ) l ' - <̂ 3- 4,44)

This holds for all small c and large and hence we 
have the contradiction

^ • (3.4.45)
It follows that we must have

^ ^ 0 , (3.4.46)

and, since -A, is chosen to satisfy only (3.4.30) for any 
h\ greater than A , it follows that

•A? > A V s - f  (3.4.47)
5.W 1 2. w

implies that
X

©= <E £ A.. (3.4.48)

Therefore
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£ £ (3 . (3.4.49)

Now cE is any set having a density and lying in the
■1

complement of ; hence the conclusion that the
maximal density of is at least l .

If we suppose only that ¿1 has lower density ® ,
we can still form the set having lower density at 
least 0 . The estimates for in this case are
provided as follows. For (3>l 
function of 1“ and therefore

J.

>-\ is an increasing

p-c>r
\\ + ©Up 1 t ¿X (3.4.50)

e

and hence

^  ^ {0 ( u  4-V (3.4.51)
r~>oo yUO CH/

For ^i \ we use

t'-f

r f r
XlvUt ^ t\-o) 1 dlj:,( 3.4.52)
r ' - {  \  t *-e

>  {h ©M] {(e-or^ * ^  ( > - 0 ^  , (3.4.53)

which gives

L v  nv(- yvU^ 
r  -*>co v\lv)

For both cases We have the trivial inequality

C 0 - < ^ \ -  ¿fi). (3.4.54)

Xivw. ŝ i> < \.- v\CO x (3.4.55)
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W i t h  E  lying in the complement of , we can

a g a i n  c h o o s e  as a set for which

 ̂ P-(.£?',ĉ )\  ̂ ^  . (3.4.56)

We restrict ourselves, at first, to the case for . IfL
the type Y of ^ 2) satisfies

Y < e
2 w

(3.4.57)

then again we can choose C small enough and cA large 
enough to allow us to use Theorem 30 to give

Y= W  ^r> k  KIa i) < u t a  \- (e-0Q~ eft) . (3.4.58)

This holds, for all small C and large cA and hence

(3.4.59)Y

We can restate this result in the following form. If 
§> T t then 0 4 \—  ; that is

6  4 (3.4.60)

and since A. is any number exceeding
this gives

6  • (3.4.61)

We can take <T to be the complement of Y) and hence

^ \w (^u^kC \-yO (^  , (3.4.62)

for  ̂4\ . A  similar argument when \ leads to



0^ < ^  ■) * (3.4.63)

and therefore, in this case,

dlW.V^ >*■ { v_ ̂  ̂ ) \ ^ ^ j . ( 3.4.64)

Finally we note that the upper density of £(}*■)(£) is a 
non-increasing function of and ^ , and therefore

for ^4 \ , and since if and only if
f» '/p t > it follows that

W\^M' 6ljW,iV^ £   ̂ ’ (3.4.66)

for o Similarly for (̂ >1 we have

uflW- >, ^  \ “ [-¿^) ^  .(3.4.67)

68

This completes the proof of Theorem 28.
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" INTEGRAL FUNCTIONS AND FUNCTIONS REGULAR IN 
A SECTOR, WITH INTERMEDIATE GROWTH CONDITIONS

4.1. Introduction. In this chapter we shall be 
concerned with results which are intermediate to, an in 
certain cases improvements on, Theorems 13 and 14 of 
Chapter I. As mentioned there, if in Theorem 13 we have 

then the result follows simply from a Phragmen- 
Lindelof argument, without any appeal to the properties of

on the set of points . Theorem 14, although not
having this possible redundancy, is very specialised; it 
concerns only functions of growth less than type jiT of 
order 2 in the sector, the interpolation set is completely 
determinate and the growth condition is one of boundedness. 
In Theorem 31, we generalise Theorem 14 in a number of 
ways; we now include all cases of growth of finite type of 
positive order  ̂ and the interpolation sets are those of 
Chapter 1 specialised to the case . Furthermore,
in addition to giving to information when the condition on 
C-tS) at the interpolation set is one of finite type of 
order p as well as in the case where is bounded on
the set, as does Theorem 13, our-theorem covers all cases 
of suitably smooth intermediate growth.

We are also, as a corollary to Theorem 31, able to

CHAPTER IV



establish similar results for integral functions having 
such intermediate growth on the interpolation set. The 
relaxation of the boundary conditions, compared to those 
of Theorems 13 and 17, achieved also allows us, in the 
final section of the chapter, to discuss some problems in 
the theory of integral functions with gap power series.

4.2. Principle results. The general theorem is as
follows.

THEOREM 31 . Suppose that f-te) is regular in S U A )

and satisfies:

U ) ŷ\d- -UqMCr, - 'V ; 
t—s*00 0 re (4.2.1)

(ii) tv wo V  ; (4.2.2)

and (iii) -I'V iocs \i(5v\')l  ̂ y < X) , (4.2.3)

where the union of the discs

\2  -2 U \  < A t e j  ' ^  (4.2.4)

covers i(o1,-0 , the growth estimating function is
positive and non-decreasing and is non-increasing
and has limit C , possibly zero, with CX^t . If oL 2 TT 
suppose, in addition, that
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Then

U w  i xi \ + «  K  V W  -1 , (4.2.6)r__*oo' ^   * l T ^ 3TJ V**> HtO

for all ^ ( 0 L 4. cL ) which satisfy

(4-2’7)

Furthermore, the conclusion remains unchanged if in
(4.2.3) the set is replaced by a set , where for
some finite positive numbers el ,

'2'n -?nl 4 <k\~zS'^ ( 4.2.8)
and for m  ^  ̂

I z ' „ - e ' . U  £  U {\ ? L \ H<r, \ * U l ] • ( 4.2.9)

If Cx * 0 and H-lO is unbounded the theorem gives

I v  W  M  £ x f (4.2.10)
'h- ^ 1 VU*°)

which is the best one could expect, and if \\(r) is bounded, 
that is for * then P-fe) is bounded in

^  • The angles d ,  ̂ in these cases are such that

-X .

If CX>0 we may assume that Hiy)- and we then 
obtain

liw. La\ p ( f\ (I.,, P \  ^ x  ) V 1
r—>oo’ v V ' 1 T - X  J

where o( , (J satisfy

(4.2.11)
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0 < < «! , • ( 4.2.12)

This result, although not necessarily best possible, gives 
a smaller estimate for the type of PCs1) in than
that of Theorem 13 when

^ < <Y ̂  y ; (4.2.13)

otherwise the result is inferior to that of Theorem 13.

For integral functions we have

THEOREM 32. Suppose that Pis') is an integral function 
which satisfies both

liv* l*(r U q fMjrJ) < r (4.2.14)
r-* co ° re

and JUi* Savp Xm IR^vOl
0 ^ 9

where the discs

cover "the complex plane, 'T = A i r a n d  VtCo) i , 
t~~<Z WW->) ^ c as V~~— S> , with CX<i'7' . Then

Sju  ̂ -̂qq 4 34 . (4.2.16)
V" — (f')

Theorem 32 only provides information additional to 
that of Theorem 15 in the case where U(y~) is unbounded 
and \KO tends to zero. There are a. number of cases of 
special interest. For example, if
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WLi'') - then lo^ N\(vr)(!.v) = OC^yO ,

and if we have, instead of (4.2.15),

\PCOl  ̂ A\2.\k , (4.2.17)

the conclusion is that f-C?) is a polynomial of degree at 
most k . Theorem 32 is an almost immediate corollary to 
the preceeding theorem; it follows from Theorem 15 that 
the type of PCS') does not exceed Os and therefore we can 
satisfy the conditions, suitably modified to allow for 
change of orientation, of Theorem 31 for an arbitary 
sector when C= 0 „ The part of Theorem 32 not contained in
Theorem 15 follows, since we can take

4 ¿ip and ir\  ̂ ~ T  ,

separately, as sectors in Theorem 31.

4.3. Sequences of canonical products. The proof of 
Theorem 31 is again based on cardinal series techniques. 
However, it is not now sufficient to have only one function 
i£(e) which, for integral functions of suitable growth, 

would ensure that

(Us) = ?fe>2 7 —— ■—  , (4.3.1)

where is the set of zeros of ^(?) . We shall in fact
construct an infinite set of functions, each member of
which has this property.
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We c o n s i d e r  a  s e t  o f  p o i n t s  ( m , f l  -  0 ) -  \±1, . . .  )

f o r  w h i c h

\ 5? yŷ  ~ (v*\ -b ¡V) \ 4 $) oo (4.3.2)

and, for all (̂ ,<y) ^  0 ,nV

\2p^ -¿vn.wl ^ S' > 0.. (4.3.3)
F o r  e a c h  p a i r  (IW, W) we f o r m  t h e  i n t e g r a l  f u n c t i o n  

d e f i n e d  b y

(?) - ( ? - (2-'?fA;wY| H >2. ̂ » ( 4.3.4)

w h e r e i.\VW ^_5 
r~*°° (4.3.5)

(we shall show later that this always exists).

In the special case 2̂ ,»v = M V  in , (g) becomes
Cr(̂ -|4-lW). Even in the general case the growth of these two 
functions is similar; if we denote by (Â ) the set of discs

(4.3.6)

the main properties of the set of functions j;Ĉ (j2)| are 
contained in the following theorem.

THEOREM 33. For the described above, we
have:

U )  ■= 0 , for all (M;N) , (vŵ n) , and
has no zeros outside the set « Also, for

every 6 >0 , we can determine £> - £(6,o,S, t>) » independent 
of (JAjN) , such that:
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(ii) OTm U M  i + , (4.3.7)

for
(iii) lo^\(T^(jS)\ Z (4.3.8)

for \2-S^)A1\ £ ro and 3- outside (Â ) j and

( iv) Ad^ \ (T^ (.e*^ * (¿*-e } \?^A - , (4.3.9)

for \ * ro • Furthermore,
(v) > W  > 0 ,  (4.3.10)

for £ outside , and

(vi) * to* * 0  , (4.3.11)

for all Us a) , (fo>Ŵ  .

Proof. Part (i) of the theorem follows directly from 
the definition of <̂ )W(X) .

The proof of parts (ii), (iii), (iv) is based on a 
comparison of CT̂ jV0(X') with . We denote by
(different for each pair (M̂ N) ) the set of discs

\ &  ~ C *** Cn-v  ̂ 7 (wv^sOj-kV" )•( 4.3.12)
We then have

LEMMA 4.3.1. If £ is outside (Â ) and vB^) , and; 
£ >0 , then we can determine > CO , independent of
(I'M) v such that
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loci uO
£'

where> £ !

| ^ ~~ ̂ m,N

l - W + V.A
( 4.3.13)

0 < \w-v-m)  ̂ 2. \ ? - H <a \ .

Proof. Write -2*̂ ) = c , and let <T* be the set of 
(>,v\\ satisfying either

0 < iw + 1« \ £ r1- or

Now
1 - m + m 1 +-

1 2 - \ '

and if Cm,n3 belongs to E
- i

1 (’ k A w+N “■*>l = \(jwva-\i

Cv\f
s i r

where <£* is the set of .£
\l- Lb-- M m N)U<^ . Now c{c-

(wv + ;wKt^w>̂ )

-M-*'W)*dwvv|yAjn.vNj is a
quadratic in £ with no zeros outside and hence its 
minimum modulus outside <£* occurs on the boundary of £* . 
This gives

I f o + iv O U  «**»,*+# (4.3.15)

and therefore

( >̂-»-Cvv)(2vv,+M,n4lO ~H)
2 Dr

(ri. D)(r~r<-2i) , (4.3.16)
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*3 l i jr  l
where £

| _ ^

\  -  gV* 4v.A
< ¿ W - e ^ W  (4.3.X3)

0 < \m-ml  ̂Z \ z - z * i«\ .

Proof. Write |'a-2(Vj] , and let <TV be the set of
Usv\\ satisfying either

0 < im + iwl ( ^ or \ YV> -4. /V\ -V V (v\+M) \
Now

1 _ ^' m + iv\ _ 1 +■ 12 - 4̂ w\,n
( w\ 4

and if Cm ,«') belongs to E'- £* , we have, writing

f̂vV»
l(jvyjpvy\')-̂ M-Vx'w - (S-iA-xN̂ -V

Cv\C
Ci?

| £ { g - (ji. -M -  > W) t C)lU+»Aj
-X- Ĵlwhere 8 is the set of _£ satisfying either l£l * *'* or 

\£ 1**- . Now C ? - i s  a
quadratic in _C with no zeros outside £*” and hence its 
minimum modulus outside <E* occurs on the boundary of £  .
This gives

- 2 l \ >  (4.3.15)

and therefore
2- ̂ iv»im)( YVH'A-^iv̂ m 2 &r

(ri. D)(f-ri-2£> , (4.3.16)
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4 4. D

for , and if we have

|AQ I l 4- ig~zfri.n)t wu uA I <
1 ol U-viA)^+MjmN -z) I

There are at most TU'f'+O members of £ and hence for 
sufficiently large r ,

<-4 ’

IX
(4.3.17)

h
\ - £ -

pi f I I — -g ~ g|̂  v- rvi+in
<  -  
"  2. ^

(4.3.18)

If and 2 is outside (A.) and we have
the inequalities:

\ i \ Yh v\v\| £ 5.r ;

S  ̂Uw+NN^w ~ 4 \<n\ l a 14- 2 i> M r 4- 2 D ;

U « +* )VHil| -Z\$ \ 4 \WWVV\\ •*- 2$) < 3r420 ;

\WH\v\ -V -2 \  ̂3r;
and therefore

*1$ < 
Oris^T) '

( m - i - t A  - V g M ,W ~^ )C gvv '-ny,)rt<.'N ~~ ¿ M j « )

(wH*vXa*H^ wyf>/
< 3r(Wp) . ( 4.3.19)

l

This gives, for *

U v i \  V -Za.^  < (4.3.20)(wvvnV') iSvŵtA,̂  ̂~  ̂  ̂  ̂S'
There are at most %vr 0~4v\) members of <Ty and therefore

l*3 if.
| _ ^  ____
____ivuftJ M̂jW

w-*ln
<• fcjiT ,
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< - c cV  Tl. *  , (4.3.21)

for » which together with (4.3.18)
establishes the lemma.

LEMMA 4.3.2. If 13 ^ 4(D-vO f there exists a
constant di = <A03) such that

loq TT e (t ~*~ > 0J f t i g~ , \)i*\ -hïw J '

Proof. We have, under the given conditions, both

-ftvn
~Sîa,w

f $ - and II ÎV-vOvv
and therefore, using Lemma 2.3.1,

¡r ( g A|[(3q "" ̂Mjf/ ’ 753 t ( i % £  ,\V*A ?V\  ̂)

Lemma 4.3.2 follows, since
\\w\ v \ v\ y

\vv\+-''a\ ̂ <r

C ti>
v\\ ̂lmv'"\-20 )

< £4- S> .
1 vn^'M3

■ - 0(r) •

LEMMA 4.3.3.

fv\, A) iUv~ jT
r->co

‘ Ï .

(4.3.22)

(4.3.23)

(4.3.24)

*Mi 4 r t ^ r v v ,«  ^ - I V \ , ( \ | )

exists and is bounded
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Proof. Since

X  --- ---:r . . im+lnV ' \ £y~ '
=  0

we have

i nT'j ¿><)wf

z

.2 , \
\

^m+N)Vv+N "  2- m, N )

l V
I ¿\yk-Vvvsl̂ L (̂ m+M,*-̂  (lvi+v.n)

<• >\ 2 0 ■ -y jj) ,
.¿ihHvviĥ  (im+iAuiDy im+^r

* ¿ :
Si) for rv z K(P).

">+>̂ 1̂  r, I m +• [

Consequently

£. \

Â Wvivl i f. (j __rz Y12. '•£-Vw+^,vrtW 2— *A, ^

as r,— * °° . This shows that

< Ji 0  , (4.3.25)

= 1 'vw
r ->‘â  0<\*vw!»,̂r (̂nv.m,rt+»l H(V\,(0 

exists. Since the number of (m ^) satisfying \ŷ -+Ca \ ^ f, 
is at most 3v(r,+\)1 , we have

?  _______ !_________—1 (? \2OC \ V H  \'*sl <  t T  ^  c 'v' - f M , v \ + N  ,t\))

(4.3.26)

This together with (4.3.25) shows that (3M)N is bounded, 
Now consider

Z Z \

0<!̂'v''2M)N^'r ^ m)2’ 0<lMrV̂ Ur-v2£) U m+M;v,4N
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Since every element of the first sum is a member of the 
second, and that the number of elements contained in the 
second sum but not the first is at most

T\ SL̂ -VN')’1 - ^

it follows that

\ Z  y— ' ,, - Z  „ J 4

^  0 *
as >oo . Hence, since (£<*>*) exists so does o a n d
‘fM - (3m  . This completes the proof of the lemma.

Now
I

and, therefore, writing

...) \ U  U(̂  f iPr 
bi-v Ca ) I M ; ar.v.

Z  v £
40<|w,+.v> ¿2V“

and using the estimate ir/fr in the first sum and
2\)̂ (\wm-M-2D)\wH-in|in the seoond, we have

\ "¿m,v ̂ jj ^ W + ' A

5 a..«-» Uo»\) -v | D r  z  , >g. £>' i t y h w p

4 K, (S,0) ̂  +  \<z(p) fcayr ,

since ----—  rO(ifiar) for large f“ . Hence we oan
«¿1 ^
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find an o.̂  such that, for r ?- r(S,I)),

I O'
r

- ®rtH-M)n+N ~ ?t*WN
!>H-Vfv\ ^

i*5r (4,3.27)

Also IS 1 ^  ̂  z X , .  ') i , " ( 4 • 3 •28 )
'+irt to 1 (j-.r -̂iMim

Combining the results of Lemmas 4.3.1 and 4.3.2 with 
these last two expressions gives, for £ outside (A^) and 
(8t),

W  I <%,«&> I 
0

< U- (*-**,*!*■ , (4.3.29)

for \h -2MjNU D )  . Hence, on rechoosing £ and using 
the properties of the <r-function, we have

, (4.3.30)

for D) » with € outside (Arj) and .

The inequalities of (4.3.30) hold for any z outside 
(A^) and (8i^) » for i>) • Now if two discs
of and ($1 )̂ intersect, then the corresponding disc
of (An) contains the disc of (?^) in its interior. Hence 
we can apply the maximum and minimum modulus principles to 
those discs of which do not intersect a disc of
to yield

-exp {(|<T -^ )(l^ ^ i ~i^Vj & ̂ ft/(S)\< + i { )  '\» (4,3.31)
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for all ? outside (Â ) , with \?-s*,NW  t>) $ that is

< , (4.3.32)

for \̂ -ŝ w\? riC(r)ri>S)\)) t with 2 outside (A^-) . The left-hand
inequality of (4.3.32) is conclusion (iii) of Theorem 33 
while the right-hand inequality together with the maximum 
modulus principle applied to the discs of (A^) gives 
conclusion (ii).

To obtain Theorem 33 (iv), we set, temporarily,

¿Cz) - U") / (Z- 2^,0 ( ? t ),

and »
then ¿res') is an integral function and

1 H- 1 \*-
_ U  <

2~ V* Z 1
^  _ l v \ +\ K

Now if ^ is any point of = >£ , and if
t it follows that

\ __ ^v { 3 £ i \

.(4.3.33)

(\€v̂,n
(4.3.34)

X3.Since is regular and non-zero in we
nave

\ _ i  -n \ 4 i , (4.3.35)
' ’ ■ '

if \3v*,A 0) » as required.

For \2r-a^)W\ , \? Dk( say)»results
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(v) and (vi) of the theorem follow from parts (iii) and

- 2*,ig ,

>  Y) Sl

if iwAi 8 P ,

\ ^0 with 2 outside (Â ) and 04 \m +xVK( H  ,

-<2Xf <> Y \ / € - y$l
- 2 \ ?<h+M,,hN / I

f*-'
I? ra\ (4.3.36)

K  = I I  )' ' (>*t 1 "eWjWy
AO

$ z
f-~3 p ( l w + M

< Kj K
Im+iV)T

2and,since 2L Iwv4-»'w\~ is convergent, we have
►w m o

I ]f E (--»-*«.» ,2.) ¿ e * j (4.3.37)
 ̂2y"¥W':>HW " ^

Combining equations (4.3.36) and (4.3.37) gives, since the 
{x̂ n ar8 bounded (¿Kg- , say),

- T f e +>y{j' + { k  + <5 4.3.38)

for outside (A,|) . This establishes part (v) of 
Theorem 33.

Finally, 0^(<?)/(?- 2>~,.0 is such that
and |̂ (?-)U for € on the boundary

of the disc anri non-zero in its interior. An
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application of the minimum modulus principle gives part
(vi).

4.4. Proof of Theorem 31» We shall first establish 
t̂he result for the modified case where ^ -2 , and,
in (4.2.3), is a set satisfying (4.3.2) and
(4.3.3). The starting point of our proof for this case is 
a generalisation of that used by Pfluger [35] and Cartwright 
[7] for lattice point interpolation.

In what follows we shall suppose that 0 <. «¿-(S 4
and

SxV- Ccn-ç) > 2jf ( i _ cx(j*- V) Ì
it \ J (4.4.1)

We can assume, without loss of generality, that no ?w\,v\ 
lies within a distance of the boundary of ;
for we can certainly construct such a sequence which 
agrees with the given one except within a distance y of
the boundary.

With as defined in the proceeding section, let

^  ¿ j ---------------------  , (4 .4 .2 )

where is any member of the sequence lying in
Ro) , for some to be determined. Now -

and so

-  Ctel ~ (4 .4.3)

(.*0
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is regular in . Let {r?j vyf->0o be a sequence such
that

< k < J-TT . (4.4.4)

and let C? be a contour lying in the region rp-i 4 \?l 4 ^ 
and joining , such that the shortest distance
from Cp to any point 2^  is at least  ̂ . If ? is
any point on Cp we have, .from parts (iii) and (v) of 
Theorem 33,

and therefore

P u )

£ ] * (4.4.5)

£ K z 6 ) €*p ({*- *Xrr \i^V\)- \ ,(4.4.6)

and, with Iz^-k) ,

- i i l L  4 . (4 .4 .7)

For .g on the boundary of a(oi,0 ,

Pte)  ̂ K4  €m^ I  ty-vO ^ ,(4 .4.8 )
V fn

and since, with 04 A ¿l3> ,

A\r<'6\x - (A-flV + itfKcoUe-f - Sft\

- - t g ft\ t' SR co<M̂ (p)C t[ F(.6-y) __

a*
6- — ■ { A - %S^HG'C^)] ,
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it follows that

i < [f+t • (4.4.9)
1

Also, in view of (4.4.1), we can choose £ = ̂  so small that

, *-*H ° - | n - < C ) < r  ,
jtr -'S ~2.tr i «■

which gives
iv - c*

(- CaN
.̂vote)

V M ^  . (4.4.10)

For Z outside C/L^ ,

; (A,>N (-2-) ^ 2 (4.4.11)
Vls— 6̂ U>i) t?

From parts (iv) and (vi) of Theorem 33 we deduce that for
any & satisfying <X£ < £(̂ -cx̂

*  K 5ifc) , <4.4. 12)

and, since for ?^)VV in

< K 4( 0  e*p{ CX4-0 (.1*̂ *1)] ,
we have

Pd
l e

\(?(£) exp(û t) ]. (4.4.11)

If we now write %yif & , KfAjN^nv) = f and
t 7 MU') “ |1\AO'V-*C t we have

(*+OH0**,*0 - (¿TT-OUv^-^l*

$ O  V\ ( l?+r) -  ,
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= LlK-tfcfrtr) ̂ C M  ̂ _[±K~e-b<+ • f-
ir~& - (x*t) jk.(jAfcr)  ̂ ¿»-fr-CXH)|»WH,y

4 (¿tr-OCx+flyUlft) ft*
ivr-6 -(X̂ )|a(K)

= (jy- eXK-vO H W) .
4 ~ 0<4t') ̂.(lO

( 4. 4. 14)

Also

U + O  ̂ U-tr) - (̂ lr- 0  r'“ -V

= CX*fr)lnUMllWf- iCi^-7f + t x V ‘1>, 

= l(^-2£*cx)(x+e)̂ (fov:) K~
■̂ (¿ir-2ir + <LX) - OUfe)yH2+H

. {-' I i,-2t „,) - 0 < , i M 4  r -
7 f *1 =3UiTt-2ivtxV^t^lM

and this is negative or zero for all r satisfying

r » R
11{* -2e-v ex)- Cx+o 

or equivalently

f > _______ 1_________
Wifi)* l(l*~2MX)-CX+t)fil#4s-)

__ f (juO|nlftw) 4 / UiK-ie+ot)^)^*') V
¡-Vr) L ' x(i W~2tv Oi) - LXy(r) |Vv t̂Vv'') /

(X+O 4. / j U M ]1 j. (4.4.15)
\ll£"'2kH.iQ~b*t'-)plt+d ^ ) / J

Now the right-hand side of (4.4.15) is bounded (suppose by 
K g  ) for all sufficiently large K and all r ^ O  , and
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( y ^ o  V K R - V r ) - U i i r - o c V ' 1 ¿ 0  ,  ( 4 . 4 . 1 6 )

provided that f«? Kg \U<0^ 9 for all sufficiently large ^ . 

We now write
y  \ \_ ( 51 + ) I f <*.--> I

« - ^ S k R 1 1 1  ' O&itW) I ’
where 2* is the sum over the terms lying within
the disc te-2rw,n>) (at most K^ W[$) in number) ana
2-2. is the sum over the remaining terms. We have, from 
(4.4.14) and the ?vov?, that

2 V — v *  K «  UCt f l  - U o S fr-O C x+ fc ) H « 0  1 .  ( 4 . 4 . 1 7 )
i i*-e - Cx-vt') ̂ 001

and, since for the relevant terms 

we also have

Z-. 1 1 i ^  • (4.4.18)r̂4;N (2*,*) * (*>>«) £ '

therefore

LAA,tV)
Now

and, since the regions of integration do not overlap, it 
follows that the right-hand side of (4.4.18) does not

exceed oo *r
' ( f i .— ^
ir®r ^  )„ rL ,J"(¿ V ^ T S '- • ( 4 . 4 . 1 9 )
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Therefore, from (4.4.11),

X**') H 00
n-e -cx+o^WO J * (4.4.20)

for 2 outside(A^) . Hence, for g on we have

1 | < k „ h w  f kj w > i1 H Ul: •<4 •4 •21)

and on the boundary of £U,1)

I 5m W 1  4 K. « 4 ^  4.4. 22)

The right-hand side of (4.4.21) tends to
h k ) « f<itesX5iiiWO? ,

as -̂>>oo , for every fixed pair (JV\,W) such-that is
in $(^3do\ ; since Qtwfe) is regular in the region enclosed 
by these curves, it follows that

for all ir in £0.^ and in particular in the disc 
\2-2^wUHS-v\) , provided that £> .

Prom Theorem 33 (ii) we see that

l <V,a/C£)\ £ K u (S,D) ' (4.4.24)

in the disc \* - gM)N| $. U 8-v D • Combining this with (4.4.20) 
gives

¡¡VltWl <■ l ( » W W i ! i i M ® )  (4.4.25)
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on a contour lying inside \^~ i It $+- D , such that the 
shortest distance from it to any point of the set is
at least ^ a‘nd containing the disc \"£-Hm)n\  ̂1 + j) in its 
interior» This, together with (4.4.23) and (4.4.24), gives

\ < \ ( ^ ) \  1 4 . m , n  L ^ S \  ^  \ fiVijtl (? )1  >

.< \<>S m  toA*I I A'
(4.4.26)

(X-vÔ U9j

on the contour, Since fte) is regular in the domain bounded 
by this contour the same inequality holds there; in 
particular it holds in the disc \?-?rvo\ ̂  H\) . Now £(($,0 
is covered by the union of these discs and it follows that

tel < k « HI vsh-w ^

+ K\v

iir-e- CXvfc)|XlfeW-&) 
it cxte-vWD^ 1

4-

^  -cx
(4.4.27)

for all 2 in £(($, ft,j) . If cx>0 then W {$■') ~  and, since 
exceeds 2?/(^' tx) , we have from the

above that

£
t e  (4.4.28)

4- te-^CXvO^-M-vp)
li*'«-

Now

and, since

4 W (rv u p ?

it follows that



91
i u  H {y* wb) _ \ ,

r->oo H (O
We therefore have, if H(r) is unbounded,

X\V W   ̂ U w -*Hx*Q > (4.4.29)
r -*<* 0  VĤ -V ' in-e-^tVi

and this is true for every sufficiently small positive (r .
i

Therefore

liw. 1̂ 9 < ij[X_
^  U ok> " l*-'*

x i  \ + ¿ (4.4.30)
^ in-a< J

if m o is bounded then (4.4.27) 
we have

\Pte>| i K  .

shows that for € in

(4.4.31)

These two inequalities establish the modified form of 
Theorem 31 under consideration. To obtain the general 
result as a consequence of this we shall need the following 
theorem, which is similar to Theorem 21.

THEOfiEM 34. Suppose that the set is such that
the discs

1 57$)*’ (4.4.32)

cover the complex plane, then has a subset which can
be represented as a set satisfying (4.3.2) and
(4.3.3).

The proof of Theorem 34 is based on a division oil the 
plane into squares defined by



92

tK'OA * < kA , (J-OA * I m ?  4 lf\ , (4.4.33)

( k5l = Q,*\,-  ̂ ) for some fixed integer A . The basic
ideas of the proof of Theorem 21 carry over to this case, 
and it is unnecessary to give the detailed argument of 
this much simpler situation.

We now consider the effect of the transformation

5  = ^ • 0< A O ,  (4.4.34)

on the situation of Theorem 31 when . The disc

Is-sj < A (4.4.35)
maps onto a region lying in the interior of

is- U  ( . (4.4.36)

where s A • Now T = and hence

this is the disc
k'

(4.4.37)

and, since SU> O  is covered by the discs of (4.4.35), it 
follows that the discs

c ? - o  * (4.4.38)

cover all parts of having sufficiently large
modulus. Also, Ac?!) is transformed into a function V-(g) 
satisfying

''w A ^po)., F )  — TT I)wv\VC- A . .  A .  )

R 2TX1- r -»oo r?



93

Uh iup V  \ _ x  l'vniHP WEfa**)! ¿wT (4.4.40)
ft-W ^  i X  r-io( J f-ç '^Az

and

Av W\^CS)òl < X  < 
H*(\£J)

¿>0 (4.4.41)

where (̂{(ir)* x[ a non-decreasing function of d
with d 2'H*(d) non-increasing and having limit wt/z^X1 
We can choose X sufficiently near to \ to ensure that 

/ &t A and the terms appearing in (4.4.39) and 
( 4 . 4 . 4 0 )  are all less than and therefore, using
Theorem 3 4  and the modified form of Theorem 3 1  already 
established,

uu.o -lag , gç (j> . V- ) < X ! I 4 <̂X } 4. K lì
£s>co ~x=) |j */ o\ " V X̂ T-oi \ k-fTCR)

Transforming back gives
~$k)
\ „ ( 4 . 4 . 4 2 )

lvu,p W> 4 l<̂  W (.r) * (4'4’43)
r-̂ où 0 H(r> J 1

The conclusion of Theorem 3 1  follows for this case, since 
we can take \ arbitarily near to \ .

Por the case where d we first note that the
conditions of Theorem 3 1  imply those of Theorem 1 7 ,  with 
Xr) = Ç , and hence

leg  ̂ £wô (LX,YÎ • (4.4.44)

If 0 < Y < CX we have nothing further to prove and we may
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therefore assume that

l\W\ Uk r -%cc (4.4.45)

We may also, without loss of generality, assume that 
oi— r <11v/p . Now choose a real number ©  such that

j u /q ? © > 2 U -  (p , (4.4.46)

and consider any sector of aperture ©  which is contained 
in £(d,ll') . The conditions, suitably modified to allow for 
the loss of symmetry, of the case for «¿4 'Wp proved 
above are satisfied by this sector and repeated application 
of that result will complete the proof of Theorem 31.

4.5. Gap power series. In this section we consider 
integral functions which have a power series representation

PCs') =  J L  ( 4.5.1)
w-'

which satisfies the Fabry gap condition,

nk/k -> oo as k — > . (4.5.2)

Several authors have obtained results which show that -fche 
behaviour oi suoh functions is angularly uniform.

'Turan [50], using a very general inequality on series,
obtained

MCr,?)’*6 4 M ( . (4.5.3)

for where W(f,4̂ ,P) Prom this



inequality one can easily deduce that if (■(.?') is of finite 
type of order p , then

A  - u  w  . (4.5.4)\Vf r\

for any sequence ^-e> C© » Also, if fe) is of finite
order and is bounded in the sector ol i ^ then it
is identically constant. One can also obtain the result of 
Pdlya [41] that

kw _ 1 . (4.5.5)
loÿ Miy/p)

Kôvari [19] improved this last result by showing that

> [\ - O  N\(f) P) , (4.5.6)

outside a set of of zero logarithmic density; this
result was completed by Fuchs [9] who showed that

loô  rv\[v̂ P') ^  (\— €) (V\[r? P-') , (4.5.7)

outside a similar set of f~ , where vv'('r>(r) - q}qcz  ̂1 
This also establishes thé conjecture of Pblya that

l\'vw ôq P) _ \ . (4.5.8)

The results of equations (4.5.4,5,6) do not depend on 
the aperture (? - o[ of the sector. It might be asked how
the behaviour of ft?) on a set of points in some sector of 
arbitarily small opening determines the behaviour of the 
function throughout the plane. For example, it might be
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c o n j e c t u r e d ,  f o r  t h e  k i n d  o f  f u n c t i o n  u n d e r  c o n s i d e r a t i o n ,  

t h a t  b o u n d e d n e s s  a t  t h e  m e m b e r s  o f  a  s e t  o f  , t h a t  i s

a  s e t  s a t i s f y i n g  t h e  c o n d i t i o n s  o f  T h e o r e m  1 1 ,  l y i n g  i n  

some s e c t o r ,  t o g e t h e r  w i t h  t h e  a s s u m p t i o n  t h a t  t h e  f u n c t i o n  

i s  a t  m o s t  t y p e  >\ < ' Y  o f  o r d e r  ^ ,  w o u l d  i m p l y  t h a t  t h e  

f u n c t i o n  i s  c o n s t a n t .  O u r  n e x t  t h e o r e m  i s  a  r e s u l t  o f  t h i s  

k i n d .

T H E O R E M  3 5 .  S u p p o s e  t h a t  fk?) i s  a n  i n t e g r a l  f u n c t i o n  

a t  m o s t  o f  m i n i m u m  t y p e  o f  o r d e r  p w h i c h  s a t i s f i e s  

( 4 . 5 . 1 )  a n d  ( 4 . 5 ° 2 ) .  S u p p o s e ,  a l s o ,  t h a t

4 K  \ H „ i *  ,  ( 4 . 5 . 9 )

w h e r e ,  f o r  some f i n i t e  A  ,  t h e  u n i o n  o f  t h e  d i s c s

c o v e r s  a  s e c t o r  o f  p o s i t i v e  a p e r t u r e .  T h e n  (-(?/ i s  a  

p o l y n o m i a l  o f  d e g r e e  a t  m o s t  X  .

P r o o f  o f  T h e o r e m  3 5 .  We m a y  s u p p o s e  t h e  s e c t o r  

c o v e r e d  b y  t h e  d i s c s  t o  b e  S U \  t) .  I t  f o l l o w s  f r o m  

( 4 . 5 . 5 )  t h a t

l < ^  M ( f A  ^  P )  >  ,  ( 4 . 5 . 1 0 )

f o r  s ome s e q u e n c e  { • A l s o ,  f r o m  T h e o r e m  3 1 ,

we o b t a i n  t h a t

JU<f M C r ; B 5 P )  < g r ,  ( 4 . 5 . 1 1 )

f o r  a n y  w i t h  ^ (j~ s^ ) ,  a n d  h e n c e
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This implies that

JUV5vJ W  WjrJ) < x ,  (4o5 ol3)
r l<s<̂ f"

which is sufficient for the result of the theorem.

We could combine Theorem 35 with the following result»

THEOREM 36. Suppose that fig) is an integral function 
at most of type y{<t\ = fa / <*'L of order ¡o satisfying 
(4.5.1,2),. Suppose, also, that

liwv w  V\\PCO) - 0 , (4.5.14)

where the union of the discs

\S- 2*1 £ A  ^

covers the sector &(ol) l') , and that ^ ° Then
P-(g) is at most of minimum type of order .

It should be noted that this result is stronger than 
that obtained by a direct appeal to Theorem 31, as this 
would require , instead of the weaker

1^4 > /̂'X .

Proof of Theorem 36. The proof is based on the 
result of the following.

LEMMA 4.5.1 . Suppose that pfe) satisfies the 
conditions (4.2d, 2,3) of Theorem 31 with C-0 0 If



suppose, in addition, that Then, if ^ (<X^oi )
satisfies S\Vl ^ ̂ /T»

K   ̂ ^  £)>*('- y  ) V  (4.5.15)
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where

The proof follows closely that of Theorem 31, the 
difference occuring in the estimate for\ /cfojWU)| on the 
boundary of SQ} i) in (4.4.8-10).

It follows from the lemma that the type of £(z) in 
is at most , where Q " is a constant less

than \ ; combining this with (4.5.4) shows that (~(z) is
at most of type 6 'if of order ^ . Repeated application of 
this argument shows that {-(£) is at most of minimum type
of order
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CHAPTER V

FUNCTIONS REGULAR IN THE UNIT DISC
AND SUBSETS OF THE UNIT DISC

5.1. Introduction. The problems dealt with up to 
this point have the common feature that there can be at 
most one singularity, taken as the point at infinity, of 
the function on the boundary of the regions under consider
ation. The problem considered in this chapter, that of 
functions regular in the unit disc, differs considerably 
from these previous cases; not only may we have two or more 
singularities on the boundary but also the singularities

4
may be dense on arcs of the boundary.

For the classes VIp (\$̂ ><.co), consisting of functions 
for which

( ¿0 (5.1.1)
-*0

is bounded for Oir< 1 , and H po , the set of functions
bounded in the unit disc, there is a fairly extensive 
interpolation theory in existence. For example, a necessary 
and sufficient condition that a function of V(p ( U  4 oo ), 
or more generally a function of bounded characteristic, 
which has zeros at the points of the unit disc be
identically zero is that

]J |2k| - 0, or equivalently ¿j IFJ) - 00. (5.1.2)
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Buck raised the following problem. '' What conditions, 

if any, on a set of points lying in \E l < l are
sufficient to ensure that the interpolation problem

P U J  - (5.1.3)

is soluble, for an arbitary bounded sequence , by a
function PCs) regular and bounded for \~i\< \ ?

The classicial theory of Nevanlinna [29], and others, 
which deals with the possibility of such a solution for 
specific sequences and is very implicit and,in
a concrete situation, gives little help in deciding whether 
such interpolation is possible. The first results were 
obtained, independently, by Hayman [11], Carleson [4] and 
Newman [30]. Hayman was able to show that such a set 
must necessarily satisfy

Oo
j[ \JL~ 1 > <b > 0 (5 .1 .4)

W\

\ Z VV\

\ \ - v A

for all rv, and that the slightly weaker condition
cx>IT 0 -

W\ ~  “2  V\ ¿ S > 0  » x< 1, (5. 1. 5

is sufficient to ensure the existence of a bounded regular 
function satisfying (5.1.3). Carleson, using functional 
analytic techniques, showed that the condition (5.1.4) is 
both necessary and sufficient but his method, unlike that 
of Hayman when we have (5.1.5), does not give any means of 
constructing a specific interpolating function. A new proof
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Carleson’s result and a generalisation to different spaces 
of functions, for example \ ), has been provided
by Shapiro and Shields [44]. These were extended to the 
case of Ĥ > l ) by Kaba^la [17].

For the more general class of functions of finite
i

order, that is functions £(2^ for which

O - Jua-ÿ* -̂oc\ W  M [r
V r  \ -0  ' J  '

( 5 . 1 . 6 )
¡to.

is finite, the theory is far from complete. Lammel [20] 
and Walsh [53] studied approximations to (-C?) by sequences 
of rational functions. For thp case of interpolating given 
values qv at a sequence \ , however, they required
the 2^ to lie in a closed subset of \2 \ <-1 . V.L. and M.K.
Gonbarov [10] obtained some results on the representation

Pte)of H &  as series of the form
Oo f A

Ce * Z  C
A - < q l i ^ i

(5.1.7)

for the case where the 2^ are real and tend to \ with 
iTtekl ~ 0 • Obviously the coefficients Cw can be completely 
determined in terms of the sequence of values j hut
the expressions are very complicated. Slobodeckïi [45] 
stated

THEOREM 37. Denote by \jf) the number of 2»
U u  r . If

U O  ? & > o , (5.1.8)
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where |> > \ , and

0-r")v ^  fVU^n = 0 C 0  (5

for some Cy less than , then the expression
(5.1.7) is convergent to pfe") for \?Ad\ , uniformly on 
closed subsets.

He also gave some results, similar to those of [10], when 
consists of a finite number of subsequences each

tending radially to a point on \s\ = \ , [46].

In his thesis [33], Noble raised the question of 
whether a representation theory in terms of cardinal series 
is possible in the unit disc. The difficulty, as he pointed 
out, lies in finding a suitable analogue for the functions 
Y|[s) of 1.2 . The Blaschke product is not suitable since 
it is bounded and direct generalisations, such as

seem to be difficult to handle. We .shall show, under 
conditions similar to those of 2.3 on » that such a
representation theory is possible. Furthermore, we obtain 
theorems concerning the growth properties of functions 
regular in the unit disc which correspond to those of 
Chapters IE and IV; these results are given in the following 
section. The proofs again consist mainly of the construction 
of a suitable function vifcg) and a demonstration of its



properties, the arguments being completed in a manner 
similar to that used previously.
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5.2. Growth theorems. Our first theorem covers 
interpolation sets for functions having very general 
majorising functions and corresponds to Theorem 15 of 
Chapter H .

THEOREM 38. Let (pit-') be a twice differentiable 
function of r , for 0^\rc\ , which satisfies

^(PCr) _ ( \ - r y ^  ^ CO (5.2.1)
T P 7

with , as . Further, let {^} be a get
of points lying in \Z\ <\ such that the union of the discs

4 - ^ ________ (5.2.2)

covers . Then if £(g') is a function regular for
which satisfies

•li vvv. i V V  (— 
V —> \-0 t©a (") { (5 .2.3)

and iivw W i  <L x < (5 .2.4)

we must also have

r ~5> \-0
Voci MbT) c )< . 
u <p^>

(5 .2.5)

If, also , 4 A then \Ct£)| ̂  A for \B)C !1 .

We note that if is differentiable then
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0  ̂ - y'CvO (X-rVto^  ̂ f

and if y'tOCwA ~ 0 Ĉ ")) "then we can take
f v VI«“')r) ^  f_____  .

vo^Cv-y^V)
When iKO H (0 p 0 (5.2.3) and (5.2.4) become

w  ,v( o - 0 ?^ ~̂ >\-c

and *}

(5 .2 .6 )

,v ^  < X  ̂ g^t)AzV3 ’ (5 ‘ 2’7)

respectively, and our conclusion is that

iîwv 4 X , (5.2.8)

or when iPfe,^ i\ that \P(z)\ i A . We can, however, say more 
about the behaviour of i©̂  Ç-') , for this case,
when the behaviour of Pü?vO)\ is more exactly
specified; corresponding to Theorem 32 of Chapter IV, we 
have

THEOREM 39. Suppose that is a function regular
for \iz\ < 1 which satisfies

( 5 , 2 ' 9 )

X iw- 2jlk.o \ P(gQ^ i X 4 oO , (5.2.10)and

where the union of the discs
A(\ -\€k\X~ e ^ \  c (5.2.11)
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covers |̂ \ < \ , and the non-decreasing function HOO 
satisfies ROO \r -$> C with cx 4 Atv j ^ o  A. S> JS . Then

Ĵ wv loo, ^ (5
^ HsV0 ^  VUvO

( 5 . 2 . 12 )

The extreme cases., HCr) hounded and C>0 , follow 
from the theorem above and, once that result has been 
established it will only "be necessary to prove the remaining 
cases.

For subsets of the unit disc we have the following 
result.

THEOREM 40. Let Si be a simply connected domain 
contained in 4 | with rectifiable boundary Mil) . We 
suppose that à (il) is non-null. Suppose that £(2)
is regular in -Q. and on à(ûV {.«=>} and satisfies

U ) I V  < iU , (5.2.13)
(pit) A

where
G 5 -ft

and (iii) IvV Swo leg \ P(Ol < y ^ 4tv . (5.2.15)

where the union for of the discs of (5.2.2.) covers
SI . Then

covers

(5.2.16)
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Furthermore, if conditions (5.2.14) and (5.2.15) are 

ammended to

\ f bo\ £ 8 for g € ; (5.2.17)

and 4 8 for  ̂-Q. , (5.2.18)

then the conclusion becomes
i % for all 2 in il .

Theorem 38 can be regarded as, the special case of 
Theorem 40 for which c> (IT) - \ X Z \\ is null, that is 
_fL= isV]. The results of Theorems 38, 39 and 40 will 
remain valid if in the growth conditions is replaced
by a set lying in \2rU\ which satisfies

\2A -2wl £ \<U-\^\) (5.2.19)

and is such that the discs

i ^ 0 -\?'k\) (5.2.20)

are disjoint. As with our earlier theorems, the separation 
condition is unnecessarily strong but seems to be the most 
natural.

5.3. Special canonical products. This section is 
similar in spirit to 2.2 but requires the solution of 
different technical problems. Section 5.4 will correspond 
in the same manner with 2.3 .

For any positive constant _/V , with the VU°) of
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(5»2,1), choose t0 to he a positive number less than \ 
such that

i  » o r.)
(5.3.1)A  ... <'

and define Vlr) by
. ~ vĉ )

W ) ~ -/V C \— f  ) • ( 5 . 3 . 2 )

It follows from (5.2.1) that W 3  is a non-increasing 
function which tends to zero as r tends to \ from below, 
It is easy to show that

f 3 (5.3.3)

is an increasing function of f~ for P̂ . \ , and hence 
we can define a sequence ) , by

^ch-\ ~ r\*") ̂ (5.3.4)

(5.3.5)

and a function by

n *  * ]f j i - + 0 / K A M '
r-'L ( J

Let ŷ Cv) denote the number of fp not greater than 
and nOf*) the number of zeros of |Al̂ ) lying in \?Ur 

We write, with ,
'iT ^  I z \  tt*(r)TTf / J

-  I  U )  t o  11 [ '  -  I f )  1 x
t-'?

00

I f
l -

=̂v\*tv3M
(5.3.6)

Since VCO is non-increasing,it follows that if



c'i v*"<l\ then
, lyor')Ur') _ t \- r )*-y c

Ktr*’»
Also

fptl
— !—  * ( ___At—  i - __J__ { U>) 1(5.3.8)
k(ffXH>N J UC^('-t) Wl

It follows from (5.3.7) that

^  r \ + 0 ( ^ ) W l̂ V, (5.3.9)
kW^')
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r ° .  (- i- r -r 
»-r' > (5.3.7)

and therefore we have

-7,
Since

’f ^  »' r'~ oU-

. >___ — -Hi
(j-v^ n) kir)Ll\-'f')

which shows that

14 o _ f cU~ - o\[ Ab 1 ,
^v,)(\-wO ’ {.vctnvt)' l t , w j
we have

v\ br) - -v ___oil-___

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

Therefore
.v nib) <jlt (5.3.14)
o fc
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'  * u  fl(04 1 0- ’ ( 5 - 3 -15>

£  ̂* e^)— .---T • (5.3.16)MtM

If (l-vWt̂ )| (\-v̂ ) , which is so if ^*y\**2 ,
then

0 - 0 -  Cv-^3 = ^  - r ^ \ . (5.3.17)
V i ^ K N - r ^  M y y ) ( \ - c ^

This implies that

~ ^  ' , (5.3.18)
W^)

since

- -  •= I  x U r y ,
VxCrf )(_ \_ r?)  > C ^ ) ( \ - o p  vJ V .  ' ? 0  ^  V ^  7

^  -1 leJiT * ~

Therefore
'+D/o -v W 9\1

I rJ e (5.3.19)

Now for r
l+D/t\-<>)k 103 '/b-pt'Xlvj>)

V
**?{- 5.3.20)o^jrv--

< r  x ~ ) ( x  -  o i  . (5.3.2 1)
V* Mt-)C\-0
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Therefore

5L U i ^ A - 4 )(tff - Oj jK-
W+i kltH\-v)

( «*?! ' ( k  " l)] clt ,
■V h _ t y H ^ )

f ____ ^  <M

.00

A »
W(.0

(jv-j) ^ i ' ^ ]  <foj,

(5.3.23)

and. therefore, in view of (5.3.19)»

' f l u  (* y*ClK*'-^l\l t *  -
L v A  v V  V  Klrtio13

(5.3.24)

** I'jr

Now if

si>v = r P I +£1/ ^ X 1-$o j
and ^ does not lie in any of the discs

U - * P,V\ < SW p)C\-rr) , (5.3.25)

where S' is a fixed positive number, then for p ̂  n*(r)

>- ( I )
ut

ciyiZ'T ' - A

A-vI'/k uyu-$1
(5.3.26)

ckj lvv̂  I l — -txv i 7 ̂  -c'X̂
0 k y L L

>, K> > 0 , (5.3.27)
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and therefore

^ K, > 0 . (5.3.28)

We can make a similar estimate for

All these terms have modulus at most 2. and there are 
only v\*V \ of them. Since

oli~n CO ^
«T r

- o i l  <W~
K C O O - O  \  1 1 (5.3.29)

it follows that O, t
= î U o ^ H i k W ^ ô tlÜr (5.3.30)

outside the union of the discs of (5.3.25).

We note that we have also shown that

H ' +ot° U  C w k ^ ^ ’(5-3-31 )

'V/uniformly in l\l , where UO^) is the partial product up 
to p-W of the equation (5.3.5) defining |IA.(S) .

It follows from (5.3.30) that |m(g) is of order p> , 
defined in terms of the maximum modulus or the Nevanlinna 
characteristic, and hence we can use a more general form 
of canonical product, due to Tsuji [49], having the same 
zeros as * We define

£ (*, ?> f) - £ & £ V ) .  (5.3.32)
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and then define I'jotg) by

-[»(*) ~ E  («, + . (5.3.33)

That this does represent a function regular in \*z ) < \ 
which is of order at most  ̂(>, \] follows from a
result of Linden ([23], Theorem SI) but we shall not need 
this; it is sufficient for our purposes that the sequence
of partial products 

vi r

I Ï S U ,  Zf ^
V

converges uniformly on compact subsets of &\<\ . We shall
show that jAtH.) can be replaced by Pj)0(E) in (5.3.30). To 
this end we first prove the following lemma.

LEMMA 3.5.1 . Let be a primitive p_tk root of
unity. Then for \Zl< I and positive integer S

I Z  JT— 7^-rs - p  i K&LplliLe • (5.3.34)

Proof. Write

(5.3.35)^  (i-wj'a)5 '

For 5 ^ 2  we have

^  ‘ $  T T Z ^ 1 v ( T ^ s ) 5
f Cl A V

v * èt s-' âi(l - u ? 2 ) s',l ’
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= 5s“'7? ̂  * (5.3.36)

Also,

- P — p -v  ̂ • (5.3.37)
^ 'TiTe ' itrgp

The result can now be established inductively on the
hypothesis

f + 2  2
s
z

<xU.,V;-,w£0
U. -  \  V  =  \ w  ~  l

U. VP
A  *( i - a O w

(5.3.38)

We have
to l-vy[J

1
_ , ,  < lfe*D 4 > _ ,\i\

-Axo) 2  j / - — ■■ V  ) t \ - 2 2^ [4 = » ' 1 “ 22<*v ' i .

1 1 - ^r)uC'/Uv>)(''̂ 3 (s = lV'e **TJ\ _ (¿ry^'/u^Xv-^

rw |  (,-,-o)lt 0 W
3-\ — ■£X? $w>!

t^*0  , a \S

4- 0 / ( r f t
Wcwp) ^ a

(5.3.39)

by Lemma 5.3.1 . Hence

jute') _ IT ^xp,
? *) rJ!

z, ,
l S-£f42J

L

Now

1 x s ViCfp)

u ^ p 17

Ce+o

(5.3.40)

and, since (j-O is a decreasing function of t ,



114
for t sufficiently near to [ ,

, xte+'3 
(±5) i

K(r()
( at 
Jv ,kttro-t.

O

-  S 0 - « ’
I

X t  . ( 5.3.41)

Also, is less than \ for t sufficiently
r\to l . Hence J L)-V) converges and therefore

1

near

p-1
We are left to consider

O x \

< oQ (5.3.42)

By expanding = tcx̂ Kvr)] and
series, we have

\

as

its)___,____ < I , (5.3.43)

< |< f €xf (  (5.3.44)
V >  W(.t3Cf+a (.1-0

Now

Therefore
&o
2

' w ^ +q
 ̂ Y, $©& — — - • o  '~r (5 .3 .46)
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It follows from (5.3.40) that

l «  O v  Aoj ̂  - 0 ( ^ f), (5.3.47)

which, together with (5.3.16) and (5.3.30), shows that
,ir r b

,U4 - -nffe
-'a J0

( 5.3.48)

outside the union of the discs of (5.3.25).

5.4. Canonical products on more general sets. We 
now consider a set of points in which
satisfies

(5.4.1)

and define

<?(*> £?>«v> (5.4.2)

We investigate the behaviour of (̂.̂ 7 by comparing it 
with . For 2 outside the union (\>g) of the discs of
(5.3.25) we have

Now

? U - ?2v»vl -  ^ U \ *V v O  L i -  \ ^ 0 ,

(5.4.4)
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In particular, it follows that

l- 2 2*, 1 < \<* . (5.4.5)
' ~ * SV-v '

for all and in \?\4 1 .

We shall need the following, almost immediately 
obvious, result.

LEMMA 5-4.1 . For some constant Kz. ,
_  \  ~  \ c i a \ t

i - s g v*v
. (5.4.6)

I ' " 2 ?

Proof. We have

I - \
-«a,P*V

~ 5.4.7)
l ~ai^ (l-«2w,)(l-2?»v)

and, since

- Î -¿^{^('-2^-20-1^0)- - V)j A (5.4.8)

<*W 1 J ̂  J
this gives

I -
l-BZi 1

(5.4.9)

(5.4.10)

In order to estimate the product of (5.4.3), we divide
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it into products over subsets of the ; the first set
^  r <̂ (2) is the set of such that

*~ ^ \ < i . (5.4.11)
( - 2

It follows from (5.4.5), for \2P,V\ sufficiently near to
that then

i
i 1 .

4-
(5.4.12)

Therefore, for (^<y)€^ » we can expand the terms involved
in the product as series to obtain, by the argument of 
Lemma 2.3.1 and the inequality of (5.4.6),

(5.4.13)

We now need the following result.

LEMMA 5.4.2 . For and primitive root of
unity (Op ,

? \

) I - ¿(o%\s <v =1 f
\<O - l

(l- 121)s-v • O ' U D
<(5.4.14)

Proof. The result follows from comparing the sum
with TV

---- ¿6-----r •
2rr ±V[ ( l - M  -H*-)*

It follows from (5.4.13) and the lemma that

2  4' Ks- Iii) . (5.4.15)
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Now

u l-'Tr,
t<na

H  \~rr? " Ut') t'-H:)

iVt'

t -
At

and therefore
OO 1
tri v \ - rc-j

te+o

?

We now show that 
\

clt
o WUbHl-^>

A t

O ■¿(f) k(r-)'z/i

(5.4.16)

(5.4.17)

(5.4.18)

as T-> 1-0 . Firstly
At

Ut)l\-rt)
At \ * yif) ’

Also,

Air
6 W(A-)(\-rt)

and hence

a  ¿t - .
r  v(.rt

A  [ i t  = i  U i  ,
klri t l - t ''A '"'r

(5.4.19)

(5.4.20)

(5.4.21)

oXrAOr-t \ — -it-- -J0 UtKl-ctò i U l r U « J ^  — 5> 0  , (5.4.22)

as f—s> \ — 0 . This and (5.4.20) are sufficient to give 
(5.4.18).

For , the complement of , we have

I - I w o  > a  .
--------  z

(5.4.23)
I - /H-
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Or, writing £ and

0  - <yt > £ (\ - lrr? Cc*ty>-©) -V rV?l).
This implies that

\ - > f ? c& [Q -cp) v rV^ < U> (,\ -<-f ̂  ,

or, equivalently,

0 -  < It L\-rff

(5.4.24)

(5.4.25)

(5.4.26)
If we consider y? to he such that i^-e^TV , this gives

-V ilXf ( f - e f c  l U K ^ ,  (5.4.27)

and hence for (̂ }<p © ̂

\ -sf j V | ^ K^CW'Tf). (5.4.28)

The number of

TV

(̂ fy) in ^  for fixed is at most

(5.4.29)

and it follows from the above that this does not exceed
/ WC'̂-p') .

Therefore, on summing over these elements, in view of
(5.4.6) and that

»- »sf
»-■25

< 1  for all »Sl<»,lZUl , (5.4.30)

we obtain

j 2s c l ~ l r ^ - )  I ' —  5.4.31S lll' V  v\ -g W  J KCj0 0 )



If i- then

— V £, clt loo. -v

120

(5.4.32)
o kUrK\-t) K(W0-4)

It follows from (5.3.9) that this is less than

K ^  t~ 
U(w) 6 (. )

(5.4.33)

Hence, if iy* is the smallest ^  satisfying 
then

\ \
f o iX.'T') kCV')a (5.4.34)

as r —> 0 , and therefore

k %  4  '  ( 4 f t £ )  I I  *  V  = ° ( ^ 5 - 4 - 35)

Let fp consist of those (^^ for which

~sl * l\-r) ̂ (rf. (5.4.36)

Now
p H  C H'V"g g -
SfV^v~̂ ) Cl-spy

\ v ~ ^ ^ ̂p-s cgw ,~ gp4.

\+ A(*>p><V), (5.4.37)
and, as with Lemma 5.4.1 , it is easily shown that

\XCe,p.O\ < ^  . (5.4.38)
S l

If

t - <> ^ 2.0-0 (5.4.39)
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then and therefore

U l H 7^ \  £ V(VC\Z?,v\). (5.4.40)
Hence, if we denote the set of in which also
satisfy (5.4.39) by ^  , we have

h \ c L  l ' 4 Xf e'?* i K 4) (5.4.41)

\-2lw}

£ K  JEL i
y Per iivvvJL (5.4.42)

 ̂ K clt
V(.V)(3-1) - o (*3wFf) • (5.4.43)

If p is such that 2(\~0 > 0'r?) (.\-r) and
we have

\XCz,^^\ £ K  klf)-2".

Also, the number of in Cz does not exceed

\< ( ---- it--  £ ^ loc, .
0 hCt^O-t) Vv(.Ox

(5.4.44)

(5.4.45)

Therefore
Ti u  X(x^.^l = °i'

W L r ^  V

\
¿>br) k(\r) • 15.4.46)

We denote by [(\̂) the union of the discs

i s u ^ O o - ^ i )  • (5.4.47)

If (^) 6 and € is c^utside (A§) and (_\̂ ) , then

|  ̂ K . (5.4.48)% W0Q <, 
\< o klO
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The disc

l£-2^ <

is contained in the curvelinear quadrilateral defined by

< i-vn < u  ,

^ ^  l\-eixV\t.V')lig
and therefore the number of Cp»«/) in does not exceed

JEL j ,  J<_<l-r){Kkr)-j > w{r)i
'_,rf £ (\-0 '

Therefore

u  TT ¿ A c i l k A )
0 CM)€js '¿^v)

* \< ---i K  . (5.4.49)Ht)3/L <3~U VvCO

$ ioci Ĵ _ ~ 0 
klv) c)k(r) i m w i ) ' (5.4.50)

Combining the results of; equations (5.4.15-18), 
(5.4.35), (5.4.43), (5.4.46) and (5.4.50) with (5.4.3) 
gives

N f f e l
for 2 outside M  and . Equation (5.3.48) then
shows that « V

* 3 ^  = ( 5 - 4 - 52)

for the same set of 5 .An argument similar to that 
contained between equations (2.3.47) and (2.3.39) shows 
that the same result holds for all € outside (_Â ) . If
we also suppose that the discs of (5.4.47) are disjoint,

0 (5.4.51)
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we can show, using a minimum modulus argument, that

f O U  1'+®«)]
g rt

eUr (5.4.53)

We collect these results in the form of a theorem.

THEOREM 41. Suppose that satisfies (5.4.1),
that the discs of (5.4.47) are disjoint and that is
as defined by (5.4.2), then with the (p{r) of (5.2.1):

 ̂ , (5.4.54)

for \z\? lQ,6r) ;

i ^ \ y [i^ \  2 Cp(u.\) , (5.4.55)

for 'Qjùé) , with outside the discs of (5.4.47);

^ CpOiTp̂ l) * (5.4.56)

for r/f).

5.5. Proof of Theorems 38 and 40. We shall give
*only an outline of the procedure followed, since it is 

very similar to that used to establish Theorems 15 and 17 
of ChapterH. We first‘establish the following result.

THEOREM 42. A set which is such that thej \
union of the discs

12-2*1 i
I + A0-IZ*|)M ' ^

(5.5.1)

covers \h U^* contains a subset which is representable as a
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set , satisfying the conditions of Theorem 41,
provided that

À-ûi^ ;> \ • (5.5.2)

The method for proving Theorem 42 is analoguous to 
the proof of Theorem 21; the theorem follows from 
considering the points of each set which lie in each of 
the quadrilaterals Q^A^Or-)) , defined by

where

r*A

3. tr l_____
>+C,/Ak^M )(»-rkA)]
A is a fixed,

4 4 IttQ-vO ,
0 \+Ct/AUfJ(\-f;A)]

(5.5.3)

sufficiently large, positive integer.

In view of Theorem 42, it is now only necessary to ' 
prove Theorems 38 and 40,modified so that the set is
replaced by a set , where -A. is such that
exceeds but is sufficiently near to I . This can be done 
by an almost verbatim repetition of the argument used to 
establish Theorems 19 and 20. We note, however, that the

' V  vuse of partial products of the form CO^L^J of (5.3.31) 
is essential to the argument, since we do not have any 
suitable estimate for in terms of
when ~ 1 .

5.6. Proof of Theorem 39» As mentioned previously, 
the extreme cases l-HCr) bounded and C>0 follow from



Theorem 38. For c - 0 we have, again by Theorem 38, that

IvvTA. $JAV> (.v-Ô  too - 0 . (5.6.1)r\-o O
Now consider the effect of the transformation

125

? =  Sote) - i
e’̂Ceiy-2)

(5.6.2)

in this situation. Write

FG c n re:«_ ̂ (5.6.3)

and, for each Q , consider the sector SCdjS-ecd) (0<oU\̂ )

of the £ -plane; we denote this sector by is
regular in and satisfies

toUE»Sd}lFfl) < ) p) , (5.6.4)
R(

= M Ie !^H\(

L*ll>- [ \ _ 2&s A+ R'! f
Now

I
R - (£̂ 2Rc<sŝ -vvf i ôSoL as fH-» oo , and therefore

J1.0t\ M  (  ft 7^ol) O I

-> 0 as — > 00 ,

by (5.6.1), uniformly for 04 0 . Also,
A l A (\ - \?̂\) ^ f (5.6.6

t -v A  l-evti-  SA|*f I 3-

for all real Q , and therefore is covered by the
union of the discs
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' + A leî<?-2„làe (5.6.7)

The transform of this disc is contained in

>er2 '' ^A \^eC«0 \ ^  ( 5. 6.8)

and therefore ^  is covered by the union of the discs of
(5.6.8).

It follows from (5.2.10) that

\og \ ̂  ̂ X
5 ô^ v\ ) 6  Sat LI / f  | -  l H )

11 K S 3 T +  iSkSfj )
uniformly in 0 , and that

(5.6.9)

«( i4) .  (‘-i
R* (,(1- [ C M W + i f i i*

(5.6.10)

l CC&Ï.ÛÎ hv^ (ji-OçUtr) - 0

as ft i-3> Od

The conditions of Theorem 31 of Chapter IV are
satisfied (with S -û , C - 0 and HU) replaced by
h / j i_ . JlH\n(V £ K2-] J  , which for the case under consideration is
unbounded) and hence for any ^ with 6 <■ ̂  ̂  U. ,

U  4  Se>)  ̂ K + e ,  (5.6.11)

for K(S) ; that this holds uniformly for 0 ̂  0  ̂2tr , 
while not a direct consequence of the theorem, can easily 
be seen to be implied by the proof of Theorem 31.
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Transforming the result of (5.6.11) back to the unit
127

disc gives

< X Jhw,w> ( 5.6.12)

and, since

\ < h ({'-
HU-i'l

w

(r - jk\. x ijve ?oi
as R-i> oO , we have

JU'vw Sv̂i3 loo, M (ŷ  ̂  
t- -»N-o U W

(5.6.13)
r-’N-y Hlr) coŝ ot

This is true for every positive oi (̂  ) and hence the
proof of Theorem 39 is complete.
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CHAPTER VI 

CONCLUSION

In this part of the thesis we discuss further the 
position of some of our results within the general theory 
and mention some simple extensions and some open questions.

6.1. The classes of growth estimating functions <pQ) 
of Chapters H  and V. These classes contain all suitably 
smooth functions corresponding to growth of finite order 
except that we cannot have <p(r) =0(te>ô  in Chapter H  or

in Chapter V; otherwise we would contradict

(2.1.25) or (5.3.16) respectively. Since an integral 
function K O  satisfying

!\'w\ I Y \ ( -

'f' ~5> aû < oo (6.1.1)
r

is a polynomial, its assymptotic growth is determined by 
its behaviour at any unbounded sequence .

This gap, between Lr̂lUl̂P-) - O(iojv-) and =•
in our results for integral functions can be filled by 
considering a function (pit) which is such that

i m  q - U<M'0X W , (6.1 .2)
U p  J

where Oi Xc<\> ̂  \ and XiOxk Suppose £.3̂  to be a set of
points satisfying
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tv(y) w a ( loa c) 

and. such that the discs

U - H P\ 4 §\Zf\

Xif) (6.1.3)

(6.1.4)

are disjoint for some fixed positive & . We then define
OO

(6.1.5)

Direct estimations show that, for z outside the discs of
(6.1.4),

 ̂lifts))  ̂A <p02l) » (6.1.6)
and it follows from this that

lea ^ A 9(12,0

and that

s < OO ,

(6.1.7)

(6.1.8)

for any fixed positive W . Obvious analogues to the 
theorems of Chapter H can now be established with only 
minor changes in proof. For example,

THEOREM 43. Suppose that satisfies (6.1.3)
and (6.1.4), and that <̂(r) satisifes (6.1.2). If f-(s) is 
an integral function for which

/VUr, P) ^ /\ ,
Cpcr)

(6.1.9)
r -s> <x>

then
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th -~>od
-U  M(/l) l i V  ijutf 9 ( 6 . 1 . 1 0 )

provided that the right-hand side is.less than A » 
Furthermore, if is bounded then Pte) is identically
constant.

In fact, the results would appear more powerful in that 
there is nothing in the conditions which ensures that each 
sector of positve aperture contains an infinite set of 
points of \jly\ and it could be asked if the same is true 
for a wider class of functions.

The growth results for the case considered above are 
also suggested by more general theorems of Hayman [12] and 
Yaliron [52]. For example, Hayman has proved

THEOREM 44. If Pfe) satisfies

^ , (6.1.11)
^ -><*> T w y 7

then
I i'(f4'0)| ̂  (6.1.12)

outside a set of discs subtending angles at the origin 
which have finite sum.

Since this result does not extend to larger classes of 
functions, it seems unlikely that it is possible to remove 
conditions involving the angular distribution of the set 
{_ l from our interpolation theorems for a larger class
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than that attained above. We note, also, that if £-0 ,then 

<p(Xr)/(|50)—S>\ ,as t o o  , for any fixed positive X , that 
is <2>(tX belongs to the class of slowly oscillating 
functions.

Whether the gap, , in our results
for the unit disc can be filled remains an open question.

6.2. Regions where Ukg) \ is small. In Chapter III we 
obtained results on regions where Pv?A is near
to its upper limit, as A very direct and simple
argument using the same ideas will also give information 
about regions where \S\ ^©c^A?)l may be small. Using the 
separation condition of (2.1.7), we have

THEOREM 45. Suppose Pi?) to be an integral function 
of mean type of positive order  ̂ . Let £  be the set
>f ^  for which

l ? r e lo^\Pt?)l £ X < T (6.2.1)

throughout the disc

\ H - £ \  iS\§\ , (6.2.2)

for some fixed positive S' . Then

'*-£1 i  A \ g \ ' ' * ej (6-2-3)

does not cover the complex plane for any finite A

There are also corresponding results for the wider
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range of estimator functions <p(0 . Also, if we weaken the 
separation condition (2.1.7), as is certainly possible, we 
can increase the size of the set E . It seems likely that 
an appropriate determination of £ would be the set of £ 
for which (6.2,1) holds throughout the disc 
for some fixed positive k .

6.3. Intermediate growth conditions. Our results, 
Theorems 31, 32 and 40, of Chapters IV and V concerning 
functions whose growth an the interpolation set is dominated 
by exĵ ll+ooV) R l<°)̂ are restricted to cases of growth at
most mean type of finite order. It remains an open question 
as: to whether or not they can be extended to wider classes 
of functions. Por example, could we prove the following 
proposition?

Suppose

(i) 3 - with ^ 4 ;

(ii) U H f  , \UO / (¡pOr) \ ~*c  ;

and (iii) the discs \Z-2^\ £ A c o v e r  the complex 
plane. Suppose, in addition, that fe) is an integral 
function satisfying

v" -*<*> 3 * 3  J z

then
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tlvw, 1 m. loci M  (•) i 'V -  Oxy> -leci \ ^ C g ^ l
-HO) ° H ( M

provided that the right-hand side is less than 4 i r / c .

There appear to be two methods of approach to this 
kind of problem; one could try to establish a sector 
theorem, corresponding to Theorem 31, by determining a 
(1:1) regular map £(2 ) of £(¡̂ 1) onto a region which is 
sufficiently approximate to a sector S(d-\ and such that 
h[£) - C-l?) satisfies conditions which would allow appeal 
to the results already established. Alternatively one could 
select a suitable subset ) of the ^  and
form the set of canonical products

-- (.?-?„) I  F (g-*« ,M) (6.3.1)

with a suitable modifying factor exp ] when ̂
is an integer, and consider representations

ClO - tfN(2) 2 j __ _______ (6.3.2)
p*i*'j

for integral functions, or

| Nte) = Pg o -J? fe.) (6-3.3)
ii «„0

for functions regular in a sector.

It would seem to be necessary to establish results 
which are uniform in |\j on the assymptotic behaviour of
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lojlHn(£)| in terms of
may depend on N containing its

If 4 lf(\\?N\ then
lf(v and K x are independent of

, outside regions which 
zeros. For example:

M .
, where

The difficulties of such estimations on are obvious.

6.4. Gap power series. In section 4.5 , we studied 
integral functions having power series satisfying the 
Fabry gap condition. We note here that if the gap condition 
is strengthened to

“•»*., - -> 00 (6-4.D
then, since we would then have

^  lkis\ 0  <v texj f\[\r) ^  p ) ( 6 . 4 . 2)

for any sector (2 , with no exceptional set of V“ ,
we can prove the following.

THEOREM 46. Suppose that Pte) is an integral function 
at most of minimum type of order such that its Taylor
series oo

d A H  ** (6.4.3)v& = \ v'*

satisfies (6.4.1). Suppose, also, that
iOvtA  ̂ X (6.4.4)

H O s j)
where H W t » f  ̂PHOl^O, and for some fin ite  A the union

of the discs
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y-ie

covers a sector of positive aperture. Then

(6.4.6)

One could also obtain a similar conclusion under 
conditions involving the aperture of the sector, the 
separation of the non-zero coefficients, the size of 
and the maximum growth of the class of admissible functions.
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