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Abstract

Statistical analysis of data sets of high-dimensionality has met great interest over 

the past years, with great applications on disciplines such as medicine, neuro

science, pattern recognition, image analysis and many others. The vast number 

of available variables though, contrary to the limited sample size, often mask 

the cluster structure of the data. It is often that some variables do not help in 

distinguishing the different clusters in the data; patterns over the sampled obser

vations are, thus, usually confined to a small subset of variables. We are therefore 

interested in identifying the variables that best discriminate the sample, simulta

neously to recovering the actual cluster structure of the objects under study. With 

the Markov Chain Monte Carlo methodology being widely established, we inves

tigate the performance of the combined tasks of variable selection and clustering 

procedure within the Bayesian framework.

Motivated by the work of Tadesse et al. (2005), we identify the set of discrimi

nating variables with the use of a latent vector and form the clustering procedure 

within the finite mixture models methodology. Using Markov chains we draw 

inference on, not just the set of selected variables and the cluster allocations, 

but also on the actual number of components, using the Reversible Jump MCMC 

sampler (Green, 1995) and a variation of the SAMS sampler of Dahl (2005). How

ever, sensitivity to the hyperparameters settings of the covariance structure of 

the suggested model motivated our interest in an Empirical Bayes procedure to 

pre-specify the crucial hyperparameters. Further on addressing the problem of
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hyperparameters’ sensitivity, we suggest several different covariance structures for 

the mixture components. Developing MATLAB codes for all models introduced 

in this thesis, we apply and compare the various models suggested on a set of sim

ulated data, as well as on three real data sets; the iris, the crabs and the arthritis 

data sets.
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Chapter 1 

Introduction

1.1 O verview

Undoubtedly, most problems of a researcher’s interest have always been naturally 

complex and multidimensional. Forming a comprehensive image of the prob

lem though, requires the examination of its various different aspects. However, 

although once manipulating such problems, and sometimes even collecting in

formation about them, was of great difficulty, nowadays, the immense use and 

development of technology and computers has helped us overcome such bound

aries.

Statistics, a science whose objects of study are mostly characterised by mod

elling complexity, has considerably contributed towards the understanding and 

implementation of the most elaborate problems. Certainly reinforced by the ex

plosion of computer’s usage, major development has been achieved in the area 

over the last decades, with multivariate statistics in particular, constituting an 

important tool of significant interest.
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More specifically, one of the major areas of multivariate statistics is the well- 

known Cluster Analysis. With the primary aim of cluster analysis being the 

identification and construction of groups of observations that share similarities, 

a tremendous amount of information can be transformed and summarised into 

smaller segments. Benefited by a clearer condensed image of our data, patterns 

comprising the main source of information can therefore be identified, allowing 

further inference regarding the object of study. In medicine, for instance, grouping 

a set of patients who suffer the same disease into three different levels (e.g mild, 

moderate, severe), can primarily facilitate the doctor’s diagnosis and indication 

of the required treatment to be followed, but also, looking at the problem from a 

different perspective, it could be used as an important tool on the determination 

of the causes of the disease and its level of severeness.

The beneficial features of cluster analysis have made its various techniques 

widely applied across many different disciplines. Besides medicine where not only 

patients, but also diseases or even cures themselves could be clustered, psychiatry 

has also made a great use of cluster analysis with clusters of symptoms, such as 

paranoia, schizophrenia, etc., aiding to a successful therapy. Other fields such as 

archeology, psychology, neuroscience, marketing, biology, machine learning, data 

mining, pattern recognition, image analysis, bioinformatics, climatology, crime 

analysis and social sciences (e.g anthropology) are only some of the many areas 

where clustering has been extensively used.

On the other hand, although one would think that the more information we 

might have the more valid the results become, analysing extended data bases is 

not a trivial task. In particular, in a world where everything can be monitored 

and measured, it is almost unavoidable that among the various variables, there is 

plenty of useless information or information that is replicated by many different
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variables. Inclusion of such unnecessary variables could not only make the inter

pretation of the results difficult, but also obscure the analysis itself worsening the 

predictions’ efficiency.

Consequently, methods that can reduce the dimensions of the problem have 

become the focus of much research lately. Areas like text processing of internet 

documents, combinatorial chemistry and quality control, make great use of such 

methods, with gene expression array analysis and data mining holding the first 

places in the list.

The analysis of gene expression arrays, for example, is particularly challeng

ing. With DNA microarrays, a multiplex technology used in molecular biology to 

quantify genes, being currently expensive, collection of microarray units is nor

mally restricted to a small sample. As a result, data sets consist of an extensive 

number of variables - thousands of genes can be monitored in a small unit - and 

only a limited number of observations. The samples are commonly structured in 

groups that the researcher is called to recover, whereas, only subsets of genes seem 

to distinguish the groups. It is very important that only the really informative 

variables are being selected since, inclusion of non-discriminating variables can 

mask the group structure of the data and lead to misleading results. Models, that 

successfully identify the important variables and simultaneously reveal the true 

cluster structure, can be proved to be very useful, since a better understanding 

of the underlying biological complexity of the disease is being achieved and they 

can, consequently, serve as a powerful tool on diseases’ treatment.

The microarrays’ example we just presented, is a particularly representative 

case of simultaneously combining two major areas of multivariate statistics, the 

cluster analysis and the variable selection/dimension reduction, to tackle problems 

of biology, medicine and many other fields. To conclude though, we shall mention 

two more cases characterised by the special trait of many variables but just a small
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sample size. These are archeometry and art restoration; two very interesting areas, 

where only a few objects of study are available (e.g. amphorae of classical period), 

but with plenty of covariates available to be stored.

1.2 P re lim inaries

We will now introduce essential concepts of statistics that have been used for the 

completion of this thesis. The following sections guide us through the most basic 

of those ideas, but, in the need of further definitions those should be provided at 

the relevant chapters.

1.2.1 Bayesian Theory

Let us begin with Bayesian statistics, an alternative to the frequentist method 

for statistical inference, which has gained great attention over the last decades. 

The originality of Bayesian statistics is hidden in the noble, whilst simple, idea of 

drawing conclusions about parameters of interest by using two different sources 

of information. The first one, as one would easily assume, is the information we 

gain from the observed data. Along, the second one, is the belief of the researcher 

himself about the parameter of interest, prior to observing the data. How these 

two are used in order to make inference on the parameters of interest, we will see 

right away.

The concept is primarily based on Bayes’ theorem, a theorem about inverse 

probabilities named after the mathematician Thomas Bayes. Consider the data 

x = ( x i , , xn) and the parameter of interest 0 6 0 , where 0 is the parameter 

space. The information coming prior to the observation of the data is expressed 

by the prior distribution 7r (9). The data, which are independent and identically
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distributed (i.i.d) with distribution p(xi\9), give the likelihood function

n

R p M O ).

According to Bayes’ theorem, the likelihood updates the prior yielding the poste

rior distribution of 9, n (6\x\ , . . . ,  xn), i.e.

The parameter of interest 6 now follows the posterior distribution ir (0\x\ , . . . ,  xn). 

Being interested in summaries of the posterior distribution, such as posterior 

mean, posterior moments, marginal densities etc, one can draw samples directly 

from the posterior distribution of the parameter 0, when the marginal likelihood 

of the model,

can be calculated analytically. However, this stands for only a few cases of model- 

priors that result to posteriors of a conjugate form. Ergo, motivated by the need 

of sampling from more elaborate posterior densities, sampling methods known as 

Markov Chain Monte Carlo methods, have been extensively used to serve such 

purpose. The following section will take us through a few of the most well-known 

MCMC simulation methods.

n

*{6) J J p ( s i |0)
7 T  (0\X 1 ,  =

2=1

n
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1.2.2 Bayesian Inference using M arkov Chain M onte Carlo 

m ethods

Markov Chain Monte Carlo methods - algorithms originally introduced by physi

cists in 1950’s - seemed to be a promising tool for the sampling from any posterior 

distribution, even those of high-dimensional problems. Their engaging concept for 

the simulation of the parameter of interest 9 drew the attention of statisticians 

and cast Bayesian methods on the cutting edge promoting its wide applications.

Using MCMC methods, samples for 9 could now be simulated from the target 

distribution 7r (Q\x\, . . . ,  xn) via Markov chains. The idea is : if we start with an 

arbitrary 6°, at each step we draw 9,}s from a distribution, which as we move 

along the iterations converges to the stationary distribution tt (9\x i , . . . ,  xn). The 

chain of d,’s forms our sample for 9 and inference can now be delivered.

Many different approaches have been developed within the MCMC methodol

ogy, with the Metropolis-Hastings algorithm and its variants, as well as the Gibbs 

sampler being the most widely used. In the following, we demonstrate the MCMC 

methods used for the completion of the work presented in this thesis.

The M etropolis - H astings algorithm

As previously stated, the idea of MCMC algorithms dates back to early 50’s, 

when Metropolis et al. (1953) introduced the Metropolis sampler as a method for 

sampling from the Boltzmann distribution. It was then generalised in Hastings 

(1970) and given the name Metropolis-Hastings algorithm, establishing it as one 

of the most widely used and useful MCMC samplers. Bayesian statistics was 

among the many fields that incorporated the use of the new sampler; a fact that 

contributed to the rapid evolution and extensive use of the former.
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Assuming that we want to sample the parameter 0 from its posterior distri

bution 7r (9\x\,... ,x n), the sampler works as follows. Starting with 0°, a value 

drawn say by 0’s prior distribution, at any given state t of the chain with 04, a 

new 9* is generated from a proposal distribution q (9*19*). The proposed value is 

accepted with probability

and we set 9t+l = 0*, otherwise, 9t+1 = 9t. The process is repeated for a certain 

amount of iterations, a number that is determined by the researcher according to 

the needs of the study, and the sampler eventually converges to the equilibrium 

distribution. Finally, depending on the chosen proposal, the Metropolis-Hastings 

algorithm has several variants, e.g the M-H independence sampler, the random 

walk M-H algorithm and more.

Random  walk algorithm

Continuing with the random walk Metropolis-Hastings algorithm, the moves 

of the Markov chain for this adaptation of the M-H, are proposed such that 9t = 

0i~1 +e, with e being a random variable the distribution of which does not depend 

on 0. A multivariate normal with mean 0 is extensively used as the distribution 

of e. Ergo, with a symmetric around 0 distribution,the algorithm accepts the 

proposed moves with probability :

Care should be taken for the choice of the proposal distribution, as we want

acceptance rates neither too low nor very high. A proposal that suggests small
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shifts for 9 will attain a high acceptance rate as most of the moves will be ac

cepted. However, convergence is achieved after the sampler has explored the whole 

parameter space. Evidently, a sampler with proposed moves close to each other 

will need more time to explore the parametric space and thus convergence will 

be achieved after many iterations. On the contrary, big moves for 6 make the 

sampler vulnerable to low acceptance rates. That is due to the fact that many 

of the proposed moves are expected to lie in the tails of the target distribution 

and they are thus frequently rejected. More specifically, in the case of a normal 

proposal distribution, the distance between the moves is controlled by the vari

ance of the increments e, of. A choice of a small variance would produce values 

close one to each other resulting to high acceptance ratios. Meanwhile, low accep

tance ratios would be drawn from a chain with large variance, for distant values 

would be suggested and most likely rejected. (Roberts et al., 1997) show that 

the optimal random walk algorithm, considering a normal proposal distribution, 

has acceptance rate 0.234, while on other proposals, rates between 0.1 and 0.4 

perform close to optimal [Breyer and Roberts (2000) and Roberts and Rosenthal 

(2001)].

The Gibbs sampler

Gelfand and Smith (1990) introduced the Gibbs sampler, an idea originally 

proposed by Geman and Geman (1984) for applications on image processing, as a 

means for the sampling from complex joint posteriors. Multidimensional problems, 

for instance, where sampling from the joint posterior of two or more variables was 

once demanding, could now be availed by the new sampler.

Gibbs sampler suggests that marginalisation for the parameter of interest could

be achieved, instead of integrating over the joint posterior, by sampling from the

conditional distributions. Indeed, given the parameter of interest 6  =  ( 0 i , . . .  , 0 d )



to be sampled from the joint posterior n{9\x\,... ,xn), the sampler commences 

with a vector 00 = (0°,...,  0°). At each state ¿, a new vector 9l = (6\, . . . , 9fd) is 

generated by sampling each component 0j from its conditional distribution and 

conditioned on the current values of the other parameters. To clarify, we write :

■ ■ j x n )

02~*r(0 2 |0i>03_ 1 ... . , 9 td~ 1 , x l , . ■ ■ , X n)

9 td ~ i r ( 6 d \ 0 [ , 9 i . . , , Xn J.

Eventually, after convergence has been reached, the distribution of the chain ap

proaches the target joint distribution, with 9 = {9\,... ,9a) being a draw from 

n{Q\x

Likewise the M-H algorithm, several variations of Gibbs sampling can be found 

in the literature, e.g. the blocked Gibbs sampler and the collapsed Gibbs sam

pler of Liu (1994). Later in this thesis we use the Collapsed-Gibbs sampler along 

which a group of parameters is blocked together and sampled conditioned on all 

other parameters. In turn, the remaining parameters of interest are sampled hav

ing marginalised over at least one of the parameters included in the precedent 

group. For example, let a, ft, 7 be our three parameters of interest. Consider

ing a Gibbs sampler, we would draw a, (3,7 from the conditional distributions 

p(a\/3,j), p(/3\a,,y) and p(7|a,/?) respectively. Under the Collapsed-Gibbs ap

proach though, and assuming we originally decide to marginalise over ¡3, we sam

ple a conditioned only on 7, from the conditional distribution p (aI7). However, 

for the sampling of 7, we “expand” blocking ¡3,7 together and sampling (3 from 

p {¡3\a, 7) and 7 from p (7\a, (3).

Gibbs sampler and its adaptations are particularly useful in the Bayesian
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statistics. In hierarchical models, extensively used in the applications of Bayesian 

statistics, the parameters of interest are conditionally independent. The full condi

tionals for the parameters to be sampled are then of known form, which facilitates 

direct sampling using the Gibbs methodology.

Reversible Jum p Markov Chain M onte Carlo

On the generalisation of the Metropolis-Hastings algorithm for problems where 

exploring the different parametric spaces are of interest, Green (1995) introduced 

the Reversible Jump Markov Chain Monte Carlo sampler. With problems devel

oped within the idea of finite mixture models being a representative example of 

RJMCMC being of great use, the new sampler offered the flexibility of exploring 

different states, allowing the number of components considered unknown.

Suggesting moves between states, RJMCMC changes the dimension of the 

parametric space requiring appropriate changes on the actual parameters. On 

that note, random variables are needed for the transformation of the parameters 

of interest. Assume we are in state k with parameter vector 9k of dimension d,k. 

Proposing a random variable u of dimension du from a proposal density q (u), we 

consider the move £ to state k! of dimension dy and parameter vector 9y. For 

the transformation (Qk,v!) = g(Qy,u), an invertible and deterministic function g 

is needed, while dimensions need to fulfill the dimension balancing condition to 

secure reversibility, i.e. we need d,k + du' = dy+du, where vl is the random variable 

used for the performance of the reverse move. The sampler, finally, accepted move 

t  with probability :

where re (6k) is the probability of choosing a move of type £, when in state k, and 

|d (By, u') /d  (9k, m)| is the Jacobian of the transformation from (9k, u) to (9y,u').

min < 1 7r (<9fc|.xi,. . . ,  xn) re (By) q (u) d (9k, u)
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1.2.3 Convergence

After a certain amount of iterations, the Markov chain for the parameter of inter

est reaches its equilibrium distribution, also known as the algorithm has converged 

to the required posterior distribution, allowing the performance of inference. Av

eraging over the samples drawn from the posterior n (Q\x\,. . . ,  _n), estimation on 

posterior summaries of interest can be made. However, the matter of when con

vergence has been achieved needs further discussion; Brooks and Roberts (1998) 

and Cowles and Carlin (1996) offer extensive reviews on convergence techniques 

for Markov Chains.

Termed as the burn-in period, a number of initial iterations are usually dis

carded to overcome the influence of the starting distribution. A common practice 

is to discard the first half of the simulated draws. However, one needs to be careful 

when monitoring convergence. A long enough chain is very important to ensure 

convergence, especially in problems with many parameters to be sampled. In such 

cases though, the increased amount of required storage space can be prohibitive, 

therefore thinning the chain is recommended. Under such circumstances, samples 

are saved only every a chosen number of iterations and inference is based on the 

saved draws, after convergence has been achieved.

Simulating a number of independent chains starting from several different 

points is also suggested. Chains centered to the same posterior distribution, with 

the within variation close to the between variation, suggest convergence of the 

algorithm. One can also calculate an estimate for the potential scale reduction (if 

n —> oo, the factor by which the scale of the distribution of 9 might be reduced). 

With W  and B being the within and between variation of the chains respectively, 

we have:

( 1.2. 1)

11



where, vcir+ (0|x) is an estimate of the marginal posterior variance of 9, such that:

var+(6\x) = + (1.2.2)n n

Finally, calculating R for all parameters of interest, values of all R factors close 

to 1 indicate convergence.

1.2.4 D istributions

Finally, at this point, we would like to introduce a couple of distributions presented 

in this thesis. Starting with the Gamma distribution, for a random variable X  

that follows a Gamma distribution with shape parameter a and scale parameter 

(3, we write :

X ~  Ga (a, (3).

For x > 0, a > 0 and ¡3 > 0, we define the probability density function :

f fa a ,P )  = ■~—rxa~1e~^x,
F(a)

with mean a /(3 and variance a /¡32, where F (a) is the Gamma function. Gamma 

function is an extension of the factorial for complex and real number arguments 

and is defined as the integral :

PO O

T( z) = /  f - ' e ^ d t
Jo

for R(z) > 0. For positive integers, F(n) = (n — 1)!.

For a random variable X , we define the Generalised Inverse Gaussian distri

bution over x > 0, with parameters a > 0,6 > 0,p 6 and probability density
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function :

f (x )  =
i a / b )  ^ . p - l  c ~ ( a x + b / x ) / 2

2 Kp ( v ab

Kp (^Vabj is the modified Bessel function of the second kind, for which

1 M £ ) _ C (2)
2 sm i/7r)

where /„(z) is the modified Bessel function of first kind.

1.3 R eview  on V ariable Selection an d  C luster 

A nalysis

Earlier in this chapter we introduced the term Cluster Analysis and its extensive 

use in areas like medicine. We saw how such an analysis can facilitate the ma

nipulation of vast data sets by forming groups of observations, an outcome very 

beneficial indeed for the interpretation and better understanding of the object 

under study.

For the performance of the grouping, we understand that a measurement for 

the indication of the observations to be clustered together is needed. A natural 

choice for one to make is the construction of groups of observations that are 

similar and close together. How is this closeness and similarity defined though? 

As far as closeness is concerned, a measure of distance is used to determine the 

observations to be clustered together. For all observations in a cluster, the chosen 

distance measure is meant to be small. Groups of similar observations on the 

other hand, are formed for observations that share a similarity measure of a large 

value. A variety of distance and similarity measures can be found in literature 

(e.g. Euclidean distance, Gower coefficient, etc), an extensive summary of which
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can be found in Everitt et al. (2001).

Various different clustering methods that make use of these proximity mea

sures have been developed and used throughout the years (see Everitt et al., 

2001). Hierarchical clustering, partitioning methods, with K-means being the 

most representative of these algorithms, and density based methods, are some of 

the categories lying under the wide range of Cluster Analysis.

Each of the above classical techniques, approaches the problem of clustering 

in a different manner. In hierarchical clustering methods, for instance, with the 

further categorisation in divisive and agglomerative algorithms, while groups of 

observations are either merged or split according to a particular distance mea

sure, the number of clusters needs not be pre-specified. More specifically, the 

divisive algorithms proceed by initially considering a single cluster of observations 

and thereafter splitting groups that are further distant. The agglomerative al

gorithms on the contrary, merge groups together, starting with each observation 

composing a cluster. How the distance between the groups is calculated deter

mines the agglomerative method in use (e.g. nearest/furthest neighbour, average 

within/between groups, centroid).

Coming to the K-means method, we first need to point-out that here, unlike 

hierarchical clustering, the researcher needs to predefine the number of clusters. 

Then, for a given number of clusters k, the algorithm starts by defining k centroids 

(cluster means) and calculates the distance between every observation and the 

k centroids. The cluster with the smallest distance from the ith observation is 

now where this observation lies. The procedure is repeated, with the centroids 

being recalculated at each iteration, until the cluster allocation remains the same 

between two consecutive iterations.

Albeit both hierarchical and K-means clustering are simple and widely used,
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they come with certain disadvantages. The computationally expensive hierar

chical clustering methods makes their application on large data sets prohibitive. 

Although K-means, on the other hand, is widely applied on large data sets working 

adequately and fast, it considerably depends on the initial values of the centroids, 

while the pre-requested information about the number of clusters is not always 

known to the researcher.

However, such algorithms are rather mathematical methods, that do not rely 

on any statistical model, but rather manipulate the data themselves overlooking 

the variability of the population. Statistical inference with clustering methods like 

K-means and hierarchical clustering, hence, cannot be performed, and therefore 

a method developed on the basis of a probabilistic model that adapts to our 

knowledge about the distribution of the data would offer more flexibility and would 

be more reliable for statistical inference. Also, taking into account the nature of 

the clustering problem and that clusters in real data sets are not particularly 

well-separated, we understand that uncertainty needs to be taken into account. 

Bayesian statistics offers such a measure of uncertainty by averaging over the 

posterior distribution, and thus, looking at a probabilistic model as a clustering 

technique within the Bayesian framework is of particular interest.

Having said that and taking advantage of the advances in computers’ technol

ogy, the use of probabilistic models as a clustering method has met great success 

over the past years. Also known as Model-based Clustering, this method makes 

use of finite mixture models to model the data that are assumed as coming from 

G populations. The cluster assignment is then performed according to the es

timated posterior probabilities (see McLachlan and Peel (2000) and Fraley and 

Raftery (2002) for reviews on Model-based clustering).

In the frequentists’ context, clustering via finite mixture models is performed

using an iterative algorithm called the EM algorithm. Considering the data
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X  = (x i,. . . ,  xn), unobserved data Ztj are introduced, where = 1 if the ith ob

servation belongs to the j th cluster and 0 otherwise, with i — 1 ,.. . ,  n, j  = 1 ,..., G 

and G the total number of groups. EM algorithm treats ZtJ as missing values and 

estimates the allocation probabilities Wj using the Maximum Likelihood method. 

The update is performed in two steps, the Expectation, where the conditional ex

pectations of Zij, E(Zij\X), are being calculated and Zÿ are thus simply replaced 

by :

~  G

'y 1 wj j ixi\Qj)
3=1

and the Maximisation step, where those estimates are used to update the alloca

tion probabilities Wj by :
n

zij

The algorithm continues until Lk+l > Lk, where Lk is the likelihood in the kth 

iteration.

Although, the idea of the Expectation Maximisation algorithm is simple and 

free from computational burdens, as it can easily be coded, there are some draw

backs as far as its convergence is concerned. Besides the very slow convergence 

of the EM algorithm that has been observed (see McLachlan and Peel, 2000), the 

relationship used as a convergence criterion, Lk+1 > Lk, examines whether there 

is a change in the likelihood, rather than actually indicating convergence to a 

point. Moreover, a very important remark is that as the algorithm iterates, it is 

very likely that it gets trapped into local maxima. It is generally advised that 

many different starting points are used to avoid such an event, as a poor choice of 

starting values can lead to non-accurate estimations. In the Bayesian framework, 

an approach of the EM algorithm, Maximum A Posteriori EM (MAP-EM), has
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been developed, for which MLE is replaced by a maximum a posteriori estima

tor for which EM algorithm is applied. In MAP, while E-step remains the same, 

at step M, the conditional expectation under maximisation is augmented by the 

logarithm of the prior p(.).

However, after the introduction of the MCMC methods in statistics, mixture 

model problems, and consequently Model-based clustering, are being implemented 

via Markov chains. With the overall population modelled using finite mixture 

models, under which the data are considered as coming from G different subpop

ulations, each of those populations follows a distribution with parameter vector 

6k and pdf fk(%\6k), where k indicates the kth population. We write the model ,

G

f (x) = Y l Wkfk (X\°k) ,
k = 1

G

where, Wk is the weight of the kth group, with Wk > 0 and Wk — 1, and indicates
k = 1

the probability that the ith observation comes from the kth population. The G 

densities of our subpopulations can vary. However, in cluster analysis, mixtures 

of multivariate normal distributions are commonly chosen.

Now, instead of the classical unobserved Zÿ’s, within the Bayesian framework, 

the cluster assignment is indicated by independent latent variables y/s. Letting 

X  — (aq,. . . ,  xn) be independent p-dimensional observations, the y* entries of the 

allocation vector y =  (yi,. . . ,  yn), are assumed to be independently and identically 

distributed. The probability mass function of each entry is p (y* = k) = Wk, where 

yi = k stands for the ith observation coming from the kth cluster. Having a prior 

distribution p(y), we can sample the cluster indicators y*’s from their posterior 

distribution with the use of MCMC methods. Most commonly, a conjugate prior 

is used for y, allowing the sampling directly from its posterior distribution with
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the application of Gibbs sampler. Finally, in reality, the number of the G sub

populations is not known, while, the parametric vector 9 is a random variable. 

Therefore, all G, 6k s and weights Wk need to be estimated.

Clustering methods are, in general, a valuable tool for the manipulation and 

better understanding of large data sets. We saw earlier a wide range of disciplines 

where clustering facilitates the uncovering of possible group structures of data, 

with medicine being in the first line. Data sets in areas like the latter hold a 

special characteristic; while a vast number of variables can be collected, for various 

reasons, the sample size is confined.

Unraveling the group structure of high-dimensional data sets is particularly 

laborious. It is reasonable for one to assume that among the very many available 

covariates, a respectable number would be nothing more than noise, adding no 

extra information to the true cluster formulation of the observations. Inclusion of 

such noisy variables, would increase the clustering error and obscure the result

ing partition. Consequently, exclusion of such unnecessary variables is of great 

importance.

Various methods under the general term of variable selection, have been devel

oped to the benefit of robust models of reduced dimension. Principal component 

analysis is a very commonly used technique of dimension reduction, which con

denses the information of the original variables in a few linear transformations, the 

components. Literature encompasses a variety of approaches that can reduce the 

dimensionality of the problem by either identifying the set of variables that best 

explain the partitioned space or methods that differentially weight the complete 

set of variables. An extensive review on variable selection methods can be found 

in O’Hara and Sillanpáá (2009) and Dellaportas et al. (2000).

18



Generally speaking, the clustering procedure can proceed the variable selec

tion; Liu et al. (2003) applied a mixture model with fixed number of clusters 

after a principal components analysis. However, there are cases, under which, 

certain variables can work as discriminating only when in conjunction with other 

variables. In many variable selection approaches though, such variables are con

sidered nuisance and are excluded from the analysis (Tadesse et ah, 2005). Such 

a result could mislead clustering accuracy. Hence, we are interested in approaches 

that perforin the two tasks simultaneously. Methods addressing the problem of 

clustering and variable selection simultaneously have been developed in both the 

classical and Bayesian framework.

From the frequentists’ point of view, one of the first attempts in the area 

was made by Fowlkes et al. (1988), who proposed a forward selection approach 

in combination with a complete linkage hierarchical clustering. Lately though, 

new different paths have been explored. The HINoV approach of Carmone JR 

et al. (1999) examines the K-means clustering in selecting variables according 

to certain adjusted Rand indices that pass some sort of threshold, while Brusco 

and Cradit (2001) perform K-means clustering in combination with a forward 

selection procedure. There is also a method suggested by Friedman and Meulman 

(2004) which combines hierarchical clustering with a weighting procedure over the 

complete set of variables.

While the methods above sift through the cluster assignments in the context of 

non-model based clustering, Raftery and Dean (2006) perform the variable selec

tion task within model-based clustering. Adopting approximated Bayes factors, 

they select the “best” subset of variables by means of model comparison, with the 

number of clusters also estimated; a beneficial feature which is not met by methods 

that perform hierarchical or K-means clustering. A comparison of eight methods 

performing variable selection in model and non-model based cluster analysis can
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be found in Steinley and Brusco (2008).

In the Bayesian framework now, Heard et al. (2006) proposed a Bayesian 

model-based hierarchical clustering algorithm on the detection of structures within 

the data. Clustering genes of similar profiles can highlight possible biological 

mechanisms than can be further investigated. On the same direction, Medve- 

dovic and Sivaganesan (2002) and Rarnoni et al. (2002) perform clustering of gene 

expression profiles using Bayesian infinite mixture models.

Further on the Bayesian methodology, variable selection has been mostly de

veloped in the regression context [George and McCulloch (1997) and Brown et al. 

(1998)]. A work by Tadesse et al. (2005) has, however, introduced the idea of ex

ploring the covariates’ space via a stochastic search on a latent vector-indicator of 

the important variables. The inclusion/exclusion search has been combined with 

a clustering procedure with unknown number of clusters, based on the reversible 

jump MCMC idea proposed by Richardson and Green (1997) and extended to the 

multivariate case.

Prior to the RJMCMC technique, Diebolt and Robert (1994) had explored 

MCMC methods, such as the Gibbs sampler, on clustering with a known number 

of components, while Stephens (2000) introduced a Markov birth-death process as 

an alternative to the reversible jump. Nobile and Fearnside (2007) proposed the 

allocation sampler, a new MCMC technique, that integrates out all the component 

parameters and samples only the number of clusters and the allocation variables.

From the nonparametric point of view, the cluster structure is explored us

ing Dirichlet Process mixture models. On the model proposed in Tadesse et al. 

(2005), Kim et al. (2006) consider an infinite number of components and form the 

clustering task in the context of a Dirichlet Process mixture model. Hoff (2006), 

on the other hand, proposed a more general variable selection strategy, where
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different subsets of variables are identified as discriminating along the various 

groups according to Bayes factors. Using normal mixtures, clusters are estimated 

employing a mean shift approach, while MCMC methods are used to update the 

model parameters. Based on the mean shift model by Hoff and using a Dirich- 

let process shrinkage approach for the selection of variables, Lian (2010) makes 

his contribution to the scheme of variable selection within clustering for high

dimensional problems. On DNA microarrays, Dahl (2006) proposes a conjugate 

Dirichlet Process mixture model which clusters genes based on their treatment 

effects and variance, overcoming the need of estimating the number of clusters. 

Finally, Yau and Holmes (2011) propose a hierarchical Bayesian nonparametric 

mixture model for the performance of clustering, combined with a cluster specific 

variable selection.

21



Chapter 2

Computational Methods for 

Bayesian Variable Selection in 

Cluster Analysis

2.1 P ro logue

Earlier in chapter 1, we discussed the need of introducing the variable selection 

methodology into exploring the cluster formulation of high-dimensional data sets 

and how identifying the important variables can improve the performance of the 

clustering task. Being interested in applying the two methodologies simultane

ously, we approach both variables’ identification as well as the clustering task 

within the Bayesian framework. Tadesse et al. (2005) incorporated model-based 

clustering into formulating a Bayesian model using a latent variable that deter

mines the identification of the important variables. Using Monte Carlo methods 

and assuming an unknown number of components, the cluster structure of the 

data is being uncovered with regard to a small subset of variables, chosen as the
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important and discriminating ones, while the Reversible Jump MCMC technique 

provides the additional benefit of estimating the number of clusters.

Motivated by the work of Tadesse et al. (2005) and on their suggested model, 

we explore alternative computational methods. Starting, fitting the model built by 

Tadesse et al. (2005), we choose to alter the split/merge moves developed within 

the Reversible Jump technique such that moves on both empty and non-empty 

components can now be proposed resulting to a simpler proposal. Describing 

the model with its prior and posterior settings, the following sections provide the 

detailed steps of the MCMC methodology for the estimation of the parameters of 

interest, together with applications on a simulated data set. Further, investigating 

the sensitivity of the model to the settings of the hyperparameters, we propose a 

data-based method en route to the selection of the crucial hyperparameters. We 

designed a preprocessing procedure of two stages that precedes the analysis and 

takes into account the information provided from the data to anticipate values for 

the hyperparameters of interest; a procedure that could be considered an empirical 

Bayes method. Finally, we consider an alternative approach to the split/merge 

move, which sequentially allocates the observations with probabilities conditioned 

on previously allocated data (Dahl, 2005).

2.2 M odel

As stated earlier, throughout this chapter we will be fitting the model as suggested 

by Tadesse et al. (2005) examining a few different computational approaches. The 

model has been built on the idea of mixture models, which delivers the clustering 

task, and the inclusion of a latent vector that facilitates the selection of variables. 

In chapter 1, we examined the clustering task formed within the mixture models 

framework, from both Bayesian and classical perspective, but let us now see how
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model-based clustering applies when in use with the variable selection task.

2.2.1 M odel-B ased  C lustering

Let X  = (x i,. . . ,  xn) be independent ^-dimensional observations. Data are viewed 

as coming from G different populations, each represented by a distribution, while 

a latent vector 7 of dimension p with binary entries such that :

7i =
1, if the j th variable is discriminating 

0, if the j th variable is non-discriminating,

indicates the important variables included in the model. Indices D, ND  are used 

to denote the set of discriminating (for which 7j — 1) and non-discriminating vari

ables (for which 7j = 0) respectively. Also the total number of the discriminating 

variables included in the model is p7 = 7j-

For the discriminating variables 

with G components,

x f ,  we form a multivariate mixture model

G

/ ( x ? M )  = $ > fe/(x ?|0fc), (2.2.1)
fc=1

G

where, w = (wi,. . . ,  wg) are the component weights with Wk > 0 and E wk -  1.
fc=i

Note that /  (x,D\6k) is the density of the ith observation coming from the kth 

cluster. For the non-discriminating ones, on the other hand, the clustering scheme 

is regarded as sampling from a single multivariate distribution /  (x(V£)|9*).

At this point, latent variables y = (yi,... ,yn) are introduced to indicate the 

cluster assignment of each observation. When the ith observation comes from the 

kth cluster, we write y* = k, while we assume y*’s as independently and identically 

distributed variables, with probability mass function p (yi — k) — Wk■ Considering 

the case of the x* coming from the kth component, being normally distributed, we
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have : x f \ Vi = k ,6 , 'Y ~ N  (//f ,£ f )  , x?D\0*,7 ~  N (pND,XND). 

We can now write the likelihood function as :

L (G, 7, w, nD, T,D,pND, Znd \X, y) =

( 2 tt;. - ( p - p - r W 2 \ x r iN D \ ~ n / 2 1exp „N D  , . N D \ t  v W O “ 1 t  N D  . . N D
¿ 2 ( * r - » KDy z KD- 1

 ̂ ¿=i
/ O

G

X [ ]  ^ T T ,  

fc=l

- p 7 n fc/2  I I n fc/2
W ,«fc eXP <[ J ]  (■'''? -  /''f)T Ek 1 (®f -  /if)

Xî Cjç
(2.2.2)

where Ck — {xi\yi = A;} with cardinality n*,.

2.3 P r io r  S ettings and  Full C onditionals

Continuing with the model specifications, we will now examine the prior settings 

and the resulting full conditionals of the model. We give details on both cases 

of assuming unequal covariance matrices across the groups (heterogeneous case), 

as well as for the case of groups sharing a single covariance matrix (homogeneous 

case).

2.3.1 Prior form ulation

We begin by assuming that the elements, yj, of the latent vector 7 are independent 

Bernoulli random variables such that, p (7j — 1) — <fi and so

P(7) = n ^ ( l - ^ .  (2-3.1)
j=i
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The number of discriminating variables, p7, is then binomially distributed. We 

view 4> as the proportion of the variables that we expect a priori to be discrim

inating, i.e. E (cj)) = Pprior/p, where pp7.i0r is the a priori expected number of 

discriminating variable. Finally, by choosing a Be (a, b) hyperprior on (/>, we fi

nally have a beta-binomial prior for p7 with expectation pa/(a + b). Setting the 

hyperparameters of Beta such that a + b — 2 we form a vague prior. Note here 

that for a/(a  + b) — 1/ 2, i.e. a — b = 1, we have a uniform prior.

We set a discrete uniform prior on [1, . . . ,  Gmax] as a prior on the number of 

components G,

P {G — g) = —- , (2.3.2)
^  m a x

while, a symmetric Dirichlet prior is chosen for the vector of component weights 

w, i.e. w\G ~  Dirichlet (aw, . . . ,  aw).

The model can be fitted using MCMC methods; however, sampling 7, as well as 

the number of components G as suggested by the Reversible Jump moves, changes 

the dimensionality of the model. As a result, parameters (/rf, pND, S f , HND) 

for the new components need to be sampled every time the dimension changes. 

Nonetheless, the increased number of parameters would affect the fitting of the 

model, slowing down convergence (Tadesse et ah, 2005). On the matter and in 

favour of a more efficient algorithm, Tadesse et al. (2005) recommend the use 

of conjugate priors for the mean vectors and the covariance matrices to facili

tate integration and therefore overcome the problem of changing dimensions. A 

natural assumption for one to make is that of the prior component mean being 

proportional to the prior component variance. We therefore have :

/rf|

liND\END ~  N  (ii%D,hoXND) ,
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(2.3.3)

E^| G ~ I W { 6 - Q d),

z ND ~ i w  (i; gWD) .

Using the notation of Brown (1993), IW  (S;QD) represents the py dimensional 

inverse-Wishart distribution with shape parameter 5 =  n—py+1, mean QD/ (<5 — 2) 

and n degrees of freedom. With data matrix X nxp, QD and QND are set as :

0 D = — I 0 ND = —7y‘V Jp—P'y)«1 K0 7

with Ki and k0 being between 1% and 10% of the upper and lower deciles of 

the n — 1 non-zero eigenvalues of the covariance matrix of the data (Cov(X)) 

respectively (Tadesse et al., 2005).

The hyperparameters of the Normal priors are chosen in favour of fairly flat 

priors over the variation of the data. In particular, ¡iq is simply a vector with 

elements the medians of the p covariates. However, there are no rules of thumb 

for the choice of the hyperparameters h0 and hp, Tadesse et al. (2005) suggest 

using arbitrarily large values. However, clustering is a model choice problem and 

so may suffer from Lindley’s paradox when ho and hi are chosen arbitrarily large. 

Also, care needs to be taken on the choice of the constants and Ko, when 

forming matrices QD, QND. We examine the sensitivity on the choice of hi, h0, as 

well as Ki, Ko, on our application of the model on a simulated data set at the end 

of the chapter.

2.3.2 Full C onditionals

The choice of conjugate priors on the component mean and variances as given 

in (2.3.3) allow for analytic integration of the posterior distribution over the 

p,^,Yi^,pLND and T,ND parameters. The joint posterior is then of the remaining
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parameters (G,w,j,y)  and of the following form :

f ( X , y \ G , w , ' y ) =  j  f  { X , y \ 7 , G ,  w , n D , X S D ^ N D , Z N D ) f  (MD|G,7 ,S D) /  (ED|Gl7) 

x /  (nND\XND, 7 ) /  ( E ^ ^ )  d[iD dEP dy,ND d Z ND. (2.3.4)

Considering the cases of both equal and unequal covariance matrices, we include 

the calculations of the analytic integration over the parameters , S f , yND and 

Y,ND (see Appendix A).

For the case of Homogeneous covariances we obtain the following posterior 

distribution :

/  (A, y\G, w, 7) = 7r np/2K D |g D|(<5+P7_1)/2
G

Q° + ^  s
k= 1

~(n+S+p1 - l ) / 2

x  H n d  \ Q n d | ( 5+ p _ p -ï - 1 )/2 q n d  _)_ g N D ^ - ( n + 5+ p - p - t ) / 2 2̂ 3 5)

with,

K d I I  ywnkk (hxrik + 1) P7/2J Y l
3=1fc=i

Py r ( | ( n  + (5 + p7 -  j))
r (I (s +  py - j ) )

H " °  = (fc„n + ^  J J  ^ ( |  (n + <5 +  p -  p7 -  ;))
f ( |(5  + p - p7 -  j))

S? = nk
h\nk + J  {V0 -  xk) {^0 ~ x$ )  + Y l  (x

x ? 6 C k

D X?’) ( XD X D
f .

S ND =  J-X—  (p™  -  XND) ( ,,,7  -  x "D)T + V  (x fD -  xND) (x fD -  x" d)T .
ho n + 1 1=1

where, xk is the sample mean of the variables included in the model for the kth 

cluster and xND is the sample mean of the chosen as non-discriminating ones. 

Under the assumption of Heterogeneous covariance matrices, the joint posterior
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becomes :

f ( X , y \G , w ^ )  = n - n̂ 2f l S . K ^ \ Q
k= 1 '•

D I^ D I^ + P t - 1)/2 |q D gl£»|-(«fc+'5+ P 7 -1)/2

x ¡j ND Iq NDI^+p-pi- 1)/2 jq ND ^Arz)|-(n+5+p-P7)/2 ^  3 g)

with, K °  = < »  (Knk + 1)-̂ n  F r  -  j))j)) ■and HND,Sj?,SND

as defined earlier.

The full conditionals of the parameters y, 7 and w, then become

/  (y\G, w, 7, X) oc /  (X, y|G, w, 7), (2.3.7)

/  (7|G, w, y, X) cx /  (X, y|G, re, 7) V (b|G) (2.3.8)

where, p(j\G) is the beta-binomial distribution, and

w\G, 7, y ,X  ~  Dirichlet (acw + n i , . . . ,  aw + no) ■ (2.3.9)

Finally, to be more precise, we give the final form of the full conditionals in (2.3.7) 

and (2.3.8). For the case of homogeneity these are :

f ( y \G ,w , j ,X )  = K D
q d + Y . s >

k=1

— (ra+i+p-, —1)/2

f ( 1 \G)w,y ,X) = K D\QD\{6+P'1- 1)/2
G

q d + J 2 s >
k=1

7 n+<5+ p 7 - l )/2

x I q ND^+P-Pj- 1)/2 I QND _|_ gND ̂ (n+S+P~Pl)/2

B  (p7 + a, p -  p7 + 6) (pp)
B{a,b)
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while, for heterogeneity we have :

G r
H v \g ,w,'y,x ) = 1 [ I k ? \ q

k=1 ^
D  | q D  ^ . D | - ( « l c + '5+ P7 - 1) / 2

G

k= 1
/  (7|G > ,y , AT) = I ]   ̂Kk \QD\(5+P̂ m \Qd +  <^|-(n^+P7-i)/2

JVD I ^ N d K ^ + P -P t 1)/2 n W D  , c-iVD I - ( « + <5+ P -P 7 )/ 2x / / iV"  Q + s r

x
B (p7 + a, p -  p7 +  6) (£)

B (a, 6)

2.4 P o s te rio r Inference

Moving now to the estimation of the parameters of interest : y, 7, w, and G, we 

will describe the MCMC techniques used to draw the posterior samples. Starting 

from the variable selection vector 7 and after updating it from its full conditional 

in equation (2.3.8), we proceed with the parameters of the clustering task w,y, 

and we finish up with the split/merge and birth/death moves of the Reversible 

Jump procedure, that allow our search to explore different dimensional spaces by 

creating or deleting empty components. But let us go through each of the steps 

of the algorithm and examine them in detail.

2.4.1 Variable Selection

First in place comes the update of 7, the vector that will indicate which variables 

are chosen to be included in the model. Using a Metropolis search and three 

different types of moves, a new candidate 7' is proposed and then accepted or 

rejected according to a probability. The moves that suggest the new candidate 

are:
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1. Add : Randomly choose one of the 0 elements in 7 and change it to 1.

2. Delete : Randomly choose one of the 1 elements in 7 and change it to 0.

3. Swap : Randomly and independently choose a 0 and a 1 in 7 and switch 

their values.

The algorithm chooses randomly, with probability 1/3, between the three moves

and accepts the new candidate with probability min f(-y '\X,y ,w,G)  
f ( l \ X , y ,w , G )

2.4.2 C luster A llocation  and W eights

Following the selection of variables, we come across the sampling of the two pa

rameters that yield the cluster separation; that is, the weights w and the cluster 

allocation vector y. Evidently, as results from the full conditional (2.3.9), the 

component weights can be drawn using a Gibbs sampler. As far as the vector y 

is concerned, its elements get updated one at a time under a sub-Gibbs sampling 

strategy. More specifically, the full conditional probabilities that the ith observa

tion belongs to the kth cluster are being calculated, for every cluster and for all 

the observations, using the cluster assignment of the remaining observations 2/(-p. 

The probabilities are calculated according to :

/  (yi = k\X,y^),r f ,w,G)  oc /  (X,yi =  k, y(-p|G, w, 7) . (2.4.1)

2.4.3 R eversible-Jum p M CM C

Having sampled the new cluster assignments and component weights, we want the

algorithm to further explore the dimensional space. Under the idea of the RJM-

CMC sampler [Green (1995), Richardson and Green (1997)] , split/merge moves

31



on the current clusters and creation/deletion of empty components - birth/death 

moves - will allow movements between different states. In particular, the idea 

summarises in the following. Being in state ip, a move m is proposed and takes 

us to state ip'. A vector of continuous random variables u, that are independent 

to ip, are drawn and ip' is set as a deterministic and invertible function of ip and 

u. Move m is then accepted with probability

where, p(tp\X) is the joint posterior density evaluated in state ip, rm {ip) is the 

probability of choosing move m when in state ip and q (u) is the density function 

of u.

Besides the creation/deletion of empty components, we have chosen a sampler 

that allows random split/merge moves. That means that we have designed the 

sampler such that it can randomly choose between both empty and non-empty 

components and then proceed to their splitting or merging. A closer look to the 

two types of moves, split/merge and birth/death, in the following sections will 

give us a better perspective of how the sampler is applied.

min < 1,
p(ip'\X)rm (ip') dip' 

p(ip\X)rm {ip)q(u) d(ip,u)

Sp lit/M erge M oves

First in place is the choice between a split and a merge move. With probabilities 

bG and dG such that,

bG = <
1,

0.5,

the sampler

if G = 1 o, if G = 1

if G = 9 C1 — 1• • • 5 ^ m a x  1 ?
dG = < 0.5, if G = 9 r 1 1•••5 '-7m a x  ±

if G = G m a x , 1. if G = G  m a x

(2.4.2)
randomly chooses to either split a component into two or merge two
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components into one. The components to be split or merged can either be empty 

or non-empty.

In the case of a split move, a cluster i, with weight iry, is randomly chosen 

and split into the clusters, say l\ and l2. Being in state xp with parameters 

xp = (G, m,7,y), the split move will now take us to state xp1 =  (G + 1, w1, 7, y1). 

We can see that the variable selection vector 7 remains the same, but we now have 

a new set of parameters for the clustering scheme. The weights of the newly formed 

components will be w't — w^u and xv'e — xvg (1 — u), where u is a random variable 

generated from a Be(a,u,au). Following, the observations originally assigned to 

the selected cluster l  are randomly reallocated to the two new clusters, forming the 

updated allocation vector y'. Of course, the number of clusters is being increased 

by 1, (G + 1), while the number of the observations in the new clusters is n'e and 

n 2̂ respectively, with n!ix + = ri(_.

Considering the reverse move of randomly choosing two components, G and 0 , 

and merging them into a single cluster, £, with G and G being either empty or non

empty, we now move from state xp — (G + l,u ;,7,y), to state xp’ = (G, w', 7, y'). 

All observations originally allocated to clusters G and £2, now belong in cluster £, 

the weight of which is recalculated as w'e = we1 + uy2, where and uy2 are the 

weights of G,and l 2 respectively. Evidently, n'e =  + n^2, while this time the

density of the random variable u is again a Be (au, au) with u = w^1/w[.

The proposed split move is accepted with probability min(l,A), where A is 

the ratio :
p{xp'\x)rm (ip1) 9 K - < )

p(ip\x)rm (ip)q(u) d(w e,u)

33



In particular,

P  W \ x )  =  /  (G +  1, w \  7, y'\X) =  f  (A ,  y ' \ w ' ,  7, G  +  1) /  (u/|G +  1) /  (G +  1 ) , 

P (VM) =  /  (G, 7 , y|X) = /  (X, y|m, 7 , G) /  M G) /  (G),
/ , X b c P a l l  oc / ,/x ¿G+lrm ('0) = —t;— , rm (0 ) =

g(u) =

G

1
G (G + 1) ’

B (nu, &u)
u(Lu 1( ! " « )

Ou- 1 and
d(we,u)

Wg.

With paiioc = 'u"£l (1 — 'u)n<î2 being the probability that the particular allocation is 

made, substituting the above terms on the general form of the ratio A yields :

< / ( X ,y V ,7 ,G + l )  „ /M IG + 1 )  /  (G + 1)
J \  —  „ , _ _ ;----------- —  X  —— r ~   X/(X ,y |u ;,7,G)

Gdc+i
/ M I G )

13 î du, <+)
G (G + 1) bGPaiioc Uau~1 (1 -  u) du 1

/(G )
(G + 1)!

X G! X We‘ (2.4.3)

Finally, using the full conditionals in (2.3.5) and (2.3.6), and considering

/M IG  + 1) w]' (Xw—  1  . ' Oiw~ 1

. and f ( G + 1) =  ! 
/M |G ) ® r '1f i(a w G a„)’ /(G )

the acceptance ratios for both the cases of heterogeneous and homogeneous co- 

variances are :

1. Homogeneity.

- P ~ 1 P  7  
2A + 1) 2 ( H  +  1)' x~P 7

(h\ng + 1) 2

G + l

+ E  +
fc=i

G

q d + E s -

B (ciu, cru) 
B  ( , G(Xuj

X U (1- M

fc=l

x x

— (n+6+p-y — l) 
2

(2.4.4)
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2. Heterogeneity.

A = \QD S+P'y ~
X i« d + s;.d I QD + s[°

l<?D + s ?  |
-(ni+S+p-y — l) 

2

— P7 ~ P-y
(/iin^ +  1) 2 {h\n'i2 +  1) 2

x
{h\ri( + 1) 2

x rr r ( |  (nii +  S_ +  P7 -  j ) )  r ( |  (nh + d + p 7 -  j ))

X J=i r  (1 (n* + 5 + Pi ~ j)) r { U 6 + P-r-
B (nw, nu)

B îOiw, Gcxyj')
X 'll“” “u (1 -  u)c X Wo iG+1 (2.4.5)

The merge move, on the other hand, is accepted with probability min(l,A), 

with A being the inverse ratio of the one we obtained in the split move. More 

specifically we have :

/ (X ,y V ,7 ,G )  / K |g )  / ( g )
/  (X, y|in, 7, G + 1) /(u i |G + l)  f  (G + 1)
G(G + l)bGPa„oc u»»-1 (1 -  u)au~l G\ 

Gdc+i B(au,au) (G + l)!
x (u;^ +tn£2) 1 , (2.4.6)

which can be further simplified for the cases of homogeneity and heterogeneity by 

taking the inverse ratios of (2.4.4) and (2.4.5) respectively.

B irth /D ea th  M oves

In the final part of the parameters’ sampling we have the second set of moves, 

the birth/death moves. Like in the split/merge process, a birth or death move is 

randomly selected with probabilities &Go and dGo :
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3G0
1, if G0 = 0 

0.5, if G0 = 2, Gmaa 

0, if Gq = Gmax — 1

¿Go = <

0, if Go = 0 

0.5, if G0 = 2,..., Gmax — 2

1, if Go — Gmax — 1
(2.4.7)

where Go is the number of empty components before we proceed to the birth/death

move.

Under a birth move, a new empty component is generated with weight w'G+1 

drawn from a Be(l,G).  The existing weights Wk, then need to be rescaled to 

ensure summation to unity. The new weights will now be w'k — Wk (l — wG+1) , for 

k = 1 ,.. . ,  G. In terms of movement between states, starting from ijj = (G, w, 7, y), 

the birth of the new component takes us into state ip' = (G + 1, u /,7, y), where 

we note that the allocation vector y now remains the same since no observations 

need to be reallocated. The move is accepted with probability min(l,A), where 

A stands for :
d { w ' )

d ( w , w ' G + 1 )

This time the terms of the ratio A are :

P ('</>» rm (ip1) 
p (ip\x) rm {$) q {w'G+l)

p W\x) = f  (G + 1, w', 7, y\X) = f  (X, y\w', 7> G + 1) /  (w'\G + 1) /  (G + 1), 

P (V’k) =  /  (G, it/, 7 , y\X) = f  (X , y\w, 7 , G) /  (m|G) /  (G), 

rm (ip)=bGo, rm (ip1) =
Lro + r

d(w') ^  , \ G—1
g(u/G+i) = G (1-U /g+1) — ( l  w G+l)
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which yield :

^  f (X ,y \w \  7 , G + l )  f M G + l )  y  f ( G +  1)
f ( X , y \w , r G)

Ĝo + l
/ ( H G )

(G0 + 1 )bGo G ( l -  w'G+1)G —l

/ ( G )
(G + l)!

(l wG+l)
G —l (2.4.8)

With further calculations we obtained the final form of the ratio A for the birth 

move, which applies to both the cases of homogeneous and heterogeneous covari

ances. That is:

A = (l
w,

w,G + l j X

'(aw-1) 
G + l (1-

/ \ G(aw 1)
w G + l ) tGo+l

B a , GĜ (Gq + 1) bGo
x G + l 

G
(2.4.9)

Finally, in the case of a death move, an empty component, say wG+\ is randomly 

selected and deleted. Again, we need to rescale the remaining weights, but this 

time w'k = uifc/(l — wG+i), for k = 1 ,..., G. The move, which takes us from 

state = (G + l,'ty,7, y) to state i// = (G,w\ 7,y), is accepted with probability 

min (1, A), where A is the inverse ratio of the birth move, i.e :

A = (1 — wG+1) n x B (g^, Gaw)

4 + T 1} (! -  wG+i)G{aw~l)

w (G0 + 1) bGo G
* , * ^  1 •«Go+l G + l

(2.4.10)

At this point we should refer to a problem usually met on the application of mix

ture models within the Bayesian framework, the so-called label switching problem. 

Redner and Walker (1984) described the problem that arises under permutations 

of the mixture components due to the invariance of the likelihood. Within the 

Bayesian framework the latter could lead to posterior distributions characterised 

by symmetry and multimodality. Being interested in estimating parameters sum

marizing over the posterior distribution, we understand that such a phenomenon 

can complicate inference on the parameters of interest producing inappropriate
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estimations. A common solution to this problem is setting inequality constraints 

on the parametric space (Diebolt and Robert, 1994), while, others have developed 

relabelling algorithms [(Stephens, 2000), (Celeux, 1998)] or label invariant loss 

functions (Celeux et al., 2000). Jasra et al. (2005) review different approaches on 

addressing the problem of label switching.

Of course, label switching is a phenomenon we encounter when clustering using 

mixture models, as labels permute along our Markov chains. However, as far as 

the methodology presented here is concerned, we have integrated the component 

means and covariances out of the posterior and we are interested only in the 

estimation of the allocation vector y (together with the variable selection vector 

7). To estimate the cluster structure of our observations, however, we do not 

compute the marginal posterior probabilities of an observation i being allocated 

to cluster k, but rather, we examine the probabilities of two observations being 

allocated to the same cluster, P (y* = yj), which is invariant to permutations. 

Using these probabilities we then form clustering maps that indicate the cluster 

formulation of our sample and from which further inference on whether our model 

has converged to the expected cluster structure can be drawn.

2.5 S im ulation  S tudy

It is now time to examine the performance of the model on a set of simulated 

points. We chose the case of heterogeneous covariance matrices and sampled a 

data set of 15 observations. The total number of variables is 50, 20 of which 

have been chosen to be discriminating. The sample is designed as coming from 

four groups of different means and covariances for the 20 discriminating variables, 

and as a set of observations that favour a single multivariate distribution for 

the remaining 30 noisy variables. A standard multivariate normal N  (0, /30) was
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used for the generation of the noisy variables, while the discriminating ones were 

drawn from four different multivariate normals. More specifically, the first four 

observations have been assigned to the first group following a Normal distribution 

with n i = 5 and o\ — 1.5, the following three to the second one with fi2 = 2 and 

a\ = 0.1, the third group is consisted by the next six with =  —3 and a\ — 0.5 

and the last one by the last two observations with /r4 = —6 and a\ = 2, i.e.

%ij ~  h<i<4N (5,1.5) + h<i<7N (2, 0.1) + h<i<i3^ (~ 3, 0.5) + (“ 6,2),

* = 1, - - -, 15, j  = 1 ,..., 20 .

A similar design is also used in Tadesse et al. (2005).

Having analysed the structure of the data set, we now come to the hyperpa

rameters of the model and their values. The first hyperparameters to be decided is 

the set referring to the Beta - Binomial prior on the total number of discriminat

ing variables, p7. We set the a priori expected number of discriminating variables 

Pprior equal to 10, while for the parameters of Be(a,b), we chose a,b such that 

a + b = 2 to ensure a vague prior. We allow Gmax = 15 for the discrete uniform on 

the number of components and a shape parameter of 5 =  3 for the Inverse-Wishart 

distributions on the covariance matrices.

We continue with the values for the remaining hyperparameters of the Inverse- 

Wishart distributions, which are the scalars hi, ho and the percentages within the 

hyperparameters ki, k0. Recall, Ky is the 1% — 10% of the upper decile of the 

n — 1 non-zero eigenvalues of cov (A) and kq is, respectively, the percentage of 

their lower decile. Let us, indicate the percentages in kj and k0 with the scalars 

C\ and Co respectively. Several different values have been tried for this set of 

hyperparameters and in particular, h\ — h0 = 10,100, 1000, with c\ = Co = 

1%, 3%, 9%. Table 1 indicates the value of the diagonal elements of the QD, QND
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scale matrices, for the three cases of c\ =  c0 = 1%, 3% and 9%.

Cl — Co

0.01 0.03 0.09
QH 2.4583 0.8194 0.2731

Qub 96.4221 32.1407 10.7136

Table 1: Diagonal elements of the Q° , QND scale matrices of the simulated data set for 
the three cases of c\ = Co = 0.01,0.03,0.09.

We should point out here, that even though we tested the algorithm for differ

ent combinations of the pairs (hi, h0) and (ci, c0), we find that there is no need for 

setting h\ ^  ho or Ci ^  c0. But, allow us to conclude this section with the choice 

of aw and au, and we shall return to the settings of these critical parameters with 

further comments in the forthcoming paragraphs. The values we tried for the 

parameter of the prior on the component weights aw are (1,6), while for the au 

of the Be (au, au) we used in the split/merge moves we tried values such as (2,6).

We ran the algorithm for 60000 iterations, with a burn-in of 40000 and pro

duced graphs to illustrate the selection of variables, as well as the cluster structure 

of the data. On a two quad core server with 2.53Ghz CPUs, the code needed 

around 3 hours. As far as the variable selection task is concerned, we use his

tograms that indicate the total number of discriminating variables, while we plot 

the marginal posterior probabilities for the p = 50 variables of the simulated data 

set to show the probability of each variable being chosen to be included in the 

model. For the current simulated example and under the assumption of a correctly 

performing model, we expect histograms that indicate the selection of p1 = 20 
discriminating variables, with the first 20 variables having high marginal posterior 

probabilities (close to 1), while low posterior probability (close to 0) are assigned 

to each of the remaining 30 variables. Finally, for all n = 15 observations, we 

calculate the probabilities of two observations being allocated in the same group,
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i.e. P (yi = yj) , i , j  = 1, . . . ,  15, and colour them with a scale for which black 

indicates low probability and white high. A clustering map is therefore produced, 

where observations allocated in the same cluster form white patches. Considering 

the four groups described earlier, we expect a map of four white patches on the 

diagonal, each of which must be formed by 4, 3, 6 and 2 observations respectively.

Getting back to the settings of the runs, we start the algorithm assuming the 

starting point of all variables being included in the model, while each observation 

forms a single group. However, we noticed that the algorithm had some difficulties 

in uncovering the cluster structure of the data and recovering the 20 discriminating 

variables. We, therefore, experimented with setting the starting points of 7 and 

y equal to the vectors according to which the simulated data set was originally 

designed, i.e. 20 discriminating variables for 7 with the observations coming from 

4 groups (y). Looking at Figures A.0.10, A.0.11 and A.0.12 in Appendix A, one 

can draw the conclusion that the different starting values did not particularly 

improve the results.

Regarding how the selected values of the hyperparameters affect the algorithm, 

some very interesting remarks can be made at this point. First of all, we can note 

that the different values on aw and au do not alter the resulting inference on either 

the clustering or the variable selection tasks (Figures A.0.1 - A.0.9 in Appendix 

A). However, the choice of hi, ho and ci,co appears to be of great importance. 

Figures 2.5.1, 2.5.2 and 2.5.3 illustrate the impact of the different values of these 

hyperparameters in the recovering of the clusters and the discriminating variables. 

In Figure 2.5.1 we can see the histograms for the number of variables included in 

the model (p7), while Figure 2.5.2 indicates the posterior inclusion probabilities 

for each of the 50 variables. Finally, Figure 2.5.3 shows the corresponding favoured 

cluster structure of the observations, for the different combinations of h\,ho,c\, 

and c0. Since, as stated earlier, we considered hi = h0 and ci = c0, for simplicity
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reasons, in the graphs below we used the symbols h and c to denote the values 

referring to hi, ho and ci,co respectively. The starting values used for this set of 

graphs are : all the variables are included in the model and every observation 

forms a single cluster, while, we have chosen aw = 1 and au = 2. Similar figures 

with a different set of starting values can be found in Appendix A(Figures A.0.10 

- A.0.12 ).

We can see that the algorithm recovers the correct set of discriminating vari

ables as well as uncovers the correct clustering scheme, only when c is set equal 

to 0.09, and in the exceptional case of c =  0.03 with a h, equal to 1000. Evidently, 

the choice of h (or hi and ho) and c (or Ci and cq) is very crucial and extra care is 

needed to be taken from the researcher as there is no rule of thumb that one can 

follow for the selection of those values.

c = 0.03 c = 0.09

h = 10 £  0.5

20 30 40 50
P,

h = 100 £  0.5

1
S'

1 1
S'

f  °-5 >

0 -_______________________ c.

S  0.5 
!

0 A . __________________

20 30 40 50 20 30 40 50

20 30 40 50

Figure 2.5.1: Simulated data: Histograms of the total number of discriminating vari
ables, pj, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance 
matrices.
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C =  0.01 c  =  0 .03 c  =  0 .09

Figure 2.5.2: Simulated data: Marginal Posterior Probabilities of the variables included 
in the model, for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance 
matrices.

h 103

5 10 15 5 10 15

Figure 2.5.3: Simulated data: Maps of the cluster allocations of the n — 15 observations 
for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance matrices.
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On the efficiency of the RJMCMC sampler and for au = 2, the average accep

tance rates for the split, merge, birth and death moves were 0.3771, 0.4845,0.3562, 

and 0.7825 respectively. Although one would think the choice of the parameter 

au as important in determining the mixing of the above moves, the results do not 

indicate so. With au = 6 the average acceptance rates are similar to the ones 

above. More specifically, we have the rates 0.2893,0.3895,0.3501, and 0.7798 for 

the split, merge, birth and death moves respectively.

2.6 P rep rocessing  on th e  S im ulated  D a ta

On account of the conclusions drawn about the importance of the hyperparameters 

hi, h0 and ci, c0, and given the lack of a useful tool that could indicate a good set 

of values, a two-stage analysis, in which stage 0 consists of preliminaries to specify 

these hyperparameters, could be of great practical use.

The idea commences with the preprocessing stage (stage 0), in which a Prin

cipal Component Analysis is implemented to reduce the dimensionality of the 

problem. The principal components admitted to the analysis that follows, say 

m*, can be chosen according to either the variance explained by the first m* prin

cipal components, or based on an “elbow” that can be observed when plotting 

these variances.

After m* has been chosen, stage 0 continues by performing a K-means analy

sis on the selected components. Assessing the results of the K-means procedure, 

implications can be made about the values that could be used for the hyperpa

rameters of interest (hi, h0, c\, Co). An idea is to exploit the grouping suggested 

by K-means and calculate the new within and between cross products matrices 

for the set of the original variables. Using the cross products matrices, a new 

diagonal matrix Q can be formed, from which the scale matrices QD and QND of
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the Inverse-Wishart priors can be extracted.

More specifically, for the clusters suggested by K-means, we calculate the co- 

variance matrices, say Dk is the covariance matrix of the k:th group, and then 

calculate their pooled mean, i.e.

G

Y  (nk -  1) Dk
q  _ k =  1

1Jpool q  )

Y  (nk ~
*:=i

where, nk is the number of observations allocated in the kth group. The diagonal 

elements of matrix Spooi are then used to form a new matrix Q. Taking the 

diagonal elements of Q that refer to the discriminating variables, we build the 

diagonal scale matrix QD of the Inverse-Wishart prior assigned to Similarly, 

a scale matrix QND is built for the Inverse-Wishart on the covariance matrix of 

the non-discriminating variables. Matrices Spooi and Q are of dimension p x p ,  

while diagonal matrices QD and QND have dimensions p1 and p — p1 respectively 

(where p is the total number of variables).

As far as h\ and ho are concerned, values that illustrate the variability of the 

groups would be much preferred. Once again, for the groups suggested by the K- 

means clustering and for the m* principal components, we calculate the between 

groups covariance matrix, say Sbetween. We then estimate hi as the mean :

hi
i= 1

(Sble tw een )

(■si'pool )

Finally, we set ho = h\.

( 2 .6 . 1 )

Having completed the preliminary analysis of stage 0, we then make use of
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the estimators of the crucial hyperparameters and perform the full MCMC pro

cedure described in section 2.4. Stage 1 will consist of the preprocessing and will 

determine the estimation of the parameters of interest 7, y, w and G.

We now apply the preprocessing procedure on the simulated data set. Starting 

with the Principal Component Analysis using the covariance matrix, the variance 

of the data explained by the resulting components can be seen in Table 2; for 

spatial reasons, the table contains only the first 5 principal components and their 

corresponding percentage of the variance explained.

Principal Component
1 2 3 4 5

Variance Explained 88.35 % 90.59 % 92.21 % 93.74 % 95%

Table 2: Variance explained by the first 5 principal components of the simulated data 
set.

We can see that the biggest chunk of the variance of the data is explained 

by the first principal component (88%).We thus decided to proceed the analysis 

keeping this first component only. Similar decision can be drawn by looking at 

the scree plot in Figure 2.6.1, where one can see the “elbow” breaking the line in 

the second principal component.

Carrying on with the K-means clustering on the first principal component 

with a prespecified number of groups of four, the observations were assigned in 

groups resembling the original cluster structure of the data. Implementing the 

suggested grouping we followed the scheme for specifying QD, QND, h\ and h0. 

The estimated value of hi and in continuity of h0 was 983.26, while the estimated 

diagonal elements of QD and QND can be seen in Figure 2.6.2. Making use of the 

resulting estimates, we then ran the full MCMC on the original data set.
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Figure 2.6.1: Scree plot of the principal components for the simulated data set.
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Figure 2.6.2: Estimated diagonal elements for the matrices QD - indicated with blue 
colour - and QND - indicated with red colour.
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Considering the starting values of all variables being included in the model 

and each observation assigned to a single group, we run the algorithm again for 

60000 iterations with a burn-in of 40000. Since, as we saw in the application of the 

previous section, the parameters aw and au do not affect the resulting extraction 

of discriminating variables or clustering, we considered the values aw — 1 and 

au = 2. For a better insight of the problem, additionally to the estimated values 

for hi, ho, keeping QD,QND as estimated in stage 0, we examined the results 

for hi = ho = 10,100, and 1000. Of course values of hi = hQ = 983.26 and 

1000 give similar results for both the clustering and the variable selection task. 

Figures 2.6.3 and 2.6.4, show that none of the cases we examined could extract 

the 20 discriminating variables; for all cases we have the whole set of 50 variables 

included in the model. However, the four clusters could be identified for all cases 

except when hi = h0 =  10 (Figure 2.6.5).

Figure 2.6.3: Two-Stage Preprocess: Histograms of the total number of discriminating 
variables, p7, for the simulated data, with hi = ho = 10,100,983.26,1000, assuming 
unequal covariance matrices.
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Figure 2.6.4: Two-Stage Preprocess: Marginal Posterior Probabilities of the variables 
included in the model for the simulated data, with h\ — ho = 10,100,983.26,1000, 
assuming unequal covariance matrices.

h = 10 h = 1 0 0

5 10  1 5  5 10  15

Figure 2.6.5: Two-Stage Preprocess: Maps of the cluster allocations of the n = 15 
observations of the simulated data, with hi = ho = 10,100,983.26,1000, assuming 
unequal covariance matrices.
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Although the cluster structure of the observations could be recovered for the 

estimated value of h\ and ho, the unresolved problem of the selection of the im

portant variables indicates the of crucial importance choice of the scale matrices 

QD and QND.

2.7 S p lit/M erg e  moves using th e  SAM S sam pler

In our attempts so far, the resulting figures demonstrate that the algorithm has 

a fair difficulty in uncovering the cluster structure of the simulated data set, al

though it is a trivial example, as the observations have been sampled such that 

the clusters are well separated and thus easily identifiable. In particular, we often 

observe the first two clusters being merged together, while the third is being com

monly split into further smaller components. Consequently, one might presume 

that there is a complication with the split/merge moves of the Reversible Jump 

process. In need of a computationally more efficient procedure of suggesting split 

and merge moves under the Reversible Jump methodology, we considered the use 

of the split-merge sampler (Sequentially-Allocated Merge-Split Sampler) proposed 

by Dahl (2005). Proposing split moves quickly, needing no further sweetening, as 

Dahl (2005) puts it, the SAMS sampler borrows ideas from sequential impor

tance sampling and draws samples from the correct stationary distribution for 

Bayesian nonparametric models. For both conjugate and nonconjugate Dirichlet 

process mixture (DPM) models, SAMS proposes splits by sequentially allocating 

observations using probabilities that condition on previously allocated data.

Keeping the MCMC steps for the sampling of the parameters (7, y, w) and yet 

considering the birth and death of empty components, we chose to suggest splits 

similarly to the conjugate SAMS. We understand that the only change induced 

in the model presented so far, is the acceptance probabilities of the split and
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merge moves in (2.4.3) and (2.4.6) respectively. We describe the new moves and 

recalculate the acceptance probabilities in the following paragraphs.

The sampler begins by uniformly selecting two observations, say i and j . If i 

and j  belong to the same group, the sampler proceeds to a split move, whereas, 

if i, j  come from two different groups, a merge move is proposed. Evidently, a 

generation or deletion of a component will effectively change the dimension of 

the component weights, which need to be updated. We therefore considered the 

conjugate case of the SAMS sampler.

Let us first examine the case of a split move. Letting i, j  come from the same 

group S, a split move begins by allocating the two observations in two separate 

groups Sl, Sj . Each of the remaining observations in group S, say t, is then being 

allocated to Sl with probability :

P r[y t = Sl\y»\ys j ) = f  (yt = Si\X,yi_t),'y,w,G)
f  (yt = 5,<|X,y(-t),7,n>>Gf) + f { y t = Sj \x,  y(_t),7,u>, G )'

(2.7.1)

As we have stated before, y(~t) represents the cluster allocations of all the observa

tions except for the observation t, while, we introduce ys' and ysl to indicate the 

observations assigned to group S% and Sj respectively. We should also note that 

/  (yt = y(_p, 7, w, G) is the posterior probability (2.4.1). For an observation

t allocated in group S , we can generally write :

/  (yt\y(-t))

f  (ys ,yt) Y [ f  (yfc)
/t=ikyiS

n / ( y k)
k= 1

/  (■ys ,yt)
f ( y s )
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Therefore, the terms of (2.7.1) can be rewritten giving the form :

P r (vt = S V \

f ( x , y s ’ ,yt \G ,w ,j )

f(̂ X,ysi\G,w,ĵ
¡ { ^ , y s \ y t \ G , w , ^  f ( X , y s \ y t \ G , w , i )  ’ 

f ( x , y s ' |G,iu,7) f ( x , y s i  \G,w,-p)

(2.7.2)

the analytic form of which - after the necessary calculations - is given by (A.3) in 

Appendix A. Finally, t is being assigned to S'-7 with probability

Pr (yt = S V V )  = 1 - P r ( y t = S Î / V ' )  • (2-7.3)

After all the observations initially allocated in the group to be split S, have 

been reallocated to either Sl or S'-7, we have two newly formed components, the 

weights of which, w S i and w S j need to be updated. Dahl (2005) suggests that 

the new values of the parameters related to group S'® are proposed by either 

sampling from the centering distribution F0 of the DPM model, or by using a 

random walk. However, we choose to comply with the idea of updating the new 

component weights via a transformation of the weight of the component to be 

split (ivs). With a random variable u ~  Be (au,au), we generate w'si = wsu and 

w'SJ =  ws (1 -  u).

On the Metropolis-Hastings acceptance ratio of move m,

f p(V>/|x)r(V>|V>,) |
I ’ P ii’lx) r J ’

(2.7.4)

p (ip\x) is the joint posterior distribution when in state ip and r (ip\ip') the probabil

ity of proposing the move from state ip' to state ip. With ip — (G, w, 7, y) and ip' = 

(G + 1, w, 7, y), where w = (117, . . . ,  ws, ■ ■ ■, wg) and w' = (w[ , . . . ,  w'si, w's j, . . . ,  

w'G+1), r (ip'\ip) is the product of the allocation probabilities (2.7.2), (2.7.3), multi

plied by the proposal density that takes us to the updated parameters (w'si, w'sj ).
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Since the two split components could only be merged in one way, the reverse pro

posal probability r (tp\ip') is always 1. Taking into account the density function of 

u, q(u), the Jacobian arising from the transformation of the weights, the alloca

tion probabilities, and allowing the acceptance probability in (2.7.4) to be written 

as a = min (1, A), ratio A becomes :

p(V>' x) d(w'si,w'sj)

P 1®) 7 (u) n  Pr (y't = Sl\ys\ y s3^
t€Si

n pr
t€Si

II y s\  y s‘) d(ws ,u)

(2.7.5)

Going one step further and substituting the joint posteriors p(ip'\x), p(xp'\x), 

the Jacobian and the proposal of u, it yields :

/ ( X ,y V ,7 ,G  + l) /  {w'\G + 1) f ( G +  1)
/(X ,y |u;,7 ,G ) f  (w\G) f  (G)

1
n P r = 5iy's\ y sj) n P r (y't = s j \ysi,y
tesi tesi

1 1
----------------------------------------
B  (au, au) Uau~l (1 — îi)a“_1 (2.7.6)

Formulas (A.4) and (A.5) in Appendix A give ratio A for the cases of Homo

geneous and Heterogeneous covariance matrices respectively.

We have, so far, seen the split move of the SAMS sampler. However, when the 

selected observations i, j, belong to different groups, say Sl and Sj respectively, 

a merge move is proposed. This time, the observations of S l and are being 

reallocated in a single group S, with weight w's — wSi + wSj] note here that Dahl 

(2005) suggests the model parameter of the new component S  equal to the model 

parameter of group SÀ The merging of the components can be made only in 

one way and thus the proposal density r(i/j'\ip), with -ip = (G + l ,w , j ,y )  and
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ip' =  (G,wr, 7,2/'), is equal to 1. For the reverse probability though, we need 

to consider the merged group of state ip1, as a component to be split in two 

further components. Beware that the proposed partition is needed to resemble 

the partition of the observations originally set in Sl and while, the random 

variable u is now u = wsi/w's . The allocation probabilities in (2.7.2) and (2.7.3), 

will be resulting to the desirable partition and their product, multiplied by the 

proposal density that presumably gives the weights wSi, wSj , will now yield the 

reverse proposal probability r {ip\ip'). In other words, the merge move is accepted 

with probability a = min (1, A), where A, as results from the Metropolis - Hastings 

ratio in (2.7.4), is :

p(xp'\x)q(u) Pr (yt = Sl\ys\ y s^  Pr (yt = S3\ys\ y s3\
A = __________ te&________________  tesi____________________ d(w's ,u)

p ( i p \ x )  d ( w S i , w s j )

(2.7.7)

which, further becomes :

/ ( X Y K x G - l )  /  {w'\G — 1) f ( G -  1) 
f ( X, y \ w:7,G) f(w\G) f  (G)

x I I P r  {yt = S l \ys ^ y s3) I I P r  (y * = S t \ys ^ y s3)
tesi test

x B (a„, au) uau~1 (1 -  u)au~l w'g1. (2.7.8)

Taking a closer look in equation (2.7.8), we notice that the ratio A of the merge 

move is the reverse of that of the split move. Therefore, the reverse of the formulas 

(A.4) and (A.5) in Appendix A will give us the resulting ratios of the merge move 

for the case of Homogeneous and Heterogeneous covariance matrices respectively.

We conclude this section with the application of the altered algorithm on the 

simulated data set of section 2.5. With aw = 1, au = 2 and 60000 iterations with 

a burn-in of 40000, we estimated the number of discriminating variables and the
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cluster allocations of the 15 observations starting with all the variables included 

in the model and each observation assigned to a single group. The resulting 

histograms, posterior probability plots and clustering maps, estimated for the 

cases of h = 10,100,1000 and c = 0.01,0.03, 0.09, in Figures 2.7.1, 2.7.2 and 2.7.3 

respectively, demonstrate the difficulty met on the identification of the important 

variables, as well as the masked cluster structure. We can see that even for the 

case of h = 1000, for which the four groups could be recovered on the application 

of the same data set in 2.5, there is only the unique case of c = 0.09 that succeeds 

in the recovering of the cluster structure of the data.
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Figure 2.7.1: Simulated data: Histograms of the total number of discriminating vari
ables, p1, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance 
matrices and using split/merge move of the SAMS sampler.

This time, the acceptance rates of the sampler for the split and merge moves 

are low. In particular we have split and merge moves with average acceptance 

rates 0.0158 and 0.1187 respectively. Also, for the birth and death moves we have 

rates 0.3264 and 0.8159, while the CPU time used for the above runs was 3 hours.
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c = 0.01 c = 0.03 c = 0.09

Figure 2.7.2: Simulated data: Marginal Posterior Probabilities of the variables included 
in the model, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance 
matrices and using split/merge move of the SAMS sampler.

Figure 2.7.3: Simulated data: Maps of the cluster allocations of the n = 15 observations 
for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance matrices and 
using split/merge move of the SAMS sampler.
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2.8 C onclusions

We presented a method of simultaneously selecting variables that best discriminate 

the sampled observations and uncovering the group structure of high-dimensional 

data sets with the special feature of a vast number of variables and a considerably 

smaller sample size. Motivated by the work of Tadesse et al. (2005), we applied a 

less sophisticated split/merge move under the Reversible Jump MCMC technique, 

that allows more flexible moves between the components, as the split or merge of 

empty, as well as non-empty components, is now being considered. The applica

tion of the model on a simulated data set indicated a sensitivity of the model to 

the choice of certain hyperparameters. Different starting points for the parame

ters of interest and diverse values for the various hyperparameters of the model 

demonstrated the need for additional care on the choice of the hyperparameters 

associated with the covariance structure of the model. In particular, the values of 

the scalars h\, ho, eq and c0 are of great importance. The algorithm fails to identify 

the set of important variables and uncover the cluster structure of the data when 

non “suitable” values have been chosen for the crucial hyperparameters.

To overcome this deficiency and given there is no rule of thumb for the choice 

of these hyperparameters, we considered the idea of a two stage preprocessing 

procedure, stage 0 of which could facilitate the pre-specification of hi,hQ,C\ and 

c0. Frankly, the implementation of the results showed no significant improvements. 

Therefore, an alternative approach on the split/merge move has been considered. 

Using the SAMS sampler (Dahl, 2005), we sequentially allocated the observations 

with probabilities conditioned on previously allocated data. The results once again 

were not encouraging. The algorithm still had a difficulty in properly separating 

the featured clusters and identifying the important variables.
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Reconsidering the conclusions drawn from the implementation of the simu

lation study, we infer that the structure of the model and more specifically its 

covariance structure, needs to be altered. The correlations of the Inverse-Wishart 

priors on the covariance matrices of the discriminating and non-discriminating 

variables give the idea of evoking perplexity in already complex problems like 

the high-dimensional ones. Therefore, simpler structures of the covariance matri

ces engaged our attention as a means of overcoming such complications. A few 

different structures will be presented in the following chapters.
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Chapter 3

Alternative Covariance 

Structures

3.1 P ro logue

Regarding the model introduced in chapter 2, the application on a simulated data 

set revealed a sensitivity on the settings of the Inverse - Wishart prior distribu

tions assigned to the covariance matrices and T,ND. Along with the partic

ular complexity characterising problems of high dimensionality, due to the vast 

amount of variables available opposed to the limited information provided by the 

small sample sizes, the correlations of the Inverse - Wishart priors impose fur

ther complications hindering the recovery of possible patterns of the data under 

consideration.

Motivated by the need of overcoming such adversities, we considered the inves

tigation of different approaches for the covariance structure of the model. Starting 

with the simplest form of diagonal covariance matrices set proportional to the
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Identity matrix, we built on this covariance structure first by replacing the Iden

tity matrix with a diagonal matrix B. Taking the latter structure one step further 

and in view of controlling the increased now amount of hyperparameters, we in

troduce hyperpriors for the hyperparameters of the prior settings of the scalars 

multiplying matrix B. Being under the assumption of conjugate priors for the 

means h£ , ij,nd and the covariance matrices T,^,END, care on the choice of the 

hyperparameters ho and hi of the normal priors set on the mean vectors needs 

to be taken. However, we see that h0 and hi can be regarded as one common 

factor h, the choice of which can be bypassed by giving h a prior and sampling 

it within the Markov chain. Having developed the structure considering a prior 

for h, we can now tell that we manage to get round the need of deciding values 

for hyperparameters such as ci, c0, hi and h0 that we came across in the model of 

chapter 2. While finally, we examine the case of non-conjugacy for the priors set 

on the mean vectors /d^,iiND and the matrices E f, T,ND.

To conclude, we should note here that while suggesting a series of approaches 

for the covariance structure of the model, we examine their performance using 

the simulated data set initially introduced in chapter 2. Recall that the data 

consists of a total number of 50 variables and 15 observations. Considering 20 

discriminating and 30 non-discriminating variables, the observations arise from 4 

different subpopulations.

3.2 C lu s te r H eterogeneity

The first structure under consideration is the configuration of the covariance matri

ces, for both sets of discriminating and non-discriminating variables, in its simplest 

form. With x, coming from the kth component and being normally distributed
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such that

*i\Vi = M ,7 N ( hnd,End)

we set the covariance matrices E£ and T.ND proportional to the identity matrix. 

Since for the non-discriminating variables the observations are considered as a sin

gle population, for both cases of homogeneity and heterogeneity, Y,ND is common 

along the different groups and defined as

iND dl.p-Pi-

A distinction between the cases of homogeneous and heterogeneous covariances 

for the matrices associated to the important variables needs to be made here 

though. In the case of homogeneity, besides the covariance matrix for the non

discriminating variables, all groups share the same covariance matrix for the set 

of discriminating variables as well. Hence, a single covariance matrix ED propor

tional to the identity matrix is sufficient and therefore only a single scalar c needs 

to be considered. We thus write :

Ed = cl.P T

On the other hand, in the case of heterogeneity c i,. . . ,  cq are being used to form 

the covariance matrices for each of the G subpopulations, such that,

E f = ckIPi.
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3.2.1 Prior Settings

Coming to the prior formulation of the model, we use settings similar to those of 

section 2.3. Starting with the number of discriminating variables p7, we consider 

a beta-binomial prior with expectation pa/(a + 6), for which the a, b parameters 

are chosen such that a + b = 2, allowing a vague prior on p7. The number of com

ponents G follows a priori a discrete uniform on [1, . . . ,  Gmax], while, a symmetric 

Dirichlet (aWl.. . ,  aw) prior is set on the vector of component weights w. Similar 

to the idea adopted in the model of chapter 2, in order to avoid plausible com

plications evoked by the changes of the dimensionality of the problem, we choose 

to integrate out the mean vectors of the discriminating and non-discriminating 

variables, fif  and p,ND respectively, as well as the parameters associated to the 

covariance matrices, (c, d) when under the assumption of homogeneity and (ck, d) 

for the case of heterogeneity. To facilitate the integration, we ensured conjugacy 

setting Normal priors on the mean vectors,

pND\XND~ N { r f D,hoXND),

and considering the following Inverse Gamma priors for the c,ck,d scalars : 

c ~  IG(ac,/3c) , ck ~  I G (ac, ¡3C) , d ~  / G (ad, ¡5d) .

3.2.2 Posterior Inference

Continuing with the marginalisation over the parameters (pj ,̂ pND, c, d) and 

(/if , p,ND,ck, d) , for the cases of homogeneity and heterogeneity respectively, we 

can obtain the joint posterior for the parameters (y, -y,w,G). From calculations
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on the analytic marginalisation of the component means and covariance matrices 

given in Appendix B, we obtain the following joint posteriors. In the case of 

homogeneous covariances, we have :

g r

k= 1
f  (X, y\G, w, 7) = (2tTy np/2 (h0n + 1 J ]  w?  {}Hnk + 1)"*/2

t r l ^ T s P ]X
Bac
Pc -T ( a c +

r ( a c)
nPj\ 

c ' 2 /
1 f  °

P c + 9tr H  S >

QOcd

f w r , “á +
n ( p -  py)

,fc=1
1

P d  + ¿ tr (SND)
1-(a d+=iS=?2i)

(3.2.1)

while, under the assumption of heterogeneous covariances the joint posterior be

comes :

G

f ( X iy\G ,w^)  = (2n) np/2(h0n + l) (p Pl)/2 J J  wlk (hink + \) Pl/2
k=1

x

r M
PGa- G

r  «d + n (p -  p7) 1
& + - t r  ( ^ D)

1 - [ad+" ( p - p t )

r  (“c)G fcrf
n  r

nfcp7+ «c)[/3c + ^tr (5fcD) ] - ( Qc+2̂ ) } .

(3.2.2)

With irjP the sample mean of the variables that are included in the model for the 

kth cluster and xND the sample mean of the non-discriminating variables, we have 

the matrices :

s k = ~ x°) O'? ~ x° ) T + (x? ~ x°) (-T? ~ X° ) T » (3-2-3)
x- ÇiCk

SND = n
Hqti -f- 1 w D - * ND) ( t , r - x ND) T + E W (N D  —N D \  (X N D  _  x N D ^ t

i= 1

(3.2.4)
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It is important to comment here on the computation of the above joint posteri

ors. For both cases of homogeneous and heterogeneous covariance matrices, we 

see that we are only interested in the traces of matrices S^  and SND. We un

derstand therefore, that there is no necessity for generating the full matrices of 

p(p + l)/2 entries. Rather, calculations on only p elements are considered, signif

icantly speeding up computations.

As in chapter 2, samples for the (y, 7, w, G) parameters of interest need to be 

drawn, and therefore MCMC techniques similar to those discussed in section 2.4 

can be used. We can briefly recall. For the variable selection vector, a Metropo

lis search, choosing randomly between an Add, Delete or Swap move, suggests
1 f ( Y \X ,y ,w ,G )  

’ fG \X ,y ,w ,G )a new 7' candidate and accepts it with probability min 

/  (71X,y,w,G)  for the case of homogeneous covariances is given by :

where

/ ( l\G, w, y ,X) = (.h0n + 1) {p py)/2 w%k (/qnfc + 1) Pl/2 F (ac +
k = 1 L -I

1 (  G \  j /
x Pc + - t r  ( ^  Sj? J F i ad +

\ k= 1
n{p -  p7)

x fié + ^tr (SND)
) B (p7 + a,p -  p1 +  b) (pp )

B (a, b)
(3.2.5)

while, for heterogeneous covariances we have,

f ( l \G ,w ,y ,X )  = (h0n + 1) {p Pl)/2 v%k (hink + 1) Vl/2
k— 1

x r  ( atd + 

G

n(p -  p-y)

X n  r h +
k=1

nfcp7

A + ÿ r  (S"D) 

A  + i t r  (S f)

x
B (p7 + a, p -  p7 + 6) (pp )

B(a,b)
(3.2.6)
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Samples for the components weights w are drawn via a Gibbs sampler from a 

Dirichlet (aw + n\ , . .. ,aw + no), while the elements of the cluster allocation vec

tor y get updated one at a time by a sub-Gibbs strategy, conditioned on the 

previously allocated data and using :

f  (y\G,w,j,X) = wlk (hink + l) Pin
k=1 P c + htr S k

vfc=1

-(“«+T)

as the full conditional when under the assumption of homogeneity, and

(3.2.7)

G

f  (y\G,w,'y,X) = Y\_ Wkk (hink + 1 ) Py/2
k=1 
G

P\
G a c

n w « . * ^ )k=1

r ( a c)c

1
Pc + 2tr +

1 - ( a c + T ) '
(3.2.8)

the respective to the heterogeneous case.

Finally, with the set of split/merge and birth/death moves of the RJMCMC 

sampler as described in section 2.4.3, we allow the search to jump between different 

dimensional spaces. Although the acceptance ratios given in equations (2.4.9) 

and (2.4.10) for the birth and death moves respectively are maintained, since 

the new covariance structure of the model has changed the joint posterior of the 

parameters (y, 7, w , G), the acceptance ratios for the split/merge moves have now 

been readjusted. In particular, deciding between a split or a merge move with 

probabilities bo and do as in (2.4.2), the proposed move is being accepted with 

probability min(l,A). From (2.4.3), ratio A of the split move for the case of
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homogeneity has now become :

a _  (hine1 +  1 )  (hinc2 + 1 )  w

A ~  ;------------ZE--------- x{hint + 1) 2
A  + s t ' -fc=l L

tr ( # )
(«c+T)

G + l

f t + n E  t r ( ^ )
B  {(2U, Giu )

B {&W1 Gd-w
x « ( ! - « )

fc=i

X w ? "  X

(«*+=§*)

'G
(3.2.9)

while, assuming heterogeneous covariances we obtain the ratio :

A J M Q i r ( H  + i ) : ? :. r ( » . ^ ? ) r i » .  + ? )
r{ a c) {hint + 1) 2 r  («,; + ' -T)

X

[/3C + | t r  (S£)]
B {p>U") fl'u)

( , n£i P7 "
< * c + — [& + §tr (S£)]

B {(%wi G(Xw')
x au (1 -  u)“1" “u x wfw x ^G+l (3.2.10)

Reversing (3.2.9) and (3.2.10) will give us the ratios A for the acceptance proba

bility min (1, A) of the merge move.

3.2.3 Exam ple

We now need to examine the performance of the model with the proposed sim

plified covariance structure on the simulated data set suggested in section 2.5. 

Maintaining the vague prior on the number of discriminating variables by setting 

the parameters of the Be (a, b) distribution such that a + b = 2 and with the pprior 

equal to 10, we allow Crnax of the discrete uniform prior on the number of clusters 

to be equal to 15. For the Dirichlet prior on the component weights we set aw = 1, 

while the split/merge moves of the reversible jump are being proposed from a Beta 

with parameter au — 2. Commencing the sampler with all the variables selected
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as discriminating and with as many groups as the number of observations, we 

run 60000 iterations with a burn in of 40000. Although we have overcome the 

need of deciding proper values for the hyperparameters c\ and cq (see section 2.5), 

hyperparameters h0 and hi are still included in the model. Therefore, we start 

the analysis by exploring the effects of several different values for h\ and ho in the 

selection of variables and the clustering task.

In Figures 3.2.1 and 3.2.2 we illustrate the number of variables included in the 

model and the resulting clusters for the combinations of four different values for 

the two hyperparameters, (1,10,100,1000). More specifically, in the trace plots for 

the variable selection task (Figure 3.2.1) we can see that although a bigger value 

for hi, e.g. 100 or 1000, results in the convergence of p1 to the expected number 

of 20 discriminating variables, the choice of ho seems to be driving the variance 

of the chain. This becomes more visible in the cases of hi = 1 and hi = 10. 

We can see that setting ho = 100 or h0 = 1000 gives fairly disappointing results 

with the number of the selected variables varying between 20 and 40 with a big 

standard deviation. However, values like hi = 100 and h0 = 1000 can overcome 

the effect of h0 and derive trace plots that show convergence to the desired number 

of important variables. Generally, if we look across the columns of Figure 3.2.1 

we can see that no matter the choice of h0, a good value for hi (e.g 100,1000) can 

lead to convergence of p1 with a small standard deviation. On the other hand, 

looking along the rows we can see that the smaller the value of hi the stronger 

the impact of h0 in the analysis (hi = 1, hi = 10).

The importance of hi becomes particularly clear observing Figure 3.2.2. Look

ing across the columns, we can see how hi drives the algorithm into forming the 

four groups. Care needs to be given on the choice of hi though; while with hi — 1 

there is a difficulty in splitting the first two groups, the four groups can be success

fully extracted for hi = 10, but again under the case of ho = 1000, the algorithm
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Figure 3.2.1: Cluster Heterogeneity for the simulated data set: Trace plots of the total 
number of discriminating variables included in the model, p7, for different combinations 
of the hyperparameters hi, ho, letting ac = /3C = ay = /3C = 2 and assuming unequal 
covariances.
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Figure 3.2.2: Cluster Heterogeneity for the simulated data set: Maps of the cluster 
allocations of the n = 15 observations for different combinations of the hyperparameters 
hi, ho, letting ac = /3C = =  /3C = 2 and assuming unequal covariances.
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recovers only three groups. Meanwhile, we observe that the choice of ho does not 

have a strong impact in the formulation of the groups.

Concluding the small investigation on the choice of hi and ho, we can sum

marise our remarks in the following. It looks, from the resulting trace plots of p1 

and the clustering maps, as though the choice of hi is more important than that 

of ho- Since the value of hi is what we focus on, the idea of setting ho equal to 

hi, as we did in our examples in chapter 2, seems utterly reasonable. Therefore, 

we can assume a single hyperparameter, say h (h = hi = ho)-

Now, setting h = 10,100,1000, we examine the cases of different values for the 

hyperparameters of the IG(ac,bc) and IG (ad,bd) priors on the scalars c^’s and 

d. As indicated in Figures 3.2.3 - 3.2.6, we tried the values 1,2 and 1000 for the 

hyperparameters ac, ¡3c, c^, fid and checked the results across the different values of 

h. The trace plots of p1, for all cases, show a convergence to the 20 discriminating 

variables, with the cases of higher values of h indicating less variation. Although 

the histogram of the number of selected variables (Figure 3.2.4), for the case 

a.c — /3C = otd = Pd. — 1000 and h = 10, indicates the selection of roughly 23 

variables, Figure 3.2.5 shows that the main core of the 20 variables are always 

being selected, with h = 10 assigning higher probability to an additional small 

number of variables.

Finally, looking at the clustering maps (Figure 3.2.6), we can tell that the 

choice of ac,(3c, ad and ¡3d can affect the algorithm, with ac = /3C — ad = Pd — 1 

fully recovering the four clusters regardless the choice of h, while setting ac = (3C = 

&d — Pd, — 2 and increasing the value of h can gradually lead to the formulation 

of three groups and in particular the merge of the third and fourth cluster.
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Figure 3.2.3: Cluster Heterogeneity for the simulated data set: Trace plots of the total 
number of discriminating variables included in the model, p1, for h = 10, 100,1000 and 
and ac = /3C =  ct̂  = ¡3d equal to 1,2, and 1000, under the assumption of unequal 
covariance matrices.
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Figure 3.2.4: Cluster Heterogeneity for the simulated data set: Histograms of the total 
number of discriminating variables, p7, assuming unequal covariance matrices, for h = 
10,100,1000 and ac = f3c = = /3d with values 1, 2, and 1000.
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Figure 3.2.5: Cluster Heterogeneity for the simulated data set: Marginal Posterior Prob
abilities of the variables included in the model, assuming unequal covariance matrices, 
for h =  10,100,1000 and a c =  (3C =  ay = /3d with values 1, 2, and 1000.
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Figure 3.2.6: Cluster Heterogeneity for the simulated data set: Maps of the cluster 
allocations of the n = 15 observations for h = 10,100,1000 and a c = /3C = ad = ¡3d 
equal to 1 , 2, and 1000, under the assumption of unequal covariance matrices.
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3.3 C luster-V ariab le  H eterogeneity

Taking the covariance structure of the Cluster Heterogeneity (CH) model one 

step further, we now regard the matrices E^ and TjND proportional to a diagonal 

matrix. With the normally distributed observations :

n |yi = f c , 0 , 7 ~ iV ( ^ ,£ £ ) ~ND
x i |<T, 7 ~  TV (pND, HND)

and with the variances of the p covariates, crj, j  = 1, ...,p being the elements of 

the diagonal matrix Bp, i.e.

0 ... 0 ^

°2 o :

0 0

- 0 °p y

we define the covariance matrices of the discriminating variables,

SD = cBPi, and E^ = ckBPi,

for assuming homogeneity and heterogeneity along the groups respectively; while, 

for the non-discriminating variables, we have the covariance matrix,

y'iVD _ d

which maintains its form under both cases. Evidently, we note that BPl and Bp_Pi 

are submatrices of B for the variances corresponding to the discriminating and 

non-discriminating variables respectively.

B =

or
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3.3.1 Prior Settings

The prior settings for the Cluster-Variable Heterogeneity model, resemble the 

settings we have discussed so far with the additional prior formulation of the 

variances <r2. Along with the known by now beta-binomial prior on the number of 

discriminating variables p7, as well as the discrete uniform prior on [1, . . . ,  Gmax\ 

for the number of components G, we retain the symmetric Dirichlet (aw, .. . ,  aw) 

prior on the component weights and hire conjugate priors for the mean vectors 

and the scalars of the covariance matrices. More specifically, we have :

MD|E "D ~ J V ( r fD,*o O .

where, for the scalars of the and T,ND covariance matrices, we use Gamma 

priors such that :

c ~  Ga (ac, /3C) , ck ~  Ga (ac, /3C) , d ~  Ga (ad, fid) .

Finally, for the p diagonal elements of B (or of BPi and Bp- Py ), we a priori draw 

the precisions ex“2’s independently from Gamma distributions with parameters 

as,/3s, i.e. ex“2 ~  Ga(as,f3s).

3.3.2 Posterior Inference

Examining the posterior formulation of the model, we certainly cannot overlook 

the change of dimensionality imposed by the variable selection task as well as the 

sampling of the number of clusters and the cluster allocations. The conjugacy 

of the priors on the mean vectors allows us to integrate out the parameters ¡jLk1 

and /iND, however, as the algorithm jumps between dimensions, although under
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the assumption of homogeneous covariances cr2’s get affected from the change of 

dimensionality, in the case of heterogeneity the dimension of both sets of param

eters, crj’s and <Vs, needs to be updated. Therefore, the parameters of interest 

and the sampling techniques used, differ for the two cases of homogeneous an 

heterogeneous covariances.

Starting with the assumption of equal variances across the G groups, being 

under the Reversible Jump chain, it is difficult to propose the precisions a~2, while 

an additional time burden would be imposed in the algorithm. Therefore, since 

marginalisation of the joint posterior over rr“2’s can be achieved, we choose to 

integrate the precisions out. Along with the integration over the mean vectors 

and pND, the calculations result to a joint posterior of the parameters (y, 7, w, G, c) 

with the following form :

under which, calculations on only the p variances of the S{?,SND matrices is 

needed.

Looking at the sampling techniques for the parameters of interest for the homo

geneous covariances case, (7, w, y , G, c), we start with the sampling of the 7 vector 

using a Metropolis search. With one of the Add/Delete/Swap moves suggesting 

a new candidate vector and with full conditional :

k= 1 L N D

(3.3.1)

f ( ' y \ G, w, y , X, c)  oc f  (X, y\G,w, ' y, c)p( j \G) (3.3.2)
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we accept the proposed 7' with probability min 1, ^ f^xy ’wG)

In the next step, samples of the component weights w are being drawn from 

a Dirichlet distribution with parameters (aw -f- n i , ... ,aw + no) using a Gibbs 

sampler. While, on the following, we update the elements of the allocation vector 

y one at a time via a sub - Gibbs strategy with probability conditioned on the 

previous allocations,

where, f  (y\G, w, 7 , X,c) oc /  (X, y\G, w, 7 , c ).

Before performing the RJMCMC sampler, we introduce the sampling of the 

scalar c. Suggesting a new c from its prior distribution, we update c using the 

Metropolis-Hastings algorithm, accepting the new candidate with probability :

Finally, the algorithm concludes with the split/merge and birth/death moves 

of the Reversible Jump sampler. Using the be and do probabilities as defined in

(2.4.2), a split or a merge move is being proposed. Assuming a split of an empty 

or non-empty component has been suggested, the move is being accepted with

/  (.Vi = ?/(_;), 7, u>,G) oc /  (X ,y t = k, y(_j)|G!, w, 7) , (3.3.3)

where, n (c'\G, w, 7 , X , y) is the full conditional of c as in :

/(c |G ,tu ,7,X,y) oc f  (X,y\G,w,'y,c)p(c). (3.3.4)

75



probability min (1, A), for which ratio A has now been reformed into :

A =

x ¿G+l
bo

(3.3.5)

We understand that the reverse of (3.3.5) will give us the corresponding ratio 

for the merging of two components, while the sampler will conclude with the 

generation or deletion of an empty component. Proceeding into a birth or a death 

move with bGo and dGo probabilities as in (2.4.7), a suggested birth move will be 

accepted with probability (2.4.9), while (2.4.10) will accept a death move.

Having examined the parameters of interest along with their joint posterior 

and the sampling techniques for the case of homogeneous covariances, we now need 

to look at the assumption of unequal covariances across the groups. This time, as 

mentioned earlier, both sets of cr“2’s and the vector of c/7s changes dimension as 

the sampler jumps between dimensional spaces; however, the integration of both 

sets is not feasible. Reconsidering the RJMCMC sampler, as we split/merge and 

generate/delete new components, the dimension of the vector with the scalars 

Ci,. . . ,  cG, needs to comply with the proposed moves, accompanied with proper 

proposals constructing the scalars assigned to the new components. We under

stand that such a choice would impede the efficiency of the sampler and we there

fore decide to integrate out scalars c^’s and in return sample the precisions a j 2.

After integrating out the mean vectors ¿¿f, HND and the Ck s, from a joint
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posterior of the form :

f ( X,  y\G,w,7,a -2) = j  f  (X, y|7 , G, w, y D, pND, Cfc) x /  (c*|G) /  {fiD\G, 7, SD)

x /  (Eö |G,7) /  dyDdyNDdck,

with the parameters of interest being (7, iu, y, G, a • 2) , we obtain the following 

joint posterior :

o G a c /0
/  ( x . j / I G , « , ^ - 2) =  ( 2 ^ ) - " ” /2 ( M  +  £ - g  Ib ; T /21 (ac)

x n  ^  + i )~p"/2 exp - ^ r ( s p-v ,5*d)
k-1 *- - I I -

G

x n  <
fe=i

2 (\ M w )
2ßc

<xC- (3.3.6)

where, is the modified Bessel function of the sec

ond kind and S ^ , S ND as defined in (3.2.3) and (3.2.4) respectively. Once again, 

traces indicate the need for only p calculations.

The algorithm starts with the sampling of the 7 vector with the usual Add/Delete 

/Swap moves of the Metropolis search, accepting the proposed vector 7 with prob-

ability min 1 f ( Y \X ,y ,w ,G )  
’ fh\x,y,w,G) , the full conditional of which is given by

/  (y|G ,w ,y ,X ,a j2) oc /  (A, y\G, w, 7, (Tj 2) p(7|G). (3.3.7)

Coming to the cluster allocations and the component weights, a Gibbs sampler, 

with a Dirichlet (aw +  n i , . . . ,  aw + no) posterior distribution, delivers the sam

ples of w, while, similarly to the homogeneous case, the new cluster membership 

of the observations indicated by y, are being updated one element at a time via
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a sub - Gibbs strategy with probability conditioned on the previous allocations, 

recall,

/  (Vi = k\A", ?/(_*), 7, w,G) oc /  (X,yi = k, y(-i)\G, w, 7) , (3.3.8)

where this time the full conditional for vector y is given by

/  (y\G, w, 7, X, a j 2) oc f  (X, y\G, w, 7, cr“2) ,.

We proceed with the sampling of the precisions a j 2's. With the full conditional 

of a j 2's being of no closed form, i.e.

f  (a j2\G,w,y ,X, j)  oc /  (X ,y \G ,w , j ,a j2) p (a j2) , (3.3.9)

a standard approach for drawing samples of a j 2 would be a Metropolis - Hastings 

algorithm. However, we choose to draw cr“2’s via a variant of the Gibbs sampler, 

the Collapsed-Gibbs sampler. Although samples of the parameters 7, y and w are 

being drawn having marginalised the posterior over the scalars Cfc’s, the idea of 

Collapsed-Gibbs sampler introduces the sampling of a j 2's having blocked on c^’s. 

More specifically, while c j s are no longer being considered in the analysis, i.e. we 

do not consider sampling them since we chose to integrate them out for reasons we 

explained earlier in this section, the samples of the variances a j 2's are being drawn 

from their full conditional being conditioned on c j s, i.e. /  ( ìt “ 2 |G ,  w , y, X, 7, c*,). 

In our case, that would be :

/  (a j2\G,w,y, X ,7,cfc) oc /  (A, y\G, w, 7, a j 2, ck) p (a j2) , (3.3.10)

where, /  (A, y\G, w, 7, cr“2, Ck) is the joint posterior of (G, w, y, 7, a j 2, Ck) and 

p (aj2) the Gamma prior of the p variances. However, (3.3.10) yields a Gamma
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posterior such that :

— 2 TI 1
Ga | a s + —, ßs + 2

' G 1 
,k=1

(3.3.11)
J jj/

for the variances corresponding to the p7 discriminating variables, and a Gamma 

posterior of the form :

n 1
ai 2 ~  Ga ( + — ,/?s + ^SfjD (3.3.12)

for the (p — p7) variances of the non - discriminating variables. We understand 

that the posterior of the crJ“2’s is of closed form and therefore a Gibbs sampler 

can be applied. Nonetheless, before performing the sampling of cr“2’s, we need 

to draw samples for the scalars Ck,k =  1 ,..., G. With a full conditional of the 

general form :

/  (ck\G,w,y, 2) oc /  (Wy|G',w>7Wj 2,ck)p(ck) , (3.3.13)

each of the G ck’s is being sampled, via again a Gibbs sampler, from a Generalised 

Inverse Gaussian, such that :

ck ~  G7G (pc, ac, 6C) , (3.3.14)

with pc = ctc -  nfcp7/ 2, ac = 2/3c and bc = tr (^B~^Sk ^. Having completed the 

Collapsed-Gibbs step, the algorithm continues with the Reversible Jump MCMC 

technique, considering once again the posterior marginalised over the c^’s, i.e. 

/  (W y|G, w, 7, crj2) . Similarly to the homogeneous case, we have a split or a 

merge move proposed and accepted with probability m in(l,/l). For the split
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move ratio A takes the form :

A = ßcc (hinti + 1) Py/2 (hinl2 + 1) Py/2
r  ( a c ) {hint + 1) Py/2

2 Kt ■no p7 > f ä t r  ( S ^ S ? ) )  2 K ^ _ - M2) ( ^ 2f t ir  (f i- 'S g

X

X

2iv,

2/3c

(a o -T )  ^ \J^ßctr ( ß - ^ f  )
(ac-^)/2

2 ßc
(«c-^)/2

13 (ou, nu) 
h3 (n^, Gotyß

2ßc
tßß^Sß)

x na“- a“ (1 -

(°
n£,P7

) / 2

x w r  x ¿ G + l 

Ĝ ’
(3.3.15)

while, for the merge move, ratio A will correspond to the reverse of (3.3.15). 

Finally, we have the birth and the death moves, the acceptance probability of 

which is m in(l,/l), with /I as defined in (2.4.9) and (2.4.10) respectively.

3.3.3 Exam ple

Finishing the construction of the model with the new covariance structure, its 

application on our usual simulated data set of the 50 variables and the 15 ob

servations assuming heterogeneity is essential. Once again we iterated our runs 

60000 times using a burn in of 40000 iterations and set pprior = 10, a + b = 2, 

Gmax =  15, aw = 1, and au = 2. For the so far crucial hyperparameters hi and ho, 

we considered the values 100 and 1000, while this time a few new hyperparameters 

have been introduced in the algorithm, that is ac, /3C and as,/3s. Care about the 

impact of the new hyperparameters on the convergence of the selected variables 

and the formed clusters has been taken by checking the resulting histograms and 

cluster matrices for certain different values.
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As far as as and /3S of the Gamma prior on the precisions cr~2’s are concerned, 

we tried the pairs (2,1), (3,2) and (5,4), allowing precisions with expected value 

in the interval [1,2]. However, regarding the hyperparameters of the Gamma prior 

used on c^’s, i.e. a c,/3c, we thought as follows. To begin with, we are interested 

in examining the within covariance structure of the groups with respect to the 

overall, and more specifically, to be able to identify the cluster structure of the 

observations, we understand that the within groups variance needs to be smaller 

than the overall. Therefore we expect c*, € (0,1). Consequently, values of (ac,/3c) 

such that the expected a priori value of a scalar q, is 1 or |  would be a reasonable 

choice. We experimented with the pairs (1,4), (3,12), (1,2), etc (see Figures for 

the full list of (ac, (3C) pairs) for the three pairs of (as,/3s) [(2,1), (3,2) and (5,4)] 

and allowing hi — h0 = 100 and hi = h0 = 1000.

Looking at Figures 3.3.1 - 3.3.6, one can interpret the importance of the choice 

of hi and h.0. Having ho — hi = 100, results to the selection of the 20 discriminat

ing variables originally defined as the discriminating ones (Figure 3.3.2) and the 

recovery of the four clusters of the observations, for all combinations of the (as, (3S) 

and (ac, (3C) pairs, except the case of (as, (3S) — (2,1) with (ac, (3C) =  (1,4). Setting 

ho — hi — 1000, on the other hand, with the only exception of (ac,/3c) = (4,8) 

for which both the discriminating variables and the cluster structure of the data 

have been successfully recovered, we observe that the pair (as,/3s) seems to be of 

importance. With (as,/3s) = (2,1) resulting to a model favouring the entire set 

of variables as discriminating, failing to recover the true cluster structure of the 

data, we note that a change on the values on the as and /3S hyperparameters can 

improve the results dragging the algorithm into convergence to the correct set of 

the 20 discriminating variables and the structure of four groups of observations 

[pairs (3,2) and (5,4)].

81



"\<cyP,>
(1,4) I

I  0

S' 1 
( 3 ,  1 2  ) I  0 . 5

I o£ u
S' 1 

( 1 , 2 )  I  0 . 5

S' 13
( 3 , 6 )  £  0 . 5I£ 0

S' 1 
( 4 ,  8  ) |  0 . 5

I 1
( 2 , 3 )  I  0 . 5

L

L

(2, 1 )
—aiCllrfHHa20 30 40

nk_20 30 40

20 30 40

20 30 40

20 30 40

20 30 40

S' 1f 0.5
1 0
S' 11
M 0.51 0
! 1I 0.5
f 0 
I 1I 0.5
I 0

( 3, 2 )

30 40

flk_ 30 40

30 40

L 30 40

f 1
0.5%1 0

£ 1§S|  05 i o
£ 1I
£ 0.5
2f 0
f 1I 0.5
2I 0

( 5, 4 )

BL

IP

30 40
S' 11
M 0.5Mf o 30 40

I 1I 0.5II 0

20 30 40 50

20 30 40 50

20 30 40 50

20 30 40 50
1 1 S' 1

Dk__ .___ .___ J 1 0.5! Ok__ _________ f 05■f 0Q k ____ ____ _20 30 40 50

20 30 40 50
Figure 3.3.1: Cluster-Variable Heterogeneity for the simulated data set: Histograms of 
the total number of discriminating variables, p1, for various pairs of (ac,/3c), (as,/3s), 
assuming heterogeneity and setting h = 100.
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Figure 3.3.2: Cluster-Variable Heterogeneity for the simulated data set: Marginal Pos
terior Probabilities of the variables included in the model, for various pairs of (ac,/3c),
{ a a , P s ) i  assuming heterogeneity and setting h  =  100.
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Figure 3.3.3: Cluster-Variable Heterogeneity for the simulated data set: Maps of the 
cluster allocations of the n = 15 observations for various pairs of (ac, /3C), (as,/3s), 
assuming heterogeneity and setting h = 100.
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Figure 3.3.4: Cluster-Variable Heterogeneity for the simulated data set: Histograms of
the total number of discriminating variables, p7, for various pairs of (ac,/3c), (a s , /3s),
assuming heterogeneity and setting h  = 1000.
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Figure 3.3.5: Cluster-Variable Heterogeneity for the simulated data set: Marginal Pos
terior Probabilities of the variables included in the model, for various pairs of (ac,/3c), 
(as,(3s), assuming heterogeneity and setting h = 1000.
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Figure 3.3.6: Cluster-Variable Heterogeneity for the simulated data set: Maps of the
cluster allocations of the n  =  15 observations for various pairs of (ac,/3c), ( a s , /3s ),

assuming heterogeneity and setting h  =  1000.
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To summarise the results on the simulated data set, it looks as though the 

model is robust with respect to the (ac,/3c) hyperparameters, as different pairs 

derive similar results. The hyperparameters hi, ho, however, are of major impor

tance, with the (aa, (3S) hyperparameters playing an important part, being able to 

drag the chain into achieving convergence, when a bad choice of hi , ho has been 

made, e.g ho = hi = 1000. The increased amount of hyperparameters though, 

as we see in the Figures above, results to the need of examining many differ

ent combinations of hyperparameters for one to capture possible patterns of bad 

behaviour of the model. Therefore, the possibility of eliminating the number of 

hyperparameters to overcome the load of the many different combinations has 

been under consideration and developed in the following section.

3.4 C luster-V ariab le  H eterogeneity  w ith  a p rio r

on th e  m ean  of th e  c& ~  G a  (ctc, (3C)

Motivated by the need of a fewer amount of hyperparameters to be tuned, we 

considered allowing the algorithm to explore the set of different possible values 

for the Go, (ac, ftc) prior assigned to the Ck scalars. The idea is while controlling the 

shape hyperparameter ac of the Cluster-Variable Heterogeneity model, together 

with the (as,/3s) hyperparameters, we allow m to be the mean of the Gamma 

prior on c*,’s (m = ac/¡3C) and we express the joint posteriors in terms of ac and 

m by setting /3C = ac/m.

For the homogeneous case, we remind that we have chosen to integrate the 

precisions a~2 out, resulting to a joint posterior of the parameters (y,7,u;,G, c) 

and of form as defined in (3.3.1). Therefore, we maintain the methods described 

in section 3.3.2 for the sampling of the (7,y,w), with full conditionals given by
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(3.3.2) , (3.3.2) and a Dirichlet (aw + n i , ... ,aw + nG) respectively. However, be

fore performing the random walk search for the scalar c with full conditional as 

defined in (3.3.4), we allow a second random walk chain to draw samples for 

m = a j  ¡3C. With a uniform prior on [0,1] for m and proposing values from a 

log-normal, we accept m with full conditional :

/  (m|G, w, 7, y, X,c) oc p (c), (3.4.1)

where, p(c) is the Gamma prior set on c. Finally, the Reversible Jump sampler 

concludes the MCMC chain with the split/merge and birth/death moves being 

accepted with probability min(l, A) and ratios A as given in (3.3.5) and (2.4.9), 

(2.4.10).

Now, under the assumption of unequal covariances, we follow again the method

ology of the Cluster-Variable Heterogeneity model, with the addition of an extra 

step in the algorithm, the sampling of m. While, the Metropolis search, the Gibbs 

sampler and the sub-Gibbs strategy, with the full conditionals given in (3.3.7) and

(3.3.2) and a Dirichlet (aw + rq ,. . . ,  aw +  nG) are introduced for the sampling of 

7, y and w, we allow samples of m to be drawn via a random walk. Likewise 

the homogeneous case, we use a uniform prior on [0,1] for m, proposing values 

from a log-normal. However, this time we need to discuss further the full condi

tional of m. Although, the c* scalars have been integrated out, recall we have the 

joint posterior J' (A, y\G, w, 7, <r“2), we choose to form the full conditional of m 

conditioned on c^’s. Therefore, we take :

G

f  (rn\G, w, 7, y,X,cr~2, ck) oc J J p (c fc), (3.4.2)
k= 1

where, again p  (c*,) is the Gamma prior of the k th scalar. Having updated the mean

of the Gamma prior of the c*,’s, the algorithm continues with the Collapsed-Gibbs
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sampler for the precisions a j 2. Drawing samples of Cfc’s from the Generalised In

verse Gaussian of form (3.3.14), a “2’s are being generated from Gamma posteriors 

with parameters as defined in (3.3.11) and (3.3.12). On the final step we have 

the Reversible Jump technique with the number of components being updated 

through split/merge and birth/death moves with ratios given in (3.3.15), (2.4.9) 

and (2.4.10) forming the acceptance probabilities min(l, A).

3.4.1 Exam ple

Continuing on the application of the simulated data set, assuming heterogeneity 

we now try the three pairs of (as,/3s) [(2,1), (3, 2) and (5,4)], with four different 

values for the hyperparameter ac, that is 1,2,3 and 4. Figures 3.4.1 - 3.4.6 show 

the histograms of the number of selected variables, the posterior inclusion proba

bilities and the cluster matrices for the cases of hi =  h0 =  100 and hi = h0 = 1000.
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Figure 3.4.1: Cluster-Variable Heterogeneity with a prior on m  for the simulated data
set: Histograms of the total number of discriminating variables, p7, for various combi
nations of (o is , 0 s )  and assuming heterogeneity and setting h  = 100.
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Figure 3.4.2: Cluster-Variable Heterogeneity with a prior on m for the simulated data 
set: Marginal Posterior Probabilities of the variables included in the model, for various 
combinations of (as,/3s) and ac, assuming heterogeneity and setting h = 100.

Figure 3.4.3: Cluster-Variable Heterogeneity with a prior on m  for the simulated data
set: Maps of the cluster allocations of the n  =  15 observations for various combinations
of (a s , p s) and a c assuming heterogeneity and setting h  =  100.
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Figure 3.4.4: Cluster-Variable Heterogeneity with a prior on m for the simulated data 
set: Histograms of the total number of discriminating variables, p7, for various combi
nations of (as,/3s) and ac, assuming heterogeneity and setting h = 1000.

Figure 3.4.5: Cluster-Variable Heterogeneity with a prior on m  for the simulated data
set: Marginal Posterior Probabilities of the variables included in the model, for various
combinations of (a s , /3s) and a c , assuming heterogeneity and setting h  =  1000.
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Figure 3.4.6: Cluster-Variable Heterogeneity with a prior on m for the simulated data 
set: Maps of the cluster allocations of the n = 15 observations for various combinations 
of (as,/3s) and ac assuming heterogeneity and setting h = 1000.

A quick look at the Figures above is enough to let us draw once again the 

conclusion that the set of hi and h,0 is of critical importance and a bad choice can 

diminish the efficiency of the algorithm in uncovering the cluster structure of the 

data and simultaneously identifying the important variables. Clearly, under the 

case of hi = ho = 100, the algorithm achieves convergence to the 20 discriminat

ing variables, recovering the four groups of observations, for all combinations of 

(as,/3s) and as (Figures 3.4.1, 3.4.3). However, for hi — ho = 1000, only a few 

cases (mainly that of ac = 4) can identify the discriminating variables concluding 

to the formulation of the four groups as expected (Figures 3.4.4, 3.4.6). That is a 

very valuable remark as it shows that with this new covariance structure for the 

model, we have managed to stabilise the performance of the algorithm, confining 

the hyperparameters needing additional care only to the hyperparameters hi and 

ho. Additionally, as we saw in 3.2.3, setting hi equal to ho is absolutely reasonable; 

therefore, instead of hi and ho, we can claim that the crucial hyperparameter is 

only one and that is, say, h.
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3.5 C luster-V ariab le  H eterogeneity  w ith  a p rio r 

on th e  m ean  of th e  c k  ~  G a  (ac, ft) and  a p rio r 

on h y p e rp a ram e te r  h

Having come to the conclusion that the algorithm has a sensitivity on the value 

of the hyperparameter h and that a “bad” choice can actually be detrimental to 

the recovery of the cluster structure and the identification of the discriminating 

variables, means to tackle this sensitivity out are of interest. Naturally, the in

troduction of a hyperprior on h is the direction that we followed. Therefore, for 

the Cluster-Variable Heterogeneity model with a prior on m, we built on the prior 

specifications by introducing an Inverse Gamma prior on h, i.e.

Starting with the homogeneous case and building up the algorithm of the Cluster- 

Variable Heterogeneity model with a prior on m, we initialise the runs with the 

sampling of h using a random walk chain, proposing moves from a log-normal and 

accepting with full conditional

The algorithm continues with the sampling of (7, y, w, G, c) together with m ac

cording to our description for the Cluster-Variable Heterogeneity model with the 

prior on m.

Finally, assuming heterogeneity, we sample h, similarly to the case of homo

geneous covariances using a random walk, but this time the full conditional of h

h ~  IG (ah,(3h) ■ (3.5.1)

/  (h\G, w, 7, y, X,c) ex f  (X, y\G, w, 7, c, h) p (h). (3.5.2)
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f  {h\G, w, 7, y, X, a~2) oc /  (X, y\G, w, 7, a ' 2, h) p (/i). (3.5.3)

for which, we note that unlike m, we do not need to condition on Cfc’ s. The 

sampling of the remaining (7, y, w, G, crj2) parameters, as this has been described 

earlier for the CVH model with a prior on m, will complete the chain.

3.5.1 Exam ple

We will now close this set of the different covariance structures with the applica

tion of the latter idea of considering an additional hyperprior on h and we will 

examine whether we have managed to overcome the sensitivity imposed by its 

crucial choice.

Following the settings of the example under Section 3.4.1, we examined the 

behaviour of the model for two sets of values for the hyperparameters of the 

IG(ah,f3h) prior of h. For pairs of (ah,ph), (3,200) and (3,400), additionally to 

the usual histograms for the number of selected variables (Figures 3.5.1, 3.5.5), the 

posterior inclusion probabilities (Figures 3.5.2, 3.5.6) and the matrices indicating 

the cluster structure as suggested by the chains (Figures 3.5.3, 3.5.7), this time we 

also display the posterior distributions of h signifying its estimated value (Figures 

3.5.4, 3.5.8).

The results are rather pleasing as for all cases, no matter the settings of the 

hyperparameters of h, we achieved convergence on the recovery of the discrimi

nating variables as well as on the construction of the four components as they had 

been originally designed. Of course, we should not forget to notice that for the 

case of (3,400) and with a ac = 4, we have a slower convergence of p7, but the 

algorithm does eventually identify the 20 important variables.

is :
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Figure 3.5.1: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Histograms of the total number of discriminating variables, p7, for various 
combinations of (as, (3S) and ac, under the case of h ~ IG (3, 200), with unequal covari
ance matrices.

Figure 3.5.2: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Marginal Posterior Probabilities of the variables included in the model, for 
various combinations of (as,/3s) and ac, under the case of h ~ IG (3, 200), with unequal 
covariance matrices.
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Figure 3.5.3: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Maps of the cluster allocations of the n = 15 observations for various combi
nations of (as,/?s) and ac, under the case of h ~ IG (3,200), with unequal covariance 
matrices.
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Figure 3.5.4: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Posterior distribution of h, for various combinations of (as,/3s) and ac, under 
the case of h ~ IG (3,200), with unequal covariance matrices.
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Figure 3.5.5: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Histograms of the total number of discriminating variables, p7, for various 
combinations of (a3, (3S) and ac, under the case of h ~ IG (3,400), with unequal covari
ance matrices.
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Figure 3.5.6: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Marginal Posterior Probabilities of the variables included in the model, for 
various combinations of (as, f3s) and ac, under the case of h ~ IG (3,400), with unequal 
covariance matrices.
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Figure 3.5.7: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Maps of the cluster allocations of the n = 15 observations for various combi
nations of (as,/?s) and ac, under the case of h ~ IG (3,400), with unequal covariance 
matrices.
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Figure 3.5.8: Cluster-Variable Heterogeneity with priors on m and h for the simulated 
data set: Posterior distribution of /i, for various combinations of (as,/3s) and ac, under 
the case of h ~ IG (3,400), with unequal covariance matrices.
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Finally, looking at the posterior distributions of h in Figures 3.5.4 and 3.5.8, 

one can observe something very interesting. The estimated value of h varies 

between 10 and 12; case for which we did not manage to achieve convergence for 

the cluster assignment under the CH model (Figures 3.2.2, 3.2.6), while for the 

covariance structure of the CVH model an h of value 100 produced equally good 

results (Figure 3.3.3).

For all models we have examined so far we have observed the great impor

tance of the choice of the h hyperaparameter. The different values on h that we 

have previously experimented with (1, 10,100, 1000) usually led to variant cluster 

structures and sets of discriminating variables, lacking criteria on which value of 

h supported convergence to the expected set of the 20 variables uncovering the 

structure of four clustres. In any case, we can now say that setting a prior on h 

has facilitated the convergence of the algorithm. We have therefore managed to 

overcome the model’s sensitivity on h building up a robust model.

3.6 N on-C on jugate  C ovariance S tru c tu re

So far, in the model of chapter 2, as well as in the different covariance structures 

presented earlier in this chapter, we have repeatedly seen the importance of the 

hyperparameter h, of the Inverse-Wishart prior assigned to the covariance matrices 

Ejj? and T,n d . Setting a hyperprior on h, we managed to bypass the need of 

choosing a proper value for it, however, adopting a model where h is not considered 

may be necessary. The importance of h lies on the fact that it consists of a linkage 

of the within-cluster variation and the between-cluster variation. Consequently, 

in problems with clusters of different magnitude for instance, assuming a single 

- and common for all clusters - scalar h, could affect the recovery of the true 

cluster structure. That is, having a large value of h, would most likely capture
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the big clusters, however, that would also result in the mean values of the smaller 

groups having a big variance. Therefore, smaller groups with small between cluster 

variation could be captured under a single big normal distribution, rather than 

many smaller ones.

We understand, thus, the need of regarding the model with a cluster structure 

of the non-conjugate form. For

x?\Vi =  k , 6 , ' y ~ N  { r f ,  S f ) , x ? D\0', 7 ~  N  ND, HND) , 

and assuming covariances matrices

y*D _ d yiND _ ry
¿ - j  C J D p ^ , U p _ p ^ ,

under the case of homogeneous covariances and

= ckBVl, XND = BP_P1,

when under heterogeneity, we will examine the non-conjugate model. As previ

ously :

°i 0 0
0 a2 0

0 0
0 0

3.6.1 Prior Settings

Starting with the prior on the number of discriminating variables p7, we set a

beta-binomial distribution with parameters a, b such that a  + b =  2. The number



of components G follows a priori a discrete uniform on [1, . . . ,  Gmax], while the 

prior distribution of the component weights w is a Dirichlet (aw, . . . ,  aw). Using 

the prior information, we assign normal prior distributions on the mean vectors 

/i^ ,pND, such that :

where, and are submatrices of the diagonal matrix of dimension p, S0, 

which in turn is an estimate of the data. We set E0 equal to a small multiple, k, 

of a diagonal matrix, say S, i.e.

£o — &£,

for which, we have :

U 0 o N

1
1.3492

0 r2'2
0

0
0

1° 0 r2 ,
p )

with rj,j  = l , . . . , p  being the interquartile range of the p variables (Cramer, 

1946).

c j ~  G cl (crs, ¡3g) ,

The precisions cr^’s, j  =  1, , p ,  for both cases of homogeneity and hetero

geneity, follow a priori a Gamma distribution with parameters ( a s , / 3 s ) ,
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while, for the scalars ck s, k = 1 ,G, as well as the single scalar c, we have 

Gamma priors with parameters (ac,/3c), i.e.

ck ~  Ga (ac, /3C) , and c ~  Ga (ac, /3C) .

3.6.2 Posterior Inference

Moving to the posterior formulation of the model and examining the case of as

suming unequal covariances, we choose to integrate the mean vectors ^ ND out, 

obtaining the joint posterior for the parameters (7,y ,w,G,a^2,ck). That is :

/  (X, y\G, w, 7, <Jj 2, cfe) = (27r)' 2 E,D I 2 I sr'N D I 5I Bp-p 71 1 + nB~l

x exp
I ¿=1

+ « M D -  * " D)' s r _1 ( s i"3-1 + n

n*:=!

x exp

n h .P y

2 a P7 I E^ 1 + nkck LB,1 e>-i
Vi

\  Y  ~ xk ) ' ck lBP' ( x? - xk )
XiÇ.C/ç

+ nk -  x f )' E^ 1 ^  1 + nkck l Bp}^j ck l B . ^  (fj° -  x£)

P~Py

(3.6.1)

with, x f being the sample mean of the kth cluster for the covariates that are 

included in the model and xND the overall sample mean of the non-discriminating 

variables.

Previously in this chapter, and more specifically for the variable heterogeneity 

model (section 3.3), we adopted the marginalisation of the joint posterior over 

the scalars Cfc’s. However, under the non-conjugate case, the integration of the
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joint posterior in (3.6.1) is not trivial for neither the variances aj’s nor scalars 

ck s. Therefore, assuming heterogeneous covariances, we choose to sample all 

(7 ,w ,G,y ,ar2,Ck).

Starting with the sampling of the latent vector 7 and using a Metropolis search, 

an Add, Delete or Swap move randomly proposes a new 7' candidate. With full 

conditional :

f(MG, w, y, A, (Tj 2,ck) oc /  (A, y\G, w, 7, aj 2, ck) p (7IG), (3.6.2)

we accept the proposed vector with probability min

On the following, with the component weights w being drawn from a Dirichlet 

distribution with parameters (aw + n i , . . . ,  aw + no) via a Gibbs sampler, a sub - 

Gibbs strategy is used to update the elements of the allocation vector y one at a 

time, with a full conditional conditioned on the preciously allocated observations, 

i.e.

/  {y\G, w, 7, A, a~2, c/t) oc /  (A, y\G, w, 7, a j 2, ck) . (3 .6 .3 )

Next, we need to sample scalars ck s and the precisions a j 2. Using the idea 

of the Collapsed-Gibbs sampler, we sample both ck's, a j 2, blocking on the mean 

vectors [ik 's, fiND, although we had originally integrated them out. For Normal 

full conditionals such that :

/ r f - A O C ,  A?) ,.ND /I ~ A H (3.6.4)

where,

« r = ( s r + n ^ r ' Y '  ( e0d- v ? + n * s r ‘x f ) .

,4Lr =  +  n E "0 - 1) ( e 0wd“ V ? D +  n S Nn^ x ND)  .
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-1
A? = ( s r 1 +n ts r ‘y ' ■ A =

Gibbs samplers are being used to draw samples for the mean vectors. Conditioned 

on the values of /if, /uND, the resulting full conditionals of c*,, cr~2 are of closed 

form and therefore Gibbs samplers can also be applied. In particular, the full 

conditional of the Ck scalars is a Generalised Inverse Gaussian distribution,

Cfc ~  GIG (Pc nc, bĉ ,

with parameters bc = (.

2ßc.

xD /4 T  BpJ {xi -  Mk). Pc = « C  -  nkp7/2 and ac =
Xi£k

On the other hand, for the precisions crj2, j  = 1 ,... , p, we distinguish between 

those associated to the discriminating variables and the corresponding to the 

non-discriminating ones. Both sets of precisions follow a posteriori, and always 

conditioned on (/¿f, pND), Gamma distributions of the form :

aj 2 ~  Ga ( a s + ßs + \  ^  ]T  (xg ~  /4y)' ~  (XS ~  ^S) ) » (3-6-5)
k= 1 Xi€k Ck

for the discriminating variables and

a - 2  
j{ 7 C)

Ga Ole (3.6.6)
2=1

for the non-discriminating ones.

Coming now to the Reversible Jump sampler, evidently, alike the component 

weights, this time the dimension of the c*, scalars also alters as we jump between 

different states. Choosing randomly between a split and a merge move, with 

probabilities bo and do, let us first consider a split move. Say an empty or 

non-empty component £, is chosen to be split, obtaining the clusters The
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new clusters are assigned the weights w\x = W(U and w[2 — u)e(l — u), with 

u ~  Be (2,2). However, new scalars dti and c'l2 need also being considered. We 

choose to draw values for dti and di2 from the Ga (ac,/3c) prior set on the c^’s.

Being in state ip = (G, w,"y,aj2,y, c), split move will take us to state ip' = 

(G + 1, iu', 7, a~2,y', d ) , where c and d  are regarded as the vectors containing the 

Cfc scalars for k = 1 ,..., G and k = 1 ,..., G + 1 respectively. Having suggested the 

new scalars and component weights, the move is being accepted with probability 

min (1, A), where for :

P {ip'\x ) rm {'ip')p(c)
p (ip\x) rm (i p )p(d)q(u) d( we,u)

(3.6.7)

we define the terms :

P W\x)  = /  (G + l ,v/,  7, aj 2, y', d\X)

= /  (X, y'\w\ 7 , <rj\ G + 1, d) f  (w'\G + 1) /  (G +  1) p (d ) ,

P =  5 {G, w, 7, a~2, y, c\X)

= f  (X, y\w, 7, a j 2, G, c) f  (w\G) f  (G) p (c),

( l \ — ^GPalloc 
r m  \ V ) ~  q  j

r fW) =  Ĝ+1 
m ^  j G(G + 1) ’

with Paiioc = unei (1 — u)”£2 the probability that the particular allocation has been 

made. Replacing in (3.6.7), we obtain :

WtVWi2)
9 (we, u we,

f ( X , y l\w' , 'Y,G+l ,d)  
f  (X, y\w, 7, G, c)

dG+i y 2,2)
B  (city, GoiyP)

X 7/,“ ’" 1 x (1 -  i t ) “ “  1 X w “ w ,

(3.6.8)
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where, /  (X , y\w', 7, G + 1, c') and /  (X, y|io, 7, G + 1, c) as derived in (3.6.1).

Proposing the reverse move, i.e. two components are randomly chosen to be 

merged, we jump from state ip = (G + 1, w, 7, a j  , y, c) to state ip' = (G, u/, 7, a~2, 

y , c'), drawing the variable u = w£1/w'e from a Be (2, 2). The weight of the merged 

component is now w[ = + ŵ 2, while its scalar c'e is being sampled from the

G a(ac,/3c) prior. We accept the merge move with probability m in(l,ri), where 

A is the reverse ratio obtained for the split move (3.6.8).

Finally, we conclude the RJMCMC sampler of the non-conjugate model for the 

heterogeneous case, with the generation or deletion of an empty component. In the 

case of a birth move, the weight of the new empty component w'G+i is generated 

from a Be(l,G), with the weights of the remaining components being rescaled 

such that w'k = wk (l — to(?+1); a strategy followed in all the birth moves we have 

developed so far. However, the additional c'G+1 scalar, corresponding to the new 

component, is drawn, similarly to the split/merge moves, from the Gamma prior, 

of the Cfc’s ,  Ga(ac, /3C), while unlike «7’s, the remaining G scalars do not need to 

be rescaled. The birth move is finally being accepted with probability min (1, A), 

for which, ratio A is given by:

ri = (l
w,\aw- 1)

W,G+ \)
G + l J i _____

B  [O iy j, CjOiyj^j

/ \ Ĝotuj 1)
G + l ) d,x G0+l

(Gq + 1) boo
x G + l 

G
(3.6.9)

Deleting an empty component, say wq+i , we also need to delete its corresponding 

scalar cq+ 1 and rescale the weights according to w'k = wk/{ 1 — wq+1), for k = 

1 ,..., G — 1. Ratio A of the acceptance probability min (1, A) now becomes:

A = (1 -  wG+1) n x Id 1 G(xw'j

VJ{G+i1] (1 -  WG+l)G(Q,J'“1)

(Go + 1) bGo ^ G 
cfco+i G + l

(3.6.10)
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For the end, we shall discuss the settings for the case of homogeneous co- 

variances. Marginalising, as in the case of heterogeneity, over the mean vectors 

p,£,pND, the parameters of interest now become : (7, y, w, G, <rj2, c), the joint 

posterior of which is :

/  (X,y|G,iy,7,<r- 2,c) = (2?r) ^  |E,
G 1

D  I 2 I x ' N D  I 2
B P-P-, I

. ZL n P y  12 c~ 2 IBPi l

x s r  1 + n /T 1p - p 7 exp -  5 E  (x f D -  x " D)' (x™  -  *ND)
l—1

iVD —iVDV \-iVD- ■* /+  n (/i™ -3 r™ )'E ,0 Jo + nB.p~pi b ; '  -  xND)

G

n*=1
x exp

wnk Eg + n fcc lBPi

^  “  Xk)' C (X^ ~ Xk)
X i  & C f a

+ nk -  * ? ) ' Z°~'( s ®'1 + nfcC-'B-1)  c ^ B “1 ( r f  -  x°)(3.6.11)

Using the Add/Delete/Swap moves and the Metropolis search, we update 7
with acceptance probability min 

7 is given by :
1, f ( Y \ X , y , w , G )

f { l \ X , y , w , G) , for which, the full conditional of

/  (7IG, w , y, X,  a- 2, c) oc /  (A, y|G, w, 7, ^  2, c) p (y|G). (3.6.12)

For the component weights, we have the Dirichlet (aw + n i , . . . ,  aw + no) pos

terior distribution and a Gibbs sampler drawing samples of w, while with

/  (y|G,tw,7, X ,a J2,c) oc /  (A, y|G, w, 7, a “2, c) , (3.6.13)

and a sub-Gibbs strategy, we sample y on element at a time.
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Following the idea of sampling cjt’s, <t“2’s conditioned on using

a Collapsed-Gibbs strategy, we continue with the sampling of the mean vec

tors. Using Gibbs samplers and Normal distributions as defined in (3.6.4), we 

draw samples of ,pND similar to the heterogeneous case. The single scalar 

c, can now be sampled from a Generalised Inverse Gaussian with parameters 

frc =  (x? -  Mk)' Bpy (xi -  Pk), Pc = OLc -  npy/2 and ac = 2/3c, while the

following Gamma distributions :

\  k=1 Xi£k /
(3.6.14)

for the discriminating variables and

Ga ( a s + ^ ß s  + ^ J 2 ( : 4
\  i = l

N D  _  N D \ '  ( N D  _  N D \
ij Pj ) \X i j  Pj ) (3.6.15)

for the non-discriminating ones, give us the samples for the precisions o} 2.

Examining the Reversible Jump MCMC for the homogeneous case, we go 

back into the case where weights w are the only parameters need updating to 

match the change of dimensions. Letting, with probability bG, the split of a 

component l  into components l\ and i2, and with a u ~  Be(2,2), we have the 

new component weights w'ti = W(U and w\2 = W( (1 — u) respectively. From state 

'ip = (G, w , 7, a j 2,y, c), we accept the jump to state ip' =  (G + 1, w1, 7, a j 2, y \  c) 

with probability min(l,v4), with

f  (X, y'\ui', 7, G + l,c) dG+l
/ ( ^ ¡ / K l i G .c )  bG

B (  2,2)
^  (^um Gcfĉ )

X  uaw-1x (1 -  «)““ 1 x u;“1",

(3.6.16)

where, /  (Jf, y|u/, 7, G + 1, c) and /  (X, y|w, 7, G T 1, c) are obtained from equa

tion (3.6.11). Reversing the ratio of equation (3.6.16), we accept, with probability
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min(l, A), the merge of components t \ , t i  into a component, say l, with weight 

w'e = wq + we2. This time variable u = W(1 /w'e is drawn from a Be (2, 2).

For the birth/death set of moves, starting with the generation of an empty 

component with weight w'G+1 drawn from a Be(l,G),  we rescale the weights of 

the remaining components, i.e. wk = wk(l — w'G+1) and we accept the suggested 

move with probability min(l,A), where A is defined as in equation (3.6.9). For 

the reverse move of the deletion of a component wG+1, we rescale the weights 

according to : w'k = wk/{ 1 —iwg+i ), for k = 1, . . . ,G — 1. Again, ratio A of 

the acceptance probability, min(l,A), for the death move is given by equation 

(3.6.10).

3.6.3 Exam ple

Finishing the non-conjugate formulation of the covariance structure of the model, 

we examine the results from its application on our simulated data set assuming 

heterogeneity. Iterating for a 60000 times with a burn in of 40000 iterations and 

with Pprior = 10, a + b = 2, Gmax = 15 and aw = 1, for the shape hyperparameter 

of the prior on ck s, i.e. <uc, we allow the values 1,2,3 and 4. While, likewise the 

application of Section 3.3.3, the hyperparameters (as,/3s) on the precisions <r“2’s, 
were set equal to (2,1), (3, 2) and (5,4).

Looking at the histograms in Figures 3.6.1, we can see that for all combinations 

of ac and (as,/3s), the number of discriminating variables is moving between 20 

and 30. The posterior probabilities of inclusion for the 50 variables (Figure 3.6.2) 

show clearly, how the non-conjugate case succeeds in identifying the 20 discrimi

nating variables. Finally, Figure 3.6.3 shows that the 4 clusters can be recovered 

regardless the choice of ac and (as,/3s).
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Figure 3.6.1: Non-Conjugate model for the simulated data set: Histograms of the total 
number of discriminating variables, p7, for various combinations of (as,/3s) and ac, 
assuming unequal covariance matrices.
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Figure 3.6.2: Non-Conjugate model for the simulated data set: Marginal Posterior 
Probabilities of the variables included in the model, for various combinations of (as, j3s) 
and ac, assuming unequal covariance matrices.
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Figure 3.6.3: Non-Conjugate model for the simulated data set: Maps of the cluster 
allocations of the n — 15 observations for various combinations of (as,/3s) and ac, 
assuming unequal covariance matrices.

3.7 C onclusions

With regard to the model suggested in chapter 2 and the non-consistency of the re

sults on account of the prior settings of its covariance structure, we introduced the 

idea of reconstructing the covariance structure. Starting with the Cluster Hetero

geneity model, we considered the simplest case of setting the covariance matrices 

proportional to the Identity matrix. Application on our simulated data set showed 

a fair sensitivity on the choice of the hyperparameters under consideration; while 

hyperparameter h could still affect the recovery of the cluster structure of the 

data. Continuing, we built on the CH model and examined the Cluster-Variable 

Heterogeneity model, under which, the covariance matrices are set proportional 

to a diagonal matrix B. With a few hyperparameters to be controlled, we observe 

that h, is again of major importance. Extending this we introduced a prior on 

the mean value m of the Gamma prior applied on the c^’s and eliminated the 

number of hyperparameters to be tuned. Results on different values of h though 

indicated the need of overcoming the strong impact of the hyperparameter. We,

109



therefore, considered the model with an additional prior on h this time. Using a 

Markov chain we allowed sampling of h. Our application on the simulated data 

set encouraged the identification of the 20 discriminating variables and the recov

ery of the 4 clusters, regardless the prior settings. The latter can clearly state 

that we have managed to overcome the model’s sensitivity on the hyperparameter 

h. Finally, we have developed the Non-Conjugate model. Using non-conjugate 

priors on the mean vectors and the covariance matrices, we managed to tackle 

any sensitivity previously imposed by the hyperparameters’ settings, achieving 

satisfactory results on the variable selection and clustering tasks. We understand 

that both the CVH model with a prior on h as well as the Non-Conjugate model 

consist two robust models.

To conclude we give details on the computational time and acceptance rates 

of the models applied. Although, one would think that the Non-Conjugate model 

would impose an additional computational cost, it is the CVH model with prior 

on h and m (CVIIhm) model that does so. Nonetheless, the additional time is not 

dramatically larger. More specifically, on a two quad core server with 2.53Ghz 

CPUs, the CPU time for the CH, CVH, CVHm and Non-Conjugate models was 

3 hours, while for the application of the CVHhm model we needed 3 hours and 

30 minutes. Finally, in Table 3 we give the average acceptance rates for the split, 

merge, birth and death moves of the RJ sampler for all five models applied.

CH CVH C V  H rn C V H h m NC
h  =  100 Si

 ll o o o h  =  100 h  =  1000 (3, 200) (3,400)
Split 0.2627 0.6875 0.8244 0.5239 0.858 0.3613 0.3913 0.111

Merge 0.2412 0.085 0.0605 0.1621 0.0403 0.2232 0.2319 0.2294
Birth 0.3647 0.5776 0.7064 0.5246 0.7259 0.4872 0.49 0.4363
Death 0.7946 0.7279 0.5563 0.7490 0.4843 0.6979 0.7447 0.7144

Table 3: Acceptance rates for the split, merge, birth and death moves of the RJ sampler 
on the application of the CH, CVH, CVHm, CVHhm and Non-Conjugate models on 
the simulated data set.
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Chapter 4

Applications To Real Data Sets

4.1 P ro logue

In this final chapter we examine and compare the performance of the models with 

the different covariance structures described in chapter 3 on three real data sets. 

We begin with two well-known and widely used data sets, the Iris data and the 

Crabs, and we conclude with a data set of the special feature of a vast number of 

variables with a substantially smaller sample size, the arthritis data set.

4.2 Iris  D a ta

With measurements on the sepal length, sepal width, petal length and petal width 

(cm), where both sepals and petals are modified leaves that form the perianth of 

the flower, we have the 150 observations of the Iris data allocated into three 

groups, the Iris setosa, Iris versicolor and Iris virginica (Anderson, 1935). Each 

of the groups contains 50 observations, however, it is known that Iris versicolor 

and Iris virginica overlap, while the information provided is not enough for one to
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recover the three categories as these have been formed using additional covariates 

not included in the current data set (Anderson, 1936).

Indeed, this latter fact has characterised the results of the application of the 

models described in chapters 2 and 3. In the graphs that follow we will see the 

suggested grouping and the variables selected, first from the model of chapter 2 

for the two different computational approaches of sections 2.4 and 2.7, followed by 

the results for the various covariance structures of chapter 3. In all cases, under 

the assumption of unequal covariance structures, we used a starting point of 3 

groups, with the cluster allocations resembling the true cluster structure of the 

Iris data, while all four covariates are being included in the model. We ran the 

algorithms for 30000 iterations with a burn-in of 10000.

Starting from the application of the model under chapter 2, we need to give 

a few details concerning the values of the various hyperparameters. With <5 = 3 

and au = 2, we allowed a maximum number of 10 clusters (Gmax = 10), using 

a prior Dirichlet with parameter aw = 1. For the variable selection task on the 

other hand, we chose a and b such that a + b = 2 with the number of selected 

variables being a priori equal to 2. Under these settings we then examined the 

sensitivity of the model on the choice of h and c - recall here that we let hi = h0 

and c = d and therefore we refer to those hyperparameters under a common h 

and c respectively.

Although the values of h and c played a crucial part in the application of 

the two approaches on the simulated data set (sections 2.5 and 2.7), we see here 

that the different values for h and c (h = 10,100,1000 and c = 0.01,0.03,0.09), 

alter neither the resulting clustering nor the choice of discriminating variables. 

However, we shall not consider this event as a success, as the results are rather 

disappointing. In Figures 4.2.1 and 4.2.4, where we can see the total number 

of discriminating variables, we observe that under all cases all four variables are
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chosen as discriminating and included in the model. Figures 4.2.2 and 4.2.5, indi

cating the posterior probabilities of inclusion for all variables of the iris data set, 

support such a choice with all four variables having high probability of inclusion. 

However, the clustering maps in Figures 4.2.3 and 4.2.6 show that an ambiguity 

characterises the clustering of the observations, as no concrete clusters can be 

identified.

More specifically, the algorithms fail to see clusters in our data, forming one 

single cluster in which all 150 observations are assigned to with moderate prob

ability (gray colour). We should recall here that the clustering map illustrates 

the posterior probabilities of j/j = yj)i ) j  = 1 ,...,n. This time, though, we use a 

colouring scale such that white corresponds to probability 0 and black indicates 

probability 1.

c = 0.01 c  = 0.03 c = 0.09

Figure 4.2.1: Iris data: Histograms of the total number of discriminating variables, p7, 
for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance matrices, 
when aw = 1 and au = 6, for the model of chapter 2.
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Figure 4.2.2: Iris data: Marginal Posterior Probabilities of the variables included in 
the model, for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance 
matrices, when aw = 1 and au = 6, for the model of chapter 2.

h = 10

h = 100

h = 1 0 3

c  = 0 .0 1 c  = 0 .0 3 c  = 0 .0 9

50 50 5 0

1 0 0 10 0 10 0

1 5 0 15 0 1 5 0
5 0  1 0 0  1 5 0  5 0  10 0  1 5 0  5 0  1 0 0  15 0

50 50 50

1 0 0 100 1 0 0

15 0 1 5 0 1 5 0
5 0  1 0 0  1 5 0  5 0  1 0 0  1 5 0  5 0  1 0 0  15 0

50 50 5 0

1 0 0 100 1 0 0

15 0 15 0 15 0
5 0  1 0 0  1 5 0  5 0  1 0 0  1 5 0  5 0  1 0 0  15 0

Figure 4.2.3: Iris data: Maps of the cluster allocations of the n = 150 observations for 
h = 10,100,1000, c = 0.01,0.03, 0.09 and assuming unequal covariance matrices, when 
aw = 1 and au = 6, for the model of chapter 2.
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Figure 4.2.4: Iris data: Histograms of the total number of discriminating variables, p7, 
for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance matrices and 
using split/merge move of the SAMS sampler.

2 3
v a r i a b l e

h  =  1 0  ^

Figure 4.2.5: Iris data: Marginal Posterior Probabilities of the variables included in 
the model, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance 
matrices and using split/merge move of the SAMS sampler.
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c = 0.01 c = 0.03 c = 0.09

50 50 50

100 100 100

150 150 150
50 100 150 50 100 150 50 100 150

50 50 50

100 100 100

150 150 150
50 100 150 50 100 150 50 100 150

50 50 50

100 100 100

150 150 150
50 100 150 50 100 150 50 100 150

Figure 4.2.6: Iris data: Maps of the cluster allocations of the n = 150 observations for 
h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance matrices and 
using split/merge move of the SAMS sampler.

Moving to the Cluster Heterogeneity model of chapter 3 and using the same 

setting for a, b^pr^, Gmax, au and aw, we examined the behaviour of the model 

for the values of h = 100 and h =  1000. We considered the hyperparameters of 

the Inverse Gamma distributions on the scalars c and d all equal and tried the 

values 1,2 and 1000.

Once again, looking at the total number of selected variables and their pos

terior probabilities (Figure 4.2.7 and 4.2.8), we see that all four variables are 

considered as discriminating, with the values of h, a c, (3C, ad and ¡3d not affecting 

the selection of variables. However, in the clustering maps of Figure 4.2.9, the 

effect of a c,/3c,ad and (3d is clearly illustrated. While values of a c,/3c,ad and (3d 

being either 2 or 1000 comply with the consideration of a single cluster, we see 

that for a c = f3c = ad = (3d = 1 the algorithm picks up some sort of clustering. 

Clearly, for both cases of h = 100 and h = 1000 the resulting clusters are similar,
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Figure 4.2.7: Cluster Heterogeneity for the Iris data set: Histograms of the total 
number of discriminating variables, p7, assuming unequal covariance matrices, for 
h = 10,100,1000 and ac = /3C = = [i,i with values 1,2, and 1000.

h =100 h = 1000

ct = ß = 103 
c  o o

c d =  p d =  1 0 3

variable

Figure 4.2.8: Cluster Heterogeneity for the Iris data set: Marginal Posterior Probabil
ities of the variables included in the model, assuming unequal covariance matrices, for 
h = 10,100,1000 and ac = /3C = ad = ¡3d with values 1, 2, and 1000.
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with the Iris setosa category being fully recovered. While the first 50 observations 

are correctly assigned to the same cluster, we can also see that the last 50 obser

vations, originally allocated to Iris virginica, successfully form a separate cluster 

as well, with only a few observations being missgrouped and actually allocated 

together with the observations of the first cluster. However, the cluster alloca

tions of the remaining observations have an interesting turnout; part of them are 

assigned to the Iris setosa group, while the rest comply with the observations of 

Iris virginica.

Figure 4.2.9: Cluster Heterogeneity for the Iris data set: Maps of the cluster allocations 
of the n = 150 observations for h = 10,100,1000 and ac = /3C — ad — fid equal to 1,2, 
and 1000, under the assumption of unequal covariance matrices.

In other words, we can tell that under the assumption of a simple covariance 

structure, CH model, the algorithm identifies two clusters. That is, the Iris setosa 

and Iris virginica, with the observations originally allocated in Iris versicolor being 

allocated to either of the two.

Coming to the Cluster - Variable Heterogeneity model, using a hyperprior on

m, we try the values ac = (2, 3,4) and the pairs (as, (3S) = [(2,1), (3, 2), (5,4)], for
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both the cases of h = 100 and h = 1000. The number of discriminating variables, 

together with their posterior probabilities of inclusion and the suggested cluster 

structure of our data for the case of h =  100 in Figures 4.2.10, 4.2.11 and 4.2.12, 

indicate that under all cases we take similar results for both the variable selection 

and clustering tasks. Interestingly, a value of h = 1000, produces similar results. 

We give the corresponding Figures (Figures C.0.13 - C.0.13) in Appendix C.

With all variables being selected to be included in the model with high proba

bility (Figure 4.2.11), we see that the two clusters Iris versicolor and Iris virginica 

overlap as expected, but this time, unlike the case of the CH model, they are well 

separated from the first group, which, on the other hand, is not fully recovered. 

With the colouring map indicating a split of the Iris setosa into further smaller 

groups, taking a closer look, we could tell that if we reorder the first 50 observa

tions we could clearly see the formulation of only two smaller groups.

Figure 4.2.10: Cluster-Variable Heterogeneity with a prior on to for the Iris data set: 
Histograms of the total number of discriminating variables, p7, for various combinations 
of (qs,/3s) and ac, assuming heterogeneity and setting h — 100.
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Figure 4.2.11: Cluster-Variable Heterogeneity with a prior on m for the Iris data set: 
Marginal Posterior Probabilities of the variables included in the model, for various 
combinations of (as,/3s) and ac, assuming heterogeneity and setting ^ = 100.
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Figure 4.2.12: Cluster-Variable Heterogeneity with a prior on m for the Iris data set: 
Maps of the cluster allocations of the n = 150 observations for various combinations of 
(ocs,f}s) and ac assuming heterogeneity and setting h = 100.
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Although the model does not manage to identify the Iris setosa species as 

a single cluster, but rather splits it into two smaller ones, the robustness of the 

model is rather encouraging, indicating that there is no need for additional care 

on the choice of any of the hyperparameters, not even the once crucial h.

Even though h does not seem to have an impact on the results so far, it 

would be interesting to examine the case of setting a hyperprior on h, allowing 

inference on h. Trying the same combinations of ac and (as,/3s), we used an 

Inverse Gamma prior on h with parameters (3,200) and (3,400). Besides the 

number of discriminating variables with the probabilities of inclusion for the four 

variables, as well as the cluster allocations, we estimated the value of h. With 

parameters (3,200) and (3,400) giving similar results, we provide Figures for the 

case of an Inverse Gamma with (3,200) (Figures 4.2.13 - 4.2.16). Figures for the 

case o i h ~ I G  (3, 400) are given in Appendix C (Figures C.0.16 - C.0.19).

Figure 4.2.13: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Histograms of the total number of discriminating variables, p7, for various combi
nations of (as,/3s) and ac, under the case of h ~ /G(3,200), with unequal covariance 
matrices.
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Figure 4.2.14: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Marginal Posterior Probabilities of the variables included in the model, for vari
ous combinations of (as,/3s) and ac, under the case of h ~ /G(3,200), with unequal 
covariance matrices.

Figure 4.2.15: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Maps of the cluster allocations of the n = 150 observations for various combinations 
of (as, fis) and ac, under the case of h ~ IG (3,200), with unequal covariance matrices.

1 2 2



(2,1) ( 3 , 2 ) ( 5 , 4 )

Figure 4.2.16: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Posterior distribution of h, for various combinations of (as,/3s) and ac, under the 
case of h ~ IG (3, 200), with unequal covariance matrices.

It is very interesting to observe that, for all cases we experimented on, the 

estimated value for h is roughly 20, regardless the settings of its hyperprior. But 

most importantly, together with the full set of variables being identified as dis

criminating, h = 20 gives cluster allocations that resemble the cluster matrices 

for the CVH model with a prior on m (Figure 4.2.12), suggesting the split of the 

first group (Iris setosa) into two smaller ones and finding that Iris versicolor and 

Iris virginica overlap in the exact same way as under the consideration of a preset 

value of h to 100 and 1000. That is a further indication that for the Iris data the 

hyperparameter h is not of great importance.

Finally, we examine the case of non-conjugacy. Setting ac — 2,3 and 4, com

bined with the values (as,(3s) =  (2,1), (3, 2) and (5,4), we observe that for all 

cases, except for ac — 4 with (aS) /3S) = (2,1) and (3, 2), all variables are included 

in the model (Figure 4.2.17) with high probabilities of inclusion (see Figure 4.2.18).
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Figure 4.2.17: Non-Conjugate model for the Iris data set: Histograms of the total 
number of discriminating variables, p7, for various combinations of (as,/3s) and ac, 
assuming unequal covariance matrices.
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Figure 4.2.18: Non-Conjugate model for the Iris data set: Marginal Posterior Probabil
ities of the variables included in the model, for various combinations of (a5,/5s) and ac, 
assuming unequal covariance matrices.
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Figure 4.2.19: Non-Conjugate model for the Iris data set: Maps of the cluster allocations 
of the n = 150 observations for various combinations of (aa,/3s) and ac, assuming 
unequal covariance matrices.

The corresponding suggested clusters (Figure 4.2.19) resemble the clustering struc

ture proposed by the methods examined so far, splitting the Iris setosa into two 

smaller groups, with the Iris versicolor and Iris virginica groups overlapping. 

However, looking at the two exceptional cases of ac = 4 with (as,/3s) = (2,1) 

and (3, 2), while 3 out of 4 variables are selected, with the posterior probabilities 

of Figure 4.2.18 indicating the second variable as non-discriminating, we observe 

that the Iris setosa category is fully recovered.

On summarising, for all models applied on the Iris data set we had difficulties 

in identifying the 3 species of flowers. More specifically, the problem is focused 

on the observations originally allocated to the Iris versicolor and the Iris virginica 

groups. Under all cases observations from the versicolor group are being allo

cated to the virginica one and vice versa. An explanation of such misclassification 

could be a possible indication of overlapping groups. Indeed, performing a princi

pal components analysis and plotting the first two principal components (Figure
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4.2.20) one can observe such a phenomenon. The Iris setosa group is well separated 

from the other observations, however, observations from versicolor and virginica 

are very close together, indicating that the two groups clearly overlap. We there

fore understand that it is not unlikely that cluster analysis can have problems in 

distinguishing the two groups, a remark present throughout our applications.
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Figure 4.2.20: Plot of the two first principal components of the Iris data.

4.3 C rabs

The Crabs data set consists of 5 variables measured on 200 observations that form 

4 groups. The variables refer to the width of frontal lip, rear width, length along 

the midline of the carapace, maximum width of the carapace and body length (all 

in mm), while there are two species of crabs, the orange and the blue. Considering 

the female and male subcategories, we finally have four groups, the orange female, 

orange male, blue female and blue male, with 50 observations in each of them.

However, the five variables of the crabs data set are highly correlated (see

126



Figure 4.3.1) and thus working in the principal components’ space instead has 

been commonly preferred [Yau and Holmes (2011), Raftery and Dean (2006)]. 

We therefore performed a principal components analysis on the standardised data 

and applied the variables selection and clustering procedure on the principal com

ponents’ space, allowing the algorithm to pick the most important principal com

ponents. We chose 10 as the maximum number of clusters and initiated the 

algorithm considering all principal components included in the model, when the 

original formulation of groups has been used as the starting point for the cluster 

allocation vector. We finally allowed au = 2 and aw = 1 and run 30000 iterations 

with 10000 as the burn in period, assuming unequal covariance matrices along the 

groups.

Looking at the pairs plot of the five principal components in Figure 4.3.2, 

we can see the four groups being clearly formed on the space of the second and 

third components. However, in the figures that follow we will see that for most of 

the cases we tried, all principal components are selected from the various models 

applied, with only a few cases selecting a smaller number of components, which 

on the other hand do not provide a satisfactory clustering. But let’s examine each 

case separately.

Also, looking briefly at the results from the application of the two compu

tational approaches of the model in chapter 2 and the histograms for the total 

number of discriminating variables included in the model (Figures 4.3.3, 4.3.6), 

we see that for both approaches the algorithm oscillates between 3 and 5 prin

cipal components. The clustering maps for the two approaches in Figures 4.3.5 

and 4.3.8 respectively, under most cases, suggest a single cluster. Despite the two 

exceptions of c = 0.09 with h =  10 and h = 100, when using the SAMS sampler 

(section 2.7), the four groups of the crabs data cannot be identified.
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Figure 4.3.1: Pairs Plot of the five variables of the Crabs data set.
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Figure 4.3.2: Pairs Plot for the 5 principal components of the standardised Crabs data 
set.
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Figure 4.3.3: Principal components of Crabs: Histograms of the total number of discrim
inating variables, p7, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal 
covariance matrices.
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Figure 4.3.4: Principal components of Crabs: Marginal Posterior Probabilities of the 
variables included in the model, for h — 10,100,1000, c = 0.01,0.03,0.09 and assuming 
unequal covariance matrices.
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Figure 4.3.5: Principal components of Crabs: Maps of the cluster allocations of the 
n = 200 observations for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal 
covariance matrices.

h -  1 °  1 “ o .5

1 2 3 4 5

Figure 4.3.6: Principal components of Crabs: Histograms of the total number of discrim
inating variables, p7, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal 
covariance matrices and using split/merge move of the SAMS sampler.
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c = 0.01 c = 0.03 c = 0.09

Figure 4.3.7: Principal components of Crabs: Marginal Posterior Probabilities of the 
variables included in the model, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming 
unequal covariance matrices and using split/merge move of the SAMS sampler.

Figure 4.3.8: Principal components of Crabs: Maps of the cluster allocations of the 
n = 200 observations for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal 
covariance matrices and using split/merge move of the SAMS sampler.
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In the case of considering the CH model, the number of selected principal 

components in Figure 4.3.9 varies. According to the posterior probabilities of 

inclusion in Figure 4.3.10 though, we observe that the first principal is always 

included in the model. The clustering maps of Figure 4.3.11 on the other hand, 

do not indicate any particular cluster structure of the data. Only in the case 

of selecting 4 principal components, and that is for h = 100 and ac, (3c,aid, Pd = 

2, the algorithm identifies two clusters, which with a few exceptions, e.g. the 

50ttl, 101st, 150i/l etc observations, we could say that these are the wider groups 

of orange and blue crabs. In other words, we could tell that for this specific 

case, although the model manages to identify the categories of sex, it fails in 

distinguishing the colour groups.
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Figure 4.3.9: Cluster Heterogeneity for the principal components of the Crabs data 
set: Histograms of the total number of discriminating variables, p7, assuming unequal 
covariance matrices, for h = 10,100,1000 and ac = /3C =  = [3d with values 1,2, and
1000.
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Figure 4.3.10: Cluster Heterogeneity for the principal components of the Crabs data 
set: Marginal Posterior Probabilities of the variables included in the model, assuming 
unequal covariance matrices, for h = 10,100,1000 and ac = (3C = otd = Pd with values 
1,2, and 1000.

Figure 4.3.11: Cluster Heterogeneity for the Principal Components of the Crabs data 
set: Maps of the cluster allocations of the n = 200 observations for h = 10,100,1000 and 
olc — f3c = ctd = Pd equal to 1,2, and 1000, under the assumption of unequal covariance 
matrices.
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Further, applying the CVH model having a prior on m, we tried different com

binations for the shape parameter ac and the pair (as, (3S), trying two values for h: 

100 and a 1000. In Figure 4.3.12 and for h = 100, we observe that the number of 

selected principal components once again varies. Assuming the case of h = 1000 

on the contrary (Figure 4.3.13), most combinations suggest the inclusion of all five 

principal components in the model. The suggested groupings though, show a lot 

of similarities regardless the choice of h, or ac, (as, (3S), with an interesting feature 

capturing ones attention (Figures 4.3.16, 4.3.17). We observe that although the 

pattern of four groups can be identified, the few cases of misgrouped observations 

correspond to the merging of observations from the same colour group but differ

ent sex. In particular, observations of the second group (orange male), tend to be 

merged with the observations of the fourth group (orange female).

Figure 4.3.12: Cluster-Variable Heterogeneity with a prior on m for the principal compo
nents of the Crabs data set: Histograms of the total number of discriminating variables, 
p7, for various combinations of (as,/3s) and ac, assuming heterogeneity and setting 
h = 100.
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Figure 4.3.13: Cluster-Variable Heterogeneity with a prior on m for the principal compo
nents of the Crabs data set: Histograms of the total number of discriminating variables, 
p7, for various combinations of (as, (is) and ac, assuming heterogeneity and setting 
h = 1000.
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Figure 4.3.14: Cluster-Variable Heterogeneity with a prior on m for the principal com
ponents of the Crabs data set: Marginal Posterior Probabilities of the variables included 
in the model, for various combinations of (as,/3s) and ac, assuming heterogeneity and 
setting h = 100.
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Figure 4.3.15: Cluster-Variable Heterogeneity with a prior on m for the principal com
ponents of the Crabs data set: Marginal Posterior Probabilities of the variables included 
in the model, for various combinations of (aa,/3a) and ac, assuming heterogeneity and 
setting h = 1000.

Figure 4.3.16: Cluster-Variable Heterogeneity with a prior on m for the principal compo
nents of the Crabs data set: Maps of the cluster allocations of the n = 200 observations 
for various combinations of (as,/3s) and ac assuming heterogeneity and setting h = 100.
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Figure 4.3.17: Cluster-Variable Heterogeneity with a prior on m for the principal compo
nents of the Crabs data set: Maps of the cluster allocations of the n = 150 observations 
for various combinations of (as, ¡3S) and ac assuming heterogeneity and setting h = 1000.

Considering now the CVH model with a prior on h as well as on m and trying 

the pairs (3,200) and (3,400) as the hyperparameters of the IG prior on h, we 

observe that the results do not differ for the two setting. Therefore, results for the 

case of h ~  IG (3,400) can be found in the Appendix C (Figures C.0.20 - C.0.23).

We observe once again, that for most combinations of ac and (as,f3s), all 

five principal components are selected with high probability of inclusion (Figures 

4.3.18 and 4.3.19), while the resulting groupings (Figure 4.3.20) resemble those 

of the application of the CVH model with four clusters suggested and only a few 

observations misgrouped.

We should also note here that from the posterior distributions of h results that 

the estimated value of h, for all the cases we have tried, moves around the value 

of 10 (Figures 4.3.21).
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Figure 4.3.18: Cluster-Variable Heterogeneity with priors on m  and h for the principal 
component of the Crabs data set: Histograms of the total number of discriminating vari
ables, p7, for various combinations of (aa,/3s) and a c, under the case of h ~  IG (3, 200), 
with unequal covariance matrices.
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Figure 4.3.19: Cluster-Variable Heterogeneity with priors on m  and h for the principal 
components of the Crabs data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (ots,f3s) and ac, under the case of 
h ~  IG  (3,200), with unequal covariance matrices.
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Figure 4.3.21: Cluster-Variable Heterogeneity with priors on m and h for the principal 
components of the Crabs data set: Posterior distribution of h, for various combinations 
of (as,/3s) and ac, under the case of h ~ /G(3,200), with unequal covariance matrices.

139



Finally, we have the results from the application of the non-conjugate case. For 

the different combinations of ac and (ots,/3s), we pick out three interesting cases. 

These are the combination of ac — 2 with (as, /3S) = (3, 2) and (ccs, (3S) = (5,4) and 

that of ac = 3 with (as, ¡3S) = (5,4). Examining the histograms for the number of 

selected principal components together with the probabilities of inclusion for each 

of the components (Figures 4.3.22 and 4.3.23), we note that it is under these cases 

that the non-conjugate model does not identify the full set of the five principal 

components as discriminating. Instead, setting (as,/3s) = (5,4) and ac = 2 or 

ac = 3, the second principal component is excluded from the model, resulting to 

crabs being grouped with respect to their colour (that is orange and blue crabs) 

(Figure 4.3.24). Setting (as,/3s) = (5,4) with ac = 2 on the other hand, suggests 

excluding the third principal component and leads to grouping observations of the 

same sex together.

Figure 4.3.22: Non-Conjugate model for the principal components of the Crabs data set: 
Histograms of the total number of discriminating variables, p7, for various combinations 
of (as,f3S) and ac, assuming unequal covariance matrices.
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Figure 4.3.24: Non-Conjugate model for the principal components of the Crabs data 
set: Maps of the cluster allocations of the n = 15 observations for various combinations 
of (as,/3s) and ac, assuming unequal covariance matrices.
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While all remaining cases favour the inclusion of all components in the analysis 

suggesting a reasonable structure of four clusters with a few missgrouped obser

vations, we observe that ac = 3 with (as,/3s) = (2,1) fully recovers the first and 

third clusters. Interestingly, the latter is with regard to the exclusion of the first 

principal component from the model.

To summarise, performing the models with the four different covariance struc

tures presented in chapter 3 on the crabs data set and using the principal compo

nents obtained from the principal component analysis on the standardised data, 

we can first observe that the cluster structure of the crabs can be extracted from 

all methods except for the case of considering a covariance structure of the sim

plest form (CH model). The remaining three models, however, manage to identify 

the four clusters with just a few misgrouped observations, with most cases indicat

ing that all five components are important for the analysis. Finally, there was no 

evidence of significant alterations on the results when under the consideration of 

different combinations of the various hyperparameters, i.e. ac,a s,/3s, h etc, which 

appoints the robustness of the three models.

4.4 A rth r it is  d a ta  set

We will now apply the CVH method with priors on both h and m, as well as the 

Non-Conjugate model, on a real data set with the special characteristic of a limited 

sample size and a large number of variables, the arthritis data set. Arthritis is a 

joint disease causing degeneration of the human joints. Over 100 different forms 

of arthritis have been diagnosed depending on the aetiology and the pathogenesis 

of the disease. Among others, rheumatoid arthritis (RA) and osteoarthritis (OA) 

are two of the most common types of arthritis. Both types result in the erosion of 

two opposing bones, however, rheumatoid arthritis is an autoimmune condition
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that causes the body to attack its own soft-tissues and joints, while osteoarthritis 

is a condition usually caused by factors such as age, injury, and daily wear. The 

arthritis data set studies the discrimination between those two types of arthritis 

(RA and OA). To do so 755 genes have been measured on a total sample of 31 

patients, 24 of which suffering from RA and the remaining 7 from OA (Sha et al., 

2003).

Applying both the CVH method with priors on h, m and the Non-Conjugate 

model, the algorithms had difficulties in identifying the discriminating variables, 

with the proposed number of variables included in the model, p7, increasing along 

the chain. Convergence could not be achieved and therefore inference could not 

been drawn. Certainly, from the total number of 755 genes, the set of the dis

criminating ones is expected to be confined to only a small number of genes. As 

a result, we understand that the signal-to-noise ratio is particularly small. There

fore, along with the very few observation of the data set providing only little 

information, one could argue that the joint posterior of the non-discriminating 

genes obscures the signal of the discriminating ones. Under such circumstances, 

complications on the models applied for the entire set of the arthritis data are 

not surprising at all. Being interested in overcoming such abnormalities, we con

sidered working with a smaller set of genes. On that direction, we looked at 

the work of Lanmisos et al. (2012). With regard to the identification of dis

criminating variables, Lamnisos et al. (2012) examine the prior choice of the 

coefficients of the probit regression model using a cross-validation criterion for 

the selection of the predictive covariates. Motivated by their results on their 

application on the arthritis data set and using the variables suggested for the 

case of c — 1 (Genes’ ID : 20,83,145,170,225,258,290,324,332,395,473,498, 

665,707,728,740,742), we applied the two models on a cut-down version of the 

arthritis data set, the results of which we give in the following figures. We used a 

chain of 100000 iterations with a burn-in period of 20000 iterations and thinning
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every 5 iterations. Using Gmax = 5, ppri0r with a + b = 2, and au = 2, aw — 1, we 

investigated the cases of ac — 2, 3,4 and (as,(3s) =  (2,1), (3, 2), (5,4).

Starting with the CVH model with priors on h and m, we tried an IG prior on h 

with parameters (3, 200) and (3,400). Both cases (Figures 4.4.1 - 4.4.3 and C.0.24 - 

C.0.26 respectively) gave us similar results. From the histograms for the number of 

total number of selected variables p7 (Figures 4.4.1 and C.0.24 ) we can see that for 

all cases, all variables are included in the model with high probabilities of inclusion 

(Figures 4.4.2 and C.0.25). As far as the suggested clustering is concerned, looking 

at the clustering maps in Figures 4.4.3 and C.0.26 we observe that a total number 

of three clusters is suggested throughout all different combinations. While patients 

1, 3,4, 5 and 7 form a single group, the remaining patients are split in two further 

groups.

( 3 , 2 ) ( 5 , 4 )

10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18

Figure 4.4.1: Cluster-Variable Heterogeneity with priors on m and h for the set of 17 
variables of the arthritis data set: Histograms of the total number of discriminating vari
ables, pj, for various combinations of (as, /3S) and ac, under the case of h ~ IG (3,200), 
with unequal covariance matrices.
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( 2 , 1 ) ( 3 , 2 ) ( 5 , 4 )

Figure 4.4.2: Cluster-Variable Heterogeneity with priors on m and h for the set of 
17 variables of the arthritis data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (as,/3s) and ac, under the case of 
h ~ IG (3, 200), with unequal covariance matrices.

Figure 4.4.3: Cluster-Variable Heterogeneity with priors on m and h for the set of 17 
variables of the arthritis data set: Maps of the cluster allocations of the n = 31 obser
vations for various combinations of (as,/3s) and ac, under the case of h ~ IG(3,200), 
with unequal covariance matrices.
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Figure 4.4.4: Cluster-Variable Heterogeneity with priors on m and h for the set of 17 
variables of the arthritis data set: Posterior distribution of h, for various combinations 
of (as, ps) and ac, under the case of h ~ IG (3,200), with unequal covariance matrices.

Knowing that our observations form two clusters (rheumatoid arthritis and 

osteoarthritis), with the first 7 observations forming one group of patients and the 

remaining 24 the second one, one could assume that the third group of patients is 

formed based on an additional common characteristic, e.g. sex or age group; such 

information, however, is unfortunately not available.

Interestingly, under the Non-Conjugate case, the resulting histograms of the 

total number of discriminating variables and the plots with the inclusion prob

abilities in Figures 4.4.5 and 4.4.6 respectively, suggest the inclusion of all 17 

variables used in the analysis. In the meantime, the proposed grouping extracted 

from the clustering maps of Figure 4.4.7 resembles the formulation of the 3 groups 

as suggested by the CVH model.
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Figure 4.4.5: Non-Conjugate model for the set of 17 variables of the arthritis data set: 
Histograms of the total number of discriminating variables, p7, for various combinations 
of (aa, 0S) and cec, assuming unequal covariance matrices.
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Figure 4.4.6: Non-Conjugate model for the set of 17 variables of the arthritis data 
set: Marginal Posterior Probabilities of the variables included in the model, for various 
combinations of (as,/3s) and ac, assuming unequal covariance matrices.
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Figure 4.4.7: Non-Conjugate model for the set of 17 variables of the arthritis data set: 
Maps of the cluster allocations of the n — 31 observations for various combinations of 
(as,/3s) and ac, assuming unequal covariance matrices.

Finally, once, as stated at the beginning of this section, we do not use the 

original set of the 755 genes, we would like to examine the behaviour of our models 

for the set of the 17 selected variables augmented by 10 ’’junk“ variables. Adding 

“junk” information in our data set, we are interested in investigating whether 

the developed models can identify those 10 variables as non-discriminating and 

exclude them from the analysis. Such exclusion would indicate that our models 

work on the right path. Therefore, we added 10 variables randomly sampled 

from a multivariate Normal with mean 0 and covariance matrix I and applied 

the two models (CVH with priors on h,,m, and Non-Conjugate) with the same 

hyperparameters’ settings. Looking at the histograms and the posterior inclusion 

probabilities of the now 27 variables for the CVH model (Figures 4.4.8, 4.4.9 and 

4.4.12, 4.4.9 respectively), under all cases, the 10 junk variables are indicated as 

non-important. It is interesting though, that under the case of (as,/3s) = (2,1) 

and regardless h, the variables selected are only 10. Also, under all cases, genes
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145,170,225,258,290,324,473,498,728 and 740 are the ones always having high 

probability of inclusion.

(2,1) ( 3 ,2 ) ( 5 ,4 )

8 10 12 14 16 18 8 10 12 14 16 18

8 10 12 14 16 18 8 10 12 14 16 18

Figure 4.4.8: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Histograms of the total number of discriminating vari
ables, p7, for various combinations of (as, /3S) and ac, under the case of h ~ IG (3,200), 
with unequal covariance matrices.

Coming to the application of the Non-Conjugate model, we can now see that 

the number of selected variables indicated in Figure 4.4.16 varies a lot. However, 

looking at the probabilities of inclusion (Figure 4.4.17), we observe that alike 

the CVH model genes 145,170, 225, 258, 290,324,473, 498, 728 and 740 are always 

considered within the discriminating ones.

Although the selected discriminating genes may vary throughout the two mod

els and for the various different combinations of ac, (as. ¡3S), as well as the hyper

parameters (ah, Ph), the suggested clustering is always the same. Throughout the 

clustering maps of the CVH model in Figures 4.4.10 and 4.4.14 and those for the 

Non-Conjugate model (Figure 4.4.18), we see that all cases suggest 3 clusters that 

actually resemble the groups proposed when considering the set of 17 genes.
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Figure 4.4.9: Cluster-Variable Heterogeneity with priors on m and h for the set of 
27 variables of the arthritis data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (as,/3a) and ac, under the case of 
h ~ IG (3, 200), with unequal covariance matrices.

Figure 4.4.10: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Maps of the cluster allocations of the n = 31 obser
vations for various combinations of (as,/3s) and ac, under the case of h ~ IG (3,200), 
with unequal covariance matrices.
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Figure 4.4.11: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Posterior distribution of h, for various combinations 
of (as, (3S) and ac, under the case of h ~ IG (3,200), with unequal covariance matrices.
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Figure 4.4.12: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Histograms of the total number of discriminating vari
ables, p7, for various combinations of (as,/3s) and ac, under the case of h ~ IG (3,400), 
with unequal covariance matrices.
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Figure 4.4.13: Cluster-Variable Heterogeneity with priors on m and h for the set of 
27 variables of the arthritis data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (as,/3s) and ac, under the case of 
h ~ IG (3,400), with unequal covariance matrices.

Figure 4.4.14: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Maps of the cluster allocations of the n = 31 obser
vations for various combinations of (as,f3s) and ac, under the case of h ~ /G(3,400), 
with unequal covariance matrices.
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Figure 4.4.15: Cluster-Variable Heterogeneity with priors on m and h for the set of 27 
variables of the arthritis data set: Posterior distribution of h, for various combinations 
of (aSl/3s) and ac, under the case of h ~ IG (3,400), with unequal covariance matrices.
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Figure 4.4.16: Non-Conjugate model for the set of 27 variables of the arthritis data set: 
Histograms of the total number of discriminating variables, p7, for various combinations 
of (as,/3s) and ac, assuming unequal covariance matrices.

153



Figure 4.4.17: Non-Conjugate model for the set of 27 variables of the arthritis data 
set: Marginal Posterior Probabilities of the variables included in the model, for various 
combinations of (as,/3s) and ac, assuming unequal covariance matrices.

Figure 4.4.18: Non-Conjugate model for the set of 27 variables of the arthritis data set: 
Maps of the cluster allocations of the n = 31 observations for various combinations of 
(as,/3s) and ac, assuming unequal covariance matrices.
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4.5 Conclusions

Wo presented applications of the different models introduced in this thesis on 

three sets of real data; the iris, the crabs and the arthritis data sets. We shall 

now conclude, summarising and comparing our findings, in view of a complete 

and clear understanding of the methodology developed in this thesis.

Starting with the Iris data set and with known the problem of the two overlap

ping Iris versicolor and Iris virginica species, we met a difficulty in the recovery of 

the cluster structure under the two computational methods suggested in chapter 

2. With the algorithms having problems in identifying any sort of cluster struc

ture, we moved on the application of the CH model with equally discouraging 

results for most of the cases under examination. The CVH with a prior on m, 

CVH with priors on m, h, and the Non-Conjugate models though, indicated a con

siderable improvement on the clustering procedure. For all but two cases under 

the Non-Conjugate model, results suggested the inclusion of all four variables and 

gave resembling cluster structures that met our expectations of a few missgrouped 

observations. For the two exceptional cases of the Non-Conjugate model however, 

with only three variables being included in the model, the algorithm manages to 

fully recover the Iris setosa group, with the problem of overlapped Iris versicolor 

and Iris virginica still present.

On the principal components of the crabs data set, methods of chapter 2 fail in 

the suggestion of a selected number of components, while the four clusters cannot 

be identified. Suggested cluster structures of the CH model are also disappointing. 

Once again though, models : CVH with a prior on m, CVH with priors on m, h, 

as well as the Non-Conjugate model perform particularly well. With most cases 

suggesting all five principal components as important, we have structures of the 

four original clusters (blue male, orange male, blue female, orange female), with
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of course a number of observations being missgrouped.

Finally, we examined two cut down versions of the arthritis data set; one 

with 17 variables as suggested by Lamnisos et al. (2012), and another with an 

additional set of 10, randomly generated from a N(0,I), noisy variables. This 

time we concentrated only on the CVH with priors on m, h and the Non-Conjugate 

models. As far as the set of 17 variables is concerned, both models propose the 

inclusion of all variables, suggesting resembling cluster structures. Looking at the 

set of the 27 variables on the other hand, we have a small variation on the number 

of selected variables. Surprisingly, under a few cases, less variables are selected 

as discriminating. Under all circumstances though, the 10 noisy variables are 

excluded from the model. Interestingly enough, for both models and for all cases, 

regardless the number of selected variables, the suggested clusters are similar and 

close to those suggested under the consideration of the 17 variables.

All in all and taking into account the results of all models’ applications on our 

simulated data set, we can conclude that the best performing models, on both the 

tasks of variable selection and clustering, are the Cluster-Variable Heterogeneity 

model with priors on the mean value m and the hyperparameter h, together with 

the Non-Conjugate model.
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Chapter 5

Conclusions and Future Work

With the vast development of technology over the past few years offering easy 

access to an increased amount of information, we saw in this thesis how a numerous 

amount of disciplines such as medicine, biology, etc., are in need of methods 

that can manipulate data sets of high dimensionality, yet of a limited sample 

size. The idea of reducing the dimensionality of the problem and its importance 

when combined with the clustering methodology has been therefore introduced. 

With the cluster structure of the data being usually confined to a small subset 

of variables, the identification of the important variables, using variable selection 

methods or by differentially weighting the available variables, is of interest. Using 

the chosen subset of the discriminating variables, the true cluster structure can 

be therefore recovered.

Focusing on the Bayesian methodology and being interested in performing the 

tasks of variable selection and clustering simultaneously, we considered the use of 

a latent vector for the selection of the discriminating variables, while finite mix

ture models were used to form the clustering procedure. Markov Chain Monte 

Carlo chains were used to draw inference on the parameters of interest, while 

an unknown number of components has been considered, estimation on which is
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performed via the Reversible Jump MCMC sampler. Motivated by the work of 

Tadesse et al. (2005), we examined different computational approaches for the 

performance of the RJMCMC sampler. Suggesting a split/merge move on either 

empty or non-empty components and proposing splits using a random variable 

from a Beta distribution, we observed a fair sensitivity on the hyperparameters 

settings associated to the prior formulation of the covariance structure of the 

model. Application on a simulated data set showed a problem on the splitting of 

the originally well separated groups. Back to the choice of the crucial hyperparam

eters and relying on a rather intuitive selection, we chose to apply an Empirical 

Bayes approach for the determination of their values. Further into investigating 

the problem of suggesting proper splits, the conjugate case of the SAMS sampler of 

Dahl (2005), proposing allocations conditioned on the previously allocated obser

vations, was also considered. The sensitivity on the choice of the hyperparameters 

of the covariance structure was still present though.

Naturally, in search of ways to overcome the observed sensitivity, we considered 

exploring the covariance structure of the model. Starting by forming a model with 

covariance matrices in their simplest form, i.e. proportional to the Identity matrix, 

we built up five different models setting priors on various hyperparameters, the 

choice of which seemed crucial for the selection of the important variables and 

the performance of the clustering procedure. We also considered the model with 

prior settings of the non-conjugate form. For all five suggested structures we 

examined their performance on a simulated data set. While initially, for the CH, 

CVH and CVH with a hyperprior on the mean value m  models, the impact of 

the hyperparameter h was still present, affecting mixing and convergence to the 

desired cluster formulation, setting a hyperprior on h seemed a reasonable choice. 

Allowing the algorithm to sample values of h, convergence to the correct set of 

discriminating variables was achieved leading to allocations of the correct form. 

Similar encouraging results were obtained under the non-conjugate formulation.
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Finishing this thesis, we applied the various methods presented on three dif

ferent data sets : the well-known iris data, as well as the crabs and the arthritis 

data sets. With particular difficulties met under the consideration of the struc

ture suggested by Tadesse et al. (2005), the CVH with priors on h and mean m 

model, as well as the Non-Conjugate model performed reasonably well; consider

ing of course the particular features of the data under study, e.g the well-known 

overlapped Iris versicolor and Iris virginica species of the iris data set.

On future work on the subject, further exploration on the covariance structures 

is a natural path we shall follow. Having concentrated on the case of covariance 

matrices of no correlation, extending the work into considering correlated vari

ables is of particular interest although possibly demanding. Studying intra-class 

correlation, on the other hand, could also be of interest.

Finally, working in higher dimensions is known to be remarkably challenging; 

recall the arthritis data set and the difficulties met applying our methodology 

in the entire set of genes. With a large number of iterations needed to achieve 

convergence and the usually very many hyperparameters one has to experiment 

with, adaptive Monte Carlo methods which automatically tune the parameters of 

the proposal distribution suggesting good estimates of posterior summaries can 

be proved to be of great use in variable selection problems. Adaptive MCMC 

methods with applications on variable selection problems within the regression 

context have actually been recently developed [Ji and Schmidler (2009), Lanmisos 

et al. (2011)]. Potential extension to our models presented in this thesis could be 

considered to improve mixing.
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Appendix A

Appendix for Chapter 2

Calculations on the joint posterior /  (X, y\G, w, 7) considering Homogeneous Co- 

variances :
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On Heterogeneity, calculations are as follows :

f ( X , y \ G , w , 7 ) ■ J f  ( X,  y \ i ,  G, w,  y D, S 5D, p ND, Z ND) f  ( pD\G, 7 , Z D) /  (S D|G,  7 )

x /  ( pND\ ZNDr i ) f  (£ * d |7) dpD d,ZD dfiND dZND

I  U [J k=1 L

(nk + l)p-y _  Py_ . . (nfc+1)

x exp 

x exp

G

G

0- s E E W - r f J ' s f ’ W - r f )

-  Po)' i hiEt )  ' !/>>" -/■?)

fc=l XiSfc 
G

k= 1

X n o
fc=i 1

P-y

P 7 ( * + P 7 - 1) P 7 ( p 7 - l )  ( i + P 7__

nrv.7=1 v

( 5 + py -  j

7T 4 

T -1
|QD| 2 |s

_ (¿ + 2p-y )

exp

X  (27t)

x exp

x exp

( n + l ) ( p  — P-y) ( p - p 7 ) ( " + 1)2

¿=1
t ( p » c ^ p 0™ )'(AoE"D) '1(PA,D- P n

( P - P 7 ) ( i + P - P 7 - ! )  ( p - P 7 ) ( p ~ P 7 - 1)
X  2 2 7T 4

P-P7
no
.7=1 v

{ S  + P ~ P y -  j
-1 “1

L 3

x \ Q n d

x exp

(< S - fp -p 7 - l ) _  [¿ +  2 ( p - p 7 )]

~1r >ND̂j d p D d E D d p ND d E ND

(T*fc+1 )p~i _ E x  , ------ (n fc+1)------------  ’ 2 v O

A-4



s-v

SPrrSPciN^r a ([gAP? QN&\ t-CTAî )
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(A.2)

Histograms, marginal posterior probabilities and clustering maps for the cases 

of (aw = 1, au = 6), (aw = 6, au = 1) and (aw = 6, au = 6), for the application of 

the simulated data set under section 2.5.

h = 10 g 0.5

30 40 50

20 30 40 50

Figure A.0.1: Simulated data: Histograms of the total number of discriminating vari
ables, p j ,  for h  =  10,100,1000, c  =  0.01,0.03,0.09 and assuming unequal covariance
matrices, when a w =  1 and a u =  6.

A-6



c = 0.01

h =  1 0

h = 100 t

h =

20 40 50
variable 40 50

Figure A.0.2: Simulated data: Marginal Posterior Probabilities of the variables included
in the model, for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance 
matrices, when aw = 1 and a„ = 6.

Figure A.0.3: Simulated data: Maps of the cluster allocations of the n = 15 observation 
for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal

covariance matriceswhen aw = 1 and au = 6.
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Figure A.0.4: Simulated data: Histograms of the total number of discriminating vari
ables, py, for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance
matrices, when aw = 6 and au = 2.
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variable

2 0  4 0
variable

2 0  4 0  5 0
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Figure A.0.5: Simulated data: Marginal Posterior Probabilities of the variables included
in the model, for h  = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance
matrices, when a w = 6 and a u =  2.
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h = 10

5  1 0  1 5  5  1 0  1 5 5  1 0  15

h = 1 0 3

5  1 0  15

Figure A.0.6: Simulated data: Maps of the cluster allocations of the n = 15 observations 
for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance matrices, 
when aw = 6 and au = 2.
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|
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Figure A.0.7: Simulated data: Histograms of the total number of discriminating vari
ables, p-y, for h  =  10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance
matrices, when a w =  6 and a u =  6.
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Figure A.0.8: Simulated data: Marginal Posterior Probabilities of the variables included 
in the model, for h = 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance 
matrices, when aw = 6 and au = 6.
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h =103

Figure A.0.9: Simulated data: Maps of the cluster allocations of the n = 15 observations
for h  — 10,100,1000, c = 0.01,0.03,0.09 and assuming unequal covariance matrices,
when a w =  6 and a u — 6.
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Figure A.0.10: Simulated data: Histograms of the total number of discriminating vari
ables, p7, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance 
matrices and setting starting points the correct set of discriminating variables and clus
ter allocations, when aw = 1 and au — 2.

c  = 0 . 0 1  c  = 0 . 0 3  c  = 0 . 0 9

variable variable variable

Figure A.0.11: Simulated data: Marginal Posterior Probabilities of the variables in
cluded in the model, for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal 
covariance matrices and setting starting points the correct set of discriminating variables 
and cluster allocations, when aw = 1 and au = 2.
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h = 10

c = 0.03 c -  0.09
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5  10  15 5 10  15

5  1 0  15

Figure A.0.12: Simulated data: Maps of the cluster allocations of the n — 15 observa
tions for h = 10,100,1000 and c = 0.01,0.03,0.09, assuming unequal covariance ma
trices and setting starting points the correct set of discriminating variables and cluster 
allocations, when aw = 1 and au = 2.

Dahl - Split M ove

For the probability of observation t being allocated in component Sl we write :

Pr{yt = Si\ys\ y si) = A
A + B (A.3)

where the terms A, B are :
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For a split move with acceptance probability min(l, A), ratios A for the case of 

homogeneous and heterogeneous covariances are as follows :

1. Homogeneity.
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2. Heterogeneity.
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Appendix B

Appendix for Chapter 3

Calculations on the joint posterior /  (A, y\G, w, 7) for the Cluster Heterogeneity 

model considering Homogeneous Covariances :

/  (A, y\G, w ,7) = J f  (A, y\j, G, w, y D, ESD, y ND, ZND) /  (/rD| G, 7, £ D) /  (Ed |G, 7) 

x /  ( / ^ E ^ ,  7) /  (S wo|7) d/iD d S D dZND. (B.l)

However, the covariance matrices are now multiples of the Identity matrix, i.e. 

ED = cIPi and T,ND =  dIp_Pi. Therefore, integration of the posterior over the 

covariance matrices simplifies into integrating over parameters c, d. Hence, we 

write:
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Appendix C

Appendix for Chapter 4

Trace plots, histograms, marginal posterior probabilities and clustering maps for 

the applications of the CH, CVH, CVH with a prior on the mean value m, CVII 

with priors on m and h and Non-Conjugate models on the iris, crabs and arthritis 

data sets.

Figure C.0.13: Cluster-Variable Heterogeneity with a prior on m  for the Iris data set:
Histograms of the total number of discriminating variables, p7, for various combinations
of ( a s , f i s ) and a c , assuming heterogeneity and setting h  = 1000.
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Figure C.0.14: Cluster-Variable Heterogeneity with a prior on m for the Iris data set: 
Marginal Posterior Probabilities of the variables included in the model, for various 
combinations of (as, (3S) and ac, assuming heterogeneity and setting h = 1000.
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Figure C.0.15: Cluster-Variable Heterogeneity with a prior on m  for the Iris data set:
Maps of the cluster allocations of the n = 150 observations for various combinations of
( a s ,/3 s ) and a c assuming heterogeneity and setting h  =  1000.
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Figure C.0.16: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Histograms of the total number of discriminating variables, p7, for various combi
nations of (as,j3s) and ac, under the case of h ~ /G(3,400), with unequal covariance 
matrices.
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Figure C.0.17: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Marginal Posterior Probabilities of the variables included in the model, for vari
ous combinations of (as,/3s) and ac, under the case of h ~ 7G(3,400), with unequal 
covariance matrices.
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Figure C.0.18: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Maps of the cluster allocations of the n = 150 observations for various combinations 
of (a5,/3s) and ac, under the case of h ~  /G(3,400), with unequal covariance matrices.
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Figure C.0.19: Cluster-Variable Heterogeneity with priors on m and h for the Iris data 
set: Posterior distribution of h, for various combinations of (as,/3s) and ac, under the 
case of h ~ /G(3,400), with unequal covariance matrices.
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Figure C.0.20: Cluster-Variable Heterogeneity with priors on m and h for the principal 
component of the Crabs data set: Histograms of the total number of discriminating vari
ables, p7, for various combinations of (as,(3s) and ac, under the case of h ~ /G(3,400), 
with unequal covariance matrices.

variable variable variable

Figure C.0.21: Cluster-Variable Heterogeneity with priors on m and h for the principal 
components of the Crabs data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (as,/3s) and ac, under the case of 
h ~ /G(3,400), with unequal covariance matrices.
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Figure C.0.22: Cluster-Variable Heterogeneity with priors on m and h for the principal 
of the Crabs data set: Maps of the cluster allocations of the n = 200 observations for 
various combinations of (as,/3s) and ac, under the case of h ~ /G(3,400), with unequal 
covariance matrices.
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Figure C.0.23: Cluster-Variable Heterogeneity with priors on m  and h  for the principal
components of the Crabs data set: Posterior distribution of h , for various combinations
of (as,/3s) and a c, under the case of h  ~ /G(3,400), with unequal covariance matrices.
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Figure C.0.24: Cluster-Variable Heterogeneity with priors on m and h for the set of 17 
variables of the arthritis data set: Histograms of the total number of discriminating vari
ables, py, for various combinations of (as,/3s) and ac, under the case of h ~ /G(3,400), 
with unequal covariance matrices.
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Figure C.0.25: Cluster-Variable Heterogeneity with priors on m and h for the set of 
17 variables of the arthritis data set: Marginal Posterior Probabilities of the variables 
included in the model, for various combinations of (as,/3s) and ac, under the case of 
h ~ /  £7(3,400), with unequal covariance matrices.
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Figure C.0.26: Cluster-Variable Heterogeneity with priors on m and h for the set of 17 
variables of the arthritis data set: Maps of the cluster allocations of the n = 31 obser
vations for various combinations of (as,/3s) and ac, under the case of h ~ /G(3,400), 
with unequal covariance matrices.
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Figure C.0.27: Cluster-Variable Heterogeneity with priors on m  and h  for the set of 17
variables of the arthritis data set: Posterior distribution of h , for various combinations
of ( a s , p s ) and a c , under the case of h  ~ /G(3,400), with unequal covariance matrices.
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