
FARMING OUT: A STUDY

A THESIS SUBMITTED TO
T he Un iv ersity of Ken t at Canterbury

IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Warren Godfrey Day

March 7, 1996

Dedication

To my Mum and Dad with all my love, for giving me life and everything they realised they possible could.
Many thanks for it all.

To Tony Buzan, who’s fascinating books and tuition on the brain, how to learn to learn, and on mental
literacy in general, not only helped in this Ph.D., but also made it possible in the first place; for starting
up the Use Your Head Club, for putting many things, including life, into context positively.

To Vanda North for her endless encouragement and enthusiasm.

11

Acknowledgements

The following people have either helped directly in the research in some way, or who just helped to make
life wonderful.

I would like to thank the following for their general assistance during this research: Peter Welch, for
his encouragement and help; Stephen Turner, for his input and thorough list of corrections; David Morse,
for conversations, help and friendship on this long journey; Herman Roebbers, for his approach to opti
misation; David Beckett, for his help on Kent’s transputer setup; and Steve Hill for being my supervisor
and for reading the many drafts.

Thanks also go to: Jayadev Misra, for his help in clarifying my understanding of UNITY; plus
Edgar Knapp and Mark Staskaukas for their help and DTgX markup for UNITY notation.

Further thanks to: Munna Lee, for her assistance with DTeX; Ian Utting, for explainging document
structure theory and how to implement it; Peter Barrett, for a copy of his Mind Maps Plus, on which this
thesis was planned and written; the lab.’s operators for restoring corrupted files quickly. A general thanks
to everyone in the laboratory who either helped directly or helped to make the lab. a nice place to work.
Thanks also to Dominic Powell for getting me into Strunk and White’s The Elements of Style.

Thanks also to my friends, fellow Hi-Fi enthusiasts and companions who have been there for me, and
thus in some part helped get me through.

A very special thanks goes to: Jane Gower, for being the best of friends, and for always being at the
other end of a phone; John Whyte, who has been a friend for so long, he’s been a friend for almost as long
before I started my Ph.D. as he has been a friend throughout it; Stuart Finch, for his friendship and similar
passion about music; Nick Smith, for being a good friend, for help and also for introducing me to Shane;
Ian Catchpole, for his friendship, conversations, interests and knowledge of life on the other side of the
world’s biggest pond; Matt Tanner, for being a friend, for his similar passion for Hi-Fi, for discussion's
about music and its reproduction, and for introducing me to Neil; Jackie Dann (Church), for long chats;
Gary Ellis, another long term friend, who deserves not only many thanks, but a special thanks for inad
vertently reminding me how much I liked occam! A large thank you to my Polish friends for their gener-
ousity: Bozena Bartoszek, for her friendship and for being a good colleague; Michal Wojtulewicz for his
friendship, fascinating conversations and interest in Mind Mapping and the brain; Piotr, for my first place
to stay in Poland and for introducing me to Kasia; Kasia and Tomek Warchulska, for their friendship.

Many thanks to Neil McBride, for his home-brew and fascinating discussions about music, its timing
and its reproduction, electronics and space science. Thanks also go to Shane Sturrock, for talking so much
about his work, for being so motivated, for introducing me to Old Peculiar and for everything else he does
so well, including showing me what good Hi-Fi is and how to buy it.

Thanks also to: Stephen Thomas, for many long enjoyable and fascinating conversations, and espe
cially for introducing me to Jane; Mike Ellis, for many conversations and interesting information about
broadcasting technology; Heather Standring, for conversations, a common interest in playing the piano,
cookery lessons and for motorbike pillion rides; Ian Buckner, for his many conversations and enthusiasm
for life; Danielle Banyai, for her support over lunches; Paul Tysoe, for making so many meals so enjoy
able; Scott Woodsell, Toby and Linda, for a very enjoyable social life recently; David Mitchem, for his
great wisdom and conversations over lunches; and, Caroyln Piesse, for conversations and fun.

Lucie Tepla deserves a special thanks as her stunning example of success has been an inspiration.
Many thanks again to Mum and Dad, Tony and Vanda.
Thanks to various members of the Use Your Head Club for their encouragement and help.

iii

Thanks to Ivor Tiefenbrun for the Sondek LP12 turntable and Linn Products Limited. Thanks for
introducing me to some great music and musicians (especially the Palladian Ensemble) and for my Axis
and my Sondek that have kept me so entertained during the construction of this thesis.

Rachel Podger deserves a special thanks for demonstrating that even the most difficult things should
be performed effortlessly.

IV

Abstract

Farming is one of severals ways of arranging for a group of individuals to perform work simultaneously.
Farming is attractive. It is a simple concept, and yet it allocates work dynamically, balancing the load

automatically. This gives rise to potentially great efficiency; yet the range of applications that can be
farmed efficiently and which implementation strategies are the most effective has not been classified.

This research has investigated the types of application, design and implementation that farm effi
ciently on computer systems constructed from a network of communicating parallel processors. This
research shows that all applications can be farmed and identifies those concerns that dictate efficiency.

For the first generation of transputer hardware, extensive experiments have been performed using Oc
cam, independent of any specific application. This study identified the boundary conditions that dictate
which design parameters farm efficiently. These boundary conditions are expressed in a general form that
is directly amenable to other architectures. The specific quantitative results are of direct use to others who
wish to implement farms on this architecture.

Because of farming’s simplicity and potential for high efficiency, this work concludes that architects of
parallel hardware should consider binding this paradigm into future systems so as to enable the dynamic
allocation of processes to processors to take place automatically. As well as resulting in high levels of
machine utilisation for all programs, this would also permanently remove the burden of allocation from
the programmer.

v

Contents

Dedication ii

Acknowledgements ii*

Abstract v

List of Tables x>

List of Figures xiH

1 Introduction 1
1.1 C o n ten ts .. 1
1.2 Theories used .. 1

1.2.1 On the use of U N IT Y .. 2
1.3 Thesis structure .. 2

2 Background material 3
2.1 The process oriented method of program m ing... 3

2.1.1 Parallel programming paradigms... 4
2.1.2 Program organisation ... 5
2.1.3 Advantages .. 6
2.1.4 Design methodology.. 6
2.1.5 On the transition from sequential to parallel programming.................................... 6
2.1.6 Breadth of u s e ... 6

2.2 The occam programming language... 7
2.2.1 Variable t y p e s .. 7
2.2.2 Communication ty p e ... 8
2.2.3 Processes.. 8
2.2.4 S em an tic s ... 10
2.2.5 Compilation error m odes.. 10

2.3 Efficiency considerations... 11
2.4 The processor fa rm ... 14
2.5 Naming conventions....................................... 15

2.5.1 Diagrammatic conventions... 15
2.6 Hardware: Kent’s transputer sy s te m .. 15
2.7 U N IT Y ... 16

2.7.1 How UNITY is used h ere? ... 16
2.7.2 Philosophy... 16
2.7.3 Choices .. 16
2.7.4 The name U N IT Y .. 19
2.7.5 Execution m odel... 19
2.7.6 N o ta tio n .. 19
2.7.7 M apping .. 23

vi

2.7.8 UNITY summary ... 23
2.8 Summ ary.. 23

3 Origins of this study of farming 24
3.1 The UNITY perspective and the process oriented m o d e l... 24

3.1.1 Program efficiency.. 24
3.1.2 Execution s tra teg ies... 24
3.1.3 Producer consumer m o d e l ... 25
3.1.4 Mapping w o rk ... 26
3.1.5 A mapping ex a m p le ... 26

3.2 Other current work within the transputer community... 30
3.2.1 An application successfully f a r m e d ... 30
3.2.2 Inappropriate topology.. 30
3.2.3 Potentially farmable applications not farm ed... 31
3.2.4 Distant workers have priority .. 31
3.2.5 Summary ... 31

3.3 Questions .. 31
3.3.1 What farming harness is the b e s t ? .. 31
3.3.2 How much is fa rm ab le? .. 32
3.3.3 Summary ... 33

4 Efficient farm implementation 34
4.1 Overview.. 34
4.2 Which harness is the most efficien t?.. 34

4.2.1 Efficiency c o n te x t.. 34
4.2.2 The breakdown of harness efficiency... 35

4.3 Harnesses .. 35
4.3.1 Harness A: this author’s h a rn ess ... 35
4.3.2 Harness B: Welch’s h a rn e s s .. 37
4.3.3 Harness C: a harness developed using Roebbers’s transformations....................... 43
4.3.4 Harness D: pointer passing harness ... 44
4.3.5 Harnesses E and F: bidirectional harnesses... 48
4.3.6 General n o te .. 48

4.4 Planning the s tu d y ... 49
4.4.1 The approach to testing .. 49
4.4.2 This study’s limited parameter space... 49
4.4.3 Varying the parameters... 49

4.5 Mathematical m odelling ... 50
4.5.1 Compute bound or communication b o u n d ... 50
4.5.2 Estimating the maximum number of workers .. 52
4.5.3 Rationale for models’s simplicity .. 52
4.5.4 Summary ... 53

4.6 Raw link ban d w id th .. 53
4.6.1 Developing the test program .. 54
4.6.2 The testing perfo rm ed .. 56
4.6.3 Time to send a byte ... 56
4.6.4 Time to send a p a c k e t ... 56
4.6.5 Single component m essages.. 58
4.6.6 Bytes per second bandw idth.. 59
4.6.7 Automatic processor allocation ... 59
4.6.8 Summary ... 60

4.7 Results throughput obtained by h a rn esse s .. 60
4.7.1 Test Rig Design and Implementation... 61
4.7.2 Settling .. 62

vii

4.7.3 Compilation F la g s .. 62
4.7.4 T esting.. 62
4.7.5 Harness throughput ... 62
4.7.6 Comparing harnesses against raw link perform ance.. 63
4.7.7 Harness D versus harness C .. 64
4.7.8 C onclusions.. 64

4.8 Harnesses D versus C for variable message sizes in te rlaced .. 65
4.8.1 The test program ... 65
4.8.2 Testing and re su lts .. 65
4.8.3 Conclusion... 67
4.8.4 D iscussion... 68

4.9 Studying the breakdown of harness efficiency ... 68
4.9.1 Processor Farm Test Rig D esig n ... 69
4.9.2 The experimentation p erfo rm ed ... 77
4.9.3 R esults.. 78
4.9.4 T h eo ry .. 91
4.9.5 C onclusions.. 91

4.10 Influence of job compute time on finishing.. 93
4.10.1 In troduction .. 93
4.10.2 Test Design .. 94
4.10.3 Test Program .. 94
4.10.4 Results and Conclusions.. 95

4.11 Farm start u p .. 97
4.11.1 Opening discussion: what starting up a processor farm consists o f 97
4.11.2 T h eo ry .. 97
4.11.3 Priority.. 99

4.12 A comparison of topologies... 99
4.12.1 What makes a topology appropriate for fa rm in g ... 99
4.12.2 What was te s te d ...103
4.12.3 Test program modifications ... 104
4.12.4 R esults... 105
4.12.5 C onclusions... 110

4.13 P riority .. 110
4.13.1 Job requesting strategies.. I l l
4.13.2 Code u s e d ...I l l
4.13.3 The test ..112
4.13.4 Results and conclusions..113
4.13.5 New fairness im plem entation.. 113

4.14 Closing discussions and summary of conclusions .. 115
4.14.1 How farming should be v ie w e d ...115
4.14.2 Parameters u s e d ...115
4.14.3 Method for finding efficient m appings...115
4.14.4 Summary ...117

5 Farm ing’s Range of Use 119
5.1 Overview... 119
5.2 Extending the processor farm’s m echanics... 119

5.2.1 Multiple result and job ty p es ... 120
5.2.2 Automatic load b a lan c in g .. 120
5.2.3 Performing work depth and breadth f i r s t ... 121
5.2.4 When there is an ordering with some w ork..121
5.2.5 Multiple harvesters... 121
5.2.6 Multiple fa rm ers...121
5.2.7 The farmer-harvester bottleneck...121

viii

5.2.8 Varying the size of the f a r m ..122
5.2.9 Farming out all farmable applications... 122
5.2.10 The processor farm is one part of an application...122
5.2.11 Summary ... 122

5.3 Farming out the towers of H an o i..122
5.3.1 Building a farmed implementation..123
5.3.2 Performance characteristics and conclusions...132
5.3.3 Improving the performance of Hanoi.. 135

5.4 Farming out q u ick so rt...135
5.4.1 Conventional version of qu icksort... 136
5.4.2 Farmed version ...145
5.4.3 T e s ts ...149
5.4.4 R esults..150
5.4.5 Farming out seg m en ts ... 152
5.4.6 R ecu rs io n ...154
5.4.7 C onclusions..155

5.5 Some other applications and a model of farm ing ..155
5.5.1 Farming out functional applications.. 155
5.5.2 Farming out of sequential applications...155
5.5.3 Farming out processes with communication dependencies between them 157
5.5.4 Processes with loose computational dependencies between them157
5.5.5 The phrase “farm out” ... 158
5.5.6 A model of farming out: what it is and what it can d o .. 158
5.5.7 What type of jobs can be farmed o u t .. 160
5.5.8 What applications can be farmed o u t .. 160
5.5.9 How farming out differs from algorithmic and geometric decompositions 161
5.5.10 Summary ...161
5.5.11 Rest of chapter.. 162

5.6 Implementing geometric data s e t s ...162
5.6.1 Geometric implementation.. 162
5.6.2 Farming o u t ... 163
5.6.3 A simple fa rm e r ...164
5.6.4 Using a finer g ra in ..165
5.6.5 Decoupling computations from the farmer’s thread of c o n tro l................................. 166
5.6.6 An intermediate strategy..166
5.6.7 D iscussion.. 167

5.7 Other applications that have been farmed out ... 167
5.7.1 Fanning out the search for a minimal perfect hash fu n c tio n167
5.7.2 Some other examples of farming o u t ..169

5.8 Other man-made examples of farming o u t ..171
5.8.1 Farming out in m anufacturing.. 171
5.8.2 Other man-made examples of farming o u t .. 173

5.9 A clearer understanding of the stages of implementation...174
5.9.1 Parallelisation.. 174
5.9.2 A llocation ...175
5.9.3 Performing allocation in hardw are... 175
5.9.4 What the execution strategies really a r e ... 176
5.9.5 How these stages affect program m ing...176
5.9.6 Static and dynamic allocation com pared... 178
5.9.7 Summary and Conclusions.. 179

5.10 Closing discussions and summary of conclusions .. 179
5.10.1 Factors affecting efficiency ... 179
5.10.2 One aspect of how transputer programming is and should be perform ed.................180
5.10.3 Summary of conclusions..180

IX

6 Future research and architectures 183
6.1 Program Transformation...183

6.1.1 Types of transform ation..184
6.1.2 The first of the Four D isciplines...184

6.2 Future w o r k .. 185
6.2.1 Harness efficiency refinem ent...185
6.2.2 Model p aram eters ..185
6.2.3 Efficient mappings for farms that don’t just produce final results............................... 186
6.2.4 Understanding when to use each execution s tra teg y ... 187
6.2.5 Farms with different types of worker.. 187

6.3 The second generation of Inmos transputer... 187
6.3.1 The new computation and communication performance r a t i o187
6.3.2 Virtual ch a n n e ls ...188
6.3.3 Resource channels..188
6.3.4 Im plem entation... 188
6.3.5 Will these new mechanisms quicken fa rm s? ...190
6.3.6 No automatic link dem ultiplexing... 191
6.3.7 Updating the workers’ s t a t e ... 191

6.4 Automatically farming out processes... 194
6.4.1 Programming .. 195
6.4.2 Parallel slackness and program granularity.. 195

6.5 Summ ary... 196

7 Conclusions 197
7.1 U N ITY .. 197
7.2 Is this work of practical u s e ? .. 197
7.3 The order of the two s tu d ie s .. 197
7.4 Contributions.. 197

7.4.1 Major thesis contributions.. 198
7.4.2 Other contributions from chapter 4 ... 198
7.4.3 Other contributions from chapter 5 ... 198

7.5 C o n clusions.. 199
7.5.1 Im plem entation...199
7.5.2 Selecting an execution strategy .. 200
7.5.3 Farming m odel... 200
7.5.4 Advantages of farming o u t ..200
7.5.5 What applications can be farm ed.. 201
7.5.6 Developing a m apping.. 201
7.5.7 The factors that affect an implementations efficiency .. 202
7.5.8 Farming h a rn e s s ^ ...202
7.5.9 Summary .. 203

Bibliography 204

x

List of Tables

1 Communication set up time’s influence on performance of tran sp u te r.............................. 51
2 Most efficient harnesses for farm sizes tested ... 92
3 Job processing times and their message le n g th s .. 95
4 Average farmer-to-worker distances around a ternary t r e e .. 101
5 Run times for Towers of Hanoi program (times in s e c o n d s) .. 132
6 Maximum number of jobs in farm at one time for Towers of Hanoi program134
7 Maximum sizes of sub-problem stack for Towers of Hanoi program134
8 Maximum sizes of move instructions stack for Towers of Hanoi p ro g ram135
9 Quicksort run times ... 150
10 Maximum sizes in quicksort farm s .. 152

xi

List of Figures

1 Drawing style used in this th e s is .. 15
2 Message routes through a torus... 30
3 Structure of harness A .. 36
4 Structure of a p ip e lin e .. 38
5 General structure of a ternary t r e e ... 38
6 Structure of a r i n g ... 38
7 A pipeline with manager process.. 45
8 Structure of harness D .. 45
9 Test rig for link bandwidth experiment.. 55
10 Time to communicate a byte (of a counted array) through a l i n k .. 57
11 Average time to send a counted array through a l i n k ... 57
12 Throughput for a counted array through a l i n k ... 59
13 Throughput of counted arrays around automatically allocated domains of processors . . 60
14 Test rig for harness throughput experiment.. 61
15 Throughput of result collecting processes .. 63
16 A sequence of interleaved m essages.. 65
17 Time to interleave messages of different s i z e s ... 67
18 Speed-up of harnesses C and D for messages of 256 bytes interleaved with other sizes . 68
19 Full processor farm test r i g .. 77
20 Breakdown of harnesses A, B and C on 8 w orkers... 79
21 Breakdown of harnesses A, C and D on 8 w orkers... 79
22 Breakdown of harnesses D, E and F on 8 w o rk e rs .. 80
23 Breakdown of harnesses A, D and E on 8 w orkers... 81
24 Breakdown of harnesses for IK jobs on 8 w orkers... 82
25 Top of breakdown of harnesses for IK jobs on 8 workers .. 83
26 Log of breakdown of harnesses for IK jobs on 8 w o rk e rs .. 83
27 Breakdown of harnesses A, D and E on 1 w orkers ... 84
28 Breakdown of harnesses A, D and E on 2 w orkers ... 85
29 Breakdown of harnesses A, D and E on 4 w orkers... 85
30 Breakdown of harnesses A, D and E on 16 w o rk e rs ... 86
31 Breakdown of harnesses A, D and E on 32 w o rk e rs ... 86
32 Breakdown of harness E on farms of 1, 2, 4, 8, 16 and 32 w orkers.................................... 87
33 Breakdown of harnesses A and E for IK jobs for increasing w ... 88
34 Breakdown of harnesses A and E for 1K 0.25 second jobs for increase w 88
35 Run times for varying job lengths for all 6 harnesses on 32 w o rk e rs 96
36 Efficiency for varying job lengths for all 6 harnesses on 32 w o rk e rs 96
37 Logical structure of a processor fa rm ... 100
38 Fully populated three layer ternary tree ..102
39 Partially populated ternary tre e ...102
40 More balanced partially populated t re e ..102
41 Detail of link usage for conglomerate topology ..105
42 Order in which processors were placed..105
43 Breakdown for 1 and 2 lines and a tree of 3 w orkers... 106

xii

44 Efficiency for 1 line and a tree of 3 w o rk e rs .. 106
45 Breakdown for 1, 2, 3 lines and a tree of 12 w orkers... 107
46 Efficiency for 1 line and a tree of 12 workers.. 107
47 Breakdown for 1 and 2 lines and a tree of 39 w o rk e rs ..109
48 Breakdown for 3 and 9 lines and a tree of 39 w o rk e rs ..109
49 Efficiency for 1 and 9 lines and a tree of 39 w o rk ers... 110
50 Breakdown for 39 workers of alternate, local and distant priority .. 113
51 Structure of a f a r m ...120
52 Expansion of the towers of Hanoi problem ... 125
53 How the farmer can be decomposed for execution on three processors................................. 131
54 Capacity of a four worker farm ... 133
55 Speed up of quicksort p ro g ram s..150
56 Relative efficiencies of quicksort programs .. 151
57 Structure of a one worker farm and a Von-Neuman m achine..156
58 General structure of multiprocessor shared memory architectures.. 156
59 A model of farming out ...158
60 Two ways of dealing with dependencies between jobs on a processor farm159
61 A 2D array divided up into full width seg m en ts ..162
62 Number of communications that need to be performed with a 2-D geometric distribution 163
63 How nearest neighbour relationships could be farmed o u t ... 163
64 The general form of a 2-D block m o v e .. 165
65 Extracting a rectangular patch of data using a 2-D block m ove...165
66 Job dependencies for quicksort and applications with nearest neighbour dependencies . . 166
67 Making use of the independencies within the d a t a .. 177
68 Making use of the independencies within the data and the com putation 177
69 Making more use of the independencies within the data and the com putation 177
70 A model of farming out ...181
71 A multiple workers queuing problem... 187
72 Solution to multiple workers queuing problem ...187
73 A model of farming out .. 200

xiii

Chapter 1

Introduction

Here we are interested in the technique of farming. This involves distributing the separate parts of a large
task to individuals; these parts being distributed by communication.

Farming out is of interest as it can achieve very high levels of efficiency. Further, the number of work
ers involved in performing the work can be changed while the task is performed.

Farming is a very simple yet effective method of allocating work to workers. As well as being simple
it has been in existence for some time.

The thesis of this research is that, as farming is highly scalable and has great potential for efficiency
(due to the work load being balanced automatically via dynamic allocation), it should be used more. This
includes adding its mechanism to parallel hardware to alleviate the need to continually reimplementing
it in software.

1.1 Contents
Documented here is a two part study on farming: how to implement it and what can be farmed.

The first part looks at what makes an implementation efficient for both any architecture and the first
generation of INMOS transputer. It also looks at some highly efficient farming harnesses and implemen
tation practices.

The second part searches for and finds what domain of applications can be farmed out. This is per
formed by studying a number of applications (including implementations) and the mechanics of farmings
itself. This has lead to a much clearer understanding of what can be implemented and how.

These studies constitute a scientific and rigorous exploration of the technique of farming, and to the
knowledge of the author is first of such a study. The experimentation is the first known to be performed
where the testing is independent of any one particular application.

1.2 Theories used
This work was conducted in the local environment that exists within the Parallel Processing Group at Kent
and within the community of the World occam and Transputer User Group. Both of whom appreciate the
advantages of a C.S.P. as a paradigm for modelling parallel interaction, the occam parallel programming
language with its algebraic semantics and the INMOS transputers. The part of this work that deals with the
development and testing of farming harnesses is influenced and in some respects may even be restricted
by the particular knowledge, approaches and prejudices in this particular working environment.

Also used here is UNITY [CM87]. This is a foundation theory for programming that attempts to pro
vide a framework in which to develop programs for all architectures.

1

CHAPTER 1. INTRODUCTION 2

1.2.1 On the use of UNITY
UNITY has only been used here to view the overall development of programs. It has not been used to de
velop programs formally. Thus, the only aspect of UNITY used here is that programs should be designed
before implementation is attempted.

The results presented here fit into this philosophy and can be used to farm out program designs. This
work is only related to how farm out program designs, not how to develop them in the first place. The
design could have been developed in UNITY, but this is not mandatory.

Thus in essence, what is to be farmed out, should be known before using these results to implement
an efficient farm.

1.3 Thesis structure
The material in this thesis is presented in the order in which it was worked on and thus discovered. Thus,
all experiments are presented in the order they were performed. Similarly, the experimentation on farming
harnesses is presenting before the exploration of farming’s usability, as these two areas of the research
was performed in this order. The work of others is invariably mentioned along side the work to which it
is relevant.

The contents of this thesis’s chapters are as follows.
Chapter 2 contains the background material needed to understand the work in this thesis. A reasonable

knowledge and fluency of occam and transputers is assumed however.
Chapter 3 documents how this study came about.
Chapter 4 documents the experiments performed, the analysis of the results, the developing of under

standing and the resulting conclusions.
Chapter 5 documents the exploration into how wide a range of applications can farming be used to

execute. A much clearer understanding of farming and a general model of fanning are developed.
Chapter 6 discusses some future work. It also looks at how farms will be built on some future gener

ations of transputers and how these will be programmed in future version of occam.
Chapter 7 discusses the contribution and conclusions of this work.

Chapter 2

Background material

This chapter looks at the background material used in this research. This material consists of two the
ories. These take greatly different approaches to programming; this being due to their developed being
independent. We will look at these two theories in the order in which they were learnt. The first of these
two areas to be looked at was derived from Hoare’s C.S.P. ([Hoa78] [Hoa85] [HJ89a]). The second is
UNITY, a theory of parallel programming by Chandy, Misra [CM87] and others. UNITY was developed
to be a foundation for programming.

This first area consists of a number of separate parts. These are the various aspects of occam program
design and optimisation. Here we look at the following.

1. The method used to construct programs taught in a course by Welch.

2. An overview of the relevant parts of the parallel programming language Occam (including its design
principles, its semantics, the essences of its syntax and structure, and its transformation laws).

3. The transputer hardware on which the practical side of this work was performed.

4. The theory used for transforming programs into more efficient forms taught in a course by Roeb-
bers.

5. Lastly, we look in more detail at the processor farm and what the general opinion was of the subject
when this research started.

This work concentrated more on the philosophy behind the work, instead of the practical issues such as
language. Thus, the philosophy behind the method of programming is mentioned before the programming
language itself.

2.1 The process oriented method of programming
In this section the process oriented method of programming is looked at. This methodology is used to
develop communicating parallel programs. In this work all programs are written in occam. The method
ology introduced in this section is used as the norm both at Kent and in many establishments in both
academia and industry.

The process oriented method of programming promotes the following,

1. a process oriented view of the application,

2. programs that are the same shape as the application,

3. one software component per single unit of application’s functionality, and,

4. software reuse.

3

CHAPTER 2. BACKGROUND MATERIAL 4

This process oriented methodology is presented on the “occam and Transputer Engineering Work
shop” course [Wei]. The method is aimed at describing parallel systems with clarity. This was the driving
concept in the design of occam and the transputer. As a result the occam language is ideal for describing
parallel systems succinctly. Occam was also designed to be easy to compile. The transputer was designed
to be efficient at executing such programs.

The model of parallelism used is Communicating Sequential Processes (C.S.P.). This model, due to
Hoare [Hoa85], contains communication as a programming primitive. The design of occam and the trans
puter are based on the C.S.P. model.

As a method of programming the process oriented approach is simple. It consists of the functionality
of the system being modeled as a number of independent communicating processes.

The course [Wei] mentioned three ways of organising work for a number of communicating parallel
computers. Most of the course looks at the major problem of computer programming, the method itself
and how it hopes to go some way towards solving this problem. Where this theory comes from is looked
at here, as it what it contains, what are its advantages and how it is used in practise.

2.1.1 Parallel programming paradigms
It appears there are three elementary methods with which to organise communicating processors. The
three techniques are as follows,

1. geometric distributions,

2. algorithmic distributions, such as pipelines, or,

3. processor farms.

The details of these are discussed below.

Geometric distributions

A geometric distribution can be used where a set of data repeatly needs the same process performed upon
it. Here the domain of data is divided among the processors, all of which perform the same task. The
processors communicate to exchange information across processor boundaries.

Solving the n-body problem (simulating planets or molecular particles) is an example of a geometric
distribution, as is simulating (predicting) the weather. In the latter, all processors are programmed with
the appropriate atmospheric model and are then arranged to look after one part of the atmosphere. Each
processor is given either a strip or a volume of atmosphere. Then each processor starts with the initial
data for its part of the atmosphere. The system is then left to run. In the n-body problem processors are
programmed with the appropriate Newtonian mechanics and a number of bodies are then allocated to each
processor.

Some method of performing data input or result output is also needed. This is either performed by
having a processor observing the data traversing around, say, a ring, or by all of the processors in the
network communicating results directly to another transputer.

It is believed a geometric distribution should give something like 90% of the maximum performance
of which the hardware is capable [Wei], The loss can be due to processors waiting for data from neigh
bouring processors. Losses are also caused by the lockstep nature of this approach, as some processors
may be lying idle while waiting for other processors to finish the more time consuming calculations.

Algorithmic distributions

Algorithmic distributions consist of a functional breakdown of the steps taken to perform a task. One
common example is that of a pipeline. Here data enters at one end of the pipeline and results emerge
from the other. More elaborate algorithmic distributions are possible with data flowing around an intri
cate network of processes. One domain where this approach has been used is real time systems. Pipelines

CHAPTER 2. BACKGROUND MATERIAL 5

are also not necessarily always one process or one processor wide at any one stage. If a great deal of pro
cessing is required at one point there could be several processors, each performing some suitable fraction
of the work.

The drawback of algorithmic distributions is the whole system can only work as fast as the slowest
component. To build pipelines that work to a high degree of efficiency involves precise knowledge and
continual consideration of exactly what all of the processors will be doing. This includes knowing very
precisely what the compiler will generate and what the execution characteristics of the processors are.
Thus, to obtain more than 70% efficiency from an algorithmic distribution is believed to be difficult [Wei],

Processor farms

This method consists of having a worker process on each transputer. A farmer process hands out work to
these workers. These items of work are then performed independently of each other. Upon completion
the results are sent either back to the farmer or to a harvester process.

As a job of work is independent of any of the other jobs, the workers work independently of each
other, and only communicating with the farmer and the harvester once for each job. The workers do not
communicate with each other at any time. This gives rise to an important benefit. The different jobs can
take different lengths of time to be executed, without there being any loss of performance. As soon as one
job finishes another can be started immediately. There is no need to wait for any synchronisation with any
of the other workers. Thus, there is no performance lost due to waiting for synchronisations. This is not
the case with either an algorithm or a geometric distribution. With a farm it is in fact the case that it is
better if the workers do finish at different times, as then the demand for work is staggered through time.

As transputers can only communicate directly with four other transputers, processor farms are imple
mented with the aid of a farming harness. This consists of some additional processes that are executed
along with those already mentioned. These processes provide the logical interconnection indirectly that
is not possible through direct physical means. The interconnection structure used is not relevant to the
execution of the program itself. Nevertheless, different topologies may possess different communication
overheads and thus the performance of the different topologies may vary.

It is believed that a farm can be 99% efficient [Wei].

2.1.2 Program organisation
What has probably been the greatest problem in computer science since its outset is that of how to de
velop correct and easily mantainable programs that are of a large size and complexity? The method of
programming being discussed here uses a model of reality to aid in the solving of this problem.

This model consists of objects that interact with one another. For example, if an appropriate force is
applied to a book, the book opens. The occam model restricts this C.S.P. model by saying that interac
tions take place through communication channels and that each channel only has two ends a sender and a
receiver, and that communication is also synchronous. For example, light travels from the page of a book
to the eye of the reader. This is synchronous as this communication can only happen when the book is
prepared to be read, by being open, and the reader is prepared to look at the book.

The C.S.P. model of parallelism is modelled on how real interactions take place. Processes in reality
communicate instead of having global memory. In our occam restriction of C.S.P. we have point-to-point
communication as this has no multiple process contention problems. Communication is also unbuffered
as well as synchronous and point-to-point.

A synchronous communication progresses in the following way. When one process wishes to commu
nicate with another, the first process waits until the second is also ready to engage in the communication.
Thus a communication is also a rendezvous between two processes.

Our approach to the designing and writing of parallel programs here consists simply of expressing
the computation in terms of the parallel components inherent in what is being built. The behaviours of
these processes are described from their own points of view. The interconnection between these processes
coming from the shape of the system being modelled.

CHAPTER 2. BACKGROUND MATERIAL 6

2.1.3 Advantages
A major advantage of this approach is it models reality directly. All the autonomous objects are modelled
from their own point of view with their own independent behaviour and private data.

This clarity results in the design, implementation, validation and maintenance stages all being much
easier to perform.

The other obvious advantage is that designs can easily be implemented to make use of parallel archi
tectures. Indeed parallel hardware itself has been designed using this approach.

2.1.4 Design methodology
In this methodology programs are written so there is one logical function per process. This way each
function is programmed from its own point-of-view. To obtain complex functionality such processes are
composed in parallel, typically with these processes living for the whole length of the program’s life. This
method is termed “process-oriented” design.

This methodology is very simple. The first step is to draw a process diagram of the system being
modelled. These processes are then written, each from their own point-of-view, with their own privately
declared and retained internal state. The processes are then connected and run.

If simple changes need to be made to the system, we may only need to change the interconnection
between the objects. If, for example, objects needed to be aware of each others existence, reprogram
ming would require changing many of these internal references, resulting in a great deal of unnecessary
reprogramming.

Many processes terminate only when the program has completely finished. Some of these processes
may be unable to determine when termination has occurred. For convenience such processes are written
to execute indefinitely. In practise these can then be either terminated by resetting the transputer network
(as was the case here) or by simply reusing the program’s communication network. This network can
allow for a shutdown message to be generated from a process that is able to directly determine when
the program has terminated. The network then propagates these messages until all other processes have
received a message. In farming for example, a shutdown message could be generated by the harvester and
propagated through the harness and workers until the farmer receives a copy. This method of termination
was suggested by Welch [Wel89].

2.1.5 On the transition from sequential to parallel programming
When writing parallel programs as experienced sequential programmers, who have developed a set of
good sequential programming skills, care must be taken not to be set in these skills that are only appro
priate for sequential programming. There is a natural human tendency to put into parallel programs all
the small simple and local optimisations that are beneficial in sequential programs, but are not appropriate
optimisations to make in parallel programs. Parallel programming is very different to the more conven
tional sequential programming. There is a different set of efficiency issues in parallel programming. For
example, it is typically easier and more efficient to duplicate work than to communicate results.

2.1.6 Breadth of use
It was mentioned on the course that the process oriented method of programming can be used to write
in any parallel programming language, not just occam. This has been performed on courses in Ada by
Welch. On shared memory systems communication can be emulated.

In [LS90] Lin and Snyder have found that for shared memory architectures, the message-passing
model is more efficient than the shared memory model for programs at an equivalent level of optimi
sation. The authors found this to be the case for two shared memory architectures for several versions of
two applications. Simulated message-passing was between a few percent and 23 times faster. The rea
son for this seems to be down to the technique’s exploitation of data locality and the large granularity
of distributed memory programs. Lin and Snyder suggest a broader study with more machine types and
programs. They are not sure whether the improvement is due to basic differences in their programming
or due to actual advantages of the message-passing programming model. That said, the authors noticed

CHAPTER 2. BACKGROUND MATERIAL 7

that the more optimised versions of the shared memory program possessed some of the characteristics of
the message-passing programs.

2.2 The occam programming language
Here is an overview of version 2 of the occam programming language [Inm88]. As a language, occam is
now well known. Thus, here most of the language will be covered quickly, spending more time empha
sising the parts of the language that are often overlooked, but that are especially important to this work.
For example, the program transformations made possible by the algebraic semantics are used reasonably
extensively in this work.

Occam was designed so,

1. the concepts and constructs of parallelism are as equally central to the language as the sequential
concepts and constructs,

2. programs would be efficient to implement,

3. the elements of the language would have a rigorously defined semantics,

4. the semantics would be algebraic, this giving programs an equivalence and thus allowing for pro
grams to be transformed into others, and,

5. there would be facilities in the language to describe embedded systems just as easily as parallel
systems.

Being an embedded systems language, occam has some restrictions. It should be easy to reason about
the real time demands and the runtime performance of a program. Thus, the language’s implementation
should be efficient always, in all situations, and, for example, garbage collection cannot be allowed into
the language. Equally the program should always be able to run. Thus there can be no parts that can
fail, such as memory allocation or recursion. Further, with occam there is no memory management and
the memory usage must be a determinable constant at compile-time. In fact in compiling generally, it is
considered a good idea to not put off until run time what can be done at compile time [Gri71],

Being a parallel language, occam possesses the constructs to express several processes happening si
multaneously. It also has the constructs for communication. The presence of parallelism in the language
has restrictions in some of the sequential areas of the language. Recursion being one example, as growing
an arbitrary number of stacks in parallel is not easy to implement without some form of garbage collec
tion. The implementation would result in both long and nondeterministic runtimes for recursive calls;
this is not appropriate for an embedded systems language. Similarly, although occam can syntactically
express output guards, having them either exclusively or with input guards prevents an implementation
from guaranteeing efficiency. Nevertheless, the fact that the syntax allows output guards means we can
use them at the design stage.

The advantage of having a rigorous semantics is all programs have an exact meaning. Thus, all con
structs in all situations and combinations have a defined unambiguous meaning not open to debate. This
is not the case in most other languages.

2.2.1 Variable types
Occam has several integer types: INT, the size of the internal registers of the executing processor, IN TI 6,
INT32 and INT64 which are handled by the implementation appropriately. There is also REAL32 and
REAL6 4 which fully implement the I.E.E.E. standard for computer floating point arithmetic. BOOL and
BYTE are also implemented, but computation is not permitted on them directly. Arrays can be constructed
of all of the built-in types.

CHAPTER 2. BACKGROUND MATERIAL 8

2.2.2 Communication type
Communication in Occam is synchronous, unbuffered and point-to-point. This form of communication
is the simplest to have. Also, all other type of communication can be built from this: asynchronous, one-
to-many, many-to-one, many-to-many.

Synchronous communications are also very easy to work with. Even asynchronous systems often have
to perform synchronisations. As Occam’s communication is synchronised and unbuffered, the first process
to arrive at the communication statement has to wait until the other process arrives at the communication.

The point to point communication in occam is where the Occam is a semantic restriction of C.S.P.
which may have any number of processes engage in an event.

In occam communications have a type. There is also the facility to group a number of types together
into an ordered list. This is termed a PROTOCOL. These make it easier for the compiler to rigorously
check the communication between two processes.

2.2.3 Processes
Occam programs are made up of processes. In turn these may be made up of constructs consisting of other
processes. There are three basic processes: the assignment process, and two communication processes,
input and output.

Assignment

The assignment process evaluates the expression on the right hand side of the process and checks any
indexes on the left-hand side are valid, the result is then assigned to the left-hand side variable. The result
of the expression and the variable must be of the same type.

total := 0
If the value is not computable, the error (division by zero for example) will cause a halt to occur. Multiple
assignments are also allowed in occam. These consist of a set of assignments (written in list form). These
follow the same rules as in above. The right-hand sides are evaluated, array indexes are computed and
checked to be in range and then the results are assigned. Upon a valid completion, all of the values are
assigned to the ordered list of variables which must also be of the same length.

x, Y := y- x -- swap
Expressions do not perform any side-effecting on variables and their values. This means assignments and
boolean conditions do not perform side-effects. Thus, only assignment can change the state of a program,
just the evaluation of an expression along can not.

Communication

The communication processes perform the two halfs of the assignment process. The output process per
forms the evaluation of expressions and if the computations are successful, communicates the values
down the channel named in the process. The input process performs the reading of these values from
the channel into its matched list of variables.

A process

A process in occam is either an assignment process, a communication process or a collection of these
processes combined. Processes are grouped by SEQ, PAR, WHILE, I F and ALT.

The first two of these combine a list of processes into one process. WHILE takes a boolean expression
and a process that it executes while the boolean expression is TRUE. I F takes a list of processes guarded
by boolean expressions and executes the first process in the list whose guard evaluates to TRUE, otherwise
the I F STOPS.

CHAPTER 2. BACKGROUND MATERIAL 9

ALT is similar to IF, its processes are guarded by a communication, an optional boolean condition,
or both. The process executing the ALT is suspended until one or more of the guarded processes become
ready. One ready guards is then selected arbitrarily for execution. An empty ALT is equivalent to STOP.

PRI ALT is a variation of ALT. When more than one guard is ready PRI ALT always selects the
guard with the highest priority for execution, i.e. the guard highest in the list of guarded processes.

For reasons of efficiency the implementation of occam only allows one type of communication process
in an ALT. Only input guards are allowed it being more natural to stop waiting for a message to arrive
than to decided to stop trying to send a message.

Over time there is no guarantee that ALTs are fair. Achieving fairness would require implementations
maintain a state over time. Doing this would increase the time taken to execute this process that already
takes a long time to execute. If such fairness is required it has to be implemented by hand.

Replicating

The method of repeating instructions is much more general in occam than in other languages. This is per
formed by replication of a process. The replicator in occam takes a process as a parameter. The advantage
of replication is that any construct can take a single process may be replicated. Thus, as Occam’s repli
cator is a construct modifier, instead of a construct in itself, such as the f o r loop, this means constructs
such as IF can be replicated as well as constructs like SEQ. A replicator consists of an index variable,
this is declared automatically to be of type INT and an expression. This evaluates to a value of type INT
and gives the number of times the process is to be replicated. This expression is evaluated once on entry
to the replicator. One advantage of having replication is that constructs such as IF can be replicated on
their own. For example,

IF
I F i = 0 FOR SIZ E v a l u e

v a l u e [i] = e n t r y
f o u n d , i n d e x := TRUE, i

TRUE
fo u n d := FALSE

which is equivalent to,

IF
v a l u e [0] = e n t r y

f o u n d , i n d e x := TRUE, 0
v a l u e [1] = e n t r y

f o u n d , i n d e x := TRUE, 1

v a l u e [(S I Z E v a l u e) - 1] = e n t r y
f o u n d , i n d e x := TRUE, (S IZ E v a l u e)

TRUE
f o u n d := FALSE

- 1

This alleviates the need for a f o r loop, such as in older languages. This is a good example of how, al
though occam is a smaller language, it is a great deal more expressive than other third generation pro
gramming languages.

Another common use for replicators, as well as being used to generate for-loops, is to access all of
the elements in an array.

CHAPTER 2. BACKGROUND MATERIAL 10

There is an equivalence between an Occam WHILE loop,

INT i n d e x :
SEQ

i n d e x := e x p r
WHILE i n d e x < e x p r e s s i o n

SEQ
. . . b o d y
i n d e x := i n d e x + 1

where in d e x does not appear on the left-hand side in the loop’s body, and a replicated SEQ,

SEQ i n d e x := e x p r FOR e x p r e s s i o n - e x p r
. . . b o d y

This is independent of the body of the loop. Here this body is represented by an ellipsis (. . .) . This
notation comes from the use of folding editors. Folds can be used to perform textual abstractions on parts
of a program.

2.2.4 Semantics
The semantics of occam have already been mentioned. These are rigorous due to being formally defined.
One method in which this has been achieved is with equivalence laws. These have the advantage of giv
ing a semantics that is algebraic in nature. This allows for any program to be changed mechanically into
others that perform the same task (have the same semantic meaning), but have different performance char
acteristics.

In [RH86] Roscoe and Hoare uncover, for all of the occam constructs, both the laws that govern the
constructs and present enough laws to translate finite programs (programs without WHILE loops) into nor
mal form. These laws cover: declaration, assignment, SEQ, IF , PAR, ALT and X. The last are divergent
processes, these are equivalent to,

WHILE TRUE
SKIP

From these it is also possible to derive other laws.
Of these basic laws, we look at one here, input, as an example, as it shall be used later,

ALT
C ? X = C ? X

SKIP

It is also possible to give an equivalence between assignment, the most fundamental primitive of all
programming, and the fundamental idea behind parallel programming, two parallel processes communi
cating,

v a r i a b l e := e x p r e s s i o n

CHAN OF T y p e c h a n n e l :
PAR

c h a n n e l ! e x p r e s s i o n
c h a n n e l ? v a r i a b l e

2.2.5 Compilation error modes
An occam program can be compiled in one of three compilation modes: HALT, STOP and REDUCED.
The first two perform run-time checks such as checking that array indexes are in range. Should an er
ror occur in HALT mode, a processor HALT instruction is compiled into the program and the processor
that executes the instruction halts. When compiling in STOP mode the compiler inserts extra instruc
tions throughout the code in order to stop only the process that is in error, instead of stopping the whole
processor. In REDUCED mode no checking is performed.

CHAPTER 2. BACKGROUND MATERIAL 11

2.3 Efficiency considerations
This section looks at the contents of the Advanced Transputer Engineering Workshop [Roe], This work
and course is due to Roebbers.

The course is about run-time efficiency and optimisation. The five parts it covered are listed below.

1. A study of the method used by the processor to execute instructions and how then next instruction
is selected for execution.

2. The mechanics of how communications are performed across channels and across links.

3. How to write efficient code that process arrays of any size.

4. How to use the post-mortem analyser to explore a network of transputers, look at what code the
compiler produces and several other tips that make debugging easier.

5. How to perform transformations on a piece of code in order to make it execute more efficiently.
This consisted of transformating all the PARS on each processor into SEQs, attempting to minimise
the amount of memory used by arrays, and finally adding buffering to the sequential process to en
gage the links in parallel. These optimisation transformations also included transformations similar
to those used in sequential programming, such as loop unrolling. Due to the algebraic semantics of
Occam the transformations performed here are more reliable than equivalent transformations per
formed in other programming languages.

The last item has been performed by many others in occam, the essence of the work coming from the
design of occam. But it is Roebbers’s approach to this work of rigorous optimisation that is the most
developed, complete and practical in real programming situations seen here.

The side of the course dealing with arrays involved several ideas. When writing library routines to
manipulate arrays, instead of passing in the size of the array it is easier to use the unary operator SIZE
instead. For example, SIZE A gives the size of the array A and SIZE A [0] gives the size of the second
largest dimension of A. Abbreviations are of great use in cutting down the number of accesses to multidi
mensional arrays by retyping them to a one dimensional array and in abbreviating frequently used array
elements into single variable constants. The optimum amount of loop unrolling for the transputer is also
looked at on the course. The optimum number of unrolls being sixteen; due the transputer’s instruction
set encoding constants into four bits. It is this rigour and attention to detail, as used by Roebbers, that
has not been seen elsewhere by this author either in the optimisation of programs in other languages or
in other programming disciplines.

The largest part of the course consisted of fine-tuning a Fast Fourier Transform program. Most of the
stages in this process involved performing some transformations on a program. We have already men
tioned algebraic semantics are useful for reliably and rigorously transforming programs into others. But,
mentioning such techniques in general terms does not show how they should be used. Here, we are inter
ested in showing the use of these technique in practice, the transformation being towards programs that
possess different and preferably better efficiency characteristics. For example a program that is faster, but
may use just a little more memory.

As well as allowing performance enhancing changes to be made to programs, another beauty of the
algebraic semantics is they are simple to use in practice. Indeed the rigorous transforming of programs
into other more efficient programs can be performed mentally. Due to the simple nature of Occam’s se
mantics, any part of even very large programs can be reasoned about and transformed informally, though
still thoroughly and rigorously. This is akin to transforming a mathematical expression into another, that
is identical, but easier to calculate.

The Fast Fourier Transform program was initially written in the process oriented method. The “but
terfly” processes of the F.F.T. was drawn and then described in occam directly. The calculation was then
inserted into the butterfly process.

If this program is to run on multiple transputers with more than one butterfly on each processor, mul
tiplexors must be added to multiplex the many channels over the four links of the transputer. As the
transputer is entirely sequential and cannot execute multiple butterflies simultaneously, the program was

CHAPTER 2. BACKGROUND MATERIAL 12

transformed so the internal parallelism and associated overheads were removed. The task is performed by
observing the data flow within the parallel processes on the transputers. Communication is then changed
into assignment and arrays of channels are changed into arrays of variables. This results in a completely
sequential program that will run faster on a single transputer. Also, as is seen in the F.F.T. example, once
the program has been sequentialised, some of the arrays are redundant. There is no longer the potential
for any part of the calculation to happen at any time and in any order. Removing this redundancy saved
a large amount of memory in this example.

A completely sequential program had now been achieved. This is suitable for running on any sequen
tial processor. However, the transputer can also perform link communications in parallel with computa
tion. Thus, the program can be further transformed. The transformation here being to turn code from its
sequential form,

PROC p r o c e s s . s e q (CHAN OF T y p e i n , o u t)
. . . v a r i a b l e s
WHILE TRUE

SEQ
i n ? d a t a
p r o c e d u r e (d a t a , p a c k e t)
o u t ! p a c k e t

into a parallel form,

PROC p r o c e s s . p a r (CHAN OF T y p e i n , o u t)
v a r i a b l e s

SEQ
i n ? d a t a O
PAR

i n ? d a t a l
p r o c e d u r e (d a t a O , p a c k e t O)

WHILE TRUE
SEQ

PAR
i n ? d a t a O
o u t ! p a c k e t O
p r o c e d u r e (d a t a l , p a c k e t l)

PAR
i n ? d a t a l
o u t ! p a c k e t l
p r o c e d u r e (d a t a O , p a c k e t O)

Even the most elaborate array indexing optimisations have only as many as 3 or 4 PAR constructs in the
WHILE loop once parallelised.

Notice all communications are set up before any computation is started. This works on the current
compilers as these processes are executed in the order they are listed in the program. Nevertheless, in
general one should write,

PRI PAR
PAR

i n ? d a t a l
o u t ! p a c k e t l

p r o c e s s (d a t a O , p a c k e t O)

though this may result in a slightly larger program.
Another example used more in this work is the parallelisation of code that also involve some subtle

changes to the program’s behaviour. If both the channels in the following process were across links and

CHAPTER 2. BACKGROUND MATERIAL 13

it was desired for this process to obtain maximum parallelism, the process could be transformed from the
following,

PROC b u f f e r . s e q (CHAN OF PACKET i n , o u t)
v a r i a b l e s

WHILE TRUE
SEQ

i n ? p a c k e t
o u t ! p a c k e t

into a parallel form,

PROC b u f f e r . p a r (CHAN OF PACKET i n , o u t)
. . . v a r i a b l e s
SEQ

i n ? p a c k e t O
WHILE TRUE

SEQ
PAR

o u t ! p a c k e t O
i n ? p a c k e t l

PAR
o u t ! p a c k e t l
i n ? p a c k e t O

As another example, this result collecting process from a farming harness,

PROC c o l l e c t . r e s u l t s (CHAN OF PACKET l o c a l , i n , o u t)
. . . v a r i a b l e s
WHILE TRUE

PRI ALT
l o c a l ? p a c k e t

o u t ! p a c k e t
i n ? p a c k e t

o u t ! p a c k e t

could be parallelised into,

CHAPTER 2. BACKGROUND MATERIAL 14

PROC c o l l e c t . r e s u l t s . p a r (CHAN OF PACKET l o c a l , i n , o u t)
v a r i a b l e s

SEQ
{{{ g e t p a c k e t O

PRI ALT
l o c a l ? p a c k e t O

SKIP
i n ? p a c k e t O

SKIP
}}}
WHILE TRUE

SEQ
PAR

o u t ! p a c k e t O
. . . g e t p a c k e t l

PAR
o u t ! p a c k e t l

g e t p a c k e t O

The parallel implementations here have similar, but not identical behaviour. In the parallel version there
is the potential to perform a second input before the first output. In some situations this second process
would prevent deadlocking behaviour the first process would not.

As mentioned earlier, this method of optimisation not only contained rigorous theory, but is also the
most usable, methodical and practical for every day use. This usability and practicality reveals itself in
the following two ways,

1. which particular transformation is appropriate in the particular situation at hand always seems ob
vious, and,

2. all of the transformations are very simple to perform.

Thus in general, it is simple to see where to apply the theory in any situation.

2.4 The processor farm
In this section what was considered to be good farming practice is looked at in more detail.

To recap, farming out consists of a farmer handing out work to a number of workers, these items of
work are independent of one another and results are either passed to a harvester or are passed back to
the farmer. The length of time it takes to process each job can vary without a loss of performance being
incurred. The topology used to interconnect the processors is largely irrelevant, though it can affect the
performance of the farm. Further to this, the processor farm possesses a number of other clear advantages.

As the jobs of work are completely independent of one another, and are performed on separate proces
sors the work load is balanced out completely automatically by the nature of the design. On algorithmic
and geometric distributions this balancing is achieved by hand. In essence the processor farm has a very
simple design and is very effective at performing tasks. Further, it is also very easily scalable. The seal-
ability of a processor farm is bound by the amount of parallelism in the decomposition of the application
and the amount of bandwidth in the implementation. This again contrasts with the other two distributions
where the number of processors used is likely to be very much tied into the shape of the application.

It is generally agreed in transputer folklore that only compute bound applications will farm well, and
those that are communication bound will not. However, there appears to be no method that will determine
whether an application is compute bound or communication bound. It is believed that application’s are
communication bound because of a communication bottleneck at the farmer and the harvester.

CHAPTER 2. BACKGROUND MATERIAL 15

2.5 Naming conventions
In this thesis, processes are called after the real domain from which they come. Thus, in the processor
farm, these names are taken from agriculture, giving us a farmer, some workers and a harvester. This
agricultural analogy is used deliberately, not only for labelling, but also for thinking purposes. This reuse
of nomenclature is done in the hope that with it we will also obtain all of the tried and tested efficient
methods that have been developed in this field of work.

One of the reasons for not using the other names that are used in transputing community is these other
types of thinking and labelling schemes are often hierarchical in nature (master slave etc.), and here an
attempt is made to depart from hierarchical models and a move towards models in which the components
are equals.

On a similar note, it is prefered to call the tasks in the farming harness “job distribution” and “result
collecting” instead of demultiplexing and multiplexing as some others have. The sources of the result
packets are not retained by the processes of the harness, as would be the case in multiplexing.

2.5.1 Diagrammatic conventions
A few diagrammatic conventions are used in this thesis. In simple diagrams no variation of line thickness
is necessary. In more complex diagrams the following conventions are used. Communication channels
are drawn using thin lines and low priority processes are drawn with boxes constructed from thin lines.
Links and high priority processes are drawn with lines of medium thickness. Processors are drawn with
boxes constructed from thick lines. See figure 1.

Figure 1 : Drawing style used in this thesis

2.6 Hardware: Kent’s transputer system
The transputer was designed as a communicating computer on a single silicon chip. Thus, transputers
have a central processor, some memory (making it a very good embedded system processor) and a number
of communication links. The name transputer comes from transistor computer. The transputers used for
this research are Inmos T800s. In addition to the four kilobytes of on-chip memory, about half have four
megabytes of external memory, a third have 256 kilobytes and the remainder possessing either one or two
megabytes. The instruction set of the T800 was designed to execute occam efficiently.

So all of the later communication bound results can be put into context, it is worth looking in detail
at what is known of the internal architecture of the system used here.

In Kent’s MEiKO system the transputers are connected together using MEiKO’s own general purpose
message routing devices, commonly termed switch-chips. We use wiring files to connect our transputers
into the topology of our choice. There are four switch-chips per board. These boards are in turn, con
nected to a forty-slot backplane. There being two rows of twenty boards on one backplane. The way
these boards are connected is by both vertical and horizontal connection. The horizontal connections are
between alternate boards, not adjacent boards.

Due to the synchronous method of communications used by the transputers’ link engines, the sending
of packets and acknowledgements is delayed, thus introducing latency into the formula for communica
tions and thus the switch-chips reduce the bandwidth of communications. For every switch-chip through
which a message passes there is a loss of bandwidth incurred. It’s believed this loss of bandwidth is 5%
per switch-chip [W+ 89].

CHAPTER 2. BACKGROUND MATERIAL 16

2.7 UNITY
So far we have looked at the background theory behind occam and the transputer. These have been the
standard theoretical areas have been looked at and used for several transputer research projects, especially
at Kent. However, in this work programs have also used the UNITY theory of programming.

Despite the wide range of differences to be found in applications and more recently in architectures
too, the UNITY philosophy is that there are more similarities to the task of programming than there are
differences. Thus programming should be viewed as a single discipline. In UNITY, all programs are
developed in a similar manner. Program designs are then mapped onto any architecture for execution.

Program development in UNITY is based on a small theoretical foundation. This foundation consists
of a small computation model and an associated proof system. The UNITY proof system is rich and ex
pressive and yet also flexible and abstract enough to enable the development of programs for all forms
of parallel architecture. Thus the standpoint taken by UNITY is very much the complete opposite to the
current general mainstream view of programming. One example is the existence of a foundation, opposed
to many closely related fragmented disciplines. Here these differences are looked at as are the reasoning
behind the choices made.

2.7.1 How UNITY is used here?
In this work UNITY’S execution model and program notation is used. Using the execution model one
can consider how programs are executed. Using the program notation one can construct and examine
the logical structures found in programs. The execution of programs on the following architectures is
considered: the UNITY execution model, a conventional Von-Neuman machine and a processor farm.
As program development is not performed in this thesis the proof system is not mentioned in detail.

In this section the choices made by the theory are looked at, the notation it uses (in the situations
when it has to have a program notation), the UNITY execution model and how programs are mapped
onto architectures.

2.7.2 Philosophy
In [CM87] the goal is to show how programs can be developed systematically for a variety of architectures
and applications.

As we are aware of the semantic preserving program transformations in occam, it is easier to envis
age two computers could be performing the same application, even though they are running completely
different programs. This is something not thought possible until UNITY was learnt. Why this was not
considered before is interesting. This could be due to architectures shaping our programming decisions
and even our bugs, i.e. the different architectures could influence the decisions we make when trying to
implement the same application, thus resulting in different types of error on different systems.

The previous paragraph started discussing the application, progressed to discussing programs and fi
nally discussed architectures. It is this order we consider things in UNITY. The application first, the pro
gram second and the architecture last. The application is our primary focus and goal.

2.7.3 Choices
Foundation over taxonomy

Language shapes our thoughts, and in science we have the choice of language and of paradigm. In Physics
and Chemistry there are fundamental laws. However, in terms of plant life, so much exists, Botanists clas
sify what exists through observation. In computing there are an increasingly large number of categories
of both application programs (databases, word processors, operating systems), languages to write them
in (procedural, object oriented, functional, parallel) and architectures to run them on (message-passing
MIMD, shared memory MIMD, SISD and SIMD). Although the taxonomy approach has its merits and
its uses, UNITY has many advantages in providing a theory with which to develop any program for any

CHAPTER 2. BACKGROUND MATERIAL 17

architecture. The task of programming being identical for all the applications and architectures, not dif
ferent in different situations. Thus UNITY attempts to be a small foundation theory for computing that
transcends taxonomy.

Choice of foundation

In Physics the fundamental laws are those from which all others are derived. Here we are not just in
terested in studying computation and programming, for which a model such as the Turing machine is
sufficient. Here we are interested in program development and desire a foundation theory that aids us in
this.

Here Chandy and Misra have proposed a small rich and expressive theory that can develop any ap
plication program for any architecture. An alternative is to have a theory for each part of our taxonomy,
a methodology ideal for building databases and for message-passing computer systems. Such specific
theories might yield elegant solutions for their particular domain, but for those particular domains only.
Such specific theories would not easily be applicable to other areas. At the risk of paying this price we
give ourselves the advantage of having a single unified framework in which to build anything.

Design versus coding

The choice here is between proving programs correct or developing programs correct. The first consists of
writing a program and then verifying that it meets its specification. The second is interested in developing
a program from a specification.

The first is interested in programming and proofs of program texts. The second is interested in the
stepwise development of designs for programs that are then implemented. As ultimately we are interested
in performing some action in reality with the aid of our application, we choose the latter.

Formal and informal descriptions of programs

Informal reasoning is useful in helping us to reason about programs, for example philosophers sitting
around a dining table. With such analogies there is no formal notation that one needs to learn and then
learn to see beyond. Nevertheless, such reasoning cannot be checked in a rigorous way and there are
several decades of evidence to show that programmers are fallible. In complete contrast to this, a mathe
matical notation is checkable. The small simple unifying framework of UNITY limits and thus restricts
what and how much notation can be used. As both forms of reasoning have their uses, both forms are
used when useful and appropriate.

Operational and non-operational reasoning about programs

It is possible to reason about programs in two ways. The first is reasoning about the computation as it
unfolds. The second is reasoning about the static properties of a program, the things that are always true.
In UNITY the static view is used. It is easier for us to deal with constants. Operational based reason
ing has its value and provides insight in algorithm development. It often being based on operational and
even anthropomorphic reasoning. Dijkstra is strongly against the use of such anthropomorphism [Dij89a].
Yet his work is full of anthropomorphic inspiration: railway analogies (semaphores [Gen65] and others
[Dij89b]), Elephants built from Mosquitos humming in harmony [Dij89c] and a parallel partition (see
quicksort [Hoa61]) inspired by the Dutch National Flag [Dij82], Nevertheless, when using operational
reasoning to prove programs correct,

1. we make many more mistakes, often by overlooking certain sequences,

2. the reasoning argument is much longer,

3. it is often harder to convince others of the correctness of an algorithm using operational reasoning.

Two other concerns that perhaps should be separate in programming are inspiration and perspiration. The
inspiration of an idea for a design and the perspiration from constructing that design.

CHAPTER 2. BACKGROUND MATERIAL 18

Separating proofs from program text

An early advocate of using assertions for proving that a program is correct was Alan Turing. At a con
ference in Cambridge (24 June 1950) Turing gave a short talk on “Checking a Large Routine” [Hoa80,
HJ89b],

How can one check a large routine in the sense of making sure that it’s right? In order that the
man who checks may not have too difficult a task, the programmer should make a number
of definite assertions which can be checked individually, and from which the correctness of
the whole program easily follows.

Although this statement is based on sequential and operational thinking, performing checking with alge
braic assertions does work. It has now been realised it is much quicker to work with the properties of the
algorithm. Partly as these deal with all aspects of the algorithm, rather than just particular states at par
ticular points. In UNITY we are also interested in abstracting away from the program text and proving
the design of our program correct, not the actual text of a programming language itself.

Separating correctness from complexity

UNITY is interested in separating a program from its implementation. One program may be implemented
on a number of different architectures. The correctness of a program is independent of its implementation.
A program design is implemented via a mapping. Discussing complexity measures is only valid of a
program and a mapping. UNITY has a logical proof system for discussing a program’s correctness and
the concept of mapping for implementing programs.

States, assignments and state-transition systems

State transition systems are used in many areas related to computing. State transition systems have a good
methodology and thus are useful. Nevertheless, the semantics of the problem is lost once represented in
terms of state transitions. Thus, in UNITY we choose to use the clean expressive form of assignment to
represent the state changes of our programs.

We are not interested in architectures during program development. Thus, although the von-Neuman
one-word-at-a-time bottleneck probably exists in all present computer architectures, it is not of interest
here. UNITY allows us to perform complex assignments. Such an assignment could be performed as a
sequence of assignments or possibly by several processors in unison.

Control flow and Determinism

Two concepts UNITY does not consider fundamental to programming are control flow and determinism.
Consider a program that consists of two operations working on a stream of data. The program could

be fashioned in one of two ways: either as loop containing the two operations, or two co-routines both of
which have a loop containing one operation. The execution of these co-routines may be interleaved in any
arbitrary fashion. What is important is the flow of data, not the flow of control of execution. Control flow
is not an concept essential to programming. Further as programs may be expressed much more elegantly
without control flow it is not included in UNITY.

The same is true of determinism. A program executed twice on the same machine may consume dif
ferent resources and may even produce different results. Some systems are inherently nondeterministic
and we wish to be able to design such systems in our formalism. Thus, nondeterminism is included in
UNITY. Nondeterminism is also useful as it allows us to not restrict ourselves by specifying excess de
tail.

With UNITY it has been found that a programming model based on assignment, but not control flow,
possesses good properties.

CHAPTER 2. BACKGROUND MATERIAL 19

Synchrony and asynchrony

Some computer systems are synchronous, for example a systolic array has a common clock. At the other
extreme, computer networks spanning the globe are asynchronous. A complete theory of computing
should be able to discuss both, and without bias. In trying to be a unified theory UNITY has both.

2.7.4 The name UNITY
The name UNITY stems from the way in which Chandy and Misra choose to view programs, that of
Unbounded Nondeterministic Iterative Transformations.

2.7.5 Execution model
The UNITY execution model consists of selecting a statement in the program and executing it. This pro
cess is repeated indefinitely. The statements are selected for execution completely nondeterministically,
though the selection process is fair over time — in the sense that every statement is selected infinitely
often. Thus, after one assignment statement has been executed, another assignment statement is selected
for execution. This second statement may be the same statement, it may not be, this is not relevant. What
is important is that the execution is fair, if only over an infinite period of time.

Although our UNITY programs, once run, continue to execute indefinitely, they may reach a point
from which no further change occurs, this is termed a fixed point.

This execution model is designed for program development and is clearly not practical as an efficient
method for executing programs. The model is interesting as all programs only consist of statements that
make progress to some degree or at worst keep the program in the same state. Any program containing a
statement that undoes the progress made so far will prevent, potentially, the program from ever reaching
a fixed point. It is precisely because the execution model is not restricted by implementation issues in
anyway that UNITY and its execution model is an unrestrictive and thus powerful program development
tool.

If R represents one of the possible execution sequences of a program and R q .state is the initial state.
Variables that are not initialised in the initially-section (see subsection 2.7.6, page 22) may take on differ
ent initial arbitrary values on different runs of the program. Relabel is the j ’th statement to be selected for
execution. Thus, given any statement, Relabel, and a state, R i.state, to execute it in, R z+\.state is the
uniquely defined state after execution of that statement. All assignments are deterministic and terminate
in a finite amount of time.

2.7.6 Notation
In order to give examples of the fact that it is possible for all applications to be developed uniformly for
all architectures, UNITY possesses a notation for programs. Nevertheless, UNITY is not about a pro
gramming language and this notation pays no attention to abstraction mechanisms or data structures.

The notation is based on the syntax for Pascal. UNITY programs have the concept of a logical block,
variable declarations, even a name for the program, a “program” keyword and a list of sections.

Program structure

A UNITY program may consist of up to four sections. These are laid out as follows,

Program name
declare declarations
always equations
initially equations
assign assignments

end

The last three sections consist of the same type of constructs.

CHAPTER 2. BACKGROUND MATERIAL 20

Assignment statement

UNITY programs are only about assignment. Thus UNITY naturally has the basic assignment statement,

x := expr

The type of the expression and the variable must be identical.
UNITY also has multiple assignment. UNITY has two forms for multiple assignment. The traditional

syntax with a list of variables and expressions with the elements of the lists being separated by commas,

x, y := y, x

and a new notation consisting of composing other assignment statements with the lexical symbol for par
allelism,

i := 1
|| total := 0

The new syntax greatly increases the readability of assignments involving components which are unre
lated logically, but where nothing prevents the different components from being executed at the same
time. Where the components are related logically, as in the case of swapping, the traditional syntax is
invariably the more readable.

A variable may appear more than once on the left side, however the value assigned must always be
the same.

As UNITY is based solely around assignment there are no constructs for performing selection. That
said, within the right-hand side of an assignment UNITY permits selection through the use of boolean
expressions. This is often known as case analysis. The ~ symbol is used in the syntax as a token to
separate the alternative expressions from one another.

x := -1 if y < 0 ~
0 if y = 0 ~
1 if y > 0

This formatting is arbitrary, this expression could equally have been written on one line.
So that assignments are deterministic, if more than one boolean expression is true, the appropriate

expressions should all have the same value (this must be must guaranteed by the programmer). If none
of the boolean expressions are true, the value is not changed.

Care should be taken when combining ifs with parallel assignment as the ifs binds tighter than a par
allel composition of assignment-components, but bind looser than in a multiple assignment.

Composition

Composition of separate assignment statements into a block or list of assignments is denoted by a 0 sym
bol.

Note that although the infix symbols 0 and || are visually similar and they both perform statement
composition, the operations performed are different. A Q is used to join statements together that are to
be regarded as entirely separate. A || joins the two component statements into one statement that is to
be performed as a single operation (although the statement is best read as two separate statements). The
operation performed by || is synchronous, the operation performed by Q is asynchronous.

Quantification

UNITY possesses a powerful construct named quantification. As it is even more expressive and useful
than replication in occam, quantification is used for generating an even wider range of objects. We intro
duce it here through its use in generating assignments.

CHAPTER 2. BACKGROUND MATERIAL 21

Quantified assignment

A quantified-assignment consists of an assignment, prefixed by a quantification. This consisting of a list
of variables and a boolean expression.

i : 0 < i < N ::

These bound or quantified variables are local and thus are only in scope within the quantification. The
scope is delimited with a pair of obtusely angled brackets.

(II i : 0 < i < N :: A[i] := 0)

This allows quantified-assignments to be used among and within other constructs.
The instance of a quantification is defined by Chandy and Misra as a set of values of the bound vari

ables that satisfies the boolean expression in the quantification. An instance of a quantification must al
ways be finite and may be empty. One reason for this finiteness is the fairness of execution rule. The
execution model can not fairly execute an infinite number of statements infinitely often. For the same
reason the number of statements must also constant throughout the running of a program.

Thus a quantified-assignment denotes zero or more assignment-components. These are obtained by
replacing the bound variables in the assignment by their instances. Thus the above quantified-assignment
is equivalent to,

A[0] := 0 || A[1] := 0 || . . . || A[N-1] := 0

As can be seen here the use of a boolean expression gives greater flexibility over the usual contiguous
range of values obtained with a replicator or a f o r loop. For example,

(II i>j : 0 < i,j < N :: Id[i,j] := 0 if i - = j ~
1 if i = j

)

can be also written as,

(|| i : 0 < i < N :: Id[i, i] := 1
II (II j : 0 < j < N A i -i = j :: Id[i,j] :=0)

)

The symbol on the far left in a quantification dictates the style of assignment produced. If the parallel
assignment symbol, ||, is used one multiple assignment statement is formed. If the composed assignment
symbol, Q, is used several separate assignment statements are formed.

Any undefined variables are considered to be free. For convenience we omit boolean expressions that
would only re-state array bounds.

The other uses of quantification

In UNITY’S programming notation the other uses of quantification include quantified expressions. These
use binary, associative and commutative operators and functions that combine two elements of the same
type. Thus, quantification can apply any operator or funcation to a whole array.

Quantified expressions are formed by supplying an operator or a function instead of a statement com
posing symbol. Thus, quantifications can be used in the following way to perform both expression evalu
ation and to denote specific values. Most operators can be used. Here are some examples, the first is our
UNITY programming notation equivalent for,

N - 1

T>
¿=0

CHAPTER 2. BACKGROUND MATERIAL 22

total := (+ i : 0 < i < N :: A[i]) { Sum of array. }

biggest := (max i :: A[i]) { Largest value in A. }

is.sorted := (A i : 0 < i < N :: A[i] < A[i+1]) { Is sorted? }

count := (+ i : 0 < i < N A A[i] > A [j]:: 1) { Number of elements larger than A[j]. }

(D i :: A[i] := 0) { Initialise array. }

Functions must have unit elements (min()’s is oo), operators must be binary, associative and commutative,
i.e. the order of application of operators must be irrelevant.

Quantification is also used within the UNITY logic to specify properties of a program by quantifying
Hoare logics (see [Hoa69] and [HJ89c]) over the program’s statements. This is how UNITY obtains the
nonoperationality of program properties from an execution model that obeys a fairness rule defined in
terms of the execution of statements.

The assign-section

The assign-section of a UNITY program consists of a non-zero, static and finite set of assignment state
ments. A requirement of the UNITY logic is that a program contains a minimum of one statement. As
has been said, UNITY only deals with static programs, as programs with a dynamic number of statements
would complicate the fairness of the execution model.

The initially-section

The initially-section specifies the initial conditions, the strongest predicate that holds prior to execution.
This consists of a list of equations that for our convenience are written with all the expressive facilities
available to us in the assign-section. Equations are written with an equals sign opposed to an assignment
symbol. In the initially-section a 0 denotes a sequential ordering of the equations. In this author’s opinion
a semi-colon should be used here.

Some initial values are expressed in terms of other initial values that must be already defined. Thus
the set of equations must be proper. This constraint consists of three parts.

1. All variables acquire unique values.

2. The equations are compilable. Namely that all quantification variables are either bound or are ini
tialised earlier on.

3. The equations are well-defined, i.e. after quantification expansion, any variable appearing on the
right-hand side or in a subscript, appears on the left-hand side earlier on.

The always-section

The a/wayi-section consists of a set of equations that always hold (invariants). This section is useful
for defining program variables in terms of others. The variables on the left-hand side of the equations
are transparent variables, the name coming from them being referentially transparent. Transparent vari
ables are functions of nontransparent variables. They are “read only”, i.e. they may not be assigned to or
initialised, though they may appear on the right hand side of any expression. Thus allowing transparent
variables to be used as macros. Transparent variables must be proper and conform to the same constraints
as the variables in the initially-section.

The always-section is not needed for writing programs, however it is advantageous in having a set of
invariant equations that are easy to reason about.

CHAPTER 2. BACKGROUND MATERIAL 23

2.7.7 Mapping
Once a UNITY program is developed, it is then mapped onto the particular architecture, or architectures,
one is interested in running the program on. This is the second of the two stage process of program de
velopment in UNITY. It is this mapping stage that includes all the architecture specific aspects of imple
mentation. Optimisation being an example. Developing a mapping should be a mechanical process, all
the creative design work being performed in the development of the program design.

In [CM87] Chandy and Misra give some hints and ideas for the mapping of UNITY programs on to
real architectures, including electronic circuits. For distributed systems they recommend that a variable
be mapped either onto the local memory of one processor or onto a channel. The channel naming two
processors. It is also assumed that all channels possess some buffering. Synchronous communication is
not considered.

2.7.8 UNITY summary
UNITY is the work of Chandy and Misra. They suggest the act of programming is identical for all ap
plications and architectures. With the proliferation of isolated studies in the different areas of research
and applications: database programming, vision systems, object oriented, neural networks and operating
systems; and especially with the different programming metaphors of the different parallel architectures
it appears various programming methodologies have popped up. The thesis of their work is there is a
fundamental common task to programming which is a foundation for all programming work; and that all
applications can be developed for all architectures in a uniform manner from this foundation.

Comparing UNITY with other theoretical computer science theories, there have been several for
mal theories developed that try to develop large correct programs, a failing of intuitive methods. Where
UNITY is unique is that it addresses the fact that programs out live the architectures they are run on.

2.8 Summary
Six areas have been looked at in this chapter.

1. There are at present three methods in which to organise parallel programs. In UNITY these methods
are termed execution strategies or mappings.

2. The Process Oriented approach to programming consists of describing all the aspects of a program
directly in separate communicating processes and running these in parallel. It is this directness of
description that leads to all of the method’s advantages of clarity and elegance.

3. Occam is a parallel programming language with an algebraic semantics designed to describe par
allel and embedded systems succinctly and with precision.

4. The transputer is a communicating processor designed to execute Occam efficiently. In the work
here the transputers are connected via flexible, though slightly slow, electronic switches. It is un
derstood through local folklore that the method in which these switch-chips are used to configure
the machine could be greatly improved.

5. The algebraic semantics of occam can be used in a rigorous and practical discipline to transform
occam programs into others. This being performed with a view to optimising performance.

6. UNITY is a theory that provides a foundation for programming. It contains an execution model and
a proof system. In UNITY, applications are designed and then implemented, with formality aiding
the first of these stages.

In the next chapter where these two theories agree and conflict is looked at, this is done respect to
farming in particular.

Chapter 3

Origins of this study of farming

This chapter looks at programming from the perspective of UNITY’S framework and considers how this
impacts upon the purely process oriented approach used with occam. How to map UNITY programs onto
transputer’s execution strategies is also looked at. The additional insight provided by the first of these is
used to look at farming. This includes looking at some of the work already performed in this area. The
chapter closes with two questions to which there are no immediate answers.

3.1 The UNITY perspective and the process oriented model
This research was started by spending some time learning the various aspects of occam programming,
transputer implementation and program optimisation. Then UNITY was discovered. This was then learnt
over the period of the next few months. After having been engrossed in this theory for some time, attention
returned to the programming of transputers, a discipline not practised while UNITY had been learnt. It
was realised the UNITY approach had clarified understanding in a number of ways, and thus had brought
to light a number of issues with respect to the way one should program transputers. Thus, the mapping
of UNITY programs onto transputers execution strategies is looked at here.

Of the two approachs, UNITY is preferred. It focusing on application design before implementation
issues. In contrast, the process oriented method focuses on constructing an implementation straight away.

In the remainder of this section looks at the insight the UNITY framework shed on four transputer
programming issues.

3.1.1 Program efficiency
One aspect of the UNITY approach that looked appealing was its potential for arriving at implementations
of a greater efficiency than the process oriented method. This being due to UNITY dealing with efficiency
as an explicit part of the development process.

This contrasts with the process oriented method of programming where an application being built from
a number of communicating processes. It is possible to use this method in a bottom up fashion, which
may cause efficiency problems. If a program is constructed from components already in existence, there
is a potential for inefficiency, as not all of these components would be designed with the requirements of
the current application in mind. While the final program may have the correct emergent behaviour (i.e.
it works correctly), it is not likely to be as efficient as a mechanism specifically derived for the purpose.

3.1.2 Execution strategies
The second stage of program development in UNITY is to map the program design onto an architecture.
This is achieved by replacing UNITY’S abstract execution model with a more concrete execution model or
strategy. In the case of transputers these strategies would be: a processor farm, an algorithmic distribution,
a geometric distribution or perhaps a combination of these strategies. From this a number of realisations
were arrived at.

24

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 25

From this it became clear that what are called parallelisation techniques in the process oriented ap
proach to programming are called execution strategies in UNITY terminology.

As in UNITY the execution strategy is chosen in the mapping stage, a single application may result in
very different implementations on different architectures. Thus, it is possible for two very different pro
grams to perform exactly the same task. Their differences being due to the programs running on different
architectures.

Using UNITY’S specification refinement approach one should build an application, then decide which
paradigm will execute the application the most efficiently. What is obviously needed is a method by which
to make this last decision. At present there does not appear to be a method to aid in the making of this
decision.

Probably the most important realisation made in this work is that applications and execution strategies
are independent of one another. As this is important, it is also worth restating this from both angles. An
application is independent of the execution strategy used and an execution strategy is independent of any
application that it may run. To a certain extent it seems both this author and the community in general
were already aware of this, however using UNITY to study program execution has clarified this fact.

This independence implies that execution strategies may not be restricted to any particular range of
applications.

3.1.3 Producer consumer model
One specific issue directly related to farming is that of how jobs should be distributed. Farming applica
tions consist of supplying different data values to the same procedure. The best method of expressing a
set of regular statements such as this in UNITY would use a quantification. Such a UNITY program could
then be mapped onto any architecture. If it was mapped onto a conventional single processor machine,
this repetition would probably be expressed with something like a f o r loop, the mechanics of which are
simple: index values are generated by the top of the loop, one at a time, and are consumed by the body
of the loop, one at a time. This is just the producer-consumer model. If the same application were to be
mapped onto a processor farm, this should also be able to use the producer-consumer model. The work
is generated by the farmer and executed by the workers. The regulation of the work is automatic. The
farmer cannot give out any more work if there are no workers free to perform it and similarly the workers
cannot perform work if it has not been given out.

That said, two farm designs seen in this work contain a mechanism to control the flow of work, instead
of allowing the work to flow naturally as it is now realised we should. The first of these was the original
harness used in the application that will be discussed in subsection 3.2.1 (page 30). This had a farmer
that was aware of which workers had been given work and had not yet returned results and gave out work
accordingly. This method was found to suffer from a bottleneck when the farm was large, the workers
would sit dormant while waiting for their next job to be delivered by the harness. In the occam 2 reference
manual [Inm88] a regulator process is also discussed. Some buffering systems have also been seen that
hinder the efficiency, and are thus not suitable, for farms.

This is one example that shows, as the UNITY approach suggests, that one should build a farm from
the point of view of getting the execution performed as efficiently as possible, as discussed in subsection
3.1.1, not from the point of view of just building up an implementation from a number of communicating
processes that, when joined together, just happen to perform what is required.

The farming execution method of work distribution uses the client-server model of interaction. It is
easy to analyse such a system to check that it is both deadlock and live-lock free. This is achieved by
checking there are no client-server cycles and thus that a partial ordering of the processes exist (further
details are in [WJW93]). For efficiency purposes we also use some link buffering in implementations of
farms. These also use the client server model of interaction. Thus such buffering will not change the fact
that a system is both free of deadlock and live-lock.

In summary, a farm automatically performs any work that exists in a balanced way. The only thing
one needs to arrange in an implementation is for work to be passed out simply and efficiently.

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 26

3.1.4 Mapping work
The example in [CM87] where architectural considerations are discussed talks about synchronous proces
sor arrays and shared memory systems. The decompositions suggested for these architectures involving
N 2, N 3 and even N 4 processors, where N is the size of the problem.

This approach suffers from being inflexible; the amount of resources required being directly propor
tional to the size of the application. This may result in either not enough processors being available, or
conversely, too many processors being available and a portion of the machine lying idle.

Distributed systems consist of processors that have memory and channels. In [CM87] Chandy and
Misra suggest that each variable should be mapped onto either of these. While this is of course possible,
and we know communications are equivalent to assignment, see subsection 2.2.4 (page 10), this gives us
little information as to how a program might be mapped and organised onto this architecture.

We can get more information from looking at the architecture of transputers itself. It is known the
transputer has at least three execution strategies. Applications can be mapped onto these. Our job as
programmer is just to decide which execution strategy is the most appropriate.

It was from looking at the subject of implementation from this point of view, that it was realised one
can decide what execution strategy is the most efficient to use. Previously this author would use the ex
ecution strategy suggested by the internal structure of the algorithm application’s main algorithm.

The processor farm is the most efficient execution strategy at best. It is also the most flexible, the num
ber of processors used is unrestricted by the size of the application or other such details. This allows us
to use however many processors are available. Thus it seems sensible, when highly efficient and flexible
implementations are required, to try mapping applications onto a farm before other execution strategies.

3.1.5 A mapping example
At the time this research started no mapping work had been seen. Here is given a full example of the
mapping of a UNITY program onto both a single processor implementation and a transputer farm. This
second program is then optimised for efficiency.

Here is the design of the UNITY program. This colours the area surrounding the Mandelbrot set of,

z z 2 + c

for complex z and c. This colouring is performed according to the distance each point on the complex
plane is from the attractor infinity, or at least a suitable approximation to it. The Mandelbrot set itself,
termed M , contains all of the other attractors and for simplicity all of these are traditionally just coloured
black [Man82, PR86],

The program fills the array, screen, with the natural numbers up to Imax (the number of iterations we
are prepared to do) or Imax + 1 (the set). Normally black appears as zero in palettes, however using zero
here would cause this design to loop infinitely, due to UNITY’S non-terminating execution model.

A translation is required between the area of the complex plane one is interested in viewing and the
screen. The program needs to perform this translation from screen coordinates to a complex number. This
is performed by the function map().

Program M a n d e lb ro t
declare screen: array[0..WTDTH-1,0..HEIGHT-1] of integer;

z : array[0..WIDTH-l,0..HEIGHT-l] of complex;
initially (|| x, y : 0 < x < WIDTH A 0 < y < HEIGHT :: screen[x,y], z[x,y] = 0, 0+0i)
assign (|| x, y ::

screen[x,y], z[x,y] := screen[x,y] + 1, z[x,y]2 + map(x,y)
if |z[x, y]| < A A screen[x,y] < Imax

|| screen[x,y] := Imax + 1 if |z[x,t/]| < A A screen[x,y] = Imax
>

Note that at the program’s fixed point all the instances of the “if” conditions are false, preventing the
assignment statement from making further progress.

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 27

To map this program design directly onto a single computer, f o r loops could be used to execute the
program instead of the UNITY execution model. Here is such a program. This has been written in occam
for a transputer using replicated PARallels. Adapting this program for a conventional processor simply
consists of changing the four replicated PARs to replicated SEQs or the for loop of the language used.

Traditionally screen memory maps the pixels along the screen’s rows into adjacent memory locations.
Due to modern caching, varying this dimension quicker than the other results in better performance. Thus
here the WIDTH dimension of the array is declared second dimension.

PROC m a n d e lb ro t ()
VAL Imax IS 4000:
VAL A IS 1 0 . 0 (REAL32):
[HEIGHT][WIDTH]INT s c r e e n :
[HEIGHT][WIDTH]REAL32 z r , z i :
PAR y = 0 FOR HEIGHT

PAR x = 0 FOR WIDTH
s c r e e n [y] [x] , z r [y] [x] , z i [y] [x] := 0, 0.0(REAL32), 0.0(REAL32)

PAR y = 0 FOR HEIGHT
PAR x = 0 FOR WIDTH

SEQ
WHILE (modulus (z r , z i) < A) AND (s c r e e n [y] [x] < Imax)

SEQ
s c r e e n [y] [x] , z r , z i := s c r e e n [y] [x] + 1,

c o m p le x .s q (z r , z i)
REAL32 c r , c i :
SEQ

c r , c i := map (x, y)
z r , z i := z r + c r , z i + c i

IF
m odulus (z r , z i) < A

s c r e e n := Imax + 1
TRUE

SKIP

This program terminates when all pixels in the plane have had their distance from the attractor calculated.
The UNITY program design can also be mapped onto a network of transputers. Again this is done by

replacing the UNITY execution model by the architecture’s model of execution. In this case this is the
message passing method of execution, with which there are a number of execution strategies to choice
from. Farming being the strategy of execution chosen here.

With this program design the instances of the quantified assignment can be farmed out. If again, a
direct mapping is performed, the following set of processes are obtained,

PROC fa r m e r ([] CHAN OF BOOL r e q , [] CHAN OF JOB job)
SEQ y = 0 FOR HEIGHT

SEQ x = 0 FOR WIDTH
ALT i = 0 FOR SIZE r e q

BOOL any :
r e q [i] ? any

j o b [i] ! x ; y

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 28

PROC w o rk e r (CHAN OF BOOL r e q , CHAN OF JOB jo b ,
CHAN OF PRODUCE r e s u l t)

VAL Imax IS 4000:
VAL A IS 1 0 .0 (REAL32) :
INT x , y , s c r e e n :
REAL32 z r , z i :
WHILE TRUE

SEQ
r e q ! TRUE
jo b ? x ; y
s c r e e n := 0
WHILE (modulus (z r , z i) < A) AND (s c r e e n < Imax)

SEQ
s c r e e n , z r , z i := s c r e e n + 1, c o m p le x .s q (z r , z i)
REAL32 c r , c i :
SEQ

c r , c i := map (x, y)
z r , z i := z r + c r , z i + c i

I F
m odulus (z r , z i) < A

s c r e e n := Imax + 1
TRUE

SKIP
r e s u l t ! x ; y ; s c r e e n

PROC h a r v e s t e r ([] CHAN OF PRODUCE r e s u l t)
[HEIGHT][WIDTH]INT s c r e e n :
INT x , y , c :
SEQ t = 0 FOR WIDTH * HEIGHT

ALT i = 0 FOR r e s u l t
r e s u l t [i] ? x ; y ; c

s c r e e n [y] [x] := c

These processes are then configured together in order to perform the work. The below configuration,
for the sake of simplicity, ignores the need for a harness due to the transputers limited fanout problem,

VAL w o rk e rs IS 2:

[w o rk e rs]C H A N OF JOB j o b :
[w o rk e rs]C H A N OF PRODUCE r e s u l t :
PLACED PAR

fa rm e r (jo b)
PLACED PAR w = 0 FOR w o rk e rs

w o rk e r (jo b [w] , r e s u l t [w])
h a r v e s t e r (r e s u l t)

By increasing the number of worker processors used, the time taken to execute the task should decrease.
Another method of speeding this program up is optimisation. In the case of this program the code for

the worker can be optimised by quite a large amount.

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 29

PROC w o rk e r (CHAN OF BOOL r e q , CHAN OF JOB jo b ,
CHAN OF PRODUCE r e s u l t)

VAL Imax IS 4000:
VAL A IS 1 0 . 0 (REAL32):
INT x , y , s c r e e n :
REAL32 z r , z i , z r 2 , z i 2 , c r , c i :
WHILE TRUE

SEQ
r e q ! TRUE
jo b ? x ; y
s c r e e n := 0
c r , c i := map (x, y)
z r , z i := 0 . 0 (REAL32) , 0.0(REAL32)
z r 2 , z i2 : = z r * z r , z i * z i
WHILE ((z r2 + z i2) < (A * A)) AND (s c r e e n < Imax)

SEQ
s c r e e n , z r , z i := s c r e e n + 1,

(z r2 - z i2) + c r , (MULBY2(zr * z i)) + z i
z r 2 , z i2 : = z r * z r , z i * z i

IF
(z r2 + z i2) < (A * A)

s c r e e n := Imax + 1
TRUE

SKIP
r e s u l t ! x ; y ; s c r e e n

Discussion

This mapping has been performed by translating the UNITY program directly into an occam program.
Initially this contained all the parallelism inherent in the original design. This was then optimised using
Roebbers’s techniques as discussed in section 2.3. This included the use of some parts of the program
being implemented using equivalent but faster sequences of instructions. Also, some parts of the program
that were previously coupled in parallel were altered to be executed into sequence, leaving just the amount
of parallelism that is available in the implementation.

It is interesting to note that occam can cope with almost all of the parallelism present in the UNITY
design.

This mapping was performed by choosing of execution strategy. In this case mapping the elements of
a quantification onto a processor farm. This mapping was performed, easily, and as suggested by Chandy
and Misra, directly in one stage (i.e. without the use of any intermediate language).

In [Bro94] Brown introduces UNITY Communication Language, UCL, which is just such an interme
diate language. With this two mapping stages are required; the first being from UNITY to UCL, the second
being from UCL to the implementation language. Brown’s reason for proposing UCL is that it possesses
a more concrete parallelism and communication. However, the direct mapping performed here, from the
more general form of parallelism in UNITY to the executable form of parallelism in occam was found
to be very easy. Further, occam was designed so programs would be very easy to read and reason about,
however, the occam in [Bro94] is very obscure and difficult to understand.

Finally, it is worth noting once more there is no application design performed during the mapping. The
process is mechanical and should only be performed after the application has been designed completed.

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 30

3.2 Other current work within the transputer community
At this point in time another research project at Kent was just coming to completion. This was presented at
a conference that this author also attended, the 14th World occam and Transputer User Group conference
in Loughborough, England. As a number of implementations of interest were discussed at this conference
this work will be discussed in context to the rest of the conference.

A number of applications were of interest, falling into three categories. The first consisted of the suc
cessfully farmed application from Kent just mentioned. The second was a method of implementation
similar to farming that wasn’t performing as efficiently as the application in the first category. The third
consisted of some applications that had not been farmed out, but might benefit through being implemented
using this execution strategy.

3.2.1 An application successfully farmed
The project at Kent had implemented a computationally intensive biological protein searching and match
ing application [SS91, Stu91]). The program was farmed and the final version included a very efficient
farming harness. This harness was designed by Welch and developed within the process oriented phi
losophy [Wel88] and was designed to be as efficient as possible; making full use of all the parallelism
available within the hardware of the transputer. The links were engaged in parallel by separate buffer
processes. The job distribution mechanism consisted of just a simple ALT, no attempt to make any deci
sion in software was made.

This harness was implemented by Sturrock who found that there were also some parts of the harness’s
design that could be fine-tuned to improve performance further.

3.2.2 Inappropriate topology
Phillips and Capon have developed a system to load balance an arbitrary collection of processes on a
network of transputers [PC91]. This system involves the use of a communication harness similar to that
used in farming. Further to the work in the paper, where the transputers were arranged as a pipeline, the
work presented at the conference had the processors arranged in a torus.

It was realised that constructing an efficient farm using a toroidal topology would be difficult. This is
due to the number of job sources varying from worker to worker depending upon the worker’s location in
the torus relative to the farmer, see figure 2, Here workers 1 and 2 receive work down one link, however

Figure 2: Message routes through a torus

worker 3 can receive work down two links. This processor would need a process that used an ALT just
to obtain work, however the other two workers would not. Either the harness would need to consist of a
number of similar processes or have one general process that in same cases would ALT over one channel.
The first of these could be efficient, but would result in a large harness. The second would be less efficient
but would require a smaller number of processes.

Thus it became clear a toroidally shaped farm is unlikely to work well. And ultimately that the shape
of the topology and the complexity of the harness code ultimately influence the efficiency of the imple
mentation.

In the case of toroidal topologies, the problems discussed above came about through using a topology
not appropriate for the task in hand. Thus, toroidal topologies appeared to be inappropriate for farming.
A toroidal topology has a completely uniform and symmetric shape. Nevertheless, the communication
structure of a farm is not completely uniform and symmetric. It consisting of one to many to one com
munication structure, a shape a torus does not have.

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 31

So the problems encountered came about through using a topology not appropriate for the communi
cation structure being implemented. This inspired an exploration of what topologies are appropriate for
a farm.

It was realised there was a need for this clear understanding of what made topologies appropriate for
farming, along with the other work performed here to be known about more widely.

3.2.3 Potentially farmable applications not farmed
There were a number of papers documenting applications that hadn’t been farmed. From the nature of the
applications, it occurred to me during the conference, they could have been implemented using a processor
farm. From the figures mentioned in subsection 2.1.1 (pages 4-5) it appears farming has the potential
to be more efficient in many situation than either algorithmic or geometric distributions. Thus farming
out these applications, in a sensible way with a sensible granularity, might well result in a more efficient
implementation for some of these applications.

This brought me to the conclusion that when one is implementing applications on transputers, farming
should be the first execution strategy attempted out of the three when an efficient solution is desired.

3.2.4 Distant workers have priority
Jones and Goldsmith ran a workshop at the conference on the formal methods, developed at Oxford, that
can be used with occam [JG91]. At this the subject of farming came up and whether the ALTs in the
job distribution mechanism should give highest priority to the the on-chip worker or other workers. This
issue generally seems to be considered important. At this workshop Jones said that when both the on-chip
worker and other workers wanted more work at the same time, giving the work to the distant workers leads
to a greater amount of overall parallelism.

3.2.5 Summary
From the work presented at the conference it was realised the process oriented approach needed to be
disseminated further and also there were clarifications learnt through the use of UNITY that still needed
to be clarified further.

By viewing farming as an execution strategy for UNITY programs, it should be possible to develop a
coherent model of what makes a farm implementation efficient. This would allow quantitative predictions
to be made about the performance of a particular application.

3.3 Questions
Looking at this other work raised two questions that were not immediately answerable. These two ques
tions are looked at here.

3.3.1 What farming harness is the best?
A number of farming harnesses had been seen, all of which were designed to be good. With the harness
designed by Welch being the more efficient so far. The argument for how it was the most efficient were
based on how the transputer worked internally. Experimentation with an application had backed this up,
finding only a few improvements that could be made. This led to a few questions:

1. Could this harness be improved upon further?

2. Was there an even more efficient harness that could be used? For example by using Roebbers’s
approach.

3. Could other applications be executed with the same level of efficiency as the protein sequence ap
plication?

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 32

So far Welch’s harness had only been tested with one application. Before it could be reliably regarded as
a highly efficient harness, it is natural that it should be used to farm out many more applications.

From studying the literature it was noticed all the papers documenting research on farming only used
one application. This was true for both the majority of papers (these documented an implementation) and
the most in-depth study of farming implementation details (based around a ray tracing program [PZ90]).
Even though ray tracing and some other applications are flexible, and some are flexible enough to cover
quite a wide range of both possible job run times and message sizes and even can allow for the grouping
of jobs, any genuine application is not likely to be as flexible as we may well desire when exhaustively
testing farming harnesses.

As execution strategies are independent of the applications they execute, it also follows that farming,
and also farming harnesses, can be studied independently of any particular application. Thus such a study
can be performed on a number of farming harnesses for any range of applications, simply by abstracting
down to and focusing on the aspects of an application that the farming harness sees. Further, as a farm is
independent of any application it executes, there should be an optimum way of implementing a processor
farm and harness that should work as efficiently as possible. A good farming harness should be good
at farming out any application that is of the type that farms out well. Whether this was true or not was
something else to test for.

A farming harness is only aware of three aspects of an application,

1. the size of the job message,

2. the size of the result message, and,

3. the length of time it takes to process a job.

This last item can also be viewed as the length of time the harness sees in between each of the commu
nications for each worker. Both sides of the harness see: communication, delay, communication, delay,
communication and so on.

As these three sizes are the only aspects of the application of which a harness is aware, testing a num
ber of farming harnesses with a suitable set of values for these parameters, it should be possible to discover
which harness was the most efficient for any application.

Studying farming in this way will make it easier to arrive at a coherent model of farming, from which
it is possible to decide if farming is a suitable execution strategy for an application and, if so, how to then
implement it with a very high degree of efficiency.

From a coding point of view it was clearly possible to have a generalised worker process that accepted
a message of any size, worked for a completely arbitrary length of time, as specified directly by the mes
sage and output a result the size of which was also specified in the original packet received.

As the farming harness is an execution strategy and not a part of the application, it has been realised
here applications can be abstracted away from completely. Thus, a study of farming harnesses and their
efficiencies can be performed without any restrictions being imposed by any particular application.

3.3.2 How much is farmable?
As has been said, all the applications that had been seen farmed out involved performing the same task for
different values. The way such a structure would be expressed in UNITY would be with quantification.

If such UNITY programs of these application were mapped onto a conventional architecture, the quan
tification would be replaced by something like a f o r loop. In the case of transputers, these programs
could be implemented on a farm. This begged the question: Is everything that is expressed with quan
tification farmable? This also led to the question: What other UNITY constructs are farmable? Or more
generally: What other applications can be farmed out?

CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 33

3.3.3 Summary
The fact that farming and the application are independent of one another provides two interesting results.
Firstly, farming can be studied independent of any specific application (the performance of a farming
harness being independent of the application). Secondly, farming might be able to execute a much wider
range of applications than it has been currently. Both of these conclusions appeared to be original.

It was realised a model of farming could be put together, and it was decided to do this here. One of
the harnesses at hand was initially highly efficient and some improvements had been made to this original
design. Further, all of the previous work on fanning had been performed in context to only one applica
tion. With the use of the UNITY execution model it had also been realised what applications could be
sensibly mapped on a processor farm could be explored.

It was decided to look at the two areas in the order they have been mentioned here. First, finding
the most efficient harness for the applications already known to be farmable. And second, looking at
what range of applications is also farmable. It seemed sensible to perform the two studies in this order as
the other applications that may be farmable may require a different type of implementation. And it may
take some time before it’s realised what type of harnesses (say) is the most appropriate for these types of
application.

Thus these two issues are studied in the next two chapters. Chapter 4 evaluates a large number of farm
implementations for their efficiency. Chapter 5 explores the range of applications that can be farmed out
efficiently.

Chapter 4

Efficient farm implementation

This chapter documents the study to discover how to implement very efficient processor farms for the first
series of INMOS transputers.

4.1 Overview
This chapter documents the development and performing of a number of experiments. This started out
as a search to find the most efficient of six farming harnesses.

The following experiments were performed.

1. Measuring the throughput of the links.

2. Measuring the throughput of the six harnesses.

3. A study of the breakdown in efficiency of the six harnesses for the wide range of demands that
applications can require.

4. A study of farm shut down.

5. A comparision of different topologies.

6. A look at the priority issues that arise in the coding of a harness.

Before looking at the experiments themselves we look at the harnesses to be tested and how this study
was planned.

4.2 Which harness is the most efficient?
As discussed in subsection 3.1.2 (page 24) it has been realised that applications and farming are inde
pendent, and thus farming harnesses can be tested independently of an application. The fact a farming
harness is independent of the application it executes implies that if a harness is efficient, it should be effi
cient for any compute bound implementation. As there is invariably a desire to want all applications to be
as efficient as possible, here a search has been attempted to find the harness that is as efficient as possible
for as many applications as possible.

4.2.1 Efficiency context
Processors have a set of instructions they can carry out. Each instruction taking the processor a known
length of time to perform. In programming we are interested in getting processors to perform tasks that
are not in this immediate vocabulary (instruction set). We are interested in more complex and intricate op
erations. We are used to building up these more complex tasks indirectly from a combination of the tasks

34

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 35

that can be performed directly. There are always many different ways of getting the processor to perform
a given task, i.e. there are many different combinations of the processor’s basic operations that result in
it performing the desired task. We are interested, if not sometimes obsessed, in finding the combinations
of operations that are the quickest for the processor to produce that result in the behaviour desired.

As farming is just a mechanism for execution, here we are interested in the harness performing a cer
tain set of tasks in the minimum amount of time (overhead). Thus a good farming harness should be ef
ficient and execute as quickly as possible, allowing the application to have the most access to the C.P.U.
One way of looking at programming is to say it is about obtaining the desired emergent behaviour, with
ideally the sum of the instruction run times being as small as possible. However, this obviously doesn’t
just mean using only the quickest instructions when writing a program. It may take many of the smallest
instructions to perform the task in question. Where as using a few slow instructions, ALT for example,
may perform the task quicker. Also, this is not the way in which applications are written, from the instruc
tion timing sheet towards the application, but the other way round, from application towards the instruc
tions. Although the run time of an implementation may be a parameter of the specification, unfortunately
there is no apparent methodology to refine a specification into an implementation that has any particular
run time or the quickest run time. The run time of an implementation is not a controllable parameter of
the refinement process.

4,2.2 The breakdown of harness efficiency
As has been said, the area of interest here was finding the harness that was the most efficient for as many
applications as possible. The question initially asked here being: is there a harness that farms out ap
plications more efficiently than harness B? This question eventually became a more general one: which
harness efficiently farms out the widest range of application mappings?

Having abstracted back to a parameterised view of applications, the approach to take, in order to find
the most efficient harness, was to wind up or down the values of the parameters that are the only factors to
affect farming harnesses. By studying the points at which the harnesses break down, the harness to break
down the last will be the most efficient.

A harness’s breakdown point is the point at which the farmer and the harness can no longer supply
jobs at the rate needed to keep the workers constantly supplied with work. Clearly the more large jobs a
harness can supply, the larger the number of mappings that harness will able to farm out efficiently due
to it being compute bound rather than communication bound.

The breakdown of farming harness efficiency is the most important aspect of farming harness be
haviour to study. It is easy to get caught into studying non-fundamental aspects of farming harness im
plementation. For example by just studying the code of the farming harness and considering simple al
ternatives, such as whether it should be the local or the distant worker that should have priority in a job
distribution process. These issues are just fine tuning issues and should be dealt with last, once a good
farming harness has been found. Thus this research set out to study the breakdowns of some well designed
farming harnesses, before researching any other aspects that may constitute an efficient farm.

4.3 Harnesses
This section introduces the design details of the six harnesses studied. Two had already been used in
applications and had shown to be efficient. The other four stem from ideas put forward by Roebbers and
Welch that should improve these existing farming harnesses. For convenience throughout this thesis these
will be referred to as harnesses A, B, C, D, E and F.

4.3.1 Harness A: this author’s harness
The first harness was designed and written by this author for one particular application in which speed of
execution was an issue. Being by the author, the design criteria and the ideas for why this harness was
thought to be good are known.

This harness was designed with a minimalist approach. It was believed this would result in an appli
cation that executed the quickest. The harness should have as little communication buffering as possible

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 36

and contain as little code as possible. It was believed buffering would prevent a quick execution, jobs that
filled up buffers far down the farm could not be performed by idle workers closer to the farmer. Being
minimally buffered would prevent this. In order to have as little buffering as possible the harness would
have to have as few processes as possible.

farmer worker worker harvester

Figure 3: Structure of harness A

In terms of the higher level organisation of the farm results should come out of a different end to that
of the jobs so as to keep the amount of communications performed by each processor balanced to a greater
degree.

This harness had the distant workers with the highest priority in the PRI ALT of the job distributor
process (s p l i t t e r) . It was believed this would be more efficient as the only time both workers would
want work is upon initialisation. In this situation if the first job was passed to the local worker, the worker
process upon receiving the job would be instantly context switched out so that the high priority job distrib
utor could obtain the next job. Thus it was generally considered better to give out the first jobs to the most
remote corners of the farm where they can be started immediately and the rest of the farm is initialised in
a wavefront which propagates back towards the farmer.

PROC d i s t r i b u t e (CHAN
CHAN
CHAN

OF REQ r e q , CHAN OF JOB work,
OF REQ l o c a l . r e q , CHAN OF JOB l o c a l . j o b ,
OF REQ d i s t a n t . r e q , CHAN OF JOB d i s t a n t . j o b)

. . . v a r i a b l e s
WHILE TRUE

SEQ
r e q ! TRUE
work ? jo b
PRI ALT

d i s t a n t . r e q ? any
d i s t a n t . j o b ! jo b

l o c a l . r e q ? any
l o c a l . j o b ! jo b

This approach was considered a good idea as in the application this harness was developed for, jobs were
smaller than results and the harvester was placed at the opposite end of the line of workers to the farmer.
Thus it seemed sensible to make the smallest type of message travel the furthest distance, and the jobs
were smaller than the results for this particular application. The order of the guarded processes above
has been reversed for these experiments. This argument doesn’t take into account that the overhead for
communicating a job is just the set up times for the communication instructions, the length of the message,
or more importantly the length of time to perform the transfer, is performed in parallel and may not be
relevant. However, Roebbers’s course had not yet been attended at when harness was designed. This
illustrates nicely that by not knowing the rules they can be easily broken.

The code for the result collector was equally simple and minimalistic.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 37

PROC c o l l e c t o r (CHAN OF PACKET l o c a l . r e s u l t , d i s t a n t . r e s u l t ,
r e s u l t s)

. . . v a r i a b l e s
WHILE TRUE

PRI ALT
l o c a l . r e s u l t ? r e s u l t

r e s u l t s ! r e s u l t
d i s t a n t . r e s u l t ? r e s u l t

r e s u l t s ! r e s u l t

The c o l l e c t o r process gives the local worker priority, thus allowing the worker to get on with the next
job. As all combiners in the whole farm do this, all workers have some form of buffer to output to and
don’t have to spend long periods of time driving the slow links. Here it is preferred to call this operation
collecting, instead of multiplexing as others do. This is because in this case we are collecting the results
from a farm and giving them to a harvester. The task of multiplexing is about sending a number of separate
communications through one physical channel.

These two processes are run at high priority with the worker process at low priority,

PROC w o rk e r (CHAN OF REQ r e q , CHAN OF JOB jo b ,
CHAN OF REQ d i s t a n t . r e q , CHAN OF JOB d i s t a n t . j o b ,
CHAN OF PACKET d i s t a n t . r e s u l t , r e s u l t s)

CHAN OF REQ l o c a l . r e q :
CHAN OF JOB l o c a l . j o b :
CHAN OF PACKET l o c a l . r e s u l t :
PRI PAR

PAR
d i s t r i b u t e (r e q , j o b , l o c a l . r e q , l o c a l . j o b , d i s t a n t . r e q ,

d i s t a n t . j o b)
c o l l e c t o r (l o c a l . r e s u l t , d i s t a n t . r e s u l t , r e s u l t s)

a p p l i c a t i o n (l o c a l . r e q , l o c a l . j o b , l o c a l . r e s u l t)

When a worker finishes a job it passes its result on to the on-chip collector process. The worker then gets
its next job of work from the on-chip splitter process, there is no need for a special buffer process to hold
this job for the worker, every process acts as a buffer for the information it holds. All that is needed is for
the next job to be on-chip.

4.3.2 Harness B: Welch’s harness
The second harness used here had been used very successful in an application mentioned in subsection
3.2.1 (page 30).

This harness was designed by Welch as a farming harness that exploited all of the internal parallelism
of the transputer. This was designed using the process oriented model mentioned in section 2.1 (page 3)
and thus consists of one process per function.

This harness had already been proved to give good performance and good linear speed up for one
application. It also resulted in a quicker execution than harness A for the application that harness had
been designed for.

The original design consisted of the workers arranged as a pipeline, see figure 4 (top of next page),
with the results being returned back up towards the farmer. Thus, by expanding the number of adjacent
workers, the farm’s topology can be changed from a pipeline (an unary tree), to a binary or ternary tree,
see figure 5 (also on next page for ease of comparison).

The harness was coded, tested and tuned in [SS91, Stu91]. For the protein sequencing application that
this harness was use for, Sturrock found the harness performed better when the results were passed along
to the last processor which is connected directly to the farmer chip. Here this is termed configuring the
workers in a ring, see figure 6 (bottom of previous page), opposed to as a pipeline.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 38

worker end.worker

Figure 4: Structure of a pipeline

Figure 5: General structure of a ternary tree
worker end.worker

Figure 6: Structure of a ring

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 39

Transformation

The original design for this harness had the potential to perform an amount of buffering that was decided
by the programmer. Sturrock found that the optimum amount of buffering to have was one item. For
simplicity it has been presumed here this result carries over to all application mappings and for the rest
of this work just a single buffer space is used in the other harnesses.

As only one item was needed Welch and Sturrock transformed the code of the process that performed
this variable amount of buffering into a process that just buffered a single job. Unfortunately this code
had an inefficiency in it.

SEQ
w o r k := FALSE
WHILE TRUE

PRI ALT
(¡ w o r k) & i n ? j o b

w o r k := TRUE
w o r k & r e q l ? a n y

SEQ
o u t l ! j o b
w o r k := FALSE

w o r k & r e q 2 ? a n y
SEQ

o u t 2 ! j o b
w o r k := FALSE

By following the code through, we can see that when w ork is FALSE, the loop only engages the i n
channel of the ALT. Then after setting w ork to TRUE and going around the loop again, the other two
channels are engaged and one of the output channels is given the job. This two stage process repeats
continually.

We can express this inputting and outputting more clearly as the two separate processes they are. Us
ing the techniques learnt from Roebbers’s course the code was quickly transformed into,

WHILE TRUE
SEQ

i n ? j o b
PRI ALT

r e q l ? a n y
o u t l ! j o b

r e q 2 ? a n y
o u t 2 ! j o b

This piece of code is much more obvious, natural, readable and also more efficient as it engages only half
as many ALTs.

This transformation can be performed explicitly in four stages: expansion, substitution and two stages
of minimisation.

The first stage consists of writing out the loop with two copies of the body, one in sequence after the
other,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 40

SEQ
work := FALSE
WHILE TRUE

SEQ
PRI ALT

(!work) & i n ? jo b
work := TRUE

work & r e q l ? any
SEQ

o u t l ! jo b
work := FALSE

w ork & req 2 ? any
SEQ

o u t 2 ! j o b
w o r k := FALSE

PR I ALT
(¡work) & i n ? jo b

work := TRUE
work & r e q l ? any

SEQ
o u t l ! jo b
work := FALSE

work & req 2 ? any
SEQ

o u t 2 ! j o b
w o r k := FALSE

Then replacing the value of w ork directly into the code at every place where w ork is used,

WHILE TRUE
SEQ

PRI ALT
¡FALSE & i n ? jo b

SKIP
FALSE & r e q l ? any

o u t l ! j o b
FALSE Sc req 2 ? any

o u t2 ! jo b
PRI ALT

¡TRUE & i n ? jo b
SKIP

TRUE Sc r e q l ? any
o u t l ! j o b

TRUE Sc req 2 ? any
o u t2 ! jo b

Here we can clearly see that the pre-conditioned guards are either constantly TRUE or constantly FALSE.
For those that are TRUE the pre-condition can be removed. For those that are FALSE the entire guard and
corresponding process can be omitted,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 41

WHILE TRUE
SEQ

PRI ALT
i n ? j o b

SKIP
PRI ALT

r e q l ? a n y
o u t l ! j o b

r e q 2 ? a n y
o u t 2 ! j o b

This first ALT only has one channel to engage, clearly there is no alternative here and this can be written
as a single communication,

WHILE TRUE
SEQ

i n ? j o b
PRI ALT

r e q l ? a n y
o u t l ! j o b

r e q 2 ? a n y
o u t 2 ! j o b

This last transformation is using the equivalence law input we mentioned in subsection 2.2.4 (page 10).

Code for harness B

The code used for harness B here was as follows,

PROC d i s t r i b u t e (CHAN OF JOB w o rk ,
CHAN OF REQ l o c a l . r e q , CHAN OF JOB l o c a l . j o b ,
CHAN OF REQ d i s t a n t . r e q , CHAN OF JOB d i s t a n t . j o b)

. . . v a r i a b l e s
WHILE TRUE

SEQ
w o r k ? j o b
PRI ALT

d i s t a n t . r e q ? a n y
d i s t a n t . j o b ! j o b

l o c a l . r e q ? a n y
l o c a l . j o b ! j o b

PROC j o b . b u f f e r (CHAN OF JOB i n ,
CHAN OF REQ r e q , CHAN OF JOB o u t)

. . . v a r i a b l e s
WHILE TRUE

SEQ
i n ? j o b
o u t ! j o b

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 42

PROC s a c r i f i c i a l . b u f f e r (CHAN OF REQ r e q ,
CHAN OF JOB i n , o u t)

v a r i a b l e s
WHILE TRUE

SEQ
r e q ! TRUE
i n ? jo b
o u t ! j ob

PROC c o l l e c t o r (CHAN OF PACKET l o c a l . r e s u l t , d i s t a n t . r e s u l t ,
r e s u l t s)

v a r i a b l e s
WHILE TRUE

PRI ALT
l o c a l . r e s u l t ? r e s u l t

r e s u l t s ! r e s u l t
d i s t a n t . r e s u l t ? r e s u l t

r e s u l t s ! r e s u l t

PROC r e s u l t . b u f f e r (CHAN OF PACKET i n , o u t)
v a r i a b l e s

WHILE TRUE
SEQ

i n ? r e s u l t
o u t ! r e s u l t

These processes were then connected together. The end worker needing two buffer processes instead of
a full harness. The pipeline topology is used here.

PROC w o rk e r (CHAN OF JOB j o b . f r o m . l i n k , j o b . t o . l i n k ,
CHAN OF PACKET l i n k . i n , l i n k . o u t ,
VAL INT id .n u m b e r , w orker)

CHAN OF REQ l o c a l . r e q , d i s t a n t . r e q :
CHAN OF JOB l o c a l . j o b , d i s t a n t . j o b :
CHAN OF PACKET c h a n n e l , l o c a l . r e s u l t :
PRI PAR

IF
id .n u m b e r < w orker

PAR
d i s t r i b u t e (j o b . f r o m . l i n k , l o c a l . r e q , l o c a l . j o b ,

d i s t a n t . r e q , d i s t a n t . j o b)
s a c r i f i c i a l . b u f f e r (d i s t a n t . r e q ,

d i s t a n t . j o b , j o b . t o . l i n k)
r e s u l t . b u f f e r (l i n k . i n , c h a n n e l)
c o l l e c t o r (l o c a l . r e s u l t , c h a n n e l , l i n k . o u t)

TRUE
PAR

j o b . b u f f e r (j o b . f r o m . l i n k , l o c a l . r e q , l o c a l . j o b)
r e s u l t . b u f f e r (l o c a l . r e s u l t , l i n k . o u t)

a p p l i c a t i o n (l o c a l . r e q , l o c a l . j o b , l o c a l . r e s u l t)

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 43

4.3.3 Harness C: a harness developed using Roebbers’s transformations
Roebbers’s course encouraged the use of single processes that, for the purpose of engaging links in paral
lel, repeatedly perform a sequence of PARs, each of which contain a small number of small processes. A
third harness was developed from harness A that utilised these techniques. The job distribution process
is as follows,

PROC d i s t r i b u t e (CHAN OF REQ
CHAN OF REQ
CHAN OF REQ

r e q , CHAN OF JOB work,
l o c a l . r e q , CHAN OF JOB l o c a l . j o b ,
d i s t a n t . r e q , CHAN OF JOB d i s t a n t . j o b)

v a r i a b l e s
SEQ

r e q ! TRUE
work ? jobO
WHILE TRUE

SEQ
PAR

SEQ
r e q ! TRUE
work ? j o b l

PRI ALT
d i s t a n t . r e q ? any

d i s t a n t . j o b ! jobO
l o c a l . r e q ? any

l o c a l . j o b ! jobO
PAR

SEQ
r e q ! TRUE
work ? jobO

PRI ALT
d i s t a n t . r e q ? any

d i s t a n t . j o b ! j o b l
l o c a l . r e q ? any

l o c a l . j o b ! j o b l

The behaviour of this job distribution mechanism is very different to that of harness B. This harness gets
in work from the link and in parallel decides which worker should get the job. This is considered advan
tageous over the approach taken by harness B as if the on-chip worker is busy, harness B passes incoming
jobs on to the sacrificial buffer automatically. If the on-chip worker then finishes its current task there is
a job within the transputer’s memory that the worker can not process.

The result collection mechanism is,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 44

PROC m e r g e (CHAN OF PACKET l o c a l . r e s u l t , d i s t a n t . r e s u l t ,
r e s u l t s)

v a r i a b l e s
SEQ

PRI ALT
l o c a l . r e s u l t ? r e s u l tO

SKIP
d i s t a n t . r e s u l t ? r e s u l tO

SKIP
WHILE TRUE

SEQ
PAR

r e s u l t s .! r e s u l tO
PRI ALT

l o c a l . r e s u l t ? r e s u l t l
SKIP

d i s t a n t . r e s u l t ? r e s u l t l
SKIP

PAR
r e s u l t s ! r e s u l t l
PRI ALT

l o c a l . r e s u l t ? r e s u l tO
SKIP

d i s t a n t . r e s u l t ? r e s u l tO
SKIP

These two processes are tied together in the same way as harness A.

4.3.4 Harness D: pointer passing harness
This harness came out of an attempt to save passing large messages between the various processes of
a harness and thus around the memory of the transputers. Welch believed it would be better to have a
harness that exchanged indexes into an array of messages than to continually set up and shutdown several
local PARs.

The strategy employed in this harness consists of declaring an array of message buffers and passing
indexes to these between the different processes of the harness as pointers. This method still consists of
having a number of separate processes, but doesn’t consist of long messages being passed between them,
just INTs.

Further, this method does not involve the continual setting up and shutting down of the expensive
PAR construct used in harness C. The disadvantage of that strategy being each component of the parallel
statement must terminate before the whole PAR can terminate and execution continue. Thus, if the mes
sage read on the output link is say much shorter than the message being read on the input link, the output
link will sit idle until the longer communication has finished. This holds the harness back from progress
ing. Similarly, harness C can prevent work from being done by preventing results generated on-chip from
being output to the harness as soon as possible. In this case, if a communication on the input link starts
up just before a job finishes, the worker process is preventing from outputting the result to the harness
until the incoming result is output. By having the links driven by separate processes, after a process has
completed a short task, that process can continue on to its next task.

The main disadvantage of this pointer passing method is that the compiler’s alias checking flag must
be turned off in order for the code to compile. The checking that the different parts of the array are not
accessed in parallel is removed from compilation and is given to the programmer to check or to prove.

This idea originates from a process that had two buffers, and a manager process, see figure 7 (next
page). This manager is also a buffer process to decouple the other three processes from working in com
plete synchronisation, i.e. to introduce an extra process to create some parallel slackness.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 45

Figure 7: A pipeline with manager process

For a farming harness Welch realised a manager process was not required. The worker and the pro
cesses of the harness would always communicating in pairs. Thus, these processes just needed to ex
change pointers, see figure 8 (next page).

worker end worker

Figure 8: Structure of harness D

Naturally if the jobs and the results to be available to any process that required them, the buffer slots
must be declared globally like so,

[3] INT l e n , n :
[3] [max.job.msg]BYTE jo b .m sg :
[3] [m ax .resu l t .m sg]B Y T E r e s u l t . m s g :

The harness processes Welch supplied were as follows,

PROC f a r m .o u t (CHAN OF JOB j o b s , CHAN OF PTR l o c a l . r e q , l o c a l . j o b ,
w o rk m ate . r e q , w orkm ate . j o b , VAL INT p o i n t e r)

INT p , p 2 :
SEQ

p := p o i n t e r
WHILE TRUE

SEQ
j o b s ? l e n [p] : : jo b .m sg [p]
PRI ALT

l o c a l . r e q ? p2
l o c a l . j o b ! p

w o rk m a te . r e q ? p2
w o rk m a te . jo b ! p

p := p2

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 46

PROC prom pt (CHAN OF PTR r e q , i n , CHAN OF JOB o u t , VAL INT p o i n t e r)
INT p :
SEQ

p := p o i n t e r
WHILE TRUE

SEQ
r e q ! p
i n ? p
o u t ! l e n [p] : : jo b .m sg [p]

PROC r e s u l t . b u f f e r (CHAN OF PACKET i n , CHAN OF PTR o u t , new,
VAL INT p o i n t e r)

INT p :
SEQ

p := p o i n t e r
WHILE TRUE

SEQ
i n ? n [p] : : r e s u l t .m s g [p]
o u t ! p
new ? p

PROC m erge (CHAN OF PTR l o c a l . r e s u l t , l o c a l ,
w orkm ate . r e s u l t , workm ate,

CHAN OF PACKET r e s u l t s , VAL INT p o i n t e r)
INT p , p 2 :
SEQ

p := p o i n t e r
WHILE TRUE

SEQ
PRI ALT

l o c a l . r e s u l t ? p2
l o c a l ! p

w o rk m ate . r e s u l t ? p2
workm ate ! p

r e s u l t s ! n [p2] : : r e s u l t . m s g [p 2]
P := P2

PROC a p p l i c a t i o n (CHAN OF PTR r e q , i n , o u t , new,
VAL INT p o i n t e r)

INT p t r . j , p t r . r :
SEQ

p t r . j , p t r . r := p o i n t e r , p o i n t e r
WHILE TRUE

SEQ
r e q ! p t r . j
i n ? p t r . j

. . . work from j o b . m s g [p t r . j] t o r e s u l t . m s g [p t r . r]

o u t ! p t r . r
new ? p t r . r

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 47

These four processes were tied together in the same way as harness B.

PROC w o rk e r (CHAN OF JOB j o b s , d i s t a n t . j o b ,
CHAN OF PACKET r e s u l t s , d i s t a n t . r e s u l t)

[3] INT l e n , n:
[3] [max.job.msg]BYTE jo b .m sg :
[3] [m ax .resu l t .m sg]B Y T E r e s u l t . m s g :
CHAN OF PTR o n c h i p . r e q , o n c h ip . j o b , o n c h i p . r e s u l t ,

o n c h ip , r e g , j o b , r e s u l t , new:
PRI PAR

PAR
f a r m .o u t (j o b s , r e g , jo b , o n c h i p . r e g , o n c h i p . j o b , 1)
p rom pt (o n c h i p . r e g , o n c h i p . j o b , d i s t a n t . j o b , 2)
r e s u l t . b u f f e r (d i s t a n t . r e s u l t , o n c h i p . r e s u l t , o n c h ip , 2)
m erge (r e s u l t , new, o n c h i p . r e s u l t , o n c h ip , r e s u l t s , 1)

a p p l i c a t i o n (r e g , j o b , r e s u l t , new, 0)

Again the worker at the end of the pipeline will need buffer processes to decouple the application process
from the slow link communications. Thus, the configuration code used for harness D has the same overall
structure of the worker process at the bottom of page 42.

Since this harness was designed and tested, it has been realised the message buffers are accessed here
as global variables. This being due to the processes of the harness using the names of the buffers directly,
without these variables being defined within the scope of the individual processes. By passing the buffers
into the processes as parameters they would be accessed as local variables. This approach to writing code
is not only more sound engineering practice, it is also faster to execute. The variables being accessed more
directly by the transputer, there being no need to use an indirect addressing mode. Here we show how the
p ro m p t process would be written using this technique,

PROC p rom pt (CHAN OF PTR r e g , i n , CHAN OF JOB o u t ,
[] INT n , [] [] BYTE jo b ,

VAL INT p o i n t e r)
INT p :
SEQ

p := p o i n t e r
WHILE TRUE

SEQ
r e g ! p
i n ? p
o u t ! n [p] : : jo b [p]

This network of processes would be set up with the following,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 48

PROC w o rk e r (CHAN OF JOB j o b s , d i s t a n t . j o b ,
CHAN OF PACKET r e s u l t s , d i s t a n t . r e s u l t)

[3] INT l e n , n:
[3] [max. j o b .msg]BYTE jo b .m s g :
[3] [m ax .resu l t .m sg]B Y T E r e s u l t . m s g :
CHAN OF PTR o n c h i p . r e q , o n c h i p . j o b , o n c h i p . r e s u l t ,

o n c h ip , r e q , j o b , r e s u l t , new:
PRI PAR

PAR
f a r m .o u t (j o b s , r e q , jo b , o n c h i p . r e q , o n c h i p . j o b ,

l e n , jo b .m sg , 1)
p rom pt (o n c h i p . r e q , o n c h i p . j o b , d i s t a n t . j o b ,

l e n , jo b .m sg , 2)
r e s u l t . b u f f e r (d i s t a n t . r e s u l t , o n c h i p . r e s u l t , o n c h ip ,

n , r e s u l t . m s g , 2)
m erge (r e s u l t , new, o n c h i p . r e s u l t , o n c h ip , r e s u l t s ,

n , r e s u l t . m s g , 1)
a p p l i c a t i o n (r e q , j o b , r e s u l t , new, 0)

Changing to this approach results in accesses to the messages being a cycle quicker to execute. However,
this improvement is not likely to be large compared with the differences in performance obtained by the
other harnesses in this study.

4.3.5 Harnesses E and F: bidirectional harnesses
Another idea Welch had was that harnesses like his, that only passed messages in one direction over the
links, could be used to run messages over the links in both directions and thus could supply jobs to another
worker process running in parallel with the first. The transputer has a very low context switch time so
switching between the two workers evenly would not be a large overhead. This would increase the amount
of bandwidth to the workers and the extra workers should also result in greater parallel slackness. Thus,
should one of the workers on a processor be waiting for a job, the processor has another worker process
to execute, instead of lying idle.

Using the links in both directions simultaneously doesn’t give double the bandwidth, due to the trans
puters sending acknowledgement packets, but, Welch estimated, should give another fifty per cent. As
the amount of computation performable hasn’t increased it is possible to deliver more work in the same
time to the same amount of computing power. This should prevent some implementations being commu
nication bound.

The other harness that uses the links in one direction like this is harness B. For the sake of complete
ness it was decided to also double up harness B so there was a doubled up harness design that could be
compiled with usage checking switched on. This might prove useful in performing comparisions between
the different aspects of harness design, and not just individual implementations.

4.3.6 General note
As a general note on harnesses. The way chosen to implement the harnesses here is with a fixed amount
of fan out and fan in. The reason for this is although the code for harnesses can be generalised to farm out
work for an arbitrary number of channels and links, this generally requires replicators that take longer
to set up than a normal ALT. As finding the best harness possible is what is of interest here, there was
no interest in then making such a harness flexible and potentially slower, in order to allow the harness to
be be configured for a poorer performance. Thus, when a harness for a ternary tree instead of a line of
workers is needed, an appropriate harness will be developed for that situation.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 49

4.4 Planning the study
We have established this study is interested in finding the most efficient harness. Also, we have looked
at the harnesses around at the start of the experiments. Here we look at how the experimentation was
planned.

4.4.1 The approach to testing
Most importantly, what was of interest was testing the design strategies that gave rise to these farming
harnesses, not just the code itself. This approach was acquired from UNITY, where one is interested in
the design of programs as opposed to the program itself.

The reason for this interest is the way in which a good program is written is much more important than
the program itself, since a technique can be used in other situations. Thus, once this experimentation has
arrived at a strategy that results in the most efficient harness known, we may be able to use that design
philosophy to construct a strategy for dealing with other situations with similarly optimal efficiency.

4.4.2 This study’s limited parameter space
In addition to the realisation that an application and an execution model are independent of one another, it
was also realised there are three main aspects of an application that a farming harness is aware of. These
are,

1. the average length of the job messages farmed out,

2. the average length of time to compute these jobs, and,

3. the average length of the result messages.

In UNITY terms, the actual values of these parameters would come from the way the application was
mapped onto the hardware. For any application, many different mappings are possible. What was of
interest here was finding which range of parameters are compute bound and thus efficient.

The natural scientific approach is to test a number of harnesses for a range of applications and then
display these results on a graph. These graphs would not only need to display these three parameters on
an axis each, but also another axis would be required for the purposes of comparision. This results in
graphs containing four dimensions. Unfortunately, only three dimensional graphs can be display easily.
This applying to the printed page especially. This led to a need for just having two parameters to vary.

Thus, the approach adopted here is tie together the two message related variables into one and evaluate
the harnesses performance with both job and result message being the same size. Doing this gives the
following variables,

1. the average length of job compute time, j , and,

2. the average length of message communicated, m.

This leaves us with a third axis free for comparisions as required. The method of comparision here being
efficiency.

This reduces the scope of the experimentation by a small degree, but without invalidating the results
obtained, as the two variables tied together are similar in nature. So the range of experimentation per
formed here has been restricted to a certain extent by our limitation to display results.

4.4.3 Varying the parameters
So this study was performed with two application parameters, j and m, to vary. There is also another
parameter, that of the number of workers in the farm, w.

So, in order to find the breakdown of the harnesses, all that was needed was to wind up or down these
three parameters. This generates a succession of mappings that are gradually more or less demanding
depending on the particular influence of the parameter. Each parameter just needs to be wound up or

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 50

down far enough until all of the harnesses have broken down completely. The harness that can cope with
the most demanding parameters will be the most efficient. Now a position had been reached where what
should be tested was known.

It was also easy to see and predict what affect increasing each parameter would have on performance.
Increasing w, the number of workers, would result in more work being performed and also more com

munications in any time period due to more workers claiming work. This would increase the load on the
farmer and would eventually result in the application becoming communication bound.

Increasing j , the average time it takes to process one job, would result in less jobs being processed
in any particular time frame. This would result in the demand for jobs being less frequent. In turn this
would decrease the load on the farmer and the application would become more compute bound, the same
number of jobs taking more time to be processed.

Increasing m, the average length of the messages, would increase the communication load on the
implementation and the farm will become communication bound.

An increase in B, the bandwidth of traffic coming out of the farmer, would results in more jobs going
into the farm at any one time. This would make the farm become more compute bound.

4.5 Mathematical modelling
It was suggested there were two things one might wish to predict in advance about an implementation.
The first is what a farm’s efficiency would be,

efficiency = eff(j, m, w)

The second is, for a given application mapping j and m, what is the maximum number of workers a farm
could have and still be efficient,

w = wmax (j , m)

The possibility of these were looked at.

4.5.1 Compute bound or communication bound
From thinking about what a programmer would want to use, it was realised one would be interested in
knowing in rough terms whether an implementation is likely to be compute bound or communication
bound. The actual efficiency may also be of use, though this is not as important.

It was realised that if a network of transputers was being utilised fully, both the links and the C.P.U.s
would be in use all the time. In terms of farming this would mean all the links’s bandwidth was required
to keep all of the workers in work all of the time. This could be expressed as “the throughput of the links”
would be the same as “the amount of work performed by the workers”, i.e.,

number of jobs through a link per second = number of jobs performed per second

The number of jobs one can get through a link, in a second say, is simply the bandwidth of the link, B,
divided by the sum of the number of bytes in the message, m, and the overhead of setting up the commu
nication. Here this is expressed as the number of bytes that could be transferred in the time it would take
to set up the communication, s,

B
m + s

The number of jobs performed in a second can be calculated similarly. This is the number of workers in
the farm, w , divided by the number of seconds it takes to perform each job, j ,

w
j

Putting these two together gives us a model in the form of a simple equation. This equation gives us an
expression for a farm in which both the computational and communication parts of the implementation

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 51

are working to the full.
B _ w

m + s j

This equation indicates that, in a farm, the maximum number of jobs a farmer can output in any time period
is inversely proportional to the length of those jobs, as well as being directly proportional to the amount
of bandwidth there is available both out of the farmer and around the harness. Similarly, the maximum
number of jobs that can be processed per second is proportional to the number of workers, and is inversely
proportional to the time it takes for one worker to process a job.

In terms of farm mechanics, an implementation is compute bound and runs efficiently when the work
ers demand jobs at a rate lower than the supply. Or more simply, when the number of jobs that can be
processed per second is less than the number of jobs that can be communicated per second. We can ex
press this property of compute bound farms in terms of a model based on the equation developed above.
In this model the relation between supply and demand for a compute bound farm is simply,

B w
--------> —

m + s j

Similarly, an implementation is communication bound and not very efficient when the throughput is not
enough to deliver the amount of work needed to keep all of the workers busy all of the time. Here, the
above relation would contain a < .

The bandwidth, B, is likely to be constant for any particular piece of hardware, with there being
slightly different values for each harness design, depending on its efficiency. On architectures like the
transputer system used here, measures can be taken to increase B by reducing the number of switch chips
used.

Communication setup time

In the above discussion, communication setup was measured in bytes, not time, as this hardware charac
teristic is usually measured. Here the communication’s start up cost was expressed in how many bytes
could the channel communicate in the time it takes to setup a communication. As we invariably know the
number of bytes to be transferred in a communication, but not how long it will take, measuring the setup
cost in this way is useful as it displays the start up overhead in the same metric that the length of the com
munication is measured in. This helps to provide some insight into the minimum size of a communication
that will be effective and how efficiently the communication channel is being utilised.

The value of s is easily calculated with the equation,

s = B x set up time

Thus, as the setup time for the T800 transputer is 3 microseconds, and 1.51 Megabytes per second has
been obtained through a link here, s has the value of 4.75 bytes, for a standard communication and 13.5
bytes for a counted array that uses an INT for the count.

Presented here, for the first generation transputer is the raw bandwidth, B\ the communication setup
time expressed in microseconds; the communication setup time expressed as the number of bytes that can
be transferred in that time, s; and the size of the communications needed to obtain 60%, 70%, 90% and
95% efficiency through the communication channel.

B set up time s m to get 60% to get 70% 90% 95%
Mb/s microseconds bytes bytes bytes bytes bytes

T800 1.5 3 4.75 7 11 42 90
T800 counted array 1.5 8.6 13.5 20 32 116 232

Table 1: Communication set up time’s influence on performance of transputer

For large s, very large messages will need to be communicated if the channel is to be used reasonably
effectively. As implementations should be driven by what will make an application efficient, a large s will

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 52

be detrimental to the performance obtainable for a fine grain mapping. Thus preventing such mappings
from being an option. If s is very large, communication can ceases to be useful if parallel implementations
are to be efficient. An example of this is in [JR92]. Here Jenson and Reed noticed that the communication
set up time from their host to their Intel iPSC/2 hypercube was 720 microseconds (this included the oper
ating system calls). As the bandwidth was 2.8 Megabytes per second, s is 2114 bytes here and messages
need to be of 3 to 5 kilobytes before 60-70% of the bandwidth is used and 19 or 40 kilobytes if 90-95%
of the bandwidth is to be used effectively. Thus, having such a large value of s for an architecture does
not encourage the communicating of small messages, such as just a single integer.

As the value of s is small for the first generation of transputer links, it is ideal for performing fine grain
communication and thus fine grain work.

When m is significantly greater than s, a situation we prefer to be in when implementing a farm, it
should be possible to omit s in calculations for simplicity and the results still be highly accurate.

4.5.2 Estimating the maximum number of workers
As well as having a general model of efficiency, a method to work out the maximum number of workers
a farm could cope with was also worked out.

Here we would like something that is calculated from the average time it would take to perform a job
and the average length of a work packet (or the average length of time it would take to communication
one). Thus we would like a function of the form,

w = wmaX{ j , m)
From the model of efficiency we already have,

B w
--------> —
m + s j

obviously the maximum number of workers possible in any situation is going to be related to the values
of j and m used,

w « J
m

This would seem to imply the way to proceed with an implementation, is to first measure the average job
processing time and the average message length and the bandwidth out of the farmer. Then an estimate
of the maximum number of workers such an implementation can have and it still be compute bound is,

w = j B
m + s

More generally, any farm with this or a smaller number of workers,

j Bw<
m + s

will be compute bound. Any farm with a larger number of workers will be communication bound.

4.5.3 Rationale for models’s simplicity
The models here are deliberately small and very simple. Initially, when considering potential mappings,
all we would like to know is either if a mapping will be compute bound or not, or how many workers a
mapping will allow. This second figure we only need to know to the nearest integer. It would be desirable
to know either of these as quickly as possible. A small model will be quick to work with. A good small
model will capture the essence of what is relevant, by giving all that is required, an estimate. A more
precise and thus detailed model would give more precise values. There are two problems with this.

Firstly, performing the calculation for a more precise model will take longer due to the larger number
of parameters involved in more complex models. All of these extra parameters have values that would

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 53

need to be found out. Some of these could obtained from data sheets. Others will have to be found by
measuring an implementation which is very time consuming. If finding out the values to many parameters
is time consuming, programmers will not bother to use the model.

Secondly, in order to be more accurate, a more detailed model would require much more complexity
and would need to take into account the performance characteristics of the topology and harness being
used. Modelling the harness would include issues such as the code’s latency. Modelling the topology
would include looking at the decrease in throughput from worker to worker. For example, if the through
put out of a farmer is,

B
m + s

Then if k is the amount of throughput lost through the execution of the harness on one transputer, the
throughput out of the first worker is,

771 + S
the throughput out the second worker is,

771 + s
and so on.

One of the major problem with constructing modelling to this degree of accuracy is that if the topology
or the harness is changed, the model needs to be changed appropriately too. Detailed models do have their
use, but here they are not considered appropriate for use in the initial stages of implementation.

There may be the requirement for models that possess greater accuracy and thus are slightly more
detailed in the appropriate ways. More detailed models exist in the literature, such as [TD90] by Tregidgo
and Downton. However, the emphasis here is on smaller models that are both needed and useful.

The largest model here still has five parameters. Two of these, B and s can be looked up here or found
by experimentation. One, w is selected by the programmer. The remaining two, m and j are a result of
the mapping strategy selected by the programmer. The first of these can be counted in bytes directly from
the code, the second is the only one that needs to be found by testing.

One problem with constructing models that attempt to obtain a certain degree of accuracy is that of
knowing what issues make appropriately large differences and are thus worth including in the model.

4.5.4 Summary
A model has been developed here that can be used to study a farm. It can find out whether an imple
mentation is compute bound or communication bound. By rearranging the equation it can also be used
to estimate the maximum number of workers an implementation may have and still be compute bound.

The first is more useful in studying an existing implementation. The second is more useful in devel
oping an implementation.

4.6 Raw link bandwidth
It was suggested that in the main experiments, the lengths of messages should be measured by the length
of time it takes to communicate them, instead of the bytes as is usual. The advantage of this being that
communication time and computation time can then be compared directly. This would provide insight
into how the two variables affect one another more directly. For example, it would not be obvious that
say, 1049 bytes of data would take 15.6 low resolution clock ticks to communicate. More importantly
an application is likely to become communication bound, not when the job communication time is equal
to the job process time, but when the job communication time is proportional to the product of the job
process time and the number of workers. Such a relationship would be much easier to spot if all of the
measurements being measured using the same metric.

The quickest way to turn a message length into a time is to measure how long it takes to be com
municated. This conversion needs to be something that will be constant. It was decided to look at the
bandwidth of both the links and the harnesses. Link bandwidth will be constant and thus it is looked at

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 54

in this section. The throughput of harnesses is going to be different from harness to harness, this is also
of interest, and will be looked at in the next section.

Thus, this experiment was performed in order to discover the speed of communication through a trans
puter link.

This experiment is naturally all about a communication. The basis of the whole experiment is to dis
cover how long it takes to perform the communication,

PLACED PAR
l i n k ! m e s s a g e
l i n k ? m e s s a g e

between two transputers.
Normally we are interested in communicating a counted array,

PLACED PAR
l i n k ! n : ¡ p a c k e t
l i n k ? n : ¡ p a c k e t

Thus, this experiment is very much about the amount of throughput obtainable for different lengths of
message.

There is also the issue of how far apart these two transputers are. So in each test we are also interested
in the number of switch-chips through which the communication takes place.

4.6.1 Developing the test program
In order to perform the timing of this communication it was decided to use the transputer’s in-built high
priority timer, as this gives a higher resolution of measurement.

That said, the length of time to communicate an individual byte or message is still very small so each
message was sent a fixed number of times, 128. An average was then taken.

For the experiment to be informative, communications from one byte up to several kilobyte messages
needed to be timed. Both extremes of this range being common in transputer implementations. It was de
cided to test packet lengths that are powers of two, starting at one byte and continuing up to 16 kilobytes.
A message of this size should be more than enough to overshadow the communication’s setup time. Six
teen kilobytes is also some way above the largest message size seen by this author in a genuine application
(4 kilobytes in Sturrock’s protein sequencer).

The timings were performed in the following way: an empty packet was sent across the link to act as
a synchronisation, the receiving end then noted the start time, the packets would be sent through the link
and the time difference was noted. The communication would actually get under way at the sending end
while the start time is being read. However, the first byte of the message will not be acknowledged and
thus the rest of the message not sent, until the receiving transputer executes the input statement.

The code used was,

[m a x . p a c k e t . len]B Y T E p a c k e t ¡
SEQ s i z e = 0 FOR 15

SEQ
n ¡= 1 << s i z e
l i n k ! 0 : ¡ p a c k e t
SEQ i = 0 FOR 128

l i n k ! l « n ¡ ¡ p a c k e t

on the sending transputer and,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 55

INT l e n :
[m a x . p a c k e t . len]B Y T E p a c k e t :

TIMER c l o c k :
INT s t a r t , s t o p :
SEQ s i z e = 0 FOR 15

SEQ
l i n k ? l e n : : p a c k e t
c l o c k ? s t a r t
SEQ i = 0 FOR 128

l i n k ? l e n : : p a c k e t
c l o c k ? s t o p
p e r fo rm a n c e ! s t o p - s t a r t

on the receiving end.
A bidirectional version of the code was also developed. Here the unidirectional communication, of

the following basic form,

P L A C E D P A R
SEQ i = 0 FOR 128

l i n k ! l e n : : p a c k e t

SEQ i = 0 FOR 128
l i n k ? l e n : : p a c k e t

was replaced by a pair of parallel communications sent across the one link bidirectionally,

PLACED PAR
PAR

SEQ i = 0
l i n k l !

SEQ i = 0
l i n k 2 ?

PAR
SEQ i = 0

l i n k l ?
SEQ i = 0

l i n k 2 !

FOR 64
s i z e : : p a c k e t
FOR 64
l e n : : p a c k e t 2

FOR 64
l e n : : p a c k e t
FOR 64
s i z e : : p a c k e t 2

The both of the variables named s i z e were initialised to the same value.
The two tests were performed by commenting folds in and out and toggling between the two tests.
The output from the p e r fo rm a n c e channel was sent to a third transputer. Thus giving the final

program, as shown in figure 9.

Figure 9: Test rig for link bandwidth experiment

The third processor handled the acquisition of the filenames, the conversion of the results into various
units (bytes per second, seconds per byte etc.) and the filing of these values. This was done in order to
keep the test code away from any external interferences. By having a separate processor perform these

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 56

tasks it prevents the setting up of the tests and storing of the results interfering with the running of the
test.

This also meant more of the code was held in on-chip memory, not on the slower off-chip external
memory. This would definitely not be the case if the outputting of the results to a file was performed by
a processor involved with the testing. This is as the system’s libraries involved for this system are large.

Having the test code in on-chip memory is ideal for this test. The bandwidth values arrived at is the
maximum performance of the transputer and is also applicable to all transputers, regardless of the make
of board being used. Thus these results are generic to all transputers.

The test program was compiled with all the usual Occam flags switched on.

4.6.2 The testing performed
With the test program developed, there was then the issue of in which environment to perform the exper
iment. It seemed best to try and explore the extremes and the structure of the machine in use. Thus, the
test program was run four times with the communication under test being between transputers of varying
distances for each run of the program. The four positions used were between transputers on,

1. the same board (the smallest distance involving just one switch-chip),

2. adjacent boards within the machine (not directly connected on the machine’s backplane),

3. alternate boards, namely board 4 and board 2 (alternate boards are directly connected on the ma
chine’s backplane via two switch-chips), and,

4. two boards that were as near to opposite ends of the machine as possible, namely boards 3 and 44,
(the worst case, involving approximately 15 switch-chips).

There was one very minor restriction with allocating boards for this test. This arose when the two trans
puters performing the timed communication were on different boards. In this situation the two transputers
had to be assigned to different board types (for example boards with different amounts of memory). This
restriction was imposed by the g e n r o u t program through which the physical placement was performed.
This limited the locations with which some tests could be performed within the machine.

The results were collected and analysed. There are three results: how long it takes to communicate
a byte, how long it takes to communicate the packets of the various sizes and the bandwidth that we can
obtain across a link.

4.6.3 Time to send a byte
The first thing discovered was how long it took to communicate a single byte down a link for each message
size. This is shown in figure 10 (top of next page).

As expected for counted arrays, when the size of the message goes up, the higher is the throughput
obtained. The overheads shrink and the graph’s curve asymptotes down to an optimal value.

Reading off the most important figure from the graph, the time taken to transfer one byte from one
transputer to another on the same board is 0.663 microseconds. Giving a bandwidth of 1.51 Megabytes
per second. This level of performance is sustained for all packet sizes down to 512 bytes. Also a message
travelling from one end of the machine to the other only travels at a speed 2.1 slower.

For bidirectional communication it appears that each byte is taking 0.456 microseconds to be com
municated (2.19 Megabytes per second). In practice this consists of two bytes being communicated in
opposite directions in 0.912 microseconds. A bandwidth of 1.1 Megabytes per second. This being due
to the overheads of the acknowledgement packets used by the links, each byte actually takes longer to
communicate when bidirectional communication is used, than with unidirectional communication.

4.6.4 Time to send a packet
It was also interesting to compare the time it took to communicate one packet against its size, see figure
11 (bottom of next page). The values on the y-axis of the graph are the actual timings for messages be
tween two transputers on a single board in our machine. One thing to notice is that all of the figures are

m
es

sa
ge

 c
om

m
un

ic
at

io
n

tim
e

(u
s)

tim

e
(u

s)

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 57

Figure 10: Time to communicate a byte (of a counted array) through a link

Figure 11: Average time to send a counted array through a link

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 58

reasonably close to the one byte per microsecond line. This figure is a nice average that is convenient to
work with.

As can be seen, the graph consists of a near straight line that curves off towards the horizontal at the
lower end. This curve is due to the set up time of the communication being of a large proportion for small
messages. With large packet sizes the graph appears to be a straight line, the line only starting to curve
at around 64 byte packets. At 32 bytes per packet the graph is clearly curved. This figure would appear
to be a good minimum packet size whenever we have enough control over job and result packet sizes to
be able to choose.

The shape of curve is due to the constant overhead of setting up a counted array communication (in
cluding communicating the count). Whenever possible we would like to avoid being at the top end of the
curve. It is possible for an application to be just slightly communication bound and consisting of jobs that
are smaller than 64 bytes each. In this case it would be worth ensuring that message sizes are larger than
this. Larger messages would take less time on average to communicate per byte, due to the reduced set
up time and could result in an implementation that is just compute bound.

4.6.5 Single component messages
These results show that an application is not inherently compute bound or communication bound neces
sarily. This matter also depends on both the way an application is decomposed into jobs and the size and
the structure of the messages that are communicated around the farm. In short, the way an application is
implemented affects the performance as well as the basic structure of the application itself.

The fact the curves are asymptotic in nature suggests a message will be communicated much more ef
ficiently if communicated as a single contiguous sequence. On the transputer a sequential protocol of val
ues is communicated as a sequence of separate messages and will take more time than a single large mes
sage. For example, the sequence, 8 : : [] BYTE; 8 : : [] BYTE; 8 : : [] BYTE; 8 : : [] BYTE would
take longer to communicate than just the single communication 3 2 : : [] BYTE. This difference in perfor
mance could be enough to make an implementation compute bound instead of communication bound. In
practice this can be achieved by packing all of the values for a job or a result into one array. The best way
to achieve this in Occam is to declare an array and then RETYPE segments of the array into the variables
needed.

PROTOCOL W ork I S I N T : : [] BYTE:
CHAN OF W ork t o . f a r m :
INT n :
[2 * (S IZ E IN T)]BY TE p a c k e t :

VAL x . p o s I S 0:
VAL y . p o s I S SIZ E INT:
SEQ

INT x RETYPES [p a c k e t FROM x . p o s FOR SIZ E I N T] :
INT y RETYPES [p a c k e t FROM y . p o s FOR SIZE I N T] :
SEQ

x , y := g e n e r a t e ()
t o . f a r m ! n : : p a c k e t

RETYPEing parts of an array is still checkable by the compiler as before.
Packing a variant protocol into an array can be performed by declaring an array long enough for the

longest message needed and then implementing the case tagging by hand.
Implementing variant protocol tags by hand also allows for as many tags as one desires. The version

of Occam used here currently only allows for a total 256 tags in a program [Wil91],
It is true that writing such code can be more prone to error. More code is being written so naturally

there is more potential for error. In occam however, if one writes what one wants in an obvious way, then
the original can be transformed into a more efficient approach, alleviating such error.

As well as communications being faster, another advantage that arises from only communicating a
counted array is that all processes that use this protocol only need to know how to pass on counted arrays.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 59

Thus, they are trivially easy to write compared with the amount of work needed to pass on a variant pro
tocol. The body of the harness’s code doesn’t grow and become cluttered with all of the details of variant
protocols. This saves memory and more importantly programmer time. Thus harnesses not only remain
efficient and small, but can also be used for many more applications.

One disadvantage is that the processes at the other ends (the farmer and the worker) are more compli
cated to write. There is the issue of whether the extra code in the farmer (a bottleneck) results in a slower
program. This would very much depend on how much preparation each job needed.

4.6.6 Bytes per second bandwidth
Finally here we look at the bandwidth obtained through a link.

message size (bytes)

Figure 12: Throughput for a counted array through a link

If we look at these same figures in terms of the amount of data transferred per second, see figure 12, we
can see that the time to communicate small messages is much longer than it should be due to the overhead
of an INT length count.

One thing we would like to know is what is a sensible value for a smallest size of packet that is worth
using. As communicating through alternate boards gives a maximum throughput of about one megabyte
per second, we can use this graph as a “percentage of maximum throughput against message size” graph.
So for instance, between 16 and 32 bytes we obtain between 60-70% of the maximum obtainable link
bandwidth, very close to the maximum bandwidth obtainable, as predicted in table 1 (page 51).

4.6.7 Automatic processor allocation
Just to see how well the automatic domain allocation program allocated processors the test program was
rerun on four domains. This was arranged by allocating a first domain. While this domain was still al
located a second domain was set up, and so on with a third and a fourth. Each domain was allocated by
the automatic transputer allocation program. The program was run on each of these, one at a time. The
throughput of all four domains is shown in figure 13 (top of next page).

It appears the automatic domain allocation program allocates transputers that will obtain a reasonable
performance when compared with the optimum performance of the machine.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 60

message size (bytes)

Figure 13: Throughput of counted arrays around automatically allocated domains of processors

Thus the systems software does quite a good job of allocating domains with the highest bandwidth
possible to user programs.

4.6.8 Summary
The time to communicate each byte of a packet between two transputers on the same board is 0.665 mi
croseconds. This is a bandwidth of 1.51 Megabytes per second. Communicating from one end of the
Kent machine to the other (a route involving approximately 15 MEiKO switch-chips) a byte can take
about twice as long to be communicated, here 1.2 microseconds. This is a factor of two difference in per
formance. When links are used bidirectionally, it takes 0.456 microseconds to communicate a byte. This
is 2.19 Megabytes per second. Here both links are operating at 1.1 Megabytes per second.

From these graphs it can be concluded that when one has the choice of how large a counted array one
can communicate, a sensible minimum message size is around 16 or 32 bytes. This will give between
about 60% and 70% of the maximum bandwidth available. By the time we get to 512 byte packets there
is not much more performance to obtain and much larger messages will start to eat up memory.

4.7 Results throughput obtained by harnesses
Having looked at the raw bandwidth of the transputer’s links, the next thing to study was the throughput
of the harnesses.

For this it was decided to use the same strategy as before, surrounding the object under test with a
test rig that drives the object with a variety of messages. This experiment was then run in isolation, with
again the addition of another separate processor to collect and store the results.

The collection of results involved obtaining the packets from the workers and then communicating
them to the harvester. We are interested in finding out how quickly the six harnesses perform this. Thus
the testing consisted of finding out how much data the merger processes could pass from the upstream link
to the downstream link. This experiment set out to look at the “as much data as possible” or throughput
aspect of this.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 61

4.7.1 Test Rig Design and Implementation
The structure of this program is shown in figure 14.

Figure 14: Test rig for harness throughput experiment

Here the third transputer holds the merge process under test. This process passed on to retrieve the
result packets it obtained from feed.

The way this test program works is similar to the program used in the previous test. The retrieve pro
cess sent a start message along the go channel and would then start a timer. In this test rig this communi
cation was sent through a separate channel. By directly connecting these two processes we can guarantee
this communication is synchronous. On receiving the start message feed would send five groups of one
hundred packets of the current size to the merger and these would eventually be received by retrieve.
Once all the packets have been received the time was noted and was passed on to the fourth processor for
computing an average and storing. As before the sizes tested were packet lengths that are the powers of
two.

In these experiments a hundred packets were used, which again is adequate for obtaining timings of
a detailed enough resolution with the high resolution clock.

The actual code used to implement the testing algorithm as discussed above was as follows,

SEQ i = 0 FOR s i z e s
SEQ

g o ! TRUE
c l o c k ? s t a r t
SEQ j = 0 FOR 5

SEQ a n y = 0 FOR 100
f r o m . m e r g e r ? l e n : : p a c k e t 2

c l o c k ? s t o p
f i g u r e s ! s t o p - s t a r t

In the bidirectional version for harnesses E and F the PAR was set up after the timer was read.

SEQ i = 0 FOR s i z e s
SEQ

s i z e := 1 << i
g o ! TRUE
c l o c k ? s t a r t
PAR

SEQ j = 0 FOR 5
SEQ a n y = 0 FOR 100

f r o m . m e r g e r ? l e n : : p a c k e t 2
SEQ j = 0 FOR 5

SEQ a n y = 0 FOR 100
t o . m e r g e r ! s i z e : : p a c k e t

c l o c k ? s t o p
f i g u r e s ! (s to p - s t a r t) / 2

This sends 1000 packets, 500 in each direction.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 62

4.7.2 Settling
The test rig in this program is distributed across three processors, more than just the pair of transputers
used in the first experiment. Because of this, there was a concern some parts of the program could be
loaded and running onto a transputer before others parts that they communicated with had had a chance
to initialise. This could be especially true for the code under test. The f e e d processor would have to be
initialised as the timer on the r e c e i v e processor would not be started until the go message had been
acknowledged. If this was possible the first timing value would be incorrect as it would include the time
it would take for one part of the program to initialise.

Thus, there was an obvious desire to make sure these timings would be correct and the whole domain
was working. For this to happen would mean all three processors were loaded, initialised and running
the test code at the same time. To achieve this it was decided to make sure all three important pieces of
code should be allowed to settle. Thus, at the start of testing it would be known that all parts of the test
rig would be in the correct state. To guarantee this the program performed some communication through
the route under test just before the experiment got under way. For this communication to happen all three
of the test rig processors must be loaded and initialised.

The whole application booted through the processor that dealt with the screen and filing, as everything
was going through this, it was known this processor would be loaded correctly without any problem.

4.7.3 Compilation Flags
The test program was compiled with all the usual occam flags switched on except usage checking which
was switched off. This was done as harnesses D and E, due to their design, only compile with usage
checking turned off. For both convenience and fairness all the harnesses were compiled using the same
set of compilation flags. Obviously if one is interested in performance all flags can be switched off for
all the harnesses. What was of interest here was seeing how much of an improvement was made by mov
ing between the different designs of the different harnesses alone, and not by giving some harnesses a
performance advantage due to different compilation options.

4.7.4 Testing
The program was run with the three important transputers all on one board to obtain the near optimal
performance. The program was run with all six harnesses.

4.7.5 Harness throughput
In figure 15 (top of next page) is the throughput of the harnesses. For reference the basic link bandwidths
obtainable for both types of communication are also shown. Here we discuss the relative performance of
the harnesses as shown.

The top line of the graph is the raw link bandwidth for bidirectional communication. Obtaining very
nearly this raw performance is harness E, which clearly is the best harness here for any message of a
reasonable size. The other bidirectional harness, harness F, is not as efficient, it’s performance exhibiting
some form of slightly erratic behaviour, even though the figures here are an average of five runs. The
performance of harness F also rolls off for messages larger than 4 kilobytes. One possible cause of both
of this is that block-copy instructions are not interruptable. This would interfere with other parts of the
harness by delaying them from engaging in other communications. This situation is likely to get worse
in a real farm as job distribution processes would be running as well as the result collecting processes, as
these are likely to be using the same style of on-chip communication, they are also likely to suffer from
the same problems, thus further adding to the poor performance.

Harness C’s curve is very smooth and the best out of the unidirectional harnesses. Harness C also
follows very closely the maximum possible unidirectional bandwidth performance across the whole range
of packet sizes. This suggests that there is not much link bandwidth left to obtain and that there is always
going to be a small performance cost for using a harness, which ever method of engaging both link engines
in parallel is thought of.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 63

message size (bytes)

Figure 15: Throughput of result collecting processes

For the smaller message lengths harness C is the most efficient for all lengths up to about 17 bytes, fol
lowed by harness F, at about which point harness E becomes the most efficient. With the largest message
lengths studied here, harness D also obtains the same level of performance as harness C, most notably at
about 1 kilobytes and above.

Harness B does not perform as well as these last two unidirectional harness designs. Further, the per
formance of harness B, like its bidirectional equivalent harness F, tails off at just over 2 kilobytes. The
most likely reason for this is the length of time it takes to perform the on-chip communication between
the two processes of harness B for arrays of this size.

Harness A clearly produces the poorest performance here, giving just over half the performance of
harness C. This is due to harness A only engaging one link at a time. The fact the performance is just
over the half way mark is likely to be due to harness C needing to set up and close down PARS.

Harness E, which consists of two copies of harness D running in opposing directions through the links,
possesses a much higher rate of throughput for all convenient sizes of packet than all of the other har
nesses. It was thought by Welch, who designed harness E that it would probably only obtain about another
33% more throughput than harness D. In fact harness E obtains another 50% more throughput. Harness
E also only provides less throughput than any other harness for packet sizes of just over 16 bytes. Below
that harness E ’s performance deteriorates down to that of all of the other harnesses except for harness C.

4.7.6 Comparing harnesses against raw link performance
General conclusions to notice with respect to the previous test are that the raw link bandwidth can com
municate smaller counted arrays at a higher speed than the harnesses. This is presumably due to the extra
overheads incurred by the harness processes. Further to this, although 16-32 bytes is a good minimum
message size to send between two transputers, if the message is to be routed through other processes,
32-64 bytes a slightly larger message size is recommended in order to keep the percentage throughput
obtained between about 60 and 70%.

Comparing the performance of these harnesses with the raw link bandwidth results might be consid
ered unfair. The current test does not just consist of messages travelling through a link, but messages

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 64

travelling through two links and a piece of code. Nevertheless, what is encouraging from this compari-
sion is that the amount of bandwidth obtainable through a harness can still be very close to the maximum
possible through a link.

4.7.7 Harness D versus harness C
As we have already seen, harness D is not as good as harness C for packet sizes up to 512 bytes. Fur
ther, harness D is even poorer in performance compared with harness B below about 40 bytes. This is
interesting as harness D was supposed to be more efficient than harness C, it not involving the setting up
and closing down of many PAR processes. As we have also seen, the only range of packet sizes where
harness D is of comparable efficiency is for the largest packet sizes. Whereas for the most suitable sizes
of packet, 64 bytes to IK, harness D always obtains noticeably smaller throughput than harness C.

To review, harness C only uses on-chip communication for messages going to and from the local
worker. There is no on-chip communication for messages passing through. Thus, the harness sets up
and closes down two PARs per message. In contrast harness D performs two small on-chip communica
tions and thus four or six context switches for messages that are passed on to the next worker, the same
approach used for messages going to and from the local worker. As this is the case, there is the question
of which harness of the two will be the most efficient in a real farm where actual work will be performed.
This question comes down to the issue of what is the most important in terms of efficiency: the commu
nication bandwidth obtainable by harness C, or harness D’s potential to both, interleave differently sized
messages and to utilise the transputer’s computational resources better. This second point being due to
harness D communicating pointers between the harness and the worker, not the actual messages them
selves.

What is ultimately more efficient in a farm is an interesting question. Harness D provides less through
put here as the loss in bandwidth due to overheads happens for every message communicated on and off
a transputer. In harness C, the bandwidth lost due to on-chip communication happens only for jobs that
are performed by that worker.

So far we have only experimented and discussed the fact that harness D provides a lower throughput
than harness C for a stream of messages that are all equally sized. When the length of message varies con
tinuously harness D should be able to provide a much higher throughput. This is advantageous, as Cramp
and Upstill reported in [CU90] that interweaving jobs of different sizes had load balancing advantages for
their application. Harness D would probably be the better harness to use in such a situation.

This issue is looked at further in the next section.

4.7.8 Conclusions
Harness E is the best bidirectional harness here. Further, both bidirectional harnesses are better than the
best unidirectional harness here, this being harness C. In decreasing order the best harnesses are: E, F, C,
D, B and A. That said the choice of packet size can also reduce the performance of the best harnesses.

One general property these results show is that not using the in-built parallelism of the transputer re
sults in poor performance. Using it in any shape or form reasonably sensibly results in a good perfor
mance. The more of it is used the better and better is the performance obtained.

In these results the harnesses form themselves into three very noticeable groups of similar levels of
performance,

• group 1: harness A,

• group 2: harnesses B, C and D,

• group 3: harnesses E and F.

From looking at the design of the harnesses this is very much due to the three very noticeable levels of
parallelism in these harnesses.

A minimum counted array message should be between about 32 and 64 bytes. A sequence of such
messages obtains about 60-70% of the maximum link bandwidth available.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 65

4.8 Harnesses D versus C for variable message sizes interlaced
In the previous section it was discovered that harness C provides a higher throughput of messages com
pared with harness D. This was a surprise as Welch believed harness D would have a higher throughput,
it being designed so the actions of the processes were decoupled and if one communication completed
before another, nothing was stopping the process re-engaging the link so another message could be read
in.

That said, the previous experiment only used messages of all the same size, thus the above situation
was not tested. Thus, it was decided to study these two harness designs further, to see if harness D was
more efficient when alternate messages were of different sizes and if one communication could finish
before the other, a situation Welch had realised harness C could not respond to.

4.8.1 The test program
The test program worked by communicating a sequence of messages through a harness. The messages
were of two lengths interleaved, see figure 16.

□ i - - - - 1 □ i ' i □ i- - - - - 1 □ : i
a b a b a b a b

Figure 16: A sequence of interleaved messages

The lengths used were the powers of two, thus giving message lengths from 1 byte up to 16 kilobytes.
For each test a thousand pairs of messages were passed through the harness.

The experiment here was performed using the test rig used previously, with a thousand pairs of mes
sages of two different sizes being communicated through the four harnesses. The messages being received
by the following,

SEQ i = 0 FOR s i z e s
SEQ r a n g e = 0 FOR s i z e s

SEQ
s y n c ! TRUE
c l o c k ? s t a r t
SEQ i = 0 FOR p a c k e t s

SEQ
i n ? n : : p
i n ? n : : p

c l o c k ? s t o p
f i g u r e s ! s t o p - s t a r t

and sent by,

SEQ i = 0 FOR s i z e s
SEQ j = 0 FOR s i z e s

SEQ
X := 1 << i
Y := 1 « j
s y n c ? a n y
SEQ i = 0 FOR p a c k e t s

SEQ
o u t ! x : : p
o u t ! y : : p

4.8.2 Testing and results
This experiment was performed in a number of stages. Three versions of harness D were developed. Here
we discuss these different versions. How each version of harness D was tested against harness C, and how

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 66

each new version was developed from the previous one.
Once the test program was written, the original versions of harnesses C and D were compared.
Looking at the results, unexpectedly harness D obtained a very similar level of performance to that

of harness C, and for all of the combinations of message length tested. The results are so much the same
that they appear directly on top of one another when plotted, and this graph is of no real use; there being
no real 3D cues that helped in visualising the data.

It was only once a version of harness D had been developed that did produce different levels of per
formance to harness C that a way was found to plot a graph showing clearly that the first results of the
first test were nearly identical.

The reason for no large overall improvement in the first test was due to harness D not having any
spare buffer space. To illustrate, after a first message had been read, there was nowhere to read a second
message into, unless the writing of the first message had been performed. Thus the two separate processes
were still locked together synchronously due to the communications they engaged in.

This realised, a second version of harness D was developed. This had two extra buffers. These sat on
the channels between the two main processes. Each buffer buffered one pointer.

PROC b u f f e r (CHAN OF INT i n , o u t)
INT p :
WHILE TRUE

SEQ
i n ? p
o u t ! p

CHAN OF INT r e s u l t . a , r e s u l t . b , r e t u r n . a , r e t u r n . b ,
l o c a l , r e t u r n :

PAR
r e s u l t . b u f f e r (i n . l i n k , r e s u l t . a , r e t u r n . b , 0)
b u f f e r (r e s u l t . a , r e s u l t . b)
b u f f e r (r e t u r n . a , r e t u r n . b)
m e r g e (l o c a l , r e t u r n , r e s u l t . b , r e t u r n . a , o u t . l i n k , 1)

This second version works in the following way. As soon as the result buffer finishes reading in a result, it
can pass this on to the buffer and start immediately reading in the next packet from the link. Similarly, as
soon as the merge process finishes outputting a message it can pass on the pointer to the buffer and start
reading in the next packet from the link immediately. Now neither of the main processes are blocked
immediately for output and the two main processes do not have to communicate in lockstep. The reason
that was causing the hindrance in performance.

The test program was rerun with these two additional buffers. The performance of this harness was
not better, but worse. This was due to a lack of buffer space. Although now the two link processes had
had their communication behaviour decoupled, there were no extra buffer slots in which to place any extra
messages.

This last version of harness D was modified so that three buffer slots were declared instead of just the
two.

PAR
r e s u l t . b u f f e r (i n . l i n k , r e s u l t . a , r e t u r n . b , 0)
b u f f e r (r e s u l t . a , r e s u l t . b)
SEQ

r e t u r n . b ! 2
b u f f e r (r e t u r n . a , r e t u r n . b)

m e r g e (l o c a l , r e t u r n , r e s u l t . b , r e t u r n . a , o u t . l i n k , 1)

This extra buffer slot is initially given to the buffer that passes pointers from the merger back to the link
buffer. This is so that as soon as the link buffer had a message, not only can it pass this on to a pointer
buffer, but there is also a spare message slot into which another message can be read. This way the two

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 67

processes that sit on the links are decoupled both in terms of communication behaviour and in terms of
buffer space allocation. This third version of harness D was much more efficient than harness C when
adjacent messages were of different sizes.

All the results with first message size were plotted against second message size, see figure 17. How
ever, it was only really for this last test was there any major difference in performance between the two
types of harness, except for when both packet sizes were very small, an aspect of transputer behaviour
not of interest due to the overhead of setting up a small communication.

Figure 17: Time to interleave messages of different sizes

The definite result that comes through from this graph is there is a marked difference in performance
for the two harnesses when alternate messages are of different sizes.

As we are only interested in the case when adjacent message sizes are either the same or different,
it makes senses to take one message sizes as a constant and plot a 2-D graph. Indeed the behaviour is
best seen from taking one particular message (here 256 bytes, which is a suitable size for messages) and
comparing the performance of each version of harness D to the performance of harness C, see figure 18
(top of next page).

Here for completeness the results for the first two versions of harness D are plotted here. As can be
seen the performance of both is worse than harness C throughout the range of message sizes.

4.8.3 Conclusion
Clearly adding three buffer slots to the design of harness D largely increases the throughput when mes
sages vary in length by any large degree. Just having two processes that pass pointers between themselves
is not enough. As was expected, having two extra pointer buffer processes results in a less efficient ex
ecution compared with not having them. Ultimately it is the use of additional buffer slots that gives the
required parallel slackness, the buffer processes are only needed in order to pass these extra buffer pro
cesses around.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 68

Q.3

equality with harness C —
basic two D processes

as above with two buffers and two slots
as above with three buffer slots -s-

1.6 -

1.4-

1.2 -

□ B-G........... B ...

o...o--- -o--------o-+..... +......4-......+-.... ■+" ---- o----- e----

0 . 8 -

1 2 4 8 16 32 64 128 256 512 IK 2K 4K 8K 16K
message size

Figure 18: Speed-up of harnesses C and D for messages of 256 bytes interleaved with other sizes

4.8.4 Discussion
It has been established that harness D works well in this situation when two message sizes are interleaved.
However, in real farms if message lengths vary they are likely to do so over a range. With a large range
of message sizes, it is possible a large message may be followed by a number of shorter messages that
altogether are smaller than the first. In this situation a number of buffer slots would be required so all the
shorter messages could be buffered and thus the stream of messages kept moving. Two solutions to this
are presented.

One approach would be to have enough buffer slots and enough single place buffer processes, one
process for each extra message that needs to be held. There are two disadvantages to this. Firstly, the
number of buffer slots and processes required must be known in advance. Secondly, all messages will be
passed through these processes continually, resulting in dramatically increased amounts of on-chip com
munication and context switching, thus adding a constant additional execution overhead to the harness.

Another solution is to use a process that can buffer a variable number of messages. The disadvan
tage of this approach is that it needs to perform an ALT in order to discover whether it is to perform an
input next or an output. This instruction is time consuming to execute and thus the level of performance
obtainable would be impaired. In this case the ALT would need to be executed twice for each message
communicated, once when buffered and once when output (also see 4.3.2 on page 39). The process wish
ing to receive a message from this buffer would have to issue a prompt.

If the range of message sizes varies greatly, the first method may be the most beneficial. If very large
messages are only transmitted occasionally there will not be an advantage in streamlining the harness any
further. It is more important that a harness is efficient most of the time, not in occasional situations. If
faced with this situation we, as implementors, need to find the right balance.

4.9 Studying the breakdown of harness efficiency
As the length of time taken to communicate messages was now known, job compute times could now be
compared with message communication times. Thus the point at which the efficiency of the harnesses
broke down could be found.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 69

The experimentation here was performed with a worker that could simulate the worker of any appli
cation and a farmer and a harvester that could simulate the farming out of any application. With this set up
each harness could be studied completely independently from any application. This is performed through
the use of a range of job compute times and messages lengths. All that now needs to be observed is which
harness is the most efficient for all possible applications.

4.9.1 Processor Farm Test Rig Design
This experiment required a new program that would perform tests on full farms.

There are nine aspects to the development of this program. These are,

1. the construction of the artificial worker,

2. the variable distribution of job times,

3. how the job time and result message length were encoded into the job message,

4. the farmer and the harvester,

5. the test rig,

6. the measurement of the bandwidth to the end worker,

7. the overall shape of the program,

8. how multiple runs were performed, and,

9. the compilation configuration was used.

Worker simulation

It was important the worker process can accurately simulate all applications. As discussed in chapter 3
the simulation needs to be identical to that of a real worker from an external point of view. This means
the length of time taken to execute a job and the length of a job message must be totally variable and also
completely independent of one other.

As such a study naturally focuses around what length of time it takes to process a job, it was initial
thought that using the transputer’s in-built timer would be possible. The most simple and obvious method
of waiting on a timer is,

SEQ
t i m e r ? now
t i m e r ? AFTER now PLUS r u n . t i m e

It was obvious this approach is not appropriate as the t i m e r ? AFTER construct is descheduled until
the time is reached. Thus, if this algorithm was used the worker process would be descheduled from the
C.P.U. throughout the length of the job. This approach would be far from being an accurate simulation
of a real application worker.

The method considered for some time was to continually look at a timer in a WHILE loop,

SEQ
. . . r e c e i v e w o rk

t i m e r ? now - - g e t s t a r t t i m e i m m e d i a t e l y
d e c o d e j o b e x e c u t i o n t i m e a n d r e s u l t s i z e

f i n i s h . t i m e := now PLUS j o b . l e n g t h
t i m e r ? now - - w e 'v e d o n e s o m e t h i n g , g e t t h e t i m e
WHILE f i n i s h . t i m e AFTER now

t i m e r ? now

s e n d r e s u l t

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 70

This piece of code would not be automatically descheduled and so the worker would be continually ex
ecuting within the C.P.U. whenever possible. However, if in order to execute a part of the harness, the
worker was descheduled for a short space of time, when the worker was rescheduled the timer would
still have been advancing throughout the time the worker was descheduled. So it would appear that the
worker had still been executing and effectively the harness had been executing for free. Further, it is pos
sible that the worker could be rescheduled to find that the finish time had passed, thus not making the
execution of the harness transparent all of the time. This approach of using the timer to simulate a real
worker is unsuitable.

Thus, it seemed that the only way to accurately simulate “real work” was to actually perform some. By
using an actual process, work would be performed when the process was executing within the C.P.U. and
work would be stopped when the process was descheduled. This approach also has all the advantages of
a real worker. It would take up memory, and, as with most real applications, it would contain instructions
that take quite some time to execute and can not be immediately interrupted to switch contexts. This
would delay the handing over of execution to the harness. Invariably the transputer can only switch from
a low to a high priority process after the current instruction has finished executing. If this instruction takes
a long time, such as in an integer or remainder division (the longest two) this can slow down the time it
takes a transputer to respond to external events, such as link communications. Thus, this increases the
time it can take before a context switch is performed. In terms of long calculations it is more common
to use floating point numbers. The F.P.U. on the T800 also can stop the longer instructions at a number
of suitable places. In this study the worker used a small floating point calculation, as many applications
involve real numbers. Thus finally the following sequence of code was developed.

REAL32 p , x , x 2 :
SEQ

p := - 1 . 0 (REAL32)
x , x2 := 0 . 0 (REAL32), 0.0(REAL32)
SEQ k = 0 FOR 3

SEQ
x := x2 + p
x2 := x * x

x : = x + x
x := 0 . 0 (REAL32)
x := 0 . 0 (REAL32)
x := 0 . 0 (REAL32)

x := 0 . 0 (REAL32)
x := 0 . 0 (REAL32)
x := 0 . 0 (REAL32)

This takes ten ticks of the transputer’s high resolution clock to execute. This was executed in a loop to
achieve any desired length of job run time.

The distribution of job times

The other issue to sort out was what jobs should be farmed out. It was decided to use a hundred jobs per
worker; with this being scaled for the number of workers being used in any one test. This was done so
that results for the different sized farms could be compared directly and linear speed up figures can be
computed.

In order to make the results of the study as valid as possible, the times it took to process the jobs have
been varied according to a distribution found in real applications. One advantage of using a distribution of
job run times, instead of having all jobs take the same length of time to execute, is this can also reduce the
number of times that more than one worker will want a job from a job distribution process simultaneously.
This collision can reduce efficiency as workers will be starved of work for short periods of time.

The first distribution considered to be appropriate was the normal distribution. This being the most

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 71

common in statistics. However, three real farmed applications were looked at in order to see which dis
tribution were found. All three applications had job distributions that were Poisson in nature. These ap
plications are discussed below.

The corners of a picture of the Mandelbrot set take the least time to compute. The rest of the picture
takes progressively more time the further into the centre of the picture one gets. Near the centre of the
picture fewer and fewer points take more time.

In ray tracing, the sky parts of a scene (some times quite large) involve no reflections at all. Most of
the scene invariably involves at least one reflected light ray. There being progressively less and less areas
of the picture that involve a larger and larger number of reflections.

With the protein sequence database there is more of a lead in and a steeper trailing edge than in the
Poisson distribution. There are a fair number of short sequences, but most are in the 200-300 residue
region. There are a few sequences longer than 2000 residues.

From this it was decided to use a Poisson distribution. This was implementing in the following way.
A sequence of 100 numbers was generated. The constant,

VAL n j o b I S 1 0 0 :

is used throughout these tests. These numbers were produced from a routine in the NAG library [Gro] that
produces numbers that fit into a Poisson distribution. The distribution used had a mean of one hundred.
Thus for any particular average of job run time required for any application under test, this sequence of
values could be scaled to produce an application with the appropriate Poisson distribution of job run times.

As what is of interest here is how balanced the farms are, all of the jobs needed to take roughly the
same length of time to be processed. Thus the deviation of the distribution should be reasonably small.
There should be just enough to add some realism in terms of different jobs taking different lengths of time
to be processed. Thus the longest job run time was only a factor of one and a half longer from the shortest
job run time (127 compared with 77). So, as this range of values is reasonably small, the average number
of jobs performed by each worker should be at least reasonably equal numerically when a farm is well
balanced.

We have already mentioned that jobs of different lengths can help prevent simultaneous requests for
jobs from the same job distribution process. So as to reduce this collision further, an attempt was made
to reorder the sequence of values so any two adjacent values were not close to each other numerically.

On the related note of message length, it was decided to have all messages the same length, i.e. no
distribution of message length, and to just vary the length of time it took to process the jobs. This was to
keep the test program easier to write.

Adding the Poisson distribution to the program generated a small problem. When 100 jobs were being
farmed out to a single worker via a double harness, 50 jobs should be farmed out using both channels for
job delivery. So the Poisson distribution would be used correctly in this situation, the code was modified
for these runs. The first 50 jobs being sent into the farm from one end, the second 50 being sent from
the other. No check was made to see if the length of time to process the first 50 jobs was the same as the
second 50.

The contents of jobs and results

There are two parameters to encode,

1. m, the length of the average message, and,

2. j , the time to process an average job.

The length of the message is the length of both the job sent out and the result produced. This length
is known by the farmer and can be used directly to indicate the length of the job being sent out,

INT m s g . l e n :
[m a x .m s g . l e n] B Y T E j o b :
SEQ

j o b s ! m s g . l e n : : j o b

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 72

Getting a result message to be the same length as the job message is simply achieved in the worker by
reusing the value received for the length of the job message. For instance,

SEQ
j o b ? m s g . l e n : : j o b
. . . p r o c e s s j o b
r e s u l t ! m s g . l e n : : j o b

The job run time was encoded into the first I N T of the job message. This restricts our minimum mes
sage length to four bytes (the number of bytes in an I N T on 32 bit processors). Again the farmer knows
the value of this parameter and can place this value into each job message. The relevant part of the farmer
is,

VAL n j o b I S 1 0 0 :
VAL b y t e s . p e r . i n t IS 4 :
VAL j o b s I S w o r l
VAL j o b . l e n s IS

s * n j o b : - - 100 w o r k e r s i p e r j o b
9 8 , 1 0 5 , 9 3 , 9 7 , 1 0 7 , 9 0 , 9 7 , 1 1 5 , 9 8 , 1 0 9 ,

1 1 9 , 1 0 1 , 1 1 2 , 9 8 , 1 1 0 , 1 2 0 , 8 9 , 1 1 4 , 1 0 0 , 8 8 ,
1 1 3 , 1 0 6 , 1 0 8 , 9 1 , 8 7 , 93 , 86 , 1 0 2 , 9 1 , 9 3 ,
1 0 2 , 1 0 6 , 88 , 1 2 7 , 1 0 4 , 1 0 8 , 1 0 6 , 1 0 1 , 1 0 9 , 7 7 ,

9 0 , 1 0 0 , 9 9 , 9 5 , 9 3 , 9 0 , 1 0 1 , 1 0 6 , 8 9 , 1 0 9 ,
8 6 , 1 0 5 , 89 , 1 0 0 , 1 0 6 , 1 1 7 , 1 0 5 , 1 0 1 , 9 8 , 1 2 3 ,

1 0 1 , 88 , 9 5 , 1 1 6 , 88 , 1 0 3 , 9 2 , 9 0 , 9 8 , 9 7 ,
9 4 , 1 0 9 , 8 5 , 9 0 , 88 , 1 0 3 , 88 , 1 0 6 , 9 3 , 8 9 ,

1 1 4 , 1 0 1 , 1 1 5 , 9 7 , 8 9 , 9 2 , 1 1 5 , 1 0 4 , 80 , 8 9 ,
9 8 , 1 0 4 , 9 0 , 9 7 , 1 0 5 , 9 8 , 1 0 4 , 9 0 , 1 0 2 , 111

[n j o b] I N T j o b . t i m e s :
I N T m s g . l e n :
[m a x . m s g . l e n] B Y T E j o b :
SEQ

f r o m . t e s t r i g ? m s g . l e n ; r u n . t i m e . s c a l e
SEQ i = 0 FOR n j o b

j o b . t i m e s [i] := (j o b . l e n s [i] * r u n . t i m e . s c a l e) / 100
t o . h a r v ! j o b s - - n u m b e r o f j o b s t o r e a d i n , a l s o

- - p r o m p t s h a r v e s t e r t o r e a d t i m e r
SEQ j = 0 FOR w o r k e r s

SEQ i = 0 FOR n j o b
SEQ

INT c o u n t RETYPES [j o b FROM 0 FOR b y t e s . p e r . i n t] :
c o u n t := j o b . t i m e s [i]
j o b s ! m s g . l e n : : j o b

It was also decided to keep a tally of how many jobs were performed by each worker. This was done
by having each result message contain the identification number of the worker that generated it. This
number was created by the P L A C ED P A R replicator. The harvester then created a count for the number
of results produced by each worker.

The storage of the identification number in the result message was performed in a similar manner to
the above method of storing job run times, using the first INT in the array. Here the same abbreviation
was used to gain access to the job run time value in order to perform some work and in order to store the
worker’s identification number into the result message,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 73

PROC w o r k e r (CHAN OF REQ r e q , CHAN OF JOB j o b ,
CHAN OF PACKET r e s u l t , VAL INT i d . n u m b e r)

v a r i a b l e s
WHILE TRUE

SEQ
r e q ! TRUE
j o b ? m s g . l e n : : j o b

INT j o b . t i m e RETYPES [j o b FROM 0 FOR b y t e s . p e r . i n t] :
SEQ

SEQ i = 0 FOR j o b . t i m e
. . . do s o m e t h i n g f o r 10 t i c k s

j o b . t i m e := i d . n u m b e r

r e s u l t ! m s g . l e n : : j o b

The tally itself was performed by the harvester using these values as an index,

SEQ
r e s u l t s ? m s g . l e n : : r e s u l t
INT i d RETYPES [r e s u l t FROM 0 FOR b y t e s . p e r . i n t] :
w o r k . d o n e . b y [i d] := w o r k . d o n e . b y [i d] + 1

The contents of this tally array was cleared before each simulated application was run.

Designing the farmer and harvester

The structure of the two double harnesses E and F had a number of implicadons for the design of the front
end of the farm. In total at least five links are needed in this situation. Two for giving out jobs, a further
two for collecting results and one for communicating with the terminal and filing system. Obviously more
than one transputer was going to be needed to provide this amount of interconnection. It was decided to
organise the front end by having two processors, one for running the farmer and another for running the
harvester. The farmer would use two links to give jobs to the workers. Similarly the harvester would
use two links to collect results. These leaves two links each on both transputers. One pair can be used
for communication between the farmer and the harvester. The link remaining on each processor can be
connected to the test rig transputer.

It was decided to use this configuration for the testing of all six harnesses so that fair comparisions
could be performed between both the single and the doubled up harnesses.

The method used by the farmer and harvester to drive these doubled up harnesses was simple, split
the number of jobs in half and give each half to each end of the pipeline. The code from this version of
the farmer looked as follows,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 74

SEQ
SEQ i = 0 FOR n j o b

SEQ
j o b . t i m e s l [i] := (j o b . l e n s [i] * r u n . t i m e . s c a l e) / 100
j o b . t i m e s 2 [i] := j o b . t i m e s l [i]

PAR
SEQ j l = 0 FOR w o r k e r s

SEQ i l = 0 FOR j o b s » 1
SEQ

INT c o u n t RETYPES [j o b l FROM 0 FOR b y t e s . p e r . i n t] :
c o u n t := j o b . t i m e s l [i l]
j o b s l ! m s g . l e n l : : j o b l

SEQ j 2 = 0 FOR w o r k e r s
SEQ i 2 = 0 FOR j o b s » 1

SEQ
INT c o u n t RETYPES [j o b 2 FROM 0 FOR b y t e s . p e r . i n t] :
c o u n t := j o b . t i m e s 2 [i 2]
j o b s 2 ! m s g . I e n 2 : : j o b 2

This will still produce a balanced implementation as both of these two sets of jobs are going to the same
workers. Also both ends of the farm are identical in all major respects. One end will be connected through
more switch chips than the other end, but this should only affect the bandwidth of communication but not
the actual demand for work.

The above code will run much faster than an equivalent system that uses an ALT to distribute the work
as needed. Consider,

SEQ i = 0 FOR j o b s
PRI ALT

r e q l ? a n y
t o . l i n k . b u f f e r i ! m s g . l e n : : j o b

r e q 2 ? a n y
t o . l i n k . b u f f e r 2 ! m s g . l e n : : j o b

As well as involving an ALT, this approach also requires two buffer processes to perform the appropriate
requesting.

The fact the farmer and harvester are not only configured as separate processes, but are also on com
pletely separate processors leads to a problem with performing timings accurately. It is only the farmer
that knows when it gave out the first job and it is only the harvester that knows when the last result is
received. Thus, only one can perform the timings, as being on different processors these processes do not
share a common clock. In fact either process can perform the timing, as long as both the farmer and the
harvester can be connected without intermediate buffering.

In this implementation the harvester performed the timings. The farmer sent a message to the harvester
synchronously just before it started the replicated SEQ (equivalent to two assignments) to give out the
jobs. The harvester made a note of the time twice, once directly after receiving this message and again
after receiving the last result.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 75

SEQ
. . . b a n d w i d t h c a l c u l a t i o n
WHILE TRUE

SEQ
SEQ i = 0 FOR w o r k e r s - - c l e a r w o r k . d o n e . b y

w o r k . d o n e . b y [i] := 0
PRI PAR

SEQ
f r o m . f a r m e r ? n j o b s
c l o c k ? s t a r t
SEQ i = 0 FOR n j o b s

SEQ
r e s u l t s ? m s g . l e n : : r e s u l t
INT i d RETYPES [r e s u l t FROM 0 FOR b y t e s . p e r . i n t] :
w o r k . d o n e . b y [i d] := w o r k . d o n e . b y [i d] + 1

c l o c k ? s t o p
t o . f a r m e r ! s t o p MINUS s t a r t ; w o r k e r s : : w o r k . d o n e . b y

SKIP

When doubled up harnesses were used, some additional setting up within the harvester was needed to
read in the two results streams in parallel.

SEQ
f r o m . f a r m e r ? n j o b s
c l o c k ? s t a r t
w o r k . d o n e . b y l I S [w o r k . d o n e . b y FROM 0 FOR w o r k e r s] ;
w o r k . d o n e . b y 2 I S [w o r k . d o n e . b y FROM w o r k e r s FOR w o r k e r s] :
PAR

{{{ h a r v e s t e r 1
SEQ i l = 0 FOR n j o b s » 1

SEQ
r e s u l t s l ? m s g . l e n l : : r e s u l t l
INT i d RETYPES [r e s u l t l FROM 0 FOR b y t e s . p e r . i n t] :
w o r k . d o n e . b y l [i d] := w o r k . d o n e . b y l [i d] + 1

}}}
h a r v e s t e r 2

c l o c k ? s t o p
t o . f a r m e r ! s t o p MINUS s t a r t ; (w o r k e r s « 1) : : w o r k . d o n e . b y

The separate test rig

As with all the programs built previously, the first processor dealt with the filing of results, and in this
case, the generation of the application parameters that are to be farmed as well. Again this code was
placed on a separate processor so as to prevent the execution of this code interfering with the running of
the experimentation. Also as before the system library code were on a separate processor so all parts of
the code under test were in on-chip memory.

Measuring the throughput from the end worker

So far it was known the raw throughput of both a transputer’s link and also the raw throughput of the
harnesses when they were just passing traffic on. Here we could also obtain some measurements from
a real farm. It seemed a good idea to find out what is the throughput to the harvester from the worker
furthest away from it. This could easily be done as soon as the program was loaded and just before the
application experiments were run.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 76

Timing this accurately was easy to achieve. As the line of workers was set up so it could run the
doubled up harnesses E and F, the harvester processor was connected to both ends of the line. Thus as
well as the end workers at each end being the furthest away from the harvester, they are also directly
connected to it via the link that deals with results travelling in the other direction. So after the harvester
reads the clock, it then sends start messages to the end workers to start a transfer, the messages get there
without any form of buffering to slow them down and corrupt the accuracy of the timings.

As before, it was considered important to make sure all parts of the program were initialised. The
most effective and simplest method to achieve this is to send messages through the whole of the program.
Only when all of the code was loaded and had started running the harness would the message get through
to the other end. The code was written so when the program loaded only the end worker would be running
special code, the rest of the farm would execute the harness immediately the program was loaded. Before
the worse case throughput measurements were performed a synchronisation was sent from the end worker
to its harvester. Thus this message would travel through the entire farm. The worse case throughput mea
surement was then performed as follows. The harvester would send a message to the worker processor
next to it, then read the time. This message would be received by a process on the end worker that per
formed this test before becoming a normal harness buffer process. The throughput measurement transfer
would be started and a hundred messages would be sent. The harvester would read the time immediately
after these messages had been transferred.

This throughput measuring code in the harvester was,

PRI PAR
SEQ s i z e = 0 FOR s i z e s

SEQ
r e s u l t s ? n : ¡ m e s s a g e - - s e t t l e s y n c h r o n i s a t i o n
g o ! 0 : : m e s s a g e - - s t a r t m e s s a g e
c l o c k ? s t a r t
SEQ i = 0 FOR 100

r e s u l t s ? n : : m e s s a g e
c l o c k ? s t o p
b a n d w i d t h . o u t ! s t o p - s t a r t

SKIP

The code in the end worker that this communicated with was,

SEQ s i z e = 0 FOR s i z e s
SEQ

r e s u l t s ! 0 : ¡ m e s s a g e - - s e t t l e s y n c h r o n i s a t i o n
w o r k m a t e . r e s u l t s ? n : ¡ m e s s a g e
n ¡= 1 << s i z e
SEQ t e s t = 0 FOR 100

r e s u l t s ! n : ¡ m e s s a g e

For the doubled up harnesses the above piece of code was run on both end workers with a transfer size of
50 instead of 100. The code in the harvester used to communicate with both end workers was,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 7 7

PRI PAR
SEQ s i z e = 0 FOR s i z e s

SEQ
PAR

SEQ
r e s u l t s l ?
s t a r t i ! 0

SEQ
r e s u l t s 2 ?
s t a r t 2 ! 0

c l o c k ? s t a r t

n : : m e s s a g e l
: m e s s a g e l

m : : m e s s a g e 2
:m e s s a g e 2

PAR
SEQ i = 0 FOR 50

r e s u l t s l ? n : : m e s s a g e l
SEQ i = 0 FOR 50

r e s u l t s 2 ? m : : m e s s a g e 2
c l o c k ? s t o p
b a n d w i d t h . o u t ! s t o p - s t a r t

SKIP

- s e t t l e
s t a r t t r a n s f e r

Overall program shape

Putting this altogether gave the overall structure of a processor farm hanging off a single processor that
contained a test rig,

Figure 19: Full processor farm test rig

How multiple runs were performed

Multiple runs of each simulated application were performed and an average taken. The programming
for this was in the test rig. Each set of application parameters were passed to the farmer five times. The
results were collected and stored and an average overall run time was calculated.

Compilation

As had been said, all of the harnesses were compiled with usage checking switched off, in order to com
pare the true performance of the different approaches to harness design. Here this also provided conve
nience when recompiling the different harnesses, as there was no need to turn compilation flags on or off
something that could also easily be forgotten invalidating the results.

In any implementation all of the flags can be turned off to add a speed up advantage.

4.9.2 The experimentation performed
Once the program was written the range over which to perform the study had to be decided upon.

Before the Poisson job run time distribution was developed some testing had been performed. This
being in factors of two across a wide range of application parameters. From this it was found that the area

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 78

of interest lay in the area from 32 bytes to 4 kilobytes and from 0.06 milliseconds to 250 milliseconds (or
60 microseconds to a quarter of a second). Once the Poisson distribution had been developed the program
was set to test across this range. The relevant part of the test rig is,

INT b y t e s , d e l a y . l o o p , t i m e , r u n , t o t a l . r u n , l e n :
SEQ b = 5 FOR 8

SEQ
SEQ t = 6 FOR 13

SEQ
b y t e s , d e l a y . l o o p := 1 << b , 1 0 0 0 0 0 >> (20 - t)
t i m e := 10 * d e l a y . l o o p
t o t a l . r u n s := 0
SEQ i = 0 FOR 5

SEQ
t o . f a r m e r ! b y t e s ; d e l a y . l o o p
f r o m . f a r m e r ? r u n ; l e n : : w o r k . d o n e . b y

o u t p u t r e s u l t s
c a l c u l a t e a n d o u t p u t a v e r a g e s

This program was then run for the six harnesses under test and for each application mapping under
test. The sizes of farm were also selected as powers of two: 1,2, 4, 8, 16 and 32. The tests for each farm
size were all done in one session so both the same transputers and the same wiring set up were used for
each size of farm.

Thus the study set out to look at the breakdown in efficiency of the different harnesses across the range
of different applications and farm sizes.

4.9.3 Results
When looking at the results obtained, the following questions were considered.

1. What is the efficiency of the harnesses for the varying application’s parameters?

2. What are the causes of this behaviour?

3. What is the behaviour for different farm sizes?

4. How well balanced is the work load?

5. How good is the model of efficiency developed earlier?

Comparing harnesses A, B and C

Looked at first was the basic issue of which harness is the most efficient. Here, for simplicity of viewing,
graphs are plotted containing three harnesses each. Efficiency is plotted against job computation time, j ,
and message length, m.

The first graph plotted, see figure 20 (top of next page), is of harnesses A, B and C running on a farm
of 8 workers. Here we are interested in which harness breaks down last. The easiest way to examine the
relative breakdowns of these harnesses is to look at the efficiency curves at the back of the surfaces where
the 4 kilobyte jobs are. Also notice the slopes’s different direction for smaller message sizes, this is due
to the cost of starting up communications.

Harnesses B and C are very close in terms of performance, they both breakdown when jobs are 4
kilobytes long and take 31.3 milliseconds to process. Nevertheless, it can be seen that harness C is slightly
more resilient to communication bound applications.

To a certain extent these results were expected. However, what was unexpected was that while harness
A has the poorest performance in terms of being the first harness to breakdown, it is the most efficient of
the three for comfortably compute bound mappings. This is of great significance as we are ultimately
interested in our farms performing efficiently as well as being able to deal with demanding applications.

Qï<« s » <
26^7’

/A*tZiâ:̂ SV7>
^ Q v

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 80

Comparing harnesses A, C and D

Here we compare the two harnesses that so far are more appropriate in one situation or another, harnesses
A and C, against the performance of a third, harness D.

As we can see in figure 21 (bottom of previous page) harness D breaks down slightly later than harness
C. What is interesting is that harness D performs better than harness C here even though all messages are
the same length. Thus, on a real farm it is more efficient to pass pointers to messages between processes
than to set up and shut down PARS in one process. It is assumed that even harnesses A and C would benefit
from this approach.

Harness D is still only as efficient as B and C. Harness A is still the most efficient overall, at least for
this part of the farm size application parameters looked at here.

The fact that harnesses B, C and D can all farm out more communication bound applications than
harness A, again proves that having something in the way of a parallel strategy, makes better use of the
parallelism of the transputer.

Comparing harnesses D, E and F

Here we compare harness D, the most resilient to breakdown so far, against the two doubled up harnesses,
harnesses E and F.

Figure 22: Breakdown of harnesses D, E and F on 8 workers

Looking at figure 22 harness E breaks down much later than harness D, as we might expect from the
throughput results. The increased throughput results in more supply and consequently more resilience to
breakdown. There are more jobs out of the farmer in any given period of time.

Harness F does not perform as well as harness E, although the harness is doubled up, the harness itself
stems from a more primitive design strategy and as a result rolls off both earlier and more gradually. For
example, examine the far trailing edge, in this case 4 kilobyte jobs break down when they take between
a quarter of a second down to an eighth of a second to process. Harness F again ultimately can be more
efficient than the unidirectional harnesses for compute bound applications, but breaks down before the
best unidirectional harnesses. This is probably due to the overheads of communicating large arrays around
on-chip memory.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 81

From the results looked at so far, harness D is the unidirectional harness that is the most resilient to
breakdown, and a doubled up version of harness D, harness E, is the bidirectional harness that is the most
resilient to breakdown.

Summary — harnesses A, D and E

Figure 23: Breakdown of harnesses A, D and E on 8 workers

Summarising what we have so far, see figure 23. Harness A is the most efficient harness for compute
bound applications. This seems sensible as when an application is compute bound only a small amount
of bandwidth is needed from a harness, and thus it is perfectly adequate to use a harness that provides
a small amount of bandwidth, but is efficient due to being small and quick to execute. Harness A has a
very small amount of code. It also has a short message latency. After receiving a message, harness A can
output it immediately, there is no ALT or PAR to close down.

Harness E breaks down last out of all of the harnesses studied here. Out of the unidirectional har
nesses, harness D farms out the most demanding application with the greatest efficiency.

Farming is about supply and demand

When comparing these surfaces against one another two properties were noticed.
The first was the way in which the performance tails off in these efficiency breakdown graphs is the

same no matter which parameter is being varied. This would indicate it is always the same type of be
haviour that leads to harnesses breaking down. By looking at what happens when both of the parameters
are changed we can see this is indeed the case. Increasing the length of messages results in it taking longer
time to communicate each message, this in turn results in fewer messages travelling around the farm and
thus in an implementation that is more communication bound. Similarly, reducing the time it takes to
process a job results in more jobs being needed in a given time period thus requiring more bandwidth,
this may not be available. Again this results in an implementation that is more communication bound.

The second point noticed was that when looking along one axis, the curves rolled off in a similar shape
and in the same order as in the harness throughput test.

From these two points it was decided to plot a graph of increasing job compute time against efficiency
for all six harness. This was done for farms of eight workers with all messages being 1 kilobyte in length.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 82

Harness C has been omitted from this graph as it exhibits exactly the same performance of harness D and
can not be seen on this scale.

Figure 24: Breakdown of harnesses for IK jobs on 8 workers

In figure 24 (top of next page) the shape of the curves we can see is the order in which the harnesses rise
up and start to provide a high degree of efficiency. The shape of these curves and the order in which they
rise up is also the same as in the graph of the harnesses throughput, see figure 15 (page 63). Thus it can
be said the throughput of a harness and its general capacity to deliver jobs, and thus how the efficiency
of that harness breaks down, is directly related. This seems logical. The higher the bandwidth there is
through a harness, the greater the job supply rate will be and in turn the larger the number of demanding
application mappings that harness can farm out efficiently. This leads to an important conclusion, efficient
farm implementation comes down to supply and demand. Thus, if a farm is to be compute bound, the
farmer and the communications system must be able to supply jobs at least at a quicker rate than they can
be processed. This is also captured by the equation,

B w
-----— > —
m + s j

developed earlier in this chapter.
As the farmer only has a certain amount of supply, the amount of work a harness can only approach

this maximum bandwidth. Thus, in conclusion, if we want a harness that can farm out demanding appli
cations, we need a harness that has a high throughput. The unidirectional harness that is the last to break
down here is harness D. The bidirectional harness whose efficiency breaks down last is harness E. These
harnesses also have a very high throughput.

From looking at the top of the slope, see figure 25 (top of next page), we see again that where the im
plementation is compute bound, harness A is the most efficient harness, even more efficient than harness
E which has the most parallel design.

Plotting efficiency logarithmically

Another point observed was that the breakdown of these harnesses are curves that roll off over a period
of about eight doublings of either application parameter. This is about an order of magnitude and so it

ef
fic

ie
nc

y
(%

)
ef

fic
ie

nc
y

(%
)

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 83

Figure 25: Top of breakdown of harnesses for lKjobs on 8 workers

Figure 26: Log of breakdown of harnesses for 1K jobs on 8 workers

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 84

was decided to see whether these breakdowns were logarithmic. This seemed sensible as both of the ap
plication parameters were plotted logarithmically.

From looking at figure 26 (bottom of previous page) we can see this is indeed the case after the harness
has broken down, the slight curve on this graph, it tails off in a straight line down, as we have reached
the point where we are communication bound. Here the application is being performed as soon as it ar
rives, what we are timing here is the work being communicated, not the work being performed and the
communications happening transparently.

Other sizes of farm

So far all of the results looked at have been for farms of 8 workers. Here we look at all the other farm sizes
tested. To aid comparison, these five other figures have been grouped together on the next few pages. For
clarity just the performance of harnesses A, D and E are shown, the other harnesses may be mentioned in
discussion.

Figure 27: Breakdown of harnesses A, D and E on 1 workers

For farms with 1 worker, see figure 27, harness D is the best harness for all compute bound mappings,
both those that are highly compute bound and those that are highly demanding. It is the most resilient to
breakdown, even more so than harness E that here is only just as efficient as the other harnesses B, C
and F. Harness D, and in fact all the harnesses, are also just as efficient as harness A for compute bound
applications. This is presumably due to the fact that only link buffers are in use here as there is no fanning
out to perform. It might be expected for harness D to be slightly more efficient as it is only communicating
pointers not the actual messages themselves.

For farms with 2 workers, see figure 28 (top of next page), the harness most resilient to a breakdown
of efficiency is harness D. For compute bound applications harness E is just slightly more efficient than
harness A. This could be due to jobs being sent in directly to both workers. A virtue that comes from the
design of harness E sending jobs to both ends of a pipeline. Also, although it is not of any real relevance,
due to the slower roll-off characteristic of the breakdown curve of the doubled up harnesses, harness E is
also the most efficient harness for some communication bound mappings here.

The results get more interesting for 4 and more workers, see figures 29 (bottom of next page), 30 (top
of page 86) and 31 (bottom of page 86), as job distribution processes are placed on workers.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 86

Figure 30: Breakdown of harnesses A, D and E on 16 workers

Figure 31: Breakdown of harnesses A, D and E on 32 workers

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 87

More of a gap opens out between harness E and the unidirectional harnesses. For 4 workers harnesses
A and E are equally the most efficient then harness A takes over for larger sizes of farm. This is the case
for a farm of up to 32 workers. Thus the performance of these harnesses is highly consistent for a wide
range of farm sizes.

Even for a line of 32 workers harness A is still more efficient for compute bound applications than
having a double harness that delivers jobs to both ends of the line. This would all seem to indicate that if
a harness is good at providing throughput, it can farm out more demanding applications.

How well the harnesses speed up

"IE"
"2E"

Figure 32: Breakdown of harness E on farms of 1, 2, 4, 8, 16 and 32 workers

So far the performance looked at has been of the harnesses relative to one another. Another aspect obvious
from the graphs here is that from the point of view of the number of workers used, the more workers there
are the smaller the number of mappings can be farmed out efficiently. This can also be looked at from the
point of view of the application mapping. In figure 32 we are looking along the plane of the slopes. As can
just be seen here, the more workers in the farm, the earlier the implementation breaks down and the lower
the slope on the right-hand side of the graph. Thus, the harnesses cope less well with each application
mapping as the number of workers increases. This is caused by there being an increase in demand but
only a constant amount of supply. This results in a decreasing in number of application mappings being
farmed efficiently when the number of workers is large.

Plotting j versus w

Here we plot the parameter j , the job run time against w, the number of workers in the farm.
In figure 33 (top of next page), as with figure 32, it can be seen very clearly that the breakdown of the

larger farms is due to the supply being proportionally less per worker.
In subsection 4.9.3 (page 81) it was noticed the way the efficiency broke down was the same whether

m had been increased or j had been decreased. The curves in figure 33 also break down in this same
fashion. Thus increasing w, the number of workers, also results in exactly the same style of breakdown
behaviour as if either of the two application parameters had been altered. Again this is due to demand
being increased but the supply of work being constant.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 88

Figure 33: Breakdown of harnesses A and E for IK jobs for increasing w

Figure 34: Breakdown of harnesses A and E for IK 0.25 second jobs for increase w

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 89

From looking at the back edge of this surface, see figure 34 (bottom of previous page), we can see
harness A is the most efficient for the compute bound farms with a large number of workers, despite all
of the extra throughput engineering in harness E.

Execution imbalance

Here we look at how balanced the execution of the compute bound farms are. There is done by having a
notion of maximum efficiency. This being a theoretical notion of efficiency, not a practical one. A farmed
application consists of a number of items of work. The minimum possible time it would take to perform
this work across a number of processors is, the time it would take one conventional processor to execute
each item of work in turn divided by the number of processors used.

This does not take things like communication and distance into account, but as we are already aware
transputers can perform communications in parallel at very low cost (there is the cost of executing the
communication instruction and the links accessing memory during a communication slightly reduces the
processor’s bandwidth to memory). Thus the efficiency figures we present here are our observed values
compared with a notion of maximum efficiency that is purely calculated, i.e. based purely on the maxi
mum speed up we should be able to achieve if we could perform only work on all transputers all the time
and no communications at all.

It should also be noted the values presented here are just for the efficiency of the workers. The exe
cution overhead of the farmer and the harvester are not included. These processes are only being run on
separate processors for the simplicity of running these experiments. In a real farm implementation it is
best to run worker processes on all transputers including these. Thus, figures for efficiency that included
the performance of the farmer and harvester processes would be slightly smaller than the figures presented
here. However, this point is not of great concern. A generally impression of the efficiency of the workers
due to harness overheads, via reasonably accurate figures was all that was needed here. Obtaining truly
accurate figures is also not possible. Although the farmer and harvester can be run on the worker pro
cessors, there will always be the overhead of executing the statistics gathering code used here, and this
would also affect the results obtained.

From looking at the figures on the graphs presented here it can be seen none of the farms obtain 100%
efficiency. There are two reasons for this. The first is because of the overheads of running a harness. The
second can be found by looking at the number of jobs performed by each worker. The distribution of the
work is never completely balanced. This is due to the use of a Poisson distribute to vary the run times for
the jobs. To illustrate this, here are the number of jobs performed by each of 16 workers. This was for
an application that was just compute bound and harness A was used. The messages were 4096 bytes in
length and they took 0.25 of a second to be processed, see figure 30 (page 86). The figures shown here
are for the fastest, and thus the most efficient, of the five runs performed.

98 98 99 100 97 101 101 100 98 98 102 100 100 103 102 103

Whenever there is some variation in the amount of work performed by each worker, it is not possible
to obtain an efficiency of 100%. Nevertheless, nearly 100% can be obtained, this indicates that imple
menting applications as farms using the highly efficient harnesses used here is highly effective, and any
applications that can be implemented in this way should be.

How good is the performance model?

Here the model of efficiency developed early is compared with the results that have been obtained in this
section.

If we look at a farm with 8 workers. This has a bandwidth to the end worker of 1.177 megabytes
per second, presumably more to closer workers. If this farm is communicating 4 kilobyte jobs through
harness D, see figure 23 (page 81),

w = 8
m = 4096 bytes
B = 1.177 Megabytes
s — 12.9 bytes

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 90

then the rate of supply is,

B 1.177Mb/s
m + s 4096 + 12.9

= 300.4 jobs per second

If s were to be ignored here we would get 308 jobs per second, instead of the 300.4 jobs per second as
calculated above. This is about a 2% difference. This goes to show as was suggested on page 52, that for
large m, s can be ignored.

Looking at some values of t found close to the breakdown of this mapping. For jobs that took 62.5
milliseconds to execute, the rate of demand is,

w
1

8
0.0625

= 128 jobs per second

This is clearly much less than the amount of supply available and indeed this mapping ran at 92.9% effi
cient.

For 31.25 millisecond jobs the rate of demand is,

w 8
1 ~ 0.03125

= 256 jobs per second

This is starting to approach what was measured to be the level of supply to the end worker, 287.473 mes
sages per second. And indeed in these experiments this mapping only runs at 88.9% efficient here.

For t = 15.62 milliseconds the rate of demand is,

w 8
1 ~ 0.01526

= 524.3 jobs per second

This is clearly much greater than the rate of supply here and indeed this mapping ran at only 63.2% effi
cient. This is some way from maximum efficiency, although compared with an algorithmic mapping this
still might be considered reasonably efficient.

What is interesting here is that this simple theoretical model predicts the performance and the maxi
mum number of compute bound workers obtained in practice with quite a high degree of accuracy.

This model can also be used to calculate the largest number of workers an implementation can have
and still be compute bound can be computed directly from the mapping and hardware parameters,

j B
m + s

It would appear the overheads of farming out work on a processor farm are highly minimal, on this ar
chitecture at least; the value of wmax is directly related to the value of the expression, and is not some
fraction as it was thought it might be. Thus we really do get access to all of the transputer’s potential.

In subsection 4.5.3 (page 52) it was considered if the throughput out of a farmer is,

B
m + s

and if k is the amount of throughput lost through the execution of the harness on one transputer, the
throughput out of the first worker is,

m + s
and so on.

The value of B used in the calculations above is the bandwidth to the end worker, not the raw band
width out of the farmer, unfortunately this has not been measured. However, if we had this value, the
value of k could be calculated. As,

-^farmer _ -^endworker _ ^
m + s m + s

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 91

the value of k is simply,
^farmer _ Bendworker

_ m + s__________ m + s

W

4.9.4 Theory
So far we have a coherent idea that job compute times and message length are inversely proportional to one
another. As has been discussed it is better to use a common metric, namely time, to view both computation
and communication. Here this has been of use in realising the relationship between the parameters.

It was thought at the start of this research that the time to communicate a job must be much less in a
compute bound farm than the time it takes to compute a job. There being many workers to communicate
jobs to. This was not considered any further until the results had been looked at. Doing so made the
breakthrough needed by considering what would happen when there was only 1 worker.

When w = 1, the time to communicate a message can be equal to the time it takes to process a job, so
the next job has finished arriving on the worker as soon as the current job has finished being processed.
This we can express as,

For 2 workers, w = 2 the communication time must be at most half the compute time,

m + s 1 .
--------< —7

B ~ 2J

as 2 jobs must be performed in the time it takes to perform one job. Therefore generally,

m + _ s< j_
B — w

By looking at values of j , w, m, s and B, one could find out how close to the optimum performance
of the transputer these harnesses are, this should be high if in practice we are obtaining 90-99% of the
theoretical maximum efficiency.

The main conclusion to draw here is that ultimately the maximum performance is equal to the maxi
mum amount of supply one can generate. Therefore, when mapping an application onto a farm, once j ,
m, s and B have been found, the maximum value of w is dictated by,

JB
m + s

m
If we wish our applications to be farmed out onto as large a farm as possible, then, from what has been

discovered here, j should be as large as is sensibly possible (see next section) and m should be made as
small as possible, with as few components as possible, as was discussed in subsection 4.6.5 (page 58).

4.9.5 Conclusions
Here we go over the four major conclusions arrived at in this section.

Most efficient harness

This experiment set out to find the harness that was the most efficient for as many applications as possible.
In general it transpires that no one harness is the most efficient. The harnesses that are the most ef

ficient are so in one of two situations, never both. The first situation is when application mappings are
reasonably compute bound. Here a harness is needed that has a very small execution overhead. Harness
A is like that, but it is not the last to break down. The second situation is for the mappings that are the

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 92

most demanding. Here the implementation is compute bound and approaching the threshold where a farm
becomes communication bound. The harnesses that are efficient here, harnesses D and E are generally
slightly less efficient than the previous type.

When an application mapping needs a supply that is less than half of the maximum performance ob
tainable with the first generation of links, harness A is the most efficient harness for any number of workers
(apart from two). What harness to use for mappings that are the most demanding is less simple. If one
can construct a bidirectional harness and turn usage checking off, harness E is the most efficient, if usage
checking must be kept on, harness F should be used instead. If only a unidirectional harness can be used,
then harness D should be used if usage checking can be turned off, harness C should be used if it can’t.
This is summarised in the table 2.

number of
workers

most efficient
for compute bound

most efficient
at breakdown

1 all D, C
2 E D, C
4 A and E E, F, D, C
8 A E, F, D, C

16 A E, F, D, C
32 A E, F, D, C

Table 2: Most efficient harnesses for farm sizes tested

Thus we can conclude so far that if an application mapping is highly compute bound then a simple
harness is the most efficient and that only demanding implementations require sophisticated harness de
signs.

The farming execution strategy is independent of any application it may execute. That said, this does
not imply that one harness that is the most efficient in one situation will necessarily be the most efficient
for all applications.

Supply and demand

Farming comes down to supply and demand. The supply is how many jobs one can supply to or results one
can retrieve from the farm, and thus how much communication bandwidth is available. So for example
the larger the messages get, the fewer can be supplied in any given period of time.

It is always possible to create more demand, just simply by adding more workers. However, it is more
difficult to provide a higher rate of supply, this can only be done by developing a better harness or a better
farmer. For example, by reducing the use of ALTs.

Prediction theory

The maximum number of workers that will produce a compute bound application can be estimated for
any application mapping. This is performed with the equation,

m + s

Perhaps this should not be too surprising as this equation is just,

B w
m + s j

rearranged. If s is small, it can be ignored.
All that is needed is to measure the values of j and m from the mapping we intend to use, the value

of B , the bandwidth of the implementation and s the cost of setting up a communication. These are rea
sonably easy to measure and the values of the last two figures can be obtained from the results presented
here.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 93

The normal procedure would be to write the code and then to run it. Here it is advocated that once
the code is written it is tested to see if the mapping of the implementation results in a compute bound
implementation. If not a better mapping and implementation can then be developed.

This results in only a small, but highly effective modification to the implementation development dis
cipline used by many already. It is also one that informs the implementor as to the effectiveness of the
implementation, without having to work out the efficiency or the speed-up of the implementation. A mea
surement that would involve the developing of a single processor implementation.

Model accuracy

It appears that this model captures the performance of a processor farm very accurately. This is probably
helped by the minimal performance overheads of implementing a processor farm on the first generation
of transputers. It also shows we are getting full access to the performance a transputer is capable of.

4.10 Influence of job compute time on finishing
So far this chapter has studied the general running of farms. This section looks at how well a farm finishes.

4.10.1 Introduction
Due to the nature of some applications, there is an extra decision that can be made when the design is being
mapped onto the farming architecture. This extra decision involves how much work each individual job
message is to contain, and thus how long an individual job will take to perform. In order for this decision
to be well made the following farm mechanics must be considered. When a farm is finishing, the last
few jobs will be in the buffers furthest from the farmer. At this point in the running of the program there
will be an increasing number of idle workers. These are near the farmer and are unable to perform these
buffered jobs as work can only flow away from the farmer. For jobs that take a long time to execute this
slowing down will be noticeable by the user. With jobs that are quick to execute this is less noticeable.
On the other hand, having lots of jobs will involve a larger number of communications overall, and thus
again the farm could run potentially slower that it might. Somewhere between these two extremes there
is balance to be struck.

The ideal situation is when the most time consuming jobs are the first to be performed (this also helps
in the initialisation of the farm as we shall see in the next section) and the jobs that take the shortest time
to execute are the last to be farmed out. Generally however, the jobs farmed out are in no particular order
of compute length, as they haven’t been here. Thus, normally how cleanly a farm finishes will depend on
the average length of the jobs being farmed out.

A smooth finish is desired, with most workers completing their last job about the same time.
This experiment sets out to discover how much the job compute time influences an implementation’s

performance in practical situations. This is achieved through looking at one example application.
Here we are interested in how much of a difference this issue can make to the overall run time. This

issue is likely to become of increasing interest as it is now being realised some applications can be imple
mented on a farm by farming out jobs not as one continual stream of jobs, but as a series of job sequences,
where the beginning of a burst may not available until all of the previous set of results have been received
and processed. Thus being aware of how much of difference this issue can make and also being aware of
how to find the right balance is an important issue.

Here it was decided to take an application of a static amount of work and farm it out using different
lengths of job, both in terms of the length of the job packet and the length of time it took to process each
job.

Thus, here it was decided to study one application to see how much of a difference in run time this
parameter could be responsible for.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 94

4.10.2 Test Design
Studied here is an application consisting of jobs of data that can be easily varied in size. Here the length of
the messages used would be scaled, as well as the length of time it would take to process them. Thus the
amount of data communicated overall is always the same as the amount of work performed. In implemen
tations of this nature changing the amount of work in a job changes both the number of communications
performed and the amount communicated.

It was decided to study an application whose total run time in microseconds was exactly divisible by
a wide range of numbers. Further the work was of a very fine grain, thus allowing for a great deal of
scalability.

An application was wanted that would run on a farm of 32 workers, thus for convenience the amount
of time the application should take was to be a multiple of 32 seconds.

The Poisson distribution was still going to be used to provide a suitable amount of variation in job
computation time. Thus all runs of the farm would need to consist of a complete number of cycles through
the Poisson distribution of job times. This was achieved by having a minimum of 100 jobs for each
worker. As there were 32 workers this gives a minimum of 3200 jobs in any mapping. Each of these
jobs would take a second to process.

SEQ w = 0 FOR 32
SEQ i = 0 FOR 100

- - g i v e o u t 1 se co n d j o b s , v a r i e d by t h e P o is s o n d i s t r i b u t i o n

Following on from this, if jobs took half a second to process there would 200 per worker and so on.

SEQ j = 0 FOR ?
SEQ w = 0 FOR 32

SEQ i = 0 FOR 100 * (2 ~ j)
- - s e t l e n g t h o f jo b t o 1 second / (2~j)
- - g i v e o u t jo b s v a r i e d by P o is s o n d i s t r i b u t i o n

As mentioned before, a 1 second job is simulated by 100,000 iterations of the workers’ time consum
ing loop. Unfortunately 100,000 doesn’t divide perfectly by powers of two. As these results were going
to be compared directly, it was important the amount of work performed was exactly the same. Thus the
number of iterations done were powers of two. The range of iteration values arrived at were from 1024
to 131072. This latter value being around 1.3 seconds. Thus each time the application was farmed out
the work would be grouped into different sized jobs, starting at jobs taking around 0.01 of a second and
doubling all the way up to 1.3 of a second.

The only parameter left to decide upon was message size. It was desired that all the different mappings
were to be compute bound. From the results obtained earlier we know if a job takes one second to process,
a 32 worker farm could easily cope with 4 kilobyte messages, see figure 31 (page 86). Thus I set the test
generator to scale this figure down linearly for jobs that took less time to perform, jobs taking 0.655 of a
second to process having 2 kilobytes of data in the messages and so on. Thus the final test consisted of
jobs ranged from 32 bytes taking 0.01 of a second to process up to 4 kilobytes taking 1.3 of a second to
process. This test was run for a farm of 32 workers for all six harnesses.

4.10.3 Test Program
The essence of the test program was copied from the previous test program f a rm l. The worker and the
harvester processes were the same. There was a similar farmer and a similar driving program.

In this test the driving program just generated a sequence of job processing times. The number of
jobs to be used was then deduced from the processing time. Again each time was generated five times
and again these five run times were averaged.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 95

INT d e l a y , t im e , r u n , t o t a l . r u n , l e n , n j o b s :
SEQ t = 10 FOR 8 - - 8 e x p e r im e n ts

SEQ
d e l a y := 1 << t - - j o b l e n i n 10s o f u - s e c o n d s
t im e := 10 * d e l a y - - jo b l e n i n u - s e c o n d s
- - t h e l a r g e r t h e s i z e o f t h e j o b s - t
- - t h e few er jo b s t h e r e s h o u ld be
n jo b s := w o rk e rs * (n jo b << (17 - t))
l e n := d e l a y >> 5 - - c a l c m essage l e n g t h
t o t a l . r u n s := 0
SEQ i = 0 FOR 5 - - r e r u n s

SEQ
t o . f a r m e r ! n j o b s ; d e la y

r e c e i v e and o u t p u t r e s u l t s from fa rm er
. . . c a l c u l a t e and o u t p u t a v e ra g e s

The farmer received a number of jobs and a processing time. From the processing time the farmer
deduced the message length. For every 1024 iterations of the ten microsecond loop of the worker, the
work packet had 32 bytes. This gives us the following job times and message sizes.

variable
t

run time
(seconds)

message length
(bytes)

10 0.0102 32
11 0.0205 64
12 0.41 128
13 0.0819 256
14 0.164 512
15 0.328 IK
16 0.655 2K
17 1.31 4K

Table 3: Job processing times and their message lengths

The application was farmed out and the performances analysed.

4.10.4 Results and Conclusions
Figure 35 (top of next page) shows the run times of the six harnesses for each job compute time.

According to this graph the optimal length of time to be computing a job is at the curve’s minimum,
this is just above 0.164 of a second. This is with messages of 512 bytes.

The most important conclusion to draw from these results is that it is worth finding the best length of
the average job. In this situation being an order of magnitude out, which in naivity is possible, reduces
the farm’s efficiency from the maximum efficiency possible here 98.5%, which is near perfect, down to
93%, see figure 36 (bottom of next page). In terms of run time this is a difference between 133 and 141
seconds, a saving of 8 seconds. Which in context to the size of the whole application is an extra 6% longer
execution time. Thus finding the optimum job length is clearly worth doing in order to decrease the run
time of the application.

What is also of interest is that the optimum length of job appears to be independent of the harness
used, all of the curves change direction at the same point.

Flere harness A is the most efficient. This is not too surprising as we deliberately arranged for this
application to be highly compute bound. What is also interesting is to note is that the order of which
harness is the most efficient, changes for different job compute times. For very small job compute times
the order is: A, C, E, D, B and F. For the largest job compute times used here the order is: A, E, D, C, F
and B.

ef
fic

ie
nc

y
(%

)
to

ta
l r

un
 ti

m
e

(s)

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 96

Figure 35: Run times for varying job lengths for all 6 harnesses on 32 workers

Figure 36: Efficiency for varying job lengths for all 6 harnesses on 32 workers

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 97

At the optimal job length, harness A is 0.65 of a second faster here than the next fastest harness, har
ness C. This is an extra \% more efficient. In this case, this is not very much and thus in this situation is
not worth being concerned about. However, for farms that run for a long time period this degree of tuning
may save minutes.

Here we have just looked at finding the balance for one particular application. This subject needs to
be looked at in greater detail before a general theory can be developed.

This application only has a reasonably small amount of work to perform. For a larger amount of work
the optimum size of job would be slightly larger. The smaller number of communications this would result
in would absorb the extra time it would take for the farm to finish.

In this application the amount of work to be performed has deliberately been chosen to be small, this
is so that this experiment would gain insight on implementations that farm out the series of job bursts
discussed earlier. In such farms there would a considerable number of farm shutdowns throughout the
running of the application. Thus, it has been shown here that if the sizes of jobs can be selected to any
degree, it is even more important the optimum size of job be found.

4.11 Farm start up
Having looked at how much the average job length affects the efficiency and finishing time of a farm,
there is also the question of how a farm starts up and becomes filled with jobs.

Initially it was thought it would be necessary to study this behaviour. However, after realising that
farm start up just involved the harness becoming filled with spare jobs it was realised no experimentation
would be necessary. Start up being something that just happens and in any good implementation it will
happen quickly. We now look at why this is the case.

4.11.1 Opening discussion: what starting up a processor farm consists of
When a farm starts the harness and the workers are empty. The farmer outputs the first job into the farm,
then the second and so on. In a compute bound implementation a point will be reached when all the work
ers are working on jobs and all the buffer spaces are filled with spare jobs. At this point we say that the
processor farm is filled with work or initialised. If the farmer attempts to output a further job it is desched-
uled until the farm finishes a job and can receive more work. However, this is only likely to be the case
for highly compute bound implementations. If an implementation was not highly compute bound the first
job, or even the first few jobs, could finish before all of the farm was filled. Thus the farm would take a
longer time to fill up with work and so would not be running at maximum efficiency for a short period of
time, due to workers waiting for jobs to arrive down links. As was discussed in the previous section, it is
desirable to have all of the long jobs farmed out at the beginning of a run.

Communication bound farms do not fill up with work. The same is also true of farms where the de
mand is equal to the supply. In such farms the farmer will be able to supply jobs to the workers, but these
jobs are consumed at exactly the same rate. As a result the workers are likely to be idle after finishing an
item of work as they wait for the next job to arrive down the link from the farmer. Also the buffers will
never really be in a state where they are behaving as buffers, in possession of a job and descheduled until
another process makes a claim for its job. The workers will be making a constant claim for work. Thus
only compute bound farms actually use the buffering capacity in the harness.

In conclusion all that can be said so far is, if a farming harness does fill up with work, it will do so
after some period of time.

4.11.2 Theory
An attempt to understand how a farm initialises via operational means was not successful. It could be
seen that if an application was only just compute bound, the whole farm wouldn’t be filled with work
before the first job (or perhaps the first few jobs) finished. This approach led to problems when trying to
crystalise this. The breakthrough came when an attempt was made to calculate the number of jobs that

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 98

would be output into the farm, in the time it took a worker to perform the first job. With this it was realised
the speed of initialisation comes down to how much greater the rate of supply is than the rate of demand.

As a simple example lets say the harness we are using has w buffer slots, one for each worker. Then
in this example we need an excess of 2w jobs to be supplied to the farm before it is filled. If the rate of
supply is 6 jobs per second and the rate of demand is 4 jobs per second, that is an excess supply of 2 jobs
per second, 6 — 4. If w = 8 there are 16 slots to be filled, then initialisation will take the number of slots
need to be filled divided by the excessive amount of supply. Here this is 16 slots, divided by a 2 extra
jobs per second, giving 8 seconds. In general this is,

buffer slots
supply - demand met

where demand met is always less than or equal to the supply. If the demand is greater than the supply,
the demand met will be equal to the supply. In this situation the implementation is communication bound
and the buffers of the farm will never be filled.

From this model it is easy to see that the more compute bound a farm is, the quicker it will initialise.
This model can also be used to look at what was a problem to look at before: how many jobs are

delivered to a farm before the first job is completed. As w is the basic number of jobs needed in the farm,
and,

m + s
B

is how much time it takes to deliver a job. This multipled by w,

m + s
W B

is how long it should take to fill up the farm with jobs. If this figure is less than the time it takes to perform
a job,

m + s
< j

all the workers will obtain a job before the first job finishes. Further, if h is the number of buffer slots in
the harness, and,

(h + w) — < j

then all the workers and harness buffer slots will obtain a job before the first job finishes. Now, if the
length of time to compute a job is less than this,

J < {h + w)— —

but larger than the time take to fill up all the workers,

m + s
w

B
< j < (h + w)

m + s
B

the farm will not be filled immediately, and thus will not be running at maximum efficiency for some time,
as it will take a while for the empty buffer slots to be filled.

If part of the lack of supply is due to overheads within the farmer, several jobs could be prepared and
farmed out in quick succession. Initially the farm sits empty for longer, but once the farm has been filled
with work, the farmer only needs to top up the harness buffers with work, the workers always have work
available on-chip and do not have to wait for work from the farmer. Thus, overall the farm should run
slightly more efficiently. As this is not likely to be practical in most situations, it has not been looked at
this here.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 99

4.11.3 Priority
Which buffers are filled first depends upon, amongst other things, the design of the harness. This begs
the question, should we then design a harness to fill up with work quickly? Here the answer is believed
to be no. A harness should be designed to be as efficient as possible throughout the whole running of the
farm. This being what a harness will be doing most of the time.

During initialisation the job distribution processes will simultaneously receive requests from all pro
cesses they are connected to. Changing which channel is given priority will change the way the farm
comes filled. That said, it is unlikely that a farm will be able to fill up with work more rapidly.

4.12 A comparision of topologies
So far this chapter has looked at what approach to coding a harness for a line of workers is the most ef
ficient. Looked at next are which topologies are suitable for farming and which of these are the most
efficient.

4.12.1 What makes a topology appropriate for farming
The choice of topology is an important aspect of farm implementation. Both directly, as this choice affects
the bandwidth around the farm, and indirectly, as different topologies will need different harnesses. Here
it was decided to look in general at all the properties that would be appropriate for a farm and thus what
topologies match these.

In subsection 3.2.2 (page 30) it was shown how a toroidal topology is not a very appropriate topology
for farming. What is of interest here is why, so this can also be applied to find out which topologies are
appropriate and inappropriate for farming.

Looked at here are what properties are desirable in a farm generally if it is to be efficient, and which
of these affect the choice of topology and how.

Ideally all processors in the farm should be working continually. No processor should be starved of
work. The properties considered important for this are listed here and discussed below.

1. Keep communications to a minimum.

2. Use all the communications bandwidth available.

3. Keep the harness’s use of the C.P.U. to a minimum.

4. Any buffering within the harness should only aid performance, not hinder it in anyway.

5. Use a communication harness that is easy to write.

Keeping communications to a minimum can be achieved by not performing any unnecessary com
munications, for example by not passing messages back and forth continuously. Here we have used job
distribution strategies that only give out work from the farmer to the workers in a client-server arrange
ment. Keeping communications to a minimum can also be achieved using a topology that possesses some
degree of fanout.

Using the full communications bandwidth available is achievable by careful utilisation of the under
lying hardware through the use of as many links as possible and link buffers.

Keeping the harness’s use of the C.P.U. to a minimum is in fact reasonably easy. As we came to re
alise in subsection 3.1.3 (page 25), only work needs to be given out. Therefore the harness should just
perform communications, inputs and outputs. Which direction work should be sent in should be decided
by communication, via requests, rather than by some form of computation as these will require the C.P.U.
Thus the code of the harness should consist of communications and as little of anything else as possible.

Any buffering within the harness should only aid performance and not hinder it in anyway is easily
obtained through the use of any sensible buffering mechanism, as shown here in subsection 4.9 (page 68).
As a general principle parallel system run at less than full speed if important parts of the mechanism are

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 10 0

prevented from proceeding if waiting for resources. It should be noted any variables in the harness that
hold data in transit act as a level of buffering.

The mechanics of a topology that fans out needs to be discussed in detail. This is looked at next and
leads naturally into a discussion on the last point of how to keep the harness easy to write.

Tree topologies

The performance of a compute bound implementation is limited by the rate at which work can be carried
out. One method of enabling the workers to make the greatest progress with the application is to use a
harness that uses as little of the C.P.U.’s resources as is possible. Another is to reduce the total number of
communications performed. This can be done by reducing the number of jobs, as looked at in the previous
section, and also by reducing the number of communications each message has to take to its destination.
Naturally, the smallest number of hops possible is one, the farmer and workers being directly connected.
In fact a logical model for a processor farm would also have this direct interconnection, see figure 37.

Figure 37: Logical structure of a processor farm

One method of getting close to this optimum is to fan out the work as much as is possible with the
valency of the hardware. Doing this results in every job and result message passing through fewer proces
sors than would be the case with a line of workers. Thus the total number of communications performed
in the farm is reduced, as is the amount of time, on average, the harness is executed.

This additional fanout results in larger ALT constructs within the code of the harness. These take
longer to set up and to shut down. They may also result in less work being performed by the workers
close to the farmer, as these are executing expensive parts of the harness for a very large number of com
munications.

Looking at the reduction in communication in more detail. As a pipeline grows in length, the commu
nication overheads grow in direct proportion, as can be seen in figure 34 (page 88). If there are n messages
and w workers, each message is passed along an average of about

w
2

workers. So the total number of communications performed is proportional to

nw
~2

If the number of workers is doubled, so does the overhead. With a tree the amount of communication is
proportional to nflogy w]. Where / is the degree of fan out in the tree.

As a transputer possesses four links, the highest degree of fan out that can be obtained is three, giving
the largest number of hops from the farmer to any worker is the base 3 log of the number of workers,
greatly reducing the average number of links that need to be traversed between the farmer and the workers,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 101

as can be seen in table 4 (top of next page). Also the amount of traffic at any stage is a third of what it

tree number of average distance to
depth workers farmer from worker

1 3 1.0
2 12 1.75
3 39 2.615

Table 4: Average farmer-to-worker distances around a ternary tree

was at each previous stage.
This area has already been well looked at before [PZ90, TD90]. Both of these authors say ternary

trees provide better performance than a single line of workers. The former also shows by how much.
Thus it is possible for an application that is not quite compute bound when run on a linear topology

to be just compute bound when run on a more efficient topology such as a tree.
A ternary tree have one limitation. With a tree topology the farmer and the harvester must reside on

the same C.P.U. This is unfortunate as the amount of work a farm can perform is related to the bandwidth
available out of the farmer and more bandwidth can be obtained from a link that is only used unidirection-
ally rather than bidirectionally, and with a ternary tree results will be travelling along links in the opposite
direction to jobs. It is therefore advantagous from a bandwidth point of view to consider having the farmer
and harvester on separate processors. This could be possible by arranging two ternary trees together at
the leaves forming a diamond, with the farmer and harvester at opposite ends.

For many sizes of farm a tree may not have every layer or level completely full of workers, as in
figure 38 (top of next page). In order to obtain an evenly distributed communication load the best way to
arrange for only the last level or layer of the tree to be partially empty, as in figure 39 (next page). There
is a temptation to think that unbalanced trees must be placed as in figure 40 (bottom of next page). So, the
communication load is distributed evenly over the first three workers. In fact it does not actually matter
if the communication load is distributed evenly, the overall communication load on the whole farm will
always be the same.

Unfortunately, trees that do not have all levels full are difficult to describe in occam. Slightly different
versions of the harness may be needed on different workers depending on how many others workers each
processor connects to. Thus, a different number of buffer processes may be required, especially in the
case of harnesses like B or D.

Pipes and rings are very easy to scale linearly. However, a large linear topology will suffer from more
communications problems than an equivalently sized tree.

In summary, on ternary trees, the average distance between farmer and worker is less, the average
amount of traffic on a link is also less. The second of these two points has a further advantage as link
communications consume memory bandwidth which slows the C.P.U. down and thus allows more pro
cessor resources for executing the application.

Keeping the harness to a minimum

With some topologies keeping the harness to a minimum is the most difficult property to achieve. Any
topology is going to involve some processes being closer to the farmer or harvester than others. In order
to remain true to this property, topologies should have the same harness code running on all of the workers
in that topology, regardless of their position within it. Thus, what is ideally needed is a communications
structure where one set of simple processes can be used through-out the network. For this to be achieved
the same method of distribution should be performed at all places in the network, regardless of the position
relative to the farmer. Thus, the whole topology should fan out from all of the nodes of the structure.
All nodes should fan out by the same amount at all points. Also, no two communication paths should
reconnect, thus each worker has only one communication path from the farmer and to the harvester. Pipes,
rings, trees and combinations thereof possess this property. However, this property does not apply to all
even structures. For example arrays, tori, hypercubes etc. have a very uneven structure
the farmer, because the separate branches reconnect. Although it should be possible tc

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 10 2

Figure 38: Fully populated three layer ternary tree

■ o

Figure 39: Partially populated ternary tree

fanner
------------------------ D - ------------------------

10
- a

i i

- o -

r-D-i r D ^ ^ K I r i l r O r C j r a

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
13 22 31 16 25 19 28 14 23 17 26 20 29 15 24 18 27 21 30

workers

12

Figure 40: More balanced partially populated tree

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 103

of distribution that does supply jobs to all parts of the farm evenly when needed, as far as we are aware,
this can not be done simply with one or two simple processes.

It is important to keep in mind that the topology should be self-similar from the point of view of the
controller process or processes, the farmer and any harvester. If a topology doesn’t adhere to this property
any one single piece of code harness will not perform effectively or efficiently.

As hinted at above there are some variations on the basic suitable topologies. If a great deal of data is
needed to pass in and out of the farm during run time then two pipes, rings or ternary trees could be used
leaving two links to be used to link the farm to the outside world. A single binary tree could also achieve
the same effect. Similarly, three pipes or rings could be hung off the farmer.

4.12.2 What was tested
As it was hoped ternary trees would be the most efficient topology possible, here the performance of
ternary trees is compared against the line of workers used so far.

Why fully populated trees

As mentioned above this author is not aware of any method in occam of constructing mechanically fully
balanced ternary trees of arbitrary size. Thus, for the purposes of these experiments it was decided to
limit the testing to trees with a fully populated last layer. This is not a problem as a line of workers can be
configured to be any length. Because of this restriction in testing the results here will not be totally general.
Nevertheless, this was considered to be only a minor drawback, the results obtainable for unbalanced
farms should be very close to figures extrapolated from the results here. The only problem being how to
allocate the different versions of the harness required in different places in the topology.

Here trees consisting of 1, 2 and 3 layers are looked at. This gives farm sizes of 3, 12 and 39 work
ers. Each size of tree is compared against the same number of workers configured as a line. With three
comparisions to perform there were three experiments.

For simplicity no worker was placed on the farmer and harvester processor.

Testing other topologies

Welch was of the opinion that trees have too much of an overhead to be more efficient than a line of
workers. This was believed to be due to the number of communications the ALTs in the harness would
have, each communication requiring to be set up and shut down every time the construct is executed.
Further, from some experiments performed earlier (during a first attempt at this research) it appeared a
three layer tree did not perform more efficiently than an equivalently sized line of workers. Although one
and two layer trees were more efficient than the equivalent line of workers.

From this it was decided to also compare some topologies that were conglomerations of lines and
trees. For example, as from the previous experiments, small trees could be more efficient than a line of
workers and yet a three layer tree wasn’t, perhaps it would be more efficient to arrange for such a large
number of workers as a small tree that opens out into a number of pipelines.

We now talk through the three experiments and which topologies were compared in each.

Experiment 1: 1 layer tree, 3 workers

The first experiment consisted of comparing four topologies. There is only a small number of sensible
topologies into which three workers can be arranged. The first three topologies are the three that are com
pared in all three experiments.

The first topology was the one layer tree itself. Here all three workers are connected to the farmer
directly. The ternary tree was driven by a farmer that gave out jobs and received results on three links.

The second topology was a line of three workers connected together with the bidirectional harness E.
The third topology was also a line of three workers, these were connected together with the most efficient
harness we have so far for compute bound application mappings, harness A.

As these topologies consisted of a single line of workers with the links driven bidirectionally, it was
decided to see what the performance would be if there were two independent and shorter lines of workers.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 104

The placement code for this topology was written so that the two lines could be of different lengths. Thus,
this topology was tested in all three experiments.

There was no point in building three lines of workers for three workers as this is just a one layer tree.

Experiment 2: 12 workers, 2 layer tree

The first four topologies tested here were the same as in the previous experiment: a two layer ternary tree,
two lines of 6 workers, a line of 12 workers connected with harness E and a line of 12 workers connected
with harness A.

A fifth topology was also built. This was a conglomerate of the tree and line topologies. This topology
consisted of 3 lines of workers, four workers for each line. This was easily achieved by using the farmer
used to drive a ternary tree. This topology might perform slightly more efficiently because of the reduced
harness overheads for the workers within the lines of the topology.

Experiment 3: 39 workers, 3 layer tree

This experiment consisted of the four topologies tested in all of the previous experiments: a three layer
ternary tree, two lines of workers, a line of 39 workers connected with harness E and a line of 39 workers
connected with harness A.

Here it was also decided to look at reducing the farming overhead at various stages either by having
3 lines of 13 workers, still long but very much shorter than a line of 39 workers, or by having 3 workers
fan out to 9 lines of 4 workers. This latter topology was achieved by having 3 workers that used a tree
harness to feed 9 lines of workers.

4,12.3 Test program modifications
These experiments were performed on the same program as was used for the efficiency breakdown com-
parisions, f a rm l. Before the tests could be run additions and some changes were made to the program
in its original form.

The workers of each topology required a slightly different variation of the harness code from any other.
As we have said when introducing the harnesses, see subsection 4.3.6 (page 48), making a good harness
more flexible is not of interest here as generalisations may result in a less efficient performance.

A different type of farmer was required for line, double line and tree topologies. The farmer for tree
topologies was also used for the three line and nine line conglomeration topologies. A different farmer
was also required for each harness used.

Most of the new topologies tested had no separate harvester processor, the harvester being on the same
processor as the farmer. Only the topology consisting of two lines required a new harvester.

The farmer, harvester and the worker compilation modules contained many different versions for dif
ferent types of farms. At any one time only one was compiled, the rest were commented out using com
ment folds.

With the bidirectional line of workers topology the worker furthest away from the harvester was also
only one link away in the other direction. With the newer topologies here this was not the case and indeed
in the case of trees there was no single worker further away from the harvester than any other. Thus none
of the new topologies could practically perform any end worker throughput measurements. This was also
one of the reasons why different versions of farmers and workers were created for each topology.

All of the new topologies required placement code to be added to the program, especially as most of
the new topologies had no separate harvester processor.

There are three other detailed points to make about how the topologies were placed.
On the three and nine line topologies, in order to use as many of the links as possible, the body of the

lines were connected up using two links: one for the jobs and one for the results. Doing this made the
first worker in the line a slightly special case as it was connected to the rest of the line via two links and
to the rest of the tree via just one link used bidirectionally. Thus this first worker needed to be P L A C E d
separately, see figure 41 (top of next page). Note this worker did not need to be a separately compiled
module, but it did need its channels placed onto links in a different manner to that of the workers in the
pipeline.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 105

Figure 41: Detail of link usage for conglomerate topology

It was decided to place two, three and nine line topologies so that all of the lines were grown together
in parallel, see figure 42 (next page). Thus the first worker of each line were all placed directly after

Figure 42: Order in which processors were placed

the farmer or tree element to which they were directly connected. This was done so that hopefully these
processors would then all be equally close to the farmer and thus have a high bandwidth.

The nine lines topology needed an extra separately compiled module. As well as having workers that
needed a line style harness this topology also had workers that needed a tree style harness.

4.12.4 Results
The above farms were run. Here we look at the results obtained. There are really two questions to ask
here.

1. Do ternary trees breakdown later than a line of workers being run by bidirectional harness E? And
thus, are they more efficient?

2. Are ternary trees more efficient than a line of workers being run by unidirectional harness A?

These questions are answered below for each of the three layers.

One layer tree versus equivalent topologies

Looking at these questions in order, we can see from figure 43 (top of next page) that for the three worker
farms, the ternary tree is much more efficient than a line of doubled up workers (harness E). The tree also
changes slope direction more slowly and at smaller message sizes, indicating lower communication start
up costs. For larger message sizes (IK and above here) a doubled up line rolls off slightly slower and is
around only 85% efficient for a small range of the most demanding mappings. The two lines of workers
is the least efficient of the three topologies here.

Looking at the question of efficiency for when a farm is compute bound, see figure 44 (bottom of next
page), we can see a ternary tree is also much more efficient than a single line of workers (harness A) on a
line of workers, again, especially for more compute bound mappings when the messages are small. Thus,
fanning out is worth it. The difference is only slight, however, we had found this before with small farms
in the earlier experiments.

'ft 4. ftftpk
QSiYT’

'P̂ f tA f

ATio /v

eff],cien,°y(%)

"3tj
3li,

4eeD„
neA " _

Pj*SUre 44.
cienc

3!= 0 .® f 0 ^ o 4 M 4 f r O % p .i f f lM * 3 .24

' (bytcs)SI
■yfo>T i Hn¿

:ffave/ f:tittle
and;

(ttís)

free o f 3 ,

4 ree/>
„■ítineE"
~jdbiC"

M *3.24

tirrie (ttls)

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 108

Two layer tree and equivalent topologies

The results for 12 workers are more revealing due to the farm being larger, see figure 45 (top of previous
page). As before a tree is the most efficient for compute bound mappings, for smallish messages (only
128 bytes here). Again a line of doubled up workers is the least efficient, however the roll off is much
later for this larger farm and so is almost at its most efficient for highly demanding applications with large
messages. The two and three line topologies to not exhibit anything of interest.

For all compute bound application mappings here, see figure 46 (bottom of previous page), a ternary
tree is more efficient than a single line of workers. This is also much more clearly visible, this presumably
because we have a two level farm and thus we are actually obtaining much more of the benefits of setting
up a tree topology.

For all the application mappings here three lines of workers is less efficient than the full ternary tree,
but is more efficient than two lines of workers; which for compute bound mappings is only as efficient as
a single line of workers.

Another point to notice is that less mappings are compute bound here. This is to be expected. There
are four times as many workers than a one layer farm and thus there is four times the amount of demand
for work. The maximum amount of supply, however, is still the same as for the smaller farms.

Three layer tree and equivalent topologies

Figure 47 (top of next page) contains the three basic topologies that were compared against each other
when three workers were looked at: a ternary tree, a single line of workers and two lines of workers. As
the number of workers is even larger again here, there is even more of a spread in performance resulting
in the differences between the different topologies being even clearer to see. As before the full ternary
tree is the most efficient topology for highly compute bound mappings and also for highly demanding
mappings with smallish messages (128 bytes). Again, a line of doubled up workers is still very efficient
when a farm is on the verge of breaking down for non-small messages. Otherwise it is the least efficient
topology. It is even just slightly less efficient than two shorter lines of workers. The reason for this is
discussed next.

In figure 48 (bottom of next page) we compare the full ternary tree against the topologies that consist
of many lines of workers radiating from the leafs of a small tree. This was done in the previous experiment
with 3 lines of workers, but here there is also much more of a conglomeration of topologies as the 9 lines
of workers required more code. In this comparision of three topologies we find the full tree is the most
efficient topology of the three here for compute bound mappings. With nine lines of workers being very
close, much closer than three lines of workers is. This reason for this topology being so efficient is because
it is conglomerate topology that is most like a tree.

As can be seen from figure 49 (top of page 110) a ternary tree is much more efficient than a single
line of workers. There being much more of a difference in efficiency. Also the nine lines of workers
topology is also more efficient than the most efficient way of arranging workers into a single line. Again
this is because nine lines of workers is so similar to a tree in structure. The single line of workers is more
efficient than three lines of workers. For clarity the three lines of workers is only shown on figure 48 here.

Discussion

One thing that is clear from these graphs is that not only does the single line topology breakdown last, but
that all the other harnesses, the two lines, the three lines and the ternary tree, all break down at more or
less exactly the same time; the performance of these harnesses being practically identical after they have
broken down. The reason for this must be to do with one aspect that is the same for all the topologies
except the line of workers. Knowing that ALTs are expensive to execute I decided to look there and found
the answer in the farmers used.

In the line of workers driven from both ends, to deliberately avoid the use of A L T s I had decided to
give the work out evenly to both ends. As all of the work was given to the same workers, this would not
cause a load balance problem. Nevertheless, with the farmers of the other topologies, I had used a number
of sacrificial buffers, one on each link, these requested jobs from the farmer. Thus, the farmer executed
an A L T for every job given out. Thus, it was this A L T that was the major bottleneck in the supply of jobs

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 109

Figure 47: Breakdown for 1 and 2 lines and a tree of 39 workers

Figure 48: Breakdown for 3 and 9 lines and a tree of 39 workers

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 1 1 0

Figure 49: Efficiency for 1 and 9 lines and a tree of 39 workers

to the farm, not the number of links being used. This is interesting as although there is more potential
bandwidth in the more elaborate topologies where a number of links is used, the major bottleneck is the
total setup time for the job to be sent from the farmer.

4.12.5 Conclusions
In conclusion we can see that a ternary tree is the most efficient topology in which to arrange workers.
More generally, fanning out over all available links is effective. That said, trees and related topologies
break down just before the best linear topologies, due to the expensive A L T s and requesting buffers that
are needed in the harness code and in the farmer especially to obtain the tree topology. Thus, it is also
important that the highest rate of supply is used. This is especially the case when farming out over a
number of links. Thus, when trying to implement a farm, it is advisable to avoid A L T s in the farmer
process or near it.

This experiment has changed the theory of farm implementation developed so far. If an efficient map
ping for an application can be arrived at, use a tree with harness D, instead of using harness A on a line
of workers. If an efficient mapping can not be arrived at use a bidirectional line of workers using harness
E. As trees perform fewer communications, smaller messages sizes are also more efficient.

4.13 Priority
When developing the code that distributes jobs, one realises it is possible for both the local and the distant
worker to request a job simultaneously. Thus there is a decision to be made as to which worker should be
given a job first. It is often though this decision can greatly affect farm performance and thus efficiency.

This issue is one where there are many different and often conflicting strategies. There appears to be
no experimentation to back up any of these approaches.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 1 1 1

4.13.1 Job requesting strategies
Both Welch and the work performed here with UNITY recommend the use a produce and consume strat
egy for distributing jobs, see subsection 3.1.3 (page 25). From UNITY it has also been reinforced that
getting the work done is ultimately what is important. Spending time executing code to decide in which
direction the next job should go depending on certain criteria can ultimately only slow a program down,
not speed it up. Any attempt to make such a decision via algorithmic means at run time would require the
C.P.U. for a period of time. This can only result in a longer execution time overall. The C.P.U.s executing
decision making code as well as the application. It is also unlikely that the use of decisions would result
in a smoother execution than is possible by just requesting. Here, not only is our method of evaluating
which process the current job should be sent to simple, a single communication, but it also requires a very
small amount of code, run time, memory and very little C.P.U. resources.

In this work it has been shown that some harnesses are highly effective. It is interesting to note that
the processes of these harnesses possess some common properties,

1. if a process requires some information (in this case), it requests it when it is required,

2. if a process has some information to give away, it listens to the processes it is connected to that may
require it.

As we want to execute the application as quickly as possible, it seems natural to concentrate program
ming effects on always executing the application when ever possible. This involves doing what we are
here, trying to find out which worker process is requesting the current job that the distributor has.

This work has come across four different strategies to resolve this conflict,

1. always give priority to the local worker,

2. always give priority to the distant worker,

3. be fair over time to all whom you communicate with, and,

4. do what is appropriate for the deciding process’s position in the farm’s topology.

Here we only test the first three against each other, the fourth will always be specific to a topology.

4.13.2 Code used
Here are listed the distribution processes that were compared against one another.

The first process gave either the local worker or the distant worker priority simply depending on the
order the folds were placed in,

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 1 1 2

PROC farm.out (CHAN OF JOB jobs, CHAN OF PTR local.req, local.job,
distant.reql, distant.jobi,
distant.req2, distant.job2,
distant.req3, distant.job3, VAL INT pointer)

INT p, p2:
SEQ
p := pointer
WHILE TRUE

SEQ
jobs ? len[p] : : job.msg[p]
PRI ALT

{{{ local
local.req ? p2

local.job ! p
}}}
{{{ distant
distant.reql ? p2

distant.jobl ! p
distant.req2 ? p2

distant.job2 ! p
distant.req3 ? p2

distant.job3 ! p
}}}

p := p2

The second process was written using the same folded code and the same interface as in the process
above. This process alternatively gives workers priority,

W H I L E T R U E
S EQ

-- local first
jobs ? len[p]::job.msg[p]
P R I A L T

... local

... distant
p := p2

-- distant first
jobs ? len[p]::job.msg[p]
P R I A L T

. .. distant

... local
P : = p2

4.13.3 The test
This test consisted of timing a full farm with each strategy in turn and seeing if there was any one that
had a consistent increase in performance.

This test was run on a ternary tree as if there is any effect to be had on performance, this topology
should show it up the greatest due to there being more fan out. There are most distant workers and thus
more potential for parallelism, one of the arguments for always giving the distant worker priority.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 113

4.13.4 Results and conclusions
Looking at compute bound applications, see figure 50, there are two points to notice.

alternate priority -®—
local worker has priority ~i—

distant worker has priority ■•&---

Figure 50: Breakdown for 39 workers of alternate, local and distant priority

There is no one method that is outstandingly better. This suggests there isn’t much of a problem with
a worker and the harness on an adjacent worker being starved at the same time. Thus other methods that
involve executing code to decide with process has priority would slow the implementation down due to
the execution of the decision making algorithm.

There is also very little difference between any of the methods, again suggesting that this situation
doesn’t occur often and thus it is not an area of implementation that is worthy of concern.

4.13.5 New fairness implementation
Another method of fairness is to give the channel used previously the lowest priority next time round.

Although this method was not compared here, precisely because there is no point in testing other as
pects of an issue of little relevance. Nevertheless, documented here is an improvement to the approach
used to implement this method.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 114

The code developed in [Sar89] is,

PROC f a r m . o u t (CHAN OF J O B j o b s , [] CHAN OF P T R r e q , j o b ,
VAL I N T p o i n t e r)

I N T p , p 2 , f a v :
S EQ

p : = p o i n t e r
f a v : = 0
W H I L E T R U E

S EQ
j o b s ? l e n [p] : : j o b . m s g [p]
P R I A L T i = f a v F O R 4

r e q [i \ 4] ? p 2
SEQ

j o b [i \ 4] ! p
f a v : = (i \ 4) + 1

p : = p 2

The major problem with this implementation is that the integer remainder operator is one of the slowest
operations in the first generation’s instruction set.

This author has realised a great deal of time can be saved by using a look-up table instead. This look-up
table involves more assembly instructions, but this sequence of instructions is much quicker to execute,
see discussion in subsection 4.2.1 (page 35). The length of the table needs to be twice the number of
channels being alternated over. This restricts the processes generality to one size.

PROC f a r m . o u t (CHAN OF J O B j o b s , [] CHAN OF P T R r e q , j o b ,
VAL I N T p o i n t e r)

VAL l o o k u p I S [0 , 1 , 2 , 3 , 0 , 1 , 2 , 3] :
I N T p , p 2 , f a v :
S EQ

p : = p o i n t e r
f a v : = 0
W H I L E T R U E

S E Q
j o b s ? l e n [p] : : j o b . m s g [p]
P R I A L T i = f a v F O R 4

r e q [l o o k u p [i]] ? p 2
S EQ

j o b [l o o k u p [i]] ! p
f a v : = l o o k u p [i] + 1

p : = p 2

Another suggestion due to Roebbers consisted of rounding the number of channels up to the nearest
power of two and replacing the mod with a bitwise mask [SW90]. In the general case however, this will
increase the number of input communications that are set up and shut down. Thus, the approach here may
even be more optimal.

Unfortunately this improvement did not increase throughput.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 115

4.14 Closing discussions and summary of conclusions
This chapter closes with, two discussions, a suggested methodology and a summary.

The first discussion is on how farming should be viewed. The second is on the fact that the parameters
used to model applications in this study were appropriate.

A methodology for finding highly efficient implementations for farmed applications is recommended.
Finally, the summary reiterates the major conclusions found in this study.

4.14.1 How farming should be viewed
The current opinion held in the transputer community is that only compute bound programs can be farmed
out. Through performing this work three ways of showing this point of view to be incorrect have been
discovered.

The first of these being through the use of UNITY. As UNITY applications are designed and then
mapped onto the hardware, one aspect of developing an effective implementation is finding a mapping
that uses the hardware efficiently. For a farm this means a compute bound implementation. In conclusion,
the way the application is mapped on to the architecture affects the final performance, not just the nature
of the application alone.

The second argument has come through experimentation. The number of workers in a farm dictates
the amount of demand there is for work. Although this is easily variable, the amount of supply a farmer
can generate is fixed. Thus again it is not just the application that is responsible for an implementation
being compute or communication bound, increasing the number of workers will also make a farm less
compute bound and more communication bound.

The third argument has also been arrived at through the study performed here. The different topolo
gies and harnesses result in different levels of performance. For a fixed mapping and a fixed number of
workers, the choice of topology and harness can make or break whether an implementation is efficient in
some situations.

The conclusion arrived at here is there are three issues affecting whether a farm will be compute bound
or not. These are,

1. the amount of time the implementation takes to perform jobs and to send messages,

2. the number of workers used in the farm, and,

3. the efficiency of the topology and harness used.

4.14.2 Parameters used
This work has been made possible by being able to abstract an application down to a small number of
parameters. Initially it was seen that three parameters could be used: compute time, job message length
and result message length. However, it was only possible to study the data if two parameters were used:
the final simplicity of testing only two were used: compute time, j and message size, m .

As has been discovered here, the way these two parameters affect the performance of a farm is iden
tical. Whether a farm is efficient or not comes down to just supply and demand. Thus working, with only
two variables has been a sensible restriction to make here. Working with both job message length and
result message length would have unnecessarily complicated the study.

In terms of the practicality of real implementations the two messages may be of different sizes. In this
case, the largest of the two messages should be used in calculations. Or, it may also be of use to consider
each message separately, if, for example, a topology is constructed that has a large harvester bandwidth
to cope with the large message size.

4.14.3 Method for finding efficient mappings
Here a method is presented for finding efficient mapping. We have yet to look at what applications are
farmable, thus here we restrict ourselves for the time being to applications that consist of independent
jobs.

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 116

Mapping a UNITY program design onto an architecture is independent of any particular architecture,
as is this method. Thus, the method presented here is fleshed out with the results obtained here, the archi
tecture providing the thresholds above which implementations are compute bound. This has been done
for two reasons. Firstly, to show this method complete with the details of one particular architecture.
Secondly, so that compute bound farms for the first generation of INMOS transputer can be developed.

UNITY has been used in this work and this chapter has talked in terms of farming out an application
mapping. It is better to design an application and then map this onto an architecture. Thus, it does not
matter if UNITY is not being used to develop programs here, what is important is that the program is
designed, then any number of job and message sizes can be tried out. All that is needed is to be able to
generate mapping parameters, these coming from the application. Thus, one needs something in the way
of a design.

The method consists of looking at how to partition an application for a particular set of hardware char
acteristics. The best way to implement a farm is to try and find a set of mapping parameters, as the appli
cation allows, that are appropriate for transputers. This process consists of the following stages,

1. develop a mapping,

2. check to see if it is compute bound,

3. developing other mappings if required,

4. implementing that mapping with a farm that is the most appropriate.

We now look at these four stages in detail.

Develop a mapping

The first stage is to develop a mapping of the application for a farm. In the case of farming this consists
of realising how the majority of the application can be performed in the workers and which parts in the
farmer and the harvester. This should be done with the aim of making the mapping as compute bound as
possible, as this will allow for a larger number of workers. The relevant factors to which are: the length
of time to compute the job, the lengths of the job messages and the lengths of the result messages.

Check if compute bound

The next stage is then to check if this mapping is indeed compute bound. This is performed as follows
using,

_ i
Wmax — C

To measure j , for the mapping proposed, implement the algorithm to be performed by the worker pro
cesses on a single processor and measure how long it takes on average to perform a job.

Next, work out how long it takes to communicate the largest of the two message types into this worker,
c. This value could also be calculated here from the bandwidth, the size of the message and the length of
time it takes to start up such a message,

B
c = ----

m + s
however as an implementation has been started here, performing the additional work in measuring the
time taken to perform a communication is reasonably small.

Dividing the first figure by the second gives an accurate estimate of the largest number of workers this
farm can cope with and still be compute bound. This method of estimating the largest number of workers
is considered to be a very useful tool.

Try other mappings as appropriate

It may be worth trying again and looking at some other possible mappings. There are three situations in
which one might do this: one might have a larger number of workers in mind, the mapping tried was not

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 117

compute bound, or perhaps the mapping was only just compute bound and would like to find a mapping
that is more compute bound.

Doing this could be starting from scratch and coming up with a completely new mapping, optimising
the code of the farmer and the harvester, or by just adjusting the values of j and m in the mapping already
developed so that -L is larger. This could consist of configuring each job to be a group of individual
jobs. This was also recommended in [PZ90] by Purgathofer and Zeiller. In terms of communication,
normally we only look at the size and structure of the message. We do not normally look at how long it
takes to communicate a message of any particular size. Also, we don’t generally look to see how much
processor resources a communication will take up in terms of the number of separate messages that are
communicated. As was discussed in subsection 4.6.5 (page 58) it is much more efficient to communicate
a single array than a sequential protocol consisting of the same number of bytes.

One thing to consider when tuning a mapping is the details of the architecture. Here there is a range
of parameters in which the hardware works well. Working within these will help in the implementation
of efficient farms. In this chapter we have looked at counted arrays and here small messages had a large
set up time. Thus messages containing data achieving a minimum message size of 32 bytes will get the
links performing at half maximum bandwidth. This is where grouping jobs could be useful. Instead of
communicating a job that consists of say just aREAL32, jobs could consist of a small array of REAL32s.'
This is the same amount of work for the same amount of communication, but the links are being used much
more efficiently, this could be the difference between being compute bound and communication bound.
On a similar note, by about 512 bytes most of the links bandwidth is being used and larger messages
will only use up more memory which could be disadvantagous. Obviously if jobs consist of simple job
numbers these messages could just be individual bytes.

It is also possible that a compute bound mapping can not be found, due to the nature of the application.
In this case a geometric or an algorithmic mapping should be tried.

In summary, the only thing to say is that finding a good mapping may just consist of persistence, and
trying different ways of mapping the design so that as much as possible of the implementation fits into
these hardware parameters.

Implement best

Once a suitable compute bound mapping has been arrived at, the best supply should be developed. This
should be performed by selecting the most efficient topology and the best design of harness for that topol
ogy.

If the mapping used is reasonably compute bound then a ternary tree should be used, either with har
ness D or harness B performing the communication. Depending on whether usage checking can be turned
off.

If one can only come up with a nearly compute bound mapping one should use a line topology with a
high performance harness, such as harnesses E or F, again depending on whether usage checking can be
turned off.

If flexibility of farm size is required a line topology with harness A, the harness with the most optimal
performance should be used.

Finally the implementation can be fine-tuned. This includes fine-tuning both the application and the
harness.

4.14.4 Summary
It appears the best way to implement a farm is likely to be a ternary tree topology and with either a harness
D or if usage checking can not be turned off, harness B. These harnesses both have a process on each
hardware channel, with harness D these processes pass message pointers. If the messages are of different
sizes buffers should be added to decompose the link processes and allow them to more readily engage in
further external communications.

There are some situations where a greater amount of supply is needed, for example to allow for a
greater number of workers in the farm. Here, a line topology should be used with a high performance
harness, such as harnesses E or F, again depending on whether usage checking can be turned off. These

CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 118

bidirectional harnesses consists of two copies of harnesses D or B respectively and thus has a process
on each hardware channel, two per link. Again harness E, stemming from harness D, has processes that
between them pass pointers to messages. There is a worker process for each copy of the harness. These
two separate system do not communicate with one another directly. On line topologies, sending messages
involve a larger number of communications to be started, as a result, smaller messages breakdown more
rapidly.

Only trees with each layer being fully populated have been used here. How to easily scale the harness
is not known. This prevents easy scaling of the number of workers. However, scaling a line of workers
is easy. If flexibility of farm size is required a line topology with the most efficient harness, harness A,
should be used. This harness being probably the most simple possible, just a single simple process.

Here we have developed a model to calculate the maximum number of works a processor farm can
have and still be efficient,

w J
c

where j is the time to perform a job and c is the time to communicate a job or result message, which ever
is the largest. This can either be measured or calculated by,

m + s

Ideally s should be suitably smaller than m, i.e. the overhead of setting up communication is suitably
smaller than the message size. If this is the case, s (and its influence) can be ignored.

Farming is about supply and demand, and in particular having enough supply to meet the demand for
work.

There are a few other important conclusions that have been arrived at here.

• In an implementation it is important that jobs are allocated to workers quickly.

• The overheads of farming out are minimal.

• The measured bandwidth of a transputer link here is 1.51 Megabytes per second (one byte every
0.663 microseconds) and 2.19 Megabytes per second when the links are used bidirectionally.

• It doesn’t matter which worker the A L T in the harness gives a j o b to when all workers want work.

• The transputer’s s is small, allowing for mappings of a fine granularity.

• Farm performance can be improved if the size of jobs is tuned so the farm finishes as quickly as
possible.

Chapter 5

Farming’s Range of Use

This chapter documents a search to find the limits for which farming out can be used. It also contains
some examples of applications that are not usually farmed.

5.1 Overview
As discussed in chapter 3, it is possible for a wider range of applications to be farmed out than has been
generally considered.

In [TD90] Tregidgo and Downton suggest that farming should be attempted first, due to its generality.
However, there did not appear to be anyone saying what range of applications farming could be used to
execute. Thus this study looks at this issue.

The search to find other applications for farming was performed via a number of different studies.

1. The extensions that could be made to the processor farm’s mechanics were studied. If these me
chanics could be extended, hopefully the range of application would be extended too.

2. Farmed implementations for two recursive applications were developed.
The goal here was to farm out an application that possessed an internal structure not normally con
sidered suitable for implementation on a processor farm.

3. A study of some other types of application and how they would be farmed. This led to a model of
farming being developed.

4. A look at how a geometric decomposition of a set of data could be farmed.

5. A detailed look at some examples of farming. These are taken from both the work by others in
computing and from some other areas of human society.

6. A more useful method of describing and viewing three parallel execution strategies was also de
veloped.

5.2 Extending the processor farm’s mechanics
This section looks at extending the mechanics through which the processor farm works. This is done
through looking at the basic model of a farm and looking at the extra processes and behaviour that can be
changed or added.

119

CHAPTER 5. FARMING’S RANGE OF USE 12 0

Figure 51: Structure of a farm

5.2.1 Multiple result and job types
The farms in chapter 4 all possessed the logical structure shown in figure 51 (top of next page). Here,
the farmer farms out jobs to the workers who communicate results to the harvester. The farmer and the
harvester may also communicate.

While keeping the same process structure, it is possible for results to be sent to the farmer, either
directly or via the harvester. Thus it is possible for results to be farmed out again as other jobs or as part
of future jobs.

Workers can perform different types of job, instead of just a single job type. Thus, work can be per
formed in a number of stages. It is also possible that some form of intermediate processing could be
performed on these results by the farmer, to sort out any interdependencies between them for example,
before they are farmed out again. The interdependencies found in application are often just of a nearest-
neighbour variety. Thus in such situations these interdependencies can be dealt with by the farmer while
other jobs are being processed within the workers of the farm.

The different jobs can be either of the same job type or of a different type. When the jobs are of
the same type, this opens up the possibility for computations that are iterative or recursive in nature to
be performed. When the different sets of jobs are of a different type, this allows for the various parts
of a several stage calculation to be farmed out. There is an example in [CU90] of a farm that computes
different types of jobs. This implementation also interleaved the differing job types to aid obtaining a
higher degree of speed-up.

5.2.2 Automatic load balancing
There is no need for different job types to be performed by a completely separate processor farm. All work
can be executed by the same set of workers. This automatically balances the work load at runtime, an
advantage farming has always had. Doing this alleviates the need for any load balancing to be performed
during the development of the implementation, through the moving of processors back and forth between
different processor farms. The different jobs will have different average processing times. It is unlikely
that the ratio between these will be obtainable exactly with the number of transputers within a network.

All workers performing all job types will naturally affect memory usage; as all processors will require
the code to compute each job type. It is possible to have only a few workers that can execute more than
one type of job. However, such an arrangement is again likely to increase the amount of design work
that will need to be performed. Here jobs would need to be directed to particular workers and memory is
considered to be cheaper than programmer time. This extra memory is not likely to be a problem as most
large applications do not necessarily consist of large jobs, but instead consist of a very great number of
small jobs.

CHAPTER 5. FARMING’S RANGE OF USE 121

5.2.3 Performing work depth and breadth first
When results are returning to the farmer and then being farmed out as more jobs, a decision can be made
whether the farmer should complete one thread of the application before another (a depth-first computa
tion) or to complete one set of jobs before another (a breadth-first computation).

The advantage of the depth-first method, as always, is as the results return to the farmer there is no
need for previous leafs of the computation to be stored, thus there is no need, or in some cases very little
need, to make provision for storage of these previous results.

The advantage of the breadth-first method is that all stages of the application progress forwards to
gether.

5.2.4 When there is an ordering with some work
It should be possible to farm out applications whose computation consists of a directed graph of depen
dency, i.e. there are some parts of the application that can only be performed after others. As always, the
amount of parallelism possible is dictated by the application, and thus the number of processors usable.

5.2.5 Multiple harvesters
Just as implementors can choose to have the harvester separate from the farmer, it is also
there to be a number of harvesters, though this will entail a more elaborate result collecting
An example of where this might be useful is a processor farm that generates different results
graphics monitors.

5.2.6 Multiple farmers
Similarly, farms might be constructed with a number of farmers. This could be advantageous due to the
greater bandwidth obtainable out of a greater number of processors. There are two strategies that have
the concept of multiple farmers.

Firstly, workers could generate work for other workers downstream. This could be performed repeat
edly, and thus a farm would consist of a hierarchy of farmers. This has also been described in the occam
2 reference manual [Inm88].

It might be possible to have a number of farmers that are independent, i.e. they do not communicate
with one another. Each of these would supply work to its own set of workers. With some applications such
an approach might achieve a high degree of balance. It might be possible to have a main farmer existing
only in the program’s proof of correctness. The real farmers obtain their jobs from this. In practice the
farmers respond differently to the same situation in order to keep the farm running harmoniously. Results
from all the workers could still be cbllected by one harvester.

Whether either of these strategies are worth implementing remains to be seen. One obvious advantage
is that the bandwidth of jobs out of a number of different processors is going to be higher than out of just
one. However, whether having multiple farmers can lead to implementations that maintain load balancing
remains to be seen. It is the fact that a farm is simply automatically load balancing that helps to lead to its
potential efficiency. It would seem that a multi-farmer farm would be less likely to be as balanced than a
single farmer farm. A single pool of work is definitely easy to manage.

5.2.7 The farmer-harvester bottleneck
For very large farms, there can be the question that the speed of the farmer or the harvester process can be
the bottleneck of the entire farm. If for the application in hand such synchronised processing is creating a
bottleneck the dependent processing could be pipelined over a few processors. So far it has always been
that the farmer and the harvester have been a single process on a single processor each. There may be
situations however, where the tasks to be performed by some farmers and harvesters can be decomposed
into a number of processes and run across a number of processors.

possible for
mechanism,
for different

CHAPTER 5. FARMING’S RANGE OF USE 122

5.2.8 Varying the size of the farm
It is possible to vary the number of workers throughout the execution of the program. Adding more work
ers to a processor farm involves two stages. First, the workers must be connected to the farmer or into the
harness. Second, the workers must then be initialised with the code with which they can execute jobs. If
processors are removed from the farm care must be taken to ensure that no jobs are lost.

5.2.9 Farming out all farmable applications
As has been discussed at the beginning of this section, workers can be used to execute more than one type
of job. This can be taken further. Just as it is possible to farm out one application that consists of several
separate stages, it is also possible to have any number of unrelated applications executing on the same
farm. As the applications are completely unrelated their jobs can be computed side by side on the same
processor farm at the same time, with all of the advantages of dynamic load balancing to be gained.

5.2.10 The processor farm is one part of an application
It is possible to have an application consisting of several parts or components, one of these being a farm.
The other components could produce tasks for the farm to compute, the farmer acting as a server. There
is already one example of a farm being used as one part of a parallel implementation is [BTU88].

5.2.11 Summary
The largest pieces of insight this work has provided us with so far is that,

1. the computation may proceed in several stages and thus consist of jobs that produce only interme
diate stages of results,

2. the jobs may be of different types, and,

3. jobs may have some computational dependence between them.

The many stages of work can be either performed in a depth first or in a breadth first arrangement,
depending on the requirements of the application or the amount of memory available. A breadth-first
strategy requiring all intermediate results to be stored.

It is easier to have all of the processors being able to execute all of the parts of an application, though
again this may be restricted by the amount of memory that is available on any one particular hardware
configuration.

It is possible to have more than one harvester present in one farm for different types of result. It is also
possible to have more than one farmer, although this is likely to lead to a lack of coherency of information
about what work has been performed and the lack of a single central pool of work. This could result in one
part of a farm being starved of work while another is busy. Multiple farmers may be best implemented
by having a hierarchy of farmers.

A variable number of workers may be easy to arrange on particular hardware. To be done efficiently,
and easily from a programming point of view, it requires fast initialisation and the concept of dynamic
process creation.

The processors considered here are of the message-passing variety. This technique may be amenable
to other multiprocessor architectures.

5.3 Farming out the towers of Hanoi
At the time this work started no examples of recursive applications being implemented on a farm in the
literature had been seen. Thus it was decided to show by example that such implementations were pos
sible. Presented here are two examples that show such applications can be implemented on a farm. The
first of these is documented in this section, the second is shown in the next section.

CHAPTER 5. FARMING’S RANGE OF USE 123

This first example application is the towers of Hanoi. This example is a simple one, being often used
to introduce the concept of recursion.

The towers of Hanoi has an expansion factor of two, i.e. for every recursive call, another two calls
are generated. A common example of a recursive problem with an expansion factor of one is the factorial
function.

5.3.1 Building a farmed implementation
Traditionally the towers of Hanoi is expressed using recursion,

PROC h a n o i (VAL INT n, VAL BYTE from, t o , v i a)
IF

n > 0
SEQ

h a n o i (n - 1, from, v i a , to)
move (n, from, to)
h a n o i (n - 1, v i a , t o , from)

TRUE
SKIP

However, recursion isn’t present in Occam.
This problem is easily solved. Recursion is implemented using a stack. All that needed to be done is

to implement a stack and the recursion by hand. As soon as it was realised this was the way to proceed,
it became obvious that the contents of this stack could be farmed out. There can be many workers in a
farm and thus any parts of the problem that can be solved in parallel will be.

Thus, instead of taking a problem from the top of the stack and processing it directly, the contents of
the stack were farmed out to workers. Thus many parts of the solution would be in the process of being
unwrapped by workers simultaneously.

One problem with going parallel

Going parallel leads to a problem: we lose the context of where we are within the problem. Previously the
solution was unwrapped sequentially, a sub-problem would be removed from the stack, unwrapped and
the new sub-problem would be pushed onto the stack. Where the computer was in solving the program
would be known, the program always working within the same part or context of the problem at any one
time. By going parallel we lose this.

This problem lies in the fact that at the farmer different parts of the problem and the solution will
be going out and arriving simultaneously. We must know which peg movement instructions goes where
within the whole solution and where the different sub-problems fit into the whole of the problem. From
the normal information we have, the disc number and the order of the pegs, we do not have enough in
formation to distinguish any one part of the solution from another, especially as the smallest disc will be
moved many times. In fact there are only six ways in that three pegs can be arranged. How this can be
solved is looked at next.

Labelling

This problem’s solution is generated by expanding the problem,

h a n o i 64, f rom, t o , v i a

into sub-problems,

h a n o i 63, f rom, v i a , t o
move 64, f rom, t o
h a n o i 63, v i a , t o , from

CHAPTER 5. FARMING’S RANGE OF USE 124

as normal. Here this will be expanded in parallel to,

h a n o i 62 from, t o , v i a
move 6 3, from, v i a
h a n o i 62, t o , v i a , from
move 6 4, from, t o
h a n o i 62, v i a , f rom, t o
move 6 3, v i a , t o
h a n o i 62, from, t o , v i a

A labelling scheme is needed to identify each part of the solution uniquely from all of the others. A tech
nique is also needed for generating each new label from its ancestors. Part of the problem here lies in the
move instructions being generated at all levels of the problem.

The method used here to generate a new label from its predecessor was developed as follows. Each
move instruction can be given the same label as the sub-problem that generated it. Further, a smaller label
should be given to the sub-problem that comes before the move instruction and a larger label should be
given to the sub-problem that comes after it.

This method needs to be arranged so it works recursively from any sub-problem. Not only should the
two sub-problems generated have labels respectively smaller and larger than it, but all of the labels then
generated from them are also respectively smaller and larger than the original label.

In order to do this, how much the problem expands at each level, and how far the recursion will
go, needs to be taken into consideration in the design of the labelling system. Here the number of sub
problems generated by each sub-problem is two. The number of discs the program should be able to deal
with is 64, the largest size associated with the problem.

By starting with a label for the original problem, this first problem will generate two sub-problems
and a single move instruction. As this first expansion takes us from the original problem of size 64, say,
to two problems of size 63, and a move instruction, the move instruction can be given a number that is
simply based on a number like 63 or 64.

As this problem has an expansion factor of two, each level of the problem can be encoded by a single
bit for whether or not the sub-problem goes before or after the move instruction of the same level.

01 prefix sub-problem
10 original sub-problem becomes 10 move instruction

11 suffix sub-problem

Here this algorithm is checked to see if labels are generated correctly. As will become clear, care must
be taken here. The first job number expands in the following way,

0100
1000 1000

1100
This is what is desired. The prefix job generated by this expands in the same manner,

0010
0100 0100

0110

However, looking at the suffix job of this,

0101
0110 0110

0111
is wanted. If the numbers were to just be shifted down and added, the following would be produced,

0011
0110 0110

1001

CHAPTER 5. FARMING’S RANGE OF USE 125

Thus, only the current 2 bits of the working window should be shifted down. The upper bits have already
been set and these should be left in place. This operation can be performed by using the bit pattern 01.
Taking this away from a sub-problem label number would give the label of the sub-problem to prefix this.
Similarly this value can be added to a sub-problem label number to give the label of the sub-problem to
suffix this.

10 - original problem label
01 - prefix

prefix sub-problem 1 0 -0 1 = 01
suffix sub-problem 10 + 01 = 11

This method gives the correct numbers for the two new sub-problems generated and correctly preserves
the history of these sub-problems as required.

This leaves the question of what label should the program initially start with. This is done by taking
the size of the problem to be solved and setting that bit (counting from one) of an otherwise clear label.
Thus if we were to have 64 discs, the label of the problem, the first problem, would b e l << (6 4 -1) .

0001-
labels

► 1
r-s-0010— =»*- 2

OOIO-' 0011— =► 3

Figure 52: Expansion of the towers of Hanoi problem

Figure 52 shows how this works as the labels expand. As can been seen here the level of the recursion
becomes encoded into the labels.

Developing the farmer and the workers

Now each part of the solution can be suitably labelled, the essence of the stack management code in the
farmer can be separated from the application in the worker.

The first thing that needed to be performed in order to separate the application into two processes was
to develop the protocols so the two processes could communicate intermediate stages of the application.
In a normal Hanoi implementation the sub-problems would consist of a disc number and the three pegs,
and a move instruction would consist of a disc number and the two pegs. Both messages contain a label.

CHAPTER 5. FARMING’S RANGE OF USE 126

Algorithm optimisation

One optimisation has been made here. For simplicity the towers of Hanoi are usually written,

PROC h a n o i (VAL INT n, VAL BYTE from, t o , v i a)
IF

n > 0
SEQ

h a n o i (n -1 , f rom, v i a , to)
s c r e e n ! f rom, t o
h a n o i (n -1 , v i a , t o , from)

TRUE
SKIP

When n = 0 however, this generates two unnecessary sub-problems that result in nothing being gener
ated. This is more relevant than normal as these extra messages take up extra communication time and
bandwidth through being sent back to the farmer and sent out. In between this these messages take up
stack memory and processor time through being ordered. Normally this would waste one position on the
stack and some time. Here, there are many n — 0 jobs to be stored on the stack and passing them around
takes a lot of time. Thus, removing this overhead will be quite a saving, there are 2N extra of these n = 0
sub-problems in total. This is one level of recursion more than is needed. This would create a redundant
sub-problem for each valid part of the solution. This is even more relevant here as instead of the param
eters of the recursive calls being passed, they are communicated, which has a higher overhead. Thus, in
order to be more efficient and save on the amount of memory used, and the number of communications
performed, n = 1 is dealt with as a special case and only one result is generated.

PROC h a n o i (VAL INT n, VAL BYTE from, t o , v i a)
IF

n > 1
SEQ

h a n o i (n -1 , f rom, v i a , to)
s c r e e n ! f rom, t o
h a n o i (n -1 , v i a , t o , from)

TRUE
s c r e e n ! f rom, t o

Also the way the labelling system has been developed does not allow for n of size zero. Part of the reason
for this is that n = 0 would require an extra bit in the label. Here, given a maximum label size of 64 bits,
this would prevent the solving of N = 64.

Stacks

As in this application there are sub-problems and peg move instructions, the farmer needs to manage two
stacks. The sub-problems consist of the same disc number and three pegs that a conventional Hanoi pro
gram would contain and here we also need our label. The peg move instructions also consist of the label
and the ‘from’ and ‘to’ pegs.

Naturally we are interested in designing a program to finish as soon as possible. In this case the sooner
the program can start printing the solution the quicker it can finish. There are two aspects to this. Getting
to the start of the solution as quickly as possible and making sure we can then print the rest of the solution
as quickly as possible.

Thus we are interested in progressing as quickly as possible from the start of the problem to the start
of the solution, in this case the first move instruction at the top right of the solution as it is drawn in figure
52 (on previous page). In general this means we should always try to be solving the sub-problems that are
on the leading edge of the problem. Those closest to the top of the problem and also closest to the right

CHAPTER 5. FARMING’S RANGE OF USE 133

From looking at the runtimes for the eight peg problem, as it takes 0.062 of a second to solve on one
worker, the optimum possible run time for eight workers should be 0.0077 of a second. However, the
actual time it takes is nearly half a second. This is a speed-up of 0.128, or to put it another way a slow
down of 7.8.

If more workers were to be added to a communication bound implementation, the time the farm would
take to finish would remain about the same. This is because the amount of work being performed is the
same. It is just there are some extra workers that are not being supplied work. So, as a dramatic slow
down is being obtained here, there must be some form of new behaviour related to increasing the number
of workers that is hindering the performance of the farm in this dramatic way.

The reason why the program runs so much slower when more workers are added is likely to be caused
by something major. The first reason considered was an issue had been looked at in subsection 5.3.1 (page
126). Although the farmer is always trying to give out the leading edge, as soon as it does, the leading
edge is in the farm being communicated out, expanded and communicated back. Thus, the farmer doesn’t
have that leading edge job any more and won’t again until the results of that job come back. However, as
there are still many requests for jobs and the farmer is programmed to give out more work, what happens
instead of just the pure leading edge of the calculation being expanded upon, the area just behind the
leading edge is also expanded upon at the same time. This area of expansion has a size and the more
workers there are in the farm the larger this area of progression is. The size of this area of expansion is
directly proportional to the capacity of the farm. By thinking in terms of farm mechanics we can see that
the area of expansion’s size is the number of jobs the farmer can output into the farm before receiving the
results of the previous leading edge back and thus what is the very tip of the leading edge back again. So,
the greater the capacity in the farm the larger this area being expanded will be.

Figure 54: Capacity of a four worker farm

As can be seen from figure 54, a farm’s capacity is made up of the number of workers, four here, plus
the amount of buffering in the harness, eight. As there is some form of buffering capacity in this harness
(it is difficult and also inefficient to have a harness with no buffering capacity) by definition the number
of workers working on the leading edge can only make up one part of this edge, a third in this case. Thus,
as only a third of this is being expanded at any one time and then there is a latency, due to this buffering,
before any more work can be performed on these sub-problems.

It is worth mentioning here that at the beginning of the program running the work is performed in a
breadth first manner.

When watching a farm of eight workers generating the move instructions, it can be seen that there
seems to be a long delay after printing the first dozen move instruction.

Another more practical reason that can be seen for this implementation slowing down is due to, as is
discussed below, the few hundred move instructions that are sorted into order on the instruction stack. As
this implementation uses just a simple insert sort type algorithm to perform this operation this will perform
badly when trying to ripple move instructions down to the bottom of the stack when this stack becomes as
large as it does. This is very time consuming and thus when there are a large number of workers the farmer
probably spends more time performing this slow sort than doing anything else. Using a better algorithm
here, such as a binary chop search to find the insert point and then a block move to create the gap would
have been more efficient.

Another point to note is that the towers of Hanoi has a fine granularity and this has been implemented

CHAPTER 5. FARMING’S RANGE OF USE 134

directly here, resulting in a communication bound farm. Thus the performance of the application could
be better if the grain was to be coarsened. This could be done by performing a number of recursions on
one transputer. However, although this may improve things, due to the problem discussed above, run
times would still not likely to be anywhere near optimal just simply because of the application’s shape
and nature. On its own however, this idea is a good one and usually it can be used to good effect.

Maximum sizes

As well as finding out the runtime of the program, there are another three aspects that are of interest: the
largest number of items on the two stacks and largest number of items in the farm at any one time. We
are interested in the stack sizes here as they are implemented by hand and in occam we need to know how
much space will be required for the sizes of problems we wish to solve.

The figures shown here are for the same four runs as above and two other runs performed where the
eight workers were configured into a pipeline topology as well as the ring topology. As we shall see this
can have quite an effect on the performance of the program as results produced by workers near to the
farmer can travel straight back and be dealt with immediately. At the low level this change makes the
largest improvements when the jobs are on very tip of the leading edge.

It was expected that the maximum number of jobs in the farm at any one time would just be equal
to the farm’s capacity for messages, i.e. the number of workers plus the number of buffer spaces in the
harness.

workers
N 1 8 (ring) 8 (pipe)
4 2 7 6
8 2 16 14

Table 6: Maximum number of jobs in farm at one time for Towers of Hanoi program

This turned out to be the case. However, the largest sizes the two stacks obtained were completely
different to what was expected.

workers
N 1 8 ring 8 pipe
4 5 1 1
8 13 16 1

Table 7: Maximum sizes of sub-problem stack for Towers of Hanoi program

It had been thought that the maximum size of the sub-problem stack would just be proportional to the
size of the problem being solved. However, as can be seen when a large farm is used to solve a small
problem, the sub-problem stack only ever stores at most one job. A likely reason for this is that although
there are a quite a few sub-problems generated, they will get stored in buffering capacity of the harness.
Thus as soon as a sub-problem returns from the farm it is farmed out again immediately. This however
is not the case for when a large problem is farmed out on a larger farm, here the largest size the sub
problem reaches is much larger. This could be due to there not being a linear but some form of exponential
relationship.

The move instruction stack had to much larger than was anticipated. It has to be almost as big as the
problem size when a large number of workers is used. This is brought about by the breadth first nature in
which the problem is solved on the farm.

This behaviour is brought about because as soon as the leading edge of the problem is given out, all
the jobs that are then given out after that are not a part of the leading edge of the solution.

As has been discussed before, as soon as the farmer gives out the job that is on the leading edge of the
problem, until it gets this sub-problem’s prefix sub-problem result, all the jobs the farmer will give out in

CHAPTER 5. FARMING’S RANGE OF USE 135

workers
N 1 8 (ring) 8 (pipe)
4 5 10 8
8 13 234 247

Table 8: Maximum sizes of move instructions stack for Towers of Hanoi program

the future will not be a part of the leading edge. The sub-problems given out in this way will then generate
more sub-problems that will just fill up the lower regions of the stack more and move instructions that will
fill up the bottom of the move instruction stack until these are needed near the end of the program. In this
instance the performance of the application is hindered by the often large amounts of buffering that are
often used to engage the links in parallel. All this extra buffering is filled up with even more sub-problems
widening the leading edge and resulting in the memory problems discussed above.

5.3.3 Improving the performance of Hanoi
At some stage the implementation should be arranged to be compute bound. This is could be achieved
by grouping jobs together, perhaps implementing some recursion locally within the workers.

Solving this imbalance in execution like this would involve studying and thinking about how the prob
lem expands upon execution. By doing this one can give the workers a strategy for expanding the problem
carefully in the various stages of execution. In essence this consists of carefully arranging for the program
to progress well.

The disadvantage with this tuning is it needs to be performed for each size of problem. This requires
a great deal of specific knowledge about how the architecture would go about executing the problem as
it unravels. Such knowledge of what will happen at run time is only really obtainable by spending time
observing or modelling how a program runs.

All this would mean polluting the natural structure by which the program works. Although arranging
the program to perform well might result in a speed up, we are not interested in this here. This program
is just an example. Thus it was decided here to find an application that was more appropriate to farm out,
due to it not needing to both expand and output results throughout the computation.

5.4 Farming out quicksort
Although the previous section shows that a recursive application can be implemented on a farm, it doesn’t
show doing so is worth while from a performance point of view. Thus it was decided to look at a more
suitable example. Namely one that only needed to output its results at the end of the computation, not all
the way throughout it. Thus quicksort was chosen as a second example. Quicksort has two advantages.
Firstly, the size of the data throughout the running of the program is constant, not an exponential expan
sion as with the towers of Hanoi. Thus making quicksort a much more practical application to farm out.
Secondly, more of the internal parallelism within the design of the transputer tends to be used with real
(non toy example) applications.

The implementations and performance of two programs are presented and compared in this section.
The first is a sequential quicksort program, very close to a conventional implementation. The second
farms out quicksort similar to the way the towers of Hanoi was farmed out, through storing partitions on
a stack and by simultaneously farming out as many partitions as possible.

It was realised this farm would start with only a few large jobs at the beginning of the programs ex
ecution and could not obtain a high degree of speed up. Thus a second mapping was conceived. This
consists of decomposing large partitions into equally sizes segments. Once partitioned the resulting le
and ge segments could then be inserted into the appropriate ends of an array. The two result partitions
could then be grown towards each other and eventually would meet when all the results have been re
ceived. These two partitions could then be simultaneously farmed out in the same way. This mapping
has not been successfully implemented, but is documented here both for completeness and as some of the

CHAPTER 5. FARMING’S RANGE OF USE 136

development decisions for the other two programs were made so that the implementation of this mapping
would be much easier.

In the early stages of planning it was realised quicksort could be implemented more directly, without
performing any major restructuring of the algorithm’s workings, as was needed in the implementation of
the towers of Hanoi. This is possible as quicksort is tail recursive. As will become clear, quicksort can
be performed using a stack of partitions by repeatedly removing a partition from the stack, partitioning it
and placing the two resulting partitions directly on the stack.

The conventional sequential program was developed first. The program performing the recursion by
hand on a stack. As well as allowing us to compare a farmed version of quicksort with a conventional
implementation, something we were not able to do with the towers of Hanoi, the development of this
conventional program also served as a useful stepping stone towards the farmed versions.

This seemed the best and most natural way to progress. Since this work started, Barrett has also writ
ten about developing parallel programs from sequential one using the semantic preserving transforma
tions possible in occam [Bar93]. The advantage there being sequential programs and thus also equivalent
parallel programs do not deadlock.

Finally the performance of the programs developed here were compared.

5.4.1 Conventional version of quicksort
Here how the sequential version was developed is looked at. This was developed by obtaining the original
algorithm from [Hoa61], converting this to occam and finally by checking thoroughly that the implemen
tation was working correctly.

Quicksort: recursive partition

Quicksort [Hoa6I, Hoa62, HJ89d] consists of recursively performing the operation of partitioning on an
array,

PROC q u i c k s o r t ([] TYPE a)
INT i , j :
SEQ

i , j := p a r t i t i o n (a)
q u i c k s o r t ([a FROM 0 FOR
q u i c k s o r t ([a FROM j FOR

i])
((SIZE a) j) + 11)

It is simple to see that this could be written in a parallel language with recursion as,

PROC q u i c k s o r t ([] INT a)
INT i , j :
SEQ

i , j := p a r t i t i o n (a)
PAR

q u i c k s o r t ([a FROM 0 FOR i])
q u i c k s o r t ([a FROM j FOR ((SIZE a) - j) + 1])

As with the towers of Hanoi, the recursive element of the program can be separated from the partition
algorithm. Also, as with Hanoi, the recursion can then be written in occam by using a hand built stack.
Thus, partitions can be taken off a stack and farmed out. The results of this are pairs of partitions that can
be placed on the stack ready to be farmed out as smaller partitions.

CHAPTER 5. FARMING’S RANGE OF USE 137

Recursion

Here the recursion in,

PROC q u i c k s o r t ([] INT a)
[max. s i z e] I N T f r o n t , end:
SEQ

f r o n t , end := p a r t i t i o n (a)
q u i c k s o r t (f r o n t)
q u i c k s o r t (end)

needed to be re-implemented by taking a partition from a stack, dividing it into two and then putting these
on the stack. The pseudo-code for this is,

SEQ
pu s h (a)
WHILE s t a c k ha s some c o n t e n t s

SEQ
pop (a)
f r o n t , end := p a r t i t i o n (a)
p u s h (f r o n t)
p u s h (end)

Having developed the basis of the recursion that was to be performed by the program, work progressed
on to implementing the partition algorithm.

Partition algorithm

One reason for wanting to develop a parallel implementation such as a processor farm, is that such imple
mentations are very fast. If one is already interested in high performance, a highly optimised algorithm
should also be used. Thus a suitable optimised version of this partition was found.

The first implementation of partition looked at here was not particularly efficient [Kru87]. The second
implementation of partition looked at was Hoare’s original 1961 algorithm [Hoa61]. This was written to
be very efficient. Thus it has been used here. Being highly optimised this version contains goto statements
and is not as clearly structured as is possible. The original Algol-60 reads as follows,

CHAPTER 5. FARMING’S RANGE OF USE 138

key.index := random(front, end);
key := a[key.index];
i := front;

up:

down :

change

j := e n d ;
f o r i := i s t e p 1 u n t i l end do

i f key < d a t a t i]
g o t o down

i := end
f o r j := j s t e p -1 u n t i l f r o n t do
i f d a t a [j] < key

g o t o change
j := f r o n t
i f i < j t h e n

b e g i n
e x c h a n g e (d a t a [i] , d a t a [j])
i := i + 1
j := j - 1
g o t o up

end
e l s e i f i < k e y . i n d e x th e n

b e g i n
exchange(data[i], data[key.index])
i : = i + 1

end
e l s e i f k e y . i n d e x < j t h e n

b e g i n
exchange(data[key.index], data[j])
j := j " 1

end

The next step was to convert this algorithm into occam.

Key selection

The first important aspect of implementing a good version of quicksort is making sure the algorithm se
lects a good key from which to partition the data. Selecting a bad key in quicksort can result in the algo
rithm sorting in n 2 time. The key is thus naturally best selected from the data by choosing a value that is
medium to the value space of which the data consists.

Hoare simply selected a random key,

key.index := random(front, end);
key := a[key.index];
Here it was decided to select the medium value from the first, last and centre element of the array. This is
reasonably quick to perform and avoids the n 2 worse case performance. Thus the following was devel
oped,

CHAPTER 5. FARMING’S RANGE OF USE 139

I N T m i d d l e :
BOOL f r o n t . e n d , m i d d l e . e n d :
SE Q

m i d d l e : = (f r o n t + e n d) > > 1
I F

d a t a [f r o n t] < d a t a [m i d d l e]
I F - - f r o n t < m i d d l e

d a t a [m i d d l e] < d a t a [e n d]
k e y . i n d e x : = m i d d l e - - f r o n t < m i d d l e < e n d

T R U E
I F - - f r o n t < m i d d l e > = e n d

d a t a [f r o n t] < d a t a [e n d]
k e y . i n d e x : = e n d - - f r o n t < e n d < m i d d l e

TRU E
k e y . i n d e x : = f r o n t - - e n d < = f r o n t < m i d d l e

T R U E
I F - - m i d d l e < = f r o n t

d a t a [m i d d l e] < d a t a [e n d]
I F - - m i d d l e < = f r o n t & m i d d l e < e n d

d a t a [f r o n t] < d a t a [e n d]
k e y . i n d e x : = f r o n t - - m i d d l e < = f r o n t < e n d

T R U E
k e y . i n d e x : = e n d - - m i d d l e < e n d < = f r o n t

T R U E
k e y . i n d e x : = m i d d l e - - e n d < = m i d d l e < = f r o n t

k e y : = d a t a [k e y . i n d e x]

Forward search fragment transformation

The partition algorithm was implemented by carefully working out what was meant by the Algol-60, a
language not known, and then turning the code into efficient Occam.

There are only two parts to the algorithm where the transformation from Algol to occam was intricate.
Both of these perform the same type of task, searching for the next value that is not in place. As both
transformations are identical, just the first is shown here.

The original Algol-60 for this search loop is,

u p : f o r i : = i u n t i l e n d d o
i f d a t a [i] > k e y t h e n

g o t o d o w n ;
i : = e n d ;

d o w n :

It was decided the first step should be to replace the for loop into a type of loop that occam had and that
was appropriately fast.

W ith lo o p s th e m o s t im p o r t a n t th in g is th a t th ey s ta r t a n d te r m in a te w i th the c o r r e c t v a lu es . T h is lo o p
is l o o k in g f o r a v a lu e th a t is o u t o f p lace , i t lo o k s u n ti l i t f inds th e e n d o f th e list , all v a lu e s b e in g a v a i l a b le
f o r s w a p p in g . In c o n t r a s t to m a n y o th e r la n g u a g e s , O c c a m ’s “ f o r ” lo o p d e c la re s its o w n v a r ia b le a n d in
th e o r ig in a l a lg o r i t h m th e v a r ia b le i is u se d o u ts id e th e lo o p . T h is su g g e s te d a W H IL E lo o p , g iv in g ,

CHAPTER 5. FARMING’S RANGE OF USE 140

SEQ
GUY

: up
WHILE i <= end

SEQ
. . . IF s t a t e m e n t
i := i + 1

i := end
GUY

: down

Here the IF statement has been translated into Occam using the assembler directive GUY,

IF
d a t a [i] > key

GUY
J . down

TRUE
SKIP

After putting these two parts together,

SEQ
GUY

:up
WHILE i <= end

SEQ
IF

d a t a [i] > key
GUY

J . down
TRUE

SKIP
i : = i + 1

i := end
GUY

: down

It was realised the loop could undergo some transformation, as the first branch of the IF statement ter
minates the loop. Thus the result of the incrementation is only preserved if the second branch of the IF
statement is executed. Thus the loop can be transformed into,

SEQ
GUY

up
WHILE i <= end

IF
d a t a [i] > key

GUY
J . down

TRUE
i : = i + 1

i := end
GUY

: down

CHAPTER 5. FARMING’S RANGE OF USE 141

Further, if this loop is followed through, it can be seen that when d a t a [end] is larger than k e y the pro
gram goes to the down label and on to the next loop with i still equal to end. However, if d a t a [en d]
is less than or equal to k e y the variable i will be incremented to en d + 1, the program drops out of
the end of the loop and instantly resets the value of i back to end, the value before the incrementation
was performed (this is left over from the way for loops tend to leave their index variable advanced by one
beyond the finishing value). Thus when the loop terminates naturally, there were no out of place values to
be swapped (the program has got to the end of the array and has found all the values should be in the first
partition). Thus, the actual value of d a t a [end] is irrelevant, and this loop can be further optimised to,

SEQ
GUY

: up
WHILE i < end

IF
d a t a [i] > key

GUY
J . down

TRUE
i := i + 1

GUY
: down

Now the loop performs two comparisons, if the first one fails, the loop terminates, if the second one suc
cess, the loop terminates. Thus the loop can be rewritten as,

WHILE (i < end) AND (d a t a [i] <= key)
i := i + 1

As was stated above, the second key searching loop was modified in a similar fashion.

CHAPTER 5. FARMING’S RANGE OF USE 142

The final code arrived at was,

SEQ
k e y . i n d e x := i n d e x . o f . m e d i a n (f r o n t , m id d l e , end)
key := d a t a [k e y . index]
i , j := f r o n t , end
- - s t a r t o f loop
GUY

:up
WHILE (i < end) AND (d a t a t i] <= key)

i : = i + 1
WHILE (j > f r o n t) AND (key <= d a t a [j])

j := j - 1
IF

i < j
SEQ

swap (d a t a t i] , d a t a [j])
i := i + 1
j := j - 1
- - g o t o up
GUY

J . up
- - end o f lo o p
i < k e y . i n d e x

SEQ
swap (data[i], data[key.index])
i : = i + 1

key.index < j
SEQ

swap (d a t a [k e y . i n d e x] , d a t a [j])
j := j - 1

TRUE
SKIP

The three results of partition

After dry running through the algorithm by hand once to see how it worked and what it did, it was realised
the second and third conditional processes of the IF were responsible for moving the key element in
between the two partitions. Thus, the array was partitioned into three parts: less than or equal to the key,
equal to the key and greater than or equal to the key.

The way the algorithm worked, this equals partition would contain at least the key and potentially
some other data elements that were equal to the key and had started out being near the final boundary.
Once the algorithm was up and running it was noticed the indexes generated by the algorithm for further
partitioning didn’t include this area that was equal to the key, due to this part of the array clearly being
sorted and already in place.

When running a small test sort of 79 characters it was found partitioning the array into two instead
of three partitions resulted in a massive 38% loss in performance. By ignoring parts of the array already
sorted and in place, the algorithm has a smaller number of elements to sort and these will be partitioned
into a smaller number of partitions.

If this highly efficient aspect of the algorithm was to be kept, it would involve a storage problem when
farming out segments of partitions. As result segments could arrive from the workers in an arbitrary or
der, the = segments would have to be stored by the farmer until their final position between the < and

CHAPTER 5. FARMING’S RANGE OF USE 143

the > partitions was known. This location would only be finalised after all the other segments had ar
rived. As occam does not have memory allocation, it was thought developing one would involve a great
deal of work, considering the small aspect of the algorithm for which the allocator was needed. It was
decided to avoid this work as the implementation of a memory allocator was not of any great direct ben
efit to this research. This work was attempting to show that different mapping strategies would result in
different levels of performance and speed-up, regardless of the particular details of the application’s me
chanics. Thus, as it was desired to perform comparisons on just the different performances obtained by
the different mappings, it was decided to compare different mappings of the same programs, not different
mappings for different programs. Thus the inclusion of this aspect of the algorithm was not used in these
implementations of quicksort.

Push ordering

There is also another subtle behavioural aspect of the algorithm that is discussed by Hoare in the original
paper. If the larger of the two partitions is always pushed onto the stack before the smaller, the stack space
behaviour is log2 of the problem size.

This was made use of here. The algorithm used here has two variables, I t . r n g and g e . r n g and
are the ranges (one less than the length) of the less ihan and greater than or equal to partitions.

{{{ p u s h a r r a y s >= 2 o n to s t a c k , l a r g e s t f i r s t
SEQ

I t . r n g := j - f r o n t
g e . r n g := end - i
IF - - 1 i s t h e s h o r t e s t l e n g t h we have t o d e a l w i t h

g e . r n g > I t . r n g - - Only push p a r t i t i o n s >= 2 i n
- - l e n g t h , a s t h e above g e . r n g i s >= 2
- - (g e . r n g > I t . r n g and I t . r n g >= 1) i t s h o u l d
- - be p u s h e d , and f i r s t as i t i s t h e l a r g e r
{{(pu s h g e . r n g ; and I t . r n g i f b i g enough
SEQ

. . . pu s h g e . rng
IF

I t . r n g >= 1
. . . pu s h I t . r ng

TRUE
SKIP

}}}
g e . r n g < I t . r n g

. . . p u s h I t . r n g ; and g e . r n g i f b i g enough
- - I t . r n g = g e . r n g h e r e so a r e t h e y b o t h >= 2
I t . r n g >= 1

SEQ
. . . pu s h g e . rng
. . . pu s h I t . rng

TRUE
SKIP

}}}

The partitions are pushed on the stack as follows,

{{{ p u s h g e . r n g
SEQ

f r o n t s [s t a c k . p t r] := i
e n d s [s t a c k . p t r] ;= end
s t a c k . p t r := s t a c k . p t r + 1

}}}

CHAPTER 5. FARMING’S RANGE OF USE 144

{{{ push It.rng
SEQ

fronts[stack.ptr] := front
ends[stack.ptr] := j
stack.ptr := stack.ptr + 1

}}}

Insert sort

In quicksort implementations insertion sort is sometimes used as the sorting algorithm once the number
of items to sort is small. Insert sort being quicker for small partitions. For this reason insertion sort has
been used here when partitions reach a suitably small size.

The only aspect of this algorithm that needs to be explained is the variables used to drive the replicator.
The variable I t . r n g has just been discussed. To save on variables, I t . r n g was used here to refer to
the length of the partition being worked on before it is partitioned. The variable f r o n t is used to store
the offset of the partition being worked on from the beginning of the array.

SEQ i = f r o n t + 1 FOR I t . r n g
IF

d a t a t i] < d a t a t i - 1]
SEQ

j := i
e l e m e n t : = d a t a [i]
WHILE (j

SEQ
> f r o n t) AND (e lem en t

j : = j - 1
d a t a [j + 1] : = d a t a [j]

d a t a [j] : = e le m en t
TRUE

SKIP

d a t a j 1])

CHAPTER 5. FARMING’S RANGE OF USE 145

Program

Putting all this together gave the sequential program. All the variables here are INTs or arrays of INTs.

SEQ
s t a c k . p t r := 0
. . . i n i t a r r a y w i t h some v a l u e s
f r o n t s [s t a c k . p t r] , e n d s [s t a c k . p t r] := 0, m a x . s i z e - 1
s t a c k . p t r := s t a c k . p t r + 1
max. s t a c k . p t r := s t a c k . p t r
WHILE s t a c k . p t r > 0

SEQ
{{{ g e t j o b from s t a c k
s t a c k . p t r := s t a c k . p t r - 1
f r o n t := f r o n t s [s t a c k . p t r]
end := e n d s [s t a c k . p t r]
}}}
l t . r n g := end - f r o n t
I F

l t . r n g >= THRESHOLD
SEQ

. . . key s e l e c t i o n

. . . p a r t i t i o n

. . . pu s h a r r a y s >= 2 o n to s t a c k , l a r g e s t f i r s t
TRUE

. . . i n s e r t s o r t

5.4.2 Farmed version
Developing the farmed version from this stage is easy. The following basic structure has already been
mentioned,

SEQ
p u s h (a)
WHILE s t a c k h a s some c o n t e n t s

SEQ
pop (a)
f r o n t , end := p a r t i t i o n (a)
p u s h (f r o n t)
p u s h (end)

Farming this out consists of putting the partition process into the worker. This makes the code of what
will be the farmer something like,

SEQ
p u s h (a)
WHILE s t a c k . p t r > 0

SEQ
pop (a)
t o . w o r k e r ! a
f ro m .w o r k e r ? f r o n t ; end
p u s h (f r o n t)
p u s h (end)

However, this code just performs a remote procedure call and is not a farmer. What is eventually needed,
as was performed with the towers of Hanoi, is for this process to be able to give out more than one job

CHAPTER 5. FARMING’S RANGE OF USE 146

at a time. As before this involves removing from the farmer any sense of a current context. In a sense
this has been done already here as the f i r s t and l a s t values read back in from the farm. After some
thought it was realised this could be performed by having a farmer that used exactly the same interface
and set of interactions to the farm, as was used with Hanoi. Something along the lines of,

SEQ
p u s h (f r o n t , end)
WHILE s t a c k . p t r > 0

PRI ALT
r e q ? work

SEQ
pop (f r o n t , end)
t o . w o r k e r ! f r o n t , end

f r o m .w o r k e r ? f r o n t ; j ; i ; end
SEQ

pu s h (f r o n t , j)
p u s h (i , end)

Quicksort is less of a problem than Hanoi as if a partition is in the farm, there are no smaller sub-partitions
of it that might also be in the farm at the same time.

As there will be a number of jobs in the farm at any one time, when a result arrives at the farmer, it
must be known where that sorted partition fits within the whole of the array. What needs to be done here
is to store the offsets of the partitions from the front of the array. It was decided to do this by having an
array of these offsets in the farmer. This array then stores the offset of the partitions that are in the farm.

The practicalities of this were implemented in the following way. There were two parallel arrays,
the first contained the offsets as described above and the second contained booleans that marked which
locations in the first array were in use. When the farmer went to give out a job, it searched for an index
in the array that was free. The partition’s offset was then stored in this location.

This index was then put into the job. The worker would leave this value unaltered and return it in the
result. The farmer would then use this index to look up the offset of the result partition. This technique
could also be used to store more information about the jobs in the farm.

Protocols

The farm could now be implemented. The following protocols were developed.

PROTOCOL JOB IS BOOL; INT; INT: : [] INT:

The job protocol contains the sort type, the job number and the data itself. The sort type is whether the
worker is to partition or insert sort the data. This was implemented using the following constants,

VAL p a r t i t i o n IS TRUE:
VAL i n s e r t i o n IS FALSE:

The job number is the array index of this job’s partition offset in the farmer’s partition offset array just
discussed. The worker leaves this value unchanged and passes it back to the farmer. Thus the details of
the result protocol are similar,

PROTOCOL PACKET IS BOOL; INT; INT; INT: : [] INT:

This contains of the sort type, the job number, the partition offset and the data. The sort type is a record
of what algorithm was used to sort the data. If the job has been partitioned further work is required. If
insert sort has been used then this part of the array is in order and no further work needs to be performed.
Next is the job number for the farmer’s own reference. The partition offset is how far into this message
is the start of the greater than and equal to partition if this job has been partitioned.

CHAPTER 5. FARMING’S RANGE OF USE 147

Farmer

The complete top level of the farmer had the following declarations,

VAL s t a c k . s i z e IS 100:
VAL l i s t . s i z e IS 50:
TIMER c l o c k :
INT s t a r t , s t o p :
INT max. s t a c k . p t r , max. i n d e x . u s e d , max. j o b s . i n . farm:
[max. s i z e] I N T d a t a :
[s t a c k . s i z e] I N T f r o n t s , l e n s : - - p a r t i t i o n s t a c k
I N T s t a c k . p t r :
[l i s t . size]BOOL i n d e x . u s e d : - - which s l o t s a r e u s e d
[l i s t . s i z e] I N T j o b . f r o n t :
INT j o b s . i n . f a r m :
BOOL j o b . t y p e :
INT i n d e x , l e n , l t . l e n , g e . l e n :
INT f r o n t , end:
BOOL a n y :

and the following code,

SEQ
{{{ i n i t
s t a c k . p t r := 0
j o b s . i n . f a r m , max. j o b s . i n . farm := 0 , 0
m a x . i n d e x . u s e d := 0
SEQ i = 0 FOR SIZE i n d e x . u s e d

i n d e x . u s e d [i] := FALSE
}}}
. . . i n i t a r r a y w i t h some v a l u e s
. . . p l a c e f i r s t j o b on s t a c k
c l o c k ? s t a r t
WHILE (s t a c k . p t r > 0) OR (j o b s . i n . fa rm > 0)

PRI ALT
. . . g e t i n r e s u l t s
. . . g i v e o u t work

c l o c k ? s t o p

As before priority has been given to the receiving of results over the giving out of more work.
How work was given out will be discussed first here. The storing of offsets was performed as simply

as described above. Here a sequential search through the list of indexes was performed until a free slot
in the array was found. The array was declared to be sufficiently large to comfortably cope with the sizes
of farm used.

CHAPTER 5. FARMING’S RANGE OF USE 148

{{{ g i v e o u t work
s t a c k . p t r > 0 & r e q s ? any

SEQ
{{{ g e t j o b from to p o f s t a c k
s t a c k . p t r := s t a c k . p t r - 1
f r o n t := f r o n t s [s t a c k . p t r]
l e n := l e n s [s t a c k . p t r]
}}}
end := f r o n t + (l e n - 1)
{{{ g e t a j o b i n d e x number
i n d e x := 0
WHILE i n d e x . u s e d [index]

i n d e x := i n d e x + 1
}}}
i n d e x . u s e d [i n d e x] := TRUE
j o b . f r o n t [i n d e x] := f r o n t
. . . u p d a t e max . i n d e x . u s e d
IF

l e n >= THRESHOLD
j o b s ! p a r t i t i o n ; i n d e x ; l e n : : [d a t a FROM f r o n t FOR len]

TRUE
j o b s ! i n s e r t i o n ; i n d e x ; l e n : : [d a t a FROM f r o n t FOR l e n]

j o b s . i n . f a r m := j o b s . i n . f a r m + 1
. . . u p d a t e . max. j o b s . i n . farm

}}}

Getting the results back in is reasonably easy, though subtle. The process consists of loading the data
back into the array from where it came. This is achieved through using the index value that we gave out
with the job. If the data was sorted using insert sort, the data is in order and so nothing further is necessary.

{{{ g e t i n r e s u l t s
r e s u l t s ? s o r t . t y p e ; i n d e x ; I t . l e n ;

l e n : - . [d a t a FROM j o b . f r o n t [index] FOR len]
SEQ

IF
s o r t . t y p e = p a r t i t i o n

SEQ
g e . l e n := l e n - I t . l e n
. . . p u s h a r r a y s >= 2 o n to s t a c k , l a r g e s t f i r s t
. . . u p d a t e max. s t a c k . p t r i f n e c e s s a r y

TRUE
SKIP

i n d e x . u s e d [index] := FALSE
j o b s . i n . f a r m := j o b s . i n . f a r m - 1

}}}

Worker

In [DH90] the workers have a number of different worker processes, each of which performs a different
type of job. Which worker a job message is sent to is dealt with by the farming harness.

As has already been discussed in this work, decision making in the farming harness prevents it from
getting on with the task of obtaining further work and could lead to inefficiency. The approach used here is
to let the worker analyse the job and decide which procedure should be called. In this farm the workers can
perform two types of job: a partition and an insertion sort. Here the worker receives a job and processes
it directly, according to its type.

CHAPTER 5. FARMING’S RANGE OF USE 149

{{{ d e c l a r e v a r i a b l e s
[max. s i z e] I N T d a t a :
INT jo b .n u m b e r :
BOOL j o b . t y p e :
INT m i d d l e :
INT l e n , end , i , j :
INT k e y :
INT e l e m e n t :
}}}

SEQ
r e q u e s t . w o r k ! TRUE
r e c e i v e . w o r k ? s o r t . t y p e ; j o b .n u m b e r ; key; l e n : : d a t a
end := l e n - 1
IF

s o r t . t y p e = p a r t i t i o n
. . . key := d a t a [m e d i a n (f r o n t , m id d l e , end)]

p a r t i t i o n Tony Hoare CACM 1961 v4 n9 p321 two way s p l i t
TRUE

. . . i n s e r t s o r t
r e s u l t ! s o r t . t y p e ; jo b .n u m b e r ; i : l e n : : d a t a

The insert sort algorithm now runs FROM 0 FOR end, not FROM f r o n t FOR end as was written in
the sequential version previously. The partition algorithm also needs similar modification from the form
written in the sequential version. The variables i and j are initialised differently.

{{{ p a r t i t i o n Tony Hoare CACM 1961 v4 n9 p321 two way p a r t i t i o n
SEQ

i , j : = 0, end
u p : LOOP START
c h e c k low er p a r t i t i o n

. . . c h e c k u p p e r p a r t i t i o n
IF

i < j
. . . swap and g o to up

. . . COMMENT move key
TRUE

SKIP
i := j + 1

This algorithm generates three partitions, as has been discussed, the values between i and j being equal
to the key. This implementation only partitions the array into two sub-partitions. This last line sets i to
point to the beginning of this middle partition. This is valid here as the key element is contained within
the partition.

The farm was arranged as a line of workers, with the first worker placed on the farmer’s transputer.

5.4.3 Tests
The programs were then run to sort 10,000 numbers. These numbers were picked using the following
simple algorithm,

{{{ i n i t a r r a y w i t h some v a l u e s
SEQ i = 0 FOR 10 ,000

d a t a [i] := (314 * i) \ 19950
}}}

As before program run was performed five times and an average taken.

CHAPTER 5. FARMING’S RANGE OF USE 150

5.4.4 Results
For the sequential program, the optimum value of THRESHOLD was found to be 15. For the farm larger
values of THRESHOLD resulted in quicker run times. The partition algorithm is quick to execute and 15 is
a small number of values to partition. As the overhead of communicating a job is large due to the packet’s
header size this farm will easily become communication bound. As a result of this the farm was run with
THRESHOLD equal to multiples of 15. Farms were run for sizes of 1 through to 6. The run times are
shown in table 9.

workers run time (THRESHOLD = 15) farm run time (THRESHOLD)
1 1.0805
1 1.2678 1.1371 (30)
2 0.8910 0.7352 (45)
3 0.8456 0.6094 (75)
4 0.8299 0.5531 (90)
5 0.8211 0.5238 (90)
6 0.8250 0.5147(105)
7 0.8217 0.5100(135)
8 0.8286 0.5184(135)

Table 9: Quicksort run times

Below the sequential program is compared against the farms with THRESHOLD equal both 15 and
whatever multiple of 15 obtained the greatest speed up. These values are shown in brackets along the x
axis of the graphs.

o.
3
-o

2.2 -

2.1
2'

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

.............. "A

,4

_______ ^ ---------
jj

/ /

f /

'

......................... S ¡¡emendai proeratn —
times when THRESHOLD =15

ti rnes for optimum THRESHOLD: value (see x axis) --*■

1 (30) 2(45) 3 (75) 4(90) 5 (90) 6 (105) 7 (135) 8 (135)
number of workers (THRESHOLD values)

Figure 55: Speed up of quicksort programs

As can be seen from the reduced run times, farming out quicksort in this way does result in some speed
up, see figure 55. On completely equal terms a speed up of 1.31 is obtained. This was on 5 workers giving
an efficiency of 26%. By tuning the algorithm selection threshold value to its optimum for a farm, a speed
up of 2.12 is obtained. This was with 7 workers, resulting in an efficiency of 30%.

CHAPTER 5. FARMING’S RANGE OF USE 151

A speed up was only obtained for farms sizes greater than 1 worker here. A single worker farm is
slower due to the overheads a farm, as well as the monitoring mechanism implemented here. Also note
that 15 was not an optimal value of THRESHOLD for any of the sizes of farm.

>>ua

<u<D>
"5Lh
<Dt>0td

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-ft

■ \ '**.
SN
\ \ efficienc y when TP

lerfect effi
1RESHOL

ciency —
P = 15 -♦<—

....\ ...J
'efficie icy for opt mum THR

relat
ESHOLD
ve efficien

value (see
cy of one

X axis)
vorker

\
£•;*.............

N
..

b.

>------
•

>

1 (30) 2(45) 3 (75) 4(90) 5 (90) 6 (105) 7 (135) 8 (135)
number of workers (THRESHOLD values)

Figure 56: Relative efficiencies of quicksort programs

From looking at the relative efficiencies, figure 56, it can be seen that the usage of the transputers tails
off very rapidly. As more workers are added they perform very little extra work. Also, the more workers
in the farm, the more inefficient the program is and for longer at the beginning of the run. Although more
work was always performed by the farm than would be by just one processor.

In summary, although some speed up is achieved by using this strategy of mapping quicksort onto a
farm, the speed up and the efficiency this implementation obtains was only small.

The reason for only obtaining a small amount of speed up when farming out partitions was due to the
farm just having one very large job perform at the start of the run. Thus initially the most of the workers
are starved of work, and for a considerable length of time. If a farm is to be properly utilised, at any one
time there needs to be at least as many jobs being supplied to farm as there are workers. This was not the
case here and thus the full potential of a farm can not be realised. Thus the performance here is mediocre
compared with say the efficiencies obtained in chapter 4.

Also, in [MS87] McBurney and Sleep implement a matrix multiplication on a architecture for any ap
plication that can be expressed using recursive divide-and-conquer. On 1 processor their system obtains
an efficiency of 94% compared with a tight sequential loop performing the same problem. For quicksort
a 1 processor farm obtains an efficiency of 85% (or 95% once tuned). On 12 transputers the matrix mul
tiplication obtains an efficiency of 73%. This is quite good and is clearly quite a bit better than the 30%
efficiency obtained here on 7 transputers farm. The quicksort farm loses such a large degree of efficiency
due to insufficient parallelism in the mapping used. It is also worth noting that McBurney and Sleep’s
architecture also loses some efficiency due to only communicating jobs over at most one link from their
origin. Thus this architecture is not very efficient for problem sizes not significantly larger than the size
of the transputer domain used. This quicksort farm is a good example that an appropriate mapping is re
quired for an efficient implementation. McBurney and Sleep’s ZAPP architecture is a good example that
the correct communication strategy is important if an implementation is to be efficient.

That this farmed implementation of quicksort obtains some degree of speed up when implemented
on a farm is satisfying. Nevertheless, the fact this level of performance is poor was expected, due to the

CHAPTER 5. FARMING’S RANGE OF USE 152

initial insufficient amount of parallelism in this mapping. This was why a second more suitable mapping
was attempted.

Maximum behaviour

What is also of interest here is the stack behaviour of the two quicksort programs. The sequential program
had a maximum stack size of 8. After running the farm program it was found the m ax . j o b s . i n . fa rm
and m ax . i n d e x . u s e d values were the same for all runs of the program. Thus the values obtained here
are only listed under the name m ax. jo b s . i n . fa rm in table 10.

workers max.jobs.in.farm max.stack.size (15) max.stack.ptr (optimum)
1 2 16 15
2 5 33 21
3 8 27 20
4 11 30 18
5 14 35 17
6 17 29 18
7 20 22 20
8 23 51 12

Table 10: Maximum sizes in quicksort farms

The m ax . s t a c k . s i z e was larger for farms, growing in size with the size of the farm. The most
interesting result here is that the maximum size of the stack is reasonably constant for optimised farms,
regardless of the number of workers in the farm.

5.4.5 Farming out segments
Suggested here is an approach in which the task decomposing the work into jobs that are of effectively
all the same size throughout the running of the farm.

As before, this mapping revolves around a stack of partitions. Here however, these are not just farmed
out as is, but as a series of jobs. A partition is removed from the stack and is then stored in a variable (or
variables) until all of it has been farmed out. These variables should not be used by the code that reads in
results. Every time the farmer goes to give out a job, it sees if it has a partition, getting a new partition
from the stack if not. Just a segment of this current partition is then farmed out. The 1 1 and g e results
of these segments are then grown from the ends of the partition towards each other. These meet when all
of the results of the partition have been received.

The top level of the farmer is,

WHILE (s t a c k . p t r > 0) OR h a v e . a . p a r t i t i o n OR (j o b s . i n . fa rm > 0)
PRI ALT

. . . g e t i n r e s u l t s

. . . g i v e o u t seg m en t jo b s

Segment jobs should be given out as follows,

CHAPTER 5. FARMING’S RANGE OF USE 153

(s t a c k . p t r > 0) OR h a v e . a . p a r t i t i o n & r e q ? any
SEQ

IF
NOT h a v e . a . p a r t i t i o n

SEQ
. . . g e t a p a r t i t i o n and p r e p a r e t o fa rm i t

TRUE
SKIP

IF
p a r t i t i o n i n g - - i f p a r t i t i o n i n g t h i s j o b

IF
l e n g t h > SEGMENT - - g i v e o u t n e x t segment

SEQ
j o b s ! p a r t i t i o n ; j o b . i n d e x ; key;

SEGMENT:: [d a t a FROM f r o n t FOR SEGMENT]
f r o n t := f r o n t + SEGMENT
l e n g t h := l e n g t h - SEGMENT

TRUE
SEQ - - g i v e o u t l a s t segment

j o b s ! p a r t i t i o n ; j o b . i n d e x ; key;
l e n g t h : : [d a t a FROM f r o n t FOR l e n g t h]

h a v e . a . p a r t i t i o n := FALSE
TRUE

SEQ - - i f i n s e r t i o n s o r t i n g t h i s j o b
j o b s ! i n s e r t i o n ; j o b . i n d e x ; 0;

l e n g t h : : [d a t a FROM f r o n t FOR l e n g t h]
h a v e . a . p a r t i t i o n := FALSE

j o b s . i n . f a r m := j o b s . i n . f a r m + 1

The fold . . . g e t a p a r t i t i o n an d p r e p a r e t o fa rm i t receives a job from the stack,
and then similar to before, the farmer remembers where the ends of the partition are and the positions
where the result segments are to be inserted. The key also needs to be selected at this stage.

SEQ
s t a c k . p t r := s t a c k . p t r - 1
f r o n t , l e n g t h := f r o n t s [s t a c k . p t r] , l e n g t h s [s t a c k . p t r]
end : - f r o n t + (l e n g t h - 1)
. . . g e t a j o b number
p a r t i t i o n . f r o n t [j o b . i n d e x] := f r o n t
p a r t i t i o n . l e n [j o b . index] := l e n
IF

l e n g t h > THRESHOLD
SEQ

i n s e r t [j o b . i n d e x] [I t] := f r o n t
i n s e r t [j o b . i n d e x] [g e] := end + 1

TRUE
SKIP

h a v e . a . p a r t i t i o n := TRUE
s e l e c t key

The i n s e r t array contains for each job the address the next I t result segment should be loaded into.
The ge result segment value is set to be end + 1, just beyond the end of the array. The length of the
segment should be subtracted from this value to give the address the ge result should be loaded into. If
the result message has been loaded into b u f f e r , this would be done as follows,

CHAPTER 5. FARMING’S RANGE OF USE 154

IF
p a r t i t i o n . t y p e = I t

SEQ
[tmp FROM i n s e r t [r e s u l t . i n d e x] [I t] FOR len] :=

[b u f f e r FROM 0 FOR len]
i n s e r t [r e s u l t . i n d e x] [I t] := i n s e r t [r e s u l t . i n d e x] [I t]

TRUE - - p a r t i t i o n . t y p e = g e
SEQ

i n s e r t [r e s u l t . i n d e x] [g e] := i n s e r t [r e s u l t . i n d e x] [g e]
[tmp FROM i n s e r t [r e s u l t . i n d e x] [g e] FOR l e n] :=

[b u f f e r FROM 0 FOR len]

+ l e n

- l e n

All the partition has been received when,

i n s e r t [r e s u l t . i n d e x] [I t] = i n s e r t [r e s u l t . i n d e x] [g e]

the contents of the tmp array can be copied back into the main d a t a array and the two partitions can be
placed on the stack for further partitioning.

As before the workers are given an array and partition this into two. As these are loaded separately
into the farmer, these two partitions should be communicated in two separate result messages.

As the work is being segmented here, the workers may get a segment than contains values all of which
are less than the key or greater than the key. In these cases only one result message should be generated.

5.4.6 Recursion
Recursion isn’t present in occam, as was mentioned in the section on the towers of Hanoi. It is also not
present in UNITY either.

Many programmers, on their first contact with occam, complain about this and often suggest it should
be added to future versions of the language.

Further, a common opinion expressed by some members of the transputer community (in the Usenet
newsgroup com p. s y s . t r a n s p u t e r) a few years ago is that recursion would be very difficult to im
plement by hand. The experience obtained here however, is completely the opposite. Developing the
stack, and the operations that manipulate it, was one of the easiest parts of both the Hanoi and the quick
sort programs. Further, translating the quicksort algorithm from another very early programming lan
guage was also found to be quite easy. This conclusion has also been arrived at by other work [MMF87].

This research has come to the conclusion that, if anything, recursion does not enhance our thinking,
but restricts it. As programmers we are interested in developing parallel implementations of applications.

When setting out to develop a towers of Hanoi farm, no way to parallelise the application could be
seen when it was expressed in recursive form. As soon as the application was thought of in terms of jobs
on a stack, the way to proceed was obvious. Thus, it is the belief of this work that recursion is not wanted
in parallel languages: as when trying to implement a recursive algorithm in parallel, recursion restricts our
thinking and makes the parallelism in the application harder to find, not easier. Thus recursion is a form of
expression not easily amenable to parallelisation. Thus making recursion of little use when implementing
algorithms for parallel machines.

Language shapes our thoughts and recursion shapes our thoughts in a way that is not appropriate for
parallel programming. Although it is a useful shorthand for expressing sequential algorithms, it is not
useful for expressing algorithms in a way that is appropriate when wishing to find a way of parallelising
a sequential algorithm. Further, when implementing a recursive application on a farm, the execution of
the recursion will always be implemented by hand. Thus, the problem will be implemented completely
differently and so recursion is not useful for expressing the structure of the algorithm.

CHAPTER 5. FARMING’S RANGE OF USE 155

5.4.7 Conclusions
The main conclusion to draw from this, and the previous section, is that recursive applications can be
farmed out.

In this section it has been shown that if a suitable mapping strategy can be found recursive applications
can be farmed out efficiently and speed up can be obtained.

That the same basic farmer could be used for both programs could suggest that all applications that
can be farmed out in stages should use this type of farmer.

5.5 Some other applications and a model of farming
Having developed an efficient farm of a recursive application, focus returned to what range of applications
could be farmed out.

The work here took place in a number of forms. This started by looking at how two applications would
be farmed out. Next two ways in which the jobs may have some form of dependency between them was
looked at. Lastly it was decided to look at the mechanics of the processor farm itself and see what its
limitations were. From this a model of farming and what types of program it can execute was developed.

5.5.1 Farming out functional applications
It had been suggested that the evaluation of functional programs could be farmed out. This being achieved
by giving out the various parts of the functional graph. It was realised here that if this were possible, the
job messages’s would contain the processes to be executed by the workers.

This contrasts with all the processor farms seen here so far where the job messages contained just data.
This approach is easy to implement, and further, is all that is possible in fully checked occam.

This is why farming out and geometric decompositions have seemed similar, both involve giving dif
ferent items of data to be computed to different processors executing the same process.

However, now it was realised workers may execute the contents of the job messages they receive. In
fact, this is possible even if functional programs can not be farmed out; nothing about the mechanics of
a processor farm prevents messages containing executable objects or the workers executing the contents
of job messages they receive. Thus, processes themselves may also be farmed out. As before messages
are simply communicated from the farmer to the workers as jobs of work.

Although job (and result) messages may contain instruction sequences of the processors’ assembly
language, this is not possible in (pure) occam; there is no executable object type so only jobs of data can
be fully checked by the compiler.

It is important to note that all jobs must still terminate. This includes executable jobs.
In summary, job messages may be of any type: data, the executable code of any process that termi

nates, or the two combined.

5.5.2 Farming out of sequential applications
Considered next was whether a sequential application could be farmed out. The application considered
was the classic program that printed “Hello world”.

This application consists of outputting a sequence of bytes, and thus is just a sequential application
as the task can not be decomposed into a number of separate parallel jobs or processes. This is a feature
of the application, and is not affected by any approach taken to implement it.

It was further realised that this does not prevent the application from being implemented on a farm,
it is just there is no parallelism inherent within the application to make use of the parallelism of a farm,
or any other parallel implementation technique. There being only one thing to be performed at any one
time. Naturally such a program is non-scalable. Thus in general, an implementation is dependent upon
both the amount of parallelism within the application and the way that parallelism is decomposed. Also,
with sequential applications it is important that jobs are executed in order. One simple way to guarantee
this is by having a one worker farm.

CHAPTER 5. FARMING’S RANGE OF USE 156

It was realised that any sequential application could be farmed out by the program’s machine instruc
tions being given out one at a time. This also showing again that job messages may contain processes as
well as data.

Farming out sequential programs would be less efficient than executing the program in the conven
tional way on a single processor. This being due to the overheads of setting up and running a processor
farm. However, the important result here is that farming out sequential programs is logically possible. In
fact, it was realised the structures of a one worker farm and a Von-Neuman machine are identical, as can
be seen in figure 57.

I farmer \------ H ~worker"] j memory 1-------- H C.P.U. 1

Figure 57: Structure of a one worker farm and a Von-Neuman machine

Similarly, it is also the case that shared memory machines (see figure 58) and multi-worker farms
(figure 59, page 158) are also identical in structure.

Figure 58: General structure of multiprocessor shared memory architectures

Such parallel architectures are ideal for farming out a queue of processes (or ‘threads’). In fact, a
number of machines have started to appear on the market that farm out the process queue although they
provide a “conventional” programming interface to the users. Thus, there is a greatly increased potential
for the use of parallel programs in the future. This being due to both of the main advantages of parallel
programming: scalable linear speed up and the naturalness achieved through describing the behaviour of
naturally parallel systems in a parallel language.

The fact we can farm out sequential applications is not very useful; generally we are interested in
farming out applications containing parallelism on a number of workers in an efficient manner. This being
with scalability and linear speed up. This involves utilising efficiently (and thus effectively) the power of
hardware contained in a multiple number of processors.

Thus in short, we need to concentrate on and be interested in parallelism. This being both parallelism
within the implementation as well as within the application. As we have see with the “Hello world” appli
cation, in order to have parallelism within the implementation there must be parallelism within the appli
cation. Thus we can only gain better performance through parallelism if applications have a reasonable
degree of parallelism within them.

In order for an implementation to be efficient, the parallel decomposition should be of a sensible grain
for the hardware. Experience from chapter 4 tells us a sensible grain for farming is slightly bigger than
that of the grain of the hardware’s primitive operations, for example see subsection 4.7.6 (page 63).

Thus this study of farming out a sequential program has brought out an important distinction. This is
between whether it is logically possible for a program to be farmed out, and whether an efficient imple
mentation can be developed. These issues are completely separate: the issue of efficiency is dependent
upon both the mapping and and the architecture used, the issue of possibility is dependent upon the nature
of the application.

For any implementation developed we should ask the question: is the program not only efficient, but
more efficient than would be obtained through using another execution strategy?

From looking at the farming out of sequential applications, three things have been learnt,

i.

CHAPTER 5. FARMING’S RANGE OF USE 157

1. the amount of parallelism is limited to the application,

2. if it is possible to farm out an application, this does not guarantee that an efficient implementation
will be found, and,

3. a processor farm has the same structure as both Von-Neuman machine and shared memory ma
chines.

5.5.3 Farming out processes with communication dependencies between them
It was realised that processes with communication dependencies between them can be farmed out. How
this can be done is demonstrated with the following example,

CHAN OF Type chan :
PAR

SEQ
. . . a
chan ! i n t e r m e d i a t e - r e s u l t
. . . b

SEQ
. . . C
chan ? p a r a m e t e r
. . . D

These two processes can be farmed out if they are divided into processes that contain just the independent
computation, processes a, b, C and D, and the communication dependency. The independent processes
can then be farmed out as jobs and the dependency can be performed via the farmer; this being done using
the existing result and job messages. The intermediate result produced by job a can be communicated, as
a part of the job’s result, to the farmer. This intermediate result can be supplied as a part of the job when
process D is farmed out.

This is equivalent to transforming the above processes into,

CHAN OF Type r e s u l t , j o b :
PAR

SEQ
r e s u l t ? v a l u e
j o b ! v a l u e

SEQ
. . . a
r e s u l t ! i n t e r m e d i a t e - r e s u l t

SEQ
j o b ? p a r a m e t e r

D

This performing of work in a number of stages is the same thing as was talked about in subsection
5.2.1 (page 120).

5.5.4 Processes with loose computational dependencies between them
Work with a loose amount of computational dependency can also be farmed out. In such situations there
is a (possibly cyclic) graph of interdependencies between the items of work, each edge representing where
a process needs results from another process. If at any one time a number of processes can proceed simul
taneously, these processes could be farmed out. When the results of these jobs return they will contain
values required for the next set of jobs.

CHAPTER 5. FARMING’S RANGE OF USE 158

5.5.5 The phrase “farm out”
In section 2.5 (page 15) it was decided to use words like farming and farmer, not master and slave etc.
More recently it was discovered that the verb farming has been in the language for some time.

Dictionaries have a few definitions for the verb to farm. One, which is frequently followed by out, is
defined along the lines of,

to delegate, subcontract, send or give (work) to (be done by) others.

This is what is performed in a processor farm. This usage dates from the mid 17th Century [Uni93].
Further, [Uni33] dates to 1666 a definition with similar meaning,

contract to maintain and care for (persons, esp. children)

This phrase is also still in use in society today, “children are farmed out to neighbours or relatives”.
Using the verb farming out refers to what is going on directly and thus shifts the emphasis away from

an object and towards the action. As it is this action and mechanism that is more important, we use this
term and view farming out as an action more than than a physical entity. Thus, where possible, the verb
“farm” or “farm out” is used in the rest of this thesis opposed to the nouns “farm” and “processor farm”.

5.5.6 A model of farming out: what it is and what it can do
Here we present a model of the mechanics of farming out. Using this model we go to discuss what jobs
and what applications it can perform in the next two subsections.

Farming out is an execution strategy, one way of arranging for work to be performed, the allocation
of the jobs being performed at run-time.

To aid in the definition of a model for farming out, three items need to be introduced. These are,

• a job, an item of computational work,

• a bag of jobs (or a central pool of work), and,

• a number of workers, each of which is capable of performing work.

In farming out, a bag and a number of workers are arranged as in figure 59 below.

Figure 59: A model of farming out

Farming out consists of two actions,

1. the allocating of a job (via some form of interaction) between the bag and a (free) worker that does
not have a job, and,

2. the performing of those jobs by the workers.

CHAPTER 5. FARMING’S RANGE OF USE 159

The interaction may consist of transferring something like a request and a message containing either a job
number to be interpreted by the worker, the computation to be performed, or the data to be processed by
the worker which already has the algorithm to be used.

Thus farming out consists of the continual scheduling and performing of work. The next job to be
performed is allocated from the bag to a worker as soon as that worker becomes free, or until any buffer
process responsible for that worker becomes empty. This worker executes the job and again is issued with
another as soon as it becomes free once more.

Each job may produce any number of results and further jobs. Any jobs generated are returned to the
bag. This keeps the mechanics of job distribution simple: work always travels away from one place (the
bag) to where it can be worked on (the workers). Results should be dealt with as appropriate, invariably
they are collated. An implementation may require a process or a number of processes to perform the
collating of results. This action can either be performed by the process responsible for the bag of jobs
(the farmer process) or a separate process (a harvester process).

As a method of organising work, farming has a number of advantages,

1. the work load is automatically balanced,

2. the overheads are reasonably light, and,

3. the performance can be scaled by just adding or removing workers (this being done with practically
linearly scalable performance).

These last two points depend on there being more jobs than workers, this amount of parallelism being
constant throughout the running of the farm, and the amount of supply being greater than the amount of
demand.

The above model represents the basic structure of farming out. An implementation may extend upon
this. For example, the model doesn’t mention a farmer process to manage the bag, however many ar
chitectures will require such a process. Also, the model doesn’t mention that results are generated and
collected. In practice they are and any number of harvester processors may be used for a particular ap
plication, if appropriate. Similar the sorting out of job interdependencies can either by done directly by
the processor maintaining the bag or by other processors, see figure 60.

Figure 60: Two ways of dealing with dependencies between jobs on a processor farm

At the beginning of this chapter a number of extensions to the mechanics of farming out were dis
cussed. Really, there are just three extensions made here to what was generally understood to be farming
out before this research was performed. These three extensions are that,

1. workers may perform more than one type of job,

2. workers can generate jobs as well as results, and,

3. any dependencies their may be between jobs can be dealt with by the farmer.

CHAPTER 5. FARMING'S RANGE OF USE 160

5.5.7 What type of jobs can be farmed out
Conventional understanding tells us that, in fanning, the jobs being farmed out must be independent of
one another. Though, as we have become aware of here, it is possible to farm out a set of jobs that have
dependencies between them. These dependencies being sorted out via communication.

Whether jobs can contain communications as well as communications depends on the mechanics of
the architecture the farm is being implemented on.

Jobs could contain communications if they could be descheduled and returned to the bag ready to be
continued, until both processes were ready to communicate. Such execution mechanics could be either a
part of the architecture, or constructed. Constructing such mechanics however, might pollute farming’s
simple scheduling mechanism, introducing overheads and thus reducing the efficiency at which all appli
cations would be executed.

As this is not always possible, the alternative is for jobs to be decomposed into their independent parts
and communications. The former can proceed independently of one another and the dependencies can be
communicated as a part of the results and jobs, as was looked in subsection 5.5.3 (page 157).

From a programming point of view, when decomposing applications for farming, the extreme of hav
ing an application fragmented into too high a granularity should also be avoided.

5.5.8 What applications can be farmed out
Applications consist of two main building blocks. Here we look at how and where these can be executed
on a processor farm. From this it was been realised that all programs can be farmed.

Jobs can be farmed out in occam to transputers and among people in the real world. These two circum
stances share a common model of parallelism; the jobs are independent of one another, i.e. their internal
workings are private.

The tasks that are to be performed within this way of having things are made up of processes that
either just perform computations or that just perform communication. Such a computation consists pri
marily of expression evaluation and assignment, it also consists of selection and other constructs, such as
looping. Communication consists of parallel processes exchanging items of information. These two can
be combined to form parallel computations.

A computation contains no communication. Thus, it is independent of (or irrelevant to) any other pro
cesses being executed at the same time. This is due to the internals of objects being private, thus processes
are independent and can not interfere with one another (in occam they have only local variables). Thus,
computations can be executed by workers working completely independently of one another.

A communication is an exchange of information between two processes. Communication can be ex
ecuted on a farm in one of at least two ways. While being executed by workers, jobs can communicate
either directly (as discussed in subsection 5.5.7, page 160), or via the farmer (subsection 5.5.3, page 157).
Thus, communication can be executed on a processor farm, the exact details of how depend on: what is
possible with the architecture and what is efficient.

In fact, with the first generation of transputer, the farmer would be involved in all forms of commu
nication. For example, any ALTs in the program and any communications with the user.

So, all tasks that are expressed in this real world model consist of a collection of independent compu
tations, and communications. As both of these can be farmed out, all tasks expressed in this way can be
farmed out.

At present farming can perform a number independent computations in parallel and deal with only one
process interdependency, future architectures may also be able to perform a number of communications
to be performed in parallel too.

So, all tasks that can be expressed as independent computations can be farmed out. We have not
looked at any other models here. Nevertheless, it is likely some of these other models may allow for
programs to be transformed into this form. We have also not looked to see if farming can be performed
directly within any of these other models of task expression.

Whether an implementation will be efficient or not is still constrained by two factors.
Firstly, parallel slackness is needed, i.e. there are more parallel processes available for execution than

there are workers in the farm.

CHAPTER 5. FARMING’S RANGE OF USE 161

Secondly, (as discussed in chapter 4) the mapping onto the architecture should be compute bound, i.e.
there needs to be a greater supply of work than there is demand for it.

As communication is not performed in parallel, but only one communication done at a time, this ap
proach is not efficient. This only affects efficiency, it is still logically possible to execute communication
on a processor farm.

We conclude by saying that all tasks expressed in this real world model of independent computations
can be farmed out.

5.5.9 How farming out differs from algorithmic and geometric decompositions
A difference has been noticed between farming out and the other two execution strategies: geometric and
algorithmic distributions.

With farming out, where a particular item of work is performed is decided at run time. The decision
being dependent upon what processors are free at the time the job is sent into the processor farm. Which
processors are free is dependent on how long the previous jobs took to perform. This method of alloca
tion of work contrasts with the approach used by the other two execution strategies. With those, where
a particular item of work is performed is decided by the programmer when the mapping is designed, ac
cording to the internal structure of program’s parallelism. Thus, farming out performs the allocation of
work dynamically instead of performing it in a static and predetermined way.

This is why farming out can be potentially more efficient than algorithmic and geometric decompo
sitions, the decisions are performed dynamically at run time instead of statically at design time. Thus,
farming out is an execution strategy that is flexible and load balances automatically, instead of an ex
ecution strategy that is fixed and rigid in nature. However, although farming out may provide greater
efficiency through flexibility, these allocating or scheduling decisions should only be left until run time
if the cost of making them can be made to be low.

This suggests applications should be developed by taking advantage of the parallelism within the ap
plication’s data or instructions and then this set of processes is executed. This being done with the aid of
an execution strategy. How the items of work (processes) are allocated to the different processors may be
either predetermined by the programmer or performed automatically by the order of interactions of the
workers with the farming harness. Farming out’s use of dynamic allocation involves some overheads, but
copes automatically with different work items taking different lengths of time to be performed.

Dynamic process allocation is an execution strategy not mentioned in Welch’s course and thus it was
not mentioned in subsection 2.1.1 (pages 4-5). This method of execution continually reallocates pro
cesses from processors with a heavy work load to adjacent processors with a lighter work load. This
involves implementing a software kernel that is run on each processor. These kernels attempt to ensure
that all processors have an equal amount of work to perform by having a near equal number of processes
on their process queues. This continual reviewing by the kernels of how much work each processor has
incurs some overhead. Also if there is an imbalance, processes and their workspace will be communi
cated across links and reinstated on other processors. This continual migration has very large overheads.
As farming out is more likely to have lighter overheads, it is likely to be much more efficient.

5.5.10 Summary
Farming out is a method by which work can be allocated (scheduled) and performed by workers. The
allocation of work is from a bag of jobs. This allocation is performed in real-time. The contents of the job
messages farmed out may be data, processes that terminate or both. These jobs are performed by workers.
The number of workers can be scaled independently of the application and its internal structure.

The most important conclusion here is that it is possible to farm out all applications that can be ex
pressed as a collection of independent computations. This applies to a collection of actions in the reality
and occam programs. Any information or data communicated between processes can be dealt by com
munication via the bag of work.

An implementation’s degree of scalability is dependent on both the total amount of parallelism in the
application and the design.

CHAPTER 5. FARMING’S RANGE OF USE 162

Whether a farmed implementation is efficient or not is dependent upon three things: how much par
allelism there is in the application, how this has been designed and mapped onto the hardware and the
details of the architecture.

We can only gain better performance through parallelism if applications have a reasonable degree of
parallelism within them, can be decomposed into a reasonably continuous supply jobs, and each job is as
independent of the others as possible.

5.5.11 Rest of chapter
Having reached the goal of knowing which programs are farmable, the rest of this chapter looks at some
examples of interest that illustrate some of the possibilities.

Next are some pointers for how to farm out applications that contain geometric data sets, and thus are
usually implemented using geometric distributions.

Following this, some work involving farming performed by others is studied. This is looked at in
two sections: the first looks at some examples by others of farming out on various parallel computing
architectures, the other is of some examples taken from other aspects of society.

Before the conclusions some issues relating to how applications should be decomposed, allocated and
executed are considered.

5.6 Implementing geometric data sets
It has been realised that applications containing a geometrically shaped set of data, as well as being im
plemented using a geometric distribution, can also be farmed out. This section looks at this type of ap
plication, how these have usually been implemented and how they can be implemented on a processor
farm.

A typical example of this type of application consists of repeatedly performing a computation over
a 2D array of data. The new value for each element being derived from the old value and its nearest
neighbours.

d a t a [i] [j] := f (d a t a [i — 1] [j - 1] , d a t a [i - l] [j] , d a t a [i —1] [j + 1] ,
d a t a f i] [j - 1] , d a t a [i] [j] , d a t a [i] [j + l] ,
d a t a [i +1] [j - 1] , d a t a [i + l] [j] , d a t a [i + 1] [j + 1])

In one such application, due to Morse, two 2D arrays represent the populations, at the various points across
an area of land, of two species of insect, one of which is a host, the other is a parasite. The program
computes the on-going size of the two populations [Mor93].

5.6.1 Geometric implementation
This application has been parallelised by mapping the array onto a line of processors. The array is di
vided up into segments, each segment being the full width of the array in one dimension, see figure 61.
Each processor is then allocated one data segment. All the processors are then responsible for computing

Figure 61: A 2D array divided up into full width segments

the new values for their part of the array. Nearest neighbour values are communicated with adjacent pro
cessors. One pair of links on each transputer is required for this communication. The other pair is used

CHAPTER 5. FARMING’S RANGE OF USE 163

to communicate the results at the end of each computational stage so they can be displayed or stored as
appropriate.

Such a program is best implemented as outlined below. Here the non-edge computations are per
formed in parallel with the nearest neighbour communications. The boundary computations are then per
formed last after the nearest neighbour information has been received.

PLACED PAR p = 0 FOR P
[n+2][width]TYPE d a t a :

WHILE TRUE
SEQ

PRI PAR
. . . exchange edges

compute c e n t r e o f d a t a s e t
. . . compute edges
. . . o u t p u t v iew o f d a t a

As this code is an example, the amount of data is assumed to be a multiple of the number of processors.
It is worth pointing out one advantage of this approach to implementation is that each processor only

performs two pairs of communications to exchange information with neighbouring processors. Both com
munications are simple, consisting of just a row of values from each processor. If this 2D array of data
was mapped onto a 2D array of processors, each processor would contain a square patch of data. Here
the nearest neighbour communications consist of (at least) eight pairs of communications with the eight
nearest neighbours, see figure 62. This would require multiplexing, due to the transputer having four

Figure 62: Number of communications that need to be performed with a 2-D geometric distribution

links. This would also involve extracting the single values down each side of the array for communica
tion with horizontal neighbours. Doing this is not very efficient (as well as being laborious to program)
as these values are not adjacent to one another.

5.6.2 Farming out
These applications can also be farmed out. Here the application is again divided into segments as before.
These are then farmed out complete with the nearest neighbour values needed to compute the result, see
figure 63. Each worker then returns the result for the set of values it was given. These result messages

to farm

from farm

Figure 63: How nearest neighbour relationships could be farmed out

will be smaller than the job messages by two or more lines of data values. The farmer can then output
these results to the user and the next set of jobs can be sent out again as before.

CHAPTER 5. FARMING’S RANGE OF USE 164

It would be advantageous to farm out applications containing geometric data sets if the different com
putations took different lengths of time to perform (for example in image processing, where the time taken
to analyse each strip depends on the complexity of the image in that strip). On a geometric distribution
this imbalance in workload would result in some processors lying idle waiting on communications with
the other processors that had yet to finish their computations. It is believed this is unavoidable for a ge
ometric distribution, however for a processor farm it is potentially possible to avoid this behaviour, via
farming out’s self-balancing nature. Next we look at some possible mapping strategies that could be used
on a processor farm.

5.6.3 A simple farmer
Here is a sketch of a simple farmer. This gives out work from one array and receiving results into another.
The two arrays are then exchanged and the process repeats. To keep this example simple the data wraps
around at the ends. The simplest way to implement this is to duplicate the first and last rows of the data
at the opposite ends of the array. Hence the h e ig h t + 2 in the below declaration.

[2] [h e ig h t+ 2] [w id th] T Y P E d a t a :
INT i n , o u t :
SEQ

i n , o u t := 0, 1
. . . i n i t i a l i s e d a t a [o u t]
WHILE TRUE

SEQ
i n IS d a t a [i n] :
o u t IS d a t a [o u t] :
SEQ

- - wrap a ro u n d , d u p l i c a t e f i r s t and l a s t rows
o u t [0] , o u t [h e i g h t + 1] := o u t [h e i g h t] , o u t [l]
PAR

- - fa rm o u t j o b s
SEQ i = 0 FOR j o b s

t o . f a r m ! i ; [ou t FROM i * n FOR n+2]

- - a c c e p t r e s u l t s
INT i :
SEQ j = 0 FOR j o b s

SEQ
r e s u l t s ? i ; [i n FROM (i * n) + l FOR n]
o u t p u t ! i ; [i n FROM (i * n) + l FOR n]

i n , o u t := o u t , i n

On a geometric distribution the work is divided among the processors. With a processor farm there
needs to be a greater number of jobs than there are workers. Thus giving some parallel slackness. This is
needed so that there is some work in both the farmer and the buffers of the harness and thus the processor
farm can function at its best. The farmer needs spare jobs so it can be preparing future work (through
dealing with the interdependencies between items of work) and thus there are spare jobs ready to be given
out. Another advantage of parallel slackness is that the finer the granularity of the work, the quicker the
processor farm will complete the work.

Unfortunately, the way this strategy works, the farmer gives out all of one set of jobs and has to wait
for all the results to come back before it can start to give out any of the next set of jobs. Thus, as all of one
set of jobs finishes all the workers gradually fall idle. Although a processor farm is self-balancing, as the
jobs start at different times the workers are likely to finish at different times at the end of a set of work.
This all results in some inefficiency. However, a highly efficient implementation may still be possible if
these losses can be kept very low.

CHAPTER 5. FARMING’S RANGE OF USE 165

So although this is the same problem geometric distributions suffer from, with a processor farm it
is worse as here each message is larger and also needs to be communicated across several links to and
from the farmer. Thus potentially this processor farm could be less efficient than a geometric distribution.
There are a number of solutions to this.

5.6.4 Using a finer grain
An obvious first solution is to use an even finer grain of work. This reduces the range of time over which
the workers finish their last job. Hence, leading to a small improvement in performance. However, the
finer the grain of work, the more communications will need to be set up and the more information will be
communicated overall (due to the extra number of nearest neighbours there would be).

The size of the jobs can be reduced by either narrowing the strips made or by farming out rectangular
patches. The latter should be easier to implement on a processor farm than on a geometric distribution;
all interdependencies are dealt with within the farmer. On a geometric distribution nearest neighbour in
formation needs to be communicated in eight directions which is troublesome to implement, as discussed
above.

One problem with decomposing the data into patches is obtaining the data from each line of the array.
One possible way of obtaining the data for such a job, is to communicate the lines of the array separately.
This saves memory copies in the farmer, but results in communications taking longer (as discussed in
subsection 4.6.5, page 58).

t o . farm [d a t a [i * n]
[d a t a [i * n + l]
[d a t a [i * n + 2]
[d a t a [i * n + 3]
[d a t a [i * n + 4]

FROM j *n FOR
FROM j *n FOR
FROM j *n FOR
FROM j *n FOR
FROM j *n FOR

p a t c h . w i d t h] ;
p a t c h . w i d t h] ;
p a t c h . w i d t h] ;
p a t c h .w i d t h] ;
p a t c h . w i d t h]

Extracting a job from the middle of the data can also be performed by the 2 dimensional block move
instruction. This is present on the T800 series of transputers. This allows rectangular blocks of data to be
copied between windows of different widths, see figure 64. This instruction can be used to obtain a job

Figure 64: The general form of a 2-D block move

by copying the rectangular patch into an array the exact size of the job, see figure 65. Once this overhead

*1

Figure 65: Extracting a rectangular patch of data using a 2-D block move

of a memory copy has been performed, this job can be farmed out by simply communicating the array,

t o . fa rm ! a r r a y

Ultimately, using a finer grain of parallelism does not alleviate the problem, it only reduces its impact
on performance. Getting the workers to perform work all of the time is a better solution.

CHAPTER 5. FARMING’S RANGE OF USE 166

5.6.5 Decoupling computations from the farmer’s thread of control
By looking at what jobs can be given out, it can be seen that by the time the last few jobs have been given
out, it is likely that in many implementations some of the first results will have been received (assuming
the data has been decomposed into a number of jobs suitable for the size of the processor farm). Thus,
performance could be improved through the use of a farmer that can start to give out some jobs from the
next set of work before all the previous set has finished.

To do this we need to be explicitly aware of the relationships between the various jobs and get the
farmer to maintain a list of what results have been received so that it can be aware of which of the next
set of jobs can be farmed out. To do this the farmer would need to be aware of the relationships between
the various jobs and thus must remember what results have been received so what jobs can be farmed
out can be computed. In this type application the jobs have multiple interdependencies, unlike the towers
of Hanoi and quicksort. These two applications have job interdependencies that were expansive: a job
generated a number of other jobs and any job was only ever generated from one job. Applications with
nearest neighbour interdependencies are, in a sense, the opposite to this: the next generation of jobs are
generated from a number of results from the previous set of jobs, see figure 66.

\

Figure 66: Job dependencies for quicksort and applications with nearest neighbour dependencies

Sorting out the interdependencies between the jobs in applications with nearest neighbour interrela
tions is simple; before a result can be given out as a job, the result all around it also need to have been
received. By being aware of what results have been received in this way, work could be given out con
tinuously and workers would be active throughout the execution of the program.

In order to do this the computations must be decoupled from the farmer’s thread of control. What is
needed here is a farmer that is centered around a P R I A L T , as were the farmers in the towers of Hanoi and
quicksort. In those farmers the farming out of the work and the receiving of the results were not coupled
to the structure of the problem. The advantage of this strategy is that the resultant farm only finishes once
at the end of the program. The disadvantage of this strategy is that implementing this decoupling involves
developing a method of storing which jobs have been processed and that this introduces more overheads
that are likely to slow down the farmer.

5.6.6 An intermediate strategy
There may also be some other strategies that are intermediate between these two extremes. It is possible
some of these could be easier to implement than a processor farm whose execution is not coupled to the
structure of the problem.

It is important to remember that the first jobs to be given out are those that are the most likely to be the
results first received. So, for example, the following very lightweight strategy is possible. As the results
come in, a counter could be incremented for each result that has a small index number.

SEQ
r e s u l t s ? i ; d a t a
I F

i < (N / 2)
c o u n t := c o u n t + 1

TRU E
S K I P

CHAPTER 5. FARMING’S RANGE OF USE 167

When this counter gets to a certain value it is known that all of a certain fraction of the next set of jobs,
1 through to (N /2) - 1 in this case, can be farmed out while the rest of the results come in.

5.6.7 Discussion
If an efficient implementation can be arrived at, there remains the question of whether it would be more
efficient than a geometric distribution? The disadvantages of farming here is that more messages (and
larger messages) are communicated and they are communicated further.

It is hoped it is worth implementing applications on a farm if the automatic load balancing perfor
mance benefits gained are greater than the overheads of allocating location of execution at run time. That
is the efficiency point of view. By farming out the work there is also the advantage of flexibility as the
size of the implementation is independent of the application size.

5.7 Other applications that have been farmed out
Here we look at some other types of application that have been farmed out.

The first has some similarities to the towers of Hanoi and quicksort implementations developed here.
From the design strategy used, it was thought the implementation would be inefficient, in fact it is very
efficient.

The other two applications have jobs that are not related to one another, unlike the towers of Hanoi
and quicksort, and also are more than just a two dimensional array of calculations, unlike the Mandelbrot
set and ray-tracing. Thus these two applications may have a structure probably more akin to many other
applications that have yet to be farmed out on parallel hardware.

5.7.1 Farming out the search for a minimal perfect hash function
In this work Bartoszek, Czech and Konopka had implemented an application that required jobs to be
farmed out in an iterative manner [BCK93], as was performed here with the towers of Hanoi and quick
sort. Of the two implementations were developed, one was developed at Kent by Bartoszek in Occam.
The approach used in this implementation resulted in an efficient performance. Although some of the
aspects of the design were thought by this author to not be efficient. Thus this work is of interest here.

The application was to find a minimal perfect hash function (MPHF) for a given set of data. MPHFs
are useful for efficient use of memory and fast retrieval of items from a static set, reserved words in pro
gramming languages for example. Finding a MPHF is performed by searching a graph that is viewed as
a large n-ary tree. The bottom of the tree consists of hash functions, only some of these are minimal and
perfect. Only the first (left most solution) need be found. Thus the search is from top to bottom and left
to right.

Implementation strategy

From the current starting point each worker advances a number of vertices down the graph. The number
of vertices traversed is selectable and dictated by the grain of the implementation. Once the appropriate
number of edges have been traversed, the suitability of the destination vertices are reported back to the
farmer. The vertex that will lead to the first minimal perfect hash function is then farmed out again and
the workers go down another few levels. This continues until the first minimal perfect hash function is
obtained. This again is farming out an application in a number of stages.

This application is of a similar structure to the geometric n-body problem, each calculation in the se
quence is followed by a sharing of intermediate results. Normally this would be performed by a geometric
distribution. However, as there is a need to perform a comparison on all the intermediate results, this is
best performed by a single processor, and so farming is an appropriate way to implement this application.

CHAPTER 5. FARMING’S RANGE OF USE 168

Points of interest in implementation

There are three points of interest about Bartoszek’s implementation.
The workers had the first job to be performed compiled into them. Thus, as soon as the program started

all the workers began solving the problem immediately. This saved time as the first set of jobs did not have
to be distributed.

The harness sent specific jobs to specific workers. This is an upshot of the fact that the workers main
tain their state between jobs and a job may simply be to continue. This detail is of use as these jobs take
some time to initialise. Thus, at least one worker would be able start its job sooner.

After giving out a set of jobs, the farmer had some internal housekeeping to perform. Thus in this im
plementation, the farmer was placed on a separate processor so it could proceed with this internal house
keeping unhindered. Having the farmer on the same transputer as a worker could result in the application
being slowed down. This directly contrasts with the experience here of conventional farms, where having
a worker on the same transputer as the farmer resulted in a faster implementation, due to that transputer
also being able to assist in the computing of work.

Performance of implementation

It was thought the approach used would lead to inefficient implementations for two reasons. Directing
jobs to specific workers had been attempted in Sturrock’s first implementation of a farming harness [SS91,
Stu91]. This lost linear speed up for large numbers of workers. It was also thought that having the workers
idle while the farmer developed the next set of jobs would be inefficient. It being thought here that in an
efficient implementation all processors would be busy performing constructive work almost all the time.

Bartoszek’s occam farm obtains constant linear speed up for up to 9 workers. When run the program
was run with a search granularity of 1,9 workers obtained a speed up of 7.0 over the performance obtained
with 1 worker, an efficiency of 77.7%. With a search granularity of 5, a speed up of 8.5 (an efficiency of
94.4%) was obtained. Thus on the whole, this implementation is very efficient and thus makes effective
use of the hardware.

Thus this shows that the two prejudices above would have restricted us from developing this type of
efficient implementation. That the workers are temporarily idle doesn’t matter too much if the granularity
of work is large enough to reduce the impact this has on performance.

One reason for this implementation being efficient is that an appropriate strategy of organising the
work has been used. This is more important for efficiency, in contrast to the towers of Hanoi farm devel
oped here where an inappropriate strategy was used and the resulting implementation was inefficient.

There are three things to say with regard to directing jobs to specific workers.
There will be small additional overheads in continually checking jobs in order to discover the direc

tions they should be sent in, and when there are many workers the accumulation of these overheads will
affect the rate of supply and thus performance. Nevertheless, this implementation is obviously efficient
for the number of workers used. Bartoszek uses nine workers, this is not as many as the 64 worker used
by Sturrock.

Normally in a farm jobs would only be allocated to workers that were free. However in this case all the
jobs being farmed out are going to workers that are free. Also, directing specific jobs to specific workers
can allow for a faster program here (one worker being allowed to simply continue where it left off).

In general, restricting harnesses to only allocating jobs in an arbitrary fashion is artificial. Jobs can be
placed specifically if appropriate for the situation. The only property of a good implementation is that it
makes effective use of the hardware resources and runs quickly. As was said in chapter 4, what is impor
tant in a harness is that all workers are allocated jobs quickly. Also, as programmers, we must be careful
of our prejudices preventing us from doing things that are efficient.

What is also of interest about Bartoszek’s implementation is that a high degree of efficiency is obtained
even though only one job is farmed out to each worker. Thus not using one of the major advantages of
this method of farming out. Effectively this implementation behaves more like a geometric distribution,
synchronisations being performed after every item of work. Indeed these communications are made with
a distant farmer not with neighbouring processors, making the implementation potentially even more in
efficient.

CHAPTER 5. FARMING’S RANGE OF USE 169

Conclusion

Here the workers are given their first job at compile time. Workers also maintain their state and the harness
directs jobs to specific workers. Only one job per worker is given out at a time. The next group of jobs is
generated from the best result of the previous group. A job may be a continue job. The farmer is placed
on a separate processor as it does some housekeeping in between jobs.

The only property of a good implementation is that it makes effective use of the hardware resources
and runs quickly. With parallel hardware this means always having a number of things to do in parallel.
Something that was not the case with the towers of Hanoi and quicksort.

In a harness it is important that all workers are allocated jobs quickly.

5.7.2 Some other examples of farming out
In [And91] Andrews gives two parallel designs that make us of the replicated workers paradigm (farming
out). There are also many references to other examples.

The two parallel designs discussed are computing the area under a curve and the travelling salesman
problem. Both of these applications possess jobs that are independent of the other jobs within the appli
cation. Thus these applications are akin to the ray tracing and Mandelbrot set applications in this respect,
opposed to the towers of Hanoi and quicksort applications where the jobs are interrelated. In comput
ing area under curve, as with the towers of Hanoi, messages are of a constant size. Also like both Hanoi
and quicksort, the initial number of jobs is one, and this continually doubles throughout the running of
the program. In the travelling salesman problem there is constant number of jobs, all of which have a
constant message size.

These have designs developed using different communication mechanisms to both each other and to
the implementations here.

Thus these two applications and their designs are of interest. Here we looked at the two examples,
then at the view of programming used in the work.

Computing the area under a curve

This application consists of computing the area under the curve of a continuous non-negative function.
An approximation of the true area is given by dividing the interval in two and summing the areas of the
trapezoids formed. The interval can be repeatedly subdivided until two successive approximations are
close enough. This decision can be done dynamically at the low level end of the algorithm, by only further
partitioning subintervals whose estimates are not close to the estimate of the interval which they ’ re derived
from. Performing this decision is quicker when parts of the curve are flat.

There are some minor differences between Andrews’s design and those developed by this author. This
is a result of the different communication mechanisms used. The design used here is written using chan
nels that use asynchronous message passing with unlimited buffering and a first-in-first-out (FIFO) se
mantics. These channels are used for carrying the results to the administrator (farmer) process and to
implement the bag.

Andrews’s design consists of a bag of problems (jobs), each of which consists if an interval and the
current estimate for its area. The farmer process outputs the whole interval into the bag channel and then
receives any results on the result channel. The workers take jobs from this bag directly. The interval is
subdivided, the two subareas are then computed and their sum is compared with the area’s original esti
mate. If the difference is small the old estimate is produced as a result for that subinterval, if the difference
is not small the two subintervals are returned to the bag with their estimated areas for further subdivision.
This method of organising work is clearly farming out and benefits from all of its usual advantages.

The program terminates when the farmer detects the area has been computed accurately enough. Al
though no implementation is mentioned, Andrews says it is difficult to detect for an empty bag and for
idle workers. This has not found to be the case in the two examples developed on the synchronous mes
sage passing hardware used here. This is because here the bag had to be implemented by hand and as a
result only a simple condition was required in the farmer. This condition checked to see if the “number
of jobs in farm” counter or if any of the appropriate stack pointers were greater than zero. In the towers
of Hanoi farm this was,

CHAPTER 5. FARMING’S RANGE OF USE 170

WHILE (sp.top > 0) OR (m i .top > 0) OR (j o b s . i n . farm > 0)

Using the unlimited buffering capacity of the asynchronous communication channels to implement
the bag of work removes control from the programmer. For example, due to the FIFO nature of the com
munication channels there can be no reordering of the jobs. The towers of Hanoi farmer gave out the job
that was the closest to the leading edge of the calculation so as to start printing the answer as quickly as
possible. The quicksort farmer gave out the smallest jobs first so as to save stack space.

In the programming notation used here, like in Occam, a process only mentions the names of the chan
nels it communicates with, not the name of the other processes.

The travelling salesman problem

In the travelling salesman problem there are n cities (n>2) and a n2 matrix of distances from city i to
city j . There is a (finite) path from every city to every other city,

V i,j.dist[i,j] < oo

but not to itself,
V i.dist[i, i] — 0

This matrix is also symmetric,
V i,j.dist[i,j] = dist[j,i}

Each city should be visited once (the array shortestpath\\ will contain a permutation of the integers 1 to
n) via the shortest path,

i= n —1
dist[shortestpath[l\, shortestpath[n]] + dist[shortestpath[i\, shortestpath[i + 1]]

i=1

this includes returning to the first city.
The strategy suggested is to have a farm with a bag of n — 1 jobs, each job being a path that starts at

city 1. The Manager takes a path from the bag and gives it to a worker. Workers receive a path and add
an unvisited city to it. If this path is longer than the current shortest path, the path is discarded, cutting
down the searching space from (n — 1)! paths. If the short path is incomplete, it is returned to the bag with
its new length. If the short path is complete, these values are sent to the farmer who updates its variables
shortestpath[] and shortestlength. Again this strategy is clearly farming out.

The communication mechanisms used in this example are Remote Procedure Call and rendezvous.
The notation used for communication in this example is slightly different to that used in the previous
example. Here the communications mention explicitly the name of the process being communicated with.
Thus processes would need to be rewritten in order to be reused elsewhere. Further, the operations used
can only be serviced by the modules that declare them. Thus in order for the workers in this example to
put jobs into the bag and to send a new shortest path length, the name of the Manager has to be referenced
explicitly. This again does not aid code reuse.

When a new shortest path is found, its length is broadcast to all workers. As this event may occur
reasonably frequently, some workers may receive a number of broadcasts before starting a new job. This
is potentially wasteful of communication resources, especially as the granularity of the application is rea
sonably fine. This may result in a communication bound implementation. As each broadcast creates w
messages. If the product of both w and the number of broadcasts performed by a program is large, it is
possible the number of path length messages sent could be larger than the total number of jobs farmed out.
An better approach might be to send the length of the new shortest path as a part of each job. This could
result in less data sent overall as fewer copies of the shortest path’s current length will be sent out when
many new shorter and shorter paths are found in quick succession. Further, this communication strategy
would definitely result in less messages being setup and communicated overall, as only jobs are sent out.
These jobs are larger than before, but the number of communication that need setting up is the same.

CHAPTER 5. FARMING’S RANGE OF USE 171

View of programming

In the introduction to the message passing section of [And91] on page 342, Andrews says there are “sev
eral process-interaction patterns that occur in distributed programs. Each interaction paradigm is an ex
ample or model of a communication pattern and associated programming technique that can be used to
solve a variety of interesting distributed programming problems. Because each paradigm is different,
there is no single derivation method for distributed programs.”

This view of how parallel programming should be performed is not as useful as the view used in
UNITY, especially as Andrews lists eight interaction paradigms. In UNITY, all program designs can be
developed in a single uniform manner that initially ignores architectural concerns. Once developed, a par
allel design can then be mapped onto an architecture using any number of appropriate execution strategies.
Thus parallel program designs can be developed to solve problems regardless of the interaction pattern be
tween the processes by developing the design before it is decided what architectures (whether distributed
or not) the program will be run on. For example, Bartoszek’s farmed out search program discussed pre
vious used a parallel equivalent of a sequential depth-first search. Andrews also mentions an interaction
paradigm called probe/echo as a parallel equivalent to the depth-first search.

It is likely at least some of the other applications that Andrews references under his other interaction
paradigms could also be farmed out efficiently.

One of the other interaction paradigms mentioned is the client-server paradigm. In this one server
processes requests for its many clients. Farming out is the opposite to this, a number of servers process
requests for the one client.

5.8 Other man-made examples of farming out
Here we look at the use of farming out in some other current man-made systems. This discovery started
when it was realised a manufacturing company farmed out the assembly of its products.

5.8.1 Farming out in manufacturing
Here we look at the manufacturing company Linn Products Limited. The company is organised so one
person assembles, tests and packs each product. It was noticed this is farming out, not the production line
approach normally used for product assembly. Thus Linn is of interest from an algorithm decomposition
and parallel execution standpoint.

Linn strive to manufacture equipment that reproduces music in the home with the same involvement,
intelligibility and emotional impact of a live performance. Achieving this requires a high standard of
accuracy. The quality of both product design and assembly are important to the level of performance
achieved by a product.

Original approach

In [Tie93] Tiefenbrun, the company’s founder and managing director, says Linn’s original 1973
was copied from General Motors, the world’s largest manufacturing company at the time. This
was the conventional production line (algorithmic decomposition). Using this structure Linn
seven month delivery time and seldom met it.

New approach

When computerising the business no rational way could be found to program the production. At one point
the managing director asked someone from the assembly line to collect all the parts required to build a
record player, assemble them and bring the finished turntable back to his office. This task took about
17 minutes, instead of the 27 minutes of labour it took to build the same product on the production line.
This lead to the company being completely restructured, abandoning many traditional techniques in the
process.

structure
structure
quoted a

CHAPTER 5. FARMING’S RANGE OF USE 172

The whole factory was reorganised so that wherever possible, one person assembles and tests a prod
uct in its entirity. This led to a saving of space as a total of 47 main buffer and storage areas were elimi
nated. Within three months real-time production had been obtained and products were being dispatched
to the customer the same day they were ordered.

The assembly section is organised into three teams, one for each type of product (sources, control and
playback) the customer sees. During the quieter period of trading during the summer, the members of
these teams have the option to train to become members of the other teams. Thus, the three team assembly
stage is even closer to being just one farm and thus having the potential to fully load balance, as nearly
any product can be assembled by any worker.

In subsection 5.2.2 (page 120) it was suggested all job types should be performed by all workers.
While although it is obviously possible to get extremely close to this optimum by having workers that
can be moved from one team to another at a moments notice, getting even closer is possible. The loss in
performance would only be slight compared with using a different method of organisation.

Advantages of the new approach

It was found that farming out product assembly results in only necessary dependencies. For instance
there are still dependencies between the components in a product, but not between different instances
of the same product, a dependency present with a production line. Previously an machinery failure or
the non-appearance of any individual could result in the stoppage of the entire production line. Now, the
non-appearance of an individual or machinery failure only reduces the rate of production, instead of stop
ping it completely. This issue is not covered in this research, but it is another advantage to farming. It is
equivalent to a worker processor failing.

Linn have found the largest advantage of this approach is that of much greater workforce flexibility.
One obvious example is that a production (pipe) line takes a long time to be started and to be brought to
a stop.

Another advantage that Linn discovered quickly is one not seen in the transputer community. That
farming out work led to products of a much higher quality, even though there was no direct supervision
of assembly.

With the single-stage build (as Linn call it) each employee has a task that is intelligible, complete with
responsibility and control over what he or she does, instead of just repeatedly performing the same trivial
task without obtaining any quality control feedback. The same person who builds a product, is the same
person who tests it, listens to it and thus sees a connection between what they can do and how the product
performs. The assembly teams talk directly to the designers on how products can be improved. There is
no service department, a product goes back to the team that built it.

Tiefenbrun believes these more flexible methods are the reason why Linn Products out performed
all the U.K. competition, and puts forward that manufacturing industry should adopt this more flexible
method of organisation if it is to make any advance. The Industrial Revolution is given as showing the
scale of the advantage that is to be gained through using a superior methodology. Tiefenbrun concludes
by saying that using people (workers) to their highest potential is what is the most important.

Overall company structure

Farming out is used within Linn’s assembly teams. It is worth looking at how the overall tasks are de
composed into teams and how these teams are interconnected.

The technique of organisation developed and used by Linn, the single-stage build, is more general
than farming out. The company’s approach is to use every individual to their highest level of potential.
In the single-stage approach as much as one person can control and be responsible for is gathered at ev
ery stage (node) and is taken as far as is possible towards the final objective. Thus their communication
structures resembles a tree. This approach is used in everything they do: design, ordering materials, sales
and accounts, as well as assembly. The whole company is structured into teams. Each team is connected
to others.

Linn’s internal structure could be described as consisting of algorithmically different teams, some of
whom farm out data jobs internally. The jobs only consisting of items or materials to be processed; they

CHAPTER 5. FARMING’S RANGE OF USE 173

do not come with what should be performed. The teams form an algorithmic decomposition as each team
performs a different job.

Thus Linn is not one big farm, but a tree of farms. Any job can only be performed by a subset of
the workforce. This is not the most efficient arrangement possible, however, it is still highly efficient.
Having one large general pool of work and all workers capable of performing any type of job would be
impractical, and if possible, would not lead to a much greater degree of flexibility.

In large organisations many skills are required and these are difficult to communicate simply. Thus,
having tree structures with as much gathered at every stage as one worker can control is a much more
sensible method of organisation, opposed to always attempting to farm out every single job to any worker.
As has been said, the loss in generality, flexibility and efficiency can be much less than the performance
obtained through using another method of organisation.

Thus, Linn Products is an algorithmic decomposition. Decomposing an algorithm into steps that take
equal lengths of time is very difficult, if not impossible generally. By having a algorithmic decomposition
of teams, each of which can be varied in size, the differences can be taken into account by simply adjusting
the size of the teams.

Comparing efficiency results

On the course [Wei] Welch mentioned that 70% was a good level of efficiency to obtain from an algorith
mic distribution and 99% was a good level of efficiency to obtain from a farm.

It took about 27 minutes for a turntable to assembled on the production line and it took only about 17
minutes for one to be assembled by a single person. As it can be assumed that the single person was work
ing continually, and thus at 100% efficiency, the production line can only be working at 62.9% efficiency.
A figure that is reasonably close to the 70% efficiency mentioned by Welch.

Nomenclature

Tiefenbrun calls this approach female manufacturing. Management theorists and analysts are now also
arriving at the conclusion that real-time approaches to organising work are greatly superior to the static
approaches used in manufacturing today. Management theorists term this approach Fordism, as the tech
nique was exploited highly in the manufacturing industry by Henry Ford. The modern approach is called
post-Fordism.

Conclusions

At Linn, farming out orders among a team of single-stage building stations requires a higher skill level
(more memory), and as well as the usual advantages also results in a superior build quality, lower costs,
increased output per employee (worker or processor) and dramatically improved labour flexibility.

Decomposing large tasks algorithmically into a tree with a very small number of nodes (teams), and
the work in each node being farmed out to a number of workers is an efficient. The number of workers in
each node can be selected to be proportional to the processing time for that node. To increase the balance
of the system further, some workers can be trained to work in a number of nodes.

Instructions and especially skills may be difficult to communicate quickly. However, it is easy to just
farm out the data or materials to be worked on. This loses generality a little bit and some flexibility and
thus potentially some efficiency. Nevertheless, the amount of performance lost is likely to be less than
using another method of organisation.

5.8.2 Other man-made examples of farming out
The methods of organising work used in parallel programming are also used to organise other man-made
processing structures.

Farming out is employed in post offices and banks. Customers (who possess jobs) are in a single
queue, the customer at the head of queue goes to the first free serving window (worker). As here there is
only one queue, we are truly farming out this queue of jobs. Thus, the allocation of customers to windows

CHAPTER 5. FARMING’S RANGE OF USE 174

is performed dynamically and windows opening and closing is dealt with automatically. This system is
fair in that customers are served in the order they arrive.

Farming out is also employed in railway stations and supermarkets. However, here the bag of work
is not kept in one queue, but there is a queue for each window or checkout and customers join the back
of any queue. As different customers take different lengths of time to be served, the rate at which each
queue moves is also different, the shortest queue can be the slowest to be served, an observation to which
society is commonly aware, and the customers are not served in the order they arrived. Thus just having a
queue for each worker is results in unfairness as the allocation of people to queues is performed according
to the lengths of the queues not which workers are free.

Also changing the windows or checkouts open causes problems as queues will need to be reshuffled
or merged. This ordering of the new queues tend to take place according to previous geographic location
and not according to the time of arrival in a queue, and thus changing the windows open to meet increased
demand can turn out to be unfair to some customers.

This shows that it is better having just one queue representing the bag of jobs, as this is fair. This
example also highlights the problems that may also be found if multiple farmers (discussed in subsection
5.2.6, page 121) were to be implemented.

That said having a queue for each worker that is local to that worker is efficient. With pure farming
out the worker may be idle while waiting for the next job. As before this can be alleviated by having a
single item queue or buffer for each worker. Here, this entails having one person stand behind each person
being served. This will lead to a slightly unfairness as some people will then get served out of order.
Nevertheless, this will be more efficient as this strategy will result in a better throughput of customers as
each customer will get seen quicker than in the completely fair approach.

A car production line has already been mentioned. Here both algorithmic and geometric decomposi
tion are used. Each production line is an algorithm distribution. Often many of these production lines are
set up side-by-side.

Paper work and administrative tasks are also invariably dealt with in an algorithmic way, in council
offices for example. A receptionist will accept a form. This is passed on to the relevant department. There
it is examined by someone who may generate some internal memo for someone else who is responsible
for a letter to be written.

In summary, it can be seen here that by farming out work, it is organised more fairly as jobs are allo
cated in the order they were placed in the bag or queue and are allocating to workers that are free when
the jobs are about to be performed.

5.9 A clearer understanding of the stages of implementation
Presented here is an approach to viewing the stages of implementation development that provides a much
greater understanding of the issues that have the greatest impact on an implementation’s performance.
This includes a clearer view of the choices open to the programmer when developing an implementation.

5.9.1 Parallelisation
A number of points of interest were noticed in two of the previous examples.

In Bartoszek’s implementation the workers only performed one job in each stage of the calculation.
Thus there was no opportunity for the work load to be balanced in any way. Further, each communica
tion the workers performed was over a long range with the farmer via a harness, not over a short range
with nearest neighbours. Nevertheless, despite suffering from all the disadvantages of both farming out
and geometric distributions, and not obtaining any of the generally quoted advantages of either execution
strategy, this implementation is still very efficient.

At Linn Products, product assembly is much more efficient when farmed out than when performed
by an algorithmic production line.

Similarly, on Welch’s course, the levels of efficiency expected from a good implementation is much
higher for farming and geometric distributions (99% and 90%) than it is for algorithmic distributions
(70%) [Wei],

CHAPTERS. FARMING’S RANGE OF USE 175

It was realised that parallelism in farming and geometric decompositions is between independently
processed items of data, whereas the parallelism in algorithmic decompositions is between both the sep
arate parts of the computation and the separate items of data. The ability to perform data items or algo
rithmic components in parallel comes out of those parts being independent of one another.

Which independencies are selected for use in both program designs and mappings have a significant
influence on the efficiency of the final implementation. In particular, it is whether computational inde
pendencies are made use of that has the significant influence on efficiency.

It is usually more efficient to perform a computation all in one go. Decomposing a computation into
many interlinked parallel processes has two disadvantages. First, the overhead of communication is in
troduced. Communication is not necessarily expensive, but it does have its costs. Second, if the processes
are executed on different processors, and if each process takes a different length of time to execute (which
is invariably the case), some processes will be become idle while waiting for synchronisations to happen.

Thus, dividing up algorithms should be avoided as much as possible, for efficiency reasons, even when
it is necessary it should be done as little as possible. How we use the independencies within the application
to arrive at parallel processes and how those parallel processes are then allocated are separate concerns.

This looks like a much more useful way of view how to go about implementation than trying to select
one of the three execution strategies.

5.9.2 Allocation
Allocation is separate to and happens before execution. Here we look at the two types of allocation seen
here: static (or predetermined) allocation and dynamic (or run-time) allocation.

With static or predetermined allocation the processes are allocated to the hardware as is, according to
the shape of the parallel design. This is performed before the program is run.

With dynamic or run-time allocation the processes can be allocated to the hardware according to what
processors are free at the time of allocation.

5.9.3 Performing allocation in hardware
Current hardware only executes pre-allocated parallel processes. Thus, if dynamic allocation is desired,
it must be performed by a harness of nondeterministic ALT processes, such as those in chapter 4. With
such architectures the overall efficiency of a program is not just limited by how the program has been
written, but also by the efficiency of the allocation software used.

By performing process allocation in hardware however, all the performance advantages of dynamic
allocation are obtained without the overhead of writing or executing a software allocation system. The
parallel processes can be farmed out at the hardware level regardless of the method of process allocation
used at the software level.

In [Wel95] Welch describes the design of a system that could perform process allocation in hardware.
This architecture consists of a number of processing nodes and memory nodes, these are connected via
links to switching nodes.

When a process reaches a synchronisation point, it is automatically descheduled. It is this mecha
nism of automatically descheduling at synchronisations that allows such architectures to farm out non-
independent processes. This is how the multiprocessor shared memory systems (mentioned in subsection
5.5.2, page 156) can farm out their process queue. Thus, processes like the two seen in subsection 5.5.3,

CHAN OF Type chan :
PAR

SEQ
. . . a
c han ! i n t e r m e d i a t e - r e s u l t
. . . b

SEQ
. . . C
c h a n ? p a r a m e t e r

D

CHAPTER 5. FARMING’S RANGE OF USE 176

can be farmed out directly without them needing to be decomposed into processes that do not commu
nicate. Thus on this architecture, a process is executed by a processor until it reaches a communication.
The communication would be set up and the process descheduled. After the communication completes
that process is returned to the back of the process queue, a structure that is (securely) shared between all
processors. When it reaches the front of that queue, it is rescheduled to any demanding processor.

On this architecture processors execute instructions and just instruct the switching fabric to perform
the transfers between: memory and processor, and memory and memory. This allows for communica
tions and assignments to be performed using the same architectural mechanics. In turn, this allows direct
worker to worker communication, and thus process to process communication. This design also allows
for many communications to be performed in parallel, thus it is more likely that communication rich pro
grams will execute more efficiently on this architecture.

If an architecture does have the mechanics to deschedule a process and return it with its state to the
bag ready to be continued, then the program should have any communicating processes decomposed into
computation-only processes, as was prescribed in subsection 5.5.3 (page 157).

As it is unlikely that mutual dependencies will be executed simultaneously on any architecture that
uses dynamic allocation, it is likely that such a set of communicating processes will be descheduled while
waiting for communications to be performed.

Worker to worker communication is not mentioned in the farming model. Farming is only concerned
about the mechanics of allocation, and not about the details of what is allocated, such as any dependency
between jobs. Thus, the precise details of how communication is performed when farming is dependent
upon architecture.

It is interesting to note that the abstract of [Wel95] gives the same specification for a method of parallel
program development that was made by the work that developed UNITY: simple, mathematically sound,
can express the parallelism within applications and yet is architectural neutral.

5.9.4 What the execution strategies really are
An algorithmic distribution is where both the data and computational independencies have been paral
lelised and the processes are allocated onto the hardware in a predetermined way.

A geometric distribution is where the data independencies have been parallelised, again the processes
are allocated onto the hardware in a predetermined way. To date geometric distributions have been con
structed when the application consists of data in a regular geometric shape. This shape is reflected in the
implementation’s topology. Hence the name geometric distributions.

Farming out has also been used where the data independencies have been parallelised. The difference
with farming and the other two, as discussed in subsection 5.5.9 (page 161), is that the jobs are allocated
to the worker processes dynamically (or at run-time).

As it has now been realised, jobs can also consists of computational processes as well as data, sub
section 5.5.1 (page 155), thus farming out can also be used when both the data and computational inde
pendencies have been parallelised. Again with the allocation being performed at run time. However, as
parallelising both data and computational independencies is less efficient than just parallelising data inde
pendencies, this is not to be recommended. This being due to an application running slower if farmed out
in stages, as was suggested in subsection 5.2.1 (page 120), due to the extra overheads of communicating
intermediate jobs and results.

In dynamic process allocation the processes are continually reallocated to the various processors at
run-time in order to try keeping the work load balanced.

5.9.5 How these stages affect programming
How a parallel implementation is developed can now be separated into two concerns: the designing and
mapping parallel processes, and allocation.

CHAPTER 5. FARMING’S RANGE OF USE ill

Developing a parallel design and mapping

Looking at the theoretical level, applications can possess independencies between the various parts of the
computation and between the various items of data. When developing a program design and a mapping
onto an architecture, we might be able to choose some of these independent things to perform indepen
dently of one another in parallel. We might also choose to use none (sequential programming).

If we can select which independent parts of the application are to be performed in parallel, we can
either make use of the the independencies between the data items, computing these items of data in parallel
and have a copy of the algorithm for each item of data (figure 67),

Figure 67: Making use of the independencies within the data

or, if there are no interdependencies between items of data for the computation to be performed, we can
choose to make use of both this (in the usual way we make use of independencies for sequential purpose)
and the independencies between the stages of the computation, and have each stage on a processing node
to itself (figure 68).

Figure 68: Making use of the independencies within the data and the computation

We find writing this type of parallelism very easy as it is so close to sequential programming. It is also
possible to use both sets of independencies further, by making full use of the independencies between the
items of data (figure 69).

x y

Figure 69: Making more use of the independencies within the data and the computation

So, a program design, before or after being mapped onto an architecture, consists of a number of par
allel processes. These interact, or communicate, in some structure. This structure is based either on the
shape inherent in the data or on the shape inherent in structure of the data and computation.

When the shape of the design or mapping is taken from just the shape of the data, a number of pro
cesses are arranged according to the geometric shape of the data. This is easy to perform when the data is
in some simple geometric shape, such as a rectangular grid. When the shape of the design or mapping is
also taken from the shape of the computation, a number of processes are arranged according to the shape
of the computational system.

CHAPTER 5. FARMING’S RANGE OF USE 178

So, those are the various options open to us. In terms of efficiency, implementations that use just the
independencies between the items of data are much more likely to be efficient (as less communications
are added). Thus, it is best to see if the application can be parallelised by just using data parallelism.
Similarly, if the computation needs to be split up, the number of stages it is decomposed into should be
as small as is sensibly possible so that as few additional communications are introduced. There are also
likely to be some advantages in balancing the amount of work between each of these stages.

Thus, although algorithmic parallelism seems to be a favoured method to break up a large algorithm,
and it is easy to think that this is an easy way to make things parallel with lots of advantages, in fact this
is not the case. While this approach does add parallelism it does so a way that is not efficient. Geometric
parallelism is just as easy, if not easier, to develop and is efficient, as well as adding parallelism.

Thus in conclusion, data parallelism should be attempted before computational (or algorithmic) paral
lelism. Both are trivial, but the former does not introduce so many overheads and is therefore more likely
to be efficient, thus should be attempted first.

Once a design is developed and mapped, these processes can then be allocated to processors and ex
ecuted by the hardware.

Allocation

If the hardware does not have a dynamic (run-time) allocation, it should be considered whether it is worth
implementing, and if so, if it would be more efficient than static allocation. To find out the most efficient
would involve trying both. Nevertheless, dynamic allocation has flexibility advantages over static allo
cation. A dynamic allocation method will be efficient if its overheads are small and lightweight, and if
the rate at which work can be supplied can be greater than the rate at which work is demanded.

As has been said, decomposing computations into a large number of stages will probably slow down
an implementation, due to the communications introduced. In order to be farmed on architectures that can
not perform worker to worker communication, processes with dependencies between them will need to
be decomposed into processes that contain only computation. Unfortunately, due to the communication
overheads of dynamic allocation, farming out is likely to be less efficient for computations that consist
largely of fine grain parallelism.

5.9.6 Static and dynamic allocation compared
In [JR92] Jenson and Reed performed a few comparisons between two geometric decompositions and
farming. This was performed via a ray tracing application on an Intel iPSC/2 hypercube. Two geometric
decompositions were used. One used the standard tiled approach (as in figure 62, page 163). The other
was a scattered approach in which row i was allocated to processor i mod P. It was found that farming
and the scattered geometric approach were found to be about equal in performance terms, give or take 15
seconds either way on a 10 minute run, or about 2.5% difference either way.

Jenson and Reed concluded that the dynamic approach of allocating work was slightly slower overall.
The reason there being due to the large cost of setting up a communication. Thus, the overall performance
is related to the number of communications performed overall. Here, a statically allocated implementation
could perform either no or P job allocations at the beginning of the program, depending on how it is
implemented. Whereas the number of allocations a farmed implementation would have to perform would
be many times larger than P.

Jenson and Reed also say the dynamic approach (farming out) can only be efficient if j can be offset
against the latency of the communication setup time s. More precisely,

w (m + s)
J > — B ~

As we looked at in chapter 4 (page 52), it is very expensive to set up a communication from the UNIX host
Jenson and Reed used to a Intel iPSC/2 hypercube. Therefore it is not surprising this is the only factor
they noticed.

CHAPTER 5. FARMING’S RANGE OF USE 179

5.9.7 Summary and Conclusions
An application has two types of independency. Those between its various items of data and those between
its various computation stages. The process of implementation consists of using these independencies
to develop a parallel design consisting of processes. This design can then be mapped onto an architec
ture. This may include transforming the processes of the design in some way (granularity adjustment for
example) into another set of processes. These processes can then be allocated for execution in either a
predetermined or a dynamic manner.

It appears to be more efficient to use just the independencies between the items of data, than to use the
independencies between the various parts of the computation as well. It also appears to be more efficient
to allocate parallel processes for execution dynamically as well.

Thus, for efficiency purposes, decomposing computations should be avoided if at all possible. In
dependent jobs should be kept intact by farming out a single sequence of jobs as was done in chapter
4. Nevertheless, decomposing computations is necessary when there are dependencies between differ
ent parts of the computation. This introduces the overhead of communication, if it was not there already.
Therefore the smaller the number of stages the better.

Breaking a computation up into stages can be worth performing if there is not enough memory for each
worker to be able to perform all of a complex task. This can be achieved by having a tree of separate farms
and gathering the results of each section towards the final objective, as performed at Linn Products.

The processes in a program design or a mapping have a shape. This shape is the same shape as the
data or the computational components.

One possible further conclusion is that the more types of independencies are parallelised together, the
lower the final efficiency of the implementation. However, as we are only aware of two types of paral
lelism inherent within applications generalising further like this does not appear to have any merit.

In programming we need to be able to find processes that are independent of one another and that are
of a grain suitable for both the grain of the hardware and any overheads the method of execution may also
impose.

5.10 Closing discussions and summary of conclusions
This study set out to find what range of applications could be farmed out. It has been discovered that
it is possible to farm out all application that are described as sets of independent computations. How
dependencies between these computations are dealt with is dependent upon the architecture used.

This chapter closes with two discussions and a summary.
The first discussion is on the factors that affects efficiency. The second discussion is on one aspect of

how transputers are programmed, how this aspect should be viewed and thus how transputers should be
programmed.

The summary reiterates the conclusions arrived at in this chapter.

5.10.1 Factors affecting efficiency
Generally we are interested in whether an efficient implementation can be developed. In chapter 4 it was
realised that an implementation would be efficient if a compute bound mapping could be found for the
architecture. This involving the granularity being appropriate etc.

In addition to the two factors that were realised to affect farm efficiency in chapter 4, it has been re
alised here that there are another two factors related directly to the internal structure of the application’s
parallelism. Thus we now realise that farming can be efficient only if,

CHAPTER 5. FARMING’S RANGE OF USE 180

1. there is more work within the application than there are workers,

2. this parallelism can be decomposed so there is a reasonably continuous supply of jobs,

3. the supply of work is greater than the demand generated by the number of workers used, and,

4. this decomposition is of a granularity that is above that of the architecture.

An example of a parallel application that was well designed and mapped was seen in the minimal
perfect hash function finding program in subsection 5.7.1 (page 167). The Hanoi and quicksort farms are
bad examples. For example they both initially had only one job. In quicksort the job size also diminished
throughout the run of the program.

The above three points probably apply to all implementations not just farms. So generally, if we are
to fully utilise any (parallel) hardware, work must be organised so that all processors are performing work
for as much of the time overall as possible.

5.10.2 One aspect of how transputer programming is and should be performed
Currently there is no known rigorous method with which to select an execution strategy. A lot of appli
cations appear to be implemented by simply using the method of execution that is closest to the internal
structure of the application, as this is the easiest to implement. Thus, a set of independent jobs, like pixel-
wise operations and the protein sequencing program are being farmed; a set of data that needs to be pro
cessed repeatedly are being implemented geometrically; and everything else is just being implemented
algorithmically.

There does not appear to be any method to find what the most efficient and flexible method of execu
tion is for that application.

Part of this problem stems from applications being designed and implemented at the same time, not
designing the application first and then implementing it second as UNITY suggests.

Here it has been realised that when implementing an application, there may be many possible map
pings. So, in every programming situation it is worth looking to see what alternatives there are. Doing
this will result in a better solution as then one can choose an alternative that is the most appropriate in
terms of flexibility and/or efficiency.

5.10.3 Summary of conclusions
Here we list the fundamental conclusions arrived at in this chapter. This includes the model of farming
developed. Some conclusions related to farming are listed. Presented last are conclusions not directly
related to farming.

Main conclusion

The most important realisations of this chapter are that it is possible to farm any application that is ex
pressed as independent computations, and that it is likely to be efficient if there is a constant supply of
work that is quicker to allocate than to perform.

There are four parts that this second point of farming efficiency is related to: the application, the pro
gram design, its mapping and the architecture (these were discussed more fully at the top of this page).
Thus, only applications that are parallel in nature should be farmed and they should be implemented in a
way such that this parallelism is preserved in the program design and the mapping used for the architec
ture.

Farming model

Farming out is one way of arranging for work to be performed, the allocation of the jobs being performed
dynamically. It consists of continually communicating the next job of work (from a bag) to a free worker
that performs that job. The bag and the workers are arranged as in figure 70 (top of next page).

CHAPTER 5. FARMING’S RANGE OF USE 181

Figure 70: A model of farming out

Jobs may produce results and further jobs. The results produced should be dealt with as appropriate,
invariably they are collected and output. Any jobs generated are returned to the bag. Thus keeping the
mechanics of job distribution simple. This model’s basic structure allows for variations within this struc
ture for the situation in hand. A more detailed description of the model can be found in subsection 5.5.6
(page 158), which includes how the model can be varied.

Farming conclusions

Implementations consist of four stages: parallel design, mapping, allocation and execution. Applications
can be parallelised using the independencies between the items of data and the stages of the computations.
Mapping may reconfigure the processes into a different set of process that the architecture can execute.
For example, by making the granularity of the processes coarser or finer. Allocation can be static and
predetermined or performed dynamically in real-time. Farming out is one method by which processes
can be allocated dynamically for execution.

Applications possess independencies between two the various parts of the computation. Which of
these are used to develop a set of parallel processes is a separate concern from how those processes are
then allocated to the processors of a parallel architecture. Nevertheless, the two are related. For instance,
some mappings will be more efficient when allocated statically than when allocated dynamically, other
mappings will be more efficient when allocated dynamically. Thus, it is easier to consider the develop
ment of an efficient implementation in detail if the issues of mapping and allocation can be considered
separately as well as jointly.

Scalability is dependent upon the total amount of parallelism inherent within the application and the
design.

If communicational dependencies between the processes can not be dealt with directly by the archi
tecture, they can be dealt with by the process that manages the jobs.

The largest two additions to farming mechanics made here are that: one, applications can be farmed
out as a sequence of stages, with each group of jobs providing the jobs for the next stage; two, workers
may perform more than one type of job.

Another possibility that we are now aware of is that job messages can contain processes instead of,
or as well as, data.

Whether or not all workers will be able to process all job types is just a question of the amount of
memory the processors possess. If there is not enough memory on each worker to perform every type of
work within the application, the best way to proceed may be to decompose the processes into stages and
then to construct a suitably sized farm for each stage. These stages could be in the shape of a tree with
each stage performing as much as possible and taking it as far as possible towards the final objective. This
results in a series of farms running in parallel each of which performs a different type of work.

CHAPTER 5. FARMING'S RANGE OF USE 182

Farming related conclusions

A large amount of buffering can hinder the performance of applications that have been farmed out in a
multi-stage way. For example, quicksort, the towers of Hanoi and Bartoszek’s MPHF search. Buffering
is not appropriate in the last example as there is no other job to be started immediately after a worker has
finished one job.

As multiple processor shared memory systems possess the same structure of a farm, these systems can
farm out their process queue. So far this has been used to speed up multi-user machines, but as yet pro
grams have not been written in parallel to take advantage of the speed up available with these machines.

Miscellaneous conclusions

The experience gained here is that converting algorithms expressed sequential into a parallel form, such
as occam is easy. The opposite is generally believed to be true.

Recursion restricts our thinking when attempting to redesign an algorithm into a parallel form.

Chapter 6

Future research and architectures

This chapter recommends both future areas of research and in what ways farming should be implemented
on future architectures.

The following issues are considered,

1. extending the vocabulary of occam program transformations,

2. recommended future work for the first generation of transputer,

3. how one could implement farms on the second generation of transputer,

4. architectures that farm out work automatically, and,

5. developing the programming methodology further.

A summary is provided.

6.1 Program Transformation
In subsection 4.3.2 (page 39) one process was transformed into another. It is interesting to note that only
one of Occam’s equivalence laws was used in this transformation. This is perhaps to be expected as the
equivalence laws are of a low level and were not intended to be used in practical situations. Nevertheless,
as such transformations are clearly of great use in the task of programming, a set of equivalence laws for
practical use is desirable.

There are two ways seen here to approach the providing of equivalence laws. The approach taken by
Roebbers has been to supply a handy set of tools that can be applied intuitively and practically as required
by the situation. As an example, here is one transformation that was used in this research a number of
times. It is expressed here as an equivalence,

WHILE TRUE
WHILE TRUE _ SEQ

P ~ P
P

The approach taken by Roscoe and Hoare [RH86] is to provide a number of laws to transform between
standard forms. Below is one example equivalence from [RH86]. These two processes are similar in
nature to the two harness B job distribution processes transformed between in section 4.3.2 (page 39). In
[RH86] the equivalence is between,

183

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 184

WHILE b
SEQ

P
Q

and the state-machine like program,

BOOL x:
SEQ

x := FALSE
WHILE x OR b
IF
x

SEQ
Q
x := FALSE

TRUE
SEQ

P
x := TRUE

6.1.1 Types of transformation
Three types of equivalences are needed: efficiency improvement, parallel introduction and parallel re
moval.

Efficiency improvement should involve equivalences between forms that are easy to write and forms
that are efficient for a particular architecture. These can then be used to make obvious methods of ex
pressing algorithms instantly efficient.

Parallel introduction is of use in transforming old sequential algorithms into those exhibiting paral
lelism (also see [Bar93]) and in introducing buffering, as mentioned in Roebbers’s course, see section 2.3
(page 11).

Roebbers’s course also looked at sequentialising a highly parallel algorithm. This is so the code sitting
on each transputer was only sequential in nature and was thus more efficient. Equivalence laws to assist
in this process are also required. The latter stages of this process involving reducing the amount memory
used after the basic essential parallelism has been removed. This includes a variety of other transforma
tions such as reducing the size of the arrays used.

In [RH86] Roscoe and Hoare also expressed a need for the first two of the three mentioned here.

6.1.2 The first of the Four Disciplines
In the forward to [CM87] Hoare states that a complete theory of programming includes four disciplines,

1. one for specifying programs that permit individual requirements to be clearly stated and combined.

2. one for reasoning about specifications and aids in elucidation and evalution of alternative designs,

3. one for developing programs with a proof their specification is met, and,

4. one for transforming programs to achieve high efficiency on the machines available for their exe
cution.

Due to the rigorousness of the Roebbers’s discipline, it is believed here this last item on the above list has
been obtained for optimising Occam programs for transputers and transputer networks.

Transforming programs until they are highly streamlined is usually referred to as hacking by the com
puting community in general. This being due to the informal and intuitive manner with which such pro
gram optimisations are usually performed. Nevertheless, here it has been seen how it is possible to per
form such correctness preserving optimisations with more rigour and a stricter discipline than the rest of
program construction process.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 185

Roebbers’s course provides a convenient, intuitive and practical set of tools that can be applied quickly
and easily to any occam program as appropriate. Another advantage is that transformations can be per
formed mentally, without the need for any representation. Often several transformation steps can be per
formed at once in this way.

As the disciplines in Hoare’s list are in decreasing order of generality, perhaps the other three disci
plines will be arrived at in reverse order.

6.2 Future work
This section looks at how the work of chapters 4 and 5 may be extended.

6.2.1 Harness efficiency refinement
The most important piece of extra work to perform is that of how to scale ternary trees so the last layer of
workers is not fully populated. What is needed here is to know how to setup the connections in the harness
from the penultimate layer of workers to the workers in the partially populated last layer. This needs to
be done in a regular fashion so the number of workers can still be simply varied linearly as before.

Although harness D had slightly poorer throughput over harness C, it did perform better when in a full
farm. This presumably being due to it passing of pointers when communicating with the workers. Thus
it would be worth studying the performance of versions of harnesses A and C that also passed pointers in
this way.

Harnesses A and C could also be used on ternary trees if result messages could serve as requests for
work. Once up and running, this is very easy to perform, and means that requests for work would be
performed for free. Nevertheless, the initialisation case is a special case as a null result message will need
to be sent from the workers to make the initial requests for work. The farmer would have to be able to
recognise these null results and ignore them. In order for the communication protocol to be lightweight, it
is best if this message is not of any particular special type from an external point of view, such as a tagged
protocol. That said, a result message that is just a request-only result message must be computationally
cheap for the farmer to recognise. The harness would also have to issue null result-requests in order to
obtain work for its buffers.

There are a few extra minor tests that could be performed on the harnesses with the existing programs.
The first of these would mean the recommendations finally arrived at in chapter 4 could be made more
complete by seeing which harness is the best to use if one cannot turn off usage checking. Some of the
most efficient harnesses found here were a tree run by harness D for compute bound mappings and a
line of workers run by harness E for mappings that are approaching the boundary when a farm becomes
communication bound. Both of these harnesses require usage checking to be turned off. It is desirable to
know how well a tree running harness B and line of workers running harness F would perform.

Although even more efficient or lightweight harnesses may be possible, some further fine tuning of
the harnesses used here may also be possible. For example, efficiency may be increased by introducing
processes to buffer the job and result in and out of the worker process. Potential places for these are
between the worker and either the job distributor or the result merger.

As mentioned in section 4.10 (page 93) a method for finding the job processing time that produces
the optimum farm run time would be of use.

Automatically farming out on this generation of transputer is what is ultimately desirable.

6.2.2 Model parameters
A number of calculations have been performed here using the models developed. The parameters: job
processing time, j , message size, m, and number of workers, w, are integers arrived at by the programmer
and thus are accurate by definition. However, the bandwidth, B , and the communication set up overhead,
s, are dictated by the implementational characteristics and need be measured.

The value used for B should be the average bandwidth between the farmer and the workers. This value
is bounded closely by the two values that were used here, the bandwidth out of the farmer and between
the harvester and the last worker.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 186

Similarly, the value s should be the average number of bytes that could have been communicated in
the time lost during an average farmer to worker communication due to the setting up of all the com
munications performed including all of those performed by the harness. The figure used here was the
communication set up time for sending a message over one link.

Obviously both of these figures are affected by the different topologies and harnesses that can be used.
For example, on a line of workers there are on average approximately w /2 individual communications to
be set up, whereas on a ternary tree an average of just |"log3 w] communications need to be set up. This
is just three individual communications for the largest farms used here.

6.2.3 Efficient mappings for farms that don’t just produce final results
Until now many types of applications have not been farmed out. These applications can be implemented
by farming out jobs that don’t just produce final results, but also produce intermediate results and even
further jobs. Now it has been realised these applications can be farmed out, we need to know,

• which applications,

• which parallel designs, and,

• which topology-harness combinations

will produce efficient implementations of these applications.
So far, in situations where minimal buffering is required, it seems that some of the harnesses tested

in chapter 4 can still be of use. For instance, harness A has very little buffering and is highly efficient.
Nevertheless, these harnesses are only known to be efficient when a keen job release mechanism is in use.
Thus, harness strategies that are more appropriate in other situations may exist.

The parallel designs that have worked here have not been very efficient, due to lacking a constant
supply of medium grain work. It is here where most of the further work needs to be done.

We are aware of three instances where study would provide a great deal more insight into how to farm
out such applications efficiently,

1. when the farmer may give out jobs in a sequence of bursts, with no work being given out in the
pauses in between,

2. when the leading edge of the computation or some other small area of the computational graph
needs to be concentrated on, and,

3. farming out work that is then executed directly by the workers.

An example of an implementation that farmed out bursts of jobs was the minimal perfect hash function
finding application [BCK93] discussed in subsection 5.7.1 (page 167).

An example of a farm that need to continually expand the leading edge of the computation was the
towers of Hanoi application developed in section 5.3 (page 122). Here it was important to continue to
expand the leading edge of the calculation so the first results could be output as soon as possible. Thus,
as working on the new leading edge as soon after it was generated as possible had more of an impact
on performance than the general efficiency of the harness, it was more important to have a harness that
performs as small an amount of efficiency enhancing buffering as possible. Thus, harness A was used in
this and the quicksort farms, due to it possessing the smallest amount of buffering out of the six harnesses,
one job and one result per worker. A tree topology and a more elaborate harness would buffer four of each
type of message per worker.

Another avenue that might be worth exploring is that of getting the workers to execute directly the
contents of the jobs they receive. In order for this to be achieved the worker needs to be an execution
harness that can add the process it receives onto the process queue of the C.P.U. This is the same as some
parts of the mechanics used in dynamic process allocation, which is effectively what is going on, however
we only call it farming out if we are allocating jobs from a single bag. Dynamic process allocation tends to
involve moving processes around while they are executing so as to distribute the work load as effectively
as possible.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 187

Thus in general, it is desirable to know what types of parallel design will result in efficient imple
mentations of applications where the computation needs to be decomposed into a number of stages. This
study is large. It was avoided here by studying the harnesses before studying what applications could be
farmed.

6.2.4 Understanding when to use each execution strategy
One aspect of this study of farming has been looking at what type of applications will farm efficiently.

The work has revealed that in order to develop an implementation of the appropriate level of flexibility,
scalability and efficiency, a programmer needs to be able to evaluate which execution strategy is the most
appropriate for the application and situation.

It is desirable that this best way to proceed with an implementation should be obvious from the in
ternal nature of the application. From the application one should be able to determine whether the most
appropriate mapping consists of data or computation decomposition, and dynamic or static allocation.

6.2.5 Farms with different types of worker
It may also be of use to know how to best arrange farms where the different workers specialise in different
kinds of work.

For example, in banks we have started to see some windows that deal only with small transactions in
addition to the usual windows that deal with the full range of transaction services.

When customers with large transactions get to the front of the queue,

w w w W W | Windows
c c C c

Figure 71: A multiple workers queuing problem

these customers should progress to a second queue that is for customers still waiting for a full transaction
window to become free.

w w w W W 1 Windows
c c c C c

c C c C Queues

Figure 72: Solution to multiple workers queuing problem

This prevents customers with smaller transactions from being delayed. All customers should initially join
the main queue to preserve ordering.

Further work in this general area is required.

6.3 The second generation of Inmos transputer
The second generation of transputer products implement two new facilities. These are extra communica
tion mechanisms that affect the way work can be farmed out. Here we looked at these two new mecha
nisms and then at the various issues of how these should be used to implement farms.

6.3.1 The new computation and communication performance ratio
As the speed of the processors and the links have been improved, the performance ratio between compu
tation and communication is also different. What needs to be found are the thresholds of farm efficiency
for this second generation of transputer, just as was done here in sections 4.9 and 4.12 (pages 68 and 99).

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 188

6.3.2 Virtual channels
The first of these new mechanisms is a communication sub-system. The new transputer, the T9000, has a
virtual channel processor which can multiplex 65,536 channels over the four hardware links. In addition
to the T9000 there is also a packet-switching router device, the C l04. Together these alleviate the need
to write multiplexing software when non-adjacent processors need to communicate.

This obviously leads to a much greater freedom of interconnection. In a farm this allows a farmer to
communicate directly with all of the worker processors and alleviates the need for a harness. This allows
for the fan out to be expressed directly in the farmer.

PROC fa rm e r ([] CHAN OF REQ r e q , [] CHAN OF JOB job)
SEQ j = 0 FOR J o b s

ALT i = 0 FOR SIZE r e q
r e q [i] ? any

j o b [i] ! w o r k . i t e m [j]

The C l04 routing device

Further to the virtual channel routers, message routing devices have also been developed. These route
messages directly. Being devices separate from the processing elements, these allow for the communica
tion requirements to be scaleable separately from the amount of computing requirements of an application.
This is a great enhancement as the amount of communication bandwidth needed can grow more rapidly
than the amount of computation being performed.

These routing devices, Cl04s, are programmable 32 way routing switches. These work at the same
high speed as the T9000 and thus have very high rates of packet throughput and introduce only minimal
latency. C 104s may be cascaded to any depth, providing whatever amount of interconnectivity is required.
Cl04s provide both wormhole and grouped adaptive routing.

6.3.3 Resource channels
The second added communication facility is the provision of many-to-one communication channels. Here
one end of a channel is shared between a number of processes.

The mechanism for resource channels works as follows. The processes on the channel’s shared end
make claims for the shared end of the channel. As there is obviously a number of these processes the
underlying system queues these claims. Each claim for the channel must therefore be granted when the
process on the fixed end of the channel is prepared to interact with a channel. Thus the programmer makes
the grant explicitly for the next channel in the queue and the two processes can then communicate.

For a farm this clashes slightly with our intuition. In a farm the farmer is a client sending out data to
be processed and the workers are the servers taking in data, processing it and producing results. The view
of the resource channel’s mechanism is the other way round to this — the workers are clients demanding
work from the farmer, which is the server providing work. The workers also act as clients pushing results
to the harvester, which acts as the server to absorb them.

6.3.4 Implementation
These two additional mechanics open up new approachs to implementing farming. While the existence of
virtual channels alleviates the need for farming harnesses, and thus generally less code to be written, the
addition of shared channels will require the code that is written to be of a form different from that used for
the first generation of transputer. The extra support, in terms of language constructs, for resource channels
as implemented on the T9000 will be provided by shared channels in occam 3 [Bar92].

These are shared as a record, opposed to individually, and are declared as follows,

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 189

CHAN TYPE WORK
RECORD

CHAN OF INT jo b :

CHAN TYPE REPORT
RECORD

CHAN OF INT r e s u l t :

Then, just as before, channels are declared of the appropriate type over the scope of the parallel processes
that communicate using the channels.

PROC fa rm e r (SHARED WORK work)
SEQ j = 0 FOR Jo b s

GRANT work
w o rk [jo b] ! g e n e r a t e . j o b (j)

PROC w o rk e r (SHARED WORK work, SHARED REPORT r e p o r t)
WHILE TRUE

SEQ
CLAIM work

w o rk [jo b] ? j
a p p l i c a t i o n (j , r)
CLAIM r e p o r t

r e p o r t [r e s u l t] ! r

PROC harvester (SHARED REPORT report)
SEQ r = 0 FOR Jo b s

GRANT r e p o r t
r e p o r t [r e s u l t] ? r e s u l t [r]

SHARED WORK work:
SHARED REPORT r e p o r t :

PAR
f a rm e r (work)
PAR w = 0 FOR W orkers

w o rk e r (work, r e p o r t)
h a r v e s t e r (r e p o r t)

As the mechanics of the claiming and the granting provides the necessary multi-way selection needed,
there is no need to construct this claiming of the work, by the programmer, through requesting as is per
formed on the first generation of transputers.

Parallel version

The above is the structure of a basic processor farm written using shared channels. However, although
a farming harness is no longer needed, buffering messages will still improve the efficiency of an imple
mentation, as buffering both prevents the workers from dealing directly with links and in the case of job
supply also ensures that the next job is always in the processor’s local memory.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 190

PROC w o rk e r (SHARED WORK work, SHARED REPORT r e p o r t)
. . . v a r i a b l e s
SEQ

CLAIM work
w o rk [jo b] ? jO

PAR
CLAIM work

w o rk [jo b] ? j l
a p p l i c a t i o n (jO, rO)

WHILE TRUE
SEQ

PAR - - g e t workO, g iv e r e s u l t O , p r o c e s s j o b l
CLAIM work

w o rk [jo b] ? jO
CLAIM r e p o r t

r e p o r t [r e s u l t] ! rO
a p p l i c a t i o n (j l , r l)

. . . g e t w o r k l , g iv e r e p o r t l , p r o c e s s jobO

If the time to generate a job is longer than the time to communicate the job across a link it is worth
performing these two actions in parallel; the same applying to result collection. This is probably best
performed with a separate buffer sitting on the link.

PROC fa rm e r (SHARED WORK work)
PROC g e n e r a t e (WORK ou t)

SEQ i = 0 FOR n
o u t ! g e n e r a t e . w o r k . p a c k e t (i)

PROC f a r m .o u t (CHAN OF WORK i n , SHARED WORK o u t)
WHILE TRUE

SEQ
i n ? j
GRANT o u t

o u t [j o b] ! j

CHAN OF WORK raw .w ork :
PAR

g e n e r a t e (raw .w ork)
f a r m .o u t (raw .w ork , work)

6.3.5 Will these new mechanisms result in faster farms?
There is the question of whether these new mechanisms can result in faster implementations than building
the farm mechanics by hand.

These extra mechanisms are implemented in hardware, which is invariably can do things faster than
software. Further, both the virtual channel processor and the C104 router devices are separate from and
operate in parallel with the main processor, and thus should result in quicker execution: the main C.P.U.s
are free to execute work.

The resource channel mechanism is implemented in hardware by instructions in the processor. Thus,
the argument about hardware being potentially faster than software applies (the argument about the mech
anism resulting in faster implementations through being separate does not).

There is one more aspect of the resource channel mechanism. As already mentioned earlier, it is im
plemented by queuing the claims. This queue is managed by the processor on which the fixed end of the

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 191

channel resides. This centralises the processing of this resource. With the first generation this load (of al
locating jobs to workers) was distributed over most of the transputers (through the use of a network of job
distribution processes) and the farmer only gave out work on one channel. Thus, here the processor that
is potentially the largest bottleneck of the implementation (performing any necessary management of the
jobs) also has to perform all the details of job allocation. Although this only involves managing a queue,
this bottleneck will reduce the maximum number of workers a farmer can farm to for any given granular
ity. So, although the allocation of jobs may be performed quicker than with the previous generation, the
implementation used is not ideal as it can restrict the maximum size of a farm used.

6.3.6 No automatic link demultiplexing
Unfortunately, the T9000’s virtual channel processor does not automatically demultiplex communications
across more than one link, even if a number of links are used in an implementation.

Thus if a particular implementation is communication bound utilising multiple links will have to be
performed by hand. Just as with the first architecture, this is possible by doubling, tripling or quadrupling
the number of workers per processor. The extra set of channels being placed on different links. This
increases the communication bandwidth of the farm while the maximum potential processing capacity
remains the same.

This also alleviates the need for link buffers on T9000 farms. As there is more than one worker pro
cess per processor, the four worker processes are all that is needed. As two link communications are in
progress for two workers, one for input and one for output, another worker can be computing a job. Thus
the C.P.U. is always active, as long as there is work to be performed. As well as increasing the com-
pute/communication ratio of the implementation this also results in a more efficient execution overall.
There are just worker processes to execute, no buffers. There are also no memory requirements for the
pairs of buffers (one in, one out) that otherwise would be needed.

PROC fa rm e r ([4] SHARED WORK work)
SEQ j = 0 FOR Jo b s

PRI ALT i = 0 FOR 4
GRANT w o r k [i]

w o r k [i] [j o b] ! g e n e r a t e . j o b (j)

PROC q u a d .w o rk e r ([4] SHARED WORK work, [4] SHARED REPORT r e p o r t)
PAR w = 0 FOR 4

w o rk e r (w o r k [i] , r e p o r t [i])

When these processes are placed onto processors, each shared channel will need to be placed onto a sep
arate link of each transputer.

6.3.7 Updating the workers’ state
Some computations consist of a number of sets of work, where each set needs to be computed in a different
state. For example, when ray tracing an animation the contents of the scene for each frame will be slightly
different as the characters move about, including in and out of frame.

In order to farm out such computations a mechanism is needed so the different states can be distributed
to the workers. Here we look at how this has been implemented on the first generation of transputer and
how it is best implemented on the second generation.

First generation of transputer

The method implemented by this author has been to broadcast the state change via the job distribution
harness. This approach avoids sending the state information with every job. This method works by using
the tagged protocol,

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 192

PROTOCOL WORK
CASE

j ob ; . . .
s t a t e . u p d a t e ; . . .

The farmer can then send new state information to the workers before farming out each set of jobs,

PROC fa rm e r ([] CHAN OF REQ r e q , [] CHAN OF WORK work)
. . . v a r i a b l e s
WHILE TRUE

SEQ
PAR i = 0 FOR SIZE r e q

SEQ
BOOL any:
r e q [i] ? any
w o r k [i] ! s t a t e . u p d a t e ; s t a t e . i n f o

SEQ j = 0 FOR Jobs
PRI ALT i = 0 FOR SIZE r e q

r e q [i] ? any
w o r k f i] ! j o b ; g e n e r a t e . j o b (j)

the harness distributing these state update messages to all the workers,

PROC j o b . d i s t r i b u t o r (CHAN OF REQ r e q , CHAN OF WORK i n ,
[] CHAN OF REQ w o r k e r . r e q ,
[] CHAN OF WORK w o r k e r . j o b)

. . . v a r i a b l e s
WHILE TRUE

SEQ
r e q ! TRUE
i n ? CASE

j o b ; j
PRI ALT i = 0 FOR SIZE w o r k e r . r e q

w o r k e r . r e q [i] ? any
w o r k e r . j o b [i] ! jo b ; j

s t a t e . u p d a t e ; s t a t e . i n f o
PAR i = 0 FOR SIZE w o r k e r . r e q

SEQ
BOOL any:
w o r k e r . r e q [i] ? any
w o r k e r . j o b [i] ! s t a t e . u p d a t e ; s t a t e . i n f o

There are two main advantages to communicating state information along the same channels used to dis
tribute the jobs. First, messages cannot overtake one another. This preserves the order of the messages as
they travel through the farm and consequently jobs are executed in the correct context and correct results
are produced. Second, the level of performance is higher: job messages are smaller as they consist of
only the job, also, on farms where some workers are not directly connected to the farmer (on long linear
topologies for example) jobs from a number of sets of work are executed simultaneously. There is only
a minor reduction in performance while state update messages propagate down the harness and the farm
gradually changes from computing one set of jobs to computing the next. This approach requires that the
harvester can tell the different between the different types of result, but the performance advantages are
worth it.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 193

The disadvantage of this method is all processes that communicate jobs must contain the code to deal
with all parts of the protocol. This consumes programmer time and memory, especially when many dif
ferent parts of the workers’ state can be updated separately.

Second generation of transputer

The introduction of shared channels changes the way work is farmed out. In particular shared channels
cannot be used for broadcasting and a new method for distributing state information will need to be found.

With Welch a new method has been developed. Instead of sending out the new state when the next
set of work is to be started, this method works by only sending out the new state when workers with an
older state request work.

This can be implemented as follows. When each worker requests a new job, it informs the farmer of
the state it is using. If this state is not the current one, the farmer sends the latest state as well as the job
to be performed.

The worker will not know whether it will be expecting a state or a job first and it is more efficient to
execute a CASE-input on a tagged protocol than to ALT over two or more channels. Thus, we will have
a tagged protocol that can communicate either a job or both a state and job,

PROTOCOL WORK
CASE

j o b ; . . .
s t a t e . j o b ; . . .

We now need a channel type to communicate both the above (from the farmer to the worker) and some
form of state identifier (in the opposite direction),

CHAN TYPE STATE.WORK
RECORD

CHAN OF INT s t a t e . l a b e l ;
CHAN OF WORK send :

We can then write the farmer and the worker,

PROC fa rm e r (SHARED STATE.WORK work)
. . . v a r i a b l e s
SEQ

c u r r e n t . s t a t e := 0
WHILE TRUE

SEQ
. . . i n i t i a l i s e n e x t s t a t e
c u r r e n t . s t a t e := c u r r e n t . s t a t e + 1
SEQ j = 0 FOR Jo b s

GRANT work
SEQ

w o r k [s t a t e . l a b e l] ? w o r k e r . s t a t e
IF

w o r k e r . s t a t e = c u r r e n t . s t a t e
w ork [send] ! jo b ; g e n e r a t e . j o b (j)

TRUE
w ork [send] ! s t a t e . j o b ; s t a t e . d e t a i l s ;

g e n e r a t e . j o b (j)

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 194

PROC w o rk e r (SHARED STATE.WORK work)
v a r i a b l e s

SEQ
s t a t e . n u m b e r := 0
WHILE TRUE

SEQ
CLAIM work

SEQ
w o r k [s t a t e . l a b e l] ! s t a t e .n u m b e r
w o rk [se n d] ? CASE

s t a t e . j o b ? . . .
. . . p e r f o r m any i n i t i a l i s a t i o n

jo b ? . . .
SKIP

. . . p r o c e s s jo b
CLAIM r e p o r t

r e p o r t [r e s u l t] ! r

There are a number of advantages to this method and the approach it takes to communication. First,
workers are only sent the most recent state. This way workers that have been working a long time on their
previous job only receive the most recent state and no time is spent receiving state update information
that is now out-of-date. With the solution used with the previous generation of transputer, every worker
received every state communication, even if a worker did not work on jobs to be processed in that state.
Second, it easily allows for a dynamically variable farm size as the farmer does not actually need to know
the number of workers in the farm.

Perhaps the two most important advantages of this method are that, first, it uses the mechanics of
the shared channel and thus does not introduce any further channels or arrays of channels. Second, this
method allows different workers to work on jobs from different sets of work at the same time, as was
achieved on the previous generation of transputer. The farm does not have to wait for the whole farm to
stop processing the previous set of work or send the state information with every job.

This method allows for a process to make a decision about what it should send another remote process.
This is achieved by communicating information that either is directly from a process’s state, or, as in this
case, is an identifier that represents the state.

What is most interesting about this method is the approach to communication it uses. Instead of using
a single brute-force broadcast to communicate state information as soon as it becomes current, the updat
ing is performed on an individual basis. It is because the farmer is now communicating with workers on
an individual basis that allows for not just one way, but interactive communication. It is this that gives
rise to all the advantages such as updates only being communicated when they are required.

In conclusion, this interactive approach to communication, aided by a shared (and virtual) channel,
results in a farmer that is sensitive to the individual requirements of each worker and thus can respond
to these requirements accordingly. By using this interactive approach to communication it is hoped that
other solutions can be developed that will provide similarly flexible, subtle and responsive designs that
are thus equally effective and efficient implementations.

6.4 Automatically farming out processes
Farming out an arbitrary set of communicating processes on the first generation of transputer would in
volve considerable overheads and as a result static allocation will be more efficient.

On the architecture mentioned by Welch [Wel95] (also see subsection 5.9.3, page 175), although this
architecture greatly widens the Von-Neuman bottleneck by sharing many memory nodes simultaneously,
it also farms out the process queue (as is the case with any share memory multiprocessor machine). On
architectures such as this it will always be just as efficient to execute an arbitrary set of communicating
processes as it would be to execute a data decomposition.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 195

In general, the best approach for the future, is to develop architectures that have dynamic allocate
processes built into them. This is obviously best done by having (multiple processor) architectures that
farm out the process queue automatically.

Here we look at how we should write programs for such architectures.

6.4.1 Programming
The greatest advantage in having application’s farmed out automatically is we only need to develop a
program as far as the set of parallel process to be executed, there being no longer the need to implement
any methods of dynamic allocation. This removes both the need to separate out the application into farmer
and worker and the need to implement a farming harness.

Thus, the ideal way to express all programs would be with as much as possible going on in parallel,

PAR

PAR i = 0 FOR n

Many programs possess some dependencies between processes. Though as long as there is enough par
allel slackness for the architecture, this being dictated by the architecture’s design as well as the number
of processes, the program will execute efficiently.

6.4.2 Parallel slackness and program granularity
One concern that is important, is whether the amount of parallel slackness required for efficient imple
mentations will be greater than the amount of parallelism inherent in applications.

When farms on the first generation of transputers had more than one worker process per processor
(harnesses E and F), it was likely that if a worker was without a job to process the other process would
be able to continue. This illustrates that in order to achieve optimum efficiency some parallel slackness
is required — the number of processes required will be in excess of the number of processors.

That said, expressing the application’s parallelism should still be performed with some sensible degree
of grain that is appropriate for the hardware in question; decomposing the two sub-expressions in,

a := (b + c) + (d + e)

across two processors, thus,

SEQ
PAR

be : = b + c
de := d + e

a := be + de

will only gain any benefit if the setting up and closing down of the parallelism plus any communications
have a lower cost than performing one of the sub-expressions.

CHAPTER 6. FUTURE RESEARCH AND ARCHITECTURES 196

6.5 Summary
In this chapter we have looked at some preliminary designs for implementing farms efficiently on the
second generation of transputer and one type of future architecture.

Semantic preserving algebraic transformation laws have been very useful in this thesis. There is need
to extend this work, this includes proving correct some transformations that have been used already.

Although the first generation is now well understood, there is still some work to be done. This consists
mainly of fine tuning and the discovery of the few unknown details.

The second generation of transputer is now on the market. There are two new hardware communica
tion mechanisms, thus some frequently used communications are now easier to implement. One provides
a general message routing fabric alleviate the need for explicit communication harnesses. The other pro
vides a new communication mechanism for two-way communication of the one-to-many variety. Inter
active communication appears to have much greater design and performance advantages over brute-force
broadcasting and this new one-to-many mechanism seems to encourage interactive communication and
prevents that later. Testing also needs to be performed to find out the threshold above which farming out
work is efficient.

Armed with this last piece of knowledge, implementation will again come down to knowing how to
choose between the execution strategies.

Future architectures should use farming to automatically perform the allocation of processes to pro
cessors.

Chapter 7

Conclusions

This chapter contains some discussions on UNITY, the practical use of the work, and the order in which the
two studies were performed. Finally, this thesis’s contributions are discussed and its conclusions listed.

7.1 UNITY
Here we comment on how useful UNITY was in this work.

UNITY is a foundational theory with which to perform program development. This is independent
of the fact that UNITY also suggests a formal approach to program development.

This author’s opinion is that the most useful aspect of UNITY is that it separates program design from
the implementation, and thus that programs should be designed before implementation issues are consid
ered. This has been used here to realise that execution strategies are separate from applications.

It is interesting and reassuring that working with UNITY gave the same good design properties that
C.S.P. also gave, namely that the farming out of work is best organised as a producer-consumer strategy.

In UNITY a design may be implemented on many different architectures. This highlighted the fact
that if a program can be farmed, programs of a similar internal structure could be farmed as well.

7.2 Is this work of practical use?
Many of the first generation transputers have been sold and sales continue to increase — the T9000 having
a different market. Thus, this work is increasing in its usefulness generally and the quantitative results
presented are of practical use to the expanding domain of first generation transputer systems.

7.3 The order of the two studies
As discussed in chapter 3, it was decided to study implementation before the theoretical issues. This de
cision was made as it was realised that these, as yet unfarmed applications, may need to be executed on
more efficient harnesses and topologies that would not be discovered yet for some time. This was the
correct decision to make, as these additional applications will become farmable when program designs
and mappings that produce non-final results are developed.

7.4 Contributions
Here we discuss the contributions of this research.

197

CHAPTER 7. CONCLUSIONS 198

7.4.1 Major thesis contributions
The major contributions of the two studies performed in this research are listed below.

The major contributions of chapter 4 are that this research has identified the circumstance in which
farming is efficient: the demand for work is outweighed by the supply. An equation has been developed
that encapsulates the above. It has been showed that picking the most obvious execution strategy is not
the only approach possible to implementation. It has also showed that it is possible to study extensively
the breakdown of farming harness efficiency independently of any specific application. Using this it has
showed the efficiency of a number of very efficient farming topology and harness combinations.

The major contributions of chapter 5 are that this research has developed a definition for the basic
structure of the farming mechanism and some useful extensions. It has showed it is logically possible to
farm out all applications expressed as independent processes. It has also clarified that farming out is just
one way of dynamically allocating any set of parallel processes, whether data or computational indepen
dencies have been parallelised.

As a result this research provides a clearer and detailed understanding of: the farming mechanism, its
range of use, and how to implement it efficiently.

The combination of the last two suggest that we should use farming more, as it is likely we can im
plement it efficiently for many applications.

This work is not the first to say that farming should be used more, however, it is original in both show
ing that farming can be used more widely and in indicating the limits of this.

We now look at the other significant contributions of each chapter.

7.4.2 Other contributions from chapter 4
Chapter 4 documents a study of some highly efficient harnesses and topologies. This includes finding the
boundary conditions of this efficiency.

The other contributions made in this study have included the development of an equation that relates
the number of workers, w, with the average job compute time, j , and message communication time, c,

c

where c may either be measured or calculated from the number of bytes in a message, m, the bandwidth,
B , and a new method introduced here for measuring communication set up costs by using the number of
bytes that would be communicated in the time it takes to set up the communication, s,

m + s

These can be combined to give,

m + s
Other contributions also included recommending minimum values for m, so that as much as of the

link bandwidth as possible would be utilised. Some values for B, the bandwidth around a processor farm,
have also been found.

This research has also found that initialisation is not a special case and has showed tuning job size
affects overall efficiency due to how well the farm finishing.

On a related note, chapter 6 discussed some farming harness designs for the T9000, the advantages of
interactive communication over brute-force broadcasting (as encouraged by shared channels), and how
processes can be dynamically allocated automatically using farming on future architectures.

7.4.3 Other contributions from chapter 5
Chapter 5 looked at the question: what applications can be farmed? This being both in terms of what
range applications it is possible to farm and what range of applications are likely to be efficient.

CHAPTER 7. CONCLUSIONS 199

By answering this question, the chapter raises yet more questions. As applications don’t have to be
implemented using the most obvious execution strategy, we can select the mapping that is the most ap
propriate (flexible, scalable, efficient). Thus, in order to implement these other applications (with depen
dencies between jobs for example) efficiently for whatever architecture is in hand, we need to develop
more sophisticated mappings.

This study also made some other contributions as this part of the research has found that jobs can
contain anything: data, or computational processes or both. It has showed some original mapping designs
that could be used to implement computations on geometric data sets and recursive applications such as
Hanoi and quicksort. It has also realised more mapping designs are needed. It also found that recursion
was not use useful when attempting parallel program development.

7.5 Conclusions
Drawing these conclusions together, we are now armed with a much greater understanding of farming:
what it is, what it can be used for, and how to use it efficiently.

We have also come across some good general implementation properties. We look at these first. Dis
cussed next is how we should change the way we go about selecting an execution strategy. Lastly we
discuss in depth the following aspects of farming: its structure, its advantages, where it can be used, and
what makes a design, a mapping and an implementation efficient. We also look at the designs for the most
efficient farming harnesses.

7.5.1 Implementation
Three conclusions apply to implementation in general.

Match Program Shape to Hardware Shape

The efficiency of the harnesses here are due to the accuracy with which their shape matches the design
of the hardware on which they are executed. This architecture is not just a single processor that exe
cutes load, arithmetic and store operations; here there are four communication links as well as the C.P.U.
Therefore the most efficient results are often obtained when the transputers are programmed to run the
link engines separately in parallel.

PAR
PAR i = 0 FOR 4

l i n k (i)
cpu ()

This is a general point that applies to all computer implementations not just processor farms imple
mented on transputers.

Communication structures should only communicate

Communication harnesses should only perform communication, i.e. they should perform no computation.
Any selection a communication harnesses performs should be achieved solely through communication
(i.e. ALT) and not via computation (e.g. IF). This excludes communication harness from deciding which
worker a job should be sent to, such a decision should be performed within a master worker process while
the communication harness is executing concurrently obtaining further work.

Miscellaneous conclusions

The experience gained here is that converting algorithms expressed sequential into a parallel form, such
as occam is easier than this author was lead to believe. This includes implementing recursion on a stack
by hand. This is generally believed to be difficult.

Recursion restricts our thinking when attempting to redesign an algorithm into a parallel form.

CHAPTER 7. CONCLUSIONS 200

7.5.2 Selecting an execution strategy
For many applications, the execution strategy selected is one with an internal structure that matches the
internal structure of the application. The usual motivations behind this decision are efficiency and ease
of implementation.

This approach, however, fails to take into account the fact that an execution strategy may need to be
appropriate for the architecture as well as for the application if it is to be efficient.

For any application it is possible for several executions strategies to execute it, even if only the type
of allocation used can be varied. Thus, if it is possible to select the strategy with which the execution is
arranged, it may be better to pick one that is known to be highly flexible and efficient.

There are two separate areas of implementation development: developing a parallel design and allo
cation. Implementation involves selecting the independencies between parts of the application and then
allocating the resulting parallel processes. Which set of independencies are parallelised and which alloca
tion method is used can be selected so as to be the most appropriate for the application, whether the most
flexible, the scalable, or the most efficient implementation. Farming out is a dynamic method allocation.

For example, take an application that sends lots of data through a few stages of a graphics pipeline.
This would normally be implemented by using the independencies between the algorithmic stages to cre
ate a set of parallel processes (that need to communicate intermediate results to one another) and then
allocating them statically. However, this application could be parallelised by using the independencies
between the different pieces of data and then allocating these processes dynamically, by farming out each
graphical object.

7.5.3 Farming model
Farming consists of continually communicating the next job of work (from a bag) to a free worker that
then performs that job. The bag and the workers are arranged as in figure 73 below.

yfTvorker >

./ worker

V worker)

Figure 73: A model of farming out

Jobs may produce results and further jobs. Results produced should be dealt with as appropriate, in
variably they are collected and output. Any jobs generated are returned to the bag. Thus keeping the
mechanics of job distribution simple. This model’s basic structure allows for variations within this struc
ture for the situation in hand. A more detailed description of the model can be found in subsection 5.5.6
(page 158), which includes how the model can be varied.

7.5.4 Advantages of farming out
Farming out is a dynamic method of allocation that load balances work automatically. It is very simple
and can also be reasonably easy to implement.

Farming’s structure is independent of the structure of the application it executes. It can also be im
plemented easily on any architectural topology where there is a single path from the bag to each worker,
thus making it very flexible. Even the number of workers can be varied dynamically.

CHAPTER 7. CONCLUSIONS 201

Fanning’s only overhead is the communicating of jobs from the bag to the workers (this includes the
overheads of starting up the communications). If these communications can be performed in parallel with
the work, and can be made to be small, farming can be very efficient. With a good mapping of a constantly
parallel design and suitable grain, up to 99% efficiency has been obtained here. The lowest efficiency
obtained in chapter 4 for suitably mapped applications was 90%.

7.5.5 What applications can be farmed
It is possible to farm all computations that can proceed independently (i.e. without interfering or sharing
memory with one another).

It is also possible for these computations to communicate with one another by exchanging messages.
How this is achieved is dependent upon the mechanics available on the architecture. Processes may just
need to be descheduled while waiting for the synchronisation to be performed, or they may be decom
posed into their non-communicating components and the interactions are then performed via the process
managing the bag.

Two major consequences of this are: that the workers may perform more than one type of job, and
that the jobs farmed out may produce intermediate results and further jobs, not just final results.

Despite it being logically possible to farm out all these types of work, not all implementations will be
highly efficient. All farmed computations should be efficient if,

1. there is more parallel work than there are workers,

2. this parallelism can be decomposed so there is a reasonably continuous supply of jobs,

3. the supply of work is greater than the demand generated by the number of workers used, and,

4. this decomposition is of a granularity that is above that of the architecture.

In short, farming is efficient if there are things to do in parallel, there needs to be parallelism within the
problem, the architecture and this parallelism needs to be preserved in the design and mapping stages
in between. As which architecture used will affect efficiency some applications will only be efficient on
some architectures. The amount of parallelism within the application also limits the amount of scalability
within the implementation.

7.5.6 Developing a mapping
Mapping a program design onto an architecture consists of two stages,

1. selecting some of the independencies between some of the separate parts of the design, and,

2. selecting a method with which to allocate this parallel processes.

The first stage consists of selecting either the separate items of data or the separate stages of the com
putation, and making sure the granularity of the processes is appropriate for the architecture, so that the
application will be executed efficiently by the architecture.

The second stage will involve looking at the communication performance and start up time of the
architecture to see whether a dynamic method of allocation will be more efficient.

These two stages can be thought of separately. However, when considering efficiency, the decisions
made at both stages may need to be considered together, as some mappings will be more efficient when
allocated dynamically, others will be more efficient when allocated statically.

Dynamic allocation may be less efficient if the work has to be organised with a fine level granularity.
When there are many dependencies between the stages of the computation, if the work is to be allocated
dynamically, many communications will need to be introduced and the computation may need to be de
composed into a number of separate independentjobs. This fine level of granularity will introduce a large
number of communication overheads and thus allocating the processes statically may be more efficient.

If a computation is larger than the amount of memory available per worker, it remains to be seen
whether it is better to decompose the computation and farm out these processes, or decompose the com
putation and have a network of farms.

The messages communicated may consist of either data, a process, or a combination of the two.

CHAPTER 7. CONCLUSIONS 202

7.5.7 The factors that affect an implementations efficiency
Implementations should be efficient. This is achieved by ensuring the workers can and are constantly
advancing the computation. Arriving at a mapping that is efficient may take a few attempts.

Farming out is about supply and demand. Thus, a compute bound mapping is one where the work
supply is greater than the capacity for the farm to perform work. This is achieved by arranging for the
jobs to take less time to communicate than they do to compute. With the average length of time it takes
to perform a job, j , and the average length of time to communicate a job or result message, c, should be
selected so that the ratio between them is as large as possible.

c < j

This allows the farmer process to farm out as many jobs as possible in the time it takes to perform a job.
This in turn allows for as many workers as possible. In terms of efficiency, this means that the maximum
number of workers, w, that an application can use is dictated by the number of jobs an implementation
can supply and the length of time they take,

w < i
c

not just the amount of parallelism within the application, the program design and the mapping.
The overhead of farming is that of having to communicate jobs. Thus, the time to compute jobs should

be larger than the time to communicate them.
Further, the overhead of communication is that of having to start communications up. Thus, the time

to communicate the body of a message, m /B , should be much larger than the communication set up time,
a /B ,

m s
B

This is the average bandwidth to a worker. This value will be somewhere in between the bandwidth out
of the farmer and to the last worker. Naturally the values of s and B are affected by the harness used. On
the first generation of transputer, the raw bandwidth of a link used unidirectionally is 1.51 Megabytes per
second, bidirectionally it is 2.19 Megabytes per second.

For the first generation of transputer, the communication set up time, s, is very small. This allows for
mappings of a reasonably fine granularity. With large messages here, it has been possible to ignore s. That
said, when using a harness the start up costs of communication go up. Thus, if the size of the message can
be selected, it should be at least 32 bytes, and preferably 64 bytes or more. Doing this makes a mapping
more likely to be compute bound.

Another way of keeping the start up costs of communications down is to always transmit contiguous
messages, [2] INT, rather than INT; INT.

If the size of the jobs is highly selectable (such as when farming out many jobs in one message) then,
once a compute bound mapping has been found, adjusting the size of the jobs can be used to find the
optimum run time by balancing between larger jobs that result in fewer jobs farmed out overall and smaller
jobs that result in a smoother finish.

To initialise a farm requires filling all the workers and all the harness job buffer spaces with jobs. If
the farmer can supply a greater supply than there is demand, it takes,

number of slots
excess supply

units of time to initialise a farm. If there is not much excess supply, it could be slightly beneficial if some
jobs are output to the farm at an increased rate.

7.5.8 Farming harnesses
The most efficient farming harness for the first generation of transputer consists of the workers in a tree
topology. One link is connected to the farmer and the other workers above it in the tree, the remaining

CHAPTER 7. CONCLUSIONS 203

three links (thus making a ternary tree) are connected to the workers further down. The processors have
a communication process on each hardware channel (i.e. two per link) that pass pointers to messages be
tween themselves and the worker process. If the messages vary in size, buffers should be added to decou
ple the link processes from one another and allowing each process to respond to external communications
more rapidly.

As it is not currently known how to easily set up a ternary tree with the last layer of workers only
partially populated, if the number of workers to be used is to be varied, it may be more appropriate to use
an efficient line topology.

The most efficient line topology has a harness consisting of a simple process to pass on jobs and the
same to pass on results. For compute bound mappings, this harness is also only about 2% less efficient
than the ternary tree. However, due to not greatly using the parallelism of the transputer, this harness can
only supply about half or a third of the number of jobs as the other harnesses. Thus, a lower value of B
will need to be used when performing calculations with the model.

The second most efficient line topology has two (separate) harnesses, each with its own worker pro
cess. Each harness passes messages in each direction along the line of processors. Each harness has a
process on each hardware channel as with the ternary tree (eight harness processes in all). Also like the
tree harness, these processes pass pointers to messages between themselves and their worker process. For
compute bound mappings, this design is only about 4% less efficient than the ternary tree topology, how
ever its level of supply is much higher and thus it breaks down even slightly later than the ternary tree.

One disadvantage of a line topology over that of a tree topology is that, due to performing w /2 com
munications instead of flog3 w] , the cumulative communication set up costs are much larger and small
messages obtain a smaller percentage of the available maximum throughput.

Which worker a job is given to in times of choice is not a matter that affects performance in one way
or the other.

7.5.9 Summary
There are a number of situations where a computational task is too large to be performed by a single
individual. If this is the case the task can be performed by a number of workers (people or computers)
can work on the individual parts of the task. Whether these parts be separate data items or the separate
parts of the task’s stages.

There is a strong likelihood that the task will be performed more efficiently, and thus more rapidly,
if the work is allocated dynamically as the workers become free. Farming out is one method of dynamic
allocation that is worth considering, due to it having only very light overheads (only a bag for the work and
a distributing communication mechanism need to be implemented) and through being very simple (work
is dynamically allocated from the bag to the workers, as a result the work load is balanced automatically).

Farming should be able to execute any application efficiently if the application contains a reasonably
continuous amount of internal parallelism, and if it takes longer to process a job (j) than it does for all
the workers (w) to have jobs allocated to them (c),

j> w c

Using a granularity larger than that of the architecture’s set up costs can aid this.
When a large number of workers is required an interconnection topology is needed to connect all the

workers to the bag. A communication harness is then needed to provide the distributed interconnection.
Some of the most efficient combinations for the first generation of transputer are included here.

Farming is a simple and efficient method of process allocation. Thus, it should be used whenever
an application’s sizeable and constant amount of parallelism can be mapped onto an architecture such
that the overheads of allocation are small. One method of reducing these overheads would be to develop
parallel architectures where the hardware performed the dynamic allocation. This would significantly
extend the range of (especially imbalanced algorithmically) parallel applications that could be executed
more efficiently, it would also remove the burden of writing allocation software from the programmer.
The most appropriate method of dynamic allocation that would be simple for hardware to perform, and
yet be powerful and effective, is likely to be farming.

Bibliography

[And91]

[Bar92]

[Bar93]

[BCK93]

[Bro94]

[BTU88]

[CM87]

[CU90]

[DH90]

[Dij82]

[Dij89a]

[Dij89b]

[Dij89c]

[Gen65]

[Gri71]

[Gro]

[HJ89a]

Gregory R. Andrews. Concurrent Programming. Benjamin/Commings, 1991.

Geoff Barrett. Occam 3 reference manual (draft). Inmos, March 1992.

Geoff Barrett. How to write a highly parallel program. In Jon Kerridge, editor, Transputer
and occam Research: New Directions, pages 209-217. IOS Press, 1993.

Bozena Bartoszek, Zbigniew J. Czech, and Marek Konopka. Parallel searching for a first so
lution. Technical Report 8/93, Computing Lab., University of Kent, Canterbury, CT2 7NF,
England, September 1993.

N. Brown. A sound mapping from abstract algorithms to occam programs. In H. R. Arabnia,
editor, Transputer Research and Applications 7, pages 218-231. IOS Press, 1994.

R. D. Beton, S. P. Turner, and C. Upstill. A state-of-the-art radar pulse deinterleaver—a com
mercial application of occam and the transputer. In Charlie Askew, editor, occam and the
Transputer—Research and Applications, pages 145-152. IOS Press, 1988.

K. Mani Chandy and Jayadev Misra. Parallel Program Design—A Foundation. Addison
Wesley, 1987.

I. Cramb and C. Upstill. Using transputers to simulate optoelectronic computers. In Stephen J.
Turner, editor, Tools and Techniques fo r Transputer Applications, pages 50-58. IOS Press,
1990.

Keith R. Dimond and Samir Hassan. Incremental behavioural simulation on a network of
transputers. In Stephen J. Turner, editor, Tools and Techniques for Transputer Applications,
pages 223-231. IOS Press, 1990.

Edsgar W. Dijkstra. Selected Writings On Computing: A Personal Perspective, chapter
EWD608, pages 264-267. Springer Verlag, 1982.

Edsgar W. Dijkstra. On the cruelty of really teaching computing science. Communications o f
the ACM, 32(12): 1397—1414, December 1989.

Edsgar W. Dijkstra. Selected Writings On Computing: A Personal Perspective, chapter
EWD501, pages 132-140. Springer Verlag, 1989.

Edsgar W. Dijkstra. Selected Writings On Computing: A Personal Perspective, chapter
EWD464, pages 79-83. Springer Verlag, 1989.

F. Genuys, editor. Programming Languages, pages 43-112. Academic Press, 1965.

David Gries. Compiler Construction for Digital Computers. Wiley, 1971.

National Algorithms Group. N.a.g. fortran library manual, mark 15, np2136/15.

C. A. R. Hoare and Cliff Jones, editors. Essays in Computing Science, chapter 16, pages 259-
288. Prentice Hall, 1989.

204

BIBLIOGRAPHY 205

[HJ89b] C. A. R. Hoare and Cliff Jones, editors. Essays in Computing Science, chapter 1, pages 1-18.
Prentice Hall, 1989.

[HJ89c] C. A. R. Hoare and Cliff Jones, editors. Essays in Computing Science, chapter 4, pages 45-58.
Prentice Hall, 1989.

[HJ89d] C. A. R. Hoare and Cliff Jones, editors. Essays in Computing Science, chapter 2, pages 19-30.
Prentice Hall, 1989.

[Hoa61] C. A. R. Hoare. Partition, quicksort and find. Communications o f the ACM, 4(7):321—322,
July 1961.

[Hoa62] C. A. R. Hoare. Quicksort. BCS Computer Journal, 5(1): 10—15, January 1962.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications o f the ACM,
12(10):576-80, October 1969.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications o f the ACM,
2 1(8):666-77, August 1978.

[Hoa80] C. A. R. Hoare. The emperor’s old clothes. Communications o f the ACM, 24(2):75-83, Febru
ary 1980.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Inm88] Inmos. occam 2 reference manual. Prentice Hall, 1988.

[JG91] Gerraint Jones and Michael Goldsmith. Formal methods applied to occam workshop. 14th
World occam and Transputer User Group, Loughborough, Programming Research Group, 33
Keble Road, Oxford., September 1991.

[JR92] D. W. Jenson and D. A. Reed. A performance analysis exemplar: Parallel ray tracing. Con
currency: Practice and Experience, 4(2): 119—141, April 1992.

[Kru87] Robert L. Kruse. Data Structures and Program Design (second edition). Prentice-Hall Inter
national, 1987.

[LS90] Calvin Lin and Lawrence Snyder. A comparison of programming models for shared memory
multiprocessors. In International Conference on Parallel Processing, volume 2, pages 163—
170. Addison Wesley, 1990.

[Man82] Benoit Mandelbrot. The Fractal Geometry o f Nature. W. H. Freeman and Co., 1982.

[MMF87] V. Martorana, M. Migliore, and S. L. Fornili. Molecular dynamics simulation of lennard-jones
systems: parallel implementations on transputer arrays. In Traian Muntean, editor, 7th occam
Users Group and International Workshop on Parallel Programming o f Transputer based Ma
chines. Addison Wesley, 1987.

[Mor93] David Morse. Spatial simulation modelling of insect population dynamics on a transputer
network. In Jon Kerridge, editor, Transputer and occam Research: New Directions, pages
66-75. IOS Press, 1993.

[MS87] D. L. McBurney and M. R. Sleep. Experiments with a transputer-based diffusion architecture.
In Traian Muntean, editor, 7th occam Users Group and International Workshop on Parallel
Programming o f Transputer based Machines. Addison Wesley, 1987.

[PC91] Iain Phillips and Peter Capon. Strategies for workload distribution. In Janet Edwards, editor,
occam and the Transputer—Current Developments, pages 39-51. IOS Press, 1991.

[PR86] Heinz-Otto Peitgen and Peter Richter. The Beauty o f Fractals. Springer Verlag, 1986.

BIBLIOGRAPHY 206

[PZ90]

[RH86]

[Roe]

[Sar89]

[SS91]

[Stu91]

[SW90]

[TD90]

[Tie93]

[Uni33]

[Uni93]

[W+89]

[Wei]

[Wel88]

[Wel89]

[Wel95]

[Wil91]

[WJW93]

Werner Purgathofer and Michael Zeiller. Configuring transputers for ray-tracing. In Len Free
man and Chris Phillips, editors, Applications o f Transputers 1. IOS Press, 1990.

A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Technical Report PRG-
53, Oxford University Programming Research Group, February 1986.

Herman H. Roebbers. Advanced Transputer Engineering Workshop. University of Twente
and University of Kent, Computing Lab., The University, Canterbury, Kent. CT2 7NF.

Amir Mansour Sarrafan. Transputer Models fo r High-Performance Bridges in Local Area
Networks. PhD thesis, University of Kent at Canterbury, November 1989.

Shane S. Sturrock and Ian Salmon. Application of occam to biological sequence comparisons.
In Janet Edwards, editor, occamandthe Transputer—Current Developments, pages 181-190.
IOS Press, September 1991.

Shane S. Sturrock. Biological sequence comparisons on a transputer network. Master’s thesis,
University of Kent at Canterbury, October 1991.

A. M. Sarrafan andP. H. Welch. Transputers models for a high-performance local area network
bridge. In Stephen J. Turner, editor, Tools and Techniques fo r Transputer Applications, pages
111-121. IOS Press, 1990.

R. W. S. Tregidgo and A. C. Downton. Processor farm analysis and simulation for embedded
parallel processing systems. In Stephen Turner, editor, Tools and Techniques fo r Transputer
Applications, pages 179-189. IOS Press, 1990.

IvorTiefenbrun. Manufacturing in the future. RSA Journal, CXLI(5441):549-557, July 1993.

Oxford University. Shorter oxford english dictionary (7th edition), 1933.

Oxford University. Shorter oxford english dictionary (8th edition), 1993.

Peter H. Welch et al. Evaluation of a multi-user transputer environment. Technical report,
Computing Lab., University of Kent at Canterbury, March 1989.

Peter H. Welch, occam and Transputer Engineering Workshop. University of Kent, Comput
ing Lab., The University, Canterbury, Kent. CT2 7NF.

Peter H. Welch. The occam approach to transputer engineering. In Third Conference on Hy
percube Concurrent Computers and Applications. ACM, 1988.

Peter H. Welch. Graceful termination — graceful resetting. In Applying Transputer-Based
Parallel Machines. Addison Wesley, 1989.

Peter H. Welch. Parallel hardware and parallel software: a reconciliation. In Peter Fritzson
and Leif Finmo, editors, Proceedings o f the ZEUS’95 & NTUG’95 Conference, Linköping,
Sweden, pages 287—301. IOS Press, May 1995.

Colin Willcock. X-Windows Programming In The Large. PhD thesis, University of Kent at
Canterbury, November 1991.

Peter H. Welch, George Justo, and Colin Willcock. High-level paradigms for deadlock-free
high-performance systems. In Grebe et al., editor, Transputer Applications and Systems ’93,
pages 981-1004. IOS Press, 1993.

