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PREFACE

The following work is concerned mainly with
questions associated with the interpolation of a regular

function in terms of its values at a set of discrete points

{21,

If the set &E& contains only one limit point we may
transform so that this becomes the point at infinity and
the domain of regularity of the function is either the
finite part of the plane or contains a sector. This is the
situation dealt with in Chapters II and IV. Some new
results on constructing an integral function of zero order
from its values at an infinite sequence-are obtained. These
results are rather unwieldly for general use but are
suitable for discussing problems connected with that of

Iyer:

"What suitable conditions can we impose on a set {Zu}

in order to ensure that

Lim Q M(Vp) B N \Cﬁ\)
r—:af —€§73?L—' L ladf:£>_&§7—__l

z,|¢

for all integral functions F® of growth less than type T

order Q ?"

This question was raised as a result of work by
Whittakér, Polya, Pfluger, and Iyer himself, on the

representation of integral functions in terms of their

\
\
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values at the lattice points m + in (m, n = 0,%1,%2, , ).
The results of Chapter IV are obtained by combining the
approach of Pfluger, which depended on certain periodic
properties of the Weierstrass o=function, and thét of Iyer,
which only appealed to known facts about the size of \0(@)
and\UQZ)V , to the lattice point situation. Indeed the
interpolation techniques of Iyer are used_throughout this
thesis. We foilow Pfluger, however, in seeking appropriate
geometric distribution conditions on the set {zni , as
opposed to assumptions concerning the behaviour of the

canonical product of the 2, .

In Chapter III, following the work of Maitland and
Noble, we invert the interpolation technique of Chapter I
to give both new and improved results concerning the
regions where an integral function is41arg€l As corollaries

we deduce certain growth properties of lqiNﬂfgg).

Finally, in Chapter V, we discuss the situation where
{Z% has more than one limit point at which the intérpolating
function.is not necessarily regular. We may take the region
of regularity to be the unit disc, in which case every
point of the boundary may be a singularity, or a subset of
the unit disc such that boundary singularities of the
function only occur on that part of the boundary common

with |=2}=1.

The results of Chapter IV have already appeared in
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print [58], the method of proof differing in detail in

order to suit the more isolated éituation.

Eliot College,
University of Kent at Canterbury.

June, 1967.
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NOTATION

We shall assume many of the conventions of notation
of the theory of functions of a complex variable and here

clarify only some cases where confusion may arise.

By the letter K we shall denote a numerical constant
independent of the main variables,KQ%@,-n ) denotes a
constant depending only on the variables listed in the
parentheses. In both cases, the value of K is not
necessarily the same at each appearance in an argument.
Specific constants within a section are indicated by
subscripts and absolute constants by other capital letters,

usually A and B.

We shall often write
Lim Sup Q?(XS
where 2C ranges over some countable set. This is to be

interpreted as

L \’;;})\ Cp()(‘,) ;

n—>0
for some enumeration {X& of the set. Obviously the value

obtained is independent of the enumeration chosen.

Unless the context clearly indicates otherwise, the
canonical product, without further qualification, of a set
{Z“} with exponent of convergence e means

00,
T E(E,1e1)

n=\
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where E(“ﬂo is the Weierstrass primary factor of genus P

We denote non-increasing by i and non-decreasing by

W o The interior domain of a Jordan curve | is denoted

by DQ(P) .
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CHAPTER I
INTRODUCTION

l.1. Generalities. The aspect of interpolation

theory with which we are concerned here is that of
interpolating a regular function in terms of its values at
an infinite set of discrete points and, in particular, the
growth properties which follow from the representation

adopted.

One method of partially solving the problem, in the
case where the set of points consists of the non-negative
integeré, is provide by the Gregory-Newton series (see,
for example, Whittaker [56]).

“Any integral function f(®) of exponential type less

than hﬁi has a convergent representation

() = Flo)+ i ;‘;,{:Tftz-p)} A" ) (1.1.1)

where A fi) = C(8+\)~ Q(ES) A Bz) = A(An-\p(z» 3
This has as an almost immediate corollary the theorem of
P6lya-Hardy,

“An integral function of exponential type less than
%32 taking integral values at the non-negative integers

W

is a polynomial.

Many other series of a similar nature can be formed,
each depending on the set of points in question ( see [2]

and [56] for examples). We describe below a method of
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approach which deals succesfully with a wide range of sets

of points.

1.2, Cardinal series. The general method depends on

constructing an integral function F(Z) taking prescribed
values {u%} at a set of points {Z.| , having no finite
limit point. We can always form an integral function Q(Z)
which has simple zeros at the 2, and, given such a
function and the sequence {w.}, we can determine a

sequence of integers {»} such that

L,J'\
by \m\ < oo, (1.2.1)

The series

Yo
IZ(Z)ZJE%"—?TZ:) g) = Fo = FEyEd{od, () (1.2.2)

will be called a cardinal series associated with the
sequences {z.} and {““S’ Since the series, with Q&) taken
inside the summation sign, is uniformly convergent in any
bounded region of the complex plane, it follows that F&@)
is an integral function with the property that

F(Z“\ = W, . (1.2.3)

The growth properties of such functions have been studied.

by Mursi and Winn [28] and Macintyre and Wilson [25].

If the w,, are the functional values at =2, of some

integral function P(z) , then
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W

By fz,) Z
Ao 'l(z)% (Z-2.) 7’(2,,)(2“) Sk

is an integral function which coincides with [ at the
sequence of points{zmg and we are immediately faced with
the problem of under what, if ahy, conditions on the {ZAI
and the function CGQ is it possible to identify the

function with an associated cardinal series?

One method of answering this question is to restrict
the classes of integral functions and point sets in such a
manner that, for some fixed integer » , there exists a
sequence of curves {\.‘5} with wf |Z| 5 ® as §—»w®» and

2e¢ Ty
such that

BRSO ee o se ) (1.2:5)
$Te)E-2)

The calculus of residues then gives that

¢ IR EN) (,LY e QD {30246)
@  ZeNR) (-2 ) (2 -

and thus

p(i) - 'Z(Z)Z : p(&d ( £ >u ’ (1.2.7)

(z-&.) ;z/(zn) N

with the series bracketed suitably. If equation (1.2.1) is
satisfied with »,.= 2 , it follows that the series in
(128 converges absolutely and the remark about suitable
bracketing becomes superfluous. In all applications of

this method made in this thesis the pairs of class of
[
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admissible functions and the set of points {2 are chosen
so that we can satisfy conditions (1.2.1) and (1.2.5) with

YV taken to be zero.

1.3. Farly results. Certain sets of points have

suitable associated functions Q@) with well defined
properties; with the set of all integers we can take q(z)
to be S$mTW2 and with the set of all lattice points wms in
(myn =O0,X1,2 ) we can use o(z) , the Weierstrass

0" —function. In the cases mentioned,many of the results

take a very elegant form and we give here a few examples. |

THEOREM 1. Suppose that F@@) is an integral function
of exponential type less than w and that, for all integer

n, Fln) is bounded; then

[y = sam= 3, wltea) (15339

n=-00 Z2-n

Since the series involved is not always absolutely
convergent this is not strictly a cardinal series as
previously defined. In fact the representation of the
theorem depends on the Abel summability of the series of
(1.3.1) when the condition on ((z) at the integers is

relaxed to

Lim sup \C(n)l‘/" < (3. 3.8)

(Macintyre [24]).

A simple corollary to Theorem 1 is the following




result, originally due to Carlson [3].

THEOREM 2. Suppose that f[(2) is an integral function
satisfying

| Pyl éN\ehm , with R<T £1:3:3)

?

and Cn) =0 for all integer v , then ﬂz) is identically

zZero.

THEOREM 3. (Cartwright [6], Macintyre [24]). Suppose
that F®) is an integral function satisfying (1.3.3) and

LByl < A, (1.3.4)
then for real X

| FOO| ¢ K& A, (1.3.5)

In addition, if CQ) tends to zero as Z tends to infinity
&
by positive integer values then ‘42) tends to zero as X

tends to infinity by continuous positive values.

We also have the result of Polya ([41], p.606 ) that
for functions satisfying (1.3.3) the growth along the real
axis is determined by its growth at the integers, in the

sense that

U sup & Qoglfe)| = bim dp L bog|Fnl}( 1. 3.6)

¢

and, for a smaller class of functions, the following.
THEOREM 4. (Tschakalov [48]). Suppose that F@®@) is

an integral function of growth at most minimal type of

order | with F(n) bounded, then F®) is constant.



The first results for the lattice points were those
of J.M. Whittaker [54] who proved the following represent-

ation theorem.

THEOREM 5. (1) If f is an integral function for

which

lm\m@,ﬁQﬁmmC) < am o, (1:3.7)

~ =00

then

Bogy - PSR Elnie) (1.3.8)

(myn) (Z—M-—iv\s O*'LWH:‘(\) )

the series being bracketed suitably.
(2) 1f

o \ ) ,
&;w’\j&\)p & &%M(T)C) <Aw (1.3.9)

then (1.3.8) holds, the series being absolutely convergent
QI?&““““?b Pfluger [35] and Iyer

MY Vg

(in fact O /min) =)
[13] both proved, independently and using different methods,

Theorem 6.

THEOREM 6. If ((z) is an integral function for which

i.\‘W\. -}w\\') ..\.L Qor Mt_v‘)@-) £ %T\' (1.3.10)
c > T S
and b Bmatny| ¢ K, (1.3:31)

then EQ) is necessarily constant.

This: extended a result obtained by both Whittaker
[54,55] and Pélya [42] which, instead of (1.3.10),required
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Lim AP o % %ﬁ M&ﬁ?).é L) {1.3:28)

Y —> 00 =

l.4. Generalisations. A large amount of work has

been done on generalising the interpolation results
concerned with the behaviour of integral functions at the
integers. This will not concern us here and we give only
some references. Bernstein [1], Levinson [22], Macintyre

[24] and, more recently, Rahman [43].

Theorem 6 is best possible in the sense that the
value ; T cannot be allowed in (1.3.10), as the example
of the o -function itself shows. The result has however
been generalised in several ways; the lattice points being
replaced by more general sets and the boundedness condition

by one of restricted rate of growth.

Iyer’s method of proving Theorem 6, unlike that of
Pfluger, made no appeal to the periodic properties of o @)
but merely to known facts concerning \o@| ana (072)\ .
Developing this method [15, 16] he showed that the behaviour
at the lattice points of a function satisfying (1.3.10) is
typical of that of the function as a whole in the sense
that

&\‘M'~ oc ML) e bk
resod %":IL*M) = ey --@'jl——‘——w mp;i”‘nz (1.4.1)

He then generalised the problem to that of determining a

set {Zhg with the property that
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L 2 “ A o Wua A «Q C “
i g L‘i—g (:C(w p) . %gh\g&) %\\2“(\86‘)\ (L.4.2)

A

for all functions of growth less than type v order e
such a set he described as being'effective for e ,‘\’“ and
gave some properties which it must posses in our next

theorem.

THEOREM 7. If {Z} is effective for ¢ ,V then:
(i) the exponent of convergence of {Z\ cannot be
less than () H
(ii) if\ the exponent of convergence is Qs then any
integral function with zeros at the {z,\} must be of growth
at least type 7V of ordere unless it is identically zero;
(iii) the set of amplitudes of 2. is everywhere dense

in [OyQTJO

He also gave sufficient conditions that a set {z,] be
effective but these depend on the canonical product of the

2, , not on their geometrical distribution directly.

THEOREM 8. The set {2.} will be effective for s
provided there exists an integral function r((z) with simple

zeros at 2 =%, and an h 2@ such that both

K, J_Zg:cs_\_r@i@j T, (1.4:3)

n 3> 060 \Z“\Q

oo |0
and %_\_Qg_(\i_g_\ B i (1.4.4)

as Z > 00 outside the set of discs
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o
ey T W SR Th G (1.4.5)

Pfluger approached the problem from a different
direction. He developed a study of the Lindeldf h(@)
function and the extent to which it is typical of the
growth of canonical products of sets of zeros measurable
in a certain sense with respect to a proximate order QU%
[37, 38]. He was concerned with sets |Z,.| which satisfy,

for each pair ©,, 6,,
o)

n(r 6.,0.) = | N(B)- N(Q\)g’f“ + o(rw)),(l.4.6)
where n(P)G\,Qg) denotes the number of =z, in the region
0 L4 1@ et 0, € WqE < 0,
and NQQ) is a non-decreasing function which satisfies

N(o+2m) ~N@) = K >0 , (1.4.7)

the proximate order function Q@% being continuous for
0 < v<¢o0 , having left- and right-hand derivatives which

coincide in intervals and satisfying

QC 0 RN s S
S Bir p >0 (1.4.8)
t R G Q M4 — o

and Sy Saly gsr 0 (1.4.9)

(For any integral function ¢G@ of finite positive order Q

such a zuﬂ can be determined to ensure that
i\‘w\ _}_LMY \"""Qu') QO" M(V')C\)
e o) by

is positive and finite.) Such a set is said to be
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o

measurable with respect to with measure function

N(8) . His principle result of this kind is

THEOREM 9. Suppose that f@) is ‘an integral function
of non-integral order e whose set of zeros {z“} is

®
¢ O

measurable with respect to with measure function

N , then for any @

v

hig) = N Qﬁ\pkf{:?’)\ = 0 gwsq(e-“) o\wa) (1.4.10)

Sin IT()

ag (—>®© through a set of unit density.

Using this, and similar results, and a modification
of Iyer’s method, Pfluger was able to establish very
general representation theorems. He found it necessary to
distinguish between cases of integral and non-integral
order, for example

THEOREM 10. Suppose that the set {i& is measurable

with respect to r

sy With Q not an integer, with
measure function ‘Wﬂ) and suppose, in addition, that the

discs

\z -2 ¢ Sie T (1.4.11)

are all disjoint, for some fixed positive 8 . Let q(z)
be the canonical product of the wz, . If [() 1is an

integral function such that

hig) = i sap 90«\?(%&“” f O s Scosg b-dNe+p) (1.4.12)

= \J r e Sin T Te
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then

Py = z2) > E (20
=) 2. Gz - (1+413)
He also gave [39, 40]
THEOREM 11. Suppose that {Z,| is measurable with

respect to ¢ with measure function Qﬁhﬂ>6, that is

I} N, 0,,0,) - Fde o Lokl
g ve s 'Qﬁ'(e& AR )

and that the discs

PR
\Z"'Zh\ < S\Zw\\ i

are disjoint. If Q is an integer, suppose, in addition,
that

S \

Then any integral function of growth less than type T

order (3 which is bounded at the 2, 1is a constant.

The proof of this is based on the representation
result of the preceeding theorem and a similar result for
the case of integer o , with 7&) then defined to be
the product of exy{—digf with the canonical product of
the X, . These results include earlier generalisations
of Maitland [26] and Levin [21].

We shall describe a set satisfying the conditions of

Theorem 11 as belonging to F%Q;T) .

- Noble [31] considered sets {Zw}satisfying conditions
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which can be regarded as being complementary to those of
Pfluger. He requires that they have a uniform angular

distribution, in the sense that

N e = I o N T | |
N, @, @) P29, ;

for all ©8,<6,, QJ\<(pQ , but considerably relaxes the
condition that the set must have a density with respect to
~e in every sector. For integer Q s, the condition of
(1.4.15) is retained. He obtained a very general represent-
ation lemma and using the basic argument of Iyer, which he
was able to do under conditions far less severe than those:
of Theorem 8, obtained further results concerning the
growth of integral functions. We now give a special case

of one of these.

THEOREM 12. ([31], Theorem 2, Corollary 3). A set
belonging to P(Q;f) is effective for Q s s in the sense

of Iyer.

The methods used by these authors have also been
applied to the related problem of inferring properties of
a function regular in a sector from its properties on
certain sets of points in the sector. Noble [32] obtained
several results which generalise earlier ones of Whittaker
[54, 55] and Pfluger [36] for lattice points and of
Maitland [26] and Cartwright [5] for more general sets. We

give as an example a special case of one of his results.
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THEOREM 13. ([32], Theorem 4 withd =0 , 8 =1 ).
Suppose that (&) is regular in the sector HMQS Z\ («
and satisfies:

00 1614

(i) Lm wh Q@éN\(V;d‘CS ¢T3 Meads: S»\j '\C(N“G)\(]_,Ll'?)
r

(ii) Qt:«::o\s ig%\?r(:&ﬁ_)_\ YR )
a (iii) W anp lé\?-(zn'\\ L e L)
g i \0»%\2“\4\0( X 12, ¢ e

where {z,} is a set of Y(p,¥) ; then

b 07 lag M ) ¢ swi ¥} . (1.4.20)

g N
Purthermore, a function k&) satisfying (1.4.17) which
is bounded on the boundary of the sector and at those 2,

lying in the sector is bounded throughout the sector.

This is similar to a result of Iyer [15] concerning
sets satisfying the conditions of Theorem 8 and a further
restriction on the manner in which the set of discs of

(1.4.5) intersects the boundary of the sector.

Many of the results obtained, including that given
above, require very heavy conditions on the function on
the boundary of the sector; making, in some circumstances,
a knowledge of the behaviour of the function at the set of
points superfluous. An interesting result which does not
have this drawback is the following theorem due, in a

slightly weaker form, to Miss Cartwright.
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THEOREM 14. (Cartwright [7], Iyer [15]). Suppose that
(@ is regular in the region SC),Q) , defined by
gzl <, 1) 7 L, and satisfies:

i Lim inl oy Mira, Ll A : 1 #4521
{1} o “3_‘\0_«‘_ < AT (1.4.21)
(ii) Ww e Leg \ bt )| ¢ yo Im, (1.4.22)

r— ol J - i

and if o/ < 3T suppose, in addition,that ¥ <zT Sne ;

and (1ii) | Pima tny\ € A (1.4.23)

for all lattice points Mm+n  in S(&)D s then as ~ 00
| Plre'e)) = OW) , (1.4.24)

uniformly for \0\;»’_@@& , where SQ‘/\L(&”@ i 0 O
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CHAPTER I
INTEGRAL FUNCTIONS AND FUNCTIONS REGULAR IN A SECTOR

2.1l. Introduction and statement. of results. In this

chapter we shall be concerned with interpolation sets {znﬁ
having a high degree of uniformity. They are uniform in
the sense that, for positive orders, they are measurable
with respect to a proximate order eoﬁ and have uniform
angular distribution, as do those of Noble. They also
satisfy a condition that the number of points in any

region is [just right\.

The conditions for such a set are rather unwieldly in
any application but, fortunately, we can describe a set in
terms of a natural covering property which has a subset
satisfying all these restrictions to the necessary degree
of accuracy, without any loss of sharpness in the results
obtained. It is this simple description of the interpolation
set and the fact that the theorems cover cases of zero
order and give sharper growth theorems for the range of
conditions considered that provide the motivation for this

chapter.
Our main result is:

THEOREM 15. Suppose p(r) to be a twice differentiable

function which is such that

N V()

o

[$)
3
~’
I

T — o (2.1.1)
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as ~—>® , With » ) — Qa(). Suppose, also, that the

union of the discs

\_-\J)(\Zy\\)
(3 Ay 7 (2.1.2)

covers the complex plane. If QZ) is an integral function
satisfying

Lim b Qog M £)  _ax (2:%.3)
;V\——>oo (p) A23J3

¢

and U sup Lo \CGEE A Sl R 3 T { 2358
\ iﬁ(w) ) A3

th SV 1(’) ML‘F o 2l
o st i

Furthermore, if \F@)| ¢ A the conclusion becomes
that (@ is identically constant,

The above results continue to hold if in the growth
conditions, that is (2.1.4) or CQ“) bounded, {Z& is

replaced by a set {Z}% satisfying

\ = 1 3(\24)
fopd Selpai i sy T (2.1.6)

and such that, for some fixed positive & , the discs

<3 wlaki)
Bty T )

(B o B % (2,059

are all disjoint.

The separation condition of (2.1.7) is unnecessarily severe
and could certainly be weakened; the form given, however,
seems the most natural. The following theorem, a consequence

of Theorem 16, gives a more accesible result.
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THEOREM 16. Suppose that v(r)$->Q and »™ loyr s 00 )

T g&b is an integral function satisfying

Bwe tn b 26 Rog M(v Y < __Aw (2.1.8)
v~ 00 &Jr.z)(rs A2 3 \/5
o | Byl ¢ A ; (2.1.9)

where the union of the discs
\-%_»Uz»\))
lz -2\ ¢ A\&, |

covers the complex plane, then pC&\ is identically a

constant.

Further, if Y(» also satisfies
)J’(\P)V‘Qoﬁr = O(M(M) as - o {2.1.10)
or the weaker condition

B 2l 2685 = () = o(M) a8 ¢ a0 (2:3:21)
§—o0 S

then

W asp 209% Qog M)« Mwewp g lglliey) , (2.1.12)
t >0z  VUFY \z, B0

provided the right-hand side is less than ivw/A*3J3 .

The proof of Theorem 15 requires only minor
modifications to show that Theorem 16 is still valid if we

only require that

V) —D e ( O0¢p <o ) and Y‘Q@SV‘ D/(M —> 0
| ) '

as r— . We also note that Theorems 15 and 16 are

sharp in the sense that the constant 4i/A*3/2 cannot be
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increased.

To establish Theorem 16 as a corollary to Theorem 15

it is only necessary to note that Yy must be continuous

and that
anc«wé‘) Ll 20 pin (HS))'M o O &
S ) s »rad)* e+ d)* (2213
YHS) ) e
+ (=d) - (MS)»( + g2 {v(r)z— uLw+8)1} !
Y+ S )E YOy EVINS)

and hence

o)
Q\\MM? i {Mﬂ g LW\} mr){ K\_ ) %\,)T L\M g“? B - ()

PR
r

gv_m {\ »Mﬁk {+o(\)§),(> (2.1.14)

A similar process for rwﬁ/voﬁ shows that
r .t

Vi)
@) = g't‘-fg ._fl‘“:_ymo\t » {\+a(l)} ;_L:)" y 081180

i \ w

which is sufficient, with Theorem 15, for the first part
of the theorem. If ) satisfies (2.1.11) then we obtain

‘M MP " {Q‘*S)”(Nm P } 2 vw\ { K K

850 § Uwmd)* WUrY? SIS

vb)ﬂz:cr) r%:)\r l\w“\«(- M) - )J(s/\\}

v
i\*‘“‘}»wﬁ . (2.1.16)

Treating ryQYvw) similarly leads to the reverse inequality

to (2.1.16) and hence
P = {Ho(\)j

which is sufficient to complete the proof of the theorem.

vc)

(2. 51T
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There is also a result, corresponding to Theorem 13,

for functions regular in a sector.

THEOREM 17. Suppose that F) is regular in a
sector S(d)Q) and satisfies

b tnl  leq Mra) _Ac (2.1.18)

i S il T A%3)3
Rw Aup Lot \ Flret ™) S B¢ LAY T (2.1.19)
* ~>0b | ~J @ A*3NR
and Rw 2 10‘\ \ Pl { N. & _Jam. .o (2.5.80)
? (1)) 433

where the discs
- 32 (&)

1z -2, | ¢ A&l (2.1.21)

1

cover S(D(, ) ana dq@(ﬂ/d(!ahﬂ :TW)N-»OO with v(ﬂhwae :

then

L 2o log M0, @) ¢ ap{¥,xl . (2.1.22)

~—>on T CPU‘)

Purthermore, if both bire*™) ana {C(zh)} are bounded
then F® 1is bounded in S@,1) .

2.2, Special products. We shall establish these

results by using cardinal series interpolation techniques
and we begin by constructing a suitable function Q(Z). The
construction of the function and the proof of its
properties are based on a simpler product form which we

descfibe in this section.
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Consider a funetion W) 1—>0 as ©~ —>® which is
such that W) =A 737 yi4p YON>0 . We first note that
&~ + Avrh) is increasing for > Q)(\D{in\/e}. For if
Fp. 2 V2

-3 ulv, -2 2
A amn, ki) = v 2wh 6,15 fy A R

and this is greater than «, « ’lwl\.f‘\"i’w‘), since

4 (o awA ) = L pan A (- A e
.

is positive for all ~ if X <| and for all r greater
than ivxpi%%j@n/m-\))}for A>| . The pesult follows from

the inequality

Sup ;‘\_ Q@fj 2\ (A1) ¢ A».?_S\\- Qo\ﬁ 2l = 2wl .

.00 e
We now choose 1| ” anp%?n!\/e} large enough to ensure
that .
\
A =N ] .
[k(r‘)] SIS (242529

and define a sequence {1’?3 by the recurrence relation
Loy 0l Q‘T’}M‘fp) ) (2.8.2)

(‘\-; "\ —>00 , We set

%0 i) ’
P(Z,A,”LM) = }A(Z) = ]T{l-— (—%—)HUM?)} s [Re2:3)

p=\ 5

When 2(~) is defined clearly by the context we may
abbreviate 'J\(Z,J\,,v(ﬂ) to P"l\ () . Also, we denote by
n*(~) the number of s not exceeding *  and by w(*) the

number of zeros of t}(‘é) in \2) <™ . We write
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(e

L) \+[\1w?)] ) . RSNG|
Z Sl X
(# % (*) (-1) “ {\ (Z)
}A ?J\ r? ‘):\
) :
B \'\'tll\'\(f?ﬂ} (2.2.4)
o) {‘ 2 (7\) i 4
P = *(r) )

Since »¥) is non-increasing, it follows that if ¢“>v’

then
RN Ly 2 »(w!)
gt W) R (_t")i”‘ 3 (ve2r)™ (2 205)
o)., A | i
Aism
: Von
o 1 {___l____} N, g _1[ At ¢ hw) =) {)_\ﬂ‘g) 1.(2.2;6)
W)L+ 2w hiey kin) Foyy SN Wt W) L hig)

It follows from (2.2.5) that

| o
Vg Al e el Ul i) 5, - 4 0bwwe), (2.2.7)
\fL(.‘P\N-\)

and therefore we have
D\

S
B R o(w\,s)} %“g de (2.2.8)
hUy) T Wyt 4
Since, in the manner of (2.1.15),
% ,
5 B R - - Sl (2.2.9)
v v Wiy
we have
J\\!\"-H | r
ik OUR s s _\\g gkl OU Ak ) , (2.2.10)
WV ) v Jp oy W)t { Wit

and therefore
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wm N s O(ktr\)\)}
nwe) = i‘ W L»\m] v A NGS) ’ (2.2.11)

?:\

{'*‘OMNS (M;_ ’ (2.2.12)

y Rt

since the right-hand side is unbounded. Now

V\(\r- L

%3‘\ {\*[»\mﬂ oy o= ® tS_ igj% dnlb)

S &:M . (2.2.13)
o
and therefore
- w\ * B YTe

153\“'\ = {\40(\)}'2\; K\EK\W‘M ' (2.2.14)

7 j;Ltfﬂlﬁ_ . 2.2
Aw i)t hie) (R a0)

1 i P?zt~ then

= bl o X mako e £ s TaE 2.2.16

and, since

r.-

W40 = r“y-+\ “+ Q‘\\‘ (\ﬂ-‘)\ k’\tr“y_\_\\Q A 2W \\LP) r

and

fevz = e L1 WG} = { e+ 2rher) G ] {1 20 W)

¢ {reaechinfieaniel = ¢ Hivashnl®

we have

fvegy 1 >t h > SR \

-~ P s e oy (R
21 h{Fen) fma W(fea) s St 2 { e 2t

which, for 1 , 18 at least (\+2w\_222'6 . Now

\
1&59@3% is an decreasing function of t for t~>Y angd
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therefore
_‘:\I“h los% " oling
for py wH+2 , and hence
t%)\«tukuwl i (%\\nup ’ e,f“ i o i
It follows that we can expand
oy {\ i \+DIWP>]} s é L (r\’)smu/wﬂ) e

to give

b ¢ ™

uniformly for ?>Yﬁwﬁ4~ﬂ. A

Now
| ¥ VNG
RTINS PANCS) Ly
(£)\* Wl (r_\:\ P Qi \\wg-\\ﬂ& W) dt, (2.2.20)

-\

&
and therefore

a8 o A0 hi)] ~ » |
23 (;;)\ i g ) AN, (2.2.21)
«

p= %2 v A g W
/‘k(\) Vikiw
and, since (F/e) ¢ (ele) for bty T and ¥lt) is decreasing,
this is at most
) i \ '
Vb 1= VW) Y3 (0e) o :
K v /M‘)f t Tde s K (2.2.22)
ke | = 320 hie)

\
provided that ™ is large enough to ensure that !/hir) — 3%

is positive. We have thereflore shown that

Q@c‘ {\ l-\{\’k{\!rﬂ; \ L4 K k (2.2.23)

P=n"y2
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uniformly for all 2 .

The zeros of (&) are the points

= - AT L
Z\‘JCV (J\- )))U”\\ = ZP’L\/ = ‘“? QXP{WE’&—Q—]} (2.2.24)
(p=h23 .. ; q,=0 SO ). If 2 lies outside the set of
discs
. -3 w0R)
\2- Zol ¢ 8 ry S (2.2.25)

whers . O ( <iJ\ ) is a fixed positive number, then for
p < ¥,

S M\IM)]\ > b \ Lo { e Ak
‘ 'Z) % 0¢ K2 N w S

i (2.2.26)

~ o nk - @(pi- g{q"i \ a - &

04 WAy \ ‘ ?{T o G
? Ky-> 05

and therefore

- Yog . >

\\ (z) 5 BP0 {2.2.273

We can make a similar estimate for the term

D/ )]
{\_(;?)H }

¥4
All of these terms have modulus at most 2 and there are

W) +| of them and therefore |
\Q%UT (\ (J)HZ\IM@J)( (g;+>l+t\lk(r“rﬂ)])}\ ¢ (Y\*-\\) %__\2(__1 . (2.2.28)

Since

*wy KK K F e
i Woe _k%‘: 2—&%) »u»\\\d)” el
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it follows from (2.2.13-15), (2.2.23) and the abowe that,

for &% outside

-4 »(\ZpeD

(BS’) = (P\J {\Z Z?,cv\ 0 \2?’1\/‘ i j 9 (2-.2.30)
R & ) g A g i At
loglp@l = == T ) Rerw T (2.2.31)
() v % ‘
= |+ o\ Al
O & : X‘ (2,8:32)
We now write

2 WD W)

C‘J)N(Z)'-/\)))(‘m)) = ('ON)J\.(Z) - {'\— 4 (2'2'33)

and note that we have also shown that

W ([

as Z >0 , uniformly in N .

2.4. Definition and properties of OCZ) . We next
consider a set {§P%} {éaﬁv(ﬁL yuﬁSﬂ which satisfies,

for some fixed positive constants ]) 8

| Shq = Zogl ¢ Dzl R Ty
and is such that the disecs
| 14 20, 1)
B Skt PN S 8\§?,cv\ P (2.3.2)

are disjoint. We denote the union of the discs of (2.3.2)
by (Ag) and assume that O (<%JL ) is chosen small
enough to ensure that the discs of (2.2.25) are also

disjoint.
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We define
\:\/w]

Q@ = Q(Z,J\-)vtﬂ)“ { Z;Z" )[ @)} s {2:3:3)

Now, if W, 1is a primitive P—tk root of unity and ?>5

then >
p I ¥ ~ {&s)
3. \ \ \ \ Se
Za ——(v> = ZJ (——S) = PR — O ’ (20304)
g ((OY TN g - '&f‘,‘
and hence, in view of (2.2.1), we have for =z outside(BQ,

w Dl 3 Gl g
1@ T e euf 2(2) 24 I 20
WEY b £6 - Al $21 py' Y M Eeg
Y Byt '
with the convention that g% =0 . To estimate part of

this product we shall use the following simple result.

LEMMA 2.3.1. Suppose that X and ‘3 are such that
)& X ek T \3\4>\<l s {2 7.8

then

k k

ik TR -

o | oty
J “Fgggsﬁ }

Proof. In view of the inequalities of (2.3.6), we can

expand the logarithm terms as power series in X and 5 to

give

| (et - \ B2y &

and, since both the series are absolutely convergent, this

is equal to

i _\(35~x$)\ _ ‘\(3_,02 .\_LBN“A R xs~o)\,

S=ky S
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< ‘3'“\2‘ (Mpi\xu\g\’})&

S=kt

¢ 1y-a (mpgm \ms) :
| - )

which is (2.3.8) with KO\ '=T1LX.

The contents of this lemma only represent in a
convenient form a technique often used in the estimation

of products.

For all sufficiently large \wal, we have

Zog ¢ : ¢ VA

gf"v N we D ‘z?’(vlviv(\aml) N 2

S lw

and if, in addition, \2/#) €2 then V2/g| ¢

Lemma 2.3.1, when applied to terms satisfying these
{2 )]
A s=1\ S g?’V \(
e S

.

2e) \*fze]
)T s 12
¢ Khogs)) \%P‘v\”“@ - (ReBa)

conditions, gives

S_'H- a»s &?i\%\ \i’w\)

and therefore

Ly 1+C4el
R E(Z/gmi%e])} A PO
\ %’) o {E ) ¢ K \%’w\ (2.3.10)

which gives

\ 2, 103{5(2@‘“’[%?1)” S S m-@ 2,341
2

1o, 1226 E (’Z(Z\»ffv )E%.?]) B2 2r
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Now
1'?;,\
‘__‘___ ¢ \+O(h(rgﬂ S %y M
fgrrasl o o fo R Had
and hence '
gl el at
14 £ -
P . & h) £
=
< Kr de ; (2.3.13)
3. £ B Jel - 3@

Since, for some fixed positive € , \2%+j¢l - 7.3)(2*”) \t €
for all sufficiently large ~ , this is equal to
) ]w
Lies 1] -3w@d) L il - 0 :
which can be seen to be less than
K

pEvt3ed W (o)

Hence, we have shown tha#%

\?3 E(z/ﬁw,ﬂﬁﬁ]> < X ; (2.3.14)
220 E (2 [z, , [4el) hee)
For \Z?, |4 with Q»Q we use 4
tzd S 1\ ] € e 25 S-\
\ 2 Sl e &) ‘ i zm\sz—- ‘“?§\§W})]§‘\§)(2.3.15)

el
,(2.3.16)

~

\ ET3

¢ K| Sl |2 170 ¢ KMg|E

and thereflore

Dihe] ¢ ;f__c_z\] et [e) ¢
\ 5 §(§w}5_£f‘ (iq)g \ lzm v SRR

q/:o Log=|
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It follows that

€l e B
|2 (B -2

| <2 S B "

2Avr

(3] L
¢ Ke Swl y 623083

and, since we can always find a number A such that
for all sufficiently large T , we have

2 Ar
j t\u)ot"t'@—‘zenz 4y *f” PARE (R L eiEe)

\

This gives

-

2 $Krt £ . X 7,
K T T K Ll;)':‘ . (2.3.21)

since @ 22 , and therefore we have, for all R

Bl 3
| T ool HE) - 2 1))

Ry JQ2e 4 S =

4 _K__v-‘k 0(203022) :
h(r)?

We are left to estimate the product of the factors

\~Z/§p,<v o Z(Q'q,‘zg.g“)_ {2.3.23)
| -2 |z, Sorq (Zpg~ ®)

for which |Zy}<2r . Now

(Z\"'v NZ) g?i‘v

We consider first those terms for which 2@1 satisfies

g Rophlig ) (2.3.24)
\va—z\

X
125 — 2|l 2 ht*t . (2.3.25)

It follows flrom the simple inequality
Ao rn2i3 |
_ -3 2(+*%) 1522 213
W) e AGEET AT S e (2.3.26)
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)

Al e
that if Iz, l>f then h\ﬁp@)}hhﬁ‘ < k[F) , and

therefore

| )~ 2/Sps

{1l ‘¢/€p,¢v

Hence, for sufficiently large - ,

30

= ¢ bk DA™ (2,307

| , . ‘
R R R L ER )
\ % ;;;§;J%~ b Z/Z?ﬁx

R i
¢ ek 3.___&,&-4 K W) %}r v (2.3.29)

\ ‘\US\)" {5 h((‘)l

For \Zhﬁ\éﬁu we have

2(Z, - & \(\z“\) K Wz 2.
¢ \ ( \) 3k 2e a0
‘ (?7?.4\ “"z> S");:v S { = s . )
andztherefore
RILYOY Ay .
_‘r ta(_s‘mz gg«,,\ gl SN | (2.3331)
=0 (Z?lcv "'*) 5'2%
This gives
o \z(s‘,a,f, -m)\ ¢ XKWy (2.3,98
1,1 € ket (i'va-'Z) SP"V

and this is easily seen to be less than

\
Kl ¢ Kler = K bty (2.3.33)
h(ey*? hiry ) hiny?
and hence

T e |

| “2/5rw

= B b AR ¥
O(v(r)h(r)z) ke

We have now only to consider those terms for which
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125, —2\ < YR, (2.3:35)
We now write
I~ 2/, g s kdna Y B, (2.3.36)
| =~ 2/ (Zpq, —2) Spq,

and, provided 2 1lies outside the discs of (Aé) and (%Q ’

we have
S | (G =B | ¢ KAWREE . (2.3.37)
KA h(y\)%- ~ (29,6‘, P )g,a,v & ‘\(ﬂ ¢
Therefore
LT T | W (2.3.38)
Mem-rEeell &~ VW

We now show that the number of Z@V satisfying (2.3.35)

does not exceed o
he) (2.3.39)

It is easy to see that if X, satisfies (2.3.35) then it

also satisfies both

P A A
| any 2 = anqz] € S0 (hit) < dvhet (230409

¥
and [ b T duleyor - (2.3.41)

It follows from (2,2.5) that if f|r—>1 then h@H)/hw—>\
and therefore the number of EWV satisfying these conditions
for fixed p does not exceed K/khﬁ{ . Also, if pep< Py,
then

B~ T = Amhin,) ey > 27 hi) e (2.3.42)
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and therefore

"o ~ %o 7 flﬁ‘(?r\)o)\n(vx‘) te « (2.3.43)
Hence the number of %p satisfying (2.3.40-41) is less than

) :
- K 2We)er o X . (2.3.44)

RO h(arhed) © O-hod) W)

This, together with (2.3.38), shows that

\i hﬂ\ T {P z/s”,,,ﬁ_gn ¢ X Qﬂﬁllﬁ,.)‘(2‘3’45)

If we now combine the results contained in (2.3.14),
(2.3.22), (2.3.29), (2.3.34) and (2.3.45), we have, for gz
outside (Ag) and ()

. H \
Qcﬁ(ﬁ@ i ¢ X 4 K> i Kkkr\/('lm’v%m - o( ! 1 (2.3.46)
S Wy Weyt YOG e

and hence, in view of (2.1.14) and (2.2.32),
(i k
l‘ﬁ“{@" = §\+o(\3§[ X S__ﬂ___ &k, (2.3.47)
2TT_A_1 ‘ t : u\v-puk‘
for the same set of Z ., The same result holds for =
outside the discs of (Aﬁ) and (8_‘\;3) . Now if a disc of(3i3>
intersects any disc of (Aig‘) then the corresponding disc
! N (
of (As) contains the disc of LB{@S) in its interior, for

all sufficiently large \Z?"v\ . This can easily be seen, for

it et ama PSRN PO ~SN) then
o pff A Sher) % L 0wy
et {l+ 0l ))}

and therefore
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" (e o X
TS 47
tends to infinity. We can therefore apply

4
as - or t"

the minimum and maximum modulus principles to those discs

of (Bég\ which do not intersect Aég) and, since
BSEANC & (e
| lg it ¢ M(r)( ‘ dus }

c 1y 1= W i - W)
~O=hwy) W e "\lﬂ) \ W

¢ K dadeerhol ¢ Klear ol L) (2.3.48)
L-h M’S{‘\.‘LNNM\F ‘ »\TV% (DMMM\)

this gives ‘
\2 k&
leo \neay) = Vol g sg A
shibalie = N e

for X outside (Ag\).

We now use the separation condition of (2.3.2) to
obtain a lower bound for the modulus of‘vf(QW) . If we

write, temporarily,
; n(z A
qe) = —.E’{—};; 12 G 0 §84) = 77(5) 5

then(j@) is an integral function and,in particular, is

regular and non-zero in :
L2~ ¢ j{_ W& ) \Ga) -

An application of the minimum modulus principle g¢ives
-l b i s ¥)|— 8
g 501> i,y Bl EsadePl- )

O:\\Eﬂlﬁ Qcﬁ\ gt § M) QOP)\ D 105 %4l
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and this is easily seen to be at least

] [LVH B -

Sheil). S _lg T (2.3.50)
{ : (-{ L ) )’U‘\.)

since

rom s keall o= _\_.____
q‘:j\ 2(r) 0\5 W) [ ( B0 k(ﬂ)

We note here that the function 50('9) of Theorem 15 and

= o
fatl g

t \ w\o'&'(\:\‘)

differ by at most a constant and may,for our purposes, be
regarded as being equal. We now collect the results of this

section in the form of a. theorem.

THEOREM 18. With {S| satisfying (2.3.1) and
(2.3.2) and Vl(zé) as defined by (2.3.3) we can, for any

positive ¢ , determine an f,(¢) such that:

(1) Log | @l ¢ 25 Ui (2.3.51)
for 21>
(1) leg V(0N > = iz (2.3.52)
for \z\2f, and Z outside LA8>3
(iii) 1u<3\'2’(§%)\ € c[( Soq)  (2.3.53)

for ‘\g\},evl Z %

2.4, Interpolation results for the sets {fp)ﬁ,} We
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are now in a position to prove our basic interpolation
theorem, stated in terms of &QW} . With the notaition of

the preceeding sections,we have

THEOREM 19. Suppose that F& is an integral function

which satisfies

B nb ke MGE,B) ¢ Y - % (2.4.1)
™~ > o0 —%‘W\) e N
and Vw Sup Qoqy\c(ii}ﬁ\)\ ¢RAT B {2t
TP160)
then e Lo ME) ¢ x . (2.4.3)
=S “J%Gﬂ

Furthermore, if

VP&l A (2.4.4)

N
then &) is a constant.

Proof. The principle of the proof is that of Iyer
[14]. We first show that

fizy = 7@ "‘ (&) ‘ (2.4.5)
by <\>Z,<V> (2~ $e) N&)

the series being uniformly convergent in any compact set
of ¥ not containing a point §}$ . We can choose, for
alll sufficiently small € , a sequence {f,{ "™T—> % such
that

fup l(t}c\ M (v, ¢) £ T=hke s (2.4.6)
n = g{)(v;\)

We can then choose a closed contour ', 1lying in{}i\é f;k
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and containing UZ\&TR-\VQTQE in its interior domain KX(QA,
such that fk does not intersect any disc of(Ag) and
has length not exceeding ‘Wlﬁ\ . To see this, we can
take as |, that part of the circle \2\= - 3 h(f\) which
does not lie in any disc of'LA8> and complete the curve
by including the smaller section of the circumference of

any disc of (A$>' which this circle intersects.

Now consider

AT R0 e Bl s e e
i ETXG‘ZW(@ 18) G en() @5) ")

on T[4 we have
1B(Gl € expf (v-ae) QR (2.4.8)
and, for sufficiently large " , both

\?(g)l; exp ¢ (¥-€) Plh- wmn)gz expék“f-zéHO(mE (2.4.9)

and | $-21 2 (-0, . (2.4.10)

It follows that

.

_E_(_g)__.cxé’\ ¢ _T5 oxpd-26@rYe 0 (2.4.11)
jn\ 1) (s-2) R ke g

ool | SR TR W

9
and therefore

£ RN, | P {53 T e
K(C@) N2 g{»“,é Di(r'v\) (z—g?’fv) y(’(gf’?/) |

Also, with % outside (Ag) ,
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F(Ce) \ ¢ Ko Epwoelndt | (2.4.13)

CRENYTEN Mg enf-ogtel

£ Q) QKP% (%-7 +2¢) @t\g‘w\)g ’
UG 1)

and, provided ¢ L%(T-X), we have, in view of (2.1.14) and

(2.3.48), that

r,.) ¢ K@ @i -cow). (2.4.14)
\ @»s‘:\w)'q'(g‘:w)\ ) b '

It follows that

00

K(© g__si:iﬁgidt ,(2.4.15)
hWin)*t

1

e
(2=%) 115,

(\‘),(,U)

\

and, since

o \% r 3
\
Qe = S t g e ﬁ\é g\ £k (Q‘%'“)Q’ (A 10)

vowu

we have that the right-hand side of (2.4.15) is at most

b \
K(eﬂ E“‘Q‘t’sbo\t . ¥ge) 2. 41T

\

We have therefore shown that

< £ (L)
(9%)) (3“4},4(\ ql(g\”‘v)

is uniformly absolutely convergent for X outside (Ag)and
it follows from (2.4.12) that

by TRt Y= ) | (2.4.5)
(@ () (@-Fa) IS,

It follows immediately from this that
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) wA
" 30ig £ 5 _§e~v £ (G : (2.4.18)
(&) (o) (Z=8 ) (Spq)
and similarly with 2™ replaced by any polynomial, in

particular

aﬁNs}\ (Z) C(z) s Z &N,)(gp,q,) p'(g?;q,) . ( 2.4-19)
& o E=L ) () ’
If we choose X\ so that

e S T
e I R  (2.4.20)

it follows from (2.2.34) that the series in (2.4.19) is
absolutely convergent, uniformly for all N and 2 outside
(A@) . Also, &SN,X(Z\ tends to P\)\(Z) as N-—#OO, uniformly

on any comapct set of ‘2 , and therefore

M® P@) = S MalSng) F(Z) - (2.4.21)
@) G (2 ~5p) 11Gng)

This is a departure from Iyer’s method, which depends on

the dominated absolute convergence of the power series for
the function used instead of ‘M(E) and an inversion in the
order of summation. It follows that,if the regions @30\)) ’

containing the zeros of ‘\A,\LE) , and (Aﬁ are excluded, then

| f) ¢ X \%%

¢ K Qx\"{({%-\]\}ﬂ Zw—\_)‘”‘+26) ({J(\Z\\i ;

(2.4.22)

and using the maximum modulus principle that

@) ¢ K uv{@WV;;‘;«:BG)@(B\)},(2.4.23)
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for all & L.Hence

R Sw? kog N\U‘)g . SR | 3¢ o (2.4.24)
™ —> W (’Pm Y 2«)3+

\
for every ¢>0 and A such that m\t‘ﬁ‘,\t > X . and

therefore

Liwa Sk bo%‘ M) ¢ X - (2.4.3)
“-—~>oo\ Cp(ﬂ

To complete the proof of Theorem 19 we note that if
V5o )<A  then

Lo g gl o hop el EEDL = (0 (2.4.25)
- i () 0015, ) g

and it follows that

b s0g %MU‘, 'yl B = N bwoawp %M(r,(l) Dy A24:26)

n /—><>o Cp(ﬂ A —w (p(w)

and hence we have, for all N ,

Ly - (@) 2>, p@%) 2 (2.4.27)
(0 - “%54) 1120y

Therefore, for X outside (AS),

P ¢ @l X

N
¢ Ki\A ,(2.4,28
by \(&- fn“v)’? (Q»«D\ L :

and hence

L@\ ¢ A Bwang {X\ \qtz\\ . (2.4.29)

For any bounded set of Z , {(z) is bounded and therefore

l
R anyp {\(\Vlm&m = (2.4.30)

N
N o
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It follows that

fEEs 6 N, (2, 42303

for X outside (Ag\ s an application of the maximum modulus
principle shows that the same result is true for all # |,
hence the conclusion of the theorem that @?) is bounded

and therefore constant.

We alsuv have a result for the case of functions

regular in a sector.

THEOREM 20. Suppose that H®) is regular in a sector
S@Y) and satisfies:

(i) Wwminb  doa Mlra ) o L 5 (2.4.32)
v —>00 (’00»\ Zﬂj\f‘
i 5 , T Yoo Y00 o8 ¢ L (2.4,
(ii) : ‘:a:;\b o 0 < TN (2.4.33)
and (iii) L Snip k95 \CGQQ“ K Al ‘LH_; (2.4.34)
Sy W) €S, L) ¢ (\CW\) Dl e
then Jl\‘v« A Qoq IV\U‘ o, Q) < Su?{X X} «.(2.4.35)
¥ = (p(‘{\)

If (2.4.33) and (2.4.34) are replaced by

byl - ¢ A ¢, 2.4.36
26 (Sh) B ( ;
where S(SQ,DB is the boundary of S(,ot,u , and

leteeal -« § <o, (2.4.37)

then \P(@\ ¢ A ’ (2.4.38)



for all g in S(@,1) .

Proof. We may suppose, without loss of generality,
that no disc of (Ay) intersects B(S&Jj\ . For we can
certainly choose a set of %QWLA”aHﬁ which agrees with any
such given set in SQ&€>-S§ and has this property,where

$  is defined by

o=\ L le-21¢8 1\l

- 23CIS1D) }
0 Se ¥ (5, )

. (2.4.39)

o
Also, we can, for some positive € <i(nﬁ “Q&dz choose a

sequence {‘}k tWh—00 such that

Siny lmM(r“,d,@§< \ de . (2.4.40)

———

n I @(W“B = 25\*

We can then define a sequence of curves {(&g as in the

proof of Theorem 19 and define a system of curves Ecni by
Co= 3 D (0) n Se, . (2.4.41)

Finally, we can choose a real number X such that

I%Iv - ,{"\Tl v swp{ XY vhe,  (2.4.42)
W/ ‘

and then define the function Q@)NLWAW=7A&) as in (2.3.3)

such that f() has no zeros in Sg' . We’ then cansider,
"‘ . - -

for ¥ in S&;P)‘gi\-s ’

J,_j M) Fe) A= l*Z,\(Z)QLZ),_Z @@:’55)[@2) .(2.4.43)

L o) WE D) @5 K

It is easy to show that the left-hand side of this is

bounded and also that the series is uniformly absolutely
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convergent for = outside(Agm». We therefore have

\f@) « JJ\_@_\ (2.4.44)
A

for ¥ outside (AJBUTQ and, if we restrict =% to be

outside (A..g((\» as well, we have

V@) ¢ K@ 2 (e - 52) (p(\a)§ . (2.4.45)

Applying the maximum modulus principle to the excluded

discs, we obtain

rg 1B®) & KO oxplfy A sgptes(2.4.46)

g€ S )- §
\Z\ ¢+
for all €>0 with )\ satisfying (2.4.42), and hence
Xowe Amp | ap § X, ¥f. (2.4.4
r~>oz)€ (P(v,) zég(olf)—f“ \C(Z>} S ?2 . j ( 7)

To complete the proof of Theorem 20 we use a Phragmén-
Lindeldf argument to show that the behaviour of [®) in
S;g(\Q&Q) is as indicated by the theorem. On the boundary

of this region we have, from the above and (2.4.33), that

B aup dog 8@ ¢ sup $%, 88, (2.4.48)
18\ ~> o0 (12)

and hence that

akig | ¢ K. (2.4.49)

2€ 3(S55n 0 Q) \ e

Also, on fu,

Su P® | ¢ KO -op5-coul < e©. (2.4.50)
R\ =vy, )26 ?ﬁ’j{\ S)Q\D \ V{A_(Z)\ A \)é CP §
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Now p(z)/f(_,\(z) is regular in each of the regions

S 0 S&L p{rend

and uniformly bounded on their boundaries. It follows that
P(Z‘)/ ’2"\‘(2) is bounded in S;g- (\S’Q\i) and therefore we

have

| l@) ¢ K©) QXP%(-_Q—%A?_‘\‘ e) y(\z&)i . (2.4.51)

In particular, it follows, that (&) is of fiinite order

(<@ ) in this region. Also, ) Vz,\(Z)/’ZA(&’) is regular
in S;g nf(o(,ﬁ) andi on B(Sggng(d,t)) satisfies
Fayp® | ¢ KeE©) (2.4.52)
&)

and, since all sufficiently large parts of S,g’:s n%ﬂ) can
be contained in a sector of opening less thanT%/f , it
follows by a standard argument (see e.g. [47], p. 177)
that C("@)Y()‘(Z\)/QA@> is bounded in Sgg(\%{,ﬁ) , and

therefore

Q\‘W\ 4 Q ™,

Loy el ¢ sgborl sy
Z2e SHASRA CP
For the case where \p(gmﬂ\(% and | f@)<A for

Z é%(S(x)M), the above argument will yield

N = S " e (Y (2.4.54)
S8 FSIUEG)  Im DD

This will give, for ¥ in SWD-Sis

| L)) ¢ &(im;?é K\ANM{IK"{'”: sp A BL. (2.4.55)
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The argument used above will then extend this to all =z in
S@,1) and then, since \{@)\ is bounded in S& 1) ‘and at
mostA on B(SG»D\) s 1t follows that

\ P < A (2.4.38)

for all 2 in SA).

2.5, Connection between the sets {Z& and{f\»«d. In

order to establish Theorems 15 and 17 it is now sufficient

to prove

THEOREM 21. A set {Z,& which is such that the union of

the discs

1~ 3 WOEL)
lg =& | ¢ Ay °

covers the complex plane has a subset which can be

represented as {gm Uk,)’(“\ﬂ , provided that

i o Lo, (2.5.1)
2\ A%3f3

This follows since, given the result of this theorem, we
can choose a -\ satisfying (2.5.1) such that VawA™  is

greater than each of

Lim tnb hé N\U‘,@} " &emm? Q%\((lg“zl and, in the case

™ =R p ¢L‘~>
of Theorem 17, w b i% MWaE) ang  Liw tup Yo, | C((‘{t‘\’q\,
£ S gl AT
and then use the results of Theorems 19 and 20.

Proof of Theorem 21. With A satisfying (2.5.1) we

can form a sequence CC‘“P}’ by using (2.2.2),and the




45
corresponding set {ZP,N(J\.,V(HVX. We then divide the part
of the complex plane lying outside the disec i\?\érﬁzi into

quadrilaterals QR,Q , defined by

oA ¢ B Tewn, 25X ¢ anaz ¢ 2slay) (2.5.2)
HD/ARNG] L+ [I/ANG)]

(k=R A, ... 3 X=0), .. D /AW&] ) for some fixed
positive integer A « The number of 8?"\( in Q\Q\Q for

fixed P is at most

FREE E\/‘umw\]} <Vt AQK Whgen) , (2.5.3)
L+ T () A FANCY

= AL+ 0U) ], as koo .

The number of Epe in Qk,Q is therefore

A (14 0UMY) , as koo

Now the union of the disecs

-2 (1)
lr-g. ) € A T (2.5.4)
covers the complex plane and therefore
= 22020
U {eglcair) © (2.5.5)
Z‘,\GO)Q)Q
will cover Qi , the region lying inside Qw,4 with
<3
boundary at a constant distance / M4 rknz»m) from that

of Qk,t s provided that k is sufficiently large. For the
1R

distance Afzn“)p‘ M <) is the most a disc of (2.5.4)

with centre in a neighbouring quadrilateral can overlap

QR,Q . We now use the following easily verifiable result.

LEMMA 2.5.1. If we denote by Q the curvelinear
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quadrilateral
Poe L e a0 CamR ¢ B4R (L<3T),
then there is a rectangle R lying inside Q  with sides
of length ’ | |
L(pFomzed - S2c30)  and (pﬂ»%} s — Cpt?d)

(these quantities being assumed positive), such that the

distance from R to the complement of ® is at least O .

This result shows that bek contains a rectangle

Rys with sides of length

W ceeas il s il
2 Mea {I+E\/AK(FRA)] > A GerdA MWA\H | + O(‘*E‘/AMQAE;S,

= AnArn, qu){u O(I/A)} o T e (2.5.:6)

and

Fon + 2T A - 7 Ten ity
{ g + 27 Aen h (Reaua) = 7 Thernra w\“"ﬂ!{ " O(HD/AM'"MVI

< A %\:"w\m“ﬂm\ = QwAI‘kA\\(QA\iHOO/A)}. (2.5.7)

Kershner [18] obtained several results concerning the
covering of a set by a system of discs. They effectively
say that the most efficient covering of this sort is that
obtained by a system of discs with centres at the centres
of a hexagonal lattice with side equal to the radius of

the discs. The following result is the one most suitable
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for our applications.

LEMMA 2.5.2. ([18], Lemma 5). The minimum number of

discs of radius a necessary to cover a rectangle of area

D is at least 2(V- 9\“0)\1)/6\13\/3.

It follows from this that the number of discs of

~ Y
radius Artm\m Cuk ) necessary to cover Qirq is at least
Tt
STAT (14 ofd)) (2.5.8)
A*3/3 |

and this exceeds A(L(HOU/F\)), for sufficiently large A ,

provided that (2.5.1) is satisfied.

If we assume (2.5.1) we can choose A,>A such that

_,\_1 o e
anl\ b W

and we can choose a subset ${2Z,! of the set izni which is

such that the discs
| -{)’(‘zn‘\)
\ 2 - B sa(ArA)lZ.((\ (2.5.9)

are disjoint, for all sufficiently largel|z,| , and also

such that the union of the discs

. \'—‘v(.‘zr\’))
lz ~2.,) ¢ A\es °© (2.5.10)

covers the complex plane. Since the diameter of @\Q,L is at

“l)’(r \
most K(MFM ((m\;\ = ),A) it follows that we can have a (1:1)

correspondence between some subset in"i, of 2V\'§ and the

set %’_(Ms} such that

» \-1}'7)(\3\»(‘)")
V Bor =~ 2o | € KIE,,) b (2.5:11)
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This completes the proof of Theorem 21.

It is easy to show that the constant LW/AQ&/l of
Theorem 21 cannot be increased; a similar argument in

reverse will shoew

THEOREM 22. Every set {QWUL,D(M)} can be put in a

(1:1) correspondence with a set ig\,w} , such that

=328 1)
and the union of the discs
) g %_"U_pruw
Ve dBdile g BVE, (2.5.13)
covers: the complex plane, provided that
: e (2.5.14)

—v b
2w\ A?%3)3
It follows,as a.corollary to Theorem 22, that

Theorem 19 is contained in Theorem 15.
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CHAPTER IO

THE LARGE REGIONS OF INTEGRAL FUNCTIONS

3.1. Introduction. We shalli be mainly concerned with

the following problem. Suppose that g&) is an integral
function of mean type T of order'e s what can be said
about the distribution of regions where \ZVC&%BKKZ“ is

near to T ? Similar problems in which |F®)| is compared
with the maximum modulus or the Nevanlinna chéracteristic
have been discussed by Whittaker [54,55] and Macintyre [57].

Whittaker’s principle result is as follows.

THEOREM 23. There is an absolute constant H s, not
less than|@72q s with the following property. If f@ is
an integral function of order Q ¢ satisfying the condition

nes, 8y = o) (3.1.1)

where A", () is the number of zeros of (@ in 2T, and
h (<‘4 ),lz (<@ ) and A are given positive constants,

the values of { for which the inequalities
ylfl > kg MUk, F)> 1Y (e
are satisfied throughout the disc
1z -2\ ¢d (323

form a set of upper density greater than or equal to

M-/ (1-W).

For functions of any finite positive order he gave
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THEOREM 24. Let [(Z) be an integral function of order

0, and let © be a given positive number less than '—%Q .
Then there is a positive constant W and a sequence i£1§

such that \gl\"%ﬂ@ and
e | F@1 2 W deg MO (3.1.4)

in the circle
-

EREN ) B S | (3.1.5)

Maitland [27], by inverting her earlier interpolation
results of [26], was able to improve on this last result,
and the improvementrof it which results on specialising
Macintyre’s results to concern only integral functions.

She proved the following.

THEOREM 25. Suppose that ((2) is an integral function
of mean type 7V -of order Q and that d is a positive
Yo
e
number less than*é(;;) 3 then there exists a sequence ié;i

with |C|->00 such that
12\-C J%\C(z)\ e ik § (3.1.6)

as £ -—> 00 inside the discs
i
24

l..
\z _g\\ g A'\gt;\\ . (301-7)
Noble [34], using his more general interpolation
results of [31], was able to‘give a lower bound to the
upper density of the set of ™ for which there exists a

& with \T@\=1 such that
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lﬁlp(z)b p 8 (Wt ) (3.1.8)
throughout the disc

12 -~ T(| < d 28 , (3.1.9)

W

. Al
where d. is again restricted to be less than %(5;31.

3.2, Statement of results. By developing the fairly

exact interpoiation theory of Chapter II to cover more
general cases and by being more sophisticated in our
choice of discs involved, we are able to improve the above
results to give a best-possible value for the size of the
discs and, for these larger discs, to give improved and
much simpler estimates. for the size of the set of moduli
of the centres of the discs. Our first result is stated in
terms which elearly demonstrate its connection with the

results of the preceeding chapter.

THEOREM 26. Suppose that 50(v~) is such that

&ZQ(M e O (328:3)
CX(QoSML f

with vWO&—aQ . Then if &E) is an integral function which

satisfies

A ang Q%M(r@) e Aw {3.2.2)

> 00 @) A3 A

there exists a sequence {§;§ withng-aoo such that

b \ @\ 2 Xg;“m Pliz) (3.2.3)
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throughout the discs
Y R

TR T 0 , (3.2.4)

for every (i<7—1AJ3 and@ M <!

The case considered by Maitland and by Noble results

on setting

7% SRR Q"T and »wy=ze >0, (3.2.58)
A58
: re \ \ '\T‘!L
for then @0): &= and EJXJS becomes E(EIQ . In fact we

have

THEOREM 27. Let (@ ve an integral function of mean
type ¥ of order o . Then,as % tends to infinity in a set

of discs

\z—§\<@%(ﬁ%)\§li, (3.2.6)

S Q@\@(@f tends to the limit T , (0<B<)),
Furthermore, the set of the moduli of the admissible

7 2

C has maximal density at least |- @ :

The existence of such a set of § follows, as
indicated above, from the preceeding theorem; the estimate

of its size is an almost immediate corollary to our next

result.
THEOREM 28. Let R be an integral function of mean

type ¥ of order 0 . Denote by E(N,g) the set of ™ for

which




‘Z\’Qﬂo\%w(@\ > ur (3.2.7)

throughout the disc A
L y® v=§8
\z2 -2 ¢ @@(ﬂg) \¢) ’ (3.2.8)

for some & with |¥|=1, (0\<N<\ ,0\464\ ). Then g('\\)\,@)

has maximal density at least
e
L - ¢ (3.2.9)
and upper density at least equal to

mb -, 1] Lgdd, | %ei1o)

ana  wf {\—@2“)) A (2—:;)%&, for p>\ .  (3.2.11)

We note, as a corollary, that the upper density is,

in particular, at least

_é_ il {\-@7 mﬁ;‘_,p{‘ ("P‘)E’ (3.2.12)

for Q)\ .
The size of the discs in the case considered by Noble
and Maitland corresponds, in the notation used here, to

the range
0 < ¢ < 313, £5:513)

The estimates given by Noble for the lower bound to the
upper density of éxp“%) are stated in terms of the function

— A e-‘ \ .
@ = ¢ sup o | xlegzde s (3.2.00)
E(\(Q,\\
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if the upper density is denoted by 6 and >\ is defined
by

\ - 2¢° \-F\L R 5§ s Z) ’ (3.2.15)
V3 ( /> 2( ’:/%

then

A

— \ i Z
To (M) > m(l{zl(h Z@) )\—pj.u.z.ls)
J3
it Q>‘ there is the more accesible result

D 2 e(QQ;\) (\35(&‘) \‘\«C{i\(\-gg}l)) \-M}. (3.2.17)

V3

If we let (3:0 in Theorem 28 we obtain results
concerning the size of the set of ™ for which £ l.cj M(v“)m

is near to | 3 we state these as corollaries.

COROLLARY 1. If [®) is an integral function of

finite type T of order p , then
=t 133 M(r£) — T (3.,2:18)
as (—>0a +through a set of maximal density unity.
COROLLARY 2. With @) as for Gorollary 1, the set of
™ for which
Pl M) > n (0spel) (3.2.19)
hgs upper density at least

. if ()4\, (3.2.20)

\le
and =% ( Q,\M) ; for Q2 b (3.2.21)
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Since to any function VMﬂ convex with respect to
%SV can be made correspond an integral function 3(3)

with
l% N\(r)%) ALY, (3.2.22)

for large ¥ (Valiron [51], Clunie [8]), these corollaries
are really concerned with the functions \p@ﬁ of a real
variable. It seems probable that they could be proved

directly.

Results, of a similar nature to Theorems 27 and 28,
correspdnding to the more general growth allowed in
Theorem 26 are also available but we restrict ourselves to

the cases given in order to simplify the statements.

3.3, Proof of Theorem 26. The proof follows readily

from the construction used in the proof of Theorem 21 of
section 2.5. TFor any A,,A, such that OCA <A ¢ , we

can choose a J\. such that

_hu Z v < _JQE_ . {3.3.1)
A3 /3 2w N2 A 3N

We consider the intersection of a quadrilateral,(QKQ(R)fM)W%

with a hexagonal lattice of side

- ;\_»Lﬂgp)

Az feson T ’ (3.3.2),

and take as the members of a set £§}V§ associated (1:1)
with the ZW% contained in (le a subset of the centres

of the hexagons lying completely within <ng . Thisg is



possible provided that A is sufficiently large.

Now the discs
L5 s W (3
& §?’C\/ o s \ \§’|’7(\) -303)
are disjoint, since they lie completely within different

hexagons of the lattice, and if *5;% is any point of

this disc then )
Fo(1gs) | (22U
§ e

Py, ,_JV\’S\ Z 5\\\}3 (Az‘-—A\B Su\){kgpu‘)\ ) lg"& (3-3-4)
for (fﬂb\”ﬁ (w3 .

If we assume the theorem is false for o=;A0J3, we
can take, for all sufficiently large \§wl : §;W, to be

a point such that
‘ b '
LoJ\C(f,m ¢ A ATk P (1)) , (3.3.5)

with A< y and,since-A_ is chosen so that \KZWJfL is

greater than Aﬁ/ﬂ25/3 , it follows from Theorem 19 that
r >m ?(, AQSJ

which contradicts (3.2.2). Since A, is any number less

than A it follows that the result holds for any CK less

than A Vs .

3.4. Proof of Theorem 28. The proof is based on an

interpolation result similar in spirit to that of Theorem
19. It differs from Theorem 19 in that not all the 5}%

are available, only those associated with the ZW)%' having
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modulus PV belonging to some subset of thei}}& . The

principle is contained in our next theorem.

THEOREM 29. Suppose {fy} to be a subset of the set
2%% , defined by (2.2.2), which is such that

i;\\\W\ ;Y\(" &l\((‘\ > O ) (304.1)

=00 N
where Ku\is the number of ZVW in \2l¢¥ and W\ is the
number of %, in ‘W4T ., Then, with {§®§§ satisfying
(2.3.1) and (2.3.2) and &) defined by

[\/L\(r\{\l] Z
&) = T\ g W E(Eﬁ@@ad)% (3. 0.2
kefpf ~ 97°
we have &\
log 1 - PRI g (3:4:3)
outside the discs )
- \-%D(‘g',\
ESTD e 10 (3.4.4)
and \S“,',,v\

Slc\as\%’(g},ﬂv\\ > s o(\)kg\ %@At ; (3.4.5)

Proof of Theorem 29. This is an imme@iate corollary
‘of the work contained in sections 2.2 and 2.3. Condition

(3.4.1) ensures that

o
g () Ar, which is equal to 103\ W %’ } ’
] = 2 \%'sil\ér i

is large engugh to assymptotically dominate the terms which
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- measure the deviation of XQS\ ﬁﬁﬂ\ from

b3{ TT \5— l , since the estimates obtained for such
TN zgg e T
deviation when all the ¥, are included are not increased

by going over to a subset.

Suppose now that

| > ,Y" = L‘\u AP V,YU”) ; /‘,\‘M\‘\\Q‘ ﬂ‘_\) - Q >o ’ (3.4.6)
r—a niw) ~— 00 wWiv)

then Theorem 29 shows that:

log @) ¢ (e} 2 i) 5 (3.407)

loﬁ’\qm\.a I+ o} 2-%\1 g, (3.4.8)

for Z outside the discs of (3.4.4); and

log LG 2 Do 5 POGD . (3.0e9)

Using these results we are able to prove
THEOREM 30. Suppose that {Zu.} is as describea above,
with '

V2ope Dany w5 et & 28 >0 (3.4.6)
) i

~> 00 niy) w00 wniw)

1f (&) is an integral function satisfying

Jtun b Jl@ M ¢« 8 (3.4.10)
 —> 00 70 9w \? '
and i\\\M Anp &03 \ B(éoe‘,a\ £ K. 4 O y (3.4.1%)

0104 2w l\*
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then Lw s LlogMof) ¢ w0+ %. (3.4.12)

- —>00 (P(r)

Proof. The inequalities of (3.4.8) and (3.4.9) are
sufficient, with the argument of the proof of Theorem 19

as far as the consequence of equation (2.4.17), to show

that

Py = Ry S, —l8ee) o
1 Gh4) (Z‘g’?"%)"l/(g?%) AL

Using a similar argument to that contained between

equations (2.4.18) and (2.4.24), with )\ chosen so that

\ End: 4 < © ’ (3.4.1%)

~—

2w \* anN\*
we obtain that

TR gup  Jon M0 ) ¢ L V% (34015
v ~>oo U(p(w) 2aA* 20N

which is sufficient to give the result of the theorem.

Having set up the necessary interpolation theory, we
now turn to the problem of selecting suitable sets {é@ﬁg.

The argument depends on the following proposition.
LEMMA 3.4.1. If & 1is a set of  such that

meas { & ¢ (g, Guomd | = Vo ¢ >0, (3.4.16)

QRNA £ QA
then we can describe a set of tQK discs,each of radius

-2 (" ,
A rsatia™ “3 lying in the in‘l;,erior of Qk,Q(A,J\.))Xﬁ), at
-390pR)
a distance at least é_UL‘A)GmﬂQ; “from each other,with

centres 2%, having modulus belonging to & and such that
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s e RO ey e

e D A, (3.4.17)

Proof. We consider first all intervals of length

-2 DN
2 “)which lie in the complement

more than %(A\‘A)f&Hmilﬂ
of <§ . There is no loss of generality in supposing, for

notational convenience, that they are open; let them be
a\)b\\ ) (a1)b1)) - * T )(C\nk, by\k) 9 (3-4018)
with fa¢ A, ¢b /<Gl .- L by (< Up, € ong € Taanp -

We now translate the set of points of (Qk,L which
have modulus lying ia EMR)QM“A} a distance (bnn—a“;)sec&h
in a direction negative to that of the radius vector of
the centre of (bmﬂ y Where Qxik is the angle subtended by

Qk,g at the origin. Next we translate the union of this
translated set with the set of points of (Qw,l which
have modulus lying in the interval [Lnnd,oﬂ;}a distance
(bnkq, Q“?dx&k&hin the same direction as before. We repeat
this process for all the intervals of (3.4.18), taken in
reverse order. Let the set which this process produces be

*% e N
denoted by Qh¢_ s then QhA. contains the curvelinear

quadrilateral determined by

Ny :
e

tep & 1Z) ¢ Ea\)/-l ‘% (\J?-—Q\;\ SQCO{R o A-3v8.X9)
P

and \C\A/\ji -Sﬂk‘“ < D(k ’ : (3.4.20)

where (i is the amplitude of the centre of Q¢ . Now
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Ny

8.

PZJ (og-apd € O-M) (g = ™n),  (3.4.21)
and it follows that

Nk :
Reon =2 (bp-tp) Stcdy 2 Fp + (@“m".lw{ /'(/~A«)5~Mn7},

?2\

2 O+ Mellaon = Ten) ~ Wooon - Fen) (seca-1), (3.4.22)

and therefore Qf;\ contains the quadrilateral determined

by (3.4.20) and

CARLE By ® Ay (Gaon™ %) ~ (Raod ~Nen) (SeCay= \\)-( 3.4.23)

PR

That these equations do determine a real quadrilateral,for

all sufficiently large R , is ensured by (3.4.16) and

- AR Seal s i o
see o, =\ = SﬂeciHD/AkU‘mﬂ) I (3.4.24)
< K(A\\(%ﬁ\\t = (3.4.25)
as h —> 00

It is now easy to show that this quadrilateral

contains a rectangle with sides

| QPep Tamdy = QwA\\LrM){H O(Tm (3.4.26)
as R—=>% | and

¢ Fen ¥ A Ung = T) = (s - nA)(S'Q("zk“)‘& gy —Tgp

{\—\ 0 (A’L\,\WR,Q)E Xh@m\\h ~ R ) (3.4.27)

M

Ji

>\\Q 2w A Ty \\(m){\)r O(—,Hg, (3.4.28)
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as RkR-—s 00 , Next consider the intersection of this

24, —{‘VUM\
rectangle with a hexagonal lattice of side i@"&&WR wA
and denote by {Z& the set of centres of those hexagons
which lie completely within the rectangle.The number Nh

of 2? is easily shown to satisfy

NS O o g G B & . (3.4.29)
NRERE A,

Now consider the component sets of Qﬁ:k returned to their
original positions with each Z, kept fixed relative to
the componenf containing it. If a ¥y 1is contained in more
than one component it is kept fixed relative to only one
of them. Let the new positions of the 2, be denoted by
Z/P . Any Z'? must lie within a distance TL(A\~MRQ,\)AW:A%»WA)
of a point Z|; (possibly %, itself) which has modulus
lying in E . The distance apart of two discs having -

I ! LA
centres at %t and 2, (p$) with radius A feon fug ©

-2 2(%A)

is at least {(ﬁ\—ﬂy‘@,’\m-"m . This compietes the proof

of Lemma 3.4.1.
If we now choose J/\. so that

R O ol (3.4.30)
s

we obtain, for all sufficiently large k , wWith Ak

satisfying (3.4.16),
N, 5 0 AeA CORX Yo o 3R

Hence we can choose N’{( points Z?SQU\-;W‘\), that is all
points of 63wﬂf¥,VUWXSlying on some subsetw‘{\z\=vk§ of



63

el o ) in Qe with

N* = >\\LP\‘L(\ Al \C-\-%)a (3.4.32)

where \\k\Q\ , such that they are in a (1:1) correspondence
with a subset of the centres of the discs constructed as

in Lemma 3.4.1.

Now suppose that the set éo of ¢ has linear density
8" .1 >\k<C <© then we remove from E all those points
which lie in the interval (fhm(“\mm\\ to forﬁ a set 6\ with
upper density at most 0. and lower density at least 0-< -,

For g\ we have

Q) o)
Ao, ¥ C ew e L3 00 (3.4.33)

When >\Q\Z>C the conditions of the lemma apply and,.for
each Qh,Q and each k s We can choose the N*\l points
Z?"‘v as described above, the subsequence {r\ﬂk being
the same for all Qk,,t with fixed R . When /\UL:O we

choose no points.

We now determine the behaviour of n(®) for the set of
points so constructed in the case Y = (>>O . Suppose that
Y.l is the characteristic function of the set By
that is 5=\ for re&,YM:=0 for rfl‘g\ . It is easy to

show, using the arguments of Chapter I, that

. T
e LU s e

where \MM\S\ . Now
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* 3
ﬁ \é\_(:i\ é\\_' - S\ XA\‘) (‘)\\’ i (Q_\\S St X\L\\\()\A cﬁ‘, ( 3 s 35)
\ < -8 \ e+

and, since

* ¢
6 > hwagy L[ YD) dE > Romey&i( X.(DAF > B-¢,

> i C>m
it follows that the left-hand side of (3.4.35) is

assymptotically at least

e N ke T Qfe{\-— <p
(6-cDe —LQQ‘—— ST @)g (3.4.36)
for 02\ , and
(6 -ode 5 (B-D0-p)E _ 6“’{\ - Si (3.4.37)
e e 6

for QS\ , and assymptotically at most

6+t ~©-O-NC. Bl < “\)K (3.4.38)
N Q

6

for Qa\ y and

dve s BL-prf oyt (3.4.39)
e C

for GS\ . Therefore, in either case, it follows that

~ Y
Al (ui@)) Mwcsep A6 5 bk Riw) 9(\-1)(\- ¢ 0)-(3.4.40)
( CA> ) " r-_>°o? ;\U\ ? =0 Y\U”>/ ch
We are now in a position to prove the first
proposition of Theorem 28. For if <S lies in the
complement of éxp)g) , then in each of the discs of
1 T\ %
Lemma 3.4.1, with A= QE(TJ&)L , there is a point where

\zvﬂw\c) \ &) ¢ W, (3.44%)



and we have shown that we can take a subset of these

points as the set {{gﬁﬁ associated with the Z?SW

considered above. If we suppose that

Y = Wi N Q% N\ér D 0 : (3.4.42)
L %

r=>0a QW@J\Z‘

we can choose A large enough and < small enough to

ensure that
; Y -Tﬂjzf—— 2“€JG cA —€%~
and it then follows, from Theorem 30, that

Kb anp log ME D) T | (Y _ L Y[i-¢ m}. 3.4.44
e LR e R (LB U I ) ) AR
This holds for all small < and large ¢A  and hence we

have the contradiction

Ting wT . (3.4.45)

oy A (3.4.46)
QWQ"“ &

and, since /. is chosen to satisfy only (3.4.30) for any

L\\ greater than A y 1t follows that

Ao s W L ¢ (3.4.47)

Aw 2 Qv QQ'A\—

implies that
W

6= dwalty & ¢ AwgTT A, (3.4.48)

Therefore
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o\ms%S ¢ Q'L. (3.4.49)

Now & is any set having a density and lying in the
complement of g(pj@) 3 hence the conclusion that the
maximal density of<EQM%) is at least | - QL .

If we suppose oily that & has lower density e .
we can still form the set <§\ having lower density at
least ©-C . The estimates for W) in this_case are
il

provided as follows. For}9>l s is an increasing

function of U and therefore

s 8-Or
S Xt‘—_k_k‘,: At > {\ +o(\)3 g{de, (3.4.50)
S di e} (8 e .gﬁ ,
and hence
Yo Tebib g 5 6 ~O(’(\~ —‘—). (3.4.51)
& =00 whey T cA

For Qs\ we use

- r v :
& L IS W 111 g\-@g b Yd g (3.4.52)

\ t\—e . 4 \ L

T

> 11+ el] {(G-OVQ T (9-0"65 LR T
G4

which gives
& =20 i)

For both cases we have the trivial inequality

iwm gup R < by (3.4.55)

- >0 ()
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With & 1ying in the complement of 5(%(33 , We can

again choose as {Q‘}gc& a set for which
ot b, %5\ B{Tpd) € o, (3.4.56)

We restrict ourselves, at first, to the case for eg\ g

the type ¥ of e satisfies

y SIS N (3.4.57)
Qﬁe% i

then again we can choose C small enough and cA large

enough to allow us to use Theorem 30 to give

X
iz N fnp lsmin L) ¢ pTa - (0-0{\- cA) . (3.4.58)
L e ¢ 2“61_/\5‘

This holds for all small ¢ and large <A and hence

T.oo¢

T oA A=l 3.4.5
™ QWCEA} ( %

We can restate this result in the following form. If
@>2WQQ-/(LT, then © {\=— (\-NQRQEILZ'V ; that is

8 £ swp {%Q_’tl\z“(, \—(\-\OQTYQQ-[CT}, (3.4.60)

. ‘
and since /. is any number exceeding AQ'JB/QW": (37‘/:3\-\ /3

this gives

0 = lowar M:\’fBg S Su\f){(;") A= (\‘\*)§11§' ©(3.4.61)

We can take <t_a to be the complement of qu)(ﬂ and hence

“W”M‘\ﬁ SC\M@? “"‘M(“%zp(\-\*)(ﬁ%, (3.4.62)

for Q&\ . A similar argument when Q}\ leads to



68

g g“?{ gf 5 A (\—w(fk ' (3.4.63)

and therefore, in this case,

Wppas oJLwV Sw)(g\ W\Q{\ %A= (o) Q} (3.4.64)

Finally we note that the upper density of S(P)@) is a

non-increasing function of ‘\x and % , and therefore

hopen sy \:3 5@»\)@? ’?Q \E)?}k (?V\(l{\-(?) Q-p) %IQD,( 3.4.65)

for Qs\ , and since \-Q $Q-p) @l if and only if
R \/fe-w) it follows that w

W ppss dﬂxgi\\‘\i c‘?((\x,@z M‘-{\—@‘) ﬁﬂ (3.4.66)
for QS’\. o Similarly for > | we have

sppor donsit by Eup2 W\a{\ ik (2-» ”()E .(3.4.67)

This completes the proof of Theorem 28.



CHAPTER IV

INTEGRAL FUNCTIONS AND FUNCTIONS REGULAR IN

A SECTOR, WITH INTERMEDIATE GROWTH CONDITIONS

4,1. Introduction. In this chapter we shall be

concerned Qith results which are intermediate to, an in
certain cases improvements on, Theorems 13 and 14 of
Chapter I. As mentioned there, if in Theorem 13 we have
4.<“YQ then the result follows simply from a Phragmen-
Lindeldf argument, without any appeal to the properties of
F(®) on the set of points {an. Theorem 14, although not
having this possible redundancy, is very specialised; it
concerns only functions of growth less than typefﬁT of
order 2 in the sector, the interpolatioh set is completely
determinate and the growth condition is one of boundedness.
In Theorem 31, we. generalise Theorem 14 in a ﬁumber of
ways; we now include all cases of growth of finite type of
positive order Q and the interpolation sets are those of
Chapter I specialised to the caseAﬂU)E?e . Furthermore,
in addition to giving to information when the condition on
CGQ at the interpolation set is one of finite type of
order ¢ as well as in the case where f@ is bounded on
the set, as'does Theorem 13, our-theorem covers all cases

of suitably smooth intermediate growth.

We are also, as a corollary to Theorem 31, able to
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establish similar results for integral functions having

such intermediate groﬁth on the interpolation set. The

relaxation of the boundary conditions,. compared to those

of Theorems 13 and 17, achieved also allows us, in the

final section of the chapter, to discuss some problems in

the theory of integral functions with gap power series.

4.2. Principle results. The general theorem is as

follows.

THEOREM 31. Suppose that Qz) is regular in .SEQQ)

and satisfies:

(1) B b oM, 4 B ETER S (4.2.1)
tr—>00 = e AZ3J3
(ii) Y Sup dog |0(po ™)) YT (4.2.2)
208 ~ e 5
and (iii) bn gl el ¢ x <o (4.2.3)
| Zﬂég@ ) YH0e,)

where the union of the.discs
' o
T N (4.2.4)

covers S@, 1) , the growth estimating function W) is
positive and non-decreasing and(“quﬁ is non-increasing
and has limit C , possibly zero, with ¢X<T. If d < W/p

suppose, in addition, that

atd x'{ & x%-r)‘. (4.2.5)
2.8 U T e



Then

i Swp JL«>C\N\(f I »«{\ + _CR &)f Wi aat e Ll
Y

Pin0b HU‘\ —eX 2w M)
for all (3 (0< (<ol ) which satisfy

st 10002} > D’{\ 9_0_}_’_} ¢ LR

R)

Furthermore, the conclusion remains unchanged if in
(4.2.3) the set {Zv\i is replaced by a set {2’,&, where for

some finite positive numbers ¢ D
\ 2/ = L 8
W =) A VE) (4.2.8)
and for wm #£n

b2 la 3%9{\2'“\"{(’) \z‘“\‘"l“z STl T

If x=0 and B() is unbounded the theorem gives

L Sh-\f &o‘\ M(P\G)p) . X » (4.2.10)
>0 T

which is the best one could expect, and if Hw is bounded,
that is \C(Z“S\SA for 2, GSQ,D s then (74(2) is bounded in
g(@, Q) . The angles o ,@ in these cases are such that

M2 . B
0¢ B , S 1 oG-} > =
If x>0 we may assume that ("= ™% and we then
obtain

FEVN L p JloqN\ PL(ECS < ){{

™00

?; R

where o ¢ weatisfy
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0 ¢ Q &l AR ég(d-[s)}> %{P%&i%—} o L4 2550

This result, although not necessarily best possible, gives
a smaller estimate for the type of f@ in S(§,0) than

that of Theorem 13 when

¥7
W TRy 4. 2.33)

otherwise the result is inferior to that of Theorem 13.
For integral functions we have

THEOREM 32. Suppose that @) is an integral function

which satisfies both

Nw Wl Rog M ) . v (4.2.14)
f— 00 Yore
and PR g% \Q@n\)‘ (¢ X <00 (4.2.15)
: QN

where the discs
\_A
TR WP TN e

cover the complex plane, V= Aﬁﬁf@JS and R A ”
TR V> ¢ as r—> 00 , with (<Y , Then

Lw QP ‘ro\ M(q@\ < R . (4.2.16)
~—00 KJRQH)

Theorem 32 only provides information additional, to
that of Theorem 15 in the case where H(v) is unbounded
and ¢ B() tends to zero. There are a number of cases of

special interest. For example, if
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Hey = (chw)l then l‘i{\ M, @) = oa%n?,
and if we have, instead of (4.2.15),
\e@D| ¢ A \zg\k, (4.2.17)

the conclusion is that F® is a polynomial of degree at
most R . Theorem 32 is an almost immediate corollary to
the preceeding theorem; it follows from Theorem 15 that
the type of RZ) does not exceed (X and therefore we can
satisfy the conditions, suitably modified to allow for
change of orientation, of Theorem 31 for an arbitary
sector when (=0 ., The part of Theorem 32 not contained in

Theorem 15 follows, since we can take
\orgzl < %W and loye- T ¢ 3T,

separately, as sectors in Theorem 31.

4,3. Sequences of canonical products. The proof of

Theorem 31 is again based on cardinal series techniques.
However, it is not now sufficient’ to have only one function
Qﬁe) which, for integral functions of suitable growth,

would ensure that

o = @2 Cf—gj'\z’(zn) (4.3.1)

where {i“g is the set of zeros of 7(?) . We shall in fact
construct an infinite set of functions, each member of

which has this property.




T4

We consider a set of points izwmg (m,n = O)i\ftl)”.)

for which
| i ~ M+ ¢ D <@ (4.3.2)
and, for all (M/) F (myn)s
\Z gy —Bum| 2 &> 0., (4.3.3)

For each pair (M,N) we form the integral function OQBN(Z>

defined by
G (@ = (£-Znn) xp{Juulezual] || Efg )5 (4.3.4)
. (N I
\ =
where dyp = r&_‘,‘ﬁ; &%“_walér (Zon— ZM,N) (4.3.5)

(we shall show later that this always exists).

In the special case Z,w = M4 n Omn () becomes
UTz—M—dﬁ. Even in the general case the growth of these two

functions is similar; if we denote by(Az) the set of discs

Ve il 0y < 250 (4.3.6)

the main properties of the set of functions {qhﬂg)} are

contained in the folloWing theorem.

THEOREM 33. For the Ony(2)  described above, we
have:

(1) OpnlEn) =0 » for all (M,N) , (myn) , and
Okmti) has no.zeros outside the set '{me§ . Also, for

every ¢ >0 , we can determine %:(;@”%S)D> , independent

of (WN) , such that:
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(11) log | T, (@ ¢ (Foreiz-2.0 v (4.3.7)

feor \Z _ZM,Nl 2 (‘o H

(iii) loS\U'M‘N(?)\ Z %“*e)\z"zn,\\l\l ’ (4.3.8)

for \E~8N,N\ 2 {, and 2 outside (A.‘) $ and

(1v) ol Oah (2l 2 (A=Y n-2 0, (4.3.9)

for 2, .- Zuw\? 7, . Furthermore,

(v) \aw@)) 2 w >0, (4.3.10)

for 2 outside (A'(\ s and

(vi) \O”M,'N g} 2w 20 : (4.3.11)

Proof. Part (i) of the theorem follows directly from

the definition of Oy (%) .

The proof of parts (ii), (iii), (iv) is based on a
comparison of Gy «(R) with O‘(@—EM,N). We denote by (B,Q
(different for each pair (M,N) ) the set of discs

‘ 2‘ i (M'\'QV\"\’ ZM}N)\ \< 7 (W"—)ﬂ:O)i\)"‘ )o (4.3012)
We then have

LEMMA 4.3.1. If & is outside (A,) ana (B;) , ana
€ >0 s then we can determine r\:l“(é,?) D) s 1lndependent of

(MN) . such that
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ley “ eiiRe ¢ el (439

gl \ - Z272Zmw
™M +in

where &' is the set of (m,n) satisfying

0 < Imewml € 2\12-2nn)\

Proof. Write |2-2z,4) =r , and let &, be the set of

(m,n) satisfying either

) \
O < dmpin) £ P9 Tgp lmaM 4 Laa)-2) ¢ %,
Now
Z-2
P _ *m—nv:«N - ‘ > (Z“EM)“)(M*F;“‘\—Zm-lemU)’(4.3.14)
| — o Z-Zmw (w4 ) mamo2)

ZorMatN ~ Emn

and if (m,n) belongs to En{\ s we have, writing
%\”‘V: i?-?)'v,,- (F\—C(V), '
HWHQV\\?(Z.MM)V\*N-E” = \Q\M-iv«\{ M = (E—M"':N)“’ Swm,wm“ f

2 u\c \ g"{g-(z-M—‘\N) ‘\'FSMW\)'\#N}‘ ’

Cf g~ |
where & 1is the set of & satisfying either || ¢ M or
\ \ ;
\ L -(2- M-NJ¢0% | Now f{f—(z—Mw‘N)*SmMm.m} is a

quadratic in & with no zeros outside E* and hence its
4 ¥
minimum modulus outside 5" occurs on the boundary of E .

This gives
KYYH—QVQ(ZM*M,MN —Z\\ " Q-&‘ D>(f'f£’203’ (4.3.15)

and therefore

le—- ZM)N)( M+‘\V\+£M)N -ZMQM,V\ﬁw)
( M+ V\) (zvm-M,M-’N - 2)

¢ 20c
~ (ri- D)(r‘r{_zp b ( 4. 3 016)
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‘__ z"‘ZM,N

iﬁ -\-\- sznﬁN"EM,N_ é € \z" ZM)N\Q-, (4-3-13)
<<_:/ L -‘Z':M!!
™M N

where &' is the set of (m,n) satisfying

0 < Im+wnl ¢ Q\E-ka,u\ .

Proof. Write |2-2,4)=r , and let & be the set of
(myn) satisfying either

\ \
O < im+in] ¢ e or lwmaM 3 l(vx+N\—Z\ $ e
Now
2 -2 :
e m-rfv%\ﬂ = ‘ A (2‘Zﬁ,ﬂ)(m#-\'\‘\'zmﬁ‘zm,mu),(4.3.14)
| o e T o (W\+§Y\)Limm’m~z)

ZoaMarN ~ Emn
3 ;
and if (m,n) belongs to E~€\ s we have, writing
%P"V = Z?;(V” (Y"‘\fv),
i(M"*QV“\)(-zM*M)\M»N‘z», 3 \(M*‘“\{ Mt - (E'M~:N)+ 3“"‘*)“"“%‘ ’

> Wl | C{e-=-m) + Swamman)]

CE8™
where &  is the set of & satisfying either I{) ¢ 't or
. \
\ T -(2- M-IN)J1 ¢t | Now f{f"(Z-M—SN)‘f%MM,MN} is a

quadratic in _C with no zeros outside E* and hence its
p *
minimum modulus outside 5“ occurs on the boundary of 5 .

This gives

\(W\"':V\)(ZM#M)Y\'\-N ’23\ » Q*-— D)“-f%'—QDB, (4.3.15)

and therefore

L‘g' 2\"‘1*‘1)( M4 “’zm,ﬂ ‘3m+M,vx+N)

¢ 2D y (4,3.16)
(YYH—C“) (zwwM,!\W "'Z)

T (rL (22D




T

4D
S

9

for 7V, () , and if t70(eDd) we have

¢ e (4.3:17)
3 32

(2-2 Mme ez, -2 )
A% M K WMy VAN
‘ 9”03} \ (m+tv\)(zm+M,nT: ~2) \

< /
There are at most T\‘(QM—\) members of 5 and hence for

sufficiently large r~ ,

' ' il 2-Zm,w
H i, il = Zm
gl Ll — 2 Zmuy

m+in

& e (4.3.18)

Nl—

%3

It (mw¢& and 2 is outside (A,) and (B,) we nave

the inequalities:

V' ¢ \mrnl € 2r

8 < \ZM‘\'N\,V\*N R ZM,N‘ &\m*'{.Y\\‘\'QD\( At 2\) ;

C R ot =21 ¢ Va2 (| 4+ \matn) + 2D < 3042)
1 ' ;

n < \mitn x By ~2 1 ¢ 3r;

and therefore

hé§

3r@2D) . (4. 3.
r (3e+29) £l

T

(main 2N "Z)(me.mu in Zm.nl_
(m*““)(z\m,ﬂ\, nN '—8)

This gives, for F)/Q(.D) .

\Slo \(wm‘v\ * Zup D Eowmtt Ea) || ¢ Loy % (4.3.20)
q ¢ 313

(M (Bt e — 2

\ i
There are at most 4w (*+\)  members of & and therefore

' 2 - 2
QOS ﬂ { i3 Zo W, na ‘NZM)N } £ AT(r{*\)z 005% ’
T T

U
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S

£ haae (4.3.21)
for 2 1s(€,9,8,)) , which together with (4.3.18)
establishes the lemma.

LEMMA 4.3.2. If \2-Zuu\ 2> 4(04D | there exists a

constant 4,=G.()) such that

Z - ZM)N )

%3 Il E( 2 gy s = EMN)\

§EL 22 )

where S’ is the set of (mn) such that \m+hﬂ,>2\8—zmw\.

¢ V2 -3, ,

Proof. We have, under the given conditions, both

- X
\ 2 MW < SR < < ' 4 and 2-ZmN l ¥ ,
zwwM,mN =Zm,N & -;1\) | 3 Myin g 3
and therefore, using Lemma 2.3;1,
2 —Zpmw
%3 (2mm,m,w 2M~>\) QD \2 ZMN\ A (4.3.22)
E( ZMf"\':\" \) \Ms\v\\K\th\ 2\)}1
&.. 24D, (4.3.23)
Imem|® :
Lemma 4.3.2 follows, since
: \ |
AWM\ 2
LEMMA 4.3.3.
) v &

r— 0(\5‘5.‘-2"‘,‘“\ <¢ Lzm,n ’—Zmﬂq)

exists and is bounded.

-



Proof. Since

|

i
&

2 I
G<Mqugq (m+&“>
we have
o !
it } |
Dy nl ¢ i O0<Imyin) £V (ZWH»N)MN = Zm N)z
A { \ g ST Lo
¢ \metnl g ("L {ZMM)ﬂ+N "EM,N)’L '(M+ \\,V\)‘L

L3 Z QD-ZUW\*C"\\“' D> ’

Lol (mnt-2) ) Imatn(?
¢« S ol o
Consequently

(4.3.25)

25 ! R,
N&iwmind € 7, (2MN\‘MN '“ZM)N)l ’T

This shows that

B - ) NN A
{ F=% 6 cimanig © (ZMM,“.'.N -2

aa T\~ 905

exists. Since the number of (m,n) satisfying \m+a| & T

is. at most 'WO}H)I , we have
" 2 ‘
won 4\, (4.3.26)

2, ‘ ¢
2 ~
(Zrsmma =B, N g

OC \maanl( V)

This together with (4.3.25) shows. that Gmm is bounded.

Now consider
\

b :
O]y By WV 41 (Zon, = Bmp ) o<lmatnl¢ 320 (Z o mew — g
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Since every element of the :ffirst sum is a member of the
second, and that the number of elements contained in the

second sum but not the first is at most
T (ra 204N - W® L\r—\)i,

it follows that

e g \ An (D)D)
2 2. $
\os\s.‘l g6t Boam Ema)® o cmatel M2 Emmat— Tt rt ¢

__.__.,O

as >0 , Hence, since @M,\v exists so does oww and

dwn = @mﬂ . This completes the proof of the lemma.
Now
\ (Z—E»w}{ \ = } \v\e { L Dr ) B.i‘} ;
Zo Mg = Zmn M in Timini-2p|lmninl * 3

and, therefore, writing

F i e«

bt Oc\madi(4 D 4O msM) € 2
and using the estimate 1r/§ in the first sum and

2\)#/(\M+‘h\\—2b)\m+«‘n|in the seécond, we have :

\
\ LZ‘ 8«\:" \ {-ZM,MN ‘ZM,N F m_,*,fy\i \

2 U
2 ey
. LS_LD*\) > 4Dr Z‘:/ Jma |2

/N

¢ KEemr \<1L9) t ho&f

since Z Die W _00031*) for large ~ . Hence we can
o lmylnige I
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find an a, such that, for €2 “(S,D),

Z2-Zp,w k
<
ﬁ@g , x?{ FmiM, ne N~ Zuw

L { Mﬁ_}

£ in‘kcg‘\{‘ o (4.3%.27)

M 4w

o “ i {1\) {%(2"“+:~:mzt‘;mw )Qi } i Ql\)g%dﬂﬁ(z'e'wg}.( 4.3.28)
wiep0 b el 4 (I Ena )]
Combining the results of Lemmas 4.3.1 and 4.3.2 with
these last two expressions gives, for z outside (A'l> and
(8,

O (B)

{ i ‘ ¢ €12-2 " x (@aa)\2-Zu 0 Qg \ 220,
l 3 FE-Zull i g e

¢ 2é(z—zm,~\l, (4.3.29)

for \Z—ZM,NDF{(G)?,S, D) . Hence, on rechoosing €& and using

the properties of the ¢=function, we have
exp {(h-te)EZan} € @< trpflimd Yla-2mul] ,  (4.3.30)
for \z- Zwal2G(5 1,5 D) » with 8 outside (Ay) ana (8;) .

The inequalities of (4.3.30) hold for any xz outside
(?L'O and (\Si,z) for \z-2.,\2 G(¢,109, D). Now if two d;Lscs
of (M,l) and (\3_,0 intersect, then the corresponding disc
of (A,\) contains the disc of (¥ Y> in its interior. Hence
we can apply the maximum and minimum modulus principles to
those discs of [Biyz) which do not intersect a disc of (A 7)

to yield

o {@ 401zt ."‘i'ﬂz} 0@ < «‘QP{G;_w%é)(\Z—ZM\.%.()Q} 4034313
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for all # outside (A,z) y with \2-2,,\> fz(e,{q,s,b) s that is
Axgi(,{me) \2%,.\),‘,\1} < \G()) € e § (Awne) \E-EM,N\lf . ﬁ( 4.3.32)
fOr \2-Zuw\? r%(e)rbs)o), with 2 outside (Ay) . The left-hand
inequality of (4.3.32) is conclusion (iii) of Theorem 33
while the right-hand inequality together with the maximum

modulus principle applied to the dises of (Ar() gives

conclusion (ii).
To obtain Theorem 33 (iv), we set, temporarily,

$ers  Tpan(@) [ (& 2uow) (2¢2,,,),

and §§3m,r\) = le,w (Reyn) 9

then S$(z&) is an integral function and

| (2wl ] dylomail gy by late

= 4 3 il IS By - e
V224 0 S S B €2t

(4e3.3%

Now if 2 1is any point of 2 -2, =vl y and if
mpn- Zwn)? 3E6n,00), 1t follows that '

\1@\ @ _ e ¢ + Nyl . (4.3.34)

<
V- Zl" (R Emal -}

p)‘/

since $@) 1is regular and non-zero in 12-8u.) S\z s We

ave

\ Qg\g(z%g\ _,%“\ < €, (4.3.35)

V2~ B 12

if R, —2nw|7 %(61,3,D), as required.

For \2-2yna) 5 1Zepn2mwl 7 % (—:-._Tr)»z)cg') U)zY;(say),results
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(v) and (vi) of the theorem follow from parts (iii) and

(iv). Per \2-Zu,l ¢%  with Z outside (A’l) and 0<\wa) (2% o

\{ ZmamgneN —2 } "M’?g i - i _1( 2~ Znn )ig
2

onn My ~ ZN.N zNM,MN —EM)N zMM,m“ ‘eh)ﬂ

2 0o ‘ffﬁ"z -;»j— . (4.3.36)

o+ D)
If Imn)22% 2 8 D,

iy €t on)| = 15 4 (e ),

2% zwﬂm-w "'ZM,
5 of
¢ 2 : ,
©opry P lmal2p)®
3
¢ - Kale
IW\+\‘\A)§
and,since 2 |wu,\‘»\\'3 is convergent, we have
ﬂ\.u‘-.\io
I 220, Zwatual) = 2y

Combining equations (4.3.36) and (4.3.37) gives, since the
°(M>N are bounded (<X¢s , say), -

Len)Opt®] > - ww)l{g" * i—g’: % Q‘:}Q____”°+3’>}~\<«r§-\<ss‘,(4-3-38)
1

for ¥ outside (A'1) . This establishes part (v) of
Theorem 33.

Finally, {(2)= D’M",(g\;/(g_ﬂ Zn) is such that
f:(zm),\): D’M{N(EMM) and |{&)\> @l g for 2 on the boundary

of the disc \z-zw)“\g:z and non-zero in its interior. An
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applicationrof the minimum modulus principle gives part
(vi).

4.4. Proof of Theorem 3l. We shall first establish

the result for the modified case where g =2 , Y*3% and,

in (4.2.3), 2.} is a set {%,,.} satisfying (4.3.2) and
(4.3.3). The starting point of our proof for this case is

a generalisa‘t;ion of that used by Pfluger [35] and Cartwright

[7] for lattice point interpolation.

In what follows we shall suppose that 0 ¢ &-{< 3w

and

dpl
Mk ; (4.4.1)

. X ki
i w{\ { Gw-c

We can assume, without loss of generality, that no Z,.
lies within a distance rl<7;8 of the boundary of S(A,D $
for we can certainly construet such a sequence which

agrees with the given one except within a distance " of

the boundary.

With 0OunR) as defined in the preceeding section, let

¢m,N @) = @ 2 LGN + e dsd)
2uneSG, ) (B )00 (Zaon)

where Z,y is any member of the sequence Ei‘,m,.\} lying in

S(%Ro) s for some Qo to be determined. Now ¢(Zw,“)=g(3m,“§

and so

QIQM,NLE) o fe - B (R (4.4.3)
O, (B 3
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is regular in 5’(01)‘0 . Let {f}} f?'\\~>00 be a sequence such

that

bog MCrp,0,8) ¢ | A (4.4.4)
rz

4
and let C9 be a contour lying in the region r P -1 412l ¢ ?
and joining g2 = *® , such that the shortest distance
from CP to any point 2., is ot least ¢ . If o ke
any point on C\’ we have, from parts (iii) and (v) of
Theorem 33,
|

< K.U&)é) 6’3(? {"[.':\Z“"e>\z’2m)u\z§ ’ (4- 4+5)
(@ '

and therefore

: . 2 =
\ _E_C_Z}__ { KZ (\ybé ) €x P{-- (;EW—EX’;* \Z,,\),,\-\) ¥ \\Tf } y.4.4.6)
T, 0@
and, with é’-l-‘; (2m-W) s
Py Lol (N, ) ex‘){~3'(—z‘n-k) r?‘i b (4.4.7)
G—M’Nb}f)

For % on the boundary of S(d,k) "

_»Q(E) € KL (6)\2‘; eac\a {Q’+é) \g)? - {W—G)\z'zrw‘z—i ,(4.4.8)

\
' l ‘U ¢“;\«. 5-23

and since, with 0¢ A<3 |
Alrete’™ - 8 |re Re'0|"= (A-8)t 4 28R cos (o) - BR7,

- \g ‘w{ BR CO&U:) )i* _625\1032(9'9) = 821

y

17\

FINCEOIS



86

it follows that

\..U i ¢ Kie, q)ex?i(z“ e)\znw‘ {T‘\-é (45-€)Sn (H&\)}} . (4°4'9.)

Oml®)

Also, in view of (4.4.1), we can choose €:-€ so small that

__z“_i-_ { Yo -Gr-a)S zu-p} " i SR

2“‘\) 2&0 iw - e

which gives

@y

| ¢ X, (6 v‘)) €>\\>{ 2™X_ |2 ,N\"} (4.4.10)
O ()

“‘ X

For 2 outside (AVO ’

_¢M)N(z) S | _\__ S C(a\v\ly\} (404011)
T 1 el g0 | T @)

From parts (iv) and (vi) of Theorem 33 we deduce that for

any € satisfying 0(&(1“;(;‘1'-0(),
| T Ean)) 7 Ws® epf (35-)lon-Zuall s (4.4.12)

~and, since for 2., in S(ol,@

\0@,0) < Ko epd wo KUz,

we have

| c(z*‘r\\:
\ V;\A)’N(.zm)n)
If we now write |Zmwl= Uy R, [Zeu-Zuplz T(MMNmn)=  ana

1‘°7“(V‘)=NV)~1@C , we have

¢ %) oo hln,0)- (r-0\ g -2au ], (4.4.23)

(){«-G)H(\EMMD - IT e\ 2 - ZM,N\

Ckr €Y N (R4e) - Qn-edrT,



il

(ks &) Rye )’ WRae) ~(F7-€)e*,

]

L
3r-00ue) WK 5 Laiv-€-04 e)'klﬂ-\»)} {r — D0 R+ R :
26 — (%44 ’Atﬂw) 7m-6 ~ O¢) Nkw)

¢ (Fr-0se MRIR® :
AT-€ - (20 f',\(R)

- (AT K+ R QY ,
3 -6 = 46 WK)

(4.4.14)

Also
G B(Rar) - Br-€) e + 3 (hn —ex)r?
= 0O R Rae) - (G m-2ev 006,

o 2 (Ar-2er 0)(xae) (R 0
3 (1r-2¢402) - CLEON(Rr)

2
<N e — ()N {r - o pym) R
{9_( AT-2€ +0x) — N w& e b

and this is negative or zero for all  satisfying

¢z R {t&e)ptﬂw} 4‘/ 2 (372640 O )M Ryr) ?} ’
)

2 (37264 X))~ 040) W Ry v) V1@ w2 0) - 0400) A Ry
or equivalently
; v 3 :
me (A m-26402) - Ote) plkar)

A
¥ {Q“Q plkse) 3 (47 2640)(0¢) lk(ﬁw)) - (4.4.15)
MRz 2 (@Ew-26+00 ~aO i) },\(\Q)

Now the right-hand side of (4.4.15) is bounded ( suppose by

Kg ) for all sufficiently lafge R and all r20 , and
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therefore
(236> H(Rap) = (A~ s -0 ¢ O | (4.4.16)
provided that T}\(g\““y; s for all sufficiently large i

We now write

S By \ {5 )s\ L) \

2o €56 0) | Ty RBuas) O (Zea)

where ;ﬂ\ is the sum over the terms 2.,, lying within
A :

the dise 12-2up) (KgHR)" (at most ¥q ¥(R) in number) ana

2., 1is the sum over the remaining terms. We have, from

(4.4.14) and@ the =2%sve, that

2,

Lz,
O-hII\,N (Zm,ﬁ

¢ Kq RQ) 2ap (,n-e)(x-ve)l-l(ﬂ)\ v (4431
IN-€ - (46) MR '

and, since for the relevant terms
K+ ARy ~(Ar-e) e ¢ A (3F-ex)
we also have

S8 | ¢ S ep{-A@rodtza -2l . (4.4.28)

M,N (ZM)A) (VI\, “) t
M, V)

Now

Exp} - RO Zmn- B0l ¢ T;(\TiS)Z g X a?{-g\x&w.(g(ﬁgg)‘& ol

1S @\ 36
and, since the regions of integration do not overlap, it

follows that the right-hand side of (4.4.18) does not

exceed o o

: 9
.“'L@_S)’L g\g g 'Q‘)(_? {_ z,( w- )W szfaef)r 4 L”'.‘-——"""'ﬂ(x )' S‘L S ( 4.4.19 )
2. ‘i (.
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Therefore, from (4.4.11),

¢,~(3) P (BY ex (%w—é)("*&)H(Q)} a4
_(}-:fNT%)_ ¢ Koo Q\ N P{ {w-e~(x+e)y\(ﬁ\ ; (4120}

for z outside LA h Hence, for 2 on CY we have

|3, ()] ¢ I<NH“@Q°?{(:: Z“Z‘Iflm» + Ky, ) expf-4dn-Wi] (4. 4.21)
and on the boundary of S, )

N 2 v-) Ry \'K 53 £
| B @ ¢ 1 HR) uﬁ%ﬂ‘“ﬁ’e Li\:&)%* Ko o) &?{2‘;‘1‘3( g.(4.4.22_)

The right-hand side of (4.4.21) tends to

= ) H(R)

R (R) ex Gr-e)(X+E g

Ko R(R) expg4e=e) e
as p->® , for every fixed pair (WN) such-that Zuy is
in S(Q)&\ s since Jmu®)is regular in the region enclosed

by theae curves, it follows that

| B @) ¢ Ky HQ exe{(::f‘(’:’gmj v Kopd ;,,‘111“}(4.4.23)

for all 2 in SG,0) and in particular in the disc
\2-Zuw)$H3+D , provided that o> LyV484 D

From Theorem 33 (ii) we see that
\O-M)N(.8>\ \< K\( (S,D) : (4.4.24)

in the disc |g ~2yqy ¢4 85+D . Combining this with (4.4.20)

gives

| fun@) ¢ Ko D wpf QX0 RE ] (g 425

2m-6- (4 AlR)
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on a contour 1ying inside |Z-Zpy| <1484+ D , such that the
shortest distance from it to any point of the set {me‘ is
at least 7 eand containing the disc \Z-Zwn\ ¢ $\+D  in its

interior. This, together with (4.4.23) and (4.4.24), gives

\t@)) < | VKA)NL2>\\§.M,N(Z)\ + (})M,N (@\ )

¢, &;W-é)(x—»e){-l(ﬂ‘) X, e 4.4.26
< 3H(K) exy Aw-e- O(+O\>‘(K) &?{1 "CX}( )

on the contour. Since (®) is regular in the domain bounded
by this contour the same inequality holds there; in
particular it holds in the disc \&Zu,\ < WD . Now $ [g) R,)

is covered by the union of these discs and it follows that

Bl ¢ K Al epfln é)(x+e)H(\f\+\\*D))>‘ﬁ
EA ¢~ ORI -1 -\

A QX?&%WQ((BHMDB E ’ (4.4.27)

FTW -

for all 2 in S((é, KQ) e If >0 then \—\(r)wcrq‘ and, since
G“'é)/ {ELW—é "Q(Xﬂ-ﬁ exceeds é\"/(‘\if\" (X) , we have from the

above that
loq Mﬂf‘(i R) ¢ {QLK\3+K\¢)(,\+H(V‘+\+\B>‘ §
H G LG (4.4.28)
@ET-O0OR (1 4D) :
| Br-¢- (eOpie-- MHE
Now ¢ HEsy) = MUY [y L D)

R() ey ¢*

and, since MH—\W) S P‘M' it follows that




Lim RGand) )

> 00 a8 L{s)
We therefore have, if W) is unbounded,
v e H im—€ - (e e)C

and this is true for every sufficiently small positive € .

Therefore
\ A
I VAT D PR L S S R ?(4.4.30)
sl MR - e

If N¢) is bounded then (4.4.27) shows that for £ in
S(Q)Ré we have

W@ ¢ K. (4.4.31)

These two inequalities establish the modified form of
Theorem 31 under consideration. To obtain the general
result as a consequence of this we shall need the following

theorem, which is similar to Theorem 21.

THEOREM 34. Suppose that the set {#.{ is such that

the discs

2\ %
\z-z.1 ¢ A, £ (375) o (4.4.32)

cover the complex plane, then %ZQﬁ has a subset which can
be represented as a set {3Mﬂ& satisfying (4.3.2) and
(4.3.3).

The proof of Theorem 34 is based on a division of the

plane into squares Skyl defined by
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(R-DA ¢ Raz ¢ kA, (LOAC Imz ¢ LA,  (4.4.33)

(R A=0%x\,x ) for some fixed integer A . The basic
ideas of the proof of Thgbrem 21 carry over to this case,
and it is unnecessary to give the detailed argument of

this much simpler situation.

We now consider the effect of the transformation
ey '_!
g = )(%)‘ 22 U Owiakl, (4.4.34)
on the situation of Theorem 31 when d<2wlg . The disc

lz-2.) ¢ A \2u " (4.4.35)

maps onto a region lying in the interior of

T T 4.4.36
e Sk TR L
where G, = /\(Q“~;>E 2:"6. Now 7= 4\‘\/61[}1'3/3‘ and hence
this is the disc
Q>-‘i. N K
A B leis >\({J‘S =i (4.4.37)

and, since S@QQB is covered by the discs of (4.4.35), it
follows that the discs

A
(§-2.) £ 2L4N (g%gj (4.4.38)

cover all parts of S(éﬂd,(» having sufficiently large
modulus. Also, P-(8§ is transforméd into a function \?(g)

satisfying

L Wl Loa MR, 3o, F) B g
- ) 20 IR - k4u4.39)

\ “
R— w0 R2 ANNE r
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R &(k\s XO\‘_\) \ F(({ei‘%ﬁ“n = l\‘m&y\e \Q(ﬂQﬁ“)l 411;( (4.4.40)

R —00 Q2 AT T2 e AN
and
Aim g ﬁ%\F(QQ\ (R <o, (4.4.41)
H* (\g)

; 3 272
where H*(Q’: H({G.“:.)Z {q Q) is a non-decreasing function of R

with £°H*R) non-increasing and having limit wc/2v X\ .
We can choose A sufficiently near to \ to ensure that
'WaufﬁtT)? and the terms appearing in (4.4.39) and
(4.4.40) are all less than éw and therefore, using
Theorem 34 and the modified form of Theorem 31 already

established,

biwenp  Jog MR, 308, F) 42{“ X Y aKhe L .(4.4.42)
R0 % xRy - >0 BRK

Transforming back gives

. . _
Do i lag M~ B Q) ¢ RANA LR X* Kl —— ., (4.4.43)
s R Hm) 3 { RY-X VAR D))

The conclusion of Theorem 31 follows for this case, since

we can take A arbitarily near to $o

For the case where d,%kw/e we first note that the
conditions of Theorem 31 imply those of Theorem 17, with
YNTQ and hence

U wup  og ey ) o g {on, ¥i - (4.4.44)
t—>00 g

If 0{Y<<¢xX we have nothing further to prove and we may
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therefore assume that

L o &%N\r(:,a,‘%\ 5 (4.4.45)

T =0

We may also, without loss of generality, assuuz that

aal <TW[p . Now choose a real number ® such that
wfe > ® > a@-g), (4.4.46)

and consider any sector of aperture C) which is contained
in S@,L) . the cohditions, suitably modified to allow for
the loss of symmetry, of the case for o< QW/Q proved
above are satisfied by this sector and repeated application
of that result will complete the proof of Theorem 31.

4.5. Gap power series. In this section we consider

integral functions which have a power series representation

Py = Gy B (4.5.1)
k=

which satisfies the Fabry gap condition,
n/kR —> 00 as kR—> 0 . (4.5.2)

Several authors have obtained results which show that the

behaviour of such functions is angularly uniform.

‘rurén [50], using a very general inequality on series,

obtained

i, I e Mizey* M8 0, (45.3)

for M20,(€), where M(f,ol,(&,[)) = “SG‘ZE \Q(r{“)\. From this
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inequality one can easily deduce that if [(&) is of finite

type of order Q s then

o Swe g Min ®) 1 yaw Sup LM a0, (4.5.4)
l\w\ _ﬂ_r_e_)_ &\-\W\ |

'n " 2
for any sequence {fgg , T,>00, Also, if M® is of finite
order and is bounded@ in the sector o ¢ c\»ﬁz ¢ @  then it
is identically constant. One can also obtain the result of
Polya [41] that

D s egMledp M) — 1 - e
>0 VQ% MU*\)Q)

Kévari [19)] improved this last result by showing that
log M ,0) - 2 (1 =€) lﬁN\(\r, o5 4 (4.5.6)

outside a set of t~ of zero logarithmic density; this

result was completed by Fuchs [9] who showed that

log mir,0) 2 (=€) Aeglrnf) (4.5.7)

outside a similar set of ¢ , where w(n¢)= o}é\éﬁ\a(‘r’e‘e)ln
This also establishes thé conjecture of Pdlya that

m swp Qog m( P e B (4.5.8)
i Speell -

(3 M(‘QQ)

The results of equations (4.5.4,5,6) do not depend on
the aperture @~_d. of the sector. It mightvbe asked how -
the behaviour of C&) on a set of points in some sector of
arbitarily small opening determines the behaviour of the

function throughout the plane. For example, it might be




96

conjectured, for the kind of function under consideration,
that boundedness at the members of a set of P(%T),that is

a set satisfying the conditions of Theorem 11, lying.in

some sector, together with the assumption that the function |
is at most type % <Y of order Q , would imply that the
function is constant. Our next theorem is a result of this

kind.
THEOREM 35. Suppose that F(@ is an integral function
at most of minimum type of order ¢ which satisfies

(4.5.1) and (4.5.2). Suppose, also, that

VReaP € Ky | (4.5.9)
where, for some finite ZX s the union of the discs
: \-3p
I gt Alg)

covers a sector of positive aperture. Then £Xz> is a

polynomial of degree at most X

Proof of Theorem 35. We may suppose the sector
covered by the discs to be \SQ;Q) . It follows from

(4.5.5) that
b% M, o, @) > (=) Iy Misa, B) (4.5.10)

for some sequence {Cyg s T, —=® . Also, from Theorem 31,

we obtain that

e

,Q@LYMLF) [3)(3) < Q<+é))losr, (4.5.11)

for any (4ot with T3 &) , and nence
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oy MLry, 8)  ( 2ve (4.5.12)
uﬁ.ogf“ 1—€

This implies that

Rain b lo% mr,l)
C=x 08,(\

which is guffioient for the result of the theorem.

Xy (4.5.13)

174N

We could combine Theorem 35 with the following result.

THEOREM 36. Suppose that (g is an integral function
at most of type ‘&(’T:Ax/),}f@‘@(f" of order E satisfying

(4.5,1,2). Suppose, also, that

L AP log\p(i"ﬁ} = O 9 = (4.5.14)
\z“\e ;

where the union of the discs

' - \-3e
V- 2 b & TR

covers the sector S@, 1) , and that s‘fn-\ieo? o> %' . Then

Qﬁ) is at most of minimum type of order e -

It should be noted that this result is stronger than
that obtained by a direct appeal to Theorem 31, as this
would require 3M1%Qa£> ;&, instead of the weaker
Sin e > Y,

Proof of Theorem 36. The proof is based on the

result of the following.

LEMMA 4.5.1 . Suppose that [@®) satisfies the
conditions (4.2.1,2,3) of Theorem 31 with ¢=0 . If L <T)e
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suppose, in addition, that s$wn A,le‘b z”//r, Then, if (3 (o<(§(oz )

satisfies Sin éQ[ol-%) > b?‘T‘,

B g0p I%ML:}Q(%)Q) ¢ gwg())r(\_ 2?(%)&, (4.5.15)

N —>x
where = 3‘“'\7:?(0“(’) - /7.
The proof follows closely that of Theorem 31, the

difference occuring in the estimate for\(l(,z)log,‘,u(z)\ on the

boundary of S@, 1) in (4.4.8-10).

It follows from the lemma that the type of (1(2) in
S(@)Q) is at most &Y , where = \’*Q&Z is a constant less
than | 5 combining this with (4.5.4) shows that L&) is
at most of type 8% of order ¢ . Repeated application of
this argument shows that ﬁ(&) is at most of minimum type

of order {J .
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CHAPTER V
FUNCTIONS REGULAR IN THE UNIT DISC

AND SUBSETS OF THE UNIT DISC

5.1. Introduction. The problems dealt with up to

this point hawe the common feature that there can be at
most one singularity, taken as the point at infinity, of
the function on the boundary of the regions under consider-
ation. The problem considered in this chapter,,that of
functions regular in the unit disc, differs considerably
from these previous cases; not only may we have two or more
singularities on the boundary but also the singularities

may be dense on arcs of the boundary.

For the classes H, (\¢p¢<®), consisting of functions

- for which
n

S | Cee™)

o]

\>

A6 (5.1.1)

is bounded for 0¢v < | s, and f\m > thé set of functions
bounded in the unit disc, there is a fairly extensive
interpolation theory in existence. For example, a necessary
and sufficient condition that a function of H? (1§ p < "
or more generally a function of bounded characteristic,
which has zeros at the points Z,, of the unit disc be

identically zero is that

TT P, = O, or equivalently 2, (\=12.4) =00, (D:1+R)
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Buck raised the following problem. ' What conditions,

if any, on a set {2.} of points lying in \2\<| are

sufficient to ensure that the interpolation problem
L) = w, (5.1.3)

is soluble, for an arbitary bounded sequence i(oﬂ§ s Dy a

A\

funetion C(Z) regular and bounded for \Z\<\| 2

The classicial theory of Nevanlinna [29], and others,
which deals with the possibility of such a solution for
specific sequences {Z(l and %wAE is very implicit and,in
a concrete situation, gives little help in deciding whether
such interpolation is possible. The first results were
obtained, independently, by Hayman [11], Carleson [4] and
Newman [30]. Hayman was able to show that such a set

must necessarily satisfy

JL \\?v:zpj;—;“\ >8>0 (5.1.4)

Wz )

for all ﬂ, and that the slightly weaker condition

U_ o zm-zKD“}zwo, Nells {5u1de
»\iw

\-.2 2

is sufflclent to ensure the existence of a bounded regular
function éatisfying (5.1.3). Carleson, using functional
analytic techniques, showed that the condition (5.1.4) i8
both necessary and sufficient but his method, unlike that
of Hayman when we have (5.1.5), does not give any means of

constructing a specific interpolating function. A new proof
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Carleson’s result and a generalisation to different spaces
of functions, for example H, ( ?z'\ ), has been provided
by Shapiro and Shields [44]. These were extended to the

case of H? (p<V ) by KabaYla [17].

For the more general class of functions of finite

order, that is functions £&@) for which

P = Nowe A ﬁoqQa\M (v, &) (5. 6]
bige o h%S‘—

is finite, the theory is far from complete. Lammel [20]

and Walsh [53] studied approximations to L) by sequences
of rational functions. For the case of interpolating given
values W, at a sequence Qz“{, however, they required
the 2, to lie in a closed subset of \2\<| . V.L. and M. K.
Gon€arov [10] obtalned some results on the representatlon
of M@ as series of the form

Co + E—‘_, CV\{“\ i_ﬁ-ii (BT

=t k=) ey

for the case where the 2, are real and tend to | with
TRZH‘=O. Obviously the coefficients Cu can be completely
determined in terms of the sequence of values {ﬁ(zﬁ& but
the expressions are very complicated. SlobodeckYi [45]

stated
THEOREM 37. Denote by L(r) the number of &. in
lz2) <, 17

e LB e e A PR S




where ?>\ , and

(=) QQS Mir 8 = O (5.1.9)

for some CV less than i(e~\\ , then the expression
(5.1.7) is convergent to C§5 for \2¢\ , uniformly on

closed subsets.

He also gave some results, similar to those of [10], when
gzm§ consists of a finite number of subsequences each

tending radially to a point on \2\=\ , [46].

In his thesis [33], Noble raised the question of
whether a representation theory in tefms of cardinal series
is possible in the unit disc. The difficulty, as he pointed
out, lies in finding a suitable analogue for the functions

VUz) of 1.2 . The Blaschke product is not suitable since
it is bounded and direct generalisations, such as

T Edvrmaeas, pg,

2z, (\-22,

seem to be difficult to handle. We shall show, under
conditions similar to those of 2.3 on {ékwg , that such a
representation theory is possible. Furthermore, we obtain
theorems concerning the growth properties of functions
regular in the unit disc which correspond to those of
Chapters II and IV; these results are given in the following
section. The proofs again consist mainly of the construction

of a suitable function QG& and a demonstration of its
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properties, the arguments being completed in a manner

similar to that used previously.

5.2. Growth theorems. Our first theorem covers

interpolation sets for functions having very general
majorising functions and corresponds to Theorem 15 of

Chapter II.

THEOREM 38. Let (P(r\ be a twice differentiable

function of &, for 0&v <\ , which satisfies

(i) Azge(w) T O it G (5.2.1)
dor®

with @) V>0, as c1>\-0 . Purther, let {Z.] be a set

of points lying in \2|<) such that the union of the discs

V42 0012,01)
Ve etk o DR (5.2.2)

R (\_\2“\)i>xnah\)

covers \2\\ | Then if (@) is a function regular for

\21 <\ which satisfies

Rae mbE Rog M E) ¢ _an (5.2.1]
s s AR A3)3

and B wmp o | =) Glge e (5.2.4)
X)) N33

we must also have

D st - ag M RY oo R " (5.2.5)
v-a»_\—O‘i _%W;_ 2 ’
If, also, \fzo) ¢ A then WRI$A for 12| .

We note that if VW) is differentiable then



0 ¢ =21 (\—M.Qos -\_l—r VWD,

and 1f »0)0-) btz = 00X then we can take
YOS

C()M A~ % .

PO (A4 »w)

When (v EQPO (5.2,3) and (5.2.4) become

RGIE T s e A 5,206

sz_w_g (W=t Qgrj M(v,?k@m e ( )
4w

and Ri £ep (\—\&0%@3\@@0\ - m R P

respectively, and our conclusion is that

Lim &VQ—N?{?BW\U)(Z) &N (5.2.8)

or when l(-\(z.\)\é A that \(Z(Z)\S A . We can, however, say more
about the behaviour of %ﬁVWLV5Q\ s for this case,
when the behaviour of QQS\CGEQ\ is more exactly
specified; corresponding to Theorem 32 of Chapter IV, we

have

THEOREM 39. Suppose that (kz> is a function regular

for \2) < | which satisfies

NP -\ ¢ R -

Jtr_)\_wo@u *Y Q@M( )2 T T (5.2.9)

and Liw g &0&( \Q(zo\ P e (5.2.10)
N 0=,

where the union of the discs

. 1420
O AL &) (5.2.11)
L+ A (-120)30
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covers |zl <\ , and the non-decreasing function H()

satisfies (1-MCH® V—>c  with ¢ AW/Q(QNA?_SJS . Then

L 2 Jlog M) ¢ R (5.2.12)
~ —=>\-0 \_‘(ﬂ

The extreme cases, H() bounded and ¢>0 , follow
from the theorem above and, once that result has been
established it will only be necessary to prove the remaining

cases.

For subsets of the unit disc we have the following

result.

THEOREM 40. Let .Q be a. gimply connected domain
contained in '2! < | with rectifiable boundary (L)) . we
suppose that 5(&)0{@:\_{ is non-null. Suppose that (@)
is regular in L) and on B(Qx- {\z\:\]- and satisfies

(i) Lwa It &eq M08 o An , (5.2.13)
~—>\-0 ) 223k
where T B 4 R A p ‘ Q‘K‘FQ‘\SS\ $
0 > rk¥¢ )

(ii) i A Q% | @) N AR 5 (94 2.714)
alot0, 2 € 3(0) @(12Y) 4*32 '

and (iii) JEN Sup &oc\ \Q(Z.n\)\ ¢ X < __bhn o G2 50)

‘ Znel (P(lzy\\) A*33

where the union for z‘“e_Q of the discs of (5.2.2) covers

N . Then

L v &a\”‘a%iﬁ ¢ iR ¥, (5.2.16)
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Furthermore, if conditions (5.2.14) and (5.2.15) are

ammended to

Vel €8 for = ¢ 3O)- a2} (5.2.17)

and VeI ¢8  for 2o € i 5 (5.2.18).

then the conclusion becomes

R Bisopiatn 2 van 4L

Theorem 38 can be regarded as the special case of
Theorem 40 for which BLQ)——X\Z\C\S is null, that is
JXN:XFﬂS\i. The results of Theorems 38, 39 and 40 will
remain valid if in the growth conditions 2.} is replaced

by a set {2} 1lying in \8\¢\ which satisfies

' V3w (12W)
2l e e R gy (5.2.19)
and is such that the discs
, Sy v (Ea)
| = gol % 8(\—\2»\\) (5.2.20)

are disjoint. As with our earlier theorems, the separation
condition is unnecessarily strong but seems to be the most

natural.

5.3. Special canonical products. This section is

similar in spirit to 2.2 but requires the solution of
different technical problems. Section 5.4 will correspond

in the same manner with 2.3 .

For any positive constant _f& , With the W) of
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(5.2.1), choose t, to be a positive number less than |\

such that

A ¢ (5.3.1)
and define W) by

W) = _/\(\—r))"vw.) (5.3.2)

It follows from (5.2.1) that W) is a non-increasing
function which tends to zero as  tends to | from below.

It is easy to show that
o+ W)Y (- (5.3.3)

is an increasing function of = for FQQV‘<\ , and hence

we can define a sequence §r§} ,T}T—Q Ly by

pri . B &\—r\,)uw‘,) L ABCE

and a function y&i\ by

NS oﬁi\ : (3\‘“"“’5“‘&"‘1 i (5.3.5)

-

s ?

Let W{v) denote the number of Y, not greater than
©  and n) the number of zeros of p&?) lying in \8)<T .

We write, with [R\=V",
n"(“)

LA IR VIR RN | DV Rt ]
TR P () ) S
pa> = T [2) Q ﬂ{‘ = 18) j
\>:\ g—-\
0 PEO AN TS
e { %] k‘v'z-")“\l(\ el (5.3.6)
?:Y\*b‘H‘\ ? :

Since Y() is non-increasing,it follows that if
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¢’ el then

; ;\_)JUJ) ; 1 ‘_/) -)iy(r‘)
Wie) & (\=-¢7) ¢ (__\—L__)':'V( . (‘_ r"—r') «(5.3.7)
h(e") (1~ p) 200 e ~r/
Also
‘ Fi)fu e
l ¢ —S ___é_%___.zé _\'l(_"}l(\_ifq;l .2 \ {___l_\_\fel_ S§5.3.8)
h(%)0-r) r W08 i) (=) W (- I (-
It follows from (5.3.7) that
-Ley)
e e T s A 40 (a ey, (5.8
\‘\U‘?ﬁ-‘)
and therefore we have %
ol
l & {\* O(M\J‘?))” -;\-(—6%:-6; ¢ £5.3.08)
W) (=) ry
Since
“ ~
g dt )lg ot
. K\')z (\-t)* /f\f ; (\_t)z# ¥
A \ -K() (5.3.11)
U4 2y) WO =)
which shows that
r""’ﬂ 5
L4 0 (W( ) g j " OU _;M‘__j v (33,18
h(rn"'(f)}(\" rn*(w\) L \'\k\i(\‘ t)l R Wiy U-e
we have -
_ % SR 5 .
V\k\) = {\’\- O(\)}So \ILKE)'LL\" t)?. . (5-3.13)
Therefore

v\

W) )\ﬁf\/\\“?’)\‘w\’ﬂ g n () d,\: (5.3 14)
& 3 . ’ Area

b | T (2
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Taralt

= {1 o(\)}&°‘-~@d~-— At (5.3.15)

M CVRAEIN

P, \*0(\) . (503-16)
790 (o) WY

If (1-r)2 {H\\(V})}(\-r\,) , which is so if prw2 ,

then
Q=) - (G-v) . Nk M TV 43 (5.3.17)
Ws) (V- Y‘?) \'\("“?) (\-\"?3

This implies that

Bl . R o (5.3.18)
»\LV\?)(\—VP)

since

o0
= ol p A N
o 5 TR W Al {\ ¥e £ g 3 fnedit

IO e
,} - & 7 ,\— 5 X
Therefore
v o higl] " P AT \
(—r\ : ¢ (£) S (5.3.19)
\F ?

®

Now for ??1'

) \+E\/(\ V"p)l\lr )} \/(\—1‘ )»\(\"‘,)
¢ [ T 54 o045 3. 20)

?

¢ exp G- el r,); ;
\f\ SIQE %)

&

ge u?{ »\m(w ‘)} B R
Gt h(E) (\-t)
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Therefore

% D W (-]
< H’D s g et i (1€ - }vk\,(s 3.22)
> fen M&\(\ \c)
< S T"'C g \8 dt,
t>\+—\vu~)

I~

{N e*\’gl -y§ ;

A (\_P)pxw\ U*’ 53‘ -;—_z)(w)

% K
K ) -
¢ (g et 4,
< K (5.3.23)
()
and therefore, in view of (5.3.19),
Q lﬁ {\_ (g)‘*f'/km»u-mlms X . (5.3.24)
Gj N4y, "? "\F)

Now if

r fq/
Z\‘l,q/ = F? @J(\){ l+[’/‘l(¥;>)(l—',§)]§ (P=l>2) (i/ O, l) k(y- (\.(})

and 2 does not lie in any of the discs

\2-2p 0 ¢ Sy (1-%) » (5.3.25)
where & 1is a fixed positive number, then for p & W)
A QLT
\ u (J)‘*E‘/“ Pu-p] NN ( % ) 7(5.3.26)
2 0Ly 2 6+ Sh-p e Y/

i \ R Qxy{_—ﬁewﬂ,

0 Sf)v (YA

T O =R (5.3.27)
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and therefore

TV W =p)A
\\_ (g)“ e \ ok det 0 (5.3.28)

We can make a similar estimate for

\ i ( z )\+\:‘/\-\(v‘,\*+\)(\-r“m)1

rn*+ \

All these terms have modulus at most 2 and there are

only W\ of them. Since

o i
» N -———L———b . = g ('l«t~
k (r) g \’\Lt)(\"t) O 3 k(b)tk\_t) ’ (503.29)

0

it follows that
ot

log | pt2d| = {\ML\\EUOW‘{%—@M\’ (5.3.30)

outside the union of the discs of (5.3.25).
‘ .

We note that we have also shown that

. |
Joy \ By ¢ {\+o(\)ﬂ f;ﬁ—%—\—axz&\’v(s&n)

uniformly in N s, Where (ﬁNGQ is the partial product up
to \>=“5 of the equation (5.3.5) defining Via).

It follows from (5.3.30) that }ua) is of order ¢
defined in terms of the!maximum modulus or the Nevanlinna
characteristic, and hence we can use a more general form
of canonical product, due to Tsuji [49], having the same

zeros as P&E) . We define

E(z,¢0) = ﬁ&i}u ,,;,)j E"“Ur) (5.3.32)
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and then define I’(OLZ) by

@) = ﬂ_ & (z, z\,,(v,EQ+\]) ‘ (5.3.350)

(o4

That this does represent a function regular in \Z) |\
which is of order at most @AQS:Q,\I follows from a
result of Linden ([23], Theorem HI) but we shall not need
thisy it is sufficient for our purposes that the sequence

of partial products

W {U/kwk\wp]

!

P

& (Z) ZM,LQ*\])}
<V;o

converges uniformly on compact subsets of \2)<| , We shall
show that V“i) can be replaced by QJE) in{5.3.30). To

this énd we first prove the following lemma.

LEMMA 3.5.1 . Let p be a primitive p-th root of

unity. Then for \RI< . and positive integer §

\)
St NEEDREE A K() pz|” . %
%Za G-agay 7€ (—,_PE?)"S (5.3.34)
Proof. Write
P
|
qe,p & = 2_; Ty (5.3.35)
q/:

For S22 we have
{ \

: 33 Y
O L e i
o P T2 BB rpaprcry.



= Yep® x 2 qluple) - (5:3.36)

Also,
y =T \—-2"°
The result can now be established inductively on the

hypothesis

S
SS,PLZ) - F‘\' Z i i & w,v,w () E“ ZVP o S 3.0
g {1=gr)”

s
]
-
<
H
b3

'

We have

o D) {

fo(®) = “ W

Tord b
2o, (o~ %) “?é by 3\( L= ) & >?; ,

t=' g0 “ZZ. 21 | = BEp,,
b r2+ 201 e eg)) (‘ b (éyﬂitlkw\,)(\- ?)]) 2j Lg‘l\@“ _,.ﬂ-\—( e 5}
3 g : L LZF )”t""“‘?’)‘\*%\l gt ™0 $\-22,,
a\ MU (-5)) te*j g
g 2 (4 ~ii=ey) VAT )Z
i ‘AL )‘ﬁ \ _(g:)ntﬂklw‘,)h-rr)] JZ)(\ ( Y" \)( ?) e
W wp) (-51]
% O( (o) )}, (5.3.39)
hon) =&Y

by Lemma 5.3.1 . Hence

00 (w (1401 ’km{\_{s‘b (\4.;.)5 ( 5\th\ k&q.)(w?)])
,;Lfg_;: “ my{s%&@ ?s E 30 ?M Jren 5.3.40)
i \::\ :

Now

Cex]

+ (‘ ) K (\"fe)
(1 De0- r?’])sz‘e»q S : hr)

s 1210
and, since Q—tf@ ] is a decreasing function of € ,
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for £ sufficiently near to

4

J ¢ 1] -wid)

(1~) SR g (e T SQ B . (5.3
(ep) GRS k=

Also, »U-Tp) is less than | for t sufficiently near

; 1-2(9)
to | . Hence LL\-UQ . converges and therefore

SO T R (5.3.42)
P! \,\U-?)

We are left to consider
VR

&
Z (ﬂ})
pet \,\((})V_Q*‘]

By expanding losr = %S{H\-r)} and Qo:j 1}= Qof){\—(\-r@} as
series, we have
W)=
AL e “"i—“‘ {gg)}, (5.3.43)

)N R0 ot hiy)
o

< Ki e"\’{ km( \\} AC. (5.3.44)
i (’?,\ \'\LV\EQ‘H] (\

—r\,

Now

g\ el alEE ) 4 - S\ (-3 &ﬁw(:ﬂ\)?jxﬂ—%m(ﬁ*‘)} &,

i )"@t@‘a (\ t) ! (Ve - L-)fe"’-l U

T+l : (4 L_\EQ*G
¢ 4 QX\D{—{@QX} g Q-r+ 1-g)terdd
s
¢ 3 '8 RN G 3
‘<Lm . s, o

Therefore
W) =95)
4 (v N pvete \
\Z\ \M )Lom ¢ K QQS iy (5.3.46)
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It follows from (5.3.40) that
\

log\—'l&\\ < K(‘*‘*O\%T:\FE=O(M¢\1>, (5.3.47)

which, together with (5.3.16) and (5.3.30), shows that

&gcj\vlotzx {\+ QN)JS gm) i (5.3.48)

outside the union of the discs of (5.3.25).

5.4, Canonical products on more general sets. We

now consider a set of points {§§N§ in \2\<\ which

satisfies
\Zp = Zra) € D hligge) (- \2p4)) (5.4.1)
and define
&) = “} E(z, Cpe,» Torl)e (5.4.2)
(b

We investigate the behaviour of Qﬁi? by comparing it
with 70&) . For x outside the union (KBX of the discs of
(5.3.25) we have

V)15 )b, (5.4.3)
_Vt@_ = §M(§M -2)(\- zzm Z. : ((\ \§; (\—z" 5)}
Ho(2) (pfl Zpg (7 -2 N1-285,) B V2 E
Now
k\“ zf‘,,v\ 2 \‘”ng ﬂz(:’w'ém)\,

7 \1-22,, |~ DR\ W) L1- 1300,

C A g D\«(\ZM\» h-=&). (5.4.4)



In particular, it follows that

\ |~ 23, \ Bl (5.4.5)
\ ‘Zg}.tv

for all (Mj\ and = in W&\& | .

We shall need the following, almost immediately

obvious, result.

LEMMA 5.4.1 . For some constant Ki,

g \gﬁ\‘\ ¢ Mg d-E)).  (5.4.6)
| =2y !"me \\—Zg\),fv\

Proof. We have

\Zogh -V Zpy =25~ )~ 2 évg‘v@’”ﬁ%)( 5.4.7)

Bk R T (v o L
PR (i-22) (1- 28,

and, since

\gpq)\l “\3?,%12 i 8@1‘,'-%9%) i ZéPﬁfw(fm“szB

= \S"M‘Z\w\{u“ém’" 20- Zol)- zg\"’“t;\(vz\%\i)} COS{MTS(%: ¢ \)} + (5.4.8)

Al \Q,,v— ZM\"?%M. ("\2?'9\1) Slw{@»ﬂ(g%_:——\)} " \s"v’ 3\"«4\1(\“22?’1/‘) ’

this gives
- R 7 -l RPN | S F- WS T (5.4.9)
=25, I-2 5., IEEEN
¢ Ko Wiz (\-12p) (5.4.10)

In order to estimate the product of (5.4.3), we divide
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it into products over subsets of the (WW\ ; the first set

G- @ is the set of (pg) such that

\ \"\Zp,ﬁl\z \ <

| g { Bkl
2
It follows from (5.4.6), for \2,,\ sufficiently near to | ,
that then
o
\_‘_;_\ﬂ ‘ S . (5.4.12)
\ -2 g, 4

Therefore, for (ww)égi s We can expand the terms involved
in the product as series to obtain, by the argument of
Lemma 2.3.1 and the inequality of (5.4.6),

: Te+2]
\%3 E (2, Sy Ter) \4 K Wi \-\f@)“ L (5.4.13)
E(Z, Zpqy TEHD) |- 23,

We now need the following result.

LEMMA 5.4.2 . TFor $32 and ?41 primitive root of
unity wF ¢
\

et i RGP Ll TR
5;, IRELME (- =) 7 a-jal)

Proof. The result follows from comparing the sum

with
™

2. g 46
2w o (V=2ned +r’-)%‘§

-—

It follows from (5.4.13) and the lemma that

] RS T O Loy
Z"’J\%ze,cﬁ,)r:eﬂn\ ¢ Ke(18) (5.4.15)
§° €(Z, 2y, Jor1) |-




P?*\

Le+d
(\—rg)e PREE v ¢ g dt ; (5.4.16)
\=rfy -6 4 & W) Li=r)

and therefore

< kel Y 4%
>y \- T P U 3 T (5.417)
?2:‘. ( \—N‘?> ; s Wl (\-rt)

We now show that
S

g _d'\i___ - o(\%—>, (5.4.18)
o M) (1-rE) V() h(r)™

as v=>1-0 . Firstly
\

\
2 Ak N db
b ] 504.1
it gr NTSYEES) Kgr NEIETDRG il
\

¢ |Ade = i nde (5.4.20

e -0 fie
Also,
v o

§——JUL—-< Lg_ﬁti_:-!—loL9(5.4.21)

b WlE)(1-rt) hey ) T- € ey D A= i

and hence

IS
o &k i Rt R
J)(V‘\)\\(‘ ) gom ¢ QM )10\(3 W) > O ’ (5-4.22)

as t—>\-0 . This and (5.4.20) are sufficient to give

(5.4.18).,

For (&9)6 g;_, the complement of ¢, , we have

] | = 15 l®

! Y

\
> T e
2

(5.4.23)
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Or, writing z:r{;e and Zp = \‘?Q“(’,
L X .12
(\~ w\‘,‘) il s (\‘Qr(‘?ws((ré)-& t r?). (5.4.24)
This implies that
y 2
\":ZP{‘? f%\@"?)%fzﬁf b (_\—f?) ’ (5.4.25)
or, equivalently,
3 : Sath
Q= e0) + herp {3 (g-0d] < 16 (1-r)". (5.4.26)
If we consider ¢ to be such that i?réé\éTT , this gives

(-rep)” + ﬁ-%\’ (P-0)" ¢ W(-%), (5.4.27)

and hence for (?,cv) € gl

A}c\:?\”ig\w.-bbag Copben). isiad

The number of (\’"b) in (5" for fixed P is at most

%{ |4 ._,L‘.__B M\ai\aﬁz?,v— sz\} +1, (5.4.29)

\Au‘pst\-‘/}\ Ci/
and it follows from the above that this does not exceed
K7 /lxﬂ}>_

Therefore, on summing over these elements, in view of

(5.4.6) and that

\ |- g\

5 e & for all \8)<) ,121¢\ , (5.4.30)
(-2

N

we obtain
e+
o |

> 5 {\‘\g"ﬁf. S.— "\Z\Nll S})é K? Kl»\“‘p)(\‘r\?) \3')??]\( Nelhe 31)
\‘P%ﬁ,)égz oo Q{\hzs";,v) (\-—ZEEM) YRR I Kg.(
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If \_r?\>‘(\ -~)  then
\-it-r) X
¢ \og‘\":‘v_-' % (5.4.32)

ol
Wib) k\ Y) k( \-i(\_ﬂ)

It follows from (5.3.9) that this is less than

& o o R (5.4.33
S (”C“W“‘Y) )
Hence, if ¥* is the smallest Yp satisfying I-f ¢ z(\-¢)
then
\
Y“ 8 (;@;ﬁ@}) (5.4.34)

as t—=> \-0 , and therefore
I@D 3
l " h (\_\rﬁ\z)i = ( \—\ZM,V') ¢ \{8 ?*._. ( )'(5 4.35)
”‘v’ég S s S Yap §\°"v ¢ “Zm S (“\lﬂ

Let g; consist of those (p4d for which

\Zp =21 £ (1) h(r)"&. 546D
Now
Con(Gon®)1-280) = | 4 \Coal = og) = Z (8 Zin) ~ 2 Zo B, (i Z ),
R (B2 (=28, ) A oy (1-28 )(Epg~2)
* \+‘/\(z,p,q,), (5.4.37)

and, as with Lemma 5.4.1 , it is easily shown that

\ /\(Z> 1% CV) \ < Kq \{\(\Zm‘\ {i- \Z\»Q\\\) (5.4.38)
\E?"U ~ 2|

If

V- 2 20-7) (5.4.39)



then '\szz\; %(\—r‘) and therefore

WE, pd| ¢ KW, (5.4.40)

Hence, if we denote the set of Q\),cv) in (39_ which also
satisfy (5.4.39) by gl\' , We have

\ {\ + NG, M,)K\\ ¢ K<P%§4MRMD’ (5.4.41)

( Q\és .
‘K 2. | ’ (5.4.42)
P'*‘))*}’) 654 @GW Sewn q/
\-Zl\ﬂﬂd’t :
. Kgc O0-0 (Zwkwf‘) : (5.4.43)

If p is such that 20-)>(- ?‘)>§;K\ﬂ and u),cb)é(gz“ﬁ)‘ %

we have

. A
\ /\(3>Pz‘iﬂ\ ¢ Khiw=, (5.4.44)
Also, the number of (p¢) in 5; does not exceed
\- 200
K dmmtle "o Ydeiels (5.4.45)
Eo )Y O-t) W(r)?*

Therefore

- \
Y 5) = (b5-4c46)

Vi
|t e L

We denote by (Aﬁ\) the union of the discs

V2 = Zpgl ¢ R0z, DU-1T0) . (5.4.47)
If (e € gs and ¥ 1is qubside (A) ana (B5) , then
3 W) < gm(gm 8- gzm) | __5_. : (5.4.48)
K 2o, (Boq” z)(t'egﬁ) S ko)
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The disc

\
1€-2) £ h)* Q-0
is contained in the curvelinear quadrilateral defined by

-0 V- W € gy < 0~ V¥ Rt

(=) it
{t -t

\cu\s§—wjz\ <

and therefore the number of ’W) in §3 does not exceed
V= (- b= heR]

2 ’\S__ ¢ g OL\T & _\é ° 4.4
S h(r)'l;; 2 % L\(v?)lz K h (£ (1-t) Wir) 5 7.
=% 2 (o hH-weY -G e b
Therefore

& %(5\,& 2)(1-2825,)

T « X1
(ppegy Zoe, (2o EX1-28,,, )

\
klr) oﬂSl\(p) (ur)“v.)?-) (5.4.50)

Combining the results of equations (5.4.15-18),
(5.4.35), (5.4.43), (5.4.46) and (5.4.50) with (5.4.3)

\l%\ .?Lf;‘ o(m,) (5.4.51)

for 2 outside (Aa and (\gg\ . Equation (5.3.48) then

gives

shows that
&\ ¢

Qgﬁ\((i) {\)re(\)’gg &M% = ac, (5.4.52)

for the same set of 2 . An argument similar to that
contained between equations (2.3.47) and (2.3.39) shows
that the same result holds for all 2 outside (Ag) e RE
we also suppose that the discs of (5.4.47) are disjoint,




we can show, using a minimum modulus argument, that
3

o
ey L /(S = {\wuﬂf g——-i"‘-*—— AL, (5.4.53)

3 hwr-wE

We collect these results in the form of a theorem.

THEOREM 41. Suppose that {&p¢{ satisfies (5.4.1),
that the discs of (5.4.47) are disjoint and that @) is
as defined by (5.4.2), then with the ?m) of (5210

Rog | y(@) ¢ 0 ke ; (5.4.54)
o4 vz(z] e ()

for \2)7 () ;
Q%\vue)\ 2 \_J:\_.g @(\2) , (5.4.55)

for 1212 ,(£) , with £ outside the discs of (5.4.47);

Log |Gyl 2 lj:}é ¢ (Z5gl) (5.4.56)

for '\Z;w\} rp(€).

5.5. Proof of Theorems 38 and 40. We shall give

only an outline of the procedure followed, since it is
very similar to that used to establish Theorems 15 and 17
of ChapterII. We first'establish the following result.

THEOREM 42. A set {2} \&.\«<|, which is such that the

union of the discs
+1u02,

. + A (\~ lz“l)%_v(\zv\\)

covers \z|<\, contains a subset which is representable as a

\2-2,] ¢ (5.5:%)
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set {g}vg, satisfying the conditions of Theorem 41,

provided that

P\ - (5.5.2)
A%3J3

The method for proving Theorem 42 is analoguous to
the proof of Theorem 21; the theorem follows from
considering the points of each set which lie in each of
the quadrilaterals QK’L(A,)J(P)) s, defined by

Mt L BLL . Phaim s
(5.5.3)

ar L ¢ WY 21 (24) d
1+L1/AR( ) (1 -T)] 1+D/AKRN (- )

where A is a fixed, sufficiently large, positive integer.

In view of Theorem 42, it is now only necessary to -
prove Theorems 38 and 40,modified so that the set {&& is
replaced by a set Q}V , where . is such that Lwﬁ}/NBJS
exceeds but is sufificiently near to | . This can be done
by an almost verbatim repetition of the argument used to
establish Theorems 19 and 20. We note, however, that the
use of partial products of the form GSN(Z) of (5.3.31)

is essential to the argument, since we do not have any

s - q
suitable estimate for Q%{i}an\l‘“} in terms of %{%“QE“\“Z }

4
)
when ,hmuq 1in/n = |

5:.6. Proef of Theorem 39. As mentioned previously,

the extreme cases H(r) bounded and ¢>0 follow from



125

Theorem 38. For ¢=0 we have, again by Theorem 38, that

L"MSMS U-r)ehﬁw\kﬁ@) S (5.6.1)
-\~ ;
Now consider the effect of the transformation
Ol T g A \ ' (5.6.2)
e? (e g)
in this situation. Write
; e S,ete- _Q:Q)
Fo k8 = C(—g—- , (5.6.3)

and, for each § , consider the sector S(d,54zd) (0¢al¢3™)
of the & -plane; we denote this sector by Sd . F9(§) is

regular in oy and satisfies

3
Qo)& M(R,S\Q,Fg) % ’@c\ (b_&‘_‘é&*.%&") p) 5 (5.6.4)
Re Re
(\_ {\ Q.cosd [{"} ) qu( \_ 2tosol \zgi ‘:) ¥
{R( {‘_2&'5&,\_ )je

\
Now ﬂ-(ﬂL—Qﬂca@H\Y"T—é sl as 4> oo , and therefore

Loy MOSE) ¢ L (-f-2gaf bl

(‘osQ o

——2" as R—> o0

by (5.6.1), uniformly for O< O <2y . Also,

o kY 3
Ale‘é—‘znl'“e 5 A - ;. (5.648)
L+ Ale™- 2, ¥ |+ D0-12a)E

for all real © , and therefore |2\<¢\ is covered by the

union of the discs




Ae®_z l\#ze
14

| + Alef-z |t °

12~ 2,|

The transform of this disc is contained in

v
Presta e @l (5.6.8)

and therefore Sol is covered by the union of the discs of

{5uBBY.

It follows from (5.2.10) that

Lim &«g Qoq \ R (Q(im)\ { Xy (5 89)
ge@“)é Cool ]i
(e S

uniformly in © s and that

\ 1
H({\_zfga Mx) ( {, 2, g) (\ 2@d+gzl), (5.6.10)

R¢ 5 ( 3 (8% 2Rt +1}°)°®
t —
‘L___; c«:séq PEVCOQ—(') W) e 1)

as QIY")@

The conditions of Theorem 31 of Chapter IV are

satisfied (with ¥=0 , ¢=0  anga H® replaced by

H \_2605&1_,__{ '
R R* , which for the case under consideration is

unbounded) and hence for any,@ with 0<€< oi g

Jloq MR, ;@\ ¢ RYe, (5.6.11)

i

for R2 Qo(é); that this holds uniformly for 0 ¢ © <2w |

while not a direct consequence of the theorem, can easily

be seen to be implied by the proof of Theorem 31.




1%

Transforming the result of (5.6.11) back to the unit

disc gives
: H{f- 2o 1
B swp  Jog MO, @) (X l\\ms.w A 2)/y(5.6.12)
A ) Row A\ - 1)

and, since

¢ Aol Qo)

1 3 (\ 2 (ol 1\eQ . 5

2 \ e A
(R -fR% 2Rese+1]% )¢ cas G

as R-» o0 s wWe have

wm Sw gM(V“, ?

r_:\ H ) Coseot

(5.6.13)

This is true for every positive & Qg<{ﬁT) and hence the

proof of Theorem 39 is complete.



CHAPTER VI

CONCLUSION

In this part of the thesis we discuss further the

position of some of our results within the general theory

and mention some simple extensions and some open questions.

6.1. The classes of growth estimating functions @(v)

of Chapters II and V. These classes contain all suitably

smooth functions corresponding to growth of finite order

_ . 2,
except that we cannot have (pM =O(Qa3w\ in Chapter II or
C{J(M: O(Qoﬁ\{—» in Chapter V; otherwise we would contradict -

(2.1.25) or (5.3.16) respectively. Since an integral

function p(ﬁ) satisfying

L Wl Rog ML 6.1.1
g _%o?_\_l { 00 ( )

is a polynomial, its assymptotic growth is determined by
its behaviour at any unbounded sequence 5@& .

This gap, between Q%M(V*)?\#O{%w) and Q@M(»‘,Q}:O(Qosw)z,
in our results for integral functions can be filled by
considering a function S’ﬂ(w) which is such that

: : N
d o h (Q@r}' : (6.1.2)
o loqr-
where O< M) <\ and Nr)\b. Suppose EZPE to be a set of

points satisfying



) A(Qosrwr) }

and such that the discs
\z -2 ¢ §1z) (6.1.4)

are disjoint for some fixed positive & . We then define

00
it . % (6.1.5)
n&) ﬂ {yl 2,}
i):l
Direct estimations show that, for 2 outside the discs of
(614},
Qaﬁ lq(z)l ~ A gz , (6.1.6)
and it follows from this that
Log /@l v A plig) (5T
and that
Tl \k e (6.1.8)
i) ] g

for any fixed positive h_ . Obvious analogues to the
theorems of Chapter II can now be established with only

minor changes in proof. For example,

THEOREM 43. Suppose that {2,! satisfies (6.1.3)
and (6.1.4), and that Q(+) satisifes (6.1.2). If F(z) is

an integral function for which

Jim & deg Mir,) A, (6.1.9)
- - ® (P(f—)

then
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AR T 1 A S Q@Q@m\, (6.1.10)
v\~>oo\ %(p(m j \ ‘P(\Zw‘)

provided that the right-hand side is. less than -
Furthermore, if &Z“) is bounded then C(E) is identically

constant.

In fact, the results would appear more powerful in that
there is nothing in the conditions which ensures that each
sector of positve aperture contains an infinite set of
points of {2\ and it could be asked if the same is true

for a wider class of functions.

The growth results for the case considered above are
also suggested by more general theorems of Hayman [12] and

Valiron [52]. For example, Hayman has proved

THEOREM 44. If CP@®@) satisfies

L g LM 0) o op (6.1.11)

JZ@ lQ(Y‘QQQ)[’U Qoﬁ M(Y\) Q) (6:1.%2)

outside a set of discs subtending angles at the origin

then

which have finite sum.

Since this result does not extend to larger classes of
functions, it seems unlikely that it is possible to remove
conditions involving the angular distribution ofl the set

'(Eh} from our interpolation theorems for a larger class




13k

than that attained above. We note, also, that if'Q=C),then
?(Xﬁ)/CPW)vé\ ,as W"—>00 , for any fixed positive h) , that
is ?Oﬁ belongs to the class of slowly oscillating
functions.
. + R :
Whether the gap, QogW\(V\@) * O(Q"ﬁ\w» s, in our results

for the unit disc can be filled remains an open question.

6.2. Regions where \£(@)) is small. In Chapter II we

obtained results on regions where \2\° Q?g\@CE“ is near
to its upper limit, as \Z\ﬂ>d>', A very direct and simple
argument using the same ideas will also give information
about regions where \ZVQQ%ﬂQ?ﬂ may be small. Using the

separation condition of (2.1.7), we have

THEOREM 45. Suppose P@ to be an integral function
of mean type ¥ of positive order e - Let & be the set

'f f: for which

121 ¢ Jtos\@(z)l A S (R I8

throughout the disc
\-3%e

lz-2\ ¢ 8\g\ . (6.2.2)

for some fixed positive S" . Then

D Fg-21 \"%e (6.2.3)
RGN

does not cover the complex plane for any finite Ah v

There are also corresponding results for the wider
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range of estimator functions @¥*). Also, if we weaken the
separation condition (2.1.7), as is certainly possible, we
can increase the size of the set S . It seems likely that
an appropriate determination owa would be the set of Q
for which (6.2.1) holds throughout the disc |&-J\ & \g\”

for some fixed positive k P

6.3. Intermediate growth cbnditions. Our results,

Theorems 31, 32 and 40, of Chapters IV and V oonéerning
functions whose growth an the interpolation set is dominated
by eqé@MU“‘*UN} are restricted to cases of growth at
most mean type of finite order. It remains an open question
as. to whether or not they can be extended to wider classes
ofAfunctions. For example, could we prove the following

proposition?

Suppose

(1) A% Qi) 1 = PN S with YO0 ;
d(%c&w)?'

(ii) HOT \\M((p(v)lv—%c;

=3 2030)
and (iii) the dises \2-2.| ¢ A\g;\ : cover the complex

plane. Suppose, in addition, that QE) is an integral
function satisfying

R,\\M \\\m@ &Sﬁ Mtv}@x l ‘iﬂ 5
v - @ 3R

then
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nop Loy MOGE) - Rimenp Jog|@(z,)

o\ H(O) K (12.4)

provided that the right-hand side is less than hy[cA3R .

There appear to be two methods of approach to this
kind of problem; one could try to establish a sector
theorem, corresponding to Theorem 31, by determining a
(1:1) regular map $(Z) of SQ,Q) onto a region which is
sufficiently approximate to a sector SZ«ﬁQ? and such that
F(E) = QG% satisfies conditions which would allow appeal
to the results already established. Alternatively one could
select a suitable subset {Zn& (::{§®V§ ) of the 2%, and .

form the set of canonical products

@ = (220 T E(22w 1) (6.3.1)
nEN .

w 2N

with a suitable modifying factor exp Q—K(N) (z—z,\,)eﬁ when @

is an integer, and consider representations

) = nyi) 2, Fz) (6.3.2)
pein @-2) py(®)

for integral funetions, or

P& = p(z)—z _w® Pz, (6.3.3)
En'esu)ﬂ (?—Z\,\') 'le (2“4)

for functions regular in a sector,

It would seem to be necessary to establish results

which are uniform in N on the assymptaotic behaviour of
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Q%§QNG§N in terms of Y?—-ZN\ , outside regions which

may dependcnlN containing its zeros. For example:

\-22(i,))
It \2-&) <K R “then QOS\Y]N(Z)\ < \<2 , Where

K. ana K, are independent of N .

The difficulties of such estimations on-{%ﬂi}i are obvious.

6.4, Gap power series. In section 4.5 , we studied

integral functions having power series satisfying the

Fabry gap condition. We note here that if the gap condition

is strengthened to

a, —=> X (6.4.1)

&“ka-l R

then, since we would then have
log M0 0) v bog Miv, 4, F) (6.4.2)

for any sector «¢ axﬁzgé , with no exceptional set of v |,

we ' can prove the following.

THEOREM 46. Suppose that (Qz) is an integral function
at most of minimum type of order e such that its Taylor

series
1%

A (6.4.3)

=\ S

satisfies (6.4.1). Suppose, also, that

v Sue QO& \Q(gv\)\l 4 X (6.4.4)
H (\2.4)

where }}0)? 4 V’Q+HP>¢50, and for some finite A the union

of the discs




-0
\z-2) ¢ AR

covers a sector of positive aperture. Then

Lowm cup Jog M @), %, (6.4.6)

o TH()

One could also obtain a similar conclusion under

conditions involving the aperture of the secior, the

separation of the nom-zero coefficients, the size of A

and the maximum growth of the class of admissible functions.
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